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Abstract

Voice biometric systems, particularly Automatic Speaker Verification (ASV)
systems, have become indispensable technologies for providing secure, efficient,
and convenient authentication. However, these systems are vulnerable to the
increasingly advanced and accessible spoofing attacks facilitated by advancements
in deep learning and artificial intelligence. To combat these threats, spoofing
countermeasures (CMs) are designed to differentiate between genuine and spoofed
voices. Despite significant performance improvements, there remains a gap in
understanding how and why these CMs function, and how they interact with and
complement ASV systems. This thesis aims to address these challenges and paves
the way for an interpretable and integrated speaker verification anti-spoofing
system.

The first contribution of this thesis includes the use of a neural architecture
search (NAS) algorithm, namely Partially Connected Differentiable Architecture
Search (PC-DARTS), to automatically discover optimal network architectures for
voice anti-spoofing. The resulting models demonstrate competitive performance
and showcase the potential of our automatically learned network. Building on the
solid foundation of the application of PC-DARTS in anti-spoofing, we then apply
the searching procedure in a fully end-to-end manner. Both network architecture
and feature pre-processing operations are jointly optimised, with the algorithm
operating on raw waveform input. We demonstrate that the resulting end-to-end
algorithm, namely Raw PC-DARTS, is competitive with state-of-the-art solutions
and shows better generalisation to unseen spoofing attacks compared to CMs that
use hand-crafted features.
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Abstract

Though the previous work shed light on which network component and the
corresponding feature representations are beneficial for spoofing detection, we still
lack an explanation on how such design choice influences the system performance.
The second contribution of this thesis involves the use of SHapley Additive
exPlanations (SHAP) to study the behaviours of different state-of-the-art systems
and various input features. SHAP is used to explain the contribution of each
individual input feature to the model’s output, and the obtained results can
be visualised using heat maps of the same dimension as the input feature. We
demonstrate the application of SHAP across two separate studies. We first
focused on classifier behaviour, where we highlighted that different CM classifiers
uses different spectro-temporal intervals for spoofing detection. We then shifted
our focus to attack analysis, where we revealed the spoofing artefacts of each
attack using different representations and classifiers. We demonstrate that SHAP
visualisation results can be used to locate attack-specific characteristics as well
as the differences and consistencies between synthetic speech and converted voice
spoofing attacks.

The final contribution includes development of an integrated spoofing-aware
speaker verification (SASV) system. We first present our findings that deep learn-
ing’s role in both spoofing and detection exhibits variability in performance, sug-
gesting that changing training parameters could allow attacks to bypass detection.
We then present our work on enhancing CMs with ASV systems to improve detec-
tion capabilities. We demonstrate the potential of joint optimisation of ASV and
CM for the SASV task. Our findings indicate that joint optimisation is successful
in improving system robustness to spoofing attacks by making complementary use
of the enrolment utterance of the ASV system. Although joint optimisation results
in overfitting to known speakers, we found that using auxiliary data collected from
new speakers can mitigate this overfitting. We also found that joint optimisation
degrades the performance of individual ASV and CM sub-systems but improves
their complementarity.
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Chapter 1

Introduction

The topic of this thesis is the development of effective and interpretable spoofing
countermeasures, along with their integration with Automatic Speaker Verifica-
tion systems, to create a more robust and reliable authentication system. While
the field of speaker recognition has made significant strides in developing robust
models over the years, it’s only in recent times that the vulnerability of ASV sys-
tems to spoofing attacks has come to the forefront. This heightened attention can
be attributed to advancements in deep learning since the 2010s, which have not
only elevated the study of artificially generated speeches but also underscored the
potential risks they pose to ASV systems. In response to these challenges, it is im-
portant to develop systems that can not only identify and neutralize these threats
but also provide clarity on the mechanisms behind spoofing countermeasures.

This chapter first introduces the tasks at hand, i.e., speaker verification in
Sec. 1.1 and spoofing detection in Sec. 1.2. More specific, motivations and aims of
our work are introduced in Sec. 1.3, and the contribution of this thesis is concluded
in Sec. 1.4. Finally, structure of the thesis is described in Sec. 1.5.

1.1 Automatic speaker verification
Automatic Speaker Verification (ASV) systems [4] are biometric systems designed
to authenticate a speaker’s claimed identity based on recordings of his or her
voice. They use estimates of physiological and behavioural voice characteristics -
including the vocal tract, nasal passage, lung air pressure, and intonation [5] - to
model the voice and to distinguish between individuals.

1
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An ASV system typically involves two main stages: training and test, as shown
in Figure 1.1. The training stage, shown in the upper part of Figure 1.1, can be
viewed as a multi-class classification problem where a speaker label is assigned to
each training utterance from a set of known speakers. Classifiers such as Time
Delay Neural Networks (TDNNs) [6, 7] are trained to extract features which cap-
ture speaker-specific characteristics from the speech signal. They capture acoustic
patterns within the spectral envelope of short frames of the speech signal. These
features are then processed through a pooling layer, which aggregates the frame-
level features into utterance-level features which encapsulate the temporal dynam-
ics of the speech signal [7, 8]. Utterance-level features are then mapped into a
high dimensional space to obtain speaker embeddings which serve as a compact
representation of the speaker’s voice identity used in the test stage. A loss func-
tion is employed for the optimisation of the network parameters so that distances
between the learned representations corresponding to the same speakers are min-
imised, while those corresponding to different speakers are maximised [9, 10].

The test stage, shown in the lower part of Figure 1.1, involves the comparison of
a test utterance with an enrolment utterance. Both utterances are processed using
the same feature extractor as in the previous stage to produce speaker embeddings.
A back-end is then used to evaluate the similarity of these embeddings, to generate
a decision score and subsequently to verify the claimed identity. A high score
prompts the system to accept the identity claim, indicating that both utterances
originate from the same speaker. Conversely, a low score leads the system to reject
the claim, indicating that the pair of utterances come from different speakers [11].

1.2 Deepfake and spoofing detection
The literature shows that ASV systems are vulnerable to various types of spoofing
attacks [12], raising significant security concerns. Spoofing attacks typically involve
mimicking the voice characteristics of a targeted speaker. This can be done simply
through the replaying of a recorded utterance [13], or by other more technical
methods such as text-to-speech (TTS) synthesis or voice conversion (VC) [14,15].
TTS and VC technologies are designed to generate artificial speech in the voice of
a target speaker. Such technologies have advanced to such an extent that they can
now generate realistic speech output which is indistinguishable from real human
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Figure 1.1: Illustration of the training and testing stages of an Automatic Speaker
Verification (ASV) system. During the training stage, a feature extractor is guided
by the loss function to extract discriminative speaker embeddings. In the testing
stage, this same feature extractor extracts embeddings from both the enrolment
and test utterances. Subsequently, a back-end system evaluates the similarity
between these two embeddings, producing the final score. Figure reproduced from
[1].

speeches. Since the databases used for the training of ASV systems typically only
contain recordings of bona fide (genuine) speech, these systems can be vulnerable
to well-crafted spoofing attacks, leading to increment in the false alarm rate [12].
Thus, there is a need for effective countermeasures (CM) against spoofing attacks
to enhance the robustness and reliability of ASV systems.

Like ASV, the anti-spoofing task is a binary classification task, where a CM
is used to determine whether a given speech recording is bona fide or spoofed.
This task is addressed by identifying artefacts or cues left by spoofing algorithms.
While some of these artefacts may be readily apparent to the human ear in the
case of unsuccessful or unrealistic artificially generated recordings, many are subtle
nuances beyond human perception. However, countermeasures, typically deep
neural networks, are trained to detect such artefacts. Unlike ASV, the primary
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Figure 1.2: Illustration of spoofing countermeasure working in parallel with an
ASV system.

function of these CMs is to distinguish between bona fide and spoofed signals,
making them speaker- and, optionally, text-independent. Also similar to ASV,
CMs produce a score which indicates support for one of two hypotheses, namely
that the utterance is bona fide or spoofed. By convention, higher scores indicate
greater support for the bona fide hypothesis, while lower scores indicate greater
support for the spoof hypothesis.

CMs typically operate in parallel with an ASV system [16], as shown in Fig-
ure 1.2, but can also be integrated at the score level [17]. In the more common
parallel approach, the CM operates in tandem with the ASV system. If the CM
flags an utterance as spoofed, then the tandem system rejects the claimed identity,
hopefully resulting a reduced rate of false alarms. Correspondingly, the ASV sys-
tem only process utterances flagged by CM as genuine (bonafide), it compare the
similarity of this genuine utterance and the previously saved enrolment utterance.
The tandem system grants access only if the similarity score is high. Conversely,
if the similarity score is low, the claimed identity is also rejected.

In the case of score fusion approach, scores of CM and ASV are generated si-
multaneously and combined to form the final score for the decision making process.
The fusion approach differs from the parallel approach that both CM and ASV
system contribute to the final decision, both reject or accept, whereas in the par-
allel approach, both ASV and CM can reject the claimed identity, because either
the utterance is spoofed (CM decision) or of different speaker (ASV decision).

In the score fusion approach, CM and ASV systems generate their respective
scores simultaneously, which are then combined to establish a final score for the
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decision-making process. This fusion strategy stands in contrast to the parallel
approach by enabling both the CM and ASV systems to jointly influence the final
decision. This differs from the parallel approach, where the CM and ASV systems
may independently reject the claimed identity, either due to the CM identifying
the utterance as spoofed or the ASV determining a discrepancy in speaker identity.

1.3 Motivation and aim
The field of anti-spoofing has evolved significantly, transitioning from method-
ologies focusing on hand-crafted features combined with Hidden Markov Models
(HMM) [18] and Gaussian Mixture Models (GMM) [17], towards those employ-
ing Deep Neural Networks (DNN) [19,20] such as Convolutional Neural Networks
(CNN) [21–23]. However, designing custom network architectures for various hand-
crafted features is a time-consuming process [24,25]. Furthermore, the performance
of state-of-the-art network architectures can differ based on input features [26]. A
potential solution to this issue is to automate the process, allowing the algorithm
itself to identify the optimal network architectures for given input features and,
going one step further, to determine the optimal combination of architectures and
features jointly.

While the discovery of optimal architectures and feature representations may
contribute to the design of a better CM system, it does not clarify the underlying
rationale [27, 28]. Key questions remain, such as why different features capture
different cues [22, 26], or which intervals of the speech signal have the greatest
influence upon the score (and decision) [27,29]. An understanding of these aspects
will facilitate the design of more reliable anti-spoofing systems in the future.

Recognizing and understanding the artefacts of spoofing attacks is crucial, yet
we’ve noted that deep-learning-based CMs often display inconsistencies in behav-
ior and performance. This raises questions about whether similar inconsistencies
exist within deep-learning-based spoofing attack algorithms and their impact on
the robustness of spoofing detection. Recognizing the vulnerability of CMs to
these inconsistencies, we propose a strategy to enhance their defensive capabili-
ties. This strategy includes combining and jointly optimising ASV systems and
CMs, to improve their ability to detect spoofing attacks. We also analyse our
experimental results to further understand the function and behavior of ASV and
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CMs in spoofing-aware speaker verification (SASV).

1.4 Contributions
• Introduce evolutive network architecture method, namely Differentiable Ar-

chitecture Search (DARTS), to automate the architecture learning process
for for speech deepfake and spoofing detection.

• Present the first successful application of Partially-Connected DARTS (PC-
DARTS) approach to deepfake and spoofing detection problems. The result-
ing models are not only competitive in performance, but also have reduced
computational complexity and GPU memory demands, and require minimal
human effort.

• Report the first end-to-end (E2E) solution, namely Raw PC-DARTS, to op-
timise the network architecture in tandem with front-end feature extraction
and network parameters. The performance of this model ranks among the
top single-system results reported at the time of publication.

• Introduce the use of SHapley Additive exPlanations (SHAP), a feature at-
tribution method, to highlight the importance of moving beyond black-box
models in spoofing detection and emphasise the need for the development
of trustworthy, explainable and more robust and reliable spoofing detection
systems.

• Demonstrate the first application of SHAP to understand the influences on
the outputs of spoofing detection models. Showcase its potential in revealing
attention patterns at low-level spectro-temporal intervals.

• Extend the understanding of classifier behavior by employing SHAP for at-
tack analysis, and present findings on the consistencies and differences in
artefacts across various spoofing attacks.

• Present first work to demonstrate that the effectiveness of spoofing attacks
can vary significantly based on training conditions.

• Introduce the use of jointly-optimised solutions for the design of a robust
spoofing detection and speaker verification system. Demonstrate through
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experiments that while joint optimisation enhances robustness against spoof-
ing, it tends to compromise speaker verification performance.

• Highlight the need for a joint optimisation approach that capitalises on the
complementary information provided by both spoofing detection and speaker
verification sub-systems.

• Stress the importance of using auxiliary data from a diverse set of speakers
for successful joint optimisation.Highlight the persistent challenge of domain
robustness and emphasise the need for research in reducing CM over-fitting
and the exploration of speaker-dependent spoofing detection.

1.5 Thesis structure
Presented in this section is the structure of the thesis and content of each chapter.
We also cite related, peer-reviewed published work from which the material is
drawn.

Chapter 2

This chapter provides background and a literature review. It starts with an
overview of the development of ASV systems. Then we present an overview of
spoofing attacks and countermeasures. We present different front-end features as
well as popular network architectures. We then present details of the corpus and
the evaluation metrics used for all experimental work presented in this thesis.

Chapter 3

This chapter presents the first successful application of Differentiable Architec-
ture Search (DARTS) in the study of deepfake and spoofing detection tasks. The
goal is to automate and optimise the neural network architecture design, thus
minimising human intervention and broadening the use of automatic optimisa-
tion beyond model parameters. We conducted a comprehensive investigation,
employing a range of methodologies to examine the performance and feasibility
of partially-connected DARTS (PC-DARTS) [30] in the realm of deepfake and
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spoofing detection. Our findings show promising results, with PC-DARTS demon-
strating robust performance compared to the top-performing systems reported in
the literature. Performance results from the ASVspoof 2019 logical access (LA)
database. Through this study, we show the potential of automatically designed
architectures producing neural networks which can compete with, or even outper-
form their counterparts in the domain of deepfake and spoofing detection.

The work presented in this chapter was published in:

Wanying Ge, Michele Panariello, Jose Patino, Massimiliano Todisco and
Nicholas Evans, “Partially-Connected Differentiable Architecture Search
for Deepfake and Spoofing Detection,” in Proc. INTERSPEECH 2021.
Brno, Czech Republic, September 2021.

Chapter 4

The work presented in Chapter 4 builds on the exploration of automatically de-
signed neural architectures from the previous chapter. The central goal of this
work is to evolve beyond hand-crafted network models and the front-ends, tak-
ing advantage of automation to construct network structures that are capable of
processing raw signals. We present our exploration of Raw PC-DARTS. This tech-
nique operates directly on raw waveform inputs, allowing for joint optimisation
of both network architecture and network parameters. Our findings reveal that,
although optimal performance was achieved using a fixed front-end, rather than a
learnable configuration, the proposed Raw PC-DARTS system still delivers among
the best performance reported at the time of publication for the ASVspoof 2019
LA database.

The work presented in this chapter was published in:

Wanying Ge, Jose Patino, Massimiliano Todisco and Nicholas Evans, “Raw
Differentiable Architecture Search for Speech Deepfake and Spoofing
Detection,” in The ASVspoof 2021 Workshop (INTERSPEECH Satellite Work-
shop). September 2021.
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Chapter 5

This chapter presents our exploration of explainable artificial intelligence (xAI)
within the field of deepfake and spoofing detection. Our goal is to decode the
”black-box” solutions, which dominate current approaches, and to reveal the fea-
tures these systems utilise to distinguish between genuine and spoofed speech. We
report our use of SHAP, an xAI tool which helps explain the outputs of a detec-
tion model. We probe into its potential to uncover why some attacks are more
challenging to detect than others. In particular, we are interested to know why
some solutions focus more on non-speech intervals. Our findings show that SHAP
analysis can highlight the attention a classifier pays to low-level spectro-temporal
intervals, demonstrating unexpected classifier behaviours on relying discrimina-
tive information from non-speech intervals. We also aimed to recognise a variety
of artefacts and assess their significance. Our findings indicated that, despite
unique artefacts for each attack, there were shared characteristics among certain
attack types and techniques.

The work presented in this chapter was published in:

Wanying Ge, Jose Patino, Massimiliano Todisco and Nicholas Evans,
“Explaining Deep Learning Models for Spoofing and Deepfake De-
tection with SHapley Additive exPlanations,” in Proc. ICASSP 2022.
Singapore, May 2022.

Wanying Ge, Massimiliano Todisco and Nicholas Evans, “Explainable
Deepfake and Spoofing Detection: An Attack Analysis Using SHapley
Additive exPlanations,” in The Speaker and Language Recognition Workshop.
Beijing, China, June 2022.

Chapter 6

In this chapter, we explore the vulnerability of CMs to spoofing attacks gener-
ated by deep learning models with subtle variations in their training configurations.
Although we have successfully identify attack-specific artefacts in the previous
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chapter, these artefacts may not be the sole identity of the algorithm since both
CM and attacks are now deep-learning-dominated and we already observed in the
previous chapters that most CMs suffer from inconsistency in model behaviour
and performance. The findings and observations presented in this chapter have
propelled our investigation into joint optimisation in the next chapter.

The work presented in this chapter was published in:

Wanying Ge, Xin Wang, Junichi Yamagishi, Massimiliano Todisco and
Nicholas Evans, “Spoofing Attack Augmentation: Can Differently-trained
Attack Models Improve Generalisation?,” in Proc. ICASSP 2024, Seoul,
South Korea, April 2024.

Chapter 7

This chapter presents our investigation into the Spoofing-Aware Speaker Verifica-
tion (SASV) systems. The motivation behind this study is to understand why,
despite that ASV and CM working in synergy has the potential of utilising com-
plementarity information from both systems, the joint optimisation of speaker
verification and spoofing detection subsystems was unsuccessful in the first SASV
challenges. Our findings reveal that, while joint optimisation indeed improves
robustness to spoofing, it also degrades speaker verification performance. This
trade-off suggests that an effective joint optimisation strategy must consider the
complementary information provided by each subsystem. The work in this chap-
ter also highlights the issue of overfitting to speaker data. We demonstrate that
with sufficient speaker data, joint optimisation can yield superior SASV perfor-
mance, even outperforming separately optimised systems. Thus, despite potential
drawbacks, the evidence points towards the advantages of joint optimisation in
developing more reliable speaker verification systems.

The work presented in this chapter was published in:

Wanying Ge*, Hemlata Tak*, Massimiliano Todisco and Nicholas Evans,
“On The Potential of Jointly-Optimised Solutions to Spoofing Attack
Detection and Automatic Speaker Verification,” in Proc. IberSPEECH
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2022. Granada, Spain, November 2022 (* equal contribution).

Wanying Ge, Hemlata Tak, Massimiliano Todisco and Nicholas Evans, “Can
Spoofing Countermeasure and Speaker Verification Systems Be Jointly
Optimised?” in Proc. ICASSP 2023. Rhodes Island, Greece, June 2023.
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Chapter 2

Literature review

This chapter delves into the literature review of specific components integral to
deep-learning-based ASV and spoofing CM solutions, which are central to the
remaining chapters of this thesis. Section 2.1 introduces the database collection
for both ASV and CM, highlighting the similarities and differences in data for
training and evaluation due to the distinct nature of the tasks. The integration of
these tasks and the inspirations for Chapter 6 and 7 are also covered. Section 2.2
discusses the feature extraction essential for representing the audio elements of
the data, along with tools highlighted in Chapter 5 to illustrate the significance
of these audio elements. Lastly, Section 2.3 focuses on model design, presenting
works on creating deep learning models adept at extracting relevant information
from audio features, as well as the automated design and search for such tools,
forming the basis for Chapter 3 and 4.

2.1 Database characteristics and their impact
We first present an overview of the databases used in this work, namely the Vox-
Celeb1 and VoxCeleb2 for speaker verification and the ASVspoof 2019 Logical
Access and the Fake Audio Detection databases for spoofing detection. We also
describe other related data augmentation techniques and non-speech databases for
improving system robustness.

2.1.1 Databases for ASV and CM: An overview
The ASV system primarily functions as a biometric security tool, verifying speaker
authenticity in contexts like voice dialling, voicemail, security control, online bank-
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Table 2.1: Comparative overview of VoxCeleb1 and VoxCeleb2 databases: lan-
guages, speaker, utterances, and total hours.

VoxCeleb1 VoxCeleb2
Language Mostly English
# of Spks 1,251 6,112
# of Utters 153,516 1,128,246
# of Hours 352 2,442

ing, telephone shopping, and forensic applications by extracting unique speaker
representations from speech signals [31–34]. We showcase statistics from two
speaker recognition databases, VoxCeleb1 [31] and VoxCeleb2 [32], in Table 2.1.
These databases utilise a multi-stage data collection process, initially choosing
Persons of Interest (POIs) mostly from English speakers. They employ face recog-
nition to confirm detected face identities and active speaker verification to align the
visible face with the speech source. As a result, they offer robust and varied speaker
recognition datasets. Despite being primarily English-based, the databases in Ta-
ble 2.1 encompass data from over 7000 POIs spanning 145 nationalities, accounting
for diverse accents, ages, and ethnic backgrounds. Such extensive databases are
crucial for speaker recognition, as they provide a wide range of training data,
fostering the development of more robust and generalised models.

Spoofing countermeasure (CM) systems play a crucial role in identifying and
mitigating spoofing attacks. The function of CM is to extract distinctive features
and patterns from speech signals to analyse and identify telltale signs of spoofing
artefacts [14, 35, 36]. Table 2.2 provides statistics for two databases, ASVspoof
2019 Logical Access (LA) [15] and the Fake Audio Detection (FAD) [35]. Unlike
speaker recognition databases, these databases contain both genuine and spoofed
audio samples, as they designed to aid in the development of countermeasures
against spoofing attacks. While speaker recognition databases typically comprise
a vast array of speakers varying in gender and age to discern differences among
them [34, 37], spoofing and deepfake detection databases have fewer, meanwhile
emphasising diverse spoofing attack types.

Furthermore, Table 2.2 reveals that both databases cover known and unknown
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Table 2.2: Comparative Analysis of ASVspoof 2019 LA and FAD databases: lan-
guage, speaker, and attack types in training and evaluation.

ASVspoof 2019 LA FAD
Language English Chinese
# of Spks 107 1024
# of Atks in Train 4 TTS, 2 VC 8 TTS
# of Atks in Eval 7 TTS, 3 VC, 3 TTS-VC 11 TTS

spoofing attack types. This inclusion allows researchers to assess their systems’
efficacy against known threats and their adaptability in detecting new attack types.
A system that can successfully detect and counter unknown attacks is significantly
more valuable in maintaining security than a system that can only handle known
threats.

2.1.2 Towards further improvement on robustness
While increasing data diversity typically results in more robust systems, databases
like VoxCeleb and ASVspoof, despite their diversity, have limited data due to the
extensive effort required for their collection and maintenance. Consequently, non-
speech-based databases and signal processing techniques have been introduced for
data augmentation to further enhance system robustness. For ASV system train-
ing, techniques and resources like Room Impulse Response (RIR) [38], MUSAN
corpus [39], pitch shifting [40], and SpecAugment [41] are employed. In contrast,
CM system training commonly utilises signal processing techniques [40–42] and
artificial manipulation of the provided data [43, 44]. They all serve as a means to
create a more diverse and challenging set of training examples and help improve
the robustness of the systems.

Training data for ASV systems is designed to capture the variability among
real speakers, the resulting ASV system is thus vulnerable to high-quality syn-
thesised or replayed speeches that imitate voices of a real, target speaker [15]. To
protect ASV from such threat, CM training data is specifically collected to aid sys-
tems on distinguishing genuine speeches from deepfakes. While the CM training
data already covers a wide range of attacks, we argue that this approach may not
be enough for ensuring generalisation and robustness. In Chapter 6, we discuss

17



2.2. FEATURE EXTRACTION AND IMPORTANCE

the observation that the efficacy of deep-learning-based CM solutions varies sig-
nificantly based on factors like initialisation [26], hyper-parameters [45], and data
partitions [43]. Consequently, the potency of spoofing attacks, particularly those
using deep learning, will also differ depending on their training conditions. This
inconsistency might lead CM to occasionally overlook certain attack algorithms,
including those it has been trained on.

Understanding CM’s potential vulnerabilities suggests that ASV systems could
be trained or refined to defend specifically against threats that bypass CM, acting
as additional protection. While ASV is vulnerable to some spoofing attacks, it still
can sometimes detect fake speeches that poorly imitate the original speaker’s char-
acteristic. This mutual support implies that both systems can be jointly optimised
for heightened security. Events such as the Spoofing-Aware Speaker Verification
challenge [46] were initiated to probe this concept. Nevertheless, it’s notable that
many leading solutions in the challenge [47–51] primarily employ ASV and CM
systems that are trained separately and later integrated for combined function-
ality. We thus delve into the possibility of optimising CM and ASV systems
synergistically in Chapter 7 for the designing of a more robust integrated systems.

2.2 Feature extraction and importance

This section delves into the important role of feature extraction in enhancing the
performance of ASV and CM systems, focusing on the methodologies employed
for effective speaker recognition and anti-spoofing. We first introduce the funda-
mental processes and methodologies used in feature representation for ASV and
CM. These methodologies underscore the importance of extracting compact, yet
comprehensive, information from speech signals to distinguish between speakers
accurately. Following this, we explore the significance of understanding and eval-
uating feature importance within these systems. This exploration not only aids in
refining system performance but also contributes to the broader goal of advancing
explainable AI within the field.
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2.2.1 Methodologies in feature representation for ASV and
CM

Most feature extraction stages of current speaker recognition and verification
systems function in a similar way - they are designed to extract representative
and compact information for the speech signals for the discrimination of different
speakers. The traditional Gaussian Mixture Model - Universal Background Model
(GMM-UBM) is a foundational method in speaker recognition [4]. It posits that
individual speaker characteristics can be represented by various Gaussian distri-
butions. The system encompasses the Universal Background Model (UBM), a
generalised model that captures the collective acoustic attributes of speakers, and
individualised Gaussian Mixture Models (GMMs). These GMMs, tailored from
the UBM emphasise the unique vocal features of each speaker. Recently, deep
learning has introduced significant advancements in speaker recognition. The i-
vector framework [52] offer enhanced modelling of intricate data distributions,
capturing detailed phonetic specifics, leading to notable improvements in recogni-
tion accuracy, especially in challenging environments [53]. The DNN-BNF/i-vector
model further refines this by extracting compact features from a DNN’s bottleneck
layer [54, 55], resulting in a superior performance over traditional methods.

In anti-spoofing, accurately representing voice signals is pivotal for detect-
ing spoofs. The process involves transforming raw voice signals into features
that capture essential characteristics to differentiate genuine from spoofed speech.
Commonly used features include the Short-Time Fourier Transform (STFT) mag-
nitude [22, 26], which shifts the speech signal from time to frequency domain,
highlighting crucial elements like formants and harmonics. Another method, Lin-
ear Frequency Cepstral Coefficients (LFCC) [56, 57], is akin to Mel Frequency
Cepstrum Coefficient (MFCC) but focuses on a linear frequency scale, captur-
ing high-frequency components more effectively. Constant-Q Cepstral Coefficients
(CQCC) [24], on the other hand, offers both temporal and spectral characteristics,
proving invaluable in anti-spoofing. The emerging trend of end-to-end (E2E) solu-
tions combines feature extraction and model training into a unified process [58,59].
This approach allows models to derive optimal features from raw data, potentially
improving performance [21, 60, 61].
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2.2.2 Understanding and evaluating feature importance
Despite many years of research into voice anti-spoofing, we still don’t fully un-
derstand the specific clues that systems use to differentiate real from fake voices.
It’s essential to comprehend how these classifiers make decisions to trust them
and further the move towards explainable AI. Feature attribution method offer
insights into DNN-based detection by highlighting the significance of individual
input features in these decisions. Understanding these cues can improve system
performance and is crucial for scenarios like forensics.

Several prior studies have explored explainability in related speech topics. For
instance, [62] uses an approach based on attenuating specific spectral components,
demonstrating that artefacts indicative of different spoofing attacks are found
within distinct sub-band intervals and can be detected more reliably by front-
ends that emphasise the corresponding frequency range. Grad-CAM (Gradient-
weighted Class Activation Mapping) [63] has been employed to explain spoofing
classifier behaviour in [64], generating a binary saliency map for the network input
layer. By reconstructing input audio using spectrograms masked with the binary
saliency map, listening experiments reveal that the model distinguishes between
genuine and spoofed speech based on buzziness and rhythmic quality. A study of
replay detection [29] examines the impact of various replay attack configurations on
detection performance, while another study [65] utilises LIME (Local Interpretable
Model-agnostic Explanations) [66] to generate temporal and spectral explanations
for voice replay detection model prediction behaviour. These works suggest that
non-speech intervals can provide discriminative information for spoofing detec-
tion. Further research [27] indicates that the duration of non-speech intervals in
a synthetic speech and converted voice detection task can also hint at whether an
utterance is genuine or spoofed.

Inspired by cooperative game theory concepts [67], SHapley Additive exPla-
nations (SHAP) [68] offers a more sophisticated and potent approach to explain-
ability. SHAP values indicate the contribution of specific features to a classifier
output. The study in [69] employs DeepSHAP [68] to elucidate the behaviour of
speech enhancement models, using SHAP values to identify regions of the input
feature (in the form of spectrograms) that most significantly impact the model
output. The findings reveal that higher-performing models tend to rely more on
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information within speech-dominated spectro-temporal intervals. As a unified and
theoretically grounded method, SHAP can explain the relative importance of par-
ticular features to classifier outputs.

2.3 Model architecture
2.3.1 Evolution of model architectures for ASV and CM
Deep neural networks (DNNs) in speaker recognition use various structures such as
DNN, CNN, and Long short-term memory (LSTM), each with unique components
and methods to capture speaker information. These structures, combined with a
range of input options, enhance recognition performance. While CNNs frequently
employ acoustic data like mel-filterbanks [70, 71], other models extract features
directly from raw waveforms [59, 72]. The selection of input, influenced by the
task and network type, with each offering different audio representations. Critical
to this process are temporal pooling layers [73, 74], which transform frame-level
features into utterance-level summaries using techniques like average pooling and
self-attention-based pooling, emphasising essential frames for speaker identifica-
tion. Objective functions, including softmax loss [9] and angular softmax loss [75],
guide networks to learn distinguishable speaker embeddings. In sum, the struc-
ture and input capture speech data, pooling layers summarise this data, objective
functions guide network training. Together, these elements make deep embedding
models more effective in speaker recognition tasks.

Voice anti-spoofing technology has evolved considerably over time. Initially,
the field relied on CQCC-GMM [24], which prioritized frequency and temporal res-
olutions for better spoofing detection. Later, ResNet, or Residual Networks [76],
introduced skip connections to combat model degradation, enabling the training
of deeper networks [57, 77]. Despite advancements achieved with ResNet and its
variants [57,77], some spoofing methods remained difficult. This led to the devel-
opment of RawNet2 [60], which operated on raw speech waveforms, eliminating the
need for hand-crafted features. The most recent E2E model is AASIST [78], opti-
mised for real-world applications, integrating both spectral and temporal data with
advanced graph attention layers. Currently, self-supervised learning (SSL) [79,80]
offers state-of-the-art performance in the anti-spoofing domain. Using wav2vec 2.0
front-end with fine-tuning, SSL first trains on large volumes of unlabeled genuine
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speech, followed by fine-tuning on labeled datasets containing both genuine and
spoofed speech. This method potentially enhances the model’s adaptability to
unseen spoofing attacks.

2.3.2 Automated model architecture design
End-to-end (E2E) processing techniques have has gained increasing attention [21,
60, 78, 81], and have now replaced the use of hand-crafted, manually optimised
components with automated learned representations. While these E2E approaches
have indeed set benchmarks in performance, it’s noteworthy that their advance-
ments predominantly cater to the front-end components. When it comes to back-
end components, optimisation generally narrows down to refining network pa-
rameters. The architecture of these networks often remains hand-crafted. Build-
ing upon earlier work [82], the use of neuro-evolution for augmenting topologies
(NEAT) [82] to learn network architectures automatically reported studied in [83].
However, performance was below the state-of-the-art, and computational complex-
ity was high. Instead of pursuing more efficient NEAT implementations, we turned
to powerful and efficient alternatives with proven potential in speech-related tasks.

In Chapter 3 and 4, we have investigated the application of neural architecture
search (NAS), first proposed in [84]. NAS methods compose of an architecture
search space, a search strategy, and an evaluation strategy [85]. The search space
contains a collection of candidate operations such as dilated convolution, separa-
ble convolution and average pooling. An architecture is generated from this space
based on the performance criteria. The NAS variation known as differentiable
architecture search (DARTS) [86] facilitates the selection of candidate operations
by using a search space with continuous and learnable weights. DARTS models
can be optimised using backpropagation with hardware acceleration. The net-
work is designed automatically by optimising the operations within architecture
building blocks called cells. During an initial search phase, candidate operations
such as convolutional operations, pooling layers, and residual connections are se-
lected. Following this, the resulting cells are combined to develop a more complex
architecture, which is then further optimised in sequential phases.

DARTS has been applied successfully to in various speech and language tasks,
as evidenced by its application in multiple studies [87–89]. In one instance, DARTS
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was used for architecture search in a keyword spotting task [87]. This study
achieved competitive results by employing a search space containing the standard
operations used in ResNet. Another successful application of DARTS, in automatic
speech recognition, was reported in [88]. This study showed promising results even
when the architecture search and training stages were conducted using different
language datasets. The first implementation of DARTS in speaker verification is
documented in [89]. The findings indicate that smaller, automatically learned solu-
tions are comparable to their hand-crafted counterparts. Both [87] and [89] report
state-of-the-art performance results. However, they also highlight the necessity of
using small batch sizes to enable architecture search on a single GPU.

2.4 Performance metrics
Two performance metrics are utilised in our experiment to evaluate the effective-
ness of speaker verification and spoofing detection systems, namely the Equal
Error Rate (EER) and the Tandem Detection Cost Function (t-DCF). The EER
is a widely accepted metric for assessing a model’s capability to distinguish be-
tween target and non-target speaker utterances, or between bona fide and spoofed
utterances in spoofing scenarios. On the other hand, the t-DCF provides a com-
prehensive evaluation of the joint performance of countermeasure mechanisms and
automatic speaker verification systems under spoofing conditions.

2.4.1 Equal error rate
EER is a common evaluation metric utilised in both speaker verification and spoof-
ing detection scenarios. It is used to measure the model’s ability to differentiate
between target speaker and non-target speaker utterances, or in the case of spoof-
ing detection, bona fide and spoofed utterances. The EER essentially represents
the error rate at an operating point where both the False Acceptance Rate (FAR)
and False Rejection Rate (FRR) are equal. FAR and FRR are calculated as follows:

FAR = FP

FP + TN
(2.1)

FRR = FN

TP + FN
(2.2)
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where FP is the count of False Positives, TN is True Negatives, FN is False Neg-
atives and TP is True Positives.

2.4.2 Tandem detection cost function
Unlike the EER, the Tandem Detection Cost Function (t-DCF) [90] is primarily
used in spoofing detection scenarios. It evaluates the joint performance of both the
countermeasure and automatic speaker verification (ASV) system under a Bayesian
decision risk approach. The t-DCF metric is calculated as follows:

t − DCF (s, t) =Casvmiss
· πtar · Pa(s, t)

+ Casvfa
· πnon · Pb(s, t)

+ Ccmfa
· πspoof · Pc(s, t)

+ Ccmmiss
· πtar · Pd(s)

(2.3)

where Casvmiss
and Casvfa

are the costs of the ASV system rejecting a target trial
and accepting a non-target trial respectively, Ccmfa

and Ccmmiss
are the costs

of the CM accepting a spoof trial and rejecting a human trial respectively, πtar,
πnon, πspoof are the prior probabilities of target, non-target, and spoof respectively.
Pa(s, t), Pb(s, t), Pc(s, t) and Pd(s) represent different error probabilities which are
a function of detection thresholds for a CM and an ASV system respectively. A
reference value of 1.00 for (normalised) t-DCF indicates an uninformative coun-
termeasure. Hence, the lower the t-DCF value, the better the countermeasure’s
performance.

2.5 Summary
This chapter provides an overview of the common databases for automatic speaker
verification and spoofing detection. The work described in Chapter 3 to Chap-
ter 5 uses the ASVspoof 2019 LA database and the work described in Chapter 7
uses VoxCeleb1&2, ASVspoof 2019 LA and the FAD database. This chapter also
presents an literature review on feature extraction and network design of both ASV
and CM systems. Finally, this chapter provides an introduction of two commonly
used performance metrics that will be used in this thesis to evaluate countermea-
sure performance.

24



Chapter 3

Neural architecture search for
spoofing detection

In this chapter, we introduce the first successful implementation of a differentiable
architecture search (DARTS) [86] method to address deepfake and spoofing de-
tection tasks. Section 3.1 presents our motivation of applying neural architecture
search methods in the field of spoofing detection. Section 3.2 gives a theoretical in-
troduction to the DARTS algorithm. Section 3.3 describes the experimental setup
and details. Section 3.4 reports our results. Section 3.5 presents the summary of
the work.

The work presented in this chapter was published in:
Wanying Ge, Michele Panariello, Jose Patino, Massimiliano Todisco and

Nicholas Evans, “Partially-Connected Differentiable Architecture Search
for Deepfake and Spoofing Detection,” in Proc. INTERSPEECH 2021.

3.1 Introduction and motivation
DARTS, a type of neural architecture search algorithm, functions within a contin-
uous and differentiable search space, facilitating the joint optimisation of network
architecture and parameters using gradient descent. Inspired by the successful
studies of DARTS in speech related topics [87–89], our work presented in this chap-
ter aims to achieve several objectives. First, we seek to determine whether neural
architectures learned automatically with PC-DARTS can outperform hand-crafted
networks. Second, we aim to explore the long-term potential for such networks
to surpass the current state-of-the-art. Third, we are interested in determining
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Figure 3.1: An illustration of architecture search and train from scratch. Archi-
tecture search optimises a stack of 2 normal cells (dashed blue) and reduction
cells (dashed yellow). The train from scratch stage optimises a deeper network of
stacked cells (solid blue and yellow). Only network parameters are optimised in
the second stage; the cell architectures are those fixed during architecture search.

whether automatically learned and optimised solutions offer greater efficiency.
Although not a primary goal of our work, we hypothesise that PC-DARTS might
produce less complex networks that exhibit more easily explainable behaviour.

By using random channel masking in the search domain, partially-connected
DARTS (PC-DARTS) [30] decreases GPU consumption and autonomously discov-
ers and enhances complex neural architectures composed of convolutional processes
and residual blocks. These rapidly learned networks, require minimal human input
and demonstrate competitive performance when compared to the top-performing
systems documented in the literature at the time of publication, as evidenced by
the ASVspoof 2019 LA [15] evaluation set.

3.2 Automatic search of network architectures
Figure 3.1 demonstrates that DARTS consists of two distinct learning stages: the
architecture search stage (shown to the top) and the train from scratch stage (shown
to the bottom). A key principle is to develop an intricate network architecture
by employing two cells (blue and yellow blocks in Figure 3.1). The structure and
parameters of these cells are learned automatically.
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DARTS distinguishes itself from other NAS techniques by working within a
flexible, continuous search space rather than searching over a discrete collection
of candidate network operations. This flexibility makes the architecture repre-
sentation differentiable, allowing it to be optimised using conventional methods
such as gradient descent, backpropagation and hardware acceleration. During the
architecture search stage, the architecture parameters of the cells are learned and
then fixed in the next stage. The train from scratch stage involves constructing
a deeper network by stacking a larger number of cells obtained from the previous
stage. Network parameters are then re-optimised.

The initial architecture search phase demands significant computational re-
sources. Employing partial connections [30] offers a more resource-efficient so-
lution. These two algorithms are introduced in Section 3.2.1 and Section 3.2.2
respectively.

3.2.1 Differentiable architecture search

Figure 3.2 shows an example of how DARTS networks are formed through the
concatenation of multiple cells, the internal architectures of which are learned au-
tomatically. These architectures determine the use of candidate operations which
are applied to input data to generate the output.

Each cell is comprised of N nodes, with each node x(i) representing a feature
map in tensor form. The initial node pair, x(1) and x(2), serve as the cell inputs
and connect to the outputs of the two previous cells. Intermediate nodes, ranging
from x(3) to x(N−1), are computed from prior nodes using operation o chosen from
the search space O as follows:

x(j) =
∑
i<j

o(i,j)
(
x(i)

)
(3.1)

Here, o(i,j) denotes the operation performed on edge (i, j), connecting x(i) and x(j).
The final node, x(N), represents the cell output, and its feature map is derived from
the concatenation of feature maps associated with all intermediate nodes.

During the architecture search stage, a linear combination of operations, de-
noted as ō, is executed on edge (i, j) based on a weight α(i,j)

o . These weights
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Figure 3.2: An illustration of architecture search: (a) a neural cell with N = 5
nodes; (b) an illustration of the candidate operations performed on each edge that
are optimised during architecture search; (c) resulting optimised cell with K = 2
inputs to each intermediate node.

generate a continuous search space via a softmax function:

ō(i,j)
(
x(i)

)
=

∑
o∈O

exp
(
α(i,j)

o

)
∑

o′∈O exp
(
α

(i,j)
o′

) , o
(
x(i)

)
(3.2)

Consequently, architecture search involves learning a set of continuous variables
α = {α(i,j)}, where α(i,j) has a dimension of |O|. Both the architecture param-
eters α and the network parameters ω (e.g., convolutional filter weights) can be
optimised jointly through backpropagation. The objective is to optimise α that
minimise the validation loss Lval, while also optimising ω to minimise the training
loss:

min
α

Lval(ω∗, α)

s.t. ω∗ = argmin
ω

Ltrain(ω, α)
(3.3)

When the search phase is completed, ō(i,j) is substituted by the single operation
with the highest value α(i,j)

o . The final cell architecture is derived by preserving the
K edges with the highest weights α(i,j)

o that enter each intermediate node, where
K is a hyperparameter. All other edges are discarded.

The search space O, as suggested in [89], includes the following set of oper-
ations: 3 × 3 separable convolution; 5 × 5 separable convolution; 3 × 3 dilated
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convolution; 5 × 5 dilated convolution; skip connection; 3 × 3 average pooling;
3 × 3 max pooling; none (no connection). These operations can form two cate-
gories of neural cells: normal cells and reduction cells. As shown at the bottom of
Figure 3.1, cells are stacked to create the complete, deeper residual network. Re-
duction cells are positioned at 1

3 and 2
3 of the overall network depth (total number

of stacked cells). The feature map dimensions remain constant for the input and
output of each normal cell, while reduction cells reduce the feature map dimensions
by 50% and simultaneously double the number of channels.

3.2.2 Partial channel connections and edge normalisation

The computational demand of DARTS, particularly during the architecture search
stage, remains high. To address the efficiency issue, we employ partial chan-
nel connections and edge normalisation, as proposed in [30]. Partially-connected
DARTS (PC-DARTS) offers considerable reductions in computation and memory
usage. For any given (i, j), partial channel connections are established through
the element-wise multiplication of x(i) by a masking operator S(i,j) with the same
dimensions. This masking operator either selects (multiplying by 1) or masks
(multiplying by 0) each channel in x(i):

ō(i,j)
(
x(i)

)
=

∑
o∈O

exp
(
α(i,j)

o

)
∑

o′∈O exp
(
α

(i,j)
o′

) o
(
S(i,j) ⊙ x(i)

)
+

(
1 − S(i,j)

)
⊙ x(i) (3.4)

where ⊙ represents element-wise multiplication. A hyperparameter KC is defined
to preserve a random proportion 1/KC of the available channels. Consequently,
partial connections decrease the computational burden by a factor of KC while
simultaneously regularising the selection of weight-free candidate operations (such
as max pooling) in O for a specific edge [30]. A balance should be made between
performance (smaller KC) and efficiency (larger KC). Due to random channel
sampling, the linear combination of operations ō(i,j) for each node may become
unstable during training. To address this problem, a set of edge normalisation
parameters β is introduced to stabilise node inputs as follows:

x(j) =
∑
i<j

exp
(
β(i,j)

)
∑

i′<j exp (β(i′,j))
ō(i,j)

(
x(i)

)
(3.5)
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where β(i,j) is a learnable smoothing factor. By minimizing Lval, the collection of
architecture parameters being optimised now includes both α and β.

3.3 Experimental setup
Section 3.3.1 presents a description of the database, protocols and metrics. Input
features are described in Section 3.3.2. Details of model training are described in
Section 3.3.3.

3.3.1 Database, protocols and metrics

All experiments presented in this chapter were performed using the ASVspoof 2019
Logical Access (LA) database [91]. During the architecture search phase, 50% of
the utterances for each class in the training partition, i.e. both bona fide and
spoofed instances (A01-A06), are employed for learning network parameters. The
remaining 50% serve to learn architectures, specifically one normal cell and one re-
duction cell. Subsequently, the cell architectures yielding the highest classification
accuracy are used in the training from scratch stage.

After the training from scratch phase, the resulting model’s performance is
evaluated using the complete evaluation partition. Performance metrics include
the pooled minimum normalised tandem detection cost function (min-tDCF) [92]
as well as the pooled equal error rate (EER).

3.3.2 Input feature

Our initial experiments showed that applying neural architecture search to raw
audio waveforms requires significant GPU memory, resulting in reduced batch
sizes and extended training time [60]. Consequently, we employed 60-dimensional
linear frequency cepstral coefficients (LFCCs), including static, delta, and delta-
delta coefficients. Feature extraction utilised 64 ms Hamming windows with a 16
ms shift and a 1024-point FFT. To encourage generalisation, frequency masking
was implemented following the method outlined in [77], with up to 12 masked
frequency channels per mini-batch.
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3.3.3 Model training
Following standard practice [30], we applied three convolutional layers with a stride
of 2 to input features for resolution reduction. Architecture search utilised 4 neural
cells (2 normal cells and 2 reduction cells) with 16 initial channels. For each
intermediate node, each cell contains N = 7 nodes and retaining K = 2 inputs
after the architecture search stage.

The architecture search stage involved 50 epochs of training with a 64 batch
size. Adam optimiser [93] is used to learn both architecture and network parame-
ters. These parameters were optimised by minimising the weighted cross-entropy
loss between spoofed and bona fide data at a 1:9 ratio. Following [30, 94], archi-
tecture parameters were not updated during the initial 10 epochs. Architecture
parameter learning used a 6e-4 learning rate and 0.001 weight decay, while net-
work parameter learning used a 0.01 initial learning rate, which was annealed to
0.001 following a cosine schedule. Partial channel connections applied a KC = 2
value. Upon completion of the architecture search stage, network parameters ω

were discarded, retaining only normal and reduction cell architectures.

3.4 Results
We present our experimental results in this section. Sec. 3.4.1 shows results ob-
tained in the architecture search stage, as well as the found network architectures.
Sec. 3.4.2 reports results obtained in the train from scratch stage. Performance
comparison to other systems are reported in Sec. 3.4.3.

3.4.1 The searched architecture
The architecture search stage has the highest computational demand. Conse-
quently, we focus on both search time and performance, both are shown in Ta-
ble 3.1 for experiments involving DARTS and PC-DARTS with models featuring
4 layers and 16 channels (L = 4, C = 16). For DARTS, the batch size is max-
imised based on GPU memory limitations. Implementing partial connections re-
duces search time by approximately 50%, while regularisation enhances accuracy.
Performance effectively translates from the training partition to the development
partition. Resulting normal and reduction cell architectures are shown in Fig-
ure 3.3.
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Figure 3.3: An illustration of the (a) normal and (b) reduction cells resulting from
architecture search. As illustrated in Figure 3.1, they form the basic building
blocks used to construct the architecture used in the train from scratch stage.

Table 3.1: A comparison of DARTS and PC-DARTS models with L = 4 layers
and C = 16 channels. Results in terms of processing efficiency (GPU-days) and
accuracy for ASVspoof 2019 LA training and development partitions.

Model size Systems Search Cost Best Architecture

GPU-days Train Acc. Dev Acc.

(L = 4, DARTS 0.29 98.80% 97.21%
C = 16) PC-DARTS 0.15 99.97% 100%

3.4.2 Train from scratch
The resulting cell architectures in Section 3.4.1 can be used in the second stage to
form a new deep network with arbitrary numbers of layers (L) and initial channels
(C). Table 3.2 presents results for various PC-DARTS configurations (column 1)
and number of parameters (column 2), with min-tDCF and EER results for both
the development partition (columns 3 and 4) and evaluation partition (columns
5 and 6). The top-performing model, as per the primary min-tDCF metric in
evaluation set, has 16 layers and 64 initial channels, yielding a min-tDCF of 0.0914
and an EER of 4.96 for the evaluation partition. The second-best model, which
has 4 layers and 16 initial channels, achieves a min-tDCF of 0.0992 and an EER
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Table 3.2: Number of parameters and results for a selection of different PC-DARTS
models. Results for the ASVspoof 2019 LA database.

Model size Params Dev Eval

min-tDCF EER min-tDCF EER
(L = 2, C = 4) 0.007M 0.0004 0.04% 0.1244 5.80
(L = 4, C = 16) 0.14M 0 0 0.0992 5.53
(L = 8, C = 32) 0.97M 0.00004 0.002 0.1177 4.87
(L = 16, C = 64) 7.51M 0 0 0.0914 4.96
(L = 24, C = 64) 10.57M 0.0001 0.039 0.1045 5.51

of 5.53 with 7.37M fewer parameters. While the performance of the smallest
model is considerably worse in terms of min-tDCF, its EER remains respectable.
The largest tested model size provides no performance improvement, likely due to
overfitting to the training data.

3.4.3 Comparison to competing systems

Table 3.3 shows results with top-performing systems from the literature at the time
and the two ASVspoof 2019 baselines [15]. The optimal (16,64) model substan-
tially outperforms the two ASVspoof baselines and all but two other models, both
of which are Res2Net models [95]. Although differences in min-tDCF are modest,
they are more pronounced in terms of EER. Our second-best model, utilising 85%
fewer parameters than the best-performing Res2Net model, remains competitive.
These encouraging results demonstrate that anti-spoofing models, with both ar-
chitecture and parameters learned automatically, can outperform models designed
with extensive human effort.

3.5 Conclusion and discussion

We conclude our work presented in this chapter. Additionally, we also discuss the
choice of feature and it’s impact on the performance.
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Table 3.3: A performance comparison between PC-DARTS models and competing
state-of-the-art systems reported in the literature. Results for the ASVspoof LA
evaluation partition.

Systems Features min-tDCF EER Params

Res2Net [95] CQT 0.0743 2.50 0.96M
Res2Net [95] LFCC 0.0786 2.87 0.96M
PC-DARTS (16, 64) LFCC 0.0914 4.96 7.51M
PC-DARTS (4, 16) LFCC 0.0992 5.53 0.14M
LCNN [22] [96] LFCC 0.1000 5.06 10M
LCNN [22] [96] LPS 0.1028 4.53 10M
LFCC-GMM [15] LFCC 0.2116 8.09 -
Res2Net [95] LPS 0.2237 8.78 0.96M
CQCC-GMM [15] CQCC 0.2366 9.57 -
Deep Res-Net [97] LPS 0.2741 9.68 0.31M

3.5.1 Chapter summary

In this chapter, we present what we believe to be the first successful implemen-
tation of differentiable architecture search (DARTS) for voice spoofing detection.
We demonstrate that partially connected differentiable architecture search (PC-
DARTS) can effectively learn deep neural network architectures from a set of
candidate operations. With PC-DARTS, architectures can be optimised using
backpropagation and hardware acceleration, allowing for the automatic learning
of even complex convolutional and residual networks.

The resulting models show competitive performance compared to the state-of-
the-art. Our top-performing model achieves a min-tDCF of 0.09 for the ASVspoof
2019 Logical Access database, surpassed only by a Res2Net system by a mini-
mal margin. This notable outcome is produced by a network whose architecture
and parameters are learned automatically, rather than through extensive man-
ual optimisation. Our second-best system which achieves a min-tDCF of 0.1, has
85% fewer parameters than the best-performing Res2Net system. These results
encourage further exploration of PC-DARTS.
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3.5.2 Discussion on the input feature
In our study, we chose Linear Frequency Cepstral Coefficients (LFCC) as our
primary input feature because it outperformed other features like Linear Frequency
Bank (LFB) and STFT spectrogram in our tests, even though these features were
compared using the same PC-DARTS model size, with consistent settings for FFT
points, window size, shift, and masking of 12 frequency channels.

Our goal with PC-DARTS was to identify optimised architectures for spoofing
detection tailored to the chosen input feature, as we believe there’s an optimal
neural network architecture for each individual that best extracts and learns from
the voice signal’s cues and artefacts. However, the necessity of manually selecting
input features complicated our experiment and diverged from our initial aim to
streamline the development of anti-spoofing models. Moving forward, we plan
to eliminate the need for choosing input features by adapting the PC-DARTS
algorithm to a fully end-to-end approach, allowing the network to directly process
raw waveforms.

Our initial goal in using the PC-DARTS method was to automatically dis-
cover the most efficient network architectures for spoofing detection, based on any
given input feature. This approach is based on the premise that an optimal neural
network architecture exists for extracting and learning from the deep representa-
tions in voice signals. However, the need to manually select features made our
experiment more complex and deviated from our aim to simplify the design of
anti-spoofing models. In the next chapter of this thesis, we plan to address this
issue by adapting the PC-DARTS algorithm to an end-to-end (E2E) approach,
which means the network will process raw audio waveforms directly, eliminating
the need to choose input features manually.
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Chapter 4

End-to-end neural architecture
search

In this chapter, we extend our work in neural architecture search forward to a
fully end-to-end (E2E) architecture. Our motivation stem from the report in the
literature of successful applications of E2E models to anti-spoofing. These models
operate directly upon the raw audio waveforms, and at the time that this work
was conducted, were starting to outperform the more traditional deep learning
approaches which operate upon hand-crafted features. This chapter presents our
efforts to automatically learn the network architecture for a speech deepfake and
spoofing detection system, while jointly optimising the network components and
parameters, such as the initial convolutional layer that processes raw signal inputs.

Section 4.1 presents our motivation of the work. Section 4.2 describes our raw
differentiable architecture search algorithm. Experiments and results are described
in Section 4.3 and Section 4.4 respectively. Section 4.5 presents the summary of
the work.

The work presented in this chapter was published in:

Wanying Ge, Jose Patino, Massimiliano Todisco and Nicholas Evans, “Raw
Differentiable Architecture Search for Speech Deepfake and Spoofing
Detection,” in The ASVspoof 2021 Workshop (INTERSPEECH Satellite Work-
shop).
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4.1 Motivation
Our research group has investigated E2E, automatically learned network architec-
tures in the past [83]. A crucial aspect of this research involves working directly
with raw signals. By utilising a collection of sinc-shaped filters, a recent work [60]
operates on the raw audio waveform through time-domain convolution, while the
remaining network components are optimised in a conventional manner. The
results reveal that systems with automatically learned features can perform com-
petitively and can be complementary to those employing hand-crafted features.
Although these findings are promising, performance improvements remain rela-
tively modest. Despite the focus on E2E learning of both features and classifiers,
the network architecture of [60] remains hand-crafted [60]. This is also true for all
E2E solutions proposed to date [21, 58, 98].

In the previous chapter, we have investigated automated methods for learn-
ing network architecture. We use a particular version of differentiable architec-
ture search [86], namely partially-connected differentiable architecture search (PC-
DARTS) [30]. The architecture search is carried out using two primary network
components called cells. Cells are characterised by both architectural parameters
and network parameters, which are jointly optimised during the first of two phases
known as the architecture search stage.

We demonstrated [99] that PC-DARTS can learn more compact models that
remain competitive with state-of-the-art solutions. As the pioneering effort to
investigate differentiable architecture search for anti-spoofing, this research was
conducted using hand-crafted features. Our work presented in this chapter, there-
fore, aims to merge architecture search with fully E2E learning. In this work, we
introduce Raw PC-DARTS, the first E2E speech deepfake and spoofing detection
system which operates directly on the raw waveform while facilitating the joint
optimisation of both network architecture and network parameters.

4.2 Raw differentiable architecture search
In this section, we present an overview of the proposed Raw PC-DARTS method.
The model architecture is outlined in Table 4.1. We discuss the front-end sinc
filter bank and the implementation of filter masking in Section 4.2.1. The back-
end classifier design and base cell structure are introduced in Section 4.2.2. Finally,
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Table 4.1: The proposed network structure. Each cell receives outputs of its two
previous cells/layers. Conv(k, s, c) stands for a convolutional operation with kernel
size k, stride s and output channel c. BN refers to batch normalisation.

Layer Input:64000 samples Output shape

Conv(128, 1, 64)

Sinc Filters Maxpooling(3) (21290, 64)

BN & LeakyReLU

Conv(3, 2, 64)

Conv_1 BN & LeakyReLU (10645, 64)

Normal Cells


BN & LeakyReLU

Operations

Maxpooling(2)

 × 2 (2661,256)

BN & LeakyReLU

Expand Cell Operations (1330, 512)

Maxpooling(2)

Normal Cells


BN & LeakyReLU

Operations

Maxpooling(2)

 × 2 (332, 512)

BN & LeakyReLU

Expand Cell Operations (166, 1024)

Maxpooling(2)

Normal Cells


BN & LeakyReLU

Operations

Maxpooling(2)

 × 2 (41, 1024)

GRU GRU(1024) (1024)

Embedding FC(1024) (1024)

Output Score P2SActivationLayer(2) (2)
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we present the extraction of embeddings and the loss function in Section 4.2.3.

4.2.1 Sinc filters and masking

Sinc filters

Waveform

⊗

Figure 4.1: An illustration of sinc filter masking, where we use totally 6 convolu-
tional channels as sinc filters and the 3rd and 4th filters are masked.

The input waveform of the network is fixed to a duration of 4 seconds (16000×4
samples) through either concatenation or truncation of the original audio data.
Feature extraction is carried out using a collection of C sinc filters [59]. Each filter
operates time-domain convolution on the input waveform. The impulse response
for every filter is determined as follows:

g[n, f1, f2] = 2f2sinc(2πf2n) − 2f1sinc(2πf1n) (4.1)

where f1 and f2 are the cut in and cut off frequencies, and sinc(x) = sin(x)/x is
the sinc function. Both f1 and f2 can be initialised to any given frequency scale,
and can set as learnable or fixed model parameters in our experiment.

During network training, we randomly mask a number of the sinc filters. This
technique is similar to channel drop-out [100, 101] and frequency masking [41, 77,
102] and promote the learning of more generalised representations. In practice,
sinc filters within the range [C1, C2) are set to zero (masked), where C1 represents
the first randomly selected masked filter and C2 = C1 + f . The number of masked
filters, f , is selected from a uniform distribution [0, F ), with F being a predefined
maximum value. Once f is generated, C1 is chosen from a uniform distribution
[0, C − f). And illustration of this operation is shown in Figure 4.1.
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4.2.2 Search space and cell architectures
Different to the method mentioned in the previous chapter [99], where input fea-
tures are treated as 2D images, Raw PC-DARTS performs operations directly on
the raw time-domain waveform. As a result, the search space O is designed using
1D convolutional operations including: standard and dilated convolutions with
kernel sizes {3, 5}; max pooling and average pooling with kernel sizes {3}; skip
connections; no connections.

The original DARTS method searches for the architectures of two cell types: a
normal cell and a reduction cell. The model is constructed by sequentially stacking
these cells, with reduction cells positioned at 1

3 and 2
3 of the total network depth.

Once again, normal cells maintain the feature map dimensions, while reduction
cells reduce the dimensions by half and double the number of channels. A global
average pooling layer is subsequently utilised after the stacked network to extract
embeddings.

This stacked cell design is effective for spectro-temporal representations, as
their dimensions are similar to those typically used in image classification tasks
where DARTS was first applied [103,104]. However, for speech classification tasks
and raw waveform-based solutions, the feature dimension remains large at the
stacked cell output, and the use of global pooling leads to significant information
loss. Although a greater number of reduction cells could be manually added to
reduce the feature dimension, this would undermine the goal of automated ar-
chitecture search. Moreover, each additional reduction cell doubles the number
of channels, resulting in increased computational complexity and GPU memory
demands.

To address this issue in Raw PC-DARTS, we apply max pooling to each cell
output, reducing the feature dimension by half. This simple yet effective solution
helps the model learn a more compact, high-level representation without increas-
ing the number of channels, thus reducing computational complexity and GPU
memory requirements. An added advantage is that the same architecture depth
and initial number of channels can be employed for both architecture search and
training from scratch stages. Consequently, the so-called depth gap [105, 106] is
avoided, where searched operations may not fit the deeper network in the sec-
ond stage due to depth mismatch between architecture search and training from
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Figure 4.2: Illustration of frequency scales used to initialise sinc filters, reproduced
from [2].

scratch stages. As a result, the cells used in Raw PC-DARTS are referred to as
normal and expand cells. Both cells halve the input feature dimension, while only
the expand cell doubles the number of channels. Expand cells are placed at the
same network depth as reduction cells in the original DARTS approach.

4.2.3 Embedding extraction and loss function

The frame-level representations generated by the final cell are fed into a gated
recurrent unit (GRU) layer to obtain utterance-level representations. These repre-
sentations are then fed into a fully connected layer which extracts the embeddings.
We use mean-square error (MSE) for P2SGrad [26] as the loss function. First, an
activation layer calculates the cosine distance cos θ between the input embedding
and the class weight. As in [107], this step is hyperparameter-free, reducing the
sensitivity of margin-based softmax to its scale and angular margin parameter
settings and yielding relatively consistent results. The network loss is the MSE
between cos θ and the target class label. Scores used for performance evaluation
correspond to cos θ for the bona fide class.
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4.3 Experimental setup
We follow the same database partition and metrics as in the previous chapter.
For the sinc filters, same to [60], we explore three frequency scales as shown in
Figure 4.2: Mel, inverse-Mel, and linear. For each scale, we examined two scenar-
ios: fixed and learnable. In the fixed setting, scales remain constant throughout
both the architecture search and train from scratch stages. On the other hand,
learnable scales are similarly initialised, but their configuration is updated during
the architecture search stage. However, they remain fixed during the train from
scratch stage. Additionally, we evaluated a randomly initialised, learnable convo-
lution block, referred to as Conv_0, as an alternative to sinc filters. The kernel
size, stride and output channel number for the Conv_0 system align with those
used in systems incorporating sinc filters. We set the maximum number of masked
filters to F = 16.

In identical fashion to the approach described in Chapter 3, we maintain a
fixed number of nodes N = 7 in each cell and limit the inputs for intermediate
nodes to 2. Our models consist of 8 cells, including 6 normal cells and 2 expand
cells, with an initial channel number of C = 64 in both stages. We conduct 30
epochs of training during the architecture search. The first 10 warm-up epochs
involve updates to network parameters only, while both architecture and network
parameters are updated during the following 20 epochs. We set the batch size to
14 and employ Adam optimisation [93] for learning. Architecture parameters are
adjusted using a learning rate of 6e-4 and a weight decay of 0.001, while the network
parameters utilise a learning rate of 5e-5. We implement partial channel selection
with a value of KC = 2. In the train from scratch stage, all models are trained for
100 epochs using a batch size of 32. An initial learning rate of 5e-5 is gradually
reduced to 2e-5, following a cosine schedule. All models in the experiment are
trained using the same random seed and executed on a single NVIDIA GeForce
RTX 3090 GPU. The architecture search stage takes around 21.5 hours, while the
train from scratch stage requires approximately 9.5 hours.

4.4 Results
First, we present a series of experiments evaluate Raw PC-DARTS performance
with varying first layer sinc filter scales in Section 4.4.1. Subsequently, in Sec-
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Table 4.2: EER results for the ASVspoof 2019 LA database, evaluation partition.
Results shown for different Raw PC-DARTS setups using different first layer sinc
scale initialisation.

Type Fixed Learnable

min-tDCF EER min-tDCF EER
Mel 0.0517 1.77 0.0899 3.62
Inverse-Mel 0.0700 3.25 0.0655 2.80
Linear 0.0926 3.29 0.0583 2.10
Conv_0 × × 0.0733 2.49

tion 4.4.2, we compare performance to existing state-of-the-art approaches. Lastly,
we provide an analysis of complexity in Section 4.4.3 and an analysis of general-
isability by examining performance stability across diverse spoofing attacks in
Section 4.4.4.

4.4.1 Raw PC-DARTS with different sinc scales
Table 4.2 shows results in terms of min t-DCF and EER for the ASVspoof 2019
LA evaluation partition. Results are presented for four distinct sinc scale config-
urations: Mel, inverse-Mel, linear, and randomly initialised learnable convolution
blocks (Conv_0). Except for Conv_0, results for both fixed and learnable config-
urations are shown for each case.

The best min t-DCF (0.0517) and EER (1.77%) are achieved using fixed Mel
scale sinc filters. For both inverse-Mel and linear scales, learnable configurations
outperform their fixed counterparts, with the second-best result (min t-DCF of
0.0583 and 2.1% EER) obtained using a linear scale. Although the Conv_0 system
delivers a commendable EER of 2.49%, its min t-DCF of 0.0733 is significantly
inferior to the top-performing configurations.

The cell architectures for the optimal configuration (Mel-Fixed) are shown in
Figure 4.3. We noticed that, despite the architecture parameters being randomly
initialised, dilated convolution operations tend to dominate after several warm-up
epochs. This observation suggests that, when applied to raw waveforms, dilated
convolutions might contribute more to representation learning than other candi-
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(a) Normal cell
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Figure 4.3: An illustration of the normal (a) and expand (b) cells produced by the
architecture search stage for the Mel-Fixed Raw PC-DARTS configuration.

date operations within the search space. Dilated convolutions expand the receptive
field [21,108,109], enabling the utilisation of more extensive contextual information
to enhance performance.

4.4.2 Comparison to competing systems
Table 4.3 presents a comparison of results for the two best-performing Raw PC-
DARTS systems with top-performing systems reported in the literature. The num-
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Table 4.3: A performance comparison between proposed models and competing
state-of-the-art systems reported in the literature. Results for the ASVspoof LA
evaluation partition.

Systems Features min-tDCF EER Params Worst attack Worst EER

Res-TSSDNet [21] waveform 0.0482 1.64 0.35M A17 6.01
Raw PC-DARTS Mel-F waveform 0.0517 1.77 24.48M A08 4.96
ResNet18-LCML-FM [77] LFB 0.0520 1.81 - A17 6.19
LCNN-LSTM-sum [26] LFCC 0.0524 1.92 0.28M A17 9.24
Capsule Network [56] LFCC 0.0538 1.97 0.30M A17 3.76
Raw PC-DARTS Linear-L waveform 0.0583 2.10 24.40M A08 6.23
ResNet18-OC-Softmax [57] LFCC 0.0590 2.19 - A17 9.22
Res2Net [95] CQT 0.0743 2.50 0.96M - -
ResNet18-AM-Softmax [57] LFCC 0.0820 3.26 - A17 13.45
ResNet18-GAT-T [110] LFB 0.0894 4.71 - A17 28.02
ResNet18-GAT-S [110] LFB 0.0914 4.48 - A17 21.74
PC-DARTS [99] LFCC 0.0914 4.96 7.51M A17 30.20
RawNet2 [60] waveform 0.1294 4.66 25.43M A18 16.30

ber of learnable parameters and the decomposed EER results for Res-TSSDNet
and LCNN-LSTM-sum were obtained using open-source codes available online.
The data for Capsule Network were provided by the authors of [56], and those for
ResNet18-GAT and RawNet2 were supplied by the authors of [60,110].Among the
13 systems, four process raw inputs, including the top two systems—Res-TSSDNet
from [21] and the proposed Raw PC-DARTS. The fourth raw waveform-based sys-
tem is RawNet2 from [60], which employs a first layer of sinc filters, a GRU and a
fully connected layer for embedding extraction.

These findings demonstrate the competitiveness of raw waveform-based solu-
tions and indicate that automatically learned cell architectures can achieve per-
formance levels similar to or better than hand-crafted designs.

4.4.3 Complexity
Table 4.3 presents the number of network parameters for the displayed systems
in column 5 (where such numbers are available). Both top-performing Raw PC-
DARTS architectures possess over 24M parameters. In the Mel-Fixed configura-
tion, 77% (18.89M) of the learnable network parameters are attributed to GRU
layers, while only 18% (4.52M) are associated with stacked cells. The RawNet2
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system, which also employs a GRU, has more than 25M parameters. Other sys-
tems feature significantly fewer parameters, such as the leading Res-TSSDNet
system with 0.35M parameters. It utilises ResNet-style 1D convolution blocks
and three FC layers, excluding GRUs. Dilated convolutions contribute to control-
ling network complexity while expanding the receptive field [21]. Although the
LCNN-LSTM-sum system [26] incorporates two bidirectional LSTM layers, typi-
cally computationally demanding, a hidden size of 48 helps maintain the lowest
complexity among all showcased systems. The increased complexity of the Raw
PC-DARTS architecture is a current limitation; however, it may be a justifiable
trade-off, considering the learning and optimisation process involves relatively little
human effort.

4.4.4 Worst case scenario
Generalisation has been a important point in anti-spoofing research since the
founding of ASVspoof in 2013. It is well-established that even top-performing
systems can struggle to detect the full range of spoofing attacks [111]. Therefore,
there is an interest to minimise not only pooled performance but also performance
in the so-called worst-case scenario, which, for the ASVspoof 2019 LA database,
is typically the infamous A17 attack.

Columns 6 and 7 of Table 4.3 display the worst-case attack and corresponding
EER for each system. Notably, systems operating on raw waveform inputs exhibit
a distinct advantage. The Res-TSSDNet [21] and both Raw PC-DARTS systems
have among the lowest worst-case EERs. This finding suggests that waveform-
based systems can capture discriminative artefacts which may be overlooked by
systems relying on hand-crafted inputs. If an adversary were to identify and ex-
ploit only the attacks to which a system is most vulnerable, Raw PC-DARTS
countermeasures would provide the second-best protection among all competing
systems.

4.5 Conclusion and discussion
We first present the summary of our work on Raw PC-DARTS. We then dis-
cuss our observation from experiments reported both with PC-DARTS and Raw
PC-DARTS, as well as from other literature, specially on the impact of feature
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calculation towards system performance.

4.5.1 Chapter summary
Built on the PC-DARTS network presented in Chapter 3, we introduced an end-to-
end differentiable architecture search approach for speech deepfake and spoofing
detection, namely Raw PC-DARTS. Unlike PC-DARTS where only the network
architecture is automated generated through architecture searching, we demon-
strated that all components of a deep network model, including pre-processing
operations, network architecture, and parameters, can be automatically learned
from raw waveform inputs, resulting in a system which is competitive with the
state-of-the-art.

Although the best performance is achieved using a fixed front-end rather than a
learnable configuration, the latter is only slightly behind, and both systems deliver
among the best performance reported to date for the ASVspoof 2019 logical access
database. However, the use of gated recurrent units makes the resulting models
significantly more complex than competing systems, potentially exhibiting redun-
dancies. While reducing redundancy is possible and the results in this chapter
show the potential of learned architectures, further work is necessary to address
complexity, especially when computational capacity is limited and a design crite-
rion, such as for embedded applications. One potential direction for future research
is to explore replacing gated recurrent units, which have millions of parameters,
with concatenated fully connected layers that possess orders of magnitude fewer
parameters.

4.5.2 Discussion on system performance and behaviours
We observe that Raw PC-DARTS solutions generalise better to unseen spoofing
attacks than the previous PC-DARTS solutions. Performance for the worst-case
A17 attack is notably superior to that of many competing systems. This trend
is not isolated; we’ve noticed that systems relying on spectro-temporal features
generally struggle with the A17 attack, whereas certain end-to-end (E2E) models,
including our Raw PC-DARTS, manage to detect it more effectively than other
attacks in our test set. Changes of such behaviour appear to be directly linked
to the E2E nature of these models, which operate without the need for manually
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crafted features.
We plan to investigate the information or cues missed by handcrafted solutions

but successfully captured by fully learned solutions in the next chapter. By under-
standing these aspects, we may be able to combine the benefits of both approaches,
further enhancing reliability while maintaining complexity.
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Chapter 5

Towards explainability in voice
anti-spoofing

Unlike the previous chapters, which concentrate on system design with the primary
aim of enhancing spoofing detection performance, the focus in this chapter shifts
to exploring explainability. This change in research direction stems from various
factors, including observed discrepancies in model behaviour and performance,
as noted in previous chapters as well as by other studies [27, 60]. Additionally,
the link between spoofing detection and security necessitates a broader approach,
prioritising not just performance metrics like the equal error rate (EER), but
also emphasising reliability and trustworthiness. Consequently, we embarked on
pioneering studies into explainability, the processes and outcomes of which are
detailed in this chapter.

In Section 5.1, we elucidate—and to some extent justify—our shift in focus from
performance metrics to explainability with two examples. Section 5.2 outlines the
methodology we employed to gain insights into explainability, specifically SHapley
Additive exPlanations (SHAP). Examples of SHAP visualisation are shown in
Section 5.3. The subsequent Sections 5.4 and 5.5 delve into the experimental
setup and our analytical process. Finally, Section 5.6 provides a comprehensive
summary.

The work presented in this chapter was included in:
Wanying Ge, Jose Patino, Massimiliano Todisco and Nicholas Evans,

“Explaining Deep Learning Models for Spoofing and Deepfake Detec-
tion with SHapley Additive exPlanations,” in Proc. ICASSP 2022.
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Wanying Ge, Massimiliano Todisco and Nicholas Evans, “Explainable
Deepfake and Spoofing Detection: An Attack Analysis Using SHapley
Additive exPlanations,” in The Speaker and Language Recognition Workshop.

5.1 Examples that call for explainability in anti-
spoofing community

Though significant advancements have been achieved in the domain of spoofing
and deepfake detection recently, the research community still faces the challenge
of understanding the rationale behind a classifier’s output. This section illustrates
this challenge through two examples. These instances highlight what is often
misconceived as a ‘trick’ or ‘shortcut’ in performance-driven system design, but in
reality, they underscore our incomplete grasp of the task at hand. Furthermore,
these examples underscore the need within the anti-spoofing community for tools
that aid in explaining and understanding the behaviour of countermeasure systems.

5.1.1 Impact of input feature selection to system perfor-
mance

The previous two chapters detailed our efforts to automate network architecture
design for anti-spoofing. In Chapter 3, our initial approach yielded respectable
results, albeit not surpassing state-of-the-art systems. Furthermore, when the
algorithm was applied in a fully end-to-end (E2E) manner, as discussed in Chap-
ter 4, we observed an improvement in performance. The systems in both chapters
were developed using the same architecture search algorithm within similar search
spaces. These spaces contained identical operations but were adapted for pro-
cessing one-dimensional or two-dimensional feature maps. While changes in other
network modules, such as additional pooling layers and GRU layers, may con-
tribute to this performance enhancement, the choice of different input features
could also play a significant role.

Further analysis in Section 4.4.4 and results in Table 4.3 indicate that input
features significantly influence system performance, particularly in worst-case sce-
narios. This observation aligns with findings reported in [60], where the A17 attack
in the ASVspoof 2019 LA evaluation set was more effectively detected using raw
waveform inputs, as opposed to traditional, hand-crafted spectro-temporal speech
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representations. This, along with our findings in Chapter 4, suggests that different
forms of feature representations of the same speech signal might reveal spoofing
artefacts in varied ways. This phenomenon is not isolated; numerous studies have
also observed that even when the same system is applied to the same evaluation
dataset, detection performance can vary significantly with different input feature
representations [22, 26]. For instance, [26] reports that the EER of the same light
convolution network (LCNN) on the ASVspoof 2019 LA evaluation partition var-
ied drastically, from 14.86% with linear filter bank (LFB) inputs to 2.99% with
linear frequency cepstral coefficient (LFCC) inputs.

5.1.2 Impact of non-speech intervals to system perfor-
mance

The anti-spoofing task involves detecting differences between bona fide (genuine)
and spoofed acoustic artefacts in speech, akin to the process employed by humans.
Yet, it has been observed that some deep neural networks (DNNs) utilise varia-
tions in the non-speech intervals of voice signals to accomplish this task [27, 29].
Typically, bona fide utterances may include zero-valued silence segments, a feature
often absent in spoofed utterances [29]. This disparity can inadvertently become
a cue for distinguishing between bona fide and spoofed classes, as most deep-
learning-based solutions, being supervised, enhance classification performance by
leveraging information from the entire input utterance, without constraints on the
specific intervals used.

Furthermore, some DNNs are reported to exploit semantically unrelated fac-
tors, such as the duration differences in silence intervals between bona fide and
spoofed inputs, for spoofing detection [27]. While bona fide data can be naturally
collected, comprising speech with intermittent silence, spoofed data, especially
that generated by text-to-speech (TTS) attacks, often exhibits more varied non-
speech duration. Although this difference isn’t always a definitive indicator for
spoofing detection, certain DNNs might partially rely on this aspect and lose ro-
bustness when non-speech intervals are eliminated during preprocessing steps like
voice activity detection.
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5.2 SHapley Additive exPlanations (SHAP)
In human perception, terms describing spoofed or artificial voices often revolve
around phrases like ‘doesn’t sound like someone’ or ‘sounds fake,’ indicating
a reliance on nuances in spoken words rather than non-speech or its duration.
This is natural, considering that silences—sounds with amplitudes too low to be
perceived—are typically beyond human auditory perception. Initially, artificially
designed spoofing countermeasures were assumed to function similarly to human
perception. However, specially designed experiments have revealed discrepancies
in this assumption [29,65]. Since researchers only have access to the network’s out-
put, these experiments are crafted to observe output differences when the network
is trained and evaluated with varying data sets.

The calculation of output scores of deep-learning-based CMs is indirect and
obscured by the depth and complexity of DNNs. Feature attribution methods like
Local Interpretable Model-agnostic Explanations (LIME) [66], Gradient-weighted
Class Activation Mapping (Grad-CAM) [63], and SHapley Additive exPlanations
(SHAP) [68] provide insights into the connection between DNN inputs and outputs.
In the remainder of this section, we introduce one of the methods, SHAP, and
demonstrate its application in the context of anti-spoofing.

SHAP values, which can possess both positive and negative values, indicate the
relative significance or insignificance of a specific feature in relation to a classifier
output. Given a prediction function or model, f(x), and a feature subset S ⊆ F

where F represents the complete set of features, the SHAP value ϕi is obtained
using two models, one containing feature i and the other excluding it. For an
arbitrary input xS, predictions from both models are compared as follows:

δi(S) = fS∪i(xS∪i) − fS(xS) (5.1)

Here, fS∪i denotes the model trained on the feature subset with the addition of
feature i, while fS signifies the model trained on the same subset without incor-
porating i. Equation (5.1) is computed for all possible subsets S ⊆ F \ i (subsets
S not containing i) to evaluate the impact of not including i in the feature pool
for model training. The SHAP value is then expressed as:
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ϕi =
∑

S⊆F \i

|S|! (|F | − |S| − 1)!
|F |!

δi(S) (5.2)

which is a normalized average across different permutations of S ⊆ F \ i, where
|S| and |F | represent the number of features in S and F , respectively.

To illustrate this concept with a simple example, consider an image (or later,
a speech spectrogram) containing numerous pixels (the features, or later, short-
time spectro-temporal magnitude estimates). Now, focus on a single pixel i in the
image. If the model predictions, when trained with and without the inclusion of i,
show no difference, then pixel i has little specific relevance to the output. However,
substantial differences between the two predictions imply that pixel i is relatively
informative and has an influence on the model output.

For complex models like DNNs represented by f(x), calculating ϕi according
to Equation (5.2) is computationally demanding, as the model must be trained
twice for each feature subset S. A more efficient alternative is necessary. First,
the input x is simplified to x′ = {x′

1, ..., x′
D}, where x′

i ∈ 0, 1 indicates the absence
(0) or presence (1) of the corresponding feature in x, and D denotes the feature
dimension. An explanation model g(x′) is then employed to approximate f(x):

f(x) ≈ g(x′) = ϕ0 +
D∑

i=1
ϕix

′
i (5.3)

Here, ϕ0 = f(hx(0)) corresponds to an all-zero input, and hx is a mapping function
that transforms x′ into x, i.e., x = h(x′). The model output is subsequently ap-
proximated by the sum of SHAP values associated with features for which x′

i = 1.
g(x′) is trained to approximate the original network output f(x), and the coeffi-
cients ϕi of model g(x′) are utilised in place of the actual SHAP values [68, 112].

Despite these approximations, computing SHAP values for DNNs remains a
complex task. DeepSHAP [68] offers an efficient technique for estimating SHAP
values in deep models. Assuming feature independence and model linearity,
DeepSHAP approximates missing features with their expected values, thus elimi-
nating the need for repetitive model retraining as required in Eqs.(5.1) and (5.2).
SHAP values for basic network components (linear, max pooling, activation) are
then estimated. The definition in Eq. (5.3) connects SHAP with DeepLIFT [113],
an additive feature attribution method. DeepLIFT multipliers can be propagated
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backward to estimate SHAP values at the model input level. Comprehensive de-
tails can be found in [68, 112, 114].

5.3 SHAP visualisation examples
In this section, we demonstrate the application of SHAP to speech data, employ-
ing two arbitrary binary classifiers for this purpose: one uses a spectro-temporal
spectrogram, and the other, a raw time-domain waveform. Although other speech
features, such as LFCC used in previous chapters, can also be utilised for training
and often yield better detection performance, we selected these two input features
due to their relatively raw representation of the voice signal, which lends itself to
more intuitive visualisations.

5.3.1 Spectro-temporal spectrograms
A speech waveform, x(t), sampled at 16 kHz is initially transformed into a
short-term spectro-temporal decomposition using the short-time Fourier transform
(STFT), resulting in a spectrogram, X(m, n), where m represents the spectral in-
dex and n is the frame index. SHAP is applied to a given (pre-trained) classifier
(in this case, a spoofing detection system), treated as f(·) in Eq.(5.2). Each
spectro-temporal point in X(m, n) is treated individually for every pair (m, n) as
a feature, similar to i in Eq.(5.1), with the entire spectrogram considered as the
full feature set F . For a given classifier, SHAP values ϕi in Eq. (5.2) are computed
to ascertain the relative contribution of each point (m, n) in X to the classifier
output. For a binary classifier (subsequently, a spoofing detection model), a pair
of ϕi values is obtained, each representing support for one of the two classes (bona
fide and spoofed classes). SHAP values ϕ(m,n) can then be visualised similarly to
the spectrogram X.

In our examples, the speech waveform x(t) is illustrated in Figure 5.1a, and its
STFT spectrogram is shown in Figure 5.1b. We obtain SHAP values ϕi for both
classes, with positive values indicating support for the target class and negative
values for the non-target class. Focusing on spoofing artefacts, we always use SHAP
values calculated for the spoofed class in this thesis (as shown in Figure 5.1c). Here,
positive SHAP values (marked in red) indicate support for the spoofed class, while
negative values (marked in green) support the bona fide class. The intensity of the
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(a) Time-domain waveform (b) Spectro-temporal STFT spectrogram

(c) Spectro-temporal SHAP values for
spoofed class

(d) A dilated version of (c)

(e) Positive SHAP value for spoofed class
plotted on spectrogram

(f)

Figure 5.1: Illustration of (a) original time-domain waveform, (b) STFT spectro-
gram, and (c-e) obtained SHAP values for utterance LA_T_3289526 ‘After that
he became more romantic’ and arbitrary classifiers.

colour, ranging from darker to lighter shades, corresponds to the absolute value of
ϕi, with darker colours denoting higher values. Features contributing minimally
to the classifier’s output are shown in white.

Our experiments reveal that SHAP visualisations often appear sparse across
the spectrogram, as evidenced in Figure 5.1c. This sparsity suggests that only a
few spectro-temporal bins in X significantly influence the classifier’s output. In the
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original spectrogram, artefacts can be challenging to discern due to their small size.
To enhance visualisation without compromising precision, we also present a dilated
version of SHAP values in Figure 5.1d. This example highlights the differential
contributions of spectro-temporal bins to classifications: lower frequency bins tend
to support the spoofed class, whereas middle-region frequency bins favour the bona
fide class.

However, even with the dilated version, correlating original spectro-temporal
bins with their class contributions remains a challenge, as it requires referencing
the original spectrogram (Figure 5.1b) with the SHAP values (Figure 5.1d). To
address this, we combine images of spectrograms with corresponding SHAP values
into a single figure, plotted for the full frequency scale (shown in Figure 5.1e).
In further simplifying the visual representation for clarity, we eliminate the green
dots that indicate support for the bona fide class, focusing exclusively on the red
dots to more clearly highlight the spoofing artefacts. This approach reveals that
certain lower frequency speech regions, particularly around 0.1s, 0.5s, and 1.5s in
our example, are most influential for the classifier in detecting spoofed artefacts.
In subsequent experiments, we employ this visualisation technique for analysing
spoofing artefacts using spectro-temporal features.

5.3.2 Raw waveform
The examples in Figure 5.2 illustrate the application of SHAP to time-domain
analysis, where the classifier processes the speech waveform x(t). The obtained
SHAP values ϕi are of the same dimension as the original waveform. As with the
previous examples, we focus exclusively on SHAP values for the spoofed class in
Figure 5.2a, marking positive values (indicative of support for the spoofed class)
in red and negative values (indicative of support for the bona fide class) in green.
In this instance, we observe that the SHAP values for both classes are almost
symmetrical, particularly around the time stamps of 0.5s, 1.0s, and 1.7s, where we
find the highest amplitude in SHAP values. Similar to the spectro-temporal visu-
alisation in Figure 5.1c, the most influential time-domain samples are distributed
sparsely throughout the utterance.

While we could employ the same visualisation technique for time-domain SHAP
values as used for STFT spectrogram in Figure 5.1e, we must use additional tech-
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niques for further simplifying SHAP analysis in the time-domain. Because most
waveform samples have lower SHAP values with low amplitude, meaning they con-
tribute minimally to the classifier’s output. These are represented by colours close
to white, making the waveform difficult to discern and analyse when all values are
displayed, shown in Figure 5.2b. As shown in Figure 5.2c, in a typical voice signal
sampled at 16kHz, only a fraction of these samples hold high importance for the
classifier’s output. This fraction is approximately between 0.2% and 3% across the
ASVspoof 2019 LA database.

We then prune the time-domain SHAP values to enhance clarity. Figure 5.2d il-
lustrates the scenario where only the top 3% of SHAP values are plotted against the
original waveform. While this visualisation is more discernible than Figure 5.2b,
identifying specific artefacts remains challenging as they are dispersed throughout
the utterance. We further refine our approach by focusing only on the top 0.2% of
samples with the highest SHAP values, as shown in Figure 5.2e. This presentation
is clearer, enabling easier identification of influential speech samples around 0.5s,
1s, and 1.7s which contribute most to the classifier decision. For the remainder of
our experiments, we only show top 0.2% SHAP values for analysing time-domain
artefacts. The same method is applied to spectro-temporal feature SHAP analysis.

A zoomed-in version of Figure 5.2e is shown in Figure 5.2f, in which we observe
a pattern similar to the findings of [115]. The data points most influential to the
classifier decision are typically those with large amplitudes. This could be due
to their clear difference in amplitude from nearby data points, or because high
amplitude points are more unnatural in spoofed utterances compared to bona fide
utterances. Regardless, this pattern suggests a common characteristic of artificial
generation present in most spoofed utterances.

5.4 Classifier difference
Results reported in Chapter 4, Table 4.3, indicate that the A17 attack in the
ASVspoof 2019 LA evaluation set is particularly challenging to detect for coun-
termeasures that process spectro-temporal speech representations. Interestingly,
CMs that process raw waveform data do not necessarily find the A17 attack as
challenging. This pattern holds true for our models as well, namely PC-DARTS
introduced in Chapter 3 and Raw PC-DARTS detailed in Chapter 4. Although
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(a) Time-domain SHAP values for
spoofed class

(b) Positive SHAP values for spoofed
class plotted on waveform

(c) Sorted positive SHAP values for
spoofed class

(d) Top 3% highest SHAP values of (b)

(e) Top 0.2% highest SHAP values of (b) (f) A zoomed in version of (e) around
0.9s.

Figure 5.2: Illustration of (a) original time-domain waveform, (b) STFT spectro-
gram, and (c-h) obtained SHAP values for utterance LA_T_3289526 ‘After that
he became more romantic’ and arbitrary classifiers.

several factors contribute to the differences in system performance, results in Ta-
ble 4.3 suggest that the choice of input feature significantly influences the outcome.
Consequently, we set out to investigate the differences in features deemed impor-
tant by the classifier.
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5.4.1 Analysis with PC-DARTS and Raw PC-DARTS

Both models described in Chapters 3 and 4 were used directly, without addi-
tional training. Our PC-DARTS model, which utilises spectro-temporal Linear
Frequency Cepstral Coefficients (LFCC) features, comprises 4 layers and 16 initial
channels. Conversely, the Raw PC-DARTS model, which processes raw waveform
inputs, is configured with 8 layers and 64 initial channels. Both models are de-
signed to handle a fixed 4-second input, with shorter files being concatenated and
longer ones being truncated. Figure 5.3 showcases SHAP visualisations for an
arbitrary utterance, highlighting the time waveform and spoofed artefacts recog-
nised by the Raw PC-DARTS model (left of Figure 5.3), and the spectro-temporal
LFCC features and spoofed artefacts identified by the PC-DARTS model (right of
Figure 5.3).

Observations from Figures 5.3a and 5.3c and 5.3e reveal that Raw PC-DARTS
tends to focus on speech intervals with high amplitudes, typically around 1.0s,
1.5s and 2.0s in Figure 5.3a, around 2.0s to 2.5s in Figure 5.3c and around 0.9s,
1.3s and 2.0s in Figure 5.3e. Despite different example utterances and classifiers,
both Figure 5.2 and Figure 5.3 corroborate the significance of vowels in waveform-
based spoofing CMs. This is not unexpected, as these regions often exhibit greater
energy and longer duration compared to other parts of speech.

In contrast, the PC-DARTS model, which processes LFCC features, exhibits
different behaviour, as shown in Figures 5.3b, 5.3d and 5.3f. The y-axis for plots
depicting cepstral representations like LFCCs and MFCCs does not represent fre-
quency, and thus the LFCCs feature lacks the clear structure of the original spec-
trogram. However, by examining the x-axis, which corresponds to the time domain
and aligns precisely with the waveform, we notice that PC-DARTS focuses more
on the non-speech intervals. The highest concentration of red dots, which indicate
the most informative intervals, are located within the first 0.5s, segments corre-
sponding to non-speech in the original waveform. Additional experiments with
other utterances consistently demonstrate that the PC-DARTS model leverages
artefacts present in the non-speech intervals for spoofing detection.
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(a) Raw PC-DARTS, LA_T_1859200 (b) PC-DARTS, LA_T_1859200

(c) Raw PC-DARTS, LA_T_2133317 (d) PC-DARTS, LA_T_2133317

(e) Raw PC-DARTS, LA_T_2724328 (f) PC-DARTS, LA_T_2724328

Figure 5.3: SHAP values for Raw PC-DARTS (time-domain waveform) and PC-
DARTS (Linear-frequency cepstrum coefficient feature) for three utterances se-
lected from the ASVspoof 2019 LA training partition: LA_T_1859200 ‘We will do
so again’, LA_T_2133317 ‘I don’t think the Saudis will lay down’, LA_T_2724328
‘The orchestra was already increasing the scope of its ambitions’. The y-axis in
cepstral representations does not represent frequency, and thus the LFCC feature
lacks the clear structure compared to the STFT spectrogram.

5.4.2 Further analysis and discussion
We demonstrate the application of SHAP in revealing features that influence
the outputs of spoofing detection models, highlighting the classifier focus across

62



5.4. CLASSIFIER DIFFERENCE

spectro-temporal and time-domain intervals. The classifiers examined are those
described in previous Chapters 3 and 4. The transition from spectro-temporal
representations in Chapter 3 to raw waveform in Chapter 4 was driven by the
hypothesis that direct learning from speech waveforms would more effectively cap-
ture or preserve artefacts. Our findings confirm that these classifiers address the
detection task differently, indicating their reliance on various parts of the input
for spoofing cues.

Particularly intriguing is that the PC-DARTS classifier uses non-speech in-
tervals for detection, challenging the common assumption that spoofing primarily
involves learning artefacts in speech. This raises concerns about robustness in real-
world applications, especially when used alongside voice activity detection (VAD)
systems, which trim non-speeches. If non-speeches are removed, PC-DARTS might
lose critical detection cues, increasing the risk of false acceptances. One solution
could be to replace PC-DARTS-like models with those similar to Raw PC-DARTS,
which show better performance. However, as evidenced in Table 4.3, even the best-
performing system, Res-TSSDNet, struggles with the A17 attack. Our hypothesis
is that the artefacts in the A17 attack reside within speech intervals, which mod-
els like PC-DARTS tend to overlook. Therefore, even the top-performing systems
may exhibit reduced robustness when paired with VAD.

To gain a deeper understanding, we focus on the fact that both classifiers were
trained on the same ASVspoof 2019 database. Hence, different artefacts revealed
in the training data might be causing the observed behaviour variations. Our next
step is to determine if we can pinpoint these differences. The ASVspoof 2019 LA
database comprises over 25,000 utterances. Although individual analysis of each
utterance is impractical, we can still investigate commonalities. Apart from bona
fide utterances, spoofed utterances are generated by six different spoofing attacks.
Previous studies suggest that artificially generated utterances exhibit similar arte-
facts within each spoofing algorithm category [116–118]. In the following section,
we report a SHAP analysis focusing on the distinct attack artefacts present in the
ASVspoof 2019 LA training data.
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5.5 Attack difference
In the previous experiment reported in Section 5.4, we used existing classifiers
without training new ones. However, as our focus shifts to discerning differences
among various spoofing attacks, it becomes necessary to adjust our choice of clas-
sifiers. This is to ensure that the differences we observe are attributable to the
attacks themselves, rather than the classifiers.
Choice of classifiers – we use two Res-TSSDNets [21] for our experiments re-
ported in this section, this is because:

1. The PC-DARTS and Raw PC-DARTS models used previously, though de-
veloped using the same algorithm, still differ in other aspects. For instance,
they vary in the number of layers; the Raw PC-DARTS includes a GRU layer
whereas PC-DARTS employs a pooling layer. Additionally, they utilise dif-
ferent loss functions during training.

2. In contrast, the Res-TSSDNet pair (1D- and 2D-Res-TSSDNet systems as
proposed in [21]) feature a more uniform network architecture. Each com-
prises several convolutional blocks with residual connections, a global max
pooling layer, and three fully-connected layers. They are designed to be effi-
cient and trainable rapidly, producing scores for both bona fide and spoofed
classes. The primary distinction between these two models lies in their treat-
ment of input features. Specifically, the 1D-Res-TSSDNet is based on 1D
convolutional operations initially applied to raw audio waveforms, whereas
the 2D-Res-TSSDNet is based on 2D convolutional operations applied to
magnitude spectrograms, extracted using 20ms Hamming windows with a
10ms shift and a 320-point FFT.

3. The relatively simple structure of Res-TSSDNet offers better potential for
explainability. The 1D version has only 0.35M trainable parameters, and
the 2D version has just 0.97M, compared to our own solutions which have
significantly more, as detailed in Table 4.3.

Classifier retraining – we retrain the classifiers rather than using pre-trained
ones because:
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1. We train the classifiers with variable, full-length utterances, rather than
fixed-length inputs created through concatenation or truncation. This ap-
proach is more conducive to explainability, as it allows for a more straight-
forward and consistent examination of specific temporal or spectral interval
influence on classifier output. Our experience suggests that concatenation
can lead classifiers to interpret the same information differently in repeated
short intervals, as observed in Figure 5.3a, which complicates explainability
analysis.

2. We retrain the classifiers using bona fide data and selected spoofed data
from each specific attack, instead of the entire ASVspoof 2019 LA training
set. For example, SHAP analysis for an A01 attack utterance is conducted
using classifiers trained solely with A01 attack utterances. This targeted
approach aids in identifying consistent artefacts associated with each attack.
We acknowledge that it is impossible to fully isolate classifier behaviour
from attack artefacts, as the latter are always observed using a specific clas-
sifier. By training the classifiers with matched attack utterances, we hope
to observe the artefacts which are unique to each attack more clearly and
consistently.

5.5.1 Experimental setup

Both Res-TSSDNets are optimised by minimising the weighted cross-entropy loss
between spoofed and bona fide classes. Models are trained with the Adam opti-
miser [93], using a learning rate of 0.001 and an exponential learning rate decay of
0.95. Variable-length input data is handled as described in [26], where training ut-
terances of similar length are zero-padded to create uniformly-sized mini-batches.
However, for experiments involving SHAP analysis rather than model updating,
utterances are fed to classifiers without padding. Although using variable-length
inputs does impact performance, the focus of this work is on explainability, not per-
formance. For reference, the EERs of the 1D-Res-TSSDNet and 2D-Res-TSSDNet
are 6.90% and 4.28% respectively.
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(a) A01 attack utterance LA_T_3566209

(b) A02 attack utterance LA_T_1590397

(c) A03 attack utterance LA_T_2909480

(d) A04 attack utterance LA_T_5116902

Figure 5.4: SHAP values for the A01-A04 utterance ‘Well, Scotland had better
grow up, fast’.
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5.5.2 Results and analysis
We present an attack analysis focused on spoofing attacks contained in the
ASVspoof 2019 LA training partition. This analysis includes spoofed utterances
generated with 6 different algorithms, consisting of 4 TTS attacks (A01-A04) and
2 VC attacks (A05-A06). The following analyses were performed on a random
selection of 100 utterances for each training attack. Example results are illus-
trated in Figure 5.4 and Figure 5.5, which show both waveforms and spectrograms
with the corresponding superimposed 0.2% highest intensity-encoded SHAP val-
ues. The illustrated examples are specifically chosen to use the same utterance
for TTS attacks and the same utterance for VC attacks. A discussion of results
for each attack is presented in the following, while a summary of the principal,
consistent artefacts observed in each case is presented in Table 5.1.

A01 is a neural network (NN) based TTS attack with a WaveNet [119] vocoder.
A waveform and spectrogram with superimposed SHAP values are illustrated in
Figure 5.4a. We observe differences for 1D and 2D classifiers. For the 1D classifier,
we found most artefacts in vowel segments, though we could not identify a partic-
ular vowel for which SHAP values are consistently the highest. Most artefacts are
found within low-frequency bands. For a substantial number of utterances, the 2D
classifier identifies artefacts in the leading 0.5 seconds of speech. This might be
the result of A01 attacks having a consistently shorter leading non-speech interval
compared to bona fide utterances [27].

A02 is also an NN-based TTS attack, but with a WORLD [120] vocoder. Results
are illustrated in Figure 5.4b. Like the A01 attack, the 1D classifier finds artefacts
in vowel segments, such as the \o\ vowel in the given example. The 2D classifier
finds artefacts mostly at lower frequencies and also at higher frequencies above
6 kHz. For A02 attacks and the 2D classifier, consistent artefacts are identified for
the unvoiced sound \s\ segments.

A03 is a different NN-based TTS attack also with a WORLD vocoder. Results
are shown in Figure 5.4c. For the 1D classifier, artefacts are found mostly in vowel
segments, but are less densely distributed compared to A01 and A02 (relatively
fewer dark-red points). The reason might be that artefacts in A03 attacks are
located in particular samples which are different from the neighbouring ones. While
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(a) A05 attack utterance LA_T_3134909

(b) A06 attack utterance LA_T_5300749

Figure 5.5: SHAP values for the A05 and A06 utterance ‘It raises a serious question
mark’.

we find that artefacts lie mostly at lower frequencies in the case of the 2D classifier,
we did not succeed in identifying artefacts within consistent speech segments.

A04 is a waveform concatenation TTS attack. Results are shown in Figure 5.4d.
For some A04 attacks, we find artefacts to lie within leading non-speech and low
energy speech segments (onsets and offsets of speech), a characteristic that differ-
entiates A04 from the other TTS attacks. These observations may correspond to
the use of waveform concatenation and may explain why such attacks generated
with the MaryTTS platform [121] were initially challenging to detect [122]. The
2D classifier uses cues throughout the full spectrogram. Other consistent artefacts
were found in unvoiced segments and click sounds (around 1.2 and 3.5 seconds for
the given example).

A05 is an NN-based VC attack. Results are shown in Figure 5.5a. In addition
to more dominant artefacts in vowel segments (around 2.0 seconds in the given
example), the 1D classifier also finds consistent artefacts in lower energy voice
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Table 5.1: Artefact description of attacks in ASVspoof 2019 LA train partition.

Found artefacts
Attack Algorithm Waveform Spectrogram
A01 TTS Vowels Lower frequency bands,

leading 0.5s
A02 TTS Single dominant vowel Lower & higher frequency

bands, unvoiced \s\
A03 TTS Less densely distributed in

vowels
Lower frequency bands

A04 TTS Non-speech, low energy
speech segments (voice
onsets and offsets)

Full spectrum, unvoiced
speech, clicks

A05 VC Voice onset, vowels Full spectrum, higher en-
ergy formant frequencies

A06 VC Speech distortion Lower frequency bands

onset segments (around 1.6 seconds). Similar to the TTS A04 attack, the 2D
classifier finds artefacts across the full spectrum, rather than specific sub-bands.
Nonetheless, higher SHAP values correspond generally to lower frequencies and
higher energy formant frequencies (around 2 and 4 kHz).

A06 is a transfer-function-based VC attack [123]. Results are shown in Fig-
ure 5.5b. For the 1D classifier, we observed temporal intervals with high SHAP
values to correspond to noticeably distorted speech sounds. These seem to corre-
spond to variations in unnaturally high velocity. Using the 2D classifier, artefacts
are found mostly at lower frequencies below 3 kHz. They were not found to
correspond consistently to any particular speech sounds other than high-energy
segments, and neither do they correspond consistently to the distortions identified
using the 1D classifier.

5.5.3 Further analysis
Among the four synthetic speech attacks (A01-A04), three are neural network-
based text-to-speech algorithms (A01-A03) that exhibit artefacts primarily within
vowel segments. In contrast, the fourth attack (A04), which uses a waveform con-
catenation approach, displays different artefacts found in lower energy segments.
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These variations in artefacts may indicate the underlying spoofing attack method.
We also observed distinctions between the two voice conversion algorithms. The
A05 attack shows artefacts during voice onset segments and throughout the full
spectrum, while the other A06 attack is associated with noticeable distortions at
lower frequencies. Certain consistencies exist between artefacts produced by both
voice conversion and synthetic speech attacks, particularly in low-frequency bands.

Our initiative to analyse the variation in spoofing attacks is grounded in the
understanding that the spoofing detection capabilities of CMs are derived from
learning patterns within the training database. As highlighted in the previous
Section 5.4, there must be certain spoofed training data containing artefacts either
in speech intervals or in non-speech intervals. Consequently, the CMs trained on
this data learn to utilise these distinct cues, either in speech or non-speech, for
spoofing detection. Our analysis in this section reveals that nearly all spoofed
training data (from five out of the six attacks) predominantly exhibit artefacts
within speech intervals, especially in vowels. Interestingly, the A04 attack is unique
in presenting artefacts in non-speech intervals. This does not necessarily imply
that the A04 attack algorithm leaves no artefacts in speech; it might be that the
non-speech intervals in utterances generated by A04 are more easily detectable
compared to those in its speech intervals. Nevertheless, it is evident that the
presence of A04 in the training data influences some classifiers to leverage non-
speech intervals as a key indicator for spoofing detection.

5.6 Conclusion, limitations and discussion
This chapter showcases the application of SHAP analysis to explain both the dif-
fering behaviour of our proposed models and the distinctive artefacts of various
spoofing attacks. We first demonstrate how our models, despite being developed
using the same algorithm and trained with identical data, respond differently to
the same input. We then illustrate how even a single classifier can exhibit varied
behaviours when trained with different subsets of the training data. This indi-
cates that different spoofing algorithms tend to imprint distinct types of artefacts.
Such variations in artefacts explain why models trained with the ASVspoof 2019
LA dataset sometimes focus on non-speech intervals, contrary to the common
assumption that emphasis should be on speech intervals.
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Specifically, we observed that the PC-DARTS model, as outlined in Chapter 3,
tends to rely on information in non-speech intervals for spoofing detection. In
contrast, the Raw PC-DARTS model from Chapter 4 primarily uses information in
speech intervals for the same purpose. This distinction, which was not anticipated
during the design phase of these systems, may explain the performance differences
between the two models, despite their shared attributes in the architecture design.
A more detailed examination of attack-specific artefacts revealed that, while most
spoofed training data contain artefacts within speech intervals, it is particularly the
A04 attack that leaves noticeable artefacts in non-speech intervals, leading some
CMs, including PC-DARTS, to focus on these non-speeches instead of speech.

Spoofing and deepfake detection system will effectively benefit from accurately
identifying and analysing artefacts, as demonstrated through our experiments.
This approach aligns with the General Data Protection Regulation (GDPR), which
requires that data subject have the right to obtain meaningful information about
the logic involved in automated decision-making. Our use of visual analyses, in-
cluding spectro-temporal and time-domain analysis, offers clearer explanations
than just output scores, moving towards providing ‘meaningful information’.

However, these explanations don’t fully meet the criteria for being ‘meaningful.’
For example, a meaningful explanation in a bank loan denial would tell the ap-
plicant how to improve their application for future acceptance, such as suggesting
an increase in the number of working years. In contrast, for spoofing countermea-
sures or speaker verification systems, showing a heat-map of feature importance is
less helpful. Interpreting these maps requires audio signal processing knowledge,
and even with this knowledge, users cannot modify their speech in such a detailed
manner to affect future outcomes.

Another aspect of our study involves using the artefact analysis as a feature
to enhance classification performance. However, our findings are based on 100
spoofed examples from each type of attack, and not all examples showed consistent
artefact patterns. This inconsistency could potentially confuse the classification
system or complicate the training process. Additionally, using these explanations
as input for the network or a new classifier might not add new information but
rather reinforce existing decisions, similar to knowledge distillation.

Addressing inconsistency was a significant hurdle in our experiments. To com-
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bat this, we tailored our experimental setup, for instance, by utilising identical
network structures for analysing time-domain waveforms (1D-Res-TSSDNet) and
spectro-temporal spectrograms (2D-Res-TSSDNet), and training classifiers with
only bona fide and spoofed utterances from specific attacks instead of the entire
ASVspoof 2019 database. This approach was chosen to detect consistent artefact
patterns. Despite these efforts, we recognise that factors beyond the classifier ar-
chitecture and training data influence our observations. Variables such as the size
or shift in feature extraction windows, network initialisation (e.g., random seed),
training hyper-parameters, and even the feature attribution methods impact our
observations. Our preliminary experiments confirmed that changes in these vari-
ables can complicate the observation process, affecting the classifier parameters
and its ability to consistently identify spoofing artefacts.

This issue is not unique to anti-spoofing measures but is a general challenge in
deep learning. Just as voice spoofing detection models exhibit varied performance
based on different initialisation, hyper-parameters, or data partitions, spoofing
generation models may show similar variability. This suggests that artefacts we
identify as attack-specific could vary with the training conditions of the attack
algorithm, potentially eluding detection by countermeasures designed to recognise
them. Our attempt to verify such variability in the spoofing generation process
will be detailed in the next chapter.
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Chapter 6

Exploring variability in spoofing
artefacts

The observation from the previous chapter – that different spoofing attack algo-
rithms, specifically text-to-speech (TTS) and voice conversion (VC) based gen-
eration algorithms, leave distinct artefacts – is intuitive and supported by not
just our findings but also those of other independent studies [22, 26, 45]. It has
been noted that deep neural network (DNN) based approaches to spoofing and
deepfake detection vary as much in terms of modules and architectures as they do
in performance. Similar to spoofing detection methods, which are predominantly
deep-learning-based today, voice generation methods also rely primarily on deep
learning technology.

The work presented in this chapter explores whether just as deep-learning-
based voice spoofing detection models show varied performances and behaviours
under different initialisation, hyper-parameters, or training data partitions, for
deep-learning-based spoofing generation models might also generate different arte-
facts. This variability could be significant enough that countermeasures (CMs)
might fail to detect them. If this hypothesis holds true, it suggests that what
we identify as attack-specific artefacts may merely be the behaviour of an attack
algorithm under specific training conditions, subject to change if the model is
trained differently. It also implies that an adversary could potentially circumvent
detection solutions simply by altering the training parameters of a TTS or VC
algorithm, even one previously used in generating spoof detection training data.

In this chapter, we aim to verify this hypothesis. The content herein also
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complements the analysis presented in Chapter 5. While both chapters concen-
trate on differences in artefacts, Chapter 5 utilised feature attribution methods
for a visualisation-based analysis, whereas in this chapter, the focus is upon anal-
ysis in terms of detection performance. Furthermore, in this chapter we set the
groundwork for what follows in Chapter 7. To enhance our approach, we propose
the integration of speaker verification systems with spoofing countermeasures for
more robust and generalised spoofing detection.

This chapter is organised as follows: In Section 6.1 we describe spoofing attack
algorithm and specific countermeasures. Section 6.2 presents the spoofing gener-
ation settings and experimental setup. Our results are presented in Section 6.3.
Finally, Section 6.4 presents the summary of the work.

The work presented in this chapter was published in:
Wanying Ge, Xin Wang, Junichi Yamagishi, Massimiliano Todisco and

Nicholas Evans, “Spoofing Attack Augmentation: Can Differently-trained
Attack Models Improve Generalisation?,” in Proc. ICASSP 2024.

6.1 Spoofing attack and countermeasures
While numerous TTS and VC algorithms have been proposed, it is impractical to
analyse them all. Therefore, for the experimental work presented here, we have
selected one of the most popular TTS algorithms, known as Variational Inference
with adversarial learning for end-to-end Text-to-Speech (VITS) [124]. This algo-
rithm serves as the spoofing attack in our study. Additionally, we examine three
state-of-the-art spoofing countermeasures. ALL are described in the following sec-
tions.

6.1.1 VITS
VITS [124], a variational auto-encoder (VAE) [125] based TTS model, converts
a phoneme sequence into a speech waveform. We chose VITS for our analysis
primarily because of its efficient training procedure, which is performed end-to-
end without the need for separate training of duration and acoustic models, or a
neural vocoder. The high quality of synthesised speech produced using VITS can
be attributed to the integration of adversarial training, normalising flow [126], and
stochastic duration modelling [124].
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One notable feature of VITS is its ability to produce speech data with varied
tempo, intonation, and other suprasegmental attitude, even when using the same
model and phoneme input. This versatility is achieved by adjusting the power of
two types of random noise. The first random noise, transformed by a flow-based
model [127], is used to generate discrete numbers which represent the duration of
input phonemes. The second random noise comes into play when latent acoustic
features are sampled through the reparameterization trick from the VAE posterior
distributions [125], conditioned on the input phonemes and the generated duration.
Subsequently, waveforms are generated from these latent acoustic features. By
varying the power of the random noises, we can employ the same VITS model to
produce speech data with diverse characteristics.

6.1.2 Countermeasures
AASIST [78] is a state-of-the-art end-to-end (E2E) spoofing countermeasure solu-
tion, utilising graph attention networks [128]. It employs a sinc-layer front-end [59],
to extract feature representations from raw waveform inputs. The backend inte-
grates both temporal and spectral representations through graph attention layers.
The process is finalised with a readout operation and a fully connected output
layer, which together produce detection scores.
RawNet2 [60], also an E2E model, is composed of a sinc-layer, six residual blocks,
a recurrent layer with a Gated Recurrent Unit (GRU), and a fully connected
output layer. The output from the sinc-layer is processed through residual blocks
to extract frame-level deep feature representations. These representations are then
aggregated at the utterance level by the GRU layer, culminating in the generation
of detection scores by the output layer.
Self-supervised leaning with AASIST (SSL-AASIST) [79] merges the AA-
SIST backend with front-end feature extraction using a pre-trained wav2vec2.0
model [129]. Pre-training is performed using 437k hours of bona fide speech utter-
ances, sourced from five distinct speech databases. Together, the dataset covers
128 different languages and includes voices from over 60k speakers. SSL-based
front-ends are known for their robustness to additive noise, reverberation, and
other external factors [130].

The three CMs selected for our study represent the state-of-the-art in terms
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of their ability to generalise across both known and unknown spoofing attacks.
In our experiment, these CMs are trained to detect artefact patterns in spoofed
utterances produced by the VITS model under one specific training condition.
Subsequently, we assess the effectiveness of the learned CMs in detecting spoofed
utterances generated by differently trained VITS models. Our objective is to deter-
mine whether variations in the training of VITS models result in distinct artefact
patterns and to explore the possibility that an adversary could overcome detection
solutions by merely altering the training conditions of the attack algorithm.

6.2 Experimental setup
In this section, we delineate the databases and protocols employed, alongside the
specifics of the VITS training conditions, data generation procedures, and details
of implementation and metrics used.

6.2.1 Databases
We utilised the VCTK database for training VITS models [131]. Given that CM
architectures and hyper-parameters were originally designed and optimised using
the ASVspoof 2019 database, we adhered to the same data preprocessing pipeline.
The VCTK data was downsampled to 16 kHz and subjected to high-pass filtering
with a cut-in frequency of 80 Hz prior to VITS model training. Speech data syn-
thesised using VITS also maintained a sampling rate of 16 kHz. For CM training,
we used a set of bona fide VCTK data and additional synthesised data generated
using different VITS model configurations.

6.2.2 VITS conditions
As outlined in Table 6.1, we prepared four distinct datasets (V1, V2, V3, and V4)
by modifying three VITS model configuration parameters. Additionally, for the V1
VITS model, four supplementary sets (V1.2, V1.3, V1.4, and V1.5) were generated
by altering two extra hyper-parameters. These variations included adjustments in
1⃝ the training data, 2⃝ the number of Mel channels, and 3⃝ the random seeds
for initial model parameterization. Generation conditions were varied based on
the noise standard deviation for 4⃝ acoustic feature generation and 5⃝ duration,
as detailed in Sec. 6.1.1.
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Table 6.1: VITS training and generation settings across different sets ( ‘-’ indicates
identical settings to V1). Table reproduced from [3]

Training Noise std. in generation

Set ID Train set #. Mel chan. Seed For acoustic feat. For duration
V1 set-1 80 seed-1 0.667 0.8
V2 - 40 - - -
V3 set-2 - - - -
V4 - - seed-2 - -
V1.2 same VITS model as V1 - -
V1.3 same VITS model as V1 0.1 -
V1.4 same VITS model as V1 - 0.1
V1.5 same VITS model as V1 0.1 0.1

For 1⃝, we generated data using both 80-band and 40-band Mel-scaled spec-
trograms. For 2⃝, a random selection of 3,000 utterances from the VCTK dataset
formed the bona fide partition of the CM training set, with the remainder split into
two subsets for VITS training. For 3⃝, two distinct random seeds were employed.
The sets V1.2 to V1.5 were generated using the V1 VITS model with various noise
standard deviation values, as listed in Table 6.1. Notably, V1.2, despite sharing
the same model and noise standard deviation as V1, consists of different data due
to distinct noise values. We used datasets V1 to V4 for CM training and testing,
and sets V1.2 to V1.5 solely for testing purposes.

6.2.3 Implementation and metrics

All VITS networks were trained with an initial learning rate of 2 × 10−4 and a
scheduling factor of 0.999 1

8 per epoch. The batch size was set at 50. Training
was performed using two NVIDIA GeForce RTX 3090 GPUs and continued for
300k steps. CMs were trained using publicly available codes and their default
settings. To evaluate spoofing detection performance, we employed the equal error
rate (EER) as the metric.
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6.3 Results and discussion
Results in Table 6.2 present EER estimates for each CM under various matched
and mismatched training (row 1) and testing (column 1) conditions. When training
and testing data are matched (as seen in row 3, columns 2-4; row 4, columns 5-7;
row 5, columns 8-10; and row 6, columns 11-13), the EER for all three CMs is
either zero or close to zero. This outcome is expected since the CMs are trained
using spoofed utterances containing identical artefacts to those in the test data
(i.e., utterances generated with the same algorithm and configuration).

However, EERs are notably higher under mismatched conditions. Given that
the set of bona fide utterances is constant across all conditions, the variations in
EER can be attributed to differences in the spoofed utterances. These results
suggest that the artefacts associated with VITS-generated utterances change de-
pending on the training data. We will now delve into a more detailed examination
of these findings for each CM.

AASIST – Under mismatched conditions, EERs for AASIST increase but
remain reasonably low, with some still below 1%. Notably, EERs continue to be
low even when synthetic data is generated using the same model but under varied
generation conditions (e.g., V1 & V1.2 - V1.5).

RawNet2 – EERs for RawNet2 are generally much higher under mismatched
conditions, and they vary significantly across different generation conditions. For
instance, with the V2 training condition (column 6), the EER for the V1 test set
is 13.27%, but it drops to 6.63% for the V1.5 test set. This pattern of substantial
variation in EERs across different generation conditions is also observed for the
V3 and V4 training conditions. Contrasting with AASIST, RawNet2 exhibits
difficulties in generalising to different generation conditions.

SSL-AASIST – While EERs for SSL-AASIST remain relatively low, this sys-
tem shows less robustness compared to AASIST when faced with variability in
generation conditions. For example, the EER for the V2 training set jumps from
0.04% for the V1 test set to 0.83% for the V1.5 test set—a nearly 20-fold increase.
Despite maintaining a low EER, this result is somewhat unexpected, consider-
ing that the SSL front-end is designed to extract high-level representations that
typically generalise well across various conditions.

The results discussed above indicate that an adversary can potentially bypass
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Table 6.3: Performance in terms of the EER (%) for CMs trained on combined
sets V2-V4 and tested against unseen V1 and V1.2-V1.5 attacks.

Trained on V2-4

Tested on AASIST RawNet2 SSL-AASIST
V1 0 2.20 0
V2 0 2.93 0
V3 0 0.47 0
V4 0 1.37 0

V1.2 0 1.90 0
V1.3 0 0.77 0.03
V1.4 0 2.83 0
V1.5 0 0.87 0.03

Pooled 0 1.79 0.01

a spoofing countermeasure by implementing subtle modifications to the algorithm
used for generating spoofed utterances. This tendency is particularly noticeable
with the RawNet2 CM, and to a lesser extent, with the AASIST and SSL-AASIST
CMs. Consequently, we explore whether CM robustness can be enhanced by train-
ing CMs with spoofed utterances generated by multiple attack algorithms with
different configurations. To test this hypothesis, we trained a CM using data
generated with the V2, V3, and V4 configurations (having fixed noise standard
deviation) and tested it with utterances generated using the V1-V1.5 configura-
tions. The results of this experiment are compiled in Table 6.3.

For the AASIST and SSL-AASIST CMs, training with the V2, V3, and V4
datasets resulted in zero or nearly zero EERs for all V1-V1.5 test sets. Comparing
the results in Tables 6.2 and 6.3, we observe that training with attacks generated
using multiple, differently configured algorithms improves CM generalisation.

This approach also proved beneficial for the RawNet2 CM. The pooled EER of
1.79% for training with V2, V3, and V4 sets is significantly lower than the pooled
EERs for RawNet2 presented in Table 6.2. However, there is still considerable
variation in EER, indicating that RawNet2 remains vulnerable to certain attack
configurations, making it less effective compared to the AASIST and SSL-AASIST

80



6.4. SUMMARY

alternatives.

6.4 Summary
Our findings demonstrate that a CM trained with spoofed data from a single attack
configuration may be vulnerable to utterances generated using the same algorithm
but with different settings. We also find that CM generalisation can be improved
by training with spoofed utterances from multiple, varied attack configurations.
This approach, a form of data augmentation, is known to be beneficial in related
fields like speaker recognition and spoofing detection. Traditional data augmen-
tation methods, such as introducing additive and convolutive noise, enhance CM
reliability under varying acoustic and channel conditions. In contrast, spoofing
attack augmentation specifically improves generalisation in response to variations
in spoofing attacks, even those involving modest changes to an attack algorithm
that might otherwise significantly degrade detection performance.

Since most current anti-spoofing databases are created without incorporating
spoofing attack augmentation, thoroughly evaluating the impact of such augmen-
tation and training more generalised CMs capable of handling both known and
unknown attacks presents a significant challenge. In the next chapter, we propose
a framework to support the protection offered by CMs developed using current
anti-spoofing databases. Our approach involves supplementing existing CMs with
speaker verification systems, to enhance their spoofing detection capabilities.
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Chapter 7

Improving generalisation by
combining spoofing
countermeasure with automatic
speaker verification system

The work presented in this chapter is concerned with improving the performance
of voice biometric authentication systems by integrating automatic speaker verifi-
cation (ASV) and spoofing countermeasure (CM) sub-systems into a single, more
reliable system. The goal remains the discrimination of bona fide, target trials
from anything else, e.g. non-target trials or artificially generated utterances design
to manipulate usual system behaviour.

The ASV sub-system [7, 132] is designed to capture speaker characteristics
in high-level, compact deep representations suited to the modelling of speaker
(dis)similarity. Significant improvements in speaker modelling and verification
have been made in recent years [133, 134]. Similar progress in text-to-speech syn-
thesis (TTS) [124, 135] and voice conversion (VC) [136, 137], particularly that
stemming from developments in deep learning, nowadays pose a very real threat
to ASV reliability. To protect against this threat, auxiliary CM sub-systems [57,60]
are used to detect and prevent spoofed or deepfake attacks. CMs capture different
characteristics than ASV systems, namely telltale artefacts which serve to identify
synthesised, converted or otherwise manipulated utterances.

Given their different tasks, ASV and CM sub-systems, both usually binary
classifiers, are typically learned using different purpose-collected databases. Those
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Figure 7.1: Illustration of spoofing CM working in a cascade approach with an
ASV system

used for the development of ASV sub-systems [31–33,138] are huge sets of speech
utterances collected from a substantial number of different speakers. In contrast,
those used for the development of CMs [15,36,139] contain sets of bona fide utter-
ances as well as spoofed utterances generated with a number of different spoofing
attack algorithms. These datasets also typically contain data collected from a
number of different speakers. Having been learned and optimised, ASV and CM
sub-systems are then combined according to some specific integration architecture,
an example of which is shown in Figure 7.1. While other integration architectures
are also possible [17, 140], the CM is here used as a gate to the ASV sub-system,
acting to filter out utterances it classifies as spoofed [16]. The ASV sub-system,
operating only upon utterances classified by the CM as being bona fide, then deter-
mines whether or not a given test utterance contains the same voice as in the given
enrolment utterance. Only utterances classified as bona fide and as containing the
same voice as the enrolment utterance are accepted. Anything else is rejected.

Even though ASV and CM sub-systems are designed to solve different, spe-
cific problems, their functionalities can (and typically do) overlap – while CMs
can help to reject spoofed utterances, they also have the potential to falsely reject
bona fide utterances. On the other hand, the ASV sub-system has the potential
to reject spoofed utterances, e.g. if they do not match sufficiently well the charac-
teristics of the voice contained in the enrolment utterance. Contrary to common
assumptions [92], the two systems are thus not fully independent; they function
together as an integrated solution to the spoofing-robust ASV problem. It is hence
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of interest that they be jointly optimised.
We develop further in Section 7.1 the motivation for our work in joint opti-

misation and present a brief overview of the Spoofing-Aware Speaker Verification
(SASV) challenge, the bench-marking framework we use for evaluation. Our ap-
proach to joint optimisation is described in Section 7.2. Our experimental setup is
described in Section 7.3 with results and analysis being presented in Section 7.4.
Conclusions are presented in Section 7.5.

The work presented in this chapter was published in:
Wanying Ge*, Hemlata Tak*, Massimiliano Todisco and Nicholas Evans,

“On The Potential of Jointly-Optimised Solutions to Spoofing Attack
Detection and Automatic Speaker Verification,” in Proc. IberSPEECH
2022 (* equal contribution).

Wanying Ge, Hemlata Tak, Massimiliano Todisco and Nicholas Evans, “Can
Spoofing Countermeasure and Speaker Verification Systems Be Jointly
Optimised?” in Proc. ICASSP 2023.

7.1 Spoofing-aware speaker verification chal-
lenge

Our work on the joint optimisation of ASV and CM sub-systems is aligned with the
objectives of the first Spoofing-Aware Speaker Verification (SASV) challenge [141].
Whereas the well-known ASVspoof challenge supports the design of separate ASV
and CM sub-systems, the SASV challenge demands the computation of a single
score which encompasses the functionalities of both. In the following, we outline
the tasks of speaker verification and spoofing detection and then the spoofing-
aware speaker verification task and challenge.

ASV systems operate using speaker embeddings. Utterances are first processed
using a deep neural network (DNN) or a convolutive neural network (CNN) to
obtain frame-level features. Various pooling layers can be used to aggregate frame-
level features into utterance-level features by capturing the temporal dynamics of
the input signal [7]. Utterance-level features are then mapped into a new space
in which informative speaker embeddings are extracted. Embeddings extracted
from utterances produced by the same speaker should have higher similarity than
embeddings extracted from utterances produced by different speakers. Various
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Table 7.1: Trial types used for performance measurement for three tasks. “+”
indicates the positive class and “-” indicates the negative class.

Bona fide Bona fide Spoofed
target speaker non-target speaker target speaker

Speaker Verification + -
Spoofing Detection + -
Spoofing-aware Speaker Verification + - -

different loss functions [142] can be used in order to minimise the distance between
embeddings corresponding to the same speaker, while maximising the distance
between embeddings corresponding to different speakers.

Nowadays, almost all CMs are deep-learning-based. CM models are usually
less complex (fewer trainable parameters) than ASV models and are almost al-
ways binary, two-class classifiers. Given the risk of over-fitting to specific spoofing
attacks seen in the training data, so-called one-class solutions [57,143] which model
only the bona fide class have also been explored. These systems aim to determine
whether an input utterance is sufficiently bona fide. More traditional two-class
classifiers are still dominant.

Three different trial classes are used for performance assessment. These are
listed in the first row of Table 7.1. The ASV sub-system should discriminate bona
fide target utterances from bona fide non-target utterances. The CM sub-system is
tasked with discriminating between bona fide target utterances and spoofed target
utterances. The ASV and CM sub-systems are then combined so that only bona
fide target utterances are accepted. Everything else should be rejected.

One objective of the SASV challenge [141] was to study the potential benefit
of jointly-optimised ASV and CM combination strategies. However, none of the
23 submissions to the challenge actually explored joint optimisation. All the top-
performing systems used either score or embedding level fusion strategies whereby,
in contrast to the cascade approach illustrated in Figure 7.1, decisions are made
either by combining the scores produced by each sub-system or by learning scores
from combined ASV and CM embeddings. More integrated solutions (but not
jointly optimised) have also been reported, e.g. [144–147]. These approaches em-
ploy a single model to capture both speaker characteristics and spoofing artefacts.
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The performance of these approaches is inferior to that of fusion-based alterna-
tives [47–51, 148]. The objectives of our work reported in this chapter are to
determine whether joint optimisation can help to narrow the performance gap and
to determine whether jointly-optimised systems might one day even outperform
competing approaches.

7.2 The proposed optimisation framework

We present in this section our integrated, jointly-optimised SASV system. It
contains three components, namely an ASV sub-system, a CM sub-system and a
back-end classifier. They are combined to produce a single output score. Being
jointly-optimised, both ASV and CM model parameters are updated according to
a single loss function. The optimisation criteria, however, is also a design choice.
This implies that we can fix the sub-system model parameters and then update only
those of the back-end classifiers, or update all model parameters simultaneously.
This flexibility allows for a meaningful comparison of sub-system behaviour both
before and after joint optimisation, as well as the assessment of joint optimisation
itself upon the performance of the system as a whole.

7.2.1 ASV sub-system

We use the model described in [142] as the ASV sub-system, namely a ResNet34
model with squeeze-and-excitation (SE) blocks [149] (ResNetSE34). The first fea-
ture extraction layer serves to decompose raw input speech waveforms into spectro-
temporal representations, more specifically, log-scale Mel-filterbank features. Four
convolutional layers with SE blocks are then used to process the input features and
extract a deep, compact representation. Attentive statistics pooling (ASP) [150]
is used to aggregate and project frame-level features into a fixed-length, utterance-
level embedding. The network is optimised using a combination of softmax and
angular prototypical loss [151]. The ASV sub-system is used to extract embed-
dings from both enrolment and test utterances giving eASV

enr and eASV
tst embeddings

respectively.
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Figure 7.2: Framework for separate and joint optimisation. The ASV sub-system
extracts speaker embeddings from both enrolment and test utterances, while the
CM sub-system only extracts one embedding from the test utterance. This CM em-
bedding is then projected to the same dimension as the ASV embeddings through
a linear layer. Finally, the three embeddings are stacked along a new dimension
and processed by a CNN-based back-end to calculate the final SASV target score.

7.2.2 CM sub-system
We use the AASIST model described in [78] as the CM sub-system. It is an end-
to-end (E2E) system designed to ingest raw input speech waveforms. A RawNet2
based encoder [60] is used with graph attention networks [61] to decompose speech
waveforms into high-dimensional temporal and spectral representations which are
subsequently integrated into a single, combined representation. A readout opera-
tion is used to extract the CM embedding from the integrated representation. The
embeddings produced by the AASIST model are then further processed through
a linear layer in order to extract a CM embedding eCM

tst which has the same di-
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Table 7.2: Details of the ASVspoof 2019 LA and FAD training partitions used for
all experiments reported in this paper.

Database # of speakers # of bona fide # of spoofed # of attacks
ASVspoof train 20 2580 22800 4 TTS, 2 VC
FAD train 40 3200 25600 8 TTS

mensionality as the ASV embeddings. The network is optimised using a weighted
cross-entropy loss function.

7.2.3 Backend classifier
Embeddings extracted from both sub-systems are stacked to enable a convolu-
tional neural network (CNN) to capture both variances stemming from test and
enrolment ASV embeddings and the CM embedding. A 1-dimensional adaptive av-
erage pooling layer is used to aggregate the set of embeddings and an OC-Softmax
layer [57] is used to generate the final score, an indication of support for the bona
fide target class.

7.3 Experiment setup
We describe in this section the databases, protocols and evaluation metrics used
for our work in addition to implementation details.

7.3.1 Database
The ResNetSE34 ASV sub-system is pre-trained using the development set of the
VoxCeleb2 database [32]. The MUSAN corpus [39] and simulated room impulse re-
sponse (RIR) filters [38] are used for data augmentation (DA). The VoxCeleb1 [31]
test set is used to select the best model. The AASIST CM sub-system is trained
using the training partition of the ASVspoof 2019 logical access (LA) database [15],
without DA. The development set of the same database is used to select the best
model. The SASV system is trained using the training partition of the ASVspoof
2019 LA database (same data as for CM training, also without DA).

Also reported below are a set of experiments in which we use an pool of training
data which is augmented using utterances sourced from the Fake Audio Detection
(FAD) database [35]. Details of the ASVspoof and FAD training partitions are
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Table 7.3: SASV utterance types and the corresponding proportions of test utter-
ances for fixed and joint optimisation.

Utterance type Prop. in Fixed Prop. in Joint
1⃝ Bona fide, Target spk 50% 25%
2⃝ Bona fide, Non-target spk 25% 25%
3⃝ Spoofed, Target spk 25% 25%
4⃝ Spoofed, Non-target spk None 25%

shown in Table 7.2. Like the ASVspoof 2019 LA database, the FAD database
contains bona fide utterances collected from a number of different speakers and
spoofed utterances generated using a number of different algorithms. A key differ-
ence is that the ASVspoof database contains utterances in English, while the FAD
database contains utterances in Mandarin. As shown in Table 7.2, the training
partition of the FAD database contains a similar number of bona fide and spoofed
utterances. However, the number of speakers is twice that for the ASVspoof
database. This auxiliary data is used for training only. The development and
evaluation sets are not changed.

7.3.2 Protocols
Whereas the usual ASVspoof protocol is used for CM training, the SASV system
is trained using a specific protocol comprising three different trial classes, each
comprising a pair of utterance types. These are illustrated in Table 7.3. The en-
rolment utterance is always a bona fide utterance from the target speaker, labelled
1⃝. The test utterance can be any one of four different utterance types. The
first three, labelled 1⃝, 2⃝ and 3⃝, correspond to the three trial types shown in
Table 7.1. An SASV system should only produce an accept decision when the test
utterance is a bona fide target utterance 1⃝, and produce a reject decision when
the test utterance is either a bona fide non-target utterance 2⃝ or a spoofed target
utterance 3⃝.

The last two columns in Table 7.3 indicate the proportions of each test utter-
ance type used for system training. Proportions shown in column 3 are the same
as for the SASV challenge protocol, where 50% of the training data is bona fide
target test utterances 1⃝, while the remaining 50% is split equally between bona
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fide non-target 2⃝ and spoofed target 3⃝ test utterances. The remaining type of
spoofed non-target utterances 4⃝ is never used for training; by definition, spoofs
are always targeted. Nonetheless, we found that the use of type 4⃝ utterances dur-
ing training (last row in Table 7.3) is beneficial in the case of joint optimisation
(but not for fixed systems). Thus, for joint optimisation experiments, we use all
four types of utterances, and in equal proportion, as shown in the last column of
Table 7.3.

In the case of SASV, the negative class is hence the union of utterance types
2⃝, 3⃝ and 4⃝. For evaluation of the CM, the task of which is to discriminate
between spoofed and bona fide utterances, utterance type 2⃝ is within the positive
class. During joint optimisation, this conflict between SASV and CM classes has
potential to degrade CM and/or SASV performance. We use utterance type 4⃝ as
a means to balance this conflict; type 4⃝ utterances belong to the negative class
for both SASV and CM tasks. This may also explain why, as we shall later, the
use of type 4⃝ utterances is not beneficial in the case of fixed training for which
there is no such conflict.

7.3.3 Metrics

We use estimates of the equal error rate (EER) to evaluate performance. The
so-called SASV-EER [141] is used to assess performance when the positive class
comprises only bona fide target trials 1⃝, while the negative class is a union of both
bona fide non-target trials 2⃝ and spoofed target trials 3⃝. Spoofed non-target
trials 4⃝ are used only for training and not for testing, hence they play no role in
computation of SASV-EER results. The speaker verification EER (SV-EER) and
the spoofing detection EER (SPF-EER) are also used to provide further insights
into system behaviour and to show performance in the case of specific ASV and
CM sub-tasks. While the positive class for the computation of both the SV-EER
and SPF-EER comprises the same bona fide targets trials 1⃝ as for the SASV-
EER, there are differences in the negative class. For the SV-EER, it comprises
only bona fide non-target trials 2⃝ whereas, for the SPF-EER, it comprises only
spoofed target trials 3⃝.
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7.3.4 Implementation details
We used default settings for the pre-training of ASV [142] and CM [78] sub-systems.
The ASV sub-system uses 64-dimensional log-scale Mel-filterbank features which
are extracted using a 25 ms Hamming window with a 10 ms shift per frame.
Speaker embeddings are of dimension 512. The CM sub-system produces embed-
dings of dimension 160. Readers are referred to [142] and [78] for further details.

For SASV training, the CM embedding (produced by the AASIST model)
is first transformed to 512 dimensions (using the linear+ReLU layer) and then
stacked with the two speaker embeddings. The resulting, stacked embedding
is processed using three 1D convolutional layers and an average pooling layer.
Scores are computed from the resulting deep representation using an OC-Softmax
layer [57]. The scale factor of the OC-Softmax layer is set to 10. The margin for
the positive class is set to 0.8, while that for the negative class is set to 0.2.

SASV model parameters are updated for 20 epochs. The initial learning rate is
set to 5e-5, with a decay factor of 0.95 for every 200 batches. The batch size is set
to 20. We select the best model according to the SASV-EER for the development
set. The final SASV-EER for the evaluation set is an average of 5 independent
runs, each with a different random seed. All experimental work was performed
using a single NVIDIA GeForce RTX 3090 GPU.

7.4 Results
We present results for the proposed system with both fixed and jointly-optimised
training regimes, as well as for SASV challenge baselines. We then present analyses
which aim to explain differences in performance and the benefit of joint optimisa-
tion.

7.4.1 Comparison of results for fixed and joint optimisation
A comparison of results for the proposed framework under fixed and joint opti-
misation is presented in Table 7.4. EERs are reported both for the SASV 2022
development (dev) and evaluation (eval) partitions. Also shown are results for the
two SASV challenge baselines. In terms of SASV-EER results, the proposed sys-
tem outperforms the two challenge baselines under both training regimes. Except
for our jointly-optimised solution, all systems use fixed ASV and CM sub-systems
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Table 7.4: Results for pre-trained, jointly-optimised and baseline systems for SASV
2022 development and evaluation partitions.

System
SASV-EER SV-EER SPF-EER

dev eval dev eval dev eval
Pre-trained, fixed 0.73 1.15 1.41 1.27 0.48 1.08
Joint optimisation 1.15 1.49 2.34 2.34 0.31 0.80
Baseline1-v2 [141] 1.01 1.71 1.99 1.66 0.23 1.76
Baseline2 [152] 4.85 6.37 12.87 11.48 0.13 0.78

for the extraction of embeddings, with only the back-end classifier being further
optimised.

Results for the pre-trained, fixed configuration give the lowest SV-EER for
both dev and eval sets. While SPF-EERs are relatively higher than for the best
baseline, the overall SASV-EERs for both sets are the lowest among the four
systems. Results shown in Table 7.4 do not support our initial hypothesis that
joint optimisation is beneficial. SASV-EERs for the pre-trained, fixed system
(0.73% for dev and 1.15% for eval) are noticeably better than those for joint
optimisation (1.15% for dev and 1.49% for eval). The jointly-optimised system
achieves a lower SPF-EER for both the development (0.31% compared to 0.48%)
and evaluation (0.80% compared to 1.08%) sets, meanwhile SV-EERs are higher
(2.34% compared to 1.41% for dev and 2.34% compared to 1.27% for eval). Joint
optimisation results in better spoofing detection but worse speaker verification,
and it is the degradation to the latter which then leads to worse SASV-EER
performance as well.

7.4.2 Analysis on speaker verification performance
Results presented in Table 7.4 show that the bottleneck for the jointly-optimised
SASV system is poor speaker verification performance (SV-EER). We also notice
that, except for the jointly-optimised system, SV-EERs are higher for the devel-
opment set than for the evaluation set. The same trend can also be observed with
many of the SASV challenge submissions [50, 51, 148]. This finding suggests that,
in terms of speaker verification, the evaluation set is easier than the development
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Figure 7.3: SV-EERs estimated using the development partition for pre-trained,
fixed and jointly-optimised systems as a function of the number of speakers in the
training partition.

set. The different trend observed for the jointly-optimised system, indicates that
it over-fits to the speakers in the development set.

The problem of over-fitting is the result of insufficient diversity in the training
data. In our case, this translates to a lack of speaker diversity. Although the
VoxCeleb2 [32] database used for the pre-training of ASV sub-systems contains
data collected from over 5000 speakers, the SASV 2022 training data which is
used for fine-tuning, contains data collected from only 20 speakers. This number
is likely far too small and a reason for the degradation in SV-EER observed for
the jointly-optimised system.

To test this hypothesis, we designed an experiment to observe the change in
performance when using training data collected from a lower number of speakers;
we cannot use a greater number, at least not using data sourced from the same
database. We re-trained the system, again under both fixed and joint optimisation,
but this time with data from a different number of speakers. Training is conducted
using the same set of trials as before, namely the set of 1⃝, 2⃝ and 3⃝ trials. SV-
EER results for the development set are shown in Figure 7.3. The SV-EER for
the fixed system is stable, at around 2%. This finding shows that the system
has reasonable performance after pre-training and that fine-tuning of the back-
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Table 7.5: Averaged results for pre-trained, jointly-optimised systems for SASV
2022 evaluation partitions.

Training data Configuration SASV-EER SV-EER SPF-EER

ASVspoof Fixed 1.15 1.27 1.08
Joint 1.49 2.34 0.80

ASVspoof + Fixed 1.52 1.85 1.27
FAD Joint 1.74 2.66 1.09
ASVspoof + Fixed 1.72 1.47 1.84
FAD bona fide only Joint 1.26 1.77 0.83

end classifier has little impact. However, SV-EER results for the jointly-optimised
system increase substantially as the number of speakers is reduced. This finding
supports our suspicion that joint optimisation results in over-fitting to the speakers
in the training data.

7.4.3 Results with external speakers
Given that results degrade when the number of speakers is reduced, it is of interest
to find a solution to increase their number. This cannot be achieved using data
from the same database since it is already exhausted. Accordingly, we augment
the pool of training data using utterances sourced from the FAD database [35],
details of which are shown in Table 7.2.

Results for the evaluation set are shown in Table 7.5. Results in the second
and third rows are the same as those for jointly-optimised and fixed systems in
Table 7.4. Rows four and five show results when using both ASVspoof and FAD
training data. Results do not improve, neither for fixed or jointly-optimised sys-
tems; SASV-EERs increase from 1.15% (fixed) and 1.49% (joint) to 1.52% (fixed)
and 1.74% (joint). In addition, results for the jointly-optimised system are still
worse than those for the fixed system. We observe the same trend for the SV-EER
and SPF-EER. Worse speaker verification and spoofing detection performance can
be caused by different reasons. First, the language mismatch might complicate the
use of information learned from Mandarin-language data; SV-EERs degrade when
FAD data is used for training (1.27% to 1.85% for fixed; 2.34% to 2.66% for joint).
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Similarly, SPF-EERs are also worse (1.08% to 1.27% for fixed; 0.80% to 1.09%
for joint). This might be because of the differences in spoofing attacks in the
ASVspoof and FAD training data which complicate the use of information learned
from the latter.

While the language mismatch cannot be avoided, we can exclude the spoofed
utterances among the FAD training data in order to reduce the influence from
mismatch in the spoofing attacks. Results for this set up are shown in the last
two rows of Table 7.5. Performance is still worse that that using only ASVspoof
training data. These results nonetheless show some promise. The SASV-EER for
the jointly-optimised system is now better than that for the fixed system (1.26%
compared to 1.72%). This result is not far away from the best (1.15%).

The improvement in SASV performance for the jointly-optimised system, even
if still not the best, stems from the improvement in speaker verification perfor-
mance. The SV-EER of 1.77% is the lowest of all results for jointly-optimised
systems, even if it is still higher than that for the fixed system under identical
training conditions. SPF-EER results also improve when spoofed data is excluded
(1.09% for ASVspoof + FAD compared to 0.83% for ASVspoof + FAD bona fide
only). These results confirm that additional, external data collected from other
speakers is beneficial to joint optimisation.

7.4.4 Analysis on sub-system complementarity
Results discussed above indicate that joint optimisation remains inferior to a pre-
trained competitor, even if the use of additional external data reduces the perfor-
mance gap. We have so far learned that speaker verification performance is the
bottleneck. Spoofing detection performance actually improves under joint optimi-
sation. This finding is not necessarily surprising since, as argued above, the ASV
sub-system also has potential for spoofing detection when speaker characteristics
are not well reflected. Improvements to spoofing detection are a sign that the
ASV sub-system is complementary to the CM sub-system. On other other hand,
the CM has no access to the enrolment utterance, thus degradation to speaker
verification performance likely come solely from the ASV sub-system. This ar-
gument, though, does not explain why SV-EER and SPF-EER results for both
fixed and jointly-optimised systems both degrade when the pool of training data
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Table 7.6: Averaged results for pre-trained, jointly-optimised sub-systems for
SASV 2022 evaluation partitions. Results under fixed configuration are same since
the networks are identical. Results in boldface indicate better performance for
jointly-optimised systems than for corresponding fixed, independently-optimised
systems.

Training data Configuration
ASV sub-system CM sub-system

SASV-EER SV-EER SPF-EER SASV-EER SV-EER SPF-EER

ASVspoof
Fixed 19.70 1.27 25.75 24.50 49.01 0.65
Joint 13.47 1.84 17.43 23.65 46.80 1.02

ASVspoof + Fixed 19.70 1.27 25.75 24.50 49.01 0.65
FAD Joint 8.57 1.73 10.82 22.83 46.37 1.81
ASVspoof + Fixed 19.70 1.27 25.75 24.50 49.01 0.65
FAD bona fide only Joint 8.58 1.49 10.60 24.66 47.99 1.35

is augmented with FAD data.
The higher SPF-EER can be caused by either ASV or CM sub-systems. We

designed another set of experiment to examine the complementarity between the
two. All results presented in Table 7.6 are for the same systems for which re-
sults are reported in Table 7.5, though for separate sub-systems instead of the
full SASV system. When the jointly-optimised system is trained using only the
ASVspoof database, we observe an improvement in SASV-EER for both sub-
systems. Though the ASV sub-system, when jointly optimised, has a higher SV-
EER than the fixed system, the SPF-EER is lower; this accounts for the lower
SASV-EER. The ASV sub-system hence learns some capability to distinguish be-
tween bona fide and spoofed trials. In so doing, it sacrifices some speaker verifi-
cation capability. On the other hand, the spoofing detection performance of the
the CM sub-system degrades, but is compensated somehow by it learning some
speaker verification capability, albeit very low.

The SASV-EER for the full system (Table 7.5) still degrades. The lower SPF-
EER for the ASV sub-system, but the higher SPF-EER for the CM sub-system,
results in a lower SPF-EER for the full system. The higher SV-EER for the ASV
sub-system and the lower SV-EER for the CM sub-system result in a higher SV-
EER for the full system. Our explanation is that, though the SV-EER for CM
sub-system decreases, it is not beneficial since the CM has no access to the enrol-
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ment utterance – the CM normally hence has no capacity for speaker verification
and should have an SV-EER of around 50%. The lower SV-EER for the CM is
instead a sign of speaker awareness, specifically that it performs differently for dif-
ferent speakers. Such speaker-related information is not beneficial to the speaker
verification task, and is why the SV-EER as well as the SASV-EER for the full
system is worse.

The remainder of results in Table 7.6 confirm that spoofing attacks contained
in the FAD database are not beneficial to the detection of attacks contained in the
ASVspoof database. The SPF-EER for the CM sub-system increases (from 1.02%
to 1.81%) when the pool of training data contains both bona fide and spoofed
utterances from the FAD database. When spoofed utterances are excluded, it
decreases (from 1.81% to 1.35%). Meanwhile, the SPF-EER of the ASV sub-
system is relatively stable (10.82% to 10.60%). When jointly-optimised, the use of
data corresponding to additional speakers can help reduce the speaker over-fitting
of both sub-systems, with the SV-EER of the ASV sub-system decreasing (from
1.73% to 1.49%), and that of the CM sub-system increasing (46.37% to 47.99% –
it should be 50%).

7.5 Summary
In this chapter, we present our work to investigate the merit of jointly-optimised
solutions to combine automatic speaker verification (ASV) and spoofing counter-
measure (CM) sub-systems as a solution to the spoofing-aware speaker verification
task. The joint optimisation of each sub-system can exploit complementary infor-
mation and has the potential to achieve better performance than when the two
systems are optimised independently. Despite the benefit of doing so, we identified
challenges and a key performance bottleneck – the lack of speaker diversity in train-
ing data. Experiments confirm that the addition of external speaker data helps
to reduce speaker over-fitting and to improve performance. A detailed analysis of
ASV and CM sub-system complementarity provides additional evidence of sub-
system synergy in spoofing detection, while improvements to speaker verification
stem solely from the ASV sub-system. Future work includes the investigation of
different training strategies to better address over-fitting. Other directions include
the design of more efficient models to better exploit sub-system complementarity.
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Chapter 8

Conclusions and future directions

In this chapter, we present the summary of the work presented in this thesis.
We first present the key the contributions and findings in Section 8.1. Potential
directions for future work are presented in Section 8.2.

8.1 Key contributions
The central topic of this thesis is the exploration of Automatic Speaker Verification
(ASV) system vulnerabilities to spoofing attacks. We aim to enhance the reliabil-
ity of voice anti-spoofing systems and their integration with ASV systems. This
thesis not only advances the field of voice anti-spoofing but also lays the ground-
work for future research on secure, interpretable, and integrated spoofing resistant
ASV systems. Thesis contributions are summarised in the following. Chapters 3
and 4 focus on the automated design of countermeasure (CM) systems. Chapter 5
provides insights into the system decision-making process. Chapter 6 demonstrates
that variability in spoofing model training can undermine detection and Chapter 7
reports the development of joint optimisation of ASV and CM to overcome such
vulnerabilities and to improve reliability.

In Chapter 3, we present the first application of differentiable architecture
search (DARTS), specifically Partially Connected DARTS (PC-DARTS), to spoof-
ing detection. This novel approach enables the automated learning of deep neural
network architectures, and their optimisation through backpropagation and hard-
ware acceleration. The models generated via PC-DARTS exhibit competitive per-
formance, as shown in Table 8.1. Our best model achieves a min-tDCF of 0.09 for
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Table 8.1: Performance comparison between PC-DARTS and Raw PC-DARTS
models and competing state-of-the-art systems reported in the literature on
ASVspoof LA evaluation partition. Result reproduced from Table 3.3 and 4.3.

Systems Features min-tDCF EER Params

Res-TSSDNet [21] waveform 0.0482 1.64 0.35M
Raw PC-DARTS Mel-F waveform 0.0517 1.77 24.48M
Raw PC-DARTS Linear-L waveform 0.0583 2.10 24.40M
Res2Net [95] CQT 0.0743 2.50 0.96M
PC-DARTS (16, 64) LFCC 0.0914 4.96 7.51M
PC-DARTS (4, 16) LFCC 0.0992 5.53 0.14M
Challenge Baseline-1 LFCC 0.2116 8.09 -
Challenge Baseline-2 CQCC 0.2366 9.57 -

the ASVspoof 2019 database, closely following a top-performing Res2Net system.
Our second-best model, with a min-tDCF of 0.1, requires 85% fewer parameters
than the leading Res2Net competition, highlighting the efficiency and potential of
PC-DARTS for evolving network architectures with reduced computational com-
plexity and minimal manual intervention. This breakthrough underscores the fea-
sibility and benefits of employing PC-DARTS for spoofing detection, encouraging
further exploration in this direction.

In Chapter 4 we introduce Raw PC-DARTS, an end-to-end differentiable
architecture search methodology which enables the comprehensive automation of
learning pre-processing operations, network architectures, and parameters directly
from raw waveform inputs. Such an approach ensures that the entire model is
optimised in unison, leading to a highly efficient and competitive system. Although
the best performing Raw PC-DARTS system is still achieved with a fixed Mel-
scale front-end (1.77% as shown in Table 8.1), performance of the system with
jointly searched front-end and architecture is only marginally behind (2.10%).
The performance of our models ranks among the top single-system results at the
time of publication.

In Chapter 5 we introduce the use of SHapley Additive exPlanations (SHAP)
to shed light on the variation in model behaviour and the distinct artefacts left
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(a) Raw PC-DARTS, LA_T_1859200 (b) PC-DARTS, LA_T_1859200

Figure 8.1: SHAP values for Raw PC-DARTS (time-domain waveform)
and PC-DARTS (Linear-frequency cepstrum coefficient feature) for utterance
LA_T_1859200 - ‘We will do so again’. Figure reproduced from Figure 5.3.

Table 8.2: CM performance in terms of the EER (%) in two training conditions.
The first training set only contains spoofed V1 set, the second contains V2-4 sets.
CMs are tested on both V1-4 and V1.2-V1.5. Results reproduced from Table 6.2
and 6.3.

Trained on V1 Trained on V2-4

Tested on AASIST RawNet2 SSL-AASIST AASIST RawNet2 SSL-AASIST
V1 0 0 0 0 2.20 0
V2 0.50 6.27 0.07 0 2.93 0
V3 2.43 8.50 0.03 0 0.47 0
V4 1.20 7.93 0 0 1.37 0
V1.2 0 0.67 0 0 1.90 0
V1.3 0 0.03 0 0 0.77 0.03
V1.4 0 0.93 0 0 2.83 0
V1.5 0 0.10 0 0 0.87 0.03

behind by different spoofing attacks. Through SHAP analysis, we discovered no-
table differences in how our models react to spoofed utterances generated with
different algorithms. Specifically, our PC-DARTS model tends to focus on non-
speech intervals for detection, whereas the Raw PC-DARTS model relies more on
speech intervals, as shown in Figure 8.1. This unexpected finding helps explain the
performance variation between the two models and underscores the importance of
considering both speech and non-speech intervals for spoofing detection.
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Table 8.3: SASV performance results for pre-trained, jointly-optimised systems
trained with original ASVspoof data and with additional FAD bona fide data.
Result reproduced from Table 7.5.

Training data Configuration SASV-EER SV-EER SPF-EER

ASVspoof

Fixed, full 1.15 1.27 1.08
- ASV 19.70 1.27 25.75
- CM 24.50 49.01 0.65

Joint, full 1.49 2.34 0.80
- ASV 13.47 1.84 17.43
- CM 23.65 46.80 1.02

Fixed, full 1.72 1.47 1.84
- ASV 19.70 1.27 25.75

ASVspoof + - CM 24.50 49.01 0.65
FAD bona fide only Joint, full 1.26 1.77 0.83

- ASV 8.58 1.49 10.60
- CM 24.66 47.99 1.35

We further explored the variation in spoofing artefacts in Chapter 6. Our
hypothesis is that the variability observed in deep-learning-based voice spoofing
detection models—caused by different initialisation, hyper-parameters, or training
data partitions—might also apply to spoofing generation models. To test this
hypothesis, we focus on the generalisation of CM systems when trained using data
generated with differently-configured algorithms. Our results confirm that CM
systems trained on a broader range of spoofed data exhibit improved detection
capabilities, underscoring the importance of diversifying training data to enhance
the robustness and generalisation of spoofing detection systems against evolving
spoofing techniques.

In Chapter 7 we report our attempts to improve CM robustness and gen-
eralisation using jointly-optimised ASV systems. The corresponding results are
reproduced in Table 8.3. The integration of ASV and CM sub-systems aims to
leverage their complementary strengths. However, we encountered a significant
challenge, namely the limited diversity of speakers in the training data, which
leads to speaker over-fitting. Our experiments show that the importance of exter-
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nal speaker data mitigates this issue, enhancing overall system performance.

8.2 Directions for future research
In the following, we outline potential future directions which provide opportunities
to extend the work presented in this thesis:

1. Exploring a unified ASV and CM system architecture: Our explo-
ration with PC-DARTS and Raw PC-DARTS focused upon the utilisation
of neural architecture search for spoofing detection. Although DARTS has
shown promise in ASV tasks [153], the architectures it discovers are specifi-
cally tuned for ASV, with no assurance of robustness to spoofing detection.
Our investigations into the joint optimisation of ASV and CM systems high-
light their complementary nature. It is, therefore, compelling to pursue a
unified architecture that could harness this synergy more effectively, aim-
ing to address both tasks simultaneously, and, once again, with minimised
human intervention.

2. Advancing explainability techniques: While methods like SHAP offer
valuable insights into feature importance, there remains a gap in delivering
intuitive and meaningful explanations. The General Data Protection Regu-
lation (GDPR) mandates that data subjects have the right to obtain mean-
ingful information about the logic involved in automated decision-making.
However, explanations via heat-maps provide limited insight and often de-
mand specialised knowledge for interpretation. Investigating alternative ex-
planatory forms, such as textual explanations, could offer more accessible
insights to supplement heat map-based explanations.

3. Spoofing-oriented voice generation: The goal of most text-to-speech
(TTS) systems is to generate voices that 1⃝ are realistic and 2⃝ mimic the
sound of a target human 3⃝ speaking the given text. While CMs aim to
identify 1⃝ and ASV systems aim for 2⃝, in automated, text-independent
scenarios, the need for 3⃝ (i.e., coherent text without skipping or repeating
words) is not paramount. This frees up TTS networks to focus on evading
ASV and CM detection. Building on insights from our work in Chapter 6,
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future work should examine whether merely sounding realistic is sufficient
to elude CMs, or if sounding artificial in novel ways might also be effective.

4. Audio-visual deepfake generation and detection: Though the joint op-
timisation of ASV and CM systems does not contribute technically a multi-
modal approach, the two are still complementary to each other. There is
still nonetheless an opportunity to improve biometric verification systems
using multi-modal cues from both facial images as well as speech record-
ings. Similar to the ASVspoof databases, the development of a robust, gen-
eralised audio-visual deepfake detection system necessitates the creation of
high-quality databases.

104



Bibliography

[1] Z. Li, Z. Zhao, W. Wang, P. Zhang, and Q. Zhao, “Explore long-range
context features for speaker verification,” Applied Sciences, vol. 13, no. 3, p.
1340, 2023.

[2] H. Tak, “End-to-end modeling for speech spoofing and deepfake detection,”
Ph.D. dissertation, Sorbonne University, 2023.

[3] W. Ge, X. Wang, J. Yamagishi, M. Todisco, and N. Evans, “Spoofing attack
augmentation: Can differently-trained attack models improve generalisa-
tion?” in Proc. ICASSP 2024, 2024, pp. 12 531–12 535.

[4] D. A. Reynolds, “Speaker identification and verification using Gaussian mix-
ture speaker models,” Speech Communication, vol. 17, no. 1, pp. 91–108,
1995.

[5] V. Dellwo, M. Huckvale, and M. Ashby, “How is individuality expressed in
voice? An introduction to speech production and description for speaker
classification,” Speaker Classification I: Fundamentals, Features, and Meth-
ods, pp. 1–20, 2007.

[6] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network
architecture for efficient modeling of long temporal contexts,” in Proc. IN-
TERSPEECH 2015, 2015, pp. 3214–3218.

[7] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-TDNN: Em-
phasized channel attention, propagation and aggregation in TDNN based
speaker verification,” in Proc. INTERSPEECH 2020, 2020, pp. 3560–3564.

105



BIBLIOGRAPHY

[8] T. Zhou, Y. Zhao, and J. Wu, “Resnext and res2net structures for speaker
verification,” in 2021 IEEE Spoken Language Technology Workshop (SLT),
2021, pp. 301–307.

[9] J. S. Chung, J. Huh, S. Mun, M. Lee, H. S. Heo, S. Choe, C. Ham, S. Jung,
B.-J. Lee, and I. Han, “In defence of metric learning for speaker recognition,”
in Proc. INTERSPEECH 2020, 2020, pp. 2977–2981.

[10] L. Li, R. Nai, and D. Wang, “Real additive margin softmax for speaker
verification,” in Proc. ICASSP 2022, 2022, pp. 7527–7531.

[11] D. A. Reynolds, “An overview of automatic speaker recognition technology,”
in Proc. ICASSP 2002, 2002, pp. 4072–4075.

[12] M. Sahidullah, H. Delgado, M. Todisco, A. Nautsch, X. Wang, T. Kinnunen,
N. Evans, J. Yamagishi, and K.-A. Lee, “Introduction to voice presentation
attack detection and recent advances,” Handbook of Biometric Anti-Spoofing:
Presentation Attack Detection and Vulnerability Assessment, pp. 339–385,
2023.

[13] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans, J. Yamag-
ishi, and K. A. Lee, “The ASVspoof 2017 Challenge: Assessing the limits of
replay spoofing attack detection,” in Proc. INTERSPEECH 2017, 2017, pp.
2–6.

[14] J. Frank and L. Schönherr, “WaveFake: A data set to facilitate audio deep-
fake detection,” in Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2021.

[15] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado, A. Nautsch,
J. Yamagishi, N. Evans, T. H. Kinnunen, and K. A. Lee, “ASVspoof 2019:
Future horizons in spoofed and fake audio detection,” in Proc. INTER-
SPEECH 2019, 2019, pp. 1008–1012.

[16] M. Sahidullah, H. Delgado, M. Todisco, H. Yu, T. Kinnunen, N. Evans,
and Z.-H. Tan, “Integrated spoofing countermeasures and automatic speaker
verification: An evaluation on ASVspoof 2015,” in Proc. INTERSPEECH
2016, 2016, pp. 1700–1704.

106



BIBLIOGRAPHY

[17] M. Todisco, H. Delgado, K. A. Lee, M. Sahidullah, N. Evans, T. Kinnunen,
and J. Yamagishi, “Integrated presentation attack detection and automatic
speaker verification: Common features and gaussian back-end fusion,” in
Proc. INTERSPEECH 2018, 2018, pp. 77–81.

[18] T. Masuko, T. Hitotsumatsu, K. Tokuda, and T. Kobayashi, “On the se-
curity of HMM-based speaker verification systems against imposture using
synthetic speech,” in Proc. EUROSPEECH 1999, 1999, pp. 1223–1226.

[19] H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection in
automatic speaker verification systems using DNN classifiers and dynamic
acoustic features,” IEEE transactions on neural networks and learning sys-
tems, vol. 29, no. 10, pp. 4633–4644, 2017.

[20] H. Yu, Z.-H. Tan, Y. Zhang, Z. Ma, and J. Guo, “DNN filter bank cepstral
coefficients for spoofing detection,” IEEE Access, vol. 5, pp. 4779–4787, 2017.

[21] G. Hua, A. B.-j. Teoh, and H. Zhang, “Towards end-to-end synthetic speech
detection,” IEEE Signal Processing Letters, vol. 28, pp. 1265–1269, 2021.

[22] G. Lavrentyeva, S. Novoselov, A. Tseren, M. Volkova, A. Gorlanov, and
A. Kozlov, “STC antispoofing systems for the ASVspoof2019 challenge,” in
Proc. INTERSPEECH 2019, 2019, pp. 1033–1037.

[23] P. Nagarsheth, E. Khoury, K. Patil, and M. Garland, “Replay attack detec-
tion using DNN for channel discrimination,” in Proc. INTERSPEECH 2017,
2017, pp. 97–101.

[24] M. Todisco, H. Delgado, and N. Evans, “A new feature for automatic speaker
verification anti-spoofing: Constant Q cepstral coefficients,” in Proc. The
Speaker and Language Recognition Workshop (Odyssey 2016), 2016, pp. 283–
290.

[25] Z. Lei, Y. Yang, C. Liu, and J. Ye, “Siamese convolutional neural network
using gaussian probability feature for spoofing speech detection,” in Proc.
INTERSPEECH 2020, 2020, pp. 1116–1120.

107



BIBLIOGRAPHY

[26] X. Wang and J. Yamagishi, “A comparative study on recent neural spoofing
countermeasures for synthetic speech detection,” in Proc. INTERSPEECH
2021, 2021, pp. 4259–4263.

[27] N. Müller, F. Dieckmann, P. Czempin, R. Canals, K. Böttinger, and
J. Williams, “Speech is silver, silence is golden: What do ASVspoof-trained
models really learn?” in Proc. ASVspoof 2021 Workshop, 2021, pp. 55–60.

[28] B. Chettri, S. Mishra, B. L. Sturm, and E. Benetos, “Analysing the predic-
tions of a cnn-based replay spoofing detection system,” in 2018 IEEE Spoken
Language Technology Workshop (SLT), 2018, pp. 92–97.

[29] B. Chettri, E. Benetos, and B. Sturm, “Dataset artefacts in anti-spoofing sys-
tems: A case study on the ASVspoof 2017 benchmark,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 28, pp. 3018–3028,
2020.

[30] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong,
“PC-DARTS: Partial channel connections for memory-efficient architecture
search,” in International Conference on Learning Representations, 2020.

[31] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A large scale speaker
identification dataset,” in Proc. INTERSPEECH 2017, 2017, pp. 2616–2620.

[32] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep speaker
recognition,” in Proc. INTERSPEECH 2018, 2018, pp. 1086–1090.

[33] G. R. Doddington, M. A. Przybocki, A. F. Martin, and D. A. Reynolds,
“The NIST speaker recognition evaluation–overview, methodology, systems,
results, perspective,” Speech communication, vol. 31, no. 2-3, pp. 225–254,
2000.

[34] Y. Fan, J. Kang, L. Li, K. Li, H. Chen, S. Cheng, P. Zhang, Z. Zhou,
Y. Cai, and D. Wang, “CN-Celeb: A challenging chinese speaker recognition
dataset,” in ICASSP 2020, 2020, pp. 7604–7608.

108



BIBLIOGRAPHY

[35] H. Ma, J. Yi, C. Wang, X. Yan, J. Tao, T. Wang, S. Wang, L. Xu,
and R. Fu, “FAD: A Chinese dataset for fake audio detection,” arXiv
preprint:2207.12308, 2022.

[36] J. Yamagishi, X. Wang, M. Todisco, M. Sahidullah, J. Patino, A. Nautsch,
X. Liu, K. A. Lee, T. Kinnunen, N. Evans, and H. Delgado, “ASVspoof
2021: Accelerating progress in spoofed and deepfake speech detection,” in
Proc. ASVspoof 2021 Workshop, 2021, pp. 47–54.

[37] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb: Large-scale
speaker verification in the wild,” Computer Speech & Language, vol. 60, p.
101027, 2020.

[38] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study
on data augmentation of reverberant speech for robust speech recognition,”
in Proc. ICASSP 2017, 2017, pp. 5220–5224.

[39] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise
corpus,” arXiv preprint:1510.08484, 2015.

[40] S. Saleem, A. Dilawari, and U. G. Khan, “Spoofed voice detection using dense
features of stft and mdct spectrograms,” in 2021 International Conference
on Artificial Intelligence (ICAI), 2021, pp. 56–61.

[41] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and
Q. V. Le, “SpecAugment: A simple data augmentation method for automatic
speech recognition,” in Proc. INTERSPEECH 2019, 2019, pp. 2613–2617.

[42] H. Tak, M. Kamble, J. Patino, M. Todisco, and N. Evans, “RawBoost: A
raw data boosting and augmentation method applied to automatic speaker
verification anti-spoofing,” in Proc. ICASSP 2022, 2022, pp. 6382–6386.

[43] X. Wang and J. Yamagishi, “Investigating active-learning-based training
data selection for speech spoofing countermeasure,” in 2022 IEEE Spoken
Language Technology Workshop (SLT), 2023, pp. 585–592.

109



BIBLIOGRAPHY

[44] ——, “Spoofed training data for speech spoofing countermeasure can be
efficiently created using neural vocoders,” in Proc. ICASSP 2023, 2023, pp.
1–5.

[45] N. Müller, P. Czempin, F. Diekmann, A. Froghyar, and K. Böttinger, “Does
audio deepfake detection generalize?” in Proc. INTERSPEECH 2022, 2022,
pp. 2783–2787.

[46] J.-w. Jung, H. Tak, H.-j. Shim, H.-S. Heo, B.-J. Lee, S.-W. Chung, H.-
G. Kang, H.-J. Yu, N. Evans, and T. Kinnunen, “SASV Challenge 2022:
A spoofing aware speaker verification challenge evaluation plan,” arXiv
preprint:2201.10283, 2022.

[47] A. Alenin, N. Torgashov, A. Okhotnikov, R. Makarov, and I. Yakovlev,
“A subnetwork approach for spoofing aware speaker verification,” in Proc.
INTERSPEECH 2022, 2022, pp. 2888–2892.

[48] X. Wang, X. Qin, Y. Wang, Y. Xu, and M. Li, “The DKU-OPPO system
for the 2022 spoofing-aware speaker verification challenge,” in Proc. INTER-
SPEECH 2022, 2022, pp. 4396–4400.

[49] J.-H. Choi, J.-Y. Yang, Y. Jeoung, and J.-H. Chang, “HYU submission for
the SASV challenge 2022: Reforming speaker embeddings with spoofing-
aware conditioning,” in Proc. INTERSPEECH 2022, 2022, pp. 2873–2877.

[50] L. Zhang, Y. Li, H. Zhao, and L. Xie, “Backend ensemble for speaker verifi-
cation and spoofing countermeasure,” in Proc. INTERSPEECH 2022, 2022,
pp. 4381–4385.

[51] J. Heo, J.-h. Kim, and H.-s. Shin, “Two methods for spoofing-aware speaker
verification: Multi-layer perceptron score fusion model and integrated em-
bedding projector,” in Proc. INTERSPEECH 2022, 2022, pp. 2878–2882.

[52] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp. 788–798, 2010.

110



BIBLIOGRAPHY

[53] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for
speaker recognition using a phonetically-aware deep neural network,” in
Proc. ICASSP 2014, 2014, pp. 1695–1699.

[54] H. Zeinali, L. Burget, H. Sameti, O. Glembek, and O. Plchot, “Deep neu-
ral networks and hidden markov models in i-vector-based text-dependent
speaker verification,” in Proc. The Speaker and Language Recognition Work-
shop (Odyssey 2016), vol. 2016, 2016, pp. 24–30.

[55] M. McLaren, L. Ferrer, and A. Lawson, “Exploring the role of phonetic
bottleneck features for speaker and language recognition,” in Proc. ICASSP
2016, 2016, pp. 5575–5579.

[56] A. Luo, E. Li, Y. Liu, X. Kang, and Z. J. Wang, “A capsule network based
approach for detection of audio spoofing attacks,” in Proc. ICASSP 2021,
2021, pp. 6359–6363.

[57] Y. Zhang, F. Jiang, and Z. Duan, “One-class learning towards synthetic voice
spoofing detection,” IEEE Signal Processing Letters, vol. 28, pp. 937–941,
2021.

[58] J.-w. Jung, H.-s. Heo, J.-h. Kim, H.-j. Shim, and H.-j. Yu, “Rawnet:
Advanced end-to-end deep neural network using raw waveforms for text-
independent speaker verification,” in Proc. INTERSPEECH 2019, 2019, pp.
1268–1272.

[59] M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform with
sincnet,” IEEE Spoken Language Technology Workshop (SLT), pp. 1021–
1028, 2018.

[60] H. Tak, J. Patino, M. Todisco, A. Nautsch, N. Evans, and A. Larcher, “End-
to-end anti-spoofing with RawNet2,” in Proc. ICASSP 2020, 2020, pp. 6369–
6373.

[61] H. Tak, J.-w. Jung, J. Patino, M. Todisco, M. Kamble, Massimiliano,
and N. Evans, “End-to-end spectro-temporal graph attention networks for
speaker verification anti-spoofing and speech deepfake detection,” in Proc.
ASVspoof 2021 Workshop, 2021, pp. 1–8.

111



BIBLIOGRAPHY

[62] H. Tak, J. Patino, A. Nautsch, N. Evans, and M. Todisco, “An explainability
study of the Constant Q Cepstral Coefficient spoofing countermeasure for
automatic speaker verification,” in Proc. The Speaker and Language Recog-
nition Workshop (Odyssey 2020), 2020, pp. 333–340.

[63] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-CAM: Visual explanations from deep networks via gradient-based lo-
calization,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 618–626.

[64] B. Halpern, F. Kelly, B. van Son, and A. Alexander, “Residual networks for
resisting noise: Analysis of an embeddings-based spoofing countermeasure,”
in Proc. The Speaker and Language Recognition Workshop (Odyssey 2020),
2020, pp. 326–332.

[65] B. Chettri, S. Mishra, B. L. Sturm, and E. Benetos, “Analysing the pre-
dictions of a CNN-based replay spoofing detection system,” in 2018 IEEE
Spoken Language Technology Workshop (SLT), 2018, pp. 92–97.

[66] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?” Ex-
plaining the predictions of any classifier,” in Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
2016, pp. 1135–1144.

[67] L. S. Shapley, “A value of n-person games,” Contributions to the Theory of
Games, pp. 307–317, 1953.

[68] S. M. Lundberg, S.-i. Lee, and D. Fohr, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing Systems,
2017, pp. 4765–4774.

[69] S. Sivasankaran, E. Vincent, and D. Fohr, “Explaining deep learning models
for speech enhancement,” in Proc. INTERSPEECH 2021, 2021, pp. 696–700.

[70] X. Zhou, D. Garcia-Romero, R. Duraiswami, C. Espy-Wilson, and
S. Shamma, “Linear versus mel frequency cepstral coefficients for speaker
recognition,” in 2011 IEEE workshop on automatic speech recognition &
understanding, 2011, pp. 559–564.

112



BIBLIOGRAPHY

[71] J. Martinez, H. Perez, E. Escamilla, and M. M. Suzuki, “Speaker recognition
using Mel frequency Cepstral Coefficients (MFCC) and Vector quantization
(VQ) techniques,” in Conielecomp 2012, 22nd International conference on
electrical communications and computers, 2012, pp. 248–251.

[72] J.-w. Jung, S.-b. Kim, H.-j. Shim, J.-h. Kim, and H.-j. Yu, “Improved
RawNet with feature map scaling for text-independent speaker verification
using raw waveforms,” in Proc. INTERSPEECH 2020, 2020, pp. 1496–1500.

[73] P. Safari, M. India, and J. Hernando, “Self-attention encoding and pooling
for speaker recognition,” Proc. INTERSPEECH 2020, pp. 941–945, 2020.

[74] M. India, P. Safari, and J. Hernando, “Self multi-head attention for speaker
recognition,” Proc. INTERSPEECH 2019, pp. 4305–4309, 2019.

[75] Y. Li, F. Gao, Z. Ou, and J. Sun, “Angular softmax loss for end-to-end
speaker verification,” in 2018 11th International Symposium on Chinese Spo-
ken Language Processing (ISCSLP), 2018, pp. 190–194.

[76] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016, pp.
630–645.

[77] T. Chen, A. Kumar, P. Nagarsheth, G. Sivaraman, and E. Khoury, “Gener-
alization of audio deepfake detection,” in Proc. The Speaker and Language
Recognition Workshop (Odyssey 2020), 2020, pp. 132–137.

[78] J.-w. Jung, H.-S. Heo, H. Tak, H.-j. Shim, J. S. Chung, B.-J. Lee, H.-J.
Yu, and N. Evans, “AASIST: Audio anti-spoofing using integrated spectro-
temporal graph attention networks,” in Proc. ICASSP 2022, 2022, pp. 6367–
6371.

[79] H. Tak, M. Todisco, X. Wang, J.-w. Jung, J. Yamagishi, and N. Evans, “Au-
tomatic speaker verification spoofing and deepfake detection using wav2vec
2.0 and data augmentation,” in Proc. The Speaker and Language Recognition
Workshop (Odyssey 2022), 2022, pp. 112–119.

113



BIBLIOGRAPHY

[80] X. Wang and J. Yamagishi, “Investigating self-supervised front ends for
speech spoofing countermeasures,” in Proc. The Speaker and Language
Recognition Workshop (Odyssey 2022), 2022, pp. 100–106.

[81] Y. Ma, Z. Ren, and S. Xu, “RW-Resnet: A novel speech anti-spoofing model
using raw waveform,” in Proc. INTERSPEECH 2021, 2021, pp. 4144–4148.

[82] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through aug-
menting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127,
2002.

[83] G. Valenti, H. Delgado, M. Todisco, N. W. Evans, and L. Pilati, “An end-to-
end spoofing countermeasure for automatic speaker verification using evolv-
ing recurrent neural networks,” in Proc. The Speaker and Language Recog-
nition Workshop (Odyssey 2018), 2018, pp. 288–295.

[84] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-
ing,” International Conference on Learning Representations, 2017.

[85] T. Elsken, J. H. Metzen, F. Hutter et al., “Neural architecture search: A
survey.” Machine Learnign Research, vol. 20, no. 55, pp. 1–21, 2019.

[86] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in International Conference on Learning Representations, 2019.

[87] T. Mo, Y. Yu, M. Salameh, D. Niu, and S. Jui, “Neural architecture search
for keyword spotting,” in Proc. INTERSPEECH 2020, 2020, pp. 1982–1986.

[88] Yi-Chen Chen and Jui-Yang Hsu and Cheng-Kuang Lee and Hung-yi Lee,
“DARTS-ASR: Differentiable architecture search for multilingual speech
recognition and adaptation,” in Proc. INTERSPEECH 2020, 2020, pp. 1803–
1807.

[89] S. Ding, T. Chen, X. Gong, W. Zha, and Z. Wang, “AutoSpeech: Neural
architecture search for speaker recognition,” in Proc. INTERSPEECH 2020,
2020, pp. 916–920.

114



BIBLIOGRAPHY

[90] T. Kinnunen, H. Delgado, N. Evans, K. A. Lee, V. Vestman, A. Nautsch,
M. Todisco, X. Wang, M. Sahidullah, J. Yamagishi, and D. A. Reynolds,
“Tandem assessment of spoofing countermeasures and automatic speaker
verification: Fundamentals,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 28, pp. 2195–2210, 2020.

[91] X. Wang, J. Yamagishi, M. Todisco, H. Delgado, A. Nautsch, N. Evans,
M. Sahidullah, V. Vestman, T. Kinnunen, K. A. Lee et al., “ASVspoof 2019:
A large-scale public database of synthesized, converted and replayed speech,”
Computer Speech & Language, vol. 64, p. 101114, 2020.

[92] T. Kinnunen, K. A. Lee, H. Delgado, N. Evans, M. Todisco, M. Sahidullah,
J. Yamagishi, and D. Reynolds, “t-DCF: A detection cost function for the
tandem assessment of spoofing countermeasures and automatic speaker veri-
fication,” in Proc. The Speaker and Language Recognition Workshop (Odyssey
2018), 2018, pp. 312–319.

[93] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015,
Y. Bengio and Y. LeCun, Eds., 2015.

[94] Z. Yu, C. Zhao, Z. Wang, Y. Qin, Z. Su, X. Li, F. Zhou, and G. Zhao,
“Searching central difference convolutional networks for face anti-spoofing,”
in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 5294–5304.

[95] X. Li, N. Li, C. Weng, X. Liu, D. Su, D. Yu, and H. Meng, “Replay and syn-
thetic speech detection with Res2net architecture,” in Proc. ICASSP 2021,
2021, pp. 6354–6358.

[96] S. Liu, H. Wu, H.-y. Lee, and H. Meng, “Adversarial attacks on spoofing
countermeasures of automatic speaker verification,” in 2019 IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU), 2019, pp. 312–
319.

115



BIBLIOGRAPHY

[97] M. Alzantot, Z. Wang, and M. B. Srivastava, “Deep residual neural networks
for audio spoofing detection,” in Proc. INTERSPEECH 2019, 2019, pp.
1078–1082.

[98] H. Dinkel, N. Chen, Y. Qian, and K. Yu, “End-to-end spoofing detection
with raw waveform CLDNNS,” in Proc. ICASSP 2017, 2017, pp. 4860–4864.

[99] W. Ge, M. Panariello, J. Patino, M. Todisco, and N. Evans, “Partially-
connected differentiable architecture search for deepfake and spoofing detec-
tion,” in Proc. INTERSPEECH 2021, 2021, pp. 4319–4323.

[100] S. Cai, Y. Shu, G. Chen, B. C. Ooi, W. Wang, and M. Zhang, “Effective
and efficient dropout for deep convolutional neural networks,” arXiv preprint
arXiv:1904.03392, 2019.

[101] S. Hou and Z. Wang, “Weighted channel dropout for regularization of deep
convolutional neural network,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 8425–8432.

[102] H. Wang, Y. Zou, and W. Wang, “SpecAugment++: A hidden space
data augmentation method for acoustic scene classification,” Proc. INTER-
SPEECH 2021, pp. 551–555, 2021.

[103] J. Deng, W. Dong, R. Socher, L.-j. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2009, pp. 248–255.

[104] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” 2009.

[105] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 1294–1303.

[106] A. Yang, P. M. Esperança, and F. M. Carlucci, “NAS evaluation is frus-
tratingly hard,” in International Conference on Learning Representations,
2020.

116



BIBLIOGRAPHY

[107] X. Zhang, R. Zhao, J. Yan, M. Gao, Y. Qiao, X. Wang, and H. Li, “P2sgrad:
Refined gradients for optimizing deep face models,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 9906–9914.

[108] K. Tan, J. Chen, and D. Wang, “Gated residual networks with dilated con-
volutions for supervised speech separation,” in Proc. ICASSP 2018, 2018,
pp. 21–25.

[109] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” in 4th International Conference on Learning Representations, ICLR,
2016.

[110] H. Tak, J.-w. Jung, J. Patino, M. Kamble, M. Todisco, and N. Evans, “End-
to-end spectro-temporal graph attention networks for speaker verification
anti-spoofing and speech deepfake detection,” in Proc. ASVspoof 2021 Work-
shop, 2021, pp. 1–8.

[111] A. Nautsch, X. Wang, N. Evans, T. Kinnunen, V. Vestman, M. Todisco,
H. Delgado, M. Sahidullah, J. Yamagishi, and K. A. Lee, “ASVspoof 2019:
Spoofing countermeasures for the detection of synthesized, converted and
replayed speech,” IEEE Transactions on Biometrics, Behavior, and Identity
Science, vol. 3, no. 2, pp. 252–265, 2021.

[112] M. Christoph, “Interpretable machine learning: A guide for making black
box models explainable,” 2020.

[113] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proceedings of the 34th In-
ternational Conference on Machine Learning, vol. 70, 2017, pp. 3145–3153.

[114] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized fea-
ture attribution for tree ensembles,” arXiv preprint arXiv:1802.03888, 2018.

[115] S. Becker, M. Ackermann, S. Lapuschkin, K. Müller, and W. Samek, “In-
terpreting and explaining deep neural networks for classification of audio
signals,” CoRR, vol. abs/1807.03418, 2018.

117



BIBLIOGRAPHY

[116] C. Sun, S. Jia, S. Hou, and S. Lyu, “AI-synthesized voice detection using
neural vocoder artifacts,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 904–912.

[117] R. Ranjan, M. Vatsa, and R. Singh, “Statnet: Spectral and temporal fea-
tures based multi-task network for audio spoofing detection,” in 2022 IEEE
International Joint Conference on Biometrics (IJCB), 2022, pp. 1–9.

[118] N. Subramani and D. Rao, “Learning efficient representations for fake speech
detection,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 5859–5866.

[119] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for
raw audio,” in arXiv preprint arXiv:1609.03499, 2016.

[120] E. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based high-
quality speech synthesis system for real-time applications,” IEICE Trans. on
Information and Systems, vol. 99, no. 7, pp. 1877–1884, 2016.

[121] M. Schröder, M. Charfuelan, S. Pammi, and I. Steiner, “Open source voice
creation toolkit for the MARY TTS Platform,” in Proc. INTERPSEECH
2011, 2011, pp. 3253–3256.

[122] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilçi, M. Sahidullah, and
A. Sizov, “ASVspoof 2015: The first automatic speaker verification spoofing
and countermeasures challenge,” in Proc. INTERPSEECH 2015, 2015, pp.
2037–2041.

[123] D. Matrouf, J. Bonastre, and C. Fredouille, “Effect of speech transformation
on impostor acceptance,” in Proc. ICASSP 2006, 2006, pp. 933–936.

[124] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder with ad-
versarial learning for end-to-end text-to-speech,” in International Conference
on Machine Learning, 2021, pp. 5530–5540.

[125] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc.
International Conference on Learning Representations, 2014.

118



BIBLIOGRAPHY

[126] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,”
in Proc. ICML, 2015, pp. 1530–1538.

[127] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline
flows,” in Proc. NIPS, 2019, pp. 7511–7522.

[128] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. International Conference on Learning
Representations, 2018.

[129] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goya et al., “XLS-
R: Self-supervised cross-lingual speech representation learning at scale,” in
Proc. INTERSPEECH 2022, 2022, pp. 2278–2282.

[130] A. Mohamed, H.-y. Lee, L. Borgholt, J. D. Havtorn, J. Edin, C. Igel et al.,
“Self-supervised speech representation learning: A review,” IEEE Journal of
Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1179–1210, 2022.

[131] J. Yamagishi, C. Veaux, and K. MacDonald, “CSTR VCTK corpus: En-
glish multi-speaker corpus for CSTR voice cloning toolkit (version 0.92),”
University of Edinburgh. The Centre for Speech Technology Research, 2019.

[132] Z. Bai and X.-L. Zhang, “Speaker recognition based on deep learning: An
overview,” Neural Networks, vol. 140, pp. 65–99, 2021.

[133] Z. Chen, S. Chen, Y. Wu, Y. Qian, C. Wang, S. Liu, Y. Qian, and M. Zeng,
“Large-scale self-supervised speech representation learning for automatic
speaker verification,” in Proc. ICASSP 2022, 2022, pp. 6147–6151.

[134] J.-w. Jung, Y. J. Kim, H.-S. Heo, B.-J. Lee, Y. Kwon, and J. S. Chung,
“Pushing the limits of raw waveform speaker recognition,” in Proc. INTER-
SPEECH 2022, 2022, pp. 2228–2232.

[135] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis,” Advances in Neural Information
Processing Systems, vol. 33, pp. 17 022–17 033, 2020.

119



BIBLIOGRAPHY

[136] E. Casanova, J. Weber, C. D. Shulby, A. C. Junior, E. Gölge, and M. A.
Ponti, “Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice
conversion for everyone,” in International Conference on Machine Learning,
2022, pp. 2709–2720.

[137] B. Sisman, J. Yamagishi, S. King, and H. Li, “An overview of voice con-
version and its challenges: From statistical modeling to deep learning,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 29, pp. 132–157, 2020.

[138] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The speakers in the
wild (SITW) speaker recognition database,” in Proc. INTERSPEECH 2016,
2016, pp. 818–822.

[139] J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang, T. Wang, Z. Tian, Y. Bai,
C. Fan, S. Liang, S. Wang, S. Zhang, X. Yan, L. Xu, Z. Wen, and H. Li,
“ADD 2022: The first audio deep synthesis detection challenge,” in Proc.
ICASSP 2022, 2022, pp. 9216–9220.

[140] E. Khoury, T. Kinnunen, A. Sizov, Z. Wu, and S. Marcel, “Introducing
i-vectors for joint anti-spoofing and speaker verification,” in Proc. INTER-
SPEECH 2014, 2014, pp. 61–65.

[141] J.-w. Jung, H. Tak, H.-j. Shim, H.-S. Heo, B.-J. Lee, S.-W. Chung, H.-J. Yu,
N. Evans, and T. Kinnunen, “SASV 2022: The first spoofing-aware speaker
verification challenge,” in Proc. INTERSPEECH 2022, 2022, pp. 2893–2897.

[142] Y. Kwon, H.-S. Heo, B.-J. Lee, and J. S. Chung, “The ins and outs of speaker
recognition: Lessons from VoxSRC 2020,” in Proc. ICASSP 2021, 2021, pp.
5809–5813.

[143] F. Alegre, A. Amehraye, and N. Evans, “A one-class classification approach
to generalised speaker verification spoofing countermeasures using local bi-
nary patterns,” in 2013 IEEE Sixth International Conference on Biometrics:
Theory, Applications and Systems (BTAS), 2013, pp. 1–8.

120



BIBLIOGRAPHY

[144] W. H. Kang, J. Alam, and A. Fathan, “End-to-end framework for spoof-
aware speaker verification,” in Proc. INTERSPEECH 2022, 2022, pp. 4362–
4366.

[145] B. T. Ta, T. L. Nguyen, D. S. Dang et al., “A multi-task conformer for spoof-
ing aware speaker verification,” in Proceedings of the IEEE Ninth Interna-
tional Conference on Communications and Electronics, 2022, pp. 306–310.

[146] Z. Teng, Q. Fu, J. White, M. E. Powell, and D. C. Schmidt, “SA-SASV: An
end-to-end spoof-aggregated spoofing-aware speaker verification system,” in
Proc. INTERSPEECH 2022, 2022, pp. 4391–4395.

[147] Y. Zhang, Z. Li, W. Wang, and P. Zhang, “SASV based on pre-trained
ASV system and integrated scoring module,” in Proc. INTERSPEECH 2022,
2022, pp. 4376–4380.

[148] P. Zhang, P. Hu, and X. Zhang, “Norm-constrained score-level ensemble for
spoofing aware speaker verification,” in Proc. INTERSPEECH 2022, 2022,
pp. 4371–4375.

[149] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7132–7141.

[150] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pooling for
deep speaker embedding,” in Proc. INTERSPEECH 2018, 2018, pp. 2252–
2256.

[151] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning with
angular loss,” in Proceedings of the IEEE international conference on com-
puter vision, 2017, pp. 2593–2601.

[152] H.-j. Shim, H. Tak, X. Liu, H.-S. Heo, J.-w. Jung, J. S. Chung, S.-W. Chung
et al., “Baseline systems for the first spoofing-aware speaker verification chal-
lenge: score and embedding fusion,” in Proc. The Speaker and Language
Recognition Workshop (Odyssey 2022), 2022, pp. 330–337.

121



BIBLIOGRAPHY

[153] S. Ding, T. Chen, X. Gong, W. Zha, and Z. Wang, “AutoSpeech: Neural
architecture search for speaker recognition,” in Proc. INTERSPEECH 2020,
2020, pp. 916–920.

122


	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Automatic speaker verification
	Deepfake and spoofing detection
	Motivation and aim
	Contributions
	Thesis structure

	Publications
	Literature review
	Database characteristics and their impact
	Databases for ASV and CM: An overview
	Towards further improvement on robustness

	Feature extraction and importance
	Methodologies in feature representation for ASV and CM
	Understanding and evaluating feature importance

	Model architecture
	Evolution of model architectures for ASV and CM
	Automated model architecture design

	Performance metrics
	Equal error rate
	Tandem detection cost function

	Summary

	Neural architecture search for spoofing detection
	Introduction and motivation
	Automatic search of network architectures
	Differentiable architecture search
	Partial channel connections and edge normalisation

	Experimental setup
	Database, protocols and metrics
	Input feature
	Model training

	Results
	The searched architecture
	Train from scratch
	Comparison to competing systems

	Conclusion and discussion
	Chapter summary
	Discussion on the input feature


	End-to-end neural architecture search
	Motivation
	Raw differentiable architecture search
	Sinc filters and masking
	Search space and cell architectures
	Embedding extraction and loss function

	Experimental setup
	Results
	Raw PC-DARTS with different sinc scales
	Comparison to competing systems
	Complexity
	Worst case scenario

	Conclusion and discussion
	Chapter summary
	Discussion on system performance and behaviours


	Towards explainability in voice anti-spoofing
	Examples that call for explainability in anti-spoofing community
	Impact of input feature selection to system performance
	Impact of non-speech intervals to system performance

	SHapley Additive exPlanations (SHAP)
	SHAP visualisation examples
	Spectro-temporal spectrograms
	Raw waveform

	Classifier difference
	Analysis with PC-DARTS and Raw PC-DARTS
	Further analysis and discussion

	Attack difference
	Experimental setup
	Results and analysis
	Further analysis

	Conclusion, limitations and discussion

	Exploring variability in spoofing artefacts
	Spoofing attack and countermeasures
	VITS
	Countermeasures

	Experimental setup
	Databases
	VITS conditions
	Implementation and metrics

	Results and discussion
	Summary

	Improving generalisation by combining spoofing countermeasure with automatic speaker verification system
	Spoofing-aware speaker verification challenge
	The proposed optimisation framework
	ASV sub-system
	CM sub-system
	Backend classifier

	Experiment setup
	Database
	Protocols
	Metrics
	Implementation details

	Results
	Comparison of results for fixed and joint optimisation
	Analysis on speaker verification performance
	Results with external speakers
	Analysis on sub-system complementarity

	Summary

	Conclusions and future directions
	Key contributions
	Directions for future research


