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Abstract

Feature learning has been driving machine learning advancement with the recently pro-
posed methods getting progressively rid of hand-crafted parts within the transformations
from inputs to desired labels. The availability of large non-annotated raw audio and
speech corpora encouraged the development of approaches exploiting these datasets in
the feature learning process. Self-supervised learning has emerged within this context,
allowing the processing of unlabeled data towards better performance on low-labeled
tasks. It relies upon a wide set of so-called pretext tasks allowing for learning the structure
of human speech. Recently, self-supervised learning methods have been building robust
representations easily mappable to various desired labels such as phonetic, speaker, or
emotion-related identities. However, with recent advancements focusing on scale and
breadth-first exploration, the field still lacks informed and motivated best practices during
pretraining, evaluation, and downstream usage of self-supervised models.

The first part of this doctoral work is aimed at motivating the choices in the speech
self-supervised pipelines learning the unsupervised representations. In this thesis, I
first show how conditional-independence-based scoring can be used to efficiently and
optimally select pretraining tasks tailored for the best performance on a target task. After
developing an estimator of conditional independence for speech data, I show its utility in
two settings; first in the selection and weighting of multiple pretext-labels, and second in
the view-creation policies in contrastive learning approaches.

The second part of this manuscript studies the evaluation and usage of pretrained
self-supervised representations. I explore, first, the robustness of current speech self-
supervision benchmarks to changes in the downstream modeling choices, diagnosing
efficiency, generalization, and performance issues related to using limited-capacity probes.
I, then, design and evaluate methods for the downstream fine-tuning of self-supervised
encoders towards two main objectives: generalization, especially to out-of-distribution
samples, and inference efficiency.

Keywords: speech processing, deep learning, supervised learning, self-supervised learn-
ing.
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Résumé

L’apprentissage des caractéristiques a été un des principaux moteurs des progrès de
l’apprentissage automatique. Les méthodes récemment proposées se sont débarassées
progressivement des caractéristiques non-apprises dans la transformations des entrées
en étiquettes souhaitées. La disponibilité de vastes corpus audio et vocaux bruts non
annotés a encouragé le développement d’approches exploitant ces ensembles de données
dans le processus d’apprentissage des caractéristiques. L’apprentissage auto-supervisé est
apparu dans ce contexte, permettant le traitement de données non annotées en vue d’une
meilleure performance sur des tâches faiblement étiquetées. Il repose sur un large éventail
de tâches dites prétextes permettant d’apprendre la structure de la parole humaine. Ainsi,
les méthodes d’apprentissage auto-supervisé ont permis de construire des représentations
robustes pouvant facilement être associées à diverses étiquettes souhaitées, telles que
le contenu phonétique ou émotionnel ou les identités de locuteur. Toutefois, malgré
les progrès récents axés sur la mise à l’échelle, le domaine manque encore de bonnes
pratiques informées et motivées lors du pré-entraînement, de l’évaluation et de l’utilisation
en aval des modèles auto-supervisés.

La première partie de mon travail de doctorat vise à motiver les choix dans les mé-
thodes d’apprentissage auto-supervisé de la parole qui apprennent les représentations
non supervisées. Dans cette thèse, je montre d’abord comment une fonction basée sur
l’indépendance conditionnelle peut être utilisée pour sélectionner efficacement et de
manière optimale des tâches de pré-entraînement adaptées à la meilleure performance
sur une tâche cible. Après avoir développé un estimateur de l’indépendance condition-
nelle pour les données vocales, je montre son utilité dans deux contextes : d’abord dans
la sélection et la pondération de multiples étiquettes de prétexte, et ensuite dans les
méthodes de création de vues dans les approches d’apprentissage contrastif.

La deuxième partie de mon travail de doctorat étudie l’évaluation et l’utilisation de
représentations auto-supervisées pré-entraînées. J’explore d’abord la robustesse des
benchmarks actuels d’auto-supervision de la parole aux changements dans les choix de
modélisation en aval, en diagnostiquant les problèmes d’efficacité, de généralisation et
de performance liés à l’utilisation d’architectures à capacité limitée. Ensuite, je conçois
et évalue des méthodes pour l’entraînement en aval des encodeurs auto-supervisés avec
deux objectifs principaux : la généralisation, en particulier sur des échantillons hors
distribution, et l’efficacité au cours de l’inférence.
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Mots clés : traitement de la parole, apprentissage profond, apprentissage supervisé,
apprentissage auto-supervisé.

Résumé Substantiel

La parole est le moyen de communication central et spécifique de l’humanité. Si la grande
majorité des enfants humains maîtrisent naturellement, rapidement et aisément son
utilisation au bout de quelques années, la compréhension et la synthèse machine des
signaux de parole est une tâche complexe encore non résolue dans plusieurs cadres et
cas d’usage.

L’utilisation et la compréhension par la machine des signaux de parole impliquent une
numérisation du signal analogique d’entrée. Cette numérisation permet de passer de
l’onde physique de pression que capte les microphones numériques à une représentation
vectorielle sous forme d’amplitude de signal échantillonnée souvent à 16000, 22050
ou 48000 échantillons par seconde de signal audio, qu’on appelle souvent la forme
d’onde (mais qui n’en est qu’une version échantillonnée). Sous cette forme, le signal est
historiquement difficilement décodable par les algorithmes d’apprentissage statistique.
C’est pourquoi les premiers modèles de traitement du signal de parole ont utilisé des
représentations intermédiaires sous forme de spectrogrammes temps-fréquence basés sur
des transformées de Fourier du signal d’entrée.

Ces représentations ont été à la base des méthodes d’apprentissage machine pour le
traitement des signaux de paroles depuis les années 60. Vers le début des années 2010, le
nouveau paradigme d’apprentissage des caractéristiques a incité les chercheurs à passer
outre les représentations et caractéristiques non apprises ou dites faites-main. Ainsi, des
modèles dits de bout-en-bout ont essayé de s’affranchir des représentations spectrales, et
apprendre la fonction de classification ou de transcription directement dans l’espace des
formes d’onde échantillonnées.

Une deuxième révolution, celle de l’apprentissage non-supervisé, permettant l’exploitation
des larges sources de données brutes et de s’émanciper du coût de l’annotation humaine, a
mené au sujet de cet ouvrage : l’apprentissage auto-supervisé. Nous le définissons comme
l’ensemble des techniques non-supervisés qui permettent d’apprendre des représentations
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et caractéristiques intermédiaires facilitant, à travers leur utilisation comme entrée des
modèles, la résolution par la suite des tâches par apprentissage statistique. Pour le
traitement du signal de parole, les approches auto-supervisés permettent d’apprendre des
représentations de la parole où le contenu phonétique, émotionnel ou le timbre vocal
sont plus facilement accessibles, permettant de meilleures performances sur les tâches de
transcription et de reconnaissance de l’émotion ou du locuteur.

Précisément, ces représentations sont apprises à travers la résolution, dans un premier
temps, de tâches dites prétextes. Ces tâches sont différentes des tâches classiques dans le
traitement de la parole qui nécessitent des annotations manuelles. Les étiquettes sont
générées automatiquement permettant l’apprentissage non-supervisé de la tâche. Les
représentations apprises sont, dans un deuxième temps, passées à des classifieurs les
utilisant pour résoudre les tâches d’intérêts, dites tâches en aval. Les représentations
auto-supervisées ont permis de diminuer l’apport nécessaire d’annotations, produisant
des modèles capables d’atteindre des performances de généralisation très raisonnables
avec très peu de données supervisées.

L’adoption des modèles de représentations auto-supervisées sur le large ensemble des
tâches traitant du signal de parole a été très rapide. Les avancées et découvertes se
sont faites principalement dans une direction en largeur, ajoutant de nouvelles tâches
comme la traduction ou la reconnaissance vocale des langues peu dotées. En parallèle, les
approches visant à développer les modèles de représentation se sont concentrées autour
de la mise à l’échelle des entraînements sur des jeux de données brutes de plus en plus
étendu de l’ordre de la dizaine de millions d’heures.

Ce manuscrit décrit des travaux qui essaient d’apporter une meilleure compréhension
des raisons du succès des approches auto-supervisées, et d’en tirer les meilleures pra-
tiques lors de l’utilisation en aval des représentations auto-supervisées. Tout en validant
par l’expérience les approches et questionnnements théoriques proposés, nos travaux
essayent d’automatiser et de motiver un maximum de choix dans la structure d’un
pré-entrainement auto-supervisé. Plus particulièrement, nous nous sommes intéressés à
l’entraînement, l’évaluation et l’amélioration des performances sur les tâches en aval des
représentations auto-supervisées. Nous montrons, dans ce qui suit, que les techniques
proposées permettent un développement plus efficace des modèles de représentations de
parole ainsi que des modèles finaux plus robustes et généralisants.

D’abord, dans le chapitre 1, nous exposons une large revue de littérature des modèles
auto-supervisés de parole, permettant de comprendre le contexte dans lequel s’inscrivent
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les travaux qui vont être présentés, et de mieux apprécier leur apport à l’état de l’art.
Partant des représentations spectrales du signal de parole et passant par les représenta-
tions apprises supervisées basées sur des filtres convolutionnels, ce chapitre explique le
contexte d’apparition des modèles auto-supervisés à l’intersection de l’apprentissage de ca-
ractéristiques et de la révolution non-supervisée. Dans la suite, et après la description des
différentes approches majeures et la classification des modèles les plus populaires dans ce
cadre, nous dressons une liste des critères désirables dans ces modèles de représentation.
Cette liste est utilisée comme fil conducteur expliquant nos démarches suivantes. Enfin, la
littérature des travaux qui ont comme objectif chacune des caractéristiques est étudiée.

Le chapitre 2 étudie un choix crucial dans le pipeline d’auto-supervision : la conception
de la tâche prétexte. Les travaux présentés dans ce chapitre dévoilent un lien entre
l’indépendance conditionnelle entre les étiquettes de la tâche prétexte et les échantillons
de parole en aval étant donné les étiquettes en aval. Ils montrent que, pour une tâche
d’intérêt en aval (reconnaissance de la parole par exemple), plus cette indépendance
est élevée, plus la performance obtenue sur la tâche en aval à l’aide de représentations
auto-supervisées apprises sur la tâche en aval considérée est élevée. Cela nous a permis
d’attribuer un score aux tâches prétextes en vue d’une meilleure performance sur les
tâches en aval dignes d’intérêt. Nous nous appuyons sur cette notation pour élaborer une
approche de sélection et de pondération des tâches prétextes multitâches. Cette méthode
est, dans un deuxième temps, étendue avec succès aux paramètres d’apprentissage
contrastif pour l’augmentation automatique des données. Précisément, dans le cadre de
l’apprentissage contrastif, la tâche prétexte est définie par le choix des distorsions qui
permettent la création de deux vues à partir d’une même entrée. Nous montrons que notre
méthode de création de vue, reposant sur l’indépendance conditionnelle, mène à des
gains de performance en aval. Globalement, cette méthode est validée sur quatre tâches
en aval : la reconnaissance de la parole, la vérification du locuteur, la reconnaissance des
émotions et l’identification de la langue.

Ensuite, le chapitre 3 offre une étude critique de la façon dont les représentations
auto-supervisées ont été évaluées dans la littérature sur le traitement de la parole. Avec
le nombre croissant de représentations auto-supervisées proposées, il était nécessaire de
disposer d’un benchmark complet sur diverses tâches vocales en aval afin de guider les
chercheurs et les praticiens souhaitant utiliser ces représentations pour leurs problèmes.
Les principaux classements de la communauté ont fixé les conditions d’entraînement
en aval, à savoir l’architecture du décodeur en aval, pour chaque tâche considérée, et
ont évalué les représentations auto-supervisées figées avec celles-ci. Nous évaluons la
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robustesse des classements actuels aux changements dans le choix des décodeurs en aval.
Les résultats obtenus montrent que les méthodes actuelles d’évaluation sont très sensibles
au choix des architectures en aval. Ceci nous pousse à nous interroger sur la validité
des choix populaires en termes d’architectures en aval. Ces choix mettent souvent en
avant la simplicité, comme critère de sélection de décodeurs en aval. Dans une deuxième
partie, et sur la base des résultats obtenus et de quelques propriétés souhaitées d’un
benchmark utile, nous présentons quatre arguments en faveur de décodeurs en aval plus
complexes.

Le chapitre 4 décrit des méthodes visant à renforcer trois propriétés souhaitées des
modèles utilisant des représentations pré-entraînées auto-supervisées : l’adaptation à des
domaines non vus pendant le pré-entraînement auto-supervisé, des inférences efficaces
en termes de calcul et des capacités de généralisation sur des échantillons de test en
dehors de la distribution d’entraînement. La première s’appuie sur l’approche basée sur
l’indépendance conditionnelle développée dans le chapitre 2. Pour réduire les coûts d’in-
férence, nous explorons les options de réduction des séquences et des réseaux proposées
dans la littérature. Enfin, nous étudions le rôle de l’oubli de la tâche de pré-entraînement
dans la perte de performance de la généralisation et les moyens de réduire cet oubli pour
une meilleure reconnaissance vocale hors domaine. L’ensemble de ces travaux donne des
indications et des bonnes pratiques couvrant les principaux aspects de l’utilisation de
l’auto-supervision en aval.

Enfin, dans la conclusion, nous commençons par récapituler les principales contributions
des travaux présentés. Ces contributions sont agrémentés par les lignes de codes et des
jeux de données que nous avons publiés et partagés avec la communauté pour la repro-
ductibilité de nos travaux, et faciliter l’utilisation par des tierces de nos approches. Une
deuxième partie explore les pistes pour des travaux futurs. Deux sujets nous semblent très
dignes d’intérêt. D’abord, et avec les quantités toujours plus massives de données audio
disponibles et les larges coûts de calcul qu’elles engendrent, la sélection automatique
des données d’entraînement est un sujet qui devient indispensable. Elle permet de se
débarrasser, sans efforts manuels, des données de mauvaise qualité. Nous proposons deux
types d’approches de sélection qui nous semblent prometteuses, classées selon qu’elles
soient dépendantes des modèles ou pas. Ensuite, nous discutons de l’apparition récente
des modèles discrets de représentations de la parole et leurs possibles utilisations pour
des tâches génératives (tâches dont la sortie est de l’audio, comme la conversion de
voix par exemple). Nous décrivons l’utilité de ces représentations dans le cadre d’un
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paradigme dit de régénération, et proposons différentes pistes qui permettrait d’améliorer
les modèles discrets actuels.
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Introduction 0
When you set out on your journey to
Ithaca, pray that the road is long, full
of adventure, full of knowledge.

- Constantin Cavafy (Ithaca)

In recent years, the dynamism of machine learning has manifested in remarkable break-
throughs, revolutionizing diverse modalities. From image recognition to natural language
processing, the efficacy of machine learning algorithms has been increasingly contributing
to advancements in technology and science.

Traditionally, these breakthroughs have often been anchored in supervised learning,
relying heavily on meticulously annotated datasets. However, it is an expensive and time-
consuming process that limits the scalability of machine-learning applications. Especially
for voice and speech applications, it hinders the ability to extend to more languages and
keeps a large part of the globe excluded from speech technology advancements.

As the demand for broader applications of machine learning and speech technologies
grows, the limitations of supervised learning become increasingly evident. Enter the
paradigm of unsupervised learning with algorithms able to learn disentangled repre-
sentations from unlabeled data. These approaches, learning meaningful insights from
patterns in raw speech, mirror an important aspect of human learning, drawing parallels
with the manner in which infants acquire abilities in their environment without explicit
instruction, or at least with a reduced amount of it.

Self-supervised learning is a sub-family of unsupervised approaches. They allow taking
advantage of the large available unlabeled corpora, but also from algorithmic advances
in supervised learning. Indeed, they model unsupervised representation learning through
solving a task in a supervised fashion approach, but with automatically generated labels.
They are, today, very popular in various applications, across almost all data modalities. A
thorough definition will be given in Section 0.2.
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The first chapter describes the context leading to the development of self-supervised
models in the speech-processing community, and the motivations that pushed us toward
working on the questions detailed in the next chapters. It ends with a summary of our
contributions answering the raised questions.

0.1 Context

Self-supervised learning (SSL) has emerged as the intersection between two blooming
ideas: feature learning in end-to-end (E2E) approaches and unsupervised learning.

0.1.1 Feature Learning

Feature learning, a by-product of the deep learning advent, has seen many machine
learning researchers and practitioners explore ways to reduce hand-crafted or human
priors in the design of the representations fed to further statistical models. Originally,
audio model front-ends have been relying on time-frequency handcrafted variants of
spectrograms, generally Mel-scaled or in the cepstral domain (such as Mel-frequency
Cepstral Coefficients or MFCCs) (Furui, 1981). These spectral representations, motivated
initially by psycho-acoustic or bio-acoustic findings (Fechner, 1966), have been a driving
source of improvements and progress for speech or speaker recognition during the
20th century. At the eventual cost of interpretability or modularity, substantial gains in
performances have been attained by allowing models more degrees of freedom, either
in the feature learning process or in the decoding or label output phase (Sainath et al.,
2012). In speech processing, this has been witnessed mainly through two aspects. First,
feature engineering, which has been relying almost exclusively on hand-crafted spectral-
based features, has been more and more driven by learnable interfaces between the signal
represented as a sampled raw waveform and final objectives such as textual transcriptions
or diarization. From learnable audio front-ends relying on the same filtering-based
approaches equipped with a few learnable parameters (Ravanelli & Bengio, 2018), to
fully learnable heavily-parametrized convolution-based deep neural networks (Zeghidour
et al., 2018), audio front-ends have been heavily impacted by the feature learning and
deep-learning revolution.
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Fig. 1.: Comparison between different components in a traditional automatic speech recognition
(ASR) pipeline and to “end-to-end" self-supervision-based ones.

This revolution did not only change front-ends but also led to very different back-ends
impacting acoustic modeling and prediction heads. In the first decade of the century,
speech recognition approaches were mainly relying on Gaussian mixtures for acoustic
modeling and finite-state machines for decoding. Modeling was also structured with
generative Hidden Markov Models (HMMs) or discriminative Conditional Random Fields
(CRFs). In the second decade, following the modality-agnostic trend described above,
Gaussian mixtures have been replaced by deep neural networks (DNN) in so-called hybrid
HMM-DNN approaches. This change has been pushed by popular speech processing
toolkits, mainly Kaldi (Povey et al., 2011) offering efficient, state-of-the-art, and easily
deployable hybrid pipelines.

In an automatic speech recognition pipeline, the acoustic model would assign to every
speech frame, i.e. short speech windows, probabilities over the predictable phonemes
or characters. During inference, a search step over the predicted lattice allows for
the generation of a probable sequence (the most probable if the search algorithm is
exhaustive). Large research efforts have been deployed to find appropriate prediction
network topologies, state reweightings, or faster search algorithms. Again following the
end-to-end trend, these have started to be replaced with less interpretable and prior-
heavy prediction heads. From the seminal work of Alex Graves and collaborators on
Connectionist Temporal Classification (CTC) (Graves, 2012) to attention-based decoders
trained with cross-entropy loss (Good, 1952), the speech recognition field has been
moving to lattice-free and search-free approaches, slowly losing interpretability and
modularity in the same process.
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Research in self-supervised representation learning of speech representations has risen
within this general data-centered trend with embeddings learned from the data. Figure
1 shows how modern end-to-end1 speech recognition using self-supervision pipelines
compare to traditional ones. It shows how these representations can replace traditional
spectrogram-based representations and parts of acoustic modeling. However, given the
data-hunger of deep learning approaches, those methods would not have had this success
if not for the availability of large speech corpora. Even more abundant today than
labeled speech corpora is unlabeled speech data, which leads us to the second rising idea:
Unsupervised representation learning.

0.1.2 Unsupervised Representation Learning

The availability of large collections of unlabeled utterances in all modalities from speech
samples to images pushed the research community towards exploring ways to exploit them
aiming for better performance on common tasks solved with labeled data. “Unsupervised"
comes here in contrast to “supervised" learning, i.e. learning algorithms necessitating
human labels, such as textual transcription of the audio inputs in the case of automatic
speech recognition.

Unsupervised representation learning is considered at the core of human learning pro-
cesses, with infants learning world representations mainly through natural interactions
with their environment (Zaadnoordijk et al., 2022). For instance, the first studies have
focused on the use of child-directed speech for unsupervised speech learning (Vallabha
et al., 2007). It relies on finding the common patterns among different versions of the
same semantic objects (words, visual or physical objects...). As an example, studies have
shown that babies develop the ability to recognize word identities around the age of 9
months (Dupoux, 2018).

Unsupervised learning is not a new idea per se. Auto-encoding approaches have been
developed and shown effective in a few settings starting from the nineties, with Helmholtz
(Dayan et al., 1995) and restricted Boltzmann machines (Hinton, 2012). Auto-encoding
approaches aim to learn “useful" (generally for dimensionality reduction, topic modeling,
or sampling) representations through learning to map the inputs to a lower-dimension
space allowing to generate the input from the compressed representation. With limited

1One may argue that the presence of pretrained SSL modules makes it non-end-to-end. As E2E is an
ill-defined concept, we see no need to delve into this discussion.
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Fig. 2.: Trendiness of the expression “unsupervised learning". A small start in the nineties before
an explosion in the last decade.

training datasets and auto-encoding leading to mitigated downstream performance, the
trend has been steadily decelerating in the first decade of this century, after an impressive
in the nineties, as shown in Figure 2.

However, the recent availability and release of large and relatively clean unlabeled
datasets, such as Libri-Light (Kahn et al., 2020) for English speech samples, increased
the motivation to exploit these, nurturing research in unsupervised learning. Techniques,
inspired by child learning, tried to find recurring patterns within the raw data samples
and learn useful representations from these recurring patterns (Lavechin et al., 2020).

One of the first notable breakthroughs of unsupervised representation learning can be
found in the continuous word representations learned with Word2Vec (Mikolov et al.,
2013). Through solving the task of predicting missing words in context or upcoming
words, it has been shown that using large datasets of raw text allows models to learn
semantically rich representations leading to better text classification performances even
with reduced labeled datasets. Word2Vec appears again within the intersection of feature
learning, as it replaced with learned word embeddings classic statistical representations
such as Bag-of-Words (BoW) or Latent Semantic Analysis (LSA) (Dumais, 2004), and
unsupervised learning as these embeddings are learned without human annotation relying
on large unlabeled datasets. More precisely, the Word2Vec approach can be classified in a
sub-family of unsupervised learning algorithms, called Self-supervised learning which is
the topic of this thesis. It is time to give it a proper definition.
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0.2 Self-Supervised Learning

Definitions of self-supervision in the literature may vary, but we will give it a common one
that is coherent with the works, experiments, and results described in this manuscript.
A point of agreement is that self-supervision is a sub-family of unsupervised learning
methods, in the sense that self-supervised methods aim to exploit unlabeled data. A
first distinguishing aspect lies in the concept of pretext-tasks. SSL allows learning
unsupervised representations through solving tasks, and copying supervised settings, but
with automatically generated labels instead of human-provided ones. A pretext-task is
thus a learning task, with labels or objectives that can be defined without specific human
annotation.

A second distinction lies in the objective of the learning phase. While unsupervised
approaches may aim for clustering or sampling from the data distribution, self-supervision
almost exclusively targets representation learning2, i.e. learning representations that
are useful for other tasks. This implies that these methods are generally evaluated
in two steps. First, the representations are learned through solving the pretext-task
on the unlabeled sets, in what is called the “upstream" learning phase. In a second
phase, the “downstream" one, these representations are evaluated on their ability to
improve performance on common tasks, in a supervised setting, compared to classic
representations.

Figure 3 schematises the two phases discussed above. The right branch showing the
downstream training, represents the classical supervised setting, with the considered
downstream task learned on the available annotated training data. In this setting, the
self-supervised encoder, represented here with a yellow box and whose parameters are
trained on the unlabeled data samples, would generally be replaced with an encoder
trained only on the downstream data points, and usually following spectral feature
extraction.

The reason behind the success and the wide adoption of self-supervised representations
is the gains in performance reached, especially in low-resource scenarios, compared
to traditional supervised-only pipelines. Manual annotation is a costly and imprecise
endeavor, especially in the case of complicated tasks such as diarization. Specifically
concerning speech, collecting annotated data, for all languages, in all recording settings,

2There are very few exceptions to this, such as what is called “self-supervised speaker verification".
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Fig. 3.: Two phases of speech self-supervised experiments. Black arrows represent upstream
and red ones downstream training. Self-supervised learning has allowed substantial
performance gains especially with reduced labeled datasets.

is very costly, and, thus, reasonable speech recognition performance was only attained on
the small set of popular, and consequently financially profitable, languages.

Formally, given a set of speech utterances (U) (for unlabeled), with every speech utterance
u = (ui)i∈[1,T ] composed of T samples. The input u may be the raw sampled waveform,
or frame-segmented spectral representations, with a large trend towards getting rid of
the spectral representations in recent works. The goal of the self-supervised training,
i.e. the first phase in Figure 3, is to learn a function we will call e(.) for encoder, that
maps a given audio sample u = (ui)i∈[1,T ] to a representation h = (hi)i∈[1,T/k] with k a
downsampling factor, and ∀i ∈ [1, T/k], hi is a vector of a chosen dimension d (k = 320
and d = 768 or d = 1024 are common choices in the literature).
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This function e(.) is generally learned through solving a pretext-task. Let us call Z the
pretext-labels, so that every speech sample u = (ui)i∈[1,T ] is mapped, in the pretraining
phase, to z. z here may have different time-granularities, for instance, be constant over
the speech sample so that the model would only predict one value, or have the same
granularity as u or h. As an example, in the HuBERT model (Hsu, Tsai, et al., 2021),
z = (zi)i∈[1,T/k] has the same time-dimension as the encoded representation h with every
zi corresponding to a cluster ID, i.e. a single integer.

A projection head, a function we will call d(.) in the following, mapping the latent
representations h to the pretext-labels z, is learned in the pretraining phase. Both these
functions are generally modeled as neural networks with a deep network for the encoder
and usually a shallow one for the projection head. Let L be a loss function over the z

space, θe and θd the weights of the encoder and the projection head, and n the number of
samples in the training set. The pretraining phase aims at finding:

θ∗
e , θ∗

d = arg min
θ

1
n

n∑
i=1
L(zi, dθ(eθ(ui))). (0.1)

Again, for the specific case of HuBERT, L is a cross-entropy classification loss.

After the first pretraining phase, the projection head is generally discarded and the
encoder representations are used to solve the downstream task. Precisely, in the second
phase, given a downstream annotated dataset (X, Y ) composed of m speech samples
X = (xi)i∈[1,m] and their corresponding labels Y = (yi)i∈[1,m] (for instance speaker IDs in
speaker recognition settings), a downstream head is trained to map the representations
h = e(x) to their corresponding downstream labels y. While we have only been discussing
the last output of the encoder, it is not uncommon to use various layers of the encoder
for downstream purposes.

Self-supervised Learning Popularity

In the last years, mainly after the Wav2Vec2.0 (Baevski, Zhou, et al., 2020) release in
2020, and its impressive results obtained on speech recognition tasks, self-supervised
representations have become extremely popular within the speech processing community.
From the speech technology point of view, self-supervised speech representations have
been used on almost all the tasks generally tackled by the community: from speech
transcription, speaker-related questions, emotion recognition (Y. Wang et al., 2021),
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Fig. 4.: Evolution of the number of occurrences of self-supervision-related terms in paper titles at
INTERSPEECH, showing the trend of using them on various speech tasks.

speech translation (Zanon Boito et al., 2022), and more recently, speech synthesis, accent
classification (Zuluaga-Gomez, Ahmed, et al., 2023), pronunciation assessment (E. Kim
et al., 2022), and the list may go on...

But its impact did not stop at speech technology and also concerned speech science. Self-
supervised representations have been used to understand and model how humans learn
to understand and produce speech in different settings: phonemic/phonetic differences,
bilingual children, second languages, and comparison with cerebral settings...

In these years, replacing hand-crafted spectrograms with the most recent self-supervised
representation has been a low-hanging fruit many researchers and speech practitioners
quickly tried to grab. Speech conferences have been flooded with works building on these
representations. This popularity appears in the rising number of papers at InterSpeech,
the main annual conference for research in speech science and technology, with “self-
supervision" appearing in the title already, as shown in Figure 4. These numbers do not
even properly represent the popularity of these models. While this use was an event
worth being in the title in the first years, self-supervised representations can now appear
as a simple hyperparameter or input in papers barely mentioning their use. “HuBERT"
or “WavLM", two self-supervised models, may appear in a results table in a row between
“LogMel Spectrograms" or “MFCC". They have become the go-to representations for every
speech practitioner suffering from reduced training datasets.

0.3 Motivation 9



Fig. 5.: Boxes representing the different questions implying choices in the development of a
self-supervision full pipeline.

0.3 Motivation

Figure 5 is a tentative to regroup in a single plot all the questions involving manual choices
in the definition of a self-supervision pipeline. Let us quickly go through the different
components. The first box concerns choosing, among the available data, appropriate
subsets leading to the best representations. Not explored in this work, we will discuss
ideas about this phase in Chapter 5. The second level concerns the definition of the
pretext-task. We divide it into two parts. First, input data alteration as a means to enforce
invariances in the learned representations with augmentations is ubiquitous in contrastive
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self-supervised approaches. Alterations here also include any masking, re-ordering, or
re-organization policy that may be needed to implement the defined pretext-task.

This brings us to the third box which is surely the one that has had the most attention
in the speech self-supervision literature. Discrete auto-encoding, multi-task learning,
contrastive or predictive approaches; the literature abounds in examples of pretext labels,
losses, and methods leading to the definition of a pretext-task for speech self-supervised
learning. The fourth box describes all the techniques, generally inspired by the success in
classic supervised settings, around modeling the learned functions and minimizing the
defined losses. This part is not actively discussed in the main chapters of this thesis. Fol-
lowing the majority of recent works, independently of their domain of application, speech
self-supervised modeling networks converged towards using Transformers architectures,
with the corresponding training methods for optimization and learning rate handling.

Finally, the fourth and final level concerns the downstream exploitation of the learned
representations. As expressed before, the field has witnessed large efforts towards
applying or adapting these representations to different tasks. Non-focusing on any task
or dataset in particular, despite a drift towards speech recognition in the last chapter, this
thesis explores task-agnostic ideas, trying to improve our understanding of why these
techniques work and to give informed progress tracks. This level involves questions about
evaluating these models, the best ways of fine-tuning them for a given task, and adapting
the model to the task and its acoustic conditions.

The works presented in this thesis try to dissect the elements in these boxes, with the aim
of shedding some light on the best practices that should be followed in every box. Precisely,
the goal has been to take some distance from task-oriented applications towards deriving
motivated insights, techniques, and rules for 5 out of the 8 boxes in Figure 5; namely
data-augmentation policies, objective definition, evaluation, and benchmarking of these
methods and finally downstream fine-tuning and adaptation. The main reason motivating
this work is that, despite the self-supervision exploding popularity and successful use
described in the previous section, the field still lacks “intelligent" explanations behind
this success, and good practices for evaluation and usage.

0.3.1 Lack of Fundamental Insights

The second motivation is the lack of fundamental insights behind this success and a deep
understanding of the underlying mechanisms. It is important, first, to give credit to what
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has been properly done. First, various pretext-tasks have been proposed for training
speech self-supervised approaches from bottleneck auto-encoding techniques (Algayres
et al., 2020) and multi-task learning (Pascual et al., 2019b), to contrastive predictive
coding (Schneider et al., 2019) and teacher-student approaches (Baevski et al., 2022).
Successful paradigms, such as heavy data augmentations, or sequence-masking, were
kept and built upon in the next iterations. Second, following NLP’s so-called “BERTology"
(Devlin et al., 2019; Rogers et al., 2021), in-depth layer-wise, domain-wise, phonetic
and linguistic, probing of the content of these representations has been performed by
speech researchers after the outbreak of these self-supervised models (Pasad et al., 2021).
However, the field, following a general deep-learning-related trend, has been building
only on empirically-motivated ideas. There have been no real efforts to explain why a
given method leads to downstream gains.

Four reasons can be given for this absence. First, formal and quantified non-empirical
justifications have been hardened with the deep learning era, where interpretable and
theoretically justified approaches have been replaced with large black boxes encompassing
hard-to-parse computations. This, as said previously, has been a general trend in the
deep-learning landscape across various application domains.

Second, state-of-the-art self-supervised trainings are, at least, an order of magnitude
more costly in terms of computations than classic supervised settings. At the end of
2023, replicating trainings leading to the best performing “Large" versions of popular
self-supervised models is a prowess almost unattainable for academic players. Even,
smaller “Base" versions, trained “only" on the full training sets of LibriSpeech, would
generally require a week of training on a dozen of high-performing GPUs. Even in the
case of availability of these, the impact of large batch sizes, documented in the literature,
leads to a performance gap between models developed using large and very large memory
GPUs. More concerning, experiments led on smaller models and smaller datasets do
not seem to be able to predict the performance post-scaling to large ones, making costly
trainings the only reliable way of exploration. The high cost of training a single model,
combined with the need for numerous trials on large sets to explore the utility of a given
approach, made training self-supervised models a domain restricted to a few, mainly
industrial, entities in the speech research landscape.

The third reason is partly a consequence of the second one. Restricting self-supervision to
a few players restricts mechanically the number of explored tracks. One of these tracks, is
further scaling, in terms of computations and data. Motivated by tremendous success in
other domains, and in supervised settings, this has been the main lever for performance
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gains in the last years for self-supervision. Wav2Vec 2.0 (Baevski, Zhou, et al., 2020),
with its 300 million-parameter encoder trained on 60k hours of speech data, was seen as
a mastodon in the speech community in 2020. Since then, recent models have exceeded
a billion parameters and were trained on more than 650k hours of labeled speech data
or more than 10 million hours of multilingual unlabeled speech data (Y. Zhang et al.,
2023).

The fourth and final reason is more mundane. The exploding usage of self-supervised
representations should not hide the fact that the first very efficient methods are slightly
more than three years old. The first years have naturally focused on more low-hanging
fruits, such as use on new tasks or scaling described before. The coming years may be
ones where the community looks more for higher fruits. This has been seen in other
machine learning domains, where the larger sizes of the research communities led to
shorter low-hanging fruit life duration.

0.3.2 Research Questions

This work addresses essentially the following research objective: to seek a better and
deeper understanding of the reasons for the success of self-supervised approaches and
to recommend the best ways to build self-supervision-based speech processing pipelines,
as we believe they will cover a large share of future pipelines. Specifically, the works
described in this document aimed to provide answers to the following interrogations:

• What is the link between pretext-task choice and downstream task performance?
Can we automatically find optimal pretext-tasks towards better performance on a
given downstream task?

• The two-step evaluation of self-supervised representations requires new evaluation
methods compared to classic supervised settings. How to build robust evaluation
methods, covering the large spectrum of speech tasks and usages?

• Compared to hand-crafted representations, using self-supervised encoders implies a
multitude of choices and costs, including efficiency and domain shifts. What are
the costs and problems raised by the usage of this new technology? Given these
costs and downfalls, what are the best practices to solve them in self-supervised
pipelines?
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Fig. 6.: Main contributions of this work within the SSL framework defined in Figure 5. While the
first and fourth boxes have not been properly explored, we discuss them in Chapter 5.
Green boxes encapsulate our main contributions.

The answer to these questions drove the efforts in the core chapters of this manuscript
and shaped the contributions of this work. Let us go through these contributions.

0.4 Contributions

Figure 6 summarizes in the green boxes the main contributions of this work. The first and
second green boxes concern insights on training self-supervised models. The final one
tackles how pretrained models should be used for downstream fine-tuning. We replaced
the titles given in Figure 5 with our contributions on the given part. The remaining blue
boxes are those not discussed in the core works of this document.

14 Chapter 0

Introduction



Chapter 2 investigates a crucial choice in the self-supervision pipeline: pretext-task de-
sign. Works presented in this chapter unveil a link between the conditional independence
between the pretext-task labels and the downstream speech samples given the down-
stream labels. It shows that, given a downstream task of interest (speech recognition
for instance), the higher this independence3, the higher the performance obtained on
the downstream task using self-supervised representations learned on the considered
downstream task. This allowed us to score pretext-tasks towards better performance on
downstream tasks of interest. We build on this scoring a multi-task pretext-task selection
and weighting approach. This method is, in a second time, successfully extended to
contrastive learning settings for automatic data augmentation. The method is validated
on four downstream tasks: speech recognition, speaker verification, emotion recognition
and language identification.

Chapter 3 gives a critical look at the way self-supervised representations have been
evaluated in the speech literature. With the growing number of proposed self-supervised
representations, comprehensive benchmarks on various downstream speech tasks were
needed to guide researchers and practitioners wanting to use these for their problems.
Main benchmarks in the community fixed the downstream training conditions, namely
the downstream head, for each considered task, and evaluated the frozen self-supervised
representations with these. We evaluate how robust the current rankings are to changes
in the choice of the downstream heads. Based on the obtained results, and a few desired
properties of probing, we give four arguments for larger downstream heads.

Chapter 4 describes methods to enforce three desired properties of full self-supervision-
based models given pretrained representations: adaptation to domains unseen during
self-supervised pretraining, computationally efficient inferences, and out-of-domain gen-
eralization abilities. The first one builds on the conditional-independence-based approach
developed in Chapter 2. To reduce inference costs, we explore sequence and network
shrinking options in the literature. Finally, we explore the role of forgetting the pre-
training task in losing generalization performance and ways to reduce this forgetting
for better out-of-domain speech recognition. Combined, these works give insights and
good-practices covering the main aspects of self-supervision downstream usage.

3While independence is generally a binary value/concept, we deal here with estimates that are not.
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Related Works 1
It is a laborious madness and an
impoverishing one, the madness of
composing vast books - setting out in
five hundred pages an idea that can
be perfectly related orally in five
minutes. The better way to go about it
is to pretend that those books already
exist, and offer a summary, a
commentary on them.

- Jorge Luis Borges (Fictions- The
Garden of Forking Paths)

This chapter sets the historical stage leading to the appearance and success of self-
supervised representations for speech. Starting from traditional speech representations,
and following the advancement of the feature-learning trend, it describes, subsequently,
efforts produced in self-supervised learning across modalities. Finally, it outlines works
on improving speech self-supervised models by dividing them into a list of desired
characteristics and describing techniques to enforce those. This chapter offers the keys
to an in-depth understanding of the global context surrounding the works described in
further chapters, allowing a better appreciation of the positioning of this work and its
contributions.

1.1 Representations for Machine Learning

Representations in machine learning serve as the critical bridge between raw data and
meaningful insights. They capture essential features and patterns, enabling algorithms
to understand and learn from complex information. Well-designed representations
enhance model efficiency and effectiveness, facilitating more accurate predictions and

17



generalization to unseen data. In essence, the quality of representations directly influences
the success and robustness of machine learning models. This has been roughly stated in
an equation by Domingos (2012):

Machine Learning = Representation + Objective + Optimization.

This thesis in general and this chapter in particular focus on the first element of the
sum.1 It describes efforts in representation learning, and the evolution of the speech
representations, learned or not, used for common speech processing tasks.

If (X, Y ) is a labeled dataset, composed of raw inputs X and human-provided labels
Y , the inputs X are generally mapped to a representation R = f(X) that conditions
the performance of a learned mapping g : R → Y , linking the representations with
their final labels. The function f can take several forms. If it is the identity function,
then we would say that the mapping g is learned on the raw input, in an “end-to-end"
fashion. As previously indicated, this is more and more the case since the feature learning
revolution.

But before this recent trend, f would generally consist of a sequence of hand-crafted
processing steps, aiming to inject human domain knowledge and priors into the represen-
tations. We will discuss in detail these approaches for speech in Section 1.2. In computer
vision, for instance, the use of local filters for image classification derives from the known
importance of edge detection and localization invariance for determining the labels. The
main goals of these steps are generally to reduce the quantity of “noise" inherent to data
samples, to enforce a few desired invariances, and to normalize the inputs for better
processing by the following statistical models.

Scale-invariant feature transform (SIFT) (Lowe, 2004) is an interesting example to dissect.
It has been widely used for image processing in the first decade of this century. It identifies
distinctive points in an image, regardless of their size or orientation, making it robust to
scale and rotation changes. Precisely, SIFT operates by first identifying keypoint locations
using scale-space extrema, and then describing these keypoints using histograms of
gradient orientations. This allows it to find and match features between images, making
it a valuable tool in tasks like object recognition and image stitching.

1It is funny to note that, given the feature-learning trend, the first part now involves Objectives and
Optimization as well.
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In modern pipelines, it is common that f is learned along with g through minimizing
a defined loss L(g(f(X)), Y ). How separable g and f are is unclear in “end-to-end"
approaches as f may only consist of basic preprocessing steps such as decoding (in the
case of audio encoded audio-samples), resampling, or normalization.

Improving the representations has been one of the main tracks for progress in machine
learning. Better feature-extraction tricks, properly enforcing the appropriate invariances,
or better disentangling the signal components, are approaches often widely adopted by
the research communities. In a review, Bengio et al. (2013) have listed a set of desired
properties and outcomes of representation learning. This list included disentangling
explanatory factors, potentially with a hierarchical organization, smoothness (i.e. for
two input points x and x′, if x ≈ x′ then f(x) ≈ f(x′)), natural clustering... We will
discuss in a further section, which characteristics are upheld by modern self-supervised
representations, and define a new set of desired properties.

The next two sections will focus on speech processing, detailing the evolution of speech
representations, from hand-crafted spectral representations to learned ones with dif-
ferent degrees of learning and imposed priors. We will afterwards, get back to a
modality-independent discussion when going into self-supervision approaches on unla-
beled datasets.

1.2 Hand-crafted Spectral Representations for Speech

Mel-scaled spectrograms have been the main representation used for speech and non-
speech audio tasks almost since the dawn of this research field. From the sampled
one-dimensional raw waveform obtained from recording devices, a Fourier transform is
applied on sliding analysis windows of the original signal to obtain the two-dimensioned
time-frequency Short-Term-Fourier-Transform (STFT) representation. The power spectro-
gram, the basis of almost all the popular representations, is the (squared) modulus of the
STFT. One of the main paradigms for the development of hand-crafted spectral represen-
tations was to draw inspiration from the human auditory system to design features for
audio processing pipelines. Mel-scaling (Stevens & Volkmann, 1940), still widely used
in the speech community is one facet of these inspirations. Inspired by psycho-acoustic
experiments, it processes the spectrogram through a set of filters, called mel-filterbanks,
possibly designed as triangular filters. These filters are narrow at low frequencies and get
wider at higher ones reflecting human perception of pitch.
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Fig. 1.1.: MFCC computation steps from left to right. Every step involves its share of choices and
hyperparameters.

What follows the Mel-scaling generally depends on the extraction toolkit, the research
laboratory practices, or the considered speech task. Figure 1.1 shows the computation
steps of Mel-frequency cepstral coefficients (MFCCs). Variations of the MFCCs have been
an intensive research question in the first decade of this century, from replacing log
compression (Schluter et al., 2007) to replacing the mel-scale (Umesh et al., 1999).

Various studies have shown that hand-crafted feature-based approaches have the advan-
tage of more stable trainings compared to fully learned pipelines (Haider et al., 2023).
But while log-Mel spectrograms are still very widely used in the audio and speech com-
munities, mainly for tasks with sufficient data such as English Speech-to-Text (Radford
et al., 2023), they suffer from the hand-crafted features common limitations. First, all the
choices are regularly challenged by new approaches and hard-coded replacements, with
even serious doubts cast over the Mel scale defining experiments reproducibility (Fechner,
1966). Second, while the human biases injected may be suitable for speech recognition
or other understanding tasks, others may necessitate more fine-grained frequency bins or
a focus on different parts of the audible spectrum. Finally, approaches in different modal-
ities have shown that learning more parameters can lead to an increase in performance,
as part of the feature learning trend.

1.3 Learnable Front-ends

The aforementioned reasons, including the feature-learning revolution, witnessed in
the last two decades and discussed in Section 0.1.1, led to attempts to replace the old
log-Mel-based approaches with learned representations.
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Replacing the spectrograms with learnable front-ends reduces the human intervention and
priors to the choice of the modeling approach and loss functions. With the feature-learning
trend, one-dimensional convolutional front-ends, able to learn local filterbanks similar to
the hand-crafted ones, were their first replacements (Palaz et al., 2015; Zeghidour et al.,
2018). The convolutional front-ends impose the locality of the learned features, while
the filter size and the stride inject human knowledge and priors about signal stationarity
and dynamics (Schneider et al., 2019). Today, in contrast with supervised settings, these
convolutional front-ends are very popular in self-supervised ones, although recent works
have been criticizing the memory over-head they come with (Parcollet et al., 2023).

Parameter-Efficient Approaches

A second approach consists in incorporating learned parameters in the feature extrac-
tion phase, with the aim of learning interpretable parameters within the spectral-based
framework (Ravanelli & Bengio, 2018). The main mechanism is to make classic fea-
ture extraction pipelines differentiable according to their main parameters (these were
generally hyper-parameters fixed through trials) such as the Mel-scale parameters. This
offers two advantages: first, a reduced number of learned parameters, which supposedly
leads to better generalization, with the cost of instability. Second, by focusing on a
few parameters within theoretically motivated frameworks, the learned filters are easily
interpretable, offering explanations for the possible performance gains. To get a good
understanding of these ideas, we will discuss two examples: SincNet (Ravanelli & Bengio,
2018) and Learnable Audio Front-ends (LEAF) (Zeghidour, Teboul, et al., 2021).

SincNet features were first introduced for speaker recognition purposes. Sine cardinal
filters replace the Fourier transform in the classic Mel spectrograms, but with the addi-
tional twist of having for each filter, two learnable parameters: the central frequency and
the bandwidth of the sine cardinal filter. Then, if N filters (N = 80 in the original paper)
are applied on the raw waveform, it only implies 2N = 160 learnable parameters for
the feature extraction. It has since been successfully applied on a wide range of speech
and non-speech audio tasks for instance in bio-acoustics, and even on cerebral signals
(Fainberg et al., 2019; Zeng et al., 2019).

LEAF (Zeghidour, Teboul, et al., 2021) goes a little bit further. First, the Sine cardinal
filters are replaced with Gabor ones. Gabor filters in LEAF, similarly to band-pass filters,
allow two learnable parameters per filter again, the min and the max cut-off frequencies.
These filters are followed with low-pass filtering and per-channel normalization, both of
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which include learnable parameters, making all the components of the feature-extraction
pipeline learnable.

However, while these approaches allow learning audio representations better tailored to
the considered task, they rely exclusively on annotated speech datasets for transcription,
classification, or generation tasks. As said in the introduction, the last decade witnessed
the release of large unlabeled datasets, as an indirect result of the Internet explosion.
Self-supervision allowed the use of these datasets to reduce the quantity of annotation
needed to reach state-of-the-art performance.

1.4 Self-supervised Learning: Historical Progress

As we already defined self-supervised learning in Section 0.2, this section will mainly
cover a few historical aspects, especially in non-speech modalities. The wide use of SSL
in various fields makes an exhaustive review of the SSL techniques on non-speech data
too large for the scope of this work. We will, thus, focus in the two next sections on
techniques that inspired similar approaches for speech, and on the main trends.

Let us note first that a close sibling to self-supervision is transfer learning. It is very
similar in the fact that it generally involves two training phases with a first learning step
on one initial domain (generally the one with more labeled data) and a fine-tuning on
the target domain. The main difference with SSL lies in the fact that the first training
also involves an annotated dataset. Generally, the two trainings are for the same task and
would share the same objective. Transfer learning approaches, studying which data to
use, and how to avoid forgetting the first phases and overfitting on the generally reduced
target datasets, have been abundant (Bell et al., 2020).

Another close sibling is self-training. Similarly to self-supervised training, it enables the
use of both unlabeled and labeled data. In self-training settings, a model is trained initially
on a limited set of labeled data. The trained model is then used to make predictions on
unlabeled data, and the most confident predictions are added to the labeled dataset. This
process is iteratively repeated, with the model being retrained on the expanding dataset.
In contrast with self-supervised learning, the multiple phases share the same training
objective but with pseudo-labels obtained using a model from a previous step. We will
not delve into these two siblings in this work.
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1.4.1 Masking Approaches for Sequential Data

For textual data, the first widely used model falling within the boundaries of our defi-
nition of self-supervision may be, as said in the introduction, Word2Vec (Mikolov et al.,
2013). It has enabled learning word-level representations through the pretext-task of
masked language modeling. Interesting, now infamous, semantic properties and linear
interpolations of these representations have been largely exposed and commented on.
Its downstream performance gains, mainly for text classification, represented a turning
point in natural language processing research (Pennington et al., 2014).

More recently, with the success of transformer-based language modeling, internal repre-
sentations of the language models have been used intensively for other text-related tasks.
This use falls again perfectly within the definition of SSL given in Section 0.2. Today, apart
from the thriving language modeling applications for text and code generation and con-
versational agents, a big industry around selling self-supervised text embeddings, learned
through language modeling pretext-tasks, exists mainly for intent and text classification
purposes.

Let us define the language modeling task; it will enable us to grasp later the similarities
it has with recent speech self-supervised approaches. Let S be a sequence of tokens
t1, t2, . . . , tn where each ti belongs to a token vocabulary V . Tokens are generally sub-
word character sequences obtained through Byte-Pair Encoding (BPE) (Sennrich et al.,
2016). The language modeling task involves estimating the probability of observing a
given sequence of tokens S. This can be denoted as P (S), the probability of the entire
sequence.

Mathematically, the goal is to maximize the likelihood of the observed sequence of tokens,
which is equivalent to finding the parameterized model θ that maximizes the probability
of a given sequence of tokens S:

P (S; θ) = P (t1, t2, . . . , tn; θ).

This can be factorized using the chain rule of probability:

P (S; θ) = P (t1; θ) · P (t2|t1; θ) · . . . · P (tn|t1, t2, . . . , tn−1; θ).
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In practice, a recurrent neural network (RNN) or a transformer model, is often used to
model these conditional probabilities. The model is trained on a large corpus of raw text
to learn the parameters θ that maximize the likelihood of the training sequences. This
learned language model can then be used to generate text or evaluate the likelihood
of new sequences. Internal representations can be used in a self-supervised flavor for
classification tasks.

The large success of the language modeling objective, especially after the introduction
of transformers and BERT-like models (Devlin et al., 2019), that is perfectly adapted to
the sequential and tokenized aspects of text as a pretext-task, left little room for other
self-supervised approaches for text. Contrastive approaches for instance suffered from the
difficulty and limitations of applying semantically invariant relevant text alterations.

1.4.2 First Pretext-tasks

Two methods, RotNet (Gidaris et al., 2018b) and JigSaw Puzzles solving (Noroozi &
Favaro, 2016) were the main seminal works towards the definition of genuine/original
pretext-tasks for image representation learning. The first one exploited the fact that
human-captured images tend to depict objects in an “up-standing" position, and made a
network learn representations by predicting the angle of rotation of artificially rotated
pictures. Pretext labels, here, are the angles of rotation applied, and they are known
on unsupervised data points as they are automatically generated to create the task. In
the second one, Noroozi and Favaro proposed an approach inspired by the JigSaw game.
After dividing a picture into square patches, the pretext-task was to reorder them. The
motivation behind these two works is that solving the pretext-tasks implies learning
properties such as edges, and object orientation.. and that those learned concepts will
offer a useful basis for downstream classification.

1.4.3 Contrastive Learning

The next trend in image self-supervised representation learning was set with the pio-
neering work of Chen et al. (T. Chen et al., 2020) on contrastive learning. Contrastive
learning is a self-supervised representation-learning technique that aims to teach a neural
network to distinguish between pairs of similar and dissimilar points (images in this case).
It does so by embedding images into a high-dimensional feature space, where similar
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images are mapped closer together and dissimilar images are pushed apart. This method
leverages a contrastive loss function, such as the triplet loss or InfoNCE (Noise-Contrastive
Estimation) (Van Den Oord, Vinyals, et al., 2017), to ensure that the network learns to
capture meaningful features from the images, enabling applications like image similarity
search, object recognition, and clustering.

Precisely, let again X = (xi)i∈[1,N ] be the set of data points. In a labeled setting, we can
sample a positive pair (xi, xj) (i.e. sharing the same label) and a negative pair (xi, xk),
where xi, xj , and xk are data points selected from X. The goal is to encourage the model
to embed similar data points closer and dissimilar data points farther apart in the feature
space.

To achieve this, we define an encoding function e that maps each data point x to a feature
space usually denoted as Z. The feature representations are obtained as zi = e(xi),
zj = e(xj), and zk = e(xk).

A common loss function used in contrastive learning is the triplet loss (Bredin, 2017),
which encourages the positive pair to be closer in the feature space than the negative
pair:

L(xi, xj , xk) = max{0, α + d(zi, zk)− d(zi, zj)}, (1.1)

where α is a hyper-parameter representing a margin, and d(za, zb) represents a distance
metric, such as the Euclidean or the cosine distance, between feature vectors za and zb.
The loss L is minimized during training making similar data points closer and dissimilar
ones farther apart in the feature space, improving the quality of representations.

In the SimCLR work, a self-supervised version of this approach (T. Chen et al., 2020),
positive pairs are constructed by applying data augmentation techniques to the same
original data point x. Given two chains of augmentation ai and aj sampled from an
augmentation policy A, two augmented versions denoted as xi = ai(x) and xj = aj(x)
are generated, with corresponding feature representations zi = e(xi) and zj = e(xj).

The goal is to maximize the similarity between zi and zj while minimizing similarity with
features of samples not generated from x. This is achieved using the Noise-Contrastive
Estimation (NCE) loss:

L(xi, xj , negatives) = − log
(

exp(zi · zj)
exp(zi · zj) +∑

k exp(zi · zk)

)
. (1.2)
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Where zi · zj represents the dot product similarity between the feature vectors zi and zj ,
and negatives refers to the set of negative samples from which we get features denoted
as zk here. The NCE loss aims to learn representations that are invariant to the set of
augmentations/alterations present in the considered augmentation policy.

1.4.4 Non-contrastive Learning

Sampling negative pairs for triplet-loss or contrastive approaches has been an extensive
field of research leading to substantial gains through careful selection (Robinson et al.,
2021). This sensitivity led to research emancipating from negative sampling in what
has been called “non-contrastive" self-supervised learning methods. The main seminal
work for this trend was Bootstrap Your Own Latent (BYOL) (Grill et al., 2020). It
leverages, again as in SimCLR, two views of an image, often obtained through different
data alterations. However, BYOL employs a teacher-student approach, where the student
network has to produce embeddings similar to the teacher ones, and each network
receives a different augmented version of the input. The teacher network, which is an
exponential moving average of the weights of the student, provides stable and improved
target representations for training. BYOL-like approaches, with additional adjustments,
mainly dividing the input image into patches and using Vision-Transformers and patch-
level losses and masking (Dosovitskiy et al., 2021), are now state-of-the-art for image
self-supervised representation learning (Oquab et al., 2023).

Let us keep the notations introduced in the previous section, with x1 and x2 denoting two
different versions of the same input x. A student network MS and a teacher network MT

project those to their corresponding feature vectors z1 = MS(x1) and z2 = MT (x2). The
teacher network is updated as an exponential moving average (EMA) of the weights of
the student. This EMA is used to provide target representations, enhancing the stability
of the training process:

θMT
← β · θMT

+ (1− β) · θMS
. (1.3)

Here, θMT
and θMS

are the parameters of the teacher and student networks, and β is a
momentum hyperparameter, a real-value between 0 and 1 controlling how acute teacher
updates are.
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The objective of BYOL is to maximize the similarity between the projected views of the
student and teachers and does not rely on a traditional contrastive loss, and thus does
not require negative samples. The model encourages p(z1) to be similar to z2, with p a
projection-head, leading to the following training loss:

LθMS
= ||p(z1)− z2||22. (1.4)

During training, the back-propagation only updates the weights of the student network,
with a stop-gradient applied to the teacher branch. The slow update of the parameters of
the teacher encoder helps prevent the model from converging to a degenerate solution
ensuring that the representations remain diverse and stable throughout the training
process.

1.4.5 Modality-agnostic Approaches

Before delving into the approaches specifically designed and proposed for speech and
audio modalities, it is important to note a trend of convergence between the techniques
among modalities. The transformer-based unifying trend, in terms of modeling archi-
tectures and optimization, is a well-documented phenomenon (Xu et al., 2023). But a
similar modality-agnostic trend, centered around predicting masked parts or embeddings
of masked parts, is also rising. Predicting masked, thus missing, elements or context,
has been a successful pretext-task, independently of the modality. The Data2Vec series
(Baevski et al., 2022, 2023) has pushed this trend forward, proposing a pipeline valid for
all modalities, with limited differences in pre-processing or encoding front-ends.

1.5 Speech Self-supervised Learning

This section describes the historical motivations, approaches and evolutions in learning
unsupervised and self-supervised speech representations. After this, we discuss its impact
on speech technologies and how this impact can be evaluated. Finally, a third part
decorticates the desired properties of these representations, and the efforts targeting
these properties in the literature.

1.5 Speech Self-supervised Learning 27



1.5.1 Genesis: Zero-speech Oriented Research

Since the beginning of the 2010 decade, and in an attempt to reproduce the learning
abilities of infants, the Zero-speech (Dunbar et al., 2017) community, from the name of
a long list of challenges, developed a multitude of approaches for unsupervised speech
representation learning. The zero-speech setting is simple. As infants are able to learn
to speak without any textual inputs (although with extended non-speech ones), models
should be able to do the same. The community has been focusing in the first years on
the first abilities infants learn, recognizing words in a speech stream, mainly through
two tasks: unsupervised speech segmentation and acoustic word discovery. Speech
segmentation is the task consisting of retrieving the word boundaries in an unsegmented
speech sentence, while acoustic word discovery is the task of regrouping speech segments
within clusters composed of the same word in its different pronunciations.

To perform segmentation or word discovery, notions of segment frequencies and phonetic
similarity are needed, and those require an embedding space where speech embeddings
representing phonetically similar segments should be close, allowing for pure clusters.
The first representations used for these tasks relied on hand-crafted spectral-based
features. Mel-frequency cepstral coefficients (MFCC) or Perceptual Linear Prediction
(PLP) were the main used spectral features (Kamper et al., 2015; Holzenberger et al.,
2018). Different pronunciations of the same word may lead to different speech utterance
lengths. Thus, for unsupervised clustering, getting fixed-size embeddings of varying-size
speech segments has been, and still is in word acoustic embedding research, a hot topic
for the zero-speech and now self-supervision community.

Bottleneck Features

One of the popular learned speech representations used was “Bottleneck-features" (Grezl
& Fousek, 2008; Yu & Seltzer, 2011). The idea was to learn a reduced-size representation,
in a bottleneck of the whole auto-encoding network. The information bottleneck acts as a
feature compressor, selecting the relevant (hopefully mainly phonetic) information needed
for signal regeneration. The representations learned in a zero-speech (i.e. unsupervised)
scope were used already in a self-supervised flavor as defined in Section 0.2, in a two-
phased training approach with downstream labeled data. For instance, Yu and Seltzer
(2011) showed how unsupervised pretraining of bottleneck features improved the speech
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Fig. 1.2.: Schema of a bottleneck feature-extraction network trained with an auto-encoding
objective. h is a low-dimension vector supposed to only keep the high-level content
needed for regeneration. The figure is adapted from Lee et al.(2018)

.

recognition performance on telephonic data. Sainath et al. (2012) showed also how these
led to ASR performance gains as well compared to MFCCs and PLPs.

Since then, multiple models, not oriented necessarily toward zero-speech tasks resolution,
have been proposed in the speech literature. The next section covers these through
a pretext-task-based classification. This classification relies heavily on the astounding
work done in a published review of these works (Mohamed et al., 2022). An important
difference with the classification done there is that we did not include a “Predictive
approaches" class. Predictive approaches are those where part of the task is to fill in
missing parts of the speech utterance. Naturally fitted to sequential tasks, they have been,
as in text, a classic almost ubiquitous component of unsupervised speech learning, and
have been added to other tasks in almost all the approaches. Thus, we will discuss how it
has been added within the different classes, and not consider it as a class of its own. It is
also important to note that other classifications are possible, according to the order of
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magnitude of data size used, and main downstream tasks. In the following, we will keep
using X as the set of speech samples for and e for the encoder function.

1.5.2 Auto-encoding Approaches

We define auto-encoding approaches as approaches where the loss function of the de-
veloped model is a distance between the audio input and a reconstructed version of the
audio as output. This audio may be represented as its raw waveform, or as its spectral
features. In this setting, the model generally consists of an encoder mapping the audio
inputs to an intermediate representation, that will be used for downstream training,
followed by a decoder mapping the representation back to the audio input, or to an
unlearned function of this audio input. Let us call d the decoding function, ai and ao two
non-learned functions altering the inputs and the outputs of the auto-encoder, and D

a metric distance. Thus, the auto-encoding approaches learn representations through
minimizing a loss :

L=D(d(e(ai(x))), ao(x)). (1.5)

Bottleneck features, described in the previous section are an example belonging to this
category. In that case, the encoder maps the audio features to the bottleneck low-
dimension space, while the decoder maps them back to the input features. In this case,
ai and ao are just the spectral features extraction functions, and D is the Euclidean
distance.

Based on auto-encoding, generative approaches, enabling to sample from the considered
speech distribution, have been implemented to learn useful speech representations. A
classic example is Variational Auto-Encoders (VAE) (Kingma & Welling, 2014). VAEs
are designed to learn a probabilistic mapping between high-dimensional data and a
lower-dimensional latent space. The encoder network maps input data to a probability
distribution in the latent space, typically following a Gaussian distribution. The decoder
network then generates data by sampling from this distribution and mapping it back to the
original data space. Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord,
Vinyals, et al., 2017) combines VAEs and vector quantization to learn a compact and
discrete representation of input data. In a VQ-VAE, the encoder maps the input data to a
discrete codebook, and the decoder reconstructs the data from these discrete codes. The
internal representations of these auto-encoders have been successfully used for common
speech tasks (Baevski et al., 2019).
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Predictive Auto-Encoding

As said in the introduction of this section, predictive approaches were applied in several
SSL settings, and auto-encoding makes no exception. A few methods have introduced
masking parts of the audio inputs before feeding them to the encoder, i.e. adding
a masking part to the ai function defined above. Mockingjay and TERA (Liu et al.,
2020b, 2021) are great examples of applying masking in an auto-encoding setting.
Mockingjay employs BERT-like pretraining on Transformer encoders by masking input
acoustic features along the time axis and then reconstructing the masked segments. TERA,
an extension of Mockingjay, goes a step further by introducing additional masking of
frequency bins during the pretraining process.

Discrete CoDecs

Again among the auto-encoding approaches, recent models have been learning discrete
speech and audio representations in a CoDec fashion, with compression as the main goal.
A seminal work is SoundStream (Zeghidour, Luebs, et al., 2021). It used Residual Vector-
Quantization (RVQ) to learn hierarchical discrete representations of audio. These discrete
codes allow decent universal audio compression and regeneration with low bitrates. While
showing great results for generative tasks, enabling the use of NLP-inspired approaches
to learn audio-to-audio or token-to-audio mappings, these representations have been
showing low disentanglement leading to low performance in discriminative tasks such
as transcription. For instance, the AudioLM model (Borsos et al., 2023), a leading
work in audio language modeling and conditional generation, has been using discrete
SoundStream audio tokens, solving using these tokens a language modeling task, similar
to the one described in Section 1.4.1.

1.5.3 Contrastive Learning for Speech Representations

In contrastive learning settings, as described in Section 1.4.3, models learn the self-
supervised representations through the process of discerning a target sample (considered
positive) from other distractor samples (regarded as negatives) using an anchor represen-
tation. The primary objective of the pretext task is to maximize the similarity in the latent
space between the anchor and positive samples while reducing the similarity between
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the anchor and negative samples. The task is thus defined by the way anchor elements
and negative samples are mined within the data.

Contrastive Approaches

We already described the SimCLR algorithm in Section 1.4.3. A speech version of SimCLR
has been proposed (Jiang et al., 2020). It adds a spectrogram reconstruction loss along
with the contrastive one, as the latter, while enforcing the desired invariances, is too
information-lossy and makes the representation not suitable for ASR. The COLA model
(Saeed et al., 2021) targeted classification tasks where the class label is generally constant
in one speech utterance, such as speaker recognition or language identification. The
anchors were not just augmented versions of a speech segment, but non-overlapping
speech segments coming from the same audio file. It led to, at the time it was published,
state-of-the-art results on the considered classification tasks.

Contrastive Predictive Approaches

Contrastive Predictive Coding (CPC) (Van Den Oord, Vinyals, et al., 2017) was one
of the first works introducing the NEC contrastive loss described in Section 1.4.3 for
sequential data. It involves a predictive objective, training a neural network to predict
future information from past information within a sequence of data, such as audio or
text. However, it differs from traditional auto-encoders in that it uses a contrastive loss
function, making the model learn by contrasting the correct prediction with incorrect
ones. The task is this way simpler than the regressive one of predicting audio frames.

The CPC approach paved the way to the Wav2Vec series. This series represented a turning
moment for speech self-supervision. Given its importance, let us give some details about
the loss and the modeling. The W2V2 (Baevski, Zhou, et al., 2020) encoder consists
of two parts. First, a convolutional front-end downsamples the raw audio waveform
(sampled at 16 kHz) to 50 Hz frame vectors. Then, a contextual module, composed of
stacked transformer layers learns contextual representations keeping the same dimension
and sampling rate as the input. During training, the output of the convolutional head is
quantized, leading to embeddings qt. The training loss aims for maximizing the similarity
between contextual outputs ct, centered around frame t, and quantized qt (thus its
classification as a contrastive approach). It is defined as :
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Fig. 1.3.: Figure representing the Wav2Vec 2.0 training components and loss. The NEC-inspired
loss aims to maximize the similarity between q and the output c. The output of the
convolutional front-end is partly masked. The figure is from Baevski et al. (2020)

Lm = − log exp (sim (ct, qt) /κ)∑
q̃∼Qt

exp (sim (ct, q̃) /κ) , (1.6)

with sim the cosine similarity and κ a temperature hyper-parameter. Figure 1.3 shows
the different components and the training approach.

1.5.4 Pretext-labeling

Following the notations in Eq (1.5), this class of self-supervised approaches groups all the
methods where ao, the function defining the target output of the decoder, is not merely a
spectrogram extraction, but generally a more complex function that could even be learned
from the data. In this setting, ao is a function that maps a speech sample to sample-level
or frame-level labels. These labels may be discrete, making the self-supervised training a
sequence-to-class or sequence-to-discrete-sequence classification task. They can also be
continuous, making the pretraining a regression task. The loss function is not a distance
or a similarity measure, but a classic classification loss such as cross-entropy in the case of
discrete labels, and regression loss such as mean-squared error in the case of continuous
labels.

PASE and PASE+ (Pascual et al., 2019a; Ravanelli et al., 2020b) are pioneering examples
of these techniques. They defined a large set of pretext-labels consisting mainly of signal-

1.5 Speech Self-supervised Learning 33



processing-based features. These features, widely used in speech processing, such as
voicing, pitch and harmonicity, can be automatically extracted with reasonable precision
using signal-processing hand-crafted approaches (Mauch & Dixon, 2014). Multiple
pretext labels are learned simultaneously based on the same encoded representations
through multiple pretext heads or decoders, with each one predicting one of the pretext
labels. Thus, the encoder learns to output representations where the pretext-labels are
easily distinguishable.

Cluster Identities as Pretext Labels

The biggest success of the idea lies in the HuBERT (Hsu, Tsai, et al., 2021) and WavLM
(S. Chen, Wang, et al., 2022) models. Introduced first in the Discrete BERT paper
(Baevski & Mohamed, 2020), the idea is to use as frame-level pretext labels, cluster-
identities of quantized speech segments or frames. The main intuition is that if clustered
properly, quantized spectral features would correlate highly with phoneme identities.
This makes the self-supervised training close to a supervised phoneme-level ASR one,
where the model learns a mapping between speech sequences and pseudo-phoneme
identity. Compared to Discrete-BERT, HuBERT added masking parts of the audio inputs
(after the convolutional front-end), making the transformers layers also learn to fill in
missing parts. It also improved the correlation between the clusters and phonetic content
by bootstrapping the learned representations to create better clusters. This is done by
using features extracted from intermediate layers for clustering. The WavLM encoder
is learned with HuBERT clusters as the target labels and can be thus seen as a form of
(non-shrinking) distillation of HuBERT. The main difference is in this case the use of data
augmentation alterating the inputs, making the representations more noise-invariant.

More recently, Best-RQ (Chiu et al., 2022) showed that the performance did not highly
depend on the quality of the quantization, as they proposed a model learning to predict
random discrete projections of the acoustic features. While the model has not been
released, a Best-RQ model, pretrained on very large unlabeled and multilingual data,
has led to state-of-the-art ASR performance, on a large number of languages (Y. Zhang
et al., 2023) (represented by the corresponding FLEURS dataset (Conneau et al., 2023)).
The first work presented in this manuscript in Chapter 2, builds upon these approaches
and aims to develop a deeper understanding of the link between pretext-labels and
downstream performance.
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1.5.5 Teacher-student Approaches

Teacher-student approaches for self-supervised learning have been widely used on differ-
ent modalities since the BYOL seminal work described in Section 1.4.4. Let us provide a
reminder through the scope of the Equation (1.5). In this case, ao, the function applied
on the input to create the target, is a learned “teacher" neural network. The goal of
the encoder-decoder neural network to be learned is to output representations that are
similar to the ones output by the teacher. The teacher is also learned during training, as
it generally consists in a moving average of the student as written in Equation (1.3).

Speech and audio versions of BYOL have been proposed (Niizumi et al., 2021; Elbanna
et al., 2022). Adding a predictive objective through adding masking in ai, similar to what
has been done with other methods described above, led to the popular Data2Vec models
(Baevski et al., 2022, 2023).

1.6 Evaluating the Impact on Speech Research

After describing the different methods developed for training these self-supervised en-
coders, let us delve into the concrete impact it had on speech research. We aim to describe
qualitatively and quantitatively this impact, leading to the extreme current popularity of
these models, as it is one of the motivations of this work described in Section 0.2. This
section exposes the influence it had on the performance of speech models on different
tasks first. Afterwards, it details the attempts to establish standard ways for evaluation of
these models, before it explores studies where these representations have been used to
deepen our understanding of human speech production and processing.

1.6.1 Speech Technology

Most state-of-the-art performances in the speech community now are reached using
self-supervised representations instead of hand-crafted spectral inputs. Given the number
of recent publications involving self-supervised, it is almost impossible to compile all the
tasks and all the new results obtained using SSL. In a (very) limited attempt to highlight
a few examples, we collected in Table 1.1 a set of tasks where the SSL representations
have allowed to reach new highs. However, we want to highlight that comparing
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Task Metric Dataset SSL Rep. SSL-Perf HC-Perf

Automatic Speech Recognition WER (↓) LibriSpeech-100 Data2Vec Large 3.36 6.1
Speaker Verification EER (↓) VoxCeleb1-H WavLM Base+ 2.32 1.90
E2E Intent Classification Acc (↑) SLURP Hubert Large 89.37 86.30
Emotion Recognition Acc (↑) IEMOCAP Hubert Large 79.58 72.7
Speech segmentation F1-Score (↑) DIHARD 3 WavLM Large 63.4 52.4
Accent Detection Acc (↑) CommonVoice W2V2-XLSR 97.1 87.9

Tab. 1.1.: Difference in performance between state-of-the-art approaches using hand-crafted or
self-supervised representations for a set of speech tasks. (Some tasks are missing)
Speech segmentation results are reported in (Lebourdais et al., 2022), accent detection
ones in (Zuluaga-Gomez, Ahmed, et al., 2023), emotion recognition ones in (H. Wang
et al., 2022) and (J. Wang et al., 2020), intent classification in (H. Huang et al.,
2023).“HC-Perf" column shows the highest performance we found on the task using
hand-crafted features, generally MFCCs or log-Mel spectrograms.

representation performance based on bibliographical work is complicated, and should be
considered with precaution. As also explained in Chapter 3, comparing performances
between representations is subject to a set of choices, including but not limited to
downstream architecture. These choices are rarely identical in two works coming from
different laboratories or institutions. For instance, it is important to note that for some
tasks, papers, using or not self-supervision, may use additional datasets or pretrained
supervised models. A similar table has been proposed in an extensive review of the
domain (Mohamed et al., 2022). This one is an update for the common tasks, and shows
other tasks where SSL allowed improvement today.

For Automatic Speech Recognition (ASR), we selected performance trained only on 100h
from LibriSpeech and tested on the test-other split. It shows two interesting things,
the performance in (somehow) reduced data scenarios, and the robustness to domain
shift since test-other samples are generally noisier than the ones in the train-clean-100
split. The first row in the table shows that self-supervised representations allow a 45%
drop in Word Error Rates. Systematic, although relatively lower, gains are witnessed
on other tasks in the table, with the most impacted ones being speech segmentation
and accent detection. It is also useful to note that these performances are reached with
diverse self-supervised encoders and that the tasks tackle different, sometimes orthogonal,
aspects of the speech signal.

A first rule of thumb concerning the gains from SSL in ASR is the size of the annotated
dataset. The less annotated data available for the transcription task, the larger is generally
the gap in performance between log-Mel spectrogram approaches and SSL-based ones.
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This also explains why, for instance, state-of-the-art English ASR still relies on spectral
features, with the latest models trained on over 500k hours of transcribed English data
(Radford et al., 2023).

However, this is not true for other tasks, as it can be induced from Table 1.1. In that
table, the relative performance gain for VoxCeleb1 and its 352 hours of downstream data
is higher than the one for IEMOCAP and its 12 little hours of annotated emotion data.
Predicting SSL usefulness, quantified here by the performance gains compared to spectral
features, needs more insights on the domain shift between downstream and upstream,
and the closeness of the downstream task to pretraining objectives. This is discussed
partly in Chapters 2 and 3.

1.6.2 Evaluation

As described partly in Section 1.5, a high number of techniques have been proposed in
speech self-supervision research. A second multitude, the large number of papers using
these representations in different contexts, fostered the need for comprehensive, and
standardized benchmarks for speech self-supervised representation, covering the wide
range of speech tasks they have been used for.

The SUPERB (Speech processing Universal PERformance Benchmark) benchmark rep-
resents the most popular effort for benchmarking SSL models. It has been designed to
evaluate the performance of self-supervised learning (SSL) models in a set of speech
processing tasks, ranging from very low-level ones such as phoneme recognition to high-
level semantic tasks such as intent classification. This is done through fixing a given
downstream architecture for every task and learning a model taking as an input the
output of the SSL encoder and feeding it to the chosen downstream architecture. By
computing a mean score over the considered tasks, leadearboards ranking the models
proposed in the community are dressed and regularly updated. More tasks have been
proposed in further works, with particular attention to generative tasks (Tsai et al., 2022)
and out-of-domain generalization (T.-h. Feng et al., 2023). Chapter 3 discusses the idea
of fixing the downstream head per task and its implications.

In the close domain of general audio and music tasks, the HEAR benchmark, close
in design to the SUPERB one, has been introduced (Turian et al., 2022). Its set of
tasks included a large variety of classification tasks ranging from bio-acoustic ones like
environmental sound classification to music genre detection and a few regression tasks
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such as gunshot triangularization. A particularity of the HEAR benchmark is that the tasks
may have labels at the frame level (called time-stamped tasks in the paper), such as pitch
prediction, or at the whole utterance level in a single-label or multi-label classification
fashion (such as intent classification or language identification).

Finally, other benchmarks focusing either on specific languages, such as the French
LeBenchmark (Evain et al., 2021) or on tasks non-explored in SUPERB, such as prosody-
related ones in ProsAudit (de Seyssel et al., 2023) have been proposed.

1.6.3 Impact on Speech Science

While the two first subsections have focused on the performance gains on speech tasks,
this one focuses on the impact of SSL on the development of speech science, i.e. our
understanding of human speech. Various approaches more related to human production
and understanding have also been exploiting successfully self-supervised representations.
Acoustic-to-articulatory inversion is one of them (Georges et al., 2022) as representations
learned on massive datasets help predict articulatory movements that induced speech
samples (Maharana et al., 2023). It is also interesting to note that these representations
help validate linguistic descriptions of speech. Positive results have been obtained in
studies probing self-supervised representations on phonetic and phonemic contents (Wells
et al., 2022; Martin et al., 2023).

Understanding the way humans understand and decode incoming speech waves goes
also through understanding the cerebral processing of these signals. As they are learned
without textual inputs, similarly to babies learning to handle speech, researchers probed
the similarity between Wav2Vec 2.0 representations of audio samples and the brain
activity of individuals recorded with functional Magnetic Resonance Imaging (fMRI)
while they were listening to these audio samples (Millet et al., 2022). The analysis
indicates, among other conclusions, that the functional hierarchy of the self-supervised
representations aligns with the cortical hierarchy of human speech processing. This has
been confirmed in other similar studies (Vaidya et al., 2022).
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1.7 Desired Properties of Speech Self-supervised Models

Building on the previous descriptions of the main trends and historical evolutions of
self-supervised speech representations, and given the impact in performance it has had
during the last years, this section aims to describe a list of desired properties for these
models. While we have been discussing ASR performance as a main criterion in the
previous sections, these desired characteristics are meant to be orthogonal, at least partly,
to it. A few of these properties have been the subject of intensive research work that
will be described as a second step for each one of them, along with the limitations and
standing challenges to overcome. These properties are partly chased in the core work of
this manuscript, especially in Chapter 4. Let us give first a list of criteria:

• Efficiency: Gains in performance have been lately linked with increasing sizes of
models leading to expensive trainings and inferences. This makes deploying self-
supervision-based models in production costly and sometimes intractable, especially
for on-device inference settings. Training efficient self-supervised models, in terms
of computations, is one of the main challenges towards the democratization and
the wide adoption of these models.

• Robustness: The main use of self-supervised representations is on tasks where
labeled downstream data is scarce. This mainly concerns tasks in specific speech
linguistic and acoustic conditions, that may not be present in the pretraining set.
A classic example of these conditions is low-resource languages. Self-supervised
models, even trained only on English data, have been successfully used on other
languages not sharing common roots. Even for English data, gaps between pre-
training and fine-tuning may be considerable, when encountering specific acoustic
conditions such as air-traffic communications (Juan et al., 2020) or child speech
(Jain et al., 2023). Thus, one main desired property is robustness to domain shifts
or better out-of-domain generalization, i.e. achieving high performance on the
largest set of conditions. The representation that is learned should be useful, in
terms of final downstream performance gains compared to classic non-SSL features,
even facing substantial distributional shifts with limited downstream annotation.

• Task-coverage: In the first experiments with modern speech self-supervised models,
speech recognition was the main addressed task. For instance, the ground-breaking
Wav2Vec (Schneider et al., 2019; Baevski, Zhou, et al., 2020) series did not include
any non-ASR downstream experiments in the paper. Other research groups, building
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on the release of the models, tried these representations on other tasks such as
emotion recognition and speaker verification. The gain in results, especially in low-
data scenarios, fostered further experiments on almost all the previously considered
tasks and made self-supervision benchmarks include non-ASR tasks in their list
of evaluations. In the first chapter, we condition choices in the self-supervised
pretraining on the final downstream task of interest, as we believe, and show, that
task-oriented choices can improve the final performances. However, we also believe
that task-coverage is an intrinsic quality for these models for two reasons. First,
while it looks more like a “collateral gain" than a real-intended feature, models
developed with ASR in mind were very useful for other tasks, showing that task-
agnostic (or maybe should we say high-task-covering) models are possible. Second,
with the increase of these models in terms of number of parameters and size of
the training datasets, it seems intractable to train large models for every task of
interest. We will discuss two points concerning this property, the ongoing research
in developing non-ASR-oriented models, and the coverage of the most popular
self-supervised representations.

• Open-source and Reproducibility: The last years have seen tremendous efforts
in the speech community towards sharing code, recipes, data, and ultimately
pretrained models and weights. This is also true for the self-supervision community.
Open-source allows the community to use and build upon the proposed models.
Sharing the code and the data also allows the reproduction of the experiments. In
practice, the amount of computations needed has limited the reproduction attempts.

• Disentanglement and Interpretability: As there is not yet an agreement in the
literature for a mathematical definition of disentangled representations, we will,
instead, give a qualitative one. Disentanglement in speech representation learning
refers to the process of extracting and representing distinct and independent factors
or attributes of speech in a way that separates them from each other. In other
words, specifically for speech, it involves learning a representation of speech where
different aspects of the speech signal, such as linguistic content, speaker identity,
emotional tone, and background noise, are disentangled or separated from one
another, making them more easily manipulable. Furthermore, disentanglement
implies that changes in one factor do not significantly affect other factors in the
representation. This separation and manipulation ability has a strong link with
the ability to interpret the obtained representations. Various definitions of inter-
pretability, sometimes with definitions of explainability, have been given in the
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corresponding research works. While useful in various speech-related contexts
where machine decisions need to be trusted (Ramanarayanan et al., 2022), this
part has been mainly overlooked in speech self-supervision.

1.7.1 Robustness and Generalization

Various studies have shown that performing the self-supervised pretraining on unlabeled
datasets with the same conditions as the target downstream ones, in terms of language
or acoustic and recording conditions improves the final performance (Evain et al., 2021;
Hsu, Sriram, et al., 2021). However, all the conditions, either acoustic or linguistic, can
hardly be covered in a single pretraining. We give two arguments for this claim. First, new
datasets in low-resource languages appear regularly, enriching the limited-size available
corpora for those. Second, with language and usages evolving quickly, a full coverage of
accents, linguistic practices, and even acoustic conditions may quickly become obsolete.

Generalization to Unseen Languages

A few models have tried to cover a maximum number of languages during the pretraining.
An example is the XLSR series (Conneau et al., 2023), in its two versions, with 53 and
436 thousands of hours of speech data in 128 languages, with model sizes ranging from
300M to 2B parameters. Even, in these extreme cases, languages not present in the
pretraining may not see improved performance after downstream training. For instance,
our experiments on Tunisian speech recognition have shown that WavLM was a better
backbone model in that case, even if WavLM has only been trained on English data
(Abdallah et al., 2023).

Recently, ML-SUPERB, a benchmark targeting explicitly the performance of the SSL
models on non-English datasets including low-resource languages such as Mixtec has
been proposed (Shi et al., 2023). It shows, for instance, that multilingualism in the
pretraining data improves the final performance, but that it is not the only factor in this
performance. For instance, it is surprising to see that the performance of XLSR-53, trained
on 53 languages is 3 WER points worse than the one of Hubert Large trained only on
English audio data.

Finally, another linguistic shift concerns accents and variations within already seen lan-
guages in pretraining. Famous examples of lines of work include African-American English
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(Riviere et al., 2021) or air traffic communications (Zuluaga-Gomez, Prasad, et al., 2023).
We note, in these studies, that despite linguistic or accent-related shifts, self-supervised
representations perform systematically better than hand-crafted representations.

Generalization to New Acoustic Conditions

A few works have attempted to enforce noise-invariance of speech self-supervised repre-
sentations through noise injection during pretraining (Gat et al., 2022; H. Wang et al.,
2022). Why it generally leads to gains in performance, it is heavy in terms of computation
as enforcing new invariances requires a full pretraining, and the representations may
still fail facing alterations and distortions that were not applied during pretraining. A
more efficient way to deal with unseen acoustic conditions is domain adaptation after the
pretraining. Two techniques were privileged in the literature.

First, continual pretraining allows the use of target-domain-related unlabeled audio,
without fully retraining the self-supervised models (Kessler et al., 2021). It allows one to
adapt the representations to the new domain without forgetting what has been learned
on the massive datasets it is generally trained on. Second, domain adversarial fine-tuning
has also been a popular choice (K. P. Huang et al., 2022b). It consists in making the
latent representations of audio samples coming from different domains undistinguishable
through a penalty loss associated with the success of a classifier to detect the domain of
the samples.

We also propose in this thesis, in Chapter 4, a method allowing for better adaptation in
case of reduced available annotated downstream data, using automatic data augmentation
for acoustic conditions cloning.

1.7.2 Task-Coverage

Although the first popular self-supervised representations were meant for speech recogni-
tion, comprehensive benchmarks, such as SUPERB and SUPERB-SG (Tsai et al., 2022),
have shown that popular self-supervised models allow substantial gains in performance
compared to Mel spectrograms on a very wide range of speech tasks. While the former
has focused on discriminative tasks such as speech, speaker, or emotion recognition, the
latter explored more generative tasks, in the sense here of tasks with audio as the output,
such as speech enhancement or voice conversion.

42 Chapter 1

Related Works



However, an important observation of these two benchmarks is the variance of the relative
gains. Gains in synthesis tasks are largely more limited than those for discriminative
tasks. A clustering of the tasks, performed based on the performance of the considered
models, shows this difference with recognition tasks all in the same clusters, and synthesis
ones separated into one-element clusters. The steady link between speech SSL and ASR
performance is also highlighted, with gains in performance on ASR being among the
highest compared to hand-crafted features.

There are many tracks, explored and yet to explore, for the improvement of the task
coverage of SSL methods. One of them is pretraining data selection, as current models
are mainly trained on clean read utterances of speech from studio recordings, with
LibriSpeech (Panayotov et al., 2015) and LibriLight (Kahn et al., 2020) as popular
pretraining dataset choices. A second track for this is to make pretraining losses less ASR-
oriented. In this context, speaker recognition has received much attention in the design
of appropriate losses and model designs with ideas ranging from enforcing non-speaker
related invariances (Stafylakis et al., 2019) to unsupervised speaker pseudo-labeling
(Danwei & Li, 2021).

Unfortunately, the high costs of large self-supervised pretrainings, combined with the
surprising performance of already pretrained alternatives, even if they are ASR-oriented,
have been hindering research in developing models specifically tailored for other speech
tasks. We also harness this opportunity to highlight works that have been trying to
explain this “surprising" performance. Concerning speaker recognition, for instance, a
recent work (S. Chen, Wu, Wang, et al., 2022) has shown that the masked prediction
objective was behind the main improvements for the speaker-related downstream, while
the impact of careful pretext-labeling was negligible. Other works have shown that
the learned representations are highly correlated to articulatory trajectories (Cho et al.,
2023), showing that these models learn a physical grounding of speech production, which
explains why it also covers non-phonetic aspects of speech.

1.7.3 Computational Efficiency

The Wav2Vec2 models represented a shift in terms of scale for self-supervised repre-
sentations. They set what stayed, for a few years, the two main formats and sizes of
popular self-supervised encoders, with a “Base" model comprising 12 layers of transform-
ers handling vectors of dimension d = 768, and a “Large" one comprising 24 layers of

1.7 Desired Properties of Speech Self-supervised Models 43



transformers with d = 1024, for a total number of parameters, reaching around 90M and
300M respectively for the Base and Large versions. These sizes and structures have been
similar for a long series of further approaches such as HuBERT, WavLM, Data2Vec, and
Wav2Seq (F. Wu et al., 2023).

Following similar trends in other modalities, the performance obtained using “Large"
models has been significantly higher than the one with the “Base" counterparts,2 especially
for ASR. But this comes at the cost of expensive trainings and inferences, the latter limiting
the deployment of self-supervision-based models in production settings. The trend has not
stopped at the two sizes described in the previous paragraph, with the latest foundational
models surpassing the billion of parameters (Y. Zhang et al., 2023).

More with Less

A few works have tried to reduce the inference costs of popular models. One source of
inefficiency during inference is the convolutional front-ends. Studies have shown that
they involve high memory consumption and that they can be replaced with more efficient
learned or non-learned front-ends (Lin et al., 2022; Parcollet et al., 2023)(even though
the last option contradicts the feature-learning trend). Pruning has also been explored
during fine-tuning of large self-supervised models. Fu et al. (2022) have shown that
learning binary masks over the weights of the models allows a reduction of the inference
computations without significant WER increase.

Knowledge-Distillation Attempts

If the performance drops due to training smaller self-supervised encoders are excessive,
distillation is a popular alternative. Neural network distillation is a knowledge trans-
fer technique in machine learning where a large, complex model (teacher) is used to
train a smaller model (student) by transferring its knowledge. The goal is to distill the
generalization capabilities of the teacher into a more compact student model, making it
computationally efficient for deployment while maintaining or even improving perfor-
mance. When distilling self-supervised models, important choices concern the dimensions
of the student model, should the model be shallower (i.e. less layers) or thinner (i.e.
shorter inputs), the distillation loss, the distilling dataset... DistilHuBERT is a popular

2It is important to note that, except WavLM with the released WavLM+ version, the “Base" models are also
trained on much smaller datasets than their “Large" counterparts.
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attempt to distill the HuBERT Base version, reducing the number of transformer layers
from 12 to 3 using multi-level distillation losses.

LightHuBERT (Rui et al., 2022) introduced a configurable distilled version, through
the Once-for-All approach. Once-for-All (Cai et al., 2020) networks are a family of
neural architectures designed to accommodate diverse computational requirements by
training a single, versatile model. Through a mixture of training and pruning, different
sub-networks can be derived from the OFA model, allowing for efficient deployment
across various resource constraints. Focusing on paralinguistic tasks (non-including
speech recognition for instance), TRILLSSON (Shor & Venugopalan, 2022) proposed
distilled models reaching reasonable performance compared to teachers with models
bearing 22M parameters only. While reaching reasonable performance on the other
discriminative tasks, distilled models are yet to bridge completely the gap in automatic
speech recognition with their teacher models.

1.7.4 Open-source and Reproducibility

Speech research, due to its closeness to lucrative industrial applications, has historically
been quite a closed research domain with non-shared recipe secrets, compared to other
computer science fields. Partly explainable by the higher importance of data and com-
puting compared to algorithms, and with the impulse given by popular toolkits such as
Kaldi (Povey et al., 2011) and more recently SpeechBrain (Ravanelli et al., 2021) and
ESPNet (Watanabe et al., 2018), the last decade has seen a large leaning towards sharing
algorithms, resources and pretrained models.

Given the high cost of their training, the open release with commercial rights, of Wav2Vec
2.0, HuBERT and further models from Meta AI and Microsoft, was one of the main reasons
behind their fast adoption and popularity. The pretraining data has also been publicly
shared, whether it was the LibriLight dataset or the GigaSpeech (G. Chen et al., 2021)
one used for WavLM. Through the Fairseq library (Ott et al., 2019), Meta researchers
shared all the code behind the development of the released models and allowed partial
replication and attempts of training smaller versions or versions trained on different
speech data.

The release of the weights of EncoDec, a universal audio codec allowing the representation
of audio samples as sequences of integers corresponding to embedding identities, led to
impressive second-parties models for music, urban sound, and speech synthesis (Kreuk
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et al., 2022). However, the latest large Google models such as Best-RQ (Chiu et al.,
2022), SoundStream (Zeghidour, Luebs, et al., 2021), or Universal Speech Model (USM)
(Y. Zhang et al., 2023), while claiming state-of-the-art results in the corresponding papers,
have not been released. Code or data needed for replication are also concealed.

Recently, academic reproduction of large-scale training of popular self-supervised (and
even supervised) has been attempted mainly by the Language Technologies Institute
Lab at Carnegie Mellon University (W. Chen et al., 2023). Reproducing these models
allows for getting a deeper understanding of the factors behind their success, and enables
exploration of various changes in the architectures, the optimization, or the training sets.
Two examples are particularly noteworthy: first, the reproduction of HuBERT Large (W.
Chen et al., 2023), with changes in the dataset leading to the frame clustering. Second,
in a more classic supervised setting, the attempt for a reproduction of Whisper (Y. Peng
et al., 2023; Radford et al., 2023) is even more challenging, given that the training
dataset of the original model has not been revealed.

1.7.5 Disentanglement

The goal of disentanglement in speech representation learning is to create a compact
and meaningful representation of speech that captures the underlying structure of the
audio signal without entangling different factors. This disentangled representation can be
beneficial for various applications, such as automatic speech recognition (ASR), speaker
verification, and speech synthesis, as it allows for better control and understanding of the
individual components of speech (Pierre et al., 2022).

Probing and Analysis of Self-supervised Representations

There has been first, a decent literature on analyzing the content of the representations
that are learned, and how these represent phonetic, semantic, prosodic, and speaker-
related information. It is related to disentanglement, as studies have shown that different
factors are located in different layers of the self-supervised encoders. For instance, probing
using linear probes, mutual information estimation, or canonical correlation analysis
(Pasad et al., 2021) tend to show that non-phonetic and non-semantic information
such as acoustic and speaker-related hints are lost in the further transformers layers of
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W2V2. Experiments on CPC features have also shown that these representations separate
languages, genders, and phonetic classes (de Seyssel et al., 2022).

Unsupervised Disentanglement

Unsupervised disentanglement is the process of learning disentangled representations
without using human-annotated labels of the causing factors one aims to separate in
the learned representations. As discussed in (Locatello et al., 2020), it is theoretically
impossible if not relying on human priors advocating a few loss or architectural choices.

As an example of these approaches, ContentVec (Qian et al., 2022), one of the most
serious attempts to further disentangle the representations, reproduced HuBERT training
but with more speaker-information-free objectives. They use, first, prior knowledge in
designing alteration and augmentations that should only change the speaker-identity
(such as pitch-shifting), and make the representations invariant to those alterations with
a contrastive loss (T. Chen et al., 2020). Second, they use a pretrained voice-conversion
module (trained in part with speaker identities, thus making the approach not fully
unsupervised) to generate speaker-independent acoustic clusters used as pretext labels.

Unuspervised disentanglement is also sometimes naturally emergent. In a recent work,
combining the self-supervised discrete representations with pitch information and speaker
embeddings has allowed compelling speech resynthesis and voice-conversion results
(Polyak et al., 2021). This hints that these discrete labels are mainly rich in terms of
non-speaker and non-prosodic information.

1.8 Conclusion

This section introduced, through a historical sweep and a broad scan of speech repre-
sentations and self-supervision approaches, the key concepts needed to understand the
context of the following works, and appreciate their contributions to community efforts.
It also describes succinctly the impact these models have had on speech technology and
science and the efforts deployed to evaluate them. It ends with a description of five
desired properties for self-supervised models. These properties have played a significant
role in shaping the works described in this document:
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• In Chapter 2, we present methods for a careful design of downstream-task-oriented
pretext-tasks, in a step towards higher task-coverage for speech self-supervised
representations.

• In Chapter 3, we show how the current main benchmarks are advantaging large
SSL encoders leading to non-efficient full pipelines.

• Finally, in Chapter 4, two approaches explicitly target domain adaptation and
out-of-domain generalization in an attempt to reinforce the robustness of self-
supervision-based models. The third approach, presented in Section 4.3 aims
for efficient inferences using the fine-tuning downstream phase to reduce the
computations through input or model shrinking.

All the code and data used for these approaches have been released, with pointers
gathered in Section 5.2. Most easy-to-use approaches have been added within the
SpeechBrain library for the community to exploit and build upon. A notable example
is the MP3S benchmark (for Multi-Probe Speech Self-Supervision),3 shared for the
community and open for contributions adding probes, models, or downstream tasks. All
this is coherent with our open-sourcedness and reproducibility pledges detailed in the
previous sections. Now the stage is set, let us go into the details of the proposed work.

3https://github.com/speechbrain/benchmarks/tree/main/benchmarks/MP3S
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Pretext-task Selection for
Speech Self-supervised Speech
Representation Learning

2

L’instinct dicte le devoir et
l’intelligence fournit des prétextes
pour l’éluder..

- Marcel Proust (Le temps retrouvé)

We begin our study with attempts to motivate the definition of the pretext-task learned
towards maximizing the performance on a set of considered speech downstream tasks.
We chose to condition the pretext-task definition on a given downstream task of interest,
for instance, speech or emotion recognition. This choice is argued and its implications
are commented in the following. Precisely, we will define a scoring function that will
allow us to rank and optimize the pretext-task defined in pretext-labeling and contrastive
learning approaches.

Three main objectives will structure this chapter. After a finer introduction to the specific
topic of pretext-task selection, Section 2.3 will define a way to score a pretext-task utility
towards solving a downstream task, and show an evaluation of this score in the case of
individual pretext-tasks. Building on this function, we show then in Section 2.4 how we
can extend the approach to multi-pretext-task selection and weighting, validating this
approach on three downstream tasks, and in different configurations. The results will be
discussed in further sections, and we will produce an extensive analysis of the robustness
of the approach and its computational gains. Finally, we show, in Section 2.9 how these
ideas can also be used in contrastive learning settings, where the pretext-task is mainly
defined by the data augmentations applied to get different versions of the input audio.

The work presented in this chapter has been the subject of the three following scientific
publications:
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• Zaiem, S., Parcollet, T., Essid, S. (2021). Conditional independence for pretext task
selection in Self-supervised speech representation learning. Proc. Interspeech 2021,
2851-2855, doi: 10.21437/Interspeech.2021-1027

• Zaiem, S., Parcollet, T., Essid, S., Heba, A. (2022). "Pretext Tasks Selection
for Multitask Self-Supervised Audio Representation Learning," in IEEE Journal
of Selected Topics in Signal Processing, 2022, doi: 10.1109/JSTSP.2022.3195430.
Impact Factor : 7.695

• Zaiem, S., Parcollet, T., Essid, S. (2022). Automatic Data Augmentation Selection
and Parametrization in Contrastive Self-Supervised Speech Representation Learning.
Proc. Interspeech 2022, 669-673, doi: 10.21437/Interspeech.2022-10191

2.1 Introduction

In Chapter 1, we have presented a possible zoology of speech self-supervised models.
The numerous existing SSL approaches are mainly characterized by the nature of the
pretext tasks they solve. More precisely, these pretext tasks may be defined through
the choice of pretext labels, hereafter referred to as pretext-task labels. The automatic
extraction of multiple pretext-task labels for SSL (i.e. from the data itself) is common
in many application domains, such as computer vision (Doersch & Zisserman, 2017),
music processing (Hung et al., 2019; H.-H. Wu et al., 2021b), speech processing (Pascual
et al., 2019a; Shukla et al., 2020). Learning representations through solving multiple
pretext-task labels is commonly referred to as multitask self-supervised learning.

As demonstrated by (Pascual et al., 2019a; H.-H. Wu et al., 2021b), multitask speech
representation learning is a powerful tool to build representations that are beneficial for a
wide range of distinct downstream tasks by combining different pretext-tasks labels which
“intuitively” correspond to these tasks. Unfortunately, there is no clear understanding of
the pretext-task label interactions that may occur during a joint optimization process,
and therefore, no common practice describing a group selection strategy for pretext-task
labels to obtain better performance on a known downstream task. As a matter of fact, this
design process has been essentially driven by empirical validation and there is therefore
no evidence that the obtained model is even the best one. This empirical approach can
rapidly become intractable with modern SSL architectures which may contain billions of
parameters trained on thousands of hours of speech, not to mention the carbon footprint

50 Chapter 2

Pretext-task Selection for Speech Self-supervised Speech Represen-
tation Learning



of such pretext-task label searches. For instance, the self-supervised training of a single
state-of-the-art large Wav2vec 2.0 model (Baevski, Zhou, et al., 2020) on 53.2k hours of
speech currently requires 128 GPUs for 5.2 days.

This chapter aims to provide a clear, efficient, and theoretically motivated procedure for
pretext-task label group selection and weighting based on CI. The method presented
allows one to design ahead of training the most adapted multitask self-supervised speech
representation learning model which perfectly suits the considered downstream tasks.
Such an approach may also enable researchers to save a substantial amount of time and
compute devoted to pretext-task label search. Hence, the contributions of this chapter
are fivefold:

1. Introduce a theoretically motivated and computationally efficient method for the
selection of groups of pretext-task label among a set of candidates and with respect
to the considered downstream tasks (Sections 2.2 and 2.4).

2. Validate empirically the proposed approach with a first SSL model relying on
different sets of pretext-task labels, corresponding to the ones obtained for three
considered speech tasks. (Sections 2.5).

3. Extend our method to state-of-the-art architectures such as wav2vec 2.0 to enhance
its performance and expose the scaling capabilities of our solution (Section 2.5.6).

4. Perform a thorough study of the robustness and generalization potential of this tech-
nique to various changes including type of data, pretraining and finetuning datasets,
and pretext-task candidates with an application on instrument classification.

5. Show how the presented method can be extended to automatic view creation
policies in contrastive learning settings (Section 2.9).

2.1.1 Background

Understanding SSL. A few works have tried to shed some theoretical light on the mainly
empirical field of self-supervised learning. Following the different paradigms in SSL,
various tracks have been followed to understand what makes for a good self-supervised
representation, exploring different approaches (Arora et al., 2019; J. D. Lee et al., 2020;
C. Wei et al., 2020). On the one hand, contrastive learning (Oord et al., 2018; T. Chen
et al., 2020; Xiao et al., 2021a) has been advocated both theoretically and empirically
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Fig. 2.1.: Illustration of the training pipeline. The three steps are depicted: 1. Selecting the group
of pretext-task labels and their corresponding weights; 2. SSL training with the selected
pretext task; 3. Training on the downstream task with the pretrained SSL model.

to achieve a balance in the mutual information between alternative representations of
the data, keeping just enough shared information to retain the class-related content
(tian; Bachman et al., 2019; Tschannen et al., 2020). In a recent work (Li et al., 2021),
independence testing has been used to produce better transformations in contrastive
learning settings for image representations. Predictive learning, on the other hand,
requires the model to predict masked elements in sequential data. This technique is
powerful on downstream tasks that can be reduced to a masking problem, as suggested
by research on language modeling (Saunshi et al., 2020). However, all these works have
been focusing solely on computer vision or text-related applications, and none of them
addressed the multi-task self-supervision problem.

Multi-task self-supervised learning. While the literature on multi-tasking in self-
supervised learning remains scarce, it has been shown in classic supervised learning
settings, that through estimates of similarity between tasks or thorough empirical testing,
several tasks can take advantage of being solved with a common encoder (Z. Chen et al.,
2015; Zamir et al., 2018; Dwivedi & Roig, 2019; Shafey et al., 2019). More specifically,
combining pretext tasks with SSL has been mainly explored in computer vision and
speech (Pascual et al., 2019b; Ravanelli et al., 2020a). Pretext tasks such as Jigsaw (Do-
ersch et al., 2016), colorization and rotation (Gidaris et al., 2018a) have been combined
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successfully to improve downstream performance (D. Kim et al., 2018; Shin’ya Yamaguchi
et al., n.d.). The two closest works to our line of research are from Lee et al. (J. D. Lee
et al., 2020) and Doersch et al. (Doersch & Zisserman, 2017). The former shows that
a theoretical link can be established between the conditional independence of the data
points and their pretext-task value given the downstream label, and an improvement of
the performance on the downstream task, while the latter proposes to select layers from
a multitask self-supervised encoder according to the pretext task to be solved. However,
in both cases, while succeeding in presenting a proof-of-concept in multitask speech SSL
training, the studies do not offer practical and theoretical solutions to select groups of
pretext-task labels to build an adapted SSL model that will perform well on the considered
downstream tasks.

Group feature selection. Finally, feature selection, and especially group feature selection
is another close and inspiring field given the problem we consider. The relationship and
interactions between features have been largely investigated in the supervised learning
literature (Guyon & Elisseeff, 2003). This led to multiple solutions to the feature group
selection problem, including LASSO-based techniques (Yuan & Lin, 2006), or multiple
kernel formulations (Sonnenburg et al., 2006; Rakotomamonjy et al., 2007). Another type
of popular solutions came from the research on submodularity, leading to information-
theoretically motivated group selections (K. Wei et al., 2015; Iyer et al., 2022). This has
been tried specifically on speech to avoid domain mismatch harming the final downstream
performance (Doulaty et al., 2015). Especially on speech, However, these works do not
involve any self-supervision, and links between feature selection, self-supervision design,
and pretext-task selection are yet to be proved. In the experiments section (Section 2.5),
we will consider these lines of work as concurrent baselines.

With this method, we aim at shortening the process of designing SSL models by giving
insights on how to select suitable pretext tasks towards solving a given downstream one.
We decided to experiment primarily with audio data due to the lack of literature on this
domain for multitask SSL, and for the various pretext-task labels available, which are
based on decades of signal processing research, before extending to music data. The
whole pipeline starting from the acoustic feature extraction to the downstream task
scoring follows three major steps summarized in Figure 2.1. First, for every downstream
task, our method produces a pretext task selection and weighting. Then, an SSL model is
trained, before being used as a feature extractor front-end to one or many downstream
tasks.
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2.2 Conditional Independence for Utility Estimation

As a first step, we require a function that estimates the utility of learning to solve a pretext-
task to improve the performance on the downstream task. We use an estimation of the
conditional independence between the pretext-task label values and the downstream data
points given the downstream labels. Hereafter, we explain the theoretical motivations
and describe the computation steps.

2.2.1 Problem Definition and Intuition

Let X, Y and Z be, respectively, the downstream data points, their downstream labels
and their pretext-task labels. Let also C be the set of possible downstream classes. As
an example, if one considers speaker recognition as a downstream task, X would be
the speech samples, Y the speaker IDs, C the set of unique speaker IDs, and Z an
automatically computed signal feature, such as the fundamental frequency.

As stated in Section 2.1, Lee et al. (J. D. Lee et al., 2020) linked the utility of a pretext task
defined by the prediction of a pretext-task label (Z) to the conditional independence (CI)
between Z and X given Y . The approach prescribes that, given the labels Y , one may
seek to quantify how much it is possible to predict the pretext-task labels Z without knowing
much about X. The authors bounded, under certain assumptions, the downstream
classifier error with a function of the downstream training set size, and a measure of
the CI. More precisely, the main theorem shows that the bounding function decreases
linearly with the downstream-task dataset size (M) and quadratically with the CI, which
indicates a potential estimator for the pretext task utility.

These results rely on two assumptions that are not upheld in the remainder of this chapter.
First, the modeling functions are expected to be linear. Given the complexity of the
considered downstream tasks, such as speech and speaker recognition, limiting ourselves
to linear modeling would lead to very limited downstream performances. Second, we
will estimate the conditional independence using a kernelized independence test, while
the quantity involved in the proven bounds is ϵ2

CI = E[||E[Z|X] − EY [E[Z|Y ]|X]||2].
Computing this quantity is unpractical, especially with varying length speech samples
while the method we chose to go with has been successfully tested on sequential data
(Gretton et al., 2007).
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Intuition. What is the intuition behind the use of conditional independence as a pretext
task utility estimator? To get an intuitive understanding of the motivations of this
choice, let us consider the example of image classification as the downstream task, and
image colorization as the pretext task. In this case, this pretext task would be suited
to the downstream one if the final classification label can help imply the colors. For
instance, if there are only two classes "Blue skies" and "Yellow deserts", then colorization
is an interesting pretext task, as knowing the final label helps a lot for the pretext task,
independently of the image. Similarly, if all the classes share the same color palette,
colorization may not be an interesting task. (In this toy example, we are ignoring the edge
detection aspect of colorization, and only focusing on the color choice part. Obviously,
the former aspect plays a role in the success of the colorization pretext task)

The proposed function depends on the final downstream task to be solved. This is
motivated by two main reasons. First, it can be seen through the large literature on
feature selection for various speech or computer vision tasks (Schuller et al., 2007;
Loweimi et al., 2015; Serizel et al., 2017; X. Wang et al., 2019; Liu et al., 2020a), that
different tasks require the description of different aspects of the data. This suggests
that different downstream tasks may perform better after different pre-trainings. A
second argument is the difficulty of evaluating representation quality intrinsically, i.e.
independently from the choice of a particular downstream task. A few metrics and tests
(Carlin et al., 2011; Schatz et al., 2013; Lakhotia et al., 2021) have been proposed
for speech, but the correlation between these and downstream-task performance has
not been clearly identified (Algayres et al., 2020; Gump et al., 2020). Finally, recent
experiments adapting the self-supervised representation to the speaker identification
task have shown substantial improvements compared to task-agnostic representations
(S. Chen et al., 2021), validating our intuition that downstream task oriented SSL is
an interesting trend towards better downstream performances. We could also mention
research in semi-supervised learning that managed to reach results comparable to the
best SSL models through leveraging unlabeled data (Hwang et al., 2021; Manohar et al.,
2021).

The main issue with CI is the difficulty of computing an estimate of how much two
variables are independent given a third one on realistic data (Shah & Peters, 2018). We
will start by proposing a simple way to get an estimation of the conditional independence
and validate it on individual pretext task selection.
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2.2.2 Conditional Independence Estimate Computation

This section details the computation of the conditional independence estimate that is
used as a measure of pretext-task label utility. Let X = {xi}i∈{0,...,M} with xi being
data samples (e.g., Mel-band spectrogram for audio and speech, every xi here being the
Mel-band spectrogram of a given speech segment). Every sample xi has a corresponding
downstream label yi and an automatically generated pretext-task label zi. We assume
that yi is discrete reducing the task to a classification problem such as with speaker ID
for speaker recognition. We also assume that for every pretext-task Z, a single zi value
corresponds to each xi. In our case, zi values are the mean of the frame-wise pretext-task
label values.

For independence testing, kernel-based Hilbert Schmidt Independence Criterion (HSIC)
(Gretton et al., 2007) is used for two reasons. First, HSIC has already proven successful
for textual data in testing statistical dependence between translated sentences (Gretton
et al., 2007). Second, kernel-based techniques facilitate the handling of multivariate and
varying-length data such as speech, as the estimation then boils down to the computation
of a similarity measure between the considered variables.

Computation steps. The estimation of the CI of a pretext-task label Z for a downstream
task (X, Y ) consists of three steps. We start by splitting the data samples X according to
the downstream (discrete) classes. Then, we compute for every downstream class c ∈ C,
the kernel matrices Kc and Lc representing the similarity measures for the data samples,
and the pretext-task labels, respectively. Finally, we perform the independence test for
every split group using Kc and Lc and aggregate the estimates with a weighted mean
taking into account the number of samples per downstream class. Thus, for two speech
samples xi and xj , holding two pretext-task label values zi and zj , the coefficients of the
similarity matrices Kc and Lc are computed as follows:

Kij = K(xi, xj) = cos(GD(xi), GD(xj)). (2.1)

Lij = RBF (zi, zj), (2.2)
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with GD(.) the Gaussian Downsampling function, cos(., .) the cosine similarity, and
RBF (., .) the Radial Basis Function kernel, defined as:

cos(x, x′) = trace(xT x′)
||x||.||x′||

. (2.3)

RBF (z, z′) = exp(−||z − z′||2

2σ2 ), (2.4)

where σ is the width of the RBF kernel and trace(.) the sum of elements of the main
diagonal. Note that we compute the matrices Kc and Lc, for each group of samples
sharing the same downstream class c ∈ C. Hence, Kc and Lc correspond to the definitions
above but are restricted to the points with c as a downstream label. For each downstream
class c, and as in (Gretton et al., 2007), with nc being the number of points of class c, the
HSIC value is given by:

HSICc(X, Z) = 1
n2

c

trace(KcHcLcHc), (2.5)

with Hc = Inc − 1
nc

1nc1T
nc

, nc being the number of points with label c, and 1nc a vector of
ones of size nc × 1. The Gaussian Downsampling method, introduced in (Holzenberger
et al., 2018), is a technique used to extract a fixed number of equidistant samples from
a time series, and in our case speech samples. More details about it are available in
Appendix A.1. The HSIC value is non-negative and corresponds to the Hilbert norm of
their cross-covariance matrix. It is used to characterize the independence of the two
considered quantities. Intuitively, the HSIC value is high if samples similar in Kc are
similar in Lc. Therefore, the lower this value is, the more independent the two arguments
of HSIC are and the better the pretext-task label should be for self-supervision before
fine-tuning on the downstream class. The final value for a given pretext-task label and a
downstream task is expressed as:

HSIC(X, Z|Y ) = 1
M

∑
c∈C

HSICc(X, Z)× nc. (2.6)

with M being the number of points in the whole dataset.
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2.3 Validation on Individual Selection

This section validates individual pretext task selection pretraining the encoder on the
English Common Voice dataset and using the learned representations for two down-
stream tasks; Automatic Speech Recongition using TIMIT, and Speaker Verification using
VoxCeleb1.

SSL pretraining. The train set of the English Common Voice dataset (version 5.1) (Ardila
et al., 2020) is used for SSL pretraining (700 hours). Common Voice is a collection of
speech utterances from worldwide users recording themselves from their own devices.
Hence, the closeness to natural settings makes it a suitable choice for self-supervised
learning. We remove from Common Voice the sentences lasting more than 10 seconds, as
they often contain long silence parts due to open microphones.

Downstream evaluation datasets. TIMIT (Garofolo et al., 1992) is considered for the
speech recognition task. It is composed of a standard 462-speakers training set, a 50-
speakers development set, and a core test set of 192 sentences for a total of 5 hours of clean
speech. For the CI estimation, and to get discrete labels to split on, we cut the sentences
at the phone level, using the official transcripts. VoxCeleb1 (Nagrani et al., 2017) is used
for the speaker verification task. The training set contains 148, 642 utterances from 1, 251
different speakers. The conditional independence is computed at the phone level for ASR
and utterance level for speaker recognition making the assumption that phone segments
are entirely independent samples

Pretext-task labels and architecture details. Based on previous work conclusions
(Ravanelli et al., 2020a; Jiang et al., 2021), apart from the pretext-task label to be
tested, our self-supervised model learns to reconstruct the input Mel spectrograms, and
to compute 40-dimensioned MFCC feature vectors. These targets are kept to avoid
information loss harming heavily downstream performances. Inspired by the PASE model
(Pascual et al., 2019b; Ravanelli et al., 2020a), the model consists of an encoder followed
by small predictors limited in capacity (more details on the architectures in Section
2.5.4).

Initial results. Figure 2.2 summarizes the results of the experiment for all the considered
pretext-task labels, reporting the CI estimates and the downstream performance for each
of the two tasks. It shows the evolution of the conditional independence estimator and
the PER and EER, respectively on TIMIT and VoxCeleb. In both figures, the two curves
seem to follow the same trajectories showing a monotonic relationship.
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Fig. 2.2.: Left : Phone Error Rate and CI estimate values on TIMIT for every considered pretext-
task label — Right: Equal Error Rate and CI estimate values on VoxCeleb for every
considered pretext-task label. Error rates appear on the left y axis. We can observe the
monotonic relation between the estimator and the downstream errors, particularly for
TIMIT.

According to theoretical insights(J. D. Lee et al., 2020), the lower the CI estimate is,
the more independent is the pretext-task label from the samples given the labels and
the lower should the downstream error be. Hence, we are looking for a monotonic
relationship between CI estimates and downstream errors. We consider two classic
assessors of monotony: Spearman Correlation and Kendall τ . While Pearson correlation
measures the linear correlation between the values, Spearman correlation is a Pearson
Correlation on the ranks of the values. Kendall τ considers all the pairs of pretext-task
labels and checks whether their order in the CI estimate is the same for the error rate ( i.e
the pair is concordant ). The more concordant pairs there are, the higher Kendall τ is.

Spearman correlations reach 0.48 for speaker recognition and a high 0.93 on TIMIT for
ASR, while Kendall τ is respectively 0.41 and 0.81 for the two tasks. The correlations
between CI and the downstream error are logically positive confirming the work of Lee et
al. (J. D. Lee et al., 2020).

2.4 Pretext-task Group Selection and Weighting

While we now are able to predict the utility of every considered pretext task individually,
the next step remains to define a clever way to combine them optimally within the same
pre-training process. Hence, we introduce a method to select a group of pretext-task
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labels and weigh their respective losses to increase or decrease their importance in
the self-supervised representation. Such an optimization of the latent representation
is expected to provide better downstream performance. Our method minimizes the
conditional dependence between the resulting group pretext task, entailing the prediction
of a selected pretext-task label group and the downstream samples given the downstream
labels.

Given a set of k possible pretext-task labels (Zi)i∈[k] (this notation means for i an integer
between 1 and k), we seek to estimate a set of parameters (λi)i∈[k] weighting the loss of
every pretext-task label Zi during the pre-training phase. Hence, we define a grouping
pretext-task label Zλ as an orthogonal concatenation of (Zi)i∈[k] weighted with (λi)i∈[k] :
Zλ = (λ1Z1, ..., λkZk). These weights (λi)i∈[k] will be used during the pretraining to scale
the loss of every corresponding pretext task

The custom conditional HSIC computation pipeline described above is fully differentiable
with respect to (λi)i∈[k]. In the HSIC computation, the data similarity matrices {Kc}c∈C

are independent of Z and therefore of λ. Only the pretext-task label similarity matrices
{Lc}c∈C are changed. For every downstream class c, Lc is defined as:

[Lc]i,j = RBF ((Zλ)i, (Zλ)j), (2.7)

= exp( −1
2σ2

k∑
h=1

λh||zh,i − zh,j ||22),

where zh,i denotes the mean value of the h-th pretext-task label for the i-th data point in
the dataset.

2.4.1 Constraints on the Weights

The conditional-independence-based utility estimator must be optimized with respect to
the weighting parameters (λi)i∈[k] and three constraints.

First, the parameters (λi)i∈[k] must be non-negative, as they are used as weights for the
corresponding losses. A negative weighting loss would lack interpretability as it could
imply that the self-supervised model should “unlearn” the corresponding pretext task.
This may be the case for adversarial learning, but we are not considering this case here.

Second, the value of the weights must be high enough. Indeed, the presented method
for estimating conditional independence assumes that the considered pretext-task label
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Z is not independent of X. It is fortunately true for speech features, as Z is a function
of X, but not always valid. For instance, with (λi)i∈[k] = 0, the utility estimator would
be zero and thus the lowest (i.e. the best), but it would break the assumption of non-
independence between Z and X, and would nullify the participation of the pretext tasks
to the training loss. Furthermore, the HSIC value decreases with positive decreasing
values of (λi)i∈[k] and we thus need to ensure that the sum of the weights is significantly
higher than zero to ensure that the pretext tasks are significantly considered in the
pretraining loss.

Finally, for a fair comparison between the weighting choices during the optimization, the
sum of the weights should remain constant. In the following, the sum of the (λi)i∈[k] is
fixed to one and the problem is summarized as follows:

min
λ∈Rk

HSIC(Zλ, X, Y ), s.t.Zλ = (λ1Z1, ..., λkZk), (2.8)

λi ≥ 0,∀i ∈ [k],
∑

i

λi = 1.

To minimize the estimator quantity while respecting the constraints, the weights used
in the computation of the CI value are the softmax output of free learnable parameters
(Wi)i∈[k]. Softmax enforces the conditions while being differentiable and the problem
becomes:

min
W ∈Rk

HSIC(Zλ, X, Y ), s.tλ = Softmax(W ), (2.9)

Zλ = (λ1Z1, ..., λkZk).

2.4.2 Weights Sparsity

Another trait that is desirable for the weighting vector is sparsity. If a few pretext-task
labels are not needed for the given downstream task, they would rather be discarded
than given a low weight. First, this would save computation time including the extraction
of the pretext-task labels, and their extraction and prediction during the self-supervised
training process. Second, it would help with transparency to understand what features
are included or not in the latent space. This sparsity property is also related to feature
selection such as with LASSO (Yuan & Lin, 2006). To ensure the sparsity of the output
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weighting vector, while maintaining the desired property of differentiability, we choose
the sparsemax function (Martins & Astudillo, 2016) to replace softmax in equation
(2.9).

2.5 Experimental Setup

This section details the experiments validating the introduced group selection and weight-
ing strategy, showing its addition to state-of-the-art predictive coding approaches, and
testing its robustness. It, first, describes the selection and weighting processes (Section
2.5.1), the SSL models (Section 2.5.2), the downstream tasks (Section 2.5.3), the ob-
tained results (Section 2.6). Then, it shows how the technique can improve wav2vec2.0
(Baevski, Zhou, et al., 2020) embeddings (Section 2.5.6).

2.5.1 Group Selection and Weighting

In the first attempt, the same pretext tasks presented in Table 2.1 are used for the group
selection and weighting experiments. According to Figure 2.1 (step 1), we group these
pretext-task labels based on their weights, i.e. by optimizing Eq. (2.9) to obtain the
different λ values associated to each one of them. Comparative baselines follow common
feature group selection strategies or “natural” intuitions. The first one simply bundles
all the pretext-task labels together without any weighting (i.e. λ = 1 for all pretext-task
labels) as proposed for PASE (Pascual et al., 2019b). As SSL group pretext-task selection
is yet to be fully explored, the two other baselines come from the feature selection
literature as it represents the closest field with well-established techniques. The CI-based
pretext-task label selection is thus compared to two well-established baselines:

Feature Description

Loudness Intensity & approx. loudness
F0 Fundamental Frequency
Voicing Voicing Decision
Alpha Ratio (Sundberg & Nordenberg, 2006) Ratio of spectrum intensity % 1 000 Hz
Zero Crossing Rate Zero crossing number per frame
RastaSpec L1Norm L1 Norm of Rasta Spectrum (Hermansky et al., 1992)
log HNR (Murphy & Akande, 2005) log of Harmonicity to Noise Ratio

Tab. 2.1.: Candidate speech pretext-task labels and descriptions.
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Models LibriSpeech (WER % ↓) VoxCeleb1 (EER % ↓) IEMOCAP (Acc % ↑)
No LM LM

PASE+ (Ravanelli et al., 2020b) 25.11 16.62 11.61 57.86
vq-wav2vec (Baevski, Zhou, et al., 2020) 17.71 12.80 10.38 58.24
Selections
All 21.98 ± 0.36 11.70 ± 0.27 11.90± 0.32 56.4 ± 1.3
MRMR 18.94 ± 0.34 10.36 ± 0.26 10.56 ± 0.31 59.6 ±1.29
RFE 20.02 ± 0.34 11.42 ± 0.27 11.91 ± 0.33 55.8 ± 1.3
Softmax 13.17± 0.28 8.00 ± 0.23 9.24 ± 0.29 60.6 ± 1.27
Sparsemax 17.18 ± 0.32 10.41 ± 0.26 8.63 ± 0.27 60.8 ± 1.28

Tab. 2.2.: Results observed with the proposed selection strategies on the two considered down-
stream tasks. Word Error Rate (WER) Equal Error Rate (EER), and Accuracy (Acc) are
expressed in percentage and used for LibriSpeech 100 hours, VoxCeleb1 and IEMOCAP
respectively. ASR results are given with and without Language Modeling (LM). All SSL
models contain 16.3M neural parameters.

The Maximum Relevance Minimum Redundancy (MRMR) technique (H. Peng et al.,
2005) used as a baseline in this experiment relies on the Conditional Independence
based estimator. It is close to a naive selection of the best pretext tasks according to
the CI-based criterion, but it furthermore penalizes the mutual information between the
selected pretext tasks. More precisely, we select a group of p = 4 pretext-task labels
(Z)i∈[p] maximizing :

ScoreMRMR(Z) = −1
p

∑
i∈[p]

HSIC(X, Zi|Y ) (2.10)

− 1(p
2
) ∑

i<j

I(Zi, Zj).

Recursive Feature Elimination (RFE) (Guyon et al., 2002) relies on a classifier that
provides information concerning the importance of a given feature in the decision. This
classifier is first trained with the whole set of pretext-task labels as features, and the least
important feature is eliminated. The process is repeated until only 4 pretext-task labels
are kept. We use the scikit-learn implementation with the C-Support Vector Classification
as the classifier providing the feature importance values with the default scikit-learn
hyperparameters.
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2.5.2 Self-supervised Training

In the second step of Figure 2.1, the SSL model learns to predict the selected pretext-task
labels. For every one of those, the loss is multiplied by the corresponding assigned
weight. As for individual pretext-task testing, the network learns to reconstruct the input
Mel spectrograms and to compute 40-dimensional Mel-Frequency Cepstral Coefficients
(MFCC) feature vectors. These targets are usually kept to avoid information loss harming
heavily downstream performance and are used in all our experiments. For a given
weighting vector (λi)i∈[k], the self-supervised loss is defined as:

LSSL = MSEmel + MSEmfcc +
∑k

i=1
λiℓ1(Zi). (2.11)

with MSE the classic mean squared error computed for Mel spectra (MSEmel) and
MFCC (MSEmfcc), and ℓ1(Z) the ℓ1-loss of the pretext task related to pretext-task label
Z.

Prior to extending our method to state-of-the-art architectures such as Wav2Vec 2.0 that
are particularly costly to train, we propose to first employ a PASE-like model to empirically
validate the approach. The encoder and worker architectures are those described in
Section 2.5.4.

The SSL model is learned on the training set of the English Common Voice dataset
(version 5.1; 700 hours). 700 hours of speech is a relatively small amount compared to
what is generally used for state-of-the-art SSL models. However, we believe it is a sound
choice as this is generally greater than what is typically available in SSL use cases like
low-resource languages. We decided to not use the LibriSpeech dataset for pre-training
as it is part of our downstream evaluation protocol hence alleviating a strong bias shown
in table 2.4.

2.5.3 Downstream Tasks

Our proposed pretext-task label selection strategy is compared with the two baselines
on three different downstream tasks leading to different groups of pretext-task labels:
automatic speech recognition (ASR, with LibriSpeech 100 hours) speaker recognition
(SR, with VoxCeleb 1), and emotion recognition (ER with IEMOCAP). Datasets and
downstream architectures are inspired by the SUPERB benchmark (S.-w. Yang et al., 2021)
for self-supervised learning representations and are carefully described in Section 2.5.5.
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Prior to downstream training, the SSL model is frozen to be used as a feature extractor
with the new pipeline that is task-dependent. We do not use any data augmentation for a
pristine comparison of the learned models.

2.5.4 Training and Architectures

All the considered audio files are sampled at 16kHz. We feed the SSL models with 80-band
Mel spectrograms, with 25ms windows and 10ms stride. To every Mel band corresponds
a learned vector of size 256 obtained at the output of the SSL model. So if the input
spectrogram is of size (N = 80) with N the number of frames, the representation fed to
the downstream pipeline is of size (N = 256). All models including SSL and downstream
ones are developed with SpeechBrain (Ravanelli et al., 2021).

Pretraining of the PASE-like SSL encoder. The encoder is a succession of 2D CNN layers,
LSTM layers, and a final dense network. This representation is then fed to one dense
layer that predicts the selected pretext task labels. There are 3 successive CNN blocks
containing each 2 CNN layers with kernel size (3, 3) and 128, 200, and 256 channels for
each block respectively. No time pooling is performed in order to preserve the input
sequence length. 5 bidirectional LSTM layers of size 256 are then stacked. Finally, an
MLP with one hidden layer with 256 neurons. The LeakyReLU activation is used across
all the layers except for the LSTM. We use a dropout rate of 0.15 during the training.
The AdaDelta optimizer is used to update the weights with an initial learning rate of
1.0, ρ = 0.8 and ϵ = 10−8. For every experiment, the SSL model is trained for 10 epochs
(leading to the convergence of the validation loss).

2.5.5 Downstream Settings: SUPERB

SUPERB (S. Yang et al., 2021) is a recent benchmark for self-supervised representations
of speech data. It fixes for every downstream task an architecture to learn the function
that maps the representations to the labels. We use the settings of this benchmark for our
experiments in combining wav2vec with our selected pretext tasks. We detail here the
downstream models as detailed in the benchmark paper.

Speaker recognition details. VoxCeleb1 (Nagrani et al., 2017) is used for the speaker
recognition task. The training set contains 148, 642 utterances from 1, 251 different
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speakers. To compute the conditional independence estimates while limiting the com-
putational load, we restricted ourselves to the utterances of 50 different speakers
(the detailed list is given in the released repository https://github.com/salah-zaiem/
Multitask-pretext-task-selection). A standard XVector model (Snyder et al., 2018a) is
trained following the available VoxCeleb SpeechBrain recipe. The extracted speaker
embeddings are tested on the enroll and test splits using cosine as a similarity metric.
Performance is reported in terms of equal error rate (EER). While architecture details are
given in Section 2.5.4, it is worth noticing that the whole pipeline is fully integrated into
Speechbrain and can thus easily be extended.

Speech recognition details. ASR is conducted with the 100-hour clean subset of the
LibriSpeech dataset (Panayotov et al., 2015) to simulate the low-resource scenario
commonly encountered with SSL settings. CI estimations are obtained with word-level
alignments from the Montreal Forced Aligner (McAuliffe et al., 2017). For ASR, the
decoder is a vanilla 2-layer 1024-unit BLSTM fed with our self-supervised representations
and optimized by CTC loss (Graves, 2012) on characters. The decoding process is based
on beam-search with and without shallow fusion using the LibriSpeech official 4-gram
language model. Performance is expressed in word error rate.

Emotion Recognition. IEMOCAP (Busso, Bulut, Lee, Kazemzadeh, et al., 2008) is used
for the Emotion Recognition (ER) task. 4 classes are considered (neutral, happy, sad,
angry), and only the audio data is used. The learned representations are mean-pooled
and then fed to a final linear classifier to compute a cross-entropy loss. We cross-validate
on five folds of the standard splits. The result shown is the average of the five attempts.
The evaluation metric is accuracy (ACC).

2.5.6 Extending Wav2vec 2.0 to Multitask Self-supervision

To the best of our knowledge, multi-task speech representation learning has not been
scaled to a point where it could represent a state-of-the-art alternative. Contrastive
predictive coding (Oord et al., 2018) based techniques like wav2vec 2.0 (Baevski, Zhou,
et al., 2020), on the other hand, currently trust most of the leader-boards for speech-
related tasks. Recently, Sadhu et al. (Sadhu et al., 2021) showed that combining a
consistency loss and contrastive predictive coding improves the results of the wav2vec
2.0 architectures in noisy conditions. Following this idea, we propose to further validate
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our selection method with an extension of wav2vec 2.0 to multitask SSL to demonstrate
its scaling capabilities. Hence, the training loss is extended in a second experiment to:

LSSL = LW 2V +
∑k

i=1
λiℓ1(Zi). (2.12)

We use the standard BASE wav2vec 2.0 first described in (Baevski, Zhou, et al., 2020)
as an SSL model and train it with the same Common Voice dataset. The pre-training
pipeline is implemented within SpeechBrain. The trained BASE model has been compared
to one obtained with the official Fairseq implementation from (Baevski, Zhou, et al.,
2020), and results are strictly equivalent. The entire recipe alongside the large set of
hyperparameters needed to properly train a wav2vec 2.0 model is released under our
repository and will be made available within SpeechBrain afterwards.

We follow the SUPERB benchmark conventions (S. Yang et al., 2021) both at the data and
downstream architecture levels. Hence, and conversely, to the previous experiments, the
ASR system solely optimizes the CTC criterion over characters. For each of the three tasks
(i.e. ASR, SV, ER) we compare the standard BASE Wav2vec 2.0 model with one trained
following the sparsemax selection of multitask SSL. Sparsemax is chosen over softmax
because it enforces the sparsity criterion and removes completely a few pretext-task
labels from the training, which is one of our objectives. Another experiment is led with a
“naive” pretext-task selection where a constant weight of 0.5 is used across all signal-based
pretext-tasks. Each wav2vec 2.0 model required 24 NVIDIA Tesla V100 GPUs to train
for 150 epochs (40 hours). Finally, we also propose to compare frozen and unfrozen (i.e.
where the wav2vec 2.0 encoder is fine-tuned with the downstream task) SSL models.

2.6 Experimental Results

This section details the main experiments validating the proposed approach on speech
data. Table 2.2 shows the results of the group selection methods on the three considered
downstream tasks, while Table 2.3 shows the impact of adding a careful selection of
pretext tasks to Wav2vec 2.0 training loss. The exact weights obtained with our technique,
either with the Softmax or Sparsemax function, and their influence on the conditional
independence estimator are shown in Appendix A.2.
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2.6.1 Group Selection Results

Baselines detailed in Section 2.5.1 are respectively referred to as “All”, “RFE” and “MRMR”.
First, it is clear from the results reported in Table 2.2 that, for the considered downstream
tasks, the two introduced strategies (Sparsemax and Softmax) perform better than the
group selection baselines with a gain of 3.28 of EER for Sparsemax against the RFE
approach on VoxCeleb, and 8.81 of WER with Softmax compared to the All baseline.
Interestingly, simply bundling all the pretext-task labels together may lead to poor
performance as observed on LibriSpeech with a very high 21.98% of WER obtained.
Hence, intuitively building sets of labels could be harmful for the final representation.
This motivates the need for a better pretext-task label selection strategy such as the
one introduced in this chapter, as the WER dropped to 13.17%. As a comparison, the
exact same architecture trained with Mel spectra only (i.e. no SSL) obtains a WER of
17.3% without LM. Hence, our method even further decreases the WER while being
only pretrained with a reasonable amount of data (i.e. only 700 hours compared to a
few thousands for common SSL techniques (Baevski, Zhou, et al., 2020)). As expected,
introducing the joint decoding with a language model strongly decreases the WER but
also introduces a bias in our comparison as probabilities are smoothed with a third-party
neural model. Nevertheless, and even in this scenario, our weighting strategy outperforms
all the baselines. In the context of speaker recognition, Sparsemax beats Softmax with
an EER 0.61 lower. For IEMOCAP, Softmax and Sparsemax weighting still perform the
best among all methods. To investigate how strongly improvements are correlated to
the task, we took the best learned model for LibriSpeech (i.e. softmax weighting) and
fine-tuned it on VoxCeleb1 and IEMOCAP. It reaches an EER of 10.55% and an accuracy
of 59.9% respectively. While it performs better than the baselines, the difference between
these results and the best-performing selections shows that the weightings are indeed
task-related.

2.6.2 Wav2Vec 2.0 Extension Results

Results reported in Table 2.3 show that our approach improves the performance over the
standard wav2vec 2.0 framework for every considered downstream task. While adding
pretext tasks naively improves the final performance, the difference in performance
between the naive selection and the sparsemax weighting shows the benefit of our
method in getting the best downstream performance. Unsurprisingly this difference is
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Selections LibriSpeech (WER % ↓) VoxCeleb1 (EER % ↓) IEMOCAP (Acc % ↑)

Fr. Fine. Fr. Fine. Fr. Fine.

wav2vec 2.0 BASE 17.93 ± 0.33 10.21 ± 0.25 7.20 ± 0.26 5.35 ± 0.22 56.6 ± 1.2 74.0 ± 1.16
wav2vec 2.0 BASE + Naive selection 17.23 ±0.32 10.10 ± 0.25 6.80 ± 0.25 5.05 ± 0.21 57.4 ± 1.3 73.7 ± 1.16
wav2vec 2.0 BASE + Sparsemax 16.70 ± 0.31 9.18 ± 0.24 6.57 ± 0.25 5.30 ± 0.22 59.5 ± 1.29 74.0 ± 1.16

Tab. 2.3.: Results observed training the Wav2vec2 model with and without weighted pretext
tasks using the sparsemax method. “Fr." and “Fine." also respectively refer to Frozen
and Finetuned settings. Adding selected pretext tasks improves the downstream
performance on all three considered tasks. All models contain 100M neural parameters.

Selections LibriSpeech (WER % ↓)

Fr. Fine.

wav2vec 2.0 BASE 9.88 6.33
wav2vec 2.0 BASE + multitask SSL 9.5 6.01

Tab. 2.4.: Results observed retraining the Wav2Vec2 model with and without weighted pretext
tasks using the sparsemax method, on LibriSpeech 960. “Fr." and “Fine." also re-
spectively refer to Frozen and Finetuned settings. Adding selected pretext tasks still
improves the downstream performance. All models contain 100M neural parameters.

small (though statistically significant in all but one case), as the Wav2Vec 2.0 BASE is
already powerful and the additional workers are anyway useful. Here, it is worth noting
that the difference in performance compared to the literature mostly comes from the
pre-training conditions. For instance, Wav2Vec 2.0 is commonly pre-trained with larger
models on LibriSpeech to achieve lower WER on this dataset.

2.7 Robustness Analysis

This section explores the robustness of the method to changes in the pretraining dataset,
in the audio data type and in the set of considered pretext tasks.
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2.7.1 Pretraining Dataset Robustness

It is common in the speech SSL literature to train on LibriSpeech 960 before fine-tuning
on LibriSpeech100. As explained before, we believe that this introduces a bias due to
the closeness of pretraining and fine-tuning data. Studies have shown, for instance, that
adding the downstream training dataset to the pretraining set of wav2vec 2.0 leads to
better downstream word error rates (Wei-Ning et al., 2021). To verify this, we train our
best multitask BASE wav2vec 2.0 architecture with the best-performing pretext tasks and
their weights on LibriSpeech 960. The model follows the exact same training procedure
as for Table 2.3. We fine-tune the models on LibriSpeech 100 exactly as it has been done
with the other models. Table 2.4 shows the results. Two observations deserve to be
noted. First, in this case, also, adding a selected set of pretext tasks improves the final
downstream performance in the frozen and finetuned cases. Second, as expected, the
results obtained after training on Librispeech960 are better than with CommonVoice,
reaching the lowest 6.01% with the fine-tuned version compared to 9.18% in table 2.3.

2.7.2 Task and Pretext-task Change

To further validate the proposed technique and test its robustness to task and data change,
the following section will detail experiments led on multi-task self-supervised learning
for musical instrument recognition.

Task change: Instrument Recognition In a first phase, the same pretext-tasks are kept,
and the weights are computed in a similar way. However, to be closer to the downstream
task, we use the AudioSet "Musical Instrument" partition for the SSL training instead
of CommonVoice. The partition contains 57052 files for a total duration of 155 hours.
To compute the SSL training weights, the Medley-solos-DB instrument classification
dataset is used. Two reasons motivate this choice. First, the music excerpts used
come from real instrument recordings as opposed to synthesized audio files from MIDI
annotations. Second, every file corresponds to a single instrument played solo thus
facilitating the CI estimation. We further test the representations learned in a multi-
instrument setting with the OpenMIC-2018 dataset. This tests the robustness of our
approach when generalizing to a different downstream dataset of a slightly different
task. Hence, we start by computing the pretext tasks weights corresponding to Medley-
solos-DB and train the encoder using these weights. Then, it is important to note that
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the same encoder will be used for the two downstream tasks, i.e. Medley-solos-DB and
OpenMIC-2018.

Adding new pretext-task candidates In a second time, we study the impact of adding
other pretext tasks to the pool of candidates. To investigate this, we select three additional
new candidates: mean spectral centroid, mean spectral kurtosis, and Hammarberg
Index. After adding these features, the sparsemax weighting is computed as in 2.9. It is
interesting to note first, that two of the three features are not selected for pretraining
(even when added individually), thus not changing the weighted selection. Mean spectral
centroid is the only feature selected for pretraining, lowering the weights of the other
selected tasks. We will refer to this experiment as “Sparsemax+" in the results table
(Table 2.5).

Are MFCCs essential? A final change is considered. Following the works of Ravanelli
et al. (2020a) and their ablation studies, all the experiments considered MFCCs as one
of the workers with a fixed unit weight. Furthermore, when studying ablations, MFCC
shows the highest contribution. While the Mel spectrogram reconstruction is needed
to avoid any information loss, the MFCC worker can be weighted as well or replaced
with other common time-frequency-based representations. To explore this choice and its
impact, we select four candidates including MFCC, with SpectralFlatnessPerBand (SFPB)
(Herre et al., 2001), Octave band signal intensity (OBSI) (Essid, 2005), and Chroma.
These features are computed using the Yaafe toolkit (Mathieu et al., 2010).

The kernel used for these features is the same used for the speech samples, i.e. gaussian
downsampling followed by the Frobenius inner product. As in the previous paragraph,
we compute a Sparsemax-based selection on these four candidates along with the initial
best selection of weighted pretext-tasks (without the Spectral Centroid addition). The
pretraining loss therefore becomes:

LSSL = MSEmel +
∑l

i=1
µiℓ1(Si) +

∑k

i=1
λiℓ1(Zi) (2.13)

with (Si)i∈[l] the spectral representations, and
∑l

i=1 µi = 1. This experiment will be
referred to as "Spectral+" in the results.

Downstream datasets and architectures Medley-solos-DB contains 21572 3-second
audio clips distributed among 11 classes. OpenMIC-2018 contains 20, 000 musical samples
with partial instrument annotation for 20 instruments. Although not every file is labeled
for every instrument, each class has at least 500 confirmed positives, and at least 1, 500
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Models Medley-solos (Acc% ↑) OpenMIC-2018 (mean-F1 ↑)

PASE+ (Ravanelli et al., 2020a) None 64.1

Selections
All 66.2 ± 0.83 62.89
MRMR 62.3 ± 0.85 64.23
RFE 64.6 ± 0.84 62.80
Softmax 73.5± 0.78 65.06
Sparsemax 72.6 ± 0.79 65.39
Sparsemax+ 76.1± 0.76 66.0
Spectral+ 74.6 ± 0.77 67.7

Tab. 2.5.: Results observed with the proposed selection strategies on the two considered down-
stream instrument recognition tasks. Accuracy on the test set is computed for Medley-
solos-DB while the mean F1 Score is shown for OpenMIC. Higher is better for both.

confirmed positives or negatives. We adopt for downstream finetuning, an X-vector-like
architecture, similar to the one used for VoxCeleb1 for Medley-solos-DB. For OpenMIC-
2018, we use the official baseline technique relying on a random forest classifier for every
considered instrument.

The same grouping techniques presented in the previous section are compared here.
Results on the two datasets are shown in table 2.5. We highlight the best results with
the standard pool of pretext tasks and the best score after the additions. Accuracy on
the test set is computed for Medley-solos-DB while the mean F1 Score is shown for
OpenMIC following the SSL literature for music classification (H.-H. Wu et al., 2021a).
The results follow those on speech processing tasks both for Medley-solos and OpenMIC.
This confirms that the method presented generalizes to other types of data, another
pretraining dataset, and downstream tasks that are similar to the one used for weights
computing. OpenMIC’s best selection results are 3 points higher than the selection
done in (H.-H. Wu et al., 2021a). Running the experiment on instrument classification
with the three additional pretext tasks in the pool of candidates leads to an even better
classification reaching 76.1%. This confirms literature findings on the importance of
Spectral Centroids in timbre classification. The same model performs better on OpenMIC
reaching 66.0 mean F1-score. This suggests that the selection technique is not harmed
by adding irrelevant features while adding relevant ones can improve the final results.
Finally, replacing the MFCC tasks with a weighted combination of spectral representations
achieves a better result than the Sparsemax selection on Medley-solos-DB with a score of
74.6%. It also reaches the best result on OpenMic with 67.7 mean F1-Score.
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Fig. 2.3.: Boxplots of the CI values for every pretext tasks, when more than 200 speakers are
considered. Voicing and Loudness are slightly overlapping, but otherwise, the values
are separable. We divide the pretext-tasks in two groups according to their CI values
for better visualization of the results.

2.8 Computational Efficiency

After showing the robustness of the approach to different changes including downstream
tasks, data types, and reconstruction objectives, this section dives into the efficiency claim
of the approach and shows that the score can be computed accurately even with reduced
amounts of labeled data.

Efficiency is one of the key motivations of this approach, and the gain in time observed
with our approach is considerable. The K and L matrices used for the CI estimate are
only computed for the downstream datasets. Two limitations related to the size of the
downstream dataset may be faced using our technique. First, very small downstream
datasets could not be sufficient for a good estimate of conditional independence. Second,
very large downstream datasets may render the CI estimation intractable as the matrices
involved get larger. It is important to note here that the computations needed in order to
obtain the weights are performed on the downstream dataset, and not on the pretraining
unlabeled one. This means that enlarging the unlabeled dataset does not lead to heavier
computations.

This section shows experimentally on VoxCeleb1 and Medley-solos-DB that our technique
is robust to these two situations. First, we show by taking small subsets of VoxCeleb1 and
Medley-solos-DB, that in case of downstream data scarcity, the CI estimations obtained
with our method are close to the final estimations, and the ranking of the pretext tasks
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is not altered even when we take only 200 speakers among the 1251 in VC. Second, as
one of the main motivations of this effort is the reduction of the computation needed
to get the best selection of pretext-tasks in self-supervised learning settings, we show
that the CI estimation converges quickly with a growing number of speakers considered,
and is thus resilient to sampling. Considering one pretext task at a time, we consider
subsets of VoxCeleb1 using a growing number of considered speakers (total = 1251),
and subsets of Medley-solos-DB using an increasing number of samples per considered
instrument class. For each of these considered numbers, we run 10 experiments with
sampled speakers and music excerpts. We get the CI estimation for every subset and plot
the boxplot of the obtained values. Results are shown in Fig. 2.4. We can see that using
only 20 speakers exhibits results that are already close to those with 1000 speakers, and
the results using 100 audio files per class are close to those with 1500 points per class.
Furthermore, we plot the boxplots of CI values obtained using more than 200 speakers
to show the separability between the considered features in Fig. 2.3. While values for
Voicing and Loudness are slightly overlapping, all the other pretext tasks are already
separated and rankable using only 200 random speakers among the whole dataset.

Training the model with a random selection of pretext tasks takes about 30 hours on
a single V100 GPU, for the basic model and 40 hours on 24 GPUs for the wav2vec2.0
enhanced one. Finding, through an empirical random search, the best combination of
pretext tasks takes a number of experiments that is exponential in the number of pretext
tasks considered in the initial set. In contrast, and using as done in this paper, 50 random
speakers of VoxCeleb, the whole computation of the optimal weights is performed
in a few hours (6 approximatively) when parallelized on 20 CPUs. This runtime is
divided into extracting the pretext-task labels, running the Gaussian downsampling of the
speech samples (the longest part, as it involves computing the Mel spectrograms before
downsampling them), computing the similarity matrices and finally optimizing the HSIC
quantity according to the weights. The same durations are observed with LibriSpeech,
where the number of points is higher in our experiments, but the speech segments are
shorted since we cut them at the word level.
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Fig. 2.4.: Evolution of the CI estimation with different numbers of considered speakers for
VoxCeleb (First row of plots) and number of samples for Medley (Second row of plots),
for three pretext tasks : F0, Voicing and logHNR, Rasta Spech. We can see that the
values obtained with 20 speakers and 100 samples per class, while logically exhibiting
more variance, are already close to the final values for every pretext task.

2.9 Extension to Constrastive Learning Settings

As described in Section 1.5, pretext-labeling is only one of a set of methods that have
been explored to define pretext-tasks leading to learning high-performing speech repre-
sentations. Another popular family is contrastive learning. Defined in details in Section
1.4.3, it encapsulates successful models such as Wav2Vec 2.0 (Baevski, Zhou, et al., 2020),
COLA (Saeed et al., 2021) or Speech SimCLR (Jiang et al., 2021). This section shows
that the framework described in this chapter, and validated in individual and multi-task
pretext-label selection, can be used in contrastive learning settings.
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As we discussed in Section 1.4.3, contrastive learning has been one of the other leading
paradigms in speech self-supervised representation learning, especially towards solving
paralinguistic classification tasks (Al-Tahan & Mohsenzadeh, 2021; Shor et al., 2022).
COLA (COntrastive Learning for Audio) (Saeed et al., 2021) is an audio-adapted version
of these models. It consists in learning representations by assigning high similarity to
segments extracted from the same audio file and low similarity to segments from different
files. The learned representations are then fed to downstream models solving tasks.
However, unlike similar approaches in the computer vision literature (T. Chen et al.,
2020), COLA does not explore the use of data augmentation to enforce further invariances
in the representations. This section explores this use and its variation with the considered
downstream task.

In this context, the creation of different versions, often called "views", of a given data point
through data augmentation is an essential part of various self-supervised approaches (T.
Chen et al., 2020; Grill et al., 2020). On speech data, Kharitonov and al. (Kharitonov et
al., 2021) have shown that using data augmentation to alter the data during Contrastive
Predictive Coding (CPC) (Oord et al., 2018; Rivière et al., 2020) training improves the
downstream ASR performance. Two works may be considered as close to the purpose of
this paper. First, in image classification settings, adapting the augmentation distribution
used in the contrastive pretraining to the downstream classification task has proven
effective (Li et al., 2021; Xiao et al., 2021b). This is particularly true when certain
differences, to which the representations are trained to be invariant, are crucial for distin-
guishing the downstream classes. Second, experiments led on contrastive representations
(COLA-based) on sound classification show that augmenting the cut segments leads to
better results and that the set of best-performing augmentations is downstream task
dependent (Emami et al., 2021). Nonetheless, while ablation studies are conducted on
the selected augmentations, no prior justification of the choices is developed, making the
selection rely on computationally heavy empirical exploration.

Finally, a few works have attempted to define how views should be created in contrastive
learning settings (Arora et al., 2019; Tian et al., 2020), and thus which and how
augmentations should be used. However, and to the best of our knowledge, there is
no attempt to theoretically motivate data augmentation in self-supervised settings on
speech or audio data. This work will rely on the COLA approach as it is one of the closest
to vanilla contrastive learning, and it did not explore the use of data augmentation on
speech. It is, nonetheless, perfectly transferable to other contrastive approaches. If we
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Fig. 2.5.: The three steps of the validation process. (a) select the best augmentation distribution.
(b) contrastive pretraining altering the input points with the selected augmentation. (c)
use the learned speech representations as input for downstream finetuning.

were to rely only on empirical testing, evaluating a single augmentation distribution
would require two full trainings, the self-supervised one and the downstream one. In
the specific case of this paper, a single pretraining takes 2 days on a V100 GPU. The
method we present prevents this, allowing for an efficient selection of an appropriate
data augmentation distribution. The contributions of this section are thus twofold :

1. To highlight the impact of data augmentation on contrastive self-supervised speech
representation learning.

2. To propose a method that selects a distribution on the choice of augmentations
and their parametrization according to the downstream task of interest, validated
on two different downstream tasks. The selected augmentations are qualitatively
linked to the recording conditions.

Figure 4.1 presents an overview of the led experiments, summarizing the three steps
conducted for every downstream task. First, an augmentation distribution is selected
(Section 2.9.1). Second, representations are learned through contrastive pre-training
using the selected augmentation distribution (Section 2.9.2). Finally, the learned rep-
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resentations are fed to the downstream model to solve the considered task (Section
2.9.2).

2.9.1 Selecting the Augmentation Distribution

This section details the method developed to find a data augmentation distribution for
the contrastive learning part, suitable to the final downstream task of interest. It starts by
detailing the theoretical motivations behind the method, before delving into the technical
details of the implementation.

Theoretical Motivation

In this section, we extend the findings developed for pretext-label selection, described
in the previous sections, to the contrastive learning settings through the following steps.
The key step consists in considering that in the contrastive learning setting, the pretext
task of assigning high similarity to segments originating from the same file can be seen as
the prediction, given a random augmented segment, of the original file it was generated
from. If a model is able to predict this ID, then it can maximize the similarity of points
with the same original ID and minimize the similarity between the other couples. We
define an augmentation distribution τ as the set of parameters defining how a chain of
augmentations is sampled during training to be applied to the upcoming data points.
More precisely, every distribution τ is represented as a vector of P = 14 parameters,
where every parameter (τ(p))1≤p≤P is either the probability of applying an augmentation
or a boundary for a uniform law from which an augmentation’s internal parameter (e.g.
room scale) is sampled. With X the speech samples and τ a distribution of augmentations,
we define X ′ = f(X, τ) with f a function that randomly cuts segments from the speech
samples and applies augmentations sampled from τ on them. Given a downstream dataset
of samples (X, Y ) and an augmentation distribution τ , we can generate N augmented
segments per speech sample to get the augmented set of data points X ′. To find the
optimal augmentation distribution τ∗ we resort to minimizing the HSIC quantity with the
augmented dataset X ′ = f(X, τ) according to:

τ∗ = arg min
τ

HSIC(f(X, τ), Z|Y ) (2.14)
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with (X, Y ) the downstream data points and labels, and Z the pretext labels correspond-
ing here for every augmented view of a speech sample to the ID of the speech sample it
originates from.

Implementation

In this section, we chose to limit ourselves to the set of augmentations used in (Kharitonov
et al., 2021) for two reasons. First, they have shown effectiveness with the contrastive
predictive coding approach improving the final discrimination performances. Second,
they are easily implemented within PyTorch using the WavAugment library. Hence, five
augmentations are considered: time dropping(Park et al., 2019), pitch shifting (Lent,
1989), reverberation, clipping and band rejection(Park et al., 2019). The first parameters
concern the probability of applying each one of the considered augmentations. The
second set of parameters are related to those of the chosen augmentations in terms of
signal effects; these are described in Table 2.6.

Since the considered augmentations are not differentiable, to minimize the HSIC test
described above, we resort to a random search, sampling random distributions and
selecting the one with the lowest dependence scoring. It is important to note here, that
this phase does not involve any training, and is largely more efficient than thorough
testing of the distributions, as a computation takes 3 hours on 20 CPUs. More precisely, for
every considered downstream task, we first sample p = 100 parametrizations (τi)i∈[1,p].
For every parametrization τi, we compute the HSIC quantity in Eq.(2.14) following
two steps. First, computing the augmented set X ′

i = f(X, τi), by computing N = 20
views of every speech sample in X. Then, computing HSIC(X ′, Z|Y ) following the
technique described in (Zaiem et al., 2021). For every downstream task, the augmentation
distribution with the lowest conditional dependence value is selected and will be used
during the pretraining to train the encoder that will be exploited as a feature extractor in
the downstream training.

2.9.2 Experimental Setup

This section describes the experiments led to validate the proposed approach and the
selected augmentation distributions. It starts by describing the details of the contrastive
learning phase before reporting the downstream finetuning conditions.
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Name Description Range

Room scale min Min room size [0,30]
Room scale max Max room size [30,100]
Band Scaler Scales the rejected band [0,1]
Pitch Shift Max Amplitude of a pitch shift [150,450]
Pitch Quick pr. Speeds pitch shifting [0,1]
Clip Min Minimal clip factor [0.3, 0.6]
Clip Max Maximal clip factor [0.6, 1]
Timedrop max Size of a time dropout [30-150] ms

Tab. 2.6.: Descriptions and ranges of the considered parameters.

Contrastive Learning

As shown in Figure 4.1, during the contrastive pre-training, we start by extracting two
random segments from every speech sample of a given batch. These segments are then
altered using the considered augmentation distribution before being fed to the encoder.
Our pretraining model takes as input the speech samples as 64-Mel band spectrograms.
The frame size is 25ms and the hop size 10ms. As in COLA, the encoder is an EfficientNet-
B0 (Tan & Le, 2019), a lightweight convolutional neural network. We cut from the
input speech samples 1-second long segments that are augmented using the considered
augmentation distribution. Fixing the length of the extracted segments allows the use
of EfficientNet-B0 even though it has been originally proposed for computer vision, as
fixed-length Mel-spectrograms have a 2D structure similar to image inputs. The encoder
applies a global time-pooling at its final layer to get a 1280-dimensioned embedding
h that represents the whole segment and that will be the one used for downstream
finetuning. During the pretraining phase, this embedding is then projected with a dense
layer followed by a layer normalization and a hyperbolic tangent activation to a 512-sized
vector v. Learning consists of maximizing the similarity of segments originating from
the same file while minimizing that of those that do not. As suggested by the final
results obtained with COLA, the similarity is computed using the bilinear similarity. More
precisely, if g is the function regrouping the encoder and the projection head, x1 and
x2 two speech segments, and W the bilinear parameters, then the similarity function is
s(x1, x2) = g(x1)T Wg(x2). The input is a batch of size B of distinct speech files that we
denote (xi)i∈[1,B], and a selected augmentation distribution τ from which we can sample
at each iteration two augmentation functions Aτ and A′

τ . From each speech sample, two
random segments of length 1 second are cut. The first is altered using Aτ while the
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second undergoes the A′
τ alteration, leading to two sets (x̃i)i∈[1,B] and (x̃′

i)i∈[1,B]. Finally,
the loss function for pretraining is the multi-class cross entropy over the bilinear similarity
scores, with s the similarity function defined above:

L = − log es(x̃i,x̃
′
i)

es(x̃i,x̃′
i) +∑

j ̸=i es(x̃i,x̃′
j) . (2.15)

Pretraining dataset. The train set of the English Common Voice dataset (version 8.0)
(Ardila et al., 2020) is again used for SSL pretraining. It is important to note that since
the COLA embeddings were originally introduced to set non-speech tasks as well, they
were trained on AudioSet (Gemmeke et al., 2017), which contains speech and non-speech
utterances. Since we will be only working on speech downstream tasks, we selected
only speech samples for pretraining. We also use a 1024 batch size. All the models are
pre-trained for 100 epochs with ADAM and a 10−4 learning rate.

Downstream Fine-tuning

Two downstream tasks are considered: speaker identification and language identification.
Two reasons motivate this choice. First, among the list of tasks COLA was applied, we
chose the two downstream tasks exhibiting the largest room for improvement. Second,
we wanted two tasks that would require different aspects of the considered speech
signal, thus maybe requiring different sets of augmentations. A study validating this
assumption is provided in Section 2.9.3. VoxCeleb1 (Nagrani et al., 2017) is again used
for the speaker recognition task while VoxForge (MacLean, 2018) is used for language
identification. 6 European languages are present in the 176,438 samples of the VoxForge
dataset, two-tenths are kept for validation and testing.

During the downstream finetuning the projection head is discarded and replaced with a
linear classifier directly on top of the encoder, following again the SUPERB conditions.
The contrastive encoder is frozen during the finetuning phase as we want it to be used
solely as a fixed feature extractor to properly assess the impact of our data augmentation
selection on the obtained representation. In the COLA paper, the final class prediction is
obtained by averaging the predictions of non-overlapping cut segments of a given test
utterance. However, we found it more effective to use the mean over the embeddings
of overlapping segments. We proceed in this manner: during training and testing, we
cut a 1-s long segment every 200ms, encode every segment separately, and then use the
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Fig. 2.6.: Difference of the probability of picking an augmentation between the best and worst
scoring augmentations, depending on the downstream dataset. Green bars show
augmentations that are more likely to get picked for the best scoring distributions
for that task. For instance, the far right bars indicate that clipping is an encouraged
augmentation on VoxForge, and is discouraged on VoxCeleb1.

Down. Task COLA Our Implementations
Without Basic Selected

Language ID 71.3 84.9 84.3 85.2
Speaker ID 29.9 32.0 45.1 46.9

Tab. 2.7.: Results for the two considered downstream tasks. COLA (Saeed et al., 2021) column
shows the result of the original paper. "Basic" shows the result with the basic WavAug-
ment recipe. "Selected" shows our approach results.

mean over the encoded representations as a sequence embedding to the classifier. We
train on the downstream task for 10 epochs with ADAM with a 10−3 learning rate and the
additive angular margin loss (Deng et al., 2019) with margin 0.2 and scale 30.

2.9.3 Results and Discussion

Table 2.7 shows the results obtained on the two considered downstream tasks. The “COLA”
column shows the results obtained in the original paper. The “Without” column is our
implementation of the algorithm without any augmentation during pretraining. “Basic”
shows the results reached using the baseline WavAugment augmentation parameters.
Finally, the results obtained using the augmentation choice based on the proposed
technique can be found in the “Selected” column. The first observation is that the
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selected augmentation technique outperforms the baselines on the two considered tasks.
For speaker identification, the accuracy obtained with the selected distribution is 46%
higher than the non-augmented COLA, and 4% higher than the baseline augmentations.
An important point is that in the baseline augmentation setup (i.e. “Basic”), all the
augmentations are systematically performed on the input points, thus considerably
slowing the pretraining. Indeed, with WavAugment augmentations being CPU-processed,
we witnessed that dividing by half the conducted augmentations by lowering their
probability, leads to 20% faster trainings.

Discussion

In this part, we will discuss the automatically selected data augmentations, and analyze
their dependence on the downstream dataset. We will first study the dependence of the
probabilities of applying a given augmentation according to the downstream dataset of
interest. Then, we will consider the choice of a few interpretable parameters. This is
done through the following procedure: for every downstream task, we start by selecting
k = 10 best and worst augmentation distributions according to our HSIC scoring. The
“Mean Extremal Difference” or “MED” is finally obtained by computing the difference
between the two means originating from these two groups i.e., best and worst. More
precisely, for an augmentation parameter p:

MED(p) = 1
k

(
k∑

i=0
τ best

i (p)− τworst
i (p)) (2.16)

with τ best
i being the i-th best distribution, τworst

i being the i-th worst and τ(p) being the
value of parameter p in τ .

Figure 2.6 depicts these values for the probabilities of applying each of the five considered
alterations. Green bar means are for positive values, indicating that this augmentation is
more likely to be applied in the supposedly best distributions. We observe that clipping
and reverberation are more selected for language identification on VoxForge than for
speaker identification on VoxCeleb. We think that this is mainly due to the type of
recording rather than to the nature of the task. VoxForge samples come from individual
contributors who record themselves speaking their native language. The varying recording
conditions lead to clipping or heavy reverberation issues, which may be the reason behind
the selection of these augmentations in this case. Figure 2.7 shows the mean difference
defined above on 3 parameters, which are time-dropping and room-scale boundaries.

2.9 Extension to Constrastive Learning Settings 83



Timedrop_max

room_sc
ale_max

room_sc
ale_min

Timedrop_max

room_sc
ale_max

room_sc
ale_min

30

20

10

0

10

20

M
ED

VoxCeleb
Speaker ID

VoxForge
Language ID

Fig. 2.7.: MED for selected parameters, for every downstream task. Reverb room sizes are
coherent with the difference in recording conditions between the two datasets.

Concerning reverberation, it is worth noting that room scales are smaller for VoxForge
than for VoxCeleb1, which is once again coherent with the recording conditions, as the
first ones are recorded at home, compared to studio conditions. Samples of augmented
speech files with various distributions are provided for quantitative comparison by the
readers.1

2.10 Conclusion

Self-supervised learning of speech representations is a computationally intensive tech-
nology, leading to costly trials. Through the methods described in this chapter, we give
keys allowing for motivated and optimal choices in two important decisions for speech
self-supervised pretraining; pretext-task choice in pretext-label methods and data aug-
mentation in contrastive learning settings. For the former, we presented a method to
compute an estimate for conditional independence as a pretext-task utility score. We
showed the validity of this score for individual and grouped pretext-task selection. For
the latter, we introduced a novel informed method enabling the automatic selection
and parametrization of the crucial data augmentation pipeline. Our findings open a

1salah-zaiem.github.io/augmentedsamples/
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range of possibilities in signal alterations exploration for self-supervision. In this section,
these choices are conditioned on a downstream task of interest. This conditioning, while
eventually reducing the task coverage of the resulting models, allows to target non-ASR
tasks, which has not been thoroughly studied in the literature. However, during the
development of these methods, we have been using the community’s main evaluation
benchmarks and rules to show the performance gains of our approach. This usage, relying
on the SUPERB settings described in Section 2.5.5 has raised a few questions and some
frustrations around eventual limitations. These limitations are discussed and addressed
in the next chapter.
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Speech Self-Supervised
Representations Benchmarking:
a Case for Larger Probing
Heads

3

Once again there was the feeling that
the ordinary things before one’s very
eyes were becoming unordinary.

- Tayeb Salih (Season of Migration to
the North)

To enable comparisons with competing approaches, the previous section introduced the
SUPERB (S.-w. Yang et al., 2021) benchmark and its conditions. This benchmark, along
with a few others, emerged as the natural consequence of a few trends:

• With the availability of even larger unlabeled datasets and the variety of introduced
paradigms and techniques to train self-supervised representations, a multitude of
models have been released.

• The impressive performance gains obtained using self-supervised representations,
first on speech recognition tasks, in a second time on a large set of speech technology
tasks, made a larger part of the community interested in using this new technology
and replacing hand-crafted spectral features in their models and pipelines.

• The size of the most popular models leads naturally to high computational costs of
training and inferences with models based on their representations. Consequently,
experimenting with these is a costly endeavor both in time and computation.
Speech practitioners would therefore need reliable clues and metrics allowing for a
motivated choice of representations to use for their tasks.
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However, while standardizing the practices for evaluation through comprehensive bench-
marks is needed to compare models in the same setting, these standards are a choice of
the benchmark developers. This chapter, starting from existing popular benchmarks, ex-
plores their robustness precisely to the main choice: downstream decoding architectures.
It is divided into two main parts. First, Section 3.3 shows that current benchmarks are
very sensitive to the choices made for downstream architectures. Precisely, we highlight
that rankings and relative performances of models are much reshuffled when changing
these architectures. In a second time, in Section 3.4, we argue that for a set of tasks, the
downstream heads currently used should be replaced with more complex alternatives.
This is shown through a thorough study of what is expected from evaluation heads and
from self-supervision-based pipelines.

The work presented in this chapter has been the subject of the two following scientific
publications:

• Zaiem, S., Kemiche, Y., Parcollet, T., Essid, S., & Ravanelli, M. (2023). Speech
Self-Supervised Representation Benchmarking: Are We Doing it Right? in Proc.
Interspeech 2023 , Nominated for the Best Student Paper award.

• Zaiem, S., Kemiche, Y., Parcollet, T., Essid, S., & Ravanelli, M. (2023). Speech
Self-Supervised Representations Benchmarking: a Case for Larger Probing Heads.
Currently under review in Computer Speech & Language.

3.1 Introduction

Experimenting with large SSL models is a costly endeavor both in terms of time and
computing. The proliferation of approaches for speech SSL (Mohamed et al., 2022) has,
therefore, fomented the need for “universal” benchmarks evaluating their performance
across multiple downstream tasks. These benchmarks should serve as a means to explore
different facets of the speech signal, enabling practitioners to make informed decisions
tailored to their specific use cases. Benchmarks also allow the research community
to have a common field of comparison for the different proposed SSL techniques and
identify areas for improvement. Consequently, there has been a growing proliferation of
comprehensive benchmarks in recent years (Evain et al., 2021; S.-w. Yang et al., 2021;
T.-h. Feng et al., 2023). These benchmarks offer standardized frameworks for evaluating
the effectiveness of speech SSL models and algorithms. They encompass a wide array
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of speech applications. Even within a single objective like automatic speech recognition
(ASR), they provide various linguistic, acoustic, and prosodic configurations (Tsai et al.,
2022).

In prevalent speech SSL benchmarks, the evaluation of self-supervised representations
typically involves using downstream decoders that map the frozen representations to the
final downstream labels. These downstream probes are generally chosen based on simplic-
ity and limited capacities, such as linear probing for classification tasks or shallow vanilla
recurrent neural networks for speech recognition (S.-w. Yang et al., 2021). However, we
hypothesize that this benchmarking approach may harm the development of novel SSL
technologies in two significant ways. Firstly, the popularity of the main benchmarks, such
as SUPERB (S.-w. Yang et al., 2021), has established the considered downstream probes as
the standard evaluation setting for any new speech SSL model. The metrics used in these
benchmarks also contribute to shape the development of new approaches. Consequently,
there may be a tendency to discard models that perform poorly with the selected probes,
even if they could potentially excel with other downstream architectures. Secondly, the
simplicity of the probes contrasts with the increasing complexity of SSL encoders. Testing
with low-capacity probes can lead to an unnecessary transfer of complexity from the
probing head, which is intended to be task-specific, to the encoder, which is expected to
be more general. This transfer can result in unnecessarily large self-supervised models,
leading ultimately to compute-costly inferences. For example, in computer vision, Dubois
et al. (Dubois et al., 2022) demonstrated that changing the probe family from linear to
multi-layer perceptrons (MLP) leads to different optimal hyperparameter values of SSL
models and enables smaller SSL representations.

One potential solution to address these limitations is to explore headless evaluation
alternatives that are not tied to specific downstream probes. While a few intrinsic
quality assessment metrics for speech embeddings have been proposed (Schatz et al.,
2013), their correlation with downstream performances is still uncertain (Algayres et al.,
2020). In image classification, Garrido et al. (Garrido et al., 2023) demonstrated a
strong correlation between the rank of vision SSL representations and final downstream
performance, though the latter performance is obtained using linear probes exclusively.
Recognizing these challenges, SUPERB (S.-w. Yang et al., 2021) offers two tracks where
researchers can choose their own downstream probes, with or without capacity constraints
on the probing architectures. Regrettably, these two tracks have yet to receive any
submissions.
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This chapter first the dependence of benchmarks on the choice of probing heads. Con-
sequently, given that different probing heads lead to different rankings, we argue that
it is important to re-question the current practice followed by prominent benchmarks,
where a particular probe is fixed for each task, without a clear justification. In this sense,
we provide a more thorough assessment of the benefits of performing the benchmarks
with more capacitated probing heads. Precisely, four desired characteristics are assessed:
full pipeline performance, inference efficiency, generalization ability and the exploitation
of multi-level encoder features. On all these points, our study shows an advantage for
higher-capacity probing heads. These ideas and results aim to reshape the way the SSL
models are benchmarked, and indirectly, ultimately influence their design towards better
rankings in these benchmarks. Hence, the contributions of this work are twofold:

1. We benchmark a set of published state-of-the-art SSL models on various speech tasks,
varying the downstream decoders, showing that, except for ASR on Librispeech, the
rankings and relative performance are highly impacted by a change in the set of
downstream probes (Section 3.2).

2. We provide an extensive study on the impact of selecting higher-capacity decoders
on performance, generalization abilities, inference efficiency, and feature-level
selection and exploitation (Section 3.4).

3.2 Benchmarking SSL Models: Definition and Protocol

This section formally describes the limitations faced by current speech SSL benchmarks
and also details the experimental protocol devised to bring this issue to light.

3.2.1 Problem Definition

Formally, an SSL pipeline consists of two systems: a pre-trained encoder e and a down-
stream probe f . e is learned through solving a pretext task on unlabeled speech datasets
(e.g., Libri-light (Kahn et al., 2020) and LibriSpeech (Panayotov et al., 2015) have
been popular choices in the literature), while f is learned for a considered downstream
task with its corresponding annotated training dataset. In this framework, the SUPERB
benchmark has chosen a probing family FT (i.e. a downstream architecture with its
hyperparameters, such as an MLP with given number of layers and hidden sizes) for every
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considered downstream task T and, for every considered SSL encoder e, it shows a task
error rate corresponding to:

min
f∈FT

Et(f ◦ e); (3.1)

with Et(f ◦ e) being the test-set error rate of the SSL pipeline.

However, ideally, as proposed in the “unconstrained" track of SUPERB (S. Yang et al.,
2021), the shown performance should be:

min
F∈P

min
f∈F

Et(f ◦ e); (3.2)

with P the set of all probing families. More interestingly, in the “constrained" scenario,
if we denote by C the set of probes that respect a chosen capacity constraint, then the
performance of an encoder e could be expressed as follows:

min
F∈P

min
f∈F∩C

Et(f ◦ e). (3.3)

Unfortunately, this quantity cannot be computed, as it would require training a model
with every known downstream architecture that respects capacity constraints, for each
considered encoder and task.

In this study, we aim to investigate whether benchmarking based on the value obtained in
Equation (3.1) provides a robust ranking that remains consistent across different probing
families. To achieve this, we examine different probing families for each downstream
task and analyze whether the rankings and relative differences obtained in the initial
experiments remain consistent in the subsequent experiments.

3.2.2 Self-supervised Pretrained Models

For our study, we focused on a subset of state-of-the-art models from the SUPERB
benchmark due to their wide adoption within the community. We selected nine SSL
models that extract representations directly from the waveform: Wav2vec 2.0 (Baevski,
Zhou, et al., 2020), HuBERT (Hsu, Tsai, et al., 2021), WavLM1 (S. Chen, Wang, et al.,
2022), and Data2Vec (Baevski et al., 2022) in both their Base and Large versions. We
also included DistilHuBERT (Chang et al., 2022), which is a distilled version of Hubert

1We used the Base+ version of WavLM, trained on 94k hours of speech data
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Base with four times fewer transformer layers. These models share the same frame rate,
generating representations of dimension D every 20 ms of audio signal. D = 1, 024 for
the “Large" versions and D = 768 for “Base" ones and DistilHuBERT.

These models share similar Transformer-based architectures, but their pretraining pretext
tasks vary. Wav2vec2.0 is trained using contrastive predictive coding (CPC), aiming
to maximize mutual information between contextual features and predicted future
samples. HuBERT and WavLM learn to map unlabeled audio to sequences of pseudo-labels
generated through clustering previously generated representations. WavLM introduces
training distortions to HuBERT enabling noise-invariant representations. Data2Vec,
inspired by teacher-student approaches, employs a masked input view to predict latent
representations of the unmasked input data, utilizing a self-distillation setup. We obtained
all the pre-trained checkpoints from their respective HuggingFace (HF) official cards
(Wolf et al., 2020), except for Wav2vec2.0 Large, for which we used the Fairseq (Ott
et al., 2019) checkpoint since the HF version underperformed compared to the results
reported in SUPERB.

3.2.3 Downstream Tasks and Datasets

Speech SSL benchmarks attempt to assess universal speech representations by offering a
diverse array of tasks that examine various facets of the speech signal. In line with this
approach, we introduce seven tasks that cover phonetic, speaker-identity, emotional, and
semantic dimensions.

Speech Recognition Tasks. Four speech recognition tasks are considered. For the first
one, LibriSpeech (Panayotov et al., 2015) train-clean-100/dev-clean subsets are used for
training and validation while test-clean and test-other are kept for testing. The Buck-
eye dataset (Pitt et al., 2005) is considered as a second ASR task, allowing for testing
the ability of the models with fewer labeled data and in a more complex spontaneous
setting of English speech. The training, validation, and test splits used in our Buckeye
experiments are available in the companion repository with the training set containing
approximately 9.5 hours of audio and the test set 1.5 hour. For these two English ASR
tasks, we present two sets of results based on the use or not of a language model (LM)
during the decoding process. In the experiments labeled “Without LM," we employ greedy
decoding. Conversely, the “With LM" experiments utilize the official LibriSpeech 4-gram
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language model combined with shallow fusion to the acoustic model. Since low-resource
languages are one of the main applications of SSL methods, two low-resource language
tasks, extracted from the CommonVoice 11.0 (Ardila et al., 2020) release, are considered:
Welsh (Cymraeg) and Basque (Euskera). To ease reproducibility, we use the splits provided
in the CommonVoice release: the Basque train set is 15.8-hour long, with 56 different
speakers, while test and dev splits are 10.5 and 9.8-hour long. For Welsh, train, dev and
test, splits are respectively, 11, 7.9, and 8 hours with 32 different speakers in the training
set. The Word Error Rate (WER) serves as the error metric for all ASR tasks. In all these
experiments, the probe is trained using the Connectionist Temporal Classification (CTC)
loss at the character level.

Automatic Speaker Verification (ASV). The ASV task consists of a binary classification
procedure aimed at determining whether speakers in a pair of utterances are the same.
Similar to the SUPERB benchmark, we utilize the VoxCeleb1 train and test splits for this
task (Nagrani et al., 2017). It is worthwhile to note that the testing set may include
speakers who were not present in the training set. The evaluation metric employed for
ASV is the Equal Error Rate (EER).

Emotion Recognition (ER). For ER, we utilize again the IEMOCAP dataset (Busso, Bulut,
Lee, Kazemzadeh, et al., 2008). The reported performance represents the mean of 10
runs conducted through cross-validation on 10 folds, where each fold leaves out the data
of one speaker for testing purposes.

Intent Classification (IC). While the SUPERB benchmark evaluates the semantic content
of SSL representations using the Speech Commands (SC) (Warden, 2018), we employ
the more challenging SLURP dataset (Bastianelli et al., 2020) for Intent Classification , as
error rates with SC are extremely low. The SLURP collection consists of approximately
72, 000 audio recordings that capture user interactions with a home assistant in single-turn
scenarios. The IC task involves classifying each utterance into one of the 18 predefined
scenarios, such as "calendar", "email", and "alarm". Classification accuracy serves as the
metric for both emotion recognition and intent classification tasks.
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Task/Probing Head First Set Second Set

LibriSpeech ASR BiLSTM Conformer (Gulati et al., 2020)
Buckeye ASR BiLSTM ContextNet (Han et al., 2020)
CV Low-Resource ASR BiLSTM Linear
Automatic Speaker Verification X-Vectors (Snyder et al., 2018b) ECAPA-TDNN (Desplanques et al., 2020)
Emotion Recognition Time-Pooling + Linear ECAPA-TDNN (Desplanques et al., 2020)
Intent Classification Time-Pooling + Linear BiLSTM + Linear (Lugosch et al., 2019)

Tab. 3.1.: Probes selected for the downstream trainings. More details can be found in the
companion repository.

3.2.4 Downstream Probes

This section offers a high-level description of the downstream probes employed in the
study. For comprehensive replication of the experiments, detailed information regarding
hyperparameters and architectural specifications can be found in the code repository.

Global settings. During the downstream training, the weights of the SSL encoder are
kept frozen, learning solely the weights of the downstream decoder. Similarly to SUPERB,
we observed that the last-layer representation may not always be optimal. Consequently,
we, first, store the representations from all hidden layers of the pre-trained model. These
hidden states are then weighted and summed to create the representation forwarded
to the decoder. The weights are trained during the downstream process. In order to
ensure the validity of our experimental setting, we first reproduced the downstream
architectures used in SUPERB during the initial set of experiments. Then, we modified
the probes by introducing simpler or more complex alternatives inspired by the relevant
literature for each task.

Speech recognition tasks. In the initial set of experiments, aimed at replicating the
SUPERB conditions, a vanilla 2-layer Bidirectional LSTM (BiLSTM) with 1, 024 units is
utilized. This BiLSTM is followed by a linear layer that maps the latent representations
to characters. For the second set of downstream architectures, we employ an encoder-
decoder Conformer architecture (Gulati et al., 2020) for the LibriSpeech task. The
downstream architecture consists of 12 encoder layers, 4 decoder layers, and 4 attention
heads. For the Buckeye task, we employ the convolutional-based ContextNet architecture
(Han et al., 2020) with unit strides to maintain the frame rate of the SSL models. In
the case of Welsh and Basque from CommonVoice, a two-layer dense neural network
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is employed to map each frame representation to the probabilities of the correspond-
ing characters. Additionally, experiments using ContextNet with LibriSpeech are also
conducted. The performance of ContextNet and Conformer architectures, which are
close to the state-of-the-art on LibriSpeech, motivated their selection as downstream
probes. Different probes are selected for ASR tasks to show that eventual variations in
performance are not linked to a unique couple of probes.

Automatic speaker verification. In the first experiment, we use the X-vector architecture
(Snyder et al., 2018b) with the AM-Softmax loss (F. Wang et al., 2018) for training
speaker embeddings. Verification is performed using the cosine similarity backend. In
the second experiment, we employ the ECAPA-TDNN neural network (Desplanques et al.,
2020), which integrates time-delay neural networks and parallel attention mechanisms to
capture temporal dependencies and achieve state-of-the-art results in speaker verification
(Desplanques et al., 2020).

Classification tasks. Similar to SUPERB, in the initial set of experiments, we employ
linear probing for the classification tasks, namely intent classification and emotion
recognition. The representations are first averaged along the time axis and then passed
through a linear classification layer. For the second downstream architecture, inspired by
state-of-the-art approaches (Y. Wang et al., 2021), we opt for ECAPA-TDNN for emotion
recognition. As for intent classification, we follow published work (Lugosch et al., 2019)
and utilize two layers of BiLSTM with a hidden size of 1, 024, followed by a linear classifier.
This approach allows for considering the order of frame representations, in contrast to
using time-pooled features. While the cited works (Lugosch et al., 2019; Desplanques
et al., 2020; Y. Wang et al., 2021) employ these architectures on top of handcrafted
features (generally log-mel spectrograms), we show in the following that they are still
relevant when fed with self-supervised representations. Table 3.1 provides a summary of
the probing heads selected for our experiments.
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3.3 Benchmarking Results and Discussion

Table 3.2 (Horizontal) presents the comprehensive benchmarking results for the different
SSL models. The upper and lower sections of the table display the performance achieved
by the first and second sets of downstream architectures, respectively. Additionally, the
number of neural parameters is reported for both the SSL encoder and downstream
decoders. For the latter, only two values are provided per task (i.e.,“Base" or “Large")
as this number only depends on the dimension of the encoder output representations
(D = 1024 for “Large" and D = 768 for “Base"). In the initial set of experiments, we
replicated the SUPERB benchmark conditions for two tasks: LibriSpeech and VoxCeleb1.
Notably, our results exhibited a Pearson correlation of 0.99 and 0.97, respectively, with
the corresponding results on the SUPERB leaderboard. This high correlation validates
our successful replication of the benchmark settings.

To study the impact of a decoder change on the final performances, we compute, for
every task, the Pearson and Spearman correlations between the performance metrics
obtained with the first downstream architectures and those obtained with the second ones,
and collect them in Table 3.3. The Pearson correlation evaluates the linear relationship
between the two sets of metrics, while the Spearman one assesses the strength and
direction of their monotonic relationship. Correlation metrics close to 1 imply proportional
performances and similar rankings between the SSL models used with different probes,
making the benchmark robust to the considered downstream change. Correlation metrics
close to zero indicate no correlation between the results of the two sets of experiments.

All the models tested demonstrate competitive performances on every downstream task
and with every related decoding architecture. With the notable exception of LibriSpeech,
all the downstream tasks error metrics vary substantially with changing probes. The
mean performance of the SSL candidates with the first and second downstream decoders
is presented in the last three columns of Table 3.3. Notably, we observe a significant
sensitivity to the choice of decoder as replacing the SUPERB decoder results in relative
improvements of up to 46.5% for ASV and 27.3% for IC. This demonstrates the substantial
impact that the decoder selection has on the performance of the SSL models. Furthermore,
the Spearman and Pearson correlation values computed between the performances with
the first and second set of downstream probes are low, despite being positive. This
suggests significant variations in relative performances and rankings when comparing the
results obtained with the two different downstream decoders. For instance, the Spearman
correlation coefficients for ER and IC are only 0.34 and 0.66, respectively. It is noteworthy
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Task Pearson Spearman Mean DS1 Mean DS2 Diff (%) FBANKS DS1 FBANKS DS2

LibriSpeech 1-2 0.99 0.97 5.8 6.48 -11.7 22.56 8.91
Librispeech 1-3 0.99 0.98 5.8 7.03 -21.2 22.56 43.12
Buckeye ASR 0.42 0.56 34.16 32.39 5.2 54.17 78.90
Welsh 0.59 0.62 50.64 74.52 -47.2 99.62 > 100
Basque 0.19 0.15 44.66 69.47 -55.6 > 100 > 100
ASV 0.47 0.75 5.2 2.78 46.5 9.28 3.41
ER 0.22 0.34 67.66 73 7.9 48.51 65.7
IC 0.75 0.66 62.1 79.04 27.3 12.6 42.3

Tab. 3.3.: Correlations (Pearson and Spearman) between the performances achieved with the
first and second downstream probes are given for each task. The number in the
column name indicates whether the results correspond to the first or second set of
probing heads, and “DS" stands for “Downstream". “Mean " columns show the mean
performance across all the considered SSL encoders. The “Diff" column presents
the relative difference in mean performance between the two architectures. The
“FBANKS " columns show the performance on every task with Mel spectrograms as
input representations. The difference between “Mean DS" and “FBANKS DS" outlines
the performance gain in % from using SSL representations instead of handcrafted ones.

that while the assessment of LibriSpeech performance appears to be robust to decoder
changes, this does not hold true for other ASR tasks. In the case of the spontaneous
English Buckeye corpus, there is a Spearman correlation of 0.56 and a Pearson correlation
of 0.42, while the Basque task exhibits correlations, Pearson and Spearman, of only 0.19
and 0.15. The Buckeye ASR scenario is particular as changing the decoder from BiLSTM
to ContextNet leads to improved results for some models and detrimental effects for
others. Specifically, the best-performing model, WavLM Large using the second decoder,
ranks only fourth when evaluated with the SUPERB settings.

However, we noticed a contrasting pattern in the rankings and performance of the
considered SSL encoders on the ASR task using LibriSpeech train-clean-100, as shown in
Table 3.3. Unlike the other downstream tasks, the rankings and performance only exhibit
minor variations when the downstream decoder is changed. To validate this observation,
we conducted additional experiments using a third downstream decoder, ContextNet,
specifically for this task. The results of this supplementary experiment are presented
in Table 3.4, and the correlation values between performances with the first probe and
the ContextNet are shown in the second row of Table 3.3. Similarly, no significant
differences were observed in the ranking of the SSL candidates. For instance, in all three
setups without LM decoding, DistilHuBERT consistently exhibits the lowest performance
among the candidates. Furthermore, “Large" versions of the considered candidates
consistently outperform their “Base" counterparts on this task, independently of the used
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Tasks \Models SSL Params Clean Other Clean LM Other LM

DistilHuBERT 23.5M 20.52 43.27 10.44 29.17
Wav2vec 2.0 Base 95M 7.24 15.66 4.73 11.21
Wav2vec 2.0 Large 317.4M 4.35 8.68 03.03 6.86
HuBERT Base 94.7M 7.31 16.00 4.60 11.11
HuBERT Large 316.6M 4.04 8.63 2.98 6.45
WavLM Base+ 94.7M 6.73 15.33 4.52 10.84
WavLM Large 316.6M 4.09 8.43 2.94 6.15
Data2vec Base 93.8M 5.46 13.34 3.76 10.04
Data2vec Large 314.3M 3.50 6.94 2.56 5.36

Probe size and inference metrics

Downstream Parameters Base 32.4M
Downstream Parameters Large 32.5M

Tab. 3.4.: Word Error Rate (WER %) results of LibriSpeech experiments on the two considered
test splits with Contextnet as a third downstream probe. “DS" stands for Downstream.

probing head. Table 3.3 further confirms these findings, revealing high Spearman and
Pearson correlations exceeding 0.97 for LibriSpeech, while the highest correlation value
observed for other tasks is only 0.75. This discrepancy indicates that the SSL encoders
might be biased towards the LibriSpeech ASR task, which is not unexpected given its
prominent role as a benchmark dataset and its consistent inclusion in the pretraining
process datasets. These results lead us to the conclusion that current SSL benchmarking
is highly dependent on the choice of the downstream probes, with the notable exception
of LibriSpeech ASR.

3.4 On Limited-capacity Probing Heads

The first section has shown that the rankings and relative performances of the bench-
marked self-supervised systems are heavily impacted by a change in the downstream
probing heads. The question that naturally arises is whether the common choice of
probing heads is justified enough to discourage evaluating with other alternatives. The
proposed downstream probes in the prominent SUPERB benchmark were selected based
mainly on a simplicity criterion. Choosing simple probing heads is generally justified by
the fact that it allows for evaluating only the quality of the pre-trained representations
and not the downstream probes learning abilities. In this section, we will show that
choosing limited-capacity decoders is not optimal. To prove it, and based on the previous
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Fig. 3.1.: Performance vs mean total inference cost metrics (in G-MACs) depending on the probing
heads used for three models and three different downstream tasks. On all tasks, second
downstream probes, larger in capacity, allow smaller SSL models to bridge the gap
with bigger ones in term of accuracy with limited additional inference costs. DS(i) for
i ∈ 1, 2 corresponds to the results obtained with the i− th set of downstream probes.

experiments and further ones, we will show that larger probing heads: 1) lead to better
performance; 2) reduce the error rate gaps between large and smaller SSL encoders,
potentially leading to lower inference times; 3) enable the exploitation of multi-level
features within the encoders; and 4) do not harm the generalization abilities of the full
pipeline.

3.4.1 Performance and Inference Costs

This subsection elaborates two conclusions from the presented results and further com-
putations of inference metrics. First, on most tasks, larger capacity decoders improve
significantly the performance, allowing an optimal use of the pretrained representations.
Second, larger-capacity probes enable smaller SSL encoders to bridge the performance
gap with larger ones, eventually leading to faster inferences.

Concerning performance, Table 3.3 shows that except for the Buckeye ASR task, the
mean performance is better with the probes with larger capacities, mainly for Speaker
Verification and Intent Classification with respectively 46.5% and 27.3% relative perfor-
mance improvements (for ASR tasks, the first probe, two layers of BiLSTM, is the largest
probe in terms of number of parameters as shown in Table 3.2). Decoders with more
capacity seem naturally able to better exploit the benchmarked representations. For
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instance, time-pooling the frame-level representations before emotion or intent classifica-
tion prevents the model from learning to use local or time-ordered signal clues, while it is
possible with ECAPA-TDNN or a layer of BiLSTM in the probing head. To know whether
the performance increase is imputable to the representations or the probes, we compute
the performance of the downstream probes using Mel-scaled spectrograms as the input
representation. The spectrograms’ extraction is done similarly to the one provided as
baseline in the SUPERB benchmark (Tsai et al., 2022). The results are shown in the last
two columns of Table 3.3. We can see, first, that the mean performance is significantly
better using learned representations than hand-crafted Mel spectrograms, especially
for ASR where the final WER is over 100 in three cases. For intent classification, the
accuracy using SSL representations, is in average 5x better with the first probe and twice
higher with the second probe. Moreover, apart for VoxCeleb, where two models perform
worse than spectrograms with the second probe, all the representations benchmarked
lead to better performances with all probes on all considered tasks. This shows that the
lower error rates reached using larger decoders still depend on the quality of the input
representations and that the levels of performance reached allow for an informed ranking
of those.

Additionally, the findings presented in Table 3.2 shed light on an unexpected outcome
when employing low-capacity decoders. With the first set of downstream architectures,
the “Large" versions of SSL models consistently outperform their “Base" counterparts.
However, this pattern does not hold true with higher-capacity decoders in the second set
of probes. For example, the best performances in ASV and ER are achieved using WavLM
Base+ and HuBERT Base, respectively. In the context of intent classification, changing
the downstream decoder from linear to BiLSTMs results in a significant reduction in
the mean absolute difference between the “Base" and “Large" versions’ performance,
decreasing from 14.23 to 3.28. Again, for emotion recognition, although all four “Large"
versions outperform their “Base" counterparts with linear probing, increasing the capacity
of the probing head reverses this order for all models except WavLM. Additionally, in
the case of ASV, DistilHuBERT achieves better results with an ECAPA decoder than the
best-performing model (WavLM Large) with an x-vector-based head, despite having more
than 13 times fewer parameters. These findings suggest that using excessively small-
capacity heads advantage larger SSL encoders and may have been leading to inflated
model sizes.
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Since the number of parameters does not present a full picture of the computations
involved, the THOP library2 is used to compute the number of Multiply–Accumulate
operations (MACs) implied by the learned models. We compute exactly the mean
number of MACs involved in inference (self-supervised feature extraction and downstream
decoding) for every sample in the test set. Figure 3.1 shows the number of inference
MACs for three models of different sizes and three considered downstream tasks: emotion
recognition, intent classification, and speaker verification. For a fair comparison, we select
the large models that perform the best on the considered task with the first downstream
probe, along with its “Base" counterpart and DistilHuBERT as an even smaller competitor.
First, on all three tasks, and for every model, the reached performance is systematically
better with bigger decoders. Furthermore, the smallest encoder "DistilHuBERT", while
bearing 13 times less parameters than “Large" encoders, reaches a performance with
the second decoder that is comparable to the best “Large" model with the first smaller
downstream probe. Visually, for every considered model, the x-axis translation between
the “DS1" (circle-shaped) and “DS2" points (cross-shaped) shows the MACs quantity
increase induced by a bigger decoder head. While the BiLSTM-based decoder is visible
on SLURP, the ECAPA-TDNN-based one seems negligible in the two other tasks compared
to the self-supervision-based feature extraction costs. The three figures depict clearly
both the high performance impact of a small boost in the decoder capacity and its low
impact on the total computations needed for inference because of the large cost of feature
extraction.

3.4.2 Multi-level Feature Exploitation

The layer-wise content of speech self-supervised representations has been extensively
probed throughout the literature (Pasad et al., 2021). These studies generally assess the
content with linear probes or with Canonical Correlation Analysis (Pasad et al., 2023).
This subsection studies the impact of changing the probing head on the learned weighting
of the layers of the models. It concludes that larger probing heads lead to a better
exploitation of multi-level features in the considered self-supervised encoders.

As stated in section 3.2.4, during fine-tuning, and in order to cover all the considered
downstream tasks, a weighting of the SSL models’ layers is learned jointly to the probing
heads parameters. With L the number of layers, 1 for the output of the convolutional

2github.com/Lyken17/pytorch-OpCounter

102 Chapter 3

Speech Self-Supervised Representations Benchmarking: a Case for
Larger Probing Heads

github.com/Lyken17/pytorch-OpCounter


front-end and N − 1 transformer layers in the SSL encoders (3 in total for DistilHuBERT,
13 for “Base" models and 25 for “Large" ones), (Pi)i∈{1,..,L} is a learned vector and
W = Softmax(P ) is the layer weighting vector. Let (Ri)i∈{1,..,L} represent, for a given
SSL encoder, the N matrices of intermediate embeddings of shape [T, D] with T the
number of time frames (50 per second), and D the dimension of the encoder learned
representations. Then the input representation decoded by the probing head is:

Rinput =
L∑

i=1
WiRi. (3.4)

Figure 3.2 depicts the values (learned during every downstream training) of these weights
for the four “Base" models considered in this chapter. The top part shows the learned
weights with the first downstream probing heads, and the bottom part shows the second
ones. First, it is very interesting to observe that the values of the learned weights seem to
depend heavily on the SSL encoder pretraining task. While Data2Vec and Wav2Vec2.0
based, respectively, on masked language modeling and contrastive learning of quantized
representations, display different weighting, HuBERT and WavLM, that have similar
pretraining tasks, have very similar learned weighting for all the considered tasks, and
with the two sets of downstream probes.

Second, it is important to note that the values of the learned weights are heavily impacted
by changes in the considered probing head. This is especially the case for non-ASR tasks,
and specifically for emotion recognition and intent classification. For these two tasks,
with all the self-supervised encoders, only layers above the 9-th are selected with the
linear probing approach. However, larger-capacity probes seem to be able to exploit
low-level features.

For IEMOCAP, when using the first probing head, i.e. time-pooling followed by a linear
classifier, the model relies on features from only one high-level layer (the last one for
instance, for HuBERT and WavLM). On the contrary, probing with the ECAPA-TDNN—the
second probing head considered here—spreads the weights across the different layers.
In some cases, the last layers are barely weighted: Data2Vec, for instance, mainly uses
the two first ones as shown in the first plot of the third row in Figure 3.2. This tends
to indicate that the emotion recognition systems built using the linear probe may be
exploiting linguistic content, while the second probe exploits mainly low-level emotion-
related features. Concerning intent classification with the SLURP dataset, for HuBERT
and WavLM, the main weight moves from the last layer to around the ninth one, while
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Fig. 3.2.: Values of the layer weights learned during fine-tuning for all “Base" models on the
considered tasks. The values on every row sum to 1. The weights obtained with the
second downstream probes (bottom part of the figure) are shifted to lower-level layers
compared to the first probes ones (top part).
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for Data2Vec, the LSTM-based decoder starts using multi-level features, including the
first layer, i.e. the output of the convolutional front-end. We cannot easily draw a
similar conclusion for ASR, where the high-level features are generally the closest to
the phonetical content and thus to the nature of the ASR task and seem to be naturally
preferred by both the considered decoders. Finally, the VoxCeleb speaker recognition is
always selecting low-level features, this is coherent with the layer-wise content probing
literature (Pasad et al., 2021), showing the loss of speaker information in high-level
features of ASR-oriented self-supervised models.

Building on these observations, we argue that larger-capacity decoders enable the exploita-
tion of multi-level features. In the case of intent classification and emotion recognition,
this seems natural given that the first probes, time-pooling followed by a linear classifier,
could only exploit features allowing for linearly separable downstream classes. This
multi-level extraction may be behind the substantial increase in performance for both
intent classification and emotion recognition.

We test this conjecture for emotion recognition with another experiment where one
downstream probe is learned using fixed weights obtained with the other one. These
results are reported in Table 3.5. Precisely, in this experiment, we fix the weights
during the downstream training, with the ones obtained either during the first or second
probing. In our set of experiments, for every SSL encoder e, we learn the parameters
of a downstream probing head DS and a set of weights for the layers representations
W. In Table 3.5, for every SSL encoder e, every column DS(i)/W (j) with i, j ∈ 1, 2,
shows the accuracy after decoding with probing head DS(i) but with fixed weights W (j)
corresponding to the ones learned initially with DS(j). The results show that, while the
larger capacity probing head still performs better than the low capacity ones with their
considered weightings, a reasonable part of the performance increase is imputable to
the change in the level of features used. With the same ECAPA-TDNN decoder, using
multi-level features improves the performance from 68.6 to 73.3 mean accuracy on the 4
SSL encoders considered in this experiment. Another interesting observation is that the
first downstream head, time-pooling followed with a linear decoder, is not able to better
exploit multi-level features, with very similar performances between the two weightings.

We conclude that probing with larger capacity decoders should be preferred if there is a
need to exploit multi-level features, as this allows for increased performance. We will
show in the next section that it also has an impact on generalization on out-of-domain
samples.
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SSL Model / Head/ Weights DS1/W1 DS1/W2 DS2/W1 DS2/W2

Data2Vec Base 63.0 63.0 62.6 72.1
Data2Vec Large 64.0 63.9 67.9 71.3
WavLM Base 67.8 67.9 71.6 72.5
WavLM Large 75.3 75.3 72.2 77.6

Tab. 3.5.: Results of experiments on emotion recognition with fixed layer-weights. The result in
column DS(i)/W (j) is the one obtained learning the downstream head of the i− th
set with fixed weights corresponding to the ones learned originally with the j − th
probing head. The difference between column 3 and 4 shows that the exploitation of
multi-level features plays a role in the better performance of DS2.

3.4.3 Generalization Abilities

A major argument for using low-capacity decoders is that they may allow for better
generalization. Indeed, the pre-trained representations are learned on massive amounts
of data, with a potential higher data heterogeneity, while the decoding head is learned
on small annotated datasets with an expected overfitting hazard. Furthermore, multi-
ple studies have examined and shown the generalization robustness of self-supervised
representations (T.-h. Feng et al., 2023), which emphasizes, even more, the need to
keep this asset. This section aims to show that the models learned with larger capacity
decoders are able to generalize as well and even better than their smaller-decoders coun-
terparts, by showing that the performance gains obtained with larger decoders transfer to
Out-Of-Domain (OOD) testing samples. Within this scope, we consider the final models
obtained with different capacity decoding heads on the considered tasks and test their
accuracies on OOD samples, coming from other datasets but having similar downstream
classes. This actually enables direct zero-shot generalization performance assessment.
Two reasons make two tasks, emotion recognition and speaker verification, relevant for
these experiments. First, for both these two tasks, a larger-capacity probing head leads
to significantly lower error rates, and we want to test how much this gain is resilient to
OOD testing. Second, zero-shot testing requires OOD samples sharing the same labels as
the training in-domain set. For ER, several other datasets share, at least partly, the same
labels as IEMOCAP (Cao et al., 2014). While speaker verification models trained with
VoxCeleb (Nagrani et al., 2017) output a binary label indicating whether two samples
come from the same speaker or not, and thus can be tested on any other ASV benchmark,
including OOD non-English utterances.
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Fig. 3.4.: Generalization performances for emotion recognition. CREMA-D and ASVP-ESD per-
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accuracy level. Larger probing heads, here ECAPA-TDNN, shown in the right plot,
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Emotion recognition. To test the generalization abilities of models learned with different
decoders, and after training with IEMOCAP as described in Section 4.3.1, we test the
models in a zero-shot fashion, without further fine-tuning, on two datasets: CREMA-D
(Cao et al., 2014) and ASVP-ESD (Dejoli et al., 2022). CREMA-D is a data set of 7, 442
original clips from 91 English-speaking actors reading sentences using one of six different
emotions (Anger, Disgust, Fear, Happiness, Neutrality, and Sadness). ASVP-ESD is a multi-
authentic emotional corpus sourced from movies, Youtube channels, and real-life human
interactions in natural settings, without any language limitations. The corpus comprises
5, 146 samples, with 60% consisting of non-speech emotional sounds and 40% comprising
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speech utterances. For both datasets, only speech elements with labels overlapping with
the four IEMOCAP ones (Angry, Happy, Neutral, Sad) are considered. For these two
corpora, the testing sets are of reduced sizes. So to increase the significance of the
reported results, and since the train sets are not used for training, all the splits (train and
test) are used for testing. For ASVP-ESD, and to further enforce OOD testing, English
samples are removed.

Automatic speaker verification. For speaker verification, the generalization abilities
of the models learned on VoxCeleb1, are tested for two out-of-domain scenarios, also
in a zero-shot transfer setting. For this, The CN-Celeb dataset (Y. Fan et al., 2019),
a comprehensive collection of speaker recognition data, is used. It encompasses over
130,000 utterances from 1,000 Chinese celebrities, spanning 11 diverse genres (inter-
views, movies, songs...). To further highlight generalization ability, we divide CN-Celeb
testing couples into ones that include one singing voice element, and once with only
spoken utterances, leading to two generalization testing sets: “CN Celeb Speech" and “CN
Celeb Song". The second split is even more challenging in our case, as no singing voice is
included in VoxCeleb.

Discussion. Figures 3.3 and 3.4 show the results of these experiments for models
built on certain considered SSL encoders. We can note, first, the expected considerable
performance loss on the OOD samples, and especially the loss when changing the
ER language with ASVP-ESD or testing on singing voice speaker verification with “CN
Celeb Song". For both tasks, as stated in previous sections, in domain performance,
.i.e performance on the test sets of the downstream training datasets, obtained with
the second set of larger probing heads are higher than those with SUPERB limited-
capacity probes. The two figures further show that this performance gap stands for
zero-shot generalization. Concerning emotion recognition, the mean accuracy on the
three considered models reaches 49.43 and 32.17 respectively on CREMA-D and ASVP-SED
with the ECAPA-TDNN probing head compared with 46.37 and 20.97 with the time-pooling
followed with a linear decoder. For speaker verification, enhancing the probing head
drives the Equal Error Rate on the “CN Celeb Speech" from 19.34 to 17.27, while it goes
from 40.68 to 34.46 on “CN Celeb Song". In subsection 3.4.2, we hypothesized that ER
models with the first downstream probes may be using linguistic information since only
high-level layers were used. The big drop in performance on ASVP-ESD of Data2Vec
“Base" and “Large" models goes in that direction. Changing the language of the inputs
leads to catastrophic performance drops. This is not the case for DistilHuBERT as the
model only contains three layers. These experiments show that the gain in performance
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is not only relevant to in-domain data, but models built on top of frozen SSL encoders
reach better out-of-domain zero-shot accuracies with larger-capacity probing heads.

3.5 Conclusion

It is crucial to improve the way the speech community currently benchmarks widely used
self-supervised representations. This is important, first because better benchmarks allow
SSL users to select properly the models they need for their downstream tasks of interest.
Second, it offers the SSL model developers insightful evaluations shaping the training
process and decisions. In this chapter, we have shown, by varying the downstream archi-
tectures, that the ranking and relative performances of popular self-supervised models
heavily depend on the choice of the probing heads. While the community has previously
chosen to evaluate the learned representations with limited-capacity decoders, we have
revealed, as an additional contribution, that larger-capacity decoders should be preferred
in various scenarios. This is motivated by better performances, a reduced performance
gap between “Base" and “Large" encoders leading to high (performance/inference costs)
ratios, better multi-level feature exploitation, and better out-of-distribution generaliza-
tion. We hope this diagnosis will support the community in designing new benchmarking
approaches and encourage submissions to the SUPERB “Constrained" track described
in the introduction or propose new probing heads in the dedicated benchmark section
within the SpeechBrain Library.
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Generalization and Efficiency
Using Self-supervised Encoders

4

Par-delà ce village, d’autres villages,
par-delà cette abbaye, d’autres
abbayes, par-delà cette forteresse,
d’autres forteresses. Et dans chacun
de ces châteaux d’idées, de ces
masures d’opinions superposés aux
masures de bois et aux châteaux de
pierre, la vie emmure les fous et ouvre
un pertuis aux sages.

MARGUERITE YOURCENAR

L’oeuvre au Noir

In the previously presented evaluations of self-supervised representations, degrees of
freedom are limited to avoid noise factors during benchmarking. The encoder weights are
frozen and only a weighting of the internal layers is allowed. This amounts to treating the
self-supervised encoders as mere feature extractors. With sizes of the encoders ranging
from hundreds of millions to a few billion parameters, this approach seems inefficient
when a precise downstream task is targeted. This is why in practice, the weights of
the encoders are generally fine-tuned during downstream training allowing for lighter
downstream heads. As an example, when the encoders are frozen, a simple dense layer
cannot be used as a downstream head for speech recognition, as it would not have
the context information needed (this explains why the SUPERB benchmark employs
a recurrent network for this task). When fine-tuning the weights of the encoder, the
transformer layers allow for context to be considered, and thus a simple linear head is
enough to perform a given ASR task.

To answer the main interrogations of this thesis, it seems necessary to derive best practices
for how self-supervised models are commonly used and not stick to evaluation and
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benchmarking settings. Fine-tuning the encoders allows for different interventions and
degrees of freedom. This chapter explores a number of them with two objectives in mind:
generalization and efficiency. The first objective is tackled with two approaches. First, in
Section 4.1, we show how the conditional-independence estimate developed in Chapter
2 can also be used during downstream fine-tuning to clone the acoustic conditions of
low-resource target domains. Second, in Section 4.2, through using continual-learning-
based approaches during the fine-tuning, we highlight the link between forgetting the
pretraining task and out-of-domain generalization. Finally, with a benchmark of different
fine-tuning strategies aimed for faster inferences, we show in Section 4.3 that the network
specialization induced during the fine-tuning phase allows for shrinking encoders and
inputs, leading to faster inferences.

The work presented in this chapter has been the subject of the two following scientific
publications:

• Zaiem, S., Parcollet, T., & Essid, S. (2023). Automatic Data Augmentation for
Domain Adapted Fine-Tuning of Self-Supervised Speech Representations. in Proc.
Interspeech 2023.

• Zaiem, S., Algayres, R., Parcollet, T., Essid, S., & Ravanelli, M. (2023). Fine-tuning
Strategies for Faster Inference using Speech Self-Supervised Models: A Comparative
Study. ICASSP 2023-IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP)

4.1 Acoustic Cloning for Domain Adaptation of
Self-supervised Representations

Despite its popularity, self-supervised learning has been shown to suffer from domain
mismatch where the fine-tuning samples from the target domain are vastly different from
the pretraining ones (Hsu, Sriram, et al., 2021; Riviere et al., 2021). While progress has
been made in achieving near-optimal performance on clean datasets such as LibriSpeech,
spontaneous speech datasets and non-professionally recorded ones still exhibit lower
performance, as displayed in recent speech SSL benchmarks (Evain et al., 2021; Tsai
et al., 2022).
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To mitigate the performance drop caused by domain mismatch, various domain adaptation
techniques have been explored, particularly in transfer learning settings (Olvera et al.,
2022). In the self-supervised context, adversarial approaches have been applied during
the unsupervised pretraining and tested on speech recognition (Tanaka et al., 2022;
Lodagala et al., 2023), emotion recognition (Latif et al., 2022) and speaker recognition
(S. Chen et al., 2021). Along with domain adversarial paradigms, Huang et al. (2022a)
investigated continual learning methods during pretraining. Distinctly, our method does
not aim at aligning latent representations but rather transforms the audio waveforms
of a neutral dataset to match the acoustic conditions of the target domain using data
augmentations, rendering this dataset better suited to the final task in an initial fine-
tuning stage.

Thus, we envisage the option of augmenting a supposedly neutral dataset and using it
for the first fine-tuning step. The augmentations to be applied and their parameters are
chosen in order to optimize the similarity in terms of recording conditions between the
modified and the target dataset and hence the final performance. Our method presents
three main advantages. First, it enables the use of large and clean available annotated
datasets, enhancing the textual diversity of the training corpus. Second, it does not
require new pretraining as it directly fine-tunes available SSL models. Finally, it allows an
efficient data augmentation exploration, as the selection and parametrization is automatic
and does not involve any neural network training. It is, thus, largely more efficient than
thorough testing, as scoring 200 augmentation policies takes 3 hours on 10 CPUs, while
complete testing of one augmentations distribution necessitates around 20 hours of GPU
computations.

In this section, we propose a new method for supervised domain adaptation consisting
in applying appropriate signal distortions to a clean labeled dataset used for an initial
fine-tuning step. The method is validated with an oracle-simulated experiment and an
application with naturally noisy datasets.

Figure 4.1 presents an overview of the method, summarizing the three steps conducted
for every considered target dataset. First, and given the labeled target dataset, an
augmentation distribution is automatically selected (Section 4.1.1). Second, a first fine-
tuning of the self-supervised representation is done, using the neutral dataset distorted
with the augmentations selected in the first step. Finally, a second fine-tuning on the
small target domain dataset is done leading to the final model that will be evaluated
using the target test set (Section 4.1.3).

4.1 Acoustic Cloning for Domain Adaptation of Self-supervised
Representations
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First step :  Data augmentation selection and parametrization

Target
Domain

Conditional
independence based
data augmentation
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Selected
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distribution τ*
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Domain

Data augmentation Pretrained self-
supervised model

Second step : Fine tuning on the augmented neutral dataset

Textual transcriptions

Third step : Further finetuning on the target dataset

Target
Domain

Finetuned self-
supervised model

Final downstream
performance

Fig. 4.1.: Summary of the three steps of the method. 1. Starting from the target domain, an
augmentation distribution is computed. 2. This distribution is used to distort a neutral
dataset for a first fine-tuning. 3. A final fine-tuning is done on the target domain
samples.

4.1.1 Selecting the Augmentation Distribution

Given a labeled target speech recognition dataset, our method selects an augmentation
distribution that is best suited to its recording conditions. From this distribution, we
will sample augmentations to be applied to a larger “clean” dataset which will be used
to fine-tune the SSL representations. The goal is to select augmentations bringing the
“clean” dataset samples “closer” to those of the target domain, thus leading to better
performance on its test sets. This section details the conditional-independence-based
method developed to select a data augmentation distribution given the annotated target
dataset. It starts by detailing the motivations behind the method, before delving into the
technical details of the implementation.
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4.1.2 Motivation and Technical Description

Motivation. Inspired by pretext-task selection for speech self-supervised learning, we
have shown, in Chapter 2, that conditional independence estimation may be used for
automatic data augmentation in contrastive self-supervised learning settings. Further-
more, qualitative analysis, conducted in Section 2.9.3, has indicated that the distortions
selected by this technique tend to be close to those of the target downstream dataset.

Let us give an intuition about what happens in these conditional independence com-
putations to understand why it can be useful for domain adaptation as well. Roughly,
minimizing the conditional dependence described above maximizes, within the same
downstream class, the invariance of distorted samples (i.e. views) to the ID of their
original speech sample. If a given distortion (for instance, reverberation) is not present
in any sample in the original target dataset, randomly applying this distortion would
decrease in-class similarity. Inversely, applying augmentations already present in samples
in the dataset makes it harder to distinguish their original samples’ IDs given the distorted
samples and, thus, lowers the conditional dependence estimator. Conditioning on the
downstream labels retains the signal clues characterizing the downstream classes since it
prevents selecting distortions that are only relevant to one class, as they would reduce
in-class similarity in the other classes.

Technical Description. The setting is similar to the one described in Section 2.9. Precisely,
let again X and Y be respectively, a set of speech data points and their respective set of
downstream labels which are in our case textual transcriptions. With τ an augmentation
distribution from which one can sample a chain of augmentations, we compute a distorted
dataset X ′ = f(X, τ), with f a function that randomly applies augmentations sampled
from τ on the speech samples. Specifically, we can generate G augmented versions per
speech sample to get the augmented set of data points X ′, with G a hyperparameter.
Every sample x′ in X ′ is a distorted version of a point x in the original dataset X. We will
refer to the ID of the original point x as z, defining the Z set. The ID here corresponds to
a discrete value indexing the speech segments X. In this context, we have shown that
choosing the augmentation distribution τ that minimizes an estimator of the conditional
dependence between X and Z given Y leads to the best downstream performance on
speaker and language recognition tasks (Zaiem et al., 2021). This section extends this
approach in two manners, first applying it for domain adaptation in a supervised setting,
and second extending it to the speech recognition task. We use for this the again the
Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2007).

4.1 Acoustic Cloning for Domain Adaptation of Self-supervised
Representations
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In summary, to find the optimal augmentation distribution τ∗, we resort to minimiz-
ing the HSIC quantity with the augmented dataset X ′ = f(X, τ) according to τ∗ =
arg minτ HSIC(f(X, τ), Z|Y ) with HSIC(X ′, Z|Y ) an estimate of the conditional de-
pendence between the distorted speech samples and their original IDs given their down-
stream textual labels.

Since the considered augmentations are not differentiable according to the considered
parameters, we resort again to applying a random search to minimize the HSIC value
described above. Thus, we sample random distributions and select the one with the lowest
dependence scoring. Specifically, for every considered target dataset, we first sample
p = 200 distribution parametrizations (τi)i∈[1,p]. For every parametrization τi, we compute
the HSIC quantity following two steps. First, the augmented set X ′

i = f(X, τi) is generated
by computing G = 20 views of every speech sample in X. Then, HSIC(X ′

i, Z|Y ) is
computed following the technique described in Chapter 2. For Y , we consider the 10
classes consisting of the 10 most used words in the dataset and take only the portion
of the speech where the word is pronounced, using word-level forced alignment. The
augmentation distribution with the lowest HSIC scoring is selected to be applied during
fine-tuning.

4.1.3 Experiments

This section describes the experiments led to validate the proposed approach first in a
simulated environment, then on real-world distorted datasets.

Shared Experimental Protocol

In all the experiments, the model is composed of two blocks: a pre-trained Wav2Vec2.0
Large model and a downstream decoder. The pre-trained model acts directly on the
speech waveform and outputs an embedding of size 1, 024 every 20ms of speech. Two
fully connected layers with a hidden size of 1, 024 map each frame vector to one of the
considered characters. The whole model is fine-tuned using Connectionist Temporal
Classification (CTC) (Graves, 2012) loss. During inference, greedy decoding is applied to
the CTC probability outputs without any language-model-based re-scoring following the
SpeechBrain recipe (Ravanelli et al., 2021).
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Name Description Range (Unit)

Low Min Lowpass minimal frequency cutoff [100-500] (Hz)
Low Max Lowpass maximal frequency cutoff [1000-5000] (Hz)
High Min Highpass minimal frequency cutoff [1000,4000] (Hz)
High Max Highpass maximal frequency cutoff [4000,6000] (Hz)
Pitch min Minimal pitch shift [-6,-2] (semitones)
Pitch max Maximal pitch shift [2,6] (semitones)
Min SNR Minimal SNR for coloured noise [0,5] (dB)
Max SNR Maximal SNR for coloured noise [10,30] (dB)
Min Gain Minimal gain [-20,-10] (dB)
Max Gain Maximal gain [3,10] (dB)

Tab. 4.1.: Descriptions and parameters’ ranges of the selected set of augmentations.

For these experiments, we employ the Torch-Audiomentations library from the Asteroid
team (Pariente et al., 2020) as it accelerates the computation of augmentations both
during HSIC scoring and training, compared to the WavAugment one used in Chapter 2.
From the pool of available augmentations, we selected the ones that have demonstrated
efficacy in enhancing recognition performance with the contrastive predictive coding
method (Kharitonov et al., 2021). This explains why the set of distortions is slightly
different. Hence, seven augmentations are considered: pitch shifting, reverberation, gain
(which may reproduce clipping issues), colored noise addition, high and low pass filtering,
and polarity inversion. The application of these distortions is controlled with a set of
parameters listed in Table 4.1.

Oracle Experiment

Task-specific experimental protocol. In this part, a known distortion distribution is first
applied to a clean testing set. The resulting data will be considered as the mismatching tar-
get domain (i.e. a simulated one). In a second time, using this generated “noisy" dataset,
appropriate augmentations, selected using our conditional independence-based method,
are applied to a clean training dataset that will be used for fine-tuning our self-supervised
representations. As only the test set is distorted, this simulated experiment only involves
one fine-tuning, contrarily to the real-data scenario, where a second fine-tuning stage
is held on the target training data, as shown in Figure 4.1. This simulated experiment
has two advantages compared to a natural setting. First, it ensures that the distortions in
the testing set can be replicated by the set of augmentations considered. Second, since
we have access to the augmentation distribution that generated the “distorted" target
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LS Split Baseline Random CI Augment Topline

test-clean 29.86 29.91 27.20 26.11
test-other 43.89 42.48 40.68 36.92

Tab. 4.2.: Mean WER results on distorted versions of LibriSpeech test splits. While scoring below
the topline, our method, named “CI Augment", is significantly better than applying all
or random augmentations. “Baseline" corresponds to augmentation-free training.

dataset, it allows estimating the similarity between the augmentation distribution used
to create the simulated testing domain and the one obtained with our method, i.e. the
similarity between the parameters controlling the chain of distortions applied.

In these experiments, A = 8 augmentations distributions are sampled and applied on the
LibriSpeech test-clean and test-other splits (Panayotov et al., 2015). For every sampled
distribution, these two distorted splits are then considered as the testing datasets. We
apply the same augmentation distributions to the dev-clean and dev-other splits, and use
these two sets to compute the optimal augmentations following the method described
in the previous section. Finally, we use the computed distribution τ∗ with the lower
HSIC estimator value as the augmentation for fine-tuning our SSL model on LibriSpeech
train-clean-100 split.

Results. Table 4.2 presents the results obtained on the test splits of LibriSpeech in the
oracle experiments, with the column “CI Augment" (the name of the approach, CI standing
for Conditional Independence) showing the results of the proposed approach. Each value
corresponds to the mean of the values obtained with each of the A target datasets created
with the sampled augmentation distributions. The “Topline" corresponds to the result
obtained when the training samples are augmented using the same distribution as the
one used to generate the distorted testing splits (i.e oracle scenario). Two baselines are
considered: the first one referred to as “All" applies all the considered augmentations on
the speech samples with their default parameters. Then, “Random" refers to the mean
value obtained if applying the (A− 1) randomly sampled augmentations, corresponding
to the trainings already performed for the other toplines computation. Our method,
while performing worse than the topline, leads to a relative word error rate (WER)
improvement of 12.7% compared to the baseline on test-clean.

This controlled experiment also enables us to verify if the selected augmentations result
in acoustic condition cloning, as suggested in Section 4.1.2. Indeed, the probabilities
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of applying a given distortion to each testing set are known. To verify our intuition,
for each one of the 8 augmentation distributions applied, we sample 200 other random
augmentation distributions and score them using HSIC. For every scored distribution,
we consider the vector composed by the seven probabilities of applying the considered
distortions. Since these probabilities are known for the target distribution, we can
compute an L2 distance between the vector of probabilities of applying distortions used
to create the target dataset, and those of the sampled scored distributions. We observe a
Spearman correlation score of 0.51 between the HSIC scores and the distances between
vectors of probabilities. Furthermore, the application probabilities of the 10 (top 5%) best
scoring distributions are 15% closer to the target ones than those of the 10 worst scoring
ones. These results indicate that the selected augmentations, i.e. those with low HSIC
scoring, create samples closer to the target domain.

Experiments with Naturally Distorted Datasets

In this section, we test and validate the proposed approach on real low-resource “noisy"
datasets.

Task-specific experimental protocol. The goal is to adapt a large clean “neutral" la-
beled dataset to better match the acoustic conditions of a small target dataset. The
modified dataset is used during a first fine-tuning of the SSL representation, before
further fine-tuning on the target dataset. To ensure a valid evaluation, the target dataset
must meet two criteria: first, it should display consistent noisy recording and acoustic
conditions. Second, neutral and target datasets should not exhibit different textual
settings, i.e differences such as spontaneous versus read speech, as our augmentations
only address acoustic distortions. The Librispeech train-clean-100 is used as the clean
dataset to be modified. The target datasets, on the other hand, correspond to the largest
contributors of the CommonVoice 11.0 English dataset (Ardila et al., 2020). Starting
from the ten most prolific contributors, two of them are finally selected after removing
elements with heavy accents, and unintelligible or very clean recordings. For these two
selected contributors, we partition the recorded samples into the train, validation, and
test splits, and only use the training data to compute the augmentation distribution se-
lection. The train splits are 9 and 7 hours long. More details can be found in the repository.

4.1 Acoustic Cloning for Domain Adaptation of Self-supervised
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Contributor Without Augmentations With Augmentations

train-clean-100 Contributor Only train-clean-100 + Contributor All Random CI Augment

Contributor 1 102.52 73.0 27.71 27.95 27.33 24.27
Contributor 2 96.49 98.92 20.48 20.76 22.23 16.49

Tab. 4.3.: Mean WER results on distorted versions of LibriSpeech test-clean and test-other. Our
method, named “CI Augment", outperforms the baselines and random augmentations
for each one of the two contributors.
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Fig. 4.2.: Effect of selecting augmentations on the performance depending on the quantity of
target domain training data for each of the two considered contributors. The x-axis is
not linear.

Results. Table 4.3 reports the WERs with or without augmentations during the first fine-
tuning on train-clean-100. The first vertical part of the table shows the results obtained
on the baselines without augmentations. “train-clean-100" corresponds to fine-tuning
only on Librispeech train-clean-100 split non-distorted. “Contributor Only" corresponds
to training only on the contributor data. For all other columns, the model is fine-tuned
on train-clean-100 first, with or without augmentations, before further fine-tuning on
the contributor data. The “CI Augment" column shows that the augmentations chosen
with our conditional-independence-based method lead to better target performance than
applying no, all, or random augmentations on the neutral training split. The relative
improvement compared to the augmentation-free baseline reaches 12.4% for Contributor
1 and 19.5% for Contributor 2.
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Furthermore, we study how this affects the amount of target domain data needed (see
Figure 4.2). We start by fine-tuning with the chosen distortions for the “Method" lines
and on the clean original LibriSpeech dataset for the “Baseline" lines. Then, the duration
of annotated target data used is augmented gradually. For the two contributors, the
orange curve representing the evolution of the WER after fine-tuning with the computed
distortions is always below the blue curve corresponding to the baseline. The effect is
particularly visible with Contributor 1 with a performance 16.6% higher relatively when
training with only 2 hours.

4.1.4 Conclusion

Self-supervised representations severely underperform when facing acoustic domain
mismatch. We have introduced a method using automatic data augmentation selection to
reduce the drop in performance when switching acoustic domains. Experiments led in
controlled and natural settings validate our assumption and method and also show that
it helps reduce the quantity of annotated data needed in the target domain. However,
domain shifts are not limited to acoustic shifts. Linguistic shifts or accent-related ones
also represent a large source of failures. The following section will introduce approaches
that can improve generalization abilities facing various shifts. They rely on the fact that
pretraining sets contain a large variety of settings and that the robustness acquired during
that phase should not be lost during the fine-tuning one.

4.2 Less Forgetting for Better Generalization

As said in the introduction, in common usage, the weights of speech self-supervised
encoders are fine-tuned during the downstream phase. On the one hand, freezing the
self-supervised representations during downstream training makes the SSL backbone a
mere feature extractor. In this case, to reach reasonable performance, the downstream
head may need to be more complex leading to costly inferences (Zaiem et al., 2023). On
the other hand, full fine-tuning of the SSL encoder makes the pretraining “only" a better
network initialization. We believe that controlling the fine-tuning trajectory with regard
to the pretraining phase will improve the overall generalization ability.
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Specifically, we postulate that fine-tuning the whole network weights hurts the gen-
eralization abilities of the final obtained model, because the model may “forget" the
first task. This is motivated by two reasons. First, models generally learn to solve the
self-supervision on massive unlabeled datasets. This large data diversity makes these
models robust and explains in large part their generalization abilities (Hendrycks et al.,
2019) and should thus be kept after the fine-tuning. Second, research on self-supervision
training and probing has shown the closeness of the unsupervised pretraining task to
speech recognition (Pasad et al., 2021). For HuBERT (Hsu, Tsai, et al., 2021) for instance,
recent works have been exploring performing the ASR task only using the discrete classes
used for HuBERT pretraining (Y. Yang et al., 2023).

To prevent this forgetting, and again with the objective of better performances post-
finetuning on in-domain and out-of-domain samples in mind, we explore the continual
learning literature looking for useful methods for our case. Continual learning (CL), also
known as lifelong learning or incremental learning, is a machine learning paradigm that
focuses on training models to acquire new knowledge and adapt to changing data over
time (Parisi et al., 2019).

Continual learning approaches have been explored lately in the speech recognition
research community towards including, within a model scope, new languages (Hou
et al., 2022; Libera et al., 2023), new accents (Trinh et al., 2022; Majumdar et al., 2023;
Vander Eeckt & Van Hamme, 2023) or new speakers (Diwan et al., 2023) without losing
previous abilities. In a close approach, it has been used to further train a Wav2Vec2
model to include new domains where the learned representations can be efficiently used
for downstream training. However, these works never explored CL during fine-tuning
(J.-H. Lee et al., 2022).

A close line of work is parameter-efficient fine-tuning (PEFT) (Otake et al., 2023). While
reducing the number of parameters updated is done mainly for the sake of efficiency
in the case of large pretrained models, it also leads to less forgetting through freezing
large parts of the network. Those methods are widely adopted in the natural language
processing and computer vision communities due to the large size of the models. The
speech literature for this is more scarce, with main works on child-directed speech (R. Fan
et al., 2022) or emotion recognition (T. Feng & Narayanan, 2023). Specifically, a close
effort has tried various adapters for self-supervision-based models on a group of speech
tasks with training efficiency as the main target (Z.-C. Chen et al., 2023).
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It is important to state a major difference between our objective and the ones in classic
continual learning. In the classic setting, the performance on the first tasks matters in the
final performance assessment, and, thus, approaches are evaluated on their reduction of
forgetting. In our case, while we will use methods inspired by continual learning, the
performance on the self-supervised task is not part of our evaluation. The link between
forgetting and final performance is a postulate that we will only probe in a second time.
Our contributions are two-fold:

1. We explore several continual-learning-based approaches for speech SSL fine-tuning
showing substantial performance both on in-domain and out-of-domain testing
samples.

2. We highlight the link between the performance gain and the non-forgetting of the
self-supervised task by probing the forgetting of the best-performing methods.

In the following, Section 4.3.1 first describes the different explored fine-tuning approaches.
Then, Section 4.2.2 gives further implementation details and analyses the obtained results.
Finally, Section 4.2.3 unveils the link between forgetting and generalization performance
before discussing a few caveats of the described approaches.

4.2.1 Methods

Baselines

The main baseline here is full fine-tuning of the network with the downstream task loss.
In this case, the self-supervision part can be seen as a high-performing initialization of
the final network. We should expect that after the full fine-tuning, knowledge about
the pretraining task and data is mainly lost. A second baseline is more common in the
speech self-supervision literature (Baevski, Zhou, et al., 2020). Since masking in the
self-supervised training happens generally after the convolutional front-end (Baevski,
Zhou, et al., 2020), the first convolutional layers are kept frozen during the fine-tuning.
This method could be classified within the freezing-based approaches and is the one
used in the Wav2Vec2 paper and similarly for HuBERT (Hsu, Tsai, et al., 2021), WavLM
(S. Chen, Wang, et al., 2022) and other common SSL backbones.

Another considered approach, inspired by works diagnosing the link between freezing
representations and generalization (Xie et al., 2021), consists in a better initialization of
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the downstream head by keeping the encoder frozen during the first steps of downstream
training. In a second time, after the initialization of the downstream head, the weights of
the whole model are fine-tuned. This method will be called “two-phased" fine-tuning in
the following. Finally, a fully frozen baseline is also tested. In this case, and following
common practices in frozen SSL benchmarking (S. Yang et al., 2021; Zaiem et al., 2023),
the layer input to the downstream head is a weighted sum of the encoder layers, with
weights learned during fine-tuning. The frozen alternative is expected to lead to poor
results given the reduced downstream heads. Better results may be achieved with more
complex heads, such as two layers of BiLSTM as in the SUPERB benchmark, but we chose
to keep the setting constant leading to similar inference costs.

Freezing-based

This section presents a group of tested fine-tuning methods. We call them “freezing-based"
as they tend to freeze a group or all the weights learned in the pretraining phase. While
freezing the encoder completely generally leads to bad performances (Zaiem et al., 2023),
various approaches have been exploring partial freezing, or the incorporation of so-called
adapters allowing degrees of freedom within the encoder without changing its weights.
Three methods are presented and tested in this section. The first one uses adapters within
the encoder layers (Majumdar et al., 2023; Vander Eeckt & Van Hamme, 2023). Adapters
are lightweight modules intervening after the dense layers that come after self-attention
ones. Precisely, instead of feeding to the next encoder layer the output of the feed-forward
layer following the attention, this output is passed through the adapter and summed to
itself as in residual approaches.

Second, following very successful trends in natural language processing and computer
vision, Low-Rank (Hu et al., 2022) (LoRa) fine-tuning is also tested in our setting. It
consists in freezing the pretrained model weights and injecting trainable rank decom-
position matrices into each layer of the Transformer architecture, reducing the number
of trainable parameters for downstream tasks. Precisely, we replace the feed-forward
layers after the self-attention mechanism with LoRA layers. The initial matrix W0 ∈ Rd∗k

is replaced with a low-rank decomposition W0 + ∆W with ∆W = BA where B ∈ Rd∗r

and A ∈ Rr∗k with r the rank of the low-rank decomposition. Only the LoRA layers are
fine-tuned during the downstream training. Ultimately, for inference, W = W0 + BA has
the same shape as the initial feed-forward matrix and, thus, this approach does not lead
to more inference computations compared to baselines.
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Finally, we explore using Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017)
during fine-tuning. EWC fine-tuning implies an additional loss, during downstream
training, that forces the weights of the final model to be closer to those at the end of
the pretraining phase. For every updated parameter, the distance to the initial phase is
penalized by the corresponding Fisher information matrix value. The new loss becomes:

L(θ) = LDS(θ) +
∑

i

λ

2 Fi (θi − θ∗
i )2 (4.1)

with θ the parameters of the SSL model, LDS the downstream loss, θ∗ the frozen SSL
model weights after pretraining, F the Fisher information matrix and λ a weighting hyper-
parameter. The Fisher information matrix captures how important a given parameter
is for the pretraining task, and thus, the loss above reduces the movement of the most
important parameters to the self-supervision task, leading to less forgetting.

Replay-based

We also explore replay methods, often called “experience replay" (Rolnick et al., 2019),
during the fine-tuning of self-supervised representations. Replaying the pretraining task
explicitly enforces non-forgetting through optimizing for simultaneously low SSL and
downstream losses. The fine-tuning loss becomes:

L(θ) = LDS,XDS
(θ) + λRLSSL,XR

(θ). (4.2)

with LDS the downstream ASR loss, LSSL, XDS the downstream annotated dataset, XR

the unlabeled replay dataset and λR a scaling hyper-parameter. We have also witnessed
that SSL episodes should be played less regularly, another parameter we called replay-
frequency controls whether a replay episode will be played within the current training
step.

Two different models with two different self-supervision losses are considered. First,
Data2Vec (Baevski et al., 2022) is trained with a teacher-student loss penalizing the
distance between the latent representations of complete audio inputs from a teacher
model and a student model final representations of a masked version of the same
audio. Second, Wav2Vec2 (Baevski, Zhou, et al., 2020) employs a contrastive predictive
loss function that encourages the model to produce similar frame-level contextualized
embeddings to locally extracted quantized speech representations. We chose these two
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Method Params Updated Epoch Duration (s) More Data Inference Cost

Frozen 1.9M 190
CNN Frozen 90.8M 280
Full FT 95.0M 543
Replay 95.0M 641 X
EWC 95.0M 1040
Lora 0.59M 231
Adapters 6.6M 240 X

Tab. 4.4.: Summary of the methods tested for fine-tuning. The number of parameters updated
varies from the whole SSL network to 45x less. Numbers are shown for fine-tuning
Data2Vec Base (Baevski et al., 2022) on one Nvidia V100 GPU on the GigaSpeech
dataset “XS" split. EWC and replay lead to slower fine-tunings, because of further loss
computations. Replay may need other sources of unlabeled data, while Adapters lead
to a slightly increased inference cost.

methods as they are among the best-performing approaches in speech self-supervision
while having easy-to-setup training processes.

Compared to other methods, replay has one obvious cost: it may necessitate other data
sources if the replay is not done on the fine-tuning data, and the final performance
may be very sensitive to this data choice. We have witnessed during our experiments
another cost: it implies a large number of hyperparameters and choices compared to
other methods. This will be discussed more thoroughly in Section 4.2.3.

Table 4.4 summarizes all the described methods showing the number of updated parame-
ters and the duration of one epoch of fine-tuning Data2Vec Base on one Nvidia V100 GPU
on the GigaSpeech dataset “XS" split. Computing additional losses, with the loop over the
parameters of the network for EWC, and the SSL computations for replay, has a heavy
cost in terms of training duration. For the other methods, updating fewer parameters
leads naturally to faster trainings.

4.2.2 Experiments and Results

Datasets

Selected datasets need to cover the two requirements needed for our setting. First, as
stated above, this section explores fine-tuning options in low-resource cases, and thus,
training sets will be of reduced sizes. Second, to evaluate the link between forgetting and
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generalization, out-of-domain testing sets are needed to evaluate OOD generalization. We
will evaluate our methods in two languages, English and Danish, the former, because it is
the main language in pretraining data, and the latter to test the robustness of eventual
gains in another linguistic setting. For the English sets, GigaSpeech (G. Chen et al., 2021)
XS subset (10 hours) will be used for training since LibriSpeech (Panayotov et al., 2015)
cannot be used as it is in the pretraining sets, prohibiting a proper forgetting estimation.
The testing sets include the GigaSpeech test set, LibriSpeech test splits (test-clean and
test-other), two datasets of Scottish and Welsh English accents (Demirsahin et al., 2020)
and CommonVoice 14.0 English (Ardila et al., 2020) test set. The last three sets can be
seen as the OOD testing samples as the two former ones have specific accents, and the
latter presents very various accents and noise conditions.

For Danish, we use for training the NST Danish ASR Database.1 It is very relevant in our
case as it consists in read speech samples recorded in very similar conditions. 50 hours of
the dataset are selected for training, 5 for validation and 10 for in-domain testing. The
CommonVoice 14.0 Danish validation and testing splits are concatenated and used for
OOD testing.

Self-supervised Models

As stated in Section 4.3.1, two self-supervised models are considered, Data2Vec Base
(Baevski et al., 2022) and Wav2Vec Large XLSR-53 (Conneau et al., 2021). They offer
variability in network size (total number of parameters), pretraining dataset diversity
and size and finally training loss and methods. The former model is only trained on the
grouped LibriSpeech training splits, leading to 960 hours of English read speech. XLSR-53
is trained on a total of 56k hours of speech data covering 53 languages.

Methods Parameters

This section gives the training details for the different methods described in Section
4.3.1.

Replay-based During the replay-based experiments, the pretraining tasks, masked pre-
diction for Data2Vec, and contrastive predictive coding for XLSR are performed along
with the ASR downstream one, as described in Section 4.3.1. A replay frequency pR

1nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-55/
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controls the number of episodes of replay compared to the downstream ones. During
the first epoch of fine-tuning, no replay is done as it has shown to lead to more stable
fine-tunings. In the next epochs, pR = 0.25 led to the best results. The hyper-parameters
of the replay task, mainly controlling the mask creation, are kept similar to the default
ones used for the pretraining. We explained this more in details in Chapter 1 but let
us remind that Data2Vec is trained using a teacher-student approach, with the teacher
model updated using an exponential moving average (EMA). We follow a similar strategy
with the teacher model being updated with the weights of the fine-tuned student model
as follows:

θT ← βθT + (1− β)θS

with θT the teacher weights, θS the student weights (i.e. the weights of the fine-tuned
encoder) and β a decay weight we fix to β = 0.8. Finally, replay requires the choice
of a replay dataset. In the following, we will call “Auto-replay" experiments where the
fine-tuning dataset is also used for the replay episodes. In a second experiment, either
for English or Danish fine-tunings, providing a proper replay of the pretraining phase,
replay batches will be sampled from LibriSpeech train splits, as they are included in both
trainings of Data2vec Base and Wav2Vec2 XLSR. This experiment is called “LS-Replay".

Freezing Based The only hyperparameter for the baselines concerns the length of
the freezing phase in the “Two-phased" approach, we fix it to three epochs. We use
the LoRaLib toolkit (Hu et al., 2022) to replace the feed-forward layers following the
transformer with a LoRa layer with rank r as described in Section 4.3.1. We chose as
in (T. Feng & Narayanan, 2023) r = 16. For the adapters approach, we follow works
in continual learning for speech on the adapter architecture. Each adapter network is
composed of the following: (i) a layer-normalization layer, (ii) a downsampling operation
to reduce the dimension to d, (iii) the application of a ReLU activation function, (iv)
an upsampling operation to restore the original dimension, and (v) the inclusion of a
skip connection connecting the input and output of the adapter. Finally, applying Elastic
Weight Consolidation requires two choices. First, we fix the hyper-parameter controlling
the distance to the original model loss (see Equation (4.1)) to λ = 50. The second choice
concerns the dataset on which the Fisher information matrix is computed. Again, given
that it is included in both the pretraining sets, LibriSpeech is chosen. Specifically, the
LibriSpeech 10-hour split is selected as it includes samples from the three LibriSpeech
training splits, and it is large enough for the expectation computations needed for the
Fisher matrix.
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Results

Tables 4.5 and 4.6 show the Word Error Rates (WER) obtained in the English and Danish
experiments, with Data2Vec for the first table and XLSR in the second table, as the
backbone self-supervised representation model. Results for the English training, i.e. the
training performed on GigaSpeech XS, are shown on the five test sets described in Section
4.2.2, while results for the Danish one are shown on two test sets. The number shown is
the mean of three runs with three different random seeds. However, we only selected
runs that led to convergence. This point is discussed further in Section 4.2.3.

As expected, the frozen model leads to poor performance. It is the worst-performing
approach for both languages either with Data2Vec or XLSR. Even worse, the model is
not able to fit with XLSR with frozen features, with this model being notoriously hard to
use without fine-tuning. The two classic baselines, freezing the convolutional front-end
and the two-phased training, seem to perform better than the full fine-tuning baseline,
especially for out-of-domain samples. We can see for instances in Table 4.5 an absolute
gain of 3.5% WER and 2.3% on CommonVoice English and Danish with the “Fixed CNN"
approach compared to the full fine-tuning approach.

When considering the lower parts of the two tables, presenting the alternative fine-tuning
approaches results, we can see that, except for the failing “Adapters" approach, all the
methods lead to better performances, both for in-domain and out-of-domain testing
cases. This is visible from the numbers in bold in the table, as for every test set, the
best performance is systematically obtained from one of the proposed alternatives. For
instance, Low-Rank fine-tuning (LoRa), while also being more efficient as shown in Table
4.4, achieves a mean error rate 7.0% lower with Data2Vec and even 14.2% lower with
Wav2Vec2 XLSR. “LoRa" and Elastic Weight Consolidation (EWC) are comparable in terms
of performance, with the latter involving slower fine-tunings.

The replay-based approaches show two rows, “LS-Replay" and “Auto-Replay", as described
in Section 4.2.2, depending on the replay dataset, either LibriSpeech (LS) or the fine-
tuning set. In all our settings, with both SSL backbones and on both target languages,
replaying LibriSpeech samples leads to lower WERs. “LS-Replay" is the best overall
performing approach in two cases, Scottish and Welsh accented samples with Data2Vec
Base and all Danish test sets with XLSR. The second case is surprising with the test and
train data being in a different language compared to the replay samples.
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Method English Training Danish Training
GS Test LS test-clean LS test-other Scottish Welsh CV NST Test CV

Baselines

Frozen 33.38 17 22.81 38.05 33.22 56.12 70.35 83.57
Full FT 26.92 9.83 17.47 26.9 22.32 53.4 13.75 36.57
Fixed CNN 26.67 10.01 16.94 25.52 22.65 49.98 13.8 34.38
Two-Phase 26.67 10.14 17.71 26.28 23.65 49.1 14.63 36.56

Freezing-Based

LoRa 25.74 9.27 15.73 25.18 21.88 50.81 12.89 31.13
EWC 25.57 9.4 16.3 24.97 21.08 50.11 12.95 31.70
Adapters 30.62 12.81 19.72 35.16 30.8 56.42 45.48 62.43

Replay

LS-Replay 26.07 9.71 16.34 25.14 20.37 48.35 12.93 32.36
Auto-Replay 26.25 9.54 17.16 25.8 22.91 50.48 13.14 35.93

Tab. 4.5.: WER Results on different test sets using Data2Vec Base as a backbone SSL model. The
English fine-tuning is performed on the GigaSpeech “XS" subset and the Danish one
on 50 hours of the NST dataset. We can see that LoRa, EWC, and replay methods
outperform the considered baselines on all the testing sets.

The two CommonVoice columns allow us to have a proper look at out-of-domain general-
ization. CommonVoice is a crowd-collected dataset showing various accents and recording
conditions. This explains in part the high WER values in these columns. Compared to the
full fine-tuning baseline, different freezing or replay-based approaches, allow a relative
gain in performance that can reach 9.4% and 14.8% with Data2Vec Base, respectively
for English and Danish. Relative gains even reach 15.7% and 22.5% for Wav2Vec2 XLSR,
respectively again for English and Danish.

4.2.3 Analysis and Discussion

Probing the Forgetting

We have shown in the previous section that continual-learning-inspired approaches lead
to substantial performance gains both for in-domain and out-of-domain testing samples.
To diagnose the link between the performance gains and non-forgetting of the self-
supervision part, this section probes the forgetting of the models fine-tuned with the
presented approaches. At every epoch of fine-tuning, a checkpoint of the model is saved
for further probing. Two quantities are computed. First, we compute the L2 distance
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Method English Training Danish Training

GS Test LS test-clean LS test-other Scottish Welsh CV NST Test CV

Baselines

Frozen > 100 >100 >100 >100 >100 >100 >100 >100
Full FT 28.85 11.89 24.43 32.35 28.42 60.69 10.99 30.41
Fixed CNN 28.98 12 24.35 33.49 29.42 58.88 10.8 27.87
Two-Phase 27.42 10.97 21.66 30.23 25.08 56.19 11.21 28.94

Freezing-Based

LoRa 26.68 10.73 19.79 28.61 24.02 50.83 10.37 24.7
EWC 27.21 10.55 20.14 29.58 27.02 51.12 10.35 24.44
Adapters 28.8 12.76 20.3 29.05 26.36 50.61 18.85 33.34

Replay

LS-Replay 27.54 10.85 20.21 29.15 27.53 53.98 9.29 23.56
Auto-Replay 28.6 11.53 22.75 31.08 28.52 53.17 11.22 29.48

Tab. 4.6.: WER Results on different test sets using Wav2Vec Large XLSR as a backbone SSL model.
The English fine-tuning is performed on the GigaSpeech “XS" subset and the Danish
one on 50 hours of the NST dataset.

between the final representations output by the SSL encoder after and before fine-tuning.
In the frozen scenario, this quantity would remain equal to zero. Precisely, with e the SSL
encoder after fine-tuning, e∗ the one before, (xi)i∈[1,n] a testing set of n speech samples,
the similarity loss is defined as :

LSIM = 1
n

n∑
i=1
||e(xi)− e∗(xi)||2

The second quantity computed is, given a testing set, the self-supervised task loss obtained
with the fine-tuned model. This quantity evaluates the ability of the fine-tuned models to
still perform the masked speech modeling task used during pretraining. The probing is
performed using Data2Vec Base. While Data2vec, as described in Section 4.3.1, uses a
teacher-student approach for training, we will use the same model, i.e. the fine-tuned
one for teacher and student for probing. It means that, practically, we will be testing the
ability of the model to produce similar latent representations with or without masked
parts. We think this is crucial for final performance as a model with this ability will be
able to perform reasonable transcriptions even if parts of speech are unclear or blurry
due to noise conditions or mispronunciations. We compute these two quantities, at every
epoch of fine-tuning, on two English test sets, the in-domain test split of GigaSpeech
and the out-of-domain test set of the CommonVoice dataset in its 14.0 version. The
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Fig. 4.3.: Evolution of the similarity loss for 4 considered fine-tuning approaches. The best-
performing approaches lead to high dissimilarity either for in-domain or out-of-domain
testing. There does not seem to be a link between the similarity of the final representa-
tions and the final downstream performance.

similarity probing results obtained with four fine-tuning approaches are shown in Figure
4.3. We chose to show the three best-performing approaches, Low-Rank fine-tuning,
elastic weight consolidation, and LS-Replay, along with the best baseline, the two-phased
fine-tuning. The value of the similarity loss does not seem linked to the final performance
with the two-phased approach and EWC bearing close distance values, and LoRa and
LS-Replay showing lower similarities.

However, the conclusion is different when probing the performance on the self-supervision
task. Figure 4.4 shows the evolution of the SSL loss for the same methods as in the
previous figure. In this case, the two-phased approach is an obvious outlier(intrus) with
the loss twice as high as the “LS-Replay" and 6 to 7 times as high as for LoRa and EWC.
Forgetting, here defined as losing the ability to perform the pretraining task, is correlated
with low performance, and this is true for in-domain and out-of-domain testing samples.
This probing experiment seems to confirm the starting postulate and explains the gain in
performances witnessed in Section 4.2.2.
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Fig. 4.4.: Evolution of the self-supervision task loss for 4 considered techniques. The best-
performing approaches on the ASR task (First row and left plot of second row) seem to
be the ones best-performing at the SSL task after multiple epochs of fine-tuning.

Parameters and Stability

This section discusses two caveats to the proposed approaches. The first one concerns
the number of hyperparameters introduced by the techniques. As discussed in Sections
4.3.1 and 4.2.2, the presented fine-tuning approaches introduce various hyperparameters
and choices that need trials and tuning. For instance, LoRa necessitates a rank for the
low-rank matrices replacing the feed-forward layers in the transformer architecture.
Also, applying Elastic Weight Consolidation (EWC) requires a weighting hyperparameter
named λ in Equation (4.1), and a dataset choice for the computation of the Fisher
information matrix. Adapters will involve a modeling architecture choice with all the
hyperparameters related to that from downsampling dimensions to the number of layers.
Finally, replay-based approaches are among the most hyperparameter-hungry methods
described here. Replaying episodes implies a choice of the replay frequency, the replay
samples, and the number of training steps before the beginning of the replay. The results
shown in the tables 4.5 and 4.6 are those of the best-performing parametrization for
every technique, but what is not shown is the influence of these hyperparameters.

We highlight this aspect by reporting the results of a group of experiments related to the
tuning of these hyperparameters for the best-performing set of techniques. We consider
for low-rank fine-tuning, EWC and “LS-Replay" the most impacting hyper-parameter,
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Fig. 4.5.: Effect of different hyper-parameters on the final performance on Danish in-domain
(ID) and out-of-domain (OOD) test sets, for three different techniques (LoRa, EWC,
and LS-Replay), with XLSR backbone. While LoRa seems quite robust to changes in
the main hyperparameter, other approaches require careful tuning. In the second and
third columns, the fine-tuning baseline is shown for x = 0, while it is shown with a
horizontal dashed line for the LoRa plots.

respectively, the rank of the LoRa layers, the λ parameter controlling the weight of the
distance penalization in EWC and the frequency of replay episodes during fine-tuning. We
show the results with different values of these hyperparameters on the in-domain (NST)
and out-of-domain (CommonVoice) testing samples for the Danish training performed
with XLSR as the SSL backbone in Figure 4.5. For LoRA, as also observed in (T. Feng &
Narayanan, 2023), the final performance is not severely impacted by reasonable changes
in the main hyperparameter, the rank of the Lora layer. However, this is not the case for
the two other techniques, as shown clearly in the “V" shapes of the plots in the second
and third column of Figure 4.5. With inappropriate choices of replay frequencies or
lambda values, the word error rates can be as high or even higher than the full fine-tuning
baseline. This sensitivity is one main caveat to the use of these approaches as they will
require, depending on the task and the technique used, a certain exploration of different
values for the introduced parameters.

A second caveat we wish to report concerns the instability introduced by the proposed
approaches. In Section 4.2.2, it is stated that the results shown are those of the mean
of 3 runs that led to convergence. Successful experiments are those where the training
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loss reasonably approaches zero after the considered number of training steps. In our
experiments, fine-tuning Data2Vec has shown more stable than XLSR and would lead
generally to convergence in all cases. Introducing penalties in losses or reducing the
number of parameters updated can lead to trainings being less stable and not converging
to an interesting solution.

4.2.4 Conclusion

Self-supervised encoders are generally learned using massive unlabeled datasets during
pretraining, leading to robust and generalizing representations. A full fine-tuning for
downstream purposes may bias the final model towards the reduced downstream setting
and hurt generalization abilities. This is why we have tested continual-learning-inspired
fine-tuning approaches for self-supervised-based speech recognition. Results show that
Low-Rank fine-tuning, Elastic Weight Consolidation, and Replay allow substantial gains
compared to the full fine-tuning baseline. These gains are correlated with less forgetting
and, precisely, better performance on the pretraining task after fine-tuning. However,
we have seen that this may come at the cost of efficiency (one of our main objectives
as described in Chapter 1), either during training or even during inference in the case
of added adapters. This suggests an opposite path, trading performance and out-of-
distribution abilities with efficiency.

4.3 Fine-tuning Strategies for Faster Inference using
Speech Self-Supervised Models

In this section, we will look at forgetting during inference as a double-edged sword.
Pretrained encoders are trained on large corpora, allowing for robust representations.
Consequently, as we have just shown, freezing, at least partly, these encoders during
downstream training reduces forgetting improving out-of-domain performance. But what
if out-of-domain generalization mattered less than inference costs? Can we, conversely,
enforce structural forgetting policies, focusing on the target downstream domain, and
reducing the computations needed during inference? These are questions we will provide
an answer for in this section.

4.3 Fine-tuning Strategies for Faster Inference using Speech
Self-Supervised Models
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As described in Section 1, recent trends in SSL for speech have shown that the im-
provements in terms of performance are often driven by larger architectures, leading to
potentially long inference times (S. Chen, Wang, et al., 2022). For instance, Sanyuan et al.
2022, have shown that switching from WavLM Base to WavLM Large halved the observed
word error rate (WER) on a held-out English ASR task. Preserving reasonable inference
times while increasing the capacity of the model is of critical interest to maximize the
impact of this new technology on real-life products.

As a matter of fact, several approaches have been proposed to shorten inference times
using SSL models. Some attempted to distill state-of-the-art models by using shallower
or thinner networks (Chang et al., 2022; Rui et al., 2022) or through downsampling
the inputs (Y. Lee et al., 2022; H.-J. Chen et al., ICASSP 2023). However, while the
downstream performance of distilled student models is comparable to larger teacher
models on most speech classification tasks, a large gap is still witnessed for more complex
tasks such as ASR (T.-h. Feng et al., 2023). Also, low-bit quantization during pretraining
has recently emerged as a successful approach for faster inference times (Yeh et al., 2022).
Compared to our proposed methods, these two approaches bear the advantage of leading
to generalist models usable for multiple downstream tasks. However, they have two
major downsides. First, they necessitate access to the very large pretraining dataset,
which may or may not be publicly and commercially available, such as for recent and
large-scale state-of-the-art speech recognition models (Radford et al., 2022). Second,
even if the pretraining set is available, applying quantization or distillation to these large
models remains a particularly challenging and costly task due to the original dataset and
model sizes. For instance, academic attempts for distilling SSL models have been solely
applied to Base models (i.e. less than 100M parameters), and are generally restricted to
a thousand hours of speech pretraining data, compared to 94k hours for 317M-parameter
WavLM Large.

4.3.1 Setting and Methods

This section outlines the global setting for comparing the considered techniques before
providing a detailed description of the approaches and their motivations.
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Benchmarking Setting

The study is conducted under the two strong yet realistic following conditions. First, we
suppose that we do not have access to the pretraining dataset that would enable, for
instance, extensive distillation or quantization approaches. Second, we limit ourselves to
using only the annotated training data of the target dataset during fine-tuning, eliminating
transfer-learning-based approaches. The second condition is relevant when the target
domain is rare and specific enough not to take advantage of transfer learning from
classic large annotated datasets. This is generally true in two popular cases where using
self-supervised models is privileged: low-resourced languages and speech datasets with
specific acoustic conditions (Zuluaga-Gomez, Prasad, et al., 2023).

We use the released pre-trained and non-fine-tuned WavLM Large (S. Chen, Wang, et al.,
2022) as the SSL model, as it tops speech self-supervised learning benchmarks and
exhibits resilience to noisy conditions (T.-h. Feng et al., 2023). In all the experiments of
this section, we use the train-clean-100 split of LibriSpeech (Panayotov et al., 2015) as
our training set, the dev-clean split for validation and finally the test-clean split for testing.
Following common practices (Baevski, Zhou, et al., 2020), we freeze the convolutional
front-end and only fine-tune the transformers part of WavLM Large consisting of 24
transformers layers. The self-supervised encoder outputs a frame vector of dimension
1, 024 for every segment of 320 speech samples which corresponds in the case of a 16-
kHz sampling rate to 20 ms of audio signal. Two fully connected layers with a hidden
size of 1, 024 map each frame vector to the probabilities of the considered characters.
Connectionist Temporal Classification (CTC) (Graves, 2012) loss is used for training.

During inference, the decoding of the probabilities of the characters is completed in
two ways: with or without using a Language Model (LM). In the experiments labeled
as Without LM, greedy decoding is applied, outputting the character with the maximal
probability at each step before applying CTC-based reformatting to get the predicted
words. In the With LM experiments, we use the Librispeech official 4-gram language
model, trained using the KenLM library (Heafield, 2011), and decode the sentence using
shallow fusion (Toshniwal et al., in SLT 2018) considering the language modeling score
of a beam of the most acoustically probable sequences. An n-gram model is chosen
over more complex language modeling approaches to reduce word error rates while
keeping low inference times. This is done using the PyCTCDecode2 library with default
parameters. To understand the impact of this aspect on the results tables, it is crucial to

2https://github.com/kensho-technologies/pyctcdecode
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Technique WER ↓ GPU (s) CPU (s) WER-LM ↓ GPU-LM (s) CPU-LM (s) MACs (G)

Baseline Full Model 4.09 134 1121 3.31 152 1128 386.53

Layer Drop Drop Prob

0.5 11.28 96 721 5.89 156 776 244.19
0.4 8.32 102 816 4.58 145 844 272.28
0.3 6.56 109 888 3.84 157 913 300.98
0.25 5.91 113 932 3.72 148 950 314.24

Layer Removal Num. Kept Layers

12 14.39 93 726 8.64 127 739 236.64
16 8.16 109 852 5.53 131 861 286.60
20 5.14 117 988 3.62 142 989 336.57

Early Exit : Entropy Threshold Mean Exit Layer

0.06 13.80 12.08 96 757 9.25 122 765 252.36
0.03 17.61 7.67 116 974 6.55 137 976 326.28
0.025 20.52 6.66 128 1127 5.87 149 1132 364.92
0.01 23.98 6.20 142 1275 5.49 165 1280 386.53

Early Exit : Layer Sim. Threshold Mean Exit Layer

0.92 15.97 10.23 99 812 8.17 123 819 274.11
0.95 17.18 8.78 104 850 7.35 126 864 291.68
0.965 21.44 6.79 120 1070 5.93 131 1073 358.85
0.98 24.00 6.20 128 1153 5.49 149 1153 386.51

Two Steps EE : Layer Sim. Threshold Mean Exit Layer

0.96 14.52 21.95 102 866 8.75 180 938 285.68
0.97 21.46 6.17 126 1138 4.34 152 1167 382.00
0.98 23.0 4.54 130 1175 3.87 151 1196 386.54

Downsampling Technique Downsampling Factor

Convolutional Downsampling 2 4.61 84 582 3.48 98 600 192.97
3 5.47 69 414 4.12 91 436 134.86
4 21.88 67 335 14.60 106 340 96.11

Averaging Downsampling 2 4.93 80 570 3.66 98 578 192.97
3 6.01 64 406 4.27 90 422 134.86
4 26.84 60 326 18.02 115 385 96.11

Signal Downsampling 2 4.85 86 569 3.58 97 575 192.97
3 5.83 72 427 4.08 89 458 134.86
4 16.08 63 330 11.10 97 369 96.11

DistilHuBERT Linear Decoder 30.74 56 240 16.20 130 311 101.74
BiLSTM Decoder 16.30 95 545 10.57 128 613 161.06

Tab. 4.7.: Word error rates and inference metrics on LibriSpeech test-clean split for the considered
approaches and various parameters per method. All models are finetuned on Lib-
riSpeech train-clean-100. “GPU" and “CPU" indicate the inference times in seconds on
GPU and CPU. “-LM" suffixes indicate that the decoding uses a language model. “Drop
Prob" is the probability of randomly dropping layers during inference. Early-exiting
experiments come with an exiting threshold and a resulting mean exit layer computed
over the test set.
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note that this decoding is performed on CPU and that the decoding time is prolonged
when the model is uncertain about its predictions. Indeed, PyCTCDecode proceeds to
prune elements of the beam that are scored too low by the language model compared to
the maximal beam score. It leads to a penalty for models with high error rates before
the LM addition, as they systematically had longer decoding times. With the stage of the
comparison set, we will proceed to the descriptions of the selected candidates.

Layer Dropping and Replacement

With multiple studies on layer-wise probing of self-supervised models showing that
phonetic content is divided among the layers of the transformers (Pasad et al., 2021),
removing layers has emerged as a possibility for faster inferences. Experiments led mainly
on text language models have shown that dropping higher level layers is preferable
to avoid heavy performance drops (Sajjad et al., 2023). In a first experiment, we will
study the effect of fine-tuning the SSL model after having removed a number of layers.
In a second one, given the fact that WavLM has been trained with layerdrop (A. Fan
et al., 2020), i.e. random layer omission during training, we fine-tune it with layer drop
probability equal to q = 0.5 and study the effect of keeping various layerdrop rates during
the testing phase.

Early-exiting

Similarly, early-exiting is a relevant approach to reduce computations during inference
(Yoon et al., 2022; Berrebbi et al., 2023). It consists in allowing the model to use an early
layer representation and feed it directly to the decoder, saving the computation of further
layers. During fine-tuning, starting from the twelfth layer, a specific downstream decoder
is learned on top of every layer. During inference, a heuristic metric computed after each
layer indicates whether the model should output a decoded sequence using the current
layer or go further. Given well-calibrated heuristics, early-exiting should reduce the mean
exit layer and, thus, the mean inference time. Furthermore, studies on what has been
called “overthinking" (Berrebbi et al., 2023) have shown that SSL models could benefit
from early exiting both inference time and performance. Inspired by previous works, two
heuristics are tested: the entropy of the decoder outputs, and a measure of similarity
between the representations of consecutive layers.
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As described in Section 4.3.1, each downstream decoder consists of two linear layers out-
putting logit probabilities after each time frame of 20 ms. Each layer i of the transformer
outputs a representation Ri of size [L, D] with L the number of signal time frames and D

the hidden dimension of WavLM Large (D = 1, 024). Operating on this representation
through the decoder Di, the vectors of logit probabilities Li are of size [L, V ] with V the
number of different characters in the dataset (in our case V = 31). The entropy Hi of the
output of layer i is defined as:

Hi = − 1
NV

N∑
j=1

V∑
k=1

Li,j,k log(Li,j,k), (4.3)

with Li,j,k being the probability of the character k at time frame j predicted by decoder
Di. During fine-tuning, to learn the weights of every decoder weights, we pass through
all the layers of the model and sum the CTC losses over the outputs of all decoders.
During inference, after each layer i starting from the twelfth, Ri is decoded and Hi is
computed. If Hi is lower than a fixed entropy threshold, we do not go further in the SSL
transformer, and decode the logit probabilities into words. Hence, reducing the entropy
threshold increases the confidence required for exiting, leading systematically to later
exits and thus, higher inference times. The second exiting heuristic is layer representation
similarity. For each layer i ≥ 12, we compute the cosine similarity between Ri and Ri−1.
Similarly to the first approach, if the similarity is higher than a fixed threshold at layer i,
the model exits to Di and decodes the logits into a word sequence. This second approach
is slightly faster as it does not involve computing the decoding into logits at each layer.

Sequence Downsampling

Inspired by works on distilling speech models with smaller sampling rates (Y. Lee et al.,
2022; Rui et al., 2022), and given the quadratic memory bottleneck of transformers
architectures as a function of input lengths, we assess the capacity of the SSL model,
trained on 16-kHz audio inputs, to adapt to lower sampling rates. Given a speech
file x consisting in T speech samples x = (xi)i∈[1,T ] and a downsampling factor k, a
function f , learned or unlearned depending on the chosen method, downsamples x to
x′ = f(x) = (x′

i)i∈[1,⌊T/k⌋], a sequence of size ⌊T/k⌋. The downsampled sequence x′ is
then fed to the SSL feature extractor instead of x. Three methods for downsampling
the input sequences are evaluated. The first one is signal decimation (i.e. classic
signal downsampling). Second, we test a learned downsampling strategy, through a
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one-dimensional (1D) convolution layer of kernel size 160 and a stride equal to the
downsampling factor, ran on the input waveform. Finally, we test an averaging 1D
downsampling with a fixed window of size 16 (i.e. a constant convolution).

Each one of the techniques is evaluated with 3 downsampling factors: 2, 3 and 4. For
instance, this corresponds for the first approach to downsampling the signals from 16
kHz to, respectively, 8000, 5333, and 4000 Hz. As explained in Section 4.3.1, the SSL
model outputs a character every 320 audio samples, which corresponds to 20 ms of audio
with a 16-kHz sampling rate. With lower sampling rates, the number of output characters
may become lower than the lengths of the corresponding textual sequences. This is why,
when dealing with downsampling factors 3 and 4, the size of the decoder output layer
is doubled. It is then reshaped to fit the number of considered characters, before being
fed to the classifier softmax function. This allows every frame of audio to output two
characters instead of one.

4.3.2 Results and Robustness Study

Table 4.7 shows the results obtained with the different techniques. Reported GPU
inference times are for a Nvidia Tesla V100 SXM2 32 Go GPU, while CPU inferences are
using one Intel Cascade Lake 6248 processor with a 27.5 MB cache and 2.50 GHz clock
speed. The inference times and MACs are those for running inference on the whole 5.4
hours of the test-clean split.

Layer removals. The results of the layer removal and dropping approaches are displayed
in the upper part of Table 4.7. Surprisingly, for a given proportion of layers dropped,
keeping the layerdrop performs better than training with the reduced number of layers.
For instance, randomly dropping 50% of the layers during the test leads to 11.28 of WER,
compared to 14.39 when dropping the last 12 layers during fine-tuning(i.e. again 50% of
the layers). It suggests that while training systematically with the same layers adapts the
models directly to inference conditions, removing the information contained in the last
layers of the model harms too severely the performance.

Early-exiting. The middle part of Table 4.7 shows the obtained results using early-
exiting with different values of entropy and similarity thresholds. Increasing the entropy
threshold (or decreasing the similarity one) leads naturally to earlier exits (lower “Mean
Exit Layer" values) and reduced inference times but higher WERs. Results show that using
our two considered heuristics to control exiting does not prevent significant performance
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Fig. 4.6.: WER and inference metrics with or without language modeling for the presented
techniques fine-tuned on LibriSpeech-100h. The best techniques, characterized by
both low Word Error Rates (WERs) and inference times, are Factor2 and Factor3
downsamplings, located in the bottom left of the figures. The full model is indicated
by a blue diamond, while DistilHubert baselines are represented by orange squares.
Inference time measurements are shown as a proportion of the measure done with the
full model.
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Fig. 4.7.: WER with LM decoding and MACs for the considered methods on WSJ, Buckeye and
LibriSpeech-10h sets. While WSJ exhibits results similar to LibriSpeech,reducing the
quantity of fine-tuning data causes significant performance drops for the downsampling
methods.

drops in the case of earlier exits. We can also observe that even when using the whole
network (i.e. low entropy cases), this technique leads to lower performances compared
to the full model trained without early exiting. We suggest the following explanation:
since early exits encourage the model to push the phonetic content required for decoding
towards early layers, it undermines the ability of the model to learn hierarchical features,
ultimately resulting in poorer performance even when exiting later in the model. To verify
this explanation, we propose a two-step approach where the SSL model weights are first
fine-tuned without early-exits, before freezing them when learning the early-exit decoders.
As shown in Table 4.7, this leads to good performances in case of late-exiting, but with
the cost of steeper drops when exiting earlier. This suggests that successful early-exiting
should decouple hierarchical feature extraction and decoding preparation. In both cases,
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early exiting lags behind layer-removal techniques in terms of ratio inference gains /
performance drop.

Downsampling. Results of the downsampling experiments are shown in the last part of
Table 4.7. Downsampling by factors 2 and 3 lead to high gains in inference times without
significant drops in performance. For instance, compared to running the full model, signal
downsampling with a factor 3 using a language model for decoding, leads to 61.34%
relative CPU inference time reduction, with an absolute increase of only 0.81 in WER.
Downsampling with factor 4, while naturally leading to further gains in inference times,
results in intolerable performance costs. The three considered downsampling strategies
are very similar in terms of error rates and computational savings, with a slight advantage
for convolutional downsampling when sequences lengths are reduced with factors 2
and 3. For comparison with baselines, we add two experiments using DistilHuBERT
(Chang et al., 2022). When using the simple linear decoder used in this benchmark,
DistilHuBERT shows performances largely below the ones in the original paper. For a
fair comparison, we produced an experiment with a BiLSTM decoder. While improving
largely the performance, this comes at a high cost in terms of inference times.

Figure 4.6 presents a visual comparison between all the presented methods. Clearly,
factor 2 and 3 downsampling techniques are the best performing methods with low
WER, jointly with low GPU and CPU inference times. While being the fastest, higher
downsampling factors and DistilHuBERT suffer from high error rates.

Robustness to Changes in the Downstream Dataset

Finally, we test the robustness of these conclusions to changes in the characteristics of
the downstream dataset. Three datasets are considered. We tested the same methods
with a 100-hour subset of the Wall Street Journal (WSJ) dataset (Paul & Baker, 1992).3

We also test the robustness of the approach to dataset size variation by reducing the
fine-tuning dataset to LibriSpeech-10h train set in first experiment and training on a
small spontaneous English dataset, the Buckeye corpus (Pitt et al., 2005) containing 11
hours of data, in a final one.

Figure 4.7 shows the performance obtained with the presented methods on the three
datasets. While WSJ shows very similar patterns to the first set of experiments, we can

3We combined WSJ0 and WSJ1, 70-hour long each, and removed all utterances that contain non-letter
symbols in their transcriptions. Then, we extracted a 100-hour random subset of the remaining sentences
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see in the case of less fine-tuning data that the downsampling method performance drops
significantly. Downsampling with factor 3, while suffering a relative WER augmentation
of only 33.7% for Librispeech-100h and 39.1% for WSJ, witnesses a drop of 384.9% with
Buckeye and 571.7% with LibriSpeech-10h compared to the full model performance. In
contrast, the other methods seem more resilient to reduced data quantity. Despite this,
downsampling the sequences by a factor 2 using a learned convolution remains a good
option for highly reduced inference times without unacceptable performance drop.

4.3.3 Conclusion

In this section, we explored different methods to reduce speech recognition inference
times using large self-supervised models through fine-tuning. The comparison of these
methods indicates that sequence downsampling is the best-performing option allowing
substantial computation gain with low-performance drops. Experiments led on other
downstream datasets show that the size of the downstream dataset is critical to avoid
high error rates.

4.4 Chapter Conclusion

In this chapter, following Figure 5 presented in the introduction, we have studied the
practical usage of pretrained self-supervised encoders with two main objectives: gen-
eralization and efficiency. While self-supervised encoders are generally frozen for stan-
dardized benchmarks and evaluations, their weights are generally fine-tuned in practical
settings. Unlocking this additional degree of freedom, we studied intelligent fine-tuning
strategies for speech recognition applications. After proposing a method to alleviate
acoustic shifts during downstream training, we have shown that downstream fine-tuning
can take various forms depending on the target, with two examples aiming for robustness
and efficiency. In the first one, we have confirmed the link between forgetting and
out-of-distribution generalization by using continual-learning-inspired transfer methods.
In the second one, through structural pruning and downsampling, we have explored
methods trading specialization and faster inferences. This chapter closes the set of works
that will be presented in this thesis. In the next one, we will move on to the concluding
parts.

144 Chapter 4

Generalization and Efficiency Using Self-supervised Encoders



Conclusion 5
Life is unfair. It extends and distracts
us, then surprises us and changes us,
until we are someone else. Was it me,
twenty years ago in Alexandria? How
does life judge me today on mistakes
and faults I committed then? Why
would god look back to these earthly
days, judging what we have done a
long while ago as if we had only one
life and we did not change during it?

- Youssef Zeidan (Azazeel)

This chapter concludes this thesis with three main notes. First, in Section 5.1 we
summarize this thesis and the main contributions of our work. Second, in Section 5.2,
we detail code and data contributions provided to the research community for replication
and further investigations. Finally, we discuss in Section 5.3 a few tracks for future works
and investigations.

5.1 Summary

In this thesis, we have questioned the different choices that are made in speech self-
supervision-based models for a variety of speech tasks. In particular, we focused on
questioning common practices from pretext-task definition to downstream fine-tuning,
with two main goals in mind: efficiency, both during pretraining exploration and final
inferences, and enhancing generalization abilities. As described in the introduction, we
believe that learned representations, especially unsupervised ones, will continue replacing
hand-crafted ones in future models. And, thus, we hope the light shed on those in the
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presented ideas and results will help the community build better speech representations
and optimally use them.

In Chapter 1, we provide the pieces of context needed to appreciate the contributions
provided in this thesis and the historical progress that makes the tackled questions
relevant today. Precisely, this chapter covers speech representation development efforts
and their evolution from spectral features towards learned representations, first with
supervision and then with unlabeled data. In a second time, it presents an overview of
the self-supervision research efforts, first on non-audio modalities, and then focusing on
the speech domain.

In Chapter 2, we develop efficient and motivated approaches for the definition of pre-
text tasks towards better performance on targeted downstream ones. We show that a
conditional-independence estimator allows for scoring pretext-tasks either in approaches
based on predicting pretext labels or in contrastive settings. On four different tasks, prob-
ing phonetic, speaker, emotional, and linguistic content, we show that a careful selection
of pretext-tasks and tailored view-creation policies lead to significant improvements in
downstream performances.

The evaluation of the proposed models in Chapter 2 relied on fixed downstream heads
for every considered task. This led to some frustration around one question: what if these
representations were better with other heads? In Chapter 3, we provide an answer to
this interrogation. We show that the current evaluation and rankings of self-supervised
models are dependent on the choice made for downstream heads. We also show that
limited-capacity heads should be avoided as they favor large self-supervised encoders. To
reach this conclusion, we have studied downstream head choices over four criteria: final
performance, inference efficiency, out-of-domain generalization, and multi-level feature
exploitation. On all these points, linear probing has shown worse than more complex
probing heads.

During evaluation, self-supervised encoders are frozen. However, it is common in practical
settings to fine-tune the parameters of the encoder for the target downstream task.
Focusing on speech recognition, Chapter 4 explores different options during fine-tuning
toward the goals stated above; efficiency and generalization. The first one is tackled
through model or input-shrinking approaches during fine-tuning. We propose two
methods for the second goal. Building on elements developed in Chapter 2, we use
acoustic conditions cloning to transform samples from a clean dataset to samples closer
to the target acoustic domain. We also explore continual-learning-inspired methods to
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reduce forgetting during the fine-tuning of self-supervised models. We show that this
reduction in forgetting leads to better out-of-domain performances.

The use of unlabeled data and learned representations is still at its dawn and we hope
these works bring the field a step closer to the extension of speech technology to new
languages, new tasks, and new communities.

5.2 Code and Data Contributions

Apart from ideas and conclusions, a key element in contributing to global research efforts
resides in sharing research artifacts, which in our domain mainly means code, weights,
and data.

5.2.1 Code

Following our pledge for open-source research developed in Chapter 1, one of the
contributions of this thesis has been the sharing of source code related to each of our
research studies. This enables anyone to replicate the results discussed in the manuscript.
Below, we provide links to the public and open-source GitHub repositories corresponding
to each chapter.

• Chapter 2 github.com/salah-zaiem/Multitask-pretext-task-selection.
github.com/salah-zaiem/augmentations.

• Chapter 3 github.com/speechbrain/benchmarks/tree/main/benchmarks/MP3S.
The code is integrated within the “Benchmarks" SpeechBrain sub-library. We call it
“MP3S" standing for “Multi-Probe Speech Self-Supervision".

• Chapter 4 github.com/salah-zaiem/speeding_inferences.

5.2.2 Data

One of the side-quests of these three years has been to advance speech technologies in
Tunisian Arabic, as I was born and raised in Tunisia. As common with low-resource
languages, the main factor impeding the development of speech technology in this case
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was the lack of transcribed data. This scarcity is often due to research on the language
not being financially profitable. During this Ph.D. journey, I participated in releasing two
main corpora for Tunisian Arabic speech processing:

• The TunSwitch Dataset with three subsets.1 TunSwitch CS comprises code-switched
utterances with three mixed languages: Tunisian Arabic (74%), English (13%),
and French (13%). These are collected from local radio broadcasts and podcasts.
TunSwitch TO is a collection of read speech utterances without code-switching.
TunUnlabeled is a large collection of unlabeled speech samples, mainly from televi-
sion shows. I like to consider it as one of the hardest speech recognition tasks on
the market, with three languages involved, and the major one of them being very
much low-resource, all in spontaneous multi-speaker settings.

• TARIC-SLU is an extension of the TARIC dataset (Masmoudi et al., 2014) to a spoken
language understanding task with 60 slot labels centered around conversations in
train stations for ticket buying.

5.3 Future Work

After describing our main contributions, a few limitations ought to be listed. On the one
hand, the approaches proposed in Chapter 2 come with the cost of task specialization,
as the choices are conditioned on a targeted downstream task. Within our framework,
combining multiple downstream tasks is complicated as it requires a dataset with multiple
annotations. On the other hand, while we have produced experiments showing the utility
of careful selection of pretext-tasks to improve state-of-the-art approaches, we have not
included within our scoring framework common predictive or clustering-based pretext-
tasks. This is mainly due to the explosion of self-supervised training costs, making
competition in training new models hard for academic actors. Finally, the tasks discussed
in this document did not include generative ones, in the sense of tasks with audio as an
output. This limitation, linked to the nature of current popular speech self-supervised
representations is discussed more in detail in Section 5.3.2.

Let us finally discuss tracks for future work, in an attempt to overcome partly the limita-
tions listed above. Part of these tracks have been introduced swiftly in the introduction of
this work.

1https://zenodo.org/records/8370566
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5.3.1 Data Selection for Self-Supervised Learning

In Figure 5, the first box starting from the left shows an important part of self-supervised
pretraining: data selection. While scaling trainings with more data has been shown
to improve the performance on downstream tasks, different works tend to show that
training on carefully selected subsets may reach the same, if not better, performance
levels (Grangier et al., 2023). This problem is not limited to unsupervised or self-
supervised settings. Lately, supervised models for English ASR have been also trained
on extremely large datasets, without exploring proper data selection policies. Another
possible set of applications is tasks where training data is generated such as supervised
speech enhancement for instance. In that case, data selection may allow one to avoid the
generation of training samples that are not within the distribution of the target data.

Research on the topic, especially for speech applications, has been scarce. We give two
reasons for this scarcity. First, as said in the introduction, there is a strong trend towards
scaling to larger data and we do not seem to have yet reached a ceiling for scale benefits.
Second, for a large number of use cases, trivial solutions are good enough. For instance, if
you want a representation model for a task in a given language, having a large proportion
of that language for pretraining leads to better performance (Evain et al., 2021). We
consider that data selection approaches can be divided into two main trends.

Maximizing Training/testing Similarity

One line of work has considered that data selection should maximize the similarity
between the training and validation samples. In this context, interesting work has
explored data selection for unsupervised pretraining using self-supervised representations
(Lu et al., 2022). The idea is, given a target test set, to select the training samples
maximizing their similarity to the target distribution, using, pretrained beforehand, self-
supervised representations to compute the similarity. However, the quality of the selection
here is biased by the data and methods used to train the similarity space. Concerning
supervised settings, a recent work has benchmarked different unsupervised approaches
for training data selection (Gody & Harwath, 2023). The selection process, being
unsupervised, should enable the allocation of supervision/annotation efforts efficiently
towards the smallest set leading to reasonable performances. The limitation of these lines
of work is that they do not take into account the model that is being learned and the
ongoing optimization phase. We call these methods similarity-based approaches for data
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selection, while approaches that consider the model parameters and results for selection
will be called model-based ones. Let us give an example of those.

Bi-level Optimization

Data selection has also been studied as a bi-level optimization problem using coresets
frameworks (Borsos et al., 2020; Grangier et al., 2023). Bilevel optimization refers to the
optimization of an outer objective function that involves solving an inner optimization
problem. In the context of supervised training, the outer objective typically represents
the performance of the model on a dataset, and the inner optimization involves finding
the model parameters that minimize a loss function on a subset of the data. Coresets
come into play when dealing with large datasets, and their goal is to create a smaller,
representative subset of the data (the “coreset") that can be used for training without
significantly sacrificing the model’s performance. Inspired by these approaches, we aim
to work on model-based data selection.

We believe that data selection, and especially model-based approaches, is a very promising
track mainly in two scenarios: data creation such as supervised speech enhancement, and
weakly-labeled data in semi-supervised settings. In these settings we can call “Infinite
Data Scenarios", it would allow for avoiding backpropagating the loss signal from badly
generated training elements.

5.3.2 Discrete Generative Representations

While self-supervised representations are today almost ubiquitous for transcription and
classification tasks, their use in “Generative" speech tasks has been limited. By generative,
we mean here tasks that output speech from a speech or non-speech input such as
text-to-speech (TTS) or speech enhancement. This is mainly due to the information loss
occurring within the transformations of the models, losing progressively information
about the acoustic context and speaker identity within the contextual network, which are
needed for generative approaches. In Section 1.5.2, we introduced succinctly emergent
discrete representations of speech, in particular, and audio samples in general. The
SoundStream model (Zeghidour, Luebs, et al., 2021) was seminal for this trend as it
allowed for compressing speech samples into a sequence of integers representing speech
embeddings and reconstructing with high fidelity the input from the sequence of integers.
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Fig. 5.1.: A speech enhancement pipeline with “Regenerative" speech representations. During
evaluation, the central yellow box is learned using downstream supervised data.

While it has been used first for compression, the discrete aspect allowed other applications.
In contrast to discriminative SSL, Discrete CoDec-based representations offer a great tool
for generative tasks (C. Wang et al., 2023), as they are designed for resynthesis and thus
suffer from low information loss. In the next parts, we will discuss the possibilities offered
by these representations, their limitations, and tracks for improvement.

Advantages and Possibilities

To discuss advantages, let us quickly introduce the regeneration paradigm where learned
or hand-crafted representations can be used as an intermediate step in a generation
process. With the example of text-to-speech, the task would be divided into learning a
mapping between text and the representation, and another mapping from the representa-
tion to the audio target. This approach may not be very surprising or novel to the speech
research community. Indeed, in speech synthesis research, spectral features have been
used for text-synthesis followed by Vocoder research efforts on how to map back power
spectrograms to speech samples (i.e. phase recovery).

In a slightly more complex setting, Figure 5.1 shows what this kind of pipelines would
resemble for a speech enhancement task. We will call X the input noisy speech samples
and Y the target clean audio. R(X) and R(Y ) are the two extracted representations
of, respectively, X and Y using the self-supervised model we are testing. Within the
regeneration paradigm, the function X− > Y is broken into the three parts that are
represented in the Figure:

• The representation extraction part (X → R(X)) is learned using one of the self-
supervision procedures described in this document.
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• The “fitting" part learns to perform the task of interest, speech enhancement here, in
the representation space (R(X)→ R(Y )). This function is learned using supervised
or parallel data.

• The “regeneration" part learns to map the clean representation R(Y ) back to the
audio domain Y (R(Y )→ Y ). This function can be learned using large unlabeled
audio data.

The whole motivation behind this paradigm is that two out of the three parts (namely
representation and regeneration) can be learned without supervision and that learning
this space may allow for more data efficiency during the learning of the “fitting" part.
The discrete representations that emerged lately in the field, allow for high performance
on the regeneration part as they are specifically designed for it. Let us see how they were
also good for the fitting one.

Instead of the regression task of predicting the next spectrogram frames, audio sequence
generation or continuation is modeled as next token generation, and can therefore use
the large set of techniques derived in natural language processing research for language
modeling. For instance, this is how the audio continuation model proposed in AudioLM
(Borsos et al., 2023) achieved state-of-the-art performance in audio and speech generation.
Within this paradigm, discrete representations have been a favored choice (Kharitonov
et al., 2023). To understand why, let us note that it is common to transform regression
problems into classification tasks in the machine-learning community. Rather than using
the square loss function for training on the original regression issue, practitioners opt for
the cross-entropy loss in a discretized classification setup. This reformulation frequently
improves performance, even though the cross-entropy loss doesn’t inherently capture the
distance between classes.

Let us cite a few examples of this. Binning, i.e. quantizing, the pixel space has led to
better generation of images than regression-based approaches (Van Den Oord et al.,
2016). In audio beat estimation, training a model to predict a tempo bin has shown
better performance than computing the value directly (Böck & Davies, 2020). In speech
SSL, this idea can be seen through the quantization of HuBERT (Hsu, Tsai, et al., 2021)
internal representations in pretext-labeling approaches described in Section 1.5.
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Issues and Limitations

However, when taking a closer look at the audio modeling in AudioLM, we see that
SoundStream tokens are not the only ones used to generate continuations. This can
be seen, within the paradigm defined in the previous section, as a “fitting" problem
while “regeneration" is easy by-design for CoDec-based representations. The proposed
turn-around is to condition the continuations, consisting of the acoustic tokens from
SoundStream, on what is called in the AudioLM paper "Semantic" tokens. The semantic
tokens are quantized versions of more classic self-supervised embeddings, learned with
the Best-RQ random projection approach (Chiu et al., 2022). This raises interesting
questions :

• Why are current models not able to model acoustic token continuation without
auxiliary semantic ones? How can we improve the “fitting" issue with acoustic
tokens? How to mitigate possible trade-offs between “fitting" and “regeneration"?

To separate the two types of tokens, the authors look at the results of speech resynthesis
and phoneme discrimination. The “Semantic" tokens allow an easy prediction (i.e. with
limited probing heads) of phoneme identities, while the “Acoustic" ones lead to better
resynthesis.

Introducing Hierarchy

The recent SpeechTokenizer (X. Zhang et al., 2023) model introduced the idea of content
hierarchy within the layers of quantization of the SoundStream approach. In their work,
an additional distillation loss penalizes the distance between the first layer of quantization
and pretrained “Semantic" representations (in this case, representations from HuBERT
(Hsu, Tsai, et al., 2021)). This hierarchical approach, limited for the moment to the blurry
separation between acoustic and semantic, may be expanded towards more disentangled
content in the further layers, through supervised disentanglement, using representation
trained for speaker or prosody-related content.

Better Quantization

The “semantic" tokens discussed in the previous section are obtained through k-means
clustering of the continuous self-supervised representations. This quantization is, first,
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independent of the self-supervised learning process, and is not optimized for the fitting or
regeneration task. We want to explore in future works, quantization-aware self-supervised
learning, and differentiable discretization approaches optimized for generative speech
modeling.

5.3.3 Relevance of Self-Supervision versus Scale

The last year has seen a rise in terms of labeled data used for the main tasks in the
field such as English ASR (Y. Peng et al., 2023) or speaker verification (Yakovlev et al.,
2023), leading to state-of-the-art results. The utility of unsupervised pretraining in
these cases, i.e. large downstream labeled training data, is yet to be proven. Besides
that, supervised ASR training, at scale, has also surprisingly shown to lead to internal
representations that can be used for a large variety of other tasks, such as infant cry
classification (Charola et al., 2023) or even non-human-related such as audio tagging
and background classification (Gong et al., 2023).

These two points highly question the future of self-supervised learning. The first point
means that self-supervised representations may only be needed in low-resource scenarios,
and are useless starting from a certain supervision scale. The second one indicates that,
even in these cases, they are challenged with supervised representations learned on
large-scale datasets. Thus, we believe these interrogations call for answers. Let us discuss
the second point first.

Difference between large supervision and large self-supervision

Large supervised models learned on publicly available and disclosed training sets, are
today commonly used as features for downstream pipelines. In this context, a question
that naturally arises is the differences between their representations and self-supervised
ones. A fair comparison would require two models, with approximatively the same
architectures, trained on the same datasets, one using the labels and one with a self-
supervised objective. With these models, are there differences in the tasks they are most
useful for? In their generalization abilities? We think there are two reasons which justify
possible differences :

• If the training is done with HuBERT-like objectives, which are the closest to ASR
settings, the quantization leading to cluster identities brings its share of noise

154 Chapter 5

Conclusion



compared to clean ASR labels. Even in the case of these clusters showing high
purities, different clusters may cover the same phoneme or grapheme. The effect
of this noise is not necessarily negative. It may allow for learning better internal
continuous representations of audio samples as the models would not be trained
to radically separate similar phonemes and sequences. Furthermore, those noisy
labels may contain information that is not only phoneme related, and thus explain
the performance of these models on non-ASR tasks.

• Something that self-supervised models do not learn, while ASR-supervised ones do,
is alignment, i.e. a mapping between time-frames and the corresponding character
or phoneme. Despite the fact that models trained with the CTC or cross-entropy loss
do not learn perfect alignments as alignment information is not generally explicitly
provided in speech recognition trainings, the timestamps obtained are much better
than random (Hannun, 2017) and generally provide a solid alignment baseline.

Targeting tasks with costly/complicated annotation processes

With the most self-supervised approaches trained with ASR-like or ASR-oriented tasks,
the differences highlighted in the previous questions may be minimal. However, making
self-supervised representations with low-resource settings in mind also means focusing
on the tasks where data is scarce and hard to collect. This includes, as an example,
reliable emotion recognition data, as the creation of the main datasets typically requires
recording professional comedians, playing the different emotions. Training with low
resources in mind also implies shifting the main testing downstream tasks from English
to low-endowed languages. Even the training sets should be reconsidered, as current
models are trained on large clean read audio-book data, a resource that is only available
in a limited set of languages. Finding out which methods are robust to noise in the
pretraining set, and generalize better to out-of-pretrainining-domain linguistic or acoustic
conditions is an important step toward keeping the relevance of self-supervision.
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Appendix A
A.1 More on Gaussian Downsampling

The Gaussian Downsampling method, introduced in (Holzenberger et al., 2018), is a
technique used to extract a fixed number of equidistant samples from a time series, and
in our case speech samples. It involves applying a Gaussian weight to the samples to
capture the acoustic information in a word, which is often concentrated at the boundaries.
The downsampling process can be described mathematically as follows:

Let x1, x2, . . . , xT be a speech segment, consisting of a sequence of 40-dimensional log mel
features. Equidistant downsampling samples k vectors at intervals T

k−1 with proportional
interpolation as needed. The i-th sample, denoted as x̂qi , is computed using the following
formula:

x̂qi = x⌊qi⌋ · (⌈qi⌉ − qi) + x⌈qi⌉ · (qi − ⌊qi⌋)

When qi is an integer, xqi is taken as the sample; otherwise, the sample is a weighted sum
of its left and right neighbors. The closer the neighbor, the more weight it contributes.
The embedding of x1, x2, . . . , xT is the concatenation of x̂q1 , x̂q2 , . . . , x̂qk

.

To introduce non-equidistant downsampling, we assume the space between two samples
follows a linear progression and is symmetric with respect to the center. The degree
of non-equidistance is controlled by the hyperparameters k and b. The formula for
computing the non-equidistant samples is:

∆j = qj+1 − qj = k(j − 1) + b and qj+1 − qj = qk−j+1 − qk−j for j = 1, 2, . . . , ⌈k2 ⌉

To avoid losing information during downsampling, Gaussian weighted interpolation can
be applied. The formula for computing the Gaussian weighted samples is:
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x̂qi =
∫ 0.5

T +0.5 gi(t)f(t)dt

Zi

where gi(t) is a Gaussian density function centered at qi with variance σ2
i , and Zi is the

normalization term.

In summary, the Gaussian Downsampling method involves extracting equidistant or
non-equidistant samples from a time series and applying Gaussian weights to capture the
acoustic information. This technique can be used to create fixed-size embeddings from
variable-length sequences of acoustic frames.

A.2 Interactions between Pretext Labels

To understand the interactions between pretext-task labels, studying the evolution of
the CI estimate as a function of the weights shows which pretext-task labels seem
interchangeable, which ones are complementary, and which ones seem only harmful
to the considered downstream task. Figure A.1 shows the CI estimates for weighted
combinations of groups of three pretext-task labels. As the weights sum up to one, two
pretext tasks’ values are shown on the x and y axes, while the value of the remaining one,
whose name is in the title, is equal to 1− x− y. For instance, at the origin point (0, 0),
only the third pretext-task label is selected with a weight equal to one, while its weight
is equal to zero on the hypotenuse of the right triangle. Figure A.1 illustrates that the
relationship leading to a lower CI-based utility estimator is not always straightforward.
For instance, if we consider the second plot on the second row (i.e. α-ratio, F0, logHNR),
we can see that selecting only one element is always worse than selecting a weighted
concatenation because the areas around the origin and the points (1, 0) and (0, 1) are
brighter than the central area.
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Fig. A.1.: CI-Based utility estimator as a function of the weighting for groups of three pretext-
task labels. Top line is for Librispeech, while the bottom one is for VoxCeleb. Three
pretext-task labels are presented on every plot, one on the x-axis, one on the y-axis
and one that is equal to 1 − x − y (hence being called the remainder) and whose
name is on the title. Every point in the triangle corresponds to a pretext task that is
the weighted combination of the three considered pretext-task labels. For instance,
in the top left corner, the point (0.5, 0.3) corresponds to the CI value of a pretext task
weighting logHNR with 0.5, α-ratio with 0.3, and F0 with 0.2.

Selection α-zero F0 Loudness Spec Rasta ZCR log HNR Voicing

All 1 1 1 1 1 1 1
VC RFE 1 1 0 0 1 0 1
VC MRMR 1 0 0 1 0 1 0
VC Sparsemax 0.28 0.26 0 0 0 0.45 0
VC Softmax 0.27 0.11 0.18 0.04 0.06 0.31 0.03
Libri RFE 1 0 0 0 1 1 1
Libri MRMR 0 1 0 1 0 1 1
Libri Sparsemax 0.30 0.37 0 0.06 0 0.27 0
Libri Softmax 0.28 0.47 0.07 0.04 0.02 0.08 0.04
IEMO RFE 0 0 1 1 1 1 0
IEMO MRMR 0 1 0 0 1 1 1
IEMO Spa 0.16 0.22 0 0.14 0.12 0.17 0.19
IEMO Soft 0.29 0.32 0.06 0.24 0.03 0.02 0.03

Tab. A.1.: Weights for every pretext task in every experiment. When the technique only outputs
a selection of the pretext tasks, 1 is assigned as a weight for the selected tasks and
zero for the non-slected. This table confirms the sparsity induced by the Sparsemax
function.
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Titre: Apprentissage auto-supervisé informé de représentations du signal de parole

Mots clés: traitement de la parole; apprentissage profond; apprentissage auto-supervisé;

Résumé: L’apprentissage des caractéristiques
a été un des principaux moteurs des progrès
de l’apprentissage automatique. L’apprentissage
auto-supervisé est apparu dans ce contexte, per-
mettant le traitement de données non étiquetées
en vue d’une meilleure performance sur des tâches
faiblement étiquetées.
La première partie de mon travail de doctorat
vise à motiver les choix dans les pipelines
d’apprentissage auto-supervisé de la parole qui
apprennent les représentations non supervisées.
Dans cette thèse, je montre d’abord comment
une fonction basée sur l’indépendance condition-

nelle peut être utilisée pour sélectionner efficace-
ment et de manière optimale des tâches de pré-
entraînement adaptées à la meilleure performance
sur une tâche cible.

La deuxième partie de mon travail de doctorat

étudie l’évaluation et l’utilisation de représenta-

tions auto-supervisées pré-entraînées. J’y explore

d’abord la robustesse des benchmarks actuels

d’auto-supervision de la parole aux changements

dans les choix de modélisation en aval. Je propose,

ensuite, de nouvelles approches d’entraînement

en aval favorisant l’efficacité et la généralisation.

Title: Informed speech self-supervised learning
Keywords: speech processing; deep learning; self-supervised learning

Abstract: Feature learning has been driving ma-
chine learning advancement with the recently pro-
posed methods getting progressively rid of hand-
crafted parts within the transformations from in-
puts to desired labels. Self-supervised learning
has emerged within this context, allowing the
processing of unlabeled data towards better per-
formance on low-labeled tasks.
The first part of my doctoral work is aimed to-
wards motivating the choices in the speech self-
supervised pipelines learning the unsupervised
representations. In this thesis, I first show how

conditional-independence-based scoring can be
used to efficiently and optimally select pretrain-
ing tasks tailored for the best performance on a
target task.

The second part of my doctoral work studies the

evaluation and usage of pretrained self-supervised

representations. I explore, first, the robustness

of current speech self-supervision benchmarks to

changes in the downstream modeling choices. I

propose, second, fine-tuning approaches for better

efficicency and generalization.
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