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sous la forme d’un nuage de points en 3D ; (b) le paramètre de dérive de
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RÉSUMÉ EN FRANÇAIS

Contexte et défis

Au cours des deux dernières décennies, de nombreuses technologies révolutionnaires
ont vu le jour et ont permis la visualisation de tissus, de cellules, de protéines, de virus
et de structures macromoléculaires à tous les niveaux de résolution spatiale (de 10 nm à
150 nm). La découverte des sondes de marquage par fluorescence (protéine fluorescente
verte [GFP], prix Nobel de chimie 2008) et les récentes avancées en matière d’optique et
de capteurs numériques (par exemple, PALM, STED et SIM) ont été des éléments clés
ayant permis de dépasser la limite théorique de diffraction optique de 200 nm établie au
19ème siècle. En raison de ces percées technologiques et de leurs impacts dans les sciences
de la vie, la microscopie optique a été saluée par des prix prestigieux, tels que le prix
Nobel décernés aux inventeurs des concepts de microscopie à super-résolution (Eric Betzig,
Stefan W. Hell et William E. Moerner en 2014). L’imagerie par microscopie de fluorescence
est depuis devenue le fer de lance de la biologie moderne. Elle permet de générer des vidéos
3D+Temps de plusieurs dizaines de gigaoctets de données, décrivant des comportements
cellulaires à long terme, à l’échelle nanométrique et avec une faible phototoxicité. Cette
capacité à pouvoir suivre des événements cellulaires à l’échelle nanométrique s’avère d’une
immense pertinence dans le domaine de la santé, notamment pour l’étude de la progression
des cancers et infections virales.

De manière générale, les systèmes de microscopie de fluorescence enregistrent les sig-
naux fluorescents émis par des molécules marquées par des protéines génétiquement mod-
ifiées à l’intérieur des cellules. Dans une configuration classique, les photons sont collectés
et enregistrés au niveau d’un pixel donné (ou voxel en imagerie 3D). L’intensité de flu-
orescence mesurée est une valeur scalaire, généralement proportionnelle à la densité de
molécules marquées représentant quelques dizaines de nanomètres dans un pixel/voxel.
Les données d’imagerie de fluorescence étant des signaux en 2D-3D+Temps pouvant po-
tentiellement représenter plusieurs espèces moléculaires marquées par fluorescence (images
multicanaux), l’interprétation de ces signaux s’avère bien souvent complexe en traitement
et analyse d’images. Plusieurs obstacles scientifiques doivent notamment être surmon-
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tés. L’un des plus significatifs concerne la réduction du bruit et du flou observés dans
les images. La difficulté augmente dès lors qu’il s’agit de traiter de grandes séries tem-
porelles d’images. Une attention particulière doit alors être accordée à la faisabilité et à
l’extensibilité des algorithmes développés. Un autre défi qui fait l’objet de cette thèse est
d’estimer des cartes spatiales en 2D-3D et à haute résolution des dynamiques moléculaires
à partir des données générées par les instruments de microscopie.

Dans le contexte du transport intracellulaire, on comprend encore très mal l’orchestration
de tous les composants cellulaires impliqués dans les voies de transport d’endocytose
[Lemaigre et al. 2023] [Johannes and Valades 2021] [Römer et al. 2007] [Renard et al. 2015]
[Momboisse et al. 2022] et d’exocytose [Lachuer et al. 2023] [Pécot et al. 2018] [Basset et al.
2017] [Gidon et al. 2012], deux mécanismes respectivement impliqués dans les fonctions et
dysfonctionnements dans la cellule tels que la morphogenèse ou dégénérescence des tissus,
et l’invasion tumorale. Cette compréhension incomplète des mécanismes de transport n’a
longtemps pas pu être améliorée par manque de technologies adaptées, c’est à dire une
imagerie quantitative avec la bonne résolution spatio-temporelle, une fréquence d’images
appropriée, sans photoblanchiment (diminution de la capacité des marqueurs fluorescents
à émettre des photons lors d’excitations répétées), et sans phototoxicité sur l’échantillon
vivant. Une première solution a été apportée par l’imagerie par microscopie de fluores-
cence 2D+temps, en particulier la microscopie TIRF [Axelrod 2003]. Celle-ci a permis des
percées significatives, liées aux corrélations potentielles entre les molécules en interaction
et la dynamique à la surface des cellules (membrane plasmique). Plus récemment, les pro-
grès constants en biologie moléculaire et en optique ont permis d’imager en 3D+Temps
des cellules vivantes. Cela conduit à l’acquisition de très grandes séries d’images : une
seule expérience sur des cellules vivantes en microscopie à feuille de lumière en treillis
(LLSM) [Chen et al. 2014] peut par exemple produire jusqu’à un téraoctet de données
en une heure, avec une résolution spatiale de 100 à 200 nanomètres en 3D. Il est donc
devenu nécessaire de développer de nouveaux paradigmes pour la reconstruction d’images,
le suivi/estimation de mouvement des molécules en 3D, et l’estimation de paramètres bio-
physiques pour faire face aux gigantesques séries de volumes acquises avec des systèmes de
microscopie très pointus. Afin de relever ces défis, les mathématiques appliquées, le traite-
ment et l’analyse d’images et l’informatique doivent être associées à la biophysique et la
biologie, et il est nécessaire d’obtenir une synergie durable entre ces différents domaines
scientifiques.
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(a) (b) (c)

Figure 1 – Différents types de mouvements de particules sont représentés. (a) La particle
se déplace par diffusion libre. Ce type de mouvement résulte de collisions aléatoires avec
les molécules du fluide environnant. (b) La particle se déplace par sous-diffusion. Ce
phénomène est dû au fait que la particule est piégée dans un microdomaine. (c) La particle
se déplace par superdiffusion. Les principales forces impliquées dans le mouvement de la
particule sont déterministes.

Contribution principale

Dans cette thèse, nous étudions des méthodes dédiées à l’analyse de dynamiques des
molécules à partir de caractéristiques basées sur le mouvement observées dans des im-
ages, en particulier les petites trajectoires issues d’algorithmes de suivi de particules. Ces
trajectoires sont classées selon trois catégories de mouvement : mouvement brownien,
diffusion confinée (sous-diffusion), diffusion dirigée (superdiffusion) (Figure 1). Des tests
statistiques sont mis en place pour remplacer les méthodes conventionnelles (comme par
exemple le déplacement quadratique moyen (MSD)) qui ne peuvent pas discriminer de
manière fiable ces trois types de mouvement. La détection des changements de dynamiques
le long de trajectoires longues est réalisée en transposant l’approche précédente sur des
fenêtres temporelles glissantes le long desdites trajectoires. La principale contribution de
cette thèse est une approche permettant d’estimer la mobilité moléculaire et le transport
actif à partir des trajectoires calculées. Pour cela, nous supposons que le mouvement des
molécules est régi par l’équation différentielle stochastique suivante :

dx = µ(x)dt+ σ(x)db ,

où x ∈ Rd, d ∈ {2, 3} désigne la position au temps t d’une molécule, µ ∈ Rd est la
dérive liée à la vitesse de transport actif appliquée à la particule au point x, σ ∈ R+
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est le coefficient de diffusion variable dans l’espace, et b ∈ Rd est un mouvement brown-
ien. Notre méthode est capable de générer des cartes à haute résolution spatiale des
paramètres de diffusion σ(x) et de transport actif µ(x) à partir de séquences d’images
2D ou 3D (Figure 2). Contrairement aux paradigmes précédents consistant à reconstruire
des images en super-résolution (par exemple SPT-PALM/STORM) à partir de plusieurs
milliers d’images, nous fournissons directement des cartes à haute résolution spatiale de
la mobilité moléculaire, calculées à partir d’un nombre réduit d’images conventionnelles
de microscopie de fluorescence. Chaque quantité biophysique est calculée à des positions
correspondant exactement aux coordonnées des sous-pixels données par les trajectoires
moléculaires, fournissant ainsi des informations plus détaillées.

Organisation de la thèse

Dans le premier chapitre de ce manuscrit, nous donnons une vue d’ensemble générale
de la théorie statistique, des techniques de microscopie et des algorithmes utilisés dans le
cadre de nos recherches. Nous commençons par exposer le cadre théorique en rapport avec
le concept de processus stochastique, et en particulier le mouvement caractéristique des
particules se déplaçant dans un fluide, dit mouvement « brownien ». Après avoir introduit
quelques modèles et types de mouvements de particules, nous poursuivons en présentant
les techniques de microscopie de fluorescence à la fois classiques et innovantes, en 2D et
en 3D, limitées par la diffraction et super-résolues. Nos travaux exploitant les trajectoires
individuelles de molécules, nous présentons quelques techniques et algorithmes de suivi.
Enfin, nous exposons la méthode de classification du mouvement des particules de Vincent
Briane [Briane, Kervrann, and Vimond 2018] [Briane, Vimond, Valades-Cruz, et al. 2020],
que nous avons insérées dans notre schéma d’estimation.

Dans le Chapitre 2, nous proposons une nouvelle méthode de cartographie cellulaire
visant à estimer de manière robuste les dynamiques intracellulaires (en particulier la
diffusion et la dérive). Il est en effet primordial pour les biologistes de pouvoir aisément
visualiser les dynamiques des protéines. Par ailleurs, il existe une forte demande d’outils
algorithmiques capables d’automatiquement analyser des données de microscopie dans
ce but. Après un passage en revue de quelques techniques dédiées à l’estimation de la
diffusion et de la dérive, nous présentons en détail les éléments théoriques de notre méthode
statistique. Ensuite, nous présentons des estimateurs à noyaux spatio-temporels propres à
chacun des mouvements de particules (diffusion libre, sous-diffusion, superdiffusion). Nous
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(a)

(b)

Figure 2 – Notre algorithme est capable de produire des cartes de la diffusion σ et de la
dérive µ au sein d’une cellule aussi bien en 2D et en 3D : (a) le paramètre de diffusion de
protéines Gal-3 au sein d’une cellule SUM159 est représenté sous la forme d’un nuage de
points en 3D ; (b) le paramètre de dérive de facteurs de transcription au sein d’une cellule
est représenté en 2D sous la forme d’un nuage de vecteurs, eux-mêmes représentés sous
forme de points dont la teinte et la saturation représentent respectivement la direction et
l’amplitude.
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évaluons la qualité et la robustesse de notre méthode hybride lagrangienne-eulerienne sur
un ensemble étendu d’expériences, sur des jeux de données simulés et réels, en 2D et 3D.
Nous comparons notre méthode à deux méthodes mentionnées dans l’état de l’art. Les
cartes de diffusion et de dérive obtenues avec notre algorithme « DenseMapping » sont
plus précises que celles générées par ces dernières, et il est capable de générer des résultats
exploitables même avec un nombre de trajectoires assez faible. Ceci procure un très net
avantage par rapport aux méthodes existantes, principalement dédiées à la microscopie à
super-résolution SPT-PALM. Au final, les biologistes peuvent étudier des dynamiques de
protéines marquées par fluorescence avec des techniques de microscopie de fluorescence
assez conventionnelles : TIRF, confocal, etc.

Dans le Chapitre 3, nous présentons une approche différente pour détecter les zones
de piégeage (microdomaines ou aux zones de confinement) dans la cellule, correspondant
aux régions où les molécules sont piégées. Après avoir défini le cadre mathématique et
biophysique, nous présentons les travaux qui nous ont inspirés [Hozé, Nair, et al. 2012]
[Masson, Dionne, et al. 2014] relatifs à la problématique de la détection de microdomaines.
Le cœur de notre algorithme est basé sur une combinaison de méthodes de « clustering »,
utilisant également des procédures de classification de trajectoires capables de distinguer
la sous-diffusion, la superdiffusion et le mouvement brownien. L’idée est d’identifier au-
tomatiquement les zones de piégeage où l’on observe une forte concentration de partic-
ules sous-diffusives. Nous évaluons notre preuve de concept sur des séquences artificielles
générées grâce à l’algorithme FluoSim [Lagardère et al. 2020], un simulateur biophysique
de mouvement de particules intracellulaires, et nous illustrons son potentiel sur des don-
nées réelles issues de la microscopie TIRF. Nous montrons notamment que même si des
améliorations sont encore possibles en termes de robustesse, cette nouvelle procédure a un
certain potentiel et s’avère très flexible par rapport aux méthodes existantes. Ce chapitre
a été publié en collaboration avec V. Briane dans Physical Biology sous le titre « A com-
putational approach for detecting micro-domains and confinement domains in cells : a
simulation study » [Briane, Salomon, et al. 2020].

Dans le dernier chapitre, nous concluons, résumons nos contributions, et dressons
quelques perspectives à cette thèse.
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SUMMARY

Context and challenges

During the past two decades many ground-breaking technologies emerged and allowed
the visualization of tissues, cells, proteins, viruses, and macromolecular structures at all
levels of spatial resolution (from 10 nm to 150 nm). The discovery of fluorescent labeling
probes (Green Fluorescence Protein [GFP], Nobel Prize in chemistry 2008) and recent
advances in optics and image sensors (e.g. PALM, STED and SIM) have been key de-
velopments to overcome the theoretical optical diffraction limit of 200 nm established in
the 19th century. Because of these technological breakthroughs and their impacts in life
sciences, light microscopy has been praised through prestigious awards, such as the Nobel
Prize awarded to inventors of the concepts of super-resolution microscopy (Eric Betzig,
Stefan W. Hell and William E. Moerner in 2014). Fluorescence microscopy imaging has
since become the spearhead of modern biology. It is able to generate 3D+Time videos of
dozens of gigabytes of data, depicting long-term nanoscale cell behaviors with low pho-
totoxicity. This ability to follow nanoscale cellular events is proving to be of immense
relevance in health, especially for the study of cancer progression and viral infections.

In general, all fluorescence microscopy systems record fluorescent signals emitted by
molecules tagged with genetically engineered proteins within cells. In a conventional setup
photons are collected and registered at a given pixel (or voxel in 3D imaging). The mea-
sured fluorescence intensity is a scalar value, generally proportional to the density of
tagged-molecules representing a few dozens of nanometers within a pixel/voxel. As the
fluorescence image data are 2D-3D+Time signals, potentially depicting several fluores-
cently tagged molecular species (multi-channel images), the interpretation of these sig-
nals is often challenging in image processing and analysis. Several scientific barriers in
particular must be overcome. One of the most significant revolves around noise and blur
reduction in images. The difficulty increases as soon as very large time series of images
are dealt with. Particular attention must then be paid to the feasibility and scalability
of the developed algorithms. Another challenge that is the subject of this thesis is to
estimate 2D-3D spatial high-resolution maps of molecular motions from data generated
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by microscopy instruments.
In the context of intracellular transport, the orchestration of all cellular components

involved in the transport pathways of endocytosis [Lemaigre et al. 2023] [Johannes and
Valades 2021] [Römer et al. 2007] [Renard et al. 2015] [Momboisse et al. 2022] and exocy-
tosis [Lachuer et al. 2023] [Pécot et al. 2018] [Basset et al. 2017] [Gidon et al. 2012], two
mechanisms respectively involved in cellular functions and defects such as tissue morpho-
genesis or degeneration and tumor cell invasion, is still very poorly understood. For a long
time, this incomplete understanding of transport mechanisms could not be improved due
to the lack of adapted technologies, that is in the right space-time resolution, at appropri-
ate frame rate, without photo-bleaching (decreasing of ability for fluorescent tags to emit
photons upon repeated excitation), and without photo-toxicity upon the live sample. A
first answer to this challenge was proposed by 2D+time fluorescence microscopy imaging,
in particular TIRF microscopy [Axelrod 2003]. It has allowed significant breakthroughs,
related to the potential correlations between interacting molecules and dynamics at the
cell surface (plasma membrane). More recently, the constant progress in molecular biology
and optics has allowed for 3D+Time imaging of living cells. This leads to the acquisition
of very huge image series: one single live cell experiment using cutting-edge Lattice Light
Sheet Microscopy [Chen et al. 2014] can for instance produce up to one terabyte of data
within an hour, at the spatial resolution of 100-200 nanometers in 3D. Therefore, it has
become necessary to develop new paradigms for image reconstruction, 3D molecule track-
ing/motion estimation, and biophysical parameter estimation to face the huge series of
volumes acquired with cutting-edge microscopy setups. In order to tackle these chal-
lenges, applied mathematics, image processing and analysis, and computer science have
to be associated with biophysics and biology, and it is necessary to get a sustained synergy
between these different scientific domains.

Main contribution

In this thesis, given motion-based features observed in images, in particular track-
lets (small trajectories) computed with single-particle tracking algorithms, we investigate
methods dedicated to analyze the dynamics of molecules. Trajectories are classified into
three motion categories: Brownian motion, confined diffusion (subdiffusion), directed dif-
fusion (superdiffusion) (Figure 1). Statistical tests are set up to replace conventional
methods (e.g. Mean Square Displacement (MSD)), which cannot reliably discriminate be-
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(a) (b) (c)

Figure 1 – Different types of particle motion are shown. (a) The particle undergoes free
diffusion. This kind of motion results from random collisions with the surrounding fluid
molecules. (b) The particle undergoes subdiffusion. This results from the particle being
trapped in a microdomain. (c) The particle undergoes superdiffusion. The main forces
involved in the particle’s motion are deterministic.

tween these three motion types. The detection of dynamics changes along long trajectories
is performed by transposing the previous approach on sliding time windows along tracks.
The main contribution of this thesis is an approach that can estimate molecular mobility
and active transport from the computed trajectories. For this purpose, we assume that
the motion of molecules is driven by the following stochastic differential equation:

dx = µ(x)dt+ σ(x)db , (1)

where x ∈ Rd, d ∈ {2, 3} denotes the position at time t of a molecule, µ ∈ Rd is the
drift related to active transport speed applied to the particle at point x, σ ∈ R+ is the
spatially-variable diffusion coefficient, and b ∈ Rd is a Brownian motion. Our method is
able to produce spatially high-resolved maps of diffusion σ(x) and active transport µ(x)
parameters from sequences of 2D or 3D images (Figure 2). Unlike previous paradigms
which consist in reconstructing super-resolution images (e.g. SPT-PALM/STORM) from
several thousand images, we directly provide spatial high-resolution maps of molecular
mobility computed from a reduced number of conventional fluorescence microscopy im-
ages. Each biophysical quantity is calculated at positions corresponding exactly to the
subpixel coordinates given by the molecule tracks, thus providing more detailed informa-
tion.
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(a)

(b)

Figure 2 – Our algorithm is able to produce maps of diffusion σ and drift µ within a cell
in both 2D and 3D: (a) the diffusion parameter of Gal-3 proteins within a SUM159 cell
is represented in the form of a 3D point cloud; (b) the drift parameter of transcription
factors within a cell is represented in 2D as a vector cloud, which is itself represented as
points whose hue and saturation represent direction and amplitude, respectively.

Organization of the thesis

In the first chapter of this manuscript, we give a broad overview of the statistical the-
ory, microscopy techniques and algorithms used in the context of our research. We start
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by introducing the theoretical framework related to the concept of stochastic process, and
in particular the characteristic so-called Brownian motion of particles moving in a fluid.
After introducing a few models and types of particle motion, we continue by presenting
both classic and groundbreaking, 2D and 3D, diffraction-limited and super-resolved flu-
orescence microscopy techniques. As our work exploits single molecule trajectories, we
present a few tracking techniques and algorithms. Finally, we present Vincent Briane’s
particle motion classification method [Briane, Kervrann, and Vimond 2018] [Briane, Vi-
mond, Valades-Cruz, et al. 2020], which we have inserted in our estimation scheme.

In Chapter 2, we propose a new cellular mapping method to robustly estimate dy-
namics (in particular diffusion and drift) in the entire cell. It is indeed of primary interest
for biologists to be able to easily visualize protein dynamics. In addition, there is a high
demand for algorithmic tools capable of automatically analyzing microscopy data to this
end. After a review of a few techniques dedicated to the estimation of diffusion and drift,
we present in details the theoretical elements of our statistical method. Next, we present
space-time kernel estimators specific to each particle motion (free diffusion, subdiffusion,
superdiffusion). We assess the quality and robustness of our hybrid Lagrangian-Eulerian
method on an extensive set of experiments, on simulated and real data sets, in 2D and
3D. We compare our method to two methods mentioned in the state-of-the-art. The dif-
fusion and drift maps obtained with our algorithm "DenseMapping" are more accurate
than those generated by the latter, and it is able to generate exploitable results even with
a rather low number of trajectories. This provides a very clear advantage over existing
methods, mainly dedicated to SPT-PALM super-resolution microscopy. In the end, biolo-
gists can study fluorescently tagged protein dynamics with fairly conventional fluorescence
microscopy techniques: TIRF, confocal, etc.

In Chapter 3, we present a different approach to detect the trapping regions (mi-
crodomains or confinement areas) in the cell, corresponding to the regions where the
molecules are trapped. After setting the mathematical and biophysical framework, we
present the work [Hozé, Nair, et al. 2012] [Masson, Dionne, et al. 2014] related to the
problem of microdomain detection that inspired us. The core of our algorithm is based
on a combination of clustering methods, also using trajectory classification procedures
able to distinguish subdiffusion, superdiffusion and Brownian motion. The idea is to au-
tomatically identify trapping areas where we observe a high concentration of subdiffusive
particles. We evaluate our proof of concept on artificial sequences obtained with the al-
gorithm FluoSim [Lagardère et al. 2020], a biophysics-based simulator for intracellular
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particle motion, and we illustrate its potential on real TIRF microscopy data. We no-
tably show that while there is still room for improvement in terms of robustness, this
new procedure has some potential and is very flexible compared to existing methods.
This chapter was published in collaboration with V. Briane in Physical Biology as "A
computational approach for detecting micro-domains and confinement domains in cells: a
simulation study" [Briane, Salomon, et al. 2020].

In the last chapter, we conclude, summarize our contributions, and draw some per-
spectives to this thesis.
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Chapter 1

THEORY, OBSERVATION AND ANALYTICS

OF MICROSCOPIC PARTICLE MOTION

In this chapter, we present an overview of our research framework in both statistics,
microscopy and computer science. We start by presenting the statistical theory related to
the concepts of stochastic processes and diffusion. In particular, we present a few models
and types of particle motion from the theoretical point of view. Second, our work be-
ing based on fluorescence microscopy data, we introduce a few microscopy techniques,
both classic, groundbreaking, 2D, 3D, diffraction-limited and super-resolved. In addition,
since we use single particle trajectories extracted from image sequences, we present sev-
eral techniques and algorithms involved in tracking. Finally, we present particle motion
classification methods, and in particular Vincent Briane’s work that has been embedded
in our estimation scheme.

1.1 Stochastic processes and diffusions

We present the probabilistic tools used to define diffusion processes, which are paramount
for modelling intracellular dynamics, with a focus on d-dimensional processes, d ∈ {2, 3}.
We define the notion of stochastic processes and focus on Brownian motion, which is the
reference diffusion process. Furthermore, we introduce the the concept of Stochastic Dif-
ferential Equation (SDE), and we present extensions of Brownian motion like fractional
Brownian motion.

1.1.1 Stochastic process

A stochastic process is a function indexing random variables by a mathematical set.
In the context of our research, random variables typically depict particle positions, and
thus d-dimensionnal.
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Let (Ω,F , P ) be a probability space where Ω is the sample space, F a field and P a
probability measure. A d-dimensional stochastic process is mathematically defined as:

I × Ω → Rd

(t, ω) 7→ x(t, ω) ,

where I is a time interval. In what follows, we denote this application (xt)t∈I , or shortly
(xt). A path of the stochastic process (xt)t∈I , also called trajectory, is the application

I → Rd

t 7→ x(t, ω) .

A stochastic process may be seen as an application from Ω to the set of functions
from I = [0, T ] to Rd. As previously mentioned, we consider only the stochastic processes
whose trajectories are continuous, that is for almost ω ∈ Ω, t → xt(ω) is continuous.

1.1.2 Brownian motion

During summer 1827, Scottish botanist Robert Brown was observing grains of pollen
suspended in water, when he noticed the erratic motion of smaller particles ejected from
the pollen grains. This observation is at the origin of both name and theory related to
Brownian motion. The equations of Brownian motion were established in 1905 by Albert
Einstein while its probabilistic framework was developed by Norbert Wiener in 1923.

In this section, we first focus on the one-dimensional Brownian motion, viewed as a
Gaussian process, before extending the definition to the d-dimensional Brownian motion.

Definition: The one-dimensional Brownian motion (bt) is a stochastic process with the
following properties:

— (bt) is a process with independent increments: for all t > s, bt − bs is independent
of the field generated by the historic of the process (bu)u∈[0,s] until the time s.

— For all t > s, bt − bs has normal distribution with mean 0 and variance t− s.
— The paths of (bt) are almost surely continuous.

Gaussian process: A Gaussian process is a process for which all the finite-dimensional
distributions are multivariate normal.
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Theorem 1 A Brownian motion started at zeros is a Gaussian process with zero mean
and covariance function min(t, s). Conversely, a Gaussian process with zero mean and
covariance min(t, s) is a Brownian motion.

Multivariate Brownian motion: By extension, a d-dimensional Brownian motion
(d ∈ 2, 3) is defined as a random vector bt = (b1

t , . . . , b
d
t ), where all coordinates bi

t are
independent one-dimensional Brownian motions.

1.1.3 Diffusion process

Markov property: The Markov property is central and amounts to considering that
the future behavior of a process depends only on its current state and is independent of
its past. In a discrete d-dimensional setup, the Markov property is defined as follows:

P (xj = k|xj−1, . . . ,x0) = P (xj = k|xj−1) . (1.1)

As we consider time-continuous stochastic processes, the historic of the process xj−1, . . . ,x0

in the discrete case is replaced by a field Ft at time t:

P (xt+s ∈ A|Ft) = P (xt+s ∈ A|xt) , (1.2)

where A ⊂ Rd. The difference between (1.1) and (1.2) lies in the different nature of the
events {xj = k} (i.e. countable) and {xt+s ∈ A} (i.e. continuous space Rd), yielding the
following theorem:

Theorem 2 The Brownian motion (bt) has the Markov property.

Diffusions: A diffusion process (xt) is a continuous time process which possesses the
Markov property and for which the sample paths are continuous. Any diffusion process
satisfies the following conditions [Karlin and Taylor 1981]:

lim
∆t→0

1
∆tP (∥xt+∆t − xt∥ > ϵ | xt = x) = 0, ∀ϵ > 0, ∀x ∈ Rd , (1.3)

where ∥ · ∥ denotes the Euclidean norm. This basically means that large displacements of
magnitude exceeding ϵ > 0 are very unlikely over sufficiently small intervals. Second, the
following limits exist and constitute two parameters called drift and diffusion coefficient,
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respectively:

µ(x, t) := lim
∆t→0

E [xt+∆t − xt|xt = x]
∆t , ∀x ∈ Rd ,

σ(x, t) := lim
∆t→0

E
[
∥xt+∆t − xt∥2 |xt = x

]
∆t , ∀x ∈ Rd .

The drift parameter µ(x, t) : Rd ×R+ → Rd is the deterministic component of a diffusion
process. In the biological field, it can for instance characterize the active transport of
vesicles propelled by molecular motors. The diffusion parameter σ(x, t) : Rd × R+ → Sd

+

is linked to the stochastic component of a diffusion process, where and Sd
+ is the set

of positive semi-definite matrix of size d. It can for instance characterize the number of
collisions that a particle in a fluid undergoes.

It follows that Brownian motion is a diffusion process, for which the drift is the null
function, and the diffusion coefficient is a constant.

1.1.4 Stochastic Differential Equation (SDE)

A common framework to analyze diffusion processes is related to stochastic differen-
tial equations, of which they can be considered as solutions. At starting point, diffusion
models were established to represent the motion of particles in a fluid as submitted to
a deterministic force for one part, and a random force caused by random collisions with
others particles for a second part.

Let us denote xt ∈ Rd the position of the particle at time t and (bt) a d-dimensional
Brownian motion. We assume that xt = x. The displacement of the particle between t

and t+ ∆t may be represented by

xt+∆t − x ≈ µ(x, t)∆t+ σ(x, t)(bt+∆t − bt) . (1.4)

where ∆t is the time interval, µ(x, t) is the drift and σ(x, t) is the diffusion coefficient.
The term σ(x, t)(bt+∆t−bt) is the random component of the motion caused by the random
collisions with the surrounding fluid. The diffusion coefficient σ(x, t) can represent the
number of collisions, which generally increase with the fluid temperature.

Definition: In (1.4), the displacement of the particle xt+∆t − x is approximated by
a Gaussian random variable of mean µ(x, t)∆t depending on the drift and of variance
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σ(x, t)
√

∆t depending on the diffusion coefficient. If ∆t is small and represented by in-
finitesimal time step dt, and motion is small, that is bt+∆t−bt ≈ dbt and xt+∆t−xt = dxt,
we get

dxt = µ(xt, t)dt+ σ(xt, t)dbt , (1.5)

with (bt) a d-dimensional Brownian motion, µ(x, t) : R+ × Rd → Rd and σ(x, t) : R+ ×
Rd → Md (Md denoting the set of square matrix of size d).

This equation is called a stochastic differential equation (SDE), where (xt) is the
unknown process.

Solution of SDE: There are two types of solutions respectively called strong and weak
solutions. Let Ft be the field induced by the initial condition x0 and the Brownian motion
(bt) which drives the stochastic differential (1.5). Equation (1.5) has a strong solution
(xt) on the probability space (Ω,F , P ) with respect to (bt) and initial condition x0 if the
stochastic process xt satisfies (1.5), has continuous paths and that xt is Ft-measurable
for all t. In other words, xt is the output of a system parametrized by µ(x, t) and σ(x, t)
whose input is the Brownian motion (bt). It reflects the principle of causality of the system.

A weak solution of a SDE consists in building at the same time a couple of processes
(xt, bt) where (xt) is a solution of the SDE driven by the Brownian (bt).

The solution of the stochastic differential equation is written as [Klebaner 2012]

xt = x0 +
∫ t

0
µ(xs, s)ds+

∫ t

0
σ(xs, s)dbs , (1.6)

1.1.5 Fractional Brownian motion

Fractional Brownian motion (fBm) was introduced to model scale-invariant phenomenons
processes showing long-range dependence. First, [Kolmogorov 1941] developed a turbu-
lence theory based on two hypotheses of scale invariance. Then, [Hurst 1951] observed
hydrological events invariant to changes in scale. Finally, [Mandelbrot and Ness 1968]
defined fractional Brownian motion: "fBm of exponent h is a moving average of db(t), in
which past increments of b(t) are weighted by the kernel (t− s)2h−1". The parameter h is
known as the Hurst index or Hurst parameter. More recently, [Coutin and Z. Qian 2002]
give the following definition of a d-dimensional fractional Brownian motion:
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Definition: A fractional Brownian motion in dimension d > 1 is the random vector
bh

t = (bh,1
t , . . . , bh,d

t ) where all coordinates bh,i
t are independent one-dimensional fractional

Brownian motions of Hurst parameter 0 < h < 1.
A d-dimensional fBm reduces to a d-dimensional Brownian motion in the case h = 1/2.

Accordingly, we can extend the stochastic differential equation (1.5) to define a SDE driven
by a fBm of Hurst index 0 < h < 1:

dxt = µ(xt, t)dt+ σ(xt, t)dbh
t . (1.7)

The SDE driven by Brownian motion (1.5) is of the form of the SDE (1.7) with h = 1/2.

1.2 Particle motion modeling

In this thesis, we focus on Brownian motion, subdiffusion and superdiffusion, which
are the three main types of diffusion studied in biophysics to model intracellular particle
dynamics, as well as the following SDE derived from Langevin:

dx = µ(x)dt+ σ(x)db , (1.8)

where x ∈ Rd, d ∈ {2, 3} designates the particle position, µ ∈ Rd is the drift, σ ∈ R+ is
the diffusion coefficient, and b ∈ Rd is standard Gaussian white noise.

1.2.1 Langevin’s approach

[Langevin 1908] characterizes the particle motion through the d-dimensional (Langevin)
equation

mẍ(t) = −γẋ(t) + f s(t) , (1.9)

where ẋ : R+ → Rd designates the velocity of the particle, m is its mass, γ ∈ R∗
+ is the

friction coefficient and f s : R+ → Rd is a stochastic force resulting from the collisions
with the surrounding particles. If we assume that the particles are spherical, we have
γ = 6πka, where k is the viscosity coefficient of the surrounding liquid and a is the radius
of the particle.
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Ornstein-Uhlenbeck process

Uhlenbeck and Ornstein make two additional assumptions concerning f s [Uhlenbeck
and Ornstein 1930]. First, all colliding particles including the particle of interest are
similar, have the same initial speed ẋ0, and

E [f s(t)] = 0d ,

where 0d is the null vector of Rd. That is the mean of f s(t) is null over a large number
of independent collisions. Second, the authors state that the autocorrelation function of
f s is a function of t− s with a very sharp peak of width equal to the duration of a single
collision at t − s = 0. [Van Kampen 2007] remarks that as long as the collision time is
shorter than all other relevant times, we can more conveniently use the Dirac function as
follows:

E
[
f s(t)f s(s)T

]
= Cδ(t− s)Id , (1.10)

where C ∈ R∗
+ is a constant, δ is the Dirac function and Id is the identity matrix of size d.

The idea is that each collision is practically instantaneous and that successive collisions
are uncorrelated.

If we further assume that f s is Gaussian, we entirely define this process as a Gaussian
process which is determined by its first two moments. f s(t) is then called a Gaussian
white noise, and can be defined as the derivative of a Brownian motion in an informal
way (Brownian motion technically being nowhere differentiable) [Karlin and Taylor 1981]:

f s(t) = σḃ(t) . (1.11)

Finally, we can rewrite (1.9) as the d-dimensional SDE

mdv(t) = −γv(t)dt+ σdb(t) , (1.12)

where v := ẋ.
The solution of SDE (1.12) is known as the Ornstein-Uhlenbeck process, which is a
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Gaussian process such that

E [v(t)] = 0d ,

E
[
v(t)v(s)T

]
= σ2

2γme−(γ/m)|t−s|Id . (1.13)

When t → ∞, the mean square velocity verifies [Waterston, Beaufort, and Strutt 1892]

lim
t→∞

E
[
∥v(t)∥2

]
= d

kBT

m
, (1.14)

where d ∈ {2, 3} is the dimensionality of the process, kB is the Boltzmann constant and
T is the temperature. Each component of the velocity vector has the same variance:

lim
t→∞

E
[
vi(t)2

]
= kBT

m
, i = 1, . . . , d . (1.15)

From (1.13) and (1.15), we deduce

σ =
√

2γkBT .

Finally, the Brownian motion of [Langevin 1908] is defined as

x(t) =
t∫

0

v(s)ds , (1.16)

where v is the Ornstein-Uhlenbeck process solution of the SDE (1.12). Due to the Gaussian
nature of v, x is also a Gaussian process.

Mean Square Displacement

Einstein and Langevin both established that particle motion asymptotically exhibits
a linear mean square displacement (MSD) [Einstein 1905] [Langevin 1908].

In the d-dimensional case, Einstein shows on one hand that the mean square displace-
ment of the Brownian motion is

E
[
∥xt − x0∥2

]
= d2σt .

46



1.2. Particle motion modeling

On the other hand, he demonstrates that

σ = RT

nγ
,

where R is the gas constant, T designates the temperature, n is the amount of substance,
and γ is the friction coefficient. We can thus write

E
[
∥xt − x0∥2

]
= d

2kBT

γ
t ,

where kB = R/n is the Boltzmann constant.
Assuming x0 = 0 for the sake of simplicity, Langevin showed that

E
[
∥xt − x0∥2

]
=

d∑
i=1

E
[∫ t

0

∫ t

0
vi(s)vi(u)dsdu

]
,

= d
∫ t

0

∫ t

0
E [v1(s)v1(u)] dsdu ,

= d
2kBT

γ

(
t− m

γ

(
1 − e−(γ/m)t

))
,

= d
2kBT

γ
t+ o(t) ,

where o(t) → 0 as t → ∞, leading us to the same conclusion as Einstein.
In conclusion, Brownian motion is nowhere differentiable according to Einstein, and

then has a rough but continuous path. On the other hand, the particle motion defined by
Langevin is differentiable due to its definition as an Ornstein-Uhlenbeck process integra-
tion (Equation (1.16)). Its path is then smooth.

1.2.2 Subdiffusion

In this section, we present subdiffusion processes and their mathematical transcrip-
tions. They notably include confined and anomalous diffusion, which are translations of
several biological scenarios.
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Anomalous subdiffusion

According to [Meroz and Sokolov 2015], an anomalous diffusion process (xt) is char-
acterized by a MSD growing non-linearly in time, such that

E
[
∥xt − x0∥2

]
∝ tα , (1.17)

with α ̸= 1. More specifically, (xt) is called anomalously subdiffusive if 0 < α < 1.
We present three models of anomalous subdiffusion, the first two being solutions of a
fBm-driven SDE (1.7).

Fractional Brownian motion This first model is simply fBm with a Hurst index
0 < h < 1/2. Its MSD is given by (1.17), with α = 2h < 1. In [Jeon et al. 2011], it is used
to characterize the longer-time motion of a lipid granule in the crowded environment of
a yeast cell, and in presence of plastic elements that generate correlations in the granule
trajectory.

Generalized Langevin Equation (GLE) Kou modeled the motion of particles being
slowed down by contrary current caused by the viscoelastic properties of the cytoplasm
with stochastic differential equations driven by fBm with Hurst index 1/2 < h < 1
[Kou 2008]. Moreover, Zwanzig and Chandler proposed the following generalized Langevin
equation (GLE) [Zwanzig 2001] [Chandler 1987]:

mẍ(t) = −γ
∫ t

−∞
ẋ(u)K(t− u)du+ g(t) , (1.18)

where the velocity ẋ is convoluted with a kernel K, and g(t) is a noise with memory
replacing the memory-less white noise f s(t). The autocorrelation function of g is given
by

E
[
g(t)g(t)T

]
= σK(t− s)Id . (1.19)

If we choose K as the the Dirac function δ, GLE (1.18) is equivalent to the Langevin
equation (1.9) and the condition on the second moment (1.19) is equivalent to the con-
dition (1.10). [Kou 2008] chooses to define g(t) as fractional Gaussian noise (1.6) with
Hurst index 1/2 < h < 1 for exhibiting long range dependence. From condition (1.19),
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the authors deduce the kernel K (noted now Kh)

Kh(t) = 2h(2h − 1)|t|2h−2 .

Then, the related stochastic differential equation is

mdv(t) = −γ
(∫ t

−∞
v(u)K(t− u)du

)
dt+ σdbh(t) ,

where v := ẋ and (bh
t ) is a fBm with 1/2 < h < 1. Finally, [Kou 2008] shows that the

integrated process xt =
∫

v(u)du verifies

E
[
∥xt − x0∥2

]
∝ t2−2h

as t → ∞. It fulfills the MSD condition (1.17) asymptotically with α = 2 − 2h < 1 for
1/2 < h < 1.

Continuous Time Random Walk (CTRW) It is frequent particles switching be-
tween two states, respectfully binding events where the particle is attached to a spot,
and movement between two binding spots. [Scher and Montroll 1975] introduced the con-
cept of continuous time random walk (CTRW) to represent such dynamics. Formally, a
particle performs random jumps whose step length is generated by a probability density
with finite second moments. The waiting times between jumps are assumed to be dis-
tributed according to a probability distribution ψ(t). If ψ(t) has a finite first moment
that is

∫
tψ(t)dt < ∞, then the mean square displacement of the CTRW is time-linear.

For instance, we can use the exponential distribution

ψ(t) = (1/τ)e−t/τ , t ∈ R+ ,

where τ > 0 is called the characteristic time. In this case, the random walk has the
Markov property (due to the memoryless property of the exponential distribution). If on
the contrary we have

∫
tψ(t)dt = ∞, then the mean square displacement of the CTRW is

given by (1.17). A typical choice is a power law distribution

ψ(t) = 1/(1 + t/τ)1+α, t ∈ R+ ,

where τ > 0 is the characteristic time and we have 0 < α < 1.
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Confined diffusion

We now present another type of subdiffusion, namely confined diffusion. According to
[Saxton 1994][Monnier, Guo, et al. 2012], a confined diffusion process (xt) is characterized
by a MSD of the following form:

E
[
∥xt − x0∥2

]
= r2

c

a

(
1 − βe−ζσ2/(2r2

c)
)
, (1.20)

where rc is the characteristic size of the confinement region, a is a scale parameter, β
and ζ depend on the shape of the region, and σ ∈ R+ designates the constant diffusion
coefficient. In what follows, we focus on one model of confined diffusion: diffusion in a
potential well.

Diffusion in a potential well Generally speaking, it is possible for a particle to be
subjected to an external, deterministic force in addition to the stochastic force caused by
the collisions with surrounding fluid particles. In such a case, the Langevin equation (1.9)
is extended with an extra term and becomes

mẍ(t) = −γẋ(t) + f d(t) + f s(t) , (1.21)

where f d : Rd × R+ → Rd designates the external deterministic force applied to the
particle, and f s(t) = σḃ(t) as stated in (1.11).

More specifically, [Kramers 1940] introduced a subdiffusion model where a particle
is attracted to a spot by an external force derived from a potential well, originally to
describe chemical reactions. In this case, (1.21) can be rewritten as

mdv(t) = −γdx(t) − ∇U(xt)dt+ σdb(t) ,

where ∇ denotes the gradient operator, and U designates the potential well. Furthermore,
if we assume that the so-called overdamped condition [Van Kampen 2007] is satisfied, the
acceleration term mdv(t) is negligible and the viscosity is very large, implying γ → ∞.
Consequently, the model reduces to

γdx(t) = −∇U(xt)dt+ σdb(t) . (1.22)

Also, we assume that the potential U is uni-modal, suggesting that the particle is trapped
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in a single domain. In this case, U can be approximated by a polynomial of order 2 as
follows:

U(x1, . . . , xd) = (1/2)
d∑

i=1
ki(xi − θi)2 ,

where ki ∈ R+, θi ∈ R and d is the dimensionality of the process. The parameter ki

characterizes the strength of attraction of the potential well, in relation to the well depth,
while θ = (θ1, . . . , θd) is the equilibrium position towards which the particle is attracted.
The SDE (1.22) can then be rewritten as

dxi(t) = −λi(xi(t) − θi)dt+ σdbi(t), i = 1, . . . , d , (1.23)

where λi = ki/γ > 0. The solution of the SDE (1.23) is the Ornstein-Uhlenbeck process,
as in the case of Equation (1.12), but with a different parametrization, notably with the
extra θi parameters. Since it is a Gaussian process with normal stationary distribution,
the MSD of the process is given by

E
[
∥xt − x0∥2

]
= σ2(1 − e−λt)

d∑
i=1

(1/λi) , (1.24)

when x0 is drawn with the stationary distribution.
If ki = k for i = 1, . . . , d, we have λi = λ for i = 1, . . . , d and (1.23) can be rewritten

as
dx(t) = −λ(x(t) − θ)dt+ σdb(t), i = 1, . . . , d .

Then, the MSD becomes

E
[
∥xt − x0∥2

]
= dσ2(1 − e−λt)

λ
. (1.25)

The MSD in (1.20) is notably equal to (1.25) with r2
c = σ2/(2λ), a = 2/d and β = ζ = 1.

1.2.3 Superdiffusion

In biophysics, the representation of superdiffusion has not received much attention.
The most common model is Brownian with drift, for which the particle is subjected to a
constant force in addition to the stochastic force caused by the collisions with surrounding
fluid particles. We saw earlier that in such a case, the Langevin equation can be extended
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to Equation (1.21). In the overdamped condition, (1.21) becomes

dx(t) = µ(t)dt+ σdb(t) ,

where µ = (µ1, . . . , µd) ∈ Rd is the constant drift parameter modelling the velocity of the
molecular motor.

The MSD of the directed Brownian motion is then given by

E
[
∥xt − x0∥2

]
= ∥µ∥2t2 + dσ2t ,

where the linear term comes from the Brownian motion, while the quadratic term is due to
the constant drift. In absence of Brownian component, the MSD becomes fully quadratic
and the motion is described as ballistic, that is the particle has a straight motion.

Anomalous superdiffusion Anomalous superdiffusions are the superdiffusive ana-
logue to anomalous subdiffusions. The MSD of an anomalous superdiffusion (xt) is char-
acterized by a MSD which is proportional to the monome tα:

E
[
∥xt − x0∥2

]
∝ tα , (1.26)

but this time with 1 < α < 2.

Fractional Brownian motion Superdiffusion can also be modeled by the fractional
Brownian motion, with Hurst parameter 1/2 < h < 1. In fact, we know that the MSD
of the fBm is given by Equation (1.26). We note however that the use of the fractional
Brownian motion in biophysics is mainly related to subdiffusion.

1.3 Fluorescence microscopy techniques

The principle of optical microscopy is to illuminate small objects and magnify them
through a system of lenses. Optical microscopy can use a diverse set of optical phe-
nomena. In particular, a fluorescence microscope uses fluorescence to highlight objects.
Fluorescence is a form of luminescence where the absorption of electromagnetic radiation
by a substance causes it to emit light. The specimen under study is usually illuminated
with radiation of one or several wavelengths called excitation wavelength, which are then
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absorbed by compounds called fluorophores that emit light of one or several wavelengths,
called emission wavelength. Emission wavelength are usually longer that excitation wave-
lengths. In our framework, fluorophores are attached to particles of interest in a biological
specimen, allowing to study their motion.

In Subsection 1.3.1, we give a summary of existing conventional microscopy tech-
niques. Then in 1.3.2, we introduce the diffraction limit problem and how it can be
resolved through super-resolution microscopy. In Subsection 1.3.3, we present some super-
resolution fluorescence microscopy techniques.

1.3.1 Conventional microscopy techniques

We define conventional fluorescence microscopy techniques as any technique that is
limited by the optical phenomenon of diffraction, which will be presented in the next
subsection.

Wide-Field Fluorescence Microscopy (WFFM)

Wide-Field Fluorescence Microscopy or WFFM is the most rudimentary fluorescence
microscopy technique. In this configuration, illustrated in Figure 1.1, the specimen is
illuminated as a whole with radiation of one or several wavelength, which activates all
fluorophores present in the specimen.

The advantages of this technique are its simplicity, its low maintenance cost and the
possibility of directly observing the specimen through the ocular with the naked eye.
Its main problem is that optical microscopes have a very short depth of field, and the
objects can only be visualized in a thin plane of focus. The indiscriminate activation of
fluorophores, even when they are out-of-focus, causes a lack of contrast, sharpness and
resolution. This drawback can partially be corrected with either computational deconvo-
lution [Sibarita 2005], or optical techniques such as the use of thin apertures (e.g. with
a f-number of f/1.5). But the power of deconvolution is limited, and thin apertures re-
duce the brightness of produced images. This last problem can in turn be corrected by
computerized means, but at the cost of a higher noise level.

Confocal microscopy

In confocal microscopy the excitation light beam is concentrated by lenses on a single
point of the specimen, as illustrated in Figure 1.2. The emitted fluorescence light is then
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Figure 1.1 – Principle and light path of Wide-Field Fluorescence Microscopy. The exci-
tation light is focused in the center of the pupil plane. (illustration extracted and edited
from [Schermelleh et al. 2019], Fig. 1(a))

filtered by a pinhole placed below the detector to remove any signal emitted from out-
of-focus zones of the specimen. Different techniques of horizontal scanning, such as point
scanning or spinning disk, can be used to generated an image of the specimen as a whole.
3D confocal microscopy is possible by generating an image on several planes of focus and
then reconstructing a 3D image by computerized means.

By removing the out-of focus signal, this method has the advantage of producing
sharper images with better contrast than WFFM. However, this is done at the expense of
fluorescence intensity since much of the emitted light is blocked by the pinhole, lowering
the obtained image brightness. Another problem is slowness of the scanning process that
does not allow for live imaging, not to mention the impossibility of observation through the
naked eye. The temporal resolution of time sequences generated through this technique
is consequently limited.

54



1.3. Fluorescence microscopy techniques

Figure 1.2 – Principle and light path of confocal microscopy. The light beam fills the
pupil plane, and is focused and scanned across the object plane. (illustration extracted
and edited from [Schermelleh et al. 2019], Fig. 1(c))

Total Internal Reflection Fluorescence Microscopy (TIRF)

As its name suggests, TIRF microscopy uses the optical phenomenon of total internal
refraction. Consider two isotropic media of respective refraction indices n1 and n2 sepa-
rated by a flat interface, and a light beam passing through the first medium hitting said
interface. As illustrated in Figure 1.3, Snell’s law states that

n1 sin θ1 = n2 sin θ2 ,

where angle θ1 and θ2 designate the angles of incidence and refraction, respectively.
If n1 > n2, we can define the critical incidence angle as θc = sin−1(nt

ni
). Total internal

refraction happens when θ1 > θc, as the light beam is almost totally reflected by the
interface. However, a small portion of the incident beam passes through the interface,
propagating parallel to the plane of incidence and creating an electromagnetic field close
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Figure 1.3 – Illustration of Snell’s law. (illustration available on Wikimedia Commons
under the filename 'Snells law2.svg ', created and released in public domain by contributor
Sawims)

Figure 1.4 – The intensity of the evanescent wave generated at the interface be-
tween two glass and aqueous phases decays exponentially with distance from the glass
phase. (illustration extracted and edited from [Axelrod and Davidson n.d.], available on
www.olympus-lifescience.com)
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Figure 1.5 – The evanescent intensities of polarized light relative to the incident intensity,
as functions of the angle of incidence. Light passes through an interface composed of fused
quartz and water (or an aqueous buffer solution) of refractive indexes n(1) = 1.46 and
n(2) = 1.33 respectively, with a critical angle of θc = 65.7◦. P and s-polarized evanescent
intensities can be several times greater than the incident intensity for angles within 15
degrees of the critical angle. (illustration extracted and edited from [Axelrod and Davidson
n.d.], available on www.olympus-lifescience.com)

to the interface. This field is called the evanescent field, and its intensity I exponentially
decays along the z-direction, normal to the interface:

I = I0e
−z/d , (1.27)

where I0 is the intensity of the evanescent field at the interface and d, called penetration
depth, is a function of the wavelengths of incident light λ0 and the refractive indices n1

and n2:
d = λ1

4π
(
n2

1 sin2 θ1 − n2
2

)−1/2
.

The intensity decay phenomenon of the evanescent field is illustrated in Figure 1.4.
It is possible to deduce the polarization properties of the evanescent field using Fres-

nel’s equations (see details in [Martin-Fernandez, Tynan, and Webb 2013]). Notably, it
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Figure 1.6 – Principle and light path of TIRF Microscopy. By focusing the excitation beam
on the edge of the pupil plane, the light strikes the coverslip interface at a supercritical
angle, generating an evanescent wave. (illustration extracted and edited from [Schermelleh
et al. 2019], Fig. 1(b))

can be shown that with polarization, I0 can be several times greater that the intensity of
the incident wave as illustrated in Figure 1.5.

Axelrod, Burghardt and Thompson were the first to take advantage of this phe-
nomenon in fluorescence microscopy [Axelrod, Burghardt, and Thompson 1984]. In TIRF
microscopy, the microscope’s glass coverslip and the aqueous medium constituted by the
specimen in water act as the two interfaced media. As illustrated in Figure 1.6, a laser
beam is directed at the interface with an angle of incidence greather than the critical
angle θc. A small, flat portion of the specimen is thus illuminated by the evanescent wave
generated near the coverslip, in a range of 100 − 200 nm which is smaller than the con-
ventional resolutions. This technique is therefore much less phototoxic than WFFM and
allows for longer time acquisitions if new fluorophores enter the evanescent field. Also,
planar illumination delivers high contrast as out-of-focus activation of fluorophores is low.
Unlike confocal microscopy, no scanning process is involved and live-imaging is possible,
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enabling high temporal resolution. These advantages, combined with the low cost of the
setup, make TIRF microscopy a technique of choice for the study of cell membranes.

TIRF microscopy is also adaptable in three dimensions by recording changes in inten-
sity within the evanescent wave [Allersma et al. 2004], by using Differential Nanometry
(DiNa) [Saffarian and Kirchhausen 2008] or with Simultaneous Two-wavelength Axial
Ratiometry (STAR) [Stabley et al. 2015]. But one of the most popular method is 3D
Multi-Angle TIRF microscopy (3D MA-TIRFM) [Loerke, Stühmer, and Oheim 2002]
[Boulanger et al. 2014] [Soubies et al. 2019]. Using multiple 2D images acquired with
variable incident angles θ1 as an input, it is able to reconstruct 3D stacks generally by
solving a pseudo-deconvolution problem by considering a dedicated transfer function de-
pending on incident angle. It is a high-speed technique able to generate stacks with a
resolution of 30 − 50 nm along the axial direction versus 200 nm in lateral direction, and
up to 500 nm in depth. The aforementioned reconstruction problem becomes very chal-
lenging, especially because we aim to achieve a high axial resolution (∼ 50 nm) of up to
1000 nm in depth. The approach implies the sequential acquisition of MA-TIRF stacks
while decreasing frame rate. It is also worth noting that calibrating the penetration depth
of the evanescent wave can increase the precision of the technique [Oheim et al. 2019].

Light-Sheet Fluorescence Microscopy (LSFM)

Light Sheet Fluorescence Microscopy (LSFM), whose principle is illustrated in Figure
1.7, consists of illuminating the specimen orthogonally to the direction of observation with
a thin sheet of light [Stelzer et al. 2021].

As illustrated in Figure 1.7, two methods co-exist to generate the light sheet, which
in practice is most often approximated by a Gaussian beam. In selective/single plane
illumination microscopy (SPIM), a cylindrical lens is used to focus the excitation laser
beam into the z axis. Another method called Digital Scanned Laser Microscopy (DSLM)
generates a dynamic light sheet by rapidly scanning the excitation laser in the lateral axis
thanks to motorized mirrors. In both cases, only the fluorophores present within the focal
volume of the microscope are illuminated.

The generation of 3D images, illustrated in Figure 1.8, is performed by translating
the sample through the light sheet along the axial axis, or by moving the light sheet
through the specimen. 2D images are therefore acquired at a regular interval and can
be stacked to form a 3D image. In the case of large and opaque specimen in which the
laser beam cannot penetrate, the scanning can be performed in multiple directions by
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Figure 1.7 – Principle and implementations of Light Sheet Fluorescence Microscopy. (a)
A Selective/Single Plane Illumination Microscope (SPIM). A cylindrical lens focuses the
laser beam along the z axis, creating a static light sheet that illuminates the field of view.
(b) A Digital Scanned Laser Microscope (DSLM). A mirror/lens assembly focuses the
laser beam into a single spot that is scanned across the volume to create a dynamic light
sheet. (illustration extracted from [Stelzer et al. 2021])

physically rotating the specimen. Finally, constant axial resolution over the field of view
can be achieved by moving the light sheet along the lateral axis and combining several
acquisitions into a single image by computational means.

The true optical sectioning capability of light sheet microscopes allows for axial reso-
lution and reduced photobleaching and phototoxicity since only a fraction of the specimen
with focal range is illuminated. For comparison, the specimen is irradiated three to five
times less than with confocal microscopy. This technique also offers good contrast as out-
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Figure 1.8 – 3D image generation with LSFM. (a) By moving the specimen or light sheet
relative to each other along the z axis, it is possible to acquire a stack of 2D images plane-
by-plane, that together form a 3D image. (b) When the specimen is too large or dense
to be penetrated by the laser beam, multidirectional imaging can be performed using a
rotary stage that rotates the specimen around the y axis, allowing 3D image stacks to
be acquired in multiple directions. (c) By moving the light sheet along the x axis and
combining multiple acquisitions into a single image, a constant axial resolution can be
achieved over a large field of view. (illustration extracted from [Stelzer et al. 2021])

of-focus signal is almost nonexistent. Furthermore, the use of cameras enables millions of
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(a) (b)

Figure 1.9 – The Airy pattern generated by a fluorophore through a perfect optical system,
with λ = 509 nm (GFP emission wavelength) and NA = 1.5. I designates the signal
intensity, and I0 is its maximum at the center of the pattern. (a) Lateral view of the Airy
pattern, as seen by the observer. Logarithmic scale is used to make the concentric ring
more visible. In practice, the central Airy disk concentrates the ∼ 84% of the visible signal.
(b) Relative intensity values of the radial cross-section of the Airy pattern represented
in (a). (illustration plotted according to the Point-Spread Function (PSF) equation in
[Zhang, Zerubia, and Olivo-Marin 2007])

voxels to be acquired in parallel, meaning that tens to thousands of images can be recorded
in a matter of seconds. These advantages make LSFM a highly adaptable technique for
3D imaging in biomedical fields.

1.3.2 The diffraction limit problem and its solutions

In this section, we explain how the optical phenomenon of diffraction creates a reso-
lution limit for conventional fluorescence microscopy techniques, and how this limit can
be overcome.

The Point Spread Function (PSF) of an optical system (such as a microscope) refers
to the image it gives of an infinitely small light source (point source) when focused on it.
In particular, a perfect lens with circular aperture focused on a point source produces a
pattern called Airy pattern [Airy 1835], composed of a central light spot designated as
Airy disk, surrounded by concentric rings (see Figure 1.9). The Airy disk concentrates
∼ 84% of the total light intensity coming from the emitter. The PSF of an optical system
is caused by diffraction which is the product of light wave interference in the image plane.
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Figure 1.10 – Simulation of the PSF generated by a microscope with λ = 557 nm and
NA = 1.3, as observed in the axial plane. To improve the visualization of the diffraction
rings, the image was contrasted with a factor γ = 0.5. (illustration extracted and edited
from [Cole, Jinadasa, and Brown 2011])

In 3D, the PSF takes the form of a ellipsoid, stretched along the axial axis as illustrated
in Figure 1.10. In space-invariant systems where the PSF stays the same everywhere,
fluorescent images are the result of the convolution of the PSF with the intensity of the
object. It is common to approximate the PSF by a Gaussian distribution [Zhang, Zerubia,
and Olivo-Marin 2007].

The Rayleigh criterion tells us that two distinct light sources can be resolved if they are
separated by at least the radius of the Airy disk, which value is given by r = 0.61λ/NA,
where λ is the wavelength of the light emitted by the light source, and NA is the numerical
aperture of the objective [Rayleigh 1879]. This implies that any conventional microscope
using visible light has a resolution limit of ∼ 200 − 300 nm laterally (axially, the reso-
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lution is limited to ∼ 500 − 700 nm), no matter its degree of perfection. In fluorescence
microscopy, fluorescently tagged particles are between 1 to 10 nm in size, but appear has
bright spots, and cannot be distinguished if separated by less than this resolution limit.
Figure 1.9 illustrates a case where a particle tagged with GFP, which has an emission
wavelength of λ = 509 nm, is observed under a lens of numerical aperture of NA = 1.5,
producing a spot of ∼ 200 nm radius.

The diffraction limit can be pushed back by different means. The use of large nu-
merical apertures, such as NA = 1.5, attenuates the diffraction phenomenon by reducing
the radius of the Airy disks. Also, computational tools such as deconvolution algorithms
[Sibarita 2005] enable to counteract the diffraction if the PSF is known. In practice how-
ever, its efficiency is limited by the presence of noise in the images. To fully overcome the
diffraction limit, it is necessary to use cutting-edge technology such as super-resolution,
using PSF models to localize the positions of single particles ([Huang et al. 2008], [Shroff,
White, and Betzig 2013]). We detail some super-resolution techniques in the next section.

1.3.3 Super-resolution microscopy techniques

Breaking the optical resolution beyond the diffraction limit while preserving the ad-
vantages of fluorescence microscopy and the specificity of molecular imaging has been a
long-standing goal. In this section, we present a general overview of the most popular
super-resolution microscopy (SRM) techniques that allow to achieve this goal. More de-
tailed presentations of SRM techniques are available with [Liu, Lavis, and Betzig 2015]
and [Schermelleh et al. 2019], with a complete overview both commercially available and
emerging techniques and their characteristics, as well as an evaluation of their advantages
and weaknesses, specified biological applications and future development paths.

SRM can be broadly separated in two main groups: Structured Illumination Mi-
croscopy (SR-SIM) and diffraction-unlimited SRM, which notably includes Stimulated
Emission Depletion microscopy (STED) and Single Molecule Localization Microscopy
(SMLM). These techniques are based on classic WFFM, confocal or TIRF setups, includ-
ing more sophisticated technologies such as multifocus microscopy [Abrahamsson et al.
2013] [Hajj, Wisniewski, et al. 2014] [Hajj, El Beheiry, and Dahan 2016]. Additionally,
LSM can be adapted in super resolution with the notable example of Lattice Light Sheet
Microscopy (LLSM).
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(a) (b)

Figure 1.11 – Principle and light path of Structured Illumination Microscopy. (a)
Interference-based SIM. (b) Point-scanning SIM. (illustration extracted and edited from
[Schermelleh et al. 2019], Fig. 1(d) and (e))

Structured Illumination Microscopy (SIM)

Structured Illumination Microscopy (SIM) [M. G. Gustafsson 2000] [M. G. Gustafsson
et al. 2008] consists in interfering laser beams to illuminate the specimen with a series
of structured light stripe patterns, the minimum distance between stripes nearing the
resolution limit. These stripes interact with conventionally non-observable ‘high frequency’
sample features, producing larger-scale interference similar to Moiré effects that can be
observed in addition to conventional wide-field image. These contain encoded information
about high spatial frequency features of the specimen. A series of images is acquired
with translated and rotated stripes to gather high frequency information in all lateral
directions. This information is then decoded by computational means and reassembled
in frequency space to reconstruct a contrast-enhanced image. Interference-based SIM can
be based on both WFFM and TIRF microscopy, but a variant called point-scanning SIM
uses confocal microscopy as a base setup, as illustrated in Figure 1.11.

This technique is able to double of the resulting resolution compared to diffraction-
limited microscopy techniques, with 100 - 130 nm laterally and 300 - 400 nm axially in
the case of 3D SIM, as illustrated in Figure 1.12. Combined with TIRF microscopy and
ultra-high apertures such as NA = 1.7, the lateral resolution of linear SIM can be further
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Figure 1.12 – Comparison of 3D images of red-fluorescent microspheres of diameter
0.12 µm, illustrating the resolution and contrast improvement between WFFM and Struc-
tured Illumination Microscopy. (a) Lateral view of the microspheres obtained through
WFFM. (b) Lateral view of the microspheres obtained through SIM. (c) Axial view
of the microspheres obtained through WFFM. (d) Axial view of the microspheres ob-
tained through SIM. (e) Histograms of lateral and axial Full Width at Half-Maximum
(FWHM) of green-fluorescent beads observed by 3D SIM. (illustration extracted from
[M. G. Gustafsson et al. 2008])

improved to ∼ 80 nm. It is technically possible to reach even higher resolutions with spe-
cific methods such as reversible photoswitching non-linear SIM (NL-SIM) or parallelized
RESOLFT [Rego et al. 2011] [Chmyrov et al. 2013].

SIM is particularly adapted to live-cell imaging and high throughput microscopy. It is
a very photon-efficient approach, enabling multiple color imaging and 3D observation with
conventional fluorophores. On the negative side, it requires to carefully align and calibrate
the microscope setup and mathematical post-process the obtained data. This increases the
risk of apparition of reconstruction artifacts, which require in-depth knowledge to detect
and neutralize. Additionally, even if they technically break the conventional resolution
limit, SR-SIM based methods remain fundamentally linked to the laws of diffraction.
Rather than suppressing them, these methods simply push back the limits of conventional
techniques.
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Figure 1.13 – Principle and light path of Lattice Light Sheet Microscopy. (illustration
extracted and edited from [Schermelleh et al. 2019], Fig. 1(h))

Lattice Light-Sheet Microscopy (LLSM)

Lattice Light-Sheet Microscopy (LLSM, illustrated in Figure 1.13) [Chen et al. 2014]
is an improved variant of LSFM that uses an ultra-thin light sheet to illuminate the speci-
men. As a matter of fact, conventional LSFM setups use Gaussian laser beams to generate
the light sheet, which remain too thick for subcellular imaging (see Figure 1.14(a)). A first
response to this limitation was the introduction of Bessel beams, generating thinner sheets
of submicrometer thickness (see Figure 1.14(b)). LLSM goes one step further, generating
sheets of light from 2D optical lattices (see Figure 1.14(c) and (d)). Optical lattices are
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Figure 1.14 – Comparison of light sheet generation methods. (a) The conventional LSFM
approach sweeps a Gaussian beam across a plane to create the light sheet. (b) The use of
a Bessel beam generates a sheet with a narrow core, albeit surrounded by a large number
of bands. (c and d) Optical lattices create periodic interference patterns across the
plane, with low peak intensity and low phototoxicity. The square lattice in (c) confines
the excitation in the central plane, while the hexagonal lattice in (d) optimizes axial
resolution. The columns from left to right depict: the intensity pattern at the rear pupil
plane of the excitation objective (in arbitrary units); the intensity pattern at the xz plane
of the excitation objective focus; the dithered or swept focal intensity pattern creating
the light sheet; and the axial cross-section of the microscope’s overall PSF, respectively.
(illustration extracted and edited from [Chen et al. 2014])

2D or 3D periodic interference patterns that can be generated by coherently superposing
plane waves. In particular, they have notably been used as a mean to trap atoms at very
low temperatures. In LLSM, 2D optical lattices can either be dithered to generate a uni-
form light sheet in high speed mode, or stepped through the specimen in SIM mode to go
beyond the diffraction limit.

The resulting ultra-thin light sheet enables high axial resolution with very low back-
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ground signal compared to conventional LSFM. LLSM is capable of resolving at the
diffraction limit and beyond, with a quasi-isotropic resolution of 230 × 230 × 370 nm in
dithered mode and 150 × 230 × 280 nm in SIM mode. Compared to Bessel beam LSFM
or spinning disk confocal microscopy, the low-peak excitation intensity of LLSM greatly
reduces photo-bleaching and photo-toxicity, enabling acquisitions over longer periods of
time. LLSM also achieves high acquisition speeds, recording from 40 to 200 2D planes per
second, enabling hundreds or even thousands of 3D images separated by subsecond inter-
vals to be imaged. However, high-speed imaging of 3D images results in large amounts
of generated data, which requires cutting-edge image processing algorithms capable of
operating at live-cell recording regimes. In addition, the assembly constraints of LLS mi-
croscopes result in a particular angle of the detection objective, making it necessary to
"deskew" the recorded images before processing them.

Diffraction-unlimited super-resolution microscopy

Contrary to SR-SIM, diffraction-unlimited SRM techniques (also referred to as nanoscopy)
are theoretically able to suppress the diffraction limit, pushing resolution towards infinites-
imally small scales. Their basic principle is to switch fluorescence emissions on and off.
Deterministic techniques such as Stimulated Emission Depletion (STED) target the spec-
imen with focused laser beams to trigger the on/off switching, while others such as Single
Molecule Localization Microscopy (SMLM) stochastically induce switching via wide-field
illumination, using algorithmic tools to detect events and reconstruct the image. However,
in experimental practice and particularly in live-cell imaging, strong irradiation levels, flu-
orophores density, and long acquisition times limit the achievable resolution.

Stimulated Emission Depletion (STED)

Stimulated Emission Depletion (STED) is probably the most common of diffraction-
unlimited SRM techniques. Its principle was first patented by Okhonin [Okhonin 1991],
before being developed again by Hell and Wichmann [Hell and Wichmann 1994], unaware
of the existence of the first patent, and was first experimentally demonstrated by Klar and
Hell [Klar and Hell 1999]. A standard STED setup consists of a confocal microscope where
a depletion beam overlays the conventional excitation beam, as illustrated in Figure 1.15.
This depletion beam features at least one local intensity minimum, usually positioned in
the focal center (donut shape). Its role is inhibit or deplete fluorescent probes to restrict
the excitation zone(s) to a sub-diffraction scale. STED offers the possibility of adjusting
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Figure 1.15 – Principle and light path of Stimulated Emission Depletion microscopy.
(illustration extracted and edited from [Schermelleh et al. 2019], Fig. 1(f))

the resolution by tuning its laser power. This allows the user to weigh up the balance
between resolution and photo-damaging effects, which can be particularly useful in live-cell
imaging when used with custom fluorescent tags and optimized scanning protocols. Live
cells can also be imaged using reversible, saturable optical linear fluorescence transitions
(RESOLFT) microscopy, which uses reversibly photoswitchable fluorescent tags.

In terms of performance, commercial STED installations are capable of achieving
lateral resolution of 60 - 120 nm in cells, while specialized laboratories and teams can
go down to 30 - 80 nm. 3D STED setups are available, allowing a free choice between
increasing lateral and axial resolution. It is also possible to perform two-color imaging
(and even more channels through the conventional confocal mode) with a wide range
of fluorophores, the best performance being obtained with specifically STED-optimized
dyes.

STED is generally considered as easy to use as standard confocal microscopes, of which
it is a complementary modality. While direct observation is impossible, computational
post-processing is not an absolute requirement, although deconvolution is often useful. In

70



1.3. Fluorescence microscopy techniques

Figure 1.16 – Actin filaments in cells stained with 647-phalloidin. Stimulated emission
depletion (STED) microscopy provides significant resolution improvements over those
possible with confocal microscopy. (illustration created and released in CC-BY-SA-4.0 by
Howard Vindin, available on Wikimedia Commons under the filename 'STED Confocal
Comparison 50nm HWFM.png')

2D, STED is particularly suited to imaging filamentous or vesicular structures such as
those illustrated in Figure 1.16, thanks to its exceptional lateral resolution. In volumetric
imaging, 3D STED offers excellent performance when it comes to render thick and densely
packed structures. On the other hand, STED has the same drawbacks as conventional
confocal microscopy when it comes to point scanning, as acquisition times increase with
sample size. This translates, for example, into a relatively slow imaging speed for entire
cells. The reduction of effective fluorescence volume further accentuates this problem, as
it shrinks the size of the scanning steps, in addition to decreasing the amount of signal
detected.

Single Molecule Localization Microscopy (SMLM)

Single Molecule Localization Microscopy (SMLM), illustrated in Figure 1.17, is a fam-
ily of unlimited-SR techniques that achieve super-resolution under wide-field or TIRF
illumination by stochastically activating (or switching on and off) fluorophores in space
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Figure 1.17 – Principle of Single Molecule Localization Microscopy. (illustration extracted
and edited from [Schermelleh et al. 2019], Fig. 1(g))

and time. This enables the acquisition of long image sequences with very sparse fluores-
cence signal, which can be computer-processed to extract the precise localization of single
molecules from their isolated PSF. 3D localization is possible through PSF engineering,
multiplane or interferometric approaches, or even a combination of these techniques [Hajj,
El Beheiry, Izeddin, et al. 2014] [Abrahamsson et al. 2013] [Hajj, Wisniewski, et al. 2014]
[Hajj, El Beheiry, and Dahan 2016]. The obtained precision is nanometric and depends
mainly on the amount of signal detected per activated fluorophore. The concatenation of
positions detected over thousands of frames enables a pointillistic reconstruction of the
observed specimen.

There exists a large number of SMLM techniques, differing mainly in the way switching
is performed. The list includes, but is not limited to, Photo-Activated Localization Mi-
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Figure 1.18 – E. coli Δtar cell with mEos-labeled Tar. (A), (B), (C) and (D) depict
Differential interference contrast (DIC), Diffraction-limited epi-fluorescence (epi), TIR-
PALM, and epi-PALM images of a single cell, respectively. (E) Superposition of (C) and
(D). (F), (G) and (H) depict zooms on the left, middle and right boxed ROIs of (E),
respectively. The scale bar in (A–E) indicates 1 µm and the scale bar in (F–H) indicates
50 nm. (illustration extracted from [Greenfield et al. 2009])

croscopy (PALM, comparative performances illustrated in Figure 1.18) [Betzig et al. 2006],
Stochastic Optical Reconstructed Microscopy (STORM) [Rust, Bates, and Zhuang 2006]
and direct STORM (dSTORM) [Endesfelder and Heilemann 2015], Binding-Activated
Localization Microscopy (BALM) [Schön et al. 2011], Point Accumulation for Imaging
in Nanoscale Topography (PAINT) [Sharonov and Hochstrasser 2006] and a number of
variants. Combining SMLM with TIRF or HILO (Highly Inclined and Laminated Optical
sheet) techniques can significantly improve the efficiency of detection and the signal-to-
background ratio.

SMLM microscopes are generally capable of achieving very high optical resolution
reaching 20 nm laterally and 50 nm axially. The photon count is the main factor on which
the localization precision of the detected PSF centroid depends. In the optical axis, the
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focal depth of the image plane is a limiting factor that can be overcome by the addition
of astigmatic/helical optical distortions or bi-plane detection techniques. These are able
to improve optical resolution to below 100 nm in most cases, at the expense of lateral
precision. On it part, structural resolution (such as the ability to distinguish biological
features like filaments) depends on the density of the specimen labeling and switching
properties.

In addition to their very high resolution, the main advantage of SMLM techniques is
their low cost and their ability to be implemented on conventional wide-field microscopes,
including Light Field Microscopy (LFM) setups [Sims et al. 2020]. The overall operating
complexity is however shifted to the preparation of the biological specimen, as well as
the data analysis and the reconstruction process. Regarding the last point, high label
densities or inappropriate photoswitching rates can for instance induce false detection
of emitters. Other technical requirements include specifically photoswitchable/activatable
fluorescent labels (e.g. in PALM)) or special blinking-inducing buffer conditions for con-
ventional dyes (e.g. in (d)STORM)). The speed of SMLM is generally severely limited
by the long acquisition times associated with the thousands of camera frames required
to reconstruct a single image plane. Additionally, these acquisition times must be short
enough so that the motion of the observed structure does not generate artifacts on the
image reconstruction. These limitations strongly inhibit the applicability of SMLM for
live cell imaging, although methods such as fluctuation analysis, Super-resolution Optical
Fluctuation Imaging (SOFI) [Dertinger et al. 2009] or Super-Resolution Radial Fluctu-
ations (SRRF) [N. Gustafsson et al. 2016] offer to make a trade-off between optical and
temporal resolution, enabling live-cell recordings.

1.4 Bioparticle tracking techniques

In the previous section, we presented various fluorescence microscopy techniques as
a means of imaging microscopic objects in 2D and 3D. To extract useful information
from the images, it is often necessary to apply processing steps. In biological microscopy,
image processing and analysis have become essential tools for automatically and reliably
quantifying sub-cellular and molecular biological processes in space and time. With data
collection becoming increasingly complex, as do the techniques used to acquire it, the
signal and image processing algorithms used to perform these operations are gaining in
importance.
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In particular, computational methods for analyzing the motion of bioparticles, which
has been described individually and collectively by a number of models [Bressloff and
Newby 2013] [Hozé and Holcman 2017], are of particular interest in cell biology. The
motivation for developing such tools stems from the complexity of the dynamic processes
observed, such as protein association, dissociation and recomposition. Most existing meth-
ods are probabilistic tracking techniques for fluorescent bioparticles [Chenouard, Smal, et
al. 2014]. Tracking bioparticles in both 2D and 3D image sequences with high precision
is a difficult task, requiring optimization or simulation to handle the estimation of sev-
eral thousand tracks [Sbalzarini and Koumoutsakos 2005] [Smal et al. 2008] [Jaqaman
et al. 2008] [Chenouard, Bloch, and Olivo-Marin 2013] [Sibarita 2014] [Racine, Hertzog,
et al. 2006] [Racine, Sachse, et al. 2007] [Roudot, Ding, et al. 2017]. Single-Particle Track-
ing (SPT) methods generally attempt to optimally associate the position of detected
fluorescent spots with appropriate algorithms, while overcoming non-linear constraints
[Chenouard, Bloch, and Olivo-Marin 2013]. Several methods have been designed to han-
dle specific types of bioparticle motion [Chenouard, Bloch, and Olivo-Marin 2013] [Spilger
et al. 2020] and were evaluated in 2014 [Chenouard, Smal, et al. 2014]: all trackers were
highly competitive, although giving their best on their target scenario (see [Pécot et al.
2018]).

In this section, we focus on two tracking methods that were used in our work: Multiple
Hypothesis Tracker [Reid 1979] [Blackman 2004] [Chenouard, Bloch, and Olivo-Marin
2013] and U-track [Jaqaman et al. 2008] [Roudot, Ding, et al. 2017].

1.4.1 Multiple Hypothesis Tracking (MHT)

Multiple Hypothesis Tracking is one of the most popular methods for tracking multiple
targets, and is used in a wide variety of fields such as radar detection, video surveillance
or fluorescence microscopy. It is based on the idea of forming at each frame several linking
hypotheses between the positions of detected targets (such as fluorescent spots), construct-
ing probability trees of possible complete trajectories. This idea of multiple hypothesis
propagation was originally developed in [Singer, Sea, and Housewright 1974], before being
algorithmically implemented in [Reid 1979] for civil and military radar purposes. It has
since been derived in a number of variants designed for various fields [Blackman 2004].

In the past decade, it has been adapted to fluorescence microscopy in [Chenouard,
Bloch, and Olivo-Marin 2013], to make it capable of simultaneously tracking thousands of
targets in biological image sequences. To this end, the authors propose a unified Bayesian
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framework suitable for nanoscale target tracking in cellular environments, incorporat-
ing realistic models for target existence, particle motion and fluorescent image features.
They then propose to adapt the Multiple Hypothesis Tracking algorithm to the proposed
framework, in order to handle the large scale of the problem with a favorable trade-off
between computational cost and model complexity. Track trees provide an exhaustive rep-
resentation of possible solutions, while a linear programming algorithm with non-convex
constraints ensures a reasonable computing time. Process consistency is ensured by inte-
grating all tracking decisions into a single optimization problem.

The authors carried out two experiments on synthetic and real data to test and com-
pare their method with various state-of-the-art particle-tracking techniques. Both data
sets consisted of low signal-to-noise ratio fluorescence images depicting cluttered biologi-
cal samples. The proposed method proved remarkably robust to clutter, and was the only
one to deliver high-quality results under poor imaging conditions. As a final note, the
algorithm was implemented in Java and is available as an open-source plug-in for the Icy
platform [Chaumont et al. 2012].

1.4.2 The U-track algorithm

U-track is a popular particle tracking algorithm developed with MATLAB [Jaqa-
man et al. 2008]. It was designed to address important tracking challenges, such as high
densities of particles in the image sequence, the presence of different types of motion,
particles merging/splitting, or gaps in trajectories resulting from particle disappearance
or detection failure.

The algorithm operates in two steps: first, using combinatorial optimization and in
particular the linear assignment problem, it links detected particles positions between
consecutive frames; second, using a similar approach, it links the obtained track segments
into complete trajectories, closing gaps and detecting merging/splitting events between
initial track segments. The method also uses recursive tracking in forward and reverse time
directions. Both steps use spatial optimization for particle and track segment assignation,
which increases tracking accuracy in the case of high particle density, while the second step
additionally uses time optimization. U-track waits until the second step to construct
all possible paths from the initial track segments obtained in the first step, unlike MHT
which builds in all frames all possible paths from detected particle positions. This makes
it possible to solve the assignment problem with a powerful desktop computer, as it
considerably reduces the space of potential assignments.
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U-track is a robust algorithm, capable of predicting abrupt transitions between par-
ticle motion types and recovering from them, as well as being suitable for a wide range
of tracking tasks in live-cell imaging. Its two-step optimization brings it close to the
theoretically best, but computationally unimplementable, Multiple-Hypothesis Tracking
approach. In [Jaqaman et al. 2008], it was successfully tested on two biological case studies
involving GTPase dynamin and CD36 receptors, which depended crucially on the algo-
rithm’s ability to produce accurate tracks in dense particle fields and to detect merge and
split events, respectively. As a final note, a 3D-capable version of U-track was recently
developed and presented in [Roudot, Legant, et al. 2022].

1.5 Particle motion classification

The motion of a particle in the cytoplasm can be roughly classified into three classes.
In general, particle motion is a stochastic process, resulting from all shocks between the
particles and the environment. In what follows, we describe conventional situations. First,
free diffusion (or Brownian motion) corresponds to pure diffusion (no obstacle and no
collision), with no drift. The Langevin equation (2.1) can be re-written in a simplified
form as

dx = σ(x)db.

Second, the particle can be bound to a static point. In this case (subdiffusion) stochastic
motion is restricted to a small area around the binding point. The Ornstein-Uhlenbeck
process has been proposed to model this motion, and can be seen as a particular type of
Langevin stochastic process, with (2.1) re-written as

dx = θ(x0 − x)dt+ σ(x)db ,

where θ designates a constant corresponding to the strength of the binding and x0 the
binding point.

Third, superdiffusion corresponds to a mostly deterministic motion. The particle moves
in a given direction and motion is not restricted to a small area. This case typically
happens when the particle is being actively transported within the cell by molecular
motors and (2.1) is unchanged.

Several characteristics, including the length and direction of the particle trajectories,
the different modes (superdiffusion, subdiffusion, free diffusion) of diffusion governed by

77



Chapter 1 – Theory, observation and analytics of microscopic particle motion

parameters (diffusion coefficient, drift), and the transitions between two distinct diffu-
sion modes, are used to characterize specific intracellular mechanisms and processes. An
important task is to assign a diffusion mode to each trajectory and to estimate the un-
derlying parameters. The MSD (Mean Square Displacement) method is the most popular
in this context, but is not very robust in distinguishing Brownian motion from confined
motion. The classification errors increase as the trajectory length decreases and the trajec-
tories are noisy (e.g., localization errors). Bayesian and learning-based approaches allow
to obtain higher classification rates but require a large numbers of simulations [Monnier,
Barry, et al. 2015] [Granik et al. 2019].

In [Briane, Kervrann, and Vimond 2018], the authors proposed a fast statistical
method requiring no simulation, which given a trajectory as an input, is able to as-
sign it an individual motion class. The main advantage of the Briane’s method is that
it can efficiently handle short trajectories from 10 points and beyond. Unlike the opti-
mization algorithm to find the Maximum A Posteriori in the Bayesian setting, no prior
is required. The approach is low time consuming and requires no memory capacity. The
same particle being able to change the way it moves following its interaction with its
cellular environment, the same authors proposed in [Briane, Vimond, Valades-Cruz, et al.
2020] a statistical method to detect switches between two types of motion along the tra-
jectory. This method is able to divide a trajectory into classified subtrajectories. In what
follows, we use the two aforementioned methods to classify particle tracks. We end up
with the set X ⊂ Rd, d ∈ {2, 3} of all points from all trajectories, divided by trajectories,
subtrajectories, and motion class.

1.5.1 Particle trajectory classification

Let Xn = (xt0 , ...,xtn) be a trajectory generated from an unknown d-dimensional
(d = 2 or d = 3) diffusion process (xt). We define three hypotheses:

Hypothesis 0 (Test hypothesis) (xt) is a Brownian motion.

Hypothesis 1 (xt) is a subdiffusive process.

Hypothesis 2 (xt) is a superdiffusive process.

The procedure of [Briane, Kervrann, and Vimond 2018] allows one to assess from
which type of diffusion the observed trajectory is generated with two statistical tests:
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1. Hypothesis 0 versus Hypothesis 1

2. Hypothesis 0 versus Hypothesis 2

The two procedures are then aggregated to build a three-decision procedure. Finally,
a multiple test procedure is proposed to reduce the rate of false alarms. This procedure
allows one to control the number of false detections, i.e. the number of trajectories detected
as non-Brownian when in fact they are.

Let Dn be the maximal distance of the process from its starting point and Tn the
standardized distance:

Tn = Dn√
(tn − t0)σ̂2

n

,

Dn = max
i=A,...,n

∥xti
− xt0∥ ,

where σ̂n is a estimator of σ measured on one particular trajectory. Briane, Kervrann
and Vimond propose two estimators for σ, of first and second order respectively [Briane,
Kervrann, and Vimond 2018]:

σ̂2
1,n = 1

dn∆t

n∑
j=1

∥∥∥xtj
− xtj−1

∥∥∥2
,

σ̂2
2,n = 1

2dn∆t

n∑
j=1

∥∥∥(xtj+1 − xtj

)
−
(
xtj

− xtj−1

)∥∥∥2
.

A low Tn means that the process remains close to its initial position for the period
[t0, tn]: this is probably subdiffusion. On the contrary, if Tn is large, it means that the
process is likely to move away from its starting point as a superdiffusive process. This
measure Tn introduces an order into the diffusion processes solution of the SDE (1.9).
It can then be used to classify them into the different diffusion classes: free diffusion,
superdiffusion and subdiffusion. We want a test whose null hypothesis is that the trajectory
comes from a Brownian motion, the gold standard process in biophysics. As a consequence,
Tn must be a pivotal statistic under the Hypothesis 0.

Let qn(α) be the quantile of Tn of order α ∈ (0, 1) when (xt) is a Brownian motion
and R1,α and R2,α two critical regions defined as

R1,α = Tn < qn(α) ,

R2,α = Tn > qn(1 − α) .
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If Xn ∈ R1,α, we choose Hypothesis 1. If Xn ∈ R2,α, we choose Hypothesis 2. Otherwise,
we do not reject Hypothesis 0.

1.5.2 Detection of motion class switching along particle trajec-
tories

In addition to classifying trajectories by motion type as described in the previous
subsection, Briane, Vimond and Valades-Cruz introduce a method for detecting motion
changes within trajectories, thus enabling us to divide them into sub-trajectories of dif-
ferent motion types [Briane, Vimond, Valades-Cruz, et al. 2020]. The procedure is as
follows:

1. Detect potential change points ,

2. Group the potential points into clusters ,

3. Estimate a simple change point in each cluster .

We detail each step in the next subsections.

Detecting the potential change points

Let Xn = (xt0 , ...,xtn) and 1 ≤ k ≤ n/2. For all index i such that tk ≤ ti ≤ tn−k, we
consider two subtrajectories of size k starting at xti

,
— the forward trajectory X+

i = {xti
,xti+1 , ...,xti+k

} ,
— the backward trajectory X−

i = {xti
,xti−1 , ...,xti−k

} .
As with motion classification, we calculate the standardized maximal distances from

the "starting" point of the forward and reverse trajectories:

Ai =
maxj=1,...,k

∥∥∥xti+j
− xti

∥∥∥√
(ti+k − ti)σ̂(ti : ti+k)

,

Bi =
maxj=1,...,k

∥∥∥xti−j
− xti

∥∥∥√
(ti+k − ti)σ̂(ti−k : ti)

,

where σ̂(ti : ti+k) (respectively σ̂(ti−k : ti)) denotes the estimate of the diffusion coefficient
from the forward trajectory X+

i (respectively the backward trajectory X−
i ).

To detect switching, we want to compare Ai and Bi: the idea is that if both values
are in the same range, it’s unlikely that the moment ti is a change point. To do this, we
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define the following function:

ϕ(x; η1, η2) =


1 if x < η1 ,

2 if x > η2 ,

0 otherwise ,

where η1 ∈ R+ and η2 ∈ R+ are cut-off values depending on the parameters of the
procedure, with η1 < η2.

As explained before, ϕ(Ai; η1, η2) = 0 means that X+
i is Brownian, ϕ(Ai; η1, η2) = 1

means that X+
i is subdiffusive and ϕ(Ai; η1, η2) = 2 superdiffusive. Further, we compute

Qi = ϕ(Ai; η1, η2) − ϕ(Bi; η1, η2), i = k, ..., n− k .

Here, Qi = 0 means that Ai and Bi belong to the same range of values defined by η1 and
η2. Then, both X+

i and X−
i are from the same type of diffusion and ti is unlikely a change

point. On the contrary, if Qi ̸= 0 the subtrajectories X+
i and X−

i are not from the same
type of diffusion and ti is a potential change point.

Grouping the potential change points into clusters

We assume that a subset of indexes where the concentration of potential change point
is high (even if there are not connected) is likely to contain a true change point. We thus
define a cluster of potential change points as a subset of index M = i, ..., i+ l such that

m+c−1∑
j=m

1(Qj ̸= 0) ≥ c∗, ∀m = i, ..., i+ l − c+ 1 ,

where c = k/2 and c∗ = 3k/8 are tuning parameters, so that the cluster has a minimal
size of k/2 as in [H. Cao and Wu 2015], and a cluster is created if there is a concentration
of at least 75 % potential change points in a set of c successive points.

Estimating a unique change point in each cluster

Let Mj be the jth cluster, τj the true change point in Mj, and rj the index of τj

such that τj = trj
. At τj, X−

rj
and X+

rj
are trajectories generated by different diffusion

processes, such that Brj
and Arj

must be the most different. At a point ti close to τj,
the subtrajectories X−

i and X+
i are composed of a diffusion mixture, which implies that
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|Bi −Ai|≤ |Brj
−Arj

|. Then, we estimate the most representative change point in the jth

cluster as
τ̂j = trj

, rj = max
i∈Mj

|Bi − Ai| .

1.5.3 Merging of motion classification and switching detection

In the end, it is possible to divide and classify a set of trajectories by combining the
two aforementioned procedures. For the purposes of our work, we have merged motion
classification and switch detection into a single software package (MATLAB). It works
as follows: let Xn be a trajectory of length n. If n > 25, we use the switching detection
procedure to divide X into several subtrajectories separated by their change points, and
classify them separately. If 10 < n < 25, then Xn is too short to search for change points,
and we classify it as a whole using the first procedure. For conservative reasons, if n < 10,
Xn is classified as Brownian by default.

1.6 Simulating fluorescence microscopy particle dy-
namics with FluoSim simulator

In this section, we present FluoSim, a fluorescence microscopy simulation software
developed by Matthieu Lagardère and Olivier Thoumine at IINS, University of Bordeaux
[Lagardère et al. 2020]. It is a fast, robust and user-friendly computer program capable
of simulating membrane protein dynamics for various live-cell and super-resolution imag-
ing techniques, such as Single-Particle Tracking (SPT), PhotoActivation of Fluorescence
(PAF), Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Correlation
Spectroscopy (FCS), PhotoActivated Localization Microscopy (PALM), direct Stochastic
Optical Reconstruction Microscopy (dSTORM) and Point Accumulation In Nanoscopic
Topography (PAINT). It allows the user to set diffusion coefficients, binding rates and
fluorophore photophysics before simulating in real time the positions and intensities of
thousands of independent molecules within 2D cell shapes, generating simulated image
sequences that can be compared to real experiments. The program can model a wide range
of dynamic 2D molecular systems with membrane diffusion and transient confinement. It
has been used, for example, to characterize neurotransmitter receptors at synapses, or
the trapping of membrane molecules by lipid rafts. In addition, FluoSim can be used
to evaluate the performance of image processing algorithms, such as bioparticle detectors
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and trackers, or motion classification methods. Although currently limited to Brownian
motion simulation, it can potentially be used to simulate large datasets for deep learning
algorithms [Lagardère et al. 2020].

Matthieu Lagardère provided us with the software, which we used as an experimen-
tation tool in our work relating to Chapters 2 and 3 of this thesis. In what follows, we
give a general presentation of the software principle and interface, before describing its
mathematical framework in detail, and then reviewing its capabilities and performance.

1.6.1 General principle

After importing a 2D cell shape extracted from a microscopy image, the user sets var-
ious parameters such as the number of molecules, acquisition time and frame rate, local
diffusion coefficients, trapping areas (un)binding rates and fluorescence switching rates
(see Figure 1.19). Once the simulation is started, the software algorithm updates the po-
sitions and intensities of molecules at each time step, using random number generation
to mimic stochastic motion and random photo-switching of fluorescent tags. The algo-
rithm is capable of displaying the cell system in real time and providing post-processing
information such as particle trajectories, image sequences and various graphs. The im-
age sequences can be corrupted by Poisson or Gaussian noise, enabling the simulation
of realistic image sequences. As FluoSim calculates particle positions with almost in-
finite precision, it is capable of generating super-resolution images similar to PALM or
dSTORM, using a few additional parameters.

1.6.2 Mathematical framework

One particular feature of FluoSim that we use extensively in our research is the
ability to create 2D subregions in which particles can be trapped (microdomains). In what
follows, we define the underlying mathematical framework and notations of a FluoSim
simulation, which we will use in Chapters 2 and 3.

First, we denote as D the simulation domain corresponding the the aforementioned
2D cell shape, whose boundaries normally reflect particles. Within D can be defined a
finite number of subregions with specific properties called trapping areas, that we denote
as {S1, · · · ,Sj, · · · ,Sk} ⊂ D. We also define S = ⋃k

1 Sj and S̄ = D/S.
Let {p1, · · · , pl, · · · , pN} ∈ D be N ∈ N∗ simulated particles. We denote the trajectory
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Figure 1.19 – The fluosim interface and its parameters.

of each particle pl over time as

Xl =
{
x

(l)
t0 , · · · ,x(l)

ti
, · · · ,x(l)

tn

}
,

where x
(l)
ti

∈ R2 is the position of particle pl at time ti ∈ R+, and n ∈ N∗ is the length of the
trajectory corresponding to the number of simulated frames. The time difference between
two consecutive particle positions is a constant ∆t corresponding to the simulation frame
rate, with ti = t0 + i∆t.

If pl ∈ S, the particle may alternatively switch between two states: free or trapped.
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If pl is free, it can escape its trapping area Sj. If it is trapped, the boundary of Sj will
normally reflect pl. We define the trapping indicator as

T
(
x

(l)
ti

)
=

 1 if pl is trapped at time ti ,
0 if pl is free at time ti .

Each particle pl ∈ D undergoes Brownian motion with three possible diffusion coeffi-
cients σS̄ , σS and σt ≤ σS̄ set by the user as follows:

— If pl ∈ S̄, σ(x(l)
ti

) = σS̄ ,
— If pl ∈ S and pl is free, σ(x(l)

ti
) = σS ,

— If pl ∈ S and pl is trapped, σ(x(l)
ti

) = σt .
We denote the binding and unbinding rates of the simulation respectively as {k+, k−} ∈
[0, 1/∆t]2 such that

P (T (xti+1) = 1|T (xti
) = 0 ,xti+1 ∈ S) = k+∆t ,

P (T (xti+1) = 0|T (xti
) = 1 ,xti+1 ∈ S) = k−∆t .

Particles can also switch between on and off states, meaning they emit light or not,
respectively. We define the switching indicator as

S
(
x

(l)
ti

)
=

 1 if pl is switched-on at time ti ,
0 if pl is switched-off at time ti .

We denote the switch-on and switch-off rates of the simulation as {s+, s−} ∈ [0, 1/∆t]2

such that

P (T (xti+1) = 1|T (xti
) = 0) = s+∆t ,

P (T (xti+1) = 0|T (xti
) = 1) = s−∆t .

Note that k+, k−, s+ and s− are space-independent constants that do not vary within
trapping areas.

1.6.3 Performances

As illustrated in Figure 1.20, the performance of FluoSim was carefully tested in
[Lagardère et al. 2020]. The simulated data it generated was compared with experimental

85



Chapter 1 – Theory, observation and analytics of microscopic particle motion

Figure 1.20 – Comparison between SPT experiments and their corresponding FluoSim
simulations. (a) Image sequence showing a COS-7 cell expressing GFP-Nrx1β sparsely
labeled with Atto647N-conjugated GFP nanobody. (b) Zoom on the ROI in (a) (white
rectangle) showing the trajectories tracked after image acquisition. (c) FluoSim simula-
tion of particles in a geometry similar to the experiment illustrated in (a). (d) Zoom on
the ROI in (c) representing trajectories simulated with FluoSim. (extracted and edited
from [Lagardère et al. 2020])

data, in particular SPT, dSTORM, FRAP, and FCS experiments that were performed on
the canonical neurexin-neuroligin adhesion complex that mediates trans-synaptic adhesion
in neurons. It successfully reproduced the experimental results using parameters extracted
from published in vitro studies and/or measurements carried out by the authors.

FluoSim is a fast, robust program capable of simulating membrane protein dynamics
in a wide range of fluorescence imaging modalities, with real-time display and precise
control over kinetics, photo-physics and image acquisition parameters. For the time being,
FluoSim can only simulate Brownian motion and simple molecular reactions, but the
authors point out that subdiffusive or superdiffusive particle motion as well as complex
reactions can be implemented, depending on user requirements on a case-by-case basis.
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1.7 Conclusion

As our thesis work lies at the intersection of mathematics, optical microscopy and
computer science, we introduced a whole set of key tools from these various disciplines in
order to fully grasp our framework.

First, we introduced the statistical theory of stochastic processes, Brownian motion
and diffusion. Second, we presented from a theoretical point of view several models and
types of particle motion, such as free diffusion, subdiffusion and superdiffusion. Third,
as the image sequences we worked on came from fluorescence microscopy imaging, we
introduced various conventional, super-resolved, diffraction-unlimited super-resolved mi-
croscopy techniques such as Wide-Field, Confocal, TIRF, (Lattice) Light Sheet, Struc-
tured Illumination, Stimulated Emission Depletion and Single Molecule Localization.
Fourth, we gave a brief summary of two popular particle trackers (Multiple Hypothe-
sis Tracking [Chenouard, Bloch, and Olivo-Marin 2013], U-track [Jaqaman et al. 2008])
that we used to extract localization information from biological image sequences. Fi-
nally, we presented two particle motion classification and segmentation methods [Briane,
Kervrann, and Vimond 2018] [Briane, Vimond, Valades-Cruz, et al. 2020].

These methods and tools have been combined and integrated into the diffusion and
drift estimation scheme that we present in the next chapter, and which constitutes the
core of our work. In what follows, we propose a new algorithmic method that estimates
diffusion and drift maps using particle tracking data. After presenting some related work
and methods, we introduce our method from a theoretical and algorithmic point of view,
before testing it on a extensive set of experiments.
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Chapter 2

DENSE MAPPING OF INTRACELLULAR

DIFFUSION AND DRIFT FROM MOLECULE

TRACKS

The study of protein dynamics within cells is an important field of study in cell bi-
ology and biophysics, which is inherently linked to fluorescence microscopy. In general,
fluorophores (fluorescent compounds) can be attached to proteins in order to observe and
study intracellular dynamics. Consequently, there is a high demand for computational
tools capable of automatically analyzing the microscopic data, and in particular the im-
age sequences depicting the moving particles in the form of bright spots produced by
fluorophores. In this chapter, we propose a method based on a spatio-temporal Gaussian
kernel that estimates intracellular diffusion and drift maps among other outputs, using
single-particle tracking data obtained through fluorescent microscopy image sequences.

First, we begin by reviewing the current state-of-the-art techniques involved in the
estimation of intracellular diffusion and drift. In particular, we focus on the works of Hozé
and Holcman [Hozé, Nair, et al. 2012] [Hozé and Holcman 2014] [Hozé and Holcman 2017]
who proposed an Eulerian approach to solve this problem, and the works of El Beheiry
and Masson [Beheiry, Dahan, and Masson 2015] [Masson, Casanova, et al. 2009], who
proposed a Bayesian inference method to address the same problem. Second, we present
the statistical and mathematical theory of our method in detail, especially the several
spatiotemporal kernel estimators that are used to analyze the input SPT data, depending
on the particle motion type. Third, we assess the quality and robustness of our method
by reporting an extensive set of experiments, using both simulated, real, 2D and 3D data
sets. We compared our method with the two aforementioned methods, before drawing a
conclusion on its accuracy, robustness and advantages.
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2.1 Related work

First, Hozé and Holcman consider a Eurelian approach to estimate diffusion and drift
from tracklets in a series of papers [Hozé, Nair, et al. 2012] [Hozé and Holcman 2014]
[Hozé and Holcman 2017]. Meanwhile, El Beheiry and Masson considered the Bayesian
inference framework to achieve the same goal [Beheiry, Dahan, and Masson 2015] [Masson,
Casanova, et al. 2009].

2.1.1 Eulerian method for diffusion estimation

In this subsection, we introduce the theory behind the Hozé and Holcman Eulerian
approach. As a starting point, Langevin proposed a description of a stochastic particle
trajectory following this equation [Langevin 1908]:

mẍ(t) = −γẋ(t) + f s(x, t) , (2.1)

where m ∈ R∗
+ is the particle’s mass, x ∈ Rd, d ∈ {2, 3} denotes the particle’s spatial

coordinates, γ ∈ R∗
+ is the particle’s friction coefficient, f s : Rd ×R+ → Rd is a stochastic,

fluctuational force resulting from the particle’s random collisions with the surrounding
fluid molecules, and t ∈ R+ designates time. If a deterministic force field f d : Rd ×R+ →
Rd is also applied to the particle, the equation (2.1) becomes

mẍ(t) = −γẋ(t) + f d(x, t) + f s(x, t) .

The Smoluchowski’s limit [Schuss 2010] [Holcman and Schuss 2017] of (2.1) shows that
as γ → ∞, the equation reduces to

γẋ(t) = f d(x, t) + f s(x, t) . (2.2)

We assume that f s is a Gaussian process:

f s(x, t) = fs(x, t)ḃ(t) ,

where fs ∈ R+ and b is standard Gaussian white noise. We can then rewrite (2.2) in the
following form:

ẋ(t) = f d(x, t)
γ

+ fs(x, t)
γ

ḃ(t) . (2.3)
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The source of the driving noise is the thermal agitation of the ambient lipid and membrane
molecules. However, due to the acquisition timescale of empirically recorded trajectories,
which is too low to follow the thermal fluctuations, rapid events are not resolved in the
data, and at this coarser spatiotemporal scale, the motion is described by the effective
stochastic equation [Hozé, Nair, et al. 2012] [Hozé and Holcman 2014]:

dx = µ(x, t)dt+ σ(x, t)db ,

where µ ∈ Rd is the drift vector and σ ∈ R+ is the diffusion coefficient.
This equation can be used to recover the drift and the diffusion from Single-Particle

tracks acquired at any infinitesimal time step ∆t [Schuss 2010] [Hozé and Holcman 2014]
[Hozé and Holcman 2017] [Friedrich and Peinke 1997] [Siegert, Friedrich, and Peinke 1998]:

µ(x, t) = lim
∆t→0

E[x(t+ ∆t) − x(t)|x(t) = x]
∆t , (2.4)

σ(x, t) = lim
∆t→0

E[|x(t+ ∆t) − x(t)|2|x(t) = x]
∆t , (2.5)

where E[·|x(t) = x] denotes the averaging over all trajectories at point x and time t. To
estimate the local drift µ(x) and diffusion coefficients σ(x) at each point x, Hozé et al.
use a computational procedure summarized below [Hozé, Nair, et al. 2012].

In [Hozé, Nair, et al. 2012], the points of trajectories are first grouped within small
square bins S(gk, r) of size ∆g and centered on lattice grid gk. The local drift vector and dif-
fusion coefficient are independently estimated in each square block. Let {Xi(0), · · · , Xi(K∆t)}
be a set of N trajectories with i = 1, · · · , N of respective lengths l1, · · · , lN and ∆t the
sampling time. The discretization of equations (2.4) and (2.5) for the drift µ(xk) and
diffusion σ(xk) in a bin centered at position xk are respectively

µ(xk) ≈ 1
∆t · nk

N∑
i=1

li−1∑
j=0

1[S(gk,r)](xi(j∆t)) · (xi((j + 1)∆t) − xi(j∆t)) ,

σ(xk) ≈ 1
2∆t · nk

N∑
i=1

li−1∑
j=0

1[S(gk,r)](xi(j∆t)) · (xi((j + 1)∆t) − xi(j∆t))2 ,

where 1[S(gk,r)] is the indicator function of S(gk, r) and nk =
N∑

i=1

li−1∑
j=0

1[S(gk,r)](xi(j∆t)) is the

number of trajectory points falling in the square block S(gk, r). More recently, Parutto et
al. proposed to compute cosine-filtered maps to improve visualization. The role of cosine
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weights is to decrease continuously the influence of the points but the spatial resolution is
still crude when compared to the spatial resolution of input trajectory sets [Parutto et al.
2022].

This block-based approach has one severe limitation: the trade-out between resolution
and input data quantity is often sub-optimal and can lead to poor quality in terms of
results if the input data set is not dense enough. The method was actually designed to
process very large SPT-PALM data sets. We propose an alternative approach based on
the same framework to overcome these shortcomings.

2.1.2 Bayesian method for diffusion estimation

El Beheiry and Masson consider the Bayesian inference framework to address the same
issues. InferenceMAP [Beheiry, Dahan, and Masson 2015] starts by building a mesh of
the image domain from trajectory points. This can be achieved either by a basic Square
Meshing, as in [Hozé, Nair, et al. 2012], a Voronoi tessellation [Voronoi 1908a] [Voronoi
1908b], or a Quad-Tree Meshing [Finkel and Bentley 1974]. The software then uses a
Bayesian inference technique described in [Masson, Casanova, et al. 2009] to calculate the
diffusion or the drift inside each meshing zone as follows.

The authors consider the overdamped Langevin equation (2.3) as a particle motion
model, as well as the associated Fokker-Planck equation, describing the time-evolution of
the particle transition probability P (x2, t2|x1, t1):

dP (x2, t2 | x1, t1)
dt

= −∇ ·
(

f(x, t)
γ(x) P (x2, t2 | x1, t1) − ∇ (σ(x)P (x2, t2 | x1, t1))

)
.

(2.6)
This equation has no general analytic solution for arbitrary diffusion coefficient and

force fields σ(x) and f(x). However, in a local area or region, it can be assumed that
both σ and f are constant, and the solution to (2.6) is of the following form:

P ((x2, t2 | x1, t1) | σi,f i) = 1
4π
(
σi + λ2

t2−t1

)
(t2 − t1)

exp

−

(
x2 − x1 + f i(t2−t1)

γi

)2

4
(
σi + λ2

t2−t1

)
(t2 − t1)

 ,

where i denotes the mesh zone index and λ the experimental localization precision.
Furthermore, the overall probability of a trajectory T due to the spatially depen-

dent variables σ and f is obtained by multiplying the probabilities of all the individual

92



2.1. Related work

subdomains P (T |σi,f i):
P (T |σ,f) =

∏
i

P (T |σi,f i) . (2.7)

According to Bayes’ rule,

P (σ|f , T ) = P (T |σ,f)P (σ,f)
P (T ) ,

where P (σ,f |T ) is the posterior probability, P (σ,f) is the prior probability, and P (T ) is
the evidence (which is treated as a normalization constant).

For each mesh zone, an optimization of the posterior probability P (σ,f |T ) is per-
formed for the model parameters σ, f . This is the core of the maximum a posteriori
(MAP) Bayesian inference approach that gives its name to InferenceMAP. In particu-
lar, the estimation of σ is performed in each zone independently from the others, resulting
in a rapid calculation as this mode consists of a single-variable optimization. The posterior
probability used to infer the diffusion in a given zone is given by

P ({σi} | {Tk}) ∝
∏
k

∏
µ:xk

µ∈Si

PJ (σi)PS (σi)
4π
(
σi + λ2

∆t

)
∆t

exp

−

(
xk

µ+1 − xk
µ

)2

4
(
σi + λ2

∆t

)
∆t

 ,

where σi is the diffusion coefficient, µ denotes the index for which the points xk
µ of the

kth trajectory are in Si (the current zone being analyzed), and λ is the experimental
localization precision (30 nm by default). Here, PJ(σi) denotes the optimal Jeffrey’s prior
which may be activated and deactivated, and PS(σi) is a diffusion smoothing prior.

Finally, the calculated values of σ are updated into the mesh and a mosaic-like map of
diffusion is obtained (see example in Figure 2.5). It is worth noting that InferenceMAP
also allows to calculate the drift within each mesh zone.

2.1.3 Conclusion

The main advantage of these two methods lie in their relative simplicity and fast
processing time. Both methods however do not take into account particle motion types
and act as if all particles undergo the same motion in a region of interest. In addition,
they both necessitate a high and uniform density of particle positions to generate accurate
results, performing poorly in low density regions as shown in Section 2.3. Finally, while the
Hozé approach can easily be extended to work on 3D data sets, the El Beheiry algorithm
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only works in 2D.
We propose to overcome several disadvantages of these two separate approaches by

using motion classification and a particle position based approach in our method. To
do so, we use a spatio-temporal kernel that calculates drift and diffusion values in each
particle position of the data set, while adapting to the local data density. Additionally,
classification allows one to use the most adapted formulas following particle motion type.
Results can be displayed as point clouds and vector fields both in 2D and 3D.

2.2 Dense Mapping: a hybrid Lagrangian-Eulerian
method for diffusion and drift estimation

2.2.1 Notations and definitions

Trajectories

Let d ∈ {2, 3}. In a d-dimensional space, we define a particle trajectory X of length
n ∈ N∗ as

X = {xt0 , · · · ,xti
, · · · ,xtn} ,

where xti
∈ Rd is the particle position at time ti ∈ R+. We assume that the time difference

between two consecutive particle positions is a constant ∆t that we will call time resolution
from now on, with ti = t0 + i∆t. For any particle position x ∈ X, we also denote tx the
time associated to a given position.

Let X be a particle trajectory. We define the trimmed trajectories X′ and X′′ as

X′ = X \ {xtn} ,

X′′ = X \ {xt0 ,xtn} .

Sets of particle positions

Let us consider a set of N ∈ N∗ trajectories {X1, · · · ,XN}. We define the set X of all
particle positions from the N trajectories as

X =
{

x ∈ Rd | x ∈
N⋃

i=1
Xi

}
.
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Based on the definition of X′ and X′′, we define X ′ and X ′′ as:

X ′ =
{

x ∈ Rd | x ∈
N⋃

i=1
X′

i

}
,

X ′′ =
{

x ∈ Rd | x ∈
N⋃

i=1
X′′

i

}
.

Motion type set notation

Let X be a generic set of particle positions, we define Xfree, Xsub and Xsup as

Xfree = {x ∈ X | x is classified as Brownian} ,

Xsub = {x ∈ X | x is classified as subdiffusive} ,

Xsup = {x ∈ X | x is classified as superdiffusive} .

In what follows, this notation will typically concern the set X with Xfree, Xsub and Xsup.

First and second order differences

Let X be a trajectory of length n. For all xti
∈ X′, we define

∆(1)xti
= xti+1 − xti

(2.8)

as the first order difference of xti
. Similarly, we define for all xti

∈ X′′ the second order
difference of xti

as
∆(2)xti

= xti+1 − 2xti
+ xti−1 . (2.9)

We denote ∆(1)X and ∆(2)X the sets of first and second order differences associated to
the trajectory X, respectively:

∆(1)X =
{
∆(1)xt0 , · · · ,∆(1)xtn−1

}
,

∆(2)X =
{
∆(2)xt1 , · · · ,∆(2)xtn−1

}
.

Let us consider a set of N ∈ N∗ trajectories {X1, · · · ,XN} of respective lengths
{n1, · · · , nN} and x ∈ X ′. By definition,

∃!(i, j) ∈ {1, · · · , N} × {0, · · · , ni − 1}, x = xtj
∈ X′

i .
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We define the first order difference of x as the first order difference of its corresponding
xtj

:
∆(1)x = ∆(1)xtj

∈ ∆(1)Xi .

Similarly, let x ∈ X ′′. By definition again,

∃!(i, j) ∈ {1, · · · , N} × {1, · · · , ni − 1}, x = xtj
∈ X′′

i .

The second order difference of x is similarly defined as the second order difference of its
corresponding xtj

:
∆(2)x = ∆(2)xtj

∈ ∆(2)Xi .

Given a set of trajectories {X1, · · · ,XN}, our objective will be to estimate a drift vec-
tor and a diffusion coefficient on each particle position x ∈ X , using different formulas
following the motion type of said particle (free diffusion, subdiffusion, or superdiffusion).

2.2.2 Dense diffusion and drift estimation

We now present the details of our estimation method that uses SPT data as an input.
Nevertheless, is also capable to process image sequences directly, by subjecting them to
a tracking process. The data consists of a set of N ∈ N∗ trajectories {X1, · · · ,XN}. The
principle relies on a spatio-temporal kernel to estimate diffusion and drift values on each
point x ∈ X , that we call point of calculation. The kernel accounts for trajectories in the
neighborhood of x, and uses their own particle positions in a weighted fashion to estimate
diffusion and drift at position x. Depending on the motion type associated to x, distinct
calculation formulas are used.

Definition of weights

Below, we detail the weighting process. The weighting function we use consists of a
product between a spatial Gaussian and a temporal Gaussian centered around point of
calculation x. We call rS and rT the radiuses of the spatial Gaussian and the temporal
Gaussian, respectively. The radius rS is defined as the mth minimum of the set of all
distances between x and other particle positions of X :

rS(x,m) = min(m)({∥xk − x∥,xk ∈ X }) .
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In practice, m ∈ N∗ is a parameter set by the user of the method. Let us define RS(x,m)
as the set of all particle positions surrounding x within the spatial radius rS(x,m):

RS(x,m) = {x′, ∥x′ − x∥ ≤ rS(x,m)} .

We define the radius of the temporal Gaussian rT (x,m) as the maximum time difference
between x and elements of RS:

rT (x,m) = max
x′∈RS(x,m)

(|tx′ − tx|) .

Let us now denote Xclass ∈ {Xfree,Xsub,Xsup}. The weight assigned to each particle
position xk ∈ Xclass relatively to point of calculation x, depending on choice of motion
type class and parameter m is defined as

w (xk,x,m,Xclass) =
exp

[
−2

((
∥xk−x∥
rS(x,m)

)2
+
( |txk

−tx|
rT (x,m)

)2)]
∑

xl∈Xclass

exp
[
−2

((
∥xl−x∥
rS(x,m)

)2
+
( |txl

−tx|
rT (x,m)

)2)] . (2.10)

This function determines the importance of each xk for the estimation functions. It has the
advantage of automatically adapting to the data quantity surrounding point of calculation
x instead of relying on a fixed estimation zone. The closer the particle positions are to x,
the more importance they are given in the estimation process, avoiding the imprecision
that a block-based approach can produce by giving equal importance to every data point
located inside the same block. The parameter m allows the user to indirectly control the
kernel radius depending on the size of studied phenomena, and thus to have a single,
simple control option over the method.

Now, we can move on to the core of our method: the diffusion and drift estimators.
Different estimation formulas are used depending on motion type associated to point of
calculation x.
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Estimators in the case of free diffusion (or Brownian motion)

In the case of Brownian motion, we assume that the drift component is null, i.e.
µ(x) = 0. The diffusion coefficient for the point x ∈ Xfree is given by

σ̂(x,m) =

∑
xk∈Xfree

w(xk,x,m,Xfree)∥∆(2)xk∥2

2d∆t . (2.11)

Estimators in the case of subdiffusion

In the case of subdiffusive motion, the drift and diffusion estimators for the point
x ∈ Xsub are respectively given by

µ̂(x,m) =

∑
xk∈Xsub

w(xk,x,m,Xsub)∆(1)xk

∆t , (2.12)

σ̂(x,m) =

∑
xk∈Xsub

w(xk,x,m,Xsub)∥∆(1)xk − µ̂(x)∆t∥2

d∆t . (2.13)

Estimators in the case of superdiffusion

In the case of superdiffusive motion, the drift and diffusion estimators for the point
x ∈ Xsub are respectively given by

µ̂(x,m) =

∑
xk∈Xsup

w(xk,x,m,Xsup)∆(1)xk

∆t , (2.14)

σ̂(x,m) =

∑
xk∈Xsup

w(xk,x,m,Xsup)∥∆(2)xk∥2

2d∆t . (2.15)

In the end, all the calculated estimators can be put together on a graph to form
a pseudo-map of drift and diffusion consisting of a point cloud and a vector field. The
parameter m allows the user to adjust the size of the kernel (i.e. the sizes of the weighting
function’s spatial and temporal radiuses) with one single parameter.

2.2.3 Pseudo-code of the method

We provide in this section the algorithmic implementation of the method. The algo-
rithm typically takes a single plain text tracking file as input, and a calibration file as an
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option. Alternatively, the user can directly use an image sequence that will be tracked by
the algorithm.

The algorithm generates the following outputs:
— an illustration of classified input tracks,
— a histogram of input track lengths,
— two maps depicting diffusion and drift in the form of point clouds,
— an interpolated diffusion map,
— a diffusion histogram.

Optionally, it is also possible to obtain two additional diffusion maps where diffusion is
calculated by subtrajectories with first and second order estimators. If the user wants
time-evolving outputs, two images sequences depicting the evolution of diffusion and drift
point clouds with time are computed.

Regarding parameters, the most essential ones are:
— the full filename of the input tracking file (and optionally calibration file), or al-

ternatively image sequence,
— the spatial resolution in x-y axes (in micrometers),
— the spatial resolution in z axis (in micrometers as well),
— the time resolution (in seconds).

If the input of the algorithm is in the form of an image sequence, the user must choose a
number of luminescent spots to track. If the tracking data presents aberrant jumps, they
have the possibility to use a pre-cutting tool that removes jumps by dividing affected
tracks. They also have the possibility to choose between several pre-sorting and classifi-
cation parameters, but these have default values that can easily be left as is. Next, the
kernel size parameter is the aforementioned parameter m. It is chosen as a number of
points and has a default value (e.g. m = 600, which has empirically proven to be suitable
for most data sets). Last, in the display parameters, the user can set the diffusion scale
limit, choose to remove outliers in the maps, and optionally display the two additional
aforementioned diffusion maps. If the user chose time-evolving outputs, they also have
to choose the number of frames, frame rate and overlapping rate of the output image
sequence.
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Algorithm 1 Dense Diffusion and Drift Mapping Method
1: procedure D3M2
2: set(parameters) ▷ filename; x, y, z, t resolution; pre-cutting, pre-sorting,

classification, kernel size k and display options
3: data = load(filename)
4: Pre-format Data:
5: data = pre-cut(data) ▷ if chosen by user, this option allows to remove aberrant

jumps in trajectories
6: data = pre-sort(data) ▷ sorts trajectories by lengths, in order to use the

appropriate classifying method
7: data = classify(data) ▷ classifies (sub)trajectories by motion type
8: data = convert(data) ▷ makes appropriate units conversions from pixels and

frames to micrometers and seconds
9: data = augment(data) ▷ adds information to the data such as first and second

order differences (2.8) and (2.9)
10: Diffusion and Drift Core Calculation:
11: InitializeVariables
12: for each trajectory point Pi do
13: Calculate all spatial distances between Pi and the other points
14: Keep only the ensemble Ki of the k closest points to Pi

15: Calculate rS(x,m)
16: Calculate all temporal distances between Pi and the other points
17: Calculate rT (x,m)
18: Remove from Ki the points that do not have the same motion type than Pi

19: Calculate weights with (2.10)
20: Calculate drift and diffusion through estimator depending on the motion type

with either (2.11), (2.12,2.13) or (2.14,2.15)

21: results = clean(output) ▷ removes redundant or contradictory estimated
points/vectors

22: display(results)

100



2.3. Experimental evaluation of the algorithm

(a)

(b) (c)

Figure 2.1 – The 2D simulated fluorescence microscopy video is generated with FluoSim.
Real microscopy data are used to shape the cell into a crossbow. The sequence has a length
of 400 frames, a time step of 0.005 s, a spatial resolution of 0.16 µm and includes 2500
moving particles. (a) Ground truth diffusion map is shown. The cell contains 20 trapping
regions shown in blue where the diffusion coefficient is set to 0.04 µm2/s. The rest of the
cell has a diffusion coefficient set to 0.16 µm2/s. (b) Raw video output is obtained from
FluoSim. (c) Augmented video output is derived from (b). A fake grey background was
added to the cell, in addition to Gaussian noise. A linear decrease of brightness was added
to simulate photobleaching.

2.3 Experimental evaluation of the algorithm

To assess the reliability of our method, we conducted several experiments on simulated
and real fluorescence microscopy data sets described in this section.
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2.3.1 Evaluation on simulated data sets

First, we used FluoSim [Lagardère et al. 2020] to generate simulated fluorescence
microscopy image sequence and tracking data. FluoSim is an interactive and unified
computer program that simulates protein dynamics for different live-cell imaging methods
including SPT. The possibilities of particle motion type are limited to Brownian in its
present version, but the program supports the creation of trapping areas from where the
particle can exit with more or less probability. In such a region, a particle undergoes a
fully stochastic dynamic, but often get out of it with difficulty, depending on the chosen
parameters. Even though it does not exactly undergo an Ornstein-Uhlenbeck process, it
is then possible to simulate subdiffusive motion by creating small, circular trapping areas.

In Figure 2.1, we illustrate the output of FluoSim in the case of a 2D crossbow-shaped
cell. We specified 20 trapping areas of different sizes and shapes in which the diffusion is
lower than in the cytosol (background). The moving particles were represented as white
Gaussian spots as if it was recorded through a diffraction-limited system. The diffusion
coefficient was set to 0.16 µm2/s inside the cytosol of the cell, except in the trapping areas
where it was set to 0.04 µm2/s. The sequence shown in Figure 2.1 has a length of 400
frames, a time step of 5 ms, a spatial resolution of 0.16 µm and includes 2500 moving
particles. The binding rate of the trapping areas was set to 1 s−1 while the unbinding rate
was set to 3 s−1. The simulation does not feature any kind of superdiffusive movement.
After the generation of the image sequence, we added a cell background, Gaussian noise,
and a linear brightness fading to simulate photobleaching. The resulting image is shown
in Figure 2.1 (b) and (c).

The tracking data were extracted from FluoSim in two different ways: first, we saved
the ground truth tracks (shown in Figure 2.2(a)) generated by the simulation itself with-
out using any intermediary tracking software on the simulated image sequence. These
tracks are not corrupted by noise. Second, we saved the image sequence generated with
FluoSim, but augmented with a fake cell background and a linear decrease of brightness
to simulate photobleaching, and corrupted by artificial Gaussian noise. We used the aug-
mented image sequence as an input for the software Icy, and tracked the particles with
its embedded tracking module based on Multiple Hypothesis Tracking (MHT) [Blackman
2004] [Chenouard, Bloch, and Olivo-Marin 2013]. The tracks are shown in Figure 2.6(a).

In the two next paragraphs, we compare and discuss the outputs generated from these
two versions of simulated tracking data with our method, but also with [Hozé, Nair, et al.
2012] whose MATLAB code is available on bionewmetrics.org, and [Beheiry, Dahan, and
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Masson 2015] whose software is available on research.pasteur.fr.

Experiments performed on ground truth tracks

We present here the results obtained with the different methods on uncorrupted ground
truth tracks, directly extracted from FluoSim. Our method produced the outputs shown
in Figure 2.2 regarding tracking data analysis, and in Figure 2.3 regarding diffusion maps.
Figure 2.4 and Figure 2.5 illustrate the output obtained with [Hozé, Nair, et al. 2012] and
[Beheiry, Dahan, and Masson 2015], respectively.

Figure 2.2(a) shows the entire input tracks on a single image while Figure 2.2(b) illus-
trates the motion classification performed prior to the actual map calculation thanks to
[Briane, Kervrann, and Vimond 2018] [Briane, Vimond, Valades-Cruz, et al. 2020]. The
data consists of 5640 trajectories totalizing 752 552 particle positions, which makes it a
large data set. In this experiment, 94.35 % of the positions were classified as Brownian,
while 2.73 % and 2.92 % were classified as subdiffusive and superdiffusive, respectively.
This means that roughly 5% of the trajectories were wrongly classified either as superdif-
fusive, or as subdiffusive while they are outside the small confinement regions. We might
as well notice the resemblance of the simulated cell shape with a real-life crossbow-shaped
cell. Figure 2.2(c) for its part displays the track length histogram. We can notice that
although the image sequence has a length of 400 frames, not all tracks are that long.
FluoSim is indeed able to simulate the activation and deactivation of fluorophores: when
the fluorophores are "turned-off", the generated tracks are interrupted and cut in several
parts of inferior lengths.

The mapping results obtained with our method are illustrated in Figure 2.3. In partic-
ular, Figure 2.3(a) displays the diffusion point cloud output, while Figure 2.3(b) displays
the interpolated diffusion bitmap inferred from the point cloud and Figure 2.3(c) repre-
sents the diffusion histogram corresponding to the point cloud. Our method took about
90 min processing time to generate the outputs. Albeit slow because of the file size, it
provided an accurate and precise reconstruction of diffusion in comparison to simulation
ground truth presented in Figure 2.1(a), both in terms of spatial localization and diffusion
values, as shown on the diffusion map and its associated histogram.

Figure 2.4 shows the outputs obtained with [Hozé, Nair, et al. 2012] on the same
data set: the first column illustrates to the raw output obtained with the method with
different resolutions (1.2, 0.7 and 0.2 µm), while the second column corresponds to the
same outputs with Gaussian blurring (σ = 0.8) applied, and the third column displays the
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(a) (b)

(c)

Figure 2.2 – The ground truth tracks are directly extracted from the FluoSim-simulated
data set and analyzed. (a) The set of all simulated particle trajectories is shown. (b)
Particle trajectories are classified by motion type. Free diffusion is represented in blue,
subdiffusion is represented in green and superdiffusion is represented in red. (c) The
histogram of the input trajectory lengths is shown.

interpolated blurred maps of the second column. The method [Hozé, Nair, et al. 2012] was
very fast with a processing time of less than 1 s, and was able to provide an accurate and
precise diffusion map, especially at the finest resolution of 0.2 µm with Gaussian blurring
and interpolation. It generated results similar to ours, even though the small confinement
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(a) (b)

(c)

Figure 2.3 – The results obtained with our method on simulated ground truth tracks
are shown. (a) The point cloud output represents the spatial distribution of the diffu-
sion coefficient inside the cell, in µm2/s. (b) The point cloud is derived into a map by
interpolation, with the same scale units. (c) The point cloud is derived into a diffusion
histogram. The values displayed on top of the modes are also in µm2/s

regions might not be as sharply represented. We can however notice the presence of stains
in the largest confinement regions of the interpolated map, due to side effects produced
by the lack of tracking data in some calculation blocks.

Figure 2.5 illustrates the outputs obtained with the InferenceMAP [Beheiry, Dahan,
and Masson 2015]. The first three images show diffusion maps generated from Voronoi
tessellations with different resolutions with a range of 20 to 35 min processing time, while
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.4 – The results obtained with method [Hozé, Nair, et al. 2012] on simulated
ground truth tracks are shown. (a-c) Diffusion maps are generated using a coarse reso-
lution parameter of 1.2 µm, with from left to right: the raw map, the Gaussian-filtered
(σ = 0.8) map, the Gaussian-filtered and interpolated diffusion map. (d-f) Diffusion maps
are generated using a medium resolution parameter of 0.7 µm, and shown in the same or-
der. (g-i) Diffusion maps are generated using a fine resolution parameter of 0.2 µm, and
shown in the same order. The diffusion scale units are in µm2/s

the fourth one corresponds to a diffusion map generated from a quadtree in about 1 to
2 min. This method also produced good results, but the standard deviation between each
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(a) (b)

(c) (d)

Figure 2.5 – The results obtained with method [Beheiry, Dahan, and Masson 2015] on
simulated ground truth tracks are shown. (a-c) Diffusion maps are generated with the
Voronoi tesselation mode, using respectively from left to right: the minimum number of
zones (4700), the default number of zones (9401), and the maximum number of zones
(14102). (d) A diffusion map is generated with the Quad-Tree mesh mode. The diffusion
scale units are in µm2/s.

tile of the tessellation is high and can be misleading. Also, the smaller confinement regions
are not as sharply represented as with the other two methods. The same conclusions can
be applied to the method using a quadtree instead of a Voronoi tessellation, as seen in
Figure 2.5(d).

Experiments on tracking data sets

As explained above, the first simulation experiment allowed us to generate additional
tracking data by re-tracking an augmented version of the simulated image sequence with
the MHT Icy plugin. Similarly to the run performed on ground truth tracks, our method
produced an analysis of tracking data and diffusion maps, as shown in Figure 2.6 and
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Figure 2.7, respectively. We included the results obtained with [Hozé, Nair, et al. 2012]
and [Beheiry, Dahan, and Masson 2015] as well, as shown in Figure 2.8 and Figure 2.9.

Similarly to Figure 2.2, Figure 2.6 illustrates the data analysis preliminarily done
by our method on the Icy-tracked data. More specifically, Figures 2.6(a), (b) and (c)
respectively illustrate the input tracking data set, the motion classification results, and
the track length histogram. The number of trajectories detected in this data set was
higher than ground truth with 6496 tracks, but the overall number of particle positions is
significantly lower, with 95 350 points. This implies that the obtained track are drastically
shorter than ground truth tracks. In this experiment, 87.16 % of particle positions were
classified as Brownian while 12.81 % were classified as subdiffusive. Rightfully no position
was classified as superdiffusive, but this seems to be more related to tracking flaws than to
good accuracy. The density of Icy-obtained tracks clearly shows that tracking the bright
spots on the simulated image sequence (as it would be done on real biological data)
significantly reduces the amount of available input data compared to using the tracking
ground truth.

As shown in Figure 2.3, Figure 2.7 displays the mapping results obtained with our
method: Figures 2.7(a), (b) and (c) respectively illustrate the diffusion point cloud out-
put, the interpolated diffusion bitmap inferred from the point cloud, and the diffusion his-
togram corresponding to the point cloud. Processing was significantly faster with about
3 min of calculation time. Our method overestimated the diffusion coefficient, but still
partially preserve the structure of the cell in comparison to the ground truth, with the
largest confinement zones still visible, as shown on the diffusion map and its associated
histogram.

Figure 2.8 displays the outputs obtained with [Hozé, Nair, et al. 2012] in the same
way as in Figure 2.4, that is with block resolutions of 1.2, 0.7 and 0.2 µm for the three
lines, respectively, and raw, Gaussian-filtered (with σ = 0.8), interpolated outputs for the
three columns, respectively. Similarly as in the ground truth case, the method was very
fast with less than 1 s processing time. However, it was not able to provide any accurate
information in the diffusion map, no matter the resolution, filtering and interpolation
used. In particular, the cases with smaller resolutions can be highly misleading as they
appear to give some information corresponding to nothing that was simulated.

Figure 2.9 is the analogue of Figure 2.5, that is results obtained with InferenceMAP
[Beheiry, Dahan, and Masson 2015], respectively generated from a Voronoi tessellation of
three different resolutions (in less than 1 min) as well as one generated from a quadtree
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(a) (b)

(c)

Figure 2.6 – The particles are tracked with Icy from the simulated video and analyzed.
(a) The set of all simulated particle trajectories is shown. (b) Particle trajectories are
classified by motion type. Free diffusion is represented in blue, subdiffusion is represented
in green and superdiffusion is represented in red. (c) The histogram of the input trajectory
lengths is shown.

(in a few seconds). This method was also unable to provide any exploitable results, no
matter the mode or number of Voronoi tessellation tiles.
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(a) (b)

(c)

Figure 2.7 – The results obtained with our method on the data tracked with Icy from the
FluoSim-simulated video, are shown. (a) The point cloud output represents the spatial
distribution of the diffusion coefficient inside the cell, in µm2/s. (b) The point cloud is
derived into a map by interpolation, with the same scale units. (c) The point cloud is
derived into a diffusion histogram. The values displayed on top of the modes are also in
µm2/s
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.8 – The results obtained with method [Hozé, Nair, et al. 2012] on the data
tracked with Icy from the FluoSim-simulated video, are shown. (a-c) Diffusion maps
are generated using a coarse resolution parameter of 1.2 µm, with from left to right: the
raw map, the Gaussian-filtered (σ = 0.8) map, the Gaussian-filtered and interpolated
diffusion map. (d-f) Diffusion maps are generated using a medium resolution parameter
of 0.7 µm, and shown in the same order. (g-i) Diffusion maps are generated using a fine
resolution parameter of 0.2 µm, and shown in the same order. The diffusion scale units
are in µm2/s
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(a) (b)

(c) (d)

Figure 2.9 – The results obtained with method [Beheiry, Dahan, and Masson 2015] on the
data tracked with Icy from the FluoSim-simulated video, are shown. (a-c) Diffusion
maps are generated with the Voronoi tesselation mode, using respectively from left to
right: the minimum number of zones (611), the default number of zones (1223), and the
maximum number of zones (1834). (d) A diffusion map is generated with the Quad-Tree
mesh mode. The diffusion scale units are in µm2/s.
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2.3.2 Evaluation on real data sets

The method has been assessed on real fluorescence microscopy data generated with
various microscopy technologies such as SPT-PALM, LLSM and TIRF. Due to the absence
of ground truth, we can only give a qualitative assessment of the results, based on what
is expected to occur in the specimen.

Analysis of dynamics of Su(H) transcription factors

For this first real data experiment, we used tracking data kindly provided by the
Bray Lab, Department of Physiology, Development and Neuroscience at the University of
Cambridge, which were originally used in [Gomez Lamarca et al. 2018]. It was generated
by the MHT plugin in Icy from a PALM image sequence depicting Su(H) transcription
factors attached to mEOS3.2 fluorescent proteins in Drosophila salivary gland cells. Our
method produced the outputs shown in Figure 2.10 regarding tracking data analysis and
in Figure 2.11 regarding diffusion and drift maps. Figure 2.12 and Figure 2.13 illustrate
the outputs obtained with [Hozé, Nair, et al. 2012] and [Beheiry, Dahan, and Masson
2015], respectively.

The data analysis (see Figure 2.10) shows that this data set is very small, and that
the track density is dissimilar between the center of the specimen and the rest of the data
set, as shown in Figure 2.10(a). The data set consists here of 2937 trajectories and 13 410
particle positions. Furthermore, the vast majority of tracks are shorter than 10 frames as
shown in Figure 2.10(c). As such, most tracks (90.90 %) were classified as Brownian due
to insufficient length, while the rest (9.10 %) was classified as subdiffusive, as shown in
Figure 2.10(b).

Similarly to experiments on simulated data, Figure 2.11 displays the mapping results
obtained with our method: (a) shows the diffusion point cloud output, (b) represents
the interpolated diffusion bitmap inferred from the point cloud, and (c) is the diffusion
histogram corresponding to the point cloud. Our method generated the outputs in about
30 s. Even though the number of tracks is small, it seems that our method was able to
recover some interesting information from this data set. In particular, we can notice a
region of lower diffusion in the center of the specimen, corresponding to the region of
higher point density. If we examine the drift map in Figure 2.11(d), we can also notice a
circular drift centered in the area. This might correspond to the position of the locus.

Figure 2.12 displays the outputs obtained with [Hozé, Nair, et al. 2012]. The first
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column corresponds to the raw output from the method with different resolutions (1.2,
0.7 and 0.2 µm), while the second column corresponds to the same outputs with Gaussian
blurring (σ = 0.8) applied. The third column corresponds to the interpolated blurred maps
of the second column. This method was very fast (less than 1 s processing time) but not
able to provide any accurate information in the diffusion map, no matter the resolution,
filtering and interpolation used. In particular, the cases with smaller resolutions can be
highly misleading as they appear to highlight imaginary features in the specimen.

Figure 2.13 shows the outputs obtained with the software InferenceMAP [Beheiry,
Dahan, and Masson 2015]. The three first images illustrate diffusion maps generated from
a Voronoi tessellation (processing time in a range of 15 to 30 s) with different resolutions
and the fourth one corresponds to a diffusion map generated from a quadtree (processing
time in a range of a few seconds). It was also unable to provide and exploitable results,
no matter the mode or number of Voronoi tessellation tiles.

Analysis of dynamics of calnexin plasmids in HEK-293 cells

In this experiment, we used tracking data extracted from a HILO (pseudo-TIRF)
image sequence acquired with a Zeiss Elyra microscope at Cambridge Institute for med-
ical Research, showing mEOS2-calnexin plasmids in HEK-293 cells, originally used in
[Holcman, Parutto, et al. 2018]. Tracking was performed using the particle tracking mod-
ule of the microscope software (Elyra Zen edition, Zeiss), and the data is available on
bionewmetrics.org. Our method produced the outputs shown in Figure 2.14 regarding
tracking data analysis and in Figure 2.15 for the diffusion maps. Figure 2.16 illustrates
the outputs obtained with [Hozé, Nair, et al. 2012], as in [Holcman, Parutto, et al. 2018].

Regarding the analysis conducted on the data, Figure 2.14(a), (b) and (c) display
tracks, motion classification and track length distribution, respectively. The data set in-
cludes a total of 8180 trajectories and 43 088 particle positions. Once again, the trajecto-
ries were very short, which led to the vast majority of them being classified as Brownian
(99.91 %). Only a very small fraction was classified as subdiffusive (0.09 %), and no posi-
tion was classified as superdiffusive.

Figure 2.16 shows the results obtained with [Hozé, Nair, et al. 2012]. As mentioned
earlier, this method was fast with less than 1 s processing time. We used a single spatial
resolution of 0.4 µm in Figure 2.16(a) to mimic the original Figure in [Holcman, Parutto,
et al. 2018], while Figure 2.16(b) shows the same map with additional Gaussian blurring
(σ = 0.8). Figure 2.16(c) on it part displays the interpolated version of Figure 2.16(b).
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(a) (b)

(c)

Figure 2.10 – The tracking data obtained from the transcription factors data set is ana-
lyzed. (a) The set of all simulated particle trajectories is shown. (b) Particle trajectories
are classified by motion type. Free diffusion is represented in blue, subdiffusion is repre-
sented in green and superdiffusion is represented in red. (c) The histogram of the input
trajectory lengths is shown.

Regarding our results, Figure 2.15(a) shows the diffusion point cloud output and Figure
2.15(b) displays the interpolated diffusion bitmap inferred from the point cloud. Figure
2.15(c) on is part illustrates the diffusion histogram corresponding to the point cloud. Our
method took 2 to 3 min to process the data. It is interesting to note that our output is
consistent with the output obtained with [Hozé, Nair, et al. 2012]: the diffusion regions
spatially correspond with similar values. That said, our method provides more details.
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(a) (b)

(c) (d)

Figure 2.11 – The results obtained with our method on real data (transcription factors),
are shown. (a) The point cloud output represents the spatial distribution of the diffusion
coefficient inside the cell, in µm2/s. (b) The point cloud is derived into a map by interpo-
lation, with the same scale units. (c) The point cloud is derived into a diffusion histogram.
The values displayed on top of the modes are also in µm2/s. (d) This second point cloud
represents the spatial distribution of the drift inside the cell. Each point represents a drift
vector. The wheel indicates both the direction and the amplitude of the vectors.

Analysis of dynamics of HaloTagged CRT in HEK-293 cells

Similarly to the previous experiment, the image sequence used here was downloaded
from bionewmetrics.org, depicts HEK-293 cells and was originally used in [Holcman,
Parutto, et al. 2018]. Acquisition and tracking were performed at Cambridge Institute
for medical Research with a Zeiss Elyra microscope in TIRF/HILO mode and the mi-
croscope software, respectively. This time however, the tracked molecule is TMR-labelled
Halo-tagged CRT. As previously, Figure 2.17, Figure 2.18 and Figure 2.19 illustrate our
tracking data analysis, our diffusion maps and the output obtained with [Hozé, Nair, et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.12 – The results obtained with method [Hozé, Nair, et al. 2012] on real data
(transcription factors), are shown. (a-c) Diffusion maps are generated using a coarse
resolution parameter of 1.2 µm, with from left to right: the raw map, the Gaussian-filtered
(σ = 0.8) map, the Gaussian-filtered and interpolated diffusion map. (d-f) Diffusion maps
are generated using a medium resolution parameter of 0.7 µm, and shown in the same
order. (g-i) Diffusion maps are generated using a fine resolution parameter of 0.2 µm, and
shown in the same order. The diffusion scale units are in µm2/s

2012], respectively.
Figure 2.17 illustrates the data analysis conducted on the data, with the same subfig-

ures as in the previous experiment and the same short trajectory problem leading to most
of the particle positions being classified as Brownian. Of all 107 306 particle positions
distributed in 21 708 trajectories, 93.17 % were classified as Brownian while 6.83 % were
classified as subdiffusive.

Concerning the outputs obtained with [Hozé, Nair, et al. 2012], we used a spatial
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(a) (b)

(c) (d)

Figure 2.13 – The results obtained with method [Beheiry, Dahan, and Masson 2015] on
real data (transcription factors), are shown. (a-c) Diffusion maps are generated with the
Voronoi tesselation mode, using respectively from left to right: the minimum number of
zones (86), the default number of zones (172), and the maximum number of zones (258).
(d) A diffusion map is generated with the Quad-Tree mesh mode. The diffusion scale
units are in µm2/s.

resolution of 0.2 µm in Figure 2.19 to mimic the original Figure in [Holcman, Parutto,
et al. 2018]. Similarly as in Figure 2.16, Figure 2.19(b) and (c) depict the blurred and
interpolated versions of Figure 2.19(a). As usual, less than 1 s was necessary to process
the outputs.

Figure 2.18 illustrates the results obtained with our method in the same way as ex-
plained above. Our method took approximately 6 min to process the data. As in the
previous experiment, our output is consistent with the output obtained with [Hozé, Nair,
et al. 2012], with diffusion regions once again spatially corresponding with similar values.
Nevertheless, our method gives a more direct, sharp and informative map than [Hozé,
Nair, et al. 2012], as there is no need for any Gaussian blur.
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(a) (b)

(c)

Figure 2.14 – The tracking data obtained from the mEOS2-calnexin plasmids in HEK-
293 cells data set is analyzed. (a) The set of all simulated particle trajectories is shown.
(b) Particle trajectories are classified by motion type. Free diffusion is represented in
blue, subdiffusion is represented in green and superdiffusion is represented in red. (c) The
histogram of the input trajectory lengths is shown.

Analysis of 3D dynamics of galectin-3 in SUM159 cell

To illustrate the possibility of using 3D data sets, we used 3D tracking data extracted
from a LLSM fluorescence microscopy image sequence showing Atto647-N-attached Galectin-
3 in a SUM159 cell. The images were acquired by the joint SERPICO/STED team from
the Inria Center at the University of Rennes and the Curie Institute, and tracking was
carried out using U-track [Jaqaman et al. 2008] [Roudot, Legant, et al. 2022].

Our method produced the outputs shown in Figure 2.20 for the tracking data classifi-
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(a) (b)

(c)

Figure 2.15 – The results obtained with our method on real data (mEOS2-calnexin plas-
mids in HEK-293 cells), are shown. (a) The point cloud output represents the spatial
distribution of the diffusion coefficient inside the cell, in µm2/s. (b) The point cloud is
derived into a map by interpolation, with the same scale units. (c) The point cloud is
derived into a diffusion histogram. The values displayed on top of the modes are also in
µm2/s

cation, in Figure 2.21 for the trajectory lengths histogram, in Figure 2.22 for the diffusion
and drift maps, and in Figure 2.23 for the diffusion histogram, respectively.

Figure 2.22(a) shows the diffusion point cloud. It is possible with MATLAB to spin
and zoom around the results. Interpolation methods are not relevant in this case since
they would hide the points inside the 3D volume. The drift vector field is shown in Figure
2.22(b) in 3D mode in the form of arrows (as opposed to color-coded points in 2D mode).
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(a) (b)

(c)

Figure 2.16 – The results obtained with method [Hozé, Nair, et al. 2012] on real data
(mEOS2-calnexin plasmids in HEK-293 cells), are shown. Diffusion maps are generated
using a resolution parameter of 0.4 µm, with from left to right: (a) the raw map, (b)
the Gaussian-filtered (σ = 0.8) map, (c) the Gaussian-filtered and interpolated diffusion
map. The diffusion scale units are in µm2/s

The data set boundary is represented here as a grey 3D surface. In this case, it allows
the shape of the cell to be displayed, making it easy to locate the drift vectors. Finally,
Figure 2.23 displays the diffusion histogram corresponding to the point cloud.

The other two methods which with we compared our results on the different 2D data
set do not allow for a 3D analysis. This functionality is a novelty in the domain.

Analysis of 3D dynamics of CD-mannose-6 phosphate receptor in HeLa cell

Our method was tested by a third-party researcher (Cesar Valades-Cruz) on 3D real
data depicting CD-Mannose-6 Phosphate (eGFP-CD-M6PR) receptors in a HeLa cell.
Images were acquired using LLSM microscopy by the joint SERPICO/STED team from
the Inria Center at the University of Rennes and the Curie Institute, and tracking was
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(a) (b)

(c)

Figure 2.17 – The tracking data obtained from the TMR-labelled Halo-tagged CRT in
HEK-293 cells data set is analyzed. (a) The set of all simulated particle trajectories is
shown. (b) Particle trajectories are classified by motion type. Free diffusion is represented
in blue, subdiffusion is represented in green and superdiffusion is represented in red. (c)
The histogram of the input trajectory lengths is shown.

carried out using U-track. Our method produced the outputs shown in Figure 2.24.
In Figure 2.24(a), the trajectories are represented inside a 3D view of deconvoluted

fluorescence microscopy data. In Figure 2.24(b), the 3D point cloud output represents the
spatial distribution of the diffusion coefficient inside the cell, in µm2/s. In Figure 2.24(c),
particle trajectories are classified by motion type. Free diffusion is represented in blue,
subdiffusion is represented in green and superdiffusion is represented in red. Finally, the
histogram of input trajectory lengths is shown in Figure 2.24(d).
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(a) (b)

(c)

Figure 2.18 – The results obtained with our method on real data (TMR-labelled Halo-
tagged CRT in HEK-293 cells), are shown. (a) The point cloud output represents the
spatial distribution of the diffusion coefficient inside the cell, in µm2/s. (b) The point
cloud is derived into a map by interpolation, with the same scale units. (c) The point
cloud is derived into a diffusion histogram. The values displayed on top of the modes are
also in µm2/s

Time-evolving analysis feature for diffusion and drift

Our method also allows for an time-evolving display of diffusion and drift, in the form
of 2 videomaps outputs.

This feature allows for a biologist to have access to a time-evolving analysis of a given
data set, instead of a single steady map in which time-evolving particle behavior could
be hidden. In the parameters, the user can choose the number of frames and framerate of
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(a) (b)

(c)

Figure 2.19 – The results obtained with method [Hozé, Nair, et al. 2012] on real data
(TMR-labelled Halo-tagged CRT in HEK-293 cells), are shown. Diffusion maps are gener-
ated using a resolution parameter of 0.2 µm, with from left to right: (a) the raw map, (b)
the Gaussian-filtered (σ = 0.8) map, (c) the Gaussian-filtered and interpolated diffusion
map. The diffusion scale units are in µm2/s

the output video. In order to generate a smooth depiction of both quantities’ evolutions,
our method allows to choose an temporal overlapping rate between each calculated frame,
set between 0 and 1. In addition to the diffusion and drift videomaps, the algorithm also
returns the time interval corresponding to each frame, in seconds.

In Figures 2.25 and 2.26, we used tracking data depicting the motion of HIV-1 mEOS2-
tagged Gag proteins inside a CD4 T cell as an input to generate diffusion and drift
videomaps. The data were originally used in [Floderer et al. 2018]. Acquisitions were
made on a TIRF-PALM Nikon Ti microscope supplied by MRI and CEMIPAI platforms
in Montpellier, France, and tracking was carried out with a plug-in from MetaMorph
(Molecular Devices).

The chosen framerate of the output video is of 5 frames per second, with a total of 9
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(a)

(b)

Figure 2.20 – The 3D tracking data obtained from the Galectin-3 in SUM159 cell data
set is analyzed. (a) The set of all simulated particle trajectories is shown. (b) Particle
trajectories are classified by motion type. Free diffusion is represented in blue, subdiffusion
is represented in green and superdiffusion is represented in red.
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Figure 2.21 – The length histogram derived from the trajectories displayed in Figure
2.20(a) is shown.

frames and an overlapping rate of 2/3. Each frame corresponds to a time interval of 21.89 s
for a total of 80 s. This demonstrates that DenseMapping is versatile and can adapt to var-
ious biological studies, including spatiotemporal estimation (see another recent example
in Appendix A.2).

2.4 Conclusion

We have proposed a new mapping method to robustly estimate the diffusion and
drift maps from particle tracks. We first presented the theory behind the two state-of-
the-art methods linked to this very specific purpose. Then we detailed the background
behind our method, that uses a spatiotemporal kernel estimator guided by particle mo-
tion classification and following the particle tracks. The particle motion classification is
performed through the previous works of Vincent Briane [Briane, Kervrann, and Vimond
2018] [Briane, Vimond, Valades-Cruz, et al. 2020]. We gave a quick peak at the computer
implementation of our method via a compact and summarized pseudo-code of the method,
which has been developed in MATLAB.
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(a)

(b)

Figure 2.22 – The results obtained with our method on real 3D data (Galectin-3 in
SUM159 cell), are shown. (a) The 3D point cloud output represents the spatial dis-
tribution of the diffusion coefficient inside the cell, in µm2/s. (b) This 3D vector field
represents the spatial distribution of the drift inside the cell. Green vectors correspond to
subdiffusion-related drift whereas red vectors correspond to superdiffusion-related drift.
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Figure 2.23 – The diffusion histogram derived from the point cloud displayed in Figure
2.22(a) is shown. The values displayed on top of the modes are in µm2/s.

From a experimental point of view, our approach gives satisfactory results on both
simulated and real data, providing high-resolution estimations maps even if the number
of input data points is low. The method can handle both 2D and 3D tracking data without
significant loss in computation time, thanks to the fact that the computation is point-
based (instead of block-based). We showed that our method is not only effective by itself,
but also surpasses state-of-the-art methods in the sense that it is more robust when facing
a lack a data quantity. The obtained results are helpful to detect subtle biological events
in image sequences.

In summary, the advantages of our method reside in its ability to adapt to the density
of tracks and particle motion. It performs well in small or low-density data sets, both in
2D and 3D, and is able to do time-evoluting analyses. This makes the method adapted to
a large range of microscopy techniques, as well as diverse biological subjects of study such
as viruses, molecular transport, transcription factors, etc. DenseMapping was transferred
to Myriade company (www.myriadelab.com) to infer particle size distributions, and was
applied to analyze the dynamics of extracellular vesicles, viruses and phages.
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(a)

Figure 2.24 – The results obtained with our method on real 3D data (CD-Mannose-
6 Phosphate (CD-M6PR) receptor in HeLa cell), are shown. (a) The trajectories are
represented inside a 3D view of deconvoluted fluorescence microscopy data. (b) The 3D
point cloud output represents the spatial distribution of the diffusion coefficient inside
the cell, in µm2/s. (c) Particle trajectories are classified by motion type. Free diffusion is
represented in blue, subdiffusion is represented in green and superdiffusion is represented
in red. (d) The histogram of the input trajectory lengths is shown.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.25 – The results obtained with our method on real data (HIV-1 Gag in CD4
T cell), are shown as an evolving diffusion videomap of 9 frames, with a time interval
overlapping of 2/3 betweeen each frame. (a) to (i) The point cloud output represents the
evolution of the spatial distribution of the diffusion coefficient inside the cell, in µm2/s,
from t = 0 s to t = 80 s.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(q)

Figure 2.26 – The results obtained with our method on real data (HIV-1 Gag in CD4 T
cell), are shown as an evolving drift videomap of 9 frames, with a time interval overlapping
of 2/3 betweeen each frame. (a) to (i) This second point cloud represents the evolution
of the spatial distribution of the drift inside the cell, from t = 0 s to t = 80 s. Each point
represents a drift vector, whose direction and amplitude are respectively represented by
hue and saturation. (q) The hue-saturation colorwheel is used to interpret the color
representation of drift vectors.





Chapter 3

MICRO-DOMAINS AND CONFINEMENTS

DOMAINS DETECTION

This chapter was published in collaboration with V. Briane in Physical Biology as "A
computational approach for detecting micro-domains and confinement domains in cells: a
simulation study" [Briane, Salomon, et al. 2020].

3.1 Introduction

As the interior of a living cell is a fluctuating environment, the trajectories of intracellu-
lar particles can be modeled with stochastic processes having continuous paths. Diffusions
belong to this class of processes and can model a large range of intracellular movements.
They are widely used in the biophysical literature [H. Qian, Sheetz, and Elson 1991] [Sax-
ton and Jacobson 1997]. Biophysicists distinguish four main types of diffusion, namely
free diffusion (also referred to as Brownian motion), superdiffusion, confined diffusion and
anomalous diffusion. These different diffusion types correspond to specific biological sce-
narios as briefly described in [Briane, Vimond, and Kervrann 2020]. A particle evolving
freely inside the cytosol or along the plasma membrane is modeled by free diffusion. Its
motion is due to constant collisions with smaller particles undergoing thermal fluctua-
tions. Thus, the particle does not travel along any particular direction and can take a
very long time to go to a precise area in the cell. Active intracellular transport suggests
that particle motion is direct. The particles (called in this context cargos) are carried by
molecular motors along microtubules and actin filament networks. Superdiffusion models
the motion of molecular motors and their cargos. Confined or restricted diffusion [Metzler
and Klafter 2000] [Hozé, Nair, et al. 2012] is characteristic of trapped particles: the par-
ticle encounters a binding site, then it pauses for a while before dissociating and moving
away. Anomalous diffusion includes particles that encounters dynamics or fixed obstacles
[Saxton 1994] [Berry and Chaté 2014], or particles slowed down by the contrary current
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due to the viscoelastic properties of the cytoplasm. Very recently, [Smith, Cianci, and
Grima 2017] studied the effect of heterogeneous crowding on the motion of intracellular
particles. They assumed that the motion of the particle is hindered by spherical objects,
and then derived an advection-diffusion equation to describe the motion of a small particle
traveling across an arbitrary distribution of large crowder molecules. Finally, we empha-
size that particles can switch from one motion type to another over time; for instance,
[Fusco et al. 2003] showed experimentally that mRNA molecules undergo cycles between
anchoring, free diffusion and superdiffusion (active transport).

An amount of work has been dedicated to the description of motions of individual
particles in the cell. The second step consists in understanding the spatial distribution
of these motions within the cell and interpreting the underlying biological mechanisms.
As a pioneer work, [Hummer 2005] studied the spatial mapping of diffusion coefficients
using Bayesian inference. This chapter inspired other mapping methods (e.g. see [Masson,
Dionne, et al. 2014] and [Hozé, Nair, et al. 2012]). In this chapter, we are interested in
localizing areas where subdiffusion occurs as in [Hozé, Nair, et al. 2012]. Regulation of
cellular physiological processes relies on molecular interactions (binding and unbinding)
at specific places and involves trafficking in confined local micro-domains. Our objective
is to automatically detect these micro-domains from groups of particle trajectories. [Hozé,
Nair, et al. 2012] model these micro-domains as potential wells that attract intracellular
particles. The authors use an Eulerian method based on a non-parametric estimation
of the drift parameter of the underlying diffusion process. This method assumes a high
concentration of particles over the spatial domain of interest to be meaningful. Moreover,
this Eulerian approach is not designed to handle a mixture of different diffusion types
observed in a small region. All the trajectories in a small region are uniformly averaged,
potentially leading to wrong conclusions. To overcome this problem, we propose an original
procedure to detect micro-domains.

Our method is based on the combination of the clustering algorithm Dbscan ([Ester et
al. 1996]) and a three-label classification procedure ([Briane, Kervrann, and Vimond 2018])
which assigns a label (free diffusion, subdiffusion and superdiffusion) to each trajectory.
Our results on simulations mainly demonstrate that:

1. our method detects satisfyingly the micro-domain shapes;
2. our method is able to handle a mixture of several diffusion types.

The remainder of this chapter is organized as follows. In Section3.2 we present the
mathematical models and the notations used in the chapter. In Section3.3, we present
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(a) (b) (c)

Figure 3.1 – Illustrations of configurations with trapping areas. (a) Sketch with three
trapping areas (S = S1 ∪ S2 ∪ S3); (b) Example of a simulated image at a given time t,
depicting a crossbow-shaped cell and green particles in small trapping (blue) areas and
in the cytosol S (orange). (c) ROI of (b)

related works and focus on the Eulerian method proposed by [Hozé, Nair, et al. 2012];
we emphasize the underlying assumptions, the key parameters, and the properties of
this approach used to detect potential wells within cells. In Section3.4, we describe the
simulation framework corresponding to the FluoSim simulator ([Lagardère et al. 2020]
used in our experiments. In Section3.5, we describe the procedure that combines the
Dbscan clustering algorithm ([Ester et al. 1996] with the test procedure described in
[Briane, Kervrann, and Vimond 2018]. In Section3.6, we evaluate the performance of
the computational method on simulated sequences, and we illustrate its potential on
real TIRF microscopy image data depicting small zones with a high concentration of
subdiffusive vesicles. In Section3.7, we discuss the main features of our approach.

3.2 Notations and mathematical framework

In the sequel, we assume a population of m independent trajectories, with m of order
of magnitude of 103 particles. We denote x

(i)
t ∈ D the position of the ith particle at time

t, where D ⊂ R2 denotes a spatial bounded domain. Let us define P subregions S1, . . . ,Sp

such that Sp ⊂ D in which the particles can be trapped (see Figure 3.1(a)). The union
of subdomains is denoted S = ∪p

p=1Sp, and S = D\S is defined as the complementary
domain where the particles undergo free diffusion with diffusion coefficient σS . We impose
that the particles are normally reflected at the boundaries of D = S ∪ S.

Inside a subregion Sp ⊂ D, a particle can switch between two states: trapped or
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non-trapped (also denoted as free):

1. the particle is trapped in Sp: the particle motion is a confined free diffusion normally
reflected at the boundary ∂Sp of Sp, with a diffusion coefficient σT ⩽ σS ;

2. the particle is not trapped in Sp: the particle motion is a free diffusion with diffusion
coefficient σS .

Formally, we introduce the following indicator variable:

ϕ
(
x

(i)
t

)
=

 1 if the particle i is trapped at time t ,
0 if the particle i is not trapped at time t .

Given the binding rate k+ and the unbinding rate k−, the probabilities of a particle
belonging to S to be trapped are defined as follows:

P (ϕ (xt+h) = 1 | ϕ (xt) = 0,xt+h ∈ S) = k+h+ o(h) ,

P (ϕ (xt+h) = 0 | ϕ (xt) = 1,xt+h ∈ S) = k−h+ o(h) ,

where h > 0 and o(h)/h → 0 as h → 0. In the sequel, the binding and unbinding rates k+

and k− are two constants which do not depend on space. Hence, a trapped particle close
to the boundaries ∂Sp has the same probability to unbind to the trapping region Sp than
a trapped particle in the middle of the region Sp. For the sake of simplicity, we assume
that all the subregions Sp share the same common parameters k+, k−, σT and σS.

In our estimation framework, we observe a collection of m two-dimensional trajectories
Xm. We denote X(i)

ni
the vector of ni spatial positions along the trajectory associated to

the ith particle:

X(i)
ni

=
(
x

(i)
t0 , . . . ,x

(i)
tni

)
, i = 1, . . . ,m ,

Xm =
{
X(i)

ni
, i = 1, . . . ,m

}
.

We assume that each discrete trajectory is generated by a stochastic process (x(i)
t )

with continuous path defined on the spatial domain D ⊂ R2 and which is a solution of
the stochastic differential equation (SDE)

dx
(i)
t = µ

(
x

(i)
t

)
dt+ σ(i)db

(i),h(i)

t , t ∈ [t0, tni
] ,

where b
(i),h(i)

t is a two-dimensional fractional Brownian motion of unknown Hurst param-
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eter h(i) ∈ (0, 1), σ(i) > 0 is the diffusion coefficient, and µ(i) : D → R2 is the drift term.
The different trajectories do not need to have the same drift parameter and the same
diffusion coefficients, provided that the drift functions and diffusion coefficients do not
depend on time.

3.3 Most related work

In this section, we focus on the two most related methods developed to detect 2D
microdomains. First, we describe the Eulerian method proposed by [Hozé, Nair, et al.
2012], based on the two following steps:

1. non-parametric estimation of the drift vector field from multiple trajectories;

2. fitting to a parametric drift function.

As starting point, [Hozé, Nair, et al. 2012] model microdomains as potential wells that
attract intracellular particles. A high density of particles within a local neighborhood is
assumed. Formally, let us consider a collection of m independent trajectories Xm such as
all the trajectories X(i)

ni
=
(
x

(i)
t0 , . . . ,x

(i)
tni

)
are generated from the common diffusion process

(xt), solution of the overdamped Langevin equation defined as

dxt = −∇U (xt) dt+ σdbt ,

where ∇ is the gradient operator, U : R2 → R is the potential function, and σ > 0 the
diffusion coefficient. In the sequel, the two-dimensional drift function (or vector field) is
defined as µ (x) = −∇U (x). The drift function is defined through the limit as

µ(x) = lim
∆t→0

1
∆tE (xt+∆t − xt | xt = x) . (3.1)

In [Hozé, Nair, et al. 2012], an empirical estimator µ̂(x) of the drift is computed
over a square r × r window Wr(x) centered at point x ∈ D ⊂ R2, in order to reflect
the local conditioning xt = x in equation (3.1). The estimation of µ̂(x) amounts to
computing the average of all displacements of particles passing through the windowWr(x).
The estimation of µ̂(x) is spatially varying and its accuracy depends on the number of
trajectory points in Wr(x). Fortunately, we generally observe a high density of particles in
trapping areas. In these microdomains, the drift vector field is thus reliably estimated but
it is assumed that, locally in the r×r neighborhood, all the trajectories undergo the same
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(a) (b)

Figure 3.2 – Drift field computed with the method of [Hozé, Nair, et al. 2012]. The
FluoSim simulation comprises 30 frames of 200 × 200 px as the domain D is a square of
5 µm and the spatial resolution is ∆x = 0.025 µm (see table 3.1). We compute µ̂(x) on
each point of this 200×200 lattice from trajectories (a) (r = 5 px). We can clearly see the
two microdomains S1 and S2 (b): the vector field converges to the centers of these domains
delineated by two red circles (b). We can see that the vector field is orthogonal to the
boundaries of the square D. It is due the normal boundary condition on ∂D. Elsewhere,
the µ̂(x) is almost null, reflecting Brownian motion.

diffusion process with the same drift function. The parameter r is a free parameter of the
algorithm, which can be interpreted as a bandwidth parameter in density estimation. In
Figure 3.2, we illustrate the estimation of drift from trajectories on a artificial sequence
depicting two circular trapping areas. A general view of trapping areas with variable sizes
generated with FluoSim [Lagardère et al. 2020], is shown in Figure 3.1(b)).

In the second step, the authors assume that the potential U(x) has a parametric form
and can be approximated by a truncated polynomial of second order, defined as

U(x) =

 A
(
∥x − x0∥2

a,b − 1
)

if ∥x − x0∥2
a,b < 1 ,

0 otherwise ,

where x0 is the attractor, and A > 0 is the depth of the potential modeling the strength
of the attractive force toward x0, restricted to the underlying 2D ellipse. The parameters
(a, b) are the axis lengths of the ellipse of center x0 in which the particle are under the
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action of an attractive force. In the computational scheme, the parameters a, b,x0 and
A are assumed partially known and/or estimated by minimizing a least-square error. To
conclude, the approach of [Hozé, Nair, et al. 2012] is very appropriate to analyze a large
number of tracks as computed in single-particle tracking PALM imaging. The motivation
was to compute the residence time of receptors in dendritic spines using short receptor
trajectories. The main advantage is the processing of very short tracks. Nevertheless, it
cannot handle mixtures or changes of motion occurring in a local neighborhood.

Another Eulerian method was described in [Masson, Dionne, et al. 2014]. The authors
propose a Bayesian framework to infer the drift vector field and diffusion coefficients. The
idea is first to decompose the image into non overlapping blocks. All the sub-trajectories
inside a block (or mesh element) are supposed to be driven by the same stochastic differ-
ential equations (SDE). Instead of using non-parametric estimates of drift and diffusion
coefficients as in [Hozé, Nair, et al. 2012], the authors consider a Gaussian approximation
of the SDE to model the likelihood function. Meanwhile, a Jeffreys prior is used as a de-
fault prior distribution for the drift and the diffusion coefficient, supposed to be constant
in each block. It follows that the a posteriori distribution on the whole space is defined
as the product of the a posteriori distributions of each block. An alternative prior is pro-
posed to penalize gradients of the drift field (or the coefficient diffusion field) ([Beheiry,
Türkcan, et al. 2016]); in that case, the maximum a posteriori (MAP) estimator is more
computationally demanding. Finally, once the local drifts (and diffusion coefficients) are
estimated, [Masson, Dionne, et al. 2014] propose to fit the estimated vector field to a
parametric vector field as in [Hozé, Nair, et al. 2012]. They consider a penalized least
square estimator of the vector field to impose a smooth solution. The main advantage of
the Bayesian method is that prior information about the drift and diffusion coefficient can
be easily incorporated, including errors due to misconnections of particles during tracking.

In this chapter, we are interested in the variation over space of particle motion. More
specifically, different areas within the cell induce different dynamics. We assume that
we can describe these dynamics with a finite collection of motions. We must note that
there also exists a vast literature analyzing the switch of motion over time. Again, the
motions belong to a finite collection of transport states. Then, [Monnier, Barry, et al.
2015] propose a Bayesian model selection to infer the transient transport states along a
trajectory over time. The switches between the different transient states are modeled with
a Markov process. In their case, the different states correspond to Brownian motion with
different diffusion coefficients and Brownian motion with drift with different values for
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both the drift and the diffusion coefficients.

3.4 Modeling and simulation of trapped particles

In this section, we propose a simulation framework based on general concepts in bio-
physics to mimic trapping areas. The artificial data sets will serve to evaluate the per-
formance of detection and estimation methods described in Section3.5. As said earlier in
Section3.1, we assume that the particles can switch between the trapped and the free
states. When the particles are trapped, they undergo free diffusion in confined regions.
When the particles are free, they are driven by free diffusion, only constrained by the
boundary conditions on the limits of the domain D. We model the proportions of trapped
and free particles in the whole domain and in the trapping regions through two systems
of differential equations.

3.4.1 Modeling of particle dynamics

In the aforementioned situation, the dynamics of trapped and free particles are de-
scribed by two connected processes:

1. the dynamics of individual particles corresponding to normally reflected free diffu-
sion in D and in S when trapped;

2. the trapping process.

The trapping process induces a different motion for the trapped particles; inversely
the particles can be trapped only if their motion drive them inside S.

Formally, we assume m particles independently drawn from the uniform distribution
over D : x

(i)
0 ∼ U(D), i = 1, . . . ,m. Note that ni = n if the trajectory length is the same

for all the particles. Instead of considering the exact dynamics of a particle, we simply
model its probability to be in any trapping region Sp (equivalently to be in S = ∪p

p=1Sp)
by

pS := P
(
x

(i)
t ∈ S

)
= |S|

|D|
, i = 1, . . . ,m .

Consequently, it is assumed that at every time t, the spatial point process (x(1)
t , . . . ,x

(m)
t )

is a binomial process over D of parameter m and which density function is the uniform
density ([Baddeley, Bárány, and Schneider 2007]). Furthermore, when the number m of
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particles is large enough, the evolution of the two populations can be modeled by a system
of differential equations depending on parameters pS , k+ and k−.

Let us denote b(t) = P (ϕ(xt = 1)) and f(t) = P (ϕ(xt = 0)) the proportions of
trapped particles and free particles, respectively. The functions t → b(t) and t → f(t) are
solutions of 

db

dt
= γ1f(t) − γ2b(t) ,

b(t) + f(t) = 1 ,
(3.2)

where γ1 and γ2 are, respectively, the global binding rate and global unbinding rate, such
that

P (ϕ (xt+h) = 1 | ϕ (xt) = 0) = γ1h+ o(h) ,

P (ϕ (xt+h) = 0 | ϕ (xt) = 1) = γ2h+ o(h) ,

with h > 0 and h → 0. Consequently, (ϕ(xt)) is a continuous-time homogeneous Markov
chain with states 0, 1 with infinitesimal generator parameters k+ and k− ([Brémaud
2020]). Finally, we can show that (see Appendix A.1)

γ1 = k+pS , (3.3)

γ2 = k− . (3.4)

The solution of the system (3.2) is as follows:
 b(t) =

(
b(0) − k+pS

k+pS+k−

)
e−(k+pS+k−)t + k+pS

k+pS+k− ,

b(t) + f(t) = 1 .
(3.5)

As a uniform distribution is assumed, we have the constraint that b(0) ⩽ pS . In other
words, only particles inside S can be trapped. The situation b(0) = pS matches with the
situation where initially all the particles inside S are trapped. From equation (3.5), the
transitory regime is exponential and it converges to an equilibrium proportion:

lim
t→∞

b(t) = k+pS

k+pS + k− .

If b(0) < k+pS/(k+pS + k−), function b(t) is decreasing toward its equilibrium point
k+pS/(k+pS + k−). If b(0) > k+pS/(k+pS + k−), function b(t) is increasing toward its
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equilibrium point. If b(0) = k+pS/(k+pS + k−), function b(t) is constant and equal to
its equilibrium point. The characteristic time is defined as τc = 1/(k+pS + k−). We can
consider that the stationary regime is reached when t > 5τc.

In the same way, we can model the proportions of trapped particles and free particles
inside S. If t → bS(t) denotes the proportion of trapped particles inside S and t → fS(t)
denotes the proportion of free particles inside S, we have:

dbS

dt
= k+fS(t) − k−bS(t) ,

bS(t) + fS(t) = 1 .
(3.6)

As before, the solution has an exponential form. The equilibrium proportion of trapped
particles inside any trapping regions Sp (same for all regions) is as follows:

lim
t→∞

bS(t) = k+

k+ + k− . (3.7)

Below, we describe the simulation of microdomains generated by running the FluoSim
software [Lagardère et al. 2020] based on the set of aforementioned equations. First, we
evaluate the model (3.5) describing the evolution of the proportion of trapped and free
particles in the whole domain S. Second, we assess the model (3.6) describing the evolution
of the proportion of trapped and free particles in the set of trapping areas S.

3.4.2 Simulations of trajectories and microdomains

In our first experiment, we designed two trapping regions S1 and S2 in a square domain
D ⊂ R2 with radius 5 µm (origin (0,0) at the bottom left corner of D:

1. S1 is a circle with radius r1 = 0.65 µm and center (2.5,2.5);

2. S2 is a circle with radius r2 = 0.39 µm and center (4,4).

This situation typically corresponds to the analysis of a region of interest as illustrated
in Figure 3.1(b) (yellow square). The parameters of simulation are given in table 3.1. Here,
2500 particles are uniformly distributed over D. FluoSim allows us to identify which
particle is trapped at time t. In that case, ϕ(x(i)

t ) is known, meaning that if the particle
i is trapped or not trapped at time t. In Figure 3.3, we plot the positions of the particles
labelled as free or trapped at time t = 10 s (transitory regime) and t = 100 s (stationary
regime).
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3.4. Modeling and simulation of trapped particles

Type Parameters Value
Biophysics parameters σ2 1 µm2/s

k+ 0.2 s−1

k− 0.05 s−1

Microscopy parameters ∆t 0.1 s
∆x 0.025 µm

Table 3.1 – Parameters of the first FluoSim simulation.

(a) t = 10 s (b) t = 100 s

Figure 3.3 – Positions of the particles simulated with FluoSim at time t = 10 s and
t = 100 s (free particles are represented in blue, trapped particles are represented in red).
The red circles delineate the regions S1 (large disk) and S2 (small disk).

Evaluation of proportions of trapped and free particles in the whole domain

We compare the proportion of trapped particles t → b(t) corresponding to equation
(3.5) to the true proportion of trapped particles. The curves are shown in Figure 3.4(a).
The fit of the transitory regime (t < 5τc = 77.5 s) is rather good even if the stationary
regime is not exactly the same as the one predicted by the model. The predicted equilib-
rium is 22.53% while the mean true proportion of trapped particles computed on the last
100 steps of time is 21.35%. The relative error of the model is 5.24%, mainly due to the
fact that the model oversimplifies the underlying trapping process; the dynamics of the
particles are only controlled by the parameter pS , and we assume that the particles are al-
ways in the stationary regime of a normally reflected free diffusion on D. This assumption
holds at the beginning, as the particles are initially drawn from the uniform distribution
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(a) (b)

Figure 3.4 – Evolution of the proportions of trapped particles over time. (a) proportions of
trapped particles in D; (b) proportions of trapped particles in the trapping region S. The
true proportion of trapped particles computed from the data, the proportions computed
with model 3.5, and the asymptote of the model 3.5 are represented in red, blue, and
green, respectfully. We computed the red curve over m = 2500 trajectories simulated with
FluoSim (see table 3.1).

on D. Nevertheless, as t increases, the trapping process makes this assumption invalid.
This explains the relative good fit of the transitory phase and the relative lack of fit of
the asymptotic phase. However, we can consider that it is a rather satisfying modeling,
regarding the flexibility and the number of parameters.

Evaluation of proportions of trapped and free particles in trapping areas

We compare the proportion of trapped particles t → bS(t) given by equation (3.6) to
the true proportion of trapped particles inside S. Interestingly, we observe the opposite
behavior compared to the case of b(t) (proportion of trapped particles in the whole domain
D). There is a clear lack of fit during the transitory regime but a perfect fit during the
stationary regime (see Figure 3.4(b). We can see that the transitory regime has the same
duration for b(t) and bS(t). During this phase, the number of particles inside S increases
due to the process of Brownian particles entering in S and getting trapped. However,
it is explicitly assumed in equation (3.6) that the number of particles is constant (and
large). This explains the lack of fit during the transitory phase which matches with a
period during which the number of particles increases in S. On the contrary, once b(t) has
reached the stationary regime, the number of particles inside S is approximately constant
(even if it is not the same particles that remain in S from one time to another). In the
latter case, the model (3.5) is relevant and the stationary regime is well predicted by the
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3.5. Clustering of trajectories for micro-domain detection

(a) Input trajectories (b) Trajectory classification (c) Point representation

(d) Subdiffuse points selection (e) Point clustering (f) Trapping areas

Figure 3.5 – Overview of our computational approach for detecting trapping areas. (a)
input trajectories; (b) classification of trajectories into three diffusion groups (superdiffu-
sion, subdiffusion, free diffusion); (c) representative points on trajectories; (d) display of
subdiffusive representative points; (e) estimation of clusters associated to trapping areas;
(f) detection of trapping areas.

model.

3.5 Clustering of trajectories for micro-domain de-
tection

In this section, we describe the computational approach used to automatically de-
tecting microdomains where particles undergo subdiffusion. The proposed approach is
not based on the biophysical modeling and the FluoSim simulator presented earlier.
FluoSim serves here to quantitatively demonstrate the performance of our approach on
synthetic sequences (ground truth).
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Our four-step detection procedure is based on the combination of the clustering algo-
rithm Dbscan [Ester et al. 1996] and the labeling of trajectories as explained in [Briane,
Kervrann, and Vimond 2018]. The procedure can be used for a large range of application
problems in live cell imaging, and is summarized as follows (see Figure 3.5):

1. Step #1: Classification of trajectories: we run our test procedure [Briane, Kervrann,
and Vimond 2018] on the collection of trajectories Xm (Figure 3.5(b)) to label the
tracks into three diffusion groups: free diffusion, superdiffusion, and subdiffusion.
We denote Ω1 (Xm) the set of trajectory indexes corresponding to the acceptance
of hypothesis H1 (subdiffusion).

2. Step #2: Representative point selection: we choose a unique point x̃i to represent
each trajectory X(i)

ni
(Figure 3.5(c)). We remove points associated to superdiffuse

trajectories and Brownian trajectories (Figure 3.5(d)).

3. Step #3: Point clustering: we partition the set Ω = {x̃i|i ∈ Ω1(Xm)} into clusters
(Figure 3.5(e)).

4. Step #4: Detection of trapping areas: we use the clusters to delineate confinement
areas and microdomains (Figure 3.5(f)).

In the sequel, we successively present Steps #2, #3 and #4 of the method. As already
explained, we will use the simulation framework presented in Section3.3 to illustrate the
different steps of our method.

3.5.1 Classification of trajectories

Step #1 is straightforward as it corresponds to the test procedure described in [Briane,
Kervrann, and Vimond 2018]. This method is based on a non-parametric three-decision
test to distinguish the three types of diffusion (superdiffusion, subdiffusion, free diffusion).
The null hypothesis is that the observed trajectory made of n points is generated from
a Brownian motion and the two other alternatives are subdiffusion and superdiffusion.
The test statistic Tn is the standardized largest distance covered by the particle from its
starting point. It can be interpreted as follows:

1. If the value of Tn is low, it means that the process stayed close to its initial position
and can be trapped in a microdomain (subdiffusion);

2. If the value of Tn is high, the particle went far from its initial position and the
particle is actively transported (e.g. via a molecular motor) (superdiffusion).
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3.5. Clustering of trajectories for micro-domain detection

The test is appropriately normalized, asymptotically converges under the null hypoth-
esis and under parametric alternatives which are currently considered in the biophysics
literature. The test procedure, applied to subdiffusive trajectories, is easily controlled by
a p-value.

Our procedure is applied to detect areas where subdiffusion occurs, but it can also
be used to detect areas in which superdiffusion or free diffusion are the main dynamics.
In that case, we just need to replace the set Ω1(Xm) by, respectively, Ω0(Xm) (set of
trajectory indexes corresponding to free diffusion) or Ω2(Xm) (set of trajectory indexes
corresponding to superdiffusion).

Moreover, if we observe long trajectories, dynamics can vary, switching from one diffu-
sion model to another. In this case, labeling a trajectory with a single diffusion class would
be misleading. To overcome this problem, we can use the algorithm described in [Briane,
Vimond, Valades-Cruz, et al. 2020] (also based on the classification proposed in [Briane,
Kervrann, and Vimond 2018]) to detect the change points where the diffusion switches
occur and segment the trajectories accordingly. Then we can use these sub-trajectories as
inputs of the proposed algorithm.

Finally, it is possible that, due to the spatial extensions of the trapping regions, a
trapped particle never hits the edges of the region during the period of observation. In
this case, these particles have no chance to be detected as subdiffusive by the procedure
described in [Briane, Kervrann, and Vimond 2018]. If we assume that the trapped particles
have a significantly lower diffusion coefficient than the untrapped particles -a realistic
biological assumption- we can use this supplementary assumption to detect the trapped
particles even in this case. Consequently, we proceed as follows. We keep all the particles
classified as subdiffusive as before. For all the particles classified as Brownian, we can
compute an estimator of the diffusion coefficient as follows:

σ̂2
n = 1/(2n∆t)

n∑
j=1

∥∥∥xtj
− xtj−1

∥∥∥2

2
.

In the next step, we classify the trajectories first detected as Brownian by using the
method [Briane, Kervrann, and Vimond 2018] based on the estimated diffusion coefficient,
and we re-label as subdiffusive all the trajectories detected as Brownian by the method
[Briane, Kervrann, and Vimond 2018] for which the estimated diffusion coefficient is low
enough. A threshold must be set by either a statistical procedure -for example based
on the value of the diffusion coefficients of the trajectories detected as subdiffusive in
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(a) (b)

Figure 3.6 – Spatial distribution of the trapped particles in the FluoSim simulation; (a)
the trajectories are represented by their mean point; (b) the trajectories are represented
by x⌊n/2⌋. A trajectory is considered to be trapped if it is trapped during the whole period
of observation. The red circles represent the boundaries of the trapping regions S1 (large
circle) and S2 (small circle).

the first place- or by an expert. These trajectories would correspond to the subdiffusive
trajectories that never hit the edges of the subregions. We can then run the next steps of
the procedure on this new set of subdiffusive trajectories.

3.5.2 Representative trajectory points and spatial distribution

In Step #2, a single point is required to represent a trajectory made of n points. In
what follows, we consider mapping functions f : R2×n → R2 of the following form:

— Mean point: f(x1, . . . ,xn) = 1
n

n∑
i=1

xi ,
— j-th point located on the trajectory: f(x1, . . . ,xn) = x(j), with j ∈ {1, . . . , n} .
As already mentioned, the trapped particles are modeled by confined free diffusion

normally reflected at the boundaries of the trapping regions. In that case, we can see
that different representative trajectory points yield very different spatial patterns. As il-
lustrated in Figure 3.6, we represent the trajectory Xn = (xt0 , . . . ,xtn) by the mid-point
x⌊n/2⌋ (related function f(x1, . . . ,xn) = x(⌊n/2⌋)). It turns out that the spatial distri-
bution of the representative points x

(i)
⌊n/2⌋ of the trapped trajectories X(i)

n is uniform with
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3.5. Clustering of trajectories for micro-domain detection

this choice, over the trapped region S1 and S2 (Figure 3.6(b)). This is due to proposition
1, as the trapped particles undergo a normally reflected confined free diffusion in S1 and
S2.

Proposition 1 ([Pinsky 2003])

Let (xt) be a normally reflected Brownian motion on a finite volume domain D. Assume
that the process (xt) has a stationary uniform distribution over D : U(D). If the process
(xt) has reached its stationary distribution, then for any t > 0 and B ⊂ D it follows that

P (xt ∈ B) = |B|
|D|

,

where |B| denotes the area of domain B.
Actually, the average position of the trapped trajectories are concentrated in the center

of the trapped regions (Figure 3.6(a)). Therefore, in the purpose of accurately estimating
the boundaries of S1 and S2, it seems more appropriate to represent the trajectory i with
x

(i)
⌊n/2⌋ rather than by the average position, not necessary located on the trajectory.

3.5.3 A clustering algorithm: Dbscan

In Step #3, we apply the popular clustering algorithm Dbscan [Ester et al. 1996]
to robustly estimate point clusters from noisy points due to presence of false detections.
Dbscan adds a point into a cluster if it is surrounded by at least κ neighboring points in a
disk of radius ϵ -this type of point is called a core point- or if it is within a disk of radius ϵ
from a core point -this type of point is called a boarder point-. On the contrary, the point
does not belong to any cluster and is considered as noise. Other more sophisticated clus-
tering algorithms could be applied. For instance, the so-called a contrario method allows
a finer analysis of the clusters than Dbscan through the concept of meaningful clusters
([Desolneux, Moisan, and Morel 2003], [F. Cao et al. 2007]) organized in a hierarchical
structure. We focus on the Dbscan algorithm since it is very popular spatial statistics.
It is mainly controlled by two parameters (ϵ, κ) as explained below.

Selection of the Dbscan parameters

The set of parameters (ϵ, κ) should be adapted to each cluster, as each cluster does not
have the same density (or concentration) of points. However this information is available
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once the clusters are estimated. In practice, a unique set of parameters (ϵ, κ) is used for
all clusters. A good choice is to set the parameters (ϵ, κ) in order to detect the least dense
cluster. Indeed, the clusters with more points are more easily detected than the least dense
clusters. [Ester et al. 1996] argue that, in two-dimensional problems, we can set (κ = 4) as
a rule of thumb. Once the parameter κ is set, we can choose ϵ by considering two different
strategies:

1. a data driven method based on the observed distribution of κ-nearest neighbors;

2. a parametric method to approximate the distribution of noisy points.

In the following, we present two data driven methods and two parametric methods
for selecting ϵ. Then, we compare the outcomes of the Dbscan algorithm with different
methods for selecting ϵ, applied to FluoSim simulations.

Data driven methods The data driven methods enable to determine ϵ from the
sample d1(κ), . . . , dm(κ) where di(κ) denotes the distance of the κ-nearest neighbors of
point xi ∈ Ω. Let us denote d1(κ), . . . , dm(κ) the increasing-ordered sample. Note that
if ϵ = di(κ), the i points corresponding to the values d1(κ), . . . , di(κ) will be core points
while the other points will be either boarder points or noisy points. The choice ϵ < d1(κ)
corresponds to the case when all the points are noisy points (no core point), whereas the
choice ϵ ⩾ dm(κ) corresponds to the case where all the points are core points. In the
latter case, all the points belong to one single cluster. If the number of noisy points ℵ is
known, a natural choice proposed by [Ester et al. 1996] is ϵ = d(m−ℵ+1)(κ). An alternative
graphical approach is also described in [Ester et al. 1996] to determine ϵ. The authors
plot the sequence dm(κ), . . . , d1(κ) and ϵ is determined as the first d(i) in the first valley
of the sequence.

Parametric methods In [Daszykowski, Walczak, and Massart 2001], it is implicitly
assumed that the noisy points are uniformly distributed. The parameter ϵ is defined as the
α quantile of the distribution (e.g. α = 0.05) of the κ-nearest neighbors of |Ω| points drawn
from a uniform distribution over D. If the observed noisy points are really drawn from
a uniform distribution, none of them will be chosen as a core point with approximately
1 − α probability.

As the number ℵ of noisy points and the clusters Ci are unknown, it is not possible to
propose a method which exactly controls the probability of detecting a noisy point as a
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Type Method ϵ
Data driven Graphical method 5.64
Parametric [Daszykowski, Walczak, and Massart 2001] 5.94

[Friedman, Baskett, and Shustek 1975] 5.86

Table 3.2 – Values of the parameter ϵ of Dbscan obtained with different methods. The
parameter ϵ is estimated assuming κ = 4 as recommended in [Ester et al. 1996]. The
parameter ϵ is expressed in pixel units. The image size is 200 × 200 px.

core point. In [Daszykowski, Walczak, and Massart 2001], ϵ is estimated with Monte-Carlo
simulations, which is time consuming if |Ω| is large.

It is worth noting that [Friedman, Baskett, and Shustek 1975] also studied the distri-
bution of the κ-nearest neighbors of m points uniformly distributed over a finite domain
D. If |Ω| is large enough to neglect boundary effects, the ratio of the volume of a two-
dimensional sphere centered at a point containing κ neighbors and the volume of the
whole space D is governed by a Beta distribution f with parameters (κ, |Ω| − κ):

f(x) = m!
(κ− 1)!(m− κ)!x

κ−1xm−κ, 0 ⩽ x ⩽ 1 .

Finally, we can define ϵ as explained in [Daszykowski, Walczak, and Massart 2001]. If
F−1(α) denotes the quantile of order α of the distribution f , we get

ϵ =
(

|D|F−1(α)
π

)1/d

,

where |D| is the volume (or area in the two-dimensional case) of D.

Comparison of strategies on FluoSim simulations

We apply the Dbscan algorithm on the set Ω obtained with the test procedure [Briane,
Kervrann, and Vimond 2018] (see Figure 3.5(b)). The parameter ϵ is estimated with the
different methods. All the methods provided similar estimations of ϵ in our experiments
(e.g. see table 3.2). Consequently, we got the same set of clusters when we run Dbscan as
shown in Figure 3.7 by setting κ = 4. We found two clusters as expected, corresponding
to the two trapping regions S1 and S2. We got similar results in additional experiments,
suggesting that selecting one method or another one would not affect the detection of
trapping areas.
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Figure 3.7 – Clusters detected by Dbscan (κ = 4) on the set of particles detected as
subdiffusive with the test procedure [Briane, Kervrann, and Vimond 2018] (single test
with a significance level of 5%). We choose ϵ = 5.86 derived with the Beta distribution
assumption. The noisy points are in red, and points belonging to the same cluster are
labelled with the same color (blue or green). The red circles represent the boundaries of
the trapping regions S1 (large circle) and S2 (small circle). The black square delineates
the borders of the whole domain D.

3.5.4 Detection of trapping areas

In Step #4, we simply use the convex hull to define the boarders of the clusters.
By definition of the convex hull, all the points of the cluster will be either inside the
convex hull (or convex polygon) or be some vertexes of the polygon. We note that several
extensions of the convex hull have been developed, including α-shapes [Edelsbrunner,
Kirkpatrick, and Seidel 1983]. In that case, an extra parameter α > 0 is used to control
the smoothness of the estimated shape.

3.6 Experimental results

3.6.1 Evaluation on FluoSim simulated sequences

In this section, we use the FluoSim simulation scheme to illustrate the potential
of our approach to detect trapping areas. We consider temporal series depicting 4500
trajectories made of n = 350 points. The trajectories are analyzed once the equilibrium
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Figure 3.8 – Simulated crossbow-shaped cell with seventeen trapping regions of different
sizes and shapes. The white line at the bottom accounts for 16 µm.

Type Parameters Value
Biophysics parameters σ2

S 0.2 µm2/s
σ2

T 0.02 µm2/s
k+ 10 s−1

k− 2 s−1

Microscopy parameters ∆t 0.02 s
∆x 0.160 µm

Table 3.3 – FluoSim parameters to simulate the first crossbow-shaped cell.

regime is reached. We recall that the trajectories can switch between two diffusion modes:

1. confined free diffusion in small microdomains Sp with normal reflection on the
boundaries ∂Sp;

2. Free diffusion in the whole domain D with normal reflection on the boundaries ∂D.

We designed a cell in with a crossbow shape and seventeen trapping regions depicted
in Figure 3.8:

— one circular nucleus surrounded by one crescent- shaped zone,
— five circular zones with decreasing radius,
— seven tiny circular zones,
— three tiny circular zones really close to each other.
The parameters are given in table 3.3. In order to assess the efficiency of the method,

we compute two criteria for each true (ground truth) trapping region. Firstly, we compute

153



Chapter 3 – Micro-domains and Confinements Domains Detection

True regions
Region index (see Figure 3.8) 1 2 3 4 5 6-17
Number of overlapping clusters 1 1 1 1 1 0
Maximum overlap (%) 90 36 60 29 15 0

Table 3.4 – Evaluation of the procedure on the crossbow-shaped cell simulation.

Cluster index Proportion of subdiffusive trajectories (%)
1 3.3
2 5.6
3 18.5
4 8.3

Table 3.5 – Proportion of subdiffusive trajectories inside the detected regions from the
crossbow-shaped cell simulation.

the number of detected regions overlapping with the real trapping regions. Secondly, we
compute the proportion of overlap between the closest detected region to the trapping
region (useful if multiple detected regions overlap with the true region). We define the
proportion of overlap as the area of intersection of the true region and the detected
region over the area of the true region. Then, ideally the two criteria should be equal
to one, meaning that one detected region corresponds to one real trapping region and
that the overlap is perfect. Also, for each detected cluster we compute the proportion of
subdiffusive trajectories which should be compared to equation (3.7). In this case, the
theoretical proportion is k+/(k+ + k−) = 0.8333.

From table 3.4, we can see that the algorithm detects satisfyingly the regions #1 to
#5 while it does not detect at all the regions #6 to #17. The best detected region is
region #1 with 90% of overlap. The algorithm does not detect the small regions as there
is either no detected subdiffusive trajectories or less than κ = 4 detected subdiffusive
trajectories (see Figure 3.9(a)). In the latter case, Dbscan can not build a cluster as the
minimum number of points in a cluster must be κ = 4. We also note that the proportion
of subdiffusive trajectories in the five detected regions is much lower, as reported in table
3.5, than the expected value k+/(k+ + k−) = 0.8333. Then, in the setting of this simula-
tion, the algorithm under-detects subdiffusive trajectories. The parameters that influence
the most the outcome of the classification step (Step #1) are the trajectory length, the
microdomain size, and the diffusion coefficient of trapped particles. An optimal setting is
a long trajectory with a high diffusion coefficient in a small domain. In this case, the par-
ticles bounce a lot against the edges of the trapping regions and its subdiffusive behavior
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(a) (b)

Figure 3.9 – Results of our procedure on the first crossbow-shaped cell simulation; (a)
representative points of the trajectories detected as subdiffusive by the test procedure
[Briane, Kervrann, and Vimond 2018] with a significance level of 5%; (b) trapping regions
(yellow background, red boundaries) estimated with the convex hull from the clusters
detected by Dbscan. The true trapping regions are delineated with blue curves.

Type Parameters Value
Biophysics parameters σ2

S 0.2 µm2/s
σ2

T 0.1 µm2/s
k+ 10 s−1

k− 1 s−1

Microscopy parameters ∆t 0.02 s
∆x 0.160 µm

Table 3.6 – FluoSim parameters to simulate the second crossbow-shaped cell.

is obvious. A more detailed simulation scheme would give the interval of parameters for
which the classification step performs the best. Another issue is the proximity between
two trapping regions. We can see in Figure 3.9(b) that a detected region overlaps both
with region #1 (large disk) and region #2 (crescent shape). We note that the minimum
distance to resolve two close regions will depend on the concentration of subdiffusive tra-
jectories, that is on the binding parameters k+ and k−. In fact, the outcome of Dbscan
depends on the density of points inside the clusters. We provide another simulation con-
trolled by the parameters given in table 3.6. The results are shown in Figure 3.10 and the
quantitative results are reported in tables 3.7 and 3.8. In conclusion, we did not choose
the optimal simulation parameters here to assess our method. Still, we are able to detect
some trapping regions even if the algorithm under-detects subdiffusive trajectories and
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True regions
Region index (see Figure 3.8) 1 2 3 4 5 6 7-14 15 16-17
Number of overlapping clusters 4 3 1 1 1 1 0 1 0
Maximum overlap (%) 31 17 24 43 25 34 0 7 0

Table 3.7 – Evaluation of the procedure on the second simulated crossbow-shaped cell.

Cluster index Proportion of subdiffusive trajectories (%)
1 42.0
2 19.0
3 5.0
4 15.0
5 8.5
6 11.0
7 11.0
8 8.0

Table 3.8 – Proportion of subdiffusive trajectories inside the detected regions from the
crossbow-shaped cell simulation (2) to be compared (k+/(k+ + k−) = 0.9091).

merges close trapping regions. A more systematic simulation study should be performed
to determine the range of parameters for which the method gives satisfying results.

3.6.2 Experiments on real TIRF images: dynamics of Rab11 in-
volved in exocytosis

In this section, we demonstrate the potential of our approach on Rab11-mCherry
proteins involved in exocytosis mechanisms and observed in 2D TIRF (Total Internal
Reflection Fluorescence) microscopy (Nikon TE2000 inverted microscope equipped with a
100× TIRF objective: numerical aperture = 1.49, exposure time ∆t = 100 ms, dx = dy =
160 nm). Figure 3.11 shows three 256 × 353 images at different time points, depicting
fluorescent vesicles close to the plasma membrane. The image sequences are typically
composed of 600 images, and show the late steps of exocytosis driven by Rab11 at the
plasma membrane, namely the tethering-docking process [Schafer et al. 2014].

Given several hundreds of Rab11 trajectories estimated with the Icy software [Chenouard,
Bloch, and Olivo-Marin 2013] [Chenouard, Smal, et al. 2014], we first applied our test pro-
cedure [Briane, Kervrann, and Vimond 2018] to classify the trajectories. In Figure 3.12(a),
we displayed all trajectory points onto a 2D three-color map: free diffusion in blue, sub-
diffusion in green, and superdiffusion in red. In the particular case shown in Figure 3.11,
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(a) (b)

Figure 3.10 – Results of our procedure on the second crossbow-shaped cell simulation;
(a) representative points of the trajectories detected as subdiffusive by the test procedure
[Briane, Kervrann, and Vimond 2018] with a significance level of 5%; (b) trapping regions
(yellow background, red boundaries) estimated with the convex hull from the clusters
detected by Dbscan. The true trapping regions are delineated with blue curves.

the M10 cells were treated with Latrunculin A, which inhibits actin polymerization and
then reduces active transport of vesicles [Pécot et al. 2018]. This effect is confirmed on
Figure 3.12(a) since no track was labeled a superdiffusive trajectory.

Second, we applied our computational approach on subdiffusive trajectories (green
pixels in Figure 3.12(a)) represented by points in Figure 3.12(b). In the sequel, we assume
that the tethering-docking process under study is associated to subdiffusion because of
multiple interactions with actin filaments and interactions with the plasma membrane.
All points reported in Figure 3.12(b) correspond to vesicles that fuse at the surface of
the plasma membrane. First, we observe an approximately uniform spatial distribution
of points (black dots). Nevertheless, we detected a few additional clusters corresponding
to higher densities of fusion events in a local spatial neighborhood. These clusters can
be interpreted as local domains related to more intensive interactions with the plasma
membrane and actin filaments. Several clusters are actually localized in regions with a high
concentration of spots (e.g. see top right of the cell). Trajectory analysis is then helpful
to focus the attention on specific areas which cannot be easily detected by examining
fluctuations of fluorescence intensities shown in Figure 3.11.

Finally, we illustrate in Figure 3.12(c) the potential of the [Hozé, Nair, et al. 2012]
method on the same sequence. In particular, we reported the spatially varying diffusion
coefficients on a 2D map since the drift vectors are very noisy and not interpretable. In

157



Chapter 3 – Micro-domains and Confinements Domains Detection

(a) t = 1 (b) t = 201 (c) t = 501

Figure 3.11 – Rab11-mCherry proteins within a M10 cell treated with Latrunculin and
observed at several time points. The images are extracted from a 2D TIRFM sequence
composed of 600 images (exposure time ∆t = 100 ms, dx = dy = 160 nm).

our study, the diffusion map is actually not really helpful to draw conclusions if the drift
values are noisy. The number of estimated trajectories (about one thousand) is too small
to safely apply the methods described in [Hozé, Nair, et al. 2012] the second chapter of
this thesis.

3.7 Conclusion and discussion

In this chapter, we presented a method to detect the trapping regions where the parti-
cles are confined and thereby undergo subdiffusion. We combined the clustering algorithm
Dbscan [Ester et al. 1996] and a test procedure [Briane, Kervrann, and Vimond 2018] in
order to identify the areas with a high concentration of subdiffusive particles, assumed to
correspond to trapping regions. With this approach, we were also able to estimate the pro-
portion of particles inside the trapping regions which were indeed confined in the domain.
Our approach is more flexible than the Eulerian approach of [Hozé, Nair, et al. 2012],
which is not able to handle mixtures of motions, or to capture the motion of particles not
confined in the trapping regions but still going through these regions.

We illustrated the potential of our procedure on simulations generated with the Flu-
oSim software, and on real TIRF images. However, the simulation results provided here
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(a) (b) (c)

Figure 3.12 – Analysis and clustering of trajectories; (a) trajectory classification into three
diffusion groups [Briane, Kervrann, and Vimond 2018]; (b) selection/clustering of subdif-
fusive trajectories: the point clusters are labeled with colors while individual subdiffusive
trajectory are represented with black dots; (c) estimated diffusion coefficient map gener-
ated with our method presented in Chapter 2.

do not intend to assess systematically the procedure for a large range of parameters values
(k+, k−, σS , σT , the shapes of the regions). For future works, it would typically involve:

1. determining jointly the region sizes and trajectory lengths for which the classifica-
tion procedure can detect subdiffusive trajectories (Step #1) and further defining
a criterion to select the region size for different shapes;

2. determining the minimum distance between two regions for the clustering algorithm
to be able to detect two distinct regions and not merge them. This distance is
expected to depend on the concentration of subdiffusive trajectories in the trapping
regions.

In this chapter, we focused on the modeling and estimation framework and demon-
strated its potential with preliminary experiments. Then, we emphasize the fact that it
is possible to use different procedures at each step of the proposed pipe-line to adapt to
different scenarios. For instance, in the case of trajectories switching over time, we can
use sub-trajectories estimated with the method described in [Briane, Vimond, Valades-
Cruz, et al. 2020], instead of the classification procedure [Briane, Kervrann, and Vimond
2018] used in Step #1 of our algorithm. The same way, another choice of representative
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point and other strategies of clustering or shape estimation can also be used, respectively,
in Steps #2, #3 and #4. We proposed a default choice of procedures for each step of
the pipeline but the user is free to select the appropriate procedures depending on the
application.
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CONCLUSION

Contributions of the thesis

In this thesis, we developed algorithmic tools to analyze fluorescence microscopy data.
In particular, we built new methods reliably producing cellular maps and detecting intra-
cellular features from tracking data or microscopy image sequences, while outperforming
existing methods.

In the first chapter, we gave an overview of the mathematical notions and tools neces-
sary to understand our research. After introducing stochastic processes, Brownian motion,
and the notion of diffusion, we presented the theory behind particle motion modeling,
and in particular the approach of Langevin [Langevin 1908]. We then reviewed several
types of fluorescence microscopy techniques, whether classic or groundbreaking, 2D or
3D, diffraction-limited or super-resolved. On the algorithmic side, we presented different
biomolecule tracking methods, and made an extensive presentation of Vincent Briane’s
work on automated trajectory motion classification and motion class switching among
trajectories [Briane, Kervrann, and Vimond 2018] [Briane, Vimond, Valades-Cruz, et al.
2020].

In the second chapter, we proposed a new mapping method to robustly estimate diffu-
sion and drift in the cell from particle tracks. After a review of two techniques dedicated
to this purpose, we presented in details the theoretical elements of our statistical method,
which uses space-time kernel estimators guided by particle motion classification on parti-
cle positions. Our computational approach was tested on an extensive set of experiments,
and gave satisfactory results on both simulated, real, 2D and 3D data, providing high-
resolution estimated maps, even with a low number of trajectories, and proving to be
more robust than existing methods. This implies that our method can be used on a more
diverse set of fluorescence microscopy techniques, and can detect subtle biological events
in image sequences.

In the third chapter, we studied the detection of confinement areas [Briane, Salomon,
et al. 2020]. We introduced a method which detects the cellular microdomains where
particles get trapped. After a presentation of the mathematical and biophysical framework
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of this problem, we introduced its related work. Then, we presented our method, which
uses trajectory classification as well as a combination of clustering procedures. Its main
idea is to detect high concentrations of subdiffusive particles, by reducing subdiffusive
trajectories to a set of representative points, and then running said set through a clustering
algorithm such as Dbscan. Our method was evaluated on simulated sequences obtained
with FluoSim, and on real TIRF image sequences. It could prove its potential and
flexibility, even if there is still room for improvement.

This corpus of research and algorithms should provide biologists with new analytical
tools that will further exploit the potential of fluorescence microscopy. Notably, our work
could have an impact on fundamental biological research, with potential applications in
fields such as cancer research (e.g. breast cancer), the study of viruses (e.g. HIV), and
neurology. For instance, [Baloul et al. 2023] uses our work to study the behavior of CSL
transcription complexes in the Notch signaling pathway, whose dysfunction is linked to
cancer development [Nowell and Radtke 2017][Ntziachristos et al. 2014].

Future work and extensions

While our work is worthy of interest, there is still room for improvement and exten-
sions, and we would like to suggest some avenues for development here.

First of all, there are two features for our diffusion and drift mapping method that
could unfortunately not be developed in time. The first one would have been an automated
and adaptive kernel size selector. For the moment being, the size of the estimation kernel
of our method is manually selected by the user, through one single constant parameter
called m. It could be interesting to let the method automatically choose the value of
this parameter in function of the available data density. In the first instance, this could
be performed globally by calculating one single value for the whole data set. It would
basically replace the current user choice and relieve them from this sometimes drastic
choice. In a second step, a more sophisticated adaptive kernel could be implemented, that
could locally change its size depending on the local space-time data density and quality,
allowing the method to be more robust and precise. Implementing these two features
would at the same time simplify the user experience and make the method more accurate.
Another feature that was roughly developed but could not be tested is the artificial data
quantity augmentation by bootstrapping. This consists of processing an image sequence
several times through the same tracking algorithm, while incrementally removing the first
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frames. Each iteration generates stochastic variations in the detected particle coordinates
at time t = ti, and results can be concatenated into a denser set of particle positions. This
feature would allow to potentially go even further in the ability to analyze lightweight
data sets.

Another development path concerns the implementation of our method. Our algorithm
was developed in MATLAB, which is a slow, interpreted language and software, and
processing times can be concerningly high when working on large data sets. Another
problem with this tool is the display of 3D results, which is often sub-optimal in terms
of reading and difficult to navigate. Also, MATLAB is a proprietary software on which
our method depends. A solution to these problems could be to rewrite our code in a
compiled language such as C++. This would allow to generate a fast, standalone version
of our algorithm, featuring a clear and accessible Graphic User Interface (GUI), as well
as a more user-friendly display for 3D results. This could also facilitate the technology
transfer work that has already been initiated with our MATLAB code, in particular
with the biotechnology start-up Myriade which develops innovative imaging techniques
for nanometric particles based on interferometry.

Finally, as a challenge to our work, possibilities offered by machine learning could
also be explored. As a cutting-edge and widely applicable technology, machine learning
based methods often provide impressive results and are yet to be tested on every aspect of
microscopy data analytics. Previous experiments made in our research team showed that
these methods do not outperform more classic approaches on particle motion classification.
Still, it could be an interesting path of research to test this technology on a more global
approach, covering both particle motion classification, diffusion and drift mapping, and
cluster detection.

As an final note, we hope to pursue at least some of the above-mentioned developments
in the future, and we would warmly welcome anyone interested in taking our work as a
starting point for their research.
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Appendix A

APPENDIX

A.1 Derivation of the global binding and unbinding
rates

We demonstrate that the equalities (3.3) and (3.4) hold. Let us consider the equality
(3.3) involving γ1:

P (ϕ(Xt+h) = 1 | ϕ(Xt) = 0) =P (ϕ(Xt+h) = 1, Xt+h ∈ S | ϕ(Xt) = 0)+

P (ϕ(Xt+h) = 1, Xt+h ∈ S | ϕ(Xt) = 0)

=P (ϕ(Xt+h) = 1 | ϕ(Xt) = 0, Xt+h ∈ S)×

P (Xt+h ∈ S | ϕ(Xt) = 0) + 0 .

The particle can not be trapped outside S. Consequently, the second probability of the
sum is zero. As the probability to be in region S at t + h is independent from the event
{ϕ(Xt) = 0} to be a free at t, we finally get:

P (ϕ (Xt+h) = 1 | ϕ (Xt) = 0) =
(
k+h+ o(h)

)
P (Xt+h ∈ S) .

Normally reflected Brownian motion in a domain D with finite volume has a stationary
distribution. This distribution is the uniform distribution over D [Pinsky 2003]. Then,
under the uniform distribution assumption, we get:

P (ϕ (Xt+h) = 1 | ϕ (Xt) = 0) =
(
k+h+ o(h)

) |S|
|D|

= k+ |S|
|D|

h+ o(h) .

It follows that γ1 = k+|S|/|D| = k+pS .
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We now prove the equality (3.4) involving γ2:

P (ϕ(Xt+h) = 0 | ϕ(Xt) = 1) =P (ϕ(Xt+h) = 0, Xt+h ∈ S | ϕ(Xt) = 1)+

P (ϕ(Xt+h) = 0, Xt+h ∈ S | ϕ(Xt) = 1)

=P (ϕ(Xt+h) = 0 | ϕ(Xt) = 1, Xt+h ∈ S)×

P (Xt+h ∈ S | ϕ(Xt) = 1) + 0 .

As {ϕ(Xt) = 1} ⊂ {Xt+h ∈ S}, we get the result:

P (ϕ (Xt+h) = 0 | ϕ (Xt) = 1) =
(
k−h+ o(h)

)
× 1 ,

which implies γ2 = k−.

A.2 Additional results: langerin in RPE-1 cells

We used here an image sequence acquired at Institut Curie with a 3D multi-angle
TIRF microscope showing YFP-tagged langerin in a RPE-1 crossbow-shaped cell. The
image sequence was 2D-projected and tracking was performed with U-track. The data
has notably been used in [Boulanger et al. 2014] and [Balsollier et al. 2023].

Our method produced the outputs shown in Figure A.1 for the tracking data analysis
and in Figure A.2 for the diffusion maps. Additionally, Figure A.2 also illustrates the drift
map.

Figure A.2(a) and Figure A.2(b) show the diffusion point cloud output and the inter-
polated diffusion bitmap inferred from the point cloud, respectively. Figure A.2(c) displays
the diffusion histogram corresponding to the point cloud. Figure A.2(d) show the drift
vector field.
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(a) (b)

(c)

Figure A.1 – The tracking data obtained from the langerin in crossbow-shaped cells data
set is analyzed. (a) The set of all simulated particle trajectories is shown. (b) Particle
trajectories are classified by motion type. Free diffusion is represented in blue, subdiffusion
is represented in green and superdiffusion is represented in red. (c) The histogram of the
input trajectory lengths is shown.



(a) (b)

(c) (d)

Figure A.2 – The results obtained with our method on real data (langerin in crossbow-
shaped cells), are shown. (a) The point cloud output represents the spatial distribution
of the diffusion coefficient inside the cell, in µm2/s. (b) The point cloud is derived into
a map by interpolation, with the same scale units. (c) The point cloud is derived into a
diffusion histogram. The values displayed on top of the modes are also in µm2/s (d) This
second point cloud represents the spatial distribution of the drift inside the cell. Each
point represents a drift vector. The wheel indicates both the direction and the amplitude
of the vectors.
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ABBREVIATIONS

2D Two-Dimensional

3D Three-Dimensional

BALM Binding-Activated Localization Microscopy

CTRW Continuous Time Random Walk

D3M2 Dense Diffusion and Drift Mapping Method

DIC Differential Interference Contrast

DiNa Differential Nanometry

fBm Fractional Brownian Motion

FCS Fluorescence Correlation Spectroscopy

FM Fluorescence Microscopy

FRAP Fluorescence Recovery After Photobleaching

FWHM Full Width at Half-Maximum

GFP Green Fluorescent Protein

GLE Generalized Langevin Equation

HILO Highly Inclined and Laminated Optical sheet
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LFM Light Field Microscopy

LLSM Lattice Light-sheet Microscopy

LSFM Light Sheet Fluorescence Microscopy

MAP Maximum A Posteriori

MHT Multiple Hypothesis Tracking

MSD Mean Square Displacement

NA Numerical Aperture

NL Non-linear

PAF PhotoActivation of Fluorescence

PAINT Point Accumulation for Imaging in Nanoscale Topography

PALM Photoactivated Localization Microscopy

PSF Point-Spread Function

mRNA Messenger Ribonucleic Acid

ROI Region Of interest

SDE Stochastic Differential Equation
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SRM Super Resolution Microscopy

STAR Simultaneous Two-wavelength Axial Ratiometry
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STICS Spatio-Temporal Image Correlation Microscopy

STORM Stochastic Optical Reconstruction Microscopy

dSTORM Direct Stochastic Optical Reconstruction Microscopy

TIRF Total Internal Reflection Fluorescent

WFFM Wide-Field Fluorescence Microscopy
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Titre : Modélisations statistiques pour l’analyse de la diffusion des molécules et du trafic intra-
cellulaire en microscopie de fluorescence

Mot clés : Microscopie de fluorescence, dynamique des particules, suivi de particules, diffu-

sion, dérive, cartographie, classification de mouvements, région de confinement

Résumé : En permettant de visualiser de ma-
nière sélective les dynamiques des particules
dans les cellules, la microscopie de fluores-
cence est un outil de premier plan pour la re-
cherche biomédicale. Il existe par conséquent
une forte demande d’outils algorithmiques ca-
pables d’analyser automatiquement des don-
nées microscopiques brutes. Après une pré-
sentation de la théorie et des techniques en-
tourant les dynamiques des particules, la mi-
croscopie de fluorescence, les méthodes de
suivi et la classification de mouvements, nous
présentons dans cette thèse une nouvelle mé-
thode de cartographie basée sur des esti-
mateurs à noyaux spatio-temporels permet-
tant d’estimer de manière robuste la diffu-

sion et la dérive intracellulaires à partir des
données de suivi. Nous l’évaluons dans un
ensemble étendu d’expériences utilisant des
données simulées, réelles, 2D et 3D et mon-
trons que notre méthode fournit des cartes
de diffusion et de dérive précises et exactes
tout en étant plus performante que les mé-
thodes existantes. En tant que telle, elle per-
met les biologistes d’étudier les dynamiques
intracellulaires de particules spécifiquement
marquées avec une plus large gamme d’ac-
quisitions et de techniques de microscopie de
fluorescence. En outre, nous présentons une
méthode de détection de domaines de confi-
nement utilisant également le suivi de parti-
cules et la classification de mouvements.

Title: Statistical modelling for the analysis of molecular diffusion and intracellular trafficking in
fluorescence microscopy

Keywords: Fluorescence microscopy, particle dynamics, single-particle tracking, diffusion, drift,

mapping, motion classification, confinement region

Abstract: Fluorescence microscopy is a tool
of primary interest in biomedical research as it
allows to selectively visualize particle dynam-
ics within the cell. Hence, there is a high de-
mand for algorithmic tools capable of automat-
ically analyzing raw microscopic data. After a
presentation of the theory and techniques sur-
rounding particle dynamics, fluorescence mi-
croscopy, tracking methods and motion classi-
fication, we present in this thesis a new map-
ping method based on spatiotemporal kernel
estimators that robustly estimate intracellular

diffusion and drift from tracking data. We eval-
uate it in an extensive set of experiments us-
ing simulated, real, 2D and 3D data and show
that our method provides precise and accu-
rate diffusion and drift maps while outper-
forming existing methods. As such, it allows
biologists to study intracellular dynamics of
specifically tagged particles with a wider range
of acquisitions and fluorescence microscopy
techniques. In addition, we present a confine-
ment domain detection method, using particle
tracks and motion classification as well.
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