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au-delà d’Anderson :
Rôle des corrélations, des symétries et de la topologie

Luis Alberto Razo López
Institut de Physique de Nice

Presentée en vue de
l’obtention du grade de
docteur en Physique
d’Université Côte d’Azur
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LPMMC, Université Grenoble-Alpes

Patrizia Vignolo,

Professeure,

INPHYNI, Université Côte d’Azur
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Vincent Josse, Professeur, Institut d’Optique, Palaiseau

Directeurs
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Résumé

Au sens large, le terme de localisation ondulatoire fait référence à un phénomène
où les ondes sont spatialement confinées dans de petites régions de l’espace sans la
contrainte de barrières matérielles. Dans cette thèse, nous étudions (analytiquement,
numériquement et expérimentalement) différents mécanismes physiques collectifs pour
localiser spatialement, et donc pour contrôler les ondes électromagnétiques. En
particulier, nous nous concentrons sur le rôle des potentiels non corrélés et corrélés,
ainsi que sur des effets topologiques pour réaliser le confinement des ondes. Les études
analytiques et numériques sont réalisées dans le cadre d’une approche récente de la
modélisation de la localisation d’Anderson appelée théorie du paysage de
localisation. D’autre part, des expériences sont réalisées à l’aide d’une plate-forme
micro-ondes composée de petits cylindres diélectriques placés à l’intérieur d’une cavité
constituée de deux plaques métalliques. La cavité met en œuvre un système d’ondes
propagatives, où nous pouvons contrôler efficacement la permittivité locale au moyen
des cylindres agissant comme des diffuseurs, ou comme un système de de liaison
forte analogique, où, dans ce cas, les cylindres diélectriques jouent le rôle de résonateurs.

Dans un premier temps, nous étendons le champ d’application de l’approche du
paysage de localisation à une large classe de systèmes de liaison forte unidimensionnels et
bidimensionnels en présence d’un désordre non corrélé, où des fonctions propres localisées
apparaissent en bord de bande. Nous démontrons comment la théorie du paysage de
localisation est capable de prédire avec précision non seulement les emplacements, mais
aussi les énergies des fonctions propres localisées dans les régimes de basse et de haute
énergie. Ensuite, en utilisant notre cavité expérimentale comme système de propagation,
nous réalisons des expériences de transport de micro-ondes dans des réseaux planaires
bidimensionnels. Les expériences sont réalisées sur un réseau désordonné et sur une
spirale de Vogel apériodique à partir de laquelle nous caractérisons les structures
modales électromagnétiques dans l’espace réel. Nos résultats révèlent que les systèmes
apériodiques possèdent une grande variété de modes à longue durée de vie – avec des
décroissances spatiales gaussiennes, exponentielles et en loi de puissance – qui sont
capables de survivre même dans un environnement tridimensionnel. Ceci est confirmé
par différentes quantités de transport telles que la densité d’états, le temps de
décroissance caractéristique et la conductance de Thouless qui sont également accessibles
expérimentalement. À l’inverse, nous montrons que les états propres dans les milieux
désordonnés traditionnels sont toujours limités à des décroissances radiales exponentielles
avec d’importantes fuites dès que les systèmes ne sont plus bidimensionnels. Enfin, nous
utilisons la configuration expérimentale de liaison forte pour étudier la propagation des
états hélicöıdaux topologiques. En particulier, nous analysons expérimentalement un
ensemble de structures en nid d’abeille construites à l’aide d’un réseau triangulaire avec
une cellule unitaire hexagonale, qui sont caractérisées par l’invariant topologique Z2. En
accédant à la structure modale dans l’espace réel et à la densité d’états, nos résultats
révèlent la possibilité d’ouvrir une bande interdite topologique, peuplée d’états de bord
localisés en bordure de la structure. Nous démontrons la nature unidirectionelle de la
propagation de ces états de bord hélicöıdaux contre-propagatifs.

Dans l’ensemble, nos résultats démontrent qu’il est possible de modéliser, de
contrôler et de localiser les ondes électromagnétiques non seulement du point de vue
d’Anderson, mais aussi au-delà. Grâce aux différents jalons que nous avons posés, nous
ouvrons une voie vers l’hypothétique localisation d’Anderson des ondes
électromagnétiques tridimensionnelles.

Mots clés : localisation ondulatoire, effets collectifs, ondes électromagnétiques, corrélations, effets

topologiques, localisation d’Anderson, paysage de localisation, micro-ondes, ondes propagatives,

liaison forte, systèmes désordonnés et apériodiques, spirale de Vogel, états hélicöıdaux, états de

bord.
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Abstract

In a broad sense, the term wave localization refers to a phenomenon where waves
are spatially confined in small regions of the space without any bounding material
barriers. In this Thesis, we investigate (analytically, numerically and experimentally)
different physical collective mechanisms to spatially localize, and therefore, to control
electromagnetic waves. Specifically, we focus on the role of uncorrelated and
correlated potentials, as well as of topological effects to achieve wave confinement.
Analytical and numerical studies are accomplished in the framework of a recent
approach in the modeling of Anderson localization called localization landscape
theory. On the other hand, experiments are performed using a microwave platform
composed by small dielectric cylinders placed inside a cavity made of two metallic plates.
The cavity implements a propagative wave system, where we can efficiently control
the local permittivity by means of the cylinders acting as scatterers, or as an analogic
tight-binding system, where, in this case, the dielectric cylinders play the role of
resonators.

First, we extend the scope of the localization landscape approach to a wide class of
one and two dimensional tight-binding systems in the presence of uncorrelated disorder,
where localized eigenfunctions appear in both band-edges. We demonstrate how the
landscape theory is able to predict accurately not only the locations, but also the
energies of localized eigenfunctions in the low- and high-energy regimes. Later, by using
our experimental cavity as a propagative system, we perform microwave transport
experiments in two dimensional planar arrays. Experiments are carried out on a
disordered lattice and on an aperiodic Vogel spiral from where we characterize the
electromagnetic modal structures in real space. Our results reveal that aperiodic systems
can carry a rich variety of long-lived modes—with Gaussian, exponential, and power law
spatial decays—which are able to survive even in a three-dimensional environment. This
is supported by different transport quantities such as the density of states, the
characteristic decay time, and the Thouless conductance that are also experimentally
accessible. On the contrary, we show that the eigenstates in traditional disordered media
are always limited to exponential radial decays with leaking features beyond
two-dimensions. Finally, we use the experimental tight-binding configuration to
investigate the propagation of topological helical states. Particularly, we
experimentally analyze a set of honeycomb-like structures built using a triangular lattice
with a hexagonal unit cell, which are characterized by the Z2 topological invariant. By
recovering the modal structure in real space and the density of states, our results reveal
the possibility to open a topological gap, dwelt by edge states that live in the border of
the structure. We demonstrate the unidirectional counterpropagative features of such
helical edge states.

Taken together, our results demonstrate that it is possible to model, control and localize
electromagnetic waves not only within, but beyond Anderson’s conception. Thanks to the
crossroads we have taken, we have mapped out an itinerary that brings us closer to the
main avenue leading perhaps to Anderson localization of three dimensional electromagnetic
waves.

Keywords: wave localization, collective phenomena, electromagnetic waves, correlations,

topological effects, Anderson localization, localization landscape, microwaves, propagative waves,

tight-binding, disordered and aperiodic systems, Vogel spiral, helical states, edge states.
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Introduction

The definition of an interesting problem

is that it cannot be solved by Random Matrix Theory.

Carlo Beenakker (Les Houches 2023)

Human beings can only perceive the outside world and understand nature through
their senses. Sight, hearing and touch are capable of perceiving undulatory phenomena
such as light, sound and vibration, respectively. When we observe the stars, hear a distant
sound, or even if we have had the bad experience of feeling an earthquake, it is easy to
assign to waves a propensity to spread out in space. However, this is not the whole picture.

The concept of localization was born far from the framework of wave systems, but
emerges from the desire to understand metal-insulator transitions, where disorder in
metallic materials halts the electronic conduction [1]. Nevertheless, since Anderson [2]
proposed in 1985 that localization was a general wave phenomenon, and not inherent to
the quantum nature of electrons, the physics community have made a huge effort to
extend this concept to various wave systems. For instance, wave localization has been
successfully measured for elastic waves [3–5], ultrasound [6], or optical fibers [7, 8]. But,
what are we meaning by “wave localization”? As mentioned by Van Tiggelen [9], the
exact definition seems not to be unique, so much so that he even preferred to define what
localization is not. We can, however, attempt to delimit the concept. In the broadest
sense, wave localization is a phenomenon characterized by the confinement of waves to
small regions of space not bounded by any material barriers. Following this “definition”,
trapping a wave by simply surrounding it with a bunch of mirrors is not localization. We
can add an ingredient, which plays an important role in this thesis, namely that wave
localization is a consequence of the complex collective behavior of the whole system and
not of the individual effect of its elements. In that way, a state in the gap of a
semiconductor which have been created by local defects is not an example of what we
call localization.

The Anderson localization for classical waves in uncorrelated random systems is
generated by the constructive and destructive interferences, and it may happen for all
kinds of waves [10]. Particularly, the possibility to confine electromagnetic waves in
disordered media was early suggested by John [11], and it has been demonstrated in
several 1D and 2D scattering experiments [7, 8, 12–16]. On the contrary, finding a
convincing evidence for Anderson localization in the case of 3D electromagnetic systems
has been a constant challenge for the community and the source of many controversies.
Starting by the early claims by Wiersma et al. [17], and later by Störzer et al. [18] and
Sperling et al. [19], all experimental works claiming the existence of 3D Anderson
localization of light have been refuted [20, 21]. Why has the search for this phenomenon
failed so far? As explained by Skipetrov and Page [10], one of the main reasons can be
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the limits imposed by the nature itself, where the “relatively low” refractive indices of
dielectric materials accessible in the experiments do not allow a sufficiently strong
disorder. On the other hand, several theoretical works have also pointed out the role of
near-field coupling between the scattering centers to open new transport channels, whose
contribution become important at high densities [22–24]. Nevertheless, Yamilov et al.
[25] have very recently reported numerical evidence of a localization transition in a 3D
system using metallic spheres as scattering centers.

Undoubtedly, the question about the existence of Anderson localization of 3D
electromagnetic waves is still an open problem. However, the unsuccessful search for
light localization in the “Anderson way” has paved the way for the engineering of
materials that go beyond the totally random scenario. In this sense, multiple authors
have pointed out the role of partial order and correlated media to achieve localization of
electromagnetic waves. The aim of this thesis is not to directly address the problem of
Anderson localization of light in a 3D system, which has been shown to be still far from
being fully understood, but to study analytically, numerically, and experimentally
different physical and geometrical mechanisms that can lead to the confinement of
electromagnetic waves, allowing to controlling them.

The first chapter of this thesis is intended as an introductory scan of the various
concepts, models and theories that will be studied in greater detail throughout the
manuscript. Particularly, we start by exploring the main concept of Anderson
localization, as well as the theories to characterize it. Subsequently, we review the impact
of correlated media to achieve wave confinement, and their ability to control wave
transport. Finally, we establish the foundations and concepts of non-trivial topological
systems and highlight the unconventional nature of the edge modes they possess.

The second chapter is devoted to present the experimental microwave platform and
the different data analysis procedures that will be used in the subsequent chapters. We
detail the different components of the setup, and specifically the building blocks of our
experimental samples. Later, we show how several meaningful physical quantities such as
the density of states, or the spatial shape of the eigenmodes can be extracted from the
acquired data.

The third chapter is dedicated to analytically and numerically explore a recent
powerful approach in the understanding of Anderson localization, namely the localization
landscape [26]. We extent the localization landscape formalism to a wide class of 1D and
2D discrete materials in the presence of uncorrelated disorder. The different features of
the approach are characterized, demonstrating the robustness of the proposed method.
Additionally, we provide a theoretical analysis of the localization landscape and its
possible applications to the Maxwell’s equations and their corresponding scalar
(polarized) forms. Part of the content of this Chapter forms the main body of Ref. [27].

In the fourth chapter, we report electromagnetic wave scattering experiments in a
correlated disordered system and in an aperiodic lattice (Vogel spirals). For both systems,
the localization phenomena is characterized by means of the eigenmodes features, showing
how the specific structure of highly correlated media (Vogel spiral) can lead to localized
modes that can survive even in a 3D space, in contrast to disordered lattices, whose
localization features disappear in a 3D environment. The last part of the chapter is
dedicated to illustrate the robustness of this new localization phenomenon with respect
to the system size and the alteration of the lattice. The main results presented in this
chapter have been published in Refs. [28] and [29].

Finally, in the fifth chapter we investigate the propagation of topological helical
states and their impact on wave transport. Specifically, we experimentally analyze a set
of honeycomb-like lattices built using triangular arrays with a hexagonal unit cell. By
recovering the modal structure in real space and the density of states, our results reveal
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the possibility to open a topological gap, dwelt by eigenstates confined in the edge of the
structure. Finally, we demonstrate the unidirectional counterpropagative features of the
helical modes that propagate around the boundary of the topological nontrivial material.
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Chapter 1

This Chapter is dedicated to introduce the fundamental ideas, models, and concepts—
about localization of electromagnetic waves—that will be used to further discussions along
this thesis. Specifically, the Chapter is divided into three sections, each of which present
a different physical mechanism to localize waves. The chapter is organized as follows: In
Section 1.1, we unveil the impact of uncorrelated random disorder to halt wave transport.
We start by introducing the main concepts of Anderson localization as well as of the
different useful quantities and theories to distinguish it. We pay spatial attention to
the case of localization of 3D light, for which so far there is no unequivocal proof of
its existence. Later, we present a new deterministic approach namely the localization
landscape theory. Section 1.2 is devoted to the study of localization via correlation in the
potential. First, we provide an overview to classify distinct structured correlated media
that are known to facilitate localization and at the same time admit different transport
regimes. In the following, we reviewed the different studies performed using stealthy
hyperuniform random systems, to finally introduce a specific type of aperiodic structure
known as Vogel spirals. Finally, Section 1.3 meets the different important concepts about
wave transport in nontrivial topological systems. Specifically, we focus in the emergence
and impact of edge-states, a signature of the band structure of the dispersion relation in
finite-size systems.

1.1 Localization via disorder

Before the advent of quantum mechanics, the conductivity σ in metallic materials
was understood as the scattering of mobile electrons, interpreted as particles, by the
immobile positive ions [30]. Although quantitatively relevant, the scattering lengths
predicted by classical the Drude’s theory differed strongly from the actual inter-atomic
distances measured in experiments [31]. The emergence of quantum mechanics allowed
then to understand that electrons are actually diffracted by the ions of the crystalline
lattice and are just scattered by the impurities of the material, establishing a
relationship between the conductivity and the imperfections of the system. Even though
it had been identified fairly early that a high level of impurities could impair conduction,
an article published in 1958 by Phillip W. Anderson has had a tremendous impact. In
this work, Anderson proved that the presence of uncorrelated disorder in the crystalline
lattice was able to completely halt electronic transport [1].

1.1.1 Introduction to Anderson localization

By using a tight-binding model with random on-site energies νi and random couplings
ti,j (see Appendix A), Anderson [1] demonstrated that beyond a certain disorder value, the
motion of the electrons completely stops: they are exponentially trapped in the system.
For instance, Fig. 1.1 shows a minimalist diagram of a 1D tight-binding system in the
x̂-axis, sketching an exponentially localized eigenstate ψ that can be represented as

|ψ| ∝ e−|x−x0|/ξ + fluctuations, (1.1)

where x0 is the “center” of the mode, and ξ is the so-called localization length, which
represents the decay length of the state inside the lattice.

Due to their spatial localization, the electrons cannot participate to the conduction,
leading to a disorder-driven phase transition from metal to insulator. As it typically occurs
in phase transitions, Anderson localization strongly depends on the dimensionality of the
system. For instance, a couple of years after Anderson’s first work was released, Mott
and Twose [32] proved that all states in 1D random systems are actually localized. This
result cannot be directly extended to higher dimension. In particular, in 3D it emerged
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Figure 1.1: Simplified diagram of a tight-binding lattice with random on-site energies νi and random
couplings ti,j ; a schematic representation of a localized eigenstate.

the “mobility edge” concept: a threshold that separates extended and localized modes,
and therefore the metallic and the insulating regimes [33].

1.1.1.1 The Thouless conductance

Thouless and coworkers proposed to describe the phase transition between the metallic
and the insulating regimes in a finite system by a single parameter g, now called the
Thouless conductance, and defined as [34–37]

g =
δω

∆ω
, (1.2)

where δω is the typical width of an eigenmode which is related to the sensitivity of the
mode to the boundary, and ∆ω is the mean level spacing between neighbouring modes in
the frequency domain. If the modes are localized and not too close to the boundary, their
spectral width is much smaller than the separation between them. Therefore, the value of
the Thouless conductance drops down below the unity, and conductivity is suppressed [see
Fig. 1.2(a)]. In contrast, non-localized modes reach and leak through the boundary, leading
to large values of δω. Thus, the eigenmodes spectrally overlap allowing electronic Ohmic
transport [see Fig. 1.2(b)]. Indeed, the Thouless conductance has become a key quantity
in localization theory, and nowadays it is used as a fundamental criterion for Anderson
localization in disordered systems, establishing that localization occurs for g < 1 [37, 38].

∆ω

δω

ω

(a)

∆ω

δω

ω

(b)

Figure 1.2: Simplified diagram of (a) isolated and (b) overlaping modes.

1.1.1.2 The Scaling localization theory

In 1979, the Thouless conductance was used to understand Anderson localization in
higher dimensions by considering an hypercube of size LD [39]. In this model, the
metallic regime follows a macroscopic Ohmic conductor behaviour which is described by
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Figure 1.3: Scaling function β(g) for D=1, 2, 3, showing the transition between different transport regimes.
The sign of β(g) indicates the direction of the flow: if β grows or decreases with respect to L. Image adapted
from Ref. [42].

g ∝ σLD−2. On the other hand, the exponential spatial localization in the isolating
regime (g ≪ 1) leads g to also fall off in an exponential way, that is g = gξe

−L/ξ, with gξ
a dimensionless ratio depending only on the localization length ξ [39, 40]. Using these
asymptotic forms of g, it was possible to develop a more sophisticated theory—the
scaling theory of localization—for finite systems at higher dimensions. A scaling function
was then defined as [39, 41],

β(g) =
d log g

d logL
, (1.3)

where it was found that limg→∞ β(g) = D − 2 in the metallic regime and limg→0 β(g) =
log g in the insulating regime. As depicted in Fig. 1.3, by taking into account these two
asymptotic limits and the assumption that there is a continuous transition between them,
the scaling function describes how the conductance scales with L, and settles the transition
between different transport regimes at different dimensions.

The scaling theory of localization confirmed that in 1D, even a small amount of disorder
is sufficient to localize a wavefunction, and established the same result for 2D lattices.
Nevertheless, small 2D systems can still look as conductors in the quasi-extended regime,
with all the states becoming completely localized when L increases. Opposite to those
cases, in 3D there is a phase transition between a conducting phase (extended states)
and an insulating phase (localized states) at a critical disorder, where the corresponding
mobility edge has been completely characterized using the tight-binding formalism [43].

Anderson localization, a concept that originated in electronic transport, is based on
the properties of matter waves. Since the emergence of physics of ultracold atoms gases,
the manipulation of the latter are not restricted to the realm of condensed matter. Thus,
localization has been observed with matter waves propagating in 1D or 3D disordered
light potentials—laser speckles playing the role of impurities [44–48]. These observations
have demonstrated that the central mechanism in the Anderson localization phenomenon
is provided by the interference of matter waves multiply scattered by disorder. It can
thus be naturally extended to all types of waves propagating in a disordered medium.
For instance, inhomogeneous aluminum plates were used to give a classical picture of
Anderson localization in elastic systems [3]. Later, localization in 3D aluminium beads
clusters was reported using ultrasound waves [6]. And finally, Anderson localization has
been successfully measured using 1D aluminum structured rods [4, 5].
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1.1.2 Current debate on 3D light

Naturally, electromagnetic waves have been proposed several times as a good classical
candidate to study Anderson localization [2, 11]. Starting from the early theoretical
predictions [49, 50], localization of electromagnetic waves has been experimentally achieved
in 1D and 2D photonic lattices [12–14], optical fibers [7, 8], as well as in 2D microwave
cavities [15, 16] and even in quasi-2D biological media [51]. However, despite a significant
experimental effort, studies claiming to have observed Anderson localization of light in 3D
systems have all failed due to various experimental artifacts [21].

In 1997, Wiersma et al. [17] reported direct experimental evidence of Anderson
localization with infrared light in strongly scattering semiconductor powders. These
findings were firstly questioned by Scheffold et al. [52] two years later, and then finally
refuted by their main authors [20], under the argument that the observed effects were
not due to localization but the presence of absorption. Around the same time, Anderson
localization was explored even in presence of optical absorption in thick wires, ruling out
the possibility of 3D light localization in these samples [53].

New claimings about 3D electromagnetic localization were published in 2006 by Störzer
et al. [18] and later in 2013 by Sperling et al. [19], presenting measurement of transport
through bulk powders of TiO2, where experiments were designed to be insensitive to
absorption. However, such results were quickly questioned by Scheffold and Wiersma [54],
who argued that non-linear effects—mainly inelastic scattering in the sample—could be
easily confused with localization effects. Both works were finally refuted by Sperling et al.
[21], demonstrating that previous data can be explained by a fluorescence process.

In recent years, numerous theoretical and numerical studies have led to significant
progress towards a better understanding of Anderson localization of light. For instance,
Skipetrov and Sokolov [22] reported the absence of light localization in 3D random
ensembles of N immobile point dipoles [see inset in Fig. 1.4(a)]. The eigenvalues of the
system are computed using the Green’s matrix formalism [55] considering only the scalar
or the vector character of light. Later, the authors extract the Thouless conductance as a
function of the system size [Eq. (1.2)] and therefore the scaling function β(g) [Eq. (1.3)].
As depicted in Fig. 1.4, Skipetrov and Sokolov [22] demonstrated that in the scalar case,
it exists a change of sign of the scaling function β(g), confirming an Anderson transition
(see Fig. 1.3). However, no signature of Anderson localization has been observed in the
vector case, where β(g) never changes its sign.

Differently to 1D and 2D cases, 3D Anderson localization requires stronger disorder
and higher dense media to go through the mobility edge. Consequently, near-field

Figure 1.4: Scaling function β(g) as a function of the Thouless number g in the (a) scalar and (b) vector
models of light. Localization transition takes place for β(g) < 1. Different symbols are related with
different densities. Figure adapted from Ref. [22].
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coupling between the scatterers, which become important for high densities, seems to
play an important role to prevent localization [10, 23]. A couple of years ago, van
Tiggelen and Skipetrov [24] demonstrated that the interference between the longitudinal
and transversal modes of the electromagnetic field is actually at the origin of new
transport near-field channels. However, more recently Yamilov et al. [25] numerically
showed the existence of a three dimensional localization transition of vector
electromagnetic light using random packs of metallic spheres [see Fig. 1.5]. Remarkably,
the same work denotes the absence of localization when considering high refractive index
dielectrics. Localization of 3D electromagnetic waves have been achieved in dielectric
system by adding certain correlation to the disordered pattern [56, 57]. These last works
open a broad range of possibilities in the fundamental quest of Anderson localization of
3D light.

Figure 1.5: Scaling function β(g) as a function of the Thouless number g for the vector model of light
in 3D random metallic spheres arrangements. Localization transitions take place for β(g) < 1. Different
symbols are related with different densities. Blue and red lines represent the diffusive and localized scaling
behaviour g ∝ R and g ∝ exp(−L/ξ), respectively. Figure adapted from Ref. [25].

1.1.3 The localization landscape

Among the different tools developed to study and understand Anderson localization, a
new promising technique to investigate this phenomena (and many other wave effects) was
proposed almost one decade ago [26]. This method is called the Localization landscape and
is able to decode the information (such as to predict the position of the eigenfunctions and
their energies) of a Hamiltonian without solving the eigenvalue problem. Additionally, in
disordered systems, it allows the analysis sample by sample, avoiding a statistical approach.
In this section, we follow the first theoretical works on the topic to illustrate the main
properties of the localization landscape in continuous quantum systems.

1.1.3.1 The general definition

To present the localization landscape theory, a quantum particle of mass m in an
Hermitian random potential V is considered. Here, the continuous Schrödinger equation
for an eigenfunction ψ with eigenenergy E is written(

− ℏ2

2m
∆ + V

)
ψ = Eψ in Ω with ψ

∣∣∣∣
∂Ω

= 0, (1.4)

where Ω is the domain, and Dirichlet boundary conditions have been considered, without
loss of generality. For instance, Fig. 1.6(a) shows a random uniform potential between 0
and 1 for a one-dimensional quantum system of length L. The quantum modes
corresponding to this potential are obtained by diagonalising Eq. (1.4). Fig. 1.6(c)
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Figure 1.6: (a) Random potential V for a 1D system of length L = 1000 sites with Dirichlet boundary
conditions. The value of the potential remains constant in intervals of 10 sites. Each random value is
taken from a uniform random variable in the interval [0,1]. (b) Localization landscape u computed using
Eq. (1.9) corresponding to the potential shown in (a). Horizontal color lines indicate the values 1/E.
(c) First four eigenfunctions ψn of lowest energies. States are characterized by energies: E1 = 0.0563,
E2 = 0.0627, E3 = 0.0653, and E4 = 0.0693. Vertical colorful stripes indicate the localization subregions
where u > 1/E for each state.

depicts then the four eigenstates with lowest energies (with ℏ2/2m = 1). Despite that the
position of the states seems to be related with some of the minima of the potential V , no
straightforward relations can be found either for the modes nor their energies. Therefore,
we can briefly conclude that resolving the eigenvalue problem is an unavoidable
condition to obtain any information about the behaviour of the particle in the potential.

Since the Laplacian ∆ is an Hermitian operator, the hermiticity of L = −∆ + V
depends only on the hermiticity of the potential V . In this context, an eigenfunction ψ(r)
can be rewritten in terms of the resolvent G(r, r′) of L, namely the Green’s function

ψ(r) =

∫
Ω
ψ(r′)δ(r′ − r) dr′ =

∫
Ω
ψ(r′)Lr′G(r, r′) dr′ ,

=

∫
Ω
G(r, r′)Lr′ψ(r′) dr′ = E

∫
Ω
G(r, r′)ψ(r′) dr′ .

(1.5)

with r and r′ ∈ Ω. Then,

|ψ(r)| = |E|
∣∣∣∣∫

Ω
ψ(r′)G(r, r′) dr′

∣∣∣∣ ≤ |E|
∫
Ω

∣∣G(r, r′)
∣∣∣∣ψ(r′)

∣∣ dr′ ,
≤ |E| supΩ(|ψ|)

∫
Ω

∣∣G(r, r′)
∣∣dr′ , (1.6)

where supΩ(|ψ|) is the maximum of the function ψ in Ω. Furthermore, the localization
landscape can be formally defined as [26]

u(r) =

∫
Ω

∣∣G(r, r′)
∣∣ dr′ . (1.7)

11



Chapter 1

The choice of a real positive definite potential V leads to a positive definite L, and
consequently a real and non negative Green’s functions. Ergo, the application of L over u
produces

Lru(r) =

∫
Ω
LrG(r, r′) dr′ , (1.8)

Lu = 1. (1.9)

As observed, this simple and elegant definition of the landscape [Eq. (1.9)] follows a
differential equation given by the same operator L with the same boundary conditions of
the original problem, but now equal to the unity. The localization landscape, plotted in
Fig. 1.6(b) as the solution of Eq. (1.9) for the potential in Fig. 1.6(b), is a complex relief
composed by peaks and valleys. On the contrary to what we observed for the potential,
the position of the localized functions seem now to be related with the maxima of u.

Under the correct normalization of the eigenmodes [supΩ(ψ) = 1], the inequality (1.6)
is written

|ψ| ≤ Eu. (1.10)

As u is independent of the eigenvalue problem, the eigenfunction ψ with energy E is
constrained to be smaller than the landscape at its local minima. The normalization of
the eigenstates also implies an effective constrain only for uE < 1. That means that the
mode with energy E is restricted to live in the portion of the landscape where u > 1/E,
i.e. the regions in which the inverse of the respective eigenenergy is smaller than the
landscape. This natural condition defines the localization subregions of the domain Ω [26,
58, 59]. In Fig. 1.6(b), horizontal color lines are the values 1/En whose crossover with the
landscape determines the localization subregions, highlighted by vertical colorful stripes
in panels (b) and (c). It is clear that each eigenfunction dwells in the subregion regulated
by the inequality uE < 1. As E increases, the space available for each mode increases too,
explaining the delocalization of the states.

Undoubtedly, the localization landscape u is more appropriate to predict the position
of the eigenstates, that cannot be guessed from the original potential V . This fact
establishes the landscape as an useful tool that allows to save computation time without
apparently precision losses. For instance, the landscape formalism has been already used
to decode the pattern of hot spots of vibrations energy localization in proteins [60].
Lemut et al. [61] has extended the formalism to Dirac Fermions and non-Hermitian
Hamiltonians via the Ostroski’s comparison matrix [62, 63] and its definition in quantum
graphs was firstly proposed some years ago by Harrell and Maltsev [64]. The first
experimental demonstration of the LL theory was presented by Lefebvre et al. [65] with
mechanical waves. In this case, the Shrödinger equation is replaced by the
Kirchhoff-Love equation. By constructing the adapted L operator, Eq. (1.9) provides the
analytical expression of the elastodynamic localization landscape. Using a thin clamped
plate, the localization landscape is found to be proportional to the deformation of the
plate under an uniform load. Thus, the authors obtained a direct measurement of the
localization landscape, and compared it successfully to the theoretical prediction.

1.1.3.2 Localization landscape as a confining potential

Another interpretation of the localization landscape u can be found by considering the
auxiliary function ϕ = ψ/u into the Shrödinger equation (1.4) [58](

− ℏ2

2m
∆ + V

)
(ϕu) = Eϕu,(

−uℏ
2

2m
∆ϕ− 2ℏ2

2m
∇u · ∇ϕ− ϕℏ2

2m
∆u+ V ϕu

)
= Eϕu,

(1.11)
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where the third and fourth terms in the left-hand side are replaced by the definition (1.9).
Thus (

− ℏ2

2m
∆ϕ− 2ℏ2

2m

∇u
u

· ∇ϕ+
ϕ

u

)
= Eϕ, (1.12)

− ℏ2

2m

[
1

u2
∇ ·
(
u2∇ϕ

)]
+Wϕ = Eϕ, (1.13)

where W ≡ 1/u has the dimension of an energy. Eq. (1.13) is a differential Schrödinger-
type equation of the variable ϕ, and it is completely independent of the potential V .
Nevertheless, the new potential term W has emerged, and plays the role of an “effective
confining potential”.

As the localization landscape, W is independent of the eigenvalue problem and its
minima corresponds to the maxima of u. In other words, the localization subregions are
now determined by the valleys of W and its crests act as barriers for the eigenfunctions
of the original Hamiltonian. Thus, the localization subregions are now determined by the
inequality W < E. For instance, Fig. 1.7(a) shows a comparison between both original
and confining potentials, V and W . Note that W looks like a smoother version of V .
Additionally, it has been proven that both differential operators in Eqs. (1.4) and (1.13)
possess exactly the same spectrum [59, 66]. The horizontal brown line in Fig. 1.7(a) is
the energy value corresponding to the 15th excited mode which is logarithmically
depicted in Fig. 1.7(b). The linear drop of the state in logarithmic scale indicates the
well know exponential decay of Anderson localized modes. All localization subregions are
highlighted by vertical brown stripes in Fig. 1.7(b). Note that ψ15 drops exactly in the
forbidden subregions W > E15. The complete formalism of the localization landscape
together with the confining potential has been already extended to many-body systems
by Balasubramanian, Liao, and Galitski [67], and to real symmetric non-singular
M-matrices by Filoche, Mayboroda, and Tao [68].
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Figure 1.7: (a) Random potential V for a 1D system of length L = 1000 sites with Dirichlet boundary
conditions (black). Effective confining potential W (indigo). The value of V remains constant in intervals
of 10 sites and each random value is taken from a uniform random variable in the interval [0,1]. The
horizontal brown line indicates the value E15 = 0.1626. (b) 15th eigenfunction ψ15. The vertical colorful
stripes indicate the localization subregions where W < E15.
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1.1.3.3 Prediction of the eigenvalues

As already shown, the localization landscape delimits the localization subregions
allowing to extract the location of the eigemodes without solving the eigenvalue problem.
To show another advantage of this powerful tool, we assume that the eigenfunction ψ0 of
the operator L is well localized and associated to a small eigenvalue [59]. As a
consequence, ψ0 is supported in a small subdomain Ω0 where it is the fundamental
Dirichlet eigenstate. We consider that in this subdomain Ω0, the landscape can be
approximated as the product of the fundamental mode ψ0 and a constant c0. To prove
this last assumption, one can take Eq. (1.9) in the subdomain, and then expand the
constant 1 in terms of the eigenfuntions

Lu =
∑
n

cnψn. (1.14)

Later, only the first term is kept and all others are dropped off

Lu ≈ c0ψ0 =
c0Lψ0

E
,

u ≈ c0ψ0

E
.

(1.15)

By using the previous hypothesis together with the Rayleigh quotient [69], and the
definition (1.9), the eigenvalue of the function ψ is written

E =

∫
Ω ψ0Lψ0 dx∫

Ω ψ
2
0 dx

≈
∫
Ω0
ψ0Lψ0 dx∫
Ω0
ψ2
0 dx

,

≈
∫
Ω0
uLudx∫

Ω0
u2 dx

=

∫
Ω0
udx∫

Ω0
u2 dx

.

(1.16)

Finally, we assume now that u can be approximated by a quadratic bump-like function in
Ω0, that is

u ≈ umax

[
1 −

D∑(
xi
ai

)2
]

where Ω0 ≈
{
r ∈ Rn|

D∑(
xi
ai

)2

≤ 1

}
, (1.17)

for a given set of constants ai and D the dimension of the system. The eigenvalue is then
written

E ≈Wmin

∫
Ω0

[
1 −∑D

(
xi
ai

)2]
dr∫

Ω0

[
1 −∑D

(
xi
ai

)2]2
dr

, (1.18)

where the integrals can be computed by performing the change of variable xi/ai → x′i and
then integrated in polar coordinates. We obtain

E ≈Wmin

∫
1

0

(
1 − r2

)
rD−1 dr∫

1

0
(1 − 2r2 + r4) rD−1 dr

,

E ≈
(

1 +
D

4

)
Wmin,

(1.19)

which is completely independent of the values ai. Eq. (1.19) is numerically demonstrated
for 1D and 2D systems in Fig. 1.8, where the ratio E/Wmin as a function of the state
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number is shown. Random potentials made up of uniform numbers between 0 and 1
keep a constant value along linear intervals of 10 sites in 1D case, and in square areas of
5 × 5 sites in 2D. The corresponding lengths are (1D) L = 4000 sites and (2D) L × L =
100 × 100 sites. The proportional constants (1 + D/4) in Eq. (1.19) are numerically
extracted as ⟨E/Wmin⟩ ≈ 1.23 ± 0.04 and ⟨E/Wmin⟩ ≈ 1.51 ± 0.04 for a 1D and 2D
systems, respectively. These results are in agreement with previous numerical findings in
Ref. [59] and show another characteristic of the landscape method.

Recently, the localization landscape approach has been used to predict the
eigenfunction and eigenenergies of confined states in semiconductor structures [70].
Previous predictions were also experimentally demonstrated and used to characterize the
effect of compositional disorder in InGaN layers [71]. Finally, the method was
successfully implemented to model the optical emission, and the carrier transport of
LED heterostructures including the effects of disorder [72], or the light absorption in
disordered semiconductor alloys [73].
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Figure 1.8: Ratio between the first 20 eigenvalues of disordered systems and the minima of their confining
potential for a 1D (indigo) and 2D (gray) systems. Black dashed lines are the corresponding Eq. (1.19).

1.1.3.4 Positional limitations

As shown along this section, the landscape approach has proven to be an undisputed
method to extract important information without dealing with the eigenvalue equation.
The definition of the localization subregions together with the prediction of the energies
establish a direct connection between W and each eigenfunction ψ. Nevertheless, a one to
one correspondence between the rank of the eigenmodes and the minima of W is not always
fulfilled. For instance, Fig. 1.9(a) and (b) present the confining potential and the first four
states of a 2D disordered system, respectively. The minima of W and the eigenfunctions
have been ranked and labeled, showing an ordering imprecision in the 3rd and 4th states
even though their positions are correctly predicted. The break in the correspondence
occurs when two of more eigenenergies are nearly equal, and analogously if two of more
minima of W are almost the same.

Table 1.1 shows the actual values for both quantities, unveiling that the energies of
the third and four states of (a) and (b) are slightly similar. However, the values of Wmin

are well separated from each other in this particular case.
Another problematic situation occurs when one basin contains two different minima.

As illustrated in Figs. 1.9(c) and (d), the 1st and 3rd minima are contained by the same
potential well in this case. Therefore, the 3rd minimum does not lead to a separate mode.
The corresponding values of the energies and minima of W are included in Table 1.2. As we
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Figure 1.9: [(a), (c), and (e)] Effective confining potential W relative a the potential V (not shown). The
potential V is different in each case. Each random potential V remains constant in squared areas of 5× 5
sites in a 2D system of size L × L = 100 sites with Dirichlet boundary conditions. Random values are
taken from an uniform random variable in the interval [0,1]. Confining potentials are plotted considering
a maximum threshold W = E4. [(b), (d), (f) and (g)] First four eigenfunctions ψn with lowest energies
corresponding to the confining potentials at left.

Table 1.1: Values of the effective potential at its first four minima, and first four eigenvalues for the
eigenfunction shown in Figs. 1.9(a), and (b).

(a)

1 2 3 4

Wmin 0.1240 0.1473 0.1663 0.1790
E 0.1927 0.2266 0.2548 0.2610

Table 1.2: Values of the effective potential at its first four minima, and first four eigenvalues for the
eigenfunction shown in Figs. 1.9(c), and (d).

(c)

1 2 3 4

Wmin 0.1331 0.1374 0.1400 0.1412
E 0.1970 0.2004 0.2030 0.2289

can observe, both the 1st and 3rd minima are not just close in position, but also in value.
Additionally, the energies of the first three eigenfunctions are nearly equal, explaining the
switching in the ordering of the 2nd and 3rd states.
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The last situation appears when one wide potential well contains more that one
eigenfunction. As the energy of the state defines the localization subregions, the
probability to repopulate a given potential well increases for higher energies [26]. This
fact is exemplified in Fig. 1.9(e), (f) and (g), presenting again the confining potential and
the first four eigenmodes of a 2D disordered potential. Note that the 4th state is
depicted alone in panel (g) to avoid the overlap with the 1st mode. In this example, the
first three functions are well predicted by the minima of W , however the fourth one is
placed again in the first basin, which is wider than others (see Ref. [59] for further
details).

All these problems, together to the limitation imposed by total number of local minima
of W , limit the prediction accuracy to the low energy part of the spectrum. However, the
localization landscape has shown to be a tool able to obtain important information avoiding
the diagonalization of the Hamiltonian, having remarkably good result at low energy.
Because of that, the utility of all the landscape machinery has been broadly extended
to different wave phenomena in physics. For instance, this theory has been also used
to compute spectral function in cold atoms physics [74], and subsequently, to predict the
mobility edge of 3D tight-binding systems [75]. Nevertheless, an electromagnetic landscape
model is still missing. In Chapter 3, the localization landscape theory is directly applied
to the Maxwell’s equations with the aim to develop an electromagnetic landscape able to
answer the devilish questions about localization of 3D light. The second section of the
same Chapter 3 tackles the issue of the landscape for tight binding Hamiltonians for a wide
class of 1- and 2D materials, where localization occurs at both low- and high-energy [43].

1.2 Localization via correlation in the potential

Along the road to find Anderson localization of 3D electromagnetic waves, different
authors pointed out the importance of the spatial correlation of scatterers to prevent
light transport [10, 22, 56, 57, 76–80]. Besides localization, heterogeneous correlated
media have shown to be also characterized by distinct transport regimes such as diffusion
or transparency depending on the frequency [81]. For instance, in 1899 Lord Rayleigh
[82] explained that the blue color of the sky was given by the collective effect of the
electromagnetic diffusive scattering by the atmosphere particles. Later, the transparency
of the cornea for visible light [83–85], and the blue facial skin in male mandrills (Mandrillus
sphinx ) [86] were attributed to short-range correlation in the collagen fibers of the tissue
[see Figs 1.10(a) and (b), respectively].

Figure 1.10: (a) Electron micrograph of the collagen fibrils of the cornea. Adapted from Ref. [83]. (b)
Transmission electron micrographs of collagen arrays from structurally coloured Male mandrill facial skin.
Adapted from Ref. [86].

1.2.1 Structural properties of correlated media

A full understanding and control of light transport in photonic media is crucial for
the efficient design of optical structures. Controlling light transport in photonic materials
involves the ability not only to understand but also to engineer the electromagnetic modes
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that such systems can support. Given the rich structural variety that correlated disordered
media can display, electromagnetic transport is affected in different ways depending on
the specific correlations [87]. To describe then the correlation in random heterogeneous
structures, we start by assuming a system composed by N particles with spatial positions
ri (i = 1, · · · , N) in a volume V . Therefore, the configuration of each particles can be
statistically characterized by the normalized N -particle probability density function [88]

PN (r1, r2, . . . , rN )dr1dr2 · · · drN , (1.20)

which represents the probability of finding the center of particle i in the volume element
dri around ri. The exact form of PN (·) depends on the specific interaction between the
particles as well as their precise positions and shapes. Thus, for such huge ensembles of
indistinguishable spherical particles, it is useful to define the probability of finding any
subset of n particles in a volume element drn as

ρn(rn) =
N !

(N − n)!

∫
PN (r1, r2, . . . , rN )drn+1drn+2 · · · drN , (1.21)

which is also called the generic n-particle probability density function. Note that the
definition (1.21) is not normalized∫

ρn(rn)drn =
N !

(N − n)!
, (1.22)

therefore, considering n = 1 leads to
∫
ρ1(r)dr = N . In that way, assuming a statistically

homogeneous isotropic distribution, ρ1 corresponds to the total density ρ1 = ρ = N/V [89].
In this point, it is useful to show one interesting example. By considering the case of an

uncorrelated non-interacting overlapping set of particles [see Fig. 1.11(a)], the probability
function (1.20) is written as PN = 1/V N , and therefore, the probability (1.21) becomes [88]

ρn(rn) = ρn. (1.23)

In this way, we define the n-correlation function as a measure of the particle correlation
with respect to the completely random case [90]

gn(rn) =
ρn(rn)

ρn
. (1.24)

where gn(rn) = 1 for a disordered uncorrelated system [see e.g. Fig. 1.11(b) for g2].
It is important to define the pair correlation function

g2(r12) =
ρ2(r12)

ρ2
. (1.25)

that for an isotropic system depends only on the distance between the two particles
g2(r12) = g2(r), and is therefore called the radial distribution function. The pair
correlation function describes the conditional probability of finding one particle given the
presence of another particle at the origin. Using Eq. (1.25), one can also define the total
correlation function h(r) as

h(r) = g2(r) − 1, (1.26)

which has the particularity to converge to zero in the non correlated case h(r) → 0.
Another important quantity to understand correlations in wave physics is the structure

factor S(k), that describes how electromagnetic waves are scattered by the material as a
function of the incident wave-vector k [88]. It is defined as

S(k) = 1 + ρh̄(k), (1.27)
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Figure 1.11: (a) Portion of an infinite uncorrelated point pattern. (b) Angular-averaged pair correlation
function g2 for the array in (a). (c) Angular-averaged structure factor S for the array in (a). (d) Portion
of an infinite triangular lattice. (e) Angular-averaged pair correlation function g2 for the array in (d). (f)
Angular-averaged structure factor S for the array in (d). Adapted from Ref. [91].
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Figure 1.12: Lattice and reciprocal lattice for (a) a square and (b) a triangular arrays. Lattice vectors are
denoted as ai and the corresponding reciprocal lattice vectors as bi.

where h̄(k) is the Fourier transform of the total correlation function h(r). Notably, for a
completely random system, the structure factor is always equal to S(k) = 1 [see
Fig. 1.11(c)]. This can be contrasted with the case of perfect ordered system, where the
correlation function g2(r) is characterized by a series of Dirac peaks at r =

∑
uiai with

ui integer and ai a lattice vector [see Fig. 1.12]. Analogously the structure factor S(k)
shows Dirac peaks at k =

∑
vibi where vi is an integer and bi a reciprocal lattice

vector [92, 93] [see Fig. 1.11(d)-(f)].

1.2.1.1 Examples of disordered correlated structures

Among the variety of correlated point patterns, three particular examples are presented
in Fig. 1.13(a), (b) and (c)1. First, Fig. 1.13 (a) shows an array of impenetrable particles
of diameter a at a moderate density. This regime, is characterized by the absence of
long-range correlation (g2 → 1 for r → ∞). However, the impenetrability of the particles
introduce correlations at short distances [see Fig. 1.13(d)] that increase with the particle
density [90]. On the other hand, the structure factor goes from a flat behavior for low values
of k ∼ 0 to a sharp peak around k ∼ 2π which is followed by oscillations around S ∼ 1.
The short-range correlation in the system can be controlled by tuning the dimensionless
packing density ϕ, going from an uncorrelated array at ϕ→ 0 to a crystalline 2D triangular
lattice at ϕ → 0.72 [99]. This kind of correlated disordered patterns has been found in

1Other kind of correlated arrays such as polycrystalline structures [94–96], or disordered fractal
structures [97] are studied in Ref. [87]. The case of paracrystals is considered in Ref. [98].
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Figure 1.13: (a) Short-range correlated, (b) imperfect ordered, and (a) disordered hyperuniform point
patterns. [(d), (e), and (f)] Angular-averaged pair correlation function g2 for the array in [(a), (b), and
(c)]. [(g), (h), and (i)] Angular-averaged structure factor S for the array in [(a), (b), and (c)]. Adapted
from Ref. [87].

nature in bird feathers [100].
The second array presented in Fig. 1.13(b) is an imperfect ordered lattice. This array

is generated using a regular system as basis, and then displacing randomly every single
particle. In this case, the correlated function g2 is characterized by the broadening of the
Dirac peaks at r =

∑
uiai, which depend on the disordered amplitude [see

Fig. 1.13 (e)] [87, 92, 93]. Additionally, even for moderate values of the disorder,
long-range correlation survive. The corresponding structure factor is depicted in
Fig. 1.13(h), showing Dirac peak of vanishing width and decreasing amplitude. Such
peaks appear over a diffusive background with asymptotic values S → 1 for large k and
S → 0 for k → 0 [101].

Finally, Fig. 1.13(c) depicts an hyperuniform disordered lattice. Hyperuniform arrays
were firstly defined by Torquato and Stillinger [89] in 2003. The authors analyzed the
fluctuation in the number of particles σN =

〈
N2
〉
−⟨N⟩2 contained by an hypersphere Ω of

radius R. They compute σN in two different situations: a traditional uncorrelated system,
where σN ∝ RD, and a regular array, where σN ∝ RD−1. Hyperuniform point patterns
were then proposed as disordered point patterns whose particle fluctuation is slower than
for usual disordered systems σN ∝ RD−1 [see Fig. 1.14]. Similarly to the short-range
correlated array, hyperuniformity is characterized by the absence of long-range correlation
in the moderate density limit (g2 → 1 for r → ∞) [see Figs. 1.13(d) and (f)]. However,
both cases are well-distinguishable by the structure factor, that goes to zero for certain
values of the wave-number [S(0 < k < kmax) = 0]. The hyperuniform point patterns are
then defined by their structure factor [78, 102, 103]

lim
k→0

S(k) = 0. (1.28)

20



Physical mechanisms to localize electromagnetic waves

Figure 1.14: Simplified diagram of a circle Ω with radius R and centered in x0 for (a) an unicorrelated
disordered system, (b) a regular array, and (c) a hyperuniform point pattern. Adapted from Ref. [91].

A particular class of hyperuniform disordered systems is obtained by tuning the
structure factor [78, 99, 102, 103]

S(k) = 0, for k < kmax, (1.29)

leading frequency bands where the system remains transparent [104]. Given the
transparency band, these peculiar hyperuniform arrays are also called as stealthy
hyperuniform [102]. Then, it is possible to characterize stealthy hyperuniform point
patterns via kmax, that can be conveniently written in terms of a dimensionless
parameter χ, also known as the degree of stealthiness [78]. Analogously to the
short-range correlated systems with the packing density, the “randomness” of the
hyperuniform lattices can be control by χ, where χ → 0 corresponds to totally random
configuration [105] and χ→ 1 to the crystalline case [99].

1.2.2 Electromagnetic waves in correlated structures

In 2009, the features of correlated media were numerically challenged by Florescu,
Torquato, and Steinhardt [77], who demonstrated that photonic stealthy hyperuniform
lattices can be designed to have a frequency band-gap for all polarization and in all
directions. The opening of photonic bandgaps at certain frequencies in crystals are
related to the scattering of propagating, extended electromagnetic waves from Bragg
planes in periodic structures [93] that are not present in uncorrelated materials.
Additionally, Florescu, Torquato, and Steinhardt [77] also showed the presence of
Anderson localized modes in the band-edges.

The role of short-range and hyperuniform correlations in the formation of band-gaps
was numerically studied in detail using 2D finite-size arrays of dielectric cylinders with
periodic boundary conditions by Froufe-Pérez et al. [99] [see Figs. 1.15(a) and (c),
respectively]. The authors demonstrated that by tuning the packing density in a
short-range correlated point pattern (ϕ = 0.6) or the stealthiness parameter in a
hyperuniform system (χ = 0.5), it is possible to match the peaks and oscillations of the
pair correlation g2(r) and the structure factor S(k) [see Figs. 1.15(e) and (f),
respectively]. The existence of photonic band-gaps was analyzed by computing the
normalized density of states [see Figs. 1.15(g)]. Remarkably, both correlated lattices
present almost identical density of states, where the respective gap position and size
correspond to the first peak of S(k). Therefore, it is related to Bragg scattering at the
isotropic Brillouin zone [99].

Besides gaps and localization, stealthy hyperuniform systems have demonstrated to
be characterized by a richer transport diagram, including light diffusion and
transparency. The complete phase diagram for hyperuniform disordered lattices as a
function of the frequency ν and of the stealthiness parameter χ has been reported in
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Figure 1.15: (a) Short-range correlated and (c) hyperuniform disordered point patterns. [(b) and (d)]
Structure factor S corresponding to the array in [(a) and (c)]. (e) Angular-averaged pair correlation
function g2. (f) Angular-averaged structure factor S. (g) Normalized density of states. Black [red] lines
in (e), (f), and (g) correspond to the short-range correlated [hyperuniform] point pattern. Adapted from
Ref. [99].

Figure 1.16: (a) Schematized transport phase diagram for 2D stealthy hyperuniform systems. (b)
Normalized density of states and (b) Thouless conductance as a function of the stealthy parameter χ
and the frequency ν. Adapted from Ref. [78].

Ref. [78]. Using a 2D dielectric hyperuniform array with periodic boundary conditions,
Froufe-Pérez et al. [78] computed the normalized density of states and the Thouless
conductance g [see Fig. 1.16]. Numerical results show the opening of a bandgap while
increasing the stealthiness parameter (χ > 0.35).

These numerical predictions have been experimentally demonstrated with microwaves
by Aubry et al. [81]. Experiments were performed by placing different stealthy
hyperuniform lattices consisting of dielectric cylinders into a cavity made of two metallic
plates [see Fig. 1.17(a)]. Specifically, four different values of χ and a crystalline
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triangular array were measured. Each lattice was mapped in frequency and space,
allowing a full characterization of the system. To mimic a 2D situation, both conducting
plates were put in contact with the faces of the dielectric cylinders. Additionally, to
simulate open boundary conditions, the lattice was surrounded by absorbing foams [see
Fig. 1.17(a)]. From the data acquisition, the authors were able to extract the number of
states, and the Thouless conductance as a function of the frequency, as well as the
spatial structure of the eigenstates. Experimental results demonstrate the existence of a
photonic bandgap even for χ = 0.15 [see Fig. 1.17(b)]. In addition, band edges are
characterized by a sharp drop of the Thouless conductance, revealing the presence of
localized states [see Fig. 1.17(c)]. This is confirmed by the eigenstates which denote the
existance of multiple transport regimes for the same value of χ [see Fig. 1.17(d)].
Hyperuniform disordered systems have been also studied using optical nanocavities [106,
107].

Figure 1.17: (a) Experimental 2D microwave setup. (b) Number of states carried by the system and (c)
Thouless conductance as function of the frequency and the stealthiness. (d) Eigenmode spatial structure
for χ = 0.3. Adapted from Ref. [81].

1.2.3 Aperiodic materials

As an alternative to periodic or disordered photonic structures, aperiodic materials
designed by means of deterministic mathematical rules have emerged as a novel material
platform for photonic devices [108–111]. These structures exhibit unique optical
properties that exist neither in periodic nor in disordered photonic media, such as fractal
transmission spectra [112–114] and subdiffusive transport [114]. Additionally, they have
also demonstrated to support spatial localization [115–118]. From a technological point
of view, these unusual optical properties have fostered the development of functionalities
that cannot be found in conventional periodic or disordered structures, including
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applications in lasing [119], optical sensing [120–122], photo-detection [123], and optical
imaging [124].

Among various classes of deterministic aperiodic photonic media2, Vogel spiral arrays
single out for their versatility and the possibility to tailor their structural order [126–128]
and light-matter interactions [129, 130]. Before becoming relevant in physics, the
structure of Vogel spirals was identified to characterize the growing pattern of several
plants [see e.g. Fig. 1.18], becoming an object of study for botanists, biologists and
mathematicians [131–135]. In 1837, the brothers Louis and Auguste Bravais [131] showed
that the geometrical problem of phyllotaxis—related to spatial arrangement of leaves,
seeds, florets etc. on growing plants—has a correspondence with the Fibonacci
sequences, where the number of spiral arms turning in the clockwise and anti-clockwise
senses were always given by two subsequent numbers of a Fibonacci series [136].
However, it was until 1978 when a full model to generate the spiral pattern has been
proposed by Vogel [137].

Figure 1.18: The double spiral pattern of phyllotaxis in (a) a pine cone, (b) the florets of a Romanesco
cauliflower and, (c) a sunflower head. Adapted from Ref. [136].

1.2.3.1 Wave transport in Vogel spirals

Vogel spirals are usually defined in polar coordinates (r, θ) as [137]

ri = a0
√
i,

θi = iα,
(1.30)

with i = 1, 2, . . . , a0 a positive constant called the scaling factor and α an irrational
number known as the divergence angle that sets the aperture between two consecutive
points [108]. The divergence angle (in radians) is usually defined as α = 2π/ξ2 [138, 139],
where the value of ξ allows to control the structure and symmetries of the spiral [140].
Particularly, it has been observed that the sunflower head is well represented by choosing
ξ equals the golden number: ξ = (1 +

√
5)/2, which is approximated to the ratio between

any consecutive numbers of any Fibonacci series [136]. As a result, α/(2π) is irrational
α ≈ 2.4 and the Vogel spiral is characterized by the absence of rotational and translational
symmetries [141]. This peculiar structure is also know as Golden-Angle spiral or “sunflower
spiral.

2Other aperiodic structures such as Fibonacci chains [113, 115, 116], Halton-Sobol [114], Thue-
Morse [117] or Rudin-Shapiro sequences [118] are presented in Ref. [125]
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Figure 1.19: (a) Golden-angle spiral array with N = 1000. (b) Structure factor S corresponding to the
array in (a). (c) Map of distances between neighbouring holes of the lattice shown in (a). (d) Local density
of states calculated in the center of the spiral as a function of the normalized frequency d0/λ. (e) Spatial
distribution of the eigenmodes in the band edge. Adapted from Ref. [138].

The impact of the specific spatial structure of Vogel spirals in wave localization was
numerically analyzed using 2D golden-angle spiral arrays of air holes hosted in dielectric
media by Liew et al. [138]. Figs. 1.19(a) and (b) present a golden spiral characterized
by N = 1000 holes and its corresponding structure factor S(k). Similar to the structure
factors obtained for the short-range and the stealthy hyperuniform disordered systems
[see Figs. 1.15(b) and (d)], S(k) is composed of concentric rings that correspond to the
dominant frequencies of the structure. The map of the distances between neighbouring
sites is plotted in Fig. 1.19(c), where each pair of holes is connected by a color segment
and d0 is the average distance. Fig. 1.19(c) reveals a structure of rings with alternated
statistically homogeneous distances.

To investigate the existence of the bandgaps, Liew et al. [138] computed the Local
density of states at the center of the spiral. As depicted in Fig. 1.19(d), a reduction in
the number of states is observed for d0/λ ≈ 0.31. Around to the bandgap, several peaks
revealed the existence of band edge modes that are plotted in Fig. 1.19(e). Remarkably,
different eigenstate are confined within the rings previously identified in Fig. 1.19(c).
According to Liew et al. [138], the local standing wave pattern of the modes indicate
light confinement perpendicular to the arms of the spiral via Bragg scattering in the
holes. On the contrary to extended modes in periodic lattices, the inhomogeneous spacing
distribution between neighbouring holes leads to light localization in Vogel spiral.

In contrast to theoretical predictions in uncorrelated random media by Skipetrov and
Sokolov [22], in 2019, Sgrignuoli et al. [141] numerically showed the absence of 3D
electromagnetic transport using Vogel spiral planar arrays made of punctual dipoles
embedded in a full 3D space. Using the Green’s matrix formalism [55] to compute the
eigenstates of the system [see Fig. 1.20(b)] and the Thouless conductance g as functions
of the frequency ω [see Fig. 1.20(a)], it was demonstrated that localized modes
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Figure 1.20: (a) Thouless conductance in a planar golden-angle spiral embedded in a 3D space. (b) Spatial
distribution of the eigenmodes associated to lowest Thouless values in a golden-angle spiral. Adapted from
Ref. [141].

Figure 1.21: Spatial distribution and angular-averaged radial decay of characteristic eigenmodes with [(a)
and (b)] exponential, [(c) and (d)] Gaussian, and [(e) and (f)] power-law decays found in a golden-angle
spiral. Adapted from Ref. [142].

previously identified by Liew et al. [138] are associated to small g-values when
considering the full vector nature of the electromagnetic field. Remarkably, the field is
not only confined in the plane, but its leakage in the out-of-plane direction is equivalent
to the one in the spiral boundaries.

More recently, it has been theoretically demonstrated that aperiodic Vogel spiral
arrays display a rich spectrum of long-lived and spatially localized eigenmodes with
distinctive spatial decay forms. By solving the Green’s matrix, Prado et al. [142]
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numerically reconstructed the spatial distribution of the eigenstates. The radial decay of
each mode is computed by performing an azimuthal average operation [see Fig. 1.21]. On
the contrary to traditional disordered systems, where all eigemodes are always expected
to decay exponentially, Vogel spirals present three distinct localized decay natures
namely (a) exponential, (c) Gaussian, and (e) power law. Additionally, it was shown
that Gaussian are characterized by the smallest Thouless conductance values.

In Chapter 4, we experimentally demonstrate that these characteristic types of
electromagnetic modes coexist in Vogel spirals, and that this unique electromagnetic
modal structure leads to unusual wave transport phenomena. By conducting microwave
transport experiments in Vogel spiral arrays of cylinders with high dielectric
permittivity, we unveil the consequences of this peculiar modal structure on wave
transport and localization. Particularly, we show that the presence of long-lived
quasimodes with exponential, power law and Gaussian spatial decays is at the origin of a
very slow decay of the electromagnetic energy that propagates throughout the arrays.
Furthermore, we experimentally prove that these localized modes satisfy the Thouless
criterion for Anderson localization in random systems, despite the fact that the
propagation medium is not disordered, and that the modes are not necessarily
exponentially localized in space. Moreover, we demonstrate the robustness of these
long-lived modes against the change in the dimensionality of the cavity, beyond the 2D
limit, preserving their spatial profiles and quality factors even when the homogeneity of
the electric field in the z-direction is broken.

1.3 Localization via topology

Up to now, we have discussed two different mechanisms to localize electromagnetic
waves. In both cases, the collective effects of disorder or correlations trap the waves in
the bulk of the system, halting the transport. In this last section, we present a completely
different physical realm. In this world, wave transport is provided by localized states on
the edges of systems that are insulating in the bulk. This novel and remarkable property
is what makes topological insulators so attractive. Subtly, this edge conduction is not due
to interface-specific physics, but is based on the topological characteristics of bulk wave
functions. A topological insulator is therefore an electronic material whose bulk features
correspond to a conventional insulator, i.e. it possesses gaps separating energy bands,
but in some specific cases these gaps can be filled by conducting edge states [143]. The
objective of this section is to present the physics of topological insulators in a nutshell,
focusing on their ability to localize electromagnetic waves while allowing conduction.

The story of topological insulators started in 1980 with the discovering of the quantum
Hall effect [144], characterized by the quantization of the Hall conductance [145] in the
presence of strong magnetic fields and low temperatures. In the years following the first
observation of the quantum Hall effect, the phenomenon was modelled in the now renowned
TKNN article [146], where the authors, in the framework of a 2D electron gas in a periodic
potential, were able to prove analytically the quantization of the conductance. The picture
became clearer in 1983, when Barry Simon linked Thouless’ results with the topology of
the electronic bands in momentum space [147]. By reinterpreting the recent concept of the
Berry curvature [148], Simon demonstrated that the positions of the plateaus in the Hall
conductance correspond to the values of a topological invariant of the system, namely the
Chern number [149]. The latter which is given by the integral of the Berry curvature of a
band is basically related to the dephasing of the band’s wavefunctions across the Brillouin
zone. Topological insulators are classified according to their topological invariants. For
instance in the case of the Chern number, C = 0 defines a trivial insulator behavior, and
a non-vanishing C ̸= 0 a nontrivial topological insulator, also known as Chern insulator.
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1.3.1 Edge states and Time-reversal symmetry

The topological invariant of a given material is strongly related with the conducting
edge states through the bulk-edge correspondence, which is a general phenomenon of
topologically nontrivial structures [150, 151]. As demonstrated by Qi, Wu, and Zhang
[152], the topological order in the bulk of a system with non-vanishing Chern number
always leads to spatially localized states whose energies occupy the energy band gap of
the bulk. Such states are confined in the edge of the nontrivial material, and their
number is equal to the Chern invariant. Frequently, the edge states, also known as
anomalous edge states, are observed at the interface between two materials with different
topological invariants. Nevertheless, the boundary of a nontrivial topological sample with
the topologically trivial vacuum ensures the existence of such states at the edge [153].

The most important ingredient to obtain a topological insulator is the breaking of the
time-reversal symmetry. For instance, in 1988 Haldane [154] considered a tight-binding
honeycomb lattice with complex second nearest-neighbour coupling [see Fig. 1.22(a) and
Appendix A]. The complex second nearest-neighbour hoppings break the time-reversal
symmetry of the system and open a topological nontrivial gap, leading to non-vanishing
Chern numbers [see Figs. 1.22(c) and (d)]. The Haldane model [154] is also characterized
by a particular set of edge modes, namely the chiral states. Such modes display chiral
properties in the sense that they propagate unidirectionally along the sample boundary.
Given the absence of counterpropagative states, chiral states are immune to backscattering.
The band structure of a ribbon following the Haldane model is presented in Fig. 1.22(b),
where the chiral modes are represented by the blue and red lines.

A new type of topological insulator conserving the time-reversal symmetry, known as
Z2 topological insulator, was proposed in 2005. As demonstrated by Kane and Mele
[155], it is possible to consider two identical Chern insulators each of which with an
opposite spin, therefore having individual non-vanishing Chern invariants Cup and Cdown.
Since the spins are opposite to each other, the total time reversal symmetry is preserved
and the total Chern number Cup + Cdown is zero. In addition, if the spins remain
uncoupled and independent, each Chern insulator has the same number of edge states
but in opposite propagating direction, namely helical states [155]. Therefore, according
to the Kramers’ theorem, at least one pair of topological edge states are preserved as
long as the time-reversal symmetry holds [153]. To characterize this topological
insulator, the new topological invariant Z2 was defined as Cupmod 2(= Cdownmod 2),

Figure 1.22: (a) Honeycomb lattice. (b) Typical band structure with edges modes for the Haldane model
when the topological gap is open. Red and blue lines indicate the edges states. (c) Bulk band structure
of the honeycomb lattice with nearest-neighbour hopping only. (d) Typical bulk band structure of the
Haldane model in the presence of second-neighbour complex hopping. Adapted from Ref. [153].
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taking the values: 0 for a trivial system, and 1 for a nontrivial system [143, 153, 155].

1.3.2 Z2 photonic crystal

Almost one decade ago, Wu and Hu [156] proposed a new perspective to design a Z2

photonic insulator using a conventional crystal. They observed that a honeycomb lattice
can be seen as a regular triangular structure with lattice parameter a0, where each site
becomes the center of a regular hexagonal cluster of variable radius R [see Fig. 1.23(a)].
In this way, by considering a tight binding approach (see Appendix A), it is possible to
separate an inner-cell coupling t0 and an outer-cell coupling t1, both depending on the
value of R, and where the classical honeycomb lattice is recovered for t0 = t1. In the
honeycomb limit (t0 = t1, and a0/R = 3), considering the hexagonal cluster as a primitive
cell folds the Brillouin zone, removing the degenerated Dirac point at K, and producing
a new doubly degenerated point at Γ [see Figs. 1.23(c) and (d)].

Figure 1.23: (a) Honeycomb lattice constructed from a triangular lattice with hexagonal clusters.
(b) Emergent orbitals in the hexagonal artificial cell. (c) Band structure of the honeycomb lattice (with
two sites per primitive cell). (d) Band structure of the honeycomb lattice with six sites per primitive cell.
Adapted from Ref. [157].

1.3.2.1 Topological order

To understand all the consequences in the choice of the hexagonal unit cell, one can
start by solving the Hamiltonian Ĥ0 of a individual cell in the perfect honeycomb case [157]

Ĥ0 = t0



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

, (1.31)
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where t0(= t1) is the coupling between any two consecutive sites. The eigenstates of Ĥ0

are then given by

|s⟩ =
[
1 1 1 1 1 1

]
,

|px⟩ =
[
1 1 0 −1 −1 0

]
,

|py⟩ =
[
1 −1 −2 −1 1 2

]
,∣∣dx2+y2

〉
=
[
1 1 −2 1 1 −2

]
,

|dxy⟩ =
[
1 −1 0 1 −1 0

]
,∣∣fy(2x2−y2)

〉
=
[
1 −1 1 −1 1 −1

]
,

(1.32)

with energies 2t0, t0, t0, −t0, −t0 and −2t0, respectively [see Fig. 1.23(b)]. It is worth
noting that the lattice is an element of the C6 cyclic group [158], where the pair of
degenerated states {|px⟩ , |py⟩} and {

∣∣dx2+y2
〉
, |dxy⟩} are the basis functions of an

irreducible representation [156]. According to Wu and Hu [157], it is then possible to
define the wavefunctions

|p±⟩ =
1√
2

(|px⟩ ± i |py⟩) , and |d±⟩ =
1√
2

(∣∣dx2+y2
〉
± i |dxy⟩

)
, (1.33)

together with the operator T = UK, where K is the complex conjugate operator, U = iσz
is a unitary operator, and σz is the Pauli matrix. In this case, U is obtained from the
matrix representation of the π/3 rotation in each irreducible basis. Therefore, T can be
taken as a pseudo time-reversal operator, with the orbital angular momentum playing the
role of the pseudospin [157, 159]. In consequence, the system shares the same physics as
the Z2 topological insulator presented in the previous section. As mentioned by Wu and
Hu [157], the pseudospin is directly related to the chiral current density of the hexagonal
cell. Thus, by evaluating the current density along the cell, it is possible to obtain the
anticlockwise and clockwise circulation currents that are associated to the two pseudospin
[see Fig. 1.24(a) and (b)].

It is important to note that any values of R preserves the C6 rotational symmetry,
which is at the origin of the time-reversal symmetry. Thus, to exhibit the topological
behaviour of the system, Wu and Hu [157] compute the dispersion relation of the systems
for three values of the outer-cell coupling t1 [see Fig. 1.24(c)-(e)]. Note that the choice of
t1 ̸= t0 opens a photonic band gap at the Γ point. For each value of t1, they project the
wavefunctions onto the orbitals of the unitary hexagonal cell, showing that for t1 ≤ t0,
the valence bands behave like the d orbitals and the conduction bands as p orbitals. By
increasing the value of t1 > t0, they observe that the bottom (valence) bands now exhibit
a p character while the top (conduction) bands behave like the d orbital: a band inversion
takes place by increasing the outer-cell coupling, indicating the nontrivial topological
behavior [160].

1.3.2.2 Chern invariant and edge states

One of the more important points investigated by Wu and Hu [156] is the evaluation
of the Z2 invariants for the two pseudopsin channels. The authors report that in the case
of t1 ≤ t0, the Chern invariant for each band is zero, showing a trivial behaviour. On
the contrary, for values of the coupling t1 > t0, the Chern numbers for the pseudospin-
up and -down channels are C± = ±1. Finally, the robustness of the edge states was
analyzed by considering a semi-infinite ribbon with nontrivial topology in contact with a
trivial topological structure. Fig. 1.25(a) shows the band structure of the ribbon where
the red lines indicate the double degenerated edge states. The spatial map of the edge
current associated with the edge states is depicted in Fig. 1.25(b), denoting the spatial
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Figure 1.24: Current density in (a) the pseudospin-up channel (|p+⟩ and |d+⟩) and (b) the pseudospin-down
channel (|p−⟩ and |d−⟩). Dispersion relation for the system in Fig. 1.23(a), considering (c) t1 = 0.9t0, (d)
t1 = t0, and (e) t1 = 0.9t0 Taken from Ref.[157].

Figure 1.25: (a) Band dispersion of a nontrivial topological ribbon (t1 = 1.1t0) cladded in both sides by
trivial topological structures (t1 = 0.9t1). (b) Spatial distribution of the gap states associated with the red
lines in (a). Space distributions of the current densities corresponding to the (c) red and (d) green points
in (a). The excess currents are indicated by red and green arrows. Taken from Ref.[157].

localization of the states in the boundary between both structures. The authors also
investigated the edge current distribution [Fig. 1.25(c) and (d)], finding that the edge
states are unambiguously associated with the pseudospin channels.

Note that at the interface between two structures, the C6 symmetry is substituted by
a C2 rotational symmetry, and therefore the time-reversal symmetry is not conserved. As
a result, a mini gap opens at the Γ point due to the coupling between the two pseudospin
channels. However, Wu and Hu [156] demonstrated that the symmetry and topology holds
for moderate deformations.

In Chapter 5, we experimentally investigate the existence and impact of helical
edge-states using the Wu-Hu model of honeycomb lattices previously presented. By
performing microwave transport experiments in honeycomb arrays of cylinders with high
dielectric permittivity, we explore the evolution of the topological nontrivial regime as
well as the edge-states as a function of R. Particularly, we demonstrate the
unidirectional counterpropagative features of the helical modes that propagate around
the boundary of the topological nontrivial material. Moreover, we experimentally explore
the robustness of the modes with respect to the abrupt breaking of the crystalline
structure (i.e. the C6 rotational symmetry).
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1.4 Lecture guide for the rest of the manuscript

Throughout this Chapter, we have discussed three different physical mechanisms to
control and localize electromagnetic waves. We started by introducing the so-called
Anderson localization phenomenon, which is characterized by a complete halt of wave
transport due to presence of uncorrelated impurities in the materials. We have paid
special attention to a recent approach known as the localization landscape that has
become an efficient tool in the understanding of Anderson localization. Chapter 3 then
reports how the localization landscape can be successfully extended to a broad class of
1D and 2D tight binding materials, where spatially localized modes exist at both band
edges. We have also pointed out the fact that Anderson localization is a general wave
phenomenon which can be found in different kinds of wave systems, however up to this
moment, there is no unequivocal evidence of its existence for 3D electromagnetic waves3.
To this concern, in Chapter 3, we also explore the applicability of the localization
landscape theory on the Maxwell’s equations.

The second part of this Chapter is dedicated to the analysis of wave scattering in
heterogeneous correlated media. Over the years, structured correlated systems have
demonstrated to not only improve localization effects but also to support different
transport regimes such as diffusion or transparency. We start by focusing on the
so-called stealthy hyperuniform disorder, which has demonstrated to be an excellent
platform to control wave transport. As an alternative to disordered system, we introduce
the notions of aperiodicy and, in particular, of Vogel spirals, which have recently been
shown to be able to localize light even in 3D. Chapter 4 is then dedicated to report
experimental findings of wave transport—localization—through Vogel spirals.

Finally, the last section of the current Chapter has introduced the different notions
about wave transport in nontrivial topological systems. We have shown how Berry-phase-
related attributes of wavefunctions in a band induced by a periodic lattice lead, among
other effects, to the emergence of ”anomalous” edge states. In addition, we discussed
the importance of breaking or preserving of the time-reversal symmetry in the presence
and robustness of these edges-modes. In Chapter 5, we experimentally demonstrate the
existence of topological helical edge-states protected by the time-reversal symmetry in
dielectric microwave samples.

3Numerical simulations have highlighted Anderson localization in a metallic random overlapping
spheres ensemble, but the Authors show that this regime can not be obtained in a similar dielectric
system [25].
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Chapter 2

The objective of this Chapter is to present the experimental setup and the different
data analysis procedures that will be used in the subsequent Chapters. It is organized as
follows: in Section 2.1, we show the different elements that compose the experimental
platform. An analytical description of the electromagnetic cavity is provided. The
electromagnetic field in the cavity is injected by antennas with different shape that allow
to control the polarization of the field. Section 2.2 is devoted to illustrate the versatility
of the dielectric cylinders which are the building blocks of our experimental samples.
The behaviour of the dielectric in the presence of different polarization of the field is
detailed. Later, in Section 2.3 the different sources of incertitude in our experiments are
characterized. Finally, Section 2.4 is dedicated to introduce all the different algorithms
to analyze the experimental data. We show how the Density of States and the spatial
shape of the eigenmodes are computed, and how to reconstruct the evolution of a short
temporal pulse through the sample.

2.1 The experimental platform

All our experiments are conducted using a quasi-two-dimensional cavity made up of
two parallel aluminum plates separated by a distance h. The top plate is suspended thanks
to a horizontal metallic arm, which in turn is attached to a motorized XY-stage (Newport
IMS600C and Newport ESP301), thus the top plate is completely movable in the x̂ − ŷ
plane and the cavity is completely open in both, x̂ and ŷ directions. The XY-stage provides
a 200 nm precision in each direction and it is supported by a hydraulic lift that allows to
control the height of the top plate h with a 0.5 mm precision. Fig. 2.1 shows an image of
the mechanic part of the experimental platform.

Electromagnetic waves are induced and measured using one or two antennas that
penetrate into the cavity through two holes drilled in the center of the bottom and top
plates, respectively (the particularities of the antenna will be properly introduced in the
following sections). The antennas are connected to a two-ports Vector Network Analyzer
(VNA, Rohde & Schwarz ZVA 24) via two shielded flexible coaxial cables (Flexco

Figure 2.1: Image of the actual mechanic part of the experimental platform.
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Figure 2.2: Image of the actual microwave experimental setup.

NTC195-50R49). The VNA operates in a frequency range going from 10 MHz to 24 GHz
corresponding to wavelengths in vacuum from 1.25 cm to 29 m. The field inside the
cavity is injected and extracted by the VNA via the antennas and the coaxial cables.
Fig. 2.2 shows a image of the microwave part of the experimental setup.

Note that up to this point, the signal registered by the VNA also includes the response
of the propagating waves inside the cables. Nevertheless, the cable contribution can be
easily removed thanks to a well standardized calibration method. To carry out this process,
a set of precision mechanical standards (Rhode & Schwarz ZN-Z235) is connected to the
end of the cables and then a measurement protocol is followed by the VNA. Finally,
by comparing the actual measurements with the well-known answer of each standard
(provided by the manufacturer), the VNA can automatically correct future measurements.

As the VNA measures modifications in amplitude and phase of a reference signal, it
provides the 2 × 2 complex Scattering Matrix S defined as(

S11 S12
S21 S22

)(
V 1
in

V 2
in

)
=

(
V 1
out

V 2
out

)
, (2.1)

where V 1
in and V 2

in are the input signals injected to the emitting antennas and V 1
out and

V 2
out the signals registered by the measuring antennas. Considering only the incoming

wave from the antenna (1), Eq. (2.1) reads

V 1
inS11 = V 1

out, V 1
inS21 = V 2

out, (2.2)

where S11 and S21 are therefore known as the reflection amplitude of the antenna (1) and
transmission amplitude from the antenna (2) to the antenna (1), respectively. Similarly,
by choosing V 1

in = 0, we obtain S22 as the reflection amplitude of the antenna (2) and
S21 as the transmission amplitude form the antenna (1) to the antenna (2). Finally,
the transmission and reflection coefficients are defined as the square of the respective
amplitudes [161].

Our experiments are normally performed using two antennas, where the antenna (2) is
located at the center of the bottom plate and the antenna (1) is attached to the movable
top plate, allowing to map the signal in the x̂ − ŷ plane. Specifically, we measure the
reflection in the movable top antenna (S11), as well as its transmission to the fixed bottom
antenna (S21).
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2.1.1 Modes in the cavity

To describe the modes supported by the empty cavity, we start by considering the
Maxwell’s equations without sources in a non-magnetic medium [162]

∇×E(r, t) = −∂tB(r, t), ∇ ·D(r, t) = 0,

∇×B(r, t) = µ0∂tD(r, t), ∇ ·B(r, t) = 0,
(2.3)

where E(r, t) is the electric field, B(r, t) is the magnetic field, D(r, t) = ϵ0E(r, t) is the so-
called displacement vector, and µ0 and ϵ0 are the magnetic permeability and the dielectric
permittivity of the air (∼vacuum), respectively. Given the presence of the conducting
plates, the electric and magnetic fields also satisfy the boundary conditions

[n̂×E(r, t)]

∣∣∣∣
z=0 and z=h

= 0, [n̂ ·B(r, t)]

∣∣∣∣
z=0 and z=h

= 0, (2.4)

with n̂(= ±ẑ) the unit normal vectors to the planes of each plate.
Assuming a harmonic monochromatic time dependence with frequency ω [E(r, t) =

E(r)e−iωt and B(r, t) = B(r)e−iωt], the Maxwell’s equations (2.3) read

∇×E(r) = iωB(r), ∇ ·E(r) = 0,

∇×B(r) = −iµ0ϵ0ωE(r), ∇ ·B(r) = 0.
(2.5)

The substitution of the Maxwell-Faraday equation into the Ampère-Maxwell equation
[left hand side Eqs. in (2.5)] and vice versa allows to obtain independent equations for the
electric and magnetic field, respectively. That is

∇×∇×E(r) =
ω2

c20
E(r), ∇×∇×B(r) =

ω2

c20
B(r), (2.6)

where, c0 = 1/
√
µ0ϵ0 is the speed of light in the vacuum and k = ω/c0 the wave number.

Next, by using the Gauss’ law [right hand side Eqs. in (2.5)], Eqs. (2.6) read

∆E(r) = −ω
2

c20
E(r), ∆B(r) = −ω

2

c20
B(r). (2.7)

Given the cylindrical symmetry of the system and the presence of the conductor plates,
all components of each field can be expressed as product of independent functions of the
individual cylindrical variables (ρ, ϕ, z)

Aı̂ = PA,̂ı(ρ)ΦA,̂ı(ϕ)ZA,̂ı(z), (2.8)

with A = {E,B} and ı̂ = {ρ̂, ϕ̂, ẑ}. Additionally for both fields, the Gauss’ law [right
hand side Eqs. in (2.5)] can be written as

∇ρ̂,ϕ̂ ·Eρ̂,ϕ̂(r) = −∂zEẑ(r), ∇ρ̂,ϕ̂ ·Bρ̂,ϕ̂(r) = −∂zBẑ(r), (2.9)

where ∇ = ∇ρ̂,ϕ̂ + ẑ∂z. Eqs. (2.9) together with Eq. (2.8), allows to rewrite the boundary

conditions [Eq. (2.4)] as follows

ZE,ρ̂(z)

∣∣∣∣
z=0 and z=h

= ZE,ϕ̂(z)

∣∣∣∣
z=0 and z=h

∂zZE,ẑ(z)

∣∣∣∣
z=0 and z=h

= ZB,ẑ(z)

∣∣∣∣
z=0 and z=h

 = 0. (2.10)

Since the boundary conditions on Eẑ(r) and Bẑ(r) are different, the corresponding
eigenfrequencies and eigenstates are different too. Therefore, we can divide the
electromagnetic field into two different categories [162]:
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Transverse magnetic (TM) waves, Bẑ(r) = 0 with boundary conditions

∂zEẑ(r)

∣∣∣∣
z=0 and z=h

= 0. (2.11)

Transverse electric (TE) waves, Eẑ(r) = 0 with boundary conditions

Bẑ(r)

∣∣∣∣
z=0 and z=h

= 0. (2.12)

To solve the two Helmholtz equations (2.7), we use the continuous rotational symmetry
along the ϕ̂-axis that allows to express the angular dependence as Φ(ϕ) = eiαϕ where α is
an integer. On the other hand, the solution for the z-dependent function can be written
as standing waves a cos (kzz) + b sin (kzz), with a and b constants and kz the wave number
in the ẑ-direction. Therefore, by applying the boundary conditions for each polarization
[TM in (2.11) and TE in (2.12)], the ẑ-component Aẑ of the two fields is given by [162]

TM waves → Eẑ(r) = PE,ẑ(ρ)eiαϕ cos

(
jπz

h

)
(j = 0, 1, . . . ) , (2.13)

TE waves → Bẑ(r) = PB,ẑ(ρ)eiαϕ sin

(
jπz

h

)
(j = 1, 2, . . . ) , (2.14)

where kz = jπ/h. In addition, the differential equation of PA,ẑ(ρ) becomes

ρ2
d2PA,ẑ(ρ)

dρ2
+ ρ

dPA,ẑ(ρ)

dρ
+
[
qρ2 − α2

]
PA,ẑ(ρ) = 0, (2.15)

with q =
√
k2 − k2z and the condition of having a non-divergent function at ρ = 0 and

ρ→ ∞, leading to

TM waves → Eẑ(r) = E0Jα(qρ)eiαϕ cos

(
jπz

h

)
(j = 0, 1, . . . ) , (2.16)

TE waves → Bẑ(r) = B0Jα(qρ)eiαϕ sin

(
jπz

h

)
(j = 1, 2, . . . ) , (2.17)

where Jα is the Bessel function, and E0 (B0) a constant.
Note that the condition (k2 − k2z) ≥ 0 gives the cutoff frequencies of the propagating

modes in the cavity as

νj,cut = j
c0
2h
. (2.18)

with j a strictly positive integer [Eqs. (2.16) and (2.17)]. For instance, Fig. 2.3 shows the
amplitude of ZA,ẑ(z) [see Eq. (2.8)] with respect to the mode index j for j = 0, 1, 2. As
can be observed, below the cutoff frequency of the first transverse mode [ν < ν1,cut(h)],
the amplitude of the field is homogeneous in the ẑ-direction. Thus, for TM waves in this
frequency regime, the cavity can be seen as a 2D system and 3D effects are expected for
frequencies above the cutoff. Additionally, the fundamental transverse mode TM0 has a
cutoff frequency νcut = 0, therefore TM waves propagates at any frequency. In contrast,
TE waves are not able to propagate at low frequency ν < ν1,cut(h), i.e., waves are always
evanescent beneath this limit.
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Figure 2.3: Intensity of ZA,ẑ(z) with respect to the number of mode j for TM and TE waves, respectively.

2.1.2 Microwave antennas

TM or TE wave polarizations can be selectively excited in our experimental setup via
the specific geometry of the antenna used, which shapes its radiation pattern. For instance,
Fig. 2.4(a) depicts the diagram of a straight antenna whose radiated electric field is mostly
parallel to its longitudinal axis (ẑ-axis). Additionally, the corresponding magnetic field
rotates around the longitudinal axis and, as a consequence, its ẑ-component is always zero
(Bẑ = 0). Thus, this kind of antennas fulfil the spatial conditions to excite/measure a
electromagnetic field with TM polarization. An image of the actual antenna used in our
experiment can be seen in Fig. 2.4(c) labeled with the number 3.

A different result can be obtain by considering an antenna with a distinct geometry.
In the case shown in Fig. 2.4(b), the shape of a straight antenna is modified by folding
the conductor into a loop in the ρ̂ − ϕ̂ plane. Then, the circuit is closed by welding the

B(r)

E(r)

x̂

ŷ

ẑ
(a)

B(r)

E(r)

(b)

1 2 3

(c)

Figure 2.4: Diagram of the electric and magnetic field radiated by a (a) straight antenna and a (b) loop
antenna. (c) Image showing the actual loop and straight antennas used in our experiments.
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conductor’s end with its inner part. The corresponding electric field of this new loop
antenna follows the loop geometry having a ẑ-component equal to zero Eẑ = 0. The
sinusoidal electrical current in the loop induces a magnetic field perpendicular to the ρ̂− ϕ̂
plane and proportional to the electric field (Bẑ ∝ Eϕ̂). On the contrary to the straight

antenna, loop antennas fulfil the spatial conditions to excite/measure electromagnetic
waves with TE polarization. Two different loop antennas used in our setup are shown in
Fig. 2.4(c) labeled as 1 and 2. Note that the polarized patterns radiated by the straight
and loop antennas are incompatible with each other.

Typical loop antennas used in our experiments have a loop diameter of 2 and 5.5 mm,
being in between the wavelengths range of the sinusoidal signal generated by the VNA. As
a result, loop antennas exhibit measurable resonances produced by standing waves inside
them. The effect of such undesirable resonances is experimentally avoided by tuning the
usable frequency window for each antenna. In practice, the small loop antenna (loop
diameter= 2 mm) displays a flat usable frequency interval (7 GHz, 10 GHz). On the
other hand, the big loop antenna (loop diameter= 5.5 mm) works perfectly in the range
(5 GHz, 8 GHz).

2.2 Dielectric cylinders

The flexibility of our experimental setup in mainly due to the fact that we can locally
modify the permittivity of the microwave cavity by means of the dielectric cylinders. These
ceramic cylinders are 5 mm height, 3 mm radius and are made of TiZrNbZnO (Exxelia
Temex manufacturer serie E6000). They are characterized by a high relative permittivity
ϵc = 45, no magnetic properties (relative permeability µc = 1, therefore nc =

√
µcϵc ≈ 7)

and a large quality factor of Q ≈ 8000 (@ 5 GHz). Fig. 2.5 shows an image of an actual
dielectric cylinder used in our experiments.

Figure 2.5: Image showing the actual dielectric cylinder.

The dielectric cylinders are precisely placed over the bottom plate by dropping them
through a metallic tube. In order to use the motorized XY-stage to indicate the positions,
the top plate is removed and replaced by a tube. In Fig. 2.6 we show a image of the
cylindrical metallic tube used in the experimental setup to place the dielectrics.

Figure 2.6: Image of the metallic tube used to place the cylinders.
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2.2.1 Individual cylinder resonances

To predict the resonances of an isolated cylinder, we solve the Maxwell’s equations (2.3)
with the boundary conditions (2.4). We use cylindrical coordinates (ρ, θ, z) where the
displacement vector is then written as

D(r) = ϵ(ρ)E(r), (2.19)

with ϵ(ρ) = [ϵ0 + (ϵc − ϵ0)Ξ(rc − ρ)], Ξ(ρ) the Heaviside function and rc the radius of the
cylinder. Note that in writing Eq. (2.19), we have also assumed that both conducting
plates are in contact with the cylinder.

We consider a sinusoidal monochromatic time dependence for both fields [E(r, t) =
E(r)e−iωt and B(r, t) = B(r)e−iωt, see Eq. (2.5)]. The individual Maxwell’s equation
solutions inside and outside the cylinder are matched following the continuity conditions
at the interface between the dielectric and the air. This results in tangential continuity
conditions of the electric and magnetic fields

[n̂× (ED −EA)]

∣∣∣∣
ρ=rc

= 0, [n̂× (BD −BA)]

∣∣∣∣
ρ=rc

= 0, (2.20)

and the continuity of the normal components of the displacement vector and the magnetic
field

[n̂ · (DD −DA)]

∣∣∣∣
ρ=rc

= 0, [n̂ · (BD −BA)]

∣∣∣∣
ρ=rc

= 0. (2.21)

with the index D (A) denoting the dielectric (air).
Helmholtz equations now reads

∆E(r) = −k2(ρ)E(r), ∆B(r) = −k2(ρ)B(r), (2.22)

where k(ρ) = ω/c(ρ) is the wave number and c(ρ) = 1/
√
µ0ϵ(ρ) is the wave velocity.

Given the cylindrical symmetry of the system and the presence of the conducting plates,
the process presented in Section 2.1.1 is followed step by step to obtain

TM mode → Eẑ = E0e
iαθ cos

(
jπz

h

){
Jα(qDρ) ρ < rc

aH
(1)
α (qAρ) ρ > rc

(j = 0, 1, 2, . . . )

(2.23)

TE mode → Bẑ = B0e
iαθ sin

(
jπz

h

){
Jα(qDρ) ρ < rc

aH
(1)
α (qAρ) ρ > rc

(j = 1, 2, 3, . . . )

(2.24)

with qD =
√
k2c − k2z , qA =

√
k2 − k2z , H

(1)
α the Hankel function and

a = Jα (qDrc) /H
(1)
α (qArc). Here, kc = ωnc/c0 and k = ω/c0 are the wave numbers inside

and outside the cylinder, respectively, and similarly to propagating modes in the empty
cavity, the constraints kc > kz and k > kz provide the frequency limits for
non-evanescent waves in the dielectric and in the air, respectively. Therefore, according
to the polarization of the waves emitted by the antenna, our experimental system
presents different features that can be classified into two categories as detailed in the
following sections.

2.2.1.1 Transverse magnetic (TM) polarization

The TM polarization is characterized by propagating waves at any frequency in both
media (inside and outside the cylinder). However, given the difference in the refractive
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index, the cylinders remain an obstacle that scatter the incident wave in all directions,
leading to Mie scattering.

The scattering efficiency of the individual Mie resonances supported by a 2D cylinder
can be computed using cylindrical harmonic expansion [163]. In this case, we consider a
incident plane wave with wave number k scattering on the cylinder. Thus, the scattered
electric and magnetic fields are given by [40, 163]

Es = −
∞∑
α=1

Eα (iaαMα + bαNα) , Hs =
ik

ω

∞∑
α=1

Eα (bαMα + iaαNα) . (2.25)

where Mα and Nα are called the cylindrical vector harmonics and are defined by

Nα =
∇ρ̂,ϕ̂ ×Mα

k
, Mα = ∇ρ̂,ϕ̂ × (ẑχα) , and ∇2

ρ̂,ϕ̂
χ+ k2χ = 0, (2.26)

with χ known the as generating function. Since, χ is the solution of a 2D scalar cylindrical
wave equation, it can be written as χα = Pα(kρ)eiαϕ, with Pα(kρ) the solution of a Bessel
differential equation. It is worth noting that Mα lies in the ρ̂− ϕ̂ plane, while Nα is out
of the plane. Finally, using the continuity relations at the cylinder surface, the coefficients
aα and bα are computed as

aα = 0, bα =
Jα(ncx)J ′

α(x) − ncJ
′
α(ncx)Jα(x)

Jα(ncx)H
(1)′
α (x) − ncJ ′

α(ncx)H
(1)
α (x)

, (2.27)

where x = krc is the wave number normalized by the radius of the cylinder. Given the
initial TM polarization of the fields, the coefficients aα are always zero since they are
associated with an in-plane electric field and the ẑ-component of the magnetic field. The
normalized scattering efficiency in 2D is then defined as

Qsca =
2

x

[
|a0|2 + |b0|2 + 2

∞∑
α=1

(
|aα|2 + |bα|2

)]
. (2.28)

Fig. 2.7(a) displays the scattering efficiency as a function of the frequency for a infinite
2D cylinder with the radius and refractive index of our experimental dielectrics. As it can
be observed, up to 15 GHz, six different resonances driven by the presence of cylinder are
well visible. To mimic as closely as possible a purely 2D situation with our experimental
setup, we need to impose the cavity to be in contact with the bottom and top faces of
the cylinder (in practice h = 5 mm), and restrict the frequency range below the cutoff the
first TM mode [νcut(h = 5 mm) ≈ 30 GHz], as previously implemented by Aubry et al.
[81]. This is not the case for the experiments presented here, where the height of the top
plates is always > 5 mm. As shown by Reisner [164], increasing the air gap between the
cylinder and the top plate shifts the Mie resonant frequencies in a non-monotonic way,
this shift being different for each resonance. Additionally, breaking the symmetry in the
ẑ-axis, also breaks the dichotomy between TM and TE modes, leading to new hybrid
modes. The latter exhibits simultaneously Eẑ and Bẑ components of the electromagnetic
field. Consequently a polarized antenna will not be able to collect all the energy stored
in a hybrid mode, leading to fictitious losses. For example, a straight antennas is not
sensitive to the Bẑ component.

As an example, we plot the electric field’s ẑ-component (Eẑ) scattered by a cylinder
in our experimental cavity with h = 13 mm [νcut ≈ 11.53 GHz] in Fig. 2.7(b). The
reflected field is measured by a straight antenna at a distance d ≈ 11.31 mm from the
center of the cylinder, where the measured signal shows four different peaks below the 2D
cutoff. However, by going through the cutoff frequency, the complexity of the signal highly
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Figure 2.7: (a) Scattering efficiency for a 2D cylinder of radius 3 mm and refractive index =
√
45 (continuous

blue line). Dashed lines represent the individual Mie resonances. Reflected scattered field (S11) by (b) one
and (c) two cylindrical dielectrics in a cavity characterized by h = 13 mm. The straight antenna is placed
at distances (b) d ≈ 11.31 mm and (c) d ≈ 8.94 mm from the center of the cylinders. Cylinders in (c) are
separated by a distance of 8 mm. A minimalist sketch of the array (cylinders-antenna) is represented by
grey circles in (c) and (d). Vertical lines in (b) and (c) represent the cutoff frequency νcut ≈ 11.53 GHz.

increases. Despite that the break in the dichotomy between the TM and TE polarization
prevents a one-by-one correspondence between the peaks in Figs. 2.7(a) and (b) [164], a
big similitude is observed.

The effect of adding a second cylinder into the cavity can be seen in Fig. 2.7(c), where
the scattered electric field is measured at a distance d ≈ 8.94 mm from the center of both
cylinders, which are separated by a distance of 8 mm. Below the 2D limit, three of the
four peaks in Fig. 2.7(b) (labeled as 1, 3 and 6) appear almost at the same frequency (6.5,
10 and 10.5 GHz) with similar widths. Additionally, another two peaks have emerged
at ∼ 7.4 GHz and ∼ 9.1 GHz. As for a single cylinder, the complexity of the scattered
pattern strongly increases over the cutoff frequency. Chapter 4 is devoted to study the
electric field given by the effect of the collective multiple scattering after adding several
cylinders into the cavity.

2.2.1.2 Transversal electric (TE) polarization

Differently to TM polarization, TE waves lead to two different configurations. For
high frequencies ν > c0/(2h), the electromagnetic field can propagate everywhere and
scattering processes equivalent to those described in the TM situation occurs. However,
given the magnetic field inhomogeneity in the ẑ-axis for the lowest propagative mode [see
Fig. 2.3], the perfect 2D limit stays unreachable when considering the presence of the
conducting plates.

Contrary to the propagating modes, the frequency interval c0/(2nch) < ν < c0/(2h)
is characterized by waves that can freely propagate inside the dielectric medium but still
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exhibiting an evanescent behavior in the air. As a result, the electromagnetic field is
confined in the cylinder leading to sharp well-isolated resonances. As the scattering
resonances in the previous section, the increasing of the distance between the plates also
shifts non-monotonically the TE resonance frequencies. However, Reisner [164] also
shows that, at least for the fundamental TE eigenstate (α = 0), the polarization
symmetry holds, i.e. there is no hybridization with the TM modes even at h = 16 mm.
While working in these polarization, we will restrict our research to this fundamental TE
state (see, e.g., Chapter 5), further informations about higher modes are provided in
Ref. [164].

In this particular frequency regime [c0/(2nch), c0/(2h)], the magnetic field [Eq. (2.24)]
can be properly written around the fundamental TE mode (α = 0) with frequency ν0 as

Bẑ = B0 sin
(πz
h

){ J0(qDρ) ρ < r0
aK0(γAρ) ρ > r0

(2.29)

where Kα is the modified Bessel function, and a = J0 (qDrc) /K0 (γArc), with

qD =

√(
2πν0nc

c0

)2
−
(
π
h

)2
, and γA =

√(
π
h

)2 − (2πν0
c0

)2
. In order to model the situation

in which there is an air gap over the cylinder, we assume that the solution of the wave
equation can still be expressed as the product of functions of the individual variables.
The z-dependency is then represented by F (z), fulfiling the boundary conditions
F (0) = F (h) = 0 with h > 5 mm and qeff defined via the function F (z) [165]. Given the
lacking of symmetry in the ẑ-axis, we suppose that the field inside the cylinder can
excite several evanescent modes in the air with wave numbers

γm,eff =

√(
mπ
h

)2 − (2πν0
c0

)2
, leading to

Bẑ ≈ B0

{
F (z)J0(qeffρ) ρ < rc∑

m cm sin
(
mπz
h

)
K0(γm,effρ) ρ > rc

(2.30)

where cm are constants determined by the continuity conditions. Eq. (2.30) is finally
rewritten by including the z-dependency in the coefficient c′m = cm sin

(
mπz0
h

)
/F (z0) as

Bẑ ≈ B′
0Ψ(ρ) = B′

0

{
J0(qeffρ) ρ < rc∑

m c
′
mK0(γm,effρ) ρ > rc

(2.31)

where the loop antenna is sitting at a height z0 and B′
0 = 1 is a constant.

Eq. (2.31) can be experimentally challenged using a loop antenna. For instance,
Fig. 2.8(a) depicts the ẑ-component of the magnetic field (Bẑ) reflected by one cylinder
in a cavity characterized by h = 13 mm, where the center of the antenna’s loop is aligned
with the center of the dielectric. A sharp peak indicates the isolated TE resonance of the
cylinder, whose parameters (complex amplitude A0, frequency ν0 and width δν0) can be
obtained by fitting a Lorentzian function [see black line in Fig. 2.8(a)]

L(ν) =
A0

ν − ν0 + iδν0
. (2.32)

This analysis is then repeated along the ρ̂-axis to extract the amplitude of the field as a
function of the position. A comparison between Eq. (2.31) and the actual experimental
data is depicted in Fig. 2.8(b) where a good agreement is observed.

Suppose now a system with two identical cylinders characterized by a bare resonant
frequency ν0 and separated by a distance d of the order of rc, where one of the dielectrics
is excited by a magnetic field with frequency ν ≈ ν0. Since the evanescent field that leaks
out from the excited cylinder is able to excite the resonant mode of the second dielectric,
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Figure 2.8: (a) Reflected magnetic field (S11) by one cylinder in a cavity characterized by h = 13 mm
(pink dotted line). A fit of Eq. (2.32), which allows to find the resonance parameters is represented by
the black solid line. (b) Experimental radial function Ψ(ρ) in a cavity with h = 13 mm (pink dots). A
fit of Eq. (2.31) is represented by the black solid line and allows to find qeff = 0.61 mm−1 with m = 4.
The grey stripe represents the size occupied by the cylinder. (c) Reflected magnetic field (S11) by two
cylinders separated by a distance d in a cavity characterized by h = 13 mm. The exciting antenna is
placed at a distant 8 mm from one of the cylinders (resonators). (d) Resonance splitting as a function of
the distance between two resonators. A fit of Eq. (2.34) is represented by the black solid line and allows
to find κ = 43.58 MHz and γ1 = 0.12 mm−1.

the cylinders can couple each other leading to a symmetric frequency splitting ∆ν0(d) [see
e.g. Fig. 2.8(c)]. Our experimental system of coupled dielectrics can be then described by
the Tight-Binding formalism (see Appendix A), where each resonant cylinder represents
a site. The associated Hamiltonian matrix [see Eq. (A.4)] for two cylinders is written as

H(d) =

(
ν0 t(d)
t(d) ν0

)
, (2.33)

with the coupling t(d) determined by evaluating the superposition of the evanescent fields
in between the cylinders as [164, 166]

t(d) =
∆ν0

2
≈ κK0

(
γ1
d

2

)[
K2

(
γ1
d

2

)
+K0

(
γ1
d

2

)]
, (2.34)

where κ and γ1 are constants.
Fig. 2.8(c) depicts the ẑ-component of the magnetic field reflected by two coupled

cylinders (resonators) as a function of the distance between their centers d. The actual
experimental data is fitted by a sum of two Lorentzian functions [see Eq. (2.32)] allowing
to extract the frequency splitting ∆ν0 as a function of the distance d [see Fig. 2.8(d)]. A
comparison between the experimental coupling parameter (pink squares) and the
theoretical prediction [Eq. (2.34), solid black line] can be seen in Fig. 2.8(d), where a
good agreement is observed.

By adding several resonators into our cavity, our system becomes an experimental
emulator of tight-binding lattices. In Chapter 5 we use our electromagnetic tight-binding
simulator to explore the paradigmatic features of topological systems.
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2.3 Experimental incertitudes

In the last sections, we presented the details of the experimental platform used all
along this thesis. As previously mentioned, the presence of the top and bottom plates,
as well as the distance between them, play an important role on the behaviour of the
cylinders that constitute our lattices. Moreover, the influence of the metallic plates has to
be properly taken into account. For instance, the lack of parallelism between the plates
breaks the homogeneity of the boundary conditions along the ẑ-axis, modifying locally the
behaviour of certain cylinders. Fortunately, this issue can be corrected by measuring and
adjusting in multiple locations the height of the top plate. In that way, prior any data
acquisition, both plates are aligned with a precision < 1 mm. Similarly, we adjust the
motorized XY-stage to ensure a perpendicular movement in the plane.

Besides the issues due to the metallic plates and the XY-stage, other important
experimental incertitudes are linked to the dielectric cylinders themselves. Indeed, we
use sets of ceramics belonging to the same series, which are not completely identical and
have slightly different resonant frequencies. To overcome this issue one can use the
cylinders as resonators and characterize them by their individual TE resonant frequency.
Afterwards, measurements are performed by preparing our samples using the set of
cylinders with the most similar features. However, the resonant frequency of each
resonator can also be affected by the quality of the contact with the metallic bottom
plate. Given that our experimental cavity is never completely free of imperfections or
dust, and that the placement of the cylinders is carried out just by dropping them
through the metallic tube (see Fig. 2.6), it always exists an inhomogeneous air layer
between the plate and the dielectric. As a consequence, in each replacement of same
resonator, there is a random variation in its resonant frequency. This issue is quantified
in Fig. 2.9(a) where the magnetic field reflected by a single cylinder, which has been
replaced ten times at the same position over the metallic plate, is depicted. As we can
observe, the standard deviation of the resonant frequencies σν0 is of the same order of
the typical width of the Lorentzian ⟨δν0⟩. To correct this problem, the bottom plate is
covered by a self-adhesive thin plastic film ensuring an uniform poor electrical contact
with the cylinders. The previous replacing experiment is repeated under the new
conditions [see Fig. 2.9(b)], reducing drastically the random variation of the
eigenfrequencies.

As previously mentioned, the placement of the cylinders is performed by drooping
them through a metallic tube (see Fig. 2.6). To allow the cylinders to pass through the
tube, the internal radius of the tube is slightly larger than the radius of the cylinders,
giving rise to another incertitude. To quantify the quality of the resonator spatial placing,
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Figure 2.9: Reflected magnetic field (S11) by one cylinder in a cavity characterized by h = 13 mm (a)
without and (b) with the thin insulating plastic film.
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the same cylinder is replaced 25 times by setting the guide at the same position. In each
replacement, the resonator is spatially scanned around its first TE mode [see Fig. 2.8(b)] to
precisely locate its center. Fig. 2.10 shows then the center spatial position of the cylinder,
in both directions ∆x and ∆y after each replacement. Despite that there exist a random
variation (∆x,∆y) of the cylinder center, the corresponding standard deviations are always
smaller than 0.08 mm in each direction, proving the high precision of our experimental
setup.
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Figure 2.10: Center position of a single resonator in a cavity characterized by h = 13 mm. Each point
represent the position of eigenfunctions center when the cylinder is replaced at the same position.

2.4 Data analysis

As it can be inferred in Section 2.2, the ẑ-components of the electric and magnetic fields
can be related to the wave-functions ψ of the system cavity-cylinders. At each position, it
is then possible to write Eẑ(r) ∝ ψ(r) and Bẑ(r) ∝ ψ(r) for the TM and TE polarization,
respectively. For instance, the features of one or two well isolated resonances corresponding
to the fundamental TE mode can be extracted by simply fitting a sum of Lorentzian
functions [Eq.(2.32)]. However, by increasing the number of cylinders in the system,
the complexity of the signal increases too, leading to the impossibility to identify and
characterize all the Lorentzian peaks in the signal. In this Section, we introduce different
algorithms and tools that will be used all along this work to analyze the experimental
data.

2.4.1 The Breit-Wigner decomposition

We start by assuming that the system cavity-cylinders can be modelled as a closed
system characterized by the Hamiltonian Ĥ with discrete spectrum {νn} and
corresponding eigenstates {ψn(r)}. To transform our closed system into a scattering one,
we attach to the cavity N weakly coupled antennas with coupling strength σi
(i = 1, 2, . . . , N). Finally, computing the scattering properties of the effective
Hamiltonian (Ĥ + antennas) allows to relate the elements of the scattering matrix (see
Section 2.1) with the features of the eigenmodes of the system cavity-cylinders as [167]

Sij(ν) = δij − i
√
σiσj

∑
k

ψk(ri)ψ
∗
k(rj)

ν2 − ν2k + iΓ2
k

, (2.35)
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where δij is the Kroneker delta and Γ is related with the width of the states. Eq. (2.35) is
known as the Breit-Wigner decomposition of the scattering matrix, and despite it is defined
for N open channels (antennas), our system is physically restricted to N = 2. Therefore,
the vectors ri,j indicate the position of the antennas in our experimental cavity.

2.4.2 The Harmonic Inversion

According to the Breit-Wigner decomposition of the S-matrix [Eq. (2.35)], the
transmission and reflection signals can be viewed as the superposition of complex
resonances, each of which being represented by a Lorentzian function, i.e., by four
parameters: the frequency νk, the width δνk, and the complex amplitude Ak. Due to the
specific use we will make of it, we will concentrate here only on the complex resonance
sum decomposition of the transmission signal S21. In the case of our microwave cavity
with weakly coupled antennas, the latter can be written for any given measurement
position as [167]

S21(ν) = −i
√
σiσj

∑
k

ψk(ri)ψ
∗
k(rj)

ν2 − ν2k + 2iνkδνk
. (2.36)

Then, for frequencies close to νk(≈ ν), we have

S21(ν) = −i
∑
k

Ak

ν − νk + iδνk
, (2.37)

where we have assumed constant antenna couplings σ1(σ2) throughout the whole frequency
range, thus Ak =

√
σ1σ2ψk(r2)ψ

∗
k(r1)/(2νk).

Given the huge amount of unknown parameters, the extraction of the resonances from
the raw signal is not a trivial task. Here, we use a powerful tool known as harmonic
inversion to obtain all the resonances parameters of a complex signal. This method was
first introduced by Wall and Neuhauser [168], and then improved by Mandelshtam and
Taylor [169, 170]. To apply the harmonic inversion to our experimental signals, we start
by choosing a filter g(ν) defined as

g(ν) =

{
1 for ν ∈ [ν0 − ∆ν, ν0 + ∆ν],
0 everywhere else,

(2.38)

where the filtered transmitted signal S′
12(ν) = S12(ν) × g(ν) = −i

∑K
k=1

Ak
ν−νk+iδνk

is
expected to have around K ∼ 50 − 200 resonances inside the interval [ν0 − ∆ν, ν0 + ∆ν].
Then, the filtered signal is Fourier transformed to the “time” domain to obtain a
band-limited signal

C(t) =
1

2π

∫ ν0+∆ν

ν0−∆ν
S′
12(ν)e−i(ν−ν0)tdν =

K∑
k=1

Ake−i(νk−iδνk−ν0)t, (2.39)

with νk ∈ [ν0 − ∆ν, ν0 + ∆ν]. Additionally, the introduction of ν0 into the exponential
shifts the signal by −ν0 in the “frequency” domain and relocates it around 0, decreasing
the phase oscillations of the band-limited signal C(t). Finally, Eq. (2.39) can be discretized
in a 2K equidistant grid with time step τ = π/∆ν

cj = C(t = jτ) =

K∑
k=1

Ake−i(νk−iδνk−ν0)jτ , j ∈ [0, 2K − 1], (2.40)

reducing the problem of finding the resonances to the resolution of a set of 2K nonlinear
equations

cj =
K∑
k=1

Akz
j
k, j ∈ [0, 2K − 1], (2.41)
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where zk = e−i(νk−iδνk−ν0)τ .
The strategy to solve Eq. (2.41) is to convert the system of nonlinear equations into a

linear algebra problem. We start by expressing K of its elements in a matrix representation cj+1
...

cj+K

 =

 zj+1
1 · · · zj+1

K
...

...

zj+K
1 · · · zj+K

K


A1

...
AK



−→

 zj+1
1 · · · zj+1

K
...

...

zj+K
1 · · · zj+K

K


−1 cj+1

...
cj+K

 =

A1
...
AK

 ,

(2.42)

then, we replace Eq. (2.42) into Eq. (2.41) to get

cj =
(
zj1 · · · zjK

) zj+1
1 · · · zj+1

K
...

...

zj+K
1 · · · zj+K

K


−1 cj+1

...
cj+K

 =
K∑
k=1

akcj+k, (2.43)

where, we observe that every signal point cj can be computed from a linear combination
of the next K points, and is determined by the coefficients ak with k = 1, . . . ,K. Now,
by substituting Eq. (2.41) into both sides of Eq. (2.43), we obtain

K∑
k=1

Akz
j
k =

K∑
k=1

K∑
l=1

alAkz
j+l
k −→

K∑
k=1

[
K∑
l=1

alz
j+l
k − zjk

]
Ak = 0, (2.44)

which is satisfied for an arbitrary set of amplitudes Ak. Thus, the values
zk = e−i(νk−iδνk−ν0)τ are given as the zeros of the polynomial

K∑
l=0

alz
l = 0 with a0 = 1, (2.45)

and finding them represents the only nonlinear step of the method. The roots of a
polynomial can be found by the diagonalization of the Hessenberg matrix

A =


−aK−1

aK
−aK−2

aK
· · · − a1

aK
− a0

aK
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 , (2.46)

which is highly robust for finding the zeros of a high degree polynomial. As a last step,
the values of zk are substituted in Eq. (2.41) to compute the values of the amplitude Ak.

To summarize, the four parameters of each of the resonances that make up the signal
are given by (i) the solutions of the set of linear equations (2.43), for ak; (ii) the
diagonalization of the matrix (2.46), for the frequencies νk = ν0 − Im{ln zk}/τ and the
widths δνk = −Re{ln zk}/τ ; (iii) the solution of the non linear system of
equations (2.41), for the amplitude Ak.

To exemplify the use of the Harmonic inversion method, Fig. 2.11(a) shows the intensity
of the experimental transmitted signal |S21|2 in a Golden Angle spiral (this system is
studied in detail in Chapter 4). Vertical dash-dotted lines indicate the limits of one
chosen window (7.95 GHz to 8.55 GHz). The complex nature of the signal is presented in
Fig. 2.11(b), and (c) (purple lines) by means of the amplitude |S21| and phase arg{S21};
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Figure 2.11: (a) Transmitted intensity |S12(ν)|2 for the golden-angle spiral. Black dash-dotted lines indicate
the frequency interval considered in this example (7.95 ≤ ν ≤ 8.55). (b) Amplitude |S12(ν)|, (c) phase
arg{S12(ν)}, (d) real part Re{S12(ν)} and (e) imaginary part Im{S12(ν)} of the complex filtered signal
shown in (a). Purple continuous line represents the original signal while indigo dashed lines are Eq. (2.37)
evaluated for the resonances obtained by the harmonic inversion. Blue vertical lines in (e) display the
frequencies νk recovered by the harmonic inversion method. (f) Intensity of the band-limited signal |C(jτ)|2
corresponding to the Fourier transform of the filtered signal shown in (b), (c), (d) and (e). The black dash-
dotted line indicates the value 2K = 500 considered in this example.

or in Fig. 2.11(d), and (e) by the real Re{S21}, and imaginary parts Im{S21} of the
filtered signal shown in Figure 2.11(a). As expected up to this point, no guess about the
resonances that compose the signal can be done from the raw measurement. During the
harmonic inversion method, the complex spectrum is Fourier transformed to obtain the
band-limited signal whose intensity is plotted in Fig. 2.11(f). |C(jτ)| is characterized by
sharp peaks for small values of j, up to a certain limit (j ∼ 250 in this case). Such peaks
disappear and the signal falls below the level of noise. We use twice the value of this
transition to set the value of 2K needed in Eq. (2.40). Note that this value is different for
each case. The choice of K sets exactly the number of resonances that will be found by
the algorithm.

To ensure the robustness of the result, three different criteria are used to discriminate
spurious resonances recovered by the harmonic inversion. As a first criterion, the non linear
system (2.41) is solved twice, once by considering j = 0, . . . , 2K − 1 and, then with j =
1, . . . , 2K. Later, both results are compared, and the resonances depending on the choice
of j, or out of the limits of the filter, are discarded. The second discrimination is carried out
by considering that all resonances whose amplitude |Ak| < 10−8 GHz are the result of the
noise in the original signal, and are also discarded. Finally, only resonances with sufficient
resonance depth/height are taken into account. To do this, we compare the amplitude Ak

versus the width δνk of the resonance. Numerically we chose |Ak|/δνk > 10−4. The result
of the harmonic inversion after filtering with the three discriminating criteria is shown in
Fig. 2.11(b), (c), (d), and (e), where a reconstruction of the corresponding complex signal
is represented by the dashed indigo line. A good agreement between the original signal
and its reconstruction is observed. In this case, a total of 61 resonances were found in
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this interval, and their frequencies νk are plotted in Fig. 2.11(e) where each vertical blue
line represents a resonance. Note that having all parameters of a resonance also allows to
estimate the strength of its energy confinement via the quality factor Qk as

Qk = νk/δνk. (2.47)

2.4.3 The clustering

In all cases studied in this thesis (see Chapters 4 and 5), the transmitted signal is
measured in numerous positions thanks to the movable antenna (see Section 2.1, pp. 34).
Once we are able to find the parameters of the resonances that compose one complex
signal (for example Fig. 2.11), the harmonic inversion can be applied individually over
all measured spatial locations. Each resonance k extracted using the harmonic inversion
procedure is therefore associated with a position on the map (xk, yk) and can then be
represented in a 6-dimensional space. An example of the resulting data is shown in Fig. 2.12
for the same Golden-angle spiral, where resonance density maps (from dark blue to yellow)
are depicted. In Fig. 2.12, the spatial positions (a) xk and (b) yk as well as (c) the phases
arg{Ak}, (d) the widths δνk and (e) the amplitudes |Ak| of each resonance extracted by
the harmonic inversion are plotted as a function of the frequencies νk in a short frequency
window (8.42 ≤ νk ≤ 8.52). As a result of the high point density in certain regions,
different structures made up of clusters emerge. Such clusters are directly related with the
eigenmodes of the system and their correct identification and delimitation was previously
used to find the number of states carried by the system [81] [which is proportional to the
density of states (DoS)].

All resonances belonging to the same cluster should ideally posses the same frequency.
Due to the presence of the measurement antenna, the resonance frequencies extracted
at a given spatial position are affected differently and slightly shifted according to the
electromagnetic field intensity at that point [171]. By allowing the mobile antenna to
penetrate only slightly into the cavity, in practice 3 mm, this effect is reduced, but still
present [167]. Additionally to the presence of the antenna, small local variations in the
cavity height also modify the resonant frequencies. To reduce this effect, the distance
between plates is measured at different positions ensuring a variation < 1 mm. The
combination of these two effects explains the dispersion of the Lorentzian parameter values
observed in Fig. 2.12.

For the identification of all data points belonging to a certain cluster [see e.g. Fig. 2.12],
a density-based algorithm [172] is implemented. Specifically, we use a slightly modified
version of the C-DBSCAN algorithm [81], firstly proposed by Ruiz, Spiliopoulou, and
Menasalvas [172]. C-DBSCAN identifies point neighbourhoods in a D-dimensional metric
space and requires no a priori knowledge of the shape, number of points or data distribution
of the cluster. In our case, the metric space can be freely chosen as (x, y, ν), (x, y, ν, δν),
(x, y, ν, ln |A|), or (x, y, ν, δν, ln |A|) in order to obtain the best clustering results at the
desired frequency. In addition, each cluster must satisfy the constraint of not containing
two points with the same (x, y) coordinates. The procedure is highly efficient, but cannot
be fully automated. The main difficulties are of two kinds: (i) when the amplitude of the
resonances is of the order of noise, the harmonic inversion procedure fails; (ii) when two
or more clusters interpenetrate too densely, preventing their identification. The clustering
process can also be carried out by manually choosing the points belonging to a cluster.
However, in this way it is impossible to meet the condition of having only one point per
position.
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Figure 2.12: Spatial positions (a) xk and (b) yk, (c) phases arg{Ak}, (d) widths δνk and (e) logarithm of
the amplitudes |Ak| as a function of the frequencies νk extracted by the harmonic inversion. Density plots
allow the identification of modes and regions with high-density of resonances. Brown and pink dots show
two different examples of clusters.

2.4.4 Reconstruction of the modes

After selecting a given cluster [see, e.g., brown dots in Fig 2.13(a) for the same Golden-
angle spiral], a phase rotation is applied on the complex amplitudes Dk = eiαAk such that
their real and imaginary parts become independent variables ⟨Re{Dk} Im{Dk}⟩ = 0 [173].
We have

Re{Dk} = Re{Ak} cosα− Im{Ak} sinα,

Im{Dk} = Im{Ak} cosα+ Re{Ak} sinα,
(2.48)

〈
Re{Ak} Im{Ak} cos 2α+

1

2

(
Re{Ak}2 − Im{Ak}2

)
sin 2α

〉
= 0 (2.49)

tan 2α = − 2 ⟨Re{Ak} Im{Ak}⟩
⟨Re{Ak}⟩2 − ⟨Im{Ak}⟩2

. (2.50)
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Fig. 2.13(b) illustrates the effect of rotation in the complex plane when applying Eq. (2.50).
The existence of a phase reference allows to represent the complex mode through its signed
amplitude

Ek = |Dk|sgn [Re (Dk)] . (2.51)

The spatial modal structure [Eq. (2.51)] of the cluster shown in Fig. 2.13(a) and (b) is
then reconstructed in Fig. 2.13(c).

6.60 6.65

νk [GHz]

−10

−8

−6

−4

−2

ln
(|A

k
|)

(a)

−0.01 0.00 0.01

Re

−0.010

−0.005

0.000

0.005

0.010

Im
(b)

Ak
Dk 50 mm

(c)

-1

-0.5

0

0.5

1

E
k

Figure 2.13: (a) Density plot of the amplitudes |Ak| as a function of the frequencies νk, extracted via
the harmonic inversion. Brown dots represent one selected cluster. (b) Real and imaginary parts of the
complex amplitudes Ak (brown dots) and Dk (blue dots) [see Eq. (2.48)]. The amplitude Ak is directly
extracted from (a) while Dk is its corresponding phase rotated amplitude. (c) Spatial structure of the
cluster shown in (a) after the rotation.

2.4.4.1 The Spatial Autocorrelation Function

The ability to recover the spatial distribution of states can lead to wonder about the
specific shape of the radial decay (see Chapter 4 for a detailed analysis). For instance,
Anderson localized modes are characterized by an exponential radial decay with respect
to the “center” of the state. However, it is precisely the lack of a preferred center in
disordered systems, and consequently in their eigenmodes that prevents the
unambiguous determination of the radial decay of the state amplitude. In this case, the
most suitable quantity for correctly study the decay law of those modes is given by the
spatial autocorrelation [16], with the property of being centered at the origin. In 2D, the
spatial autocorrelation function is defined as

Cor(Ek)(x′, y′) =

∫ ∞

−∞

∫ ∞

−∞
E∗

k(x, y)Ek(x+ x′, y + y′) dx dy . (2.52)

where the Wiener-Khinchin theorem allows to reinterpret Eq. (2.52) in terms of the Fourier
transform of the complex amplitude Ek as

Cor(Ek) =
∣∣∣F−1

{
|F {Ek}|2

}∣∣∣ . (2.53)

For instance, Fig. 2.14(a) shows an eigenmode found in a 2D disordered system (this
point pattern is studied in detail in Chapter 4). As mentioned before, the state lacks
of a well defined center, however its autocorrelation function Cor(Ek) [see Fig. 2.14(b)]
is peaked by definition at the origin of the reference system. The radial decay function
of the mode can then be computed using the spatial autocorrelation [see Fig. 2.14(c)],

here r′ =
√
x′2 + y′2 is the radial coordinate of the autocorrelation space, and (x′, y′) the
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corresponding Cartesian coordinates. Note that in the particular case of an exponential
function, Eq. (2.53) allows us to prove that

Cor(Ek) ∝ e−r′/ξloc , (2.54)

where ξloc is the localization length which can thus be extracted from the experimental
data.
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Figure 2.14: (a) Spatial modal structure, (b) spatial autocorrelation function, and (c) radial profile of the
spatial autocorrelation of a mode found in a disordered system. The amplitude map (a) is normalized such
that max(|Ek|) = 1. Radial decay (purple dots) is obtained by performing an angular average operation
in the autocorrelation space (r′ is measured from the well defined autocorrelation center).

2.4.5 Simulating a temporal pulse

Dynamical electromagnetic transport properties can be probed by measuring the
temporal evolution of a pulse in the system. Despite that the continuous signal injected
by the VNA is inadequate to develop this task, time-domain analysis is still possible
indirectly by the Fourier transform of the measured signals. At a given position r, the
propagating signal driven by a certain superposition of modes can be obtained by
Fourier transforming the original complex transmission signal as

Sf0,∆ω
21 (r, t) = F

{
S21(r, ν) × F f0,∆ω(ν)

}
, (2.55)

where F {·} represents the Fourier-transform and F f0,∆ω(ν) a band-pass filter of bandwidth

∆ω centered around f0. The time-domain transmitted signal Sf0,∆ω
21 (r, t) directly depends

on the shape of the band-pass filter. To avoid windowing effects on the Fourier-transform,
we use two different filters in this thesis: a Gaussian filter and a Hanning filter.

Figures 2.15(a) and (c) shows the two different filters in the frequency domain. The
respective Fourier transform of the filters correspond to the time-domain excitation
induced into the system [see Figures 2.15(b) and (d)]. Note that even though the two
filters seem to be quite similar, their characteristic bandwidths are different. Despite
that more than 95% of the area of the Gaussian filter is in the interval
[f0 − 2∆, f0 + 2∆], it is also characterized by infinite long tails. On the contrary, the
Hanning filter is zero for all values out of the interval [f0 − ∆/2, f0 + ∆/2]. Temporal
analysis by Fourier transforming the transmission signals using a Gaussian filter has
been previously used to identify the different transport regimes in 2D stealthy
hyperuniform disordered systems [81].
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Figure 2.15: (a) Gaussian band-pass filter characterized by f0 = 7.5 GHz and ∆Ω = 0.02 GHz. (b)
Gaussian temporal pulse corresponding to the filter in (a). (c) Hanning band-pass filter characterized by
f0 = 7.5 GHz and ∆Ω = 0.1 GHz. (d) Hanning temporal pulse corresponding to the filter in (c).

2.4.6 The experimental Density of States

As the harmonic inversion and clustering techniques (see Sections 2.4.2 and 2.4.3)
are unable to extract all the resonances within the entire frequency domain, we have to
deal with an incomplete set of resonances, and thus cannot build correctly the density of
states. Yet this quantity is of crucial interest to identify different transport regimes [79].
Fortunately, due to its connection with the singularities of the Green’s function, the Local
Density of States (LDoS) at position r is written as [174]

LDoS(r, ν) =
∑
k

∣∣ψk(r)2
∣∣δ(ν2 − ν2k),

=
1

π

∑
k

|ψk(r)|2Γ2
k

(ν2 − ν2k)2 + Γ4
k

,

= − 1

π
Im{G(r, ν)},

(2.56)

where

G(r, ν) =
∑
k

|ψk(r)|2
ν2 − ν2k + iΓ2

k

. (2.57)

Similarly, using once again the Breit-Wigner decomposition [Eq. (2.35)] [167] and
assuming a constant antenna coupling σ in the complete frequency range, any reflection
term of the scattering matrix at position r is written

Sii(r, ν) = 1 − iσ
∑
k

|ψk(r)|2
ν2 − ν2k + iΓ2

k

, (2.58)

Straightforwardly, considering Eq. (2.56) and the real part of Eq. (2.58) leads to [113]

LDoS(r, ν) =
1

πσ
[1 − Re{Sii(r, ν)}] , (2.59)
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where the prefactor 1/ (πσ) can be neglected by renormalizing (rescaling) the
wavefunctions ψk [164]. Finally, the density of states (DoS) can be obtained by averaging
the LDoS over all measured positions

DoS(ν) = ⟨LDoS(r, ν)⟩all positions = 1 − ⟨Re{Sii(r, ν)}⟩all positions . (2.60)

Note that the LDoS reconstruction via the scattering matrix does not rely on the perfect
knowledge of all individual resonances.

As previously explained in Section 2.1, before each measurement session, the VNA is
recalibrated to correct the phase and amplitude modulation of propagating waves inside
the cables. However, the effects of the antennas and the surrounding near- and far-fields
coming from the aluminium plates are still present. To solve this, two different methods
are implemented depending on the polarization of the electromagnetic field and both are
explained in the following Sections.

2.4.6.1 Baseline calibration (TE polarization)

For TE polarization and frequencies below the TE1 cutoff limit (tight-binding type
systems), the far-field contribution can be neglected. Thus, the ideal reflection spectrum
of the system in a position r can be assumed to be S(r, ν), while the antenna and near-field
modulations at the same point can be represented as m(r, ν) [164], leading to a measured
signal

Sii(r, ν) = m(r, ν)S(r, ν)m(r, ν) = m2(r, ν)S(r, ν). (2.61)

Then, by expecting the empty cavity to be characterized by Sempty(r, ν) = 1, the
modulation can be obtained as Sempty

ii (r, ν) = m2(r, ν). Consequently, the reflection
spectrum is corrected by simply measuring the empty cavity at the same positions and
then computing the complex ratio

S(r, ν) = Sii(r, ν)/Sempty
ii (r, ν). (2.62)

For instance, Fig. 2.16 depicts the complex reflected spectrum S11 in a certain
position of a honeycomb array in the tight-binding approximation (this system is studied
in detail in Chapter 5). As it can be observed for the amplitude [see Fig. 2.16(a)], the
introduction of the empty cavity modulation effectively removes the oscillating
background phase, resulting an almost flat baseline. On the other hand, Figs. 2.16(c)
and (d) reveal that the real and imaginary parts of the signal are in fact carried by an
envelope which has been identified to be related with the effective length of the
antenna [164].

2.4.6.2 Weakly coupled antennas regime (TM polarization)

Differently to the previous situation, the presence of propagating modes in the cavity
(TM0 or higher order, as well as TE1 or higher order) promotes far-field reflections where
the preceding model leads to inconsistencies (for example negative values of the LDoS).
Nevertheless, thanks to the fact that the antennas are weakly coupled, one can approximate
the LDoS in Eq. (2.59) and remove the global frequency factor at the same time [164]. We
have

|Sii(r, ν)|2 = 1 − 2σ
∑
k

|ψk(r)|2δνk
2

(ν2 − ν2k)2 + Γ4
k

+ σ2
∑
k,k′

(
|ψk(r)|2

ν2 − ν2k + Γ2
k

× |ψk′(r)|2
ν2 − ν2k′ + Γ2

k′

)
,

(2.63)
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where consider σ2 ≪ 1 leads to

1 − |Sii(r, ν)|2 ≈ 2σ
∑
k

|ψk(r)|2Γ2
k

(ν2 − ν2k)2 + Γ4
k

. (2.64)

Finally, Eq. (2.64) allows to write Eq. (2.59) as

LDoS(r, ν) ≈ 1

2πσ

[
1 − |Sii(r, ν)|2

]
, (2.65)

where the prefactor 1/ (2πσ) can be once again neglected by renormalizing (rescaling) the
wavefunctions ψk.
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3

The localization landscape for
tight-binding Hamiltonians

Madre le dijo: “Todos somos hijos de la luz,

el mundo es tuyo, haz con él lo que te plazca,

pero nunca olvides que le debes mostrar gratitud

y preservar su luz para el próximo que nazca...”

Sharif (Serlo todo)
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Chapter 3

As mentioned in Section 1.1.3, the aim of this Chapter is to extend the localization
landscape theory to electromagnetic systems, and therefore to develop an approach
applicable to our experimental setup introduced in Chapter 2. The Chapter is organized
as follows: Section 3.1 provides a theoretical analysis of the localization landscape
applicability onto the vector Maxwell’s equations and the corresponding TM and TE
polarizations. Later, in Section 3.2 the localization landscape approach is successfully
extended to a broad class of 1D and 2D tight-binding lattices where localization appears
in the two band-edges. The low-energy part of the spectrum is described by a discrete
extension of the localization landscape in continuous systems. Meanwhile for the
high-energy part of the spectrum, there are proposed two different procedures depending
on the symmetries of the energy band. Part of the content of this Chapter forms the
main body of Ref. [27].

3.1 Classical electromagnetic waves

We start by considering a linear, frequency-independent non-magnetic medium with
random permittivity ϵ(r). For a system without sources, the Maxwell-Faraday and the
Ampère-Maxwell equations are respectively written [162]

∇×E(r, t) = −∂tB(r, t), (3.1)

1

µ0
∇×B(r, t) = ∂tD(r, t), (3.2)

where B(r, t) is the magnetic field and E(r, t) the electric field. Additionally, the
displacement vector D(r, t) is related to the electric field and the random permittivity by

D(r, t) = ϵ0ϵ(r)E(r, t), (3.3)

with µ0 and ϵ0 the permeability and the permittivity of the vacuum, respectively.
A Shrödinger-like equation independent of the magnetic field can be obtained by

computing the curl of Eq. (3.1) and then substituting Eq. (3.2) and Eq. (3.3) into it

∇× [∇×E(r, t)] = −ϵ(r)

c20
∂2tE(r, t), (3.4)

where, c0 = 1/
√
µ0ϵ0 is the speed of light in the vacuum. Identically, the magnetic field

equation can be obtained by substituting Eq. (3.3) into Eq. (3.2) and then computing the
curl

∇×
[

c20
ϵ(r)

∇×B(r, t)

]
= ∂t∇×E(r, t). (3.5)

The subsequent substitution of Eq. (3.1) leads to

∇×
[

c20
ϵ(r, t)

∇×B(r)

]
= −∂2tB(r, t). (3.6)

Finally, one can remove the time-dependence by considering monochromatic fields
E(r, t) = E(r)e−iωt [B(r, t) = B(r)e−iωt] in Eq. (3.4) [Eq. (3.6)]. We have

1

ϵ(r)
∇× [∇×E(r)] =

ω2

c20
E(r), (3.7)

∇×
{

1

ϵ(r)
[∇×B(r)]

}
=
ω2

c20
B(r). (3.8)
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The main mathematical difference between the Schrödinger equation (1.4) and both
Eqs. (3.7) and (3.8) is the vector character of the electromagnetic fields. This fact increases
the number of field components to calculate, and as a consequence, the complexity of the
problem. In addition, the role of both disordered terms V [in Eq. (1.4)] and ϵ(r) [in
Eqs. (3.7) and (3.8)] is completely different. While electromagnetic equations present a
disordered term as part of the differential operator, in Eq. (1.4) the potential V is simply
summed to the Laplacian term.

Despite Eqs. (3.7) and (3.8) have both a vector character, they remain different from
each other. For instance, whilst the magnetic operator is Hermitian, the electric one lacks
this property. Therefore the eigenfunctions E(r) could not construct an orthogonal basis.
One can write the differential magnetic operator in Eq. (3.8) as

∇×
{

1

ϵ(r)
[∇×]

}
= ∇ 1

ϵ(r)
× [∇×] +

1

ϵ(r)
∇× [∇×] , (3.9)

whose second term is equal to the operator of Eq. (3.7).

3.1.1 The electric field

The first step to correctly construct a valid localization landscape for the electric field
is to find a Hermitian operator. To do that, the change of variable F(r) =

√
ϵ(r)E(r) is

proposed [175]. Then, by substituting into Eq. (3.7) we obtain

1√
ϵ(r)

∇×
[
∇× F(r)√

ϵ(r)

]
=
ω2

c20
F(r), (3.10)

where the operator 1√
ϵ(r)

∇×
[
∇× 1√

ϵ(r)

]
is Hermitian and the eigenvalues ω2/c20 are real

positive numbers. Additionally, the functions Fm construct an orthogonal basis with the
conditions ∫

Ω
Fm(r) · Fn(r) dr =

∫
Ω
ϵ(r)Em(r) ·En(r) dr = δn,m. (3.11)

However, Eq. (3.10) is a vector differential equation whose spatial components are coupled.
Unfortunately, to the best of our knowledge, no vector landscape has been previously
defined, pushing this problem out of the scope of this work. Even so, by imposing some
suitable spatial conditions, the differential equation (3.7) presents symmetries that allow
to investigate the scalar character of the electric field.

3.1.2 TM polarization

To reduce the vector electromagnetic field into a scalar one, we restrict E(r) to be
normal to the x̂ − ŷ plane. This condition is known as transversal-magnetic (TM)
polarization and it can be directly studied in our experimental setup (see Section 2.1.1).
By chosen the electric field as E(r) = E(x, y)ẑ, Eq. (3.7) becomes

− 1

ϵ(r)
∆x̂,ŷE(x, y) =

ω2

c20
E(x, y), (3.12)

with − 1
ϵ(r)∆ known to be non Hermitian and ∆x̂,ŷ = x̂∂x+ŷ∂y. Once again, the hermiticity

of the operator can be recovered by introducing a scalar version of the previous change
of variable F (x, y) =

√
ϵ(r)E(x, y). The final equation whose differential operator is

Hermitian reads as follows

− 1√
ϵ(r)

∆x̂,ŷ

[
F (x, y)√
ϵ(r)

]
=
ω2

c20
F (x, y). (3.13)
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Thus, it allows us to define a scalar landscape function ue as

∆x̂,ŷ

[
ue√
ϵ(r)

]
= −

√
ϵ(r). (3.14)

where the localization subregions are determined by

ue > c20/ω
2. (3.15)

The efficiency of the approach can be tested by solving numerically Eqs. (3.13)
and (3.14), and then recovering the electric field functions. Fig. 3.1 displays (a) a 1D
random permittivity, (b) the localization landscape associated to it, computed according
to Eq. (3.14), (c) the eigenfunctions Fn of Eq. (3.13), and (d) the electric field functions
En recovered from Fn and ϵ. Note that despite the randomness of ϵ, the localization
landscape shows a structure similar to the one calculated in the case of a system whose
permittivity is constant. As a result, localization subregions are extended over the whole
domain, leading to delocalized eigenfunctions Fn. Similarly to the localization landscape,
the states Fn follow the permittivity structure on well extended envelopes. The
reconstructions of the electric modes removes this permittivity dependence revealing the
actual shape of the envelopes. As for Fn, the states En are completely delocalized and
they correspond to box modes in a homogeneous material. Therefore, the random
permittivity behaves as an effective medium where the smallest-frequency modes are not
localized.
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Figure 3.1: (a) Random permittivity ϵ for a one-dimensional system of L = 1000 sites with Dirichlet
boundary conditions. The value of the permittivity is constant in intervals of 10 sites, in which each value
is taken from a uniform random variable between 1 and 10. (b) Electric localization landscape ue computed
from Eq. (3.14). Horizontal color dashed lines indicate the values c20/ω

2 for the four first eigenstates. (c)
Four eigenfunctions Fn of lowest frequencies. (d) Four eigenfunctions En relative to Fn in panel (c). States
are characterized by frequencies: ω1 = 406 kHz, ω2 = 846 kHz, ω3 = 1.245 MHz, and ω4 = 1.622 MHz.
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3.1.3 The magnetic field

In contrast with the electric field case, the operator applied to the magnetic field

∇ ×
[

1
ϵ(r)∇×

]
is directly Hermitian. However, the spatial components of the field are

also coupled in this case, preventing the definition of a localization landscape. Thus, we
proceed to impose suitable spatial conditions to transform Eq. (3.8) into a scalar equation.

3.1.4 TE polarization

Similarly to what was shown for the electric field, we now restrict the magnetic field
B(r) to be normal to the x̂ − ŷ plane. This polarization is known as transversal-electric
(TE) polarization and as discussed in Section 2.2.1.2, can be also studied in our
experimental setup for sufficiently high frequencies or large distances between plates.
The magnetic field is then expressed as B(r) = B(x, y)ẑ, leading to

−∇x,y ·
[

1

ϵ(r)
∇x,yB(x, y)

]
=
ω2

c20
B(x, y), (3.16)

where −∇ ·
[

1
ϵ(r)∇

]
is Hermitian. Subsequently, the magnetic localization landscape is

expressed as

−∇x,y ·
[

1

ϵ(r)
∇x,yub

]
= 1, (3.17)

with localization subregions determined by

ub > c20/ω
2. (3.18)
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Figure 3.2: (a) Random permittivity ϵ for a one-dimensional system of L = 1000 sites with Dirichlet
boundary conditions. The value of the permittivity remains constant in intervals of 10 sites, in which each
value is taken from a uniform random variable between 1 and 10. (b) Localization landscape ub computed
from Eq. (3.17). Horizontal color dashed lines indicate the values c20/ω

2 for the four lowest eigenenergies.
(c) Four lowest frequency eigenfunctions Bn. States are characterized by frequencies: ω1 = 403 kHz,
ω2 = 811 kHz, ω3 = 1.192 MHz, and ω4 = 1.669 MHz.
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Given the similarity between Eqs. (3.14) and (3.17), an analogous behavior can be
expected. As previously, Eqs. (3.16) and (3.17) are solved numerically for the 1D
disordered permittivity shown in Fig. 3.2(a). Similarly to the TM polarization example,
the magnetic localization landscape [see Fig. 3.2(b)] remains extended along the whole
domain. As a consequence the localization subregions cover most of the space, leading to
extended delocalized magnetic eigenfunctions [see Fig. 3.2(c)]. As for the electric case,
the lowest frequency states are not affected by the random permittivity.

3.1.5 Localization at high frequencies

The origin of the delocalization of electromagnetic waves at low frequency can be
understood from the definition of the localization subregions [Eqs. (3.15) and (3.18)],
where for ω → 0, the localization subregion goes to infinity. Nevertheless,
electromagnetic localization can be still achieved at higher frequency. To illustrate this,
Fig. 3.3 displays the four states with highest eigenfrequency for (a) TM and (b) TE
polatizations. Unfortunately, the current localization landscape approach for continuous
systems is still incapable to make predictions for states far away from the lowest
bandedge. Therefore, defining a localization landscape in the most general
electromagnetic case as well as in the two scalar simplifications, settled by TM and TE
polarization, remains open.
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Figure 3.3: (a) Four electric eigenmodes En with large frequencies: ω996 = 546 MHz, ω997 = 547 MHz,
ω998 = 548 MHz, and ω999 = 562 MHz; (b) Four eigenmodes Bn with largest frequencies: ω996 = 555 MHz,
ω997 = 561 MHz, ω998 = 563 MHz, and ω999 = 566 MHz.

3.2 Tight-binding lattices

As shown in the Section 2.2, the field induced by loop antennas (TE polarization)
together with the presence of both aluminum plates allows our experimental setup to
mimic a tight-binding system (see Appendix A). This fact opens a new possibility to
develop a suitable localization landscape for our experimental setup. A general tight-
binding Hamiltonian Ĥ is defined as

Ĥ =
∑
n

Vna
†
nan −

∑
n,m

tnm

(
a†nam + h.c.

)
. (3.19)

where Vn is the on-site potential at position n, tnm is the energy of the coupling between
the sites n and m, and a†n (an) is the creation (annihilation) operator of a particle in the
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site n. Additionally, the second sum is carried out only over the nearest neighbours of
n, which usually are the closest ones. In such discrete systems, the eigenvalue problem is
reduced to the solution of a set of linear equations. From Eq. (3.19), we can write

−
∑

m∈⟨n⟩
tnmψm + Vnψn = Eψn, (3.20)

where ψ ≡ (ψn)n∈[1,N ] is the wave function defined on the sites of the lattice (labeled from
1 to N), and ⟨n⟩ indicates the ensemble of nearest neighbours of site n. In the following,
we assume that tnm = 1, thus setting the energy unit. In the same way, for the on-site
energies we have Vn = Vmaxνn, where νn is an i.i.d random variable with uniform law in
[−0.5, 0.5], and Vmax being therefore the disorder strength.

3.2.1 The two sets of localized states

Let us start our study by presenting results on the honeycomb lattice. Figs. 3.4(a)
and 3.4(b) show this lattice and its celebrated dispersion relation in the tight-binding
approximation, respectively1. We solve the set of equations defined in Eq. (3.20) on the
honeycomb lattice, with the on-site potential depicted in Fig. 3.4(c) and Vmax = 3. In
Fig. 3.4(d) are displayed the first four eigenstates which, as expected for a random
potential, exhibit a finite spatial extension typical of Anderson-localized modes, which in
turn can be contrasted with the extended electromagnetic states studied in the previous
section. At the other end of the spectrum, Fig. 3.4(e) illustrates a feature that has no
continuous counterpart: the existence of high-energy localized modes (the last four
eigenstates are displayed in the example). This phenomenon is well known for instance
in the case of 3D Anderson localization on a cubic lattice at low disorder strength, in
which the spectrum of the Hamiltonian is symmetric in the range
[−6 − Vmax/2; 6 + Vmax/2] and exhibits a transition (the mobility edge) between localized
and delocalized states at both ends [43].

In the following, we show how to build the two discrete localization landscapes which
accurately predict the location of the localized modes near the two band edges (low and
high energy), as well as their energies, without solving Eq. (3.20). We then generalize this
method to a wide class of 2D lattices.

3.2.2 The discrete localization landscapes

Previously, Lyra, Mayboroda, and Filoche [176] have studied a 1D linear chain with
nearest-neighbour coupling and have shown that positions of the localized modes are given
by two different localization landscape. The low energy landscape is straightforwardly
obtained by solving the analog of Eq. (1.9) in the discrete setting, i.e.,

Ĥu = 1, (3.21)

with u ≡ (un)n∈[1,N ], 1 a vector filled with 1 and fulfilling the same boundary conditions
than the eigenvalue problem. Another localization landscape, called the dual localization
landscape, gives the position of the envelope of the highly oscillating, high-energy, wave
functions. The existence of the two discrete localization landscapes have been also
extrapolated to 2D square arrays [177, 178]. More recently, Wang and Zhang [179] have
proven mathematically that, in any dimension, the reciprocals of these discrete
landscapes act indeed as effective confining potentials in a tight-binding system at both
low- and high-energy regimes, respectively. Nevertheless, a complete generalization for

1The band calculations shown in this work are calculated using the PythTB Python package by S. Coh
and D. Vanderbilt
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Figure 3.4: (a) The honeycomb lattice. (b) Band structure of the honeycomb lattice. (c) Plot of the
random potential Vn/Vmax = νn. (d) Eigenmodes with the four lowest eigenvalues of a honeycomb lattices
with on-site disorder, N = 964 sites and Vmax = 3. (e) Eigenmodes with the four highest eigenvalues of
Eq. (3.20).

non-squared 2D materials [180] (see also Ref. [181] and the related collection of papers),
where some of the results cannot be directly anticipated, is still missing.

Figure 3.5(a) shows the reciprocal of the localization landscape, 1/u ≡ (1/un)n∈[1,N ]

computed on the honeycomb lattice with the on-site disorder depicted in Fig. 3.4(c). Note
that a shift Ĥ → Ĥ + Vshift, with Vshift = 3 + Vmax/2, has been performed in (3.21) to
ensure a positive definite Hamiltonian. As already observed for continuous systems, the
role of effective confining potential played by 1/u is revealed through its basins, labelled
following their depth in Fig. 3.5(a). Indeed, one can observe the correspondence between
the deepest wells of 1/u and the positions of the first eigenmodes plotted in Fig. 3.5(b). As
analyzed in the Section 1.1.3.4 as well as by Arnold et al. [59] for the continuous setting,
two almost-equal eigenvalues can lead to a different ordering in the values of the minima
of 1/u, thus inducing a mismatch in the correspondence. This effect, which does not
affect the ability of the landscape to predict the position of localized modes, is visible in
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Figure 3.5: (a) Inverse of the localization landscape calculated for the system as in Fig. 3.4 (c) where
the four lowest minima are numbered. (b) Eigenmodes with the four lowest eigenvalues of a honeycomb
lattices with on-site disorder, N = 964 sites and Vmax = 3.
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Fig. 3.5(a) and (b) with the first and fourth eigenstates and minima, and is analyzed in
detail for these discrete settings in Section 3.2.5.

3.2.3 High-energy landscape for symmetrical DoS

On the other hand, the high-energy situation is much more intricate. The symmetry
of the honeycomb lattice allows us a straightforward derivation of the landscape governing
the high-energy localized states, namely the dual localization landscape. Indeed, the tight-
binding Hamiltonian (3.19) can be decomposed into Ĥ = Ĥ0 + V̂ , where Ĥ0 stands for the
uniform honeycomb lattice with zero on-site energy, and V̂ accounts for the disordered
on-site potential. The unperturbed part of the Hamiltonian displays the usual chiral
symmetry for a bipartite lattice, ΣzĤ0Σz = −Ĥ0, where the Pauli-like matrix Σz acts on
the sublattice degree of freedom: it keeps the amplitudes on the A sites fixed but inverts
those on the B sites (Σz = PA − PB, the difference between the respective projectors on
the two sub-lattices). Due to the diagonal nature of the disordered potential, the complete

Hamiltonian obeys the symmetry Σz

(
Ĥ0 + V̂

)
Σz = −

(
Ĥ0 − V̂

)
. The latter property is

exemplified in Fig. 3.6: unlike the DoS of the uniform lattice, the DoS of a given realization
of the disordered system is not symmetric with respect to the origin, but the DoS obtained
by inverting the sign of all on-site energies is the exact symmetric of the original situation.

Let us call ϕ ≡ (ϕn)n∈[1,N ] the eigenstates of the inverted Hamiltonian ordered by
increasing eigenvalues. The low-energy states of the inverted Hamiltonian now correspond
to the high-energy states of the original Hamiltonian through ϕ = Σzψ. Since the high-
energy eigenstates oscillate with a period equal to the nearest-neighbour distance, the new
low-energy states appear as “demodulated” versions of their high-energy counterparts, see
Fig. 3.7(b) and (c). We can now therefore use the localization landscape for the inverted
system, but with u⋆ being now the solution to Ĥ⋆u⋆ = 1 with

(Ĥ⋆ϕ)n = −
∑

m∈⟨n⟩
ϕm + (Vshift − Vn)ϕn. (3.22)

In the example of Fig. 3.7(a), one can clearly see how the deepest wells (which are different
from the low-energy wells) pinpoint the locations of the localized states.

As discussed in Section 1.1.3.3, the localization landscape also provides accurate
estimates of the localized eigenvalues in the continuous setting [59]. However, the
generalization of the simple Eq. (1.19) to tight-binding Hamiltonians has never been
studied beyond the simple cubic lattice, nor its extension to the higher part of the
spectrum. We plot on Fig. 3.8(a) [resp. 3.8(b)] the lowest [resp. highest] eigenvalues of
Eq. (3.20) versus the local minimum values of the effective potential 1/u [resp. 1/u⋆] at
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Figure 3.6: Density of state of the honeycomb lattice without and with disorder [see Fig. 3.4(c)].
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the position of localized eigenstates for a honeycomb lattice with N = 2135 sites and for
a given disorder Vmax = 3. Each scatter plots corresponds to 100 realizations of the
disordered potential. In both cases, a direct proportionality is clearly observed for the
lowest part of the plots, with Pearson coefficients of the linear regression close to 0.99.
Note also that in order to obtain this proportionality (which is more than a simple linear
dependency), one has to choose Vshift so that the shifted potential has a minimum value
close to zero, being Vshift = 3 + Vmax/2 in the two, localization and dual localization
landscapes, cases. These observations indicate that the discrete low-energy localization
landscape performs as well as its continuous analog in predicting energy and spatial
distribution of localized modes without resolving an eigenvalue equation. Moreover, the
high-energy dual landscape also exhibits the same properties.

From Fig. 3.8(a), and (b), one can also observe that the quality of the linear
proportionality can be affected by the number of eigenvalues and minima of the
confining potential considered during the analysis. In Figs. 3.8(c) and (d), we plot the
Pearson coefficient ρ of the linear regression as a function of the number of minima taken
to compute the slope considering different values of Vmax for the same 100 honeycomb
lattice realizations. We see that whatever the disorder, the maximum correlation is
always obtained when we chose the ∼ 3% of states with the lowest (or highest)
eigenvalues. However, both cases present values larger than 0.84 even for the 10% of
states. The linear regression stops evolving and shows a flat behavior when the number
of mimina considered in the analysis exceeds the actual number of minima of the
potential.

Beyond the honeycomb lattice, this spectrum inversion strategy can be deployed for
others lattices with symmetric band structure. In Table 3.1, we list the set of the different
lattices studied, together to the symmetry of their DoS. Note that the energy shift needed
to avoid negative eigenvalues Vshift is also different for each lattice. Since the disordered
term is given as Vn = Vmaxνn with νn an i.i.d. random variable with uniform law in
[−0.5, 0.5], the energy shift for the localization landscape is defined as Vshift = −min(E) +
Vmax/2 where E is the energy of the system without disorder at zero on-site energy. On the
other hand, in the case of the dual localization landscape, we use Vshift = max(E)+Vmax/2.
All considered values for different lattices are also shown in Table 3.1. We have to point
out that for the 1D chain with 2nd neighbours coupling, the energy is given by

E = −2 [t1 cos (kxa) + t2 cos (2kxa)] , (3.23)

where the corresponding kmax is the solution of the transcendental equation

t1 sin (kxa) = −2t2 sin (2kxa). (3.24)
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Figure 3.8: (a) Proportionality between min (1/u) and E for the lowest energies. The blue dots correspond
to the 3% states of lowest energy for 100 different configurations, the orange dots to the 3-5%, and the
purple dots to the 5-7%, respectively. The black line corresponds to a linear fit of the pink dots, the slope
s and the Pearson coefficient ρ being given in the frame. (b) Proportionality between min (1/u⋆) and
(Vshift −E) for the highest energies. Similar plot to (a), but for the states of highest energy. [(c) and (d)]
Pearson correlation coefficient as a function of number of minima taken into account for the honeycomb
lattice with different strengths of disorder Vmax. (c) The landscape prediction. (d) The dual landscape
prediction using the symmetry of the band structure. The linear regression quality do not evolve when the
number of minima considered is larger than the actual number of minima of 1/u (1/u⋆).

For this lattice, values shown in Table 3.1 correspond to the particular case t2 = t1/
√

8.
To quantify the strength of the disorder unequivocally for different lattices, the

parameter Vmax is not the best suited. Indeed, for a given value of Vmax, the relative
weight of the potential term in (3.20) compared to the kinetic term depends on the
connectivity of the discrete Laplacian

∑
m(ψm − ψn). The number of edges of the graph

on which this operator is relying is given by the number of nearest-neighbour couplings,
which itself depends on the elementary motif of each given lattice. Therefore, we will use

Table 3.1: DoS symmetry for the different lattices studied. Smallest and largest eigenvalues of the tight
binding Hamiltonian without on-site potential and with Vshift = 0. The couplings are all t = 1, except for
1D dimer chain and the 1D chain with 2nd neighbour coupling cases where they are explicitly written.

Lattice DOS Sym? −min(E) max(E)

1D chain y 2 2
1D dimer chain y t1 + t2 t1 + t2

1D chain with 2nd neighbour coupling n 2 (t1 + t2)
√

2t1
Square y 4 4

Lieb y
√

8
√

8
tts n 5 3

hexagonal n 6 3
Honeycomb y 3 3

Kagome n 4 2
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a less contingent quantity, namely the inverse participation ratio (IPR) defined for a
given eigenvector ψ(j) as

IPRj =
∑
n

∣∣∣ψ(j)
n

∣∣∣2/(∑
n

∣∣∣ψ(j)
n

∣∣∣2)2

. (3.25)

The IPR is a conventional quantity used to measure the localization of a state.
Specifically, it measures the number of sites in the lattice that contribute significantly to
a mode by means of two asymptotic values

IPR →
{

0 for a maximally extended states
1 for a maximally localized states

(3.26)

In Fig. 3.9, we plot 2D histograms showing the eigenstates density in the eigenvalues-IPR
plane for two values of Vmax in the honeycomb and hexagonal lattices. We clearly see the
more localized states for higher disorder, and the asymmetry of the density of states for
the hexagonal lattices.

The proportionality between the energies and the inverse of the localization
landscape (dual localization landscape) minima can be then obtained for a large variety
of “canonical” lattices (1D: chain, dimer chain, chain with second-neighbour coupling;
2D: square, honeycomb, Lieb, hexagonal, Kagome, tts [182]) and in a wide range of
strength disorder. In Figure 3.10 we consider the first (a) and last (b) 3% of the
eigenstates to compute the slopes, that are plotted versus the mean IPR corresponding
to the same 3% of the eigenstates.

With one noticeable exception for the Lieb lattice, the values of the slope s appear to
evolve continuously between s = 1 + D/4 and s = 1, both for the lowest and the highest
eigenvalues [see Fig. 3.10(a) and 3.10(b)]. Moreover, all the curves bunch into two smooth
master curves, one for each space dimension. In the weak disorder limit, i.e. ⟨IPR⟩ → 0,
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Figure 3.9: 2D histogram showing how the eigenvalues and the IPR are distributed at [(a) and (b)] low-
and [(c) and (d)] high-disordered strength.
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Figure 3.10: (a) Slope s for the low-energy states, for different lattices in 1D (squares) and 2D (circles).
Each symbol corresponds to a disorder strength Vmax, but instead of reporting Vmax on the horizontal axis,
we chose to use the average value of the IPR which is a better comparison parameter across different lattices.
The dashed horizontal lines show the limits expected in the continuous case from Eq. (1.19). (b) Similar
plot to (a) for the highest-energy states in the DoS symmetric case. The black circle corresponds to the
cases displayed in Fig. 3.8.

that is to say when the influence of the disordered potential is small compared to the
Laplacian term, localized eigenfunctions and localization subregions are well distributed
along a large number of sites, fulfilling the assumption that the localization landscape
(dual localization landscape) is approximated by a quadratic bump-like function. As a
consequence, one can reasonably expect that the continuous result of Eq. (1.19) still holds
for both the lowest and the highest part of the spectrum. This is indeed observed: the
slopes fall on the (1+D/4) limit for ⟨IPR⟩ → 0. In the other limit case, when the disorder
is so strong that an eigenstate is localized on a single site (⟨IPR⟩ → 1), the localization
landscape (dual localization landscape) is essentially supported locally on the same site.
Since the eigenstate and the localization landscape are locally proportional, Eq. (3.21) at
the only site n supporting the wave function therefore becomes Hun = 1 ≈ Eun, hence
E ≈ 1/un and a slope s ≃ 1 is expected.

The definition and the properties of the low-energy localization landscape are valid for
any lattice, in any dimension, and are not restricted to nearest-neighbour coupling. We
simulated thoroughly many different “canonical” lattices, for which details are provided
in Table 3.2. For each lattice, we computed 100 different disordered configurations. The
construction of the high-energy dual landscape, however, used explicitly in this example
the chiral symmetry of the honeycomb lattice, i.e. the central symmetry of its DOS.

Table 3.2: Summary of the simulations

Lattice ♯ of sites N Disorder calculated Vmax

1D chain 1001 1, 2, 4, 10, 20, 40, 80, 160
1D dimer chain (t2 = t1/2) 2001 1, 2, 4, 10, 20, 40, 80, 160

1D chain with 2nd neighbour coupling 1001 1, 2, 4, 10, 20, 40, 80, 160
Square 961 4, 8, 20, 40, 80, 160, 320
Lieb 2821 8

3 , 16
3 , 40

3 , 80
3 , 160

3 , 320
3 , 640

3
tts 3661 5, 10, 25, 50, 100, 200, 400

Hexagonal 1068 6, 12, 30, 60, 120, 240, 480
Honeycomb 2135 3, 6, 15, 30, 60, 120, 240

Kagome 3185 4, 8, 20, 40, 80, 160, 320
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3.2.4 High-energy landscape for non symmetrical DoS

We will show now that when the chiral symmetry property cannot be used, there
remains a general procedure which consists in “demodulating” Eq. (3.20) around a local
maximum of the dispersion relation. This procedure can be applied to any lattice,
leading to a dual localization landscape that relies on the specific band structure of the
given system. To illustrate this, we now focus on the hexagonal lattice [Fig. 3.11(a)]
whose dispersion relation is not symmetric [Fig. 3.11(c)]. In Fig. 3.11(d), we display the
states corresponding to the 4 highest eigenvalues. Similarly to what was observed for the
honeycomb lattice [Fig. 3.4(e)], we first note that the high-energy eigenstates are
spatially localized and oscillate with a period equal to the nearest-neighbour distance.
The objective of the “demodulation” process is, therefore, to find localization landscape
for the envelopes of the height-energy states. To remove the rapidly oscillating part of
the high-energy eigenstates, let us assume that kmax is a wave vector at which the
dispersion relation E(k) of the Hamiltonian without potential exhibits a local maximum.
Thus, the dispersion relation can be written locally as

E(k) = E(kmax) − 1

2
(kmax − k)⊤A (kmax − k) + O

(
∥k− kmax∥2

)
, (3.27)

where A is a definite positive 2-by-2 matrix whose eigenvalues are the inverse of the
effective masses in both directions. One can then write any eigenfunction ψ of the full
Hamiltonian (i.e., including the potential Vn) as

ψ = eikmax·rϕ, (3.28)

where ϕ is an envelope function satisfying the following equation

−
∑

m∈⟨n⟩
eikmax·(rm−rn)ϕm + Vnϕn = Eϕn, (3.29)

with E being the energy of ψ. The local maximum of the dispersion relation E(kmax)
implies that ∑

m∈⟨n⟩
rm eikmax·rm = 0, (3.30)

where the sum is taken over all interacting neighbours of the site n located at rn = 0.
Thus, a new Hamiltonian Ĥ⋆

kmax
can be defined by

(Ĥ⋆
kmax

ϕ)n = E(kmax) +
∑

m∈⟨n⟩
eikmax·(rm−rn)ϕm − Vnϕn. (3.31)

with energies given by

E∗(k) = ⟨ϕ|Ĥ⋆
kmax

|ϕ⟩ =
1

2
k⊤Ak− Vmax

2
+ O

(
∥k∥2

)
. (3.32)

Therefore, the localization landscape approach can be applied to this new Hamiltonian
after shifting the energies by Vmax/2.

In the case of the hexagonal lattice without disorder, the highest eigenvalues are located
at the vertices K of the first Brillouin zone [Fig. 3.11(b) and 3.11(c)]. The corresponding

wave vectors are then kmax =
{
±4π

3a x̂,±
(
2π
3a x̂+ 2π√

3a
ŷ
)
,±
(
2π
3a x̂− 2π√

3a
ŷ
)}

. By injecting

any of these kmax into equation (3.28), and lately into equation (3.20), the “demodulated”
equation for the envelopes ϕ is obtained. For instance, if kmax = 4π

3a x̂, the envelope
equation reads

ei
4π
3 ϕn+a1 + e−i 4π

3 ϕn−a1 + ei
2π
3 ϕn+a2 + e−i 2π

3 ϕn−a2

+ei
2π
3 ϕn+a1−a2 + e−i 2π

3 ϕn−a1+a2 − Vmaxνnϕn = −Eϕn,
(3.33)
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Figure 3.11: (a) Hexagonal lattice and (b) reciprocal lattice with the first Brillouin zone and the high
symmetry points. (c) Dispersion relation of the Hexagonal lattice. (d) Four states with the highest
eigenvalues of a hexagonal lattice with on-site disorder, N = 1068 and Vmax = 6.

where, the notation n+a denotes the site reached from site n by a translation of a lattice
vector a [see Fig. 3.11(a) for the definition of a1 and a2]. Note that considering another
of the kmax values leads to same Eq. (3.33) or its complex conjugate. Even though the
complex character of Eq. (3.33), its eigenvalues are all real and are precisely the eigenvalues
of the original problem (3.20). Additionally, the band structure is successfully inverted by
changing the signs of both the couplings and the on-site energies as confirmed by the DoS
displayed in Fig. 3.12.

The left-hand side of Eq. (3.33) can be written as a complex Hermitian operator that
becomes positive-definite by adding the appropriate energy shift Vshift = max(E) +Vmax/2
(see Table 3.1) [183], leading to the definition of Ĥ⋆

kmax
of which ϕ is an eigenfunction

Ĥ⋆
kmax

ϕ = (Vshift − E)ϕ. (3.34)

A purely real localization landscape was derived from a complex Hamiltonian via the
Ostrowski comparison matrix in the context of Dirac fermions by Lemut et al. [61].
However, in our case, the comparison matrix removes all phases related to the
demodulation process, spoiling the recovery of the envelope functions and their energies.
We then compute the dual landscape u⋆ associated to the envelopes as

Ĥ⋆
kmax

u⋆ = 1, (3.35)
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Figure 3.12: Density of states of the hexagonal lattice with disorder for the original [Eq. (3.20)] and the
demodulated [Eq. (3.33)] equations and Vmax = 6.
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Figure 3.13: (a) Effective potential where the four deepest minima are labelled. (b) Four states with the
highest eigenvalues of a hexagonal lattice with on-site disorder, N = 1068, and Vmax = 6.

to obtain a complex confining potential 1/u⋆ or, depending on kmax, its complex conjugate.
Next, we plot the absolute value of 1/u⋆ in Fig. 3.13(a), where the comparison between
the deepest wells of 1/|u⋆| ≡ (1/|u⋆n|)n∈[1,N ] and the locations of the aforementioned
localized high-energy states [see Fig. 3.13(b)] clearly shows a direct match between the
two sets. A detailed analysis of the correspondence between both quantities is performed
in Section 3.2.5 for the two methods to compute the dual localization landscape.

As in the symmetric case, the proportionality between the minima of 1/|u⋆| in the
basins and the actual energies holds and can be studied for a broad class of 2D lattices.
In Table. 3.3, we list the different lattices studied here with their band properties. Note
that for most of the lattices with more than one band, looking for the maximum of the
dispersion relation in the first Brillouin zone leads to kmaxa = 0, resulting in a “null
demodulation” process. The appropriate kmax vectors shown in Table 3.3 are then given
by the maxima of the neighbouring cells in the reciprocal space: ±b1, ±b2 and ± (b1 + b2)
[see Fig. 3.11(b) for the definition of b1 and b2 in the case of the hexagonal lattice]. With
the exception of the 1D chain with 2nd neighbour coupling, kmax never depends on the
coupling details. For this specific case, the coupling values are also indicated in Table 3.3.

Fig. 3.14 is similar Fig. 3.10(b), except that all calculations are done using the explicit
demodulation technique, explaining the increment in the number of studied lattices when
the constraint on the symmetry of the DoS is lifted. In this case, we have performed
extensive simulations on 9 types of lattices (3 1D and 6 2D) for various disorder strengths,
all exhibiting Pearson coefficients larger than 0.96 and even larger than 0.98 in most
cases (see Section 3.2.5). Particularly for the 1D chain, and the Square and Lieb lattices,
the demodulation method conduces to the same real Hamiltonian found by symmetrical

Table 3.3: High energy wave vector for the different lattices studied.

Lattice Bravais lattice ♯ of bands kmaxa

1D chain 1D 1 ±π
1D dimer chain 1D 2 ±2π

1D chain with 2nd neighb. coup.
1D 1 ±3π

4
(
t2 = t1/

√
8
)

Square sql 1 M (±π,±π)
Lieb sql 3 (±2π,±2π) (flat band in the middle)
tts sql 4 (±2π,±2π)

hexagonal hxl 1 K
(
±4π

3 , 0
)
, ±
(
2π
3 ,

2π√
3

)
, ±
(
2π
3 ,− 2π√

3

)
Honeycomb hxl 2

(
0,± 4π√

3

)
, ±
(

2π, 2π√
3

)
, ±
(

2π,− 2π√
3

)
Kagome hxl 3 flat band
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arguments, and therefore the proportionality s follows the same master curves plotted in
Fig. 3.10(b). However, for the 1D dimer and the Honeycomb lattice, s is significantly
lower than in the symmetrical case. Note for instance, that both, the Hexagonal and
Honeycomb, curves follows the same behavior. For the Kagome lattice, the flat band in
the top of the dispersion relation spoils the detection of kmax, as indicated in Table 3.3.
Therefore, results in Fig. 3.14 were obtained via the maxima of the second band as kmax ={(

±8π
3 , 0

)
, ±

(
4π
3 ,

4π√
3

)
, ±

(
4π
3 ,− 4π√

3

)}
.
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Figure 3.14: Proportionality factor between Vshift − E and the minima of 1/|u⋆| for the different 1D
(squares) and 2D (circles) lattices studied. The linear fits are done on states with the 3% highest energy.
The dashed horizontal lines show the limit expected using the approximate form Eq. (1.19). Each symbol
correspond to a disorder strength. The results are plotted as a function of the mean IPR calculated over
the 3% states found for a given disorder strength.

3.2.5 Accuracy of the predictions

Along this section, we have shown how to compute the localization landscape and the
dual localization landscape for discrete systems in a broad class of 2D lattices. In the case
of the dual landscape, two different methods that can be applied even beyond 2D have
been developed according to the symmetry of the DoS. In this section, we quantify the
quality of the predictions for the energies and the location of the localized eigenfunctions
performed by each landscape.

To quantitatively test the efficiency of the tight-binding localization landscape and
the dual localization landscape to pinpoint the position of localized modes, we start
calculating the distances between the position n of the maximum of an eigenstate
maxψN , and the positions m of all the wells of the effective potential 1/u. Then, by
minimizing the distances, we identify the rank of the containing well of a given mode.
For instance, Fig. (3.15) shows this correspondence for the dual localization landscape
depicted in Fig. (3.13), where the 2nd, 1st and 3rd wells contain ψN , ψN−1 and ψN−2,
respectively.

Previous analysis is systematically repeated for the 100 realizations of the Honeycomb
and Hexagonal lattices in a situation of weak [Fig. 3.16(a), (c), (e), and (g)] and strong
disorder [Fig. 3.16(b), (d), (f), and (h)]. In the high-energy case, the computations are
done using the symmetry of the band structure for the honeycomb lattice [Figs. 3.16(e)
and (f)], and the explicit demodulation for the hexagonal lattice [Figs. 3.16(g) and (h)].
Note that sharp diagonals indicate a good performance of both landscapes.

At strong disorder, all confining potentials are able to predict the location of the
lowest- (highest-)energy states with more of 95% precision. This percentage is slightly

73



Chapter 3

1 2 3 4

Rank of the effective potential wells

N

N − 1

N − 2

N − 3

S
ta

te
n
u

m
b

er

Ranks of Fig. (3.13)

Figure 3.15: Correspondence between the maxima of the dual landscape and the eigestate position for the
example in Fig. 3.13.
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Figure 3.16: Number of states whose position match [(a)-(d)] with the maxima of the landscape and [(e)-
(h)] with the maxima of the dual landscape. We consider the 3% of the states for each lattice with the
weakest and strongest disorders shown in Table 3.2 (Vmax = 3 and Vmax = 240 for the Honeycomb lattice
and Vmax = 6 and Vmax = 480 for the Hexagonal lattice) and 100 disorder configurations.

slower in the case of weak disorder (∼ 85%), where the correspondence spreads faster from
the diagonal. In this regime, the potential wells are wider and thus can be repopulated
easily, additionally the probability of having eigenstates with similar energies also increases
(see Section 1.1.3.4). Notably, both methods to compute the dual localization landscape
present similar features.

We shown in Figure 3.17(a) and (b) the Pearson coefficient ρ inherent to s in
Figs. 3.10. Figure 3.17(c) in equivalent to its both superior panels but it corresponds to
Fig. 3.14. Numerical results demonstrate that in every case considered in this work, the
eigenvalues and the minima of the effective potential are highly correlated, presenting
Pearson coefficients between 0.96 and 1 even for the Kagome lattice whose kmax cannot
be properly defined. Despite the symmetric and demodulation dual localization
landscapes provide different s values for the Honeycomb and Dimer lattices, Figure 3.17
proves that the corresponding Pearson coefficient are almost identical in both cases.

Finally, the energy predictions also allow to compute the Integrated Density of States
(IDoS) —also known as the counting function— near the band edges. Figure 3.18 depicts
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Figure 3.17: Pearson correlation coefficient as a function of the ⟨IPR⟩ corresponding to the data plotted
in Figs. 3.10 and Fig. 3.14. (a) The landscape prediction. (b) The dual landscape prediction for the
symmetric lattices using the symmetry of the DoS property. (c) The dual landscape prediction for all the
lattices using the explicit demodulation.

the IDoS for the Honeycomb and Hexagonal lattices with a strong on-site disorder (Vmax =
240 and Vmax = 480 for the Honeycomb an Hexagonal lattice, respectively). Blue lines
correspond to the solution of Eq. (3.20) while orange lines are the minima of both confining
and dual confining potentials. We can see that for the two lattices and in both range of
energy, the localization landscape and dual localization landscape provide a good estimate
of the IDoS.

3.3 Conclusions

Born a decade ago, the localization landscape theory has proven its remarkable
efficiency to bring in a more accessible form the information contained in a
Hamiltonian [184]. In this chapter, we started by analysing the applicability of this
powerful theory to wave scattering in disordered electromagnetic media. Even though
localization has been already demonstrated experimentally in those systems in 1D or 2D,
the discussion about the existence of a vector localization landscape is still open. In this
chapter, solutions for electromagnetic fields have been found by solving the scalar
differential equations corresponding to TM and TE polarizations where localization is
just achieved at frequencies much longer than those in the lower band edge, therefore the
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Figure 3.18: The counting function computed by [(a) and (b)] the confining potential, and by [(c) and (d)]
the dual confining potential. We consider the 3% of the states for each lattice. Here, the strongest disorder
was chosen (Vmax = 240 and Vmax = 480 for the Honeycomb an Hexagonal lattice, respectively).

respective localization landscape is incapable to predict the behavior of such
high-frequency localized states. This can be contrasted with discrete systems described
by a tight-binding Hamiltonians, where localization appears in both band edges. The
second part of this chapter successfully extends the localization landscape scope to
discrete systems with a focus on 2D lattices. The low-energy part of the spectrum is
described by a discrete extension of the effective confining potential defined for
continuous systems. It bears the same efficiency than its continuous counterpart in
predicting the localization regions and the corresponding energies, hence the density of
states [185]. More challenging is the construction of the dual confining potential that
acts on the upper part of the spectrum. When the lattice is characterized by chiral
symmetry, like the honeycomb lattice, the high-energy theory is directly deduced from
the low one. When this symmetry is not present, we have proposed a general procedure
to build the dual localization landscape. Our method is efficient, robust and very general
but not yet completely universal. It has yet to be completely extended to situations like
the one encountered with the Kagome lattice. In this case, the DoS is not symmetric,
and the high energy states lie on a flat band: the definition of kmax remains a challenge.
Finally, it is also worth noting that interesting properties appear in the center of the
band for many of the new 2D materials. Although this energy range doesn’t fall directly
into the frame of our approach, we were able to pinpoint the localization regions in this
case thanks to an approach inspired by the L2-landscape method [186]. This last one is
able to give information about the localization subregions, but predictions about the
eigenenergies, IDoS, etc. are still missing despite of its efficient numerical
implementation [187]. In Appendix B, an algorithm that allows the energy extraction
from the L2-landscape is introduced. Unfortunately, this algorithm does not improve the
calculation time needed to solve Eq. (3.20), therefore predicting the eigenenergies and
the IDoS by this new landscape must be the topic of future investigations.
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Chapter 4

As mentioned in Section 1.2.3, this Chapter is devoted to the study of
electromagnetic wave scattering through dielectric lattices displaying either aperiodicity
or disorder. The Chapter is organized as follows: Section 4.1 starts by detailing the
experimental procedure, together with the definition of the two dielectric arrays used as
scattering media. We then describe the data analysis technicalities that allow to retrieve
the individual eigenmodes and the transport quantities in both cases. In Section 4.2, we
present the results in the traditional disordered system: they demonstrate that all
eigenstates show a consistent exponential radial behaviour, as well as the loss of
Anderson localization when the dimension of the cavity from 2D to 3D. Finally, in
Section 4.3, we disclose a new type of wave localization driven by the particular
correlations of Vogel spirals that survives this 2D/3D transition. The confined
eigenmodes are then classified, showing either power-law, exponential or Gaussian radial
decays, and high quality factors, leading to slow energy decays. The last part of this
section is dedicated to the full characterization of this new localization phenomenon,
where the robustness of the states is tested with respect to the size of the Vogel spiral,
and the partial destruction of it. The main results presented in this Chapter have been
published in [28] and [29].

4.1 Experimental setup and analysis details

We investigate two different lattice structures, both comprised of N identical dielectric
cylinders made of TiZrNbZnO ceramics (see Section 2.2). One type of lattice features
aperiodicity, as the cylinders are arranged in a Vogel spiral. The second type exhibits
positional disorder. Cylinder arrays are placed into the cavity introduced in Section 2.1
(see Fig. 2.2) and the electromagnetic field is induced and measured by two straight
antennas placed at (1) the center of the movable top plate, and (2) on the bottom plate.
The antenna (2) defines the origin of the reference system (x, y) = (0, 0). As discussed in
Section 2.1.2, straight antennas induce a TM polarization, where the corresponding electric
field is homogeneous in the ẑ-direction below the frequency νcut = c0/ (2h), with c0 the
speed of light in air and h the distance between both plates (see Section 2.1.1). Therefore,
by going beyond this frequency, the cavity cannot be seen as a 2D anymore. We also
studied a regular lattice in an analog way and the results are presented in Appendix C.

4.1.1 The Golden-Angle spiral array

Positions in a Vogel spiral array are defined in terms of polar coordinates (r, θ) as [137]

ri = a0
√
i,

θi = iα,
(4.1)

where i = 1, 2, . . . is an integer, the scaling factor a0 is a positive constant that sets the
particle separation, and the divergence angle α determines the constant aperture between
successive points [125]. One of the possible definitions for the angle α is a function of an
irrational number ξ, as α = 2π [1 − frac(ξ)] where frac(ξ) is the fractional part of ξ [114,
142]. With α/(2π) irrational, Vogel spirals are characterized by the absence of rotational
and translational symmetries. Here, we study the Golden-Angle Vogel spiral, also known
as “sunflower spiral” which is obtained when ξ equals the golden number: ξ = (1+

√
5)/2,

resulting in α ≈ 2.4 (137.5◦), also known as the “golden angle”. Experimentally, we
implement a golden-angle spiral made up of N = 390 cylinders, and a scaling factor
a0 = 6.93 mm, leading to a radius R0 = 140 mm with a planar 2D density ρ ≈ 0.65 cm−2.
The sketch of the golden-angle spiral map used to place the cylinders as well as a picture
of the real systems is shown in Fig. 4.1(a) and (b), respectively.
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50 mm

(a) (b)

(2)(2)

Figure 4.1: (a) Golden-angle spiral array consisting of N = 390 cylinder created with a0 = 6.93 mm and
ξ = (1+

√
5)/2. The black dot indicates the position of the fixed antenna (2), which determines the origin

of the reference system. (b) Image of the 2D golden-angle spiral array of dielectric cylinders. The top plate
has been removed to reveal the details of the sample.

4.1.2 The disordered array

The disordered array is composed by allocatingN hard disks according to the algorithm
developed in [99]. The latest is basically an isochoric Monte Carlo simulation of hard disks
of radius R in a square surface of area A with periodic boundary conditions. At a given
time, the center positions of the N disks generate a pattern of points, with a packing
density ϕ = NπR2/A. To get the disordered array, an initial random configuration is
compressed up to the target density and then relaxed to reach equilibrium. As mentioned
by Froufe-Pérez et al. [99], an equilibration time set at 104 Monte Carlo sweeps is sufficient
to equilibrate the sample. The lattice used in our experiments consists of N = 497 disks
of radius R = 3.25 mm (the dielectric cylinder radius + the metallic tube thickness, see
Section 2.2) confined in a square box of side 140 mm, leading to the packing density
ϕ = 0.2199 and to the same 2D density than the golden-angle spiral ρ ≈ 0.65 cm−2. For
comparison with the golden-angle spiral, only the sites enclosed within a circular area of
radius 140 mm are selected, resulting in a disordered lattice of N = 388 sites, as shown in
Fig. 4.2.

50 mm

(a) (b)

(2)(2)

Figure 4.2: (a) Disordered array consisting of N = 497 hard disks created by the software in [99] with
ϕ = 0.2199 (blue and gray dots). The circle of radius 140 mm encloses N = 388 sites (blue dots). The black
dot indicates the position of the fixed antenna (2), which determines the origin of the reference system.
(b) Image of the 2D disordered array of dielectric cylinders. The top plate has been removed to reveal the
details of the sample.
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4.1.3 Experimental and data analysis performance

Our experiments are carried out by considering three different values of h (13 mm,
15 mm and 17 mm) in the frequency range [5.5 GHz, 15 GHz] with a frequency step of
250 kHz, corresponding to wavelengths in the range [20 mm, 54 mm]. It is worth noting
that the cavity cannot be viewed as purely 2D over the whole range: a transition to a
three-dimensional regime occurs—the higher the cavity height, the lower the transition
frequency in the air [νcut(h = 13 mm) ≈ 11.53 GHz, νcut(h = 15 mm) ≈ 9.99 GHz, and
νcut(h = 17 mm) ≈ 8.81 GHz].

Using the movable antenna (1), a disk of radius 160 mm centered at the origin is
mapped over a 5× 5 mm2 square grid. Additionally, the electric field outside the lattice is
measured on sites belonging to the upper right corner of a square of size 165 mm enclosing
the disk [see Fig. 4.3(a)]. The final measured map contains 3675 points and is shown in
Fig. 4.3(a), where the golden [blue] circle delineates the golden spiral [disordered system],
whose geometrical center is located at (x, y) = (−5 mm, 0) [(x, y) = (0, 0)], and the grey
points represents the measured positions. Note that the geometrical center of the Vogel
spiral has been shifted to avoid the collision between the central antenna and the scatterers.

At each position (x, y), both complex reflected and transmitted signals are registered
[S11(ν) and S21(ν), respectively] by the VNA. Examples of the intensity of both measured
signals, |S11|2 (purple line) and |S11|2 (orange line), are presented in Fig. 4.3(b) and (c)
for the golden-angle spiral and the disordered system, respectively. Both panels show
measurements taken at a given distance d ≈ 106 mm between the antennas [red dot in
Fig. 4.3(a)] for a distance between plates h = 13 mm. The weak coupling regime between
the antenna and the field explains the low transmission values observed in both panels.

As shown in Section 2.4.6, up to an inversion, the reflected signals in Figs. 4.3(b) and (c)
can be reinterpreted as the local density of states at different positions for the two lattices.
Consequently, in Fig. 4.3(b), the frequency regions with values of the reflection close to 1
(and vanishing transmission values) indicate the presence of band gaps. In particular, two
frequency windows with these characteristics are identified around ∼ 9 GHz and ∼ 11 GHz
for the golden spiral case. In comparison, a unique and smaller gap is observed for the
disordered array around ∼ 9 GHz [see Fig. 4.3(c)]. Outside of these gaps, the transmitted
signal is a superposition of peaks which are related to the resonances of the system.
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Figure 4.3: (a) The experimental map used to scan the cavity (gray dots). Golden (blue) circle delineates
the golden-angle spiral (disordered system). Reflected |S11(ν)|2 (orange line) and transmitted coefficients
|S12(ν)|2 (purple line) for (b) the golden-spiral spiral and (c) the disordered system at a distance d ≈
106 mm from the origin (x = 75 mm, y = 75 mm). The red dot in (a) indicates the measurement position
corresponding to signals in (b) and (c).
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The posterior analysis of the transmitted signal is conducted using the harmonic
inversion/clustering methods (see Sections 2.4.2 and 2.4.3). To apply the harmonic
inversion to our experimental data, the complex spectrum at each position is first
divided into 19 frequency intervals, each one with a bandwidth of 0.6 GHz, overlapping
each other by 0.05 GHz to avoid the interval of interest of being spoiled by spurious
resonances generated by the filtering of the signal. Similar to the example shown in
Section 2.4.2, the value of 2K used to feed the harmonic inversion algorithm is
determined from the band-limited time signal as twice the value of the transition
between the sharp peaks and the noise for each frequency window. After recovering the
parameters of the resonances, the amplitudes of the same resonance measured at all
positions are clustered to reveal the map of the electric field amplitude Ek(x, y) of each
eigenmode of the system [81]. In addition to the mode analysis, the dynamics around
certain states is studied by Fourier-transforming the transmitted signal filtered by a
bandpass Gaussian filter F f0,∆ω with ∆ω = 0.01 GHz (see Section 2.4.5).

Sf0,∆ω
21 (r, t) = F

{
S21(r, ν) × F f0,∆ω(ν)

}
, (4.2)

The systematic repetition over all measured points allows to compute the total energy
carried by a given superposition of modes as

Ef0,∆ω(t) =
∑

all positions

∣∣∣Sf0,∆ω
21 (r, t)

∣∣∣2. (4.3)

In the following sections, we present a detailed analysis of the wave propagation
through both structures: the disordered array and the golden-angle spiral. Besides the
modal analysis, results from the harmonic inversion together with the energy dynamics
and the density of states (DoS) are studied to provide an overview of the transport
characteristics in different frequency regions. Particularly, the energy in the system is
mapped via 472 Gaussian band-pass filter uniformly distributed in the frequency interval
[5.54 GHz, 14.96 GHz] with ∆ω = 0.01 GHz. On the other hand, the density of states is

directly computed from the measured reflected signal as DoS ≃
[
1 −

〈
|Sii(r, ν)|2

〉]
(see

Section 2.4.6).

4.2 Conductance through Anderson modes (disordered
systems)

We start our analysis by studying the modal structure in the traditional disordered
system. Figs. 4.4[(a)-(o)] present fifteen modes with frequencies in the interval
[∼ 6.6 GHz,∼ 10.9 GHz] extracted via the harmonic inversion/clustering algorithms at
different heights h (see details in Sections 2.4.2 and 2.4.3). Specifically, Figs. 4.4 depicts
states found for h = 13 mm [(a), (d), (g), (j), and (m)], h = 15 mm [(b), (e), (h), (k),
and (n)], and h = 17 mm [(c), (f), (i), (l), and (o)]. Given the lack of a geometrical
center in disordered structures, radial decay functions can only be computed through the
Spatial Autocorrelation introduced in Section 2.4.4.1, and are presented in Figs. 4.4(p),
(q), and (r). As expected for a disordered system, this analysis always leads to
exponential radial decays no matter the spatial extension, frequency, position of the
center, or the amplitude distribution with respect to the center of the mode. The
localization lengths ξloc can then be extracted by fitting Cor(Eν) ∝ exp (−r′/ξloc) and
are shown together with the quality factors of the modes in Table 4.1.

The localization length indicates the spatial extension of an exponentially localized
mode allowing to define a criterion to determine if the states are (ξloc ≲ R0) or not
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Figure 4.4: [(a)-(o)] Spatial modal structure, and [(p)-(r)] radial profile of the spatial autocorrelation field
(not shown) of representative modes found in the same disordered system. Amplitude maps are normalized
such that max(|Ek|) = 1. The blue dotted box contains the states with frequencies beyond the 2D limit.
Radial decays are obtained by performing an angular average in the autocorrelation space (r′ is measured
from the well defined autocorrelation center). The corresponding localization lengths ξloc and quality
factors Qk are shown in Table 4.1.

(ξloc > R0) confined inside the structure. Our results reveal the presence of well-confined
states (ξloc ∼ 50 mm) with high quality factors (Qk ∼ 3500) around ν ∼ 8.8 GHz [see
Figs. 4.4(g), (h) and (i)]. Notably, the modes characterized by ξloc < R0 are placed below
the 3D transition, where the system is purely 2D. At lower frequencies (νk ≲ 8.4 GHz),
the eigenmodes are characterized by ξloc ∼ 200 mm. They therefore reach the boundaries
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Table 4.1: Localization lengths ξloc, and quality factors Qk of each state in Fig. 4.4.

h [mm] νk [GHz] ξloc [mm] Q

(a) 13 6.84 291 1813.22
(b) 15 6.98 231 1222.43
(c) 17 6.69 264 1284.87

(d) 13 8.09 205 639.61
(e) 15 8.33 207 1368.58
(f) 17 8.29 165 1117.12

(g) 13 8.95 81 3980.98
(h) 15 8.85 40 2541.99
(i) 17 8.74 28 4512.35

(j) 13 9.82 195 3596.37
(k) 15 9.77 227 3029.09
(l) 17 10.01 435 2541.23

(m) 13 10.81 240 2434.86
(n) 15 10.70 337 2671.44
(o) 17 10.70 448 2398.99

of the structure and subsequently leak, giving rise to poor quality factors. Remarkably,
this behaviour is robust against the change of h.

The fourth and fifth rows of Fig. 4.4 present modes with frequencies around ν ∼ 10 GHz
and ν ∼ 10.7 GHz, respectively. A huge increase in the amount of noise generated by the
mixture of states is observed compared to the states shown in the first three rows. Both
rows display a steady increase of the localization length ξloc and a reduction of the quality
factors as a function of the frequency and the distance h. Note that at ν ∼ 10 GHz only
the mode at h = 13 mm [Fig. 4.4(j)] can be considered quasi-localized (ξloc = 196 mm)
while the others can easily reach the structure’s boundaries and leak. Unfortunately, for
higher frequencies, the large modal overlap regime (mean mode spacing much smaller than
the modal width) makes the eigenstate reconstruction impossible.

4.2.1 Energy dynamics

Besides the quality factor, the evolution of the energy confined inside the system and
carried by a subset of states can be studied by means of Eq. (4.3). For instance, Fig. 4.5(a)
displays the energy as a function of the time in three different frequency ranges centered
around the frequency of the modes with smallest ξloc shown in Fig. 4.4 [(g), (h), and (i)]
and with ∆ω = 0.1 GHz. In addition, the corresponding temporal Gaussian pulse is shown
in Fig. 4.5(b). Within these frequency intervals, the presence of modes with high quality
factors leads to very slow energy dynamics in all cases. However, a decrease of the total
confined energy with respect to h is also observed.

Assuming an exponential decay of the energy with respect to the time,
E(t) ∼ exp (−t/t0), one can fit a characteristic decay time t0 that is closely related to the
average width of the modes contributing to the transport ⟨δνk⟩ ∼ 1/t0. Note that this
analysis always considers a subset of states whose frequency is in between the band-pass
filter, therefore it is not directly comparable with the individual values of Qk shown in
Table 4.1. Nevertheless, by knowing the quality factor of all modes inside the filter, the
characteristic time can still be computed for a given frequency band ∆ω as
t0 ∼ ⟨Qk/νk⟩∆ω. In this example, the slowest dynamics occurs for h = 17 mm, followed
by h = 15 mm and h = 13 mm.
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Figure 4.5: (a) Evolution of the energy as function of time for three different frequency centers f0 and
∆ω = 0.01 GHz. Specifically, f0 = 8.96 GHz for h = 13 mm, f0 = 8.84 GHz for h = 15 mm and
f0 = 8.74 GHz for h = 17 mm.

4.2.2 Absence of electromagnetic localization in 3D disordered systems

We now use the results of harmonic inversion, together with the energy dynamics and
the density of states, to unravel the global consequences of the 2D/3D transition in a
disordered system. This is achieved by changing the distance between the top and bottom
plates. In Figs. 4.6(a), (b), and (c), Qk is plotted as a function of νk for the disordered array
in the cases h = 13 mm, h = 15 mm, and h = 17 mm, respectively. Blue arrows are added
to indicate the frequency of the states of Fig. 4.4. As performed in the previous section,
the temporal evolution of the energy is used to recover the characteristic decay time t0 as
a function of the frequency and of h [see Fig. 4.6(d)]. The corresponding density of states
are also depicted in Figs. 4.4(e). Finally, using the two previously introduced quantities
(DoS and t0), the average Thouless conductance (see Section 1.1.1.1) is experimentally
extracted as

⟨g⟩∆f =
⟨δνk⟩∆f

⟨∆νk⟩∆f

∼
⟨DoS⟩∆f

t0∆f
, (4.4)

where ⟨·⟩∆f defines the average over the frequency interval ∆f [see Fig. 4.6(f)]. Remember
that the Thouless criterion establishes that Anderson localization occurs for g < 1 [36–38].

Figs. 4.6(a), (b), (c) and (d) reveal a huge similarity between t0 and the density of Qk.
Here, t0-regions associated with frequency windows containing well-confined exponential
modes are characterized by high peaks whose maximum values are of the order of 40 ns,
whilst t0-valleys correspond to short-lived, not spatially localized states. Note that no
band gap can be clearly observed in the density of states for any h in the whole frequency
range.

At low frequency (ν < 8.8 GHz) and for all values of h, Figs. 4.6(a), (b), and (c) show
three bumps of the quality factor Qk of the resonances, going from values close to zero
when ν ∼ 5.5 GHz, to reach a first maximum near ν ≈ 6.5 GHz and then decrease to
minimum values at ν ≈ 7.1 GHz. The second bump has a local maximum at ν ≈ 7.5 GHz
where Qk ∼ 3000, and lately, Qk values go near zero at ν ≈ 8 GHz to reach the new local
maxima at ν ∼ 8.7 GHz. Likewise, the DoS curves in this frequency range (ν < 8.7 GHz)
are quite similar to each other being only differentiated by their intensity. Since this
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Figure 4.6: Density plots of the quality factors Qk as a function of the resonant frequencies νk extracted
via the harmonic inversion with a distance between plates (a) h = 13 mm, (b) h = 15 mm, and (c)
h = 17 mm for the disordered system. Arrows indicate the frequencies of the states presented in Fig. 4.4.
(d) Characteristic decay time t0 as a function of the frequency. The total frequency range has been
mapped by 472 frequency filters spaced by ∆f = 0.02 GHz with ∆ω = 0.01 GHz. (e) Experimental DoS
as a function of the frequency. (f) Experimental Thouless conductance ⟨g⟩ as a function of the frequency.
The dash-dotted line indicates ⟨g⟩ = 1. Black vertical lines indicate the cut-off frequency νcut.

frequency region always lies below the estimated 2D/3D threshold, the difference in the
signal intensity simply reflects the variation in the antenna coupling with the height.
Particularly, a reduction in the number of states carried by the system can be seen at
νk ≈ 6.5 GHz and νk ≈ 8.7 GHz. A detailed analysis of the characteristic time t0 also
reveals a slight difference with respect to the height h. The largest values are obtained for
h = 13 mm, while smaller and identical for h = 15 mm and h = 17 mm, for both bumps.
Differences with respect to h in the density of states and t0 compensate each other resulting
in almost indistinguishable values of ⟨g⟩, which shows a fast decay of around one order of

85



Chapter 4

magnitude near ν ≈ 6.5 GHz followed by a sudden increase at ν ≈ 7.1 GHz. A second
and a third dropping are observed at ν ≈ 7.5 GHz and ν ≈ 8.7 GHz with maximum at
ν ≈ 8 GHz. Leaking modes shown in the first and second rows of Fig. 4.4 [(a)-(f)] belong
to the first [6.2 GHz, 7 GHz] and third bumps [8 GHz, 8.5 GHz] of the quality factor,
respectively. Similarly localized states in Fig. 4.4(g)-(i)] are associated to the last local
maxima of Qk in this regime (ν ∼ 8.8 GHz).

By going through νcut(h = 17 mm), the impact of the dimensionality of the cavity
is firstly illustrated at ν ∼ 9.1 GHz, where well-spaced eigenmodes with high quality
factors (Qk ∼ 5000) are found at h = 13 mm, while new states with lower quality factors
(Qk ∼ 3000) emerge for h = 15 mm and h = 17 mm. In addition, a huge reduction of Qk

is specially observed at h = 17 mm with Qk → 0 at ν ∼ 9.6 GHz [see Fig. 4.6(c)]. This is
also confirmed by t0 where a similar behavior is observed in the cases at h = 15 mm and
h = 17 mm in the interval [ν ∼ 8.9 GHz, ν ∼ 9.3 GHz], followed by a drop at ν ∼ 9.6 GHz
for h = 17 mm. On the other hand, the density of states curves display an increment of
the number of modes with respect to h at ν ∼ 9.2 GHz (h = 17 mm) and ν ∼ 9.6 GHz
(h = 15 mm). The emergence of these peaks as a function of the cavity height is due
to the appearance of 3D states which can arise above the cutoff frequency. The cutoff
frequencies plotted as black lines in Fig. 4.6 are calculated for an empty cavity, i.e., with
an effective refractive index of n = 1. The presence of the high-refractive index scatterers
in the cavity increases the value of the effective refractive index, and thus decreases the
cutoff frequencies explaining the shift of the increment for h = 15 mm. The increment
in the number of states for h = 17 mm together with the reduction of the characteristics
decay time t0 leads to a sudden increase of ⟨g⟩ at ν ≈ 9.6 GHz. The extended exponential
modes shown in the fourth row of Fig. 4.4 [(j)-(i)] correspond to this interval (ν ∼ 10 GHz).

For the rest of the measured frequency band (10 GHz < ν < 15 GHz) and for all
values of h, the number of states in the system shows a continuous increment. However,
the highest intensity is now found for the curve corresponding to h = 17 mm, followed by
the case h = 15 mm. The expected difference in the intensity of the signal given the height
of the cavity is compensated by the new 3D emerging states. In this frequency range, the
quality factors present similar behaviours for all h, firstly with values between 1000 and
4000 until dropping to zero at ν ∼ 10.7 GHz. At highest energies (ν > 11.5 GHz), an
increment in the quality factors from zero to ∼ 2000 is noticeable for all values of h. The
biggest increment occurs for h = 13 mm, and is smaller for the other two heights. This
is confirmed by t0 where the case h = 13 mm always presents the highest values in all
the interval. In consequence, the Thouless conductance is smaller for h = 13 mm, taking
values around 1, while other two heights are always > 1. Unfortunately, given the high
density of clusters in this region (ν > 11 GHz), single mode cannot be clearly distinguished
and separated, hindering their reconstruction with our current tools. Nevertheless, the last
row of Fig. 4.4 [(m)-(o)] shows modes around ν ∼ 10.7 GHz.

4.3 A new type of localization (in aperiodic systems)

In the previous section, we have shown that even though localization can be achieved
in our setup via a disordered array, well-confined modes are truly restricted to 2D
geometries. Similarly to the previous section, we study here the modal structure and
transport properties of waves in a golden-angle spiral lattice. In order to present all
similitudes and differences with respect to the disordered system, we focus first on the
case h = 13 mm. Figure 4.7 shows the spatial modal structure of three characteristic
eigenstates found in the same experimental golden-angle spiral and their corresponding
radial decay. Specifically, power-law, exponential, and Gaussian radial decays have been
identified by minimizing the sum of the squared residuals.
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Figure 4.7: Spatial modal structure and radial profile of representative eigenmodes with characteristic [(a)
and (f)] power law, [(b) and (g)] exponential, and [(c), (d), (e) and (h)] Gaussian decay. Amplitude maps
are normalized such that max(|Eν |) = 1. Radial decays (colorfull dots) are obtained by performing an
azimuthal average operation where r =

√
(x+ 5)2 + y2, i.e., r is measured from the geometrical center

of the spiral and expressed in mm. Different radial decays are discriminated by minimizing the sum of
squared residuals.

Our experimental results demonstrate that Vogel spirals support a rich variety of long-
lived modes that exhibit different spatial extent and radial decay profiles, hence confirming
recent theoretical predictions [142]. This can be contrasted to disordered samples, where
(Anderson) localized states are always characterized by an exponential radial decay (see
Fig. 4.4). The analyzed long-lived modes found experimentally in this golden-angle spiral
sample are distributed in three frequency windows around ν ∼ 6.6 GHz (exponential,
power-law and Gaussian modes), ν ∼ 8.3 GHz and ν ∼ 11.2 GHz (Gaussian modes)
and are characterized by high quality factors Qk = νk/δνk, i.e., low energy-loss ratios.
Remarkably, quality factors are of the same order or even larger that those found in the
disordered array (Qk ∼ 5000). It should be noted that, up to this point, all long-lived
modes shown have been found below the 2D cutoff frequency in air (νcut ≈ 11.5 GHz), so
the electromagnetic field is confined in the plane of the array.
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4.3.1 2D/3D transition in Vogel spirals

In order to study the effect of the 3D cavity geometry on the golden-angle spiral states,
the previous data analysis for transport quantities (of Section 4.2.2) is repeated. We plot
the density of Qk, the characteristic decay time t0, the DoS, and the average Thouless
conductance ⟨g⟩ in Fig. 4.8.
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Figure 4.8: Density plots of the quality factors Qk as a function of the resonant frequencies νk extracted via
the harmonic inversion with a distance between plates (a) h = 13 mm, (b) h = 15 mm, and (c) h = 17 mm
for the golden-angle spiral. Arrows indicate the frequencies of the states presented in Figs. 4.7, 4.9, 4.10 and
4.11. (d) Characteristic decay time t0 as a function of the frequency. The total frequency range has been
mapped by 472 frequency filters spaced by ∆f = 0.02 GHz with ∆ω = 0.01 GHz. (e) Experimental DoS as
a function of the frequency. (f) Experimental Thouless conductance ⟨g⟩ as a function of the frequency. The
dash-dotted line indicates ⟨g⟩ = 1. Frequency windows with the analyzed long-lived states (exponential,
power-law or Gaussian) or band gaps for the h = 13 mm case have been highlighted (violet or grey stripes,
respectively). Black vertical lines indicate the cut-off frequency νcut.
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As previously discussed for the disordered array, similarities between the density of
Qk [see Figs. 4.8(a)-(c)] and the characteristic time t0 [see Fig. 4.8(d)] are observed.
Here, t0-regions corresponding to frequency windows containing exponential, power-law
or Gaussian states (pink stripes) are always characterized by high peaks whose
maximum values are of the order of those found in disordered systems (t0 ∼ 40 ns), while
t0-valleys correspond to short-lived, not spatially localized states or even band gaps.

The existence of band gaps is investigated via the density of states in Fig. 4.8(e), where
in contrary to the disordered lattice case, two long flat valleys are identified as band gaps
(and highlighted by two grey stripes) for the case h = 13 mm. Note that a huge reduction
in the number of states is still visible for the disordered system in the frequency region
corresponding to the first band gap (8.5 GHz < ν < 9.1 GHz), and highly confined states
belong here (see Figs. 4.4 and 4.6).

It is worth noting that the presence and the width of the band gaps in the golden-
angle spiral depends on h. For the first gap (8.5 GHz < ν < 9.1 GHz), when increasing
the height of the cavity, the upper band edge is pushed toward lower frequencies and
particularly, in the h = 17 mm case, the second half of the band gap almost completely
vanishes. As mentioned before, cutoff frequencies plotted as black lines are calculated for
an empty cavity, i.e., with an effective refractive index of n = 1. Nevertheless, the presence
of the high-refractive index scatterers increases the effective refractive index of the cavity,
therefore decreasing the cutoff frequencies, and explaining the shifts between the vertical
lines and the upper band edges of the first band gaps, specially in the case h = 15 mm.
Opening the cavity also leads to the emergence of peaks in t0 and the density of Qk

around ν ∼ 9.5 GHz [see Fig. 4.8(a)-(d)], where a monotone decrease of both quantities
is recognized with respect to h, giving way to a small negative bump of ⟨g⟩. Another
consequence is the suppression the second band gap (11.5 GHz < ν < 12 GHz), which, for
h = 15 mm and h = 17 mm is populated by resonances with low quality factor Qk → 0 [see
Figs. 4.8(a)-(c)] that are attributed to the appearance of new 3D states. These new leaky
modes which appear at frequencies much higher than the cut-off frequencies are clearly
modes that exist only beyond 2D. Unfortunately, given the large modal overlap regime
the reconstruction of the modes is impossible.

4.3.1.1 Spiral defect modes extraction

The peaks at the center of the first gap (8.5 GHz < ν < 9.1 GHz) are a signature of the
lattice’s defect modes that are caused by slight scatterers imperfections, i.e. their position
depends on the specific location of certain cylinders. For a given golden-angle spiral
realization, these peaks stay unchanged when increasing the height of the cavity, keeping
similar quality factors and characteristic times for all different values of h (Qk ∼ 3000 and
t0 ∼ 30 ns, respectively). Subsequently, a sharp drop can be observed in the mean Thouless
conductance (⟨g⟩ ∼ 10−1). Fig. 4.9[(a)-(c)] show the reconstruction of the amplitude of
three localized defect modes with frequencies νk ≈ 9.2 GHz for different values of h.
Such modes are characterized by the fact that they are supported by a small quantity of
cylinders (< 10), and, on the contrary to the states previously studied in those structures
(see Fig. 4.7), they are not centered at the center of the spiral. Thus, the radial decay of
the correlated fields is computed by angular averaging around the well-defined origin of
the spatial autocorrelation (not shown). The corresponding radial decays are plotted in
Figs. 4.9[(d)-(f)], showing an almost exponential law in all cases. Instead of the narrow
defect peaks observed in the golden-angle spiral (ν ∼ 9.1 GHz), the disordered case displays
a distributed set of small peaks throughout the same region (8.5 GHz < ν < 9.7 GHz).
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Figure 4.9: Spatial modal structure, and radial profile of the field spatial autocorrelation (not shown) of
representative defect eigenmodes in the golden-angle spiral for [(a) and (d)] h = 13 mm, [(b) and (e)]
h = 15 mm, and [(c) and (f)] h = 17 mm. Amplitude maps are normalized such that max(|Ek|) = 1. All
modal structures are just supported by a few dielectric cylinders. Radial decays (pink dots) are obtained
by performing an angular average in the autocorrelation space (r′ is measured from the well defined
autocorrelation center).

4.3.1.2 Localized Gaussian modes

For h = 13 mm, the lower band edges of the two gaps (ν ∼ 8.3 GHz and ν ∼ 11.2 GHz)
are exclusively populated by Gaussian states (see Section 1.2.3.1) characterised by huge
quality factors (Qk ∼ 5000) and large characteristic decay times (t0 ∼ 32 ns) (see Figs. 4.7
and 4.8). Remarkably, the transport analysis reveals certain robustness to the 2D/3D
transition. For instance, the density of Qk and t0 present identical behaviours with respect
to h in both frequency windows. As a consequence, ⟨g⟩ still drops by around one order of
magnitude, despite the disappearance of the second band gap because of the presence of
3D leaking states.

The presence of long-lived modes previously predicted by the analysis of the density
of Q, t0 and ⟨g⟩ is verified by the harmonic inversion/clustering methods. In Fig. 4.10,
the spatial structure of six representative Gaussian states populating the band gap edges
of the same golden-angle spiral are shown for a cavity characterized by [(a) and (g)]
h = 13 mm, [(b) and (h)] h = 15 mm, and [(c) and (i)] h = 17 mm. High quality factors
(Qk ∼ 5000) confirm the existence of long-lived modes even in the case where the 2D
confinement of the electromagnetic field cannot be attributed anymore to the geometry
of the cavity. Notably, the mode’s shape, frequency, quality factor, and radial decay
function remain almost invariant even beyond the 2D threshold, proving the robustness of
Gaussian long-lived modes in Vogel spirals against the situation in which the electric field
is inhomogeneous in the ẑ-direction [see Fig. 4.10(g), (h) and (i)].

It was shown that confined Gaussian band edge states result from Bragg scattering in
the arms of the spiral given the homogeneity distribution of spacing between
neighbouring cylinders [138]. The existence of such modes is attributed to the specific
correlations of the cylinder positions in the structure and is predicted to take place for
ρc20/ν

2 > 3.5 (ν < 12.9 GHz in our experimental spiral) [141]. In addition, Figs. 4.8(f)
and 4.10 experimentally demonstrate that non-random systems can fulfil the Thouless
criterion for Anderson localization, originally conceived to characterize localization in
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Figure 4.10: Spatial modal structure and radial profile of representative Gaussian eigenmodes for [(a), (d),
(g) and (j)] h = 13 mm, [(b), (e), (h) and (k)] h = 15 mm, and [(c), (f), (i) and (l)] h = 17 mm. Amplitude
maps are normalized such that max(|Ek|) = 1. Radial decays (pink dots) are obtained by performing an
angle averaging where r =

√
(x+ 5)2 + y2 is measured from the center of the spiral and expressed in mm.

disordered structures, confirming theoretical predictions [141]. Our findings confirm that
not only eigenmodes characterized by an exponential spatial decay can satisfy the
Thouless condition, as it occurs for disordered systems, but also other modes with
different spatial decay forms, such as Gaussian and power-law decays. This result
demonstrates experimentally the unique modal structure that aperiodic Vogel spirals
support, leading to unusual properties of wave transport and localization.

4.3.1.3 Transport in other frequency regimes

For frequencies below the lowest band edge (ν < 8.1 GHz), Qk−νk maps shows quality
factors close to zero over the whole interval except for two frequency windows (see Fig. 4.8).
The first interesting interval (6 GHz, 7 GHz) is characterized by a huge decrease of the
DoS, and large decay times (t0 ∼ 30 ns), giving rise to a drop of the Thouless conductance.
Both, the density of Qk and t0 also show a monotonic decrease of the bump, together with
its widening with respect to h. The localized modes in Figs. 4.7(a)-(c) are found in this
frequency window. The second frequency range (νk ∼ 7.4 GHz) is noted by its huge
quality factors (Qk ∼ 6000). Nevertheless, the poor characteristic decay times t0 and a
completely flat DoS curve leads to a flat Thouless conductance (⟨g⟩ > 1). Additionally,
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no confined modes are detected by the harmonic inversion/clustering algorithm in this
frequency band. Note that in all this frequency window (5.5 GHz < ν < 8.1 GHz), all
the density of states curves present a similar behavior, being just differentiated by their
intensity [see Fig. 4.8(e)]. As mentioned before, this difference is explained by the coupling
of the antenna to the electromagnetic field.

In Fig. 4.8, the first band gap is followed by a long frequency region (9.6 GHz <
ν < 11 GHz) with states characterized by low quality factors (Qk → 0, apart from two
bands located around 10 GHz and 10.4 GHz), illustrating a very high loss rate. Note that
all DoS curves computed for the three different height keep a constant value all along
this interval. As explained previously, this tendency is related to the 3D emerging states
that compensate the decrease of the coupling between the antenna and the cavity. The
Qk − νk maps also show two stripes with higher quality factors (Qk ∼ 2000) located
around ν ∼ 10.1 GHz and ν ∼ 10.4 GHz that are also robust to the dimensional change.
In these two stripes, high characteristic times (t0 ∼ 35 ns) promote the drooping of
the Thouless conductance, indicating the existence of long-live states. Figs. 4.11[(a)-(c)]
present the spatial reconstruction of three representatives modes found at ν ∼ 10.1 GHz
when h = 13 mm, h = 15 mm and h = 17 mm, respectively. On the other hand, at
ν ∼ 10.4 GHz our harmonic inversion and clustering algorithms are just able to recover
a few states for h = 13 mm [see Fig 4.11(d)]. The spatial distributions of states are
centered around “defects”, instead of the center of the spiral, but in contrary to the
modes populating the middle of the first band gap, their spatial extensions occupy the
whole measured space. The analysis of the corresponding spatial autocorrelation functions
(not shown) leads to radial decay functions that are neither power-law, exponential, nor
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Figure 4.11: [(a)-(d)] Spatial modal structure, and [(e)-(g)] radial profile of the spatial autocorrelation
field (not shown) of representative eigenmodes found in the same golden-angle spiral on the 10.1 GHz and
10.4 GHz high-Q bands (see Fig. 4.8). Amplitude maps are normalized such that max(|Ek|) = 1. Radial
decays are obtained by performing an angular average in the autocorrelation space (r′ is measured from
the well defined autocorrelation center).
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Gaussian [see Fig. 4.11(e)-(g)]. Given the robustness of these states to the distance between
plates, their insensitivity to a complete reconstruction of the spiral with the same sequence
of cylinders, and their high quality factors, we think that their nature is related to the
imperfections of the cylinders (in size or in dielectric permeability).

Finally, in the frequency region where the three system are 3D (ν > 12 GHz), a
sequence of bumps with quality factors 0 < Qk < 3000 are recovered by the harmonic
inversion. Similarly, the characteristic time is made of valleys and peaks with poor
values (t0 ∼ 15 ns), that together with the highly populated density of states curves
result into high Thouless conductance values (⟨g⟩ > 1). Unfortunately, in these 3D
situations, the modal overlap obliterates the DoS details, thus making eigenstate
reconstruction impossible.

4.3.2 Scaling analysis

The existence of modes with different radial decay behavior in the same system (Vogel
spirals) means that these distinct classes of states have different sensitivity to the sample
boundaries. As a result, we expect the transport quantities measured in regions where
these modes exist to have different evolution when the size of the system is varied. To
investigate how the transport quantities as well as the modes are affected by the boundaries
of the spiral, the experiment is repeated for 12 different configurations, and for each of
them, the number N of cylinders in the array is reduced according to N = 390 − 34 × i
(i = 0, 1, · · · , 11), respectively, as depicted in Fig. 4.12. All samples are characterized by
the same scaling factor a0 = 6.93 mm and their centers are always located at (x, y) =
(−5 mm, 0) where the central antenna (2) sets the origin (x, y) = (0, 0). The distance
between plates is fixed as h = 13 mm.

In contrast with the measurements presented in the previous sections, we focus here
on just two frequency intervals, with h = 13 mm. The first one includes various
eigenstates with diverse radial decays: exponential, power-law and Gaussian [6.0 GHz,

N = 390 N = 356 N = 322 N = 288

N = 254 N = 220 N = 186 N = 152

50 mm

N = 118 N = 84 N = 50 N = 16

Figure 4.12: Golden-angle spiral arrays consisting of N cylinders created with a0 = 6.93 mm and ξ =
(1 +

√
5)/2. The black dot sets the position of the fixed antenna (2) with respect to the cylinder pattern.
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7.0 GHz] (see Fig. 4.7). The second one contains the Gaussian modes robust to the
2D/3D transition [10.5 GHz, 11.5 GHz] (see Fig. 4.10). The cavity is once again mapped
with the 3675 positions shown in Fig. 4.3(a), and both, the reflected and transmitted
signals are measured. Subsequently, the data analysis is carried out analogously to
preceding experiments (see Section 4.1.3).

The spatial structure of three different eigenmodes with characteristic (a) power-law,
(b) exponential, and (c) Gaussian decays found by the harmonic inversion/clustering
methods are shown in Fig. 4.13. Note that below a certain threshold N [(a) N ≃ 84, (b)
N ≃ 186, (c) N ≃ 288], the number of resonances recovered by the harmonic inversion is
found to be insufficient to form a cluster and subsequently to reveal the spatial structure
of the modes. Here the leaking of the wave out of the spiral is due to the absence of
certain cylinders needed to support the long-lived modes. For example, the power-law
and exponential modes [see Fig. 4.13(a) and (b), respectively] cannot be recovered by
our analysis whenever the typical system size becomes smaller than the noticeable modal
size when N ≃ 84 and N ≃ 186, respectively. At higher frequency, Gaussian modes are
found to have larger sizes, and are therefore more sensitive to changes in the system
boundaries, then they only exist for large systems N ≥ 288.

In Fig. 4.14, we show as a function of the number of cylinders and frequency, [(a) and
(e)] the mean quality factor ⟨Q⟩f0 , where ⟨·⟩f0 represents the average over a frequency
interval [f0 − ∆ω, f0 + ∆ω], [(b) and (f)] the characteristic decay time t0, [(c) and (g)]
the normalized density of states, and [(d) and (h)] the average Thouless conductance ⟨g⟩
in two frequency windows containing the analyzed long-lived modes (from 6.0 to 7.0 GHz
and from 10.5 to 11.5 GHz) for h = 13 mm. Around ∼ 6.6 GHz, Fig. 4.14(a), (b) and
(d) show that the localization signatures earlier analyzed (high values of t0 and ⟨Q⟩, and
⟨g⟩ < 1) remain unperturbed even for lattices with a reduced number of cylinders N ≃ 84,
while Fig. 4.12(c) shows that the density of states start to lose its structure and becomes
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Figure 4.13: Spatial modal structure as a function of the number of cylinders of modes with (a) power-law
(ν = 6.586 GHz), (b) exponential (ν = 6.646 GHz), and (c) Gaussian (ν = 11.357 GHz) radial decay. The
grey circles show the boundary of the samples.
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Figure 4.14: [(a) and (e)] Mean quality factor ⟨Q⟩f0 computed via the harmonic inversion. [(b) and
(f)] Characteristic decay time t0 as a function of the frequency and of the number of cylinders. The
total frequency range has been mapped by 47 frequency filters spaced by ∆f = 0.02 GHz with ∆ω =
0.01 GHz. [(c) and (g)] Experimental normalized density of states (DoS). [(d) and (h)] Experimental
Thouless conductance ⟨g⟩.

flat below N ≃ 152. This is in agreement with the smallest system size able to support
power-law and exponential states found in Fig. 4.13(a) and (b). Note that the localization
signature coincides with the drop in the density of states, confirming the absence of a band
gap in this frequency region. At high frequencies (ν ∼ 11.3 GHz), the same localization
features are observed to disappear around N ≃ 288. This value of N also determines
a critical size above which Gaussian modes can exist [see Fig. 4.13(c)]. Despite the fast
decrease of high t0 and ⟨Q⟩ values with respect to N , the DoS remains unperturbed even
for smaller systems (N ≃ 186), where the band gap starts to be populated by leaky states
[see Figs. 4.6(f) and (g)].

4.3.3 Robustness of localization to spatial modification of the lattice

Now that the existence of long-lived modes in Vogel Spirals has been proven to be
robust to the 2D/3D dimensional transition (see Section 4.3.1), we can follow the same
methodology used to perform the scaling analysis (see Section 4.3.2) to analyze the
variation of the same transport quantities (⟨Q⟩, t0, DoS and ⟨g⟩), as well as the
eigenmodes of the system with respect to different “alterations” of the structure.
Specifically, we study the effect of either dislocations, scars or spatial disorder in the
lattice.

Firstly, to investigate the consequences of dislocations in the system, the golden-angle
spiral experiment is repeated for 6 different configurations, each of them being
characterized by 390 −M cylinders, respectively. Differently to the scaling experiments,
the cylinders are removed randomly as depicted in Fig. 4.15(a). Then, the effect of
opening scars in the system is examined by repeating 5 times the experiment, now
considering different golden-angle spiral arrays whose number of cylinders is given by
390 − 13 × S. To remove the cylinders, a preferred angle is chosen randomly in the
interval [0, 2π], then 13 random cylinders are discarded in order to create a path from
the origin to the edge of the spiral as shown in Fig. 4.15(b). Finally, positional disorder
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Figure 4.15: (a) Golden-angle spiral arrays consisting of N = 390−M cylinders. Cylinders are randomly
removed to study the effect of dislocations. (b) Golden-angle spiral arrays consisting of N = 390− S × 13
cylinders. Cylinders are randomly removed to study the effect of scars. (c) Golden-angle spiral arrays
consisting of N = 390 cylinders, the position of the cylinders is randomly displaced over a distance
r0,i mm (given by a uniform random variable in the interval [0, r0]) in a direction determined by the angle
θ0,i (which is also random) from its original position. The black dot sets the position of the fixed antenna
(2) with respect to the point pattern.

is considered by randomly changing each cylinder position. The position of the cylinder i
is moved by a distance r0,i (given by a uniform random variable in the interval [0, r0]) in
a direction determined by the angle θ0,i (given by another random variable in [0, 2π])
from its original position [see Fig. 4.15(c)]. Note that the minimum distance between two
scatterers in the most disordered case (r0 = 4 mm) is 6.528 mm, and can be compared
with the one corresponding to the disordered system in Section 4.2 (6.25 mm).

For all experiments performed in this section, the samples are always characterized
by a0 = 6.93 mm, their geometrical center is located at (x, y) = (−5 mm, 0) where the
central antenna (2) sets the origin (x, y) = (0, 0), and the distance between plates is fixed
at h = 13 mm. As in the previous section, experiments are carried out with a focus
on only two frequency intervals ([6.0 GHz, 7.0 GHz] and [10.5 GHz, 11.5 GHz]). Both,
the reflected and transmitted signals are then measured using the same map displayed in
Fig. 4.3(a). Finally, the data analysis is achieved identically to preceding experiments (see
Section 4.1.3).

4.3.3.1 Dislocations

In Fig. 4.16, we plot three eigenstates characterized by different decay laws [(a) power-
law, (b) exponential and (c) Gaussian] and their evolution with respect to the number
of missing scatterers in the lattice M . Additionally, the quality factor average ⟨Q⟩, the
characteristic decay time t0, the density of states, and the mean Thouless conductance ⟨g⟩
are depicted as a function of the frequency and number of cylinders for both frequency
intervals in Figs. 4.16[(d) and (h)], [(e) and (i)], [(f) and (j)] and [(g) and (k)], respectively.

Notably and despite the deformation of the states, the power law mode is found to
survive even when ∼ 15% of the scatterers have been randomly removed. Similarly, the
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Figure 4.16: Spatial modal structure as a function of the number of dislocations of modes with (a) power-
law (ν = 6.517 GHz), (b) exponential (ν = 6.522 GHz), and (c) Gaussian (ν = 11.366 GHz) radial decay.
[(d) and (h)] Mean quality factor ⟨Q⟩f0 computed via the harmonic inversion. [(e) and (i)] Characteristic
decay time t0 as a function of the frequency and of the number of cylinders. The total frequency range
has been mapped by 47 frequency filters spaced by ∆f = 0.02 GHz with ∆ω = 0.01 GHz. [(f) and (j)]
Experimental normalized density of states (DoS). [(g) and (k)] Experimental Thouless conductance ⟨g⟩.
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exponential state is still detected by the clustering algorithm for systems with M ≲ 39.
However, the harmonic inversion procedure faces a considerable increase in the amount
of noise in both cases, making the reconstruction of the exponential state impossible
when M ≳ 52. These findings are in agreement with the transport quantities [see
Figs. 4.16(d)-(g)] which show localization signatures [high values of ⟨Q⟩ (∼ 3000), and t0
(∼ 30 ns) together with low values of ⟨g⟩(∼ 10−1)] in the whole “dislocation range”
studied. Note that the density of states keeps it shape for all values of M in this case.
At high frequency (10.5 GHz < ν < 11.5 GHz), localization is only identified
(⟨Q⟩ ∼ 4000, t0 ∼ 30 ns and ⟨g⟩ ∼ 10−1) for low-dislocated systems (M ≲ 13). This
value also coincides with the disappearance of the band gap. Nevertheless, the harmonic
inversion/clustering methods are still able to find the selected Gaussian mode when
M = 26. Remarkably, the exponential and power-law are less sensitive to the random
dislocations with respect to the Gaussian mode.

4.3.3.2 Scars

The evolution of the spatial modal structure of three characteristic states, each one
characterized by a different radial decay, is plotted as a function of the number of scars
in Figs. 4.17(a)-(c). At low frequency (6.0 GHz < ν < 7.0 GHz), both power-law and
exponential modes [see Figs. 4.17(a) and (b)] are proven to survive even when the system
is affected by four scars (S = 4). However, the presence of the scars promotes the leakage
of the states through them, thus deforming the modes and their radial decays (that are not
claimed anymore to be power-law nor exponential at this point). In contrast, Fig. 4.17(c)
shows a Gaussian state at high frequency (νk ≈ 11.365 GHz) whose spatial structure
cannot be clustered as soon as the system is affected by four scars (S ≲ 4). Despite
the presence of two scars, the Gaussian mode keeps the same shape being just slightly
deformed. The deformation of the state then increases, and eventually the mode disappears
(S = 3 → S ≳ 4).

Figs. 4.17{[(d), (e), (g)], [(h), (i), (k)]} depict the mean quality factor ⟨Q⟩, the
characteristic decay time t0, and the average Thouless conductance ⟨g⟩ for low and high
frequencies, respectively. In agreement to previous findings, localization signatures can
be observed (⟨Q⟩ ∼ 2500, t0 ∼ 30 ns and ⟨g⟩ ∼ 10−1) for all values of S at low
frequencies (6.0 GHz < ν < 7.0 GHz). In addition, the density of states in this frequency
range keeps its shape when opening each of the four scars [see Fig. 4.17(f)]. On the other
hand, at high frequency (10.5 GHz < ν < 11.5 GHz), the disappearing of localization
marks is seen for system with more than three scars (S ≳ 3). This coincides with the
increase of short-lived modes in the band gap, making it disappear [see Fig. 4.17(j)].

4.3.3.3 Positional disorder

As in previous sections, Figs. 4.18(a), (b) and (c) show the evolution of three states
with different radial decay behaviour (power law, exponential and Gaussian,
respectively), but now when increasing the positional disorder in the point pattern. The
three states keep their shape at low disorder strength (r0 = 1 mm), however, they are
highly deformed for r0 = 2 mm, and in the case of the exponential mode, they cannot be
found by the harmonic inversion/clustering algorithms from this point onwards. By
increasing the disorder strength (r0 = 3 mm) both states (power-law and Gaussian)
present a huge deformation from their original shape. At this point, one can see how the
Gaussian mode starts to be pushed towards the center and the edge of the lattice,
abandoning the inhomogeneous region previously identified by Liew et al. [138] [see
Fig. 1.19]. Analogously, the power-law mode is also displaced from the center of the
spiral becoming comparable to the eigenmodes found in the Anderson case (see
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Figure 4.17: Spatial modal structure as a function of the number of scars of modes with (a) power-law
(ν = 6.536 GHz), (b) exponential (ν = 6.569 GHz), and (c) Gaussian (ν = 11.365 GHz) radial decay. [(d)
and (h)] Mean quality factor ⟨Q⟩f0 computed via the harmonic inversion. [(e) and (i)] Characteristic decay
time t0 as a function of the frequency and of the number of cylinders. The total frequency range has been
mapped by 47 frequency filters spaced by ∆f = 0.02 GHz with ∆ω = 0.01 GHz. [(f) and (j)] Experimental
normalized density of states (DoS). [(g) and (k)] Experimental Thouless conductance ⟨g⟩.
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Figure 4.18: Spatial modal structure as a function of the disorder strength of modes with (a) power-law
(ν = 6.546 GHz), (b) exponential (ν = 6.570 GHz), and (c) Gaussian (ν = 11.341 GHz) radial decay. [(d)
and (h)] Mean quality factor ⟨Q⟩f0 computed via the harmonic inversion. [(e) and (i)] Characteristic decay
time t0 as a function of the frequency and of the number of cylinders. The total frequency range has been
mapped by 47 frequency filters spaced by ∆f = 0.02 GHz with ∆ω = 0.01 GHz. [(f) and (j)] Experimental
normalized density of states (DoS). [(g) and (k)] Experimental Thouless conductance ⟨g⟩.
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Section 4.2). Beyond this point, the strong deformation of the power law state prevents
its identification by the clustering method. Finally, for the strongest disorder
(r0 = 4 mm) just the “Gaussian” mode can be followed by our algorithms. Nevertheless,
and identically to the power-law state, its shape seems now to correspond to the one of
an Anderson disordered system instead (see Section 4.2).

Figs. 4.18(d)-(k) shows the transport quantities (⟨Q⟩, t0, the DoS, ⟨g⟩) for both
frequency windows. At low frequency (6.0 GHz < ν < 7.0GHz), localization signs [high
⟨Q⟩, t0 and low ⟨g⟩, see Figs. 4.17(d), (e), and (g), respectively] are present all along the
disordered strength values, showing even the widening of this region going from 0.3 GHz
for r0 = 0 mm to 0.7 GHz for r0 = 4 mm. Note that the sharp reduction in the DoS [see
Fig. 4.17(f)] is slightly displaced when adding the disorder, having its center at
∼ 6.6 GHz for r0 = 0 mm and at ∼ 6.4 GHz for r0 = 4 mm. Nevertheless, its width
seems to be robust with respect to the disorder strength, having only a small increase of
the number of states for r0 = 4 mm. At high frequencies (10.5 GHz < ν < 11.5GHz),
localization signatures disappear for r0 = 3 mm. However, the density of states keeps its
shape through all disordered strengths. Figs. 4.18(d)-(k) demonstrate previous
observations, where 3D localization is originated by the specific correlations of Vogel
spirals and it disappears when considering random point patterns. In contrast,
localization signatures below the purely 2D limit survive in the disordered system or in
the golden-angle spiral.

Finally, we compute the radial decays of the “power law” and “Gaussian” states found
in the disordered golden-angle spiral when r0 = 3 mm and r0 = 4 mm, respectively. As
previously mentioned, both modes display features comparable with those of Anderson
eigenstates, e.g., the separation of the center of the mode and the center of the structure
(see Section 4.2). Fig. 4.19 depicts the spatial structure of the two [(a) “power law” and
(b) “Gaussian”] modes and the corresponding radial decay of the corresponding spatial
autocorrelation function [(c) and (d), respectively]. At this stage, the original radial
characteristics of both modes have been clearly replaced by those of exponential Anderson
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Figure 4.19: Spatial modal structure and radial profile of the spatial autocorrelation field (not shown) of
the modes with [(a)-(c)] power-law, and [(b)-(d)] Gaussian radial decay depicted in Fig. 4.18 for r0 = 3 mm
and r0 = 4 mm, respectively. Amplitude maps are normalized such that max(|Ek|) = 1. Radial decays
are obtained by performing an angular average in the autocorrelation space (r′ is measured from the well
defined autocorrelation center).
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states, presenting in the two cases an exponential radial decay. However, the extraction
of the localization lengths shows that both states are still delocalized [ξloc > R0 (R0 ≈
140 cm)] and can leak out of the structure.

4.4 Conclusion

Microwaves experiments play an important role in the understanding of how spatial
correlations can enhance or halt electromagnetic transport [87]. In this Chapter, we use
the well-controlled experimental setup consisting of microwaves propagating through
lattices composed of dielectric Mie scatterers, in a metallic cavity of variable height
presented in Chapter 2. The simplicity of our platform allows us to efficiently study
different kind of arrays such as disordered structures or aperiodic lattices with up to
∼ 400 scatterers. Reflected and transmitted complex fields are emitted and detected by
two straight antennas at the center of the structures and at the center of the top plate
constituting the cavity. The cavity is mapped in frequency and space with a high degree
of accuracy thanks to the VNA and to the fact of having a movable top plate and
therefore a movable antenna. Another feature of this versatile experimental setup is the
ability to control the distance between the two plates, thus breaking the translation
invariance in the ẑ-direction, and studying the wave propagation in the system beyond
the pure 2D limit, differently to previous experiments [81]. Following the data
acquisition, the features of the temporal evolution of a wave-packet as well as the
properties of the resonances of the system are extracted via the Fourier transform and
the harmonic inversion/clustering methods, both applied to the transmission spectra.
Similarly, the density of states can be obtained directly from the reflection measurement.

The above experimental data analysis allows us to experimentally reveal the spatial
modal structure supported by quasi-two-dimensional arrays of dielectric cylinders placed
according to an aperiodic Vogel spirals and a traditional disordered point pattern, and
its impact on wave transport. At different frequency, and by varying the distance
between both plates, we investigate the behavior of the electromagnetic resonances as
the system undergoes a 2D-3D crossover. Our findings show that Vogel spirals support a
unique modal structure where long-lived modes with different radial decay types
(exponential, power-law and Gaussian) coexist, confirming recent theoretical
predictions [142]. This contrasts with disordered lattices, where eigenmodes always
exhibit exponentially decreasing radial profiles. In particular, we not only disclose the
huge difference in the shape of the eigenmodes corresponding to each structure and their
radial decays, but also the robustness of Gaussian modes against varying the
dimensionality of the cavity, while typical exponential disordered states are not spatially
confined at high frequency where the cavities are not longer 2D.

We also investigate the impact of the peculiar modal structure of Vogel spirals on
microwave transport properties by means of the temporal evolution of the energy as well
as the characteristic decay time t0 (related with the average resonance width ⟨δν⟩), the
density of states, and the Thouless conductance. This analysis reveals that Vogel spirals
exhibit very slow energy dynamics. Indeed, we show that in frequency windows
containing long-lived modes, the values of t0 are similar to those found in the Anderson
localized regime in traditional 2D disordered systems. In these same frequency windows,
the Thouless criterion for Anderson localization is shown to be fulfilled despite the lack
of disorder and the presence of non-exponentially localized modes. Using this transport
analysis, we confirm that long-lived modes supported by Vogel spirals are robust against
the change in the dimensionality of the cavity, from 2D to 3D, so that they remain
essentially unperturbed and preserve their transport features even when the homogeneity
of the electric field in the ẑ-direction is broken. Finally, by taking advantage of the
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versatility of our system, we explore the evolution of the unique modal structure of the
golden-angle spiral and the corresponding transport quantities with respect to the size of
the system, as well as to their robustness to different alterations of the point pattern.
Particularly, we analyzed the behaviour of the characteristic power law, exponential and
Gaussian states with respect to dislocations, scars and positional disorder.

In summary, without disorder, our results embark on the long-standing quest for
Anderson localization of 3D light, which turns out to be very difficult in uncorrelated
disordered systems [21, 25]. Altogether we provide a full description of the experimental
details that allowed us to experimentally demonstrate the existence of robust localization
of microwaves in Vogel spirals, paving the way for a broader application of such
structures.
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Chapter 5

This Chapter is dedicated to experimentally investigate the existence of helical
edge-states generated in systems with a nontrivial topological behavior and characterized
by the Z2 invariant. By using our experimental setup in the tight-binding limit, we
design dielectric arrays following the Wu-Hu model [156, 157], which allows to mimic a
nontrivial topological quantum system with spin. The Chapter is organized as follows:
In Section 5.1, we start by introducing the details on the design of the dielectric lattices
used in our experiments, as well as the technicalities of the experimental performance
and the data analysis. This last one is carried out by means of the harmonic
inversion/clustering methods, used to retrieve the individual eigenmodes of the system,
and the computation of the circular transmission, that allows to measure directly the
pseudospin channels. Results are presented in Section 5.2, where we first show how
certain deformations of the dielectric arrays lead to the opening a topological gap dwelt
by edge states. The last two parts of the section are devoted to demonstrate the
unidirectional counterpropagative features of the helical modes that propagate along the
boundary of the topological nontrivial material. It is important to point out that,
despite the quality and quantity of the achieved results, this chapter is still a preamble
to new topological studies and is therefore shorter than the previous chapters.

5.1 Experimental arrays and data analysis

We experimentally investigate 2D triangular lattices of lattice parameter
a0 = 30 mm, with a hexagonal elementary motif of radius R [see Fig. 5.1(a)]. Each
honeycomb-like structure consist of N = 384 dielectric cylinders (see Section 2.2) placed
into the experimental cavity presented in Section 2.1. The electromagnetic field is
induced and measured by two loop antennas placed at the centers (1) of the movable top
plate and (2) of the bottom plate. As explained in Section 2.1.2, loop antennas induce a
TE polarization whose non-propagative cutoff frequency is given by νcut = c0/ (2h),
where c0 is the speed of light in air and h is the distance between both plates. Our
experiments are carried out by fixing the distance between plates as h = 13 mm, and
using a frequency range [7.1 GHz, 7.7 GHz] with a frequency step of 100 kHz,
corresponding to wavelengths in the range [39 mm, 42 mm]. Therefore, electromagnetic
waves in the TE polarization cannot propagate and a tight-binding model is built on the
first TE resonance (see Section 2.2.1.2).

20 mm

(a)

R

a0

50 mm

R1 R2

(b)

Figure 5.1: (a) 2D honeycomb array constructed from a triangular lattice with lattice parameter a0 =
30 mm (grey crosses) made of artificial hexagonal atoms of radius R = 10 mm. (b) Honeycomb-like lattice
consisting of N = 384 cylinders with a rhomboidal shape characterized by a0 = 30 mm, R1 = 8.5 mm
and R2 = 11.5 mm. Hexagonal cells in the edge of the nontrivial structure are highlighted in grey. The
area corresponding to the nontrivial structure is highlighted in pink. The red dotted line represents the
interface between both media.
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5.1.1 Topological lattice design

As previously discussed in Section 1.3.2, the parameter R allows to deform the
honeycomb-like lattices without altering the hexagonal clusters, thus preserving the C6

rotational symmetry [156]. This fact allows to open a nontrivial topological gap by
choosing 3R < a0, or a trivial gap for 3R > a0; a0 = 3R forming the critical case of a
perfect, non-gaped, honeycomb lattice. Since the pseudo time-reversal symmetry, and
therefore the pseudospin channels, are based on the C6 symmetry, deformations breaking
the crystalline periodic order mix the pseudospin channels, destroying the helical states.
Nevertheless, it has been shown that the topology remains valid when considering small
deformations [157].

Our structures are planned to have an interface separating two different media: one
of them displaying trivial features [characterized by R1 ≲ 10 mm] and the second one
with a nontrivial topological character [described by R2 ≳ 10 mm]. By considering this
constraint, the dielectric arrays are designed with a regular rhomboidal shape divided
into two rhomboidal substructures [see Fig. 5.1(b)]. This choice prevents the formation
of edge-states in the absence of deformation [188], and maximizes the length of the
interface between two sufficiently bulky structures. In Fig. 5.1(b), the nontrivial
topological structure has been highlighted in pink and the hexagonal cells belonging to
its edge are highlighted in grey. Note that, given the radius of the experimental cylinders
(= 3 mm) and the thickness of the placing metallic tube (∼ 0.25 mm), the values of the
radius R1 (R2) are experimentally restricted to the interval [6.25 mm, 11.87 mm],
allowing us to experimentally study the interplay between both trivial and nontrivial
topological regimes.

5.1.2 Experimental realization

We study the behaviour of the interface states as a function of the cell radius using
11 different lattices characterized by R2 = 10 + i × 10−1 mm (i = 0, 1, · · · , 10) and
R1 = 20 mm − R2. Given the mixture of the two pseudospin channels in the absence
of the C6 symmetry, and their unidirectional counterpropagation, it is possible to isolate
each propagating helical state along the whole interface by changing the position of the
lattice with respect to the fixed exciting antenna (2). In that way, each honeycomb-like
configuration is scanned twice, where the fixed antennas are placed at the top and at the
bottom of the interface between both structures [blue and golden dots in Figs. 5.2(a) and
(b), respectively]. Specifically, the exciting antennas are always located at 7.5 mm from
the center of the two closest cylinders on the topological side.

Due to the confinement of the electromagnetic waves inside the cylinders, each
configuration is mapped by placing the movable antenna (1) over every single resonator.
Therefore the scanning map identically corresponds to the map of the cylinder positions
[see e.g. Figs. 5.2(a) and (b)]. At each resonator position, the VNA registers both the
complex transmitted and reflected signals [S21(ν) and S11(ν), respectively]. For instance,
Figs. 5.2[(c)-(e)] show the intensity of the two measured signals, |S11|2 (purple line) and
|S11|2 (orange line), at three different positions for the “top-antenna-lattice” in
Fig. 5.2(a), which is characterized by R1 = 9.5 mm and R2 = 10.5 mm. The three panels
present measurements taken on a cylinder belonging to the nontrivial topological edge,
the nontrivial topological bulk, and the trivial bulk [red, green and indigo dots in
Fig. 5.2(a), respectively]. Low transmission and reflection values are due to the weak
coupling regime between the antenna and the field.

According to Section 2.4.6, the orange curves in Figs. 5.2[(c)-(e)] approximate the local
density of states at different positions in the weakly coupled antenna regime. Therefore,
reflection values close to 1 (and fading transmission values) reveal the existence of band
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Figure 5.2: [(a)-(b)]Diagram of a honeycomb-like lattice consisting of N = 384 cylinders with a rhomboidal
shape characterized by a0 = 30 mm, R1 = 9.5 mm and R2 = 10.5 mm. Blue and golden dots represents the
position of the fixed antenna with respect to the array. Hexagonal cells in the lattice edge are highlighted in
grey. The area corresponding to the nontrivial structure is highlighted in pink. Red, green and indigo dots
in (a) indicate the positions corresponding to signals in (c), (d) and (e), respectively. Reflected |S11(ν)|2
(orange line) and transmitted coefficients |S12(ν)|2 (purple line) in a cylinder placed at (c) the nontrivial
edge, (d) the nontrivial bulk and (e) the trivial bulk.

gaps. Particularly, a frequency window with these features is observed around 7.4 GHz
for measurements taken in both bulk regions [see Figs. 5.2(d) and (e)]. On the contrary,
no band gap is identified for the signal registered in the edge of the nontrivial topological
structure [see Fig. 5.2(c)]. According to the bulk-edge correspondence [see Section 1.3.1],
the topological order of structures with not-vanishing topological invariants always leads
to spatially confined edge-states with frequencies occupying the band gap.

Out of the band gaps, the transmitted signal is a superposition of peaks related to
the resonances of the system, thus it can be analyzed by means of the harmonic
inversion/clustering methods (see Sections 2.4.2 and 2.4.3). The harmonic inversion is
implemented by dividing the complex transmission spectrum into two frequency
intervals: [7.2 GHz, 7.45 GHz] and [7.4 GHz, 7.65 GHz], where the 0.5 GHz overlap
prevents to be spoiled by spurious resonances generated by the filtering. Additionally, it
is known from the tight-binding theory that the number of resonances carried by the
system is fixed to N = 386, thus we choose 2K = 400 in each interval. After the
extraction of the resonance parameters by the harmonic inversion, we cluster the
amplitudes of the same resonance at different positions to recover the map of the
magnetic field amplitude Bk(x, y) of each eigenmode in the lattice [81].

Besides to the eigenmode reconstruction, the transmitted signal S21(ν) also gives access
to the pseudospin channels by quantifying the circular transmission as a function of time
in a hexagonal cell. This is achieved by computing the dynamics carried by a certain set
of modes through the cylinder l, given as

Sf0,∆ω
21 (l, t) = F

{
S21(l, ν) × F f0,∆ω(ν)

}
, (5.1)

with F{·} the Fourier transform and F f0,∆ω(ν) a bandpass filter centered in f0 and
characterized by a bandwidth ∆ω (see Section 2.4.5). Then, the energy flux between two
resonators (l and m), that are separated by a distance dlm, can be approximated by
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discretizing the Poynting vector as [162, 189]

T = Im{B∗
ẑ∇x,yBẑ} → T f0,∆ω

lm (t) = Im


[
Sf0,∆ω
21 (l, t)

]∗
Sf0,∆ω
21 (m, t)

dlm

, (5.2)

where we have taken into account the TE polarization and Bẑ ∝ S21 (see Section 2.4).
Note that the Poynting vector [left hand side of Eq. (5.2)] has a one-to-one correspondence
to the current density computed in Ref. [157]. Finally, for a hexagonal cell α centered in
rα, the circular transmission as a function of time is written [190]

Cf0,∆ω
α (t) =

1

Lα

∑
l,l+1∈α

T f0,∆ω
l,l+1 (t)sgn [(rl − rα) × (rl+1 − rα)] , (5.3)

where Lα =
∑

l,l+1∈α dl,l+1, sng(·) gives the sign of its argument, and rl and rl+1 are the
positions of the cylinders l and l + 1, respectively.

To extract the circular transmission from our experimental data, we focus on the
frequency interval around the gap observed in Figs. 5.2(d) and (e) [7.36 GHz, 7.46 GHz],
which is mapped by 41 uniform distributed Hanning filters characterized by
∆ω = 0.01 GHz (see Section 2.4.5). Each cell is then labelled in an anti-clockwise sense
as indicate in Fig. 5.3, where the arrows define the turning sense of the positive current,
allowing to write Eq. (5.3) as

Cf0,∆ω
α (t) =

1

Lα

∑
l,l+1∈α

T f0,∆ω
l,l+1 (t). (5.4)

In the following section, we analyze the existence of nontrivial topological band gaps,
and the emergence of edge states as a function of the cell deformation through the
eigenfunctions and the density of states, which is directly computed from the reflected
measured signal as DoS = 1 − ⟨Re{Sii(r, ν)}⟩. Later on, we use Eq. (5.4) to characterize
the helical edge states as a function of time, of the frequency and of the cell radius.

1

23

4

5 6

Figure 5.3: Diagram of a hexagonal cell. Arrows define the turning sense of the positive energy flow.

5.2 Helical edge states

We start our study by analyzing the behavior of the density of states as a function
of the frequency and R2, obtained using Eq. (2.60) when averaging over all the measured
sites [see DoS in Fig. 5.4(a)]. For a lattice without deformation (R1 = R2 = 10 mm)
around ν ∼ 7.4 GHz, a reduction in the number of states carried by the system is
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Figure 5.4: Experimental Density of States as a function of the frequency and the radius of the cell R2

computed by averaging (a) all the measured sites, (b) only the bulk sites, and (c) only edge sites. (d)
Experimental density of states computed by averaging only the edge sites, in frequency regions where
DoSB < 0.01.

observed, indicating a Dirac point. As predicted [156, 157], increasing R2 (and reducing
R1), removes the Dirac point and separates the bands, resulting in a wide frequency region
with a poor, or even null, density of states [see Fig. 5.4(a)].

To visualize better the low density-state regime (ν ∼ 7.4 GHz), note that Eq. (2.60)
allows to compute a “partial” density of states by averaging only over certain positions in
the lattice. For instance, Figs. 5.4(b) and (c) depict the density of states carried by sites
exclusively belonging to the bulk or the edge, labeled as DoSB and DoSE , respectively.
Similar to DoS, DoSB shows a decrement of the number of modes around ν ∼ 7.4 GHz,
denoting the presence of a band-gap for R2 ≳ 10.2 when excluding the structure edge.
On the contrary, Fig. 5.4(c) exhibit a well populated frequency band for all frequencies
and all R2 values, showing the existence of states that live exclusively in the edge of the
structure and whose eigenfrequencies are precisely in the band gap.

To validate previous findings, the spatial distribution of the eigenmodes around ν ∼
7.4 GHz is recovered using the harmonic inversion/clustering methods and then plotted in

(a)

R2 = 10.0 mm
νk = 7.41 GHz

(b)

R2 = 10.2 mm
νk = 7.40 GHz

(c)

R2 = 10.4 mm
νk = 7.41 GHz

(d)

R2 = 10.6 mm
νk = 7.41 GHz

(e)

R2 = 10.8 mm
νk = 7.42 GHz

(f)

R2 = 11.0 mm
νk = 7.40 GHz
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Figure 5.5: Spatial modal structure of representative modes found in our set of honeycomb-like lattices with
different values of R2. Amplitude maps are normalized such that max(|Bk|) = 1. The area corresponding
to the nontrivial structure is highlighted in grey.

110



Helical edge states

Fig. 5.5 for different values values of R2. Close to the honeycomb limit (R2 ≤ 10.2 mm),
the eigenmodes recovered by our algorithms are always well extended in the whole sample
[see Figs. 5.5(a) and (b)]. On the contrary, when increasing the radius of the cells (R2 >
10.2 mm), the eigenstates are pushed towards the edge of the nontrivial structure, being
mainly distributed along the “trivial-nontrivial” interface, with a weaker extension in “air-
nontrivial” edge [see Figs. 5.5(c)-(f)]. Following the bulk-edge correspondence, the modes
are exclusively confined along the edge nontrivial topological structure.

As shown in Fig. 5.5(a), non-topological modes can be spatially distributed along the
edge. As a consequence, their contribution to DoSE is still visible in Fig. 5.4(c), i.e.
integrating over the sites located at the interface does not reflect exclusively the modes in
the band gap. To isolate the effect of edge-states in the gap, in Fig. 5.4(d) we plot DoSE

in regions fulfilling the condition DoSB < 0.01, showing a gradual increment of states as
well as an increase of the gap width with R2. Complementary to Figs. 5.4(c) and 5.5,
Fig. 5.4(d) validates previous the statements about the emergence of states living in the
structure edge and populating the band gap when increasing the radius of the hexagonal
cells.

5.2.1 Helical propagation patterns

In order to show the pseudospin polarization of the interface modes, we use Eq. (5.4)
to compute the circular transmission in all hexagonal cells for a given lattice at a given
frequency window f0. The time-integrated pattern C̄ of a lattice is calculated by
integrating the circular transmission of every hexagonal cell in the time domain. For
instance, Fig. 5.6 displays eight different patterns of C̄ obtained by changing the position
of the fixed antenna, the radius of the cells, and the frequency of the exciting pulse f0
(see Section 2.4.5). Due to the strong coupling between the two antennas when they are
close together, the signals measured at the two hexagons closest to the fixed antenna is
strongly perturbed, and therefore they have been removed from our analysis.

As one can observe, for both values of R2, Figs. 5.6(a), (c), (e) and (g) demonstrate
the existence of well defined unidirectional circular energy flows which are extended
along the whole trivial-nontrivial interface. More surprising are the patterns displayed in
Fig. 5.6(b) and (d), which show circular currents along the air-nontrivial edge. As
previously stated by Wu and Hu [156, 157], since the time-reversal symmetry rely on the
C6 rotational symmetry, the breaking of the crystalline structure, and therefore of the
time-reversal symmetry, mixes the two pseudospin channels hampering helical
propagation. Nevertheless, as observed in Figs. 5.6(b) and (d), our tight-binding
experimental system seems to be robust and efficient with respect to the abrupt
crystalline breaking, allowing the helical propagation in the air-nontrivial edge.

By increasing the cell radius, one can observe that the propagation in the air-nontrivial
edge tends to disappear [see Figs. 5.6(f) and (h)]. Differently, helical modes in the trivial-
nontrivial interface keep their shape even for the largest hexagonal radius studied (R2 =
11 mm). Note that the disparity in the boundary conditions of the nontrivial structure
leads to a frequency difference between both unidirectional patterns for the same sample
[see e.g. Figs. 5.6(a) and (b)]. In consequence, counterpropagative helical states can be
isolated in frequency, or in space by changing the antenna position with respect to the
dielectric structure [see e.g. Figs. 5.6(a) and (c)].

As observed from Fig. 5.6, thanks to the versatility of our experimental platform,
propagating helical states can be properly isolated and therefore, controlled. To gain
more intuition about this phenomenon, in Fig. 5.7 we plot the global polarization of the
system

〈
C̄
〉
, which is computed by averaging the pattern C̄ over all the hexagonal cells in

the structure. Particularly, Fig. 5.7 shows
〈
C̄
〉

in a lattice with the exciting loop antenna
in its bottom part, however an analogous result is obtained by changing the antenna
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Figure 5.6: Time integrated pattern C̄ for honeycomb-like structures characterized by [(a)-(d)] R2 =
10.6 mm and [(e)-(h)] R2 = 11 mm. Structures enclosed in blue or orange boxes are distinguished by
the position of the exciting loop antenna. The integrated pattern are computed by integrating in time
Eq. (5.4), which in turn are obtained using Hanning filters centered at f0 with ∆ = 0.01 GHz. The area
corresponding to the nontrivial structure is highlighted in grey.
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Figure 5.7: Global polarization
〈
C̄
〉
computed by averaging the pattern C̄ over all cell in a lattice with the

fixed loop antenna in its bottom part. Black circles indicate the integrated patterns presented in Fig. 5.6.

position. Similarly to DoSEM in Fig. 5.4, the frequency window is reduced to encompass
only the propagating helical states.

As we can expect, the honeycomb limit (R1 = R2 = 10 mm) is characterized by
the absence of helical modes and in consequence the effective polarization goes to zero.
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Nevertheless, even small deformations of the lattice (R2 ∼ 10.1 mm) start leading to the
emergence of helical modes. Note that the intensity of the helical mode propagating on
the air-nontrivial edge (pink regions in Fig. 5.7) is always weaker than the one in the
trivial-nontrivial interface (green regions in Fig. 5.7)1.

5.2.2 Helical transfer rate

To complete the characterization of the helical states with our experimental platform,
we measure the transfer rate τ−1 of the patterns C̄. This is done by considering the
temporal evolution of circular transmission C(t) through certain paths at the boundary of
the nontrivial structure. For instance, Fig. 5.8(a) depicts one of our experimental arrays
(R2 = 11 mm) which is characterized by having the exciting antenna in its upper part,
and where the hexagonal cells supporting helical states in the trivial-topological interface
have been highlighted and ordered according to their distance to the antenna. As in the
previous section, the signal of the closest cell to the antenna is strongly perturbed by the
coupling between both antennas, therefore it is not taken into account.

Fig. 5.8(b) presents the circular transmission Cα(t) as a function of time for every
single hexagonal highlighted cell in Fig. 5.8(a) at a frequency f0 = 7.410 GHz. In each
cell, the circular transmission is a positive bump whose maxima monotonically advance in
time from one cell to another. In that way, the time corresponding to each bump maximum
is plotted in Fig. 5.8(c) with respect to cell number. A linear proportionality between the
two quantities is observed. Note that, up to a length scale constant, the transfer rate τ−1

is equivalent to a propagation velocity v2, that can be extracted by performing a linear
fit.

In contrast to the tight-binding model studied in Ref. [157], the cylinder-cylinder
interaction in our experimental setup is not restricted to first nearest neighbour coupling
only, but second and even third nearest neighbour couplings also contribute [165]. To
understand the implications of this fact, in Fig. 5.9(a) we show the band dispersion of a
2D topological ribbon considering up to third nearest neighbour coupling. As previously
mentioned in Refs. [156, 157], the appearance of two degenerate modes within the gap
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Figure 5.8: (a) Diagram of a honeycomb-like lattice characterized by R2 = 11 mm. The blue dot represents
the position of the fixed antenna with respect to the array. Hexagonal cells in the lattice edge defining
a path are highlighted in blue and labeled with respect to the distance to the emitting antenna. The
area corresponding to the nontrivial structure is highlighted in grey. (b) Circular transmission Cα(t) as
a function time for each of the labeled cells in (a). Cα(t) is computed according to Eq. (5.4). Dashed
lines indicate the position of the maxima in time for each bump. (c) The corresponding time of the bump
maxima in (b) with respect to the number of cell. Pink solid line is a liner fit to find the propagation
velocity v.

1As can be seen in Fig. 5.6, the edge states trivial-nontrivial or air-nontrivial are separated in frequency,
and therefore can be discriminated in Fig. 5.7.

2For convenience, we keep this terminology.
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Figure 5.9: Band dispersion of a 2D ribbon system of 50 hexagonal cells with third neighbour coupling
computed using the PythTB Python package. To map the experiments, we use the experimental coupling
values [see Fig. 2.8(d) and Eq. (2.34)] of a system characterized by R = 10.025 mm. Red curves correspond
to the helical states. (b) The corresponding time of the bump maxima with respect to the number of cell
for the system in Fig. 5.8(a). Dashed lines are linear fit to find the propagation velocity v.

indicates the presence of helical states. However and differently to Fig. 1.25(a), the
higher order nearest-neighbor coupling breaks the linear relation between kx and the
frequency around the gap. Consequently, helical states are not expected to conserve the
same velocity for all frequencies. This is exemplified in Fig. 5.9(b), where the
propagation velocity of the same helical state is extracted and plotted at three different
frequencies f0, leading to a different value in each case.

Finally, the change of the propagation velocity ⟨v⟩ with respect to the radius of the
hexagonal cells R2 can be measured by averaging v over all propagating frequencies. Note
that considering the two antenna positions leads to four different propagating paths in
the boundary of the nontrivial structure (see. Fig. 5.6). In Figs. 5.10[(a)-(d)], we show
one lattice configuration where these four paths are highlighted in different colors. As
in Fig. 5.8(a), the hexagonal cells in a given path have been ordered according to their
distance to the emitting antenna, and consequently labeled.

The average propagation velocity ⟨v⟩ of the helical states as a function of the radius
R2 for the four different path in Figs. 5.10[(a)-(d)] are plotted in Figs. 5.10(e). One
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Figure 5.10: [(a)-(d)] Diagrams of the honeycomb-like lattices characterized by R2 = 11 mm. The blue,
green, golden, and orange dots represent the position of the fixed antenna with respect to the array.
Hexagonal cells in the lattice edge defining a path are highlighted and labeled with respect to the distance
to the emitting antenna. The area corresponding to the nontrivial structure is highlighted in grey. (e)
Average velocity ⟨v⟩ as function of R2 for the helical states propagating along the different paths in [(a)-
(d)].
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can observe that for a given edge of the nontrivial structure, the average time ⟨v⟩ stay
unchanged with respect to the antenna position (see blue and golden dots, or green and
orange dots). However, when comparing the same antenna configuration, a clear difference
can be seen: the velocity of the helical mode in the air-nontrivial edge is slower for small
deformations (see blue and green dots, or golden and orange dots). As previously discussed,
this difference is due to the distinct boundary condition of the nontrivial structure where
the helical states propagates. Note that helical modes traveling through trivial-nontrivial
interface keep the same value for all deformations. Differently, helical states propagating in
air-nontrivial edge present a consistent velocity increase with respect to R2, being almost
equal to the trivial-nontrivial helical velocity for R2 = 11 mm.

5.3 Conclusion

In this Chapter, we experimentally identify and characterize the propagation of
topological helical states in a set of microwave honeycomb-like lattices. Our
experimental samples are made of dielectric cylinders that are placed into a metallic
cavity made of two parallel aluminum plates separated by a distance h = 13 mm. The
versatility of our setup allows us to efficiently control different spatial features of the
samples such as the radius of the hexagonal cells that composed the honeycomb-like
arrays, i.e. the topological characteristics of the array. The electromagnetic field inside
the cavity is excited and measured by loop antennas placed at the center of the top and
bottom plates that impose a TE polarization, in which our cylinders behave as
resonators, then mimicking a tight-binding system with up to third nearest neighbour
coupling contributions. The reflected and transmitted complex fields in the cavity are
scanned in space and frequency with a high degree of accuracy thanks to the VNA and
to the movable top antenna, which is attached to the movable top plate. Additionally,
each sample is measured twice after changing the location of the fixed antenna with
respect to the dielectric lattice. Following to the data acquisition, the parameters of the
resonances of the system are extracted thanks to the harmonic inversion/clustering
methods applied to the transmitted signal. Similarly, the features of the temporal
evolution of a wave-packet are studied by means of the Fourier transform. On the other
hand, the density of states is obtained from the reflection measurement.

Using the above data analysis, we are able to experimentally demonstrate the
opening of a nontrivial topological band gap when increasing the radius of the hexagonal
cells that composed the honeycomb-like lattices. We show that the deformation of the
honeycomb-like lattices also leads to the emergence of topological states that dwell in the
edge of the structure and whose frequencies appear inside the topological band-gap. Our
findings reveal that the gap size as well as the confinement of this peculiar modes in the
edge structure directly depends on the radius of the cell, confirming previous theoretical
predictions [156, 157].

We also investigate the impact of the edge states in wave transport by performing the
Fourier transform of the filtered transmission signal. Particularly, we focus on analyzing
the circular transmission which is directly derived from the Poynting vector and has a one-
by-one correspondence with the current density studied in Ref [157]. By integrating in time
the circular transmission, we are able to disclose the wave patterns of the helical modes.
We show the unidirectional counterpropagative behaviour of the helical modes around the
boundary of the topological material. Differently to previous theoretical predictions [156,
157], we prove our system to be robust against the abrupt crystalline structure breaking,
allowing the helical states to propagate even in the edge of the dielectric structure with
the air. Thanks to the experimental design of our samples, helical modes can be easily
isolated from one another, thus opening the door to wave-guiding applications.
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Finally, by evaluating the spatial evolution of the helical states along the edge of the
nontrivial topological structure, we extract the propagating helical velocity. By taking
into account the second- and third-nearest-neighbour tight-binding coupling between
resonators, we show that the helical velocities are frequency dependent.
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Combien de temps encore à te voir revenir

Dans des rêves brumeux imbibés de plaisir?

Exhibant tes amants me proposant mâıtresses

Qu’importe le flacon pourvu qu’il y ait l’ivresse

Je ne veux plus te voir, je ne veux plus t’entendre

Je n’veux plus rien savoir, je ne veux plus comprendre

Je ne peux plus te croire, je veux juste t’oublier

Quand tu te fais prendre arrête de crier

Zoufris Maracas (Et ta mère)

Throughout this manuscript, we have investigated the spatial localization of
electromagnetic waves generated by different physical and geometrical mechanisms.
Specifically, we have successfully extended the localization landscape approach to a wide
class of 1D and 2D tight-binding lattices with uncorrelated random on-site energies.
Uncorrelated disorder leads to the phenomenon known as Anderson localization,
characterized by exponentially localized eigenstates, which, in the discrete case, lie on
both edges of the band. We have also experimentally explored the impact of correlated
potentials in wave transport by performing microwaves scattering experiments in
aperiodic systems (Vogel spirals) and correlated disordered media. We have confirmed
that correlated Vogel spiral support a unique modal structure where long-lived modes
with different radial decay types (exponential, power-law and Gaussian) coexist.
Remarkably, such long-lived modes are robust against the change of dimensionality of the
cavity, from 2D to 3D. Finally, we have experimentally identified and characterized the
emergence of topological helical states in a set of microwave honeycomb-like lattices. We
have shown that the interface between two topologically distinct lattices (or outer edges)
supports two contrapropagative states of opposite helicity. Taken together, our results
demonstrate that it is possible to model, control and localize electromagnetic waves not
only within, but beyond Anderson’s conception. As mentioned in the introduction, our
main goal was not solve the problem of Anderson localization of 3D light, but to improve
the general understanding on the different mechanisms that allow electromagnetic wave
localization to take place. We humbly believe that the challenge has been met.
Throughout this manuscript, experimental evidence and physical interpretations have
combined to provide the building blocks of a scaffold of new knowledge upon which
others can climb to construct the ultimate understanding of Anderson localization of
electromagnetic waves. Progress has been made, but much remains to be done...

One of the objectives of Chapter 3 was to extend the scope of the localization landscape
formalism to disordered electromagnetic wave systems, which are governed by the vector
Maxwell’s equations. However, to the best of our knowledge, a vector definition of the
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localization landscape is still missing, making impossible the direct application of this
powerful tool to 3D light. Later on, by imposing suitable spatial condition to the electric
and magnetic fields, we were able to investigate the scalar character of the fields, showing
that spatial localization of waves is achieved only at high frequencies. Unfortunately,
in its current form, the continuous localization landscape is not capable to predict the
behavior of such high-frequency localized states, and it is therefore necessary to improve
the approach. As also mentioned in Chapter 3, multiple interesting effects take place
at the center of the band of a tight-binding system (see e.g. Chapter 5). However this
frequency range is still completely unreachable to our approach. Additionally, despite the
robustness of our method to compute the dual localization landscape, it is not completely
universal: for instance in the case of the Kagome lattice, where the definition of kmax

remains a challenge given the presence of a flat band.
As highlighted in Chapter 4, we have remarkably exhibited localization of 3D

electromagnetic waves using 2D planar aperiodic arrays. This fact can be contrasted
with the case of correlated disordered structures, where localization was found to be
always restricted to frequencies in the purely 2D limit regime. Therefore, a better
understanding on the precise “ingredients” required to achieve 3D localization of
electromagnetic waves in correlated systems is needed. A similar analysis may be also
developed for different transport regimes, for instance to explain the origin of band gaps
that have been demonstrated to be closely related with the localized eigenmodes [78, 79,
138].

In Chapter 5, we have reported the unambiguous observation of helical
counterpropagative edge modes in a dielectric structure with nontrivial topological
behaviour, characterized by a Z2 invariant. It turns out that recently, Li et al. [191] have
investigated the effect of disorder in this type of topological insulators. The authors have
shown that, additionally to the expected metal-insulator transition, the disorder induces
a new nontrivial topological phase in the material—namely a topological Anderson
insulator [192–196]. Given the versatility and robustness of our setup, as well as the new
findings, we believe it is possible to demonstrate this topological transition
experimentally. Besides this, it is important to remark that all our tight-binding
experiments were carried out using only the fundamental TE resonance of the cylinder
and the rotational symmetry C6 generated by the specific array. As exhibited by Reisner
[164], higher resonant modes can be easily achieved in our experimental platform.
Moreover, Reisner et al. [197] also demonstrated that is possible induce non-linear losses
by coupling short-circuited Schotky diodes to the cylinders. By doing that, the authors
were able to design a topological reflective power limiter [197, 198]. These two examples
illustrate how new different symmetries can be induced in our system, opening the door
to different topological phenomena.

At this point, it is important for me to point out that this Thesis has approached the
study of wave systems from several different angles, all using the same experimental
platform. The significant results presented in this manuscript are based on precise,
quantitative experimental access to various physical observables. For instance, we have
demonstrated how the local density of states (and therefore the density of states), the
Thouless conductance, the spatial structure of the eigenmodes and even the time
evolution of a wave-packet can be precisely obtained from our experimental processes.
And not only that, but we have also showed that by playing with the polarization of the
excited field, we can change the constitutive equations of our problem, going from a
tight-binding Hamiltonian to fully vector propagating problem governed by Maxwell’s
equations. It is also true that our systems are limited by the number of cylinders, or the
physical size of the platform. Nevertheless, I would like to remark that, to the best of my
knowledge, there is no other platform that alone provides access to this variety of
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observables with the same quantitative quality. In addition, let me now draw your
attention to the moderate resources with which this platform operates. Personally, in the
last three years conducting this research, I’m truly convinced that all the scientific
community ought to be more concerned about the resources spent (and sometimes
wasted) in research and how we can reduce them. As we have demonstrated in this
Thesis, meaningful and beautiful physics can be achieved taking this new constraint into
account.
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The tight-binding formalism

Traigo ante ti

la lucha de un hombre

suplico a mi Dios

que ampare su ausencia,

causa de mi demencia,

¿Dónde estás santa inocencia?

Delalma (Acto de fé)
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This Appendix is devoted to present the tight-binding method. Tight-binding
Hamiltonians are pertinent to model many different wave problems in physics and do not
depend on the nature of the considered waves. This formalism is introduced by
considering atomic structures in which atoms are weakly coupled with their neighbours,
however, it is also useful to describe several physical systems as a classical chain of
harmonic oscillators. Tight-binding models are also commonly used to study
perfect [165] as well as disordered lattices [1, 199–201]. Similarly, Tight-binding
Hamiltonians are used to model our experimental system of dielectric cylinder
(considering TE polarized waves) introduced in Chapter 2.

General formulation

To show the formalism of the tight-binding approximation, we start considering a
crystalline periodic lattice whose potential fulfils V (r) = V (r + R), with |r−R| = a0 the
lattice parameter [see Fig. A.1]. We assume that in this lattice, the Hamiltonian Ĥ can
be locally approximated by the Hamiltonian of a single atomic site Ĥs at a given position.
The isolated atomic state ψn(r) is then described by the Schrödinger equation as

Ĥsψn(r) = Enψn(r), (A.1)

where En is the atomic energy of ψn(r), which is infinite degenerated in the crystal.
Additionally, the Bloch theorem in the periodic lattice requires

ψn(r + Rj) = eik·Rjψn(r) (A.2)

with k the wave vector of the wavefunction, and Rj denoting the position of the atom j
in the crystal.

Given the overlap of the atomic wavefunction with the adjacent atomic sites, ψn(r) is
not an eigenstate of Ĥ. In this case, the Hamiltonian is written as

Ĥ = Ĥs + ∆U, (A.3)

where the potential ∆U contains all corrections between the potential of the single atom
and the full periodic potential. Then, Ĥ can be expressed in the crystalline base by
projecting it on the isolated atomic states as

Hij =

∫
ψ∗
n(r + Ri)Ĥψn(r + Rj)dr,

=

∫
ψ∗
n(r + Ri)Ĥsψn(r + Rj)dr +

∫
ψ∗
n(r + Ri)∆Uψn(r + Rj)dr,

= Eneik·(Rj−Ri) +

∫
ψ∗
n(r + Ri)∆Uψn(r + Rj)dr.

(A.4)

a0 a0 a0 a0

Figure A.1: Simplified diagram of a periodic potential in 1D with periodicity a0.
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In Eq. (A.4), we have discretized the Hamiltonian of the crystalline lattice on the
atomic position base. Note that the elements Hij only depend on the self-energy of the
isolated atomic functions and the overlap between neighbouring sites. In consequence,
the crystal can be interpreted as a discrete lattice of interacting sites, where the diagonal
terms Hii are called as the self energies and the non diagonal terms Hij are the couplings.
Since the matrix elements Hij depends on the specificities of the problem, they are not
typically computed, but measured experimentally instead (see Section 2.2.1.2).
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Energy prediction from the
L2 landscape

Forzas do ar, terra, mar e lume, a vós fago esta chamada:

se é verdade que tendes máis poder que a humana xente,

eiqúı e agora, facede que os esṕıritos dos amigos que están fóra,

participen con nós desta Queimada.

Esconxuro
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Appendix B

This appendix present complementary results to Chapter 3. Here, we propose an
algorithm to find the eigenenergies of a tight-binding Hamiltonian using the L2-localization
landscape. The scope of the Appendix is as follows: In Section B.1, we introduce the L2-
landscape formalism. Later, in Section B.2 the details of the algorithm that allows to find
the energies of the system are given.

B.1 The L2 landscape approach

In Chapter 3, a new tool that allows to extract important information about the
low-energy states of a quantum particle in a disordered potential is study. The
localization landscape approach, firstly introduce by Filoche and Mayboroda [26], is
defined via the Green function of the Hamiltonian [Eq. (1.7)] and is capable to predict
the energies and positions of the localized functions. Despite the landscape has been
extrapolated to other wave system such as mechanical waves [65] or cold atoms [74], the
lack of high-energy predictions makes it unfeasible to describe electromagnetic waves in
disordered media, where localization occurs only at high-frequencies (see Section 3.1). In
tight-binding disordered structures, localization is also present at high energies, however,
the discrete character of the system allows to successfully extend the landscape theory
for a broad class of 2D lattices (see Section 3.2) at both, low- and high-energy, band
edges. Unfortunately, the center of the band where many interesting properties appear
for many new topological materials is still inaccessible to this formalism. Nevertheless, it
exists another variant of the localization landscape, called the L2-localization landscape
and introduced by Herviou and Bardarson [186], which is presented as a tool capable to
predict the position of any mode around an energy ET in a generic physical model,
claiming to be efficiently applied to topological modes and many body Hamiltonians as
well.

In the tight-binding framework, the L2-landscape is defined as

u(2)n =

√
(H†H)

−1
nn , (B.1)

where H = Ĥ − (ET + iϵ) 1 with Ĥ defined as in Eq. (3.20). Note that the parameter ϵ
assures existence of the H−1 if ET is an eigenvalue of Ĥ, allowing as well to resolve between
different states close in energy. The election of ϵ is then restricted to be smaller that
the mean level spacing of the system. Even though Eq. (B.1) is defined for tight-binding
systems, this formalism can be numerically extended to continuous setting. Equation (B.1)
is derived by applying the Cauchy-Schwartz inequality to Eq. (1.6), leading to

|ψn| ≤ |E|∥ψ∥2
√∑

m

(H−1)n,m(H−1)∗n,m. (B.2)

Since the L2-landscape uses a different normalization condition over the eigenfunctions

∥ψ∥2 =
√∑

n |ψn|2 = 1, the localization subregions definition [Eq. (1.10)] is not valid
anymore. Therefore, it is not possible to predict the energies of the system.

Considering a Hermitian Hamiltonian allows to write the L2-localization landscape in
terms of the eigenfunctions and eigenvalues as

(
u(2)n

)2
=
∑
i

∣∣ψi
n

∣∣2
(Ei − ET )2 + ϵ2

, (B.3)

where each site is determined by the contribution of all states weighted by the
corresponding energy after being shifted by ET + iϵ. Thus, states with closest energies to
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Energy prediction from the L2 landscape

ET have greater contributions to the landscape even near to spectral quasidegenerancies.
To gain some intuition about L2-landscape, Figs. B.1(a), (b), and (c) show the
L2-landspace computed using Eq. (B.1) for the same 1D disordered chain by considering
three different values of ET . Similar to the original localization landscape, each
L2-landscape is a complex relief of peaks and valleys and all of them are different from
each other. In Fig. B.1(d), six different eigenmodes in the bottom band edge (ψ1, ψ2),
in the middle of the band (ψ100, ψ101), and in the top band edge (ψ199, ψ200) are also
depicted. Notably, all states are well predicted by the L2-landscape peaks even in the
middle of the band. Such new advantage allows to explore the complete spectrum of a
disorder system without solving the eigenvalue problem.
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Figure B.1: The L2-localization landscape with (a) ET = −5.75, (b) ET=0.1, (c) ET = 5.7 and ϵ =
(4+Vmax)/(N ×100), computed using Eq. (B.1). (d) The two states with: the lowest energies, the highest
energies and in the middle of the band of a 1D chain with on-site disorder, N = 200 and Vmax = 10. Each
random value is taken from a uniform random variable in the interval [−Vmax/2,Vmax/2] and t = 1.

B.2 Energy prediction

As we have observed, the L2-localization landscape is able to improve the precision of
the conventional landscape which usually fails for spatial or spectral quasidegeneracies (see
Sections 1.1.3.4 and 3.2.5). Unfortunately, this new landscape does not extract information
about the energies of the modes. In this section, we will introduce an algorithm that allows
to access to the eigenenergies by means of the L2-localization landscape.
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We start considering a discrete structure with constant coupling t = 1 and on-site
disorder given by an i.i.d. random variable in [−Vmax/2, Vmax/2]. Therefore, the
spectrum of possible energies is bound in the interval
[−min(E) − Vmax/2,max(E) + Vmax/2] with E depending of spatial structure of the
discrete array (see, e.g., Table 3.1). The algorithm then consists on dividing the total
energy band into a set of K different energies {E1, · · · , Ek, · · · , EK} separated by a step
Ek − Ek−1 = δ > 0. Later, one can compute the L2-landscape using each energy in the
set as an energy shift with a constant value of ϵ. Finally, by comparing the changes in
the position of the maxima values of two distinct landscapes, successive in energy, we fix
the bounds of each eigenenergy.

For instance, Fig. B.2 shows three L2-localization landscapes with slightly different
values of ET . The first and second landscape maxima are label with their actual values.
As we can observe, the maximum of u(2)(ET = −2.96) is placed at different position that
the maxima of the previous and followed landscapes. Thus, according to Eq. (B.3), there
is at least one eigenmode ψi whose energy Ei is bound by Ek − δ/2 < Ei < Ek + δ/2.
Since the construction of the landscape in Eq. (B.3) only depends on the energy distance
to ET , one can have a state whose signature is never dominant [see in Fig. B.2(b) the
second maxima with value ∼ 50.08]. To handle this, the algorithm not only look for the
maximum of each landscape, rather it follows the behavior of the 2 highest local maxima.

To show the accuracy of the algorithm, numerical simulations have been performed
to find the complete spectrum of honeycomb and hexagonal lattices with weak disorder
Vmax = 3 and Vmax = 6, respectively. Values of N are chosen as shown in Table 3.2,
and ϵ = [min(E) + max(E) + Vmax] /(N × 100) with E as in Table 3.1. Figure B.3 shows
a comparison between the actual counting function obtained by diagonalizing Eq. (3.20),
and the prediction made by the algorithm previously described for two values of K. As
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Figure B.2: The L2-localization landscape with (a) ET = −3, (b) ET = −2.96 and (c) ET = −2.93
and ϵ = (4 + Vmax)/(N × 100). We consider a 1D disordered chain with on-site disorder, N = 200 and
Vmax = 10. Each random value is taken from a uniform random variable in the interval [−Vmax/2,Vmax/2]
and t = 1. Local maxima are label with their actual values.
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we can observe, the accuracy of the algorithm strongly depends on the election of K. For
K = N , the algorithm is just able to find approximately half of the eigenvalues of the
spectrum. This problem comes from the existence of eigenenergy clusters with an energy
scale smaller than δ. We have to stress that this problem affects the order of the states
with respect to the real solution, but not the total accuracy of the algorithm. However, an
increment of K leads to the algorithm to guess successfully almost the complete spectrum
of the system, i.e., > 97% of the energies. Here, the prediction follows closely the actual
IDOS for both lattices.
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Figure B.3: Counting function computed by the L2-localization landscape algorithm (dotted line) with
[(a) and (b)] K = N and [(c) and (d)] K = 10×N . Here, the weakest disorder (see Table 3.2) was chosen
for the [(a) and (c)] Honeycomb and [(b) and (d)] Hexagonal lattices.

B.3 Conclusions

Introduced as an alternative method to the localization landscape presented in
Section 1.1.3, the L2-localization landscape is a remarkable tool capable to predict the
position of localized eigenstates all along the spectrum without solving the eigenvalue
equation [186]. Despite it is defined for tight-binding Hamiltonians, the L2-landscape is
easily applicable to any other wave phenomena description. In this appendix, we present
a numerical algorithm that allows to guess the eigenenergies of the states using the
L2-landscape approach. Despite of the big accuracy of our algorithm, the computation
time needed to calculate the complete H−1 for a large number of energies overcomes the
time spent by solving the original problem Eq. (3.20). Thus, its implementation is not
recommended to find the complete spectrum, rather just to extract some information in
a small energy windows.
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Wave scattering through a
regular lattice

No veo nada nuevo,

sólo bebo cuando debo hacer lo que debo,

y acabo ciego sin poder ser

el hombre que promet́ı sacar adelante

como cantante se ha cansado de correr

aśı que antes de que me despida de esta mierda mátame,

acaba con las alas de este ángel desátame,

devuélveme los años perdidos que ya no sé

si se recuperarán altera’os por las pivas y el caché...

Hard GZ (Experimento)
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Appendix C

This appendix complements the results presented in Chapter 4. In it, we explore
electromagnetic scattering in a planar regular triangular array. The Appendix is organized
as follows: Section C.1 presents the construction of the dielectric lattice and details of the
experimental procedure and data analysis. Then, Section C.2 analyzes the behavior of the
eigenstates, as well as of different transport quantities.

C.1 Experimental array and analysis details

Analogous to the lattices investigated in Chapter 4, our regular array is made of
N = 396 dielectric cylinders (see Section 2.2) arranged into our experimental cavity
introduced in Section 2.1. The electromagnetic field is induced and measured by two
straight antennas (each of them in the center of each plate), then producing a TM
polarization (see Section 2.1.2).

C.1.1 The regular array

Our regular lattice is a triangular array characterized by a lattice parameter a0 =
13.1 mm, i.e. the distance between two neighbouring sites is always given by a0. For
the sake of comparison with the golden-angle spiral and the disordered system studied
in Chapter 4, just the sites enclosed within a circular area of radius R0 = 140 mm are
considered into the experimental array, leading to a planar (2D) density ρ ≈ 0.65 cm−2.
The diagram of the regular map used to arrange the scatterers together of a picture of the
real system can be observed in Fig. C.1

50 mm

(a) (b)

(2)(2)

Figure C.1: (a) Regular array consisting of N = 396 cylinder created with a0 = 13.1 mm. The black dot
indicates the position of the fixed antenna (2), which determines the origin of the reference system. (b)
Image of the 2D regular array of dielectric cylinders. The top plate has been removed to reveal the details
of the sample.

C.1.2 Experimental and data analysis performance

Differently to the experiments performed in Chapter 4, here we focus only in the case
h = 13 mm. Nevertheless, we consider the same frequency range [5.5 GHz, 15 GHz] with the
same frequency step of 250 kHz, corresponding to wavelengths in the range [20 mm, 54 mm]
and the cutoff frequency νcut ≈ 11.53 GHz. Using the movable antenna (1), the cavity is
once again mapped according to Fig. 4.3(a), i.e. over 3675 points where the geometrical
center of the lattice is located at (x, y) = (0, 0) [see blue circle in Fig. 4.3(a)]. At each
position (x, y), both complex reflected and transmitted signals are registered [S11(ν) and
S21(ν), respectively] by the VNA.
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Wave scattering through a regular lattice

Identically to Chapter 4, the analysis of the transmitted signal is carried out via the
harmonic inversion/clustering methods (see Sections 2.4.2 and 2.4.3), by dividing the
complete spectrum at each position into 19 intervals with bandwidth 0.6 GHz and an
overlap of 0.05 GHz. The value of 2K provided to the harmonic inversion method is
identify identically as in Sections 4.1.3 and 2.4.2 for each interval. In addition, analysis
of the wave dynamics is performed thanks to the Fourier-transform using Gaussian filters
with ∆ω = 0.01 GHz (see Section 2.4.5) over all positions to compute the total energy
carried by a certain superposition of modes [see Eq. (4.3)]. Energy dynamics as a functions
of the frequency is obtain by mapping the frequency internal [5.54 GHz, 14.96 GHz] via
472 Gaussian band-pass filters. The supposition of an exponential temporal decay of
the energy allows us to access to the characteristic decay time t0 as E ∼ exp (−t/t0).
Next, the DoS is calculated from the reflected signal as DoS =

[
1 −

〈
|Sii(r, ν)|2

〉]
(see

Section 2.4.6). Finally, using the DoS and the characteriztic times t0, we the average
Thouless conductance is extracted experimentally as in Eq. (4.4).

C.2 Transport and modes in a regular lattice

In Figs. C.2(a), the density of quality factors Qk is plotted as a function of νk for the
regular lattice in the case h = 13 mm. Green arrows are added to indicate the frequency
of the states in Fig. C.3. Additionally, the characteristic decay time t0, recovered from
the temporal evolution of the energy, is presented in Fig. C.2(b), while the corresponding
DoS is also depicted in Fig. C.2(c). Finally, using the two previously introduced quantities
(DoS and t0), the average Thouless conductance is computed and presented in Fig. C.2(d).
As discussed in Chapter 4, Figs. 4.6(a) and (b) presents strong similarities between the
density of Qk and t0, showing in both cases a complex relief of sharp peaks and valleys.

Regular lattice results can be directly compared with those found in Vogel spirals
(see Fig. 4.8). For instance, Fig. C.2(c) revels the existence of two band gaps at exactly
the same position that those in aperiodic systems, where regular structure gaps are just
slightly wider. Similar findings have been already discussed when comparing a regular
system and a stealthy hyperuniform disordered lattice in the 2D limit (h = 5 mm) [81].
Equivalently, our results support preceding proposals about importance of short-range
spatial correlations for the opening of band gaps in non-regular materials [99].

For frequencies below the first band gap (ν < 8 GHz), Fig. C.2(a) shows small Qk-
values (Qk → 0) along all the interval except for two bumps. First, the frequency interval
(6 GHz, 7 GHz), where Qk ∼ 2000, is characterized by a huge decrease of the DoS with
decay times of t0 ∼ 10 ns, giving rise to a soft decrease of the Thouless conductance [see
Fig. C.2(b)-(d)]. Extended states as the one in Fig. C.3(a) are found in this frequency
range. The second frequency window (νk ∼ 7.3 GHz) is denoted by huge quality factors
(Qk ∼ 6000). However, a DoS completely flat together with short characteristic decay
times t0 → 0 produce a flat Thouless conductance (⟨g⟩ > 1). In this frequency region, the
harmonic inversion/clustering algorithms are just able to decode the spatial structure of
one extended eigenmode, shown in Fig. C.3(b).

According to Fig. C.2, the lower edge of the first gap (8.2 GHz < ν < 8.4 GHz) is
populated by states with high quality factors (Qk ∼ 4000) and long characteristic times
(t0 ∼ 40 ns), having both the order of localized modes in the golden-angle spiral and the
disordered array. Subsequently, the Thouless conductance sharply drops by around one
order of magnitude, indicating the possible presence of long-lived states. However, the
harmonic inversion/clustering methods are only able to prove the existence of extended
states as those observed in Figs. C.3(c) and (d). As on the Vogel spiral, the peaks at
the center of the first band gap (ν ∼ 9.1 GHz) in all transport quantities (see Fig. C.2)
correspond to the signature of defect modes caused by scatterers imperfections. These
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Figure C.2: Density plots of the quality factors Qk as a function of the resonant frequencies νk extracted via
the harmonic inversion with a distance between plates h = 13 mm for the regular lattice. Arrows indicate
the frequencies of the states presented in Fig. C.3. (b) Characteristic decay time t0 as a function of the
frequency. The total frequency range have been mapped by 472 frequency filters spaced by ∆f = 0.02 GHz
with ∆ω = 0.01 GHz. (c) Experimental DoS as a function of the frequency. (d) Experimental Thouless
conductance ⟨g⟩ as a function of the frequency. The dash-dotted line indicates ⟨g⟩ = 1. Black vertical lines
indicate the cut-off frequency νcut.

states have large quality factors (Qk ∼ 4000) and are strongly localized in a restricted
number of cylinders (< 10) as shown in Fig. C.3(e).

The upper edge of the first band gap (ν ∼ 9.9 GHz) displays similar features than the
ones observed in the lower band edge [huge quality factors (Qk ∼ 5000), huge characteristic
times (t0 ∼ 45 ns), and a sharp drop in ⟨g⟩ (⟨g⟩ ∼ 10−1)]. However and identically to
the lower edge, the posterior analysis of the populating states still shows well extended
modes [see Figs. C.3(f) and (g)]. The upper band edge is followed by a frequency band
(9.95 GHz < ν < 11 GHz) denoted by low quality factors (Qk → 0), except from two
strips located around 10 GHz and 10.5 GHz where Qk ∼ 4000. Here, the DoS present a
constant value all along this range [see Fig. C.2(c)]. Likewise that for the density of Qk,
two sharp peaks are observed for the characteristic times where t0 ∼ 20 ns, producing
the fast decrease of ⟨g⟩ in both windows. The spatial reconstruction of two representative
states found in at ν ∼ 10 GHz and ν ∼ 10.6 GHz can be seen in Figs. C.3(h) and (i),
respectively. These two modes can be compared with those found in Vogel spirals in similar
frequency windows [see Figs. 4.8 and 4.11(a) and (d)], being also centered around “defect
positions” and occupying the whole measured space. In Chapter 4, a relation between the
nature of such states and the imperfections of the cylinders was proposed.

Contrary to the Vogel spiral, just a small increase of the characteristic times and quality
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factors is observed in the lower edge of the second gap (t0 ∼ 10 ns and Qk ∼ 2000), leading
to a small change in ⟨g⟩. Nevertheless, the spatial structure of populating modes in this
frequency range [see Figs. C.3(j) and (k)], together to those of states in the lower edge
of the first gap [see Figs. C.3(c) and (d)], can be compared with band edge Gaussian
modes in the GA spiral (see Fig. 4.10). As in Vogel spiral, band edge wave patterns in
regular systems result from Bragg scattering [40, 99], however the homogeneity of the
array prevents spatial confinement in this case.
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Figure C.3: [(a)-(o)] Spatial modal structure of representative modes found in the same regular lattice.
Amplitude maps are normalized such that max(|Ek|) = 1. Green dotted box contains the states with
frequencies beyond the 2D limit.

Finally, for frequency region beyond the 2D threshold (ν > 12 GHz), a progression of
peaks with quality factors 0 < Qk < 4000 is recovered by the harmonic inversion. This
band is characterized by a progressive continuous increment of the DoS, confirming the
emergence of new 3D modes. The characteristic time shows different peaks with poor
values (t0 ∼ 15 ns), giving rise to values of ⟨g⟩ around 1. Opposite to the cases studied in
Chapter 4 and despite the high modal overlap regime, some eigenstates are recovered by
the harmonic inversion/clustering algorithms. Figs. C.3(l)-(o) depict four different modes
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found in the 3D regime in the regular lattice. Note that all modes all well extended along
all the measured space.

C.3 Conclusion

Similar to the experiments described in Chapter 4, in this Appendix we perform
scattering microwave experiments to analyse different transport regimes, as well as the
properties of eigenmodes in a triangular lattice. The experimental array is composed by
dielectric Mie cylinders placed into a metallic cavity made up by two aluminum plates
separated by a distance h = 13 mm. Using a VNA, the transmitted and reflected signal
are emitted and detected by two straight antennas located in the center of the bottom
and the movable top plate. Part of the analysis of the transmitted signal is carried out
by the harmonic inversion and clustering methods introduced in Chapter 2, allowing to
extract the spatial structure of certain modes in the system, as well as other important
quantities such as the quality factor. Additionally, thanks to the Fourier transform, the
features of the temporal evolution of a wave packet can be obtained from the
transmission signal. On the other hand, the density of states directly calculated from the
reflection measurement given the intrinsic connection between the local density of states
and the Green function.

Or experimental results show a strong similarity in transport quantities obtained
through regular lattices and aperiodic systems, such as the presence of two well defined
band gaps driven by Bragg scattering, thus confirming the key role of short-range
correlations to opening band gaps in non-regular materials. However, the regular lattice
is characterized by the absence of confined states, which in the case of the golden-angle
spiral are caused for the inhomogeneity distribution of spacing between neighbouring
cylinders [138].
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[29] L. A. Razo-López, G. J. Aubry, F. A. Pinheiro, and F. Mortessagne. “Aperiodicity
is more effective than disorder in localizing electromagnetic waves [Invited]”. Opt.
Mater. Express 14, 816 (2024).

[30] P. Drude. “Zur Elektronentheorie der Metalle”. Annalen der Physik 306, 566
(1900).

[31] N. W. Ashcroft and N. D. Mermin. “Solid State Physics”. Holt-Saunders, (1976).

[32] N. Mott and W. Twose. “The theory of impurity conduction”. Advances in Physics
10, 107 (1961).

[33] S. N. Mott. “Metal–insulator transitions”. Physics Today 31, 42 (1978).

[34] J. T. Edwards and D. J. Thouless. “Numerical studies of localization in disordered
systems”. Journal of Physics C: Solid State Physics 5, 807 (1972).

[35] D. Thouless. “Electrons in disordered systems and the theory of localization”.
Physics Reports 13, 93 (1974).

138

http://dx.doi.org/10.1103/PhysRevLett.99.253902
http://dx.doi.org/10.1103/PhysRevLett.99.253902
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1038/nphoton.2012.313
http://dx.doi.org/10.1103/PhysRevB.85.115401
http://dx.doi.org/10.1088/1367-2630/18/1/013039
http://dx.doi.org/10.1088/1367-2630/18/1/013039
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1103/PhysRevLett.115.203903
http://dx.doi.org/10.1103/PhysRevB.103.174204
http://dx.doi.org/10.1038/s41567-023-02091-7
http://dx.doi.org/10.1038/s41567-023-02091-7
http://dx.doi.org/10.1073/pnas.1120432109
http://dx.doi.org/10.1103/PhysRevResearch.5.023102
http://dx.doi.org/10.1103/PhysRevB.109.014205
http://dx.doi.org/10.1364/OME.514886
http://dx.doi.org/10.1364/OME.514886
http://dx.doi.org/https://doi.org/10.1002/andp.19003060312
https://books.google.fr/books/about/Solid_State_Physics.html?hl=es&id=FRZRAAAAMAAJ&redir_esc=y
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1063/1.2994815
http://dx.doi.org/10.1088/0022-3719/5/8/007
http://dx.doi.org/https://doi.org/10.1016/0370-1573(74)90029-5


Bibliography

[36] D. J. Thouless. “Maximum Metallic Resistance in Thin Wires”. Phys. Rev. Lett.
39, 1167 (1977).

[37] J. Wang and A. Z. Genack. “Transport through modes in random media”. Nature
471, 345 (2011).

[38] S. Mondal, R. Kumar, M. Kamp, and S. Mujumdar. “Optical Thouless conductance
and level-spacing statistics in two-dimensional Anderson localizing systems”. Phys.
Rev. B 100, 060201 (2019).

[39] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan.
“Scaling Theory of Localization: Absence of Quantum Diffusion in Two
Dimensions”. Phys. Rev. Lett. 42, 673 (1979).

[40] R. Monsarrat. “Propagation of light waves in correlated disordered media: density
of states, transport, localisation”. PhD Thesis. Université PSL (2022).
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[99] L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko,
S. C. Glotzer, and F. Scheffold. “Role of Short-Range Order and Hyperuniformity
in the Formation of Band Gaps in Disordered Photonic Materials”. Phys. Rev.
Lett. 117, 053902 (2016).

[100] V. Saranathan, J. D. Forster, H. Noh, S.-F. Liew, S. G. J. Mochrie, H. Cao, E. R.
Dufresne, and R. O. Prum. “Structure and optical function of amorphous photonic
nanostructures from avian feather barbs: a comparative small angle X-ray scattering
(SAXS) analysis of 230 bird species”. Journal of The Royal Society Interface 9, 2563
(2012).

[101] M. A. Klatt, J. Kim, and S. Torquato. “Cloaking the underlying long-range order
of randomly perturbed lattices”. Phys. Rev. E 101, 032118 (2020).

[102] R. D. Batten, F. H. Stillinger, and S. Torquato. “Classical disordered ground states:
Super-ideal gases and stealth and equi-luminous materials”. Journal of Applied
Physics 104, 033504 (2008).

[103] S. Torquato, G. Zhang, and F. H. Stillinger. “Ensemble Theory for Stealthy
Hyperuniform Disordered Ground States”. Phys. Rev. X 5, 021020 (2015).

[104] O. Leseur, R. Pierrat, and R. Carminati. “High-density hyperuniform materials can
be transparent”. Optica 3, 763 (2016).

[105] A. Donev, F. H. Stillinger, and S. Torquato. “Unexpected Density Fluctuations in
Jammed Disordered Sphere Packings”. Phys. Rev. Lett. 95, 090604 (2005).

[106] N. Granchi, R. Spalding, M. Lodde, M. Petruzzella, F. W. Otten, A. Fiore, F.
Intonti, R. Sapienza, M. Florescu, and M. Gurioli. “Near-Field Investigation of
Luminescent Hyperuniform Disordered Materials”. Advanced Optical Materials 10,
2102565 (2022).

142

http://dx.doi.org/10.1103/PhysRevE.68.041113
http://dx.doi.org/10.1016/B978-0-12-387032-2.00013-1
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2018.03.001
http://books.google.com/books?vid=ISBN9780471415268
http://dx.doi.org/10.2307/j.ctvcm4gz9
http://dx.doi.org/10.2307/j.ctvcm4gz9
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1038/43141
http://dx.doi.org/10.1063/1.882495
http://dx.doi.org/10.1063/1.882495
http://dx.doi.org/https://doi.org/10.1016/0001-8686(87)80016-7
http://dx.doi.org/https://doi.org/10.1016/0001-8686(87)80016-7
http://dx.doi.org/10.1063/1.1729085
http://dx.doi.org/10.1063/1.1729085
http://dx.doi.org/10.1103/PhysRevLett.117.053902
http://dx.doi.org/10.1103/PhysRevLett.117.053902
http://dx.doi.org/10.1098/rsif.2012.0191
http://dx.doi.org/10.1103/PhysRevE.101.032118
http://dx.doi.org/10.1063/1.2961314
http://dx.doi.org/10.1063/1.2961314
http://dx.doi.org/10.1103/PhysRevX.5.021020
http://dx.doi.org/10.1364/OPTICA.3.000763
http://dx.doi.org/10.1103/PhysRevLett.95.090604
http://dx.doi.org/https://doi.org/10.1002/adom.202102565
http://dx.doi.org/https://doi.org/10.1002/adom.202102565


Bibliography

[107] N. Granchi, M. Lodde, K. Stokkereit, R. Spalding, P. J. van Veldhoven, R. Sapienza,
A. Fiore, M. Gurioli, M. Florescu, and F. Intonti. “Near-field imaging of optical
nanocavities in hyperuniform disordered materials”. Phys. Rev. B 107, 064204
(2023).

[108] L. Dal Negro, R. Wang, and F. A. Pinheiro. “Structural and Spectral Properties
of Deterministic Aperiodic Optical Structures”. Crystals 6, (2016).
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