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Coloration de Graphes Dirigés

Résumé

Cette thèse est dédiée à l’étude de la dicoloration, une notion de coloration pour les digraphes
introduite par Erdős et Neumann-Lara à la fin des années 1970, ainsi que le paramètre qui lui
est associé, à savoir le nombre dichromatique. Lors des dernières décennies, ces deux notions
ont permis de généraliser de nombreux résultats classiques de coloration de graphes.
Nous commençons par donner différentes bornes sur le nombre dichromatique des digraphes
dont le graphe sous-jacent est un graphe cordal. Ensuite, nous améliorons la borne donnée par
le théorème de Brooks pour les digraphes sans arcs antiparallèles et introduisons une notion de
dégénérescence variable pour les digraphes, ce qui nous permet de prouver une version plus
générale du théorème de Brooks.
Nous étudions ensuite les digraphes k-dicritiques, c’est-à-dire les obstructions minimales à la
(k − 1)-dicolorabilité. En particulier, nous généralisons un résultat de Gallai au cas dirigé, et
nous prouvons une conjecture de Kostochka et Stiebitz dans le cas particulier k = 4. Nous
discutons également la densité maximum de tels digraphes, et prouvons qu’il n’y a qu’un
nombre fini de digraphes semi-complets 3-dicritiques. On donne par la suite certains résultats
structurels sur les digraphes dicritiques de grand ordre.
Enfin, nous étudions la notion de redicoloration pour les digraphes. En particulier, nous prou-
vons que de nombreux résultats soutenant la conjecture de Cereceda se généralisent au cas
dirigé.

Mots-clés : Digraphes, dicoloration, nombre dichromatique, reconfiguration, digraphes dicri-
tiques.

Digraph Colouring

Abstract

This thesis focuses on a notion of colouring of digraphs introduced by Erdős and Neumann-
Lara in the late 1970s, namely the dicolouring, and its associated digraph parameter: the
dichromatic number. It appears in the last decades that many classical results on graph colour-
ing have directed counterparts using these notions.
We first give a collection of bounds on the dichromatic number of digraphs for which the
underlying graph is chordal. We then introduce a notion of variable degeneracy for digraphs
which leads to a more general version of Brooks Theorem. We also strengthen this theorem on
a large class of digraphs which contains digraphs without antiparallel arcs.
Next we prove a collection of results on k-dicritical digraphs, the digraphs that are minimal
obstructions for the (k−1)-dicolourability. We first generalise a result of Gallai to the directed
case, and then prove a conjecture of Kostochka and Stiebitz in the particular case k = 4. We
also discuss the maximum density of such digraphs and prove that the number of 3-dicritical
semi-complete digraphs is finite. We then give a collection of results on the substructures in
large dicritical digraphs.
We finally study the notion of redicolouring for digraphs. In particular, we prove that a large
collection of evidences for Cereceda’s conjecture admit a directed counterpart.

Keywords: Digraphs, dicolouring, dichromatic number, reconfiguration, dicritical digraphs.
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CHAPTER 1
Introduction

1.1 Graph colouring

1.1.1 Preliminaries

A graph is an ordered pair G = (V,E) where V is a finite set of vertices and E is a set of
unordered pairs of V called edges. The vertex-set of G is denoted by V (G) and its edge-set is
denoted by E(G). The number of vertices of G is called the order of G and is denoted by n(G),
and its number of edges is denoted bym(G). WhenG is clear from the context, we simply write n
and m for n(G) and m(G) respectively. Informally, a graph represents pairwise relations between
the objects of a finite set. These objects can be of any kind. For instance, one can model a road
network with a graph, in which case the vertices represent cities and there is an edge between two
vertices if and only if a road connects the corresponding cities.

Some graphs are of particular interest because of their particular structure. For every integer
n ∈ N, the complete graph on n vertices, denoted by Kn, is the graph on n vertices with all
possible edges. The path on n vertices, denoted by Pn, is the graph with vertex-set ¶v1, . . . , vn♢
and edge-set ¶¶vi, vi+1♢ | 1 ≤ i ≤ n − 1♢. When n ≥ 3, if we further add the edge ¶v1, vn♢
to Pn, we obtain the cycle on n vertices that we denote by Cn. The length of a path or a cycle is
its number of edges. A path or a cycle is odd if its length is odd, and it is even otherwise. The
particular cycle of length 3 is called the triangle.

Graphs are easy to draw and visualise: given a graph, we represent its vertices with points,
and we connect two points with a line when there is an edge between the corresponding vertices.
Figure 1.1 illustrates three different graphs.

Let u, v be two vertices of a graph G. We say that u and v are adjacent if and only if ¶u, v♢ is
an edge ofG. We also say that v is a neighbour of u and that the edge ¶u, v♢ is incident to u. With
a slight abuse of notations, we usually denote by uv the edge ¶u, v♢. The set of neighbours of u is

Figure 1.1: Examples of graphs. From left to right: the complete graph on 7 vertices, the cycle on
9 vertices, and the Grötzsch graph.

1



2 CHAPTER 1 — Introduction

Figure 1.2: A 3-colouring of the Petersen graph.

called the neighbourhood of u and is denoted by N(u). The closed neighbourhood N(u) ∪ ¶u♢
of u is denoted by N [u].

We denote by [k] the set of integers ¶1, . . . , k♢. Given an integer k ∈ N, a k-colouring of G is
a function α : V (G) −→ [k]. It is proper if and only if every pair of adjacent vertices ¶u, v♢ satisfies
α(u) ̸= α(v). When G admits a proper k-colouring, we say that G is k-colourable. Observe that
every graphG is n(G)-colourable: one just has to label arbitrarily the vertices ofG from 1 to n(G)
to obtain a proper n(G)-colouring. The chromatic number of G, denoted by χ(G), is the smallest
integer k such that G is k-colourable. Figure 1.2 illustrates a proper 3-colouring of a particular
graph known as the Petersen graph.

The notions of proper colouring and chromatic number are known to have a lot of real-world
applications. We detail two very classical examples.

Example 1.1.1 – We first consider the following general scheduling problem. Assume that we
have a set of tasks τ1, . . . , τn, where every task τi starts at time si and ends at time ti ≥ si. Every
task has to be handled by an agent, and every agent handles at most one task at once. Now the
question is: how many agents do we need to handle all the tasks? One can formulate this problem
in terms of graph colouring as follows. Let Gτ = (V,E) be the graph where V is the set of tasks
and ¶τi, τj♢ is an edge of Gτ if and only if [si, ti] and [sj , tj ] intersect. Then, for any k ∈ N, all
the tasks may be handled by k agents if and only ifGτ is k-colourable. In particular, the minimum
number of agents we need is exactly the chromatic number of Gτ .

Example 1.1.2 – We now consider the following very classical telecommunication problem. As-
sume we have a set of antennas on the plane, and we want to assign to each of them a frequency.
However, when two antennas are close to each other, they must receive different frequencies so
they do not interfere. Now the question is the following: how many frequencies do we need to
find such an assignment? Again, this problem can be formulated in terms of graph colouring. Let
G = (V,E) be the graph where V is the set of antennas, and there is an edge between two of
them if they are close to each other. We obtain that there exists an assignment of k frequencies if
and only if G is k-colourable. In particular, the chromatic number of G is exactly the minimum
number of frequencies we need.

Computing the chromatic number of a graph is an NP-hard problem. It means that this prob-
lem is intractable unless P=NP. In fact, Karp [104] proved that it is even NP-complete to decide
whether a graph is k-colourable for every fixed integer k ≥ 3 (see [79]). One can then ask for an
approximation of the chromatic number. Again, unless NP = ZPP, it is intractable to approximate
the chromatic number of a graph G = (V,E) to within n(G)1−ε for every fixed ε > 0 [75].



1.1 – Graph colouring 3

Figure 1.3: An example of a 4-coloured map.

On the positive side, it appears that the chromatic number can be computed when restricted to
some well-structured classes of graphs. For instance, the problem presented in Example 1.1.1 can
be solved in linear time in the size of the graph. This is because the graph we obtain has a specific
structure: it is formed from a set of intervals on the real line, with a vertex for each interval and an
edge between vertices whose intervals intersect. We call such a graph an interval graph, and not
all graphs are interval graphs. In the particular case of interval graphs, the chromatic number can
be computed in linear time in the number of vertices (see [81, Theorem 4.17]).

Analogously, the graphs obtained in Example 1.1.2 have a specific structure. They are formed
from a set of unit disks on the plane, with a vertex for each unit disk and an edge between two ver-
tices whenever the corresponding unit disks intersect. On this specific class of graphs, computing
the chromatic number is still NP-hard [52] but it can be approximated by a constant factor [84]
(the positions of the unit disks on the plane must be known).

A general question consists then of finding how the structure of a graph is related to its chro-
matic number. In the next section, we present a few classical results and conjectures on this topic.

1.1.2 A few classical results on graph colouring

Four Colour Theorem

The most widely known result on graph colouring is probably the Four Colour theorem. This
result answers a question of Guthrie in 1852, who asked if we can colour the regions of any map
with four colours in such a way that regions sharing a common boundary (of non-zero length) do
not share the same colour (see Figure 1.3).

A planar graph is a graph that can be drawn on the plane in such a way that no edges cross
each other. Given a map, we can construct a planar graph by associating exactly one vertex to
each region and putting an edge between two vertices whenever the corresponding regions share
a common boundary. In terms of graph colouring, we can thus reformulate the question raised by
Guthrie as follows: is every planar graph 4-colourable? It was proved to be true in 1976 by Appel
and Haken [14], and is now known as the Four Colour theorem.

Theorem 1.1.1 (FOUR COLOUR THEOREM). Every planar graph is 4-colourable.
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Figure 1.4: Illustration of a hole (on the left) and an antihole (on the right).

Moreover, as shown by Robertson, Sanders, Seymour, and Thomas in [147], there exists an
algorithm that computes a proper 4-colouring of a planar graph G in O(n2) time.

Strong Perfect Graph theorem

Another celebrated result on graph colouring is known as the Strong Perfect Graph Theorem, for
which we first need a few definitions.

Let G and H be two graphs. We say that H is a subgraph of G, and we denote it by H ⊆ G,
if H can be obtained from G by deleting a (possibly empty) set of vertices and edges. We also say
that G contains H as a subgraph. It formally means that V (H) ⊆ V (G) and E(H) ⊆ E(G). We
say that H is a proper subgraph of G, and we denote it by H ⊊ G, if H is a subgraph of G and
H ̸= G. We say that H is an induced subgraph of G if it can be obtained by removing a (possibly
empty) set of vertices X and the set of edges incident to at least one vertex in X . The graph H is
a spanning subgraph of G if it is a subgraph of G with V (H) = V (G). In this case, we denote
H by G−X . When X = ¶x♢, with a slight abuse of notations, we denote H by G− x. We also
say that H is the subgraph of G induced by Y = V (G) \ X and we denote it by G⟨Y ⟩. If H is
obtained from G by removing a set of edges F , we denote H by G \ F . When F = ¶e♢, with a
slight abuse of notation, we denote H by G \ e.

We say that H is isomorphic to G if there exists a bijection ψ : V (H)→ V (G) such that, for
every pair of vertices u, v ∈ V (H), ¶u, v♢ is an edge of H if and only if ¶ψ(u), ψ(v)♢ is an edge
of G. When we say that G contains H as an (induced) subgraph, we mean that G has an (induced)
subgraph which is isomorphic to H , hence not necessarily maintaining vertex labels. In case we
want vertex labels to be maintained, we speak of an (induced) labelled subgraph.

A graph G is connected if and only if, for any pair of vertices ¶u, v♢ of G, there exists a path
between them inG. Formally, it means that for every such pair,G contains as a subgraph a copy of
a path containing both u and v. A forest is a graph that does not contain any cycle as a subgraph.
A tree is a connected forest.

Given two graphs H1, H2 such that V (H1) ∩ V (H2) = ∅, the disjoint union of H1 and H2 is
the graph with vertex-set V (H1) ∪ V (H2) and edge-set E(H1) ∪ E(H2).

The complement of G = (V,E), denoted by G, is the graph with vertex-set V in which, for
every pair of vertices ¶u, v♢, uv is an edge if and only if it is not an edge of G. A hole in a graph
G is an induced cycle of length at least 4 and an antihole of G is an induced subgraph of G whose
complement is a hole in G. See Figure 1.4 for an illustration.

The clique number of G, denoted by ω(G), is the largest integer ℓ such that Kℓ is a subgraph
of G. Observe that every proper colouring of Kℓ uses exactly ℓ colours. Therefore, we easily
deduce that every graph G satisfies χ(G) ≥ ω(G). Note that equality does not occur in general:
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the smallest counter-example is C5, the cycle on five vertices, for which the clique number is 2,
but the chromatic number is 3.

One can then ask for a characterisation of graphs for which the chromatic number is equal to
the clique number. Unfortunately, this class of graphs is not well-structured at all. To see this,
consider any graph H , and let G be the disjoint union of H and Kχ(H). Then H is an induced
subgraph of G and G satisfies χ(G) = ω(G). This shows that every graph H is an induced
subgraph of a larger graph G for which the chromatic number is equal to the clique number. To
address this issue, one can ask for a characterisation of graphs G such that χ(H) = ω(H) holds
not only for H = G, but for every induced subgraph H of G. Such a graph G is called a perfect

graph.
The characterisation of perfect graphs was initiated by Berge in 1961 [23] when he first gave

a necessary condition for being a perfect graph. A graph G is a berge graph if every hole and
antihole ofG has even length. Let us show that being a berge graph is indeed a necessary condition
for being a perfect graph. If G is not a berge graph, either G or G contains an induced odd cycle
of length at least five. In the former case, since an odd cycle has clique number 2 and chromatic
number 3, we deduce that G is not perfect. In the latter case, the following implies that G is not
perfect.

Proposition 1.1.2. For every k ≥ 2, let C2k+1 be the complement of C2k+1, then

ω(C2k+1) = k and χ(C2k+1) ≥ k + 1.

The interested reader may note that χ(C2k+1) is actually equal to k + 1, but the inequality is
sufficient for our purpose.

Proof. Let v0, . . . , v2k be an ordering of the vertices of C2k+1 such that vivi+1 is a non-edge for
every i ∈ ¶0, . . . , 2k♢ (with indices taken modulo 2k + 1).

We first show that ω(C2k+1) = k. We have ω(C2k+1) ≥ k because S = ¶v2i | 0 ≤ i ≤ k−1♢
is a set of pairwise adjacent vertices. On the other hand, every set of k + 1 vertices contains two
successive vertices vi and vi+1 for some i ∈ [2k] which are non-adjacent. This shows ω(C2k+1) =
k.

Let us now show that χ(C2k+1) ≥ k+ 1. Let α be any proper colouring of χ(C2k+1), we will
show that it uses at least k + 1 colours. Since C2k+1 contains an edge, α uses at least two distinct
colours, implying that there exists an index i ∈ [2k] for which α(vi) ̸= α(vi+1). Free to relabel
the vertices, we assume without loss of generality that α(v0) ̸= α(v1). Consider the set of vertices
R = ¶v3+2i | 0 ≤ i ≤ k − 2♢. Then both R0 = R ∪ ¶v0♢ and R1 = R ∪ ¶v1♢ induce a complete
graph on k vertices on C2k+1. Since α(v0) ̸= α(v1), R ∪ ¶v0, v1♢ is a set of k + 1 vertices using
pairwise distinct colours in α, implying that α uses at least k + 1 colours as desired.

Berge conjectured that indeed this necessary condition for being a perfect graph is sufficient.
This conjecture received a lot of attention during 40 years and was finally proved by Chudnovsky,
Robertson, Seymour, and Thomas in 2006 [51]. This result is now known as the Strong Perfect
Graph Theorem.

Theorem 1.1.3 (STRONG PERFECT GRAPH THEOREM). A graph is perfect if and only if it is a

berge graph.
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χ-boundedness

The notion of χ-boundedness was introduced and widely investigated by Gyárfás (see [86, 87]).
It attempts to be a generalisation of graph perfectness.

Since χ(G) ≥ ω(G) holds for every graph G but equality does not occur in general, a natural
question is to ask whether the chromatic number is bounded above by a function of the clique
number. Let G be a class of graphs, we say that G is χ-bounded if there exists a function f
(depending on G) such that every graph G ∈ G satisfies χ(G) ≤ f(ω(G)). For instance, the class
of perfect graphs is χ-bounded (with f being the identity function).

Let us first mention that the class of all graphs is not χ-bounded, since there exist triangle-
free graphs (i.e. graphs with clique number 2) of arbitrarily large chromatic number. This was
first proved by Tutte [55] (writing as Blanche Descartes). Then people proposed many other
constructions of triangle-free graphs with large chromatic number. See for instance the ones due
to Zykov [171], Mycielsky [132], and Burling [45]. The interested reader is also referred to [35],
in which Bonnet et al. recently proved that a simple class of triangle-free graphs surprisingly has
unbounded chromatic number.

As shown by Theorem 1.1.3, perfect graphs can be characterised in terms of forbidden induced
subgraphs. Given two graphs G and H , we say that G is H-free (resp. H-induced-free) if it does
not contain H as a subgraph (resp. as an induced subgraph). Therefore, the following question
naturally arises: what are the graphsH such that the class ofH-induced-free graphs is χ-bounded?

We define the girth of a graph G, denoted by girth(G), as the length of its shortest cycles
(with the convention girth(G) = +∞ if G is a forest). The following celebrated result of Erdős
strengthens the results above on triangle-free graphs.

Theorem 1.1.4 (Erdős [72]). For every fixed integers k, ℓ ∈ N, there exists a graph G such that

χ(G) ≥ k and girth(G) ≥ ℓ.
For every graph H , if the class of H-induced-free graph is χ-bounded, Erdős’ result implies

that H is a forest. Indeed, if H is not a forest, it contains a cycle of length at most n(H) and
Erdős’ result implies that there exist graphs of arbitrarily large chromatic number with girth at
least n(H) + 1 (which a fortiori do not contain H). Gyárfás [86] and Sumner [164] independently
conjectured that this necessary condition on H is indeed sufficient.

Conjecture 1.1.5 (GYÁRFÁS-SUMNER CONJECTURE). For every fixed forest H , the class of H-

induced-free graphs is χ-bounded.

This conjecture is still widely open. We refer the interested reader to the recent survey of Scott
and Seymour on χ-boundedness [155].

Brooks Theorem

The celebrated Brooks Theorem makes a connection between the chromatic number of a graph
and its maximum degree. Let u be a vertex of a graph G = (V,E). The degree of u, denoted by
d(u), is the number of vertices adjacent to u in G. The maximum degree of G, denoted by ∆(G),
is the maximum of ¶d(u) | u ∈ V ♢. Analogously, the minimum degree of G, denoted by δ(G), is
the minimum of ¶d(u) | u ∈ V ♢. If δ(G) = ∆(G) = d, then G is d-regular. We say that G is
subcubic if ∆(G) = 3 and that it is cubic if it is 3-regular.

Every graph G satisfies χ(G) ≤ ∆(G) + 1. To see this, take any graph G and an arbitrary
ordering of its vertices. Then, according to this ordering, consider the vertices one after the other.
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At each step, we may choose a colour of [∆(G) + 1] that is not already appearing in the neigh-
bourhood of the considered vertex. Following this easy greedy procedure, we finally find a proper
colouring of G using at most ∆(G) + 1 colours. This implies χ(G) ≤ ∆(G) + 1. Brooks [44]
characterised the connected graphs for which equality holds.

Theorem 1.1.6 (BROOKS THEOREM). A connected graph G satisfies χ(G) = ∆(G) + 1 if and

only if G is an odd cycle or a complete graph.

We give a short proof of this theorem due to Rabern [144], for which we first need a few
definitions. A connected component of a graph G is a maximal connected subgraph H of G. The
distance between two vertices u, v in G, denoted distG(u, v) is defined as the length of a shortest
path in G containing both u and v, with the convention distG(u, v) = +∞ if u and v belong to
different connected components of G. An independent set of G is a set of pairwise non-adjacent
vertices in G. A clique is a set of pairwise adjacent vertices. A matching of G is a set of pairwise
disjoint edges of G. If every vertex of G belongs to at least one edge of M , then M is called a
perfect matching.

We say that is bipartite if and only if it is 2-colourable. We need the following well-known
characterisation of bipartite graphs (see for instance [58, Proposition 1.6.1]).

Proposition 1.1.7. A graph is bipartite if and only if it contains no odd cycle.

We are now ready to prove Theorem 1.1.6.

Proof of Theorem 1.1.6. We will show by induction on ∆ ≥ 0 that every connected graph G with
maximum degree at most ∆ is ∆-colourable, unless G is a complete graph on ∆ + 1 vertices or
∆ = 2 and G is an odd cycle.

The result is trivial when ∆ ≤ 1. When ∆ = 2, a connected graph with maximum degree 2 is
either a path or a cycle, so the result follows from Proposition 1.1.7. Henceforth we assume that
∆ ≥ 3 and that the result holds for ∆− 1. For the purpose of contradiction, let G be a minimum
counter-example. In other words, G is not the complete graph on ∆ + 1 vertices, it satisfies both
∆(G) ≤ ∆ and χ(G) = ∆ + 1, and n(G) is minimum for these properties.

We first show that δ(G) = ∆. Assume this is not the case, that is G contains a vertex v of
degree at most ∆ − 1. Since G is connected, there is an ordering v1, . . . , vn of V (G) such that
vn = v and every vertex vi, i ∈ [n − 1], has at least one neighbour in ¶vi+1, . . . , vn♢. Consider
the vertices one after the other, starting from v1 and moving forward to vn. At each step, we may
choose for vi a colour of [∆] that is not appearing in its neighbourhood. When i < n, this is
because vi has at most ∆ neighbours, and one of them is not coloured yet because it belongs to
vi+1, . . . , vn. When i = n, this is because vn = v has at most ∆ − 1 neighbours. Henceforth we
assume that every vertex of G has degree exactly ∆.

An induced subgraph H of G is said to be bad if it is an odd cycle when ∆ = 3 or the
complete graph on ∆ vertices when ∆ ≥ 4. Assume first that G contains no bad subgraph. Let
S be a maximal (for the inclusion) independent set of G. By maximality of S, every vertex in
V (G) \ S has at least one neighbour in S. Let G′ be G − S. The remark above implies that
∆(G′) ≤ ∆(G) − 1 ≤ ∆ − 1. By induction on ∆, and because G does not contain any bad
subgraph, every connected component ofG′ is (∆−1)-colourable. This implies thatG′ is (∆−1)-
colourable. Using one additional colour for S, we obtain a ∆-colouring of G, a contradiction.

Assume now that H is a bad subgraph of G. By definition, ∆(H) = δ(H) = ∆− 1, so every
vertex of V (H) has exactly one neighbour in V (G) \ V (H). Let X ⊆ (V (G) \ V (H)) be the
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set of vertices having at least one neighbour in H . We claim that |X| ≥ 2. Assume not, then
X = ¶x♢ and x is adjacent to every vertex in H . If H is a complete graph on ∆ vertices, then
V (H) ∪ ¶x♢ induces a complete graph on ∆ + 1 vertices on G, a contradiction. Then ∆ = 3
and H is an odd cycle of length at least 5. This is a contradiction because x has degree at least
5. Hence, let x, y be two distinct vertices in X . Let G′ be the graph obtained from G − V (H)
by adding the edge ¶x, y♢ (if it does not already exist, otherwise we just take G′ = G − V (H)).
Since both x and y have a neighbour in H , we obtain that ∆(G′) ≤ ∆. By minimality of G, either
G′ has a connected component isomorphic to K∆+1 or it is ∆-colourable.

In the former case, there exists R ⊆ (V (G) \ V (H)) such that the subgraph of G induced by
R is a complete graph on ∆ + 1 vertices minus one edge (namely ¶x, y♢). Note that this forces
both x and y to have exactly one neighbour in V (H) (otherwise they have degree at least ∆ + 1).
Let H ′ be the bad subgraph of G induced by R \ ¶y♢ and x′ be the only neighbour of x in H .
Since y has at least two neighbours in R, we reduced to the latter case with H ′, x′ and y playing
the roles of H , x and y respectively.

Henceforth assume G′ is ∆-colourable and let α be a proper ∆-colouring of G′. Hence, α
is also a partial proper ∆-colouring of G. We now show that α can be extended to a proper ∆-
colouring of G, yielding the contradiction. Since H is either a complete graph or a cycle, and
because α(x) ̸= α(y), there exist two adjacent vertices u, v in H such that the neighbour u′ of
u outside H and the neighbour v′ of v outside H satisfy α(v′) ̸= α(u′). We can also take an
ordering u = v1, . . . , vr = v of V (H) such that every vertex vi (for i ∈ [r − 1]) has at least
one neighbour in ¶vi+1, . . . , vr♢. We then extend α as follows: we start by setting α(u) = α(v′).
Then we move forward from v2 to vr−1 and at each step we choose for α(vi) a colour of [∆] that
is not appearing in the neighbourhood of vi. At the end, all the neighbours of v are coloured, but
two of them (namely u and v′) use the same colour. Hence, one colour of [∆] is not used in its
neighbourhood, and we can set α(v) to this colour. This yields the contradiction.

As we will see in Section 1.3.2 and Chapter 3, Brooks Theorem has been generalised and
strengthened in many ways. We only mention here the celebrated result of Johansson which
asymptotically improves the bound of Brooks Theorem for triangle-free graphs.

Theorem 1.1.8 (Johansson [102]). Every triangle-free graph G satisfies χ(G) = O
⎞

∆(G)
ln ∆(G)

)︂
.

Johansson’s bound is conjectured to be true not only for triangle-free graphs but for H-free
graphs in general, for every fixed H .

Conjecture 1.1.9 (Alon, Krivelevich, and Sudakov [12]). For every fixed graph H , there exists a

positive constant cH such that every H-free graph G satisfies χ(G) ≤ cH
∆(G)

ln ∆(G) .

Density of critical graphs

Since the chromatic number is non-decreasing with respect to the subgraph relation, it is natural
to consider the minimal graphs (for this relation) which are not (k − 1)-colourable. Following
this idea, Dirac introduced in the 1950s the concept of critical graphs and established the basic
properties of such graphs in a series of papers [59, 60, 62].

A graph G is k-critical if it has chromatic number k and each of its proper subgraph H ⊊ G
has chromatic number at most k − 1. In other words, removing every vertex or any edge of G
decreases the chromatic number. See Figure 1.5 for an illustration of a critical graph.
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Figure 1.5: A 4-critical graph on eight vertices with g4(8) = 13 edges.

For a fixed integer k, Dirac also started the study of the function gk(n), defined as the minimum
number of edges in n-vertex k-critical graphs. Formally, we have:

gk(n) = min ¶m(G) | G is k-critical and has order n♢ ,

with the convention gk(n) = +∞ if there exists no such graph. A first property of k-critical
graphs is that their minimum degree is at least k−1. Indeed, if a vertex v has degree at most k−2,
then a proper (k − 1)-colouring of G− v can be extended to G by choosing for v a colour that is
not appearing in its neighbourhood, contradicting the fact that χ(G) = k. As a consequence, we
obtain gk(n) ≥ 1

2(k− 1)n. This bound is tight for complete graphs and odd cycles, but Dirac [62]
proved an inequality of the form gk(n) ≥ 1

2(k − 1 + εk)n − ck, for some ck and εk > 0. This
shows that, for n sufficiently large, the average degree of a k-critical graph is at least k − 1 + εk.
This initiated the quest after the best lower bound on gk(n). This problem was almost completely
solved by Kostochka and Yancey [114] in 2014.

Theorem 1.1.10 (Kostochka and Yancey [114]). Every k-critical graph on n vertices has at least
1
2(k − 2

k−1)n− k(k−3)
2(k−1) edges.

For every k, this bound is tight for infinitely many values of n. Kostochka and Yancey [116]
later characterised k-critical graphs for which this inequality is an equality.

Reconfiguration of graph proper colourings

The reconfiguration of graph proper colourings is a widely studied notion related to graph colour-
ing. In this context, given a graph G, an integer k, and two proper k-colourings α and β of G,
the main question is whether it is possible to transform α into β by changing the colour of exactly
one vertex at a time while maintaining a proper k-colouring at each step. We formally define these
notions via the introduction of an auxiliary graph, namely the k-colouring graph of a graph.

Given a graph G = (V,E) and an integer k ≥ χ(G), the k-colouring graph of G, denoted
by Ck(G), is the graph whose vertices are the proper k-colourings of G and in which two proper
k-colourings are adjacent if they differ on exactly one vertex. A walk in a graph is a sequence of
vertices u1, . . . , ur such that, for every i ∈ [r − 1], uiui+1 is an edge of the graph. Note that the
uis are not necessarily distinct. A recolouring sequence between two proper k-colourings of G is
a walk between them in Ck(G). If Ck(G) is connected, we say that G is k-mixing. Given a graph
G, one may ask for which values of k it is k-mixing, and when it is, how many steps are required
at most to get from one colouring to another.
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Determining if a graph is k-mixing has applications in statistical physics, where proper colour-
ings represent states of the antiferromagnetic Potts model at temperature zero. The questions
above were first addressed by researchers studying the Glauber dynamics for sampling proper
k-colourings of a given graph. This is a Markov chain used to obtain efficient algorithms for
approximately counting or almost uniformly sampling proper k-colourings of a graph, and the
connectedness of the k-colouring graph is a necessary condition for such a Markov chain to be
rapidly mixing. In graph theory, the study of recolouring has been rapidly developing in the past
fifteen years, since the works of Cereceda, van den Heuvel, and Johnson [48, 49].

We refer the reader to the Ph.D. thesis of Bartier [21] for a complete overview on graph re-
colouring and to the surveys of van den Heuvel [169] and Nishimura [135] for reconfiguration
problems in general.

The remaining of this section is dedicated to Cereceda’s conjecture, which is one of the most
widely open conjecture on graph recolouring. The degeneracy of a graph G, denoted by δ∗(G),
is the largest minimum degree of all subgraphs of G. We say that a graph G is d-degenerate for
every integer d ≥ δ∗(G). Bonsma and Cereceda [36] and Dyer et al. [67] independently proved
the following.

Theorem 1.1.11 (Bonsma and Cereceda [36] ; Dyer et al. [67]). Let k ∈ N and G be a graph. If

k ≥ δ∗(G) + 2, then G is k-mixing.

Cereceda conjectured that not only G is k-mixing when k is at least δ∗(G) + 2 but also the
shortest recolouring sequence between two proper k-colourings is always bounded by a quadratic
function in n(G). We define the diameter of a graph to be the maximum length of a shortest path
in G. Formally, Cereceda conjectured the following.

Conjecture 1.1.12 (Cereceda [47]). Let k ∈ N and G be a graph on n vertices.

If k ≥ δ∗(G) + 2, then the diameter of Ck(G) is at most O(n2).

Cereceda [47] proved that this is true when k ≥ 2δ∗(G) + 1. This was improved by Bousquet
and Heinrich [42], who showed the following.

Theorem 1.1.13 (Bousquet and Heinrich [42]). Let k ∈ N and G be a graph. Then Ck(G) has

diameter at most:

• Cn2 if k ≥ 3
2(δ∗(G) + 1) (where C is a constant independent from k),

• Cεn
⌈ 1

ε
⌉ if k ≥ (1 + ε)(δ∗(G) + 2) (where Cε is a constant independent from k),

• (Cn)δ∗(G)+1 for any k ≥ δ∗(G) + 2 (where C is a constant independent from k).

The third item of Theorem 1.1.13 is currently the best known result towards Conjecture 1.1.12.

1.2 Digraph colouring

1.2.1 From graphs to digraphs

Our notation on directed graphs follow [18]. A directed graph, or digraph for short, is an ordered
pair D = (V,A) where V is a finite set of vertices and A is a set of ordered pairs of V called
arcs. The vertex-set of D is denoted by V (D) and its arc-set is denoted by A(D). The number of
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vertices of D is called the order of D and is denoted by n(D), and its number of arcs is denoted
by m(D). For conciseness, we denote an arc (u, v) by uv.

In a digraph, between two distinct vertices u, v, there might be two arcs in opposite directions,
namely uv and vu. Such a pair of arcs is called a digon and is denoted by [u, v]. A simple arc is
an arc which is not in a digon. The underlying graph of a digraph D, denoted by UG(D), is the
undirected graph with vertex-set V (D) in which uv is an edge if and only if uv or vu is an arc of
D. A bidirected graph is a digraph with no simple arc, and an oriented graph is a digraph with
no digon. We also say that an oriented graph D is an orientation of UG(D). Along this thesis,
we will often denote an oriented graph by G⃗ to emphasise the fact that it is an orientation of an
undirected graphG (and thus it does not contain any digon). Given a graphG, the bidirected graph←→
G is the digraph obtained by replacing every edge uv of G by a digon [u, v]. A tournament is an
orientation of a complete graph. The only acyclic tournament on n vertices is called the transitive

tournament on n vertices and is denoted by TTn.
For every arc uv ∈ A(D), v is said to be an out-neighbour of u and u is said to be an in-

neighbour of v. Vertices u and v are said to be adjacent to each other, and uv is incident to both
u and v. Vertices u and v are called respectively the tail and the head of uv.

The sets of out-neighbours and in-neighbours of u, denoted respectively by N+(u) and
N−(u), are called respectively the out-neighbourhood and the in-neighbourhood of u. We denote
by N(u) = N−(u) ∪ N+(u) the set of neighbours of u and by N [u] the closed neighbourhood

N(u) ∪ ¶u♢ of u. Moreover, for every set X of vertices, we write N+(X) =
⎷

x∈X N+(x),
N−(X) =

⎷
x∈X N−(x) and N(X) = N+(X) ∪N−(X).

The out-degree and the in-degree of u, respectively denoted by d+(u) and d−(u), are respec-
tively the number of out-neighbours and the number of in-neighbours of u. Vertex u is called a
source if d−(u) = 0, and it is called a sink if d+(u) = 0. The degree of u, denoted by d(u),
is the sum of its in-degree and its out-degree. A digraph D is called eulerian if every vertex
u ∈ V (D) satisfies d+(u) = d−(u). If further there exists an integer d such that, for every vertex
u, d+(u) = d−(u) = d, then D is d-diregular.

Let D and H be two digraphs. Analogously to the undirected case, we say that H is a subdi-

graph of D if both V (H) ⊆ V (D) and A(H) ⊆ A(D) hold, and we denote it by H ⊆ D. Also
H is a proper subdigraph if H is a subdigraph of D and H ̸= D, and we denote it by H ⊊ D.
We say that H is a spanning subdigraph of D if it is a subdigraph of D with V (H) = V (D).
Let X ⊆ V (D) be a set of vertices and F ⊆ A(D) be a set of arcs. We denote by D − X the
digraph obtained from D by removing every vertex in X and every arc incident to at least one
vertex in X , and we say that D − X is an induced subdigraph of D. Let Y = V (D) \ X , then
D −X is also called the subdigraph induced by Y and is denoted by D⟨Y ⟩. When X = ¶x♢, we
let D− x be the digraph D−X . Also we let D \ F denote the digraph (V (D), A(D) \ F ) and if
F = ¶e♢ we let D \ e be D \ F . Finally, if F ⊆ V (D)× V (D), then D ∪ F denotes the digraph
(V (D), A(D) ∪ F ).

We say that H is isomorphic to D if there exists a bijection ψ : V (H) → V (D) such that,
for every u, v ∈ V (H), (u, v) is an arc of H if and only if (ψ(u), ψ(v)) is an arc of D. Again,
when we say that D contains H as an (induced) subdigraph, we mean that D has an (induced)
subdigraph which is isomorphic to H , hence not necessarily maintaining vertex labels. In case we
want vertex labels to be maintained, we speak of an (induced) labelled subdigraph.

Digraphs are naturally used to model many real-world problems. Indeed, many graphs mod-
elling networks are by essence directed: the web graph is such an example. However, for various
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reasons, digraph theory is a lot less developed than (undirected) graph theory. One such reason
is that every undirected graph can be seen as a bidirected graph. Hence, plenty of problems on
graphs can be considered as a particular case of a more general problem on digraphs, and digraph
problems appear to be harder.

To illustrate this difference, let us consider the problem of partitioning the edges of a graph
G = (V,E) into k parts E1, . . . , Ek in such a way that every subgraph Gi = (V,Ei) is connected.
If the considered graph models a network architecture, it is related to the network’s fault tolerance.
Indeed, if at most k − 1 failures appear on the network (a failure corresponds to the removal
of an edge), all the nodes remain connected by at least one of the Eis. Deciding if a graph
admits such a partition can be solved in polynomial time, and the following celebrated theorem,
proved independently by Nash-Williams and Tutte, guarantees the existence of such a partition.
For λ ∈ N

∗, a graph G is λ-edge-connected if it has at least λ vertices and for any set F of at most
λ− 1 edges, G \F is connected. For κ ∈ N

∗, a graph G is κ-connected if it has at least κ vertices
and the removal of any set of at most κ− 1 vertices does not disconnect the graph.

Theorem 1.2.1 (Nash-Williams [133] ; Tutte [168]). Every 2k-edge-connected graph has k edge-

disjoint spanning trees.

The directed path on n vertices, denoted by P⃗n, is the oriented graph with vertex-set
¶v1, . . . , vn♢ and arc-set ¶(vi, vi+1) | i ∈ [n− 1]♢.

We denote by init(P⃗n) the initial vertex of P⃗n, which is its unique source, and by term(P )
its terminal one, which is its unique sink. The vertices in V (P ) \ ¶init(P ), term(P )♢ are called
the internal vertices of P . If U and V are two sets of vertices in D, then a (U, V )-path in D is a
directed path P in D with init(P ) ∈ U and term(P ) ∈ V , and we also say that P is a directed
path from U to V . If U = ¶u♢ (resp. V = ¶v♢), then we simply write u for U (resp. v for V )
in these notations. When n ≥ 2, adding the arc (vn, v1) to P⃗n gives the directed cycle C⃗n. A
digraph is acyclic if it does not contain any directed cycle.

A digraph is connected (resp. κ-connected) if its underlying graph is connected (resp. κ-
connected). It is strongly connected if, for every ordered pair (u, v) of its vertices, there exists a
directed path from u to v. It is λ-arc-strong, for λ ∈ N

∗, if it has at least λ vertices and it remains
strongly connected after the removal of any set of at most λ− 1 arcs. It is κ-strong, for κ ∈ N

∗, if
it has at least κ vertices and it remains strongly connected after the deletion of any set of at most
κ− 1 vertices. A strongly connected component of a digraph D is a maximal strongly connected
subdigraph of D.

Assume now that, in the problem above, the connections in the network are not all bidirec-
tional. It is then modelled by a digraph D = (V,A), and the problem consists of deciding whether
its arc-set can be partitioned into k parts A1, . . . , Ak such that every subdigraph Di = (V,Ai)
is strongly connected. As shown by Bang-Jensen and Yeo [20], this problem turns out to be NP-
complete even for k = 2. Furthermore, the existence of an analogue of Theorem 1.2.1 for digraphs
is widely open and motivated the following conjecture of Bang-Jensen and Yeo, which is still open
even for k = 2.

Conjecture 1.2.2 (Bang-Jensen and Yeo [20]). For every fixed k ∈ N, there exists f(k) ∈ N such

that every f(k)-arc-strong digraph contains k arc-disjoint spanning subdigraphs.

This thesis is about the generalisation of graph proper colouring results to digraphs. To this
purpose, we use the notions of dicolouring and dichromatic number. The dichromatic number
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Figure 1.6: An example of a 3-dicolouring of the Paley tournament on seven vertices, which is
known to have dichromatic number exactly 3. Each colour class induces an acyclic subdigraph.

of a digraph was introduced by Erdős and Neumann-Lara in the late 1970s [134, 69]. It was
rediscovered by Mohar in the 2000s [129, 28] and received a lot of attention since then. We refer
the reader to the Ph.D. thesis of Harutyunyan [89] and the one of Aubian [16], both dedicated to
this colouring parameter for digraphs.

Along this thesis, we will show that a lot of graph colouring results have a directed counterpart
when using dicolouring and dichromatic number. In this sense, we contribute to show that these
two notions are the appropriate extensions of the ones of proper colouring and chromatic number.

1.2.2 Dicolouring and dichromatic number of digraphs

For a positive integer k, a k-colouring of a digraph D = (V,A) is a function α : V −→ [k]. It is
proper if every pair of adjacent vertices are coloured differently. It is a k-dicolouring if α−1(i)
induces an acyclic subdigraph inD for every i ∈ [k]. Equivalently, α is a dicolouring if and only if
D, coloured with α, does not contain any monochromatic directed cycle. The dichromatic number

of D, denoted by χ⃗(D), is the smallest k such that D admits a k-dicolouring. When a digraph
admits a k-dicolouring, we say that it is k-dicolourable.

Observe that any proper colouring of D is indeed a dicolouring of D, since an independent
set necessarily induces an acyclic subdigraph. Hence we always have χ⃗(D) ≤ χ(UG(D)). See
Figure 1.6 for an illustration of a dicolouring.

Since every digon induces a directed cycle of length 2, there is a one-to-one correspondence
between the proper k-colourings of a graph G and the k-dicolourings of its associated bidirected
graph

←→
G , and in particular χ(G) = χ⃗(

←→
G ). Hence every result on graph proper colourings can be

seen as a result on dicolourings of bidirected graphs. Two main questions then arise:

1. Is this result true for every digraph and not only for bidirected graphs ?

2. Can it be strengthened on the class oriented graphs ?

This thesis focuses on these two questions for several classical results on graph colouring.
Many researchers already considered them before, for different results, and this lead to a lot of
generalisations and open problems. We illustrate it with some results presented in Section 1.1.2.
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Neumann-Lara’s conjecture

If D is a planar digraph, that is a digraph that can be drawn on the plane without crossing arcs,
then it is 4-dicolourable because its underlying graph is 4-colourable by the Four Color Theorem
(Theorem 1.1.1). This is best possible as

←→
K4 is planar. However, if D is an oriented planar graph

(i.e. a planar digraph with no digon), this result can be easily improved as follows.

Proposition 1.2.3. Let G⃗ be an oriented planar graph, then χ⃗(G⃗) ≤ 3.

Proof. We proceed by induction on the order of G⃗. If n(G⃗) ≤ 3, then G⃗ is trivially 3-dicolourable,
so assume n(G⃗) ≥ 4. Let G be the underlying graph of G⃗. Since G⃗ is planar, Euler’s formula
(see [58, Theorem 4.2.9]) implies that G contains a vertex v of degree at most 5. Hence v is a
vertex of out-degree or in-degree at most 2 in G⃗.

By induction let α be a 3-dicolouring of G⃗ − v. If d+(v) ≤ 2, we set α(v) to a colour that it
not appearing in its out-neighbourhood. Otherwise, the remark above implies d−(v) ≤ 2 and we
set α(v) to a colour that is not appearing in its in-neighbourhood.

This operation extends α into a dicolouring of G⃗. Indeed, if α is not a dicolouring of G⃗, it
contains a monochromatic directed cycle C. By induction, α is a dicolouring of G⃗− v so C must
contain v. This is a contradiction because v does not share its colour with its in-neighbour or its
out-neighbour in C.

In [93] Harutyunyan and Mohar proved that not only an oriented planar graph is 3-
dicolourable, but it also admits exponentially many different 3-dicolourings. Also we do not know
if the upper bound given by the proposition above is tight. Neumann-Lara conjectured that it is
not, and this is probably the main open conjecture on the dichromatic number.

Conjecture 1.2.4 (Neumann-Lara [134]). Every oriented planar graph is 2-dicolourable.

The current best result approaching this conjecture is due to Li and Mohar. The digirth of a
digraph D, denoted by digirth(D), is the length of its shortest cycle. Note that an oriented graph
is a digraph with digirth at least 3.

Theorem 1.2.5 (Li and Mohar [121]). Every oriented planar graph with digirth at least 4 is 2-

dicolourable.

Perfect digraphs

The clique number of a digraph D, denoted by←→ω (D), is the largest integer k such that
←→
Kk is a

subdigraph of D. As in the undirected case, every digraph satisfies χ⃗(D) ≥ ←→ω (D). Note that the
clique number of UG(D) is not a lower bound on the dichromatic number of D because TTk has
dichromatic number 1 but ω(UG(TTk)) = k.

The definition of perfect digraphs is the natural extension of the ones of perfect graphs. That is,
a digraph D is perfect if χ⃗(H) = ←→ω (H) holds for every induced subdigraph H of D. Using the
Strong Perfect Graph Theorem (Theorem 1.1.3), Andres and Hochstättler characterised exactly
the perfect digraphs. We define the symmetric part of a digraph D, denoted by S(D), as the
undirected graph with vertex-set V (D) in which uv is an edge if and only if [u, v] is a digon of D.

Theorem 1.2.6 (Andres and Hochstättler [13]). A digraph D is perfect if and only if S(D) is

perfect and D does not contain an induced directed cycle of length at least 3.
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Proof. Assume first that D is perfect. Then D does not contain any induced directed cycle C of
length at least 3, for otherwise C would be an induced subdigraph of D satisfying←→ω (C) = 1 and
χ⃗(C) = 2, a contradiction. Assume for a contradiction that S(D) is not perfect, then it contains
an induced subgraph H with χ(H) > ω(H). Let H ′ be the subdigraph of D induced by V (H).
We obtain that χ⃗(H ′) ≥ χ(S(H ′)) = χ(H) > ω(H) =←→ω (H ′), a contradiction.

Conversely, assume that S(D) is perfect and that D does not contain any induced directed
cycle of length at least 3. Let H be any induced subdigraph of D. Let α be a proper colouring of
S(H) using exactly ω(S(H)) = ←→ω (H) colours (the existence of which is guaranteed as S(D)
is perfect). Assume that α is not a dicolouring of H , then it contains a monochromatic directed
cycle. Among all such cycles, let C be a shortest one. Then C must be an induced directed cycle
ofD, and therefore it must be of length 2. This yields a contradiction since α is a proper colouring
of S(H). Since α uses←→ω (H) colours, We conclude that χ⃗(H) =←→ω (H) holds for every induced
subdigraph H of D. Hence D is perfect.

χ⃗-boundedness

There are several definition of χ⃗-boundedness for digraphs. We only present one of them here,
but the interested reader is especially refereed to [3] in which the Aboulker, Aubian, Charbit, and
Lopes gave a nice and different approach of χ⃗-boundedness for digraphs.

We say that a class of digraphs D is χ⃗-bounded if and only if there exists some function
f (depending only on D) such that every digraph D ∈ D has dichromatic number at most
f(ω(UG(D))). In order to generalise Gyárfás–Sumner Conjecture (Conjecture 1.1.5) to digraphs,
one can ask for the digraphs H such that the class of H-induced-free digraphs is χ⃗-bounded. We
will show that such digraphs are exactly the arcless digraphs, that is the digraphs H satisfying
A(H) = ∅.

Assume that such a digraph H exists. Then it must be bidirected, for otherwise one can
take any undirected triangle-free graph G of arbitrarily large chromatic number, and

←→
G is an H-

induced-free digraph with arbitrarily large dichromatic number satisfying ω(G) = 2. This shows
that H must be bidirected. The following result shows that H must also be an oriented graph.
Since H is both a bidirected graph and an oriented graph, it must be arcless.

Theorem 1.2.7. For every fixed k ∈ N, there exists an oriented graph G⃗k, UG(G⃗k) = Gk, such

that Gk is triangle-free and χ⃗(G⃗k) ≥ k.

We prove this result with a nice construction due to Carbonero et al. [46]. They actually show
a stronger result so we simplify their construction for our purpose.

Proof. We prove the result by induction on k. When k = 1 we let G⃗k be the single-vertex oriented
graph. Assume now that k ≥ 1 and let G⃗k be an orientation of a triangle-free graph Gk with
dichromatic number at least k.

Let n be the order of G⃗k and v1, . . . , vn be any ordering of its vertices. In order to construct
G⃗k+1, we will recursively build, for every i ∈ ¶0, . . . , n♢, an orientation H⃗ i of a graph Hi satis-
fying each of the following properties.

(i) there is a partition V1, . . . , Vr of V (H⃗ i) such that each Vi induces a copy G⃗
i

k of G⃗k, where
r = 4i.
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Figure 1.7: The construction of H⃗ i+1 from H⃗ i. Dotted circles represent copies of G⃗k and dashed
rectangles represent copies of H⃗ i.

(ii) For every vertex vj ∈ V (G⃗k), j ≥ i + 1, the set of copies of vj (with respect to (i)) is an
independent set.

(iii) Hi is triangle-free.

(iv) In every k-dicolouring α of H⃗ i, there exists a copy G⃗
ℓ

k of G⃗k in which the copies of
v1, . . . , vi are not coloured k.

Once we have proved this, we can take G⃗k+1 to be H⃗n: Hn is triangle-free by (iii) and H⃗n has
dichromatic number at least k+ 1 by (iv). Indeed, if Hn admits a k-dicolouring α, then condition
(iv) implies that it contains a copy of G⃗k in which no vertex is coloured k, a contradiction since
χ⃗(G⃗k) ≥ k by induction.

Let H⃗0 be G⃗k, note that all the properties trivially hold. Assume now that we already built H⃗ i

for some i ∈ [n − 1]. We construct H⃗ i+1 by taking four disjoint copies H⃗
0

i , . . . , H⃗
3

i of H⃗ i and

adding every arc uv such that u is a copy of vi+1 in H⃗
j

i and v is a copy of vi+1 in H⃗
j+1

i (we take
j + 1 modulo 4). Note that we did not create any digon. See Figure 1.7 for an illustration.

Let us show that H⃗ i+1 satisfies the four conditions above.

(i) H⃗ i+1 is actually the vertex-disjoint union of four copies of H⃗ i, implying by induction that
it is the vertex-disjoint union of 4i+1 copies of G⃗k.
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(ii) For every j ≥ i + 2, the set of copies of vj is an independent set because we only added
arcs between copies of vi+1.

(iii) Assume that Hi+1 contains a triangle. Since Hi is triangle-free, this triangle must contain
an edge uv that we added between two copies of Hi. Assume without loss of generality that
u belongs to H1

i and v belongs to H2
i . Let w be a common neighbour of u and v. Then w

does not belong toH3
i , for otherwise it is not adjacent to u, and it does not belong toH4

i , for
otherwise it is not adjacent to v. Assume it belongs to H1

i , the case of H2
i being symmetric.

Since we added the edge wv, it means that w is a copy of vi in H1
i . Then, by induction, uw

is not an edge since w and u are both copies of vi in H1
i . This yields the contradiction, and

shows that Hi+1 is triangle-free.

(iv) Let us fix a k-dicolouring α of H⃗ i+1 (if H⃗ i+1 is not k-dicolourable, condition (iv) holds
vacuously, so we assume such a dicolouring exists). By induction, for every j ∈ ¶0, 1, 2, 3♢,
H⃗

j

i contains a copy G⃗
ℓ,j

k of G⃗k in which the copies of v1, . . . , vi are not coloured k. Then at
least one of these copies does not use colour k for vi+1, for otherwise D, coloured with α,
would contain a monochromatic directed cycle of length four. This shows condition (iv).

We have shown that if a digraph H is such that the class of H-induced-free digraphs is χ⃗-
bounded, then H is arcless. Conversely, assume that H is an arcless digraph and let DH be the
class of H-induced-free digraphs. A seminal result of Ramsey [145] shows that, for every fixed
integers k, ℓ, there exists an integer R(k, ℓ) such that every undirected graph on at least R(k, ℓ)
vertices either contains a clique of size k or an independent set of size ℓ. This implies, for every
fixed ω, that there are finitely many digraphs D in DH satisfying ω(UG(D)) ≤ ω. Therefore,
DH is χ⃗-bounded since every digraph D ∈ DH satisfies χ⃗(D) ≤ fH(ω(UG(D))), where fH is
defined as follows:

fH(ω) = max ¶χ⃗(D) | n(D) < R(ω + 1, n(H))♢ .

This easy characterisation of such digraphs H motivates the more general study of the finite
sets of digraphs H = ¶H1, . . . ,Hr♢ such that the class of H-induced-free digraphs is χ⃗-bounded
(a digraph D is H-induced-free if it does not contain any digraph Hi as an induced subdigraph).
Let us fix such a set H = ¶H1, . . . ,Hr♢. Erdős’ result on undirected graphs of large chromatic
number and large girth (Theorem 1.1.4) implies that at least one of the His must be a bidirected
forest and Theorem 1.2.7 implies that at least one of them is an oriented graph. The following
result due to Harutyunyan and Mohar is the directed analogue of Erdős’ result. It strengthens
Theorem 1.2.7 and implies that at least one of the His must actually be an orientation of a forest.
The girth of a digraph is 2 if it contains a digon, and it is the girth of its underlying graph otherwise.

Theorem 1.2.8 (Harutyunyan and Mohar [94]). For every fixed k, ℓ ∈ N, there exists an oriented

graph G⃗ such that χ⃗(G⃗) ≥ k and girth(G⃗) ≥ ℓ.

Hence, ifH is a pair of digraphs ¶H1, H2♢, such that none of H1, H2 is arcless, we know that
one of them is a bidirected forest and the other one is an orientation of a forest. An orientation of
a forest (resp. a tree) is called an oriented forest (resp. an oriented tree). Thus, Gyárfás-Sumner
Conjecture (Conjecture 1.1.5) can be generalised to digraphs as follows.
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Conjecture 1.2.9. For every bidirected forest F1 and every oriented forest F2, the class of

¶F1, F2♢-induced-free digraphs is χ⃗-bounded.

The following weaker conjecture, obtained by setting F1 =
←→
K2, has been posed by Aboulker,

Charbit, and Naserasr. It is still widely open and is known for a very few restricted cases (see [7,
53, 4]).

Conjecture 1.2.10 (Aboulker, Charbit, and Naserasr [7]). For every oriented forest F , the class

of F -induced-free oriented graphs is χ⃗-bounded.

Conjecture 1.2.10 appears to be the oriented counterpart of Gyárfás-Sumner Conjecture (Con-
jecture 1.1.5), as shown by the following.

Proposition 1.2.11. Conjecture 1.2.9 holds if and only if both Conjecture 1.1.5 and Conjec-

ture 1.2.10 hold.

Proof. One direction is clear, since Conjecture 1.1.5 is a special case of Conjecture 1.2.9 for
F2 = TT2, and Conjecture 1.2.10 is a special case of Conjecture 1.2.9 for F1 =

←→
K2.

Assume now that both Conjecture 1.1.5 and Conjecture 1.2.10 hold. Let us fix a bidirected
forest F1 and an oriented forest F2. Let D = (V,A) be any digraph that is ¶F1, F2♢-induced-
free, and let ω be the clique number of UG(D). Let (A1, A2) be the partition of A where A1

contains all the arcs in a digon of D and A2 contains all the simple arcs of D. Since D1 =
(V,A1) is an F1-induced-free bidirected graph, and because we assume that Conjecture 1.1.5
holds, it admits a proper f1(ω)-colouring α1 for some function f1 depending only on F1. On
the other hand, if Conjecture 1.2.10 holds, since D = (V,A2) is an F2-induced-free oriented
graph, it admits an f2(ω)-dicolouring α2 where f2 depends only on F2. We can then define
α(v) = (α1(v), α2(v)) to obtain a dicolouring of D using at most f1(ω) × f2(ω) colours. This
shows that χ⃗(D) ≤ f(ω(UG(D))) holds for every ¶F1, F2♢-induced-free digraph D, where f
depends only on ¶F1, F2♢, implying Conjecture 1.2.9.

Directed Brooks Theorem

The directed version of Brooks Theorem was first proved by Harutyunyan and Mohar in [91].
Aboulker and Aubian also gave four new proofs of this theorem in [2]. Before we state it, we
need a few definitions. Let D be a digraph and v be a vertex of D. The maximum degree of v,
denoted by dmax(v), is the maximum between its in-degree and its out-degree. We can then define
the corresponding maximum degree of D:

∆max(D) = max ¶dmax(v) | v ∈ V (D)♢ .

Note that it is actually an extension of the maximum degree of an undirected graph, since every
graph G satisfies ∆(G) = ∆max(

←→
G ). Let us show that χ⃗(D) ≤ ∆max(D) + 1 holds by a simple

greedy procedure: fix an arbitrary ordering v1, . . . , vn of V (D). Along this ordering, consider the
vertices one after the other. At step i, choose for vi a colour that is not already appearing in its
out-neighbourhood. This operation does not create any monochromatic directed cycle because v is
now a sink in its colour class. At the end, we obtain a (∆max(D) + 1)-dicolouring of D. As in the
undirected case, the Directed Brooks Theorem, due to Harutyunyan and Mohar [91], characterises
the connected digraphs D for which χ⃗(D) = ∆max(D) + 1. See Figure 1.8 for an illustration.
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Figure 1.8: The only connected digraphs D for which χ⃗(D) = ∆max(D) + 1. From left to right:
a directed cycle, a bidirected odd cycle, and a bidirected complete graph.

Theorem 1.2.12 (DIRECTED BROOKS THEOREM). A connected digraph satisfied χ⃗(D) =
∆max(D) + 1 if and only if D is a directed cycle, a bidirected odd cycle, or a bidirected com-

plete graph.

In Section 1.3.2 and in Chapter 3, we discuss different generalisations and strengthenings
of this result. We only mention here a celebrated conjecture due to Erdős and Neumann-
Lara (see [69]), which is the analogue of Johansson’s result (Theorem 1.1.8) for digraphs. The
maximum degree of a digraph D, denoted by ∆(D), is the maximum of ¶d(v) = d+(v) + d−(v) |
v ∈ V (D)♢. Analogously, the minimum degree of D, denoted by δ(D), is the minimum of
¶d(v) | v ∈ V (D)♢.

Conjecture 1.2.13 (Erdős and Neumann-Lara [69]). Every oriented graph G⃗ satisfies:

χ⃗(G⃗) = O

⎠
∆(G⃗)

ln ∆(G⃗)

⎜
.

1.3 Contributions and outline of this thesis

1.3.1 Dichromatic number of chordal graphs

We say that a digraph D is a super-orientation of an undirected graph G if G is the underlying
graph of D. By definition, a super-orientation can contain digons, while an orientation cannot. A
graph is chordal if it does not contain any hole. In Chapter 2, which is based on [26], we give both
lower and upper bounds on the dichromatic number of super-orientations of chordal graphs. In
general, the dichromatic number of such digraphs is bounded above by the clique number of the
underlying graph because chordal graphs are perfect. However, this bound can be improved when
we restrict the symmetric part of such a digraph.

Let D = (V,A) be a super-orientation of a chordal graph G. An easy greedy procedure shows

χ⃗(D) ≤
⌈︂

ω(G)+∆(S(D))
2

⌉︂
. We show that this bound is best possible by constructing, for every

fixed k, ℓ with k ≥ ℓ+ 1, a super-orientation Dk,ℓ of a chordal graph Gk,ℓ such that ω(Gk,ℓ) = k,

∆(S(Dk,ℓ)) = ℓ and χ⃗(Dk,ℓ) =
⌈︂

k+ℓ
2

⌉︂
. When ∆(S(D)) = 0 (i.e. D is an orientation of G), we

give another construction showing that this is tight even for orientations of interval graphs.
Next, we show that χ⃗(D) ≤ 1

2ω(G) + O(
√︁

Mad(S(D)) · ω(G)) where Mad(G) =

maxH⊆G

⎞
2m(H)
n(H)

)︂
is the maximum average degree of a graph G. Finally, we show that if S(D)
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contains no C4 as a subgraph, then χ⃗(D) ≤
⌈︂

ω(G)+3
2

⌉︂
. We justify that this is almost best possi-

ble by constructing, for every fixed k, a super-orientation Dk of a chordal graph Gk with clique
number k such that S(Dk) is a disjoint union of paths and χ⃗(Dk) =

⌊︂
k+3

2

⌋︂
.

We also show a family of orientations of cographs, which is another class of perfect graphs,
for which the dichromatic number is equal to the clique number of the underlying graph.

1.3.2 On the Directed Brooks Theorem

The first main result of Chapter 3 is a generalisation of the Directed Brooks Theorem (Theo-
rem 1.2.12). Brooks Theorem has been generalised in many ways. One of the most general results
of this kind is due to Borodin, Kostochka, and Toft, who introduced the notion of variable degener-
acy. An extension of this result to digraphs has been recently proposed by Bang-Jensen, Schweser,
and Stiebitz. We introduce a new extension of variable degeneracy for digraphs, that we call bi-
variable degeneracy. With this new definition, we prove a more general result, with a new proof
based on ear-decompositions. Moreover, we justify the existence of a linear-time algorithm for
deciding whether a digraph admits a colouring with “degenerate colour classes”, for this notion
of degeneracy, and under some specific conditions. It can thus be derived into linear-time algo-
rithms for plenty of intermediate generalisations of Brooks Theorem, such as list (di)colouring
and partitioning into (weakly-)degenerate sub(di)graphs.

The second main result of Chapter 3 is a strengthening of the Directed Brooks Theorem on
a large class of digraphs containing oriented graphs. Let D be a digraph and v be a vertex of
D. The minimum degree of v, denoted by dmin(v), is the minimum between its in-degree and its
out-degree. We can define the corresponding maximum degree of D:

∆min(D) = max
v∈V (D)

(dmin(v))

Note that, by definition, we have ∆min(D) ≤ ∆max(D). Observe also that χ⃗(D) ≤ ∆min(D)+1:
we can find a (∆min(D) + 1)-dicolouring of D with the greedy procedure consisting of choosing
for every vertex a colour that is not already appearing either in its in-neighbourhood or in its out-
neighbourhood. Hence, it seems natural to ask for a generalisation of the Directed Brooks Theo-
rem using ∆min(D) instead of ∆max(D). Unfortunately, as shown by Aboulker and Aubian in [2],
deciding whether χ⃗(D) ≤ ∆min(D) holds for a given digraph D is an NP-complete problem.
Hence, unless P=NP, there is no easy characterisation of digraphs satisfying χ⃗(D) = ∆min(D)+1.
As a partial result, in Chapter 3 we give a necessary condition for a digraphD to have dichromatic
number exactly ∆min(D) + 1. In particular, our result implies that every oriented graph G⃗ with
∆min(G⃗) ≥ 2 has dichromatic number at most ∆min(G⃗). The very first consequence of this result
is that every orientation of a graph with maximum degree at most 5 is 2-dicolourable, answering a
question of Harutyunyan [90].

1.3.3 Density of dicritical digraphs

Exactly as in the undirected case, one can define k-dicritical digraphs to be the digraphs D such
that χ⃗(D) = k and χ⃗(H) < k for every proper subdigraph H of D. For fixed k, n, we then define
the function dk(n) to be the minimum number of arcs in n-vertex k-dicritical digraphs, with the
convention dk(n) = +∞ if no such digraph exists. For every k-critical graph G, observe that←→
G is a k-dicritical digraph. Therefore, for every fixed integers k, n, we have dk(n) ≤ 2 · gk(n).
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Figure 1.9: The only 3-dicritical tournaments.

The study of dk(n) was initiated by Kostochka and Stiebitz [113], who conjectured that in fact
equality always holds except when k = n+ 1. Moreover, they conjectured that all the k-dicritical
digraphs on n vertices with dk(n) arcs are bidirected. They proved the first part of the conjecture
when k = 4 (i.e. g4(n) = 2 · d4(n)).

Restricted to oriented graphs, we define the function ok(n) to be the minimum number of arcs
in n-vertex k-dicritical oriented graphs, with the convention ok(n) = +∞ if there exists no such
oriented graph. By definition, we have ok(n) ≥ dk(n). In the same paper, Kostochka and Stiebitz
conjectured that there exists a constant c > 1 such that ok(n) ≥ c · dk(n) for k ≥ 3 and n large
enough. This was proved to be true when k = 3 by Aboulker, Bellitto, Havet, and Rambaud [6].

In Chapter 4, which is highly based on [141] and [97], we first generalise a result of Gallai [76,
77] and give the exact value of dk(n) when k ≥ 4 and k + 2 ≤ n ≤ 2k − 1. This implies the
first conjecture of Kostochka and Stiebitz in this particular case. We then prove both conjectures
for k = 4 using the potential method. We also exhibit a construction of dicritical oriented graphs,
which shows ok(n) ≤ (2k − 7

2) · n for every fixed k and infinitely many values of n.

Alternatively, for fixed k, n, one may ask for the maximum number of edges (or arcs) in k-
critical graphs (or k-dicritical digraphs) on n vertices. A really few is known about this question,
even in the undirected case. Aboulker [1] asked if the number of k-dicritical tournaments is finite
when k ≥ 3. This is still an open question. A semi-complete digraph is a super-orientation of a
complete graph. In Chapter 5, which is based on [96], we answer this question for k = 3 by giving
a simple hand-made proof that the number of 3-dicritical semi-complete digraphs is finite. We then
give a more involved computer-assisted proof to show that there are only eight 3-dicritical semi-
complete digraphs, and only two of them are tournaments, illustrated in Figure 1.9. We finally
give a general upper bound on the maximum number of arcs in a 3-dicritical digraph.

1.3.4 Substructures in dicritical digraphs with large order or large digirth

In Chapter 6, which is based on [140], we give sufficient conditions on a dicritical digraph of large
order or large digirth to contain a specific substructure.

We define an oriented path as the orientation of a path. Similarly, an oriented cycle is either
an orientation of a cycle or C⃗2. Note that a directed path (resp. cycle) is a particular oriented path
(resp. oriented cycle). The length of an oriented path or an oriented cycle G⃗ is its number of arcs
and is denoted by length(G⃗).

We first extend a result of Kelly and Kelly [105] to the directed case by showing the existence,
for every fixed integer k ≥ 2, of a function fk : N → N such that every k-dicritical digraph on at
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least fk(ℓ) vertices contains an oriented path of length ℓ. Informally, this means that the length
of a longest oriented path in a dicritical digraph grows with the order. Using a result of Dirac,
we obtain the analogue result for the length of a longest oriented cycle. We also justify that the
analogue result for directed paths does not hold by constructing, for every fixed k ≥ 3, infinitely
many k-dicritical digraphs that do not contain P⃗ 3k+1 as a subdigraph.

Let us fix a digraph F . A subdivision of F is any digraph obtained from F by replacing every
arc uv by a directed path (of length at least 1) from u to v. We say that a digraph D contains F as
a subdivision if D contains a digraph F ′ which is a subdivision of F . Aboulker et al. [8] proved,
for every fixed digraph F , the existence of a constant cF such that every digraph with dichromatic
number at least cF contains F as a subdivision.

Let us now fix a subdivision F ∗ of F . When restricted to digraphs of arbitrarily large digirth,
we strengthen the result of Aboulker et al. by showing that the value of cF ∗ actually depends only
on F . Formally, we show the existence of functions f, g such that for every subdivision F ∗ of a
digraph F , digraphs with digirth at least f(F ∗) and dichromatic number at least g(F ) contain a
subdivision of F ∗. When F is a tree, we give the exact value of g(F ) = n(F ).

We finally show the existence of a function f such that for every subdivision F ∗ of TT3, di-
graphs with digirth at least f(F ∗) and minimum out-degree at least 2 contain F ∗ as a subdivision.
In particular, this implies that every digraph with arbitrarily large digirth and dichromatic num-
ber at least 3 contains F ∗ as a subdivision. This confirms a very particular case of the following
general conjecture we pose.

Conjecture 1.3.1. There is a function f such that for every digraph F with maximum degree ∆,

there is an integer g such that every digraph D satisfying digirth(D) ≥ g and χ⃗(D) ≥ f(∆)
contains a subdivision of F .

1.3.5 Redicolouring digraphs

In Chapter 7, which is based on [41, 139, 136], we study the directed analogue of graph recolour-
ing. For the sake of conciseness, we briefly describe the results of Chapter 7 here. For a more
detailed overview, the reader is referred to Section 7.1.

For any k ≥ χ⃗(D), the k-dicolouring graph of a digraph D, denoted by Dk(D), is the graph
whose vertices are the k-dicolourings of D and in which two k-dicolourings are adjacent if they
differ on exactly one vertex. Observe that Ck(G) = Dk(

←→
G ) for every graph G. A redicolouring

sequence between two dicolourings is a walk between these dicolourings in Dk(D). The digraph
D is k-mixing if Dk(D) is connected.

We first prove, for every fixed k ≥ 2, that the following problem is PSPACE-complete.

k-DICOLOURING PATH

Input: A digraph D along with two k-dicolourings α and β of D.
Output: Is there a redicolouring sequence between α and β?

Given a digraph D = (V,A) and a vertex v ∈ V , we define the cycle-degree of v, denoted
by dc(v), as the minimum size of a set S ⊆ V (D) \ ¶v♢ intersecting every directed cycle of D
containing v. From this definition of cycle-degree, we define the c-degeneracy of D, which we
denote by δ∗

c (D). It appears to be a nice generalisation of the undirected degeneracy, especially
when dealing with directed treewidth. Using this new definition of degeneracy for digraphs, we
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extend a collection of evidence for Cereceda’s conjecture to digraphs. These results lead us to
believe that the following stronger version of Cereceda’s conjecture holds.

Conjecture 1.3.2. Let k ∈ N and D be a digraph. If k ≥ δ∗
c (D) + 2, then the diameter of Dk(D)

is at most O(n2).

We finally turn our focus to the density of non-mixing graphs and digraphs. We first provide
a construction witnessing that there exist (k − 1)-regular graphs of arbitrarily large girth that are
not k-mixing, which was first shown by Bonamy, Bousquet, and Perarnau [32] using probabilistic
arguments. However, this is not the case for digraphs with arbitrary large digirth. In fact, we show
that this is not even the case for oriented graphs. We pose a conjecture on the minimum density of
non-mixing oriented graphs and provide some support for it.
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2.1 Introduction

An undirected graph is chordal if it does not contain any induced cycle of length at least 4. Proper
colourings of chordal graphs have been largely studied and it is well-known that chordal graphs
are perfect (see [58, Proposition 5.5.2]). Let us recall a few definitions that we will especially use
in this chapter. Let D be a digraph. We say that D is a super-orientation of UG(D) and that it is
an orientation of UG(D) if further D is an oriented graph. The symmetric part of D, denoted by
S(D), is the undirected graph G with vertex-set V (D) in which uv is an edge if and only if uv is
a digon of D. We denote by←→ω (D) the size of a largest bidirected clique of D, i.e. the size of the
largest clique of S(D).

In this chapter, we look for lower and upper bounds on the dichromatic number of orientations
and super-orientations of chordal graphs. Dicolourings of such digraphs have also been studied
in [5], in which the authors characterise exactly the digraphs H for which there exists cH ∈ N

such that every orientation G⃗ of a chordal graph with χ⃗(G⃗) ≥ cH + 1 contains H as an induced
subdigraph.

We refer the interested reader to [127], in which the authors define a class of chordal digraphs,
which extends the class of undirected chordal graphs. One can easily prove that every digraph D
in this class is actually a perfect digraph, so it satisfies χ⃗(D) =←→ω (D) by Theorem 1.2.6.

25
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The very first interesting class of super-orientations of chordal graphs are tournaments for
which the question has been settled by Erdős, Gimbel and Kratsch in [70]. They showed that the
dichromatic number of a tournament T on n vertices is always in O

⎞
n

log n

)︂
, and that this bound is

best possible (up to a constant factor). One can ask if this result is true not only for tournaments
but for all orientations of chordal graphs. That is, do we always have χ⃗(G⃗) = O

⎞
ω(G)

log ω(G)

)︂
when

G⃗ is an orientation of a chordal graph G ? We answer this by the negative. Indeed, we show in
Section 2.3 that it is not even true for orientations of interval graphs. Recall that an interval graph

is obtained from a set of intervals on the real line: the intervals are the vertices, and there is an
edge between two intervals if and only if they intersect. It is well-known that interval graphs are
chordal graphs (see [58, Exercise 5.42]).

Theorem 2.1.1. For every fixed k ∈ N, there exists an interval graph Gk and an orientation G⃗k

of this graph such that ω(Gk) = k and χ⃗(G⃗k) ≥
⌈︂

k
2

⌉︂
.

On the positive side, if G⃗ is the orientation of a proper interval graph G (which is an interval
graph where each interval has length exactly 1), then χ⃗(G⃗) = O

⎞
ω(G)

log(ω(G))

)︂
, as proved in [5].

The key-idea is that a proper interval graph G admits a partition (V1, V2) of its vertex-set such that
both G⟨V1⟩ and G⟨V2⟩ are disjoint union of complete graphs.

Another well-known class of perfect graphs is the one of cographs. The Dirac join of two
undirected graphs G1 and G2 is the graph built from the disjoint union of G1 and G2 where every
edge between vertices of G1 and vertices of G2 are added. Cographs form the smallest class of
graphs containing the single-vertex graph that is closed under disjoint union and the Dirac join
operation. One can easily prove that the oriented graphs built in the proof of Theorem 2.1.1 are
indeed orientations of cographs. In Section 2.4, we improve this result for cographs in general.

Theorem 2.1.2. For every fixed k ∈ N, there exists a cograph Gk and an orientation G⃗k of this

graph such that χ⃗(G⃗k) = ω(Gk) = k.

Next we consider super-orientations of chordal graphs. If D is a super-orientation of a chordal
graph G, then obviously χ⃗(D) ≤ ω(G) because χ⃗(D) ≤ χ(G) = ω(G). Note that we cannot

expect any improvement of this bound in general, because if D is the bidirected graph
←→
G then

χ⃗(D) = ω(G). But one can ask what happens if we restrict the structure of S(D), the symmetric
part of D.

In Section 2.5, we consider digraphs for which the symmetric part has bounded maximum
degree. Using the degeneracy of the underlying graph, we show the following easy proposition.

Proposition 2.1.3. Let D be a super-orientation of a chordal graph G, then

χ⃗(D) ≤
⎫
ω(G) + ∆(S(D))

2

⌉︃
.

This proposition is best possible when ∆(S(D)) = 0 by Theorem 2.1.1. In the following, we
show that it is indeed best possible for every fixed value of ∆(S(D)).

Theorem 2.1.4. For every fixed k, ℓ ∈ N such that k ≥ ℓ+1, there exists a chordal graphGk,ℓ and

a super-orientation Dk,ℓ of Gk,ℓ such that ω(Gk,ℓ) = k, ∆(S(Dk,ℓ)) = ℓ and χ⃗(Dk,ℓ) =
⌈︂

k+ℓ
2

⌉︂
.
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We define the maximum average degree of an undirected graph G, denoted by Mad(G), as
follows:

Mad(G) = max

⎭
2m(H)

n(H)
| H ⊆ G

}︃
.

In Section 2.6, we show the following bound on digraphs D for which Mad(S(D)) is bounded.

Theorem 2.1.5. Let D be a super-orientation of a chordal graph G. If Mad(S(D)) ≤ d, then

χ⃗(D) ≤ 1

2
ω(G) +O

(︃√︂
d · ω(G)

)︃
.

Finally in Section 2.7 we show the following bound on super-orientations D of chordal graphs
that do not contain

←→
C4 .

Theorem 2.1.6. Let D be a super-orientation of a chordal graph G. If S(D) is C4-free, then

χ⃗(D) ≤
⎫
ω(G) + 3

2

⌉︃
.

We also prove that the bound of Theorem 2.1.6 is almost tight by proving the following.

Theorem 2.1.7. For every fixed k ≥ 3 and every n ≥ N, there exists a super-orientation Dk,n

of a chordal graph Gk,n on at least n vertices such that S(Dk,n) is a disjoint union of paths,

ω(Gk,n) = k and χ⃗(Dk,n) =
⌊︂

k+3
2

⌋︂
.

A tree-decomposition of a graph G = (V,E) is a pair (T,X ) where T = (I, F ) is a tree, and
X = (Bi)i∈I is a family of subsets of V (G), called bags and indexed by the vertices of T , such
that:

1. each vertex v ∈ V appears in at least one bag, i.e.
⎷

i∈I Bi = V ,

2. for each edge e = xy ∈ E, there is an i ∈ I such that x, y ∈ Bi, and

3. for each v ∈ V , the set of nodes indexed by ¶i | i ∈ I, v ∈ Bi♢ forms a subtree of T .

The width of a tree decomposition is defined as maxi∈I¶|Bi| − 1♢. The treewidth of G, denoted
by tw(G), is the minimum width of a tree-decomposition of G. It is well-know that every graph
G is a subgraph of a chordal graph G′ with ω(G′) = tw(G) + 1 (see [57, Corollary 12.3.12]).
Hence, the following is a direct consequence of Proposition 2.1.3 and Theorems 2.1.5 and 2.1.6.

Corollary 2.1.8. Let D be a super-orientation of G. Then we have:

• χ⃗(D) ≤
⌈︂

tw(G)+∆(S(D))+1
2

⌉︂
, and

• χ⃗(D) ≤ 1
2 tw(G) +O(

√︁
Mad(S(D)) · tw(G)), and

• χ⃗(D) ≤
⌈︂

tw(G)+4
2

⌉︂
if S(D) is C4-free.
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2.2 Preliminaries

Let G = (V,E) be an undirected graph. A perfect elimination ordering of G is an ordering
v1, . . . , vn of its vertex-set such that, for every i ∈ [n], the set N(vi) ∩ ¶vi+1, . . . , vn♢ is a clique
of G. We skip the proofs of the following two well-known results.

Proposition 2.2.1 (Rose [148]). A graphG is chordal if and only ifG admits a perfect elimination

ordering.

Proposition 2.2.2 (see [58, Corollary 12.4.4]). The treewidth of a chordal graph G is exactly

ω(G)− 1.

A tree-decomposition (T,X ) is reduced if, for every tt′ ∈ E(T ), Xt \ Xt′ and Xt′ \ Xt

are non-empty. It is easy to see that any graph G admits an optimal (i.e., of width tw(G)) tree-
decomposition which is reduced (indeed, if Xt ⊆ Xt′ for some edge tt′ ∈ E(T ), then contract
this edge and remove Xt from X ).

A tree-decomposition (T,X ) of a graph G of width k ≥ 0 is full if every bag has size exactly
k + 1. It is valid if |Xt \ Xt′ | = |Xt′ \ Xt| = 1 for every tt′ ∈ E(T ). Note that any valid
tree-decomposition is full and reduced.

The following result is well-known, see for instance [27]. We give here a short proof for sake
of completeness.

Lemma 2.2.3. Every graph G = (V,E) admits a valid tree-decomposition of width tw(G).

Proof. Let (T,X ) be an optimal reduced tree-decomposition of G = (V,E), which exists by the
remark above the lemma. We will progressively modify (T,X ) in order to make it first full and
then valid.

While the current decomposition is not full, let tt′ ∈ E(T ) such that |Xt| < |Xt′ | = tw(G)+1
and let v ∈ Xt′ \ Xt. Add v to Xt. The obtained decomposition is still a tree-decomposition.
Moreover, the updated decomposition remains reduced all along the process, as since |Xt| < |Xt′ |
and the initial decomposition is reduced, Xt′ must contain another vertex u ̸= v with u /∈ Xt. At
the end of the process, we obtain an optimal decomposition (T,X ) that is full.

Now, while (T,X ) is not valid, let tt′ ∈ E(T ), x, y ∈ Xt \Xt′ and u, v ∈ Xt′ \Xt (such an
edge of T and four distinct vertices of V must exist since (T,X ) is full and reduced but not valid).
Then, add a new node t′′ to T , with corresponding bag Xt′′ = (Xt′ \ ¶u♢) ∪ ¶x♢ and replace
the edge tt′ in T by the two edges tt′′ and t′′t′. Clearly, subdividing the edge tt′ by adding a bag
Xt′′ = Xt′ \ ¶u♢ ∪ ¶x♢ still leads to an optimal full tree-decomposition of the same width.

Note that, after the application of each step as described above, either the maximum of |Xt \
Xt′ | over all edges tt′ ∈ E(T ), or the number of edges tt′ ∈ E(T ) that maximise |Xt \ Xt′ |,
strictly decreases, and none of these two quantities increases. Therefore, the process terminates,
and eventually (T,X ) becomes an optimal valid tree-decomposition.

Let D1 and D2 be two digraphs. Let u1v1 be an arc of D1 and v2u2 be an arc of D2. The
directed Hajós join of D1 and D2, denoted by D1▽D2, is the digraph obtained from the union
D1 ∪D2 by deleting the arcs u1v1 as well as v2u2, identifying the vertices v1 and v2 into a new
vertex v and adding the arc u1u2.

Theorem 2.2.4 (Bang-Jensen et al. [17] (see also [99])). Let D1 and D2 be two digraphs, then

χ⃗(D1▽D2) ≥ min¶χ⃗(D1), χ⃗(D2)♢.
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Figure 2.1: The oriented interval graph D3 (bits of bℓ
i are read from left to right).

2.3 Orientations of interval graphs with large dichromatic number

This section is devoted to the proof of Theorem 2.1.1.

Theorem 2.1.1. For every fixed k ∈ N, there exists an interval graph Gk and an orientation G⃗k

of this graph such that ω(Gk) = k and χ⃗(G⃗k) ≥
⌈︂

k
2

⌉︂
.

Proof. Let us fix k ∈ N, we will build an orientation Dk of an interval graph Gk such that
ω(Gk) = k and χ⃗(Dk) ≥

⌈︂
k
2

⌉︂
.

We start from one interval I1
1 . Then, for every i from 2 to k, we do the following: for each

interval Is
i−1 we added at step i − 1, we add 2i−1 new pairwise disjoint intervals whose union is

included in Is
i−1, and we associate to each of these new intervals Iℓ

i a distinct binary number bℓ
i on

i− 1 bits. By construction, every new interval intersects exactly i− 1 other intervals (one for each
step).

Let Gk be the interval graph made of the intervals built above. By construction, ω(Gk) = k.
Now we consider Dk the orientation of Gk defined as follows. For every pair j < i, we orient the
edge Is

j I
ℓ
i from Iℓ

i to Is
j if the jth bit of bℓ

i is 1, and from Is
j to Iℓ

i otherwise. Figure 2.1 illustrates
the construction of D3.

Let us prove that χ⃗(Dk) ≥ ⌈k
2⌉. To do this, let ϕ be any optimal dicolouring of Dk. We will

find a tournament T of size k in Dk such that, for each colour c in ϕ, c appears at most twice in T .
This will prove that ϕ uses at least ⌈k

2⌉ colours, implying the result.
Start from the universal vertex I1

1 . Then, for i ∈ ¶2, . . . , k♢, we do the following : let Is
i−1 be

the last vertex added to T , we will extend T with a vertex Iℓ
i so that Iℓ

i ⊆ Is
i−1. For each colour

c ∈ ϕ that appears exactly twice in T , let xcyc be a monochromatic arc of T coloured c. Then we
choose Iℓ

i so for each such colour c, xcycI
ℓ
i is a directed triangle. The existence of Iℓ

i is guaranteed
by construction. This implies that the colour of Iℓ

i in ϕ appears at most twice in T .

2.4 Orientations of cographs with large dichromatic number

This section is devoted to the proof of Theorem 2.1.2.

Theorem 2.1.2. For every fixed k ∈ N, there exists a cograph Gk and an orientation G⃗k of this

graph such that χ⃗(G⃗k) = ω(Gk) = k.

Proof. We define G⃗1 as the only orientation of G1, the graph on one vertex. We obviously have
χ⃗(G⃗1) = ω(G1) = 1, and G1 is a cograph.
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G⃗1 G⃗2 G⃗3

Figure 2.2: The oriented graphs G⃗1, G⃗2, and G⃗3.

Let us fix k ≥ 1, we build G⃗k+1 from G⃗k as follows. Start from k + 1 disjoint copies

G⃗
1

k, . . . , G⃗
k+1

k of G⃗k and k + 1 new vertices v1, . . . , vk+1. Then, for every i ∈ [k + 1], we add

all arcs from vi to V (G⃗
i

k) and all arc from
⎷

j ̸=i V (G⃗
j

k) to vi. Let G⃗k+1 be the obtained oriented

graph and Gk+1 be its underlying graph. Figure 2.2 illustrates the construction of G⃗3.
Note first that Gk+1 is a cograph: the disjoint union of G1

k, . . . , G
k
k is a cograph, the inde-

pendent set v1, . . . , vk is a cograph, and Gk+1 is the join of these two cographs. Let us prove by
induction on k that χ⃗(G⃗k) = ω(Gk) = k. For k = 1, the result is immediate, and assume it holds
for k ≥ 1. Note first that ω(Gk+1) = k+1 since every clique ofGk+1 contains at most one vertex
of ¶v1, . . . , vk+1♢ and do not contain two vertices from distinct copies of Gk. So every maximum
clique of Gk+1 is made of a maximum clique of Gk and one additional vertex vi.

Moreover χ⃗(G⃗k+1) ≤ χ(Gk+1) = ω(Gk+1) = k + 1. Let us now show that the dichromatic
number of G⃗k+1 is at least k + 1. Assume for the purpose of contradiction that G⃗k+1 admits a
k-dicolouring ϕ. Then there exist i ̸= j such that ϕ(vi) = ϕ(vj). Since χ⃗(G⃗k) ≥ k, there exist

x ∈ V (G⃗
i

k) and y ∈ V (G⃗
j

k) such that ϕ(x) = ϕ(y) = ϕ(vi) = ϕ(vj). Hence vixvjyvi is a
monochromatic C⃗4 of G⃗k+1 coloured with ϕ, a contradiction.

2.5 Digraphs with a symmetric part having bounded maximum de-
gree

This section is devoted to the proofs of Proposition 2.1.3 and Theorem 2.1.4.

Proposition 2.1.3. Let D be a super-orientation of a chordal graph G, then

χ⃗(D) ≤
⎫
ω(G) + ∆(S(D))

2

⌉︃
.

Proof. Let v1, . . . , vn be a perfect elimination ordering of G (which exists by Proposition 2.2.1).
Then, in G, every vertex vi has at most ω(G) − 1 neighbours in ¶vi+1, . . . , vn♢. Hence, in
D⟨¶vi, . . . , vn♢⟩, d+(vi) + d−(vi) ≤ ω(G)− 1 + ∆(S(D)).
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Thus, considering the vertices from vn to v1, we can greedily find a dicolouring of D using at
most

⌈︂
ω(G)+∆(S(D))

2

⌉︂
by choosing for vi a colour that is not appearing inN+(vi)∩¶vi+1, . . . , vn♢

or in N−(vi) ∩ ¶vi+1, . . . , vn♢.

Theorem 2.1.4. For every fixed k, ℓ ∈ N such that k ≥ ℓ+1, there exists a chordal graphGk,ℓ and

a super-orientation Dk,ℓ of Gk,ℓ such that ω(Gk,ℓ) = k, ∆(S(Dk,ℓ)) = ℓ and χ⃗(Dk,ℓ) =
⌈︂

k+ℓ
2

⌉︂
.

Proof. Let us fix ℓ ∈ N. We defineDℓ+1,ℓ as the bidirected complete graph on ℓ+1 vertices. Note
that Dℓ+1,ℓ clearly satisfies the desired properties.

Then, for every k ≥ ℓ+ 2, we iteratively build Dk,ℓ from Dk−1,ℓ or Dk−2,ℓ as follows:

• If k + ℓ is even, we just add a dominating vertex to Dk−1,ℓ to construct Dk,ℓ. We obtain
that ω(UG(Dk,ℓ)) = 1 + ω(UG(Dk−1,ℓ)) = k, ∆(S(Dk,ℓ)) = ∆(S(Dk−1,ℓ)) = ℓ and

χ⃗(Dk,ℓ) = χ⃗(Dk−1,ℓ) =
⌈︂

k+ℓ−1
2

⌉︂
=
⌈︂

k+ℓ
2

⌉︂
(the last equality holds because k + ℓ is even).

• If k + ℓ is odd (implying that k is at least ℓ + 3), we start from T , a copy of TT k+ℓ+1
2

, the

transitive tournament on k+ℓ+1
2 vertices. Note that k+ℓ+1

2 ≤ k − 1 because k ≥ ℓ+ 3.

For each arc xy in T , we add a copy Dxy of Dk−2,ℓ with all arcs from y to Dxy and all arcs
from Dxy to x. Let Dk,ℓ be the obtained digraph.

First, UG(Dk,ℓ) is chordal because it has a perfect elimination ordering: we first eliminate
each copy Dxy of Dk−2,ℓ, which is possible because UG(Dk−2,ℓ) is chordal, and x, y are
adjacent to every vertex of Dxy. When every copy of Dk−2,ℓ is eliminated, the remaining
digraph is T , which is clearly chordal because it is a tournament.

Next, we have ω(UG(Dk,ℓ)) = max(ω(UG(T )), ω(UG(Dk−2,ℓ)) + 2) = k, and
∆(S(Dk,ℓ)) = ∆(S(Dk−2,ℓ)) = ℓ.

Finally, let us show that χ⃗(Dk,ℓ) ≥ k+ℓ+1
2 (the equality then comes from Proposition 2.1.3).

In order to get a contradiction, assume that ϕ is a dicolouring ofDk,ℓ that uses at most k+ℓ−1
2

colours. We know by induction that each copy of Dk−2,ℓ uses all the colours in ϕ. Since T
is a tournament on k+ℓ+1

2 vertices, we know that it must contain a monochromatic arc xy.
Now let z be a vertex in Dxy such that ϕ(x) = ϕ(y) = ϕ(z), then xyz is a monochromatic
triangle, a contradiction.

Figure 2.3 illustrates the construction of D1,0, D3,0 and D5,0.

2.6 Digraphs with a symmetric part having bounded maximum av-
erage degree

This section is devoted to the proof of Theorem 2.1.5. We first need to prove the following.

Lemma 2.6.1. Let G = (V,E) be a chordal graph. There exists an ordering a1, . . . , an of V such

that for any k ∈ [n]:

|N(ak)| ≤ ω(G) + k − 2 (P1)

and

\︄\︄\︄\︄\︄

k⋃︂

i=1

N [ai]

\︄\︄\︄\︄\︄ ≤ ω(G) + 2k − 1 (P2)
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D1,0 D3,0 D5,0

Figure 2.3: The digraphs D1,0, D3,0, and D5,0.

Proof. Let (T = (I, F ),X = (Bu)u∈I) be a valid tree-decomposition of G of width ω(G) − 1,
which exists by Lemma 2.2.3 (recall that tw(G) = ω(G)−1 by Proposition 2.2.2). One can easily
show that, since T is valid, |I| = n− ω(G) + 1 (see [27, Lemma 2.5]).

Let P = u0, . . . , ur be a longest path in T . We root T in ur. For any vertex u of T different
from ur, father(u) denotes the father of u in T .

We now consider a Depth-First Search of T from ur. The vertices of P have the priority. Along
this route, we label the vertices of T . A vertex is labelled when all of its children are labelled. We
denote by v1, . . . , vn−ω(G)+1 the vertices of T in this labelling. Note that v1 corresponds to u0

and vn−ω(G)+1 corresponds to ur.
Now, for each i ∈ [n − ω(G)], we denote by ai the unique vertex of G that belongs to

Bvi
but not to father(Bvi

) (recall that T,X is valid so ai is well-defined). We finally label
an−ω(D)+1, . . . , an the remaining vertices of G in Bur in an arbitrary way. See Figure 2.4 for
an illustration.

We will now prove that (ai)1≤i≤n satisfies the two properties of the statement. First observe

that, for every i ∈ [n], N(ai) ⊆ ¶a1, . . . , ai−1♢ ∪Xvi
because ai /∈

⎷n−ω(G)+1
j=i+1 Xvj

. Hence we
have |N(ai)| ≤ i− 1 + ω − 1 = ω(G)− 2 + i, which shows (P1).

To show that (P2) holds, we fix k ∈ [n]. Note that the result is trivially true when k ≥
n− ω + 1, thus we assume that k ≤ n− ω. Hence, both vk and father(vk) are well-defined. We
setXT = ¶v1, . . . , vk♢,XG = ¶a1, ..., ak♢ and we let T ′ be the smallest subtree of T that contains
all vertices of XT . Let ℓ be the largest integer such that uℓ belongs to V (T ′) (ℓ is well-defined
because T ′ contains v1 = u0). We root T ′ in uℓ.

We will now show that T ′ contains at most 2k vertices. If uℓ = vk, then the vertices of T ′

are exactly ¶v1, . . . , vk♢ and this is clear. Otherwise, let us show that T ′′ = T ′ \ XT contains at
most k vertices, and we will get the result since |XT | = k. By construction, we know that every
descendant of a vertex vi is labelled less than i. Hence, T ′′ = T ′ \XT is a tree rooted in uℓ.

Assume first that T ′′ contains at least two leaves f1 and f2 different from uℓ (uℓ may be a leaf
if it has only one child). We denote by P1 and P2 two paths from their lowest common ancestor.
Without loss of generality, we assume that f1 is before f2 in (v1, . . . , vn). Since f2 has a child g2

in XT and by construction of (vi)1≤i≤n, the internal vertices of P1 are before g2 in (B1, . . . , Bn).
This implies that all internal vertices in P1 must belong to XT , which contradicts the existence of
f1. This shows that T ′′ must have exactly two leaves (one of them is uℓ) and then T ′′ is a path
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Figure 2.4: A chordal graph G (on the left) and its valid tree-decomposition T (on the right). The
orange dashed arcs represent the chosen maximum path P . The ordering a1, . . . , an of V (G) we
built is a, b, c, i, j, h, d, l, e, f, g, k,m.

rooted in uℓ. Since P is a longest path in T , we get that n(T ′′) ≤ ℓ ≤ k and T ′ contains at most
2k vertices as desired.

We now consider the set NG = ¶aj ∈ V (G) | vj ∈ V (T ′) \ ¶uℓ♢♢. Let x be any vertex in
XG. Then every neighbour of x must belong to some bag in T ′. Moreover, if a vertex belongs to
a bag of T ′, then either it belongs to Buℓ

or it belongs to NG. Then the neighbourhood of x is a
subset of NG ∪Buℓ

. Furthermore, x itself belongs to NG. Since x is any vertex in XG, we have:

⋃︂

x∈XG

N [x] ⊆ (NG ∪Buℓ
)

Since |NG| ≤ 2k − 1 and |Buℓ
| = ω − 1, we get (P2).

In order to prove Theorem 2.1.5, we prove the more general following result.

Theorem 2.6.2. Let D be a super-orientation of a chordal graph G such that Mad(S(D)) ≤ d.

For every ε > 0, we have

χ⃗(D) ≤
(︃

1 + ε

2

)︃
ω(G) +

d

ε
+ 1.

Proof. Let ε > 0 and d ≥ 1, we assume that ε ≤ 1 for otherwise the result is trivial. We fix
cd,ε = max

⎞⌈︂
d
2ε

⌉︂
, 3

4d+ d
8ε

+ 1
2

)︂
. Easy calculations imply cd,ε ≤ d

ε
+ 1. We will show that every

super-orientation D of a chordal graph G with Mad(S(D)) ≤ d satisfies

χ⃗(D) ≤
(︃

1 + ε

2

)︃
ω(G) + cd,ε.

We prove it by contradiction, so assume that D = (V,A) is a smaller counterexample, meaning

that χ⃗(D) >
⎞

1+ε
2

)︂
ω(G) + cd,ε. Thus, D must be vertex-dicritical (meaning that χ⃗(H) <
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χ⃗(D) for every induced subdigraph H of D), for otherwise there exists a vertex x ∈ V such that
χ⃗(D − x) = χ⃗(D), and D − x would be a smaller counterexample.

For the simplicity of notations, from now on, we write ω for ω(G) . Let v be any vertex of D
and α be any optimal dicolouring of D− v (meaning that α uses exactly χ⃗(D)− 1 colours). Then
α cannot be extended to D without using a new colour for v (because D is dicritical). Since every
digon (incident to v) may forbid at most one colour at v, and each pair of simple arcs (incident to
v) may forbid at most one colour at v, we get the following inequalities with d±(v) denoting the
number of digons incident to v:

d±(v) +
|N(v)| − d±(v)

2
≥ χ⃗(D)− 1 >

(︃
1 + ε

2

)︃
ω + cd,ε − 1

⇒ d±(v) > (1 + ε)ω + 2cd,ε − 2− |N(v)| (2.1)

Note that these inequalities hold for every vertex v of D. By Lemma 2.6.1, there is an ordering
a1, . . . , an of V (D) such that, for any i ∈ [n],

|N(ai)| ≤ ω + i− 2 (P1)

and

\︄\︄\︄\︄\︄\︄

i⋃︂

j=1

N(aj)

\︄\︄\︄\︄\︄\︄
≤ ω + 2i− 1 (P2)

Let us fix i =
⌈︂

d
2ε

⌉︂
. Note that i ≤ cd,ε. Thus, since χ⃗(D) > cd,ε, we obviously have i ≤ n. Let

X = ¶aj | j ≤ i♢ and W =
⎷i

j=1N [aj ]. Together with inequality (2.1), property (P1) implies,
for every j ∈ [i], d±(aj) > εω + 2cd,ε − j. Hence we get:

∑︂

v∈X

d±(v) =
i∑︂

j=1

d±(aj) > εωi+ 2cd,εi−
i(i+ 1)

2
(2.2)

By (P2), we know that |W | ≤ ω + 2i − 1. Thus D⟨W ⟩ contains at most d
2(ω + 2i − 1) digons.

Similarly, since |X| = i, D⟨X⟩ contains at most di
2 digons. When we sum d±(v) over all vertices

v in X , we count exactly once every digon between X and W \X , and exactly twice every digon
in X . Then, the following is a consequence of (2.2), with dig(H) denoting the number of digons
in a digraph H .

εωi+ 2cd,εi−
i(i+ 1)

2
<
∑︂

v∈X

d±(v) ≤ dig(D⟨W ⟩) + dig(D⟨X⟩)

≤ d

2
(ω + 2i− 1) +

di

2

Since i =
⌈︂

d
2ε

⌉︂
, we conclude that cd,ε <

3
4d+ d

8ε
+ 1

2 , a contradiction.

The proof of Theorem 2.1.5 now follows.

Theorem 2.1.5. Let D be a super-orientation of a chordal graph G. If Mad(S(D)) ≤ d, then

χ⃗(D) ≤ 1

2
ω(G) +O

(︃√︂
d · ω(G)

)︃
.

Proof. This is a direct consequence of Theorem 2.6.2 applied for ε =
√︂

d
ω(G) .
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2.7 Digraphs with no bidirected cycle of length four

This section is devoted to the proof of Theorems 2.1.6 and 2.1.7.

Theorem 2.1.6. Let D be a super-orientation of a chordal graph G. If S(D) is C4-free, then

χ⃗(D) ≤
⎫
ω(G) + 3

2

⌉︃
.

Proof. We assume that ω = ω(G) is odd, for otherwise we select an independent set I of D such
that D′ = D − I satisfies ω(UG(D′)) = ω − 1, so ω(UG(D′)) is odd and χ⃗(D) ≤ χ⃗(D′) + 1
(the existence of I is guaranteed because G is chordal).

Let (T,X = (Bu)u∈V (T )) be a valid tree-decomposition of G, that is each bag B ∈ X has
size exactly ω and, for every two adjacent bags B and B′, |B \B′| = 1. Recall that the existence
of such a tree-decomposition is guaranteed by Lemma 2.2.3. We assume that each bag induces a
clique on G, otherwise we just add the missing arcs (oriented in an arbitrary direction). Note that
this operation does not increase ω nor decrease χ⃗(D) and does not create any

←→
C4 . Note also that

D remains chordal after this operation.
Let k = ω+3

2 . A k-dicolouring ϕ of D is balanced if, for each bag B and colour c ∈ [k],
0 ≤ |ϕ−1(c) ∩ B| ≤ 2. Note that every balanced k-dicolouring satisfies |ϕ−1(c) ∩ B| = 1 for
either 1 or 3 colours. Moreover, in the former case, exactly one colour of [k] is missing in ϕ(B).
We will show that χ⃗(D) ≤ k by proving the existence of a balanced k-dicolouring ϕ of D such
that, for each bag B, we have:

(i) |ϕ−1(c) ∩B| = 1 holds for exactly one colour c, or

(ii) |ϕ−1(ci) ∩ B| = 1 holds for exactly three distinct colours c1, c2, c3 and two vertices of

¶v1, v2, v3♢ are connected by a
←→
P3 inD (where ¶vi♢ = ϕ−1(ci)∩B and a

←→
P3 is a bidirected

path on 3 vertices).

We will say that a bag B is of type (i) or (ii), depending if ϕ satisfies condition (i) or (ii)
respectively on B.

We show the existence of ϕ by induction on the number of bags in the tree-decomposition.
If n(T ) = 1, let X = ¶B♢, then D is a semi-complete digraph on ω vertices which is

←→
C4-free.

We construct ϕ greedily as follows: choose a simple arc uv such that both u and v have not been
coloured yet, and use a new colour for them. At the end, there are either one or three uncoloured
vertices. If there is only one, we just use a new colour for it and B is of type (i), for otherwise
the three remaining vertices induce a bidirected triangle on D and we can use one new colour for
each of them, so B is of type (ii).

Assume now that n(T ) ≥ 2. Let x be a leaf of T and y its only neighbour in T . Let ¶u♢ =
By \Bx and ¶v♢ = Bx \By. By induction, with D − v and (T − x,X \Bx) playing the role of
D and (T,X ) respectively, there exists a balanced k-dicolouring ϕ of D − v for which each bag
is of type (i) or (ii). We will show by a case analysis that ϕ can be extended to v.

• Assume first that By is of type (i), and let r be the only vertex alone in its colour class in
D⟨By⟩. If r = u, then we set ϕ(v) = ϕ(u) and ϕ is a balanced k-dicolouring of D with
Bx being of type (i). Henceforth assume u ̸= r. Let w be the neighbour of u in By such
that ϕ(w) = ϕ(u). Since u and v are not adjacent, setting ϕ(v) = ϕ(u) yields a balanced
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Figure 2.5: The digraph D3,n.

k-dicolouring of D, with Bx being of type (i), except if w and v are linked by a digon.
Analogously, setting ϕ(v) = ϕ(r) yields a balanced k-dicolouring of D, with Bx being of
type (i) since |ϕ−1(c) ∩Bx| = 1 holds only for c = ϕ(w), except if r and v are linked by a
digon.

But then, if both [v, w] and [v, r] are digons, we can set ϕ(v) to the missing colour of ϕ(By).
Then ϕ is a balanced k-dicolouring ofD withBx being of type (ii), since |ϕ−1(c)∩Bx| = 1

holds exactly for every c ∈ ¶ϕ(w), ϕ(v), ϕ(r)♢ with r, w being connected by a
←→
P3 in D.

• Henceforth, assume that By is of type (ii) and let r, s, t be the only vertices alone in their

colour class in D⟨By⟩ such that s and t are connected by a
←→
P3 in D − v. If u = r, then we

set ϕ(v) = ϕ(u) and ϕ is a balanced k-dicolouring of D with Bx being of type (ii).

Assume now that u ∈ ¶s, t♢. Without loss of generality, we assume that u = s. If r and
v are not linked by a digon, we can set ϕ(v) = ϕ(r) and ϕ is a balanced k-dicolouring
of D with Bx being of type (i). The same argument holds if t and v are not linked by a
digon. But if both [v, r] and [v, t] are digons, we can set ϕ(v) = ϕ(s). Then ϕ is a balanced
k-dicolouring of D with Bx being of type (ii), since |ϕ−1(c) ∩ Bx| = 1 holds exactly for

every c ∈ ¶ϕ(v), ϕ(r), ϕ(t)♢ with r, t being connected by a
←→
P3 in D.

Assume finally that u /∈ ¶r, s, t♢ and let w be the neighbour of u in By such that ϕ(w) =
ϕ(u). If r and v are not linked by a digon, we can set ϕ(v) = ϕ(r) and ϕ is a balanced
k-dicolouring of D with Bx being of type (ii), where |ϕ−1(c) ∩ Bx| = 1 holds exactly

for every c ∈ ¶ϕ(w), ϕ(s), ϕ(t)♢ with s, t being connected by a
←→
P3 in D − v. The same

argument holds if v and w are not linked by a digon. Henceforth we assume that both [v, w]

and [v, r] are digons. Since D is
←→
C4-free, and because s, t are connected by a

←→
P3 in D − v,

we know that either [v, s] or [v, t] is not a digon of D. Assume without loss of generality
that [v, s] is not, then we set ϕ(v) = ϕ(s). Then ϕ is a balanced k-dicolouring of D with Bx

being of type (ii), since |ϕ−1(c) ∩ Bx| = 1 holds exactly for every c ∈ ¶ϕ(w), ϕ(r), ϕ(t)♢
with w, r being connected by a

←→
P3 in D.

Theorem 2.1.7. For every fixed k ≥ 3 and every n ≥ N, there exists a super-orientation Dk,n

of a chordal graph Gk,n on at least n vertices such that S(Dk,n) is a disjoint union of paths,

ω(Gk,n) = k and χ⃗(Dk,n) =
⌊︂

k+3
2

⌋︂
.

Proof. We only have to prove it for k = 3. For larger values of k, we build Dk,n from Dk−1,n

or Dk−2,n as in the proof of Theorem 2.1.4. The digraph D3,n, depicted in Figure 2.5, is clearly
a super-orientation of a 2-tree. As a consequence of Theorem 2.2.4, it has dichromatic number 3,
since it is obtained from successive Hajós joins applied on

←→
K3.
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2.8 Further research directions

In this chapter, we gave both lower and upper bounds on the dichromatic number orientations and
super-orientations of different classes of chordal graphs and cographs. Plenty of questions arise
and we detail a few of them.

First, we do not know if the bound of Theorem 2.1.5 is optimal, and we ask the following.

Question 2.8.1. Does there exist a computable function f such that every super-orientation D of

a chordal graph G satisfies χ⃗(D) ≤ 1
2ω(G) + f(Mad(S(D))) ?

We also ask if Theorem 2.1.6 is true not only for
←→
C4-free digraphs but for every

←→
Cℓ -free

digraphs.

Question 2.8.2. For every ℓ ≥ 3, does there exist kℓ ∈ N such that every
←→
Cℓ -free super-orientation

D of a chordal graph G satisfies χ⃗(D) ≤ 1
2ω(G) + kℓ?

A famous class of graphs is the class of claw-free graphs (a graph is claw-free if it does not
contain K1,3 as an induced subgraph). Line-graphs and proper interval graphs are examples of
claw-free graphs. We ask the following.

Problem 2.8.3. Let G⃗ be an orientation of a claw-free graph G, then χ⃗(G⃗) = O
⎞

ω(G)
log ω(G)

)︂
.

Recall that a celebrated conjecture of Erdős and Neumann-Lara (Conjecture 1.2.13) states that
every orientation G⃗ of a graph G satisfies χ⃗(G⃗) = O

⎞
∆(G)

log ∆(G)

)︂
. Since every claw-free graph G

satisfies ∆(G) ≤ 2ω(G)− 2, the problem above is a consequence of Erdős and Neumann-Lara’s
conjecture.
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3.1 Brooks Theorem and its generalisations

As mentioned in the introduction of this thesis, a simple greedy procedure shows that every graph
G satisfies χ(G) ≤ ∆(G) + 1. Brooks Theorem [44] is a fundamental theorem in graph colouring
that characterises exactly the connected graphs for which equality holds.

Theorem 3.1.1 (BROOKS THEOREM). A connected graph G satisfies χ(G) = ∆(G) + 1 if and

only if G is an odd cycle or a complete graph.

Brooks Theorem has been generalised in many ways. We refer the interested reader to the
recent book of Stiebitz, Schweser, and Toft [162] dedicated to Brooks Theorem and its generali-
sations. One such generalisation is about list colouring. Given a graph G, a list assignment L is a

39
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function which associates a list of colours to every vertex v of G. An L-colouring of G is a proper
colouring α of G such that α(v) ∈ L(v) for every vertex v.

A block B in a graph G (resp. a digraph D) is a maximal 2-connected subgraph of G (resp.
subdigraph of D). Recall that K2 is 2-connected by definition. A cut-vertex of G (resp. D) is a
vertex x such that G− v (resp. D− v) is disconnected. A block B of G (resp. D) is an end-block

if it contains exactly one cut-vertex of G (resp. D). A Gallai tree is a connected graph in which
every block is either a complete graph or an odd cycle. The following was obtained independently
by Borodin [38] and by Erdős, Rubin, and Taylor [71].

Theorem 3.1.2 (Borodin [38] ; Erdős et al. [71]). Let G be a connected graph and L be a list

assignment of G such that, for every vertex v ∈ V , |L(v)| ≥ d(v). If G is not L-colourable, then

G is a Gallai tree and |L(v)| = d(v) for every vertex v.

Note that this is actually a generalisation of Brooks Theorem: if G is a connected graph of
maximum degree ∆, then G is ∆-colourable if and only if it is L-colourable where L(v) = [∆]
for every vertex v of G. Hence, if it is not ∆-colourable, Theorem 3.1.2 implies that G must be a
∆-regular Gallai tree, that is a complete graph or an odd cycle.

Another independent generalisation of Brooks Theorem is about partitioning into degenerate
subgraphs. Given an integer d, a graph G is d-degenerate if every non-empty subgraph of G
contains a vertex of degree at most d. Note that X is an independent set of a graph G if and only
if G⟨X⟩ is 0-degenerate. Let P = (p1, . . . , ps) be a sequence of positive integers. A graph G is
P -colourable if there exists an s-colouring α of G such that, for every i ∈ [s], the subgraph of G
induced by the colour class α−1(i) is (pi − 1)-degenerate. When p1 = · · · = ps = 1, observe
that a P -colouring is exactly a proper s-colouring. Borodin [37], and Bollobás and Manvel [30]
independently proved the following.

Theorem 3.1.3 (Borodin [37] ; Bollobás and Manvel [30]). Let G be a connected graph with

maximum degree ∆ and P = (p1, . . . , ps) be a sequence of s ≥ 2 non-negative integers such that∑︁s
i=1 pi ≥ ∆. If G is not P -colourable, then

∑︁s
i=1 pi = ∆ and G is a complete graph or an odd

cycle.

Brooks Theorem follows from Theorem 3.1.3 by setting s = ∆ and pi = 1 for every i ∈ [∆].

Given these two independent generalisations of Brooks Theorem, one can naturally ask for
an even more general theorem subsuming both Theorems 3.1.2 and Theorem 3.1.3. Such a result
has been proved by Borodin, Kostochka, and Toft when they introduced the notion of variable
degeneracy in [39].

Let G be a graph and f : V −→ N be a function. We say that G is strictly-f -degenerate if every
subgraphH ofG contains a vertex v such that d(v) < f(v). Given an integer s ≥ 1 and a sequence
of functions F = (f1, . . . , fs), we say that G is F -colourable if there exists an s-colouring α of
G such that, for every i ∈ [s], the subgraph of G induced by α−1(i) is strictly-fi-degenerate. Also
we say that (G,F ) is a hard pair if one of the following conditions holds:

• G is 2-connected and there exists i ∈ [s] such that, for every vertex v ∈ V (G), fi(v) = d(v)
and fk(v) = 0 when k ̸= i.

• G is an odd cycle and all the fis are constant equal to 0, except exactly two that are constant
equal to 1.
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• G is a complete graph, all the fis are constant and for every vertex v, f1(v) + · · ·+ fs(v) =
n(G)− 1.

• (G,F ) is obtained from two hard pairs (G1, F 1) and (G2, F 2) by identifying two vertices
x1 ∈ V (G1) and x2 ∈ V (G2) into a new vertex x ∈ V (G), such that for every vertex
v ∈ V (G) and every k ∈ [s] we have:

fk(v) =

∏︂
⋁︂⨄︂
⋁︂⎩

f1
k (v) if v ∈ V (G1) \ ¶x1♢
f2

k (v) if v ∈ V (G2) \ ¶x2♢
f1

k (v) + f2
k (v) if v = x.

where F 1 = (f1
1 , . . . , f

1
s ) and F 2 = (f2

1 , . . . , f
2
s ).

The following generalises both Theorems 3.1.2 and 3.1.3.

Theorem 3.1.4 (Borodin, Kostochka, and Toft [39]). Let G be a connected graph and F =
(f1, . . . , fs) be a sequence of functions such that, for every vertex v ∈ V (G),

∑︁s
i=1 fi(v) ≥ d(v).

Then G is F -colourable if and only if (G,F ) is not a hard pair.

Note that Theorem 3.1.3 is obtained from the result above by setting fi to the constant function
equal to pi + 1 for every i ∈ [s]. On the other hand, given a graph G and a list assignment L of G,
one can set fi(v) to 1 when i ∈ L(v) and 0 otherwise to obtain Theorem 3.1.2.

We mention that Theorem 3.1.4 has been extended to hypergraphs, the interested reader on
these questions is referred to [154] and [153]. It has also been generalised to correspondence
colouring (which is also known as DP-colouring), see [110].

As mentioned in the introduction of this thesis, Brooks theorem has been first generalised to
digraphs by Harutyunyan and Mohar in [91] as follows.

Theorem 3.1.5 (DIRECTED BROOKS THEOREM). Let D be a connected digraph. Then χ⃗(D) ≤
∆max(D) + 1 and equality holds if and only if one of the following occurs:

• D is a directed cycle, or

• D is a bidirected odd cycle, or

• D is a bidirected complete graph (of order at least 4).

Harutyunyan and Mohar actually extended Theorem 3.1.2 to digraphs. A directed Gallai

tree is a digraph in which every block is a directed cycle, a bidirected odd cycle or a bidirected
complete graph. Given a list assignment of a digraph D, an L-dicolouring α is a dicolouring of
D such that α(v) ∈ L(v) holds for every vertex v of D. If D admits an L-dicolourable, then D is
L-dicolourable.

Theorem 3.1.6 (Harutyunyan and Mohar [91]). Let D be a connected digraph and L a list as-

signment ofD such that |L(v)| ≥ dmax(v). IfD is not L-dicolourable, thenD is a directed Gallai

tree and |L(v)| = dmax(v) for every vertex v.

The notion of variable degeneracy and Theorem 3.1.4 have been extended to digraphs by Bang-
Jensen, Schweser, and Stiebitz [19]. In Section 3.2, we propose another extension of variable
degeneracy for digraphs, namely the bivariable degeneracy. With this new definition, we prove a
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Figure 3.1: A digraph which is strictly-(2, 0)-degenerate while it is not strictly-(0, 2)-degenerate.

more general result than the one of [19], with a new proof based on ear decompositions. Moreover,
our algorithmic proof justifies the existence of a linear-time algorithm for deciding whether a
digraph verifying some conditions is F -colourable and computing such a colouring when it exists.
It can thus be derived into linear-time algorithms for all the results presented in this section and
their extensions to digraphs, which was known for Theorem 3.1.3 [54], but not for Theorem 3.1.4
to the best of the author’s knowledge.

In Section 3.3, we discuss strengthenings of Theorem 3.1.5 when restricted to oriented graphs.
On this class of digraphs, we prove that an analogue of Theorem 3.1.5 can be obtained when
replacing ∆max(D) by ∆min(D). We actually prove a more general statement on the list colouring
of digraphs with no large bidirected cliques. We also give an NP-hardness result to justify that our
result is in some sense best possible.

3.2 Partitioning digraphs into degenerate subdigraphs in linear time

Let D = (V,A) be a digraph and f : V → N
2 be a function. We denote by f− (resp. f+) the

projection of f on the first (resp. second) coordinate. Such a function is said to be symmetric if
f−(v) = f+(v) for every v ∈ V . For two elements p = (p1, p2) q = (q1, q2) of N

2, we denote by
p ≤ q the relation p1 ≤ q1 and p2 ≤ q2. We denote by p < q the relation p ≤ q and p ̸= q.

We say that D is strictly-f -degenerate if every subdigraph H of D has a vertex v such that
d−

H(v) < f−(v) or d+
H(v) < f+(v). Let s be a positive integer and F = (f1, . . . , fs) be a

sequence of functions fi : V −→ N
2. The digraphD if F -dicolourable if there exists an s-colouring

α of D such that, for every i ∈ [s], the subdigraph of D induced by the colour class α−1(i) is
strictly-fi-degenerate. Such a colouring α is called an F -dicolouring.

Observe that a digraph is acyclic if and only if it is strictly-(0, 1)-degenerate (i.e. strictly-
f -degenerate for f being the constant function equal to (0, 1)). Although acyclic digraphs are
also exactly the strictly-(1, 0)-degenerate digraphs, this does not generalise to higher values. For
instance, the digraph illustrated in Figure 3.1 is strictly-(2, 0)-degenerate while it is not strictly-
(0, 2)-degenerate.

Deciding if a digraph is F -dicolourable is clearly NP-hard because it includes a large col-
lection of NP-hard problems for specific values of F . For instance, deciding if a digraph D has
dichromatic number at most 2, which is shown to be NP-hard in [50], consists exactly of deciding
whetherD is (f1, f2)-dicolourable where f1, f2 are the constant functions equal to (1, 0). We thus
restrict ourselves to pairs (D,F ) verifying the following property:

∀v ∈ V (D),
s∑︂

i=1

f−
i (v) ≥ d−(v) and

s∑︂

i=1

f+
i (v) ≥ d+(v). (V)
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(1, 1), (2, 2)

(1, 1), (2, 2)

(1, 1), (2, 2)

(1, 3), (2, 2)

(2, 1)

(1, 2)

(3, 1), (1, 1)

(1, 1), (1, 1)

(1, 1), (1, 1)

(1, 1), (1, 1)

(1, 1), (1, 1)

Figure 3.2: An example of a hard pair (D,F ) where F is a sequence of three functions f1, f2, f3

the values of which are respectively represented in red, green, and blue. For the sake of readability,
the value of fi is missing when it is equal to (0, 0).

If (D,F ) is a pair satisfying the validity property (V) and furthermoreD is connected, then (D,F )
is called a valid pair. Some valid pairs have a particular structure, and we call them hard pairs.
We say that (D,F ) is a hard pair if one of the following four conditions holds:

(i) D is a 2-connected digraph, and there exists i ∈ [s] such that, for every vertex v ∈ V ,
fi(v) = (d−(v), d+(v)) and fk(v) = (0, 0) when k ̸= i.

We refer to such a hard pair as a monochromatic hard pair.

(ii) D is a bidirected odd cycle, and the functions f1, . . . , fs are all constant equal to (0, 0)
except exactly two that are constant equal to (1, 1).

We refer to such a hard pair as a bicycle hard pair.

(iii) D is a bidirected complete graph, the functions f1, . . . , fs are all constant and symmetric,
and for every vertex v we have

∑︁s
i=1 f

+
i (v) = n(D)− 1.

We refer to such a hard pair as a complete hard pair.

(iv) (D,F ) is obtained from two hard pairs (D1, F 1) and (D2, F 2) by identifying two vertices
x1 ∈ V (D1) and x2 ∈ V (D2) into a new vertex x ∈ V (D), such that for every vertex
v ∈ V (D) we have:

fk(v) =

∏︂
⋁︂⨄︂
⋁︂⎩

f1
k (v) if v ∈ V (D1) \ ¶x1♢
f2

k (v) if v ∈ V (D2) \ ¶x2♢
f1

k (v) + f2
k (v) if v = x.

where F 1 = (f1
1 , . . . , f

1
s ), F 2 = (f2

1 , . . . , f
2
s ).

We refer to such a hard pair as a join hard pair.

See Figure 3.2 for an illustration of a hard pair.
The following is the main result of this section.
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Theorem 3.2.1. Let (D,F ) be a valid pair. Then D is F -dicolourable if and only if (D,F ) is not

a hard pair. Moreover, there is an algorithm running in time O(n(D) + m(D)) that decides if

(D,F ) is a hard pair, and that outputs an F -dicolouring if it is not.

As mentioned in the introduction, the first part of this theorem generalises a result of [19].
Indeed, their result corresponds to restricting ourselves to symmetric functions. As this result
generalised Theorem 3.1.4 and Theorem 3.1.6, Theorem 3.2.1 also does. The algorithm of The-
orem 3.2.1 also improves on the result of [19] in terms of complexity. Their algorithm is shown
to be polynomial, without more details on the exponent. Note that due to F , the input has size
O(n(D) +m(D) + s · n(D)). The algorithm of Theorem 3.2.1 can thus be sublinear in the input
size if (n(D) + m(D)) is asymptotically dominated by (s · n(D)). In the remaining of this sec-
tion, “linear time complexity” means linear in the number of vertices and arcs of the considered
digraph.

In Section 3.2.1, we give a short proof that if (D,F ) is a hard pair, then D is not F -
dicolourable. In Section 3.2.2 we prove the converse and the second part of Theorem 3.2.1.

3.2.1 Hard pairs are not dicolourable

Lemma 3.2.2. Let (D,F ) be a hard pair, then D is not F -dicolourable.

Proof. We proceed by induction. Let (D,F = (f1, . . . , fs)) be a hard pair. Assume for a con-
tradiction that it admits an F -dicolouring α with colour classes V1, . . . , Vs. We distinguish four
cases, depending on the kind of hard pair (D,F ) is.

(i) If (D,F ) is a monochromatic hard pair, let i ∈ [s] be such that, for every vertex v ∈ V ,
fi(v) = (d−(v), d+(v)) and fk(v) = (0, 0) when k ̸= i. Then, for every k ̸= i, Vk must be
empty, for otherwise D⟨Vk⟩ is not strictly-fk-degenerate. Therefore, we have V = Vi and
D must be strictly-fi-degenerate. Hence D contains a vertex v such that d−(v) < f−

i (v) or
d+(v) < f+

i (v), a contradiction.

(ii) If (D,F ) is a bicycle hard pair, let i, j ∈ [s] be distinct integers such that, for every vertex
v ∈ V , fi(v) = fj(v) = (1, 1) and fk(v) = (0, 0) when k /∈ ¶i, j♢. Again, Vk must
be empty when k /∈ ¶i, j♢, so (Vi, Vj) partitions V . Since D is a bidirected odd cycle, it
is not bipartite, so D⟨Vi⟩ or D⟨Vj⟩ contains a digon between vertices u and v. Assume
that D⟨Vi⟩ does, then H = D⟨¶u, v♢⟩ must contain a vertex x such that d−

H(x) < f−
i (x)

or d+
H(x) < f+

i (x), a contradiction since fi(x) = (d−
H(x), d+

H(x)) = (1, 1) for every
x ∈ ¶u, v♢.

(iii) If (D,F ) is a complete hard pair, then for each i ∈ [s], sinceD⟨Vi⟩ is strictly-fi-degenerate,
we have |Vi| ≤ f−

i (v) where v is any vertex (recall that the functions f1, . . . , fs are con-
stant and symmetric). Then

∑︁s
i=1 |Vi| ≤

∑︁s
i=1 f

−
i (v) = n(D) − 1, a contradiction since

(V1, . . . , Vs) partitions V .

(iv) Finally, if (D,F ) is a join hard pair, (D,F ) is obtained from two hard pairs (D1, F 1) and
(D2, F 2) by identifying two vertices x1 ∈ V (D1) and x2 ∈ V (D2) into a new vertex
x ∈ V (D), such that for every vertex v ∈ V (D) we have:

fk(v) =

∏︂
⋁︂⨄︂
⋁︂⎩

f1
k (v) if v ∈ V (D1) \ ¶x1♢
f2

k (v) if v ∈ V (D2) \ ¶x2♢
f1

k (v) + f2
k (v) if v = x.
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where F 1 = (f1
1 , . . . , f

1
s ), F 2 = (f2

1 , . . . , f
2
s ).

By induction, we may assume thatD1 is notF 1-dicolourable andD2 is notF 2-dicolourable.
Let α1 and α2 be the following s-colourings of D1 and D2.

α1(v) =

∮︂
α(v) if v ̸= x1

α(x) otherwise.
and α2(v) =

∮︂
α(v) if v ̸= x2

α(x) otherwise.

We denote respectively by U1, . . . , Us and W1, . . . ,Ws the colour classes of α1 and α2.
Since D1 is not F 1-dicolourable, there exist i ∈ [s] and a subdigraph H1 of D1⟨Ui⟩ such
that every vertex u ∈ V (H1) satisfies d−

H1(u) ≥ f1
i

−
(u) and d+

H1(u) ≥ f1
i

+
(u). We claim

that x1 ∈ V (H1). Assume not, then H1 is a subdigraph of D⟨Vi⟩ and every vertex u in H1

satisfies fi(u) = f1
i (u), and so it satisfies d−

H1(u) ≥ f−
i (u) and d+

H1(u) ≥ f+
i (u). This is a

contradiction to D⟨Vi⟩ being strictly-fi-degenerate.

Hence, we know that x1 ∈ V (H1). Swapping the roles of D1 and D2, there exists an
index j ∈ [s] and a subdigraph H2 of D2⟨Wj⟩ such that every vertex w ∈ V (H2) satisfies
d−

H2(w) ≥ f2
j

−
(w) and d+

H2(w) ≥ f1
j

+
(w). Analogously, we must have x2 ∈ V (H2).

By definition of α1 and α2, we have i = j and x ∈ Vi. Let H be the subdigraph of
D⟨Vi⟩ obtained from H1 and H2 by identifying x1 and x2 into x. For every vertex u ∈
V (H) ∩ V (H1), we have d−

H(u) = d−
H1(u) ≥ f−

i (u) and d+
H(u) = d+

H1(u) ≥ f+
i (u).

Analogously, for every vertex w ∈ V (H) ∩ V (H2), we have d−
H(w) = d−

H2(w) ≥ f2
i

−
(w)

and d+
H(w) = d+

H2(w) ≥ f1
i

+
(w). Finally, we have

d−
H(x) = d−

H1(x1) + d−
H2(x2) ≥ f1

i

−
(x1) + f2

i

−
(x2) = f−

i (x)

and d+
H(x) = d+

H1(x1) + d+
H2(x2) ≥ f1

i

+
(x1) + f2

i

+
(x2) = f+

i (x).

This is a contradiction to D⟨Vi⟩ being strictly-fi-degenerate.

3.2.2 Dicolouring non-hard pairs in linear time

In this section, we prove Theorem 3.2.1 by describing the mentioned algorithm, proving its cor-
rectness, and its time complexity. Essentially, this algorithm consists in first testing if (D,F ) is a
hard pair or not, and then if it is not, in pipelining various algorithms reducing the initial instance
until a solution can be found.

We first discuss the data structure encoding the input in Section 3.2.2.1. We give some techni-
cal definitions used in the proof and some preliminary remarks in Section 3.2.2.2. In the following
subsections, we describe different reduction steps unfolding in our algorithm. We consider valid
pairs for which the constraints are loose in Section 3.2.2.4 based on a simple greedy algorithm
presented in Section 3.2.2.3. Then, we consider “tight” valid pairs. In Section 3.2.2.5, we show
how to reduce a tight and valid pair (D,F ) into another one (D′, F ′) for which D′ is 2-connected
and smaller than D. At this point, we may use the hardness of (D′, F ′) to detect whether (D,F )
is hard, otherwise the remainder of the section consists in exhibiting an F ′-dicolouring of D′,
yielding an F -dicolouring of D. Then in Section 3.2.2.6, we reduce the instance to one with two
colours. After these reductions, we show how to solve 2-connected instances with two colours in
Section 3.2.2.7 and in Section 3.2.2.8, through the use of ear-decompositions. We conclude with
the proof of Theorem 3.2.1 in Section 3.2.2.9.



46 CHAPTER 3 — On the Directed Brooks Theorem

3.2.2.1 Data structures

We need appropriate data structures to process the entry pair (D,F ). The following structures are
standard, but let us list their properties. The digraph D is encoded in space O(n(D) + m(D))
with a data structure allowing, for every vertex v,

• to access the values n(D), m(D), d−(v), d+(v), and |N−(v) ∩N+(v)| in O(1) time,

• to enumerate the vertices of the sets V (D), N−(v), N+(v) in O(1) time per vertex,

• to delete a vertex v (and update all the related values and sets) in O(d(v)) time, and

• to compute a spanning tree rooted at a specified root in O(n(D) +m(D)) time.

The functions F = (fi)i∈[s] are encoded in O(s ·n(D)) space in a data structure allowing, for
every vertex v,

• to read or modify f−
i (v) and f+

i (v) in O(1) time, and

• to enumerate (only) the colours i such that fi(v) ̸= (0, 0), in O(1) time per such colour.

This data structure is simply a s × n(D) table with pointers linking the cells (i, v) and (j, v) if
fi(v) ̸= (0, 0), fj(v) ̸= (0, 0), and fk(v) = (0, 0) for every k such that i < k < j.

The output is a vertex colouring which we build along the different steps of our algorithm, and
is simply encoded in a table.

3.2.2.2 Preliminaries

Let (D,F = (f1, . . . , fs)) be a (non-necessarily valid) pair, let X ⊆ V (D) be a subset of vertices
of D, and α : X → [s] be a partial s-colouring of D. Let D′ = D −X and F ′ = (f ′

1, . . . , f
′
s) be

defined as follows:

f ′−
i (u) = max(0, f−

i (u)− |α−1(i) ∩N−(u)|)
and f ′+

i (u) = max(0, f+
i (u)− |α−1(i) ∩N+(u)|)

We call (D′, F ′) the pair reduced from (D,F ) by colouring α.

Lemma 3.2.3. Consider a (non-necessarily valid) pair (D,F ) and an F -dicolouring α of D⟨X⟩,
for a subset X ⊆ V (D). Let (D′, F ′) be the pair reduced from (D,F ) by α. Then, combining α
with any F ′-dicolouring of D′ yields an F -dicolouring of D.

Furthermore, there is an algorithm that given a pair (D,F ), and a colouring α of some set

X ⊆ V (D), outputs the reduced pair (D′, F ′) in O(
∑︁

v∈X d(v)) time.

Proof. Let β be any F ′-dicolouring of D′. We will show that the combination γ of α and β is
necessarily an F -dicolouring of D. We formally have

γ(v) =

∮︂
α(v) if v ∈ X
β(v) otherwise.

Let i ∈ [s] be any colour, we will show that D⟨Vi⟩ is strictly-fi-degenerate, where Vi = γ−1(i),
which implies the first part of the statement. To this purpose, let H be any subdigraph of D⟨Vi⟩,
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we will show that H contains a vertex v satisfying d−
H(v) < f−

i (v) or d+
H(v) < f+

i (v). Observe
first that, if V (H) ⊆ X , the existence of v is guaranteed since α is an F -dicolouring of D⟨X⟩.
Henceforth assume that V (H) \ X ̸= ∅, and let H ′ be H − X . Since V (H ′) ⊆ β−1(i), by
hypothesis on β, it is strictly-f ′

i-degenerate. Hence there must be a vertex v ∈ V (H ′) such that
d−

H′(v) < f ′
i
−(v) or d+

H′(v) < f ′
i
+(v). If d−

H′(v) < f ′
i
−(v), we obtain

d−
H(v) ≤ d−

H′(v) + |α−1(i) ∩N−(v)| < f ′
i
−

(v) + |α−1(i) ∩N−(v)| = f−
i (v).

Symmetrically, d+
H′(v) < f ′

i
+(v) implies d+

H(v) < f+
i (v). We are thus done.

The algorithm is elementary. It consists on a loop over vertices v ∈ X , updating a table storing
the colouring with colour α(v) for v, deleting v from D, and visiting every neighbour u of v in
order to update its adjacency list and fc(u). This is clearly linear in

∑︁
v∈X d(v).

Let (D,F ) be a valid pair. Let X be a subset of vertices of D, α : X → [s] be a partial
colouring of D, and (D′, F ′) be the pair reduced from (D,F ) by α. We say that the colouring α
of D⟨X⟩ is safe if each of the following holds:

• α is an F -dicolouring of D⟨X⟩,

• D′ is connected, and

• (D,F ) is a hard pair if and only if (D′, F ′) is a hard pair.

For the particular case X = ¶v♢, we thus say that colouring v with c is safe if fc(v) > (0, 0),
D − x is connected, and the reduced pair (D′, F ′) is a hard pair if and only if (D,F ) is.

The following lemma tells us how directed variable degeneracy relates to vertex orderings.

Lemma 3.2.4. Given a digraph D = (V,A), and a function f : V −→ N
2, D is strictly-f -

degenerate if and only if there exists an ordering v1, . . . , vn of the vertices of D such that

f−(vi) > |N−(vi) ∩ ¶vj | j ≤ i♢| or f+(vi) > |N+(vi) ∩ ¶vj | j ≤ i♢|

Proof. (=⇒) We proceed by induction on the number of vertices n. This implication clearly
holds for n = 1. Assume now that n ≥ 2. Let vn be a vertex of D such that f−(vn) > d−(vn)
or f+(vn) > d+(vn), which exists by strict degeneracy of D. Since d−(vn) ≥ |N−(vn) ∩ S|
and d+(vn) ≥ |N+(vn) ∩ S| for any set S ⊆ V , the property holds for vn. By induction there
is an ordering v1, . . . , vn−1 of the vertices of D′ = D − vn such that for every vertex vi, with
1 ≤ i ≤ n− 1, we have

f−(vi) > |N−
D′(vi) ∩ ¶vj | j ≤ i♢| or f+(vi) > |N+

D′(vi) ∩ ¶vj | j ≤ i♢|

AsN−
D′(v)∩¶vj | j ≤ i♢ = N−

D (v)∩¶vj | j ≤ i♢ andN+
D′(v)∩¶vj | j ≤ i♢ = N+

D (v)∩¶vj | j ≤
i♢, the property still holds in D and we are done.

(⇐=) For any subdigraph H = (VH , AH) of D let vk be the vertex of VH with largest index
k. Since N−

H (vk) = N−
D (vk) ∩ VH ⊆ N−

D (vk) ∩ ¶vj | j ≤ k♢, and N+
H (vk) = N+

D (vk) ∩ VH ⊆
N+

D (vk) ∩ ¶vj | j ≤ k♢, we have that

f−(vk) > |N−
D (v)∩ ¶vj | j ≤ k♢| ≥ d−

H(vk) or f+(vi) > |N+
D (v)∩ ¶vj | j ≤ i♢| ≥ d+

H(vk).
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3.2.2.3 Greedy algorithm

In this subsection, we consider an algorithm that greedily colours D, partially or entirely. We
are going to give conditions ensuring that this approach succeeds in providing a (partial) F -
dicolouring.

Lemma 3.2.5. Given a (non-necessarily valid) pair (D,F ) and an ordered list of vertices

v1, . . . , vℓ of V (D), there is an algorithm, running in timeO
⎞∑︁ℓ

i=1 d(vi)
)︂

, that tries to colour the

vertices v1, . . . , vℓ in order to get an F -dicolouring of D⟨¶v1, ..., vℓ♢⟩. If the algorithm succeeds,

it also computes the reduced pair (D′, F ′).

If F is such that for every vi ∈ ¶v1, . . . , vℓ♢, we have

s∑︂

c=1

f−
c (vi) > |N−(vi) ∩ ¶vj | j ≤ i♢| or

s∑︂

c=1

f+
c (vi) > |N+(vi) ∩ ¶vj | j ≤ i♢| (R)

the algorithm succeeds. If condition (R) is fulfilled, if (D,F ) is valid, and if D − ¶v1, . . . , vℓ♢ is

connected, the reduced pair (D′, F ′) is a valid pair.

Note that as
∑︁

v∈D d(v) = 2m(D) the time complexity here is O(n(D) +m(D)), even when
the whole digraph is coloured.

Proof. The algorithm simply consists in considering the vertices v1, . . . , vℓ in this order and, if
possible, to colour vi with a colour c such that

f−
c (vi) >

\︄\︄}︄u ∈ N−(vi) ∩ ¶v1, . . . , vi♢ | u is coloured c
⟨︄\︄\︄ ,

or such that f+
c (vi) >

\︄\︄\︄
{︂
u ∈ N+(vi) ∩ ¶v1, . . . , vi♢ | u is coloured c

}︂\︄\︄\︄ .

The complexity of the algorithm holds because, it actually consists in a loop over vertices
v1, . . . , vℓ, where 1) it looks for a colour c such that fc(vi) ̸= (0, 0) (where F is updated after
each vertex colouring), and if it finds such a colour, 2) colours vi and updates (D,F ) into the cor-
responding reduced pair (D′, F ′). Step 1) is done in constant time (see Section 3.2.2.1), and step 2)
is done in O(d(vi)) time (by Lemma 3.2.3). Hence, the complexity clearly follows. Lemma 3.2.4,
applied to D⟨¶v1, ..., vℓ♢⟩, implies that if the algorithm succeeds, the obtained colouring is an
F -dicolouring of D⟨¶v1, ..., vℓ♢⟩.

To show the second statement, let us show the following invariant of the algorithm:

At the beginning of the ith iteration of the main loop, for any vertex vk with

i ≤ k ≤ ℓ, at least one of the following occurs:

• its number of uncoloured in-neighbours with index at most k is less than∑︁s
c=1 f

−
c (vk), or

• its number of uncoloured out-neighbours with index at most k is less than∑︁s
c=1 f

+
c (vk),

where the sums are made on the updated functions fc.

(♣)

Note that, by (R), Invariant (♣) holds for the first iteration. Let us show that if (♣) holds at the
beginning of the ith iteration for some vertex vk with i < k, then it still holds at the beginning of the
i + 1th iteration. Indeed, during the ith iteration, if the sum

∑︁s
c=1 f

−
c (vk) decreases, it decreases
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by exactly one, and in that case we have vi ∈ N−(vk). Hence, the number of uncoloured in-
neighbours of vk with index at most k also decreases by one, and (♣) sill holds. The same holds
for the out-neighbourhood of vi.

By (♣), at the beginning of the ith iteration, we have
∑︁s

i=1 fi(v) ̸= (0, 0). Hence, there is a
colour c such that fc(vi) ̸= (0, 0), so there is always a colour (e.g. c) available for colouring vi,
and the algorithm thus succeeds in colouring the whole digraph D⟨¶v1, . . . , vℓ♢⟩.

Finally for the last statement, if (R) holds, then the algorithm succeeds in producing an F -
dicolouring. Furthermore, if (D,F ) is valid, for any vertex u ∈ V (D) \ ¶v1, . . . , vℓ♢, we have
d−

D(u) ≤ ∑︁s
c=1 f

−
c (vi) and d+

D(u) ≤ ∑︁s
c=1 f

+
c (vi). For each of these inequalities, and at each

iteration of the main loop, the left-hand side decreases if and only if the right-hand side does,
in the reduced pair (D′, F ′). Hence, the validity property (V) holds in (D′, F ′), and since D′ is
connected, the pair (D′, F ′) is valid.

3.2.2.4 Solving loose instances

If the input digraph D as a whole is strictly- ˜︁f -degenerate for some ˜︁f , it may be easy to produce an
F -dicolouring, under some conditions on ˜︁f . Note that, in what follows, we do not ask for (D,F )
to be a valid pair, so D may be disconnected and vertices v do not necessarily satisfy the validity
property (V).

Lemma 3.2.6. Let D = (V,A) be a digraph, F = (f1, . . . , fs) be a sequence of functions

fi : V → N
2, and ˜︁f =

∑︁s
i=1 fi. If D is strictly- ˜︁f -degenerate, then D is F -dicolourable and an

F -dicolouring can be computed in linear time.

Proof. Let (D = (V,A), F = (f1, . . . , fs)) be such a pair. By Lemma 3.2.4, there exists an
ordering σ = v1, . . . , vn of V (D) such that, for every i ∈ [s], vi satisfies d+

Di
(vi) < f+(vi) or

d−
Di

(vi) < f−(vi), where Di is the subdigraph of D induced by ¶v1, . . . , vi♢.
We prove that such an ordering σ can be computed in linear time. Our proof follows a classical

linear-time algorithm for computing the classical degeneracy of a graph, but we give the proof
for completeness. We create two tables out_gap and in_gap, both of size n and indexed
by V . We iterate once over the vertices of V and, for every vertex v, we set out_gap(v) to
˜︁f+(v)− d+(v) and in_gap to ˜︁f−(v)− d−(v). We also store in a set S all vertices v for which
out_gap(v) ≤ −1 or in_gap(v) ≤ −1.

Then for i going from n to 1, we choose a vertex u in S that has not been treated before, we set
vi to u, and for every in-neighbour (resp. out-neighbour) w of u that has not been treated before,
we decrease in_gap(w) (resp. out_gap(w)) by one. If out_gap(w) ≤ −1 or in_gap(w) ≤
−1, we add w to S. We then remember (using a boolean table for instance) that u has been treated.

Following this linear-time algorithm, at the beginning of each step i ∈ [n], for every non-
treated vertex u, we have in_gap = f−(u)−d−

Di
(u) and out_gap = f+(u)−d+

Di
(u). We also

maintain that S contains all the vertices u satisfying in_gap(u) ≤ −1 or out_gap(u) ≤ −1.
Since D is strictly- ˜︁f -degenerate, at step i, there exists a non-treated vertex u ∈ S.

We now admit that such an ordering σ = (v1, . . . , vn) has been computed, and we greedily
colour the vertices from v1 to vn. The result follows from Lemma 3.2.5 and the fact that ˜︁f =∑︁s

i=1 fi.
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A valid pair is tight, if for every vertex the two inequalities of the validity property (V) are
equalities. The following particular case of Lemma 3.2.6 treats the case of instances that are
non-tight, which we also refer to as loose.

Lemma 3.2.7. Let (D,F ) be a valid pair that is loose. Then D is F -dicolourable and an F -

dicolouring can be computed in linear time.

Proof. Let (D = (V,A), F = (f1, . . . , fs)) be such a pair, and let ˜︁f : V → N
2 be

∑︁s
i=1 fi.

It is sufficient to prove that D is necessarily strictly- ˜︁f -degenerate, so the result follows from
Lemma 3.2.6.

Assume for a contradiction that D is not strictly- ˜︁f -degenerate, so by definition there exists an
induced subdigraph H of D such that, for every vertex v ∈ V (H), d+

H(v) ≥ ˜︁f+(v) and d−
H(v) ≥

˜︁f−(v). By definition of ˜︁f and because (D,F ) is a valid pair, we thus have d+
H(v) =

∑︁s
i=1 f

+
i (v)

and d−
H(v) = ˜︁f−(v). We directly deduce that H ̸= D as (D,F ) is loose.

Since D is connected (as (D,F ) is a valid pair) and because H ̸= D, there exists in D an arc
between vertices u and v such that u ∈ V (H) and v ∈ V (D)\V (H). Depending on the orientation
of this arc, we have d+

H(u) < d+
D(u) =

∑︁s
i=1 f

+
i (u) or d−

H(u) < d−
D(u) =

∑︁s
i=1 f

−
i (u), a

contradiction.

3.2.2.5 Reducing to a block and detecting hard pairs

We have just shown how to solve loose instances. In this subsection, we thus consider a tight
instance (D,F ), and show how to obtain a reduced instance (B,F ′) where B is a block of D, by
safely colouring V (D) \ V (B). Then, (B,F ′) is a hard pair if and only if (D,F ) is, in which
case we may terminate the algorithm. Otherwise, the following subsections show that B may be
F ′-dicoloured, and together with the colouring of V (D) \ V (B) fixed at this step, this yields an
F -dicolouring of D.

Our reduction of (D,F ) proceeds by considering the end-blocks of D one after the other. If
an end-block B, together with F , may correspond to a monochromatic hard pair, a bicycle hard
pair, or a complete hard pair glued to the rest of the digraph, then we safely colour V (B) \ V (D)
and move to the next end-block. IfB cannot be such a block, then we will show that we can safely
colour V (D) \ V (B).

Before formalising this strategy, we need a few definitions. Given a valid pair (D,F ), an
end-block B of D, with cut-vertex x, is a hard end-block if it is of one of the following types:

(i) There exists a colour i ∈ [s] such that fi(x) ≥ (d−
B(x), d+

B(x)), and for every v ∈ V (B) \
¶x♢ we have fi(v) = (d−

B(v), d+
B(v)) and fk(v) = (0, 0) when k ̸= i.

We refer to such a hard end-block as a monochromatic hard end-block.

(ii) B is a bidirected odd cycle and there exists colours i ̸= j such that, fi(x) ≥ (1, 1), fj(x) ≥
(1, 1) and for every v ∈ V (B)\¶x♢, we have fc(v) = (1, 1) if c ∈ ¶i, j♢ and fc(v) = (0, 0)
otherwise.

We refer to such a hard end-block as a bicycle hard end-block.

(iii) B is a bidirected complete graph, the functions f1, . . . , fs are constant and symmetric on
V (B) \ ¶x♢, and fi(x) ≥ fi(u) for every i ∈ [s] and every u ∈ V (B) \ ¶x♢.
We refer to such a hard end-block as a complete hard end-block.
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Let (D,F = (f1, . . . , fs)) be a tight valid pair such that D is not 2-connected and let B be a
hard end-block of D with cut-vertex x. Let u be any vertex of B distinct from x. We define the
contraction (D′, F ′ = (f ′

1, . . . , f
′
s)) of (D,F ) with respect to B, as follows:

• D′ = D − (V (B) \ ¶x♢);

• for every vertex v ∈ V (D′) \ ¶x♢ and every i ∈ [s], f ′
i(v) = fi(v);

• if B is a monochromatic hard end-block, let c be the unique colour such that fc(u) ̸= (0, 0),
then f ′

c(x) = fc(x)− (d−
B(x), d+

B(x)) and f ′
i(x) = fi(x) for every i ∈ [s] \ ¶c♢;

• otherwise, B a bicycle or a complete hard end-block, and f ′
i(x) = fi(x) − fi(u) for every

i ∈ [s].

Lemma 3.2.8. Let (D,F = (f1, . . . , fs)) be a tight valid pair such thatD is not 2-connected and

let B be a hard end-block of D with cut-vertex x. Let (D′, F ′ = (f ′
1, . . . , f

′
s)) be the contraction

of (D,F ) with respect to B. Then (D,F ) is a hard pair if and only if (D′, F ′) is a hard pair.

Proof. If (D′, F ′) is a hard pair, (D,F ) could be defined as the join hard pair obtained from two
hard pairs, (D′, F ′) and (B, ˜︁F = ( ˜︁f1, . . . , ˜︁fs)), where ˜︁fi = fi − f ′

i for every i ∈ [s].
Conversely, let us show by induction that for every hard pair (D,F ), and every end-block B,

thenB is a hard end-block and (D′, F ′), the contraction of (D,F ) with respect toB, is a hard pair.
This is trivial if D is 2-connected as D does not have any end-block. We thus assume that (D,F )
is a join hard pair obtained from two hard pairs (D1, F1) and (D2, F2). Assume without loss of
generality thatB is a block ofD1. IfB is not an end-block inD1, since it is an end-block ofD, we
necessarily have D1 = B. Hence (D′, F ′) is exactly (D2, F2), which is a hard pair. Furthermore,
irrespective of the type of hard pair (D1, F1), by the definition of hard join, D1 = B is clearly a
hard end-block of D. If B is an end-block of D1, By induction hypothesis, B is a hard end-block
of (D1, F1) and the contraction of (D1, F1) with respect to B, (D′

1, F
′
1), is a hard pair. It is easy

to check that (D′, F ′) is exactly the join hard pair obtained from (D′
1, F

′
1) and (D2, F2).

Before describing our algorithm reducing the instance to a single block, we need the following
subroutine testing if an end-block is hard.

Lemma 3.2.9. Given a tight valid pair (D,F = (f1, . . . , fs)), and an end-block B of D with

cut-vertex x, testing whether B is a hard end-block can be done in time O(n(B) +m(B)).

Proof. The algorithm takes block B with its cut-vertex x, and considers any u ∈ V (B) \ ¶x♢ as a
reference vertex.

We first check whetherB is a monochromatic hard end-block. To do so, we first check whether
exactly one colour i is available for u (i.e. ¶j | fj(u) ̸= (0, 0)♢ = ¶i♢). We then check whether i
is indeed the only available colour for every vertex v ∈ V (B) \ ¶u, x♢. We finally check whether
fi(x) ≥ (d−

D(x), d+
D(x)). Since (D,F ) is tight, B is a monochromatic hard end-block if and only

if all these conditions are met.
Assume now that B is not a monochromatic hard end-block. Now, B is a hard end-block if

and only if it is a bicycle hard end-block or a complete hard end-block. In both cases, the functions
f1, . . . , fs must be symmetric, and constant on V (B)\¶x♢. Since (D,F ) is tight, for every vertex
v ∈ V (B)\¶x♢, we can iterate over ¶j | fj(v) ̸= (0, 0)♢ in timeO(d(v)). This allows us to check
in linear time whether the functions f1, . . . , fs are symmetric and constant on V (B) \ ¶x♢. If this
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is not the case, B is not a hard end-block. We can assume now that f1, . . . , fs are symmetric and
constant on V (B) \ ¶x♢. We also assume that B is either a bidirected odd cycle or a bidirected
complete graph, for otherwise B is clearly not a hard end-block.

If B is a bidirected odd cycle, we check in constant time that fi(u) ̸= (0, 0) holds for exactly
two colours. If this does not hold, then B is not a hard end-block. If this is the case, denote
these two colours i, j, and note (by tightness and symmetry) that fi(u) = fj(u) = (1, 1), and that
fk(u) = (0, 0) for k /∈ ¶i, j′♢. Now B is a bicycle hard end-block if and only if fk(x) ≥ (1, 1)
for k ∈ ¶i, j♢, which can be checked in constant time.

Assume finally that B is a bidirected complete graph. Since (D,F ) is tight, and because the
functions f1, . . . , fs are symmetric and constant on V (B) \ ¶x♢, then B is a complete hard end-
block if and only if fi(x) ≥ fi(u) for every colour i ∈ [s]. This can be done in O(n(B)) time,
since there are at most n(B) colours i such that fi(u) ̸= (0, 0) (as (D,F ) is tight).

We now turn to showing the main lemma of this subsection, which reduces any tight valid pair
to a 2-connected one.

Lemma 3.2.10. Let (D,F ) be a tight valid pair. There exists a block B of D such that V (D) \
V (B) may be safely coloured, yielding the reduced pair (B,F ′). Moreover, (B,F ′) and the

colouring of V (D) \ V (B) can be computed in linear time.

Proof. Let (D,F ) be such a pair. We first compute, in linear time [165], an orderingB1, . . . , Br of
the blocks of D and an ordered set of vertices (x2, . . . , xr) in such a way that for every 2 ≤ ℓ ≤ r,
xℓ is the only cut-vertex of Bℓ in Dℓ = D⟨⎷ℓ

j=1 V (Bℓ)⟩. If D is 2-connected, that is r = 1, the
result follows for B = D and there is nothing to do. We now assume r ≥ 2.

For ℓ going from r to 2, we proceed as follows. We consider the block Bℓ, which is an end-
block of Dℓ. We will either safely colour V (Dℓ) \V (Bℓ) and output the reduced pair (Bℓ, F ′), or
safely colour V (Bℓ)\¶xℓ♢, compute the reduced pair (Dℓ−1, F ℓ−1), and go on with the end-block
Bℓ−1 of Dℓ−1. If we colour all the blocks Bℓ with ℓ ≥ 2, we output the reduced pair (D1, F 1).

More precisely, when consideringBℓ, we first check in timeO(n(Bℓ)+m(Bℓ)) whetherBℓ is
a hard end-block of (Dℓ, F ℓ) (by Lemma 3.2.9). We distinguish two cases, depending on whether
Bℓ is a hard end-block.

Case 1: Bℓ is a hard end-block of Dℓ.

In this case, we safely colour the vertices of V (Bℓ) \ ¶xℓ♢ in time O(n(Bℓ) +m(Bℓ)). To
do so, we first compute an ordering σ = (v1, . . . , vb = xℓ) of V (Bℓ) corresponding to a
leaves-to-root ordering of a spanning tree of Bℓ rooted in xℓ, in time O(n(Bℓ) + m(Bℓ)).
We then greedily colour the vertices v1, . . . , vb−1 in this order. For every j ∈ [b − 1], the
vertex vj has at least one neighbour in ¶vj+1, . . . , vb♢ (its parent in the spanning tree), so
condition (R) is fulfilled. Hence, Lemma 3.2.5 ensures that the algorithm succeeds and
that the reduced pair (Dℓ−1, F ℓ−1) is a valid pair. We will now show that (Dℓ−1, F ℓ−1) is
necessarily tight, and that the colouring of V (Bℓ) \ ¶xℓ♢ we computed is safe, by showing
that (Dℓ−1, F ℓ−1) is exactly the contraction of (Dℓ, F ℓ) with respect to Bℓ.

Assume first that Bℓ is a monochromatic hard end-block. Then, all the vertices of V (B) \
¶xℓ♢ are coloured with the same colour i, and by definition of a monochromatic hard end-
block, we have f ℓ−1

i (xℓ) = f ℓ
i (xℓ)− (d−

Bℓ(xℓ), d
+
Bℓ(xℓ)) and f ℓ−1

j (xℓ) = f ℓ
j (xℓ) for every

colour j ̸= i. Hence, (Dℓ−1, F ℓ−1) is tight (as the degrees from Dℓ to Dℓ−1 only change
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for xℓ, for which they decrease exactly by d−
Bℓ(xℓ), and d+

Bℓ(xℓ)) and Lemma 3.2.8 implies
that the colouring we computed is safe.

Assume now that Bℓ is a bicycle hard end-block. Let i ̸= j be such that f ℓ
i (u) = f ℓ

j (u) =

(1, 1) for every vertex u ∈ V (Bℓ) \ ¶xℓ♢. Recall that, by definition of a bicycle hard end-
block, f ℓ

k(xℓ) ≥ (1, 1) for k ∈ ¶i, j♢. Let u, v be the two neighbours of xℓ inBℓ, then u and
v are connected by a bidirected path of odd length in Bℓ − xℓ. This implies that u and v are
coloured differently, and f ℓ−1

k (xℓ) = f ℓ
k(xℓ)− (1, 1) for k ∈ ¶i, j♢ and f ℓ−1

k (xℓ) = f ℓ
k(xℓ)

for k /∈ ¶i, j♢. Since d+
Bℓ(xℓ) = d−

Bℓ(xℓ) = 2, we obtain that (Dℓ−1, F ℓ−1) is tight, and
Lemma 3.2.8 implies that the colouring we computed is safe.

Assume finally that Bℓ is a complete hard end-block, and let u be any neighbour of xℓ in
B. The functions f ℓ

1, . . . , f
ℓ
s are constant and symmetric on V (B) \ ¶xℓ♢. We also have

f ℓ
i (xℓ) ≥ f ℓ

i (u) for every i ∈ [s]. By construction of the greedy colouring, for every

i ∈ [s], at most f ℓ
i

+
(u) vertices of V (Bℓ) \ ¶xℓ♢ are coloured i. Since n(Bℓ) − 1 vertices

are coloured in total, and because
∑︁s

i=1 f
ℓ
i

+
(u) = n(Bℓ) − 1, we conclude that, for every

i ∈ [s], exactly f ℓ
i

+
(u) vertices of V (Bℓ) \ ¶xℓ♢ are coloured i. Hence, we obtain that

(Dℓ−1, F ℓ−1) is tight, and Lemma 3.2.8 implies that the colouring we computed is safe.

Case 2: Bℓ is not a hard end-block of Dℓ.

In this case, we colour the vertices of V (Dℓ−1)\¶xℓ♢ in timeO(n(D)+m(D)) as follows.
We first compute an ordering σ = (v1, . . . , vn′ = xℓ) of V (Dℓ−1), that is a leaves-to-root
ordering of a spanning tree of Dℓ−1 rooted in xℓ, in time O(n(Dℓ) +m(Dℓ)). We greedily
colour vertices v1, . . . , vn′−1 in this order. For every j ∈ [n′ − 1], the vertex vj has at
least one neighbour in ¶vj+1, . . . , vn′♢ (its parent in the spanning tree), so condition (R) is
fulfilled. Hence, by Lemma 3.2.5, the greedy colouring succeeds and provides a reduced
pair (Bℓ, F ′ = (f ′

1, . . . , f
′
s)) that is valid.

Finally, observe that (Bℓ, F ′) is not a hard pair since, for every i ∈ [s], we have f ′
i(xℓ) ≤

f ℓ
i (xℓ). So if (Bℓ, F ′) is a hard pair, Bℓ is necessarily a hard end-block of (Dℓ, F ℓ), a

contradiction. The result follows.

Note that Case 2 may only be reached once, at which point it outputs a reduced pair. Therefore,
the running time of the algorithm described above is bounded byO(

∑︁
ℓ(n(Bℓ)+m(Bℓ))+n(D)+

m(D)), which is linear in n(D) + m(D). Assume finally that, in the process above, the second
case is never attained. Then the result follows asB1 is a block ofD, and we found a safe colouring
of V (D) \ V (B1).

With the last two lemmas at our disposal, we are ready to test whether a tight valid pair is hard.

Lemma 3.2.11. Given a tight valid pair (D,F = (f1, . . . , fs)), testing whether (D,F ) is a hard

pair can be done in time linear time.

Proof. We first consider the pair (B,F ′) reduced from (D,F ), where B is a block of D, obtained
by safely colouring V (D)\V (B) through Lemma 3.2.10. In particular, (B,F ′) is a hard pair if and
only if (D,F ) is, and as B is 2-connected, we may only check whether (B,F ′) is a 2-connected
hard pair, either monochromatic, bicycle or complete. This amounts to verifying the conditions
of the definition. The fact that this can be done in linear time is already justified in Lemma 3.2.9.
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Indeed, testing (B,F ′) for a hard 2-connected pair amounts to testing the conditions for a hard
end-block, except for the condition on the cut-vertex. Since there is no cut-vertex in B, we test the
same conditions on all vertices of B.

3.2.2.6 Reducing to pairs with two colours

We have just shown how to reduce any tight valid pair into a 2-connected one, after which we may
decide whether the initial pair was a hard one. In this subsection, we therefore consider any tight
valid pair (D,F ) that is not hard, and such that D is 2-connected. We show how the problem of
F -dicolouring D boils down to ˜︁F -dicolouring D where ˜︁F involves only s = 2 colours.

Lemma 3.2.12. Let (D,F ) be a valid pair that is not a hard pair and such that D is 2-connected.

In linear time, we can either find an F -dicolouring ofD or compute a valid pair (D, ˜︁F = ( ˜︁f1, ˜︁f2))
such that:

• (D, ˜︁F ) is not hard, and

• given an ˜︁F -dicolouring of D, we can compute an F -dicolouring of D in linear time.

Proof. We assume that (D,F ) is tight, otherwise we compute an F -dicolouring of D in linear
time by Lemma 3.2.7. Since (D,F ) is tight, we can iterate over ¶i | fi(v) ̸= (0, 0)♢ in time
O(d(u)). This allows us to check, in linear time, which of the cases below apply to (D,F ).

Case 1: There exist u ∈ V (D) and i ∈ [s] such that f+
i (u) ̸= f−

i (u).

We define ˜︁f1 = fi and ˜︁f2 =
∑︁

j∈[s],j ̸=i fj . Let us show that (D, ˜︁F ) is not a hard pair. Since

D is 2-connected, (D, ˜︁F ) is not a join hard pair. Since ˜︁f1 is not symmetric by choice of
¶u, c♢, (D, ˜︁F ) is neither a bicycle hard pair nor a complete hard pair. Finally, assume for a
contradiction that (D, ˜︁F ) is a monochromatic hard pair. Since ˜︁f1(u) ̸= (0, 0), we thus have
˜︁f2(v) = (0, 0) and fi(v) = (d−(v), d+(v)) for every vertex v. We conclude that (D,F ) is
also a monochromatic hard pair, a contradiction.

Case 2: There exist u, v ∈ V (D) and i ∈ [s] such that fi(u) ̸= fi(v).

As in Case 1, we set ˜︁f1 = fi and ˜︁f2 =
∑︁

j∈[s],j ̸=i fj . Since D is 2-connected, (D, ˜︁F =

( ˜︁f1, ˜︁f2)) is not a join hard pair. Moreover, since fi(v) ̸= fi(u), ˜︁f1 is not constant, so (D, ˜︁F )
is neither a bicycle hard pair nor a complete hard pair. Again, assume for a contradiction
that (D, ˜︁F ) is a monochromatic hard pair. Since ˜︁f1(u) or ˜︁f1(v) is distinct from (0, 0), we
thus have ˜︁f2(v) = (0, 0) and fi(v) = (d−(v), d+(v)) for every vertex v. We conclude that
(D,F ) is also a monochromatic hard pair, a contradiction.

Case 3: None of the cases above is matched.

Therefore, for each i ∈ [s], fi is a symmetric constant function. Thus, since (D,F ) is not
a hard pair, and because (D,F ) is tight, D is not a bidirected odd cycle or a bidirected
complete graph. Let i ∈ [s] be such that fi is not the constant function equal to (0, 0). We
set ˜︁f1 = fi and ˜︁f2 =

∑︁
j∈[s],j ̸=i fj . Since (D,F ) is not a monochromatic hard pair, there

is a colour k ̸= i such that fk is not the constant function equal to (0, 0). Hence, none of
˜︁f1, ˜︁f2 is the constant function equal to (0, 0), and (D, ( ˜︁f1, ˜︁f2)) is not a hard pair.

In each case, we have built a valid pair (D, ˜︁F = ( ˜︁f1, ˜︁f2)) where ˜︁f1 = fi and ˜︁f2 =
∑︁

j ̸=i fj ,

in such a way that (D, ˜︁F ) is not hard. We finally prove that, given an ˜︁F -dicolouring of D, we can
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compute an F -dicolouring of D in linear time. Let ˜︁α be an ˜︁F -dicolouring of D. Let X be the set
of vertices coloured 1 in ˜︁α and widehatD be D − X ( ˆ︁D is built in linear time by successively
removing vertices in X from D). We define ˆ︁F = ( ˆ︁f1, . . . , ˆ︁fs), ˆ︁fi : V ( ˆ︁D)→ N

2 as follows:

ˆ︁fk(v) =

∮︂
fk(v) if k ̸= i
(0, 0) otherwise.

Since ˜︁f2 is exactly
∑︁s

i=1
ˆ︁fi, by definition of ˜︁α and ˆ︁D, we know that ˆ︁D is strictly-(

∑︁s
i=1

ˆ︁fi)-
degenerate. Then applying Lemma 3.2.6 yields an ˆ︁F -dicolouring ˆ︁α of ˆ︁D in linear time. The
colouring α defined as follows is thus an F -dicolouring of D obtained in linear time:

α(v) =

∮︂
i if ˜︁α(v) = 1
ˆ︁α(v) otherwise.

3.2.2.7 Solving blocks with two colours - particular cases

We are now left to deal with pairs (D,F ) such that D is 2-connected, and F only involves two
colours. Eventually, our strategy consists in finding a suitable decomposition for D, and colour-
ing parts of it inductively, which will be done in Section 3.2.2.8. In this subsection, we first deal
with some specific forms (D,F ) may take, showing D can be F -dicoloured if the instance in
those cases. Along the way, this allows us to only deal with increasingly restricted instances,
later enabling us to constrain the instances considered in the induction. In Lemma 3.2.13 and
Lemma 3.2.14, we exhibit an F -dicolouring of D if there exists a vertex x which does not satisfy
some conditions relating its neighbourhood and F . Then, we solve instances where D is a bidi-
rected complete graph in Lemma 3.2.15, or an orientation of a cycle in Lemma 3.2.16. Lastly, we
solve those that are constructed by a star attached to a cycle in Lemma 3.2.17. These will serve as
base cases for the induction.

Given a valid pair (D,F = (f1, f2)) that is tight, non-hard, and such that D is 2-connected,
let us define a set of properties that (D,F ) may or may not fulfil. Each of these properties is easy
to check in linear time, and we will see in the following that when they are not met, there is a
linear-time algorithm providing an F -dicolouring of D. The first property, (E), guarantees that
both f1 and f2 exceed some lower bound. It states that both f−

1 , f
−
2 (f+

1 , f
+
2 ) are non-zero on

vertices having at least one in-neighbour (out-neighbour).

∀x, c we have (d−(x) > 0 =⇒ f−
c (x) ≥ 1) and (d+(x) > 0 =⇒ f+

c (x) ≥ 1). (E)

Given a digraph D = (V,A), we define the function 1A : V × V → N as follows:

1A(u, v) =

∮︂
1 if uv ∈ A
0 otherwise.

Note in particular, that if (E) holds, then the following holds.

∀x, y, z, c we have fc(x) ≥ (1A(y, x),1A(x, z)). (E’)
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Lemma 3.2.13. Let (D,F = (f1, f2)) be a valid tight non-hard pair such thatD is 2-connected. If

the pair does not fulfil property (E), then D is F -dicolourable. Furthermore, there is a linear-time

algorithm checking property (E), and if the property is not met, that computes an F -dicolouring

of D.

Proof. We first prove that, for some arc uv and for some colour c ∈ ¶1, 2♢, we have:

(f+
c (u) = 0 ∧ fc(v) ̸= (0, 0)) or (f−

c (v) = 0 ∧ fc(u) ̸= (0, 0)). (3.1)

Note that, if it exists, such an arc is found in linear time. Assume for a contradiction that no
such arc exists. By assumption, ∃x ∈ V (D), c ∈ ¶1, 2♢ such that (d+(x) > 0 ∧ f+

c (x) = 0)
or (d−(x) > 0 ∧ f−

c (x) = 0). If (d+(x) > 0 ∧ f+
c (x) = 0), let y be any out-neighbour of

x, then we must have fc(y) = (0, 0) for otherwise xy clearly satisfies (3.1). Symmetrically, if
(d−(x) > 0 ∧ f−

c (x) = 0), let y be any in-neighbour of x, then we have fc(y) = (0, 0) for
otherwise yx satisfies (3.1). In both cases, we conclude on the existence of a vertex y for which
fc(y) = (0, 0). Let Y be the non-empty set of vertices y for which fc(y) = (0, 0) and Z be
V (D) \ Y , that is the set of vertices z for which fc(z) ̸= (0, 0). Since (D,F ) is valid and tight,
Z must also be non-empty, for otherwise (D,F ) is a monochromatic hard pair. The connectivity
of D guarantees the existence of an arc between a vertex in Y and another one in Z. This arc
satisfies (3.1).

Once we found an arc uv satisfying (3.1), we proceed as follows to compute an F -dicolouring
of D. If f+

c (u) = 0 ∧ fc(v) > (0, 0), we colour v with c, otherwise we have f−
c (v) = 0 ∧

fc(u) > (0, 0) and we colour u with c. Let (D′, F ′ = (f ′
1, f

′
2)) be the pair reduced from this

colouring, and let c′ be the colour distinct from c. In the former case, that is v is coloured with
c, we obtain f ′

c′
+(u) = f+

c′ (u) ≥ d+
D(u) > d+

D′(u). In the latter case, u is coloured with c and
f ′

c′
−(v) = f−

c′ (v) ≥ d−
D(v) > d−

D′(v). In both cases, we obtain that (D′, F ′) is loose, so the result
follows from Lemma 3.2.7.

The next property, (DS), guarantees that the vertices incident only to digons have symmetric
constraints.

∀x, c we have N−(x) ̸= N+(x), or f−
c (x) = f+

c (x). (DS)

Again, we may solve the instance at this point if (D,F ) doesn’t satisfy (DS).

Lemma 3.2.14. Let (D,F = (f1, f2)) be a valid tight non-hard pair such that D is 2-connected.

If the pair does not fulfil property (DS), then D is F -dicolourable. Furthermore, there is a linear-

time algorithm checking property (DS), and if the property is not met, computing an F -dicolouring

of D.

Proof. Recall that the data structure encoding D allows checking N+(u) = N−(u) in constant
time (as this is equivalent to checking |N+(u)∩N−(u)| = d−(u) = d+(u)), so in linear time we
may find a vertex x such that N−(x) = N+(x) and f−

c (x) ̸= f+
c (x) for some c ∈ ¶1, 2♢.

Let T be a spanning tree rooted in x and let σ = (v1, . . . , vn = x) be a leaves-to-root or-
dering of V (D) with respect to T . For every j ∈ [n − 1], the vertex vj has at least one neigh-
bour in ¶vj+1, . . . , vn♢ (its parent in the spanning tree), so condition (R) is fulfilled. Hence, by
Lemma 3.2.5, there is an algorithm that computes an F -dicolouring of D − x. It remains to
show that the reduced pair (D′, F ′) is non-hard. As D′ is the single vertex x, this is equivalent to
showing that f ′

c(x) > (0, 0) for some c.
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Towards a contradiction, suppose f ′
1(x) = f ′

2(x) = (0, 0). For i ∈ ¶1, 2♢, let di be the number
of neighbours of x coloured i, and note that d1 + d2 = |N(x)|. Since fi(x)− (di, di) ≤ f ′

i(x) =
(0, 0) we have that

∀i fi(x) ≤ (di, di). (3.2)

By tightness, we then have that

(|N(x)|, |N(x)|) = f1(x) + f2(x) ≤ (d1 + d2, d1 + d2) = (|N(x)|, |N(x)|).

Thus, the inequalities of (3.2) are equalities, and both f1, f2 are symmetric on x, a contradiction.

At this point, we have proven that if one of (E) or (DS) doesn’t hold, an F -dicolouring of D
may be computed in linear time. From now on, we thus consider only instances satisfying both
conditions, and move on to solving the base cases of our induction, corresponding to D having
a certain structure. We first prove that if D is a bidirected complete graph, and the instance isn’t
hard, an F -dicolouring of D exists and can be computed in linear time.

Lemma 3.2.15. Let (D,F = (f1, f2)) be a valid tight non-hard pair such that D is a bidirected

complete graph. Then D is F -dicolourable and there is a linear-time algorithm providing an

F -dicolouring of D.

Proof. We assume that f1, f2 are symmetric (i.e. ∀x, c f+
c (x) = f−

c (x)), for otherwise we are
done by Lemma 3.2.14. Let v be any vertex such that f+

1 (v) = min¶f+
1 (x) | x ∈ V (D)♢. Let u be

any vertex such that f+
1 (u) > f+

1 (v). The existence of u is guaranteed, for otherwise the tightness
of (D,F ) implies that (D,F ) is a complete hard pair, a contradiction. Let X ⊆ (V (D) \ ¶u, v♢)
be any set of f+

1 (v) vertices (we have f+
1 (u) ≤ n − 1, which implies f+

1 (v) ≤ n − 2, and the
existence ofX is guaranteed). Note thatX , u, and v can be computed in linear time. We colour all
the vertices of X with 1, and note that this is an F -dicolouring of D⟨X⟩, as every vertex x ∈ X
satisfies f+

1 (x) ≥ f+
1 (v) = |X| > |X| − 1 = d+

D⟨X⟩(x). Let (D′, F ′ = (f ′
1, f

′
2)) be the pair

reduced from this colouring. Observe that we may haveX = ∅ in which case (D′, F ′) = (D,F ).
Then f ′

1(v) = (0, 0) and f ′
1(u) > (0, 0), so (D′, F ′) is not a hard pair. If (D′, F ′) is loose,

we are done by Lemma 3.2.7, otherwise we are done by Lemma 3.2.13 (since (D′, F ′) does not
fulfil (E)).

The following shows how to compute, in linear time, an F -dicolouring of D if the underlying
graph of D is a cycle.

Lemma 3.2.16. Let (D,F = (f1, f2)) be a valid tight non-hard pair such that UG(D) is a cycle.

Then D is F -dicolourable and there is a linear-time algorithm providing an F -dicolouring of D.

Proof. We assume that (E) holds as otherwise we are done by Lemma 3.2.13. Let us show that
for any vertex x ∈ V (D), we have d−(x), d+(x) ∈ ¶0, 2♢. Towards a contradiction, and by
symmetry, assume that some vertex x verifies d−(x) = 1. By tightness and by (E), we have that
1 = d−(x) = f−

1 (v) + f−
2 (v) ≥ 1 + 1, a contradiction. We distinguish two cases, depending on

whether D contains a digon or not.

Case 1: D contains a digon.

In this case, there is only one orientation avoiding in- or out-degree 1, the one with D fully
bidirected. We now claim that, by (E’), for every vertex x ∈ V (D) and every colour c,
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fc(x) ≥ (1, 1). Hence, by tightness, f1, f2 are constant functions equal to (1, 1). Since
(D,F ) is not a hard pair, we conclude that n(D) is even, and any proper 2-colouring of
UG(D) is indeed an F -dicolouring.

Case 2: D does not contain any digon.

In this case, the only possible orientation avoiding in- and out-degree 1 is the antidirected
cycle, that is an orientation of a cycle in which every vertex is either a source or a sink. In
that case we colour every vertex with colour one, and note that for a sink x (resp. a source)
we have that f+

1 (x) = 1 > 0 = d+(x) (resp. f−
1 (x) = 1 > 0 = d−(x)). Hence, this

colouring is indeed an F -dicolouring of D.

A subwheel is a graphG such that, for some vertex v ∈ V (G), G−v is a cycle. The following
shows how to compute, in linear time, an F -dicolouring of D if the underlying graph of D is a
subwheel.

Lemma 3.2.17. Let (D,F = (f1, f2)) be a valid tight non-hard pair, and let v ∈ V be such that

UG(D−v) is a cycle C. ThenD is F -dicolourable and there is a linear-time algorithm providing

an F -dicolouring of D.

Proof. We assume that (E) and (DS) hold as otherwise we are done by Lemma 3.2.13 or
Lemma 3.2.14. Let v1, . . . , vn−1 be an ordering of V (D) \ ¶v♢ along C, which can be obtained in
linear time. We distinguish several cases, according to the structure of (D,F ). It is straightforward
to check, in linear time, which of the following cases matches the structure of (D,F ).

Case 1: |N(v)| < n(D)− 1.

Let w be any neighbour of v and let y be any vertex that is not adjacent to v. Let ρw be
(f−

1 (w) − 1A(v, w), f+
1 (w) − 1A(w, v)), informally, ρw corresponds to the new value of

f1(w) if we were to colour v with 1. If ρw ̸= (1, 1), we colour v with 1, otherwise we
colour v with 2. Let (D′, F ′ = (f ′

1, f
′
2)) be the pair reduced from colouring v, we claim that

(D′, F ′) is not a hard pair.

For every c ∈ ¶1, 2♢, we have f ′
c(y) = fc(y) because y is not adjacent to v, and by (E)

f ′
c(y) = fc(y) > (0, 0). Therefore (D′, F ′) cannot be a monochromatic hard pair. It is also

not a join hard pair because D′ is 2-connected.

Assume that (D′, F ′) is a bicycle hard pair. Hence, f ′
1(w) = (1, 1), so v is coloured 2,

as otherwise we would have f ′
1(w) = ρw ̸= (1, 1). But if v is coloured 2, then (1, 1) =

f ′
1(w) = f1(w) and in that case ρw ̸= (1, 1) (as w is adjacent to v), and we should have

coloured v with colour 1, a contradiction.

Assume that (D′, F ′) is a complete hard pair, then D′ is a bidirected complete graph. Since

UG(D′) is a cycle, D′ is necessarily
←→
K3. Such a complete hard pair is also, either a

monochromatic hard pair or a bicycle hard pair, but we already discarded both cases. Hence
(D′, F ′) is not a hard pair, and the result follows from Lemma 3.2.16, as UG(D′) is a cycle.

Case 2: D is bidirected, d+(v) = n(D)− 1, n(D) is even, and f1 is constant on V (D) \ ¶v♢.
Assume D ̸= ←→K4 as otherwise the result follows from Lemma 3.2.15. Observe that D − v
is a bidirected odd cycle, and that it contains at least 5 vertices, for otherwise D is exactly
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v

(a)

v1

· · ·
v

(b)

v1

· · ·
vn−1

Figure 3.3: The F -dicolourings for Case 2. The partition on the left corresponds to the case
f+

1 (v) ≥ 2 and the one on the right corresponds to the case f+
1 (v) ≤ 1. Vertices coloured 1 are

represented in orange and vertices coloured 2 are represented in blue.

←→
K4. Since D is bidirected, by (DS) and (E) we have f+

c (x) = f−
c (x) > 0 for every x ∈ V

and every c ∈ ¶1, 2♢.
Since f1 is constant on V (D) \ ¶v♢ by assumption, so is f2, as (D,F ) is tight and as
d−(u) = d+(u) = 3 for every u ∈ V (D) \ ¶v♢. Assume without loss of generality that
f1(u) = (1, 1) and f2(u) = (2, 2) for every u ∈ V (D) \ ¶v♢.
If f+

1 (v) ≥ 2, we colour v and v1 with 1, and all other vertices with 2, see Figure 3.3(a).
The digraph induced by the vertices coloured 2 is a bidirected path, which is strictly-f2-
degenerate since on these vertices, f2 is the constant function equal to (2, 2). The digraph

induced by the vertices coloured 1 is
←→
K2 and contains v. Since f+

1 (v) ≥ 2 and f1(v1) =
(1, 1), it is strictly-f1-degenerate.

Else, we have f+
1 (v) ≤ 1, and we colour v ∪ ¶v2i | i ∈

[︂
n(D)

2

]︂
♢ with 2 and ¶v2i−1 |

i ∈
[︂

n−2
2

]︂
♢ with 1, see Figure 3.3(b). Vertices coloured 1 form an independent set, so the

digraph induced by them is strictly-f1-degenerate (as f1 is constant equal to (1, 1) on these
vertices). Since f+

1 (v) ≤ 1, and because (D,F ) is valid, we have f+
2 (v) ≥ n − 2. Since

n(D) ≥ 6 it implies f+
2 (v) ≥ n(D)

2 + 1. Let H be the digraph induced by the vertices

coloured 2. Then the out-degree of v in H is exactly n(D)
2 . Since f+

2 (v) ≥ n(D)
2 + 1,

we obtain that the digraph H is strictly-f2-degenerate if and only if H − v is strictly-f2-
degenerate. Observe that H − v is made of a copy of

←→
K2 and isolated vertices, so it is

strictly-f2-degenerate since f2 is constant equal to (2, 2) on V (H) \ ¶v♢.

Case 3: N+(v) = N−(v) = V (D) \ ¶v♢ and D − v is a directed cycle.

Note that in this case, for every vertex u ∈ V (D) \ ¶v♢ we have d−(u) = d+(u) = 2, and
by (E) and by tightness of (D,F ), we have that f1(u) = f2(u) = (1, 1). Since d+(v) ≥ 3,
there is a colour c ∈ ¶1, 2♢ such that f+

c (v) ≥ 2. Assume f+
2 (v) ≥ 2. We are now ready to

give an F -dicolouring explicitly. We colour v and v1 with 2, and all other vertices with 1,
see Figure 3.4 for an illustration.

The digraph induced by the vertices coloured 1 is a directed path, which is strictly-f1-
degenerate since on these vertices, f1 is the constant function equal to (1, 1). The digraph

induced by the vertices coloured 2 is
←→
K2 and contains v. Since f+

2 (v) ≥ 2 and f2(v1) =
(1, 1), it is strictly-f2-degenerate.
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v v1

· · ·

Figure 3.4: The F -dicolouring for Case 3. Vertices coloured 1 are represented in orange and
vertices coloured 2 are represented in blue.

Case 4: None of the previous cases apply.

We first prove the existence of a vertex u ̸= v and a colour c ∈ ¶1, 2♢ such that fc(u) >
(1A(v, u),1A(u, v)). By (E’), for any vertex u ̸= v we have fc(u) ≥ (1A(v, u),1A(u, v)),
we thus look for a vertex u ̸= v such that fc(u) ̸= (1A(v, u),1A(u, v)). Assume for a
contradiction that such a pair does not exist, so for every vertex x ∈ V (D) \ ¶v♢ and every
colour c ∈ ¶1, 2♢, fc(x) is exactly (1A(v, x),1A(x, v)). Assume first that there exists a
simple arc xv, then f1(x) = f2(x) = (0, 1). By (E), we deduce that x is a source. Since
UG(D − v) is a cycle, we then have d+(x) = 3 > f+

1 (x) + f+
2 (x), a contradiction to

(D,F ) being a valid pair. The existence of a simple arc vx is ruled out symmetrically, so
we now assume N+(v) = N−(v). Then every vertex x ∈ V (D) \ ¶v♢ satisfies f1(x) =
f2(x) = (1A(v, x),1A(x, v)) = (1, 1). Since (D,F ) is a tight valid pair, this implies that
d+(x) = d−(x) = 2. HenceD−v is a directed cycle, so Case 3 is matched, a contradiction.
This proves the existence of u and c such that fc(u) ̸= (1A(v, u),1A(u, v)). From now on,
we assume c = 1 without loss of generality, and f1(u) > (1A(v, u),1A(u, v)).

Consider the following property, which can be checked straightforwardly in linear time:

∃x ∈ V (D) \ ¶v♢, such that f1(x) ̸= (1 + 1A(v, x), 1 + 1A(x, v)) or f2(x) ̸= (1, 1).
(3.3)

If n(D) is odd or if (3.3) holds, we colour v with 1. Otherwise, we colour v with 2. In both
cases, we claim that the reduced pair (D′, F ′ = (f ′

1, f
′
2)) is not hard.

Assume first that n(D) is odd or (3.3) is satisfied, so we have coloured v with 1. Hence,
f ′

1(u) = f1(u) − (1A(v, u),1A(u, v)) ̸= (0, 0) and f ′
2(u) = f2(u) > (0, 0) (by (E)),

so (D′, F ′) is not a monochromatic hard pair. If n(D) is odd, then n(D′) is even so D′

is not a bidirected odd cycle. If a vertex x satisfies (3.3), we have f ′
1(x) = f1(x) −

(1A(v, x),1A(x, v)) ̸= (1, 1) or f ′
2(x) = f2(x) ̸= (1, 1). In both cases (D′, F ′) is not

a bicycle hard pair, as desired. Since UG(D′) is a cycle, if (D′, F ′) was a complete hard
pair it would be either a monochromatic or a bicycle hard pair, hence (D′, F ′) is not a hard
pair.

Assume finally that n(D) is even and (3.3) is not satisfied. Hence v is coloured with 2 and,
for every vertex x ∈ V (D)\¶v♢, f1(x) = (1 +1A(v, x), 1 +1A(x, v)) and f2(x) = (1, 1).
Since every vertex x ̸= v is adjacent to v, otherwise Case 1 would match, we have f ′

2(x) ̸=
f2(x) = (1, 1) so (D′, F ′) is not a bicycle hard pair. Assume for a contradiction that it is a
monochromatic hard pair. Since f ′

1(x) = f1(x) ̸= (0, 0) for every vertex x ̸= v, we have
f ′

2(x) = (0, 0). Since f2(x) = (1, 1), we deduce that N+(v) = N−(v) = V (D) \ ¶v♢.
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Hence every vertex x satisfies f1(x) = (2, 2) and f2 = (1, 1). Since (D,F ) is tight, we
conclude that D is bidirected, n(D) is even and f1 is constant on V (D) \ ¶v♢. Thus Case 2
matches, a contradiction.

Since (D′, F ′) is not a hard pair, and because UG(D′) is a cycle, the result follows from
Lemma 3.2.16.

3.2.2.8 Solving blocks with two colours - general case

The goal of this subsection is to provide an algorithm which, given a pair (D,F = (f1, f2)) that is
not hard and such that D is 2-connected, computes an F -dicolouring of D in linear time. The idea
is to find a decomposition of the underlying graph UG(D), similar to an ear-decomposition, and
successively colour the “ears” in such a way that the successive reduced pairs remain non-hard.
Let us begin with the definition of the decomposition.

A CSP-decomposition (CSP stands for Cycle, Stars, and Paths) of a 2-connected graph G is
a sequence (H0, . . . ,Hr) of subgraphs of G partitioning the edges of G, such that H0 is a cycle,
and such that for any i ∈ [r] the subgraph Hi is either:

• a star with a central vertex vi of degree at least 2 in Hi, and such that V (Hi) ∩⎞⎷
0≤j<i V (Hj)

)︂
is the set of leaves of Hi, or

• a path (v0, . . . , vℓ) of length ℓ ≥ 3, and such that V (Hi) ∩
⎞⎷

0≤j<i V (Hj)
)︂

= ¶v0, vℓ♢.

Lemma 3.2.18. Every 2-connected graph admits a CSP-decomposition. Furthermore, computing

such decomposition can be done in linear time.

Proof. An ear-decomposition is similar to a CSP-decomposition except that paths of length one
or two are allowed, and that there are no stars. It is well-known that every 2-connected graph
G admits an ear-decomposition, and that it can be computed in linear time (see [152] and the
references therein). To obtain a CSP-decomposition of G, we first compute an ear-decomposition
(H0, . . . ,Hr), which we modify in order to get a CSP-decomposition. We do this in two steps.

Before describing these steps, we have to explain how a decomposition (H0, . . . ,Hr) is en-
coded. The sequence is encoded as a doubly-linked chain whose cells contain 1) a copy of the
subgraph Hi 2) a mapping from the vertices of this copy to their corresponding ones in G, and
3) an integer ni equal to |⎷0≤j<i V (Hj)|. This last integer will allow us, given two cells, corre-
sponding to Hi and Hj , to decide whether i ≤ j or not. Indeed, as the decomposition will evolve
along the execution, maintaining indices from ¶0, . . . , r♢ seems hard in linear time.

The first step consists in modifying the ear-decomposition in order to get an ear-decomposition
avoiding triples i ≤ j < k such thatHk = (u0, u1) is of length one, where u0, u1 are inner vertices
of Hi, Hj respectively, and where Hj is an ear of length at least three. Towards this, we first go
along every ear, in increasing order, to compute birth(v), the copy of vertex v appearing first
in the current ear-decomposition. Note that birth(v) is always an inner vertex of its ear. Then,
we go along every ear in decreasing order, and when we have a length one ear Hk = (u0, u1), we
consider the ears of birth(u0) and birth(u1), say Hi and Hj respectively.

If 0 ≤ i < j, and Hj is a path of length at least three, we combine Hj and Hk into two ears,
H ′ and H ′′, each of length at least two (see Figure 3.5 (left)). In the ear-decomposition, we insert
H ′ and H ′′ at the position of Hj , and delete Hj and Hk.
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G⟨
⋃

0≤i<j V (Hi)⟩

Hj

u0

Hk

H ′′

H ′
u1

G⟨
⋃

0≤i<j V (Hi)⟩

u0

u1

Hk

H ′′
H ′

Hj
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u1

Hk

H ′′

H ′

H0

Figure 3.5: Ears Hj and Hk recombined into H ′ (blue) and H ′′ (orange), each of length at least
two. (left) Case where Hk has one endpoint in Hj . (middle) Case where Hk has its two endpoints
in Hj . (right) Case where Hk has its two endpoints in the cycle Hj = H0.

If 0 < i = j, then Hj = Hi must be a path of length at least four. In that case, we combine
Hj and Hk into two ears, H ′ and H ′′, each of length at least two (see Figure 3.5 (middle)). In the
ear-decomposition, we insert H ′ and H ′′ at the position of Hj , and delete Hj and Hk.

If 0 = i = j, then Hj = H0 must be a cycle of length at least four. In that case, we combine
Hj and Hk into two ears, H ′ and H ′′, each of length at least two (see Figure 3.5 (right)). In the
ear-decomposition, we insert H ′ and H ′′ at the position of Hj , and delete Hj and Hk.

Along this process, the ears that are modified are always shortened while still having length at
least two. Hence, we do not create new couples Hj , Hk, with the second of length one, that could
be recombined into ears of length at least two. Hence, we are done with the first step.

Before proceeding to the second step, recall that we now have an ear-decomposition without
triples i ≤ j < k such that Hk = (u0, u1) is of length one, where u0, u1 are inner vertices of
Hi, Hj respectively, and where Hj is an ear of length at least three. In particular, this implies
that for any ear of length one Hk = (u0, u1), the ears containing u0 and u1 as inner vertices
are distinct. We denote them Hi and Hj , respectively, and assume without loss of generality that
i < j. Note that as Hj and Hk cannot be recombined, we have that Hj has length exactly two
and that u1 is its only inner vertex. The second step then simply consists, for each such ear Hk, in
including Hk into Hj , redefining the latter to form a star centred in u1.

After this process, no ear can be a path of length one. Assimilating the paths of length two as
stars, we thus have a CSP-decomposition.

We move to showing that (D,F ) may be inductively coloured following this decomposi-
tion (on the underlying graph of D). Again, we only consider instances that are not dealt with
in the previous subsection, which in particular satisfy (E) and (DS). Then, in the induction,
Lemma 3.2.19 corresponds to colouring a star, and Lemma 3.2.20 corresponds to colouring a
path, when those attach to the rest of the graph as in the decomposition. Eventually, bidirected
complete graphs, cycles, and subwheels, which were solved in the previous subsection, form the
base of our decomposition. The induction is formalised in Lemma 3.2.21, which achieves to solve
the case of 2-connected graphs with two colours.

Lemma 3.2.19. Let (D = (V,A), F = (f1, f2)) be a valid tight non-hard pair, and let v ∈ V (D)
be such that both D and D − v are 2-connected, and UG(D) is neither a cycle nor a subwheel

centred in v. Then there exists a colour c ∈ ¶1, 2♢ such that colouring v with c is safe. Moreover,
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there is an algorithm that either finds c in time O(d(v)) or computes an F -dicolouring of D in

linear time.

Proof. We assume that (E) and (DS) hold as otherwise we are done by Lemma 3.2.13 and
Lemma 3.2.14. Observe that d(v) > 0 and (E) implies that f1(v) ̸= (0, 0) and f2(v) ̸= (0, 0),
so both colours 1 and 2 are available for v. Note also that since UG(D − v) is not a cycle, in
particular colouring v with any colour c ∈ ¶1, 2♢ may never reduce it to a bicycle hard pair. We
distinguish three cases.

Case 1: |N(v)| ≤ n(D)− 2.

Let u be any neighbour of v andw be any vertex that is not adjacent to v. Since |N(w)| > 0,
we have f1(w) ̸= (0, 0) and f2(w) ̸= (0, 0) by (E). Hence colouring v with any colour
c ∈ ¶1, 2♢ does not reduce to a monochromatic hard pair. If f1(u) is distinct from (f−

1 (w)+
1A(vu), f+

1 (w) + 1A(uv)), we colour v with 1, otherwise we colour v with 2. By choice of
u and w, the reduced pair (D′, F ′ = (f ′

1, f
′
2)) satisfies f ′

1(u) ̸= f ′
1(w), so in particular it is

not a complete hard pair.

Case 2: |N(v)| = n(D)− 1 and D − v is distinct from
←−−−−→
Kn(D)−1.

We only have to guarantee the existence of c ∈ ¶1, 2♢ such that colouring v with c does not
reduce to a monochromatic hard pair. Also note that |N(v)| = n(D)−1 allows usO(n(D))
time for computing c.

If there exists a vertex x ̸= v and a colour c ∈ ¶1, 2♢ such that fc(x) > (1A(vx),1A(xv)),
then colouring v with c is safe as it does not reduce to a monochromatic hard pair as f ′

c(x) =
fc(x) − (1A(vx),1A(xv)) > (0, 0) and as f ′

c′(x) = fc′(x) ̸= (0, 0) by (E) for the colour
c′ ̸= c. Note that, if it exists, such a vertex x can be found in time O(n(D)).

We now prove the existence of such a vertex x. Assume for a contradiction that fc(x) ≯

(1A(vx),1A(xv)) for every x ̸= v and every c ∈ ¶1, 2♢. Observe that, for every x ̸= v,
fc(x) ≥ (1A(vx),1A(xv)) by (E’), so we have f1(x) = f2(x) = (1A(vx),1A(xv)). Let
x ̸= v be any vertex. If xv is a simple arc, then f1(x) = f2(x) = (0, 1) so d+(x) = 2 and
d−(x) = 0. In particular, x has degree 1 in UG(D − v), a contradiction since UG(D − v)
is 2-connected and distinct from K2 (as UG(D) is not a cycle). The case of vx being a
simple arc is symmetric, so we now assume N+(v) = N−(v) = V \ ¶v♢, which implies
f1(x) = f2(x) = (1, 1) for every vertex x ̸= v. Hence in D − v every vertex has in- and
out-degree 1. Since UG(D − v) is 2-connected and distinct from K2, D − v is necessarily
a directed cycle, a contradiction.

Case 3: |N(v)| = n(D)− 1 and D − v is
←−−−−→
Kn(D)−1.

If N+(v) = N−(v) then D is
←−−→
Kn(D), and since (D,F ) is not hard, Lemma 3.2.15 yields

that it is F -dicolourable and an F -dicolouring is computed in linear time.

Henceforth we assume that there exists a simple arc between v and some u ∈ V (D) \
¶v♢. The vertex u being incident to some digon, (E) implies that fc(u) ≥ (1, 1) for every
colour c. This guarantees that colouring v with any colour c ∈ ¶1, 2♢ does not reduce to a
monochromatic hard pair, since in the reduced pair the constraints for u are unchanged on
one coordinate. We thus have to guarantee that for some c ∈ ¶1, 2♢, colouring v with c does
not reduce to a complete hard pair.
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We assume that the simple arc between v and u goes from u to v, the other case being
symmetric. If v has at least one out-neighbourw, then either f−

1 (u) = f−
1 (w) and colouring

v with 1 does not reduce to a complete hard pair, or f−
1 (u) ̸= f−

1 (w) and colouring v with
2 does not reduce to a complete hard pair.

Finally, if v is a sink and colouring v with 1 reduces to a complete hard pair, then f+
1 (x) =

f−
1 (x) + 1 for every vertex x ̸= v. Therefore, colouring v with 2 does not reduce to a

complete hard pair, as in the reduced pair we have f ′
1(x) = f1(x) and f+

1 (x) ̸= f−
1 (x).

Lemma 3.2.20. Let (D = (V,A), F = (f1, f2)) be a valid pair satisfying (E) and let v0, . . . , vℓ

be a path of G = UG(D) of length ℓ ≥ 3 such that dG(vi) = 2 for i ∈ [ℓ− 1], and such that both

G = UG(D) and G′ = UG(D − ¶v1, . . . , vℓ−1♢) are 2-connected and contain a cycle. There is

an algorithm computing an F -dicolouring of D⟨¶v1, . . . , vℓ−1♢⟩ in time O(ℓ) in such a way that

the reduced pair (D′, F ′) is not hard.

Proof. Since (E) is satisfied, in particular, for any vertex x and colour c, we have fc(x) ̸= (0, 0).
Note that V \ ¶v0, . . . , vℓ♢ ̸= ∅ for otherwise G′ does not contain a cycle, a contradiction. Let
u be any vertex in V \ ¶v0, . . . , vℓ♢. If f1(v0) = f1(u), we colour v1 with 1, otherwise we
colour v1 with 2. We then (greedily) colour v2, . . . , vℓ−1 using the algorithm of Lemma 3.2.5.
For every j ∈ ¶2, . . . , ℓ − 1♢, the vertex vj has at least one neighbour in ¶vj+1, . . . , vℓ♢, vj+1,
so condition (R) is fulfilled, and we are ensured that the obtained colouring is an F -dicolouring
D⟨¶v1, . . . , vℓ−1♢⟩.

Let (D′, F ′ = (f ′
1, f

′
2)) be the pair reduced from this colouring. As D′ is 2-connected,

(D′, F ′) is not a join hard pair. By construction, we have f ′
1(v0) ̸= f ′

1(u) as v0 is adjacent to
v1 but u is not adjacent to any vi with i ∈ [1, ℓ − 1], which we just coloured. Hence (D′, F ′) is
neither a bicycle hard pair nor a complete hard pair, as f ′

1 is not constant on V (D′). Finally, (E)
ensures that f ′

1(u) = f1(u) ̸= (0, 0) and f ′
2(u) = f2(u) ̸= (0, 0). Hence (D′, F ′) is not a

monochromatic hard pair.

With these lemmas in hand, we are ready to prove the main result of this subsection, that
non-hard 2-connected pairs are F -dicolourable.

Lemma 3.2.21. Let (D = (V,A), F = (f1, f2)) be a valid non-hard pair. There exists an algo-

rithm providing an F -dicolouring of D in linear time.

Proof. We denote by P the property of (D,F ) being tight, fulfilling (E) and (DS), not being a
bidirected complete graph.

We first check in linear time that each property of P holds. If one does not, we are done by
one of Lemmas 3.2.7, 3.2.13, 3.2.14 and 3.2.15.

We then compute a CSP-decomposition (H0, . . . ,Hr) of UG(D) in linear time, which is pos-
sible by Lemma 3.2.18. If r = 0 then UG(D) is a cycle and the result follows from Lemma 3.2.16,
assume now that r ≥ 1.

For each i going from r to 2, we proceed as follows (if r = 1 we skip this part). If Hi is a path
of length ℓ ≥ 3, we colour v1, . . . , vℓ−1 in time O(ℓ) in such a way that the reduced pair (D′, F ′)
is not hard, which is possible by Lemma 3.2.20. We then check in constant time that (D′, F ′)
satisfies P (we only have to check that it still holds for v0 and vℓ, and this is done in constant
time). If it does not, we are done by one of Lemmas 3.2.7, 3.2.13, 3.2.14 and 3.2.15. If Hi is a star
with central vertex v, then we compute a safe colouring of v in time O(d(v)), which is possible
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by Lemma 3.2.19. Note that, at this step, we may directly find an F -dicolouring in linear time, in
which case we stop here. Assume we do not stop, then we obtain a reduced pair (D′, F ′). We then
check in time O(d(v)) that (D′, F ′) satisfies P (we only have to check that it still holds for the
neighbours of v in Hi). Again, if it does not, we are done by one of Lemmas 3.2.7, 3.2.13, 3.2.14
and 3.2.15.

Assume we have not already found an F -dicolouring by the end of this process, and consider
H1. If H1 is a star, we are done by Lemma 3.2.17. Otherwise, H1 is a path, and we colour it as in
the process above, then we conclude by colouring H0 through Lemma 3.2.16.

Since (H0, . . . ,Hr) partitions the edges of UG(D), the total running time of the described
algorithm is linear in the size of D.

3.2.2.9 Proof of Theorem 3.2.1

We are now ready to prove Theorem 3.2.1, that we first recall here for convenience.

Theorem 3.2.1. Let (D,F ) be a valid pair. Then D is F -dicolourable if and only if (D,F ) is not

a hard pair. Moreover, there is an algorithm running in time O(n(D) + m(D)) that decides if

(D,F ) is a hard pair, and that outputs an F -dicolouring if it is not.

Proof. Let (D,F ) be a valid pair. We first check in linear time whether (D,F ) is tight. If it is not,
we are done by Lemma 3.2.7. Henceforth assume that (D,F ) is tight. We then check whether
(D,F ) is a hard pair, which is possible in linear time by Lemma 3.2.11. If (D,F ) is a hard pair,
thenD is not F -dicolourable by Lemma 3.2.2 and we can stop. Then, we may assume that (D,F )
is not a hard pair. In linear time, we find a block B of D and compute a safe colouring α of
V (D) \ V (B), which is possible by Lemma 3.2.10. Let (B,FB) be the reduced pair, which is not
hard, then every FB-dicolouring ofB, together with α, extends to an F -dicolouring ofD. Then, in
linear time, we either find an FB-dicolouring of B, or we compute a valid pair (B, ˜︁FB = ( ˜︁f1, ˜︁f2))
such that (B, ˜︁F ) is not hard, and an FB-dicolouring of B can be computed in linear time from any
˜︁FB-dicolouring of B. This is possible by Lemma 3.2.12.

If we have not yet found an FB-dicolouring of B, we compute an ˜︁FB-dicolouring of B in
linear time, which is possible by Lemma 3.2.21. From this we compute an FB-dicolouring of B
in linear time. As mentioned before, this FB-dicolouring together with α gives an F -dicolouring
of D, obtained in linear time.

3.3 Strengthening the Directed Brooks Theorem on oriented graphs

Recall that every digraphD satisfies χ⃗(D) ≤ ∆min(D)+1 (this is obtained via an easy greedy pro-
cedure). Hence, one can wonder if Brooks Theorem can be extended to digraphs using ∆min(D)
instead of ∆max(D). Unfortunately, Aboulker and Aubian [2] proved that, given a digraph D,
deciding whether D is ∆min(D)-dicolourable is NP-complete. Thus, unless P=NP, we cannot
expect an easy characterisation of digraphs satisfying χ⃗(D) = ∆min(D) + 1. In the reduction
of [2], the built digraphs have large bidirected cliques. Hence it is natural to ask what is happening
for digraphs with no large bidirected complete subgraphs, and it particular what is happening for
oriented graphs.

Let the maximum geometric mean of a digraph D be ˜︁∆(D) = max¶
√︁
d+(v)d−(v) | v ∈

V (D)♢. By definition, we have ∆min(D) ≤ ˜︁∆(D) ≤ ∆max(D). Restricted to oriented graphs,
Harutyunyan and Mohar [92] have strengthened Theorem 3.1.5 by proving the following.
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Theorem 3.3.1 (Harutyunyan and Mohar [92]). There is an absolute constant ∆1 such that every

oriented graph G⃗ with ˜︁∆(G⃗) ≥ ∆1 satisfies χ⃗(G⃗) ≤ (1− e−13) ˜︁∆(G⃗).

We here give another strengthening of Theorem 3.1.5 on a large class of digraphs which
contains oriented graphs. We first need a few definitions. Given two digraphs H1 and H2, let
H1 ⇒ H2 denote the directed join of H1 and H2, that is the digraph obtained from disjoint copies
ofH1 andH2 by adding all arcs from the copy ofH1 to the copy ofH2 (H1 orH2 may be empty).
For every fixed integer k ≥ 1, let Fk be the finite class of digraphs defined as follows.

Fk =

∏︂
⨄︂
⎩

{︂←→
Kk

}︂
if k ≤ 2

{︂←→
Ks ⇒

←−−−→
Kk+1−s | 0 ≤ s ≤ k + 1

}︂
otherwise.

Given a vertex v in a digraph D, we define the F -degree of v, denoted by dF (v), as the largest
integer k such that v belongs to a copy of H ∈ Fk in D. The following is the main result of this
section.

Theorem 3.3.2. Let D = (V,A) be a digraph and L be a list assignment of D such that, for every

vertex v ∈ V ,

|L(v)| ≥ max
(︁
dF (v) + 1, dmin(v)

[︄
.

Then D is L-dicolourable.

The proof of Theorem 3.3.2 is given in Section 3.3.1. We discuss its consequences in the
remaining of this section. Since in an oriented graph, every vertex v satisfies dF (v) = 1, we
directly obtain the following.

Corollary 3.3.3. Let G⃗ be an oriented graph and L be a list assignment of G⃗ such that, for every

vertex v ∈ V ,

|L(v)| ≥ max
(︁
2, dmin(v)

[︄
.

Then G⃗ is L-dicolourable.

Interestingly, Harutyunyan and Mohar [91] proved that deciding if an oriented graph G⃗ is L-
dicolourable is NP-complete even if L satisfies |L(v)| ≥ dmin(v). Corollary 3.3.3 shows that the
hardness of this problem only comes from vertices with in- or out-degree exactly 1.

The following is another consequence of Theorem 3.3.2.

Corollary 3.3.4. Let D be a digraph. If χ⃗(D) = ∆min(D) + 1, then one of the following holds:

• ∆min(D) ≤ 1,

• ∆min(D) = 2 and D contains
←→
K2, or

• ∆min(D) ≥ 3 andD contains
←→
Kr ⇒

←→
Ks, for some r, s ≥ 0 such that r+s = ∆min(D)+1.

Proof. Let D be a digraph such that χ⃗(D) = ∆min(D) + 1 ≥ 3. If ∆min(D) = 2, then Corol-

lary 3.3.3 implies that D is not an oriented graph, and in particular it contains
←→
K2.

Henceforth assume that ∆min(D) ≥ 3. Let L be the constant list assignment which associates
[∆min(D)] to every vertex v ∈ V (D). Since χ⃗(D) = ∆min(D) + 1, Theorem 3.3.2 implies that
some vertex v satisfies dF (v) ≥ |L(v)| = ∆min(D). By definition of dF (v), we conclude that D

contains
←→
Kr ⇒

←→
Ks, for some r, s ≥ 0 such that r + s = ∆min(D) + 1.
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In particular, we conclude that every digraph D satisfying χ⃗(D) = ∆min(D) + 1 contains a
large complete bidirected graph as a subdigraph.

Corollary 3.3.5. Let D be a digraph. If χ⃗(D) = ∆min(D) + 1, then D contains the complete

bidirected graph on
⌈︂

∆min+1
2

⌉︂
vertices as a subdigraph.

Moreover, since an oriented graph does not contain any digon, Corollary 3.3.5 implies the
following.

Corollary 3.3.6. Let G⃗ be an oriented graph. If ∆min(G⃗) ≥ 2, then χ⃗(G⃗) ≤ ∆min(G⃗).

As an interesting particular case, every orientation G⃗ of a graph G satisfying ∆(G) = 5 is
2-dicolourable, which answers by the affirmative a question of Harutyunyan [90].

We denote by k-DICOLOURABILITY the problem of deciding if a given digraph D is k-
dicolourable. We finally prove the following in Section 3.3.2, which shows that Corollary 3.3.5 is
in some sense best possible.

Theorem 3.3.7. For every fixed k ≥ 2, k-DICOLOURABILITY remains NP-complete when re-

stricted to digraphs D satisfying ∆min(D) = k and not containing the bidirected complete graph

on
⌈︂

k+1
2

⌉︂
+ 1 vertices.

3.3.1 Proof of Theorem 3.3.2

This section is devoted to the proof of Theorem 3.3.2, which we first recall here for convenience.

Theorem 3.3.2. Let D = (V,A) be a digraph and L be a list assignment of D such that, for every

vertex v ∈ V ,

|L(v)| ≥ max
(︁
dF (v) + 1, dmin(v)

[︄
.

Then D is L-dicolourable.

Proof. Let D be a digraph and L be a list assignment such that, for every vertex v ∈ V (D), we
have

|L(v)| ≥ max
(︁
dF (v) + 1, dmin(v)

[︄
.

Assume for a contradiction that D is not L-dicolourable. Let (X,Y ) be the following partition of
V (D):

X = ¶v ∈ V (D) | d+(v) ≤ d−(v)♢ and Y = ¶v ∈ V (D) | d−(v) < d+(v)♢.

We define an auxiliary digraph ˜︁D as follows:

• V ( ˜︁D) = V (D),

• A( ˜︁D) = A(D⟨X⟩) ∪A(D⟨Y ⟩) ∪ ¶xy, yx | xy ∈ A(D), x ∈ X, y ∈ Y ♢.

Claim 3.3.8. ˜︁D is not L-dicolourable.
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Proof of claim. Assume for a contradiction that there exists an L-dicolouring α of ˜︁D. Then D,
coloured with α, must contain a monochromatic directed cycle C. Now C is not contained in X
nor Y , for otherwise C, coloured with α, would be a monochromatic directed cycle of D⟨X⟩ or
D⟨Y ⟩ and so a monochromatic directed cycle of ˜︁D. Thus C contains an arc xy from X to Y . But
[x, y], coloured with α, is a monochromatic digon in ˜︁D, a contradiction. ♢

We let H ⊆ ˜︁D be an induced subdigraph of ˜︁D that is not L-dicolourable and such that n(H)
is minimum for this property (by H being L-dicolourable we mean that H is LH -dicolourable
where LH is the restriction of L to V (H)). By choice of H , for every vertex v ∈ V (H), we have
d+

H(v) ≥ |L(v)| and d−
H(v) ≥ |L(v)|, for otherwise an L-dicolouring of H − v could be extended

to H by choosing for v a colour c ∈ L(v) that is not appearing in its out-neighbourhood or in its
in-neighbourhood. We define XH as X ∩ V (H) and YH as Y ∩ V (H). Note that both H⟨XH⟩
and H⟨YH⟩ are subdigraphs of D.

Claim 3.3.9. For every vertex v ∈ V (H), we have d+
H(v) = d−

H(v) = |L(y)|.
Proof of claim. Let ℓ be the number of digons between XH and YH in H . Recall that every vertex
x ∈ X satisfies d+

D(x) ≤ d−
D(x), so d+

D(x) = dmin(x) ≤ |L(v)|. In the construction of ˜︁D fromD,
we only added arcs from Y toX . SinceH is a subdigraph of ˜︁D, we thus have d+

H(x) ≤ |L(x)| for
every vertex x ∈ XH . As observed above, d+

H(x) ≥ |L(x)|, so d+
H(x) = |L(x)| for every vertex

x ∈ XH .
Note also that, in H , ℓ is exactly the number of arcs leaving XH and exactly the number of

arcs entering XH . We get:
∑︂

x∈XH

|L(x)| =
∑︂

x∈XH

d+
H(x)

= ℓ+m(H⟨XH⟩)
=

∑︂

x∈XH

d−
H(x).

Since d−
H(x) ≥ |L(x)| for every x ∈ XH , this implies d+

H(x) = d−
H(x) = |L(x)| for every vertex

x ∈ XH . Using a symmetric argument, we obtain d+
H(y) = d−

H(y) = |L(y)| for every vertex
y ∈ YH . ♢

In particular, Claim 3.3.9 implies |L(v)| ≥ dmax(v) for every vertex v ∈ V (H). Since H is
not L-dicolourable, by Theorem 3.1.6, H must be a directed Gallai tree. Let B be an end-block
of H , recall that B is a bidirected complete graph, a bidirected odd cycle or a directed cycle. We
distinguish these three possible cases.

Case 1: B is a directed cycle.

Let v ∈ V (B) be any vertex that is not a cut-vertex of H . Then d+
H(v) = d−

H(v) = 1, so
|L(v)| = 1. This is a contradiction because every vertex v satisfies dF (v) ≥ 1 (in D) and
by assumption |L(v)| ≥ dF (v) + 1.

Case 2: B is a bidirected odd cycle.

Then at least one digon [u, v] of B belongs to H⟨XH⟩ or H⟨YH⟩, for otherwise B would be
bipartite (with bipartition (XH ∩ V (B), YH ∩ V (B))). In particular, [u, v] is a digon in D.
By definition of an end-block, at most one of ¶u, v♢ is a cut-vertex of H . Assume without
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loss of generality that v is not. This implies |L(v)| = d+
H(v) = d−

H(v) = 2. Since v is
incident to a digon in D we have dF (v) ≥ 2 in D. This contradicts |L(v)| ≥ dF (v) + 1.

Case 3: B is a bidirected complete graph on k + 1 ≥ 4 vertices.

Let v ∈ V (B) be any vertex that is not a cut-vertex ofH . We hence have d+
H(v) = d−

H(v) =
|L(v)| = k. Let XB and YB denote respectively X ∩ V (B) and Y ∩ V (B). Both B⟨XB⟩
and B⟨YB⟩ are subdigraphs of D, and every arc from XB to YB belongs to D. Hence the
subdigraph ofD induced by V (B) contains a copy of some digraph in Fk. Since v ∈ V (B),
we have dF (v) ≥ k in D. This contradicts |L(v)| ≥ dF (v) + 1.

3.3.2 Proof of Theorem 3.3.7

This section is devoted to the proof of Theorem 3.3.7 which we recall here for convenience.

Theorem 3.3.7. For every fixed k ≥ 2, k-DICOLOURABILITY remains NP-complete when re-

stricted to digraphs D satisfying ∆min(D) = k and not containing the bidirected complete graph

on
⌈︂

k+1
2

⌉︂
+ 1 vertices.

Proof. We reduce from k-DICOLOURABILITY, which is known to be NP-complete for every fixed
k ≥ 2 (see [50]). Let us fix k ≥ 2 and let D = (V,A) be an instance of k-DICOLOURABILITY.
We build D′ = (V ′, A′) as follows:

• For each vertex x ∈ V , we associate a copy of S−
x ⇒ S+

x where S−
x is the bidirected com-

plete graph on
⌊︂

k+1
2

⌋︂
vertices, and S+

x is the bidirected complete graph on
⌈︂

k+1
2

⌉︂
vertices.

• For each arc xy ∈ A, we associate all possible arcs x+y− in A′, such that x+ ∈ S+
x and

y− ∈ S−
y .

First observe that ∆min(D′) = k. Let v be a vertex of D′, if v belongs to some S+
x , then d−(v) =

k, otherwise it belongs to some S−
x and then d+(v) = k. Then observe that D′ does not contain

the bidirected complete graph on
⌈︂

k+1
2

⌉︂
+ 1 vertices since every digon in D′ is contained in some

S+
x or S−

x . Thus we only have to prove that χ⃗(D) ≤ k if and only if χ⃗(D′) ≤ k to get the result.

Let us first prove that χ⃗(D) ≤ k implies χ⃗(D′) ≤ k.
Assume that χ⃗(D) ≤ k. Let ϕ : V −→ [k] be a k-dicolouring of D. Let ϕ′ be the k-dicolouring

of D′ defined as follows: for each vertex x ∈ V , choose arbitrarily x− ∈ S−
x , x+ ∈ S+

x , and set
ϕ′(x−) = ϕ′(x+) = ϕ(x). Then choose a distinct colour for every other vertex v in S−

x ∪ S+
x ,

and set ϕ′(v) to this colour. We obtain that ϕ′ must be a k-dicolouring of D′: for each x ∈ V ,
every vertex but x− in S−

x must be a sink in its colour class, and every vertex but x+ in S+
x must

be a source in its colour class. Thus if D′, coloured with ϕ′, contains a monochromatic directed
cycle C ′, then C ′ must be of the form x−

1 x
+
1 x

−
2 x

+
2 · · ·x−

ℓ x
+
ℓ x

−
1 . But then C = x1x2 · · ·xℓx1 is a

monochromatic directed cycle in D coloured with ϕ, a contradiction.

Reciprocally, let us prove that χ⃗(D′) ≤ k implies χ⃗(D) ≤ k, so assume that χ⃗(D′) ≤ k.
Let ϕ′ : V ′ −→ [k] be a k-dicolouring of D′. Let ϕ be the k-dicolouring of D defined as follows.
For each vertex x ∈ V , we know that |S+

x ∪ S−
x | = k + 1, thus there must be two vertices

x+ and x− in S+
x ∪ S−

x such that ϕ′(x+) = ϕ′(x−). Moreover, since both S+
x and S−

x are
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bidirected, one of these two vertices belongs to S+
x and the other one belongs to S−

x . We assume
without loss of generality x+ ∈ S+

x and x− ∈ S−
x . Then we set ϕ(x) = ϕ′(x+). We get that ϕ

must be a k-dicolouring of D. If D, coloured with ϕ, contains a monochromatic directed cycle
C = x1x2 · · ·xℓx1, then C ′ = x−

1 x
+
1 x

−
2 x

+
2 · · ·x−

ℓ x
+
ℓ x

−
1 is a monochromatic directed cycle in D′

coloured with ϕ′, a contradiction.
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4.1 Minimum number of edges in critical graphs

An easy observation is that if a graph is k-colourable, then so is each of its subgraphs. This leads
to the study of graphs that are in some way minimal obstructions to (k − 1)-colourability, which
are exactly k-critical graphs. For a non-negative integer k, recall that a graph G is critical and
k-critical if every proper subgraph G′ of G satisfies χ(G′) < χ(G) = k.

The only graph with chromatic number 0 is the empty graph, and a graph is 1-colourable if
and only if it is edgeless. Therefore, for k ≤ 2, Kk is the only k-critical graph. Furthermore, it is
well-known that a graph is 3-critical if and only if it is an odd cycle (see [58, Proposition 1.6.1]).
When k ≥ 4, the class of k-critical graphs is very dense and an easy characterisation of such
graphs is very unlikely.

The concept of critical graphs is due to Dirac. In the 1950s he established the basic properties
of critical graphs in a series of papers [59, 60, 61, 62] and started to investigate the function gk(n),
defined as

gk(n) = min ¶m(G) | G is k-critical and has order n♢ ,
with the convention gk(n) = +∞ if there exists no such graph. For k ≥ 4, he showed in [61]
that there exists a k-critical graph of order n if and only if n ≥ k and n ̸= k + 1 (see also [137,
Theorem 11.7.5]).

71
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X

Y1 Y2

v1 v2

Figure 4.1: An example of a graph in DG(7).

It is easy to show that every k-critical graph has minimum degree at least k − 1, which gives
the trivial lower bound 2gk(n) ≥ (k − 1)n. By Brooks Theorem (Theorem 3.1.1) it follows that
2gk(n) = (k − 1)n if and only if n = k or k = 3 and n is odd. For every k ≥ 3 and n ≥ k + 2,
Dirac proved in [62] (see also [64]) that

2gk(n) ≥ (k − 1)n+ k − 3.

For k ≥ 3, we denote by DG(k) the finite class of graphs defined as follows. A graph G
belongs to DG(k) if and only if V (G) consists of three non-empty pairwise disjoint sets X,Y1, Y2

with |Y1| + |Y2| = |X| + 1 = k − 1 and two additional vertices v1 and v2 such that both G⟨X⟩
and G⟨Y1 ∪ Y2⟩ are complete graphs not joined by any edge in G, and X ∪ Yi is exactly the
neighbourhood of vi for i ∈ [2]. See Figure 4.1 for an illustration.

The class DG(k) was introduced by Dirac [64] and Gallai [76]. For k ≥ 4 and n ≥ k + 2,
after proving the inequality above, Dirac also proved in [64] that a k-critical graph on n vertices
has exactly (k − 1)n+ k − 3 edges if and only if it belongs to DG(k).

Given two graphs G1 and G2, the Dirac join of G1 and G2, denoted by G1 ⊞G2, is the graph
obtained from disjoint copies of G1 and G2 by adding all the edges between V (G1) and V (G2).
It is straightforward that G1 ⊞G2 is (χ(G1) + χ(G2))-critical if and only if both G1 and G2 are
critical. In 1963, Gallai published two fundamental papers [76, 77] about the structure of critical
graphs. In particular, he proved the two following remarkable results (see [131, 158] for alternative
proofs of Theorem 4.1.1).

Theorem 4.1.1 (Gallai). Let G be a k-critical graph of order n. If n ≤ 2k − 2, then G is

disconnected.

Theorem 4.1.2 (Gallai). Let n = k + p be an integer, where k, p ∈ N and 2 ≤ p ≤ k − 1, then

gk(n) =

⎠
n

2

⎜
− (p2 + 1).
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Moreover, a k-critical graph G of order n has exactly gk(n) edges if and only if G = G1 ⊞ G2

where G1 = Kk−p−1 and G2 ∈ DG(p+ 1).

In 2014 Kostochka and Yancey established the following lower bound for gk(n) when they
first popularised the potential method.

Theorem 4.1.3 (Kostochka and Yancey [114]). Let n and k be two integers such that n ≥ k ≥ 4
and n ̸= k + 1, then

gk(n) ≥ 1

2

(︃
k − 2

k − 1

)︃
n− k(k − 3)

2(k − 1)

This lower bound is sharp when k ≥ 4 and n = 1 mod (k− 1), because of a construction due
to Hajós [88]. They gave a much simpler proof of the case k = 4 in a second work [115]. It is of
interest that g4(n) =

⌈︂
5n−2

3

⌉︂
implies Grötzsch’s famous theorem [85] stating that every triangle-

free planar graph is 3-colourable. This result of Kostochka and Yancey confirmed a conjecture of
Gallai [76] and improved on earlier results [117, 112] (see also [109]).

In 2018 Kostochka and Yancey [116] refined their result by describing all n-vertex k-critical
graphs G with m(G) = 1

2

⎞
k − 2

k−1

)︂
n − k(k−3)

2(k−1) . All of them contain a copy of Kk−2, which
motivated the following conjecture of Postle [143].

Conjecture 4.1.4 (Postle [143]). For every integer k ≥ 4, there exists εk > 0 such that every

k-critical Kk−2-free graph G on n vertices has at least 1
2

⎞
k − 2

k−1 + εk

)︂
n− k(k−3)

2(k−1) edges.

For k = 4, the conjecture trivially holds, as there is no K2-free 4-critical graph. Moreover,
this conjecture has been confirmed for k = 5 by Postle [143], for k = 6 by Gao and Postle [78],
and for k ≥ 33 by Gould, Larsen, and Postle [83].

4.2 Minimum number of arcs in dicritical digraphs

Analogously to the undirected case, recall that a digraph is dicritical and k-dicritical if it is not
(k − 1)-dicolourable, but all of its proper subdigraphs are. The interest in k-dicritical graphs
arises in a similar way as the interest in k-critical graphs. While the only 1-dicritical digraph is
the digraph on one vertex and a graph is 2-dicritical if and only if it is a directed cycle, already
3-dicritical digraphs have a very diverse structure. Analogues of Hajós’ construction have been
found by Bang-Jensen, Bellitto, Schweser, and Stiebitz [17] (Theorem 2.2.4). Again, it is natural
to consider dk(n), the minimum number of arcs of a k-dicritical digraph of order n, with the
convention dk(n) = +∞ if no such digraph exists. Observe that a graphG is k-critical if and only

if its associated bidirected graph
←→
G is k-dicritical.

Let us briefly justify that dk(n) < +∞ whenever n ≥ k ≥ 2. Given two digraphs H1 and H2,
recall that H1 ⇒ H2 denotes the directed join of H1 and H2, that is the digraph obtained from
disjoint copies of H1 and H2 and by adding all arcs from the copy of H1 to the copy of H2. If
we further add all the arcs from H2 to H1, we obtain the Dirac join of H1 and H2, denoted by
H1 ⊞H2. It is straightforward that χ⃗(H1 ⊞H2) = χ⃗(H1) + χ⃗(H2) (see [17]), and that H1 ⊞H2

is dicritical if and only if both H1 and H2 are dicritical. Hence, for every pair of integers k, n
satisfying n ≥ k ≥ 2, the digraph

←−→
Kk−2 ⊞ C⃗n−k+2 is k-dicritical and has order n, which implies

dk(n) < +∞.
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Since for every k-critical graph G, the associated bidirected graph
←→
G is a k-critical digraph

of the same order with 2m(G) arcs, we directly have dk(n) ≤ 2 · gk(n) for every pair of integers
k, n. Kostochka and Stiebitz [113] conjectured that indeed the sparsest k-dicritical digraphs are
bidirected.

Conjecture 4.2.1 (Kostochka and Stiebitz [113]). Let k, n be two integers such that n ≥ k+2 ≥ 6,

then

dk(n) = 2 · gk(n).

Moreover, every k-dicritical digraph on n vertices with dk(n) arcs is bidirected.

If the first part of the conjecture above is true, then every bound of the form “gk(n) ≥ fk(n)”
has a directed counterpart of the form “dk(n) ≥ 2 · fk(n)”. In particular, every lower bound
on gk(n) presented in the last section should have a counterpart in digraphs. Aboulker and

Vermande [10] showed that it is the case for Dirac’s bound. Let us define
−→DG(k) as follows:−→DG(2) = ¶C⃗3♢ and

−→DG(k) = ¶←→G | G ∈ DG(k)♢ for every k ≥ 3.

Theorem 4.2.2 (Aboulker and Vermande [10]). If D is a k-dicritical digraph and n(D) > k ≥ 4
then

m(D) ≥ (k − 1)n(D) + k − 3.

Moreover, equality holds if and only if D ∈ −→DG(k).

LetD = (V,A) be a digraph. The complement ofD, denoted byD, is the digraph with vertex-
set V and arc-set (V × V ) \ A(D). We call D decomposable if it is the Dirac join of two non-
empty subdigraphs (i.e. D is disconnected); otherwise D is called indecomposable. Stehlík [159]
proved that every k-dicritical digraph with few vertices is decomposable, thereby generalising
Theorem 4.1.1 and answering a question proposed in [17].

Theorem 4.2.3 (Stehlík [159]). If D is an indecomposable dicritical digraph, then

n(D) ≥ 2χ⃗(D)− 1.

Stehlík’s proof uses matching theory, but it can also be proved using the hypergraph version
of Theorem 4.1.1 obtained by Stiebitz, Storch, and Toft [163] (see [141]).

In Section 4.3 we give several structural results on dicritical digraphs D whose order is close
to χ⃗(D). Our main result is the following generalisation of Theorem 4.1.2, which implies Con-
jecture 4.2.1 when k + 2 ≤ n ≤ 2k − 1. For a digraph H and a class of digraphs D, we define
H ⊞D as the class ¶H ⊞D | D ∈ D♢, which is empty if D is.

Theorem 4.2.4. Let n = k + p be an integer, where k, p ∈ N and 1 ≤ p ≤ k − 1, then

dk(n) =

∮︂
2
(︁n

2

[︄
− 3 if p = 1

2
(︁(︁n

2

[︄
− (p2 + 1)

[︄
otherwise.

Moreover, if D is a k-dicritical digraph of order n, then m(D) = dk(n) if and only if

D ∈ ←−−−→Kk−p−1 ⊞
−→DG(p+ 1).
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Finally, observe that Theorem 4.1.3 together with Conjecture 4.2.1 implies the following
slightly weaker one.

Conjecture 4.2.5. Let n and k be two integers such that n ≥ k ≥ 4, then

dk(n) ≥
(︃
k − 2

k − 1

)︃
n− k(k − 3)

k − 1
.

Kostochka and Stiebitz showed this weaker version of the conjecture when k = 4, by showing
d4(n) ≥ 10n−4

3 . It remains open for every k ≥ 5, and the best result approaching it is due to
Aboulker and Vermande [10].

Theorem 4.2.6 (Aboulker and Vermande [10]). Let n and k be two integers such that n ≥ k ≥ 5,

then

dk(n) ≥
(︃
k − 1

2
− 1

k − 1

)︃
n− k(k − 3)

2(k − 1)
.

Kostochka and Stiebitz [111] showed that if a k-critical graph G is triangle-free, then
m(G)/n(G) ≥ k − o(k) as k → +∞. Informally, this means that the minimum average de-
gree of a k-critical triangle-free graph is (asymptotically) twice the minimum average degree of a
k-critical graph. Similarly to this undirected case, it is expected that the minimum number of arcs
in a k-dicritical digraph of order n is larger than dk(n) if we impose this digraph to have no short
directed cycles, and in particular if the digraph is an oriented graph. Let ok(n) denote the mini-
mum number of arcs in a k-dicritical oriented graph of order n (with the convention ok(n) = +∞
if there is no k-dicritical oriented graph of order n). Clearly ok(n) ≥ dk(n), but Kostochka and
Stiebitz conjectured that ok(n) is asymptotically significantly larger than dk(n).

Conjecture 4.2.7 (Kostochka and Stiebitz [113]). There exists ε > 0 such that, for every k ≥ 3
and n sufficiently large,

ok(n) ≥ (1 + ε) · dk(n).

For k = 3, this conjecture has been confirmed by Aboulker, Bellitto, Havet, and Rambaud [6]
who proved that o3(n) ≥ (2 + 1

3)n + 2
3 . In view of Conjecture 4.1.4, Conjecture 4.2.7 can be

generalised to
←−→
Kk−2-free digraphs.

Conjecture 4.2.8. For any k ≥ 4, there is a constant βk > 0 such that every k-dicritical
←−→
Kk−2-

free digraph D on n vertices has at least (1 + βk)dk(n) arcs.

Together with Conjecture 4.2.5, this conjecture would imply the following generalisation of
Conjecture 4.1.4.

Conjecture 4.2.9. For every integer k ≥ 4, there exists εk > 0 and ck > 0 such that every

k-dicritical
←−→
Kk−2-free digraph D on n vertices has at least (k − 2

k−1 + εk)n− ck arcs.

It is easy to see that there are infinitely many 4-dicritical oriented graphs. Thus, while Conjec-
ture 4.1.4 holds vacuously for k = 4, this is not the case for Conjecture 4.2.9. In Section 4.4, we
prove that Conjectures 4.2.7, 4.2.8, and 4.2.9 hold for k = 4.

Theorem 4.2.10. If G⃗ is a 4-dicritical oriented graph, then

m(G⃗) ≥
(︃

10

3
+

1

51

)︃
n(G⃗)− 1.
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To prove Theorem 4.2.10, we will use an approach similar to the proof of the case k = 5
of Conjecture 4.1.4 by Postle [143]. Using the potential method, we will prove a more general
result on all 4-dicritical digraphs that takes into account the digons. Recall that Kostochka and
Stiebitz proved d4(n) ≥ 10n−4

3 . As a consequence of our general result, we also characterise the
4-dicritical digraphs with exactly 10n−4

3 arcs, which slightly improves on the result of Kostochka
and Stiebitz. These digraphs are all bidirected, so we also prove the second part of Conjecture 4.2.1
when k = 4 and n = 1 mod 3.

Finally, we give in Section 4.5 a construction of dicritical oriented graphs, which implies
ok(n) ≤ (2k − 7

2)n for every fixed k and infinitely many values of n.

4.3 Dicritical digraphs with order close to the dichromatic number

In this section, we give a collection of structural results on critical digraphs whose order is close
to the dichromatic number. We first give a result which makes a connection between the order of
a dicritical digraph and its number of universal vertices and universal directed cycles, and discuss
the consequences of this result. Then, as mentioned in the introduction of this chapter, we will
generalise Theorem 4.1.1.

We will make use of the result of Stehlík about decomposable digraphs, and of the result
of Aboulker and Vermande which generalises Dirac’s bound. We recall both of them here for
convenience.

Theorem 4.2.3 (Stehlík [159]). If D is an indecomposable dicritical digraph, then

n(D) ≥ 2χ⃗(D)− 1.

Theorem 4.2.2 (Aboulker and Vermande [10]). If D is a k-dicritical digraph and n(D) > k ≥ 4
then

m(D) ≥ (k − 1)n(D) + k − 3.

Moreover, equality holds if and only if D ∈ −→DG(k).

4.3.1 Universal vertices and cycles in dicritical digraphs

Let D be a digraph. A non-empty subdigraph D′ of D is called a universal subdigraph of D
is there exists a non-empty subdigraph ˜︁D such that D = D′ ⊞ ˜︁D. A vertex v of D is called
a universal vertex of D if D⟨¶v♢⟩ is a universal subdigraph of D. By definition, observe that a
universal subdigraph D′ of D is necessarily induced. Observe also that if X ⊆ V (D) is a set of

p ≥ 0 universal vertices of D, then D =
←→
Kp ⊞ (D −X).

Let
−−→
CRI(k) denote the class of k-dicritical digraphs, and for an integer n, let

−−→
CRI(k, n) denote

¶D ∈ −−→CRI(k) | n(D) = n♢.

Theorem 4.3.1. Let D be a k-dicritical digraph of order n with k ≥ 1. Let p be the number of

universal vertices ofD and q be the number of universal directed cycles ofD having order at least

three. Then the following statements hold:

(a) p ≥ 3k − 2n and equality holds if and only if D =
←→
Kp ⊞D′ where D′ is the Dirac join of

1
2(k − p) copies of C⃗3.
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(b) p + 2q ≥ 5k − 3n and equality holds if and only if D =
←→
Kp ⊞D1 ⊞D2 where D1 is the

Dirac join of q copies of C⃗3 and D2 is the Dirac join of 1
3(k− p− 2q) disjoint subdigraphs

of D each of which belong to
−−→
CRI(3, 5).

Proof. Let us fix a k-dicritical digraph D on n vertices. Let D1, D2, . . . ,Ds be the connected
components of D. In particular, we have

D = D1 ⊞D2 ⊞ . . .⊞Ds.

For every i ∈ [s], let ki = χ⃗(Di) and ni = n(Di). We thus have k = k1 + k2 + · · · + ks and

Di ∈
−−→
CRI(ki, ni) for every i ∈ [s]. Since Di is connected, by Theorem 4.2.3 we also have

ni ≥ 2ki − 1 for every i ∈ [s]. (4.1)

In particular, for every i ∈ [s], we obtain that one of the following holds:

• ki = 1 and Di = K1, or

• ki = 2 and n(Di) ≥ 3, or

• ki ≥ 3 and n(Di) ≥ 5.

For a subset I of [s], let DI = ⊞i∈IDi be the Dirac join of the digraphs Di with i ∈ I , and
let kI =

∑︁
i∈I ki, where D∅ is the empty digraph and k∅ = 0. Note that, in particular, DI ∈−−→

CRI(kI). Let P = ¶i ∈ [s] | ki = 1♢, Q = ¶i ∈ [s] | ki = 2♢, R = [s] \ (P ∪ Q), p = |P |,
q = |Q|, and r = |R|. Then P , Q, and R are pairwise disjoint sets whose union is [s]. We thus
obtain

D = DP ⊞DQ ⊞DR, where DP =
←→
Kp and DQ ∈

−−→
CRI(2q).

Note that p is the number of universal vertices of D and q is the number of universal directed
cycles of D.

We are now going to prove (a). For every i ∈ Q ∪ R, we have ki ≥ 2 and so, by (4.1),
ni ≥ 2ki− 1 ≥ 3

2ki, where equality holds if and only if ki = 2 and Di = C⃗3. Therefore, we have

n = p+
∑︂

i∈Q∪R

ni ≥ p+
3

2

∑︂

i∈Q∪R

ki = p+
3

2
(k − p),

which is equivalent to p ≥ 3k − 2n. Also equality holds if and only if DQ∪R is the Dirac join of
1
2(k − p) disjoint copies of C⃗3. This proves (a).

We are now going to prove (b). For every i ∈ R, we have ki ≥ 3 so (4.1) implies ni ≥
2ki − 1 ≥ 5

3 i, where equality holds if and only if Di ∈
−−→
CRI(3, 5). We thus obtain

n = p+
∑︂

i∈Q

ni +
∑︂

i∈R

ni ≥ p+ 3q +
5

3

∑︂

i∈R

ki = p+ 3q +
5

3
(k − p− 2q),

which is equivalent to 2p + q ≥ 5k − 3n. Also equality holds if and only if Di = C⃗3 for every
i ∈ Q and Di ∈

−−→
CRI(3, 5) for every i ∈ R. Thus (b) is proved.
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In the remaining of this section, we discuss some consequences of Theorem 4.3.1. From
Theorem 4.3.1(a) it follows that every digraph D ∈ −−→CRI(k, k + 1) contains a universal vertex.

Since
−−→
CRI(2, 3) = ¶C⃗3♢, we have the following result by induction on k.

Proposition 4.3.2. For every integer k ≥ 2,

−−→
CRI(k, k + 1) = ¶←−→Kk−2 ⊞ C⃗3♢.

Theorem 4.3.1(b) implies that a 4-critical digraph on 6 vertices either contains a universal
vertex or two disjoint universal directed triangles. Hence, we have

−−→
CRI(4, 6) = (K1 ⊞

−−→
CRI(3, 5)) ∪ ¶C⃗3 ⊞ C⃗3♢.

If k ≥ 5, Theorem 4.3.1(a) implies that every k-dicritical digraph on k + 2 vertices contains at
least one universal vertex. Hence,

−−→
CRI(k, k + 2) = K1 ⊞

−−→
CRI(k − 1, k + 1) if k ≥ 5 and we

obtain the following by induction on k.

Corollary 4.3.3. For every integer k ≥ 4,

−−→
CRI(k, k + 2) =

⎞←−→
Kk−3 ⊞

−−→
CRI(3, 5)

)︂
∪
⎞←−→
Kk−4 ⊞ C⃗3 ⊞ C⃗3

)︂
.

Let
−−→
CRI∗(k, n) be the class consisting of all digraphs in

−−→
CRI(k, n) with no universal vertex.

For k-dicritical digraphs on k+p vertices, the following is a nice consequence of Theorem 4.3.1. In
particular, it implies that the number of k-dicritical digraphs on k+p vertices (up to isomorphism)
is bounded by a function depending only on p (when 2p < k).

Corollary 4.3.4. For every integer k, p such that k > 2p ≥ 4,

−−→
CRI(k, k + p) =

2p⋃︂

ℓ=2

{︂←−→
Kk−ℓ ⊞

−−→
CRI∗(ℓ, ℓ+ p)

}︂

Proof. Let D be a k-dicritical digraph on k + p vertices. Then n(D) = k + p < 3
2k. Let s

be the number of universal vertices of D. By definition, D =
←→
Ks ⊞ D′ where D′ belongs to−−→

CRI∗(ℓ, ℓ + p), for ℓ = k − s. It remains to show that 2 ≤ ℓ ≤ 2p. Since p ≥ 2, we obviously
have ℓ ≥ 2. On the other hand, D′ contains no universal vertex, so n(D′) ≥ 3

2ℓ (by applying
Theorem 4.3.1(a) on D′). We deduce

n(D′) = ℓ+ p ≥ 3

2
ℓ.

This implies ℓ ≤ 2p as desired.

4.3.2 Generalisation of a result of Gallai

This section is devoted to the proof of Theorem 4.2.4. We recall it here for convenience.

Theorem 4.2.4. Let n = k + p be an integer, where k, p ∈ N and 1 ≤ p ≤ k − 1, then

dk(n) =

∮︂
2
(︁n

2

[︄
− 3 if p = 1

2
(︁(︁n

2

[︄
− (p2 + 1)

[︄
otherwise.

Moreover, if D is a k-dicritical digraph of order n, then m(D) = dk(n) if and only if

D ∈ ←−−−→Kk−p−1 ⊞
−→DG(p+ 1).
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Proof. For every fixed k, p, easy calculations prove that every digraph D ∈ ←−−−→Kk−p−1 ⊞
−→DG(p+ 1)

contains exactly fk(n) arcs, where n = k + p and

fk(n) =

∮︂
2
(︁n

2

[︄
− 3 if p = 1,

2
(︁(︁n

2

[︄
− (p2 + 1)

[︄
otherwise.

Furthermore, it is clear that every digraph D ∈ ←−−−→Kk−p−1 ⊞
−→DG(p + 1) is k-dicritical since it is

either the bidirected graph associated to a k-critical graph or the Dirac join of a bidirected complete
graph and a directed triangle. Therefore, it remains to prove that every k-dicritical digraph D of
order n = k + p, 1 ≤ p ≤ k − 1, satisfying m(D) = dk(n) belongs to

←−−−→
Kk−p−1 ⊞

−→DG(p+ 1).

We proceed by induction on k. Assume first that k = 2, then p = 1 and C⃗3 is clearly the
only 2-dicritical digraph on 3 vertices. Assume now that k = 3, then 1 ≤ p ≤ 2. If p = 1, by
Proposition 4.3.2 K1 ⊞ C⃗3 is the only 3-dicritical digraph on 4 vertices. If p = 2 then we are done
by the second part of Theorem 4.2.2, which implies that the k-dicritical digraphs of order 2k − 1

with dk(2k − 1) arcs are exactly the digraphs in
−→DG(k).

We now assume k ≥ 4. Again, if p = 1 we are done by Proposition 4.3.2, and if p = k − 1
we are done by the second part of Theorem 4.2.2. So we assume 2 ≤ p ≤ k − 2. Let us fix
a k-dicritical digraph D on n = k + p vertices such that m(D) = dk(n), we will show that

D necessarily belongs to
←−−−→
Kk−p−1 ⊞

−→DG(p + 1). We distinguish three cases, depending on the
structure of D.

Case 1: D contains a universal vertex.

Then D = K1 ⊞H , where H = D − v ∈ −−→CRI(k − 1, n− 1). Furthermore, we must have

m(H) = dk−1(n − 1), for otherwise there exists a digraph H ′ ∈ −−→CRI(k − 1, n − 1) such
that m(H ′) < m(H), and D′ = K1 ⊞H

′ would be a k-dicritical digraph on n vertices with
m(D′) < m(D), a contradiction to the choice of D.

Since k + 2 ≤ n ≤ 2k − 2, we have (k − 1) + 1 ≤ n − 1 ≤ 2(k − 1) − 1, which allows

us to apply the induction hypothesis on H . Hence H belongs to
←−−−→
Kk−p−2 ⊞

−→DG(p + 1).

Consequently, D = K1 ⊞H belongs to
←−−−→
Kk−p−1 ⊞

−→DG(p+ 1) as desired.

Case 2: D contains a universal C⃗3 but no universal vertex.

Then D = C⃗3 ⊞H and H ∈ −−→CRI(k−2, n−3). We have n−3 ≥ k−1, for otherwise H is
the bidirected complete graph on k − 2 vertices, which implies that D contains a universal
vertex. We also have n− 3 ≤ 2(k − 2)− 1 since n ≤ 2k − 2. Analogously to the previous
case, we must also have m(H) = dk−2(n − 3). Hence, we may apply the induction on

H , which implies that m(H) ≥ 2
⎞(︁n−3

2

[︄
− ((p− 1)2 + 1)

)︂
arcs. Consequently, we obtain
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that

m(D) = m(H) + 3 + 6(n− 3)

≥ 2

⎠⎠
n− 3

2

⎜
− ((p− 1)2 + 1)

⎜
+ 3 + 6(n− 3)

= 2

⎠⎠
n

2

⎜
− (p2 + 1)

⎜
− 5 + 4p

≥ 2

⎠⎠
n

2

⎜
− (p2 + 1)

⎜
+ 3,

where in the last inequality we used p ≥ 2. This is a contradiction to the minimality of D,
since every digraph in

←−−−→
Kk−p−1 ⊞

−→DG(p+ 1) contains exactly 2
(︁(︁n

2

[︄
− (p2 + 1)

[︄
arcs.

Case 3: D does not contain a universal vertex, nor does it contain a universal C⃗3.

Let D1, D2, . . . ,Ds be the connected components of D. In particular, we have

D = D1 ⊞D2 ⊞ . . .⊞Ds.

For every i ∈ [s], let ki = χ⃗(Di) and ni = n(Di). We thus have k = k1 + k2 + · · · + ks

and Di ∈
−−→
CRI(ki, ni) for every i ∈ [s]. Since n ≤ 2k − 2, it follows from Theorem 4.2.3

that s ≥ 2. Also none of the Dis is decomposable, which implies ni ≥ 2ki − 1 for every
i ∈ [s]. Let t be the number of indices i for which ni = 2ki − 1. Assume first that t ≤ 1,
then we have

n =
s∑︂

i=1

ni ≥
s∑︂

i=1

2ki − 1 = 2k − 1.

This is a contradiction since n ≤ 2k − 2. Assume then that t ≥ 2. By symmetry, we may
assume n1 = 2k1 − 1 and n2 = 2k2 − 1.

Sincem(D) = dk(n) we obtain, as in the first case, thatm(Di) = dki
(ni) for i ∈ [s]. Since

D does not contain any universal vertex nor any universal C⃗3, we have ki ≥ 3. Hence we
have n1 ≥ k1 + 2 and n2 ≥ k2 + 2. Then the induction hypothesis implies that Di belongs
to
−→DG(ki) for i ∈ ¶1, 2♢. On the one hand, this implies that:

m(D1 ⊞D2) = 2

⎠⎠
2k1 − 1

2

⎜
− ((k1 − 1)2 + 1)

⎜

+ 2

⎠⎠
2k2 − 1

2

⎜
− ((k2 − 1)2 + 1)

⎜

+ 2(2k1 − 1)(2k2 − 1).

On the other hand, the minimality ofD implies thatm(D1⊞D2) = dk1+k2(2(k1 +k2)−2).

A digraph H in K1 ⊞
−→DG(k1 + k2 − 1) belongs to

−−→
CRI(k1 + k2, 2(k1 + k2) − 2) and

has 2
⎞(︁2k1+2k2−2

2

[︄
− ((k1 + k2 − 2)2 + 1)

)︂
arcs. We finally contradict m(D1 ⊞ D2) =

dk1+k2(2(k1 + k2)− 2), since

m(D1 ⊞D2)−m(H) = 4k1k2 − 4k1 − 4k2 + 2 ≥ 2.

This concludes the proof.
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4.4 Minimum density of 4-dicritical oriented graphs

This section is devoted to the proof of Theorem 4.2.10, which we restate here for convenience.

Theorem 4.2.10. If G⃗ is a 4-dicritical oriented graph, then

m(G⃗) ≥
(︃

10

3
+

1

51

)︃
n(G⃗)− 1.

As mentioned in the introduction of this chapter, our proof is based on the potential method
and the idea is to prove a more general result on all 4-dicritical digraphs that takes into account
the digons. A packing of digons and bidirected triangles is a set of pairwise vertex-disjoint digons
and bidirected triangles. To take into account the digons, we define a parameter T (D) as follows.

T (D) = max¶d+ 2t | there exists a packing of d digons and t bidirected triangles in D♢
Clearly, T (D) = 0 if and only if D is an oriented graph. Let ε, δ be fixed non-negative real
numbers. We define the potential (with respect to ε and δ) of a digraph D to be

ρ(D) =

(︃
10

3
+ ε

)︃
n(D)−m(D)− δT (D).

Theorem 4.2.10 can be rephrased as follows.

Theorem 4.4.1. Set ε = 1
51 and δ = 6ε = 2

17 . If G⃗ is a 4-dicritical oriented graph, then ρ(G⃗) ≤ 1.

In fact, we prove a more general statement which holds for every 4-dicritical digraph (with or
without digons), except for some exceptions called the 4-Ore digraphs. Those digraphs, which
are formally defined in Section 4.4.1, are the bidirected graphs whose underlying graph is one of
the 4-critical graphs reaching equality in Theorem 4.1.3. In particular, every 4-Ore digraph D has
exactly 10

3 n(D) − 4
3 arcs. Moreover, the statement holds for all non-negative constants ε and δ

satisfying the following inequalities:

• δ ≥ 6ε;

• 3δ − ε ≤ 1
3 ;

Theorem 4.4.2. Let ε, δ ≥ 0 be constants satisfying the aforementioned inequalities. If D is a

4-dicritical digraph with n vertices, then

(i) ρ(D) ≤ 4
3 + εn− δ 2(n−1)

3 if D is 4-Ore, and

(ii) ρ(D) ≤ 1 otherwise.

In order to provide some intuition to the reader, let us briefly describe the main ideas of our
proof. We will consider a minimum counterexample D to Theorem 4.4.2, and show that every
subdigraph of D must have large potential. To do so, we need to construct some smaller 4-
dicritical digraphs to leverage the minimality of D. These smaller 4-dicritical digraphs will be
constructed by identifying some vertices of D. This is why, in the definition of the potential, we
consider T (D) instead of the number of digons: when identifying a set of vertices, the number of
digons may be arbitrary larger in the resulting digraph, but T (D) increases at most by 1. Using
the fact that every subdigraph of D has large potential, we will prove that some subdigraphs are
forbidden in D. Using this, we get the final contradiction by a discharging argument.

In addition to Theorem 4.2.10, Theorem 4.4.2 has also the following consequence when we
take ε = δ = 0.
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x

y

z

z2

z1

Figure 4.2: An example of a 4-Ore digraph obtained by an Ore-composition of two smaller 4-Ore
digraphs, with replaced digon [x, y] and split vertex z.

Corollary 4.4.3. If D is a 4-dicritical digraph, then m(D) ≥ 10
3 n(D) − 4

3 . Moreover, equality

holds if and only if D is 4-Ore, otherwise m(D) ≥ 10
3 n(D)− 1.

As mentioned in the introduction, this is a slight improvement on a result of Kostochka and
Stiebitz [113] who proved the inequalitym(D) ≥ 10

3 n(D)− 4
3 without characterising the equality

case.
Another interesting consequence of our result is the following bound on the number of vertices

in a 4-dicritical oriented graph embedded on a fixed surface. Since a graph on n vertices embedded
on a surface of Euler characteristic c has at most 3n − 3c edges, we immediately deduce the
following from Theorem 4.2.10.

Corollary 4.4.4. If G⃗ is a 4-dicritical oriented graph embedded on a surface of Euler character-

istic c, then n(G⃗) ≤ 17
6 (1− 3c).

The previous best upper bound was n(G⃗) ≤ 4− 9c [113].

In Section 4.4.1 we prove some preliminary results on 4-Ore digraphs, before proving Theo-
rem 4.4.2 in Section 4.4.2.

4.4.1 The 4-Ore digraphs and their properties

Let D1, D2 be two bidirected graphs, [x, y] ⊆ A(D1), and z ∈ V (D2). An Ore-composition D of
D1 and D2 with replaced digon [x, y] and split vertex z is a digraph obtained by removing [x, y]
of D1 and z of D2, and adding the set of arcs ¶xz1 | zz1 ∈ A(D2) and z1 ∈ Z1♢, ¶z1x | z1z ∈
A(D2) and z1 ∈ Z1♢, ¶yz2 | zz2 ∈ A(D2) and z2 ∈ Z2♢, ¶z2y | z2z ∈ A(D2) and z2 ∈ Z2♢,
where (Z1, Z2) is a partition ofND2(z) into non-empty sets. We callD1 the digon side andD2 the
split side of the Ore-composition. The class of the 4-Ore digraphs is the smallest class containing←→
K4 which is stable under Ore-composition. See Figure 4.2 for an example of a 4-Ore digraph.
Observe that the 4-Ore-digraphs are all bidirected.

Proposition 4.4.5 (Dirac [63], see also [116]). 4-Ore digraphs are 4-dicritical.

Proof. One can easily show that a bidirected digraph is 4-dicritical if and only if its undirected
underlying graph is 4-critical. Then the result follows from the undirected analogous proved
by [63].



4.4 – Minimum density of 4-dicritical oriented graphs 83

Lemma 4.4.6. Let D be a 4-dicritical bidirected digraph and v ∈ V (D). Let (N+
1 , N

+
2 ) and

(N−
1 , N

−
2 ) be two partitions of N(v). Consider D′ the digraph with vertex-set V (D) \ ¶v♢ ∪

¶v1, v2♢ with N+(vi) = N+
i , N

−(vi) = N−
i for i = 1, 2 and D′⟨V (D) \ ¶v♢⟩ = D − v. Then

D′ has a 3-dicolouring with v1 and v2 coloured the same except if N+
1 = N−

1 (that is D′ is

bidirected).

Proof. Suppose that D′ is not bidirected. Consider a vertex u ∈ ND(v) such that v1u, uv2 ∈
A(D′) or v2u, uv1 ∈ A(D′). Without loss of generality, suppose v1u, uv2 ∈ A(D′). As D is
4-dicritical, D \ [u, v] has a proper 3-dicolouring ϕ. We set ϕ(v1) = ϕ(v2) = ϕ(v) and claim that
ϕ is a 3-dicolouring of D′. To show that, observe that ϕ is a proper 3-colouring of the underlying
undirected graph of D′ \ ¶v1u, uv2♢, and so ϕ is a 3-dicolouring of D′ as wanted.

Lemma 4.4.7. Let D be a digraph. If v is a vertex of D, then T (D − v) ≥ T (D)− 1.

Proof. LetM be a packing of d digons and t bidirected triangles inH such that d+2t = T (D). If
v belongs to a digon [u, v] in M , then M \ ¶[u, v]♢ witnesses the fact that T (D− v) ≥ T (D)− 1.
If v belongs to a bidirected triangle u, v, w, u, then M \ ¶u, v, w♢ ∪ [u,w] witnesses the fact that
T (D − v) ≥ T (D)− 2 + 1. Otherwise T (D − v) ≥ T (D).

Lemma 4.4.8. If D1, D2 are two digraphs, and D is an Ore-composition of D1 and D2, then

T (D) ≥ T (D1) + T (D2) − 2. Moreover, if D1 or D2 is isomorphic to
←→
K4, then T (D) ≥

T (D1) + T (D2)− 1.

Proof. LetD be the Ore-composition ofD1 (the digon side with replaced digon [x, y]) andD2 (the
split side with split vertex z). One can easily see that T (D) ≥ T (D1−x)+T (D−z) ≥ T (D1)+

T (D2)− 2 by Lemma 4.4.7. Moreover, if D1 (resp. D2) is a copy of
←→
K4, then T (D1 − x) = 2 =

T (D1) (resp. T (D2 − z) = 2 = T (D2)) and therefore T (D) ≥ T (D1) + T (D2)− 1.

Lemma 4.4.9. If D is 4-Ore, then T (D) ≥ 2
3(n(D)− 1).

Proof. If D is
←→
K4, then the result is clear. Suppose now that D is an Ore-composition of D1 and

D2. Then n(D) = n(D1) + n(D2) − 1 and, by Lemma 4.4.8, T (D) ≥ T (D1) + T (D2) − 2.
By induction, T (D1) ≥ 2

3(n(D1)− 1) and T (D2) ≥ 2
3(n(D2)− 1), and so T (D) ≥ 2

3(n(D1) +
n(D2)− 1− 1) = 2

3(n(D)− 1).

Let D be a digraph. A diamond in D is a subdigraph isomorphic to
←→
K4 minus a digon [u, v],

with vertices different from u and v having degree 6 in D. An emerald in D is a subdigraph
isomorphic to

←→
K3 whose vertices have degree 6 in D.

Let R be an induced subdigraph of D with n(R) < n(D). The boundary of R in D, denoted
by ∂D(R), or simply ∂(R) when D is clear from the context, is the set of vertices of R having a
neighbour in V (D) \ R. We say that R is Ore-collapsible if the boundary of R contains exactly
two vertices u and v and R ∪ [u, v] is 4-Ore.

Lemma 4.4.10. If D is 4-Ore and v ∈ V (D), then there exists either an Ore-collapsible subdi-

graph of D disjoint from v or an emerald of D disjoint from v.
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Proof. If D is a copy of
←→
K4, then D − v is an emerald. Otherwise, D is the Ore-composition

of two 4-Ore digraphs: D1 the digon side with replaced digon [x, y], and D2 the split side with
split vertex z. If v ∈ V (D2 − z), then D1 is an Ore-collapsible subdigraph with boundary ¶x, y♢.
Otherwise, v ∈ V (D1) and we apply induction on D2 to find an emerald or an Ore-collapsible
subdigraph in D2 disjoint from z.

Lemma 4.4.11. If D ̸= ←→K4 is 4-Ore and T is a copy of
←→
K3 in D, then there exists either an

Ore-collapsible subdigraph of D disjoint from T or an emerald of D disjoint from T .

Proof. As D is not
←→
K4, it is an Ore-composition of two 4-Ore digraphs: D1 the digon side with

replaced digon [x, y], and D2 the split side with split vertex z. As x and y are non-adjacent,
we have either T ⊆ D1, T ⊆ D2 − z, or T contains a vertex w ∈ ¶x, y♢ and two vertices in
V (D2 − z).

If T ⊆ D1, then by Lemma 4.4.10, in D2 there exists either an Ore-collapsible subdigraph
O or an emerald E disjoint from z. In the former case O is an Ore-collapsible subdigraph of D
disjoint from T , and in the later one E is an emerald in D disjoint from T .

If T ⊆ D2 − z, then D1 \ ¶x, y♢ is an Ore-collapsible subdigraph disjoint from T .
Assume now that T contains a vertex w ∈ ¶x, y♢ and two vertices in V (D2 − z). Without

loss of generality, we may assume that y ̸∈ T . Let z1 and z2 be the two vertices of T disjoint
from w. Then ¶z, z1, z2♢ induces a bidirected triangle T ′ in D2. If D2 ̸=

←→
K4, then by induction in

D2, there exists either an Ore-collapsible subdigraph O or an emerald E disjoint from T ′. In the
former case O is an Ore-collapsible subdigraph of D disjoint from T , and in the later one E is an
emerald in D disjoint from T .

Henceforth we may assume that D2 =
←→
K4. This implies that y has exactly one neighbour in

D2 − z and so its degree is the same in D1 and D. By Lemma 4.4.10, in D1 there exists either an
Ore-collapsible subdigraph O or an emerald E disjoint from x. In the former case O is an Ore-
collapsible subdigraph of D disjoint from T , and in the later one E is an emerald in D disjoint
from T even if y ∈ V (E) because y has the same degree in D1 and D.

Lemma 4.4.12. If R is an Ore-collapsible induced subdigraph of a 4-Ore digraph D, then there

exists a diamond or an emerald of D whose vertices lie in V (R).

Proof. Let D be a digraph. Let R be a minimal counterexample to this lemma, and let ∂(R) =

¶u, v♢ and H = D⟨R⟩ ∪ [u, v]. If H =
←→
K4, then R is a diamond in D. Suppose now that H

is the Ore-composition of two 4-Ore digraphs H1 (the digon side with replaced digon [x, y]) and
H2 (the split side with split vertex z). If ¶u, v♢ ̸⊆ V (H2), then by Lemma 4.4.10 there exists an
Ore-collapsible subdigraph in H2 disjoint from z. As it is smaller than H , it contains an emerald
or a diamond as desired, a contradiction.

Now assume that ¶u, v♢ ⊆ V (H2), then H1 is an Ore-collapsible subdigraph of D smaller
than H , and by induction, H1 contains a diamond or an emerald in D.

Lemma 4.4.13. If D is a 4-Ore digraph and v is a vertex in D, then D contains a diamond or an

emerald disjoint from v.

Proof. Follows from Lemmas 4.4.10 and 4.4.12.
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Lemma 4.4.14. If D is a 4-Ore digraph and T is a bidirected triangle in D, then either D =
←→
K4

or D contains a diamond or an emerald disjoint from T .

Proof. Follows from Lemmas 4.4.11 and 4.4.12.

The following theorem was formulated for undirected graphs, but by replacing every edge by
a digon, it can be restated as follows:

Theorem 4.4.15 (Kostochka and Yancey [116, Theorem 6]). Let D be a 4-dicritical bidirected

digraph. If 10
3 n(D)−m(D) > 1, then D is 4-Ore and 10

3 n(D)−m(D) = 4
3 .

Lemma 4.4.16. If D is a 4-Ore digraph with n vertices, then ρ(D) ≤ 4
3 + εn− δ 2(n−1)

3 .

Proof. Follows from Theorem 4.4.15 and Lemma 4.4.9.

Lemma 4.4.17 (Kostochka and Yancey [116, Claim 16]). Let D be a 4-Ore digraph. If R ⊆ D
and 0 < n(R) < n(D), then 10

3 n(R)−m(R) ≥ 10
3 .

Lemma 4.4.18. Let D be a 4-Ore digraph obtained from a copy J of
←→
K4 by successive Ore-

compositions with 4-Ore digraphs, vertices and digons in J being always on the digon side. Let

[u, v] be a digon in D⟨V (J)⟩. For every 3-dicolouring ϕ of D \ [u, v], vertices in V (J) receive

distinct colours except u and v.

Proof. We proceed by induction on n(D), the result holding trivially when D is
←→
K4. Now assume

that D is the Ore-composition of D1, the digon side containing J , and D2, with D1 and D2

being 4-Ore digraphs. Let [x, y] ⊆ A(D1) be the replaced digon in this Ore-composition, and
let z ∈ V (D2) be the split vertex. Let ϕ be a 3-dicolouring of D \ [u, v]. Then ϕ induces a
3-dicolouring of D⟨V (D2 − z) ∪ ¶x, y♢⟩. Necessarily ϕ(x) ̸= ϕ(y), for otherwise ϕ2 defined by
ϕ2(v) = ϕ(v) if v ∈ V (D2−z) and ϕ2(z) = ϕ(x) is a 3-dicolouring of D2, contradicting the fact
that 4-Ore digraphs have dichromatic number 4 by Lemma 4.4.5. Hence ϕ induces a 3-dicolouring
of D1 \ [u, v]. So, by the induction hypothesis, vertices in V (J) have distinct colours in ϕ, except
u and v.

Lemma 4.4.19. Let D be a 4-Ore digraph obtained from a copy J of
←→
K4 by successive Ore-

compositions with 4-Ore digraphs, vertices and digons in J being always on the digon side. Let v
be a vertex in V (J). For every 3-dicolouring ϕ of D − v, vertices in J receive distinct colours.

Proof. We proceed by induction on n(D), the result holding trivially when D is
←→
K4. Now assume

that D is the Ore-composition of D1, the digon side containing J , and D2, with D1 and D2

being 4-Ore digraphs. Let [x, y] ⊆ A(D1) be the replaced digon in this Ore-composition, and
let z ∈ V (D2) be the split vertex. Let ϕ be a 3-dicolouring of D − v. If v ∈ ¶x, y♢, then ϕ is
a 3-dicolouring of D1 − v and the result follows by induction. Now assume v ̸∈ ¶x, y♢. Then
ϕ induces a 3-dicolouring of D⟨V (D2 − z) ∪ ¶x, y♢⟩. Necessarily ϕ(x) ̸= ϕ(y), for otherwise
ϕ2 defined by ϕ2(v) = ϕ(v) if v ∈ V (D2 − z) and ϕ2(z) = ϕ(x) is a 3-dicolouring of D2,
contradicting the fact that 4-Ore digraphs have dichromatic number 4 by Lemma 4.4.5. Hence ϕ
induces a 3-dicolouring of D1− v. So, by the induction hypothesis, vertices in V (J) have distinct
colours in ϕ.



86 CHAPTER 4 — Minimum density of dicritical digraphs

R

D

X

XW

W

Dϕ(R) R′

Figure 4.3: A 4-dicritical digraph D together with an induced subdigraph R of D and ϕ a 3-
dicolouring of R, the ϕ-identification Dϕ(R) of R in D and the dicritical extension R′ of R with
extender W and core XW . For clarity, the digons are represented by undirected edges.

4.4.2 Proof of Theorem 4.4.2

Let D be a 4-dicritical digraph, R be an induced subdigraph of D with 4 ≤ n(R) < n(D) and ϕ
a 3-dicolouring of R. The ϕ-identification of R in D, denoted by Dϕ(R) is the digraph obtained
from D by identifying for each i ∈ [3] the vertices coloured i in V (R) to a vertex xi, adding the
digons [xi, xj ] for all 1 ≤ i < j ≤ 3. Observe that Dϕ(R) is not 3-dicolourable. Indeed, assume

for a contradiction that Dϕ(R) has a 3-dicolouring ϕ′. Since ¶x1, x2, x3♢ induces a
←→
K3, we may

assume without loss of generality that ϕ′(xi) = i for i ∈ [3]. Consider the 3-colouring ϕ′′ of D
defined by ϕ′′(v) = ϕ′(v) if v ̸∈ R and ϕ′′(v) = ϕ(v) if v ∈ R. One easily checks that ϕ′′ is a
3-dicolouring of D, a contradiction to the fact that χ⃗(D) = 4.

Now let W be a 4-dicritical subdigraph of Dϕ(R) and X = ¶x1, x2, x3♢. Then we say
that R′ = D⟨(V (W ) \ X) ∪ R⟩ is the dicritical extension of R with extender W . We call
XW = X ∩ V (W ) the core of the extension. Note that XW is not empty because W is not a
subdigraph of D. Thus 1 ≤ |XW | ≤ 3. See Figure 4.3 for an example of a ϕ-identification and a
dicritical extension.

Let D be a counterexample to Theorem 4.4.2 with minimum number of vertices. By
Lemma 4.4.16, D is not 4-Ore. Thus ρ(D) > 1.

Claim 4.4.20. If ˜︁D is a 4-dicritical digraph with n( ˜︁D) < n(D), then ρ( ˜︁D) ≤ 4
3 + 4ε− 2δ.

Proof of claim. If ˜︁D is not 4-Ore, then ρ( ˜︁D) ≤ 1 by minimality of D. Thus, ρ( ˜︁D) ≤ 4
3 + 4ε− 2δ

because 4ε − 2δ ≥ −1
3 . Otherwise, by Lemma 4.4.16, ρ( ˜︁D) ≤ 4

3 + εn( ˜︁D) − δ 2(n(˜︁D)−1)
3 ≤

4
3 + 4ε− 2δ because δ ≥ 3

2ε and n( ˜︁D) ≥ 4. ♢

Claim 4.4.21. Let R be a subdigraph of D with 4 ≤ n(R) < n(D). If R′ is a dicritical extension

of R with extender W and core XW , then

ρ(R′) ≤ ρ(W ) + ρ(R)−
⎞
ρ(
←−−→
K|XW |) + δ · T (

←−−→
K|XW |)

)︂
+ δ · (T (W )− T (W −XW ))

and in particular

ρ(R′) ≤ ρ(W ) + ρ(R)− 10

3
− ε+ δ.
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Proof of claim. We have

• n(R′) = n(W )− |XW |+ n(R),

• m(R′) ≥ m(W ) +m(R)−m(
←−−→
K|XW |),

• T (R′) ≥ T (W −XW ) + T (R)

and by summing these inequalities, we get the first result.
Now observe that T (W )− T (W −XW ) ≤ |XW | by Lemma 4.4.7, and that the maximum of

−
⎞
ρ(
←−−→
K|XW |) + δT (

←−−→
K|XW |)

)︂
+ δ|XW | is reached when |XW | = 1, in which case it is equal to

−10
3 − ε+ δ. The second inequality follows. ♢

Claim 4.4.22. IfR is a subdigraph ofD with 4 ≤ n(R) < n(D), then ρ(R) ≥ ρ(D)+2−3ε+δ >
3− 3ε+ δ.

Proof of claim. We proceed by induction on n− n(R). Let R′ be a dicritical extension of R with
extender W and core XW . By Claim 4.4.21, we have

ρ(R′) ≤ ρ(W ) + ρ(R)− 10

3
− ε+ δ.

Either V (R′) = V (D) and so ρ(R′) ≥ ρ(D) or V (R′) is a proper subset of V (D) and, since R
is a proper subdigraph of R′, by induction ρ(R′) ≥ ρ(D) + 2 − 3ε + δ ≥ ρ(D). In both cases,
ρ(R′) ≥ ρ(D). Now W is smaller than D so ρ(W ) ≤ 4

3 + 4ε− 2δ by Claim 4.4.20. Thus,

ρ(D) ≤ ρ(R′) ≤ 4

3
+ 4ε− 2δ + ρ(R)− 10

3
− ε+ δ.

This gives ρ(R) ≥ ρ(D) + 2− 3ε+ δ > 3− 3ε+ δ because ρ(D) > 1. ♢

As a consequence of Claim 4.4.22, any subdigraph (proper or not) of size at least 4 has poten-
tial at least ρ(D).

We say that an induced subdigraph R of D is collapsible if, for every 3-dicolouring ϕ of R, its
dicritical extension R′ (with extender W and core XW ) is D, has core of size 1 (i.e. |XW | = 1),
and the border ∂D(R) of R is monochromatic in ϕ.

Claim 4.4.23. Let R be an induced subdigraph of D and ϕ a 3-dicolouring of R such that ∂(R)
is not monochromatic in ϕ. If D is a dicritical extension of R dicoloured by ϕ with extender W
and core XW with |XW | = 1, then

ρ(R) ≥ ρ(D) + 3− 3ε+ δ.

Proof of claim. Assume D is a dicritical extension of R dicoloured by ϕ with extender W and
core XW with |XW | = 1. Observe that each of the following inequalities holds:

• n(D) = n(W )− |XW |+ n(R) = n(W ) + n(R)− 1,

• m(D) ≥ m(W ) + m(R) −m(
←−−→
K|XW |) + 1 = m(W ) + m(R) + 1 because ∂D(R) is not

monochromatic in ϕ, and
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• T (D) ≥ T (W −XW ) + T (R) ≥ T (W ) + T (R)− 1 by Lemma 4.4.7.

By Claim 4.4.20, we have

ρ(D) ≤ ρ(W ) + ρ(R)−
(︃

10

3
+ ε

)︃
− 1 + δ ≤

(︃
4

3
+ 4ε− 2δ

)︃
+ ρ(R)− 13

3
− ε+ δ

and so ρ(R) ≥ ρ(D) + 3− 3ε+ δ. ♢

Claim 4.4.24. If R is a subdigraph of D with 4 ≤ n(R) < n(D) and R is not collapsible, then

ρ(R) ≥ ρ(D) + 8
3 − ε− δ > 11

3 − ε− δ.

Proof of claim. Let R′ be a dicritical extension of R dicoloured by ϕ with extender W and core
XW . We distinguish four cases.

Case 1: R′ ̸= D.

Then R′ has a dicritical extension R′′ with extender W ′. By (the consequence of)
Claim 4.4.22, we have ρ(D) ≤ ρ(R′′). By Claim 4.4.21 (applied twice), we have

ρ(R′′) ≤ ρ(R) + ρ(W ′) + ρ(W ) + 2

(︃
−10

3
− ε+ δ

)︃
.

Both W and W ′ are smaller than D, so, by Claim 4.4.20, ρ(W ), ρ(W ′) ≤ 4
3 + 4ε − 2δ.

Those three inequalities imply

ρ(D) ≤ ρ(R′′) ≤ ρ(R) + 2

(︃
4

3
+ 4ε− 2δ

)︃
+ 2

(︃
−10

3
− ε+ δ

)︃
= ρ(R)− 4 + 6ε− 2δ

and so ρ(R) ≥ ρ(D) + 4− 6ε+ 2δ ≥ ρ(D) + 8
3 − ε− δ.

Case 2: R′ = D and |XW | = 2.

Then ρ(
←−−→
K|XW |) + δT (

←−−→
K|XW |) = 14

3 + 2ε, and, by Lemma 4.4.7, T (W )− T (W −XW ) ≤
|Xw| = 2. Thus, by Claim 4.4.21,

ρ(D) ≤ ρ(W ) + ρ(R)− 14

3
− 2ε+ 2δ

Now, since W is smaller than D, ρ(W ) ≤ 4
3 + 4ε− 2δ by Claim 4.4.20. Thus

ρ(D) ≤ ρ(R) +
4

3
+ 4ε− 2δ − 14

3
− 2ε+ 2δ = ρ(R)− 10

3
+ 2ε

and so ρ(R) ≥ ρ(D) + 10
3 − 2ε ≥ ρ(D) + 8

3 − ε− δ.

Case 3: R′ = D and |XW | = 3.

Then ρ(
←−−→
K|XW |) + δT (

←−−→
K|XW |) = 4 + 3ε, and, by Lemma 4.4.7, T (W ) − T (W −XW ) ≤

|Xw| = 3. Thus, by Claim 4.4.21,

ρ(D) ≤ ρ(W ) + ρ(R)− 4− 3ε+ 3δ.

Now, since W is smaller than D, ρ(W ) ≤ 4
3 + 4ε− 2δ by Claim 4.4.20. Thus

ρ(D) ≤ ρ(R) +
4

3
+ 4ε− 2δ − 4− 3ε+ 3δ = ρ(R)− 8

3
+ ε+ δ

and so ρ(R) ≥ ρ(D) + 8
3 − ε− δ.
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Case 4: R′ = D, |XW | = 1, and ∂(R) is not monochromatic in ϕ.

Then, by Claim 4.4.23, we have ρ(R) ≥ ρ(D) + 3− 3ε+ δ ≥ ρ(D) + 8
3 − ε− δ.

If R is not collapsible, then by definition it has a dicritical extension R′ satisfying the hypoth-
esis of one of the cases above. In any case, ρ(R) ≥ ρ(D) + 8

3 − ε− δ. ♢

A k-cutset in a graph G is a set S of k vertices such that G − S is not connected. Recall that
a graph is k-connected if it has at least k vertices and has no (k − 1)-cutset, and that a digraph is
k-connected if its underlying graph is k-connected.

Claim 4.4.25. D is 2-connected.

Proof of claim. Suppose for contradiction that ¶x♢ is a 1-cutset of UG(D). Let (A0, B0) be a
partition of V (D − x) into non-empty sets such that there is no edge between A0 and B0, and set
A = A0 ∪ ¶x♢ and B = B0 ∪ ¶x♢.

Since D is 4-dicritical, there exist a 3-dicolouring ϕA of D⟨A⟩ and a 3-dicolouring ϕB of
D⟨B⟩. Free to swap the colours, we may assume ϕA(x) = ϕB(x). Let ϕ be defined by ϕ(v) =
ϕA(v) if v ∈ A and ϕ(v) = ϕB(v) if v ∈ B. Since χ⃗(D) = 4, D, coloured with ϕ, must contain
a monochromatic directed cycle. Such a directed cycle must be contained in D⟨A⟩ or D⟨B⟩, a
contradiction. ♢

Claim 4.4.26. D is 3-connected. In particular, D contains no diamond.

Proof of claim. Suppose for contradiction that ¶x, y♢ is a 2-cutset of UG(D). Let (A0, B0) be a
partition of V (D) \ ¶x, y♢ into non-empty sets such that there is no edge between A0 and B0, and
set A = A0 ∪ ¶x, y♢ and B = B0 ∪ ¶x, y♢.

Assume for a contradiction that there exists a 3-dicolouring ϕA of D⟨A⟩ and a 3-dicolouring
ϕB of D⟨B⟩ such that ϕA(x) ̸= ϕA(y) and ϕB(x) ̸= ϕB(y). Free to swap the colours, we may
assume ϕA(x) = ϕB(x) and ϕA(y) = ϕB(y). Let ϕ be defined by ϕ(v) = ϕA(v) if v ∈ A and
ϕ(v) = ϕB(v) if v ∈ B. Every directed cycle either is in D⟨A⟩, or is in D⟨B⟩ or contains both
x and y. Therefore, it cannot be monochromatic with ϕ because ϕA and ϕB are 3-dicolourings of
D⟨A⟩ and D⟨B⟩ respectively, and ϕ(x) ̸= ϕ(y). Thus ϕ is a 3-dicolouring of D, a contradiction.
Hence either D⟨A⟩ or D⟨B⟩ has no 3-dicolouring ϕ such that ϕ(x) ̸= ϕ(y). Suppose without loss
of generality that it is D⟨A⟩.

Let DA = D⟨A⟩ ∪ [x, y]. DA is not 3-dicolourable because in every 3-dicolouring of D⟨A⟩,
x and y are coloured the same. Let DB be the digraph obtained from D⟨B⟩ by identifying x
and y into a vertex z. Assume for a contradiction that DB has a 3-dicolouring ψB . Set ψ(x) =
ψ(y) = ψB(z), and ψ(u) = ψB(u) for every u ∈ B \ ¶x, y♢. Then consider a 3-dicolouring
ψA of D⟨A⟩ such that ψA(x) = ψ(x) = ψA(y) = ψ(y) (such a colouring exists because A is
a proper subdigraph of D) and we set ψ(u) = ψA(u) for every u ∈ V (A) \ ¶x, y♢. As D is
not 3-dicolourable, it contains a monochromatic directed cycle C (with respect to ψ). The cycle
C is not included in D⟨A⟩ nor in DB . As a consequence, there is a monochromatic directed
path from ¶x, y♢ to ¶x, y♢ in B, and so there is a monochromatic directed cycle in DB for ψB , a
contradiction. Therefore DB is not 3-dicolourable.

Now DA has a 4-dicritical subdigraph WA which necessarily contains ¶x, y♢, and DB has a
4-dicritical subdigraphWB which necessarily contains z. AsWA andWB are 4-dicritical digraphs
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smaller thanD, we have ρ(WA), ρ(WB) ≤ 4
3 +4ε−2δ by Claim 4.4.20. LetH be the subdigraph

of D induced by V (WA) ∪ V (WB − z).
Note that n(H) = n(WA) + n(WB) − 1 and m(H) ≥ m(WA) + m(WB) − 2. Moreover

T (H) ≥ T (WA − x) + T (WB − z) ≥ T (WA) + T (WB)− 2, by Lemma 4.4.7. Hence, we have

ρ(H) ≤ ρ(WA) + ρ(WB)−
(︃

10

3
+ ε

)︃
+ (m(WA) +m(WB)−m(H)) + 2δ

≤ ρ(WA) + ρ(WB)− 10

3
− ε+ 2 + 2δ

= ρ(WA) + ρ(WB)− 4

3
− ε+ 2δ (4.2)

≤ 2

(︃
4

3
+ 4ε− 2δ

)︃
− 4

3
− ε+ 2δ

=
4

3
+ 7ε− 2δ

By Claim 4.4.22, if n(H) < n(D) then ρ(H) > 3 − 3ε + δ. As 10ε − 3δ ≤ 5
3 , we deduce

that H = D. Hence 1 < ρ(D) = ρ(H) ≤ 4
3 + 7ε− 2δ + (m(WA) +m(WB)−m(H)− 2) and

so m(H) = m(WA) +m(WB)− 2 because 2δ− 7ε ≤ 2
3 . In particular, there is no arc between x

and y in D. Moreover, no arc was suppressed when identifying x and y into z to obtain DB , so x
and y have no common out-neighbour (resp. in-neighbour) in B0.

We first show that either WA or WB is not 4-Ore. Assume for contradiction that both WA and
WB are 4-Ore. If H = D is not bidirected, then by Lemma 4.4.6, D⟨B⟩ admits a 3-dicolouring
ϕB such that ϕB(x) = ϕB(y). Now let ϕA be a 3-dicolouring of D⟨A⟩. We have ϕA(x) = ϕA(y).
Free to exchange colours, we may assume ϕA(x) = ϕA(y) = ϕB(x) = ϕB(y). Hence, we can
define the 3-colouring ϕ of D by ϕ(v) = ϕA(v) if v ∈ A, and ϕ(v) = ϕB(v) if v ∈ B. Observe
that, since A is bidirected, all neighbours of x and y in D⟨A⟩ have a colour distinct from ϕ(x).
Therefore, there is no monochromatic directed cycle inD coloured by ϕ. Thus ϕ is a 3-dicolouring
ofD, a contradiction. Therefore,H = D is bidirected, and soH is an Ore-composition ofWA and
WB (because D is 2-connected by Claim 4.4.25), and so D is 4-Ore, a contradiction. Henceforth,
we may assume that either WA or WB is not 4-Ore.

If none of WA and WB is a 4-Ore, then by minimality of D, ρ(WA) ≤ 1 and ρ(WB) ≤ 1.
Together with Equation (4.2), this yields

ρ(H) ≤ 2

3
− ε+ 2δ ≤ 1

because 2δ − ε ≤ 1
3 , a contradiction.

If none of WA and WB is
←→
K4, then ρ(WA) + ρ(WB) ≤ 1 + (4

3 + 7ε − 4δ) (recall that if a

digraph is 4-Ore but not
←→
K4, then it has potential at most 4

3 + 7ε − 4δ by Lemma 4.4.16). Thus,
with Equation (4.2), we get

ρ(H) ≤ 1 +

(︃
4

3
+ 7ε− 4δ

)︃
− 4

3
− ε+ 2δ = 1 + 6ε− 2δ ≤ 1

because δ ≥ 3ε.
Finally, if exactly one ofWA orWB is isomorphic to

←→
K4, then either T (WA−x) = T (WA) =

2 (if WA =
←→
K4) or T (WB − z) = T (WB) = 2 (if WB =

←→
K4). Therefore T (H) ≥ T (WA− x) +
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T (WB − z) ≥ T (WA) + T (WB)− 1 by Lemma 4.4.7, and so

ρ(H) ≤ ρ(WA) + ρ(WB)−
(︃

10

3
+ ε

)︃
+ 2 + δ.

Now the non 4-Ore digraph among WA, WB has potential at most 1 and the other has potential
ρ(
←→
K4) = 4

3 + 4ε− 2δ. Thus

ρ(H) ≤ 1 +

(︃
4

3
+ 4ε− 2δ

)︃
−
(︃

10

3
+ ε

)︃
+ 2 + δ = 1 + 3ε− δ ≤ 1

because δ ≥ 3ε. In all three cases, ρ(D) = ρ(H) ≤ 1, which is a contradiction. Hence D is
3-connected. ♢

Claim 4.4.27. If R is a collapsible subdigraph of D, u, v are in the boundary of R and D⟨R⟩ ∪
[u, v] is 4-Ore, then there exists R′ ⊆ R such that

(i) either R′ is an Ore-collapsible subdigraph of D, or

(ii) R′ is an induced subdigraph of R, n(R′) < n(R), and there exist u′, v′ in ∂D(R′) such that

R′ ∪ [u′, v′] is 4-Ore.

Proof of claim. If ∂(R) = ¶u, v♢, then R is Ore-collapsible and we are done. Suppose now that

there exists w ∈ ∂(R) distinct from u and v. Let H = D⟨R⟩ ∪ [u, v]. Observe that H ̸= ←→K4 as
u, v and w receive the same colour in any 3-dicolouring of D⟨R⟩ because R is collapsible. Hence,
H is the Ore-composition of two 4-Ore digraphs H1 (the digon side with replaced digon [x, y])
and H2 (the split side with split vertex z).

If u or v is in V (H2), then R′ = D⟨V (H1)⟩ with u′ = x, v′ = y satisfies (ii). Now we assume
that u, v ∈ V (H1) \ V (H2). By repeating this argument successively on H1, and then on the
digon-side of H1, etc, either we find a subdigraph R′ satisfying (ii) or u and v are in a copy J
of
←→
K4 such that H is obtained by Ore-compositions between J and some 4-Ore digraphs with J

being always in the digon side.
Observe that w ̸∈ V (J) because in any 3-dicolouring of H \ [u, v], vertices in J receive

different colours by Lemma 4.4.18, except u and v. Hence, at one step in the succession of
Ore-compositions, w was in the split-side S when a digon e in J has been replaced. However
e ̸= [u, v], so either u or v is not in e. Suppose without loss of generality that e is not incident to
v.

We claim that H ′ = R− v ∪ [u,w] is not 3-dicolourable. Otherwise, let ϕ be a 3-dicolouring
ofH ′. Then ϕ is a 3-dicolouring ofH−v withH 4-Ore, so vertices in J−v must receive pairwise
different colours by Lemma 4.4.19. Let ϕ′ be a 3-dicolouring of R. Without loss of generality,
we may assume that ϕ(x) = ϕ′(x) for every x ∈ V (J − v). If y ∈ S, let ϕ′′(y) = ϕ(y), and let
ϕ′′(y) = ϕ′(y) if y ̸∈ S. Then ϕ′′ is a 3-dicolouring of R but with ϕ(u) ̸= ϕ(w), contradicting the
fact that R is collapsible. This shows that H ′ = R− v ∪ [u,w] is not 3-dicolourable.

Hence R − v ∪ [u,w] contains a 4-dicritical digraph K. By Lemma 4.4.17, R′ = D⟨V (K)⟩,
as a subdigraph of H which is a 4-Ore, satisfies 10

3 n(R′) − m(R′) ≥ 10
3 . This implies that

10
3 n(K) − m(K) ≥ 4

3 . Note also that K is bidirected because R − v is bidirected. Thus, by
Theorem 4.4.15, K is 4-Ore. Hence R′ with u,w satisfies (ii). ♢
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Claim 4.4.28. If R is a subdigraph of D with n(R) < n(D) and u, v ∈ V (R), then R ∪ [u, v] is

3-dicolourable. As a consequence, there is no collapsible subdigraph in D.

Proof of claim. Assume for a contradiction that the statement is false. Consider a smallest induced
subdigraph R for which the statement does not hold. Then K = R ∪ [u, v] is 4-vertex-dicritical,
that is for every vertex v ∈ V (K), χ⃗(K − v) < 4 = χ⃗(K). Note that 4-vertex-dicritical digraphs
smaller than D satisfy the outcome of Theorem 4.4.2 since adding arcs does not increase the
potential. Note that ρ(R) ≤ ρ(K) + 2 + δ.

If R is not collapsible, then, by Claim 4.4.24, ρ(R) ≥ ρ(D) + 8
3 − ε− δ > 11

3 − ε− δ. But we
also have ρ(R) ≤ ρ(K) + 2 + δ ≤ 10

3 + 4ε− δ by Claim 4.4.20, which is a contradiction because
5ε ≤ 1

3 . Hence R is collapsible.
Let ϕ be a 3-dicolouring of R. Observe that ϕ(u) = ϕ(v) for otherwise R ∪ [u, v] would be

3-dicolourable. Let R′ be the dicritical extension of R with extender W and core XW . We have
R′ = D and |XW | = 1. Since R is collapsible, for every two vertices u′, v′ on the boundary of
R, R ∪ [u′, v′] is not 3-dicolourable. Hence, free to consider u′, v′ instead of u, v, we can suppose
that u and v are on the boundary of R. If K is 4-Ore, then, by Claim 4.4.27 and by minimality of
R, we have that R is Ore-collapsible, and so has boundary of size 2. This contradicts the fact that
D is 3-connected. Hence K is not 4-Ore.

By Claim 4.4.21, we have

1 < ρ(D) = ρ(R′) ≤ ρ(W ) + ρ(R)− 10

3
− ε+ δ

≤ ρ(W ) + (ρ(K) + 2 + δ)− 10

3
− ε+ δ

and as ρ(K) ≤ 1 (because it is not 4-Ore and by minimality of D) we get

1 < 1 + ρ(W )−
(︃

4

3
+ ε− 2δ

)︃

that is ρ(W ) > 4
3 + ε − 2δ. But as W is smaller than D, it satisfies Theorem 4.4.2. Thus, since

ε − 2δ ≥ −1
3 , W must be 4-Ore. Moreover, W must be isomorphic to

←→
K4, for otherwise ρ(W )

would be at most 4
3 + 7ε− 4δ, and 4

3 + 7ε− 4δ ≥ ρ(W ) > 4
3 + ε− 2δ would contradict δ ≥ 3ε.

Hence ρ(W ) = ρ(
←→
K4) = 4

3 + 4ε − 2δ and T (W −XW ) = 2 = T (W ). Thus, by Claim 4.4.21
and because δ ≥ 3ε, we have

1 < ρ(D) ≤ ρ(W ) + ρ(K) + 2 + δ − 10

3
− ε ≤ ρ(K) + 3ε− δ ≤ ρ(K) ≤ 1,

a contradiction.
This implies that D does not contain any collapsible subdigraph. Indeed, assume for a con-

tradiction that D contains a collapsible subdigraph R, and let u, v be two vertices in its boundary.
Then there exists a 3-dicolouring ϕ of R ∪ [u, v], for which ∂(R) is not monochromatic, a contra-
diction. ♢

Claim 4.4.29. If R is a subdigraph of D with n(R) < n(D) and u, v, u′, v′ ∈ R, then R ∪
¶uv, u′v′♢ is 3-dicolourable. In particular, D contains no copy of

←→
K4 minus two arcs.
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Proof of claim. Assume for a contradiction that the statement is false. Consider a smallest subdi-
graphR for which the statement does not hold. ThenK = R∪¶uv, u′v′♢ is 4-dicritical and smaller
than D, so ρ(K) ≤ 4

3 + 4ε − 2δ by Claim 4.4.20. By Claim 4.4.28, R is not collapsible, so, by
Claim 4.4.24, we have ρ(R) ≥ ρ(D)+ 8

3−ε−δ > 11
3 −ε−δ. But ρ(R) ≤ ρ(K)+2+2δ ≤ 10

3 +4ε,
which is a contradiction as 5ε+ δ ≤ 1

3 . ♢

Claim 4.4.30. Vertices of degree 6 in D have either three or six neighbours.

Proof of claim. Let x be a vertex of degree 6.
If |N(x)| = 4, then let a, b, c, d be its neighbours such that N+(x) = ¶a, b, c♢ and N−(x) =

¶a, b, d♢. ConsiderD′ = D−x∪dc. By Claim 4.4.29,D′ has a 3-dicolouring ϕ. If |ϕ(N−(x))| <
3, then choosing ϕ(x) in ¶1, 2, 3♢ \ ϕ(N−(x)), we obtain a 3-dicolouring of D, a contradiction.
Hence ϕ(N−(x)) = ¶1, 2, 3♢. We set ϕ(x) = ϕ(d). As D is not 3-dicolourable, D contains a
monochromatic directed cycle C. This cycle C must contain the arc dx, and an out-neighbour z
of x. Since ϕ(a), ϕ(b) and ϕ(d) are all distinct, necessarily z = c. But then C − x ∪ dc is a
monochromatic directed cycle in D′, a contradiction.

Similarly, if |N(x)| = 5, let N+(x) = ¶a, b, c♢ and N−(x) = ¶a, d, e♢, and consider D′ =
D − x ∪ ¶db, dc♢. By Claim 4.4.29, D′ has a 3-dicolouring ϕ. If |ϕ(N−(x))| < 3, then choosing
ϕ(x) in ¶1, 2, 3♢\ϕ(N−(x)), we obtain a 3-dicolouring ofD, a contradiction. Hence ϕ(N−(x)) =
¶1, 2, 3♢. We set ϕ(x) = ϕ(d). As D is not 3-dicolourable, there is a monochromatic directed
cycle C, which must contain the arc dx and an out-neighbour z of x. Note that z must be b or c
because ϕ(a) ̸= ϕ(d). Then C − x∪ dz is a monochromatic directed cycle in D′, a contradiction.

♢

Claim 4.4.31. There is no bidirected triangle containing two vertices of degree 6. In particular,

D contains no emerald.

Proof of claim. Suppose that D⟨¶x, y, z♢⟩ =
←→
K3 and d(x) = d(y) = 6. By Claim 4.4.30, x and

y have exactly three neighbours, and N [x] ̸= N [y] because D contains no copy of
←→
K4 minus two

arcs by Claim 4.4.29. Let u (resp. v) be the unique neighbour of x distinct from y and z (resp. x
and z). Consider D′ = D − ¶x, y♢ ∪ [u, v]. By Claim 4.4.28, D′ has a 3-dicolouring ϕ. Without
loss of generality, suppose that ϕ(u) = 1 and ϕ(v) = 2. If ϕ(z) = 1 (resp. ϕ(z) = 2, ϕ(z) = 3),
we set ϕ(x) = 2 and ϕ(y) = 3 (resp. ϕ(x) = 3 and ϕ(y) = 1, ϕ(x) = 2 and ϕ(y) = 1). In each
case, this yields a 3-dicolouring of D, a contradiction. ♢

So now we know that D contains no emerald, and no diamond by Claim 4.4.26.

Claim 4.4.32. If R is an induced subdigraph of D with 4 ≤ n(R) < n(D), then ρ(R) ≥ ρ(D) +
3 + 3ε− 3δ, except if D −R contains a single vertex which has degree 6 in D.

Proof of claim. Let R be an induced subdigraph of D with 4 ≤ n(R) < n(D). By Claim 4.4.28,
R is not collapsible. Let ϕ be a 3-dicolouring of R, R′ be a dicritical extension of R with extender
W and coreXW (with respect to ϕ). By (the consequence of) Claim 4.4.22, we know that ρ(R′) ≥
ρ(D).

Assume first that R′ ̸= D. Then, by Claims 4.4.22 and 4.4.21,

ρ(D) + 2− 3ε+ δ ≤ ρ(R′) ≤ ρ(W ) + ρ(R)− 10

3
− ε+ δ.
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Since ρ(W ) ≤ 4
3 + 4ε − 2δ by Claim 4.4.20, we have ρ(R) ≥ ρ(D) + 4 − 6ε + 2δ ≥ ρ(D) +

3 + 3ε− 3δ because 1 ≥ 9ε− 5δ. In the following we suppose that R′ = D. We distinguish three
cases depending on the cardinality of |XW |.

• Assume first that |XW | = 2. Then, by Claim 4.4.21 and Lemma 4.4.7,

ρ(D) ≤ ρ(R′) ≤ ρ(W ) + ρ(R)− 20

3
− 2ε+ 2 + 2δ

and, as ρ(W ) ≤ 4
3 + 4ε − 2δ by Claim 4.4.20, we have ρ(R) ≥ ρ(D) + 10

3 − 2ε ≥
ρ(D) + 3 + 3ε− 3δ because 5ε− 3δ ≤ 1

3 .

• Assume now that |XW | = 3. If there is a vertex v ∈ V (D − R) with two out-neighbours
(resp. two in-neighbours) in V (R) with the same colour for ϕ, then

− n(R′) = n(W )− |XW |+ n(R),

− m(R′) ≥ m(W ) +m(R)−m(
←−−→
K|XW |) + 1 because v has two in- or out-neighbour in

V (R) with the same colour for ϕ,

− T (R′) ≥ T (W −XW ) + T (R).

It follows that

ρ(D) ≤ ρ(R′) ≤ ρ(W ) + ρ(R)− (10 + 3ε− 6) + 3δ − 1

and so

ρ(R) ≥ ρ(D)− 4

3
− 4ε+ 2δ + 5 + 3ε− 3δ ≥ ρ(D) +

11

3
− ε− δ ≥ ρ(D) + 3 + 3ε− 3δ

because 4ε − 2δ ≤ 2
3 . Now we assume that there is no vertex with two out-neighbours

(resp. two in-neighbours) in R with the same colour for ϕ. In other words, the in-degrees
and out-degrees of vertices in D −R are the same in D and in W .

If W is not 4-Ore, then by Claim 4.4.21

ρ(D) ≤ ρ(R′) ≤ ρ(W ) + ρ(R)− (10 + 3ε− 6) + 3δ

and, as ρ(W ) ≤ 1, we have ρ(R) ≥ ρ(D) + 3 + 3ε− 3δ.

Now supposeW is 4-Ore. IfW ̸=←→K4, then, by Lemma 4.4.14,W contains a diamond or an
emerald disjoint from X , and this gives a diamond or an emerald in D because the degrees
of vertices in D − R are the same in D and in W , which is a contradiction. If W =

←→
K4,

then D −R has a single vertex of degree 6 in D.

• Assume finally that |XW | = 1. Since R is not collapsible by Claim 4.4.28, ϕ may have
been chosen so that ∂(R) is not monochromatic in ϕ. Then, by Claim 4.4.23, ρ(R) ≥
ρ(D) + 3− 3ε+ δ ≥ ρ(D) + 3 + 3ε− 3δ because 6ε− 4δ ≤ 0.

♢

Claim 4.4.33. Vertices of degree 7 have seven neighbours.
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Proof of claim. Let x be a vertex of degree 7. We suppose, without loss of generality, that
d−(x) = 3 and d+(x) = 4.

If |N(x)| = 4, then x has a unique neighbour a ∈ (N+(x) \ N−(x)). As D is 4-dicritical,
D \ xa has a 3-dicolouring ϕ. But then every directed cycle is either in D \ xa or it contains
xa and thus an in-neighbour t of x. In the first case, it is not monochromatic because ϕ is a 3-
dicolouring of D \ xa, and in the second case, it is not monochromatic because [t, x] is a digon
and so ϕ(t) ̸= ϕ(x). Hence ϕ is a 3-dicolouring of D, a contradiction.

If |N(x)| = 5, let N−(x) = ¶a, b, c♢ and N+(x) = ¶a, b, d, e♢. By Claim 4.4.29, D′ = D −
x∪¶cd, ce♢ has a 3-dicolouring ϕ. If |ϕ(N−(x))| < 3, then choosing ϕ(x) in ¶1, 2, 3♢\ϕ(N−(x))
gives a 3-dicolouring ofD, a contradiction. If |ϕ(N−(x))| = 3, then we set ϕ(x) = ϕ(c). Suppose
for a contradiction that there is a monochromatic directed cycle C in D (with ϕ). Necessarily C
contains x (since ϕ is a 3-dicolouring of D−x) and so it must contain c and one vertex y in ¶d, e♢
because ϕ(a), ϕ(b), and ϕ(c) are all distinct. Then C − x ∪ cy is a monochromatic directed cycle
in D′, a contradiction. Therefore ϕ is a 3-dicolouring of D, a contradiction.

If |N(x)| = 6, let N−(x) = ¶a, b, c♢ and N+(x) = ¶a, d, e, f♢. Consider D′ = D − x ∪
¶bd, be, bf♢.

We first show that D′ is not 3-dicolourable. Assume for a contradiction that there is a 3-
dicolouring ϕ of D′. If |ϕ(N−(x))| < 3, then choosing ϕ(x) in ¶1, 2, 3♢ \ ϕ(N−(x)) gives a
3-dicolouring of D, a contradiction. Hence |ϕ(N−(x))| = 3. We set ϕ(x) = ϕ(b). Since D
is not 3-dicolourable, there exists a monochromatic directed cycle C in D (with ϕ). Necessarily
C contains x (since ϕ is a 3-dicolouring of D − x) and so it must contain b and one vertex y
in ¶d, e, f♢ because ϕ(a), ϕ(b), and ϕ(c) are all distinct. Then C − x ∪ by is a monochromatic
directed cycle in D′, a contradiction. This gives a 3-dicolouring of D, a contradiction.

Hence D′ is not 3-dicolourable, and so it contains a 4-dicritical digraph ˜︁D, smaller than D. If
˜︁D does not contain the three arcs bd, be, bf , then it can be obtained from a proper induced subdi-
graph ofD by adding at most two arcs, and so it is 3-dicolourable by Claim 4.4.29, a contradiction.

Hence ¶b, d, e, f♢ ⊆ V ( ˜︁D). Now consider U = D⟨V ( ˜︁D) ∪ ¶x♢⟩. We distinguish two cases.

Case 1: We have a ̸∈ V (U) or c ̸∈ V (U).

In this case, we have:

• n(U) = n( ˜︁D) + 1,

• m(U) ≥ m( ˜︁D) + 1 and

• T (U) ≥ T ( ˜︁D − b) ≥ T ( ˜︁D)− 1 by Lemma 4.4.7.

Hence

ρ(U) ≤ ρ( ˜︁D) +
10

3
+ ε− 1 + δ

≤ 4

3
+ 4ε− 2δ +

10

3
+ ε− 1 + δ by Claim 4.4.20,

= 1 +
8

3
+ 5ε− δ

< ρ(D) +
8

3
+ 5ε− δ

≤ ρ(D) + 3 + 3ε− 3δ because
1

3
≥ 2δ + 2ε.
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Hence by Claim 4.4.32, D−U has a single vertex of degree 6 (in D), which must be either
a or c. Then we have

• n(D) = n( ˜︁D) + 2,

• m(D) ≥ m( ˜︁D)− 3 + 11 and

• T (D) ≥ T ( ˜︁D − b) ≥ T ( ˜︁D)− 1.

Thus

ρ(D) ≤ ρ( ˜︁D) + 2

(︃
10

3
+ ε

)︃
− 8 + δ

≤
(︃

4

3
+ 4ε− 2δ

)︃
− 4

3
+ 2ε+ δ by Claim 4.4.20,

≤ 1 because 6ε− δ ≤ 1.

This is a contradiction.

Case 2: Both a and c belong to V (U).

In this case, we have:

• n(U) = n( ˜︁D) + 1,

• m(U) ≥ m( ˜︁D) + 4 and

• T (U) ≥ T ( ˜︁D − b) ≥ T ( ˜︁D)− 1 by Lemma 4.4.7.

Thus

ρ(U) ≤ ρ( ˜︁D) +
10

3
+ ε− 4 + δ

≤
(︃

4

3
+ 4ε− 2δ

)︃
+

10

3
+ ε− 4 + δ by Claim 4.4.20,

≤ 1 because 5ε− δ ≤ 1

3
.

Together with the consequence of Claim 4.4.22, we get that ρ(D) ≤ ρ(U) ≤ 1, a contradic-
tion.

♢

The 8+-valency of a vertex v, denoted by ν(v), is the number of arcs incident to v and a vertex
of degree at least 8.

Let D6 be the subdigraph of D induced by the vertices of degree 6 incident to digons. Let us
describe the connected components of D6 and their neighbourhoods. Remember that vertices of
degree 7 are incident to no digon by Claim 4.4.33, and so they do not have neighbours in V (D6).
If v is a vertex in D6, we define its neighbourhood valency to be the sum of the 8+-valency of its
neighbours of degree at least 8. We denote the neighbourhood valency of v by νN (v).

Claim 4.4.34. If [x, y] is a digon and both x and y have degree 6, then either

(i) the two neighbours of y distinct from x have degree at least 8, or
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(ii) the two neighbours of x distinct from y have degree at least 8 and νN (x) ≥ 4.

Proof of claim. Let [x, y] be a digon in D with d(x) = d(y) = 6. By Claim 4.4.30 |N(x)| =
|N(y)| = 3. Let u and v be the two neighbours of x different from y. By Claim 4.4.33, u and v
have degree 6 or at least 8.

If u and v are linked by a digon, then by Claim 4.4.31, u and v do not have degree 6, so they
have degree 8. Moreover ν(u) ≥ 2 and ν(v) ≥ 2. Thus νN (x) = ν(u) + ν(v) ≥ 4 and (ii) holds.
Henceforth, we may assume that u and v are not linked by a digon.

Let D′ the digraph obtained by removing x and y and identifying u and v into a single vertex
u ⋆ v. We claim that D′ is not 3-dicolourable. To see that, suppose for contradiction that there
exists a 3-dicolouring ϕ of D′. Then set ϕ(u) = ϕ(v) = ϕ(u ⋆ v), choose ϕ(y) in ¶1, 2, 3♢ \
ϕ(N(y) \ ¶x♢), and finally choose ϕ(x) in ¶1, 2, 3♢ \ ¶ϕ(u ⋆ v), ϕ(y)♢. One can easily see that
ϕ is now a 3-dicolouring of D, a contradiction. This proves that D′ is not 3-dicolourable and so
it contains a 4-dicritical digraph ˜︁D, which must contain u ⋆ v because every subdigraph of D is
3-dicolourable. Let R be the subdigraph of D induced by (V ( ˜︁D) \ ¶u ⋆ v♢) ∪ ¶u, v, x♢. We have

• n(R) = n( ˜︁D) + 2,

• m(R) ≥ m( ˜︁D) + 4 and

• T (R) ≥ T ( ˜︁D − u ⋆ v) + 1 ≥ T ( ˜︁D) because [x, u] is a digon, and by Lemma 4.4.7.

If ˜︁D is not 4-Ore, then ρ( ˜︁D) ≤ 1 by minimality of D, and so

ρ(R) ≤ ρ( ˜︁D) + 2

(︃
10

3
+ ε

)︃
− 4

≤ 1 +
8

3
+ 2ε

< ρ(D) + 3 + 3ε− 3δ because ε− 3δ ≥ −1

3
.

Similarly, if ˜︁D is 4-Ore but not
←→
K4, then

ρ(R) ≤ ρ( ˜︁D) + 2

(︃
10

3
+ ε

)︃
− 4

≤
(︃

4

3
+ 7ε− 4δ

)︃
+

8

3
+ 2ε by Lemma 4.4.16,

= 1 + 3 + 9ε− 4δ

< ρ(D) + 3 + 9ε− 4δ

≤ ρ(D) + 3 + 3ε− 3δ because δ ≥ 6ε.

In both cases (that is when ˜︁D is not
←→
K4), by Claim 4.4.32, D − R is a single vertex of degree 6,

namely y. Then every neighbour w of y different from x has degree at least 6 in ˜︁D (because ˜︁D is
4-dicritical) and so has degree at least 8 in D and (i) holds.

Assume now that ˜︁D is a copy of
←→
K4. Let us denote by a, b, c the vertices of ˜︁D different from

u ⋆ v. Suppose for a contradiction that u has degree 6. Then u has exactly three neighbours by
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νN ≥ 4

νN ≥ 4

νN ≥ 4

νN ≥ 4 νN ≥ 4

Figure 4.4: The possible connected components of D6.

Claim 4.4.30. If |N(u) ∩ ¶a, b, c♢| = 2, then D⟨¶u, a, b, c♢⟩ is a copy of
←→
K4 minus a digon,

contradicting Claim 4.4.28. If |N(u) ∩ ¶a, b, c♢| ≤ 1, then v must be adjacent to at least two

vertices of ¶a, b, c♢ with a digon, and so D⟨¶v, a, b, c♢⟩ contains a copy of
←→
K4 minus a digon,

contradicting Claim 4.4.28. Hence u has degree at least 8, and by symmetry so does v. Moreover
D⟨¶a, b, c♢⟩ is a bidirected triangle, and so by Claim 4.4.31, at least two of these vertices have
degree at least 8 (remember that vertices of degree 7 are in no digon by Claim 4.4.33). Hence at
least four arcs between ¶u, v♢ and ¶a, b, c♢ are incident to two vertices of degree at least 8. In
other word, νN (x) = ν(u) + ν(v) ≥ 4, so (ii) holds. ♢

Claim 4.4.35. Let C be a connected component of D6. Then C is one of the following (see

Figure 4.4):

(i) a single vertex, or

(ii) a bidirected path on two vertices, or

(iii) a bidirected path on three vertices, whose extremities have neighbourhood valency at least 4,

or

(iv) a star on four vertices, whose non-central vertices have neighbourhood valency at least 4.

Proof of claim. First observe that C does not contain a bidirected path on four vertices x, y, z, w,
because otherwise, by Claim 4.4.34 applied on [y, z], either y or z has two neighbours of degree
at least 8, a contradiction. Observe also that C contains no bidirected triangle by Claim 4.4.31.

Moreover, if x, y, z is a bidirected path in C on three vertices, then by Claim 4.4.34 applied
both on [y, z] and [z, y], x and z have both neighbourhood valency at least 4. The statement of the
claim follows. ♢

An arc xy is said to be out-chelou if

(i) yx ̸∈ A(D),

(ii) d+(x) = 3,

(iii) d−(y) = 3, and

(iv) there exists z ∈ N−(y) \N+(y) distinct from x.

Symmetrically, we say that an arc xy is in-chelou if yx is out-chelou in the digraph obtained from
D by reversing every arc. See Figure 4.5 for an example of an out-chelou arc.
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x y

z

N−(x) N+(y)

Figure 4.5: An example of an out-chelou arc xy.

Claim 4.4.36. There is no out-chelou arc and no in-chelou arc in D.

Proof of claim. By directional duality, it suffices to prove that D has no out-chelou arcs.
Let xy be an out-chelou arc with z ∈ N−(y) \ (N+(y) ∪ ¶x♢). Consider D′ = D− ¶x, y♢ ∪

¶zz′ | z′ ∈ N+(y) \ N−(y)♢. We claim that D′ is not 3-dicolourable. To see that, suppose
for contradiction that there is a 3-dicolouring ϕ of D′. As d+(x) = 3, we can choose ϕ(x) in
¶1, 2, 3♢ \ϕ(N+(x) \ ¶y♢) to obtain a 3-dicolouring of D− y. If |ϕ(N−(y))| < 3, then choosing
ϕ(y) in ¶1, 2, 3♢ \ ϕ(N−(y)) gives a 3-dicolouring of D, a contradiction. Hence |ϕ(N−(y)| = 3.
Set ϕ(x) = ϕ(z). Suppose there is a monochromatic directed cycle C in D. It must contain y
and thus z, its unique in-neighbour with its colour. Let z′ be the out-neighbour of y in C. It must
be in N+(y) \ N−(y), so zz′ is an arc in D′. Thus C − y ∪ zz′ is a monochromatic directed
cycle in D′, a contradiction. Therefore ϕ is a 3-dicolouring of D, a contradiction. Hence D′ is not
3-dicolourable.

Consequently, D′ contains a 3-dicritical digraph ˜︁D, which is smaller than D and contains z,
for otherwise ˜︁D would be a subdigraph of D. Consider U = D⟨V ( ˜︁D) ∪ ¶y♢⟩. We have

• n(U) = n( ˜︁D) + 1,

• m(U) ≥ m( ˜︁D) + 1 and

• T (U) ≥ T ( ˜︁D − z) ≥ T ( ˜︁D)− 1 by Lemma 4.4.7.

First if ˜︁D is not 4-Ore, then by minimality of D we have ρ( ˜︁D) ≤ 1, so

ρ(U) ≤ ρ( ˜︁D) +
10

3
+ ε− 1 + δ ≤ 10

3
+ ε+ δ ≤ 11

3
− ε− δ

because 2ε+ 2δ ≤ 1
3 . Next if ˜︁D is 4-Ore, but not isomorphic to

←→
K4, then ρ( ˜︁D) ≤ 4

3 + 7ε− 4δ by
Lemma 4.4.16, and

ρ(U) ≤ ρ( ˜︁D) +
10

3
+ ε− 1 + δ ≤ 11

3
+ 8ε− 3δ ≤ 11

3
− ε− δ

because 9ε− 2δ ≤ 0. Finally if ˜︁D is isomorphic to
←→
K4, then we have T (U) ≥ T ( ˜︁D− z) ≥ T ( ˜︁D)

and ρ( ˜︁D) = 4
3 + 4ε− 2δ. So the same computation yields

ρ(U) ≤ ρ( ˜︁D) +
10

3
+ ε− 1 ≤ 11

3
+ 5ε− 2δ ≤ 11

3
− ε− δ

because 6ε − δ ≤ 0. In all cases, we have ρ(U) ≤ 11
3 − ε − δ. This contradicts Claim 4.4.24

because U is not collapsible by Claim 4.4.28. ♢
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We now use the discharging method. For every vertex v, let σ(v) = δ
|C| if v has degree 6 and

is in a component C of D6 of size at least 2, and σ(v) = 0 otherwise. Clearly T (D) is at least the
number of connected components of size at least 2 of D6 so

∑︁
v∈V (D) σ(v) ≤ δT (D). We define

the initial charge of v to be w(v) = 10
3 + ε− d(v)

2 − σ(v). We have

ρ(D) ≤
∑︂

v∈V (D)

w(v).

We now redistribute this total charge according to the following rules:

(R1) A vertex of degree 6 incident to no digon sends 1
12 − ε

8 to each of its neighbours.

(R2) A vertex of degree 6 incident to digons sends 2
d(v)−ν(v)(−10

3 + d(v)
2 − ε) to each neighbour

v of degree at least 8 (so 1
d(v)−ν(v)(−10

3 + d(v)
2 − ε) via each arc of the digon).

(R3) A vertex of degree 7 with d−(v) = 3 (resp. d+(v) = 3) sends 1
12 − ε

8 to each of its
in-neighbours (resp. out-neighbours).

For every vertex v, let w∗(v) be the final charge of v.

Claim 4.4.37. If v has degree at least 8, then w∗(v) ≤ 0.

Proof of claim. Let v be a vertex of degree at least 8. If v is not adjacent to a vertex of degree at
most 7, then w∗(v) = w(v) = 10

3 + ε − d(v)
2 ≤ 0 (because ε ≤ 2

3 ). Otherwise, d(v) − ν(v) ≥ 1
and

1

d(v)− ν(v)

(︃
−10

3
+
d(v)

2
− ε

)︃
≥ 1

d(v)

(︃
−10

3
+
d(v)

2
− ε

)︃

≥ 1

12
− ε

8
.

Thus v receives at most 1
d(v)−ν(v)(−10

3 + d(v)
2 − ε) per arc incident with a vertex of degree 6 or 7.

Since there are d(v)− ν(v) such arcs, w∗(v) ≤ w(v)− 10
3 − ε+ d(v)

2 = 0. ♢

Claim 4.4.38. If v has degree 7, then w∗(v) ≤ 0.

Proof of claim. By Claim 4.4.33, v has seven neighbours. Without loss of generality, let us
suppose that d−(v) = 3 and d+(v) = 4. By Claim 4.4.36, the in-neighbours of v cannot have
out-degree 3. In particular, they do not have degree 6, and if they have degree 7, they do not send
anything to v by Rule (R3). Hence v receives at most four times the charge 1

12− ε
8 by (R1) or (R3),

and it sends three times this charge by (R3). Hence

w∗(v) ≤ w(v) +
1

12
− ε

8

= − 1

12
+

7

8
ε

and the result comes because ε ≤ 2
21 . ♢
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Claim 4.4.39. If v is a vertex of degree 6 incident to no digon, then w∗(v) ≤ 0.

Proof of claim. The vertex v sends 1
12 − ε

8 to each of its neighbours by Rule (R2), and it receives
no charge as all its in-neighbours (resp. out-neighbours) have out-degree (resp. in-degree) at least
4, by Claim 4.4.36. As a consequence,

w∗(v) = w(v)− 6

(︃
1

12
− ε

8

)︃
= −1

6
+

7ε

4

and the result comes because ε ≤ 2
21 . ♢

Claim 4.4.40. Let v be a vertex in D6 having at least two neighbours of degree at least 8. Then

w∗(v) ≤ 0. Moreover, if v is not an isolated vertex in D6 and νN (v) ≥ 4, then w∗(v) ≤
−1

9 + 5
3ε− δ

4 .

Proof of claim. Observe that v receives no charge and sends the following charge to each of its
neighbour u with degree at least 8:

2

d(u)− ν(u)

(︃
−10

3
− ε+

d(u)

2

)︃
≥ 2

d(u)

(︃
−10

3
− ε+

d(u)

2

)︃

= 1− 2

d(u)

(︃
10

3
+ ε

)︃

≥ 2

8

(︃
−10

3
− ε+ 4

)︃

=
1

6
− ε

4
.

Assume first that v is isolated in D6. By Claim 4.4.33, its three neighbours do not have degree
7, and so have degree at least 8. Thus v sends three times at least 1

6 − ε
4 , and so

w∗(v) ≤ w(v)− 3

(︃
1

6
− ε

4

)︃
= −1

6
+

7

4
ε

and the result comes because ε ≤ 2
21 .

Assume now that v is in a connected component C of D6 of size at least 2. By Claim 4.4.35,
σ(v) ≥ δ

4 , so w(v) ≤ 1
3 + ε− δ

4 . Moreover, it sends twice at least 1
6 − ε

4 . Hence

w∗(v) ≤
(︃

1

3
+ ε− δ

4

)︃
− 2

(︃
1

6
− ε

4

)︃
=

3

2
ε− δ

4

and the result comes because δ ≥ 6ε. This shows the first part of the statement.

We will now prove the second part of the statement. Assume that v is not an isolated vertex in
D6 and νN (v) ≥ 4. Let u1 and u2 be the two neighbours of v with degree at least 8. For every
i ∈ ¶1, 2♢ we have

2

d(ui)− ν(ui)

(︃
−10

3
− ε+

d(ui)

2

)︃
= 1− 1

d(ui)− ν(ui)

(︃
20

3
+ 2ε− ν(ui)

)︃
.

We distinguish two cases.
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Case 1: ν(ui) ≥ 7 for some i ∈ ¶1, 2♢.
Without loss of generality, suppose i = 1. Then we have

1− 1

d(u1)− ν(u1)

(︃
20

3
+ 2ε− ν(u1)

)︃
≥ 1

because ν(u1) ≥ 7 ≥ 20
3 + 2ε as ε ≤ 1

6 . Then the total charge sent by v is at least 1, and
thus

w∗(v) ≤ w(v)− 1 ≤
(︃

1

3
+ ε− δ

4

)︃
− 1 = −2

3
+ ε− δ

4

Thus, we have w∗(v) ≤ −1
9 + 5

3ε− δ
4 because ε, δ ≥ 0.

Case 2: ν(u1), ν(u2) ≤ 6.

Let f : [0, 6]→ R be the function defined by

f(x) =
2

8− x

(︃
−10

3
− ε+

8

2

)︃
= 1− 1

8− x

(︃
20

3
− 2ε− x

)︃

for every x ∈ [0, 6]. Observe that f is non-decreasing and convex on [0, 6] because −10
3 −

ε+ 8
2 ≥ 0. For i = 1, 2, we have

2

d(ui)− ν(ui)

(︃
−10

3
− ε+

d(ui)

2

)︃
≥ f(ν(ui))

because the function d ↦→ 1− 1
d−ν(ui)

⎞
20
3 + 2ε− ν(ui)

)︂
is non-decreasing on [8,+∞[ as

ν(ui) ≤ 6 ≤ 20
3 + 2ε. Hence, the charge sent by v to ui is at least f(ν(ui)). By hypothesis,

we have νN (v) = ν(u1) + ν(u2) ≥ 4. It follows that the total charge sent by v is at least

f(ν(u1)) + f(ν(u2)) ≥ 2f

(︃
ν(u1) + ν(u2)

2

)︃
by convexity of f

≥ 2f(2) because f is non-decreasing

=
4

9
− 2

3
ε.

Hence

w∗(v) ≤ w(v)−
(︃

4

9
− 2

3
ε

)︃
≤
(︃

1

3
+ ε− δ

4

)︃
− 4

9
+

2

3
ε = −1

9
+

5

3
ε− δ

4
.

showing the second part of the statement.
♢

Claim 4.4.41. If C is a connected component of D6, then
∑︁

v∈V (C)w
∗(v) ≤ 0.

Proof of claim. If C has a unique vertex v, then, by Claim 4.4.40, we have w∗(v) ≤ 0 as wanted.
If C has two vertices x and y, then, again by Claim 4.4.40, w∗(x), w∗(y) ≤ 0, and so w∗(x)+

w∗(y) ≤ 0.
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If C is a bidirected path [x, y, z], then, by Claim 4.4.35, x and z have both neighbourhood
valency at least 4 and so by Claim 4.4.40 w∗(x), w∗(z) ≤ −1

9 − ε
6 . Moreover, y sends at least

2
8(−10

3 + 4− ε) = 1
6 − ε

4 to its neighbour out of C. Hence

w∗(y) ≤ w(y)−
(︃

1

6
− ε

4

)︃
≤ 1

3
+ ε− δ

3
− 1

6
+
ε

4
=

1

6
+

5

4
ε− δ

3
.

Altogether, we get that

w∗(x) + w∗(y) + w∗(z) ≤ 1

6
+

5

4
ε− δ

3
+ 2

(︃
−1

9
− ε

6

)︃
= − 1

18
+

11

12
ε− δ

3
≤ 0

because δ ≥ 6ε.
Finally, if C is a bidirected star with centre x and three other vertices y, z, w, then w∗(x) ≤

w(x) = 1
3 +ε− δ

4 . Moreover, each of y, z, w has neighbourhood valency at least 4 by Claim 4.4.35
and so has final charge at most −1

9 + 5
3ε− δ

4 by Claim 4.4.40. Hence

w∗(x) + w∗(y) + w∗(z) + w∗(w) ≤ 1

3
+ ε− δ

4
+ 3

(︃
−1

9
+

5

3
ε− δ

4

)︃
≤ 6ε− δ ≤ 0

because δ ≥ 6ε. ♢

As a consequence of these last claims, we have ρ(D) ≤∑︁v∈V (D)w(v) =
∑︁

v∈V (D)w
∗(v) ≤

0 ≤ 1, a contradiction. This proves Theorem 4.4.2.

4.5 A construction of dicritical oriented graphs with few arcs

In this section, we show that, for every fixed k, there are infinitely many values of n such that
ok(n) ≤ (2k − 7

2)n. The proof is strongly based on the proof of [6, Theorem 4.4], which shows
ok(n) ≤ (2k − 3)n for every k, n (with n large enough). For k = 4, the construction implies in
particular that there is a 4-dicritical oriented graph with 76 vertices and 330 arcs, and there are

infinitely many 4-dicritical oriented graphs G⃗ with m(G⃗)

n(G⃗)
≤ 9/2.

Proposition 4.5.1. Let k ≥ 3 be an integer. For infinitely many values of n ∈ N, there exists a

k-dicritical oriented graph G⃗k on n vertices with at most (2k − 7
2)n arcs.

Proof. Let us fix n0 ∈ N. We will show, by induction on k ≥ 3, that there exists a k-dicritical
oriented graph G⃗k on n vertices with at most (2k − 7

2)n arcs, such that n ≥ n0.

When k = 3, the result is known ([6, Corollary 4.3]). We briefly describe the construction
for completeness. Start from any orientation of an odd cycle on 2n0 + 1 vertices. Then for each
arc xy in this orientation, add a directed triangle C⃗3 and every arc from y to V (C⃗3) and every arc
from V (C⃗3) to x (see Figure 4.6). This gadget forces x and y to have different colours in every
2-dicolouring. Since we started from an orientation of an odd cycle, the result is a 3-dicritical
oriented graph on 4(2n0 + 1) vertices and 10(2n0 + 1) arcs.

Let us fix k ≥ 4 and assume that there exists such a (k− 1)-dicritical oriented graph G⃗k−1 on
nk−1 ≥ n0 vertices with mk−1 ≤ (2(k− 1)− 7

2)nk−1 arcs. We start from any tournament T on k

vertices. Then we add, for each arc xy of T , a copy G⃗
xy

k−1 of G⃗k−1, all arcs from y to G⃗
xy

k−1 and all



104 CHAPTER 4 — Minimum density of dicritical digraphs

C⃗3

C⃗3

C⃗3

C⃗3

C⃗3

Figure 4.6: A 3-dicritical oriented graph with 5
2n arcs.

G⃗3G⃗3

G⃗3

G⃗3 G⃗3

G⃗3

Figure 4.7: A 4-dicritical oriented graph with at most 9
2n arcs.
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arcs from G⃗
xy

k−1 to x. Figure 4.7 illustrates a possible construction of G⃗4, where T is the transitive
tournament on 4 vertices.

Let G⃗k be the resulting oriented graph. By construction, nk = n(G⃗k) and mk = m(G⃗k)
satisfy:

nk = k +

⎠
k

2

⎜
nk−1

mk =

⎠
k

2

⎜
+

⎠
k

2

⎜
× 2× nk−1 +

⎠
k

2

⎜
×mk−1

≤
⎠
k

2

⎜
+

⎠
k

2

⎜(︃
2 + 2(k − 1)− 7

2

)︃
nk−1

=

⎠
k

2

⎜
+

⎠
k

2

⎜(︃
2k − 7

2

)︃
nk−1

=

⎠
k

2

⎜
+

(︃
2k − 7

2

)︃
(nk − k)

≤
(︃

2k − 7

2

)︃
nk

where in the last inequality we used k
⎞
2k − 7

2

)︂
≥
(︁k

2

[︄
, which holds when k ≥ 2. We will now

prove that G⃗k is indeed k-dicritical.

We first prove that χ⃗(G⃗k) = k. Assume that there exists a (k − 1)-dicolouring α of G⃗k.
Then there exist x, y ∈ V (T ) such that α(x) = α(y). Since χ⃗(G⃗k−1) = k − 1, there exists
z ∈ V (G⃗

xy

k−1) such that α(z) = α(x). But then (x, y, z, x) is a monochromatic directed triangle
in α: a contradiction.

Let us now prove that χ⃗(G⃗k \ ¶uv♢) ≤ k − 1 for every arc uv ∈ A(G⃗k). This implies
immediately that χ⃗(G⃗k = k and shows the result.

Consider first an arc uv in A(T ). We colour each copy G⃗
xy

k−1 of G⃗k−1 with a (k − 1)-
dicolouring of G⃗k−1. We then choose a distinct colour for every vertex in T , except u and v
which receive the same colour. This results in a (k − 1)-dicolouring of G⃗k \ ¶uv♢.

Consider now an arc uv of G⃗
xy

k−1 for some xy ∈ A(T ). Because G⃗k−1 is (k − 1)-dicritical,

there exists a (k − 2)-dicolouring ξ of G⃗
xy

k−1 \ ¶uv♢. Hence we colour G⃗
xy

k−1 \ ¶uv♢ with ξ, every
other copy of G⃗k−1 a (k − 1)-dicolouring of G⃗k−1, and we choose a distinct colour for every
vertex in T , except x and y which both receive colour k− 1. This results in a (k− 1)-dicolouring
of G⃗k \ ¶uv♢.

Consider finally an arc uv arc from u ∈ V (T ) to v ∈ V (G⃗
uy

k−1) (the case of u ∈ V (G⃗
xv

k−1)

and v ∈ V (T ) being symmetric). Because G⃗k−1 is dicritical, there exists a (k − 1)-dicolouring
γ of G⃗

uy

k−1 in which v is the only vertex coloured k − 1. Hence, we colour G⃗
uy

k−1 with γ, every
other copy of G⃗k−1 with a (k− 1)-dicolouring of G⃗k−1, and we choose a distinct colour for every
vertex in T , except u and y which both receive colour k− 1. This results in a (k− 1)-dicolouring
of G⃗k \ ¶uv♢.
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5.1 Introduction

Erdős [68] asked, for every fixed k ≥ 4, whether there exist arbitrarily large k-critical graphs G
with at least ck · n(G)2 edges for some constant ck > 0. This was proved by Dirac [59] when
k ≥ 6 and then by Toft [166] when k ∈ ¶4, 5♢. This initiated the quest after the supremum c∗

k,
for fixed k ≥ 4, of all values ck for which the statement holds. The following lower bound on c∗

k

follows from the explicit construction given in [166] and is still the best current bound.

Theorem 5.1.1 (Toft [166]). For every integer k ≥ 4 and infinitely many values of n, there exists a

k-critical graph with n vertices and at least 1
2

⎞
1− 3

k−δk

)︂
n2 edges, where δk = 0 if k = 0 mod 3,

δk = 4
7 if k = 1 mod 3, and δk = 22

23 if k = 2 mod 3.

Concerning the upper bounds on c∗
k, observe that a k-critical graph does not contain any copy

of Kk as a subgraph. A seminal result of Turán [167] implies that such a graph G of order n has
at most 1

2

⎞
1− 1

k−1

)︂
n2 edges (when n = 0 mod k). Hence we have c∗

k ≤ 1
2

⎞
1− 1

k−1

)︂
. In 1987,

Stiebitz [161] improved on this lower bound.

Theorem 5.1.2 (Stiebitz [161]). For every integer k ≥ 4 and sufficiently large integers n, every

k-critical graph G of order n has at most 1
2

⎞
1− 1

k−2

)︂
n2 edges.

This remained the best upper bound on c∗
k for many years, until Luo, Ma, and Yang [124]

proved the following in 2023.

107
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Theorem 5.1.3 (Luo, Ma, and Yang [124]). For every integer k ≥ 4, there exists εk ≥ 1
18(k−1)2

such that for sufficiently large integers n, every k-critical graph G of order n has at most
1
2

⎞
1− 1

k−2 − εk

)︂
n2 edges.

It remains an open problem to find the exact value of c∗
k. However, the analogue of c∗

k is well-
understood for triangle-free graphs when k ≥ 6. Indeed, for k ≥ 6, Pegden [138] proved that
there exist infinitely many k-critical triangle-free graphs G with

⎞
1
4 − o(1)

)︂
n(G)2 edges. This is

asymptotically best possible because of Turán’s result.

We now turn our attention to the maximum density of k-dicritical digraphs. For every k ≥ 3,
Hoshino and Kawarabayashi [99] constructed an infinite family of k-dicritical oriented graphs G⃗
on n vertices which satisfy m(G⃗) ≥ (1

2 − 1
2k−1

)n2, and they conjectured that this bound is tight.

Conjecture 5.1.4 (Hoshino and Kawarabayashi [99]). Let k ≥ 3 be an integer. If G⃗ is a k-

dicritical oriented graph, then m(G⃗) ≤ (1
2 − 1

2k−1
)n(G⃗)2.

Aboulker [1] observed that, since a tournament has 1
2n(n−1) arcs, this conjecture implies that

the number of k-dicritical tournaments is finite, and he asked whether this latter statement holds.
It trivially does for the case k = 2.

In this chapter, we positively answer Aboulker’s question in the case k = 3 by showing that
the collection of 3-dicritical semi-complete digraphs is finite, and hence so is the subcollection of
3-dicritical tournaments.

Theorem 5.1.5. There is a finite number of 3-dicritical semi-complete digraphs.

While the proof of Theorem 5.1.5 is fully human-readable, the result is obtained by showing
that the number of vertices of any 3-dicritical semi-complete digraph does not exceed a pretty
large number which originates from a Ramsey-type argument.

We after use a computer-assisted proof to provide the following characterisation of all 3-
dicritical semi-complete digraphs.

Theorem 5.1.6. There are exactly eight 3-dicritical semi-complete digraphs. They are depicted in

Figure 5.1.

In particular, we can characterise all 3-dicritical tournaments.

Corollary 5.1.7. There are exactly two 3-dicritical tournaments, namelyR(C⃗3, C⃗3) and P7.

We finally investigate the maximum density of 3-dicritical digraphs. Recall that the symmetric

part of a digraphD is the graph S(D) with vertex-set V (D) in which two vertices are linked by an
edge if and only if there is a digon between them in D. We prove in Proposition 5.5.1 that S(D)
is a forest for every 3-dicritical digraph D that is not a bidirected odd cycle. From this result, one
can easily deduce that m(D) ≤

(︁n
2

[︄
+ n− 1 holds for every 3-dicritical digraph D different from

←→
K3. We slightly improve on this upper bound on m(D) as follows (the digraph W⃗ 3 is depicted in
Figure 5.1).

Theorem 5.1.8. If D is a 3-dicritical digraph distinct from
←→
K3 and W⃗ 3, then m(D) ≤

(︁n
2

[︄
+ 2

3n.

The rest of this chapter is structured as follows: in Section 5.2, we give a collection of prelimi-
nary results which will be used in the proofs of Theorems 5.1.5, 5.1.6, and 5.1.8. In Section 5.3, we
prove Theorem 5.1.5. In Section 5.4, we prove Theorem 5.1.6, with all code we use being shifted
to Appendix A. Section 5.5 is devoted to the proof of Theorem 5.1.8. Finally, in Section 5.6, we
conclude by giving some directions for further research.
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(a)
←→
K3 (b) W⃗ 3

⇒
⇒⇒

(c) R(
←→
K2,
←→
K2)

(d) H5

⇒
⇒⇒

(e) R(
←→
K2, C⃗3)

⇒
⇒⇒

(f) R(C⃗3,
←→
K2)

⇒
⇒⇒

(g) R(C⃗3, C⃗3) (h) P7

Figure 5.1: The 3-dicritical semi-complete digraphs, namely the bidirected complete graph
←→
K3,

the directed wheel W⃗ 3, the digraph H5, the rotative digraphs R(H1, H2) for every H1, H2 ∈
¶←→K2, C⃗3♢ and the Paley tournament on seven vertices P7. A big arrow linking two sets of vertices
indicates that there is exactly one arc from every vertex in the first set to every vertex in the second
set.
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5.2 Useful lemmas

In this section, we give a collection of preliminary results we need in the proof of Theorem 5.1.5.
Most of them will be reused in the proof of Theorem 5.1.6. We first describe 2-colourings with
some important extra properties.

Let D be a digraph and uv be an arc of D. A uv-colouring of D is a 2-colouring ϕ : V (D) −→
[2] such that:

• ϕ is a 2-dicolouring of D \ uv,

• ϕ(u) = ϕ(v) = 1, and

• D \ uv, coloured with ϕ, does not contain any monochromatic (u, v)-path.

There is a close relationship between 3-dicritical digraphs and uv-colourings.

Lemma 5.2.1. Let D be a 3-dicritical digraph and uv be an arc of D. Then D admits a uv-

colouring.

Proof. As D is 3-dicritical, there is a 2-dicolouring ϕ : V (D)→ [2] of D \ uv. By symmetry, we
may suppose ϕ(u) = 1. As ϕ is not a 2-dicolouring of D, we obtain that ϕ(v) = 1 and there is a
(v, u)-path P in D such that ϕ(x) = 1 for all x ∈ V (P ). If there is also a (u, v)-path Q in D \ uv
such that ϕ(x) = 1 for all x ∈ V (Q), then the subdigraph of D \ uv induced by V (P ) ∪ V (Q)
contains a monochromatic directed cycle. This contradicts ϕ being a 2-dicolouring of D \uv.

The next result showing that every arc of a 3-dicritical semi-complete digraph is contained in
a short directed cycle will play a crucial role in the upcoming proofs.

Lemma 5.2.2. Let D be a 3-dicritical semi-complete digraph. Then every arc a ∈ A(D) either

belongs to a digon or is contained in an induced directed triangle.

Proof. As D is 3-dicritical, there is a 2-dicolouring ϕ of D \ a. As ϕ is not a 2-dicolouring of
D, there exists a directed cycle C in D such that C is monochromatic with respect to ϕ. We may
suppose that C is chosen to be of minimum length with this property. As D is semi-complete,
we obtain that C is either a digon or an induced directed triangle. As C is not a monochromatic
directed cycle of D \ a with respect to ϕ, we obtain that a ∈ A(C).

We defineO5 as the oriented graph which consists of a directed triangle xyz and two additional
vertices u, v, one arc from u to every vertex of the directed triangle, one arc from every vertex of
the directed triangle to v, and the arc uv. An illustration can be found in Figure 5.2.

The following result is a consequence of Lemma 5.2.1.

Lemma 5.2.3. Let D be a 3-dicritical digraph. Then D does not contain O5 as a subdigraph.

Proof. Assume for a contradiction that D contains O5 as a subdigraph and let V (O5) =
¶u, v, x, y, z♢ be the labelling depicted in Figure 5.2. By Lemma 5.2.1, there exists a uv-colouring
ϕ of D. Since there exists no monochromatic (u, v)-path, we have ϕ(x) = ϕ(y) = ϕ(z) = 2.
Hence D \ uv contains a monochromatic directed triangle with respect to ϕ, a contradiction.
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xy

z

u v

Figure 5.2: The oriented graph O5.

Let S be a transitive subtournament of a digraph D = (V,A). We denote by v1, . . . , vs the
unique acyclic ordering of S. For some i, j ∈ [s], we say that ¶vi, . . . , vj♢ is an interval of
S. Observe that ∅ is an interval. For i0, j0, i1, j1 ∈ [s] with j0 < i1, we say that the interval
¶vi0 , . . . , vj0♢ is smaller than the interval ¶vi1 , . . . , vj1♢. By convention, ∅ is both smaller and
greater than any other interval. A sequence of intervals P1, . . . , Pt is called increasing if Pi is
smaller than Pj for all i, j ∈ [t] with i < j.

Lemma 5.2.4. Let T be a subtournament of a 3-dicritical digraph D and let S be a transitive

subtournament of T with acyclic ordering v1, . . . , vs. For any x ∈ V (T )\S, there is an increasing

sequence of intervals (I1, I2, I3, I4) with
⎷4

i=1 Ii = S such that, in T , x dominates I1 ∪ I3 and is

dominated by I2 ∪ I4 .

Proof. Assume this is not the case. Then there exists an increasing sequence of indices
(i1, i2, i3, i4) such that, in T , x is dominated by vi1 and vi3 and dominates vi2 and vi4 . Then
the subdigraph of D induced by ¶vi1 , vi2 , x, vi3 , vi4♢ contains O5 as a subdigraph, a contradiction
to Lemma 5.2.3.

We finally need a well-known theorem which can be found in many basic textbooks on graph
theory, see for example [58, Theorem 9.1.3].

Theorem 5.2.5 (MULTI-COLOUR RAMSEY THEOREM). Let a and b be positive integers. There

exists a smallest integer Ra(b) such that for G being a copy of KRa(b) and for every mapping

ψ : E(G) → [a], there is a set S ⊆ V (G) of cardinality b and i ∈ [a] such that ψ(e) = i for all

e ∈ E(G⟨S⟩).

5.3 A simple proof for finiteness

In this section, we prove that the number of 3-dicritical semi-complete digraphs is finite. Let us
first restate this result.

Theorem 5.1.5. There is a finite number of 3-dicritical semi-complete digraphs.

Proof. Let D = (V,A) be a 3-dicritical semi-complete digraph. We will show that n(D) ≤
12R6(3) + 1, where R6(3) refers to the Ramsey number in Theorem 5.2.5. Assume for the sake
of a contradiction that n(D) ≥ 12R6(3) + 2. Let S ⊆ V be a maximum set of vertices such that
D⟨S⟩ is acyclic. Let v1, . . . , vs be the unique acyclic ordering of S. Since D is 3-dicritical, for

an arbitrary vertex x ∈ V , we have that D − x is 2-dicolourable. This yields s ≥
⌈︂

n(D)−1
2

⌉︂
≥

6R6(3) + 1.
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By Lemma 5.2.2, for every i ∈ [s−1], the arc vivi+1 belongs to a digon or an induced directed
triangle. Therefore, since D⟨S⟩ is acyclic, we know that there exists a vertex xi ∈ V \S such that
vivi+1xivi is an induced directed triangle Ci.

Let T be an arbitrary spanning subtournament of D. Observe that T ⟨S⟩ = D⟨S⟩ as D⟨S⟩ is
acyclic. Further, the directed triangle Ci is contained in T for i ∈ [s − 1] as Ci is induced in D.
For any vertex x in V \ S and i ∈ [s − 1], we say that x switches at i if x dominates vi and is
dominated by vi+1 in T or x is dominated by vi and dominates vi+1 in T .

Let H be the digraph with vertex-set V (H) = [s − 1] and arc-set A(H) = A1 ∪ A2 with
A1 = ¶(i, i+ 1) | i ∈ [s− 2]♢ and A2 = ¶(i, j) | i ̸= j and xi switches at j.♢.

By Lemma 5.2.4, for i ∈ [s − 1], we have that xi switches at at most three indices in [s − 1].
Further, as Ci is a directed triangle, xi switches at i which yields that xi switches at at most two
indices in [s− 1] \ ¶i♢. Thus every i ∈ [s− 1] is the tail of at most two arcs in A2.

For every subset J of [s−1], observe thatH⟨J⟩ contains at most |J |−1 arcs inA1 and at most
2|J | arcs in A2, hence at most 3|J | − 1 arcs in total. Thus UG(H)⟨J⟩ has a vertex of degree at
most 5. Hence UG(H) is 5-degenerate, and so it is 6-colourable. Therefore H has an independent

set I of size
⌈︂

1
6(s− 1)

⌉︂
≥ R6(3).

By definition of I , for any i, j ∈ I with i ̸= j, we have that V (Ci) and V (Cj) are disjoint.
Moreover, either ¶vj , vj+1♢ dominates xi in T or ¶vj , vj+1♢ is dominated by xi in T . Hence, if
i < j, the subdigraph of T induced by V (Ci) ∪ V (Cj) is one of the eight tournaments depicted
in Figure 5.3. For (α) ∈ ¶(a), . . . , (h)♢, we say that (i, j) is an (α)-configuration if T ⟨V (Ci) ∪
V (Cj)⟩ is the tournament depicted in Figure 5.3 (α).

Let us fix a pair i, j ∈ I with i < j. We know that it is not a (g)-configuration, for otherwise
D⟨vi+1, vj , vj+1, xj , xi⟩ contains O5 as a subdigraph, a contradiction to Lemma 5.2.3. We also
know that it is not an (h)-configuration, for otherwise D⟨xj , vi, vi+1, xi, vj⟩ contains O5 as a
subdigraph, a contradiction to Lemma 5.2.3.

Since |I| ≥ R6(3), and by definition of R6(3), we know that there exist ¶i, j, h♢ ⊆ I , i < j <
h, and (α) ∈ ¶(a), . . . , (e)♢ such that the three pairs (i, j), (j, h), (i, h) are (α)-configurations.
We show that each of the six cases yields a contradiction, implying the result.

• If (α) = (a), let ϕ be a vi+1vh-colouring of D, the existence of which is guaranteed by
Lemma 5.2.1. Recall that ϕ(vi+1) = ϕ(vh) = 1, ϕ is a 2-dicolouring of D \ vi+1vh and D
coloured with ϕ contains no monochromatic (vi+1, vh)-path. Then ϕ(vj) = ϕ(vj+1) = 2
because ¶vj , vj+1♢ ⊆ N+

D (vi+1) ∩ N−
D (vh). Thus, since Cj is not monochromatic in ϕ,

we have ϕ(xj) = 1. We obtain that ϕ(xi) = ϕ(vi) = 2, for otherwise vi+1xixjvi+1 or
vivhxjvi is monochromatic. We deduce that vivjxivi is monochromatic, a contradiction.

• If (α) = (b), then D⟨xh, vj , vj+1, xj , xi⟩ contains O5 as a subdigraph, a contradiction to
Lemma 5.2.3.

• If (α) = (c), then D⟨xi, vj , vj+1, xj , vh⟩ contains O5 as a subdigraph, a contradiction to
Lemma 5.2.3.

• If (α) = (d), then D⟨vi, vj , vj+1, xj , xh⟩ contains O5 as a subdigraph, a contradiction to
Lemma 5.2.3.

• If (α) = (e), then D⟨vi, vj , vj+1, xj , vh⟩ contains O5 as a subdigraph, a contradiction to
Lemma 5.2.3.
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Figure 5.3: A listing of all possible configurations for i, j ∈ I with i < j. For the sake of better
readability, the arcs in A(Ci) ∪ A(Cj) and the arcs from V (Cj) to V (Ci) are solid, and the arcs
from V (Ci) to V (Cj) are dashed.
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x

y

u v

Figure 5.4: The digraph O4.

• If (α) = (f), then D⟨vi, vj , vj+1, xj , vh⟩ contains O5 as a subdigraph, a contradiction to
Lemma 5.2.3.

5.4 The 3-dicritical semi-complete digraphs

This section is devoted to a computer-assisted proof of Theorem 5.1.6. It follows a similar line
as the one of Theorem 5.1.5, but it needs some refined arguments. Further, due to the significant
number of necessary computations, several parts of the proof are computer-assisted. We use codes
implemented using SageMath. They are accessible online and are given in Appendix A.

We first restrain the structure of 3-dicritical semi-complete digraphs. To prove Theorem 5.1.5,
we only needed the fact that O5 does not occur as a subdigraph. To prove Theorem 5.1.6, we need
to prove that several other digraphs cannot be subdigraphs or induced subdigraphs of a 3-dicritical
digraph. One of these digraphs is the transitive tournament of size at least 8. While already parts
of this proof are computer-assisted, the most intense computation part is carried out after. We
generate all semi-complete digraphs satisfying these properties and check that none of them has
dichromatic number 3, except the ones depicted in Figure 5.1.

Before dealing with the collection of digraphs which are not contained in 3-dicritical semi-
complete digraphs as subdigraphs, we first give the following simple observation on matchings in
graphs on seven vertices which will prove useful later on.

Lemma 5.4.1. Let H be a graph that is obtained from a path w1 . . . w7 by adding the edges

of a matching M on ¶w1, . . . , w7♢. Then there is a stable set S ⊆ V (H) with |S| = 3 and

¶w1, w7♢ \ S ̸= ∅.

Proof. Suppose otherwise. We claim that there exists an edge e1 between w1 and ¶3, 5, 6♢ in
M . If this is not the case, then, as none of ¶w1, w3, w5♢ and ¶w1, w3, w6♢ is an independent
set, we obtain that w3w5, w3w6 ∈ E(M), a contradiction to M being a matching. Similarly, M
contains an edge e7 between w7 and ¶2, 3, 5♢. Hence, ¶1, 4, 7♢ is an independent set of H , a
contradiction.

We now start excluding some subdigraphs of 3-dicritical semi-complete digraphs. We first
define O4 as the digraph which consists of a copy of

←→
K2 and two additional vertices u, v, one arc

from u to every vertex of
←→
K2, one arc from every vertex of

←→
K2 to v, and the arc uv. An illustration

can be found in Figure 5.4.
The digraph O4 plays a similar role as O5. Also, the proof of the following result is similar to

the one of Lemma 5.2.3.

https://github.com/lucaspicasarri/three_dicritical_semicomplete_digraphs
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Figure 5.5: The bidirected star on 4 vertices
←→
S4 .

Lemma 5.4.2. Let D be a 3-dicritical digraph. Then D does not contain O4 as a subdigraph.

Proof. Assume for the purpose of contradiction that D contains O4 as a subdigraph and let
V (O4) = ¶u, v, x, y♢ be the labelling depicted in Figure 5.4. By Lemma 5.2.1, there exists a
2-dicolouring ϕ of D \uv with ϕ(x) = ϕ(y). Hence D \uv contains a monochromatic digon with
respect to ϕ, a contradiction.

In the following, let
←→
S4 be the bidirected star on 4 vertices, see Figure 5.5. The following

result shows that
←→
S4 cannot be the subdigraph of any large 3-dicritical semi-complete digraph.

Lemma 5.4.3. Let D be a semi-complete digraph containing
←→
S4 as a subdigraph. Then D is

3-dicritical if and only if D is W⃗ 3.

Proof. It is easy to see that W⃗ 3 is 3-dicritical and contains
←→
S4 . For the other direction, let D be

a 3-dicritical semi-complete digraph such that D contains a vertex u linked by digons to three
distinct vertices x, y, z.

Then, as D is semi-complete, we have that D⟨¶x, y, z♢⟩ needs to contain C⃗3 or TT3 as a
subdigraph. If it is TT3, then D contains O4 as a subdigraph, a contradiction to Lemma 5.4.2.
Hence D⟨¶u, x, y, z♢⟩ contains W⃗ 3 as a subdigraph. Since both D and W⃗ 3 are 3-dicritical, we
have D = W⃗ 3.

We now prove a similar result for a collection of four digraphs. Given two digraphs H1 and
H2, letH1 ⇒ H2 denote the directed join ofH1 andH2, that is the digraph obtained from disjoint
copies of H1 and H2 by adding all arcs from the copy of H1 to the copy of H2. If we further add
all the arcs from H2 to H1, we obtain the bidirected join of H1 and H2, denoted by H1 ⊞H2. It
is straightforward that χ⃗(H1 ⊞H2) = χ⃗(H1) + χ⃗(H2), see [17].

Lemma 5.4.4. Let H1, H2 be two digraphs in ¶←→K2, C⃗3♢ and let D be a semi-complete digraph

containing H1 ⇒ H2 as a subdigraph. Then D is 3-dicritical if and only if D is exactly

R(H1, H2).

Proof. It is easy to see that R(H1, H2) is 3-dicritical. For the other direction, let us fix H1, H2 ∈
¶←→K2, C⃗3♢ and let D be a 3-dicritical semi-complete digraph containing H1 ⇒ H2.

Let X = V (H1) and Y = V (H2). Let us first prove that V (D) \ (X ∪ Y ) ̸= ∅, so assume
for a contradiction that V (D) = X ∪ Y . We claim that there exists a simple arc uv from X to Y .
If this is not the case, then D is exactly H1 ⊞H2, so it has dichromatic number 4, a contradiction.
This simple arc uv belongs to an induced directed triangle by Lemma 5.2.2. This directed triangle
uses an arc from Y to X , which is necessarily in a digon, a contradiction since it must be induced.
Henceforth we assume that V (D) \ (X ∪ Y ) ̸= ∅.

First suppose that there exists some v ∈ V (D) \ (X ∪ Y ) having at least one in-neighbour
and one out-neighbour in both X and Y . Since H1 and H2 are strongly connected, there exist four
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distinct vertices x1, x2 ∈ X and y1, y2 ∈ Y such that ¶x1x2, y1y2, x1v, vx2, y1v, vy2♢ are all arcs
of D. Then D⟨¶x1, v, x2, y1, y2♢⟩ contains O5 as a subdigraph, a contradiction to Lemma 5.2.3.
Henceforth we may assume that every vertex v ∈ V (D) \ (X ∪ Y ) has no out-neighbour or no
in-neighbour in one of ¶X,Y ♢.

Now suppose that there exists some v ∈ V (T ) \ (X ∪ Y ) that dominates X . If v has an out-

neighbour y in Y , thenD⟨X ∪¶v, y♢⟩ containsO4 as a subdigraph ifH1 =
←→
K2 andO5 otherwise,

a contradiction to Lemma 5.4.2 or 5.2.3, respectively. Hence v has no out-neighbour in Y . Since
D is semi-complete, this implies that Y dominates v. Hence D contains R(H1, H2), implying
that D is exactlyR(H1, H2) since both D andR(H1, H2) are 3-dicritical.

Henceforth we assume that for every vertex v ∈ V (D) \ (X ∪ Y ), there exists in D a simple
arc from X to v. By directional duality, there also exists a simple arc from v to Y . Recall that
every vertex v ∈ V (D) \ (X ∪Y ) has no out-neighbour or no in-neighbour in one of ¶X,Y ♢. We
conclude on the existence of a partition (V1, V2) of V (D) \ (X ∪Y ) such that there is no arc from
V1 to X and there is no arc from Y to V2.

By symmetry, we may assume that V2 is non-empty. Let us fix v2 ∈ V2 and y1 ∈ Y . Since
v2y1 is a simple arc, by Lemma 5.2.2, there exists a vertex v1 such that v2y1v1v2 is an induced
directed triangle in D. Note that v1 /∈ Y since there is no arc from Y to V2. Also note that v1 /∈ X
for otherwise v2y1v1v2 is not induced, since X dominates Y . Further note that v1 /∈ V2 since it is
an out-neighbour of y1. This implies v1 ∈ V1. As v2 does not dominate X , there is some vertex in
X , say x1, that dominates v2. Note that x1 dominates v1 by definition of V1. Let y2 be the unique
out-neighbour of y1 in Y .

If v1 dominates y2, we obtain that D⟨¶x1, v1, v2, y1, y2♢⟩ contains O5 as a subdigraph, a con-
tradiction to Lemma 5.2.3. We may hence suppose that y2 dominates v1. As Y does not dom-
inate v1, this implies that H2 is C⃗3 and the out-neighbour y3 of y2 is dominated by v1. Then
D⟨¶x1, v1, v2, y2, y3♢⟩ contains O5 as a subdigraph, a contradiction to Lemma 5.2.3.

The rest of the preparatory results before the main proof of Theorem 5.1.6 aims to exclude a
collection of tournaments T8 as induced subdigraphs and another digraph F as a (not necessarily
induced) subdigraph. As the proofs of these results contain several common preliminaries, we
give them together. While the exact definition of T8 is postponed, we now give the definition of
F . Let F be the oriented graph with vertex-set ¶u1, . . . , u6, x1, x2, x3♢ such that:

• ¶u1, . . . , u6♢ induces a copy of TT6 the unique acyclic ordering of which is exactly
u1, . . . , u6, and

• for every i ∈ [3], F contains the arcs u2ixi and xiu2i−1.

See Figure 5.6 for an illustration of F .
We let F be the set of tournaments T with vertex-set V (T ) = V (F ) and such that A(F ) ⊆

A(T ). Note thatF contains 215 tournaments since F has exactly 15 pairs of non-adjacent vertices.
Four of them are of special interest and we denote them by T 1, . . . , T 4. We give their adjacency
matrices in Appendix A.1.

Lemma 5.4.5. None of the tournaments in F \ ¶T 1, T 2, T 3, T 4♢ is a subdigraph of a 3-dicritical

semi-complete digraph.

Proof. For every tournament T ∈ F , we check, using the code of Appendix A.3, if it contains
C⃗3 ⇒ C⃗3 as a subdigraph or if it admits no uv-colouring for an arc uv. This is always the case,
except when T ∈ ¶T 1, T 2, T 3, T 4♢. The claim then follows by Lemmas 5.2.1 and 5.4.4.
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u1 u2 u3 u4 u5 u6

x1 x2 x3

Figure 5.6: The oriented graph F .

u0 u1 u2 u3 u4 u5 u6

x1 x2 x3

u1 u2 u3 u4 u5 u6 u7

x1 x2 x3

Figure 5.7: The oriented graphs F+ (left) and F− (right).

Let F+ be the oriented graph obtained from F by adding a vertex u0 and the arcs of ¶u0ui |
i ∈ [6]♢. Analogously, let F− be the oriented graph obtained form F by adding a vertex u7 and
the arcs of ¶uiu7 | i ∈ [6]♢. See Figure 5.7 for an illustration.

Lemma 5.4.6. LetD be a 3-dicritical semi-complete digraph. ThenD does not contain a digraph

in ¶F+, F−♢ as a subdigraph.

Proof. Observe that the digraph obtained from F− by reversing all its arcs is isomorphic to F+.
As the digraph obtained from a 3-dicritical, semi-complete digraph by reversing all arcs is 3-
dicritical and semi-complete, it suffices to prove the statement for F+.

In order to do so, suppose, for the sake of a contradiction, that there is a 3-dicritical
semi-complete digraph D containing F+. By Lemma 5.4.5, D − u0 contains some T ′ ∈
¶T 1, T 2, T 3, T 4♢. Now consider the collection T of tournaments on ¶u0, . . . , u6, v1, v2, v3♢ that
have one of T 1, T 2, T 3, T 4 as a labelled subdigraph and in which u0 dominates ¶u1, . . . , u6♢.
Observe that, by assumption, D contains a tournament in T as a spanning subdigraph. Further, T
contains exactly 4 × 23 = 32 digraphs. Using the code in Appendix A.4, we check that each of
them contains C⃗3 ⇒ C⃗3 or contains an arc uv with no uv-colouring. We conclude that the same
holds for D, a contradiction to Lemmas 5.2.1 or 5.4.4.

We are now ready to show that 3-dicritical semi-complete digraphs do not contain large tran-
sitive tournaments as induced subdigraphs.

Lemma 5.4.7. Let D be a 3-dicritical semi-complete digraph. Then D does not contain TT8 as

an induced subdigraph.

Proof. For a contradiction, assume that D = (V,A) is a 3-dicritical semi-complete digraph con-
taining TT8 as an induced subdigraph. We will prove that D contains F+ or F−, which is a
contradiction to Lemma 5.4.6.
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Let S ⊆ V be such that D⟨S⟩ is isomorphic to TT8. Let v1, . . . , v8 be the unique acyclic
ordering of S. By Lemma 5.2.2, for every i ∈ [7], there exists a vertex xi ∈ V \ S such that
vivi+1xivi forms an induced directed triangle Ci.

Let H be the graph with vertex-set V (H) = [7] and that contains an edge linking i and j if
V (Ci) ∩ V (Cj) ̸= ∅. For any i, j ∈ [7] with ij ∈ E(H) and |i − j| ≥ 2, we have xi = xj . By
Lemma 5.2.4, there is no set ¶i, j, k♢ ⊆ [7] such that xi = xj = xk. This yields that H is obtained
from a path on 7 vertices by adding a matching. We deduce from Lemma 5.4.1 that there is a set
I ⊆ [7] with |I| = 3 such that the following holds:

(a) ¶1, 7♢ \ I ̸= ∅, and

(b) Ci and Cj are vertex-disjoint for all ¶i, j♢ ⊆ I .

This shows that D contains F+ or F−, yielding a contradiction to Lemma 5.4.6.

Given an integer k and a semi-complete digraph D, a k-extension of D is a semi-complete
digraph on n(D) + k vertices containing D as an induced subdigraph. Given a set S of semi-
complete digraphs, a k-extension of S is a semi-complete digraph that is a k-extension of some
D ∈ S. We are now ready to prove that no 3-dicritical semi-complete digraph contains F as a
subdigraph.

Lemma 5.4.8. Let D be a 3-dicritical semi-complete digraph. Then D does not contain F as a

subdigraph.

Proof. By Lemma 5.4.5, it remains to show that D does not contain a graph in ¶T 1, T 2, T 3, T 4♢
as a subdigraph. Assume for a contradiction that D contains at least one of ¶T 1, T 2, T 3, T 4♢ as a
subtournament.

We use the code in Appendix A.5. In a first part, we compute the set L of all semi-complete
digraphs L on nine vertices such that each of the following holds:

(i) L contains some T ∈ ¶T 1, T 2, T 3, T 4♢ as a subdigraph,

(ii) L does not contain any digraph in ¶←→S4 ,
←→
K2 ⇒

←→
K2,
←→
K2 ⇒ C⃗3, C⃗3 ⇒

←→
K2, C⃗3 ⇒

C⃗3, O4, O5♢ as a subdigraph,

(iii) L admits a uv-colouring for every arc uv ∈ A(L), and

(iv) L does not contain TT8 as an induced subdigraph.

By Lemmas 5.2.1, 5.2.3, 5.4.2, 5.4.3, and 5.4.4, we know that D contains some L ∈ L as an
induced subdigraph. In the second part of the code, we check that every 2-extension L′ of L does
not satisfy at least one of the properties (ii), (iii) and (iv).

This shows, by Lemmas 5.2.1, 5.2.3, 5.4.2 and 5.4.4, that either D ∈ L or D is a 1-extension
of L . Finally, we check that every L ∈ L has dichromatic number at most 2, and that every
1-extension L′ satisfying (ii), (iii) and (iv) has dichromatic number at most 2. This yields a
contradiction.

We now give the definition of T8 and show that no digraph in T8 can be contained in a 3-
dicritical semi-complete digraph as an induced subdigraph. Let T8 be the set of tournaments
obtained from TT8 by reversing exactly one arc. Observe that TT8 belongs to T8.
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Lemma 5.4.9. Let D be a 3-dicritical semi-complete digraph. Then D does not contain any

digraph in T8 as an induced subdigraph.

Proof. Assume for a contradiction that D contains some T ′ ∈ T8 as an induced subtournament.
Let X ⊆ V (T ) be such that D⟨X⟩ is isomorphic to T ′. By definition of T8, let x1, . . . , x8 be an
ordering of X such that D contains every arc xixj when i < j, except for exactly one pair ¶k, ℓ♢,
k < ℓ.

Assume first that k = ℓ − 1. Then observe that T ′ is isomorphic to TT8, with the acyclic
ordering obtained from x1, . . . , x8 by swapping xℓ and xℓ−1. This contradicts Lemma 5.4.7.

Henceforth assume that k ≤ ℓ − 2. If k ≥ 2 and ℓ ≤ 7 then D⟨¶x1, xk, xℓ−1, xℓ, x8♢⟩ is
isomorphic to O5, a contradiction to Lemma 5.2.3. Henceforth we assume that k = 1 or ℓ = 8.
By directional duality, we assume without loss of generality that k = 1. Let S be the transitive
induced subtournament of D on vertices X \ ¶x1, x2, xℓ♢. We denote its acyclic ordering by
y1, . . . , y5, which exactly corresponds to x3, . . . , xℓ−1, xℓ+1, . . . , x8. By Lemma 5.2.2, for every
k ∈ [4], there exists a vertex zk such that ykyk+1zkyk forms a directed triangle Ck. As S is
induced, zk must be in V \ V (S). Moreover, zk /∈ ¶x1, x2, xℓ♢ because both X \ ¶x1♢ and
X \ ¶xℓ♢ are acyclic.

Let H be the graph with vertex-set V (H) = [4] and that contains an edge linking i and j if
V (Ci) ∩ V (Cj) ̸= ∅. For any i, j ∈ [4] with ij ∈ E(H) and |i − j| ≥ 2, we have zi = zj .
By Lemma 5.2.4, there is no set ¶h, i, j♢ ⊆ [4] such that zi = zj = zh. This yields that H is
obtained from a path on 4 vertices by adding a matching containing at most 2 edges. Hence H
contains two non-adjacent vertices, corresponding to two disjoint directed triangles Ci and Cj in
D. Together with the directed cycle Ch = x1x2xℓ, we deduce that D contains F as a subdigraph.
This contradicts Lemma 5.4.8.

We have now proved all necessary structural properties of 3-dicritical semi-complete digraphs.
The following result contains the decisive step of the proof and it requires heavy computation. For
every i ∈ [7], let Di be the set of semi-complete digraphs D such that each of the following holds:

• the maximum acyclic set S ⊆ V (D) of D has size exactly i,

• for every arc uv of D, D admits a uv-colouring,

• D does not contain any digraph of ¶←→S4 ,
←→
K2 ⇒

←→
K2,
←→
K2 ⇒ C⃗3, C⃗3 ⇒

←→
K2, C⃗3 ⇒

C⃗3, O4, O5, F♢ as a subdigraph,

• D does not contain any digraph of T8 as an induced subdigraph,

Lemma 5.4.10. The 3-dicritical digraphs in
⎷7

i=1 Di are exactly
←→
K3,H5, and P7.

Proof. For every i ∈ [7], we compute Di by starting from the singleton ¶TTi♢ which is clearly the
only digraph in Di on at most i vertices. Using the code in Appendix A.6, we first successively
compute the digraphs in Di on j ≥ i vertices by generating every possible 1-extension of the
digraphs in Di on j − 1 vertices, and saving only the ones satisfying the conditions on Di. When
j is large enough, it turns out that the set of digraphs in Di on j vertices is empty, implying that
Di is finite.

We then consider every digraph D ∈ Di and check whether D is 2-dicolourable. When it is
not, since it admits a uv-colouring for every arc uv, we conclude that D is 3-dicritical.
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We are now ready to conclude the proof of Theorem 5.1.6.

Theorem 5.1.6. There are exactly eight 3-dicritical semi-complete digraphs. They are depicted in

Figure 5.1.

Proof. By Lemmas 5.2.1, 5.2.3, 5.4.2, 5.4.3, 5.4.4, 5.4.8, and 5.4.9, we have that every 3-dicritical
semi-complete digraph that is not contained in

⎷7
i=1 Di is one of W⃗ 3, R(

←→
K2,
←→
K2), R(

←→
K2, C⃗3),

R(C⃗3,
←→
K2), andR(C⃗3, C⃗3). The statement then follows directly from Lemma 5.4.10.

5.5 Maximum number of arcs in 3-dicritical digraphs

This section is devoted to the proof of Theorem 5.1.8. We need a collection of intermediate results.
We first show that the bidirected part of a 3-dicritical digraph is a forest unless D is a bidirected
odd cycle.

Proposition 5.5.1. Let D be a 3-dicritical digraph that is not a bidirected odd cycle. Then S(D)
is a forest.

Proof. Assume for a contradiction that S(D) is not a forest. Then it contains a cycle C =

u1u2 . . . upu1. Let
←→
C be the bidirected cycle in D corresponding to C. The cycle C cannot

be odd, for otherwise
←→
C would be a bidirected odd cycle, and D =

←→
C because a bidirected

odd cycle is 3-dicritical, a contradiction. Hence C is an even cycle. By Lemma 5.2.1, there ex-
ists a 2-dicolouring ϕ of D \ ¶u1up♢. Necessarily, u1 and up are coloured differently because
there is a bidirected path of odd length between u1 and up. Thus ϕ is a 2-dicolouring of D, a
contradiction.

For the remainder of this section we need a few specific definitions. Let T be a tree and V3(T )
be the set of vertices of degree at least 3 in T . Two vertices u, v ∈ V (T ) form an odd pair if
they are non-adjacent and distT (u, v) is odd, where distT (u, v) denotes the length of the unique
path between u and v in T . The set of odd pairs of T is denoted by OP(T ) and its cardinality is
denoted by op(T ). We finally define the dearth of T as follows:

dearth(T ) =
∑︂

v∈V3(T )

1

6
d(v)(d(v)− 1) + op(T ).

We first prove that the dearth of a tree is always at least a fraction of its order.

Lemma 5.5.2. Let T be a tree on n vertices for some positive integer n. Then dearth(T ) ≥ 1
3n−1.

Proof. For the sake of a contradiction, suppose that T is a counterexample to the statement whose
number of vertices is minimum. Clearly, we have n ≥ 4. The following claim excludes a collec-
tion of simple structures of T .

Claim 5.5.3. T is neither a path nor a tree.

Proof of claim. The statement follows from the following simple case distinction.

Case 1: T is a path of even length.

For every odd i ∈ [n− 3], as n ≥ 4, there are exactly i distinct pairs of vertices at distance

exactly n− i in T . Hence dearth(T ) ≥ op(T ) =
∑︁n−2

2
i=1 (2i− 1) =

⎞
n−2

2

)︂2
≥ 1

3n− 1.



5.5 – Maximum number of arcs in 3-dicritical digraphs 121

Case 2: T is a path of odd length.

For every odd i ∈ [n− 2], as n ≥ 4, there are exactly i distinct pairs of vertices at distance

exactly n− i in T . Hence dearth(T ) ≥ op(T ) =
∑︁n−3

2
i=1 2i =

⎞
n−3

2

)︂ ⎞
n−1

2

)︂
≥ 1

3n− 1.

Case 3: T is a star on n ≥ 4 vertices.

As n ≥ 4, we obtain that dearth(T ) is exactly 1
6(n−1)(n−2), and so dearth(T ) ≥ 1

3n−1.

In either case, we obtain a contradiction to the choice of T . ♢

By Claim 5.5.3, we obtain that T is neither a path nor a star. In particular, it follows that T
contains an edge uv such that dT (u) ≥ 2 and dT (v) ≥ 3. Let v1, . . . , vr be the neighbours of v
in T , where v1 = u and r = dT (v) ≥ 3. For each i ∈ [r], let Ti be the component of T − v
containing vi. By the choice of T , we have dearth(Ti) ≥ 1

3n(Ti)− 1. Since the Tis are pairwise
disjoint and none of them contains v, and because u has a neighbour in T1 at distance exactly 3
from v2, . . . , vr we obtain:

dearth(T ) ≥
r∑︂

i=1

dearth(Ti) +
1

6
r(r − 1) + (r − 1)

≥ 1

3
(n(T )− 1)− r +

1

6
r(r − 1) + (r − 1)

≥ 1

3
n(T )− 1,

where in the last inequality we used r ≥ 3. This contradicts the choice of T .

Lemma 5.5.4. Let D be a 3-dicritical digraph distinct from ¶←→K3, W⃗ 3♢ and
←→
T be a bidirected

tree contained in D. Then we have

|¶¶u, v♢ ⊆ V (T ) | ¶uv, vu♢ ∩A(D) = ∅♢| ≥ dearth(T ).

Proof. Set O = ¶¶u, v♢ ⊆ V (T ) | ¶uv, vu♢ ∩ A(D) = ∅♢. For every vertex v ∈ V3(T ), let
Ov = O ∩ (NT (v)×NT (v)). Finally let Oodd = O ∩OP(T ).

Let us first show that these sets are pairwise disjoint. Let u, v ∈ V3(T ) be two vertices of
degree at least 3 in T . Since T is a tree, we have that NT (u)∩NT (v) contains at most one vertex,
implying that Ou ∩ Ov = ∅. Also note that vertices in NT (v) are at distance exactly 2 from each
other, so Ov ∩ Oodd = ∅. This implies

|O| ≥
∑︂

v∈V3(T )

|Ov|+ |Oodd|.

Hence it is sufficient to prove |Ov| ≥ 1
6dT (v)(dT (v)−1) for every v ∈ V3(T ) andOodd = OP(T )

to prove Lemma 5.5.4.
Let v ∈ V3(T ) and u, x, z be three distinct vertices in NT (v). We claim that D⟨¶u, x, z♢⟩

contains at most two arcs. If this is not the case, then D⟨¶u, x, z♢⟩ contains a digon, a directed
triangle or a transitive tournament on three vertices. This implies that D⟨¶u, x, z, v♢⟩ contains←→
K3, W⃗ 3 or O4. By Theorem 5.1.6 and Lemma 5.4.2, in each case, we obtain a contradiction to the
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choice of D. Since this holds for every choice of three distinct vertices in NT (v) and each pair of
vertices in NT (v) is contained in dT (v)− 2 triples, we deduce the following inequality

m(D⟨NT (v)⟩) · (dT (v)− 2) =
∑︂

X⊆NT (v),
|X|=3

m(D⟨X⟩) ≤ 2 ·
⎠
dT (v)

3

⎜
,

implying that m(D⟨NT (v)⟩) ≤ 1
3dT (v)(dT (v) − 1). Therefore, we obtain |Ov| =

(︁dT (v)
2

[︄
−

m(D⟨NT (v)⟩) ≥ 1
6dT (v)(dT (v)− 1) as desired.

To show Oodd = OP(T ), it is sufficient to show that if ¶u, v♢ is an odd pair then ¶uv, vu♢ ∩
A(D) = ∅. Assume this is not the case, then by Lemma 5.2.1 D′ = D \ ¶uv, vu♢ admits a 2-
dicolouring ϕ in which ϕ(u) = ϕ(v), a contradiction since u and v are connected by a bidirected
odd path in D′. This shows the claim.

We are now ready to prove Theorem 5.1.8 which we first restate here for convenience.

Theorem 5.1.8. If D is a 3-dicritical digraph distinct from
←→
K3 and W⃗ 3, then m(D) ≤

(︁n
2

[︄
+ 2

3n.

Proof. Let D be such a digraph. If D is a bidirected odd cycle, we have n ≥ 5 and hence D
has 2n ≤

(︁n
2

[︄
+ 2

3n arcs, so the result trivially holds. Henceforth assume D is not a bidirected
cycle. Then, by Proposition 5.5.1, S(D) is a forest. Let T1, . . . , Ts be the connected components
of S(D). For every i ∈ [s], the number of digons in D⟨V (Ti)⟩ is exactly n(Ti) − 1, whereas the
number of pairs of non-adjacent vertices is at least dearth(Ti) by Claim 5.5.4. Hence, since there
is no digon between the Tis, we obtain

m(D) ≤
⎠
n

2

⎜
+

s∑︂

i=1

(︁
(n(Ti)− 1)− dearth(Ti)

[︄

≤
⎠
n

2

⎜
+

s∑︂

i=1

(︃
(n(Ti)− 1)− (

1

3
n(Ti)− 1)

)︃
by Claim 5.5.2

=

⎠
n

2

⎜
+

2

3
n,

which concludes the proof.

5.6 Further research directions

In this chapter, we showed that the number of 3-dicritical semi-complete digraphs is finite and
with a computer-assisted proof, we gave a full characterisation of them. We also gave a general
upper bound on the number of arcs in 3-dicritical digraphs. These results seem to be only the tip
of an iceberg, and natural generalisations in several directions can be considered.

First, the conjecture of Hoshino and Kawarabayashi on the maximum density of 3-dicritical
oriented graphs remains widely open. We recall it here.

Conjecture 5.1.4 (Hoshino and Kawarabayashi [99]). Let k ≥ 3 be an integer. If G⃗ is a k-

dicritical oriented graph, then m(G⃗) ≤ (1
2 − 1

2k−1
)n(G⃗)2.



5.6 – Further research directions 123

We believe that almost all 3-dicritical digraphs are sparser than tournaments. We thus pro-
pose the following conjecture, which would imply Theorem 5.1.5 and asymptotically improve on
Theorem 5.1.8.

Conjecture 5.6.1. There is only a finite number of 3-dicritical digraphs D on n vertices that

satisfy m(D) ≥
(︁n

2

[︄
.

It is an interesting challenge to generalise the results obtained in this chapter to k ≥ 4. In
particular, we would be interested in a confirmation of the following statement.

Conjecture 5.6.2. For every k ≥ 4, there is only a finite number of k-dicritical semi-complete

digraphs.

Finally, it is also natural to consider a different notion of criticality. A digraph D is called
3-vertex-dicritical if D is not 3-dicolourable, but D − v is for all v ∈ V (D). Observe that every
3-dicritical digraph is 3-vertex-dicritical, but the converse is not necessarily true. One can hence
wonder whether an analogue of Theorem 5.1.5 is true for 3-vertex-dicritical digraphs. However,
this turns out not to be the case. Chen et al. proved in [50] that it is NP-hard to decide whether a
given tournament is 2-dicolourable. An infinite collection of 3-vertex-dicritical tournaments can
easily be derived from their proof.
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6.1 Introduction

We first recall the following central result which deals with substructures in digraphs of large
dichromatic number. Recall that a subdivision of a digraph F is any digraph obtained from F by
replacing every arc uv by a directed path from u to v.

Theorem 6.1.1 (Aboulker et al. [8]). Let F be a digraph on n vertices, m arcs and c connected

components. Every digraph D satisfying χ⃗(D) ≥ 4m−n+c(n − 1) + 1 contains a subdivision of

F .

For every digraph F , we denote by maderχ⃗(F ) the least integer cF for which every digraph
D either contains a subdivision of F or has dichromatic number at most cF − 1. Note that
maderχ⃗(F ) is well-defined by Theorem 6.1.1. The result above was generalised in a recent work
of Steiner [160] (see also [119]) who extended it to subdivisions with modular constraints.

125
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Figure 6.1: The digraph D10.

Since every digraph is a subdigraph of
←→
Kn, the bidirected complete graph on n vertices, it

is natural to look for the value of maderχ⃗(
←→
Kn). The result above implies that maderχ⃗(

←→
Kn) ≤

4n2−2n+1. A more precise computation using the tools developed in [8] yields the following best
known upper bound, whose proof is presented in Section 6.2.

Proposition 6.1.2. maderχ⃗(
←→
Kn) ≤ 4

2
3

n2+2n− 8
3 .

For every digraph F on n vertices, we have maderχ⃗(F ) ≥ n. This is because
←−−→
Kn−1 has

dichromatic number n − 1 and does not contain any subdivision of F . For some digraphs F , it
then appears that the value of maderχ⃗(F ) does not capture the structure of F but only its order.
For instance, maderχ⃗(C⃗n) ≥ n, but every 2-dicritical digraph on at least n vertices actually
contains a subdivision of C⃗n. In order to have a more profound understanding of digraphs forced
to contain subdivisions of F , one may then ask for the minimum k such that there is a finite number
of k-dicritical digraphs which do not contain any subdivision of F . The following question then
naturally arises.

Question 6.1.3. Let F ∗ be a subdivision of a digraph F . Is it true that the set of (maderχ⃗(F ))-

dicritical digraphs that do not contain any subdivision of F ∗ is finite?

Unfortunately, the answer to this question is negative. To see that, consider for every positive
integers k and ℓ the digraph C(k, ℓ), which is the union of two internally disjoint directed paths
from a vertex x to a vertex y of lengths respectively k and ℓ. Observe that maderχ⃗(C(1, 2)) = 3

because
←→
K2 does not contain any subdivision of C(1, 2) and every 3-dicritical digraph is 2-arc-

strong. The following answers Question 6.1.3 by the negative for F = C(1, 2) and F ∗ = C(3, 3).

Proposition 6.1.4. For every integer n ≥ 3, there exists a 3-dicritical digraph Dn on n vertices

that does not contain any subdivision of C(3, 3).

Proof. Let Dn be the digraph obtained from a directed cycle on n− 1 vertices C⃗n−1 by adding a
new vertex x and all possible digons between x and V (C⃗n−1) (see Figure 6.1 for an illustration).
This digraph is 3-dicritical (it follows from Lemma 6.3.1 and the fact that directed cycles are
2-dicritical) and does not contain any subdivision of C(3, 3).

In Section 6.3, we show that the answer to Question 6.1.3 is actually negative not only for
C(1, 2) but for every digraph F on at least three vertices with at least one arc. Let F be such a
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digraph andF ∗ be a subdivision ofF in which an arc has been subdivided at least 3·maderχ⃗(F )+1
times. Since maderχ⃗(F ) ≥ n(F ) ≥ 3, the following result implies that the set of (maderχ⃗(F ))-
dicritical digraphs that do not contain any subdivision of F ∗ is infinite.

Theorem 6.1.5. For every integer k ≥ 3, there are infinitely many k-dicritical digraphs without

any directed path on 3k + 1 vertices.

Theorem 6.1.5 establishes a distinction between the directed and undirected cases. In the
undirected case, for every fixed k ≥ 3, there exists a non-decreasing function fk : N −→ N such
that every k-critical graph on at least fk(ℓ) vertices contains a path on ℓ vertices. This was first
proved by Kelly and Kelly [105] in 1954, answering a question of Dirac. The bound on fk was then
improved by Alon, Krivelevich and Seymour [11] and finally settled by Shapira and Thomas [156],
who proved that the largest cycle in a k-critical graph on n vertices has length at least ck · log(n),
where ck is a constant depending only on k. This bound is best possible up to the multiplicative
constant ck, as shown by a construction of Gallai [76, 77] (see [156]).

On the positive side, we adapt the proof of Alon et al. [11] and show that, in k-dicritical
digraphs, the length of the longest oriented cycle (i.e. the longest cycle in the underlying graph)
grows with the number of vertices, and so does the length of its longest oriented path (i.e. the
longest path in the underlying graph).

Theorem 6.1.6. For every fixed integers k ≥ 2 and ℓ ≥ 3, there are finitely many k-dicritical

digraphs with no oriented cycle on at least ℓ vertices.

Since Question 6.1.3 turns out to be almost always false, we propose as an alternative to
restrict to digraphs with large digirth. Recall that there exist digraphs of arbitrarily large girth and
dichromatic number (Theorem 1.2.8). For every integer g, we can thus define mader

(g)
χ⃗ (F ) as the

least integer k such that every digraph D satisfying χ⃗(D) ≥ k and digirth(D) ≥ g contains a

subdivision of F . Note that maderχ⃗(F ) = mader
(2)
χ⃗ (F ) and that mader

(g)
χ⃗ (F ) is non-increasing

in g. We conjecture that the analogue of Question 6.1.3 for digraphs of large digirth is actually
true.

Conjecture 6.1.7. For every digraph F and every subdivision F ∗ of F , there exists g such that

mader
(g)
χ⃗ (F ∗) ≤ maderχ⃗(F ).

This conjecture seems to be challenging to prove, since the exact value of maderχ⃗(F ) is
known for very few classes of digraphs. In order to provide some support to this conjecture, in
Section 6.4 we show that the value of mader

(g)
χ⃗ (F ∗) depends only on F when g is large enough.

Our proof is strongly based on the key-lemma of [8].

Theorem 6.1.8. Let k ≥ 1 be an integer. For every non-empty digraph F , if F ∗ is obtained from

F by subdividing every arc at most k − 1 times, then mader
(k)
χ⃗ (F ∗) ≤ 1

3(4m(F )+1n(F )− 1).

In Section 6.5, we prove that Conjecture 6.1.7 holds for every digraph F whose underlying
graph UG(F ) is a forest.

Theorem 6.1.9. Let k ≥ 1 be an integer and let T be a bidirected tree. If T ∗ is obtained from T

by subdividing every arc at most k − 1 times, then mader
(2k)
χ⃗ (T ∗) ≤ maderχ⃗(T ) = n(T ).

In the case of oriented trees, we improve on Theorem 6.1.9 as follows.
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Theorem 6.1.10. Let k ≥ 1 be an integer and let T be an oriented tree. If T ∗ is obtained from T

by subdividing every arc at most k − 1 times, then mader
(k)
χ⃗ (T ) ≤ maderχ⃗(T ) = n(T ).

Observe that every digraph D contains a subdigraph H such that δ+(H) ≥ χ⃗(D) − 1 (by
taking H a χ⃗(D)-dicritical subdigraph of D). Hence, for every integer k, if a digraph F is such
that every digraph D with δ+(D) ≥ k − 1 contains a subdivision of F , then maderχ⃗(F ) ≤ k. In
Section 6.6, we look for similar results using δ+ instead of χ⃗. Conjecture 6.1.7 for F = C(1, 2)
appears to be a consequence of the following theorem (recall that maderχ⃗(C(1, 2)) = 3).

Theorem 6.1.11. For every integer k ≥ 2, every digraph D with δ+(D) ≥ 2 and digirth(D) ≥
8k − 6 contains a subdivision of C(k, k).

When k = 2, we improve Theorem 6.1.11 as follows.

Theorem 6.1.12. Every oriented graph D with δ+(D) ≥ 2 contains a subdivision of C(2, 2).

We also consider out-stars. For integers k, ℓ, let S+(ℓ)
k be the digraph consisting of k directed

paths of length ℓ sharing their origin (and no other common vertices). The centre of S+(ℓ)
k is its

unique source.

Theorem 6.1.13. Let k ≥ 2 and ℓ ≥ 1 be two integers. Every digraph D with δ+(D) ≥ k and

digirth(D) ≥ kℓ−1
k−1 + 1 contains a copy of S

+(ℓ)
k with centre u for every chosen vertex u.

When k = 2, Theorem 6.1.13 can be improved by reducing the bound on digirth(D) down to
2ℓ.

Theorem 6.1.14. Every digraph D with δ+(D) ≥ 2 and digirth(D) ≥ 2ℓ contains a copy of

S
+(ℓ)
2 .

We conclude in Section 6.7 with some open problems and further research directions.

Notation on paths and cycles

We first give and recall some definitions and notation specific to this chapter. An antidirected path

is an orientation of a path where every vertex v satisfies dmin(v) = 0. If u is a vertex of a digraph
D with d−(u) = 1, we define the predecessor of u in D, denoted by predD(u), as the unique
in-neighbour of u in D. Similarly, if d+(u) = 1 , we define the successor of u in D, denoted by
succD(u), as the unique out-neighbour of u in D.

Given two vertices a, b in a directed cycle C (with possibly a = b), we denote by C[a, b] the
directed path from a to b along C (which is the single-vertex path when a = b). Moreover, we
define C[a, b[= C[a, b]− b, C]a, b] = C[a, b]− a, and C]a, b[= C[a, b]− ¶a, b♢. Note that these
subpaths may be empty. Given a directed path P and two vertices a, b in V (P ), we use similar
notations P [a, b], P [a, b[, P ]a, b] and P ]a, b[. We denote by init(P ) the initial vertex of P (i.e. the
unique vertex with in-degree 0) and term(P ) its terminal one. Given two directed paths P,Q such
that V (P )∩V (Q) = ¶x♢ where x = term(P ) = init(Q), the concatenation of P andQ, denoted
by P ·Q, is the digraph (V (P )∪ V (Q), A(P )∪A(Q)). If U and V are two sets of vertices in D,
then a (U, V )-path in D is a directed path P in D with init(P ) ∈ U and term(P ) ∈ V , and we
also say that P is a directed path from U to V . If U = ¶u♢ (resp. V = ¶v♢), then we simply write
u for U (resp. v for V ) in these notations.

The distance from u to v, denoted by dist(u, v), is the length of a shortest (u, v)-path, with
the convention dist(u, v) = +∞ if no such path exists.
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6.2 An improved bound for the bidirected complete graph

This section is devoted to the proof of Proposition 6.1.2. We need the two following lemmas.

Lemma 6.2.1 (Aboulker et al. [8, Lemma 31]). For every integer k and every digraph D with

χ⃗(D) ≥ 4k − 3, there is a subdigraph H of D with χ⃗(H) ≥ k such that for every pair u, v of

distinct vertices in H , there is a directed path from u to v in D whose internal vertices are in

V (D) \ V (H).

In particular, for every digraph F and every arc e in F ,

maderχ⃗(F ) ≤ 4 ·maderχ⃗(F \ e)− 3.

We skip the proof of the following easy lemma.

Lemma 6.2.2. If F1+F2 denotes the disjoint union of two digraphs F1 and F2, then maderχ⃗(F1+
F2) ≤ maderχ⃗(F1) + maderχ⃗(F2).

We are now ready to prove Proposition 6.1.2, let us first restate it.

Proposition 6.1.2. maderχ⃗(
←→
Kn) ≤ 4

2
3

n2+2n− 8
3 .

Proof. Let f(n) = maderχ⃗(
←→
Kn) for every n ≥ 1. Clearly f(1) = 1. Let g(x) = 4

2
3

x2+2x− 8
3

for every positive real x. Observe that g is non-decreasing. We will show by induction on n that
f(n) ≤ g(n) for every positive integer n. For n = 1, f(1) = 1 = g(1). Now suppose n ≥ 2.

If n is even, by Lemmas 6.2.1 and 6.2.2 we deduce the following inequalities.

f(n) ≤ 4
n2

2 ·maderχ⃗(
←→
Kn

2
+
←→
Kn

2
)

≤ 4
n2

2 · 2 · f
(︃
n

2

)︃

≤ 4
n2

2 · 2 · g
(︃
n

2

)︃

≤ 4
n2

2
+n · g

(︃
n

2

)︃
.

If n is odd, then f(n) ≤ 42(n−1) maderχ⃗

⎞←→
K1 +

←−−→
Kn−1

)︂
≤ 42(n−1)(1 + f(n− 1)) ≤ 42n−1f(n−

1). Hence:

f(n) ≤ 42n−1f(n− 1)

≤ 42n−1 · 4
(n−1)2

2 ·maderχ⃗

⎞←−−→
Kn−1

2
+
←−−→
Kn−1

2

)︂

≤ 42n−1 · 4
(n−1)2

2 · 2 · f
(︃
n− 1

2

)︃

≤ 42n−1 · 4
(n−1)2

2 · 2 · g
(︃
n− 1

2

)︃

≤ 4
n2

2
+n− 1

2 · 2 · g
(︃
n

2

)︃

= 4
n2

2
+n · g

(︃
n

2

)︃
.
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In both cases we have:

f(n) ≤ 4
n2

2
+n · g

(︃
n

2

)︃
= 4n2( 1

2
+ 1

6
)+n(1+1)− 8

3 = g(n).

6.3 Paths and cycles in large dicritical digraphs

This section is devoted to the proofs of Theorems 6.1.5 and 6.1.6. We first prove the following
useful observation.

Lemma 6.3.1. For every integer k, if D is a k-dicritical digraph and if D′ is obtained from D by

adding a vertex u with N+(u) = N−(u) = V (D), then D′ is (k + 1)-dicritical.

Proof. First we show that χ(D′) ≥ k + 1. Indeed, if ϕ : V (D′) → [k] is a k-dicolouring of
D′, then ϕ(v) ̸= ϕ(u) for every v ∈ V (D), and so ϕ induces a (k − 1)-dicolouring of D, a
contradiction.

It remains to show that for every arc vw in D′, D′ \ vw is k-dicolourable. If vw ∈ A(D),
then since D is k-dicritical, D \ vw admits a (k − 1)-dicolouring ϕ : V (D) → [k − 1]. Then
extending ϕ to V (D′) by ϕ(u) = k yields a k-dicolouring of D′. If u ∈ ¶v, w♢, then consider a
k-dicolouring ϕ : V (D) \ ¶v, w♢ → [k − 1] of D′ − ¶v, w♢, which exists since D′ − ¶v, w♢ is
a proper subdigraph of D. Now set ϕ(v) = ϕ(w) = k. Colour k induces an acyclic digraph of
D′ \ vw, and this yields a k-dicolouring of D′ \ vw.

Theorem 6.1.5. For every integer k ≥ 3, there are infinitely many k-dicritical digraphs without

any directed path on 3k + 1 vertices.

Proof. Let n be an odd integer. Let Dk,n be the digraph constructed as follows. Start with the
antidirected path P = p1 . . . pn on n vertices in which d+(p1) = 1. Add the digon [p1, pn], and
two vertices x1, x2 with a digon [x1, x2]. For every arc uv of P , add the arcs vxi, xiu for every

i ∈ [2]. Finally, add k − 3 vertices x3, . . . , xk−1 inducing a copy of
←−→
Kk−3 and add the digon

[xi+2, u] for every i ∈ [k − 3] and every u ∈ V (P ) ∪ ¶x1, x2♢. See Figure 6.2 for an illustration.
Let us show that Dk,n is k-dicritical. Since Dk,n is obtained from D3,n by adding k − 3

vertices linked to all other vertices by a digon, by Lemma 6.3.1 it is enough to show that D3,n is
3-dicritical.

We first show that χ⃗(D3,n) > 2. Suppose for contradiction that there is a 2-dicolouring
ϕ : V (D3,n) → [2] of D3,n. Without loss of generality, ϕ(x1) = 1 and ϕ(x2) = 2. For every arc
uv of P , for every i ∈ [2], uvxiu is a directed triangle. This implies that ϕ(u) ̸= ϕ(v). Since P
has an odd number of vertices, ϕ(p1) = ϕ(pn), which is a contradiction, as [p1, pn] is a digon in
D3,n.

Let uv be an arc in D3,n. We show that χ⃗(D3,n \ uv) ≤ 2. If ¶u, v♢ = ¶x1, x2♢, set
ϕ(x1) = ϕ(x2) = ϕ(p1) = 1, ϕ(p2) = · · · = ϕ(pn) = 2. If ¶u, v♢ = ¶p1, pn♢, set ϕ(x1) = 1,
ϕ(x2) = 2, ϕ(pi) = 1 if i is even, ϕ(pi) = 2 if i is odd. If uv ∈ A(P ), set ϕ(x1) = 1, ϕ(x2) = 2,
and colour V (P ) such that the only monochromatic pair of adjacent vertices in P is ¶u, v♢. If
u ∈ V (P ) and v = xi, set ϕ(x1) = 1, ϕ(x2) = 2, ϕ(u) = i, and colour V (P − u) such that two
adjacent vertices in V (P − u) receive distinct colours. The other cases are symmetric. In each
case, one can check that this gives a proper 2-dicolouring of D3,n \ uv.
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p1p7

x1 x2

Figure 6.2: The digraph D3,7. The antidirected path P is in blue.

It remains to prove that Dk,n does not contain a directed path on 3k + 1 vertices. Let Q
be a directed path in Dk,n. Let y1, . . . , yℓ be the vertices of V (Q) ∩ ¶x1, . . . , xk−1♢ in order
of appearance along Q. Let Qi be the subpath Q]yi, yi+1[ of Q for every i ∈ [ℓ − 1] and let
Q0 = Q[init(Q), y1[ and Qℓ = Q]yℓ, term(Q)]). Note that some Qis may be empty.

Then observe that at most one of the Qis intersects both p1 and pn. Except this one, which
has at most three vertices, all the Qjs have at most two vertices (because P is anti-directed). We
conclude that the number of vertices in P is at most 3ℓ+ 3 ≤ 3k.

Theorem 6.1.6. For every fixed integers k ≥ 2 and ℓ ≥ 3, there are finitely many k-dicritical

digraphs with no oriented cycle on at least ℓ vertices.

Proof. Let k ≥ 2 be a fixed integer. We will show the existence of a function fk : N −→ N such
that every k-dicritical digraph on at least fk(ℓ) vertices contains an oriented path on ℓ vertices. We
will then use a result of Dirac to show that every k-dicritical digraph on at least fk(1

4ℓ
2) vertices

contains an oriented cycle on ℓ vertices, implying the result.
Given a digraph H , cc(H) is the number of connected components of H (i.e. the number of

connected components of UG(H)). Our proof is strongly based on the following claim.

Claim 6.3.2. Let D = (V,A) be a k-dicritical digraph and S ⊆ V , then

cc(D − S) ≤ (k − 1)|S| · 3(|S|
2 ).

Proof of claim. Assume this is not the case, i.e. there exists a k-dicritical digraph D and a subset

of its vertices S such that cc(D−S) > (k−1)|S| ·3(|S|
2 ). We denote byH1, . . . ,Hr the connected

components of D − S.
For every i ∈ [r], let αi be a (k − 1)-dicolouring of D − V (Hi), the existence of which is

guaranteed by the dicriticality of D. Let s = |S| and v1, . . . , vs be any fixed ordering of S. For
every i ∈ [r], we let σ1

i be the ordered set (αi(v1), . . . , αi(vs)). We also define σ2
i as the set of

all ordered pairs (u, v) ∈ S2 such that D − V (Hi), coloured with αi, contains a monochromatic
directed path from u to v. We finally define the ith configuration σi as the ordered pair (σ1

i , σ
2
i ).
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For every pair of vertices u, v in S and every i ∈ [r], note that at most one of the ordered
pairs (u, v), (v, u) actually belongs to σ2

i , for otherwise D − V (Hi), coloured with αi, contains
a monochromatic directed cycle. Hence, the number of distinct configurations is at most (k −
1)s · 3(s

2). By the pigeonhole principle, since r > (k − 1)s · 3(s
2), there exist two distinct integers

i, j ∈ [r] such that σi = σj . Let α be the colouring of D defined as follows:

α(v) =

∮︂
αi(v) if v ∈ (V (D) \ V (Hi))
αj(v) otherwise.

We claim that α is a (k− 1)-dicolouring of D. Assume for a contradiction that it is not, so D,
coloured with α, contains a monochromatic directed cycle. Among all such cycles C, we choose
one for which the size of V (C) ∩ V (Hi) is minimised. If V (C) ∩ V (Hi) = ∅, then C is a
monochromatic directed cycle of D − Hi, a contradiction to the choice of αi. Analogously, we
have V (C) \ V (Hi) ̸= ∅ by choice of αj .

Assume first that |V (C) \ V (Hi)| = 1, implying that C contains exactly one vertex s in S
and (V (C) \ ¶s♢) ⊆ V (Hi). Since σ1

i = σ1
j , we have αi(s) = αj(s), which implies that C is a

monochromatic directed cycle of D −Hj coloured with αj , a contradiction to the choice of αj .
Henceforth we can assume that C contains a directed path P on at least three vertices, with

initial vertex u and terminal vertex v, such that V (P ) ∩ S = ¶u, v♢ and V (P ) ⊆ (V (Hi) ∪
¶u, v♢). The existence of P ensures that (u, v) belongs to σ2

j . Hence, since σi = σj , there exists a
monochromatic directed path P ′ in D − V (Hi) coloured with αi, from u to v, and with the same
colour as P . Hence, replacing P by P ′ in C, we obtain a closed walk which, coloured with α,
contains a monochromatic directed cycle C ′ such that |V (C ′) ∩ V (Hi)| < |V (C) ∩ V (Hi)|, a
contradiction to the choice of C. ♢

We are now ready to prove the existence of fk. Let D be a k-dicritical digraph whose underly-
ing graph G does not contain any path on ℓ vertices. Let v be any vertex of D and T be a spanning
DFS-tree of G rooted in v (recall that D is connected since it is dicritical). Let h be the depth of
T (i.e. the maximum number of vertices in a branch of T ), then h is at most ℓ since G does not
contain any path of length ℓ.

For every vertex x, let Sx be the ancestors of x (including x itself) in T and dT (x) be the
number of children of x in T . Since T is a DFS-tree, note that for every neighbour y of x, x
and y must belong to the same branch. Hence, dT (x) ≤ cc(D − Sx). Since |Sx| ≤ h ≤ ℓ,

we deduce from Claim 6.3.2 that dT (x) ≤ (k − 1)ℓ · 3(ℓ
2). Since T is spanning, we obtain that

n(D) ≤
⎞
(k − 1)ℓ · 3(ℓ

2)
)︂ℓ−1

= fk(ℓ)− 1.

Dirac proved that every 2-connected graph that contains a path of length t actually contains a
cycle of length at least 2

√
t (see [123, Problem 10.29]). It is straightforward to show that every k-

dicritical digraph is 2-connected. Hence, if D is a k-dicritical digraph on at least fk(1
4ℓ

2) vertices,
then D contains an oriented cycle of length at least ℓ, implying the result.

6.4 Subdivisions in digraphs with large digirth

This section is devoted to the proof of Theorem 6.1.8.

Theorem 6.1.8. Let k ≥ 1 be an integer. For every non-empty digraph F , if F ∗ is obtained from

F by subdividing every arc at most k − 1 times, then mader
(k)
χ⃗ (F ∗) ≤ 1

3(4m(F )+1n(F )− 1).
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Proof. We proceed by induction on m(F ), the result being trivial when m(F ) = 0. Let F be any
digraph with m > 0 arcs, and let F ∗ be a digraph obtained from F by subdividing every arc at
most k − 1 times.

Let uv ∈ A(F ) be any arc, and P = x1, . . . , xr its corresponding directed path in F ∗ (where

u = x1 and v = xr). Then we only have to prove that mader
(k)
χ⃗ (F ∗ \ x1x2) ≤ 4m(F )n(F )−1

3 + 1.

If this is true, then by Lemma 6.2.1, we get that mader
(k)
χ⃗ (F ∗) ≤ 4

⎞
4m(F )n(F )−1

3 + 1
)︂
− 3 which

shows the result.
Let D be any digraph with dichromatic number at least 4m(F )n(F )−1

3 + 1 and digirth at least

k and let B ⊆ V (D) be a maximal acyclic set in D. Then χ⃗(D − B) ≥ 4m(F )n(F )−1
3 , so by

induction D − B must contain a subdivision of F \ uv where each arc has been subdivided at
least k − 1 times. This is also a subdivision of F ∗ − ¶x2, . . . , xr−1♢. Let y be the vertex in
D−B corresponding to xr. By maximality of B, there must be a directed cycle C in D such that
V (C) ∩ V (D − B) = ¶y♢. Note that C has length at least k. Thus, ignoring the leaving arc of y
in C, we have found a subdivision of F ∗ \ x1x2 in D, showing the result.

6.5 Subdivisions of trees in digraphs with large digirth

This section is devoted to the proofs of Theorems 6.1.9 and 6.1.10.

Theorem 6.1.9. Let k ≥ 1 be an integer and let T be a bidirected tree. If T ∗ is obtained from T

by subdividing every arc at most k − 1 times, then mader
(2k)
χ⃗ (T ∗) ≤ maderχ⃗(T ) = n(T ).

Proof. We proceed by induction on n(T ). Suppose n(T ) ≥ 2, the result being trivial when
n(T ) = 1.

Let f be a leaf of T with neighbour p, and we denote by (T − f)∗ the bidirected tree T − f
with every arc subdivided exactly k − 1 times. By induction hypothesis mader

(2k)
χ⃗ ((T − f)∗) ≤

maderχ⃗(T − f) = n(T )− 1. Let D be a digraph with digirth(D) ≥ 2k and χ⃗(D) ≥ n(T ), and
consider a maximal acyclic setA inD. Then χ⃗(D−A) ≥ n(T )−1 and so by induction hypothesis,
D − A contains a subdivision of (T − f)∗. Let y ∈ V (D) \ A be the vertex corresponding to
p ∈ V (T ) in the subdivision of (T −f)∗ contained inD−A. By maximality ofA, A+y contains
a directed cycle C with V (C) \ A = ¶y♢. As digirth(D) ≥ 2k, C has length at least 2k. Then
the subdivision of (T − f)∗ in D −A together with C gives the desired subdivision of T ∗.

Theorem 6.1.10. Let k ≥ 1 be an integer and let T be an oriented tree. If T ∗ is obtained from T

by subdividing every arc at most k − 1 times, then mader
(k)
χ⃗ (T ) ≤ maderχ⃗(T ) = n(T ).

Proof. We proceed by induction on n(T ). Suppose n(T ) ≥ 2, the result being trivial when
n(T ) = 1.

For every arc e of T , we denote by s(e) the number of subdivisions of e in T ∗. Let f be a leaf
of T with neighbour p, and we denote by (T − f)∗ the oriented tree T − f where every arc e is
subdivided s(e) ≤ k − 1 times.

Let D be a digraph with digirth(D) ≥ k and χ⃗(D) ≥ n(T ), and consider a maximal acyclic
set A in D. We have χ⃗(D − A) ≥ n(T ) − 1 and, by the induction hypothesis, D − A contains
a copy of (T − f)∗. Let y ∈ V (D) \ A be the vertex corresponding to p ∈ V (T ) in the copy
of (T − f)∗ contained in D − A. By maximality of A, A + y contains a directed cycle C with
C \A = ¶y♢. As digirth(D) ≥ k, C has length at least k.
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If the arc between p and f goes from p to f then we define P as the directed path on s(pf)
vertices starting from y along C. Otherwise, it goes from f to p and then we define P as the
directed path on s(fp) vertices, along C, ending on y. In both cases, the copy of (T − f)∗ in
D −A together with P gives the desired copy of T ∗.

6.6 Subdivisions in digraphs of large out-degree and large digirth

6.6.1 Subdivisions of C(k, k)

This section is devoted to the proof of Theorem 6.1.11. We will use the following classical theorem
due to Menger.

Theorem 6.6.1 (Menger [128] (see [18, Theorem 5.4.1])). LetD be a digraph and U, V ⊆ V (D).

Then the minimum number of vertices intersecting every (U, V )-path is equal to the maximum

number of vertex-disjoint (U, V )-paths.

Theorem 6.1.11. For every integer k ≥ 2, every digraph D with δ+(D) ≥ 2 and digirth(D) ≥
8k − 6 contains a subdivision of C(k, k).

Proof. We will prove the following stronger statement: for every digraph D with digirth(D) ≥
8k−6 and v0 ∈ V (D), if d+(v0) ≥ 1 and d+(v) ≥ 2 for every v ∈ V (D)\¶v0♢, thenD contains
a subdivision of C(k, k). We now consider a counterexample to this statement with minimum
number of vertices, and minimum number of arcs if equality holds.

Claim 6.6.2. D is strongly connected.

Proof of claim. Let C be a terminal strongly connected component of D, that is a strongly con-
nected component such that there is no arc going out of C. Then C is also a counterexample, so
by minimality of D we have D = C, and D is strongly connected. ♢

Claim 6.6.3. d+(v) = 2 for every vertex v ̸= v0 and d+(v0) = 1.

Proof of claim. If v ̸= v0 is a vertex with at least 3 out-neighbours w1, w2, w3, then D \ vw3 is a
smaller counterexample. Similarly, if d+(v0) > 1, then v0 has at least two distinct out-neighbours
w1, w2, and D \ vw2 is a smaller counterexample. ♢

Given two vertices u, v ofD, a (u, v)-vertex-cut is a vertex x ∈ V (D)\¶u, v♢which intersects
every (u, v)-path of D.

Claim 6.6.4. Let u, v be two vertices in D. If dist(u, v) ≤ 7k − 6, then there exists a (v, u)-

vertex-cut.

Proof of claim. Suppose the contrary for contradiction. Then by Menger’s theorem, there exist
two internally vertex-disjoint (v, u)-paths P1 and P2. As digirth(D) ≥ 8k − 6, both P1 and P2

have length at least k, and so P1 ∪ P2 is a subdivision of C(k, k) with source v and sink u. ♢

For every directed cycle C in D, let ρ(C) be the number of vertices in the largest connected
component of D − V (C). We say that C is isometric if for every u, v ∈ V (C), C contains a
shortest (u, v)-path in D. Clearly D contains an isometric cycle (it is enough to take a minimum
directed cycle), and we consider among them an isometric cycle C which maximises ρ(C).
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a b

c1

c2

ci0ci1

cℓ−1

cℓ

≥ 4k − 3

< k

≥ k

Figure 6.3: The structure of C in D. The solid and dashed arcs represent the arcs of C. A dotted
arc from u to v illustrates the existence of two internally-disjoint directed paths from u to v in D.

Let ab be an arc along C. Let c1, . . . , cℓ be the (b, a)-vertex-cuts in D. Observe that at least
one such vertex-cut exists by Claim 6.6.4. As C contains a (b, a)-path, all these vertices belong
to V (C), and we suppose that they appear in this order c1, . . . , cℓ along C starting at b. By
convention, we also define c0 = b and cℓ+1 = a.

Claim 6.6.5. dist(ci, ci+1) ≤ k − 1 for every i = 0, . . . , ℓ.

Proof of claim. Suppose for contradiction that dist(ci, ci+1) ≥ k. Assume first that there exists
a (ci, ci+1)-vertex-cut x. We claim that x is also a (b, a)-vertex-cut. Consider a (b, a)-path Q.
Then Q passes through ci and ci+1 in this order, otherwise the concatenation of Q[b, ci+1] and
C[ci+1, a] is a (b, a)-path avoiding ci, a contradiction. By definition of x, it belongs to Q[ci, ci+1].
Hence x intersects every (b, a)-path, and so x ∈ ¶c1, . . . , cℓ♢, a contradiction since c1, . . . , cℓ are
in this order along C.

This shows, by Menger’s theorem, that there are two internally vertex-disjoint (ci, ci+1)-paths
P1, P2. Then P1 and P2 have length at least k, and so P1 ∪ P2 is a subdivision of C(k, k) with
source ci and sink ci+1, a contradiction. ♢

Let i0 be the least index i such that dist(b, ci) ≥ k, and let i1 be the largest index i such
that dist(ci, a) ≥ k. By choice of i0, we have dist(b, ci0−1) ≤ k − 1. By Claim 6.6.5, we have
dist(ci0−1, ci0) ≤ k − 1, which implies dist(b, ci0) ≤ dist(b, ci0−1) + dist(ci0−1, ci0) ≤ 2k − 2.
Similarly, we have dist(ci1 , a) ≤ 2k − 2. Therefore, we have

dist(ci0 , ci1) = n(C)− dist(ci1 , a)− 1− dist(b, ci0) ≥ 4k − 3,

which implies i1 − i0 ≥ 5 by Claim 6.6.5. See Figure 6.3 for an illustration.
We now define di = ci+i0 for i = 0, . . . , 5. If i is an index larger than 5, we identify di with

di mod 6. For every i = 0, . . . , 5, let Xi be the set of vertices reachable from di in D − di+1.
Similarly, if i is larger than 5, we identify Xi with Xi mod 6.
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Claim 6.6.6. For every i = 0, . . . , 5, Xi ∩ V (C) = V (C[di, di+1[).

Proof of claim. We first consider the case i ∈ ¶0, . . . , 4♢. Assume for a contradiction that there
exists a directed path P from V (C[di, di+1[) to V (C) \ V (C[di, di+1]) with internal vertices
disjoint from C. Let u be init(P ) and v be term(P ). If v ∈ V (C]di+1, a]), then C[b, u] ∪ P ∪
C[v, a] is a (b, a)-path which avoids di+1, a contradiction. Otherwise v ∈ V (C[b, di[), and then
P has length at least k because, since C is isometric,

distP (u, v) ≥ distC(u, v) ≥ distC(d5, b) ≥ distC(ci1 , a) ≥ k.

But then P ∪ C[u, v] is a subdivision of C(k, k) with source u and sink v, a contradiction to D
being a counterexample.

Now suppose i = 5. Consider first a directed path P from u ∈ V (C[d5, a]) to v ∈
V (C]d0, d5[) internally disjoint from C. Then P has length at least k because

distP (u, v) ≥ distC(u, v) ≥ distC(b, d0) ≥ k.

Thus P ∪ C[u, v] is a subdivision of C(k, k) with source u and sink v, a contradiction. Consider
finally a directed path P from u ∈ V (C[b, d0[) to v ∈ V (C]d0, d5[). Then d0 is not a (b, a)-cut in
D, a contradiction. ♢

Claim 6.6.7. For every distinct i, j ∈ ¶0, . . . , 5♢, we have

(i) Xi ∩Xj = ∅ if i ̸∈ ¶j − 1, j + 1♢, and

(ii) Xi ∩Xi+1 = ∅ if v0 ̸∈ Xi ∪Xi+1.

Proof of claim. We first prove (i). Let us fix two distinct integers i, j ∈ ¶0, . . . , 5♢ such that
i ̸∈ ¶j − 1, j + 1♢. Assume for a contradiction that Xi ∩Xj ̸= ∅. Note that Xi ∩Xj ̸= V (D)
because di+1 /∈ Xi. Therefore, since D is strongly connected by Claim 6.6.9, there is an arc uv
such that u ∈ Xi ∩Xj and v ∈ V (D) \ (Xi ∩Xj). Assume first that v ∈ Xj \Xi. Since v /∈ Xi,
we must have v = di+1. Hence di+1 ∈ Xj , a contradiction to Claim 6.6.6. Symmetrically,
if v ∈ Xi \ Xj then v = dj+1 by definition of Xj , implying that dj+1 ∈ Xi, a contradiction to
Claim 6.6.6. Finally if v /∈ (Xi∪Xj), by definition ofXi andXj , we must have v = di+1 = dj+1,
a contradiction. This proves (i).

We now prove (ii). Assume for a contradiction that v0 /∈ Xi ∪ Xi+1 and Xi ∩ Xi+1 ̸= ∅.
Recall that Xi ∩ Xi+1 ̸= V (D) because di+1 /∈ Xi. Therefore, since D is strongly connected,
there is an arc uv such that u ∈ Xi ∩Xi+1 and v ∈ V (D) \ (Xi ∩Xi+1). First, if v ∈ V (D) \
(Xi ∪Xi+1) then, by definition of Xi, v must be di+1, and by definition of Xi+1, v must be di+2,
a contradiction. Next if v ∈ Xi \Xi+1, then by definition of Xi+1, v must be di+2, but di+2 /∈ Xi

by Claim 6.6.6, a contradiction. Then we may assume that v ∈ Xi+1 \Xi, and by definition ofXi,
v must be di+1. As u ∈ Xi+1, there is a directed path P from V (C[di+1, di+2[) to u in D − di+2

internally disjoint from C. Let x be init(P ). If x ̸= di+1, then the union of P ∪ udi+1 (which has
length at least k because digirth(D) ≥ 8k − 6 ≥ 2k and dist(di+1, x) ≤ k by Claim 6.6.5) and
C[x, di+1] (which has length at least k because n(C) ≥ 8k − 6 ≥ 2k and dist(di+1, x) ≤ k by
Claim 6.6.5) is a subdivision of C(k, k) with source x and sink di+1, a contradiction.

So we assume that x = di+1, that is P ∪ udi+1 is a cycle C ′ with V (C ′) ∩ V (C) = ¶di+1♢,
and u ∈ V (C ′) ∩ Xi ∩ Xi+1. Let w be the vertex in V (C ′) ∩ Xi such that distC′(w, di+1) is
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maximum (the existence of w is guaranteed because u ∈ V (C ′)∩Xi), and let Q be a (di, w)-path
in D⟨Xi⟩. If distC′(w, di+1) ≤ k − 1, then C ′[di+1, w] has length at least k, and C[di+1, di] ∪Q
has length at least k. Moreover, the directed paths C ′[di+1, w] and C[di+1, di] ∪Q are internally
vertex-disjoint by the choice of P , w and Q. Hence, their union is a subdivision of C(k, k) with
source di+1 and sink w, a contradiction. Henceforth we suppose that distC′(w, di+1) ≥ k.

We now prove the following statement.

D − di+1 does not contain any directed path R from V (C ′) to V (C). (♥)

Assume for a contradiction that such a directed path R exists. We assume that R is internally
disjoint from V (C ′) ∪ V (C), for otherwise we can extract a subpath of R with this extra prop-
erty. Let y = init(R) and z = term(R). Then by Claim 6.6.6, z belongs to V (C]di+1, di+2]).
Observe that y ∈ V (C ′]di+1, w[), for otherwise y belongs to Xi and so does z, a contradiction to
Claim 6.6.6. But then the union of R∪C[z, di+1] and C ′[y, di+1] is a subdivision of C(k, k) with
source y and sink di+1, a contradiction to D being a counterexample. This shows (♥).

LetU be the set of vertices reachable from di inD\di+1twhere t is the successor of di+1 inC.
We claim that U ⊆ Xi ∪Xi+1. Let u be any vertex in U . By definition, there is a directed path R′

from di to u inD\di+1t. If di+1 ̸∈ V (R′), then u ∈ Xi. Else if di+1 ∈ V (R′) and di+2 ̸∈ V (R′),
then u ∈ Xi+1. Henceforth assume that both di+1 and di+2 belong to R′. Observe that di+1 is
before di+2 along R′, otherwise di+2 ∈ Xi, a contradiction to Claim 6.6.6. Since d+

D(di+1) = 2,
the successor of di+1 in R′ is also its successor in C ′. Hence R′[di+1, di+2] contains a subpath R
from V (C ′) \ ¶di+1♢ to V (C) \ ¶di+1♢ internally disjoint from V (C ′) ∪ V (C), a contradiction
to (♥).

This proves that U ⊆ Xi ∪Xi+1 and in particular, v0 ̸∈ U . Set v′
0 = di+1, D′ = D⟨U⟩. Then

D′ equipped with v′
0 is such that every vertex in U has out-degree 2 in D′ except v′

0 which has
out-degree at least 1. By minimality of n(D), D′ contains a subdivision of C(k, k) and so does
D, a contradiction.

♢

By (i) of the previous claim, there is an index j ∈ ¶0, . . . , 5♢ such that v0 ̸∈ Xj−1. Since
D is strongly connected,

⎷5
i=0Xi = V (D), and so there is an index i ∈ ¶0, . . . , 5♢ such that

v0 ∈ (Xi \Xi−1). From now on, we fix such an index i ∈ ¶0, . . . , 5♢, and we set

Y0 = Xi−1 ∪Xi ∪Xi+1 ∪Xi+2,

Y1 = Xi+3, and

Y2 = Xi+4.

Note that v0 ̸∈ Xi−1 ∪ Xi+2, and so, by Claim 6.6.7, Y0, Y1, Y2 are pairwise vertex-disjoint.
Moreover, Y0 \ V (C), Y1 \ V (C), Y2 \ V (C) are pairwise non-adjacent by definition of the Xjs
(i.e. there is no arc ofD with head and tail in different parts of (Y0\V (C), Y1\V (C), Y2\V (C))).
Consider a connected component A of D−V (C) of maximal size, that is with |A| = ρ(C). Then
A is included in one of Y0, Y1, Y2. Let j ∈ ¶1, 2♢ be such thatA∩Yj = ∅. Let q be the predecessor
of di+j+3 in C. Let S be the set of vertices reachable from q in D − di+j+3. Observe that S is a
subset of Xi+j+2. We claim that D⟨S⟩ is not acyclic. Indeed, for every vertex u ∈ S, N+

D (u) ⊆
N+

D⟨S⟩(u) ∪ ¶di+j+3♢. Since v0 ̸∈ S, for every vertex u ∈ S, d+
D⟨S⟩(u) ≥ d+

D(u) − 1 = 1.

Therefore D⟨S⟩ has minimum out-degree at least 1. Let C ′ be an isometric cycle in D⟨S⟩.
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Let us show that C ′ is an isometric cycle in D. Suppose on the contrary that there is a directed
path P from x ∈ V (C ′) to y ∈ V (C ′) internally disjoint from V (C ′) of length smaller than
distC′(x, y). As P is not included in S, P must contain di+j+3. Let dι be the last vertex along P in
¶dℓ | ℓ = 0, . . . , 5♢. We have y ∈ Xι by definition of ι and y ∈ Xi+j+2 because y ∈ S ⊆ Xi+j+2.
Therefore y ∈ Xι ∩Xi+j+2. Since v0 ̸∈ Xi+j+1 ∪Xi+j+2 ∪Xi+j+3, by Claim 6.6.7, we deduce
that ι = i+ j + 2. Hence P contains a directed path from di+j+3 to di+j+2. This implies:

distC′(x, y) ≥ length(P ) by definition of P

≥ distD(di+j+3, di+j+2) because P contains di+j+3 and di+j+2

= distC(di+j+3, di+j+2) because C is isometric

= n(C)− distC(di+j+2, di+j+3)

≥ (8k − 6)− (k − 1) ≥ k by Claim 6.6.5.

Therefore both P andC ′[x, y] have length at least k, implying that P∪C ′[x, y] is a subdivision
of C(k, k) with source x and sink y, a contradiction to D being a counterexample. This proves
that C ′ is isometric in D.

By definition, N(A) ⊆ V (C) ∪ A. Since D is strongly connected, A has an in-neighbour in
V (C). Since A∩ Yj = ∅ by choice of j, A has an in-neighbour in C[di+j+3, di+j+2[. Hence, the
connected component in D− V (C ′) which contains A is strictly larger than A, which contradicts
the maximality of ρ(C), and concludes the proof of the theorem.

6.6.2 Subdivisions of C(2, 2) in oriented graphs

This section is devoted to the proof of Theorem 6.1.12.

Theorem 6.1.12. Every oriented graph D with δ+(D) ≥ 2 contains a subdivision of C(2, 2).

Proof. Suppose for contradiction that there exists an oriented graph D with δ+(D) ≥ 2 that
contains no subdivision ofC(2, 2). Assume that n(D) is minimum, and that among such minimum
counterexamples, m(D) is minimum.

Claim 6.6.8. For every vertex v ∈ V (D), d+(v) = 2.

Proof of claim. If v is a vertex with at least 3 out-neighbours w1, w2, w3, thenD\vw3 is a smaller
counterexample. ♢

Claim 6.6.9. D is strongly connected. In particular, d−(v) ≥ 1 for every vertex v.

Proof of claim. Let C be a terminal strongly connected component of D. Then C is also a
counterexample, so by minimality of D we have D = C, and D is strongly connected. ♢

Claim 6.6.10. For every vertex v ∈ V (D), d−(v) ≥ 2.

Proof of claim. Suppose that v is a vertex which has at most one in-neighbour. By Claim 6.6.9, it
must have a unique in-neighbour u, and let w1, w2 be its two out-neighbours. If w1 is non adjacent
to u, then consider D′ = (D − v) ∪ uw1. By minimality of D, D′ contains a subdivision F
of C(2, 2), and as F ̸⊆ D, we have uw1 ∈ A(F ). But then (F \ uw1) ∪ uv ∪ vw1 ⊆ D is a
subdivision of C(2, 2). Hence there is an arc between u and w1. Similarly, there is an arc between
u and w2.
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If w1u,w2u ∈ A(D), then the union of the directed paths vw1u and vw2u yields a copy of
C(2, 2) in D. Moreover, if uw1, uw2 ∈ A(D), then d+(u) ≥ 3, a contradiction to Claim 6.6.8.
Hence, without loss of generality, w1u, uw2 ∈ A(D).

As D is strongly connected, there is a directed path P from w2 to ¶u, v, w1♢ with internal
vertices disjoint from ¶u, v, w1, w2♢. The terminal vertex of P is not v, as the only in-neighbour
of v is u. So the terminal vertex of P is either u or w1. If it is w1, then the union of the directed
paths uvw1 and uP yields a subdivision of C(2, 2). If u is the end-vertex of P , then the union
of the directed paths vw1u and vP yields a subdivision of C(2, 2). In both cases, we find a
subdivision of C(2, 2) in D, a contradiction. ♢

Claim 6.6.11. D is 2-diregular.

Proof of claim. By Claim 6.6.8, we know that, for each v ∈ V (D), d+(v) = 2. It implies
that m(D) =

∑︁
v∈V (D) d

+(v) = 2n(D). Since m(D) is also equal to
∑︁

v∈V (D) d
−(v), we get

by Claim 6.6.10 that for every vertex v of D, d−(v) = d+(v) = 2, which implies that D is
2-diregular. ♢

Claim 6.6.12. For every arc vw, w has a neighbour in N−(v).

Proof of claim. Let u1, u2 be the in-neighbours of v. If w has no neighbour in ¶u1, u2♢, consider
D′ = D − v ∪ u1w ∪ u2w. By minimality of D, there exists a subdivision F of C(2, 2) in D′. If
neither u1w nor u2w belongs to A(F ), then F ⊆ D, a contradiction. If both u1w and u2w belong
toA(F ), then w is the sink of F and F \w1∪v is a subdivision of C(2, 2) inD, a contradiction. If
exactly one of u1w and u2w belongs toA(F ), say u1w, then F \u1w∪¶u1v, vw♢ is a subdivision
of C(2, 2) in D, a contradiction. Hence w1 has a neighbour in ¶u1, u2♢. ♢

Claim 6.6.13. For every vertex v with in-neighbourhood u1, u2 and out-neighbourhood w1, w2,

either ¶w1u1, w2u2♢ ⊆ A(D) or ¶w1u2, w2u1♢ ⊆ A(D). In particular, every vertex belongs to

two different directed triangles.

Proof of claim. By Claim 6.6.12, w1 has a neighbour in ¶u1, u2♢. Without loss of generality,
suppose that it is u1. We now show that w1u1 ∈ A(D), so assume for a contradiction that
u1w1 ∈ A(D). By Claim 6.6.12 u1 has an in-neighbour x which is also a neighbour of w1.

If x = u2, then ¶u1, u2, v, w1♢ contains a copy of C(2, 2) with source u2 and sink w1. If
x = w2, then either w2w1 ∈ A(D) and w1 has in-degree 3, a contradiction to Claim 6.6.11, or
w1w2 ∈ A(D) and ¶u1, v, w1, w2♢ contains a copy of C(2, 2) with source u1 and sink w2. Hence
x, u1, u2, v, w1, w2 are pairwise distinct.

Moreover, xw1 ̸∈ A(D) for otherwise w1 has in-degree 3 contradicting Claim 6.6.11. Hence
w1x ∈ A(D). Consider the out-neighbour y of w1 distinct from x. By Claim 6.6.12, y has a
neighbour in N−(w1) = ¶u1, v♢. If v is a neighbour of y, then y ∈ ¶u2, w2♢. If y = w2, then
¶u1, v, w1, w2♢ contains a copy of C(2, 2) with source u1 and sink w2. If y = u2, then the union
of the directed paths w1u2v and w1xu1v yields a subdivision of C(2, 2) with source w1 and sink
v.

Hence y is not a neighbour of v, and so y is a neighbour of u1. If u1y ∈ A(D), then u1 has
out-degree at least 3, contradicting Claim 6.6.8. If yu1 ∈ A(D), then ¶w1, x, u1, y♢ contains a
copy of C(2, 2) with source w1 and sink u1. In both cases, we reach a contradiction.
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This proves that w1u1 ∈ A. Similarly, w2 has an out-neighbour in N−(v) = ¶u1, u2♢. If
w2u1 ∈ A(D), then ¶v, w1, w2, u1♢ contains a copy of C(2, 2) with source v and sink u1, a
contradiction. Hence w2u1 /∈ A(D), and so w2u2 ∈ A(D) as claimed. ♢

Claim 6.6.14. Let t1 and t2 be two different directed triangles of D. Then |V (t1) ∩ V (t2)| ≤ 1.

Proof of claim. SinceD is an oriented graph, then it is clear that |V (t1)∩V (t2)| ≤ 2. Assume now
that V (t1) = ¶x, y, z♢ and V (t2) = ¶x, y, w♢, where z ̸= w. Assume without loss of generality
that xy ∈ A(t1), then xy ∈ A(t2) because x and y must be adjacent in t2, and D does not contain
any digon. Now t1 ∪ t2 contains a copy of C(2, 2) with source y and sink x, a contradiction. ♢

Consider the undirected graph H whose vertices are the directed triangles in D, and such that
two triangles t and t′ are adjacent if and only if they share a common vertex.

By Claim 6.6.14 and Claim 6.6.11, H is a subcubic graph. Moreover, by Claim 6.6.13, H
must be a cubic graph. In particular H is not a forest and so it contains an induced cycle C =
(t1, . . . , tk, t1). Let t1 = (x, y, z, x) and suppose (by possibly relabelling t1 and C) that V (t1) ∩
V (tk) = ¶x♢ and V (t1) ∩ V (t2) = ¶y♢. Let P be a directed path in D with vertices in V (t2) ∪
. . . V (tk) from y to x. Observe that z ̸∈ V (P ) because C is an induced cycle of H . Then the
union of P and the path yzx is a subdivision of C(2, 2) in D, a contradiction. This proves the
theorem.

6.6.3 Subdivisions of out-stars

This section is devoted to the proofs of Theorems 6.1.13 and 6.1.14.

Theorem 6.1.13. Let k ≥ 2 and ℓ ≥ 1 be two integers. Every digraph D with δ+(D) ≥ k and

digirth(D) ≥ kℓ−1
k−1 + 1 contains a copy of S

+(ℓ)
k with centre u for every chosen vertex u.

Proof. Let D be such a digraph. By taking m(D) minimal, we can suppose that d+(v) = k for
every vertex v ∈ V (D). Let W be the set of vertices at distance at least ℓ from u. If there are
k vertex-disjoint (u,W )-paths then these directed paths have length at least ℓ and so they form a

copy of S+(ℓ)
k . Otherwise, by Menger’s Theorem, there is a set S ⊆ V (D) \ ¶u♢ of k− 1 vertices

such that there is no (u,W )-path inD−S. LetR be the set of vertices reachable from u inD−S.
Then every vertex in R is at distance at most ℓ − 1 from u, so |R| ≤ kℓ−1

k−1 . As D has digirth at

least kℓ−1
k−1 + 1, this implies that D⟨R⟩ is acyclic. Let r ∈ R be a sink in D⟨R⟩. Then all the

out-neighbours of r in D are in S, and so d+(r) ≤ k − 1, a contradiction.

Theorem 6.1.14. Every digraph D with δ+(D) ≥ 2 and digirth(D) ≥ 2ℓ contains a copy of

S
+(ℓ)
2 .

Proof. Suppose for contradiction that there is such a digraph D containing no copy of S+(ℓ)
2 . We

assume ℓ ≥ 2, the result being trivial when ℓ = 1. Without loss of generality, we may also assume
that d+(v) = 2 for every vertex v in D. By considering only one terminal strongly connected
component of D, we can also assume that D is strong. Let u be a vertex in D, and let w be
a vertex at distance exactly ℓ from u. Such a vertex exists because, as D is strong, u has an
in-neighbour, which is at distance at least 2ℓ− 1 ≥ ℓ+ 1 from u.

Let us fix P a shortest directed path from u to w. A P -tricot is a sequence of pairwise vertex-
disjoint directed paths Q1, . . . , Qr (where r is the size of the tricot) such that for every i ∈ [r]:
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u w

Q1

Q2

Q3

P

Figure 6.4: An example of a P -tricot of size 3. Dotted arcs represent directed paths.

• V (Qi) ∩ V (P ) = ¶term(Qi), init(Qi)♢,

• init(Q1) = u,

• init(Qi+1) = predP (term(Qi)) if i < r,

• there is an arc from predQi
(term(Qi)) to V (P ] init(Qi), term(Qi)[).

Let us first prove that D admits a P -tricot. Let Q be a maximum directed path in D, starting
on u, that is disjoint from V (P ) \ ¶u♢. Since Q is maximum, the two out-neighbours of term(Q)
belong to V (P ) ∪ V (Q). We have that the length of Q is at most ℓ − 1, for otherwise the union

of P and Q contains a copy of S+(ℓ)
2 , a contradiction to the choice of D. This implies that the

out-neighbourhood of term(Q) is in V (P ) \ V (Q), for otherwise D⟨V (Q)⟩ contains a directed
cycle of length at most ℓ− 1, a contradiction. Let x be the out-neighbour of term(Q) which is the
furthest from u and y be its other out-neighbour. Let Q′ be the extension of Q with x, then (Q′) is
a P -tricot of size one since Q′ starts at u, intersects P exactly on ¶u, x♢ and y belongs to P [u, x[.

Among all P -tricots of D, we choose one with maximum size r and denote it by T . Let P1 be
the directed path corresponding to the concatenation of Q1 and all P [term(Qi−2), init(Qi)] · Qi

for odd i ∈ ¶3, . . . , r♢. Let P2 be the directed path corresponding to the concatenation of all
P [term(Qi−2), init(Qi)] ·Qi for even i ∈ ¶2, . . . , r♢ (we identify term(Q0) with u).

Observe that P1 and P2 are two directed paths starting from u, and that they intersect exactly
on ¶u♢. Note that P1 can be completed into a (u,w)-path ˜︁P1 = P1 ·P [term(P1), w] disjoint from
P2− term(P2). Since it is a (u,w)-path, ˜︁P1 has length at least ℓ. Therefore P2 has length at most

ℓ, for otherwise ˜︁P1∪ (P2− term(P2)) is a copy of S+(ℓ)
2 in D. Analogously, P2 can be completed

into a (u,w)-path, which implies that P1 has length at most ℓ.
Let i ∈ ¶1, 2♢ be such that Pi does not contain Qr and let j ∈ ¶1, 2♢ be different from i. Let

v be predP (term(Qr)). We consider Q′ a maximal directed path starting from v in D− (V (P )∪
V (P1) ∪ V (P2) \ ¶v♢). Let t be term(Q′), let P ′

i be the concatenation Pi · P [term(Pi), v] · Q′

and P ′
j be the concatenation Pj · P [term(Qr), w]. See Figure 6.5 for an illustration.

Since P ′
j is a (u,w)-path, P ′

j has length at least ℓ. If also P ′
i has length at least ℓ, then P ′

i

and P ′
j are two directed paths of length at least ℓ, sharing their source u and no other vertices,

a contradiction since D is a counterexample. We know that t has two out-neighbours x, y in D.
SinceQ′ is a maximal directed path, we know that both x and y belong to V (P ′

i )∪V (P ′
j)∪V (P ).

• First, if one of x, y, say x, belongs to V (P ′
i ), P ′

i [x, t] ∪ term(P ′
i )x is a directed cycle of

length at most
length(P ′

i [x, t]) + 1 ≤ length(P ′
i ) + 1 ≤ ℓ,



142 CHAPTER 6 — Subdivisions in dicritical digraphs with large order or digirth

u w
v

s

Q1

Q2 Q′

t

P ′
i

P ′
j

z

Q3

Figure 6.5: An illustration of the paths P ′
i and P ′

j .

where in the last inequality we used that P ′
i has length at most ℓ− 1. This is a contradiction

since digirth(D) ≥ 2ℓ > ℓ.

• Else, if one of x, y, say x, belongs to V (P [u, v]), then P [x, v] · Q′ ∪ tx is a directed cycle
of length at most:

length(P [x, v]) + length(Q′[v, t]) + 1

≤ length(P [u, v]) + length(Q′[v, t]) + 1 because u is before x in P

≤ length(P ′
i [u, v]) + length(Q′[v, t]) + 1 because P is a shortest path

= length(P ′
i ) + 1 ≤ ℓ,

a contradiction since digirth(D) ≥ 2ℓ > ℓ.

• Else if one of x, y, say x, belongs to V (Pj) \ V (P [u, v]), let z be predPj
(term(Pj)),

which is also predQr
(term(Qr)). By definition of T , z has an out-neighbour s in

V (P ] init(Qr), term(Qr)[). Then Pj [x, z] · zs · P [s, v] · Q′ ∪ tx is a directed cycle with
length at most

length(Pj [x, z]) + length(P [s, v]) + length(Q′) + 2

≤ length(Pj) + length(P [s, v]) + length(Q′) as x ̸= u and z ̸= term(Pj)

≤ length(Pj) + length(P ′
i [u, v]) + length(Q′) as P is a shortest path

≤ length(Pj) + length(P ′
i ) ≤ 2ℓ− 1,

a contradiction since digirth(D) ≥ 2ℓ.

• Finally if both x and y belong to P [term(Qr), w], we can assume that x is before y on the
path P . But then the P -tricot (Q1, . . . , Qr, Q

′ · ty) contradicts the maximality of T .

6.7 Further research directions

In this chapter, for a fixed digraph F , we gave some sufficient conditions on a digraph D to ensure
that D contains F as a subdivision. Many open questions arise. In particular, the exact value
of maderχ⃗(F ) is known only for very few digraphs F . The smallest digraph F for which it is

unknown is
←→
K3.
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Conjecture 6.7.1 (Gishboliner, Steiner, and Szabó [80]).

maderχ⃗(
←→
K3) = 4

In the first part of this chapter, we looked for paths and cycles in large dicritical digraphs. In
particular, we proved in Theorem 6.1.5 that for every integer k ≥ 3, there are infinitely many
k-dicritical digraphs without any directed path on 3k+1 vertices. Conversely, Bermond et al. [24]
proved that every connected digraph with δ+(D) ≥ k and δ−(D) ≥ ℓ contains a directed path of
order at least min¶n, k + ℓ+ 1♢. As every vertex in a k-dicritical digraph has in- and out-degree
at least k− 1, we obtain that there are finitely many k-dicritical digraphs with no directed path on
2k − 1 vertices. The following problem then naturally comes.

Problem 6.7.2. For every integer k ≥ 3, find the largest integer f(k) ∈ [2k− 1, 3k] such that the

set of k-dicritical P⃗ f(k)-free digraphs is finite.

Given a digraphF , we say thatF is δ+-maderian if there is an integer k such that every digraph
D with δ+(D) ≥ k contains a subdivision of F . The smallest such integer k is then denoted by
maderδ+(F ). The problem of characterising δ+-maderian digraphs is widely open. In particular,
Mader [125] conjectured that every acyclic digraph is δ+-maderian, but this remains unproven
albeit many efforts to prove or disprove it (see [122] for a partial answering to the conjecture).

In the remaining of the chapter, we focused on digraphs of large digirth. Given a digraph F ,
and an integer g, we can define mader

(g)
δ+ (F ) to be the smallest integer k, if it exists, such that

every digraph D with δ+(D) ≥ k and digirth(D) ≥ g contains a subdivision of F .
It is interesting to note that there are digraphs which are not δ+-maderian even when restricted

to digraphs of large digirth. Indeed, for every integers g, d there is a digraphD with digirth(D) ≥
g and δ+(D) ≥ d such that D does not contain any subdivision of

←→
K3. Such a digraph D can

be easily obtained from a construction by DeVos et al. [56] of digraphs with arbitrarily large out-
degree in which every directed cycle has odd length, by removing a few arcs in order to increase
the digirth. Since every subdivision of

←→
K3 has an even directed cycle, such a digraph does not

contain
←→
K3 as a subdivision.

In Theorem 6.1.11, we proved that mader
(8k−4)
δ+ (C(k, k)) ≤ 2. On the other hand, the value

8k−4 cannot be replaced by k−1. To see this, consider the digraphD with vertex-set Z/(2k−1)Z
and arc-set ¶(i, i+1), (i, i+2) | i ∈ V (D)♢. Since n(D) < 2k, D has no subdivision of C(k, k).

Since δ+(D) = 2 and digirth(D) = k − 1, we deduce that mader
(k−1)
δ+ (C(k, k)) > 2. Thus, the

following problem arises.

Problem 6.7.3. Find the minimum g ∈ [k, 8k − 4] such that mader
(g)
δ+ (C(k, k)) ≤ 2.

In this chapter, we studied the value of min¶mader
(g)
χ⃗ (X) | g ≥ 0♢ given a digraph X . We

believe that this value is upper bounded by a function of the maximum degree.

Conjecture 6.7.4. There is a function f such that for every digraph F with maximum degree ∆,

there is an integer g such that mader
(g)
χ⃗ (F ) ≤ f(∆).

This is motivated by the following result by Mader [126], which is somehow the undirected
analogue of Conjecture 6.7.4.
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Theorem 6.7.5 (Mader [126]). There is a function f such that for every graph F , for every graph

G with δ(G) ≥ max¶∆(F ), 3♢, if girth(G) ≥ f(F ) then G contains a subdivision of F .

It was later proved by Kühn and Osthus [118] that one can take f(H) = 166 log n(H)
log ∆(H) , which

is optimal up to the constant factor.
Harutyunyan and Mohar [94] proved that there is a positive constant c such that for every large

enough ∆, g, there is a digraph D with girth(D) ≥ g, ∆(D) ≤ ∆ and χ⃗(D) ≥ c · ∆
log ∆ . This is

a generalisation to the directed case of a classical result by Bollobás [29]. This implies that any
function f satisfying Conjecture 6.7.4 is such that f(∆) ≥ c · ∆

log ∆ . We are inclined to believe

that this is optimal and that there is such a function f in O
⎞

∆
log ∆

)︂
.



CHAPTER 7
Redicolouring digraphs

This chapter contains joint work with Nicolas Bousquet, Frédéric Havet, Nicolas Nisse,
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7.1 Introduction

7.1.1 Graph recolouring

Given a graph G, for any k ≥ χ(G), recall that the k-colouring graph of G, denoted by Ck(G),
is the graph whose vertices are the proper k-colourings of G and in which two k-colourings are
adjacent if they differ on the colour of exactly one vertex. A walk between two given colourings in
Ck(G) corresponds to a recolouring sequence, that is, a sequence of pairs composed of a vertex of
G, which is going to receive a new colour, and a new colour for this vertex. If Ck(G) is connected,
we say that G is k-mixing. An isolated vertex in Ck(G) is called a k-frozen proper colouring. One
of the main problems in recolouring is to decide whether a given graph is k-mixing.

145
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IS k-MIXING

Input: A graph G satisfying χ(G) ≤ k
Output: Is G k-mixing?

Note that IS 2-MIXING is trivial since only edgeless graphs are 2-mixing. On the other hand,
Cereceda [48] proved that IS 3-MIXING is coNP-complete. For higher values of k, Bousquet [40]
proved that IS k-MIXING is coNP-hard, but we do not know whether the problem belongs to coNP.
Cereceda, van den Heuvel, and Johnson [48] conjectured that it is PSPACE-complete.

A related problem is that of deciding whether two given proper k-colourings of a graph G are
in the same connected component of Ck(G).

k-COLOURING PATH

Input: A graph G along with two k-colourings α and β of G.
Output: Is there a recolouring sequence between α and β?

2-COLOURING PATH is trivial since only isolated vertices can be recoloured in a bipar-
tite graph. Cereceda, van den Heuvel, and Johnson [49] proved that 3-COLOURING PATH is
polynomial-time solvable. Moreover the authors proved that the diameter of each component of
C3(G) is at most O(n(G)2).

In contrast, for every k ≥ 4, Bonsma and Cereceda [36] showed the existence of a family
Gk of graphs such that for every G ∈ Gk of order n, there exist two proper k-colourings whose
distance in Ck(G) is finite and superpolynomial in n. They also proved that k-COLOURING PATH

is PSPACE-complete for all k ≥ 4 even restricted to bipartite graphs. However, the situation is
different for degenerate graphs. Bonsma and Cereceda [36] and Dyer et al. [67] independently
proved the following.

Theorem 7.1.1 (Bonsma and Cereceda [36] ; Dyer et al. [67]). Let k ∈ N and G be a graph. If

k ≥ δ∗(G) + 2, then G is k-mixing.

The original proof of Theorem 7.1.1 also implies that Ck has diameter at most 2n(G). Cere-
ceda’s conjecture states that the diameter of Ck is actually quadratic in n.

Conjecture 7.1.2 (Cereceda [47]). Let k ∈ N and G be a graph. If k ≥ δ∗(G) + 2, then the

diameter of Ck(G) is at most O(n2).

In the remainder of this section, we recall several results approaching this conjecture, which
can be seen as evidences for the general conjecture. The following are the best existing bounds
approaching Conjecture 7.1.2 in the general case∗.

Theorem 7.1.3 (Bousquet and Heinrich [42]). Let k ∈ N and G be a graph. Then Ck(G) has

diameter at most:

(i) O(n2) if k ≥ 3
2(δ∗(G) + 1),

(ii) Oε(n⌈ 1
ε

⌉) if k ≥ (1 + ε)(δ∗(G) + 1), and

(iii) Od(nd+1) if k ≥ δ∗(G) + 2 = d+ 2.

∗Given two computable functions f, g and a parameter Γ, f(n) = OΓ(g(n)) means that there exists a computable
function h such that f(n) = O(h(Γ) · g(n)). Also Γ can be a sequence of parameters Γ1, . . . , Γr in which case
f(n) = OΓ(g(n)) means that f(n) = O(h(Γ1, . . . , Γr) · g(n)).
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Bousquet and Perarnau [43] also proved the following.

Theorem 7.1.4 (Bousquet and Perarnau [43]). Let k ∈ N and G be a graph. If k ≥ 2δ∗(G) + 2,

then diam(Ck(G)) ≤ (δ∗(G) + 1)n.

In order to obtain possibly simpler versions of Conjecture 7.1.2, one can restrict to graphs
with bounded maximum average degree. Recall that the maximum average degree of a graph G
is Mad(G) = max

{︂
2m(H)
n(H) | H subgraph of G

}︂
. It is easy to see that every graph G satisfies

⌊Mad(G)⌋ ≥ δ∗(G). Hence, if true, Conjecture 7.1.2 would imply that every graph G with
Mad(G) ≤ d− ε, where d ∈ N and ε > 0, satisfies diam(Ck(G)) = O(n2) for every k ≥ d+ 1.
Feghali showed the following analogue result.

Theorem 7.1.5 (Feghali [73]). Let d, k be integers such that k ≥ d+1. For every ε > 0 and every

graph G with n vertices and maximum average degree at most d− ε,
diam(Ck(G)) = Od,ε(n(logn)d−1).

Another approach toward Conjecture 7.1.2 consists of considering the maximum degree of a
graph instead of its degeneracy. Cereceda has shown (see [47, Proposition 5.23]) that, for every
graph G on n vertices and integer k ≥ ∆(G) + 2, Ck(G) has diameter at most (∆(G) + 1)n,
where ∆(G) denotes the maximum degree of G. In order to get a more precise bound, Bonamy
and Bousquet considered the grundy number. Let G be a graph and O = (x1, . . . , xn) be an
ordering of V (G). The greedy colouring αg(O, G) is the proper colouring in which every vertex
xi receives the smallest colour that does not appear inN(xi)∩¶x1, . . . , xi−1♢. The grundy number

of G, denoted by χg(G), is the maximum, over all orderings O, of the number of colours used in
αg(O, G).

Theorem 7.1.6 (Bonamy and Bousquet [31]). For any graph G on n vertices, if k ≥ χg(G) + 1,

then G is k-mixing and diam(Ck(G)) ≤ 4 · χ(G) · n.

Considering graphs of bounded maximum degree, Feghali, Johnson, and Paulusma [74] proved
the following analogue of Brooks Theorem for graph recolouring. Note that it is of interest only
when k = ∆ + 1, because Theorem 7.1.6 already gives a better bound when k ≥ ∆ + 2.

Theorem 7.1.7 (Feghali, Johnson, and Paulusma [74]). Let G = (V,E) be a connected graph

with ∆(G) = ∆ ≥ 3, k ≥ ∆ + 1, and α, β two proper k-colourings of G. Then at least one of

the following holds:

• α is k-frozen, or

• β is k-frozen, or

• there is a recolouring sequence of length at most c∆|V |2 between α and β, where c∆ =
O(∆) is a constant linear on ∆.

A last result approaching Conjecture 7.1.2 is due to Bonamy and Bousquet, and makes a
connection between the treewidth of a graph and its recolourability. It is easy to see that, for any
graph G, tw(G) ≥ δ∗(G). Hence, the following result is a weaker version of Conjecture 7.1.2.

Theorem 7.1.8 (Bonamy and Bousquet [31]). Let k ∈ N and G be a graph of order n. If k ≥
tw(G) + 2, then diam(Ck(G)) ≤ 2(n2 + n).

Bonamy et al. [33] have shown that the bound of Theorem 7.1.8 is asymptotically sharp (up to
a constant factor).
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7.1.2 Analogues for digraphs

In this chapter, we study the notion of digraph redicolouring, which is a generalisation of graph
recolouring. We first give and recall some definitions specific to this chapter. For any digraph
D and integer k ≥ χ⃗(D), the k-dicolouring graph of D, denoted by Dk(D), is the undirected
graph whose vertices are the k-dicolourings of D and in which two k-dicolourings are adjacent
if they differ on exactly one vertex. Observe that Ck(G) = Dk(

←→
G ) for any bidirected graph

←→
G .

A redicolouring sequence between two k-dicolourings is a walk between these dicolourings in
Dk(D). The digraph D is k-mixing if Dk(D) is connected, and k-freezable if Dk(D) contains an
isolated vertex, and such an isolated vertex is called a k-frozen dicolouring. A vertex v is blocked

to its colour in a k-dicolouring α if, for every colour c ∈ [k] different from α(v), recolouring v to
c in α creates a monochromatic directed cycle. We say that v is frozen in α if β(v) = α(v) for any
k-dicolouring β in the same connected component of α in Dk(D).

In Section 7.2, we consider the directed analogues of IS k-MIXING and k-COLOURING PATH.

DIRECTED IS k-MIXING

Input: A digraph D.
Output: Is D k-mixing?

k-DICOLOURING PATH

Input: A digraph D along with two k-dicolourings α and β of D.
Output: Is there a path between α and β in Dk(D)?

Note that IS k-MIXING and k-DICOLOURING PATH may be seen as the restrictions of DI-
RECTED IS k-MIXING and k-DICOLOURING PATH to bidirected graphs. Therefore hardness
results transfer to those problems. It follows that DIRECTED IS k-MIXING is coNP-hard for all
k ≥ 3 and k-DICOLOURING PATH is PSPACE-complete for all k ≥ 4. We strengthen this sec-
ond result in Section 7.2 by proving that 2-DICOLOURING PATH is PSPACE-complete, and that
k-DICOLOURING PATH remains PSPACE-complete when restricted to some digraph classes.

Given a digraph D = (V,A) and a vertex v ∈ V , recall that the cycle-degree of v, denoted
by dc(v), is the minimum size of a set S ⊆ (V \ ¶v♢) such that S intersects every directed
cycle of D containing v. The minimum cycle-degree of D, denoted by δc(D), corresponds to
min¶dc(v) | v ∈ V ♢. The c-degeneracy of D is defined as δ∗

c (D) = max¶δc(H) | H ⊆ D♢. As
we will see in Section 7.5, the notion of c-degeneracy appears to be a natural generalisation of the
undirected degeneracy when dealing with directed treewidth.

We define the average cycle-degree of D, denoted by Adc(D), as 1
n(D)

∑︁
v∈V dc(v). The

maximum average cycle-degree of D, denoted by Madc(D), is defined as maxH⊆D(Adc(H)). It
follows from the definitions that δ∗

c (D) ≤ ⌊Madc(D)⌋ holds for every digraph D.
Let us show that χ⃗(D) ≤ δ∗

c (D) + 1. By definition of c-degeneracy, we can find an ordering
v1, . . . , vn of V such that, for every i ∈ [n], there exists Si ⊆ ¶vi+1, . . . , vn♢ of size at most δ∗

c (D),
and such that Si ∪ ¶v1, . . . , vi−1♢ intersects every directed cycle of D containing vi. From now
on, such an ordering will be called a c-degeneracy ordering. Hence, considering the vertices from
vn to v1, one can greedily find a (δ∗

c (D) + 1)-dicolouring of D by colouring each vi with a colour
that has not been chosen in Si. Indeed, suppose for contradiction that, for some i ∈ [δ∗

c (D) + 1],
the subdigraph of D induced by the set of vertices assigned colour i contains a directed cycle C.
Let vj be the leftmost vertex in C according to the considered ordering. Then, by definition of c-
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degeneracy we have that (V (C)\¶vj♢)∩Sj ̸= ∅, but this contradicts the fact that, by construction
of the colouring, the colour of vj is different from all the colours of the vertices in Sj .

The following is a stronger version of Conjecture 7.1.2.

Conjecture 7.1.9. Let k ∈ N and D be a digraph. If k ≥ δ∗
c (D) + 2, then the diameter of Dk(D)

is at most O(n2).

In Section 7.3 we show that Theorems 7.1.1, 7.1.3, 7.1.4 and 7.1.5 can be generalised to
digraphs using the c-degeneracy.

In Section 7.4 we look at digraphs of bounded maximum degree. We show that both The-
orems 7.1.6 and 7.1.7 can be generalised to digraphs. When restricted to oriented graphs, we
improve the quadratic bound of Theorem 7.1.7 into a linear bound.

In Section 7.5 we look for extensions of Theorem 7.1.8 to digraphs. We first give a general
result which makes a connection between the redicolourability of a digraph and the recolourability
of its underlying graph. In particular, it extends Theorem 7.1.8 when taking the treewidth of
the underlying graph. This is not completely satisfying, since this notion does not take under
consideration the orientations in the digraph. Using a generalisation of treewidth to digraphs,
namely the D-width, we give a more precise generalisation of Theorem 7.1.8.

In Section 7.6, we turn our focus to the density of non-mixing graphs and digraphs. We first
provide a construction witnessing that there exist (k − 1)-regular graphs of arbitrarily large girth
that are not k-mixing, which was first shown by Bonamy, Bousquet, and Perarnau [32] using prob-
abilistic arguments. Therefore, the upper bound on the minimum density of non-mixing graphs
derived from Theorem 7.1.1 is best possible even on graphs of arbitrarily large girth. However,
this is not the case for digraphs with arbitrary large digirth. In fact, this is not even the case for
oriented graphs, which are exactly digraphs with digirth at least 3. We pose a conjecture on the
minimum density of non-mixing oriented graphs and provide some support for it.

We conclude in Section 7.7 by discussing the consequences of our results, especially on planar
digraph redicolouring, and detail a few related open questions.

7.2 Complexity of k-DICOLOURING PATH

In this section, we establish some hardness results for k-DICOLOURING PATH. We will mainly
prove the following result.

Theorem 7.2.1. Each of the following holds.

(i) For every k ≥ 2, k-DICOLOURING PATH is PSPACE-complete on digraphs with maximum

degree 2k + 1.

(ii) For every k ≥ 2, k-DICOLOURING PATH is PSPACE-complete on oriented graphs.

(iii) For every 2 ≤ k ≤ 4, k-DICOLOURING PATH is PSPACE-complete on planar digraphs

with maximum degree 2k + 2.

(iv) 2-DICOLOURING PATH is PSPACE-complete on oriented planar graphs of maximum degree

6.
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We first need some definitions. Given a graph G = (V,E) together with a mapping ϕ : V −→
¶1, 2♢, an orientation G⃗ of G is proper if for any v ∈ V , d−

G⃗
(v) ≥ ϕ(v). A reorienting sequence

from G⃗1 to G⃗2 is a sequence of proper orientations Γ⃗1, . . . , Γ⃗p of G such that Γ⃗1 = G⃗1, Γ⃗p = G⃗2,
every Γ⃗i is proper and every Γ⃗i+1 can be obtained from Γ⃗i by reversing exactly one arc. The
following problem has been shown to be PSPACE-complete in [98] by a reduction from Quantified
Boolean Formulas.

PLANAR-CUBIC-NCL

Input: A cubic planar graph G, a mapping ϕ : V −→ ¶1, 2♢, two proper orientations G⃗1 and
G⃗2 of G.
Output: Is there a reorienting sequence from G⃗1 to G⃗2 ?

We will derive the hardness results for DICOLOURING PATH from a hardness result on its
list dicolouring version. Let D be a digraph. Recall that a list assignment L is a function which
associates a list of colours to every vertex v of D. An L-dicolouring of D is a dicolouring α
of D such that α(v) ∈ L(v) for all vertex v. A k-list assignment is a list assignment L such
that L(v) ⊆ [k] for all vertex v. We denote by D(D,L) the reconfiguration graph of the L-
dicolourings of D, i.e. the undirected graph in which the vertices are the L-dicolourings of D and
two colourings are adjacent if they differ on the colour of exactly one vertex. We call vertices v
such that |L(v)| = 1 forced vertices. We will consider the following problem.

k-LIST DICOLOURING PATH

Input: A digraph D, a k-list assignment L, and two L-dicolourings α and β of D.
Output: Is there a path between α and β in D(D,L) ?

Let us start by proving the following result.

Theorem 7.2.2. 2-LIST DICOLOURING PATH is PSPACE-complete on digraphs D even when:

• forced vertices have degree at most 3 and,

• either all the vertices have degree at most 5 or, the digraph D is planar and all the vertices

have in and out-degree at most 3.

Proof. First, note that 2-LIST DICOLOURING PATH is indeed in NPSPACE. Given a digraph D
and two dicolourings α and β of D together with a redicolouring sequence from α to β, we can
easily check with a polynomial amount of space that each dicolouring is valid. Then, we get
that k-LIST DICOLOURING PATH belongs to PSPACE thanks to Savitch’s Theorem [151], which
asserts that PSPACE = NPSPACE.

We shall now give a polynomial reduction from PLANAR-CUBIC-NCL.
Let G be a planar cubic graph on n vertices x1, . . . , xn with a mapping ϕ : V (G) → ¶1, 2♢.

Let G⃗1 and G⃗2 be two proper orientations of G. From (G,ϕ) we construct the digraph D and the
function L as follows (see Figure 7.1 for an illustration).

• For each vertex xi ∈ V (G), we create a vertex-gadget as follows.

We associate three vertices xi,1, xi,2 and xi,3 in VD so that each of these vertices is associated
to exactly one edge of G incident to xi, and each edge of G is associated to exactly two
vertices of D. The function L assigns to each of these vertices the list ¶1, 2♢.
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xi1

xj2

xi,1 ¶1, 2♢

¶1, 2♢ xi,2

¶1, 2♢ xi,3

zi ¶2♢

¶1, 2♢ xj,1

¶1, 2♢ xj,2 xj,3 ¶1, 2♢

¶2♢ zj,1

zj,2 ¶2♢

zj,3 ¶2♢

aij ¶1♢

Figure 7.1: An example of building (D,L) from (G,ϕ), where ϕ(xi) = 1, ϕ(xj) = 2, and i < j.

We complete the vertex-gadget in two ways, depending on the value of ϕ(xi). If ϕ(xi) = 1,
then we create a new vertex zi in such a way that (zi, xi,1, xi,2, xi,3, zi) is a directed 4-cycle.
We set L(zi) = ¶2♢.
If ϕ(xi) = 2, then we create three new vertices zi,1, zi,2, and zi,3 in such a way that
(xi,1, zi,1, xi,2, zi,2, xi,3, zi,3, xi,1) is a directed 6-cycle, and we add the arcs xi,1zi,2, xi,2zi,3

and xi,3zi,1. The function L assigns the list ¶2♢ to zi,1, zi,2, and zi,3.

• For each edge xixj ∈ E(G), where i < j, we create a vertex aij and create the directed
3-cycle (aij , xi,r, xj,r′ , aij), where xi,r and xj,r′ are the vertices of D corresponding to the
edge xixj in G. We set L(ai,j) = ¶1♢. This directed 3-cycle is the edge-gadget of xixj .

Note that the digraphD has maximum degree at most 5 and that its forced vertices have degree
at most 3.

For every proper orientation G⃗ of G, we define the dicolouring associated to G⃗, a particular
dicolouring of D that we denote by α

G⃗
, as follows.

• Forced vertices are assigned the colour of their list: vertices zi, zi,1, zi,2, zi,3 are coloured 2,
and vertices aij are coloured 1.

• For each arc xixj ∈ A(G⃗), we set xi,r to colour 2 and xj,r′ to colour 1, where xi,r and xj,r′

are the vertices of D corresponding to the edge xixj in G.

Claim 7.2.3. For every proper orientation G⃗ of G and corresponding digraph D, the following

hold.

(i) α
G⃗

is an L-dicolouring of D.
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(ii) Unless d−

G⃗
(xi) = ϕ(xi) in G⃗, changing the colour of xi,r from 1 to 2 still yields a valid L-

dicolouring of D.

Proof of claim. Let us only show the first item, the second follows by similar arguments noting
that d−

G⃗
(xi) > ϕ(xi) in this case. Note that, by definition, α

G⃗
satisfies the colouring constraints

imposed by the list assignment L. Let us then show that α
G⃗

is indeed an L-dicolouring. Assume,
for a contradiction, that there is a monochromatic directed cycle C in α

G⃗
. For every edge-gadget,

say corresponding to xixj , the vertices xi,r, xj,r′ are coloured differently. Therefore, all vertices
of C must be contained in a single vertex-gadget of D. Let xi be the vertex such that C is in
the vertex-gadget of xi. If ϕ(xi) = 1, then C must be (zi, xi,1, xi,2, xi,3, zi) and all its vertices
should be coloured 2. This is a contradiction since d−

G⃗
(xi) ≥ 1 implies, by construction, that at

least one of xi,1, xi,2, xi,3 is coloured 1. If ϕ(xi) = 2, then C contains at least two vertices in
¶xi,1, xi,2, xi,3♢ and two vertices in ¶zi,1, zi,2, zi,3♢. Then, at least two vertices of ¶xi,1, xi,2, xi,3♢
are coloured 2 because vertices zi,j are. This is a contradiction since d−

G⃗
(xi) ≥ 2 implies, by

construction, that at least two vertices of xi,1, xi,2, xi,3 are coloured 1. ♢

Let us take α1 = α
G⃗1

and α2 = α
G⃗2

to be the dicolourings obtained from the two proper

orientations G⃗1, G⃗2. We will now show that there exists a reorienting sequence in G from G⃗1 to
G⃗2 if and only if there exists a redicolouring sequence in D from α1 to α2.

Assume first that there is a reorienting sequence Γ⃗1, . . . , Γ⃗p from G⃗1 to G⃗2, and let us show
how to build a corresponding redicolouring sequence. Consider any step s of the reorienting
sequence, say when Γ⃗s is transformed into Γ⃗s+1 by reversing an arc xixj into xjxi. We will exhibit
a path from α

Γ⃗s
to α

Γ⃗s+1
inD(D,L). Consider vertices xi,r, xj,r′ in D, corresponding to the edge

xixj , and coloured 2 and 1 respectively in α
Γ⃗s

. We first set the colour of xj,r′ from 1 to 2. Since
ai,j is forced to colour 1, the edge-gadget is not monochromatic at this point. Moreover, since step
s reorients arc xixj and still yields a proper orientation, d−

Γ⃗s
(xj) = d−

Γ⃗s+1
(xj) + 1 ≥ ϕ(xj) + 1.

The resulting colouring is an L-dicolouring by Claim 7.2.3 (ii). We then set the colour of xi,r from
2 to 1, yielding dicolouring α

Γ⃗s+1
. Concatenating the redicolouring sequences obtained through

the process above from steps s = 1 to s = p yields a redicolouring sequence from α1 to α2.

Conversely, assume that there is a redicolouring sequence γ1, . . . , γp from α1 to α2. Observe
that the only vertices of D that are possibly recoloured in a step of our sequence are those defined
as xi,k for i ∈ [n] and k ∈ [3], since all others are forced. Now, at any step s of the redicolouring,
for each edge xixj of G, at most one of the two corresponding vertices is coloured 1 because aij

is forced to colour 1. This allows us to define an orientation Γ⃗s of G as follows. If the vertices
xi,r, xj,r′ ∈ V (D), corresponding to the gadget of edge xixj , are not coloured the same in γs,
orientation Γ⃗s sets xixj to be directed from the vertex coloured 2 towards the vertex coloured
1. Otherwise, both vertices are coloured 2 in γs and we preserve the orientation of the corre-
sponding edge given by Γ⃗s−1. In the first and last dicolourings, α1 and α2, for each edge xixj

the corresponding vertices xi,k and xj,k′ are coloured differently. Thus Γ⃗1 = G⃗1 and Γ⃗p = G⃗2.
Therefore, Γ⃗1, . . . , Γ⃗p is a sequence of orientations of G from G⃗1 to G⃗2 such that Γ⃗s+1 is either
obtained by reversing an arc of Γ⃗s (when one of the xi,k is recoloured to 1, and the edge xixj

whose edge-gadget contains xi,k was not oriented towards xi), or equal to Γ⃗s otherwise (and in
particular when one of the xi,k is recoloured to 2). Moreover, at each step s, Γ⃗s is a proper orien-
tation of G. Indeed, if ϕ(xi) = 1 (resp. ϕ(xi) = 2), then at least one vertex (resp. two vertices)
of ¶xi,1, xi,2, xi,3♢ is coloured 1, and so xi has in-degree at least 1 (resp. at least 2) in Γ⃗s. Hence,
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xi,1

xi,2 xi,3

zi,1

zi,2

zi,3

Figure 7.2: A planar vertex-gadget when ϕ(xi) = 2

taking the subsequence of Γ⃗1, . . . , Γ⃗p that omits constant steps yields a reorienting sequence from
G⃗1 to G⃗2.

Since PLANAR-CUBIC-NCL is PSPACE-complete, at this point our reduction already yields
the PSPACE-completeness of 2-LIST DICOLOURING PATH. By construction, forced vertices zj,k

and aij have degree at most 3, and all other vertices have degree at most 5. This achieves the proof
of the first case of the result.

Now, since the input instances are already planar, to get the PSPACE-completeness of 2-LIST

DICOLOURING PATH on planar digraphs, it suffices to use planar vertex and edge gadgets. In
our current reduction, the only gadget which is not planar is the vertex-gadget corresponding to
xi ∈ V (G) such that ϕ(xi) = 2. We now consider the same reduction, replacing the vertex-gadget
for vertices such that ϕ(xi) = 2 with a planar one. For these vertices, the planar vertex-gadget
is defined on the same set of vertices, i.e. ¶xi,1, xi,2, xi,3, zi,1, zi,2, zi,3♢, but with the arcs of the
directed 3-cycles (zi,1, xi,1, xi,2, zi,1), (zi,3, xi,1, xi,3, zi,3) and (zi,2, xi,3, xi,2, zi,2), as depicted in
Figure 7.2. This replacement produces a planar digraph in which all forced vertices still have
degree at most 3, and all vertices have maximum in- and out-degree at most 3. This completes the
proof.

The problem k-COLOURING PATH is known to be PSPACE-complete for every k ≥ 4 in the
undirected case [36]. Leveraging Theorem 7.2.2, we prove that this also holds for its dicolouring
analogue for k ≥ 2 colours, in both directed and oriented graphs.

Theorem 7.2.1. Each of the following holds.

(i) For every k ≥ 2, k-DICOLOURING PATH is PSPACE-complete on digraphs with maximum

degree 2k + 1.

(ii) For every k ≥ 2, k-DICOLOURING PATH is PSPACE-complete on oriented graphs.

(iii) For every 2 ≤ k ≤ 4, k-DICOLOURING PATH is PSPACE-complete on planar digraphs

with maximum degree 2k + 2.

(iv) 2-DICOLOURING PATH is PSPACE-complete on oriented planar graphs of maximum degree

6.
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Proof. (i) We give a reduction from 2-LIST DICOLOURING PATH on instances where forced
vertices have degree at most 3 and the graph has maximum degree 5. The problem is PSPACE-
complete by Theorem 7.2.2. Let (D,L, α1, α2) be an instance of the problem, we construct an
instance (D′, α′

1, α
′
2) for k-DICOLOURING PATH as follows.

We build D′ starting with D′ = D. Then, for every vertex v ∈ V (D), we let
←→
Kv

k be a
bidirected complete graph on vertex-set ¶zv

i | i ∈ [k]♢. We then add a digon between v and each
zv

i such that i /∈ L(v). We define dicolourings α′
1 and α′

2 on D′ by extending dicolourings α1

and α2 as follows. All vertices of D′ that were vertices of D are coloured the same, and we set
zv

i to colour i for all v ∈ V (D) and all i ∈ [k]. Note that all the vertices of gadget
←→
Kv

k are then
frozen in any k-dicolouring, letting us simulate in D′ the list dicolouring constraints on D. An
L-dicolouring path from α1 to α2 in D is then exactly a dicolouring path from α′

1 to α′
2 in D′

restricted to vertices of D, achieving equivalence between the instances.
We will now show that the maximal degree of a vertex u in D′ is 2k+ 1. If u belongs to some

gadget
←→
Kv

k , then its degree is at most 2(k−1)+2 = 2k. Note that when u ∈ V (D), u is of degree
2, 3 or 5 in D, and our reduction adds exactly 2(k − |L(u)|) arcs incident to u. If |L(u)| = 2, this
yields dD′(u) ≤ 5 + 2k − 4 = 2k + 1. If |L(u)| = 1, we know by construction that dD(u) ≤ 3,
yielding dD′(u) ≤ 3 + 2k − 2 = 2k + 1. This achieves the proof that D′ has maximum degree at
most 2k + 1, concluding (i).

(ii) We give a reduction from k-DICOLOURING PATH to k-DICOLOURING PATH restricted to
oriented graphs. Let (D,α1, α2) be an instance of k-DICOLOURING PATH, we will build an
equivalent instance (G⃗, α′

1, α
′
2) where G⃗ is an oriented graph. Take H⃗ to be an arbitrary oriented

graph with dichromatic number exactly k. We construct G⃗ from D by replacing digons of D as
follows. For each digon [u, v] of D, create a copy H⃗uv of H⃗ , then replace [u, v] by a single arc
from u to v, and add all arcs from v to H⃗uv and all arcs from H⃗uv to u. By construction, G⃗ is an
oriented graph.

In the following, we let ξ be a fixed k-dicolouring of H⃗ . We show how to transform any k-
dicolouring α of D to a k-dicolouring α′ of G⃗, and vice versa. Given a k-dicolouring α for D,
we define α′ for G⃗ by colouring each copy H⃗uv of H⃗ with ξ, and keeping the same colours as α
on V (D). Any monochromatic directed cycle in (G⃗, α′) must contain a vertex of some H⃗uv, as
otherwise it would be a subdigraph of D and would already be monochromatic in (D,α). Since ξ
is a dicolouring of H⃗ , the cycle must contain both u, v, but then u and v being coloured the same
would yield a monochromatic digon in (D,α), so α′ is indeed a k-dicolouring of G⃗. Conversely,
given any k-dicolouring α′ of G⃗, we define α for D as the restriction of α′ on V (D). Similarly,
if (D,α) were to contain a monochromatic directed cycle, any arc (u, v) of the cycle that is not
present in G⃗ may be replaced with (u,w, v), taking w ∈ H⃗uv to be a vertex of the same colour
as u and v (since χ⃗(H⃗) = k). This would yield a monochromatic directed cycle in (G⃗, α′), so α
must be a k-dicolouring of D.

Now, we define the k-dicolourings α′
1, α

′
2 on G⃗ obtained from α1, α2 by the transformation

above, and let our output instance be (G⃗, α′
1, α

′
2). If there is a redicolouring sequence from α1 to

α2 in D, we perform the same recolouring steps in G⃗ starting from α′
1 and yielding α′

2. Since we
only recolour vertices of V (D), the last paragraph yields that this sequence is valid. Conversely,
if there is a redicolouring sequence from α′

1 to α′
2, its restriction to V (D) (omitting recolourings

of vertices in subgraphs H⃗uv) yields a valid sequence from α1 to α2 in D. This achieves the proof
of the equivalence of the instances and proves (ii).
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a

Figure 7.3: How to freeze the vertex a in an oriented planar graph with two colours.

(iii) We give a reduction from 2-LIST DICOLOURING PATH where D is planar, forced vertices
have degree at most 3 and D has in- and out-degree at most 3. The problem is PSPACE-complete
by Theorem 7.2.2. Let (D,L, α1, α2) be an instance of the problem. We make the same reduction

as in the proof of (i) by ensuring that
←→
Kv

k is embedded and coloured in such a way that (at most
3) forbidden colours of v lie on its external face. This allows us to keep a planar representation of
D′ which has maximum degree 2k + 2. This proves (iii).

(iv) As in (iii), we give a reduction from 2-LIST DICOLOURING PATH where D is planar, forced
vertices have degree at most 3 and every vertex has in- and out-degree at most 3. Since we
are considering 2-dicolourings, vertices with a list of size 2 do not require a gadget to simulate
forbidden colours. The main difference with case (iii) is that we cannot use a bidirected complete

graph
←→
Kv

2 to freeze a vertex v with list of size 1. To overcome this, we use the gadget depicted in
Figure 7.3, where the colour of all vertices is frozen. Therefore, we simply have to attach such a
gadget on each vertex with list of size one, that is, those of the form zi,r or ai,j . This can be done
by creating a directed triangle including the vertex and two vertices of the opposite colour in the
gadget, as depicted in the figure.

7.3 On a directed version of Cereceda’s conjecture

In this section, we establish some connections between the redicolourability of a digraph and
its c-degeneracy. Note that, together with Bousquet, Havet, Nisse, and Reinald, we first proved
some of these results in [41] with the min-degeneracy, before strengthening them together with
Nisse and Sau when we introduced c-degeneracy in [136]. The min-degeneracy δ∗

min(D) of a
digraph D is defined as the least integer ℓ such that every subdigraph H of D contains a vertex v
satisfying dmin(v) ≤ ℓ. Observe that for every digraph D and every vertex v ∈ V (D), we have
dc(v) ≤ dmin(v) because both the in-neighbourhood and the out-neighbourhood of D intersect all
the directed cycles of D containing v. Therefore, we have δ∗

c (D) ≤ δ∗
min(D) for every digraph D.

The results in this section provide support to Conjecture 7.1.9 that we recall here for conve-
nience.
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k ≥ d+ 2 3
2(d+ 1) 2(d+ 1) ⌊Madc⌋+ 2

diam(Dk(D)) Od

⎞
nd+1

)︂
O
(︁
n2
[︄
≤ (d+ 1)n OMadc,ε

⎞
n(logn)⌊Madc⌋

)︂

Theorem 7.3.2 7.3.9 7.3.13 7.3.3

Table 7.1: Bounds on the diameter ofDk(D) whereD is a digraph on n vertices with c-degeneracy
d, maximum average cycle-degree Madc and where ε = ⌊Madc⌋+ 1−Madc.

Conjecture 7.1.9. Let k ∈ N and D be a digraph. If k ≥ δ∗
c (D) + 2, then the diameter of Dk(D)

is at most O(n2).

Recall that Theorem 7.1.1 states that every graphG is k-mixing when k ≥ δ∗(G)+2. We first
generalise this result by proving the following.

Theorem 7.3.1. Let D be a digraph and k ∈ N be such that k ≥ δ∗
c (D) + 2. Then D is k-mixing.

Proof. The proof is by induction on n = n(D). The result clearly holds for n ≤ 1. Let us
assume that n > 1 and that the result holds for n − 1. Let α, β be any two k-dicolourings of
D and let v ∈ V be a vertex satisfying dc(v) ≤ δ∗

c (D). Let α′, β′ be the two k-dicolourings
induced, respectively, by α and β on D−¶v♢. By induction, there exists a redicolouring sequence
α′ = α′

1, . . . , α
′
q = β′ where α′

i and α′
i−1 differ by the colour of exactly one vertex vi ∈ V \ ¶v♢,

for every 1 < i ≤ q.
Now, we build the following redicolouring sequence from α to β. At step i, if vi can be

recoloured as from α′
i−1 to α′

i, then recolour vi accordingly. Otherwise, this implies that there
exists a directed cycle containing v and vi whose all vertices (but vi) have colour α′

i(vi). By
definition of cycle-degree, there exists a transversal X of the directed cycles containing v, with
|X| ≤ δ∗

c (D) and v /∈ X . Let c ̸= α′
i(vi) be a colour that does not appear in X (it exists since

k ≥ δ∗
c (D) + 2). Colour v with c and then vi with α′

i(vi).
Finally (after step q), recolour v with its final colour β(v) to obtain a redicolouring sequence

from α to β.

Let D be a digraph on n vertices and k ≥ δ∗
c (D) + 2 be an integer. Note that the proof of

Theorem 7.3.1 above, inspired from the original proof of Theorem 7.1.1, also shows that Dk(D)
has diameter at most 2n. In the reminder of this section, we will give different polynomial bounds
on the diameter of Dk(D), depending on how large k is compare to the c-degeneracy of D. In
particular, we will generalise Theorems 7.1.3(i), 7.1.3(iii), 7.1.4 and 7.1.5. These bounds are
summarised in Table 7.1.

In Subsection 7.3.1 we use some ideas introduced in [73] to generalise both Theorems 7.1.3(iii)
and 7.1.5. Then we will generalise Theorem 7.1.3(i) in Subsection 7.3.2. The proof will use the re-
sult of Bousquet and Heinrich as a black box. Finally in Subsection 7.3.3 we give a generalisation
of Theorem 7.1.4, the proof of which is based on the original proof of Bousquet and Perarnau.

7.3.1 Bounds on the diameter of Dk(D) when k ≥ δ∗
c (D) + 2

This section is devoted to the proofs of the two following generalisations of Theorems 7.1.3(iii)
and 7.1.5.
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Theorem 7.3.2. Let D be a digraph and k ≥ δ∗
c (D) + 2 = d+ 2, then

diam(Dk(D)) = Od(nd+1).

Theorem 7.3.3. Let d ≥ 1 and k ≥ d + 1 be two integers, and let ε > 0. If D is a digraph

satisfying Madc(D) ≤ d− ε, then

diam(Dk(D)) = Od,ε(n(logn)d−1).

Observe that every digraph D satisfies Madc(D) ≤ 1
2 Mad(D). This holds because, for every

vertex v ∈ V (D), dc(v) ≤ 1
2(d+(v) + d−(v)). Hence, for every subdigraph H of D, we have:

2m(H) =
∑︂

v∈V (H)

(d+(v) + d−(v)) ≥ 2
∑︂

v∈V (H)

dc(v) = 2 ·Adc(H) · n(H).

Thus the following is a direct consequence of Theorem 7.3.3.

Corollary 7.3.4. Let d ≥ 1,k ≥ ⌊d+3
2 ⌋ be two integers, and let ε > 0. If D is a digraph satisfying

Mad(D) ≤ d− ε, then Dk(D) has diameter at most:

(i) Od

⎞
n(logn)

d−1
2

)︂
if d is odd, and

(ii) Od,ε

⎞
n(logn)

d−2
2

)︂
otherwise.

In the remaining of this section, f, g : N
2 −→ N are the functions defined as f(s, t) =

(s + 1)!(2t)s and g(s, t) = 2sf(s, t) + 2s + 1 respectively. One can show the following us-
ing elementary calculus.

Proposition 7.3.5. For every s, t ∈ N, s ̸= 0, the following inequalities hold:

f(s, t) ≥
t∑︂

q=1

(︁
2(s+ 1)f(s− 1, q)

[︄
. (7.1)

g(s, t) ≥ 2f(s, t) + 2 + g(s− 1, t). (7.2)

g(s, t) = Os(ts). (7.3)

We now prove the following main lemma†.

Lemma 7.3.6. Let D = (V,A) be a digraph, (V1, . . . , Vt) be a partition of V , and s ≥ 0,

k ≥ s + 2 be two integers. Let h ∈ [t] be such that, for every p ≤ h and every u ∈ Vp, there

exists Xu ⊆
⎷t

i=p+1 Vi such that |Xu| ≤ s and Xu intersects every directed cycle containing u in

D −⎷p−1
i=1 Vi.

Then, for every k-dicolouringα ofD and for any colour c ∈ [s+2], there exists a redicolouring

sequence between α and some k-dicolouring β such that:

†In his original proof, Feghali claims to obtain, in the statement corresponding to the third item of Lemma 7.3.6
for undirected graphs, a multiplicative factor (s + 1) instead of (s + 1)! (in the function f ). Since we are not able to
understand how the smaller factor is obtained in the original proof, we state our result with the larger factor of which
we are sure of the correctness, which anyway is hidden in the asymptotic notation.
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V1

. . .

Vq−1 Vq

Vq \W
Ws+2...
Wau

...
W1

. . .

Vh

. . .

Vt

Xu

Uq−1

avoids colours ¶c♢ ∪ C coloured with ¶c♢ ∪ C avoids colour a

Figure 7.4: The structure of the digraph D dicoloured with α, which we assume to be an (s+ 2)-
dicolouring for clarity. Note that Wc does not exist and Xu may intersect Vq+1 ∪ · · · ∪ Vh−1.

• for every v ∈ ⎷h
i=1 Vi, β(v) ̸= c and β(v) ≤ s+ 2,

• no vertex of
⎷t

i=h+1 Vi is recoloured, and

• each vertex in
⎷h

i=1 Vi is recoloured at most f(s, h) times.

Proof. We proceed by induction on s. Assume first that s = 0 and let H the subdigraph of
D induced by

⎷h
i=1 Vi. We claim that D does not contain any directed cycle which intersects

V (H). Indeed, if D contains such a directed cycle C, let q ∈ [h] be the smallest index such that
V (C)∩Vq ̸= ∅, and let u ∈ V (C)∩Vq. Then C is a directed cycle containing u in D−⎷q−1

i=1 Vi,
so Xu must intersect C. This yields a contradiction because Xu = ∅ (since |Xu| = 0). Thus,
since no directed cycle of D intersects V (H), in α we can recolour each vertex of H with the
colour c′ ∈ [2] different from c. Since f(0, h) = 1, we get the result.

Assume now that s > 0. Let C be the set of colours greater than s+ 2 and let W be the set of
vertices with colour c or any colour c′ ∈ C in α. Formally, C = [s+ 3, k] and W = ¶v ∈ V (D) |
α(v) = c ∨ α(v) ∈ C ♢. If k = s+ 2, C is empty and W is the set of vertices coloured c.

Let q ∈ [h] be the smallest index such that Vq ∩W ̸= ∅. If such an index does not exist, then
we take α = β and we are done. Let Uq−1 =

⎷q−1
i=1 Vi (when q = 1 we let U0 be the empty set).

For each colour a ∈ [s+ 2] different from c, we define Wa as follows:

Wa = ¶u ∈W ∩ Vq | ∀v ∈ Xu, α(v) ̸= a♢

Observe that every vertex in Wa is recolourable to colour a in D − Uq−1 since Xu intersects
every directed cycle containing u in D − Uq−1. Note also that every vertex u ∈ W belongs to
some Wa (maybe to several) because |Xu| ≤ s. Whenever a vertex belongs to several sets Wa,
we remove it from one, so at the end the collection (Wa)a∈[s+2],a ̸=c is a partition of W . Figure 7.4
illustrates the structure of D dicoloured with α.

Claim 7.3.7. Let ϕ be a k-dicolouring of D such that:
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• ϕ and α agree on
⎷t

i=q+1 Vi and Vq \W ,

• (¶c♢ ∪ C ) ∩ ϕ(Uq−1) = ∅, and

• ∀a ∈ [s+ 2], a ̸= c, either ϕ(Wa) = ¶a♢ or ϕ(Wa) ⊆ (¶c♢ ∪ C ).

Then for every a ∈ [s + 2], a ̸= c such that ϕ(Wa) ⊆ (¶c♢ ∪ C ), there exists a redicolouring

sequence between ϕ and a k-dicolouring ψ such that:

• each vertex in Uq−1 is recoloured at most 2f(s− 1, q − 1) times,

• each vertex in Wa is recoloured exactly once (to colour a),

• no vertex of D − (Uq−1 ∪Wa) is recoloured, and

• (¶c♢ ∪ C ) ∩ ψ(Uq−1) = ∅.

Proof of claim. By definition of Wa and because ϕ and α agree on
⎷t

i=q+1 Vi, note that every
vertex u ∈Wa is recolourable to colour a if a /∈ ϕ(Uq−1). Hence the key idea is to remove colour
a from Uq−1, then recolour every vertex in Wa with a, and finally remove the colour c from Uq−1

that we may have introduced. Along this process, we will never introduce any colour of C . When
q = 1, note that we can just recolour every vertex in Wa with a.

Let u1, . . . , ur be an ordering of Uq−1 such that the vertices in Vp appear before the vertices
in Vp′ for every 1 ≤ p′ < p ≤ q − 1. Whenever it is possible, in ϕ, we recolour every vertex
u1, . . . , ur (in this order) with colour c. Let η be the obtained dicolouring of D, and let S be the
set of vertices coloured c in η. We define D′ = D− S, h′ = q − 1 and s′ = s− 1. Also for every
p ∈ [t] we define V ′

p = Vp \ S. Finally, we define η′ as the induced dicolouring η on D′.

Let us prove that, for every p ≤ h′ and every u ∈ V ′
p , the set of vertices X ′

u = Xu \S satisfies

|X ′
u| ≤ |Xu| − 1 ≤ s′ and intersects every directed cycle containing u in D′ −⎷p−1

i=1 V
′

i .
First, since u ∈ V ′

p , we know that u has not been recoloured to c in the previous process.
It means that recolouring u with c creates a monochromatic directed cycle C. Moreover, since
c /∈ ϕ(Uq−1) and by choice of the ordering u1, . . . , ur, we know that such a directed cycle C is
included in

⎷t
i=p Vi. By assumption on Xu, we have Xu ∩ V (C) ̸= ∅. Since Xu ⊆

⎷t
i=p+1 Vi

and ϕ(V (C) \ ¶u♢) = ¶c♢ we deduce that Xu ∩ S ̸= ∅, which shows |X ′
u| ≤ |Xu| − 1 ≤ s′.

We now prove that X ′
u intersects every directed cycle containing u in D′−⎷p−1

i=1 V
′

i . Let C be
such a directed cycle. Since C is also a directed cycle in D −⎷p−1

i=1 Vi, we know that C intersects
Xu. We also know that V (C) ∩ S = ∅ because C is a directed cycle in D′. Hence, C intersects
Xu \ S = X ′

u as desired.

By the remark above, we can apply the induction on Lemma 7.3.6 withD′, (V ′
1 , . . . , V

′
t ), h′, s′,

η′ and a playing the roles ofD, (V1, . . . , Vt), h, s, α and c respectively. Hence, by induction, there
exists a redicolouring sequence (which does not use colour c) in D′ from η′ to some dicolouring
ζ ′ such that:

• for every v ∈ ⎷q−1
i=1 V

′
i , ζ

′(v) /∈ (¶a♢ ∪ C ),

• no vertex of
⎷t

i=q V
′

i is recoloured, and

• each vertex of
⎷q−1

i=1 V
′

i is recoloured at most f(s− 1, q − 1) times.
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Since this redicolouring sequence does not use colour c, and because η(S) = ¶c♢, it extends into
a redicolouring sequence in D between η and ζ, where ζ(u) = ζ ′(u) when u ∈ (Uq−1 \ S),
ζ(u) = c when u ∈ S and ζ(u) = ϕ(u) otherwise. Since ζ(v) ̸= a for every vertex v ∈ Uq−1 and
by choice of Wa, in ζ we can recolour every vertex in Wa to colour a. Note that the vertices in
S ∩ Uq−1 have been recoloured exactly once (to colour c), which is less than f(s− 1, q − 1).

We will now remove the colour c we introduced in Uq−1. We use the same process as before,
swapping the roles of c and a. So, whenever it is possible, starting with u1 and moving forwards
towards ur, we recolour each vertex of Uq−1 with colour a. Let ξ be the obtained dicolouring
of D. We define R = ¶v ∈ V (D) | ξ(v) = a♢, ˜︁D = D − R, and ˜︁Vi = Vi \ R for every
i ∈ [t]. Finally, let ˜︁ξ be the induced dicolouring ξ on ˜︁D. By induction, there exists a redicolouring
sequence (which does not use colour a) in ˜︁D from ˜︁ξ to some dicolouring ˜︁ψ such that:

• for every v ∈ ⎷q−1
i=1

˜︁Vi, ˜︁ψ(v) ̸= c,

• no vertex of
⎷t

i=q
˜︁Vi is recoloured, and

• each vertex of
⎷q−1

i=1
˜︁Vi is recoloured at most f(s− 1, q − 1) times.

This gives, in D, a redicolouring sequence from ξ to some dicolouring ψ which does not use
colour c on Uq−1.

Concatenating the redicolouring sequences we built, we conclude the existence of the desired
redicolouring sequence from ϕ to ψ in which every vertex in Uq−1 is recoloured at most 2f(s −
1, q− 1) times, vertices in Wa are recoloured exactly once to colour a, and the other vertices of D
are not recoloured. ♢

Now we may apply Claim 7.3.7 on α (playing the role of ϕ) to obtain a redicolouring sequence
from α to a dicolouring α′ (corresponding to ψ) in which Wa has been recoloured to a (for some
fixed a ∈ [s+2], a ̸= c), and colours ¶c♢∪C do not appear in α′(Uq−1). Note that, in Claim 7.3.7,
the obtained dicolouring ψ satisfies the assumptions on ϕ. Thus, we may repeat this argument on
α′ to recolour Wa′ for some a′ ∈ [s+ 2], a′ /∈ ¶c, a♢.

Repeating this process for each colour a ∈ [s+ 2] different from c, we obtain a redicolouring
sequence between α and some dicolouring in which colours ¶c♢ ∪ C do not appear in Uq−1 ∪ Vq

and such that each vertex of Uq−1 is recoloured at most (s+ 1) · 2f(s− 1, q− 1) times and every
vertex in Vq is recoloured at most once. Since f(s− 1, q) ≥ 1 and f(x, y) is non-decreasing in y,
a fortiori every vertex of

⎷q
i=1 Vi is recoloured at most 2(s+ 1)f(s− 1, q) times.

We have shown above that, if colours ¶c♢ ∪ C are not appearing in
⎷q−1

i=1 Vi, then in at most
2(s + 1)f(s − 1, q) recolourings per vertex, we can also remove them from Vq (and we do not
recolour vertices in

⎷t
i=q+1 Vi). Thus we can repeat this argument at most h times to find a

redicolouring sequence between α and a dicolouring β in which colours ¶c♢ ∪C do not appear in⎷h
i=1 Vi. In this redicolouring sequence, by (7.1), the number of recolourings per vertex of

⎷h
i=1 Vi

is at most
h∑︂

q=1

(︁
2(s+ 1)f(s− 1, q)

[︄
≤ f(s, h),

which concludes the proof.
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Lemma 7.3.8. Let D = (V,A) be a digraph on n vertices and let (V1, . . . , Vt) be a partition of

V such that for every p ∈ [t] and u ∈ Vp, there exists Xu ⊆ ∪t
i=p+1Vi such that |Xu| ≤ s and Xu

intersects every directed cycle containing u in D−⎷p−1
i=1 Vi. Then, for any k ≥ s+ 2, Dk(D) has

diameter at most g(s, t) · n.

Proof. We will show that, for any two k-dicolourings α, β of D, there exists a redicolouring
sequence between them where each vertex is recoloured at most g(s, t) times, showing the result.
We proceed by induction on s. When s = 0, D is acyclic, so we can directly recolour every vertex
v from α(v) to β(v). Since g(0, t) = 1, we get the result.

Assume now that s > 0. By Lemma 7.3.6, there is a redicolouring sequence from α to an
(s + 1)-dicolouring ˜︁α in which each vertex of D is recoloured at most f(s, t) times (by taking
h = t and c = s + 2). Symmetrically, we have a redicolouring sequence from β to an (s + 1)-
dicolouring ˜︁β in which each vertex of D is recoloured at most f(s, t) times. We will now find a
redicolouring sequence between ˜︁α and ˜︁β.

Let v1, . . . , vn be an ordering of V such that the vertices in Vp appear before the vertices in
Vp′ for every 1 ≤ p′ < p ≤ t. In both ˜︁α and ˜︁β, starting with v1 and moving forwards towards
vn, we recolour, whenever it is possible, each vertex of V with colour s + 2. This is done in at
most two recolourings per vertex (one in both dicolourings). Let ˆ︁α and ˆ︁β be the two obtained
dicolourings. Observe that the vertices coloured s+ 2 in ˆ︁α are exactly the vertices coloured s+ 2
in ˆ︁β. We define S = ¶v ∈ V | ˆ︁α(v) = s + 2♢ and H = D − S. Let ˆ︁α|H and ˆ︁β|H be the

dicolourings induced by ˆ︁α and ˆ︁β on H , respectively. For each p ∈ [t], let V ′
p = Vp \ S. Observe

that (V ′
1 , . . . , V

′
t ) is a partition of V (H) such that for every p ∈ [t] and u ∈ V ′

p , X ′
u = Xu \ S has

size at most s− 1 and intersects every directed cycle containing u in D−⎷p−1
i=1 Vi (the arguments

are the same as in the proof of Lemma 7.3.6). Thus, by induction, there exists inH a redicolouring
sequence between ˆ︁α|H and ˆ︁β|H , using only colours in [s+ 1] in which every vertex is recoloured
at most g(s − 1, t) times. Since the vertices in S are coloured s + 2, this redicolouring sequence
extends to D and gives a redicolouring sequence between ˆ︁α and ˆ︁β. Thus, we have obtained a
redicolouring sequence between α and β in which the number of recolourings per vertex is at
most 2f(s, t) + 2 + g(s− 1, t) ≤ g(s, t) by Inequality (7.2).

We will now prove Theorems 7.3.2 and 7.3.3 with Lemma 7.3.8.

Theorem 7.3.2. Let D be a digraph and k ≥ δ∗
c (D) + 2 = d+ 2, then

diam(Dk(D)) = Od(nd+1).

Proof. Take any c-degeneracy ordering v1, . . . , vn of D, and set Vi = ¶vi♢ for every i ∈ [n]. Set
s = d and t = n, and the result follows directly from Lemma 7.3.8 and Inequality (7.3).

Theorem 7.3.3. Let d ≥ 1 and k ≥ d + 1 be two integers, and let ε > 0. If D is a digraph

satisfying Madc(D) ≤ d− ε, then

diam(Dk(D)) = Od,ε(n(logn)d−1).

Proof. Our goal is to find a partition (V1, . . . , Vt(n)) of V (D) such that t(n) = Od,ε(logn).

Moreover, we need for every p ∈ [t(n)] and every u ∈ Vp, that there exists Xu ⊆
⎷t(n)

i=p+1 Vi,

|Xu| ≤ d− 1, that intersects every directed cycle containing u in D −⎷p−1
i=1 Vi. If we find such a
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partition, then by Lemma 7.3.8, applied for s = d− 1 and t = t(n), we get that diam(Dk(D)) ≤
g(d − 1, t(n)) · n, implying that diam(Dk(D)) = Od,ε(n(logn)d−1) since t(n) = Od,ε(logn)
and by Inequality 7.3.

Let us guarantee the existence of such a partition. Let H be any subdigraph of D on nH

vertices. For every vertex u ∈ V (H), we let Xu ⊆ V (H) \ ¶u♢ be a set of dH
c (u) vertices

intersecting every directed cycle containing u in H (where dH
c (u) denotes the cycle-degree of u

in H). The existence of Xu is guaranteed by definition of the cycle-degree.
Then let J = (V (H), F ) be an auxiliary digraph, built from H , where F = ¶uv | v ∈ Xu♢.

Let S ⊆ V (H) be the set of all vertices v with d+
J (v) ≤ d−1 (where d+

J (v) denotes the out-degree
of v in J). Then |S| ≥ ε

d
nH , for otherwise we have the following contradiction:

Madc(D) ≥ Madc(H) ≥ 1

nH

∑︂

v∈V (H)

dH
c (v) =

1

nH

∑︂

v∈V (H)

d+
J (v)

≥ 1

nH

∑︂

v∈V (H)\S

d+
J (v)

≥ 1

nH
(nH − |S|)d >

(︃
1− ε

d

)︃
d = d− ε,

where in the last inequality we have used that |S| < εnH

d
. Now let us prove that J⟨S⟩ has an

independent set I of size at least |S|
2d−1 . By choice of S, every subdigraph J ′ of J⟨S⟩ satisfies

∆+(J ′) ≤ d− 1. Hence, for every such J ′, we have
∑︂

v∈V (J ′)

(d+
J ′(v) + d−

J ′(v)) = 2m(J ′) ≤ 2(d− 1)n(J ′).

In particular, this implies that UG(J⟨S⟩) is (2d − 2)-degenerate, and χ(UG(J⟨S⟩)) ≤ 2d − 1.
Take any proper (2d− 1)-colouring of UG(J⟨S⟩), its largest colour class is the desired I .

Hence, we have shown that H admits a set of vertices I ⊆ V (H), of size at least ε
(2d−1)dnH ,

such that for every vertex u ∈ I there exists Xu ⊆ (V (H)\ I), |Xu| ≤ d−1, that intersects every
directed cycle of H containing u.

Since the remark above holds for every subdigraph H of D, we can greedily construct the
desired partition (V1, . . . , Vt(n)) by picking successively such a set I in the digraph induced by the
non-picked vertices. By construction, we get that t satisfies the following recurrence:

t(i) ≤ t
(︃
i− εi

(2d− 1)d

)︃
+ 1.

We thus have t(n) ≤ logb(n) where b = 1
1− ε

(2d−1)d

, implying that

t(n) ≤ 1

− log(1− ε
(2d−1)d)

· log(n) = Od,ε(log(n)),

which concludes the proof.

7.3.2 Bounds on the diameter of Dk(D) when k ≥ 3
2
(δ∗

c (D) + 1)

This section is devoted to the proof of the following theorem, which generalises Theorem 7.1.3(i).
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Theorem 7.3.9. Let D be a digraph on n vertices and k ≥ 3
2(δ∗

c (D) + 1) be an integer, then

diam(Dk(D)) = O(n2).

Before we prove Theorem 7.3.9, we need a preliminary result. Let L be a list assignment of a
graph G. We denote by C(G,L) the graph whose vertices are the L-colourings of G and in which
two colourings are adjacent if they differ by the colour of exactly one vertex. An L-recolouring

sequence is a walk in C(G,L). We say that L is a-feasible if, for some ordering v1, . . . , vn of V ,
|L(vi)| ≥ |N(v) ∩ ¶vi+1, . . . , vn♢| + 1 + a for every i ∈ [n]. Bousquet and Heinrich proved the
following [42, Theorem 6].

Theorem 7.3.10 (Bousquet and Heinrich [42]). Let G be a graph and a ∈ N. Let L be an a-

feasible list assignment and k be the total number of colours. Then C(G,L) has diameter at most:

(i) kn if k ≤ 2a,

(ii) Cn2 if k ≤ 3a (where C a constant independent of k, a).

For a graph G and a list assignment L of G, we say that an L-colouring α avoids a set of

colours S if for every vertex v ∈ V (G), α(v) does not belong to S. We need the following
consequence of Theorem 7.3.10.

Lemma 7.3.11. Let G = (V,E) be an undirected graph on n vertices, L be a k-list assignment

of G that is
⌈︂

k
3

⌉︂
-feasible and α an L-colouring of G that avoids a set S of

⌈︂
k
3

⌉︂
colours. Then for

any set of
⌈︂

k
3

⌉︂
colours S′, there is an L-colouring β of G that avoids S′ and such that there is an

L-recolouring sequence from α to β of length at most 4k+12
3 n.

Let us mention that Lemma 7.3.11 was indirectly proved in the proof of [42, Lemma 8]. We
give it for the sake of completeness.

Proof. Let S′ be any set of
⌈︂

k
3

⌉︂
colours.

We start with G coloured by α. Let (v1, . . . , vn) be an ordering of V (G) such that for every
i ∈ [n], we have

|L(vi)| ≥ |N(v) ∩ ¶vi+1, . . . , vn♢|+ 1 +

⎫
k

3

⌉︃
,

the existence of which is guaranteed by L being
⌈︂

k
3

⌉︂
-feasible. We consider each vertex from vn

to v1. For each vertex, if it is possible, we recolour it with a colour of S. We denote by η the
obtained L-colouring. This is done in less than n steps. Observe that, for each colour c ∈ S and
each vertex vi of G, at least one of the following holds:

• η(vi) ∈ S,

• vi has a neighbour in ¶vi+1, . . . , vn♢ coloured c, or

• c /∈ L(vi).



164 CHAPTER 7 — Redicolouring digraphs

Let H be the subgraph of G induced by the vertices whose colour in η is not in S. We define
LH by LH(v) = L(v) \ S for every v ∈ V (H). Using the previous observation, we get that
for every vertex vi of H , vi has at least |L(vi) ∩ S| neighbours in ¶vi+1, . . . , vn♢ \ V (H). This

implies that LH is a
⌈︂

k
3

⌉︂
-feasible list assignment of H with a total number of colours bounded

by k − |S| ≤ 2k
3 . By Theorem 7.3.10 (i), the diameter of C(H,LH) is at most 2k

3 n. Note that
every LH -recolouring sequence in H starting from ηH (the colouring η induced on H) gives an
L-recolouring of G starting from η.

Consider the following preference ordering on the colours: an arbitrary ordering of [k] \ (S ∪
S′), followed by an ordering of S′ \ S, and finally the colours from S. Let γ be the L-colouring
of G obtained by colouring G greedily from vn to v1 with this preference ordering. Since L is⌈︂

k
3

⌉︂
-feasible, and |S| =

⌈︂
k
3

⌉︂
, no vertex is coloured with a colour in S in γ. This implies that

γH , the colouring γ induced on H , is an LH -colouring of H . Thus, there is an LH -recolouring
sequence from ηH to γH of length at most 2k

3 n steps. This gives a recolouring sequence in G. We
can then recolour the vertices of G−H to their target colour in γ in at most n steps. This shows
that, inG, there is an L-recolouring sequence from α to γ of length at most n+ 2k

3 n+n = 2k+6
3 n.

Now observe that, for each colour c ∈ R = [k] \ (S ∪S′) and each vertex vi of G, at least one
of the following must hold:

• γ(vi) ∈ R,

• vi has a neighbour in ¶vi+1, . . . , vn♢ coloured c, or

• c /∈ L(vi)

Let Γ be the subgraph of G induced by all vertices coloured with a colour in S′ by γ. Note that
Γ is also the subgraph induced by all vertices coloured with a colour in (S ∪ S′) by γ because no
vertex is coloured in S by γ. Let LΓ be the list assignment defined by LΓ(v) = L(v)∩(S∪S′) for

all v ∈ V (Γ). By the previous observation, LΓ is
⌈︂

k
3

⌉︂
-feasible, and the total number of colours is

|S ∪S′| ≤ 2
⌈︂

k
3

⌉︂
. Thus, by Theorem 7.3.10 (i), C(Γ, LΓ) has diameter at most 2

⌈︂
k
3

⌉︂
n. Let βΓ be

an LΓ-colouring of Γ that avoids the colours of S′ (such a colouring exists because |S′| =
⌈︂

k
3

⌉︂
and

LΓ is
⌈︂

k
3

⌉︂
-feasible) and γΓ the colouring γ induced on Γ. There is an LΓ-recolouring sequence of

length at most 2
⌈︂

k
3

⌉︂
n from γΓ to βΓ.

This extends to an L-recolouring sequence in G from γ to β where β does not use any colour
of S′. The total number of steps to reach β from α is then at most 2k+6

3 n + 2
⌈︂

k
3

⌉︂
n which is

bounded by 4k+12
3 n. This shows the result.

We are now ready to prove Theorem 7.3.9.

Theorem 7.3.9. Let D be a digraph on n vertices and k ≥ 3
2(δ∗

c (D) + 1) be an integer, then

diam(Dk(D)) = O(n2).

Proof. Let D = (V,A) be a digraph on n vertices and k ≥ 3
2(δ∗

c (D) + 1). Let (v1, . . . , vn)
be a c-degeneracy ordering of D, that is, an ordering such that for each i ∈ [n], there exists
Xi ⊆ ¶vi+1, . . . , vn♢, |Xi| ≤ δ∗

c (D), such that every directed cycle of D containing vi must
intersect ¶v1, . . . , vi−1♢ ∪Xi.
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Let G = (V,E) be the undirected graph where E = ¶vivj | vj ∈ Xi, i ∈ [n]♢. We first prove
that each proper colouring of G is a dicolouring of D. Assume that this is not the case, and there
exists a proper colouring α of G such that D, coloured with α, contains a monochromatic directed
cycle C. Let vi be the least vertex of C in the ordering (v1, . . . , vn). Then C must contain a vertex
vj in Xi. This is a contradiction, since α is a proper colouring of G and vivj ∈ E.

By construction, G has degeneracy at most δ∗
c (D). Using Theorem 7.1.3(i), we get that Ck(G)

has diameter at most C0n
2 for some constant C0.

Let α be any k-dicolouring ofD. We will now show that there exists a dicolouring α′ ofD that
is also a proper colouring of G, and such that there exists a redicolouring sequence between α and
α′ of length at most C1n

2 for some constant C1. Set δ∗ = δ∗
c (D) ≥ δ∗(G), Yi = ¶vi+1, . . . , vn♢,

and Hi = G− Yi for all i ∈ [n].
Let Li be the k-list assignment of Hi defined by

Li(vj) = [k] \ ¶α(v) | v ∈ Xj ∩ Yi♢ for all j ∈ [i].

Since k, the total number of colours, is at least 3
2(δ∗ + 1), for every j ∈ [i] we have:

|Li(vj)| ≥ k − |Xj ∩ Yi|

≥ k

3
+

2

3

3

2
(δ∗ + 1)− |Xj ∩ Yi|

≥ |Xj ∩ ¶vj+1, . . . , vi♢|+ 1 +
k

3
.

Hence, since |Li(vj)| is an integer, Li is a
⌈︂

k
3

⌉︂
-feasible k-list assignment of Hi.

Remark 7.3.1 – Let γ be a dicolouring of D such that for some i, γ agrees with α on
¶vi+1, . . . , vn♢ and γ|Hi

(the restriction of γ to Hi) is an Li-colouring of Hi. Then any Li-
recolouring sequence starting from γ|Hi

on Hi is a redicolouring sequence in D. Indeed, assume
this is not the case and at one step, we get to an Li-colouring ζ of Hi but ζD contains a monochro-
matic cycle C, where ζD(v) = ζ(v) when v belongs to Hi and ζD(v) = γ(v) otherwise. Let vj be
the vertex of C such that j is minimum in the c-degeneracy ordering of D. Then C must intersect
Xj in some vertex vq. Thus either q ≤ i and then vqvj is a monochromatic edge inHi or q ≥ i+1
but then ζ(vq) = γ(vq) = α(vq) does not belong to Li(vj). In both cases, we get a contradiction.

Claim 7.3.12. Let γi be a k-dicolouring of D, agreeing with α on Yi, which induces an Li-

colouring of Hi avoiding at least
⌈︂

k
3

⌉︂
colours in Hi. Then there is a redicolouring sequence of

length at most 8k+24
3 n+

⌈︂
k
3

⌉︂
from γi to a dicolouring γ

i+⌈ k
3⌉ which induces an L

i+⌈ k
3⌉-colouring

of H
i+⌈ k

3⌉ avoiding at least
⌈︂

k
3

⌉︂
colours in H

i+⌈ k
3⌉. Moreover, γ

i+⌈ k
3⌉ agrees with α on Y

i+⌈ k
3⌉.

Proof of claim. Figure 7.5 illustrates the different steps of the proof of the claim. The main steps
are first to remove the colours of a set S′ in Hi which then allows us to remove the colours of a
set S′′ for vertices vi+1 to v

i+⌈ k
3⌉ and finally reach a colouring where no colour of S′′ appears in

H
i+⌈ k

3⌉ (see the definitions of S′ and S′′ below).

Let S be a set of colours of size exactly
⌈︂

k
3

⌉︂
avoided by γi on Hi. For each vertex vj in

¶vi+1, . . . , vi+⌈ k
3⌉♢, we choose a colour cj so that each of the following holds:
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γi :
Hi

v1 vi vi+1

· · ·
vj

· · ·
v

i+⌈ k
3⌉ vn

̸= cj

Xj

γ′
i :

v1 vi vi+1

· · ·
vj

· · ·
v

i+⌈ k
3⌉

· · ·
vn

ηi :
v1 vi vi+1

· · ·
vj

· · ·
v

i+⌈ k
3⌉

· · ·
vn

γ
i+⌈ k

3⌉ :
v1 vi vi+1

· · ·
vj

· · ·
v

i+⌈ k
3⌉

· · ·
vn

avoids S avoids S′ avoids S′′

4k+12
3 n

⌈︂
k
3

⌉︂

4k+12
3 n

Figure 7.5: The redicolouring sequence between γi and γ
i+⌈ k

3⌉.

• cj belongs to Lj(vj), and

• for each ℓ ∈ ¶i+ 1, . . . , j − 1♢, cℓ is different from cj .

Note that this is possible because Lj is
⌈︂

k
3

⌉︂
-feasible. Now let S′ be the set ¶ci+1, . . . , ci+⌈ k

3
⌉♢.

Observe that |S′| =
⌈︂

k
3

⌉︂
. By Lemma 7.3.11, there is, in Hi, an Li-recolouring sequence of

length at most 4k+12
3 n from γi to some γ′

i that avoids S′. This recolouring sequence extends to a
redicolouring sequence in D by Remark 7.3.1. In the obtained dicolouring, since γ′

i avoids S′ on

Hi, we can recolour successively vj with cj for all i + 1 ≤ j ≤ i +
⌈︂

k
3

⌉︂
(starting from vi+1 and

moving forward to v
i+⌈ k

3⌉). This does not create any monochromatic directed cycle by choice of

cj . Let ηi be the resulting dicolouring of D. Now, we define a list assignment ˜︁Li of Hi as follows:

˜︁Li(vj) = [k] \ ¶ηi(v) | v ∈ N(vj) ∩ ¶vi+1, . . . , vn♢♢ for all j ∈ [i].

Using the same arguments as we did for Li, we get that ˜︁Li is
⌈︂

k
3

⌉︂
-feasible for Hi. Note that

ηi is an ˜︁Li-colouring of Hi that avoids S′. Let S′′ be any set of
⌈︂

k
3

⌉︂
colours disjoint from S′. By

Lemma 7.3.11, there is, in Hi, an ˜︁Li-recolouring sequence of length at most 4k+12
3 n from ηi to

some η′
i that avoids S′′. This recolouring sequence extends directly to a redicolouring sequence

in D. Since S′ is disjoint from S′′, the obtained dicolouring is an L
i+⌈ k

3⌉-colouring of H
i+⌈ k

3⌉
that avoids at least

⌈︂
k
3

⌉︂
colours in H

i+⌈ k
3⌉. Hence, we get a redicolouring sequence from γi to the

desired γ
i+⌈ k

3⌉, in at most 8k+24
3 n+

⌈︂
k
3

⌉︂
steps. ♢
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Note that γ⌈ k
3⌉ (a dicolouring satisfying the assumptions of Claim 7.3.12 for i =

⌈︂
k
3

⌉︂
) can

be reached from α in less than n steps: for all j ∈ [
⌈︂

k
3

⌉︂
], choose a colour cj so that each of the

following holds:

• cj belongs to Lj(vj), and

• for each ℓ ∈ [j − 1], cℓ is different from cj .

Now we can recolour successively v1, . . . , v⌈ k
3⌉ (in this order) to their corresponding colour in

¶c1, . . . , c⌈ k
3⌉♢. Then applying Claim 7.3.12 iteratively at most

⌊︃
n

⌈ k
3⌉
⌋︃
≤ 3n

k
times, we get that

there is a redicolouring sequence of length at most n+ 3n
k

⎞
8k+24

3 n+ k
3

)︂
from α to a dicolouring

α′ of D that is also a proper colouring of G. Note that there exists a constant C1, independent of
k, such that n+ 3n

k

⎞
8k+24

3 n+ k
3

)︂
≤ C1n

2.

Let α and β be two k-dicolourings of D. As proved above, there is a redicolouring sequence
of length at most C1n

2 from α (resp. β) to a dicolouring α′ (resp. β′) of D that is also a proper
colouring of G. Since Ck(G) has diameter at most C0n

2, there is a recolouring sequence of G of
length at mostC0n

2 from α′ to β′, which is also a redicolouring sequence ofD (since every proper
colouring of G is a dicolouring of D). The union of those three sequences yields a redicolouring
sequence from α to β of length at most (2C1 + C0)n2.

7.3.3 Bounds on the diameter of Dk(D) when k ≥ 2δ∗
c (D) + 2

This section is devoted to the proof of the following theorem which generalises Theorem 7.1.4.

Theorem 7.3.13. Let D be a digraph on n vertices and k ≥ 2(δ∗
c (D) + 1) be an integer, then

diam(Dk(D)) ≤ (δ∗
c (D) + 1)n.

Proof. Let α and β be two k-dicolourings of D. Let us show by induction on the number of
vertices that there exists a redicolouring sequence from α to β where every vertex is recoloured at
most δ∗

c (D) + 1 times.
If n = 1 the result is obviously true. Let D be a digraph on at least two vertices, let u be a

vertex such that dc(u) ≤ δ∗
c (D) and let D′ = D − u. We denote by α′ and β′ the dicolourings

of D′ induced, respectively, by α and β. By induction and since δ∗
c (D′) ≤ δ∗

c (D), there exists
a redicolouring sequence from α′ to β′ such that each vertex is recoloured at most δ∗

c (D) + 1
times. Now we consider the same recolouring steps to recolour D, starting from α. If for some
step i, it is not possible to recolour vi to ci, this must be because u is currently coloured ci and
recolouring vi to ci would create a monochromatic directed cycle. By definition of cycle-degree,
there exists a transversal X of the directed cycles containing u, with |X| ≤ δ∗

c (D) and u /∈ X .
Since k ≥ 2δ∗

c (D) + 2, there are at least δ∗
c (D) + 2 colours that do not appear in X . We choose

c among these colours so that c does not appear in the next δ∗
c (D) + 1 recolourings of X , and we

recolour u with c.
Since |X| ≤ δ∗

c (D) and since each vertex in D′ is recoloured at most δ∗
c (D) + 1 times, the

total number of recolourings in X is at most δ∗
c (D)(δ∗

c (D) + 1) in the redicolouring sequence
obtained by induction. Hence, in this new redicolouring sequence, u is recoloured at most δ∗

c (D)
times. We finally have to set u to its colour in β. Doing so u is recoloured at most δ∗

c (D) + 1
times. This concludes the proof.
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7.4 Digraphs having bounded maximum degree

This section is devoted to the study of digraphs with bounded maximum degree. We first show
that Theorem 7.1.6 generalises to digraphs via the digrundy number.

The digrundy number of a digraph D = (V,A), introduced in [15], is the natural analogue
of the grundy number for digraphs. If ϕ is a dicolouring of D, then ϕ is a greedy dicolouring if
there is an ordering v1, . . . , vn of V such that, for each vertex vi and each colour c smaller than
ϕ(vi), the set of vertices (¶v1, . . . , vi−1♢∩ϕ−1(c))∪¶vi♢ contains a directed cycle. The digrundy
number ofD, denoted by χ⃗g(D), corresponds to the maximum number of colours used in a greedy
dicolouring of D.

Theorem 7.4.1. For any digraph D, if k ≥ χ⃗g(D) + 1, then diam(Dk(D)) ≤ 4 · χ⃗(D) · n.

Analogously to the undirected case, we always have χ⃗(D) ≤ χ⃗g(D) ≤ ∆c(D) + 1, where
∆c(D) = max¶dc(v) | v ∈ V (D)♢. Thus, the following is a direct consequence of Theo-
rem 7.4.1. In particular, it shows that Conjecture 7.1.9 holds when considering the maximum
cycle-degree instead of the c-degeneracy.

Corollary 7.4.2. For any digraph D, if k ≥ ∆c(D) + 2, then diam(Dk(D)) ≤ 4 · χ⃗(D) · n.

Proof of Theorem 7.4.1. Let α be any k-dicolouring of D and β be any χ⃗(D)-dicolouring of D.
We will show by induction on χ⃗(D) that there exists a redicolouring sequence of length at most
2 · χ⃗(D) · n between α and β. The claimed result will then follow. If χ⃗(D) = 1, the result is clear
since D is acyclic.

Starting from α, whenever a vertex can be recoloured to colour k, we recolour it. Then we try
to recolour the remaining vertices with colour k − 1, and we repeat this process for every colour
k − 1, . . . , 2. At the end, the obtained dicolouring γ is greedy (with colours ordered from k to
1). Actually, γ is exactly the greedy dicolouring obtained from any ordering v1, . . . , vn of V (D)
where i < j whenever γ(vi) > γ(vj).

Since γ is a greedy dicolouring, and because k ≥ χ⃗g(D) + 1, colour 1 is not used in γ. This
allows us to recolour every vertex of V1 = ¶v ∈ V (D) | β(v) = 1♢ to colour 1 (V1 ̸= ∅ since β
uses colours [χ⃗(D)]). If η is the obtained dicolouring, then η and β agree on colour 1. Note also
that, starting from α, we reached η by recolouring each vertex at most twice. Thus, the distance
between α and η in Dk(D) is at most 2n.

Consider H = D − V1. Since β is an optimal dicolouring of D, χ⃗(H) = χ⃗(D)− 1. Thus, by
induction, there exists a redicolouring sequence between η|H and β|H (that is, the restrictions of η
and β, respectively, toH) of length at most 2(χ⃗(D)−1)n, that does not use colour 1. This directly
extends to a redicolouring sequence between η and β in D, which together with the redicolouring
sequence between α and η gives a redicolouring sequence between α and β of length at most
2 · χ⃗(D) · n.

We now show that Theorem 7.1.7 extends to digraphs as follows.

Theorem 7.4.3. Let D = (V,A) be a connected digraph with ∆max(D) = ∆ ≥ 3, k ≥ ∆ + 1,

and α, β two k-dicolourings of D. Then at least one of the following holds:

• α is k-frozen, or

• β is k-frozen, or
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• there is a redicolouring sequence of length at most c∆|V |2 between α and β, where c∆ =
O(∆2) is a constant depending only on ∆.

Furthermore, we prove that a digraphD is k-freezable only ifD is bidirected and its underlying
graph is k-freezable. Thus, an obstruction in Theorem 7.4.3 is exactly the bidirected graph of an
obstruction in Theorem 7.1.7.

Lemma 7.4.4. Let D = (V,A) be a digraph and L be a list assignment of D such that, for every

vertex v ∈ V , |L(v)| ≥ dmax(v) + 1. Let α be an L-dicolouring of D. If u ∈ V is blocked in α,

then for each colour c ∈ L(u) different from α(u), u has exactly one out-neighbour u+
c and one

in-neighbour u−
c coloured c. Moreover, if u+

c ̸= u−
c , there must be a monochromatic directed path

from u+
c to u−

c . In particular, u is not incident to a monochromatic arc.

Proof. Since u is blocked to its colour in α, for each colour c ∈ L(u) different from α(u),
recolouring u to c must create a monochromatic directed cycle C. Let v be the out-neighbour of u
in C and w be the in-neighbour of u in C. Then α(v) = α(w) = c, and there is a monochromatic
directed path (in C) from v to w.

This implies that, for each colour c ∈ L(u) different from α(u), u has at least one out-
neighbour and at least one in-neighbour coloured c. Since |L(u)| ≥ dmax(u) + 1, then |L(u)| =
dmax(u) + 1, and u must have exactly one out-neighbour and exactly one in-neighbour coloured
c. In particular, u cannot be incident to a monochromatic arc.

Lemma 7.4.5. Let D = (V,A) be a digraph such that for every vertex v ∈ V , N+(v) \N−(v) ̸=
∅ and N−(v) \ N+(v) ̸= ∅. Let L be a list assignment of D, such that for every vertex v ∈ V ,

|L(v)| ≥ dmax(v) + 1. Then for any pair of L-dicolourings α, β of D, there is an L-redicolouring

sequence of length at most (|V |+ 3)|V |.

Proof. Let x = diff(α, β) = |¶v ∈ V | α(v) ̸= β(v)♢|. We will show by induction on x that
there is an L-redicolouring sequence from α to β of length at most (|V |+ 3)x. The result clearly
holds for x = 0 (i.e. α = β). Let v ∈ V be such that α(v) ̸= β(v). We denote α(v) by c and β(v)
by c′. If v can be recoloured to c′, then we recolour it and we get the result by induction.

Assume now that v cannot be recoloured to c′. Whenever v is contained in a directed cycle
C of length at least 3, such that every vertex of C but v is coloured c′, we do the following: we
choose a vertex w of C different from v, such that β(w) ̸= c′. We know that such a vertex w
exists, for otherwise C would be a monochromatic directed cycle in β. Now, since w is incident
to a monochromatic arc in C, and because |L(w)| ≥ dmax(w) + 1, by Lemma 7.4.4, we know that
w can be recoloured to some colour different from c′. We thus recolour w to this colour. Observe
that it does not increase x.

After repeating this process, maybe v cannot be recoloured to c′ because it is adjacent by a
digon to some vertices coloured c′. We know that these vertices are not coloured c′ in β. Thus,
whenever such a vertex can be recoloured, we recolour it. After this, let η be the obtained di-
colouring. If v can be recoloured to c′ in η, we are done. Otherwise, there must be some vertices,
blocked to colour c′ in η, adjacent to v by a digon. Let S be the set of such vertices. Observe that,
by Lemma 7.4.4, for every vertex s ∈ S, c belongs to L(s), for otherwise s would not be blocked
in η. We distinguish two cases, depending on the size of S.

• If |S| ≥ 2, then by Lemma 7.4.4, v can be recoloured to a colour c′′, different from both
c and c′ because v is adjacent by a digon with two neighbours coloured c′. Hence, we can



170 CHAPTER 7 — Redicolouring digraphs

w

v

w+w−

Figure 7.6: The vertices v, w,w+ and w−.

successively recolour v to c′′, and every vertex of S to c . This does not create any monochro-
matic directed cycle because for each s ∈ S, since s is blocked in η, by Lemma 7.4.4 v must
be the only neighbour of s coloured c in η.

We can finally recolour v to c′.

• If |S| = 1, let w be the only vertex in S. If v can be recoloured to any colour (different from
c′ since w is coloured c′), then we first recolour v, allowing us to recolour w to c because v
is the single neighbour of w coloured c in η by Lemma 7.4.4. We finally can recolour v to
c′.

Assume then that v is blocked to colour c in η. Let us fixw+ ∈ N+(w)\N−(w). Sincew is
blocked to c′ in η, by Lemma 7.4.4, there exists exactly one vertex w− ∈ N−(w) \N+(w)
such that η(w+) = η(w−) = c′′ and there must be a monochromatic directed path from w+

to w−.

Since v is blocked to colour c in η, either vw− /∈ A or w+v /∈ A, otherwise, by
Lemma 7.4.4, there must be a monochromatic directed path from w− to w+, which is
blocking v to its colour. But since there is also a monochromatic directed path from w+

to w− (blocking w) there would be a monochromatic directed cycle, a contradiction (see
Figure 7.6). We distinguish the two possible cases:

− if vw− /∈ A, then we start by recolouring w− with a colour that does not appear in
its in-neighbourhood. This is possible because w− has a monochromatic entering arc,
and because |L(w−)| ≥ dmax(w−) + 1. We first recolour w with c′′, since c′′ does
not appear in its in-neighbourhood anymore (w− was the only one by Lemma 7.4.4).
Next we recolour v with c′: this is possible because v does not have any out-neighbour
coloured c′ since w was the only one by Lemma 7.4.4 and w− is not an out-neighbour
of v. We can finally recolour w to colour c and w− to c′′. After all these operations,
we exchanged the colours of v and w.

− if w+v /∈ A, then we use a symmetric argument.

Observe that we found an L-redicolouring sequence from α to a α′, in at most |V |+ 3 steps, such
that diff(α′, β) < diff(α, β). Thus, by induction, we get an L-redicolouring sequence of length at
most (|V |+ 3)x between α and β.

We are now able to prove Theorem 7.4.3. The idea of the proof is to divide the digraph D into
two parts. One of them is bidirected and we will use Theorem 7.1.7 as a black box on it. In the
other part, we know that each vertex is incident to at least two simple arcs, one leaving and one
entering, and we will use Lemma 7.4.5 on it.
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Proof of Theorem 7.4.3. LetD = (V,A) be a connected digraph with ∆max(D) = ∆, k ≥ ∆+1.
Let α and β be two k-dicolourings of D. Assume that neither α nor β is k-frozen.

We first make a simple observation. For any simple arc xy ∈ A, we may assume that N+(y) \
N−(y) ̸= ∅ andN−(x)\N+(x) ̸= ∅. If this is not the case, then every directed cycle containing
xy must contain a digon, implying that the k-dicolouring graph of D is also the k-dicolouring
graph of D \ ¶xy♢. Then we may look for a redicolouring sequence in D \ ¶xy♢.

Let X = ¶v ∈ V | N+(v) = N−(v)♢ and Y = V \ X . Observe that D⟨X⟩ is bidirected,
and thus the dicolourings of D⟨X⟩ are exactly the colourings of UG(D⟨X⟩). We first show that
α|D⟨X⟩ and β|D⟨X⟩ are not frozen k-colourings of D⟨X⟩. If Y is empty, then D⟨X⟩ = D and
α|D⟨X⟩ and β|D⟨X⟩ are not k-frozen by assumption. Otherwise, since D is connected, there exists
x ∈ X such that, in D⟨X⟩, d+(x) = d−(x) ≤ ∆ − 1, implying that x is not blocked in any
dicolouring of D⟨X⟩. Thus, by Theorem 7.1.7, there is a redicolouring sequence γ′

1, . . . , γ
′
r in

D⟨X⟩ from α|D⟨X⟩ to β|D⟨X⟩, where r ≤ c∆|X|2, and c∆ = O(∆) is a constant depending on ∆.
We will show that, for each i ∈ [r − 1], if γi is a k-dicolouring of D which agrees with γ′

i

on X , then there exist a k-dicolouring γi+1 of D that agrees with γ′
i+1 on X and a redicolouring

sequence from γi to γi+1 of length at most ∆ + 2.
Observe that α agrees with γ′

1 on X . Now assume that there is such a γi, which agrees with
γ′

i on X , and let vi ∈ X be the vertex for which γ′
i(vi) ̸= γ′

i+1(vi). We denote by c (resp. c′)
the colour of vi in γ′

i (resp. γ′
i+1). If recolouring vi to c′ in γi is valid, then we have the desired

γi+1. Otherwise, we know that vi is adjacent with a digon (since vi is only adjacent to digons) to
some vertices (at most ∆) coloured c′ in Y . Whenever such a vertex can be recoloured to a colour
different from c′, we recolour it. Let ηi be the reached k-dicolouring after these operations. If vi

can be recoloured to c′ in ηi we are done. If not, then the neighbours of vi coloured c′ in Y are
blocked to colour c′ in ηi. We denote by S the set of these neighbours. We distinguish two cases:

• If |S| ≥ 2, then by Lemma 7.4.4, vi can be recoloured to a colour c′′, different from both c
and c′, because vi has two neighbours with the same colour. Then we successively recolour
vi to c′′, and every vertex of S to c. This does not create any monochromatic directed cycle
because, by Lemma 7.4.4, for each s ∈ S, vi is the only neighbour of s coloured c in ηi. We
can finally recolour vi to c′ to reach the desired γi+1.

• If |S| = 1, let y be the only vertex in S. Since y belongs to Y and is blocked to its colour
in ηi, by Lemma 7.4.4, we know that y has an out-neighbour y+ ∈ N+(y) \N−(y) and an
in-neighbour y− ∈ N−(y) \N+(y) such that there is a monochromatic directed path from
y+ to y−. Observe that both y+ and y− are recolourable in ηi by Lemma 7.4.4 because they
are incident to a monochromatic arc.

− If vi is not adjacent to y+, then we recolour y+ to any possible colour, and we recolour
y to ηi(y

+). We can finally recolour vi to c′ to reach the desired γi+1.

− If vi is not adjacent to y−, then we recolour y− to any possible colour, and we recolour
y to ηi(y

−). We can finally recolour vi to c′ to reach the desired γi+1.

− Finally, if vi is adjacent to both y+ and y−, since ηi(y
+) = ηi(y

−), then vi can be
recoloured to a colour c′′ different from c and c′. This allows us to recolour y to c, and
we finally can recolour vi to c′ to reach the desired γi+1.
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We have shown that there is a redicolouring sequence of length at most (∆ + 2)c∆n
2 from α

to some α′ that agrees with β on X . Now we define the list assignment: for each y ∈ Y ,

L(y) = [k] \ ¶β(x) | x ∈ N(y) ∩X♢.

Observe that, for every y ∈ Y ,

|L(y)| ≥ k − |N+(y) ∩X| ≥ ∆ + 1− (∆− d+
Y (y)) ≥ d+

Y (y) + 1.

Symmetrically, we get |L(y)| ≥ d−
Y (y) + 1. This implies, in D⟨Y ⟩, |L(y)| ≥ dmax(y) + 1.

Note also that both α′
|D⟨Y ⟩ and β|D⟨Y ⟩ are L-dicolourings of D⟨Y ⟩. Note finally that, for each

y ∈ Y , N+(y) \N−(y) ̸= ∅ and N+(y) \N−(y) ̸= ∅ by choice of X and Y and by the initial
observation. By Lemma 7.4.5, there is an L-redicolouring sequence in D⟨Y ⟩ between α′

|D⟨Y ⟩ and
β|D⟨Y ⟩, with length at most (|Y |+ 3)|Y |. By choice of L, this extends directly to a redicolouring
sequence from α′ to β on D of the same length.

The concatenation of the redicolouring sequence from α to α′ and the one from α′ to β leads to
a redicolouring sequence from α to β of length at most c′

∆|V |2, where c′
∆ = O(∆2) is a constant

depending on ∆.

Remark 7.4.1 – If α is a k-frozen dicolouring of a digraph D, with k ≥ ∆max(D) + 1, then D
must be bidirected. If D is not bidirected, then we choose v a vertex incident to a simple arc. If
v cannot be recoloured in α, by Lemma 7.4.4, since v is incident to a simple arc, there exists a
colour c for which v has an out-neighbour w and an in-neighbour u both coloured c, such that
u ̸= w and there is a monochromatic directed path from w to u. But then, every vertex on this
path is incident to a monochromatic arc, and it can be recoloured by Lemma 7.4.4. Thus, α is not
k-frozen. This shows that an obstruction of Theorem 7.4.3 is exactly the bidirected graph of an
obstruction of Theorem 7.1.7.

In the reminder of this section, we restrict our focus to oriented graphs. We first show the
following result.

Theorem 7.4.6. Let G⃗ be an oriented graph of order n such that ∆min(G⃗) ≤ 1. Then D2(G⃗) is

connected and has diameter exactly n.

Then, we will prove the following as a consequence of both Theorem 7.4.6 and Corollary 3.3.6
which states that every oriented graph G⃗ satisfies χ⃗(G⃗) ≤ max(2,∆min(G⃗)).

Corollary 7.4.7. Let G⃗ be an oriented graph of order n with ∆min(G⃗) = ∆ ≥ 1, and let k ≥
∆ + 1. Then Dk(G⃗) is connected and has diameter at most 2∆n.

This is a significant improvement on Theorem 7.4.3 when restricted to oriented graphs. The
interested reader may note that Corollary 7.4.7 does not hold for digraphs in general: indeed,

←→
Pn ,

the bidirected path on n vertices, satisfies ∆min(
←→
Pn) = 2 and D3(

←→
Pn) = C3(Pn) has diameter

Ω(n2), as proved in [33].
Observe that, ifD2(G⃗) is connected, then its diameter must be at least n: for any 2-dicolouring

α, we can define its mirror α where, for every vertex v ∈ V (G⃗), α(v) ̸= α(v); then every
redicolouring sequence between α and α has length at least n. Hence, to prove Theorem 7.4.6 it
is indeed sufficient to prove that the diameter of D2(G⃗) has diameter at most n. The following
proves Theorem 7.4.6 for directed cycles of length at least 3.
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Lemma 7.4.8. Let C be a directed cycle of length at least 3. Then D2(C) is connected and has

diameter exactly n.

Proof. Let α and β be any two 2-dicolourings of C. Let x = diff(α, β) = |¶v ∈ V (C) | α(v) ̸=
β(v)♢|. By induction on x ≥ 0, let us show that there exists a path of length at most x from α to
β in D2(C). This clearly holds for x = 0 (i.e., α = β). Assume x > 0 and the result holds for
x− 1. Let v ∈ V (C) be such that α(v) ̸= β(v).

If v can be recoloured in β(v), then we recolour it and reach a new 2-dicolouring α′ such
that diff(α′, β) = x − 1 and the result holds by induction. Else if v cannot be recoloured, then
recolouring v must create a monochromatic directed cycle, which must be C. Then there must
be a vertex v′, different from v, such that β(v) = α(v′) ̸= β(v′), and v′ can be recoloured. We
recolour it and reach a new 2-dicolouring α′ such that diff(α′, β) = x − 1. The result then holds
by induction.

We are now ready to prove Theorem 7.4.6.

Proof of Theorem 7.4.6. Let α and β be any two 2-dicolourings of G⃗. We will show that there
exists a redicolouring sequence of length at most n between α and β. We may assume that G⃗ is
strongly connected, for otherwise we consider each strongly connected component independently.
This implies in particular that G⃗ does not contain any sink nor source. Let (X,Y ) be a partition
of V (G⃗) such that, for every x ∈ X , d+(x) = 1, and for every y ∈ Y , d−(y) = 1.

Assume first that G⃗⟨X⟩ contains a directed cycle C. Since every vertex in X has exactly one
out-neighbour, there is no arc leaving C. Thus, since G⃗ is strongly connected, G⃗ must be exactly
C, and the result holds by Lemma 7.4.8. Using a symmetric argument, we get the result when
G⃗⟨Y ⟩ contains a directed cycle.

Assume now that both G⃗⟨X⟩ and G⃗⟨Y ⟩ are acyclic. An out-arborescence is a rooted tree
in which every edge is oriented away from the root. An in-arborescence is obtained from an
out-arborescence by reversing every arc. Since every vertex in X has exactly one out-neighbour,
G⃗⟨X⟩ is the union of disjoint and independent in-arborescences. We denote by Xr the set of roots
of these in-arborescences. Symmetrically, G⃗⟨Y ⟩ is the union of disjoint and independent out-
arborescences, and we denote by Yr the set of roots of these out-arborescences. Set Xℓ = X \Xr

and Yℓ = Y \ Yr. Observe that the arcs from X to Y form a perfect matching directed from Xr

to Yr. We denote by Mr this perfect matching. Observe also that there can be any arc from Y
to X . Now we define X1

r and Y 1
r two subsets of Xr and Yr respectively, depending on the two

2-dicolourings α and β, as follows:

X1
r = ¶x | xy ∈Mr, α(x) = β(y) ̸= α(y) = β(x)♢

Y 1
r = ¶y | xy ∈Mr, α(x) = β(y) ̸= α(y) = β(x)♢

Set X2
r = Xr \ X1

r and Y 2
r = Yr \ Y 1

r . We denote by M1
r (resp. M2

r ) the perfect match-
ing from X1

r to Y 1
r (resp. from X2

r to Y 2
r ). Figure 7.7 shows a partitioning of V (G⃗) into

X1
r , X

2
r , Xℓ, Y

1
r , Y

2
r , Yℓ.

Claim 7.4.9. There exists a redicolouring sequence of length sα from α to some 2-dicolouring α′

and a redicolouring sequence of length sβ from β to some 2-dicolouring β′ such that each of the

following holds:

(i) For any arc xy ∈Mr, α′(x) ̸= α′(y) and β′(x) ̸= β′(y),
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X1
r

X2
r

Xℓ

Y 1
r

Y 2
r

Yℓ

G⃗ dicoloured with α

X1
r

X2
r

Xℓ

Y 1
r

Y 2
r

Yℓ

G⃗ dicoloured with β

Figure 7.7: The partitioning of V (G⃗) into X1
r , X

2
r , Xℓ, Y

1
r , Y

2
r , Yℓ.

(ii) For any arc xy ∈M2
r , α′(x) = β′(x) (and so α′(y) = β′(y) by (i)), and

(iii) sα + sβ ≤ |X2
r |+ |Y 2

r |.

Proof of claim. We consider the arcs xy ofM2
r one after another and do the following recolourings

depending on the colours of x and y in both α and β to get α′ and β′.

• If α(x) = α(y) = β(x) = β(y), then we recolour x in both α and β;

• Else if α(x) = α(y) ̸= β(x) = β(y), then we recolour x in α and we recolour y in β;

• Else if α(x) = β(x) ̸= α(y) = β(y), then we do nothing;

• Else if α(x) ̸= α(y) = β(x) = β(y), then we recolour x in β;

• Finally, if α(y) ̸= α(x) = β(x) = β(y), then we recolour y in β.

Each of these recolourings is valid because, when a vertex in X2
r (resp. Y 2

r ) is recoloured, it gets
a colour different from its only out-neighbour (resp. in-neighbour). Let α′ and β′ be the two
resulting 2-dicolourings. By construction, α′ and β′ agree on X2

r ∪ Y 2
r . For each arc xy ∈ M2

r ,
either α(x) = α′(x) or α(y) = α′(y), and the same holds for β and β′. This implies that
sα + sβ ≤ 2|M2

r | = |X2
r |+ |Y 2

r |. ♢

Claim 7.4.10. There exists a redicolouring sequence from α′ to some 2-dicolouring ˜︁α of length

s′
α and a redicolouring sequence from β′ to some 2-dicolouring ˜︁β of length s′

β such that each of

the following holds:

(i) ˜︁α and ˜︁β agree on V (G⃗) \ (X1
r ∪ Y 1

r ),

(ii) α′ and ˜︁α agree on Xr ∪ Yr,

(iii) β′ and ˜︁β agree on Xr ∪ Yr,

(iv) Xℓ ∪ Yℓ is monochromatic in ˜︁α (and in ˜︁β by (i)), and
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(v) s′
α + s′

β ≤ |Xℓ|+ |Yℓ|.

Proof of claim. Observe that in both 2-dicolourings α′ and β′, we are free to recolour any vertex of
Xℓ ∪ Yℓ since there is no monochromatic arc from X to Y and both G⃗⟨X⟩ and G⃗⟨Y ⟩ are acyclic.
Let n1 (resp. n2) be the number of vertices in Xℓ ∪ Yℓ that are coloured 1 (resp. 2) in both α′

and β′. Without loss of generality, assume that n1 ≤ n2. Then we set each vertex of Xℓ ∪ Yℓ

to colour 2 in both α′ and β′. Let ˜︁α and ˜︁β the resulting 2-dicolouring. Then s′
α + s′

β is exactly

|Xℓ|+ |Yℓ|+ n1 − n2 ≤ |Xℓ|+ |Yℓ|. ♢

Claim 7.4.11. There is a redicolouring sequence between ˜︁α and ˜︁β of length |X1
r |+ |Y 1

r |.
Proof of claim. By construction of ˜︁α and ˜︁β, we only have to exchange the colours of x and y for
each arc xy ∈ M1

r . Without loss of generality, we may assume that the colour of all vertices in
Xℓ ∪ Yℓ by ˜︁α and ˜︁β is 1.

We first prove that, by construction, we can recolour any vertex of X1
r ∪ Y 1

r from 1 to 2.
Assume not, then there is such a vertex x ∈ X1

r ∪ Y 1
r such that recolouring x from 1 to 2 creates

a monochromatic directed cycle C. Since both G⃗⟨X⟩ and G⃗⟨Y ⟩ are acyclic, C must contain an
arc of Mr. Since Mr does not contain any monochromatic arc in ˜︁α, then this arc must be incident
to x. Now observe that colour 2, in ˜︁α, induces an independent set on both G⃗⟨X⟩ and G⃗⟨Y ⟩. This
implies that C must contain at least 2 arcs in Mr. This is a contradiction, since recolouring x
creates exactly one monochromatic arc in Mr.

Then, for each arc xy ∈ M1
r , we can first recolour the vertex coloured 1 and then the vertex

coloured 2. Note that we maintain the invariant that colour 2 induces an independent set on both
G⃗⟨X⟩ and G⃗⟨Y ⟩. We get a redicolouring sequence from ˜︁α to ˜︁β in exactly 2|M1

r | = |X1
r | + |Y 1

r |
steps. ♢

Combining the three claims, we finally proved that there exists a redicolouring sequence be-
tween α and β of length at most n.

We will now prove Corollary 7.4.7, let us restate it first for convenience.

Corollary 7.4.7. Let G⃗ be an oriented graph of order n with ∆min(G⃗) = ∆ ≥ 1, and let k ≥
∆ + 1. Then Dk(G⃗) is connected and has diameter at most 2∆n.

Proof. We will show the result by induction on ∆.
Assume first that ∆ = 1, let k ≥ 2. Let α be any k-dicolouring of G⃗ and γ be any 2-

dicolouring of G⃗. To ensure that Dk(G⃗) is connected and has diameter at most 2n, it is sufficient
to prove that there is a redicolouring sequence between α and γ of length at most n. Let H
be the digraph induced by the set of vertices coloured 1 or 2 in α, and let J be V (G⃗) \ V (H).
By Theorem 7.4.6, since ∆min(H) ≤ ∆min(G⃗) ≤ 1, we know that there exists a redicolouring
sequence, inH , fromα|H to γ|H of length at most n(H). This redicolouring sequence extends in G⃗

because it only uses colours 1 and 2. Let α′ be the obtained dicolouring of G⃗. Since α′(v) = γ(v)
for every v ∈ H , we can recolour each vertex in J to its colour in γ. This proves that there is a
redicolouring sequence between α and γ of length at most n(H) + |J | = n(G⃗). This ends the
case ∆ = 1.

Assume now that ∆ ≥ 2 and let k ≥ ∆ + 1. Let α and β be two k-dicolourings of G⃗. By
Corollary 3.3.6, we know that χ⃗(G⃗) ≤ ∆ ≤ k − 1. We first show that there is a redicolouring
sequence of length at most 2n from α to some (k− 1)-dicolouring γ of G⃗. From α, whenever it is
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possible, we recolour each vertex coloured 1, 2 or k with a colour of ¶3, . . . , k − 1♢ (when k = 3
we do nothing). Let ˜︁α be the obtained dicolouring, and let M be the set of vertices coloured in
¶3, . . . , k− 1♢ by ˜︁α (when k = 3, M is empty). We get that H = G⃗−M satisfies ∆min(H) ≤ 2,
since every vertex in H has at least one in-neighbour and one out-neighbour coloured c for every
c ∈ ¶3, . . . , k − 1♢. By Corollary 3.3.6, there exists a 2-dicolouring γ|H of H . From ˜︁α|H ,
whenever it is possible, we recolour a vertex coloured 1 or 2 to colour k. Let ˆ︁α be the resulting
dicolouring, and ˆ︁H be the subdigraph of H induced by the vertices coloured 1 or 2 in ˆ︁α. We
get that ∆min( ˆ︁H) ≤ 1 since every vertex in ˆ︁H has, in G⃗, at least one in-neighbour and one out-
neighbour coloured c for every c ∈ ¶3, . . . , k♢. In at most n( ˆ︁H) steps, using Theorem 7.4.6, we
can recolour the vertices of V ( ˆ︁H) to their colour in γ|H (using only colours 1 and 2). Then we
can recolour each vertex coloured k to its colour in γ|H . This results in a redicolouring sequence

of length at most 2n from α to some (k− 1)-dicolouring γ of G⃗ , since colour k is not used in the
resulting dicolouring (recall that M is coloured with ¶3, . . . , k − 1♢).

Now, from β, whenever it is possible, we recolour each vertex to colour k. Let ˜︁β be the
obtained k-dicolouring, and let N be the set of vertices coloured k in ˜︁β. We get that J = G⃗−N
satisfies ∆min(J) ≤ ∆− 1. Thus, by induction, there exists a redicolouring sequence from ˜︁β|J to
γ|J , in at most 2(∆ − 1)n(J) steps (using only colours ¶1, . . . , k − 1♢). Since N is coloured k

in ˜︁β, this extends to a redicolouring sequence in G⃗. Now, since γ does not use colour k, we can
recolour each vertex in N to its colour in γ. We finally get a redicolouring sequence from β to γ
of length at most 2(∆ − 1)n. Concatenating the redicolouring sequence from α to γ and the one
from γ to β, we get a redicolouring sequence from α to β in at most 2∆n steps.

7.5 Digraphs having bounded treewidth

This section is devoted to generalisations of Theorem 7.1.8. In Subsection 7.5.1 we show the
following general result which makes a connection between the recolourability of a digraph and
the recolourability of its underlying graph.

Theorem 7.5.1. Let G be a family of undirected graphs, closed under edge-deletion and with

bounded chromatic number, and let k ≥ χ(G) (i.e. k ≥ χ(G) for every G ∈ G) be such that, for

every graph G ∈ G, the diameter of Ck(G) is bounded by f(n(G)) for some function f . Then for

every digraph D such that UG(D) ∈ G, the diameter of Dk(D) is bounded by 2f(n(D)).

Theorem 7.5.1 directly extends to digraphs numerous known results about planar graphs re-
colouring. We discuss further these applications in Section 7.7.

On the other hand, since removing edges does not increase the treewidth of a graph, the fol-
lowing is a consequence of Theorems 7.1.8 and 7.5.1 (by taking G = ¶G | tw(G) ≤ ℓ♢ for some
constant ℓ).

Corollary 7.5.2. Let k ∈ N and D be a digraph. If k ≥ tw(UG(D)) + 2, then diam(Dk(D)) =
O(n2).

However, the treewidth of the underlying graph of D is not a satisfying extension of treewidth
to digraphs, since it does not take under consideration the orientations in D. There exist, at
least, four well-known generalisations of treewidth to digraphs: the directed treewidth (intro-
duced in [103], see also [146]), the D-width (introduced in [149], see also [150]), the DAG-width
(introduced in [25]) and the Kelly-width (introduced in [100]).
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Recall that an out-arborescence is a rooted tree in which every edge is oriented away from
the root. A directed tree-decomposition (T,W,X ) of a digraph D = (V,A) consists of an out-
arborescence T = (I, F ) rooted in r ∈ I , a partition W = (Wt)t∈I of V into non-empty parts,
and a family X = (Xe)e∈F of subsets of vertices of D such that, for every tt′ ∈ F we have:

1. Xtt′ ∩ (
⎷

t′′∈Tt′
Wt′′) = ∅ (where Tt′ denotes the subtree of T rooted in t′), and

2. for every directed walk P with both ends in
⎷

t′′∈Tt′
Wt′′ and some internal vertex not in⎷

t′′∈Tt′
Wt′′ , it holds that V (P ) ∩Xtt′ ̸= ∅.

The width of (T,W,X ) equals maxt∈I |Ht| − 1, where Ht = Wt ∪
⎷

e∈F,t∈eXe, and
the directed treewidth of D, denoted by dtw(D), is the minimum width of its directed tree-
decompositions. Recall that the treewidth of an undirected graph is always at least its degen-
eracy. However, it is well-known that there exist digraphs with arbitrary large min-degeneracy
and directed tree-width exactly one. We include a proof for completeness.

Proposition 7.5.3. For every integer d, there exists a digraph D = (V,A) such that every vertex

v ∈ V satisfies d+(v) ≥ d, d−(v) ≥ d, and dtw(D) = 1.

Proof. Let T be a tree rooted in r ∈ V (T ) with depth at least d (that is, all leaves are at distance
at least d from the root), such that every non-leaf vertex has at least d children. We orient each
edge uv of T from the parent to its child. Then we add every arc uv such that v is an ancestor of
u. In the obtained digraph D, every vertex has out-degree at least d.

Then we add a disjoint copy D o⃗f D in which we reverse every arc, so in D e⃗very vertex has
in-degree at least d. We finally add every arc from D t⃗o D.

In the resulting digraph, every vertex has out-degree and in-degree at least d. Moreover, the di-
rected treewidth of a digraph is equal to the maximum directed treewidth of its strongly connected
components. For each edge uv of T , such that u is the parent of v, we label uv with u. Then T ,
together with this labelling, is a directed tree-decomposition of both D and D a⃗nd has width 1.
This follows from the fact that every directed cycle of D containing a vertex must also contain its
father in T .

The following proposition shows that, dealing with directed treewidth, c-degeneracy, com-
pared to min-degeneracy, appears to be a better generalisation of the undirected one.

Proposition 7.5.4. For every digraph D, it holds that dtw(D) ≥ δ∗
c (D).

Proof. Consider an optimal directed tree-decomposition (T,W,X ) of D. If t is a leaf of T and
v is a vertex in Wt, then Ht \ ¶v♢ intersects every directed cycle of D containing v. Thus,
dc(v) ≤ dtw(D). Moreover, since t is a leaf of T , it is easy to verify that removing v from
D does not increase its directed treewidth, and we can repeat the same argument in D \ ¶v♢.

Proposition 7.5.4 implies that χ⃗(D) ≤ dtw(D) + 1 for every digraph D and, together with
Theorems 7.3.2, 7.3.9 and 7.3.13, implies the following.

Corollary 7.5.5. Let k ∈ N and D be a digraph on n vertices.

(i) if k ≥ dtw(D) + 2 then D is k-mixing and diam(Dk(D)) = Odtw(ndtw +1),

(ii) if k ≥ 3
2(dtw(D) + 1) then diam(Dk(D)) = O(n2), and
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(iii) if k ≥ 2(dtw(D) + 1) then diam(Dk(D)) ≤ (dtw(D) + 1)n.

The interested reader may have a look at [25] (resp. [100]) and see that DAG-width (resp.
Kelly-width) is bounded below by min-degeneracy (resp. by min-degeneracy plus one). Thus,
Corollary 7.5.5 also holds for DAG-width (resp. Kelly-width minus one).

In Subsection 7.5.2, we show that the proof of Theorem 7.1.8 extends to digraphs using D-
width. A D-decomposition of a digraph D = (V,A) is a pair (T,X ) such that T = (I, F ) is an
undirected tree and X = (Xv)v∈I is a family of subsets (called bags) of V indexed by the nodes
of T , which satisfies Property (⋆) stated below, for which we first need a definition. For a vertex
subset S ⊆ V , let the support of S in (T,X ), denoted by TS , be the subgraph of T with vertex-set
¶t ∈ I | Xt ∩ S ̸= ∅♢ and edge-set ¶tt′ ∈ F | ∃u ∈ S ∩Xt ∩Xt′♢. A D-decomposition must
ensure the following property:

∀S ⊆ V such that D⟨S⟩ is strongly connected, TS is a non-empty subtree of T. (⋆)

Similarly to undirected tree-decompositions, the width of (T,X ) is the maximum size of its
bags minus one, and the D-width of D, denoted by Dw(D), is the minimum width of its D-
decompositions. Note that, for every v ∈ V , D⟨¶v♢⟩ is strongly connected, and therefore Prop-
erty (⋆) can be seen as a generalisation of the basic properties of undirected tree-decompositions
that state that the set of bags containing some vertex v must induce a (connected) subtree and that
every vertex must belong to at least one bag. Note also that, if ¶u, v♢ is a digon of D, Property (⋆)
implies that u and v must belong to a common bag of (T,X ). Hence, every bidirected graph G

satisfies tw(G) = Dw(
←→
G ), and the following is actually a generalisation of Theorem 7.1.8. Our

proof is strongly based on the proof of Theorem 7.1.8.

Theorem 7.5.6. If D = (V,A) is a digraph of order n with Dw(D) ≤ k − 1, then

diam(Dk+1(D)) ≤ 2(n2 + n).

Note that the bound of Theorem 7.5.6 is asymptotically sharp (up to a constant factor) since
Theorem 7.1.8 is already known to be sharp. Finally, observe that the digraph D built in the proof
of Proposition 7.5.3 also satisfies Dw(D) = 1 but δ∗

min(D) ≥ d. Again, the following easy
proposition shows that, dealing with the D-width, c-degeneracy, compared to min-degeneracy,
appears to be a better generalisation of the undirected one.

Proposition 7.5.7. For every digraph D, it holds that Dw(D) ≥ δ∗
c (D).

Proof. Consider an optimal directed D-decomposition (T,X = (Xt)t∈V (T )) of D. Let t be
a leaf of T and v be a vertex in Xt that belongs to no other bag Xt′ (this is possible unless
Xt ⊆ Xt′ , tt′ ∈ E(T ), in which case we just remove the bag t from the decomposition). We
claim that Xt \ ¶v♢ intersects every directed cycle of D containing v (which directly implies
dc(v) ≤ Dw(D)). Assume not, and let C be a directed cycle such that Xt ∩ V (C) = ¶v♢. Then,
since D⟨V (C)⟩ is strongly connected, TV (C) must be connected. This is a contradiction since t is
an isolated vertex in TV (C).

Analogously to the directed treewidth, Proposition 7.5.7, together with Theorems 7.3.2, 7.3.9
and 7.3.13, implies the following (note that the two first items are also implied by Theorem 7.5.6,
but the third one is not).
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Corollary 7.5.8. Let k ∈ N and D be a digraph on n vertices.

(i) if k ≥ Dw(D) + 2 then D is k-mixing and diam(Dk(D)) = ODw(nDw +1),

(ii) if k ≥ 3
2(Dw(D) + 1) then diam(Dk(D)) = O(n2), and

(iii) if k ≥ 2(Dw(D) + 1) then diam(Dk(D)) ≤ (Dw(D) + 1)n.

7.5.1 Using the underlying graph to bound the diameter of Dk(D)

This section is devoted to the proof of Theorem 7.5.1.

Theorem 7.5.1. Let G be a family of undirected graphs, closed under edge-deletion and with

bounded chromatic number, and let k ≥ χ(G) (i.e. k ≥ χ(G) for every G ∈ G) be such that, for

every graph G ∈ G, the diameter of Ck(G) is bounded by f(n(G)) for some function f . Then for

every digraph D such that UG(D) ∈ G, the diameter of Dk(D) is bounded by 2f(n(D)).

Proof. Let D = (V,A) be such a digraph, and let γ be any proper k-colouring of UG(D). We
will show, for any k-dicolouring α of D, that there is a redicolouring sequence between α and
γ of length at most f(n), showing the result. Let Gα = (V,E) be the undirected graph where
E = ¶uv | uv ∈ A,α(u) ̸= α(v)♢.

First, observe that α is a proper k-colouring of Gα by construction of Gα. Note also that γ is a
proper k-colouring ofGα becauseGα is a subgraph of UG(D). Moreover, sinceGα is a subgraph
of UG(D), by assumption on G, we know that there exists a recolouring sequence between α and
γ in Gα of length at most f(n).

Next, we show that every proper k-colouring of Gα is a dicolouring of D, implying that the
recolouring sequence between α and γ in Gα is also a redicolouring sequence between α and γ
in D. For purpose of contradiction, let us assume that β is a proper k-colouring of Gα but D,
coloured with β, contains a monochromatic directed cycle C. Then, by construction of Gα, for
each arc xy of C, we must have α(x) = α(y), for otherwise xy would be a monochromatic edge
in Gα. This shows that C is monochromatic in D coloured with α, a contradiction.

7.5.2 Case of digraphs with bounded D-width

This section is devoted to the proof of Theorem 7.5.6.

Theorem 7.5.6. If D = (V,A) is a digraph of order n with Dw(D) ≤ k − 1, then

diam(Dk+1(D)) ≤ 2(n2 + n).

The following claim can be easily deduced from the definition of a D-decomposition.

Claim 7.5.9. Let (T,X = (Xv)v∈V (T )) be a D-decomposition of a digraph D = (V,A) and

tt′ ∈ E(T ) such that v ∈ Xt′ \Xt. Then, (T,X ′ = (X ′
v)v∈V (T )) such thatX ′

u = Xu for all u ̸= t
and X ′

t = Xt ∪ ¶v♢ is a D-decomposition of D = (V,A). Moreover, if |Xt| < |Xt′ |, (T,X ′) has

the same width as (T,X ).

A D-decomposition (T,X ) is reduced if, for every tt′ ∈ E(T ), Xt \ Xt′ and Xt′ \ Xt are
non-empty. It is easy to see that any digraph D admits an optimal (i.e., of width Dw(D)) D-
decomposition which is reduced (indeed, if Xt ⊆ Xt′ for some edge tt′ ∈ E(T ), then contract
this edge and remove Xt from X ).
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A D-decomposition (T,X ) of D-width k ≥ 0 is full if every bag has size exactly k + 1. A
D-decomposition (T,X ) is valid if |Xt \Xt′ | = |Xt′ \Xt| = 1 for every tt′ ∈ E(T ). Note that
any valid D-decomposition is full and reduced. Note also that, if (T,X ) is valid and t ∈ V (T )
is a leaf of T , then there exists a (unique) vertex v ∈ V that belongs only to the bag Xt. Such a
vertex v is called a baby.

Lemma 7.5.10. Every digraph D = (V,A) admits a valid D-decomposition of width Dw(D).

Proof. Let (T,X ) be an optimal reduced D-decomposition of D = (V,A), which exists by the
remark above the lemma. We will progressively modify (T,X ) in order to make it first full and
then valid.

While the current decomposition is not full, let tt′ ∈ E(T ) such that |Xt| < |Xt′ | = Dw(D)+
1 and let v ∈ Xt′ \Xt. Add v to Xt. The obtained decomposition is still a D-decomposition of
width Dw(D) by Claim 7.5.9. Moreover, the updated decomposition remains reduced all along
the process, as since |Xt| < |Xt′ | and the initial decomposition is reduced, Xt′ must contain
another vertex u ̸= v with u /∈ Xt. Eventually, the obtained decomposition (T,X ) becomes an
optimal full D-decomposition.

Now, while (T,X ) is not valid, let tt′ ∈ E(T ), x, y ∈ Xt \Xt′ and u, v ∈ Xt′ \Xt (such an
edge of T and four distinct vertices of V must exist since (T,X ) is full and reduced but not valid).
Then, add a new node t′′ to T , with corresponding bag Xt′′ = (Xt′ \ ¶u♢) ∪ ¶x♢ and replace
the edge tt′ in T by the two edges tt′′ and t′′t′. Clearly, subdividing the edge tt′ by adding a bag
Xt′′ = Xt′ still leads to an optimal full (but not reduced) D-decomposition of the same width.
Then, adding x to Xt′′ makes that (T,X ) remains a D-decomposition (by the first statement of
Claim 7.5.9). Finally, we must prove that removing u fromXt′′ preserves the fact that we still have
a D-decomposition. Indeed, let S be a strong subset whose support TS (before the subdivision)
contains tt′ (clearly, the other strong subsets are not affected by the change in the decomposition).
It must be because of some vertex in z ∈ Xt ∩ Xt′ and so z ∈ Xt′′ . Therefore, the support TS ,
obtained after the subdivision and the modifications to Xt′′ , contains both edges tt′′ and t′′t′, and
therefore it remains connected. Note that, after the modifications, (T,X ) is still full and reduced.

Note that, after the application of each step as described above, either the maximum of |Xt \
Xt′ | over all edges tt′ ∈ E(T ), or the number of edges tt′ ∈ E(T ) that maximise |Xt \ Xt′ |,
strictly decreases, and none of these two quantities increases. Therefore, the process terminates,
and eventually (T,X ) becomes an optimal valid D-decomposition.

Given a valid D-decomposition (T,X ) of a digraph D = (V,A), two vertices u, v ∈ V are
parents, denoted by u ∼p v, if their supports Tu and Tv (we use Tv instead of T¶v♢ for denoting the
support of a single vertex ¶v♢) are vertex-disjoint and there is an edge tt′ ∈ E(T ) with t ∈ V (Tv)
and t′ ∈ V (Tu). Let ∼(T,X ) be the transitive closure of ∼p.

Lemma 7.5.11. Let (T,X ) be an optimal valid D-decomposition of a digraphD = (V,A). Then,

∼(T,X ) defines an equivalence relation on V which has exactly Dw(D) + 1 classes. Moreover,

the vertices of each class induce an acyclic subdigraph of D.

Proof. The facts that∼(T,X ) is well-defined and that there are Dw(D)+1 classes follow from the
fact that (T,X ) is valid. Now, let C be any equivalence class of∼(T,X ). For the purpose of contra-
diction, let us assume thatD⟨C⟩ contains a directed cycleQ. By definition of a D-decomposition,
the support TQ must induce a subtree of T . Since, by definition of ∼(T,X ), the supports of the
vertices of Q are pairwise vertex-disjoint, the support TQ must consist precisely of the disjoint
union of the supports of the vertices of Q, and hence TQ is not connected, a contradiction.
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Given a valid D-decomposition (T,X ) ofD = (V,A), the corresponding equivalence relation
∼(T,X ), and a subset X ⊆ V , a k-colouring α of D (which is not necessarily a dicolouring) is X-

coherent with respect to (T,X ) if, for every u, v ∈ X such that u ∼p v, and for every t ∈ V (Tv),
v is the unique vertex coloured α(v) in Xt, and α(u) = α(v). In what follows, we will just say
X-coherent, as the D-decomposition will always be clear from the context.

Claim 7.5.12. Let (T,X ) be a valid D-decomposition of a digraphD = (V,A) of width k−1 ≥ 0.

Then, D admits a k-colouring that is V -coherent.

Proof of claim. Consider any ordering C1, . . . , Ck+1 of the classes of ∼(T,X ). Let α be the
colouring associating with each vertex v the index i such that v ∈ Ci. Then α is V -coherent. ♢

The following claim is straightforward, so we skip its proof.

Claim 7.5.13. Let (T,X ) be a valid D-decomposition of a digraphD = (V,A) of width k−1 ≥ 0
and let α be a k-colouring of D that is V -coherent. Then, the equivalence classes of ∼(T,X )

are precisely α1, . . . , αk (the colours classes of α). In particular, by Lemma 7.5.11, α is a k-

dicolouring.

Lemma 7.5.14. Let D = (V,A) be a digraph of order n and let (T,X ) be a valid D-

decomposition of D = (V,A) of width k− 1 = Dw(D). Let α and β be two (k+ 1)-dicolourings

of D that are V -coherent. Then, α and β are at distance at most 2n in Dk+1(D).

Proof. We prove the existence of a redicolouring sequence from α to β inDk+1(D) that recolours
each vertex at most twice.

Let S1, . . . , Sk be the equivalence classes of ∼(T,X ). By Claim 7.5.13, each Si corresponds
exactly to one colour class of α and exactly one colour class of β. In particular, both α and β
use indeed k colours (not necessarily the same). Consider the undirected complete graph H on
k vertices x1, . . . , xk, and the two colourings αH , βH of H defined as ¶αH(xi)♢ = α(Si) and
¶βH(xi)♢ = β(Si). It is known (see [31, Lemma 5]) that there is a redicolouring sequence in H
between αH and βH in which every vertex is recoloured at most twice. This directly extends to a
redicolouring sequence between α and β (when xi is recoloured with colour c in H , we recolour
every vertex in Si with c in D). Note that this is indeed a redicolouring sequence because at each
step of the sequence, in the corresponding colouring, every colour class is a subset of some Si,
which induces an acyclic subdigraph by Lemma 7.5.11.

Given a tree T rooted in r ∈ V (T ) and two vertices u, v of T , we say that v is a descendant

of u if u belongs to the path between r and v in T .

Lemma 7.5.15. Let D = (V,A) be a digraph of order n and (T,X ) be a valid D-decomposition

of D = (V,A) of width k − 1 ≥ 0. Let T be rooted in r ∈ V (T ). Let α be a (k + 1)-colouring

of D that is (V \Xr)-coherent and let c ∈ [k + 1] such that α(v) ̸= c for all v ∈ Xr. Then, for

every t, t′ ∈ V (T ) with t′ being a descendant of t, if there exists v ∈ Xt with α(v) = c, then v is

the unique vertex of Xt coloured with c and there exists a unique u ∈ Xt′ with α(u) = c.

Proof. For purpose of contradiction, let us assume that there exist t, t′ ∈ V (T ) such that t′ is a
descendant of t, a vertex in Xt is coloured with c, and no vertex in Xt′ is coloured with c. Over all
possible such pairs ¶t, t′♢, we choose one such that the distance between t and t′ in T is minimum.
Then t′ is a child of t.
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Let v ∈ Xt such that α(v) = c and let ¶u♢ = Xt′ \ Xt, where we have used that (T,X ) is
valid. Note that u ∼(T,X ) v and that, since Tu is connected, u /∈ Xr. Since α is (V \Xr)-coherent,
we must have α(u) = α(v) = c, a contradiction.

The uniqueness of u and v comes from the fact that u, v /∈ Xr since α(v) = α(u) = c, and
because by hypothesis α is (V \Xr)-coherent.

Lemma 7.5.16. Let D = (V,A) be a digraph of order n and let (T,X ) be a valid D-

decomposition of D = (V,A) of width k − 1, and let T be rooted in r ∈ V (T ). Let y ∈ Xr

and let α be a (k + 1)-dicolouring of D that is (V \ (Xr \ ¶y♢))-coherent. Let D′ be the digraph

obtained by identifying y and all vertices v such that y ∼(T,X ) v and let α′ be the dicolouring of

D arising from α. If there exists a (k + 1)-dicolouring β′ of D′ that can be reached from α′ by

recolouring each vertex at most once, then the (k + 1)-dicolouring β that naturally extends β′ to

D (i.e., β(v) = β′(y) for all v ∼(T,X ) y) can be reached from α by recolouring each vertex at

most once.

Proof. This follows from the fact that α is (V \ (Xr \ ¶y♢))-coherent, and thus every bag Xt has
exactly one vertex of the colour of y, which is the colour of the unique vertex v ∼(T,X ) y that
belongs to Xt. Hence, to go from α to β, we follow the same redicolouring sequence for every
vertex u ≁(T,X ) y, and when we recolour y in D′, we simply recolour every vertex v ∼(T,X ) y
with the same colour as y.

Claim 7.5.17. LetD = (V,A) be a digraph of order n and let (T,X ) be a valid D-decomposition

of D = (V,A) of width k − 1. Let α be a (k + 1)-dicolouring of D and x ∈ V (D) be any vertex.

Let c ∈ [k + 1] be a colour such that, for every vertex v ∈ ⎷
x∈Xt

Xt, α(v) ̸= c. Then the

(k + 1)-colouring obtained from α by recolouring x with c is a dicolouring.

Proof of claim. Assume this is not the case, and recolouring x with c creates a monochromatic
directed cycle C. Then since D⟨V (C)⟩ is strongly connected, the support TV (C) of V (C) is a
non-empty subtree. This implies that there exists y ∈ V (C) \ ¶x♢ such that y and x belong to one
same bag Xt. This contradicts the choice of c. ♢

Lemma 7.5.18. Let D = (V,A) be a digraph of order n and let (T,X ) be a valid D-

decomposition of D = (V,A) of width k − 1, and let T be rooted in r ∈ V (T ). Let α be a

(k + 1)-dicolouring of D that is (V \ Xr)-coherent and such that the colour c does not appear

in Xr, i.e., there exists c ∈ [k + 1] such that α(v) ̸= c for all v ∈ Xr. Then, there exists a

(k + 1)-dicolouring β of D and a redicolouring sequence α = γ1, . . . , γℓ = β such that:

• β is (V \Xr)-coherent,

• β(v) ̸= c for all v ∈ V ,

• every vertex of D \Xr is recoloured at most once,

• no vertex of Xr is recoloured, and

• if xi is the vertex recoloured between γi and γi+1, then, for every vertex v ∈ ⎷xi∈Xt
Xt,

γi(v) ̸= γi+1(xi).
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Proof. The proof is by induction on k−1+n(T ), where k−1 is the width of (T,X ). If k−1 = 0,
then D is acyclic and colour c can be eliminated by recolouring every vertex at most once with a
same colour distinct from c. Note that the vertices in Xr are not recoloured and the last condition
holds trivially since every bag has size one.

If n(T ) = 1, the result holds trivially since the colour c does not appear in Xr, so we may take
β = α. Hence, r must have at least one child. Let us fix one child v of r, and let ¶y♢ = Xv \Xr.
Let Tv be the subtree of T rooted in v and let Dv be the subdigraph of D induced by

⎷
t∈V (Tv)Xt.

• If α(y) ̸= c, then c does not appear in Xv. Let (Tv,Y) = (Tv, ¶Xt | t ∈ V (Tv)♢) be
the decomposition of Dv obtained from T . Let D′

v be the digraph obtained from Dv by
identifying y with all vertices of its class with respect to (Tv,Y). Note that (Tv,Y) is a full
decomposition of D′

v. By contracting each edge tt′ ∈ E(Tv) such that Yt = Yt′ (in D′), we
obtain (T ′

v,Y ′) a valid decomposition of D′
v.

Note that n(T ′
v) < n(T ) and the width (T ′

v,Y ′) equals the width of (Tv,X ). Hence, by
induction, there exists a (k + 1)-dicolouring β′

v of D′
v that is (V (D′

v) \ Xv)-coherent and
such that β′

v(w) ̸= c for all w ∈ V (D′
v). Moreover, there is a redicolouring sequence from

α′
v, the dicolouring α restricted to D′

v, to β′
v such that every vertex of D′

v \Xv is recoloured
at most once, and vertices in Xv are not recoloured. Note finally that, whenever a vertex x
is recoloured, it is recoloured with a colour that is not appearing in

⎷
x∈Xt

Xt.

By Lemma 7.5.16, there exists a (k+1)-dicolouring βv ofDv that is (V (Dv)\Xv)-coherent
and such that βv(w) ̸= c for every vertex w ∈ V (Dv). Moreover, there is a redicolouring
sequence γv = (γ1, · · · , γℓ) from γ1 = αv, the dicolouring α restricted to Dv, to γℓ = βv

such that every vertex of Dv \Xv is recoloured at most once. Furthermore, note that βv is
indeed (V (Dv) \ (Xv \ ¶y♢))-coherent because we identified y with all vertices of its class
in D′

v.

Along this redicolouring sequence γv, when a vertex x is recoloured between γi and γi+1,
let us show that, for every vertex z ∈ ⎷x∈Xt

Xt, γi(z) ̸= γi+1(x). Let us first assume that x
does not belong to the class of y with respect to (Tv,X ). If z ∼(Tv ,X ) y, then by induction,
γi+1(x) ̸= γi(y) = γi(z). Otherwise (z not in the class of y), by induction, we directly
have that γi+1(x) ̸= γi(z). Second, let us assume that x belongs to the class of y. Hence,
z ≁(Tv ,X ) y since x and z belong to a same bag. By induction,

Finally, this redicolouring sequence in Dv is indeed a redicolouring sequence in D because
of the property above and by Claim 7.5.17.

• If α(y) = c, by Lemma 7.5.15 and because (T,X ) is (V \ Xr)-coherent, every bag in Tv

contains exactly one vertex coloured c and the set of vertices coloured with c is precisely
Y = ¶w ∈ Xt | t ∈ V (Tv), w ∼(T,X ) y♢. The reduced decomposition obtained from
(Tv,Y) = (Tv, ¶Xt \ Y | t ∈ V (Tv)♢) is a valid decomposition of D′

v = Dv − Y of width
k− 2. Observe that it is full because we remove exactly one vertex from each bag. Let c′ be
a colour that does not appear inXv \¶y♢. Observe that the width of (Tv,Y) is at most k−2.
Thus, by induction, there exists a k-dicolouring β′ of D′

v that is (V (D′
v) \ Xv)-coherent

and such that β′(w) /∈ ¶c, c′♢ for every vertex w ∈ V (D′
v) and β′ can be obtained from

α′
v, the restriction of α to D′

v, by recolouring each vertex of V (D′
v) \ Xv at most once.

By then recolouring all vertices of Y to c′, we obtain a (k + 1)-dicolouring β of Dv that
is (V (Dv) \ (Xv \ ¶y♢))-coherent and such that β(w) ̸= c for every vertex w ∈ V (Dv)
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and β can be obtained from αv, the restriction of α to Dv, by recolouring each vertex of
Dv \ (Xv \ ¶y♢) at most once, as we wanted to prove.

Along the obtained redicolouring sequence, by induction, when a vertex x that is not in the
class y is recoloured, it is recoloured with a colour different from the colours of

⎷
x∈Xt

(Xt \
Y ). Since Y is coloured with c, and no vertex is recoloured with c, it is recoloured with a
colour different from the colours of

⎷
x∈Xt

(Xt\Y ). Finally, when y′ ∼(T,X ) y is recoloured,
it is recoloured with c′ which is a colour that is not appearing in Dv. This shows the last
property.

Finally, this redicolouring sequence in Dv is indeed a redicolouring sequence in D because
of the property above and by Claim 7.5.17.

Repeating the process above for each child v of r, we finally obtain a redicolouring sequence
from α to some (k + 1)-dicolouring β such that β(w) ̸= c for all w ∈ V . Moreover, at each
step, in both cases, no vertex of Xr is recoloured, so no vertex of Xr is recoloured all along the
redicolouring sequence. Furthermore, if v and v′ are two children of r, and x is a vertex of D that
belongs to V (Dv) ∩ V (Dv′), then x also belongs to Xr, implying that x is not recoloured. Thus,
every vertex that is recoloured belongs to V (Dv) for exactly one child v of r, implying that, in the
obtained redicolouring sequence, every vertex of D \Xr is recoloured at most once.

Finally, note that β is (V \Xr)-coherent because, in both cases, the obtained dicolouring βv

is (V \ ¶Xv \ ¶y♢♢)-coherent.

Lemma 7.5.19. Let D = (V,A) be a digraph of order n and (T,X ) be a valid D-decomposition

of D = (V,A) of width k − 1 ≥ Dw(D). For every (k + 1)-dicolouring α of D there exists a

V -coherent (k + 1)-colouring β of D such that α and β are at distance at most n2 in Dk+1(D).

Proof. Let us root T at r ∈ V (T ) arbitrarily. For a vertex t ∈ V (T ), let Tt be the subtree of T
rooted at t and let Dt = D⟨⎷v∈V (Tt)Xv⟩.

We will define inductively an ordering (v1, . . . , vn) on V and a sequence (γ0, γ1, . . . , γn) of
(k+1)-dicolourings ofD such that γ0 = α, γn = β and γi isXi-coherent withXi = ¶v1, . . . , vi♢
(set X0 = ∅) for every 0 ≤ i ≤ n and such that it is possible to go from γi to γi+1 by recolouring
every vertex of Xi at most twice and vi+1 at most once. Note that γn = β is V -coherent.

First, note that γ0 is trivially X0-coherent since X0 = ∅.
Let i ≥ 0 and assume (v1, . . . , vi) and (γ1, . . . , γi) that satisfy the above properties have

already been defined. Let vi+1 ∈ V \ Xi be any vertex that appears in some bag Xt such that
V (Dt)\Xt ⊆ Xi (if i = 0 then t is a leaf and v1 is a baby). Note that γi|Dt

, the restriction of γi to
Dt, is a (V (Dt) \Xt)-coherent dicolouring of Dt. Let c be any colour that does not appear in Xt

coloured with γi. By Lemma 7.5.18, there exists a (k+1)-dicolouring ξ ofDt that is (V (Dt)\Xt)-
coherent and such that ξ(v) ̸= c for every vertex v ∈ V (Dt) and ξ can be reached from γi|Dt

by
recolouring each vertex of V (Dt) \Xt ⊆ Xi at most once (when i = 0, this sequence is empty).
Note that the same recolouring sequence allows to go from γi to the (k + 1)-colouring γ′

i (whose
restriction to Dt is ξ) by recolouring each vertex of Xi at most once and so that γ′

i(v) ̸= c for all
v ∈ V (Dt). Then, we can go from γ′

i to γi+1 by recolouring each vertex w ∈ V (Dt) such that
w ∼(T,X ) vi+1 with colour c (note that all the vertices that are recoloured at this phase are in Xi

except vi+1). Then, γi+1 is Xi+1-coherent. Therefore, the induction properties hold for i+ 1.
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At the end, we find the desired redicolouring sequence between α and β in which the total
number of recolourings is at most:

∑︂

0≤i≤n−1

(2|Xi|+ 1) =
∑︂

0≤i≤n−1

(2i+ 1) = n2,

which concludes the proof.

The proof of Theorem 7.5.6 follows from Lemma 7.5.14 and Lemma 7.5.19.

Theorem 7.5.6. If D = (V,A) is a digraph of order n with Dw(D) ≤ k − 1, then

diam(Dk+1(D)) ≤ 2(n2 + n).

Proof. Take α and β two k-dicolourings. Let (T,X ) be a valid D-decomposition of D of width
k − 1 ≥ Dw(D). By Lemma 7.5.14, there is a redicolouring sequence from α (resp. β) to a
dicolouring α′ (resp. β′) that is V -coherent. Moreover, there is such a redicolouring sequence of
length at most n2. Then by Lemma 7.5.19, there is a redicolouring sequence between α′ and β′ of
length at most 2n. Altogether, this gives a redicolouring sequence between α and β of length at
most 2(n2 + n).

Note that you can always build a valid D-decomposition of width k − 1 ≥ Dw(D) unless
k ≥ n(D) + 1, in which case follows from Corollary 7.4.2.

7.6 Density of non-mixing graphs and digraphs

In this section, we turn our focus to the density of non-mixing graphs and digraphs. We first
consider undirected graphs. In the undirected case, one can easily deduce from Theorem 7.1.1
that any non k-mixing graph G contains a subgraph H with minimum degree at least k − 1. This
bound is tight because the complete graph on k vertices is (k − 1)-regular and is not k-mixing.
Using probabilistic arguments, Bonamy, Bousquet, and Perarnau [32] showed that this bound is
tight even on graphs of arbitrary large girth. We provide a construction witnessing this fact in
Subsection 7.6.1.

Next, we show that this result on undirected graphs cannot be generalised to digraphs. Given a
digraph D, recall that the maximum average degree of D is defined as Mad(D) = max¶2m(H)

n(H) |
H a non-empty subdigraph of D♢. It follows from Theorem 7.4.2 that every non k-mixing digraph
D contains a subdigraph H with minimum out-degree and minimum in-degree at least k − 1.
This shows that such a digraph D has maximum average degree at least 2k − 2. This bound is
tight because the bidirected complete graph on k vertices is k − 1-diregular and is not k-mixing.
However, unlike the undirected case, this is not the case for digraphs with arbitrary large digirth.
In fact, this is not even the case for oriented graphs, which are exactly the digraphs with digirth
at least 3. We conjecture that if an oriented graph is not k-mixing, then it has maximum average
degree at least 2k. Even the case k = 2 remains open.

Conjecture 7.6.1. Any non 2-mixing oriented graph has maximum average degree at least 4.

Remark 7.6.1 – If true, this conjecture would be tight since there exist 2-freezable oriented graphs
with maximum average degree 4. Consider for example the oriented graph F⃗n obtained from the
disjoint union of two disjoints directed paths (u1, . . . , un) and (v1, . . . , vn) by adding the set of
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· · ·

· · ·

Figure 7.8: The 2-freezable oriented graph F⃗n and a frozen 2-dicolouring.

arcs ¶uivi | i ∈ [n]♢ ∪ ¶vi+1ui | i ∈ [n − 1]♢ ∪ ¶v1u2, unv1, vn−1un♢ (see Figure 7.8 for an
illustration). Let α be the 2-dicolouring of F⃗n in which all the ui are coloured 1 and all the vi are
coloured 2. One can easily check that Mad(F⃗n) = 4 and α is a 2-frozen dicolouring of F⃗n.

We prove two results providing some support for this conjecture in Subsection 7.6.2. Firstly,
using the Discharging Method, we prove the conjecture in the special case of freezable oriented
graphs.

Theorem 7.6.2. Let G⃗ = (V,A) be an oriented graph. If G⃗ is 2-freezable, then |A| ≥ 2|V |.

From this result, we derive the following lower bound on the density of k-freezable oriented
graphs.

Corollary 7.6.3. Let G⃗ = (V,A) be an oriented graph. If G⃗ is k-freezable, then |A| ≥ k|V | +
k(k − 2).

We give a family of oriented graphs for which this bound is reached. Secondly, again with the
Discharging Method, we show a statement weaker than Conjecture 7.6.1 with 7/2 instead of 4.

Theorem 7.6.4. Let G⃗ be an oriented graph. If G⃗ is not 2-mixing, then Mad(G⃗) ≥ 7
2 .

7.6.1 Density of non k-mixing undirected graphs

This section is devoted to a constructive proof of the following result, based on an explicit con-
struction of regular bipartite graphs from Lazebnik and Ustimenko in [120].

Theorem 7.6.5 (Bonamy, Bousquet, and Perarnau [32]). For any k, ℓ ∈ N
∗, there exists a (k−1)-

regular k-freezable graph Gk,ℓ with girth at least ℓ.

We first make the following remark that we will use in the proof of Theorem 7.6.5:

Remark 7.6.2 – Let k ∈ N
∗, G be a (k − 1)-regular k-freezable graph and α be a frozen k-

colouring of G, then all colour classes of α have the same size. This follows from the fact that, for
every vertex v of G, N [v] uses all colours in α. Thus, given two colours i, j ∈ [k], there must be
a perfect matching in G between the vertices coloured i and the vertices coloured j. In particular,
this implies that the number of vertices coloured i is the same as the number of vertices coloured
j.

Proof of Theorem 7.6.5. Let us fix ℓ ∈ N. We prove the statement by induction on k, the result
holding trivially for k = 1. Let k > 1 and assume that there exists a (k − 2)-regular (k − 1)-
freezable graph Gk−1,ℓ with girth at least ℓ. Let α be a frozen k-colouring of Gk−1,ℓ.

We denote by n the number of vertices of Gk−1,ℓ. Consider H an n-regular bipartite graph
with girth at least ℓ (such a graph exists by a construction from Lazebnik and Ustimenko [120]).
Since H is bipartite, it is well-known that we can colour the edges of H with exactly n colours
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such that two adjacent edges receive different colours (see for instance [34, Theorem 17.2]). By
Remark 7.6.2, all colour classes of α have the same size. Thus there is an ordering (v1, . . . , vn) of
V (Gk−1,ℓ) such that for each i ∈ [n− k+ 1], the vertices vi, . . . , vi+k−1 have different colours in
α.

We denote by (A,B) the bipartition of H . Let Gk,ℓ be the graph obtained from H as follows.

• For each a ∈ A, replace a by a copyGa ofGk−1,ℓ, and connect va
i (the vertex corresponding

to vi in Ga) to the edge coloured i that was incident to a.

• For each b ∈ B, replace b by an independent set Ib = ¶xb
1, . . . , x

b
n
k
♢ of size n

k
(by Re-

mark 7.6.2, n
k

is an integer). Connect xb
i to the edges coloured ¶k(i − 1) + 1, . . . , ki♢ that

were incident to b.

Observe that Gk,ℓ is k-regular: every vertex in a Ga is adjacent to its k − 1 neighbours in
Ga and exactly one neighbour in one of the Ibs; every vertex in an Ib has exactly k neighbours
by construction. Moreover, Gk,ℓ has girth at least ℓ. Indeed, assume, for a contradiction, that it
contains a cycle C of length at most ℓ − 1. Then C cannot contain an edge of H , otherwise,
contracting each copy of Ga would transform C into a cycle of length at most ℓ− 1 in H . Thus C
must be contained in some Ga, which is a copy of Gk−1,ℓ, which is impossible since Gk−1,ℓ has
girth at least ℓ.

Let β be the (k+ 1)-colouring of Gk,ℓ such that the restriction of β to each Ga corresponds to
α, and β(xb

i) = k+1 for all b ∈ B and i ∈ [n/k]. Let v be a vertex ofG. If v belongs to someGa,
then since α is frozen in Gk−1,ℓ, NGa [v] contains all colours of [k]. Moreover, by construction, v
has a neighbour in some Ib which is coloured k+1. If v is in some Ib, then v is coloured k+1 and
by construction it has exactly one neighbour in each colour class. In both cases, N [v] = [k + 1].
Thus no vertex can be recoloured and so β is a frozen colouring of Gk,ℓ.

7.6.2 Density of non 2-mixing and 2-freezable oriented graphs

This section is devoted to the proof of two results supporting Conjecture 7.6.1. First we prove that
it holds with the stronger assumption that G is 2-freezable.

Theorem 7.6.2. Let G⃗ = (V,A) be an oriented graph. If G⃗ is 2-freezable, then |A| ≥ 2|V |.

Proof. Let G⃗ = (V,A) be a 2-freezable oriented graph, and α a frozen 2-dicolouring of G⃗. For
a vertex v ∈ V , we say that a vertex u ∈ V is blocking for v (in dicolouring α), if one of the
following holds:

• u is an out-neighbour of v, α(u) ̸= α(v), and there exists a directed path (u, ..., x, v), such
that (u, ..., x) is monochromatic, or

• u is an in-neighbour of v, α(u) ̸= α(v), and there exists a directed path (x, ..., u, v) such
that (x, ..., u) is monochromatic.

We shall use a discharging argument. We set the initial charge of every vertex v to be d(v).
Observe that d(v) ≥ 2 otherwise v can be recoloured in α. We then use the following discharging
rule.

(R) Every vertex receives 1 from each of its blocking neighbours.
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Let f(v) be the final charge of every vertex v. Let us show that f(v) ≥ 4 for every v ∈ V .
Let v ∈ V . We assume without loss of generality that α(v) = 1. Since α is frozen, v admits

at least one out-neighbour v+ and one in-neighbour v− coloured 2 that are blocking, and thus
sending 1 to v by (R). Let us now examine the charge that v sends to others vertices. Let w be
a vertex to which v sends charge. The vertex v is blocking for w, so α(w) = 2. Moreover, if w
is an out-neighbour (resp. in-neighbour) of v, then v has an in-neighbour (resp. out-neighbour)
coloured 1. We are in one of the following cases.

• If v sends no charge, then f(v) ≥ d(v) + 2 ≥ 4.

• If v sends charge only to some out-neighbours, then it does not send to its in-neighbours.
Since v has at least two in-neighbours (one blocking v and one coloured 1), f(v) ≥ d(v) +
2− (d(v)− 2) ≥ 4.

• If v sends charge only to some in-neighbours, symmetrically to above, f(v) ≥ 4.

• If v sends charge only to both out-neighbours and in-neighbours, then its has both an in-
neighbour and an out-neighbour coloured 1 to which it sends no charge. Hence f(v) ≥
d(v) + 2− (d(v)− 2) ≥ 4.

In all cases, we have f(v) ≥ 4. Consequently, 2|A| = ∑︁
v∈V d(v) =

∑︁
v∈V f(v) ≥ 4|V |.

We can deduce from Theorem 7.6.2 the following lower bound on the density of a k-freezable
oriented graph.

Corollary 7.6.3. Let G⃗ = (V,A) be an oriented graph. If G⃗ is k-freezable, then |A| ≥ k|V | +
k(k − 2).

Proof. Suppose for a contradiction that there is a k-freezable oriented graph G⃗ = (V,A) such that
|A| < k|V | + k(k − 2). Without loss of generality, we may take G⃗ having a minimum number
of arcs among all such graphs. Let α be a frozen k-dicolouring of G⃗. For each i, j ∈ [k], let G⃗i

be the subdigraph of G⃗ induced by the vertices coloured i in α, and let G⃗i,j be the subdigraph of
G⃗ induced by the vertices coloured i or j in α. We set ni = n(G⃗i), mi = m(G⃗i) and mi,j =

m(G⃗i,j).
We first show that, for any i ∈ [k], mi ≤ ni − 1. Suppose not. Then, since G⃗i is acyclic, it

admits an acyclic ordering (x1, . . . , xni
). Now consider

G⃗
′
= (G⃗ \A(G⃗i)) ∪ ¶xjxj+1 | j ∈ [ni − 1]♢

with the same dicolouring α. Clearly m(G⃗
′
) < m(G⃗). Let v be a vertex of G⃗

′
. If v ∈ V (G⃗i),

then x is still blocked in (G⃗
′
, α) because it is blocked in (G⃗, α). Now, suppose v /∈ V (G⃗i). For

any colour j distinct from i and α(v), it is impossible to recolour v with j because it was already
impossible in G⃗. Now, in G⃗, it was impossible to recolour v to i, so there is a directed path in G⃗i

whose initial vertex xk is an out-neighbour of v and whose terminal vertex xℓ is an in-neighbour of
v. Since (x1, . . . , xni

) is an acyclic ordering of G⃗i, we have k ≤ ℓ. Thus (xk, . . . , xℓ) is a directed

path in G⃗
′
. Hence, v cannot be recoloured to i in (G⃗

′
, α), meaning that it is also blocked in

(G⃗
′
, α). Since all vertices of (G⃗

′
, α) are blocked, α is a frozen k-dicolouring of G⃗

′
, contradicting

the minimality of G⃗.
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We will now prove the result by bounding S =
∑︁

1≤i<j≤k mi,j . First, since α induces a 2-

frozen dicolouring on G⃗i,j , Theorem 7.6.2 yields mi,j ≥ 2(ni + nj) for any 1 ≤ i < j ≤ k.
Thus,

S =
∑︂

1≤i<j≤k

m(G⃗i,j) ≥ 2
∑︂

1≤i<j≤k

(ni + nj) = 2n(k − 1).

Next, observe that S = m(G⃗)+
∑︁k

i=1(k−2)mi because every monochromatic arc ofD is counted
exactly (k − 1) times in S, and every other arc only once. Thus

S = m(G⃗) + (k − 2)
k∑︂

i=1

mi

< kn+ k(k − 2) + (k − 2)
k∑︂

i=1

(ni − 1)

= 2n(k − 1) .

Putting the two inequalities together, we get 2n(k−1) ≤ S < 2n(k−1), which is a contradiction.

Remark 7.6.3 – The bound of Corollary 7.6.3 is tight: we can extend the construction of F⃗n

(defined in Remark 7.6.1) to k-freezable oriented graphs F⃗
k

n with exactly k|V (F⃗
k

n)|+k(k−2) arcs.

The oriented graph F⃗
k

n is constructed as follows. We start from k disjoint directed pathsP1, . . . , Pk

of length n. For each j ∈ [k], let Ps = (vj
1, . . . , v

j
n). For each pair 1 ≤ j < ℓ ≤ k, we add the set

of arcs ¶vj
i v

ℓ
i | i ∈ [n]♢ ∪ ¶vℓ

i+1v
j
i | i ∈ [n − 1]♢ ∪ ¶vℓ

1v
j
2, v

j
nv

ℓ
1, v

ℓ
n−1v

j
n♢, so that the subdigraph

induced by V (Pj)∪V (Pℓ) is isomorphic to F⃗n. By construction, |A(F⃗
k

n)| = k|V (F⃗
k

n)|+k(k−2).

Let αk be the dicolouring of F⃗
k

n assigning colour j to the vertices of Pj for all j ∈ [k]. Since
V (Pj)∪V (Pℓ) is isomorphic to F⃗n, then every vertex of Pj cannot be recoloured with ℓ (and vice

versa). Therefore, αk is a frozen k-dicolouring of F⃗
k

n.

Theorem 7.6.4. Let G⃗ be an oriented graph. If G⃗ is not 2-mixing, then Mad(G⃗) ≥ 7
2 .

Proof. Let G⃗ = (V,A) be an oriented graph which is not 2-mixing, and take G⃗ to be minimal
for this property (every proper induced subdigraph H⃗ of G⃗ is 2-mixing). In order to get a contra-
diction, assume that |A| < 7

4 |V |. Let α and β be two 2-dicolourings of G⃗ such that there is no

redicolouring sequence from α to β. We will first prove some structural properties on G⃗, which
we then leverage through a discharging strategy to show that |A| ≥ 7

4 |V |.

Claim 7.6.6. G⃗ has no source nor sink.

Proof of claim. Assume that G⃗ contains a vertex swhich is either a source or a sink. By minimality

of G⃗, we know that G⃗
′

= G⃗ − s is 2-mixing. In particular, there is a redicolouring sequence

γ′
0, . . . , γ

′
r where γ′

0 and γ′
r are the restrictions of α and β to G⃗

′
respectively.

For all i ∈ [r], let γi be defined by γi(s) = α(s) and γi(v) = γ′
i(v) for all v ̸= s. Since s is

either a source or a sink, γi is a 2-dicolouring of G⃗. If β(s) = α(s), then β = γr and so γ0, . . . , γr

is a redicolouring sequence from α to β, a contradiction. Thus β(s) ̸= α(s). Then setting γr+1 =
β, we have that γ0, . . . , γr, γr+1 is a redicolouring sequence from α to β, a contradiction. ♢
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Claim 7.6.7. δ(G⃗) = 3.

Proof of claim. First note that if δ(G⃗) ≥ 4 then |A| ≥ 2|V |, contradicting our assumption that
|A| < 7

4 |V |. Therefore δ(G⃗) ≤ 3.

Assume now that G⃗ contains a vertex u such that d(u) ≤ 2. By Claim 7.6.6 we know that

d+(u) = d−(u) = 1. Let G⃗
′

be G⃗ − u. By minimality of G⃗, we know that G⃗
′

is 2-mixing. Let

γ′
0, . . . , γ

′
r be a redicolouring sequence in G⃗

′
where γ′

0 and γ′
r are the restrictions of α and β to G⃗

′
.

Towards the contradiction, we exhibit a redicolouring sequence from α to β. To do so, we show,
for any i ∈ ¶0, 1, . . . , r♢, the existence of a 2-dicolouring γi of G⃗ such that γ′

i is the restriction of

γi on G⃗
′
, and there is a redicolouring sequence from α to γi.

For i = 0, the result holds trivially with γ0 = α. Assume now that γi−1 exists, and that there
exists a redicolouring sequence reaching γi−1 from α. Let xi be the vertex such that γ′

i−1(xi) ̸=
γ′

i(xi). Consider the operation of recolouring xi by its opposite colour in γi−1. If this creates
no monochromatic directed cycle, we let γi be the output dicolouring. Otherwise, this creates a
monochromatic directed cycle containing u and its two neighbours u− and u+. Since in γ′

i−1,
the colour of xi is different from at least one of ¶u−, u+♢, we may first recolour u and then xi

to obtain the desired γi. At the end of this process, we obtain a redicolouring sequence from α

to a 2-dicolouring γr agreeing with β on V (G⃗
′
). If necessary, we may then recolour u to yield a

redicolouring sequence from α to β, achieving the contradiction and yielding δ(G⃗) = 3. ♢

For every positive integer i, an i-vertex (resp. (≥ i)-vertex) is a vertex of degree i (resp. at
least i) in G⃗, and the set of i-vertices in G⃗ is denoted Vi. Let u be a 3-vertex. By Claim 7.6.6, either
d−(u) = 1 or d+(u) = 1. Then, the lonely neighbour of u is its unique in-neighbour if d−(u) = 1
and its unique out-neighbour if d+(u) = 1. Observe that, in any dicolouring, recolouring u with
a colour different from the one of its lonely neighbour yields another dicolouring because every
directed cycle containing u must contain its lonely neighbour. We will use this argument several
times along the remaining of this proof.

Claim 7.6.8. Let u be a 3-vertex and v its lonely neighbour. There exist two 2-dicolourings ϕ and

ψ that agree on V (G⃗) \ ¶u, v♢ and such that there is no redicolouring sequence from ϕ to ψ.

Proof of claim. Assume for a contradiction that for any pair ϕ, ψ of 2-dicolourings that agree on

V (G⃗) \ ¶u, v♢, there is a redicolouring sequence from ϕ to ψ. Let G⃗
′

= G⃗ − u, and α′, β′ be

the restrictions of our initial dicolourings α, β to G⃗
′
. By minimality of G⃗, there is a redicolouring

sequence α′ = γ′
0, . . . , γ

′
r = β′ in G⃗

′
. In order to get a contradiction, we will extend the latter

into a redicolouring sequence from α to β. As in Claim 7.6.7, for i = 0 to r, we show inductively

that there exists a 2-dicolouring γi of G⃗ such that γ′
i is the restriction of γi on G⃗

′
, and there is a

redicolouring sequence from α to γi.
For i = 0 the result holds trivially with γ0 = α. Assume now that γi−1 exists, and let

xi ∈ V (G⃗
′
) be the vertex recoloured at step i, such that γ′

i−1(xi) ̸= γ′
i(xi). We assume without

loss of generality that γ′
i(xi) = 1. We try to recolour xi to colour 1 in γi−1. If this creates

no monochromatic directed cycle, then we have the desired γi. If it does, the fact that γ′
i is a

dicolouring of G⃗
′
yields that any resulting monochromatic directed cycle must contain both u and

its lonely neighbour v. This implies that γi−1(u) = 1, and we distinguish two cases, depending
on the colour of v in γi−1.
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u

· · ·

v

· · ·

Figure 7.9: A 3-vertex u and its lonely neighbour v in a dicolouring ϕ from which we cannot reach
the dicolouring ψ swapping the colours of u and v via a redicolouring sequence. Vertices coloured
1 are shown in orange, while vertices coloured 2 are shown in blue.

• If γi−1(v) = 1, then γi−1(v) ̸= γi−1(xi) = 2, which implies that xi and v are different.
In this case, we can first recolour u and then xi to obtain the desired γi from γi−1, which
combined with the sequence from α to γi−1 obtained by induction yields the redicolouring
sequence from α to γi.

• Else, γi−1(v) = 2 and since recolouring xi creates a monochromatic directed cycle contain-
ing both u and v, it must be because xi = v. Now, let γi be the 2-dicolouring of G⃗ obtained
from γi−1 by swapping the colours of u and v (i.e. γi(u) = 2 and γi(v) = 1). Observe that
γi is a 2-dicolouring since γ′

i is, v is the lonely neighbour of u, and γi(u) ̸= γi(v). Since γi

and γi−1 agree on V (G⃗)\¶u, v♢, our assumption yields a redicolouring sequence from γi−1

to γi. Then, our induction hypothesis yields a sequence from α to γi−1, which, combined
with the one above, yields a sequence from α to γi.

Therefore, by induction, we obtain a redicolouring sequence from α to a 2-dicolouring γr which

agrees with β on V (G⃗
′
). Then, either γr = β, or we may recolour u in γr to obtain β, which in

any case yields a redicolouring sequence from α to β, a contradiction. ♢

Claim 7.6.9. Let u be a 3-vertex and v its lonely neighbour. Then d+(v) ≥ 2 and d−(v) ≥ 2.

Proof of claim. By directional duality, we may assume d+(u) = 1, such that uv is an arc of G⃗.

Let ϕ and ψ be two 2-dicolourings of G⃗ given by Claim 7.6.8. That is, both dicolourings
agree on V (G⃗) \ ¶u, v♢, and there is no redicolouring sequence from ϕ to ψ. Without loss of
generality, we assume that ϕ(u) = 1. Note that ϕ and ψ must differ on both vertices u, v, for
otherwise ϕ, ψ would yield a trivial sequence from ϕ to ψ. Moreover, u cannot be recoloured in
ϕ, for otherwise we can successively recolour u and v to obtain a redicolouring sequence between
ϕ and ψ. Altogether, this shows that ψ(u) = ϕ(v) = 2 and ϕ(u) = ψ(v) = 1. Finally, there must
be two paths from v to u such that one is internally coloured 1, and the other is internally coloured
2, respectively, in both ϕ and ψ (see Figure 7.9). Otherwise, either v, respectively u, could be
recoloured in ϕ or ψ to get a 2-dicolouring in which u and v have the same colour allowing us to
get a contradiction as above. This shows d+(v) ≥ 2.

Now, assume for the sake of contradiction that d−(v) = 1, and recall that α, β are two 2-
dicolourings witnessing that G⃗ is non-mixing. Up to recolouring u or v in α or β if both vertices
are coloured the same, we may assume α(u) ̸= α(v) and β(u) ̸= β(v). We assume without loss
of generality β(u) = 1 (implying β(v) = 2). We first show that we can further assume α(u) = 1
(and therefore α(v) = 2). To do so, if α(u) = 2, we build a redicolouring sequence from α to
another 2-dicolouring ˜︁α such that ˜︁α(u) = 1. Let t1 and t2 be the two in-neighbours of u. If t1
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and t2 are coloured the same in α, then we can either recolour u then v if α(t1) = α(t2) = 2,
or recolour v then u if α(t1) = α(t2) = 1, yielding the desired ˜︁α. Hence we may assume that

α(t1) = 1 and α(t2) = 2. Let G⃗
′

= G⃗ − ¶u, v♢ and α′ be the restriction of α to G⃗
′
. Given a

2-dicolouring ζ of G⃗, we define its mirror ζ as the 2-dicolouring of G⃗ such that ζ(x) ̸= ζ(x) for
all x ∈ V (G⃗). By minimality of G⃗, there is a redicolouring sequence from α′ to its mirror α′ in

G⃗
′
. Since the colours of all vertices are swapped, there must be a 2-dicolouring γ′ at some point in

the sequence where γ′(t1) = γ′(t2) (for instance the first time t1 or t2 is recoloured). We extend
the sequence from α′ to γ′ into a redicolouring sequence from α to γ in G⃗, where u and v are
constantly coloured 2 and 1 in both dicolourings. This is possible because v (resp. u) is the lonely
neighbour of u (resp. v). Now, since γ(t1) = γ(t2), in γ we may exchange the colours of u and v
as above to obtain the desired ˜︁α.

Since α can be obtained from ˜︁α through a redicolouring sequence, we can redefine α to be ˜︁α.
Now, α(u) = β(u) = 1 and α(v) = β(v) = 2, and we claim there exists a redicolouring sequence

from α to β. Indeed, let α′ and β′ be the restrictions of α and β to G⃗
′
. By minimality of G⃗, there

is a redicolouring sequence from α′ to β′. This sequence extends to G⃗ by fixing the colour of u
and v to 1 and 2 respectively. This gives a contradiction, and yields d−(v) ≥ 2. ♢

Claim 7.6.10. Let u be a 3-vertex such that |N(u) ∩ V3| = 2 and v its lonely neighbour, then:

(i) d(v) ≥ 5, and

(ii) d(v) = 5 only if v is adjacent to two (≥ 4)-vertices.

Proof of claim. By directional duality, we may assume d+(u) = 1. Let t1 and t2 be the in-
neighbours of u. By Claim 7.6.9, we have d(v) ≥ 4 so N(u)∩ V3 = ¶t1, t2♢. Let ϕ and ψ be two
2-dicolourings given by Claim 7.6.8.

Since t1 and t2 are 3-vertices, Claim 7.6.9 yields d−(t1) = d−(t2) = 1 because u cannot be
their lonely neighbour. By Claim 7.6.8, neither u nor v can be recoloured in ϕ. Thus, for each
j ∈ [2], there is a (v, u)-path Pj whose internal vertices are all coloured j. In particular, we have
ϕ(t1) ̸= ϕ(t2) because one of ¶t1, t2♢ belongs to P1 and the other one belongs to P2. Without loss
of generality, we may assume that both u and t1 are coloured 1, and both v and t2 are coloured 2.

(i). Let us first show that t1 is blocked in ϕ. Towards this, consider the sequence successively
recolouring t1, v, u and t1 again. For this not to be a redicolouring sequence from ϕ to ψ, which
would contradict our assumption, it must create a monochromatic directed cycle at one of the
steps. Assume that t1 is recolourable, that is, the first step of the sequence does not create a
monochromatic directed cycle. Now, since both t1, t2 are coloured 2 at this point, v can also
be recoloured. Indeed, any monochromatic directed cycle resulting from setting v to colour 1
would already be a monochromatic directed cycle in ψ. Then, u is coloured the same as its lonely
neighbour v, allowing us to set the colour of u to 2, then to recolour t1 and obtain ψ. Therefore, t1
is blocked in ϕ. Then, we must have P1 = (v, t1, u), otherwise the only in-neighbour of t1 would
be coloured 1, and there is a (t1, v)-path P3 with internal vertices coloured 2. In particular, the
out-neighbour of t1 distinct from u is coloured 2.

We now consider t2. The existence of P2 ensures that t2 has its unique in-neighbour coloured
2, therefore t2 is not blocked to colour 2 in ϕ. Thus we recolour t2 with colour 1, which allows
us to then recolour u with colour 2 since its in-neighbourhood is coloured 1. In the resulting
dicolouring ξ, if v is recolourable, then we can successively recolour v to colour 1 and t2 to colour
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u

t1 P3 y1

t2

v

P4 y2

Figure 7.10: A 3-vertex u and its lonely neighbour v in a dicolouring ϕ from which we cannot
reach the dicolouring ψ swapping the colours of u and v via a redicolouring sequence. Vertices
coloured 1 are shown in orange, while vertices coloured 2 are shown in blue. Vertex t1 must
be blocked, yielding the existence of monochromatic path P3 and the arc vt1. Vertex v must be
blocked after recolouring t2, yielding P4 and the arc vt2.

2. This gives a redicolouring sequence between ϕ and ψ, a contradiction. Thus, recolouring v in ξ
must create a monochromatic directed cycle. Since ξ agrees with ψ on V (G)\¶v, t2♢, this implies
that P2 = (v, t2, u) and there is a (t2, v)-path P4 in G⃗ − u with internal vertices coloured 1 (in
both ψ and ψ).

The existence of P1, P2, P3, and P4 ensures that d(v) ≥ 5 (see Figure 7.10), and completes
the proof of (i).

(ii) Assume d(v) = 5. Let y1 (resp. y2) be the in-neighbour of v in P3 (resp. P4). Recall also
that, without loss of generality, we can take ϕ(u) = 1 and ϕ(v) = 2. We shall prove that y1 and
y2 both have degree at least 4 in G⃗.

• Assume for a contradiction that d(y1) = 3. If the in-neighbour of y1 on P3 is coloured
2, we can recolour y1 to 1 without creating a monochromatic directed cycle coloured 1. If
not, the in-neighbour must be t1, and since its lonely neighbour v is coloured 2, we can
again recolour y1 without creating a monochromatic directed cycle. Having recoloured y1,
the whole in-neighbourhood of v is now coloured 1. Since v is the lonely neighbour of t1,
we can set t1 to colour 2 without creating any monochromatic directed cycle. Next we can
successively recolour v to 1 since its out-neighbours are coloured 2, then u to 2 since its
lonely out-neighbour v is now coloured 1. Now if recolouring y1 yields a monochromatic
directed cycle C, it does not contain neither u nor t1 because they are both coloured 2 and v
is coloured 1. ThenC must have already been a monochromatic directed cycle in ϕ, which is
a contradiction. Hence we can recolour y1, and finally recolour t1 to obtain a redicolouring
sequence from ϕ to ψ, a contradiction.

• Assume for a contradiction that d(y2) = 3. We start by recolouring t2 to colour 1, and u to
colour 2. Now we can recolour y2 to colour 2 since d(y2) = 3, the in-neighbour of y2 in P4 is
coloured 1 and the out-neighbourhood of v is coloured 1. Then, we can recolour v to colour
1 because its in-neighbourhood is coloured 2. Next we can recolour t2 to colour 2 since
its in-neighbour v is coloured 1, and we can finally recolour y2 to obtain a redicolouring
sequence from ϕ to ψ, a contradiction.

♢

From now on, for each (≥ 4)-vertex v, we let Sv be the set of 3-vertices x such that v is the
lonely neighbour of x.

Claim 7.6.11. Let v be a (≥ 4)-vertex, then |Sv| ≤ d(v)− 2.
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Proof of claim. Assume for a contradiction that |Sv| ≥ d(v)− 1. If |Sv| = d(v)− 1, we let w be
the only neighbour of v which does not belong to Sv. By directional duality, we may assume that
w is an out-neighbour of v. If |Sv| = d(v), let w be any out-neighbour of v.

We shall find a redicolouring sequence from α to β. Without loss of generality, we may assume
β(v) = 1. We first find a redicolouring sequence from α to a 2-dicolouring ˜︁α such that ˜︁α(v) = 1.
If α(v) = 1, there is nothing to do. Assume now that α(v) = 2. We distinguish two cases,
depending on the colour of w.

• If α(w) = 1 ̸= α(v), then we can set every vertex in N+(v) to colour 1 without creating
any monochromatic directed cycle. Next we can set every vertex in N−(v) to colour 2.
Finally we can recolour v to 1.

• If α(w) = 2 = α(v), then we set every vertex in N−(v) to colour 1. Next we set every
vertex in N+(v) to colour 2. Finally we can recolour v to 1.

We now have a 2-dicolouring ˜︁α such that ˜︁α(v) = β(v) = 1. First we set each vertex in Sv to

colour 2. Then we consider G⃗
′
= G⃗−(¶v♢∪Sv). By the minimality of G⃗, there is a redicolouring

sequence from ˜︁α′ to β′, the restrictions of ˜︁α and β to G⃗
′
. This sequence extends directly to G⃗,

since v is coloured 1 and every vertex in Sv is coloured 2. Finally we only have to set each vertex
x ∈ Sv to colour β(x). This operation does not create any monochromatic directed cycle, because
such a cycle C should be coloured 1 (since we only recolour some vertices of Sv to colour 1). But
then, every vertex in C is also coloured 1 in β, a contradiction.

We finally get a redicolouring sequence from ˜︁α to β. Since we described above a redicolouring
sequence from α to ˜︁α, there is a redicolouring sequence from α to β, a contradiction. ♢

Claim 7.6.12. Let v be a 4-vertex. If |Sv| = 0, then |N(v) ∩ V3| ≤ 2.

Proof of claim. Assume for a contradiction that |Sv| = 0 and |N(v) ∩ V3| ≥ 3. We consider

G⃗
′
= G⃗− (¶v♢∪ (N(v)∩V3)). By minimality of G⃗, there is a redicolouring sequence γ′

0, . . . , γ
′
r

where γ′
0 and γ′

r are the restrictions of α and β to G⃗
′
. In order to get a contradiction, we exhibit

a redicolouring sequence from α = γ0 to β = γr in G⃗ as follows. For i = 1 to r, we show

that there exists a 2-dicolouring γi of G⃗ such that γ′
i is the restriction of γi on G⃗

′
, and there is a

redicolouring sequence from γi−1 to γi. The concatenation of these sequences will then yield the
desired sequence between α and β.

Assume that for any i ≥ 1, we have defined dicolouring γi−1 such that γ′
i−1 is the restriction

of γi−1 to G⃗
′
, let us and exhibit a redicolouring sequence from γi−1 to some γi such that γ′

i is a

restriction of γi to G⃗
′
. In γi−1, we first recolour each vertex of N(v)∩V3 with the colour different

from the one of its lonely neighbour to get a new 2-dicolouring ˜︁γi−1 (possibly equal to γi−1). Note

that γ′
i−1 is still the restriction of ˜︁γi−1 on G⃗

′
. Let xi be the vertex recoloured between γ′

i−1 and γ′
i.

If recolouring xi in our current dicolouring ˜︁γi−1 of G⃗ creates no monochromatic directed
cycle, we let γi be the resulting dicolouring. Then, we have defined a sequence from γi−1 to ˜︁γi−1

to γi, yielding the desired property. If the recolouring of xi in ˜︁γi−1 does yield a monochromatic
directed cycle, the cycle must contain at least one vertex in ¶v♢ ∪ (N(v) ∩ V3). Moreover, it
must always contain a 3-vertex x that is a neighbour of v, because when it contains v it must also
contain two of its neighbours, and by assumption at most one is not a 3-vertex. Since in ˜︁γi−1, x
is coloured differently from its lonely neighbour, xi must be the lonely neighbour of x. We may
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assume without loss of generality that x is an out-neighbour of v. Since all 3-vertices inN(v), that
is, all but at most one vertex inN(v), are now coloured differently from their lonely neighbour, we
can recolour v without creating any monochromatic directed cycle. Hence, up to this recolouring,
we may assume that the two in-neighbours of x have the same colour. If this colour is the same
as x, then we can recolour x and then recolour xi, otherwise we can directly recolour xi. In both
cases, we let γi be the resulting dicolouring, which has been obtained by a redicolouring sequence
from γi−1.

Concatenating the sequences γi−1, ..., γi for i ∈ [r] yields a sequence from α to a dicolouring

γr which agrees with β on V (G⃗
′
). To extend this into a redicolouring sequence to β, in γr we

start by recolouring each vertex of N(v) ∩ V3 with the colour different from the one of its lonely
neighbour. Then, if necessary, we can recolour v to β(v) without creating any monochromatic
directed cycle. Finally, we recolour in any order the neighbours of v that need to be recoloured
with their colour in β. If recolouring one of these vertices, say y, were to create a monochromatic
directed cycle C, since β is a 2-dicolouring, C would have to contain both y and a neighbour of v
coloured differently than in β. But these neighbours can only be other 3-vertices that we have not
recoloured at this point, which are therefore coloured differently from their lonely neighbour, thus
cannot be part of a monochromatic directed cycle. Hence, we have a redicolouring sequence from
α to β, yielding the contradiction. ♢

Claim 7.6.13. Let v be a 4-vertex. If |Sv| = 1, then |N(v) ∩ V3| ≤ 2.

Proof of claim. Assume for a contradiction that |Sv| = 1 and |N(v) ∩ V3| ≥ 3, and let u be the
only vertex in Sv. By directional duality, we may assume that u is an in-neighbour of v. Note that
by Claim 7.6.9, d−(v) = d+(v) = 2. This implies that v has at least one out-neighbour x in V3,
and d+(x) = 1 since Sv = ¶u♢.

By Claim 7.6.8, there are two 2-dicolourings ϕ and ψ of G⃗ that agree on V (G⃗) \ ¶u, v♢ and
such that there is no redicolouring sequence from ϕ to ψ. In this case, ϕ(u) ̸= ϕ(v) and both u and
v are blocked in ϕ, for otherwise we could recolour them one after the other to yield ψ. Without
loss of generality, let ϕ(u) = 1 and ϕ(v) = 2. For each j ∈ [2] there is a (v, u)-path Pj whose
internal vertices are all coloured j in ϕ. We now distinguish two cases, depending on whether x
belongs to P1 or P2.

• Assume first that x is the out-neighbour of v in P1. Then x can be recoloured since its
only out-neighbour is coloured 1. After recolouring x, every out-neighbour of v is coloured
2; hence we can successively recolour v to 1 and u to 2. We finally can recolour x to 1,
since this directly gives dicolouring ψ, yielding a redicolouring sequence from ϕ to ψ, a
contradiction.

• Assume now that x is the out-neighbour of v in P2. Then, x can be recoloured since its only
out-neighbour is either coloured 2 or it is u (and the only out-neighbour of u is coloured
2). After recolouring x, every out-neighbour of v has colour 1, and we can recolour u
to colour 2. Now, recolouring v to colour 1 does not create any monochromatic directed
cycle. Indeed, such a cycle C would necessarily contain x, otherwise C would already be
monochromatic in ψ, and be coloured 1. Note that x has only one out-neighbour, which is
necessarily coloured 2, because it is either internal to P2, or it is u, which is now coloured
2. We can finally recolour x, yielding a redicolouring sequence from ϕ to ψ. This is a
contradiction.
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v

w1

w2u1

u2

Figure 7.11: The neighbourhood of a 4-vertex v with |Sv| = 2 coloured with the particular di-
colouring γ defined in Claim 7.6.14. Vertices coloured 1 are shown in orange, while vertices
coloured 2 are shown in blue. The existence of the coloured dotted paths is guaranteed because no
vertex of N [v] is recolourable in γ.

♢

Claim 7.6.14. Let v be a 4-vertex with |Sv| = 2. Set Sv = ¶u1, u2♢ and N(v) \ Sv = ¶w1, w2♢.
Then each of the following holds:

(i) v has exactly one in-neighbour and one out-neighbour in Sv;

(ii) v has exactly one in-neighbour and one out-neighbour in ¶w1, w2♢;

(iii) G⃗ has a 2-dicolouring γ such that γ(u1) = γ(u2) = 1, γ(v) = γ(w1) = γ(w2) = 2 and

there exists no redicolouring sequence from γ that recolours at least one vertex in N [v];

(iv) d(w1) ≥ 4 and d(w2) ≥ 4.

Proof of claim. Figure 7.11 illustrates the neighbourhood of such a 4-vertex v coloured with γ.

(i) By Claim 7.6.9, we have d+(v) = d−(v) = 2. Suppose (i) does not hold, and assume
without loss of generality that both u1 and u2 are in-neighbours of v, so both w1 and w2 are
out-neighbours of v. Towards a contradiction, we exhibit a redicolouring sequence from α
to β. Without loss of generality, we assume β(v) = 1.

Starting from α, we first show how to obtain a dicolouring where v is coloured 1. If α(v) =
1, there is nothing to do. If α(v) = 2, we distinguish three cases depending on the colours
of α(w1) and α(w2):

• If α(w1) = α(w2) = 2 = α(v), then we can directly recolour v.

• If α(w1) = α(w2) = 1 ̸= α(v), then we can set both u1 and u2 to 2, and then recolour
v with 1.

• Else, α(w1) ̸= α(w2). Since α(v) = 2, we first set u1 and u2 to colour 1, naming

the resulting 2-dicolouring ˆ︁α. Then, we consider G⃗
′

= G⃗ − ¶v, u1, u2♢ and let ˆ︁α′ be

the restriction of ˆ︁α to G⃗
′
. By minimality of G⃗, G⃗

′
is 2-mixing. In particular, there is

a redicolouring sequence from ˆ︁α′ to its mirror. Along this sequence, since we initially

set ˆ︁α′(w1) ̸= ˆ︁α′(w2), there is a 2-dicolouring ᾰ′ of G⃗
′
such that ᾰ′(w1) = ᾰ′(w2). The
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redicolouring sequence from ˆ︁α′ to ᾰ′ in G⃗
′
directly extends to a redicolouring sequence

from ˆ︁α to a 2-dicolouring ᾰ in G⃗. Indeed, in ˆ︁α, both u1 and u2 are coloured differently
from their lonely neighbour v, and v has no other in-neighbours, thus applying the
same sequence in ˆ︁α does not create any monochromatic directed cycle. After this
recolouring, we obtain dicolouring ᾰ such that ᾰ(w1) = ᾰ(w2), allowing us to apply
one of the first two items to recolour v with 1.

We have shown that there is a (possibly empty) redicolouring sequence from α to a 2-
dicolouring α∗ such that α∗(v) = β(v) = 1. We now start from α∗, set both u1 and u2 to

2, and name the resulting 2-dicolouring ˜︁α. Consider G⃗
′

= G⃗ − ¶v, u1, u2♢ and ˜︁α′, β′ the

restrictions of ˜︁α and β to G⃗
′
. By minimality of G⃗, there is a redicolouring sequence from

˜︁α′ to β′ in G⃗
′
. This redicolouring sequence immediately extends to G⃗, by keeping ˜︁α on

v, u1, u2, and we may only need to alter the colour of u1 and u2 at the end. Therefore, there
is a redicolouring sequence from α to β, a contradiction. This proves (i).

(ii) Follows directly from (i) by Claim 7.6.9.

(iii) By (i) and (ii), we may assume that u1 and w1 are the in-neighbours of v and u2 and w2

are the out-neighbours of v. Assume for the sake of contradiction that (iii) does not hold,
that is:

For any 2-dicolouring ξ of G⃗, such that ξ(u1) = ξ(u2) and ξ(v) = ξ(w1) = ξ(w2)

with ξ(v) ̸= ξ(u1), there is a redicolouring sequence from ξ to a 2-dicolouring ξ′ (♠)

such that for at least one vertex x in N [v], ξ(x) ̸= ξ′(x).

Assuming this, we will prove that there is a redicolouring sequence from α to β, which is a
contradiction, showing the existence of γ.

First we show that there is a redicolouring sequence from α to some dicolouring ˜︁α, where
˜︁α(w1) ̸= ˜︁α(w2). We assume without loss of generality that α(v) = 1. If α(w1) ̸= α(w2),
we let ˜︁α = α, otherwise, α(w1) = α(w2) and we distinguish two cases according to the
colour of α(w1).

• Assume α(w1) = α(w2) = 2 ̸= α(v). Starting from α, we first set both u1 and u2 to

2. Then, we consider G⃗
′

= G⃗ − ¶u1, u2, v♢, which must be 2-mixing by minimality

of G⃗. In particular, there is a redicolouring sequence in G⃗
′

from α′, the restriction of

α to G⃗
′
, to its mirror α′. Along this sequence, we let ˜︁α′ be the first dicolouring where

w1 and w2 are coloured differently. The redicolouring sequence from α′ to ˜︁α′ in G⃗
′

directly extends to a redicolouring sequence from α to ˜︁α in G⃗. Indeed, we keep v
coloured 1 and u1 and u2 coloured 2 throughout the sequence, which does not create
any monochromatic directed cycle since v does not have any neighbour coloured 1
until reaching ˜︁α, when it has exactly one.

• Assume α(w1) = α(w2) = 1 = α(v). Starting from α, we first set both u1 and u2 to
2. Now by (♠) there is a redicolouring sequence from α to a 2-dicolouring ˆ︁α where
one vertex x in N [v] has a different colour. If x is w1 or w2, then we are done. If x
is v, then we are done by the previous case. Finally if x is u1 or u2, then v has three
neighbours coloured 1, hence v can be recoloured 2, and we are done by the previous
case (swapping the roles of colours 1 and 2).
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The same proof applies to β to yield a redicolouring sequence from β to some 2-dicolouring
˜︁β such that ˜︁β(w1) ̸= ˜︁β(w2). It now suffices to exhibit a redicolouring sequence from ˜︁α to
˜︁β.

Consider G⃗
′

= G⃗ − ¶v, u1, u2♢, which is 2-mixing by minimality of G⃗, giving us a redi-
colouring sequence ˜︁α′ = η′

0, . . . , η
′
r = ˜︁β′, where ˜︁α′ and ˜︁β′ are the restrictions of ˜︁α and ˜︁β to

G⃗
′
. We will extend this redicolouring sequence to G⃗. To do so, for i = 1 to r, we show that

there exists a 2-dicolouring ηi of G⃗ such that η′
i is the restriction of ηi on G⃗

′
, and there is

a redicolouring sequence from ηi−1 to ηi. To ensure that extending this sequence does not
create any monochromatic directed cycle, we will maintain the property that ¶v, w1, w2♢ is
not monochromatic in each ηi.

We first set η0 to ˜︁α. Since ˜︁α(w1) ̸= ˜︁α(w2), ¶v, w1, w2♢ is not monochromatic in η0.
Assume now that ηi−1 exists, and let us define ηi. Let xi be the vertex that is recoloured
from η′

i−1 to η′
i. Without loss of generality, say v is coloured 1 in ηi−1. We may assume that

ηi−1(u1) = ηi−1(u2) = 2, otherwise we may recolour them. Then, if recolouring xi does
not break the invariant that ¶v, w1, w2♢ is not monochromatic, we can recolour xi without
creating any monochromatic directed cycle and obtain the desired ηi. Indeed, a resulting
monochromatic directed cycle cannot contain u1 or u2, so it must contain v and therefore
both w1 and w2, which are coloured differently. If recolouring xi breaks the invariant,
xi must belong to ¶w1, w2♢. Assume then that xi = w1, and recolouring w1 breaks the
invariant. This implies that w2 is currently coloured 1 and w1 will be recoloured from
colour 2 to colour 1. In this case, all in-neighbours of v are coloured 2, allowing us to first
recolour u2 without creating any monochromatic directed cycle. Now, all out-neighbours
of v are coloured 1, letting us set v to colour 2. We finally can recolour w1 to colour 1
and we get the desired ηi extending η′

i and preserving the invariant. The arguments hold
symmetrically when the recoloured vertex xi is w2.

Concatenating the resulting sequences ηi−1, ..., ηi for i ∈ [1, r], we obtain a redicolour-

ing sequence from ˜︁α to a 2-dicolouring β∗ which agrees with ˜︁β on V (G⃗
′
). Moreover,

¶v, w1, w2♢ is not monochromatic in β∗. We now turn to exhibiting a redicolouring se-
quence from β∗ to ˜︁β. Let us assume, without loss of generality, that β∗(v) = 1. We may
first set u1 and u2 to colour 2, as v is their lonely neighbour. We show how to recolour v to

colour 2, when required, without affecting the colours of V (G⃗
′
). Note that ˜︁β is a dicolour-

ing, so any monochromatic directed cycle resulting from recolouring v must use one of u1

or u2. We distinguish two cases depending on the colour of ˜︁β(w1).

• If ˜︁β(w1) = 1, we know by assumption on ˜︁β that ˜︁β(w2) = 2. Now, all out-neighbours
of v are coloured 2, letting us first recolour u1 to 1. Then, all in-neighbours of v are
coloured 1, letting us set v to colour 2.

• If ˜︁β(w1) = 2, we know by assumption that ˜︁β(w2) = 1. Symmetrically, all in-
neighbours of v are coloured 2, letting us recolour u2 to 1. Then, all out-neighbours
of v are coloured 1, letting us recolour v to 2.

Finally, if necessary, we may recolour u1 and u2. To do so, we may initially set u1 and u2

to the colour different from ˜︁β(v). Then, if only one of u1, u2 needs to be recoloured, this
can be done since ˜︁β is a dicolouring. If both need to be recoloured, this can also be done in
any order, as any resulting monochromatic directed cycle would also exist in ˜︁β. This yields
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redicolouring sequence from ˜︁α to ˜︁β, which together with the redicolouring sequences from
α to ˜︁α and β to ˜︁β yields a redicolouring sequence from α to β, a contradiction. This achieves
to prove (iii).

(iv) This is a consequence of (iii), let us consider the dicolouring γ given by (iii) with γ(u1) =
γ(u2) = 1 and γ(v) = γ(w1) = γ(w2) = 2. In γ, u2 cannot be recoloured to 2, therefore
there is a (u2, w1)-path with internal vertices coloured 2. If d(w1) = 3, then w1 could be
recoloured 1 because its out-neighbour v is coloured 2 and one of its in-neighbours is either
coloured 2 or is u2, whose unique in-neighbour v is coloured 2. This would contradict (iii),
hence d(w1) ≥ 4. We can show symmetrically that d(w2) ≥ 4, achieving to prove (iv).

♢

Claim 7.6.15. If v is a 4-vertex, then |N(v) ∩ V3| ≤ 2.

Proof of claim. This is a direct consequence of Claims 7.6.11, 7.6.12, 7.6.13 and 7.6.14. ♢

We shall now use the Discharging Method. The initial charge of each vertex x is d(x), and we
apply the following rules:

(R1) Each vertex x such that d(x) = 3 and |N(x) ∩ V3| ≥ 2 receives 1
2 charge from its lonely

neighbour.

(R2) Each vertex x such that d(x) = 3 and |N(x) ∩ V3| ≤ 1 receives 1
4 from each of its (≥ 4)-

neighbours.

Let us now show that the final charge w∗(x) of a vertex x in G⃗ is at least 7
2 , showing that

|A| ≥ 7
4 |V |, which contradicts the assumption |A| < 7

4 |V |.

• Assume d(x) = 3 and |N(u) ∩ V3| ≥ 2, then x receives 1
2 by (R1). Hence w∗(x) =

d(x) + 1
2 = 7

2 .

• Assume d(x) = 3 and |N(u) ∩ V3| ≤ 1, then x receives 1
4 by (R2) at least twice. Hence

w∗(x) ≥ d(x) + 1
2 = 7

2 .

• Assume d(x) = 4. By Claim 7.6.10, x does not give any charge through (R1), and by
Claim 7.6.15 it gives at most twice 1

4 by (R2). Hence w∗(x) ≥ d(x)− 2 · 1
4 = 7

2 .

• Assume d(x) = 5. If x gives 1
2 charge at least once by (R1), then by Claim 7.6.10, x has at

least two neighbours that did not take any charge from x. Thereforew∗(x) ≥ d(x)−3× 1
2 =

7
2 .

If x does not give by (R1), then it gives at most 1
4 to each of its neighbours. Thus w∗(x) ≥

d(x)− d(x)× 1
4 = 15

4 > 7
2 .

• Finally, assume d(x) ≥ 6. By Claim 7.6.11, x gives 1
2 by (R1) to at most d(x) − 2 of its

neighbours. Thus w∗(x) ≥ d(x)− 1
2(d(x)− 2)− 2× 1

4 = d(x)
2 + 1

2 ≥ 7
2 .

This completes the proof of Theorem 7.6.4.
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7.7 Further research directions

This chapter gives some results on digraph redicolouring. This is obviously just the tip of the
iceberg and many open questions arise. Forthwith, we detail a few of them.

In Section 7.2, we proved that k-DICOLOURING PATH is PSPACE-complete for all k ≥ 2.
But we did not prove any complexity result about DIRECTED IS k-MIXING.

Problem 7.7.1. What is the complexity of DIRECTED IS k-MIXING?

We believe that this is PSPACE-hard for all k ≥ 2. To settle the complexity of DIRECTED

IS k-MIXING, it could be helpful to settle the complexity of the following particular case of 2-
DICOLOURING PATH. (Recall that the mirror of a 2-dicolouring α of D, is the 2-dicolouring α of
D such that α(v) ̸= α(v) for all v ∈ V (D).)

MIRROR-REACHABILITY

Input: A 2-dicolouring α of a digraph D.
Output: Is there a path between α and its mirror α in D2(D)?

Problem 7.7.2. What is the complexity of MIRROR-REACHABILITY?

A particular case of non k-mixing digraphs are k-freezable digraphs. It would then be inter-
esting to consider the complexity of the following problem.

DIRECTED IS k-FREEZABLE

Input: A k-dicolourable digraph D.
Output: Is D k-freezable?

Note that deciding whether a digraph is k-freezable is NP-complete in general, since we can
reduce easily from k-dicolourability for all k ≥ 2. Indeed, for a digraph D, let D′ be the digraph
obtained from D by adding to each vertex v ∈ V (D) a complete bidirected graph Kv

k which con-
tains v and k−1 new vertices. Trivially,D′ is k-dicolourable if and only ifD is k-dicolourable, and
every k-dicolouring of D′ (if one exists) is necessarily frozen because of the complete bidirected
graphs. Therefore, D′ is k-freezable if and only if D is k-dicolourable.

A related problem is the one of deciding whether a vertex is frozen in a given k-dicolouring α
of a digraph D. Recall that a vertex v is frozen in α if β(v) = α(v) for any k-dicolouring β in the
same connected component of α in Dk(D).

k-FROZEN VERTEX

Input: A digraph D, a k-dicolouring α of D, and a vertex v of D.
Output: Is v frozen in α?

2-FROZEN VERTEX is PSPACE-complete. This comes from the following result from [98]:
given a cubic graph G, a mapping ϕ : V (G) −→ ¶1, 2♢, a proper orientation G⃗ of G, and an edge
xy of G, deciding whether there is a reorienting sequence from G⃗ that reverse xy is PSPACE-
complete. Hence, the same reduction as the one used for Theorem 7.2.1 also yields PSPACE-
completeness of 2-FROZEN VERTEX.

One can then easily derive that k-FROZEN VERTEX is PSPACE-complete for any k ≥ 2.
Indeed, consider a (non-acyclic) digraph D2 and a 2-dicolouring α2 of D2. Let Dk be the di-
graph obtained the disjoint union of D2 and bidirected complete graph

←→
K k−2 on k − 2 vertices
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g

k
4 5 6 7 9 ≥ 10

3 +∞ +∞ +∞ O(n6) [42] O(n2) [42] O(n) [65]

4 +∞ O(n4) [42] O(n log3 n) [73] O(n) [66] - -

5 < +∞ [22] O(n log2 n) [73] - - - -

6 O(n3) [42] O(n) [22] - - - -

≥ 7 O(n logn) [73] - - - - -

Table 7.2: Bound on the diameter of Ck(G) when G is a planar graph with girth at least g. The
value ‘+∞’ means that there exists a graph for which Ck(G) is not connected, and the value
‘< +∞’ means that Ck(G) is connected but no reasonable upper bound is known.

y1, . . . , yk−2 and adding a digon between any vertex of D2 and any vertex of
←→
K k−2. Let αk be

the k-dicolouring of Dk defined by αk(v) = α2(v) for all v ∈ V (D2) and αk(yi) = i + 2 for
every i ∈ [k− 2]. One can easily check that a vertex v in V (D2) is frozen in α2 if and only if it is
frozen in αk.

In this chapter, we generalised several evidence for Cereceda’s conjecture to digraphs. In
particular, our results give more support to Conjecture 7.1.9. Using Proposition 7.5.4, an analogue
question is the following.

Question 7.7.3. Let k ∈ N and D be a digraph such that k ≥ dtw(D) + 2. Is it true that

diam(Dk(D)) = O(n(D)2)?

The same question remains open when we replace directed treewidth by DAG-width or Kelly-
width. In every case, if true, it would give another generalisation of Theorem 7.1.8.

Note that Conjecture 7.1.9 implies Conjecture 7.1.2. We ask if the converse is true.

Question 7.7.4. Does proving Cereceda’s conjecture for undirected graphs imply its analogue in

digraphs?

Finally, we pose a few questions on redicolouring planar digraphs. Using Theorem 7.5.1, we
know that every result on recolouring planar graphs extends to digraphs (up to a factor two). In
particular, numerous results from [22, 42, 66, 73], that we recap in Table 7.2, remain true on
digraphs by taking the girth of the underlying graph.

We ask if these results can be improved for oriented planar graphs. Using results of this
chapter, we obtain bounds on the diameter of Dk(G⃗) when G⃗ is an oriented planar graph. We
recap them in Table 7.3 and pose the following conjecture about the missing values in it.

Conjecture 7.7.5. Every oriented planar graph is 3-mixing.

Conjecture 7.7.6. Every oriented planar graph G⃗ with girth(G⃗) ≥ 4 is 2-mixing.

Recall the celebrated conjecture of Neumann-Lara (Conjecture 1.2.4) stating that every ori-
ented planar graph has dichromatic number at most 2. As a partial result, one may explore the
following question which, if true, implies that Question 7.7.5 is a consequence of Neumann-Lara’s
conjecture.

Conjecture 7.7.7. Every oriented planar graph G⃗ with χ⃗(G) ≤ 2 is 3-mixing.
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g

k
2 3 4 5 6

3 +∞ Rmk. 7.6.1 ? O(n3) Th. 7.3.2 O(n log3(n)) Cor. 7.3.4 O(n) Th. 7.3.13

4 ? O(n2) Th. 7.3.9 O(n) Th. 7.3.13 - -

5 < +∞ Th. 7.6.4 O(n log(n)) Cor. 7.3.4 - - -

Table 7.3: Bound on the diameter of Dk(G⃗) when G⃗ is an oriented planar graph with girth at least
g. The value ‘?’ means that we do not know whether Dk(G⃗) is connected.



CHAPTER 8
Conclusion and

perspectives

In this thesis, we established a number of results on digraph dicolouring, aiming to gain

deeper insight into the distinctions and the parallels between graph colouring and its

directed counterpart. We detail in this chapter a few questions related to this topic that

remain open, including both well-known classical problems and inquiries emerging from

recent advances.

8.1 Original problems due to Erdős and Neumann-Lara . . . . . . . 203

8.2 Digraphs with bounded maximum degree . . . . . . . . . . . . . 204

8.3 An analogue of a conjecture of Tarsi for digraphs . . . . . . . . 205

8.4 Dichromatic number of the product of two digraphs . . . . . . . 205

8.1 Original problems due to Erdős and Neumann-Lara

We start with three old problems posed by Neumann-Lara when he introduced the notions of
dicolouring and dichromatic number. The first one asks for the dichromatic number of oriented
planar graphs. As mentioned at the beginning of this thesis (Proposition 1.2.3), oriented planar
graphs are 3-dicolourable, but Neumann-Lara conjectured that they are indeed 2-dicolourable.
This conjecture can be seen as the analogue of the Four Colour Theorem (Theorem 1.1.1) for
digraphs.

Conjecture 8.1.1 (Neumann-Lara [134]). Every oriented planar graph is 2-dicolourable.

In Chapter 3 we presented some upper bounds on the dichromatic number of oriented graphs
with bounded maximum degree ∆. All these bounds are linear in ∆, and it is still open whether
the dichromatic number of an oriented graph G⃗ is bounded above by a sublinear function of
∆(UG(G⃗)). Erdős and Neumann-Lara conjectured that it is indeed the case.

Conjecture 8.1.2 (Erdős and Neumann-Lara (see [69])). Let G⃗ be an orientation of a graph G,

then

χ⃗(G⃗) = O

(︃
∆(G)

log ∆(G)

)︃
.

203
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Note that, if true, Conjecture 8.1.2 can be seen as the directed counterpart of Johansson’s
seminal result (Theorem 1.1.8). It is also natural to ask for a generalisation of Conjecture 1.1.9
stating that every H-free graph G satisfies χ(G) = O

⎞
∆(G)

ln ∆(G)

)︂
.

Conjecture 8.1.3. For every fixed digraph H , there exists a positive constant cH such that every

H-free digraph D satisfies χ⃗(G) ≤ cH
∆(D)

ln ∆(D) .

For our last problem, let us define the dichromatic number χ⃗(G) of an undirected graph G
as the maximum dichromatic number over all its orientations. Clearly, every graph G satisfies
χ⃗(G) ≤ χ(G). Erdős and Neumann-Lara conjectured that indeed these two parameters are func-
tionally equivalent.

Conjecture 8.1.4 (Erdős and Neumann-Lara (see [69])). There exists a function f : N → N such

that every graph G satisfies

χ(G) ≤ f(χ⃗(G)).

This conjecture is widely open, as it is not even known whether graphs of arbitrarily large
chromatic number have dichromatic number at least 3. Mohar and Wu [130] proved the fractional
version of the conjecture.

8.2 Digraphs with bounded maximum degree

As mentioned in Chapter 6, Harutyunyan and Mohar [94] proved the existence of digraphsD with
arbitrarily large girth and dichromatic number at least c · ∆(D)

log(∆(D)) for some absolute constant c.
This generalises a result of Bollobas [29] and implies that Conjecture 8.1.2, if true, would be best
possible. In the light of this result, together with Rambaud we remarked that even the following
weakening of Conjecture 8.1.2 is open.

Conjecture 8.2.1. There is a function g and a constant c > 0 such that every digraph D satisfies

at least one of the following:

• digirth(D) < g(∆(D)), or

• χ⃗(D) < c · ∆(D)
log(∆(D)) .

It motivated us to pose the following stronger conjecture (Conjecture 6.7.4 in Chapter 6).

Conjecture 8.2.2. There is a function g and a constant c > 0 such that, for every pair of digraphs

F,D, at least one of the following holds:

• digirth(D) < g(F ), or

• χ⃗(D) < c · ∆(F )
log ∆(F ) , or

• D contains F as a subdivision.

Observe that Conjecture 8.2.2 implies Conjecture 8.2.1 when F is set to an oriented star on
∆(D) + 2 vertices.
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8.3 An analogue of a conjecture of Tarsi for digraphs

Let G = (V,E = E1 ∪ E2) be a graph such that G1 = (V,E1) is a forest and G2 = (V,E2)
is 2-degenerate. Such a graph is called a (1, 2)-composed graph. It is easy to show that every
(1, 2)-composed graph is 6-colourable, and that K5 is a (1, 2)-composed graph. Tarsi conjectured
the following.

Conjecture 8.3.1 (Tarsi (see [101, Problem 4.2])). If G is a (1, 2)-composed graph, then χ(G) ≤
5.

Tarsi’s conjecture is still widely open. It has been generalised to (m1, . . . ,ms)-composed
graphs, which are unions of s graphs G1, . . . , Gs such that Gi is mi-degenerate, by Klein and
Schönheim in [107] (see [108]).

It is natural to investigate whether there are generalisations of Conjecture 8.3.1 for dicolour-
ing depending on the various possible definitions of degeneracy for a digraph. If we use the
c-degeneracy, the min-degeneracy there is no hope for an analogue of Conjecture 8.3.1 because
every digraph D = (V,A) admits a partition of its arc-set A = A1 ∪ A2 in such a way that both
D1 = (V,A1) and D = (V,A2) are acyclic (i.e. have min-degeneracy 0).

However, an analogue of the conjecture can be considered when we use the max-degeneracy.
Analogously to the min-degeneracy, the max-degeneracy of a digraphD is the least integer d such
that every subdigraph H of D contains a vertex v satisfying dmax(v) ≤ d. We say that a digraph
D = (V,A) is (1, 2)-composed if there exists a partition A = A1 ∪ A2 such that D1 = (V,A1)
is 1-max-degenerate and D2 = (V,A2) is 2-max-degenerate. Again, every (1, 2)-composed

digraph has dichromatic number at most 6, and
←→
K5 is a (1, 2)-composed digraph. We believe that

the following generalisation of Tarsi’s conjecture holds.

Conjecture 8.3.2. If D is a (1, 2)-composed digraph, then χ⃗(D) ≤ 5.

It is clear that Conjecture 8.3.2 implies Conjecture 8.3.1, but we do not know if the converse is
true, that is if the two conjectures are indeed equivalent. One way to prove it would be to answer
the following by the affirmative.

Question 8.3.3. Is it true that, for every (1, 2)-composed digraphD = (V,A), there exists F ⊆ Q
such that D′ = (V, F ) is acyclic and UG(D \ F ) is a (1, 2)-composed graph?

Motivated by the question above, we conjecture the following.

Conjecture 8.3.4. There exists a constant ε > 0 such that for every digraph D = (V,A), there

exists F ⊆ A such that D1 = (V, F ) is acyclic and D2 = (V,A \ F ) satisfies

Mad(D2) ≤ (1− ε) ·Mad(D).

Observe that this is false when ε > 1
2 because of bidirected graphs. We are inclined to believe

that it turns out to be true even for ε = 1
2 .

8.4 Dichromatic number of the product of two digraphs

There exist different definitions of the product of graphs or digraphs. For each of these definitions,
given two digraphs D1, D2, it is natural to ask for an expression of the dichromatic number of the
product ofD1 andD2 depending only on χ⃗(D1) and χ⃗(D2). For the undirected case, the interested
reader is referred to the survey of Klavžar [106]. In this section, we study these questions for the
tensor product and the Cartesian product.
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Tensor product

The tensor product G1×G2 of two graphsG1 andG2 is the graph with vertex-set V (G1)×V (G2)
in which (u1, u2) is adjacent to (v1, v2) if and only if u1v1 is an edge of G1 and u2v2 is an edge of
G2. It is straightforward that χ(G1×G2) ≤ min¶χ(G1), χ(G2)♢. Hedetniemi made a celebrated
conjecture in 1966, stating that indeed equality holds for all G1, G2. This conjecture remained
open for a long time, until Shitov [157] refuted it in 2019.

Theorem 8.4.1 (Shitov [157]). There exist graphs G1, G2 such that

χ(G1 ×G2) < min¶χ(G1), χ(G2)♢.

Analogously to the undirected case, we define the tensor productD1×D2 of digraphsD1, D2

as the digraph with vertex-set V = V (D1) × V (D2) in which there is an arc from (u1, u2) to
(v1, v2) if and only if u1v1 is an arc of D1 and u2v2 is an arc of D2. Again, it is straightforward

that χ⃗(D1 × D2) ≤ min¶χ⃗(D1), χ⃗(D2)♢. Given two graphs G1, G2, observe that
←−−−−→
G1 ×G2 is

exactly
←→
G1 ×

←→
G2. Therefore, the analogue of Hedetniemi’s conjecture does not hold neither.

Harutyunyan and Puig i Surroca [95] asked whether Hedetniemi’s conjecture holds for oriented
graphs. We answer their question by the negative, using the result of Shitov and the following trick
introduced by Aboulker, Havet, Pirot, and Schabanel [9] for building oriented graphs with large
dichromatic number. For a graph G and integer k, we let G(k) be the blow-up of G with power k,
that is the graph with vertex-set V (G) × [k] in which (u, i) is adjacent to (v, j) whenever i ̸= j
and uv is an edge of G.

Lemma 8.4.2 (Aboulker et al. [9]). For every graph G, there exists an integer k such that, for

every ℓ ≥ k,

χ⃗(G(ℓ)) = χ(G).

Proposition 8.4.3. There exist oriented graphs G⃗1, G⃗2 with

χ⃗(G⃗1 × G⃗2) < min¶χ⃗(G⃗1), χ⃗(G⃗2)♢.

Proof. Let G1 and G2 be two graphs such that χ(G1 × G2) < min¶χ(G1), χ(G2)♢ = s, the

existence of which is guaranteed by Theorem 8.4.1. Let k be an integer such that χ⃗(G
(k)
1 ) =

χ(G1) and χ⃗(G
(k)
2 ) = χ(G2), the existence of which is guaranteed by Lemma 8.4.2. We fix

two orientations G⃗
(k)

1 and G⃗
(k)

2 of G(k)
1 and G(k)

2 respectively, such that χ⃗(G⃗
(k)

1 ) = χ(G1) and

χ⃗(G⃗
(k)

2 ) = χ(G2). We now justify that

χ⃗(G⃗
(k)

1 × G⃗
(k)

2 ) < min

⎭
χ⃗(G⃗

(k)

1 ), χ⃗(G⃗
(k)

2 )

}︃
= s,

which implies the result. It is sufficient to prove that χ(G
(k)
1 × G

(k)
2 ) < s, as the dichromatic

number is bounded above by the chromatic number. By choice of G1 and G2, there exists a proper
(s − 1)-colouring α of G1 × G2. We let β be the (s − 1)-colouring of G(k)

1 × G(k)
2 defined as

β
⎞
((u1, i), (u2, j))

)︂
= α

⎞
(u1, u2)

)︂
for every ((u1, i), (u2, j)) ∈ V (G

(k)
1 )× V (G

(k)
2 ).

Assume for a contradiction that G(k)
1 × G

(k)
2 , coloured with β, contains a monochromatic

edge ¶((u1, i), (u2, j)), ((v1, i
′), (u2, j

′))♢. By definition, ¶(u1, i), (v1, i
′)♢ is an edge of G(k)

1 and
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¶(u2, j), (v2, j
′)♢ is an edge of G(k)

2 . Hence ¶u1, v1♢ is an edge of G1 and ¶u2, v2♢ is an edge of
G2, implying that ¶(u1, u2), (v1, v2)♢ is an edge of G1 × G2. Hence G1 × G2, coloured with α,
contains a monochromatic edge, a contradiction.

When they studied Hedetniemi’s conjecture, Poljak and Rödl [142] defined the function f(n)
as follows:

f(n) = min¶χ(G1 ×G2) | χ(G1) = χ(G2) = n♢.
The following is a weakening of Hedetniemi’s conjecture which is still open.

Conjecture 8.4.4. The function f(n) tends to infinity.

It is known that either f(n) tends to infinity or f(n) ≤ 9 for all n ∈ N (see [170]). In the same
vein, we define g(n) as follows:

g(n) = min¶χ⃗(D1 ×D2) | χ⃗(D1) = χ⃗(D2) = n♢.

The following is the directed counterpart of Conjecture 8.4.4.

Conjecture 8.4.5. The function g(n) tends to infinity.

Clearly, Conjecture 8.4.5 implies Conjecture 8.4.4. We ask for the equivalence.

Question 8.4.6. Does Conjecture 8.4.4 imply Conjecture 8.4.5?

Cartesian product

The Cartesian product D1 □D2 of two digraphs D1, D2 is the digraph with vertex-set V (D1) ×
V (D2) which contains an arc from (u1, u2) to (v1, v2) if and only if u1 = v1 and u2v2 ∈ A(D2)
or u2 = v2 and u1v1 ∈ A(D1). We clearly have χ⃗(D1 □D2) ≥ max¶χ⃗(D1), χ⃗(D2)♢ (except if
one ofD1, D2 is empty) sinceD1□D2 contains bothD1 andD2 as subdigraphs. Harutyunyan and
Puig i Surroca [95] proved that indeed equality holds, so if D1, D2 are two non-empty digraphs,
then

χ⃗(D1 □D2) = max¶χ⃗(D1), χ⃗(D2)♢.
5he dichromatic number of Cartesian products of digraphs is therefore well-understood. How-

ever, it is not clear what is happening for the dichromatic number of Cartesian products of undi-
rected graphs. The Cartesian product G1 □G2 of two graphs is the underlying graph of

←→
G1 □

←→
G2.

If G1, G2 are two non-empty graphs, we clearly have χ⃗(G1 □ G2) ≥ max¶χ⃗(G1), χ⃗(G2)♢.
However, equality does not occur in general, for instance K2 □K2 is C4, and we have χ⃗(C4) = 2
while χ⃗(K2) = 1. The following bound is straightforward:

χ⃗(G1 □G2) ≤ χ(G1) · χ⃗(G2).

It is natural to ask for the existence of a function f(k) such that χ⃗(G1 □ G2) ≤
f(max¶χ⃗(G1), χ⃗(G2)♢) for all graphs G1, G2. Observe that Conjecture 8.1.4, together with the
inequality above, implies the existence of such a function. We conjecture that not only such a
function exists, but even a linear one does.

Conjecture 8.4.7. There exists a constant c such that, for all graphs G1, G2,

χ⃗(G1 □G2) ≤ c ·max¶χ⃗(G1), χ⃗(G2)♢.
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The very first interesting case of the conjecture is for G1, G2 being the complete graph on
n vertices. In this case, we have χ⃗(Kn) = O

⎞
n

log n

)︂
, as shown by Erdős, Gimbel and Kratsch

in [70]. If true, the conjecture above implies χ⃗(Kn □Kn) = O
⎞

n
log n

)︂
. Observe that this bound is

also a consequence of Conjecture 8.1.2, since ∆(Kn□Kn) = 2(n−1). We thus ask the following.

Question 8.4.8. Is it true that χ⃗(Kn □Kn) = O
⎞

n
log n

)︂
?
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APPENDIX A
Appendix to Chapter 5

In this appendix we present the complete code used in the proof of Theorem 5.1.6. As

mentioned in Chapter 5, this is a joint work with Frédéric Havet and Florian Hörsch.

The code is implemented using SageMath and is accessible on the author’s GitHub web-

page.

We first give the adjacency matrices of T 1, T 2, T 3, and T 4 in Section A.1. In Section A.2,
we give a collection of useful subroutines we use in the main part of the code. In Sec-
tions A.3, A.4, A.5, and A.6, we give the code use in the proofs of Lemmas 5.4.5, 5.4.6, 5.4.8,
and 5.4.10, respectively.

A.1 The tournaments T 1, T 2, T 3, and T 4

We give the adjacency matrices of T 1, T 2, T 3, and T 4.

T 1 :

u1 u2 u3 u4 u5 u6 x1 x2 x3
⎡
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

u1 0 1 1 1 1 1 0 1 1

u2 0 0 1 1 1 1 1 1 1

u3 0 0 0 1 1 1 0 0 0

u4 0 0 0 0 1 1 0 1 0

u5 0 0 0 0 0 1 0 1 0

u6 0 0 0 0 0 0 1 1 1

x1 1 0 1 1 1 0 0 0 1

x2 0 0 1 0 0 0 1 0 1

x3 0 0 1 1 1 0 0 0 0
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T 2 :

u1 u2 u3 u4 u5 u6 x1 x2 x3
⎡
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

u1 0 1 1 1 1 1 0 1 1

u2 0 0 1 1 1 1 1 1 1

u3 0 0 0 1 1 1 1 0 0

u4 0 0 0 0 1 1 0 1 0

u5 0 0 0 0 0 1 0 1 0

u6 0 0 0 0 0 0 0 1 1

x1 1 0 0 1 1 1 0 1 0

x2 0 0 1 0 0 0 0 0 1

x3 0 0 1 1 1 0 1 0 0

T 3 :

u1 u2 u3 u4 u5 u6 x1 x2 x3
⎡
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

u1 0 1 1 1 1 1 0 0 0

u2 0 0 1 1 1 1 1 0 1

u3 0 0 0 1 1 1 1 0 1

u4 0 0 0 0 1 1 1 1 1

u5 0 0 0 0 0 1 0 0 0

u6 0 0 0 0 0 0 0 0 1

x1 1 0 0 0 1 1 0 1 1

x2 1 1 1 0 1 1 0 0 0

x3 1 0 0 0 1 0 0 1 0



Appendix to Chapter 5 221

T 4 :

u1 u2 u3 u4 u5 u6 x1 x2 x3
⎡
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

u1 0 1 1 1 1 1 0 0 1

u2 0 0 1 1 1 1 1 0 1

u3 0 0 0 1 1 1 1 0 1

u4 0 0 0 0 1 1 1 1 0

u5 0 0 0 0 0 1 0 0 0

u6 0 0 0 0 0 0 0 0 1

x1 1 0 0 0 1 1 0 1 0

x2 1 1 1 0 1 1 0 0 1

x3 0 0 0 1 1 0 1 0 0

A.2 Preliminaries for the code

In the following code, we give a collection of subroutines we use in our code.

1 # The following function displays a progress bar

2 def printProgressBar (iteration, total):

3 percent = ("{0:.1f}").format(100 * (iteration / float(total)))

4 filledLength = int(50 * iteration // total)

5 bar = "#" * filledLength + "-" * (50 - filledLength)

6 print(f"\rProcess: |{bar}| {percent}% Complete", end = "\r")

7 # Print New Line on Complete

8 if iteration == total:

9 print()

10

11 # k,n : integers such that k < 3**n

12 # Returns: the decomposition of k in base 3 of length n

13 def ternary(k,n):

14 b = 3**(n-1)

15 res=""

16 for i in range(n):

17 if(k >= 2*b):

18 k -= 2*b

19 res = res + "2"

20 elif(k >= b):

21 k -= b

22 res = res + "1"

23 else:

24 res = res + "0"

25 b /= 3

26 return res

27

28 # d: DiGraph
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29 # u: vertex

30 # v: vertex

31 # Returns: True if and only if d contains a directed path from u to v

32 def contains_directed_path(d,u,v):

33 to_be_treated = [u]

34 i=0

35 while(len(to_be_treated) != i):

36 x = to_be_treated[i]

37 if (x==v):

38 return True

39 for y in d.neighbors_out(x):

40 if (not y in to_be_treated):

41 to_be_treated.append(y)

42 i+=1

43 return False

44

45 # d: DiGraph

46 # u: vertex of d

47 # v: vertex of d

48 # current_colouring: partial 2-dicolouring with colours {0,1} of d such

that current_colouring[u] = current_colouring[v] = 0

49 # Returns: True if and only if current_colouring can be extended into a

2-dicolouring of d with no monochromatic directed path from u to v

.

50 def can_be_subgraph_of_3_dicritical_aux(d,u,v, current_colouring):

51 #build the colour classes

52 colours = {}

53 colours[0] = []

54 colours[1] = []

55 for (x,i) in current_colouring.items():

56 colours[i].append(x)

57 #check whether both colour classes are acyclic

58 for i in range(2):

59 d_i = d.subgraph(colours[i])

60 if(not d_i.is_directed_acyclic()):

61 return False

62 #check whether there is a monochromatic directed path from u to v

63 d_0 = d.subgraph(colours[0])

64 if(contains_directed_path(d_0,u,v)):

65 return False

66 #check whether current_colouring is partial

67 if(len(current_colouring) == d.order()):

68 return True

69 else:

70 #find a vertex x that is not coloured yet

71 x = len(current_colouring)

72 while(x in current_colouring):

73 x-=1

74 #check recursively whether current_colouring can be extended to

x

75 for i in range(2):

76 current_colouring[x] = i
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77 if(can_be_subgraph_of_3_dicritical_aux(d,u,v,

current_colouring)):

78 return True

79 current_colouring.pop(x, None)

80 return False

81

82 # d: DiGraph

83 # forbidden_subtournaments: list of DiGraphs

84 # Returns: True if and only if d is {forbidden_subdigraphs}-free, {

forbidden_induced_subdigraphs}-free and, for every arc (u,v) of d,

d admits a uv-colouring.

85 def can_be_subgraph_of_3_dicritical(d, forbidden_subdigraphs,

forbidden_induced_subdigraphs):

86 #check whether d contains a forbidden subgraph

87 for T in forbidden_subdigraphs:

88 if(d.subgraph_search(T, False) != None):

89 return False

90 #check whether d contains a forbidden induced subgraph

91 for T in forbidden_induced_subdigraphs:

92 if(d.subgraph_search(T, True) != None):

93 return False

94 #check for every arc uv if d admits a uv-colouring.

95 for e in d.edges():

96 d_aux = DiGraph(len(d.vertices()))

97 d_aux.add_edges(d.edges())

98 d_aux.delete_edge(e)

99 current_colouring = {}

100 current_colouring[e[0]] = 0

101 current_colouring[e[1]] = 0

102 if(not can_be_subgraph_of_3_dicritical_aux(d_aux,e[0],e[1],

current_colouring)):

103 return False

104 return True

105

106 # d: DiGraph

107 # Returns: True if and only if d is 2-dicolourable

108 def is_two_dicolourable(d):

109 n = d.order()

110 for bipartition in range(2**n):

111 #build the binary word corresponding to the bipartition

112 binary = bin(bipartition)[2:]

113 while(len(binary)<(n)):

114 binary = "0" + binary

115 #build the bipartition

116 V1 = []

117 V2 = []

118 for v in range(n):

119 if(binary[v] == ’0’):

120 V1.append(v)

121 else:

122 V2.append(v)

123 #check whether (V1,V2) is actually a dicolouring
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124 d1 = d.subgraph(V1)

125 d2 = d.subgraph(V2)

126 if(d1.is_directed_acyclic() and d2.is_directed_acyclic()):

127 return True

128 return False

129

130 #C3_C3 is the digraph made of two disjoint directed triangles, the

vertices of one dominating the vertices of the other

131 C3_C3 = DiGraph(6)

132 for i in range(3):

133 C3_C3.add_edge(i,(i+1)%3)

134 C3_C3.add_edge(i+3,((i+1)%3)+3)

135 for j in range(3,6):

136 C3_C3.add_edge(i,j)

137

138 #F is the digraph on nine vertices made of a TT6 u1,...,u6 and the arcs

of the directed triangles u1u2x1u1, u3u4x2u3, u5u6x3u5.

139 F = DiGraph(9)

140 for i in range(6):

141 for j in range(i):

142 F.add_edge(j,i)

143 F.add_edge(6,0)

144 F.add_edge(1,6)

145 F.add_edge(7,2)

146 F.add_edge(3,7)

147 F.add_edge(8,4)

148 F.add_edge(5,8)

149

150 #TT8 is the transitive tournament on 8 vertices

151 TT8 = DiGraph(8)

152 for i in range(8):

153 for j in range(i):

154 TT8.add_edge(j,i)

155

156 #reversed_TT8 is the set of tournaments, up to isomorphism, obtained

from TT8 by reversing exactly one arc

157 reversed_TT8 = []

158 for e in TT8.edges():

159 rev = DiGraph(8)

160 rev.add_edges(TT8.edges())

161 rev.delete_edge(e)

162 rev.add_edge(e[1],e[0])

163 check = True

164 for T in reversed_TT8:

165 check = check and (not T.is_isomorphic(rev))

166 if(check):

167 reversed_TT8.append(rev)

168

169 #K2 is the complete digraph on 2 vertices

170 K2 = DiGraph(2)

171 K2.add_edge(0,1)

172 K2.add_edge(1,0)
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173

174 #S4 is the bidirected star on 4 vertices

175 S4 = DiGraph(4)

176 for i in range(1,4):

177 S4.add_edge(i,0)

178 S4.add_edge(0,i)

179

180 #C3_K2 is the digraph with a directed triangle dominating a digon.

181 C3_K2 = DiGraph(5)

182 for i in range(3):

183 C3_K2.add_edge(i,(i+1)%3)

184 for j in range(3,5):

185 C3_K2.add_edge(i,j)

186 C3_K2.add_edge(3,4)

187 C3_K2.add_edge(4,3)

188

189 #K2_C3 is the digraph with a digon dominating a directed triangle

190 K2_C3 = DiGraph(5)

191 for i in range(3):

192 K2_C3.add_edge(i,(i+1)%3)

193 for j in range(3,5):

194 K2_C3.add_edge(j,i)

195 K2_C3.add_edge(3,4)

196 K2_C3.add_edge(4,3)

197

198 #K2_K2 is the digraph with a digon dominating a digon

199 K2_K2 = DiGraph(4)

200 for i in range(2):

201 K2_K2.add_edge(i,(i+1)%2)

202 K2_K2.add_edge(i+2,((i+1)%2)+2)

203 for j in range(2,4):

204 K2_K2.add_edge(i,j)

205

206 #O4 and O5 are the obstructions described in the paper.

207 O4 = DiGraph(4)

208 for i in range(1,4):

209 O4.add_edge(0,i)

210 for i in range(1,3):

211 O4.add_edge(i,3)

212 O4.add_edge(1,2)

213 O4.add_edge(2,1)

214

215 O5 = DiGraph(5)

216 for i in range(1,5):

217 O5.add_edge(0,i)

218 for i in range(1,4):

219 O5.add_edge(i,4)

220 O5.add_edge(1,2)

221 O5.add_edge(2,3)

222 O5.add_edge(3,1)
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A.3 Code used in the proof of Lemma 5.4.5

We here give the code used in the proof of Lemma 5.4.5.

1 load("tools.sage")

2

3 # binary_code: a string of fifteen characters ’0’ and ’1’

4 # Returns: a tournament of \mathcal{F}. The orientations of the fifteen

non-forced arcs correspond to the characters of binary_code.

5 def digraph_blowup_TT3(binary_code):

6 iterator_binary_code = iter(binary_code)

7 d = DiGraph(9)

8 #the vertices 0,...,8 correspond respectively to u_1,...,u_6,x_1,

x_2,x_3

9

10 #add the arcs of the TT_6

11 for i in range(6):

12 for j in range(i):

13 d.add_edge(j,i)

14

15 #add the arcs of the directed triangles

16 for i in range(3):

17 d.add_edge(6+i, 2*i)

18 d.add_edge(2*i+1, 6+i)

19

20 missing_edges=[(6,2),(6,3),(6,4),(6,5),(6,7),(6,8),(7,0),(7,1)

,(7,4),(7,5),(7,8),(8,0),(8,1),(8,2),(8,3)]

21 #we orient the missing_edges according to binary_code

22 for e in missing_edges:

23 if(next(iterator_binary_code) == ’0’):

24 d.add_edge(e[0],e[1])

25 else:

26 d.add_edge(e[1],e[0])

27 return d

28

29 print("Computing all possible candidates of \mathcal{F} for being a

subtournament of a 3-dicritical semi-complete digraph...")

30 list_candidates = []

31 list_forbidden_induced_subdigraphs = [C3_C3]

32

33 #print progress bar

34 printProgressBar(0, 2**15)

35 for i in range(2**15):

36 binary_value = bin(i)[2:]

37 while(len(binary_value)<15):

38 binary_value = ’0’ + binary_value

39 d = digraph_blowup_TT3(binary_value)

40 if(can_be_subgraph_of_3_dicritical(d,[],

list_forbidden_induced_subdigraphs)):

41 list_candidates.append(d)

42 #update progress bar

43 printProgressBar(i + 1, 2**15)
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44

45 print("Number of candidates: ",len(list_candidates),".")

46 for i in range(len(list_candidates)):

47 print("Candidate ",i+1,": ")

48 list_candidates[i].export_to_file("T"+str(i+1)+".pajek")

49 print(list_candidates[i].adjacency_matrix())

Running this code produces the following output after roughly 2 minutes of execution on a
standard desktop computer:

1 Computing all possible candidates of \mathcal{F} for being a

subtournament of a 3-dicritical semi-complete digraph...

2 Process: |##################################################| 100.0%

Complete

3 Number of candidates: 4 .

4 Candidate 1 :

5 [0 1 1 1 1 1 0 1 1]

6 [0 0 1 1 1 1 1 1 1]

7 [0 0 0 1 1 1 0 0 0]

8 [0 0 0 0 1 1 0 1 0]

9 [0 0 0 0 0 1 0 1 0]

10 [0 0 0 0 0 0 1 1 1]

11 [1 0 1 1 1 0 0 0 1]

12 [0 0 1 0 0 0 1 0 1]

13 [0 0 1 1 1 0 0 0 0]

14 Candidate 2 :

15 [0 1 1 1 1 1 0 1 1]

16 [0 0 1 1 1 1 1 1 1]

17 [0 0 0 1 1 1 1 0 0]

18 [0 0 0 0 1 1 0 1 0]

19 [0 0 0 0 0 1 0 1 0]

20 [0 0 0 0 0 0 0 1 1]

21 [1 0 0 1 1 1 0 1 0]

22 [0 0 1 0 0 0 0 0 1]

23 [0 0 1 1 1 0 1 0 0]

24 Candidate 3 :

25 [0 1 1 1 1 1 0 0 0]

26 [0 0 1 1 1 1 1 0 1]

27 [0 0 0 1 1 1 1 0 1]

28 [0 0 0 0 1 1 1 1 1]

29 [0 0 0 0 0 1 0 0 0]

30 [0 0 0 0 0 0 0 0 1]

31 [1 0 0 0 1 1 0 1 1]

32 [1 1 1 0 1 1 0 0 0]

33 [1 0 0 0 1 0 0 1 0]

34 Candidate 4 :

35 [0 1 1 1 1 1 0 0 1]

36 [0 0 1 1 1 1 1 0 1]

37 [0 0 0 1 1 1 1 0 1]

38 [0 0 0 0 1 1 1 1 0]

39 [0 0 0 0 0 1 0 0 0]

40 [0 0 0 0 0 0 0 0 1]

41 [1 0 0 0 1 1 0 1 0]
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42 [1 1 1 0 1 1 0 0 1]

43 [0 0 0 1 1 0 1 0 0]

The graphs in the output are exactly T1, T2, T3, and T4.

A.4 Code used in the proof of Lemma 5.4.6

We here give the code used in the proof of Lemma 5.4.6.

1 import networkx

2 load("tools.sage")

3

4 list_candidates = []

5 list_forbidden_induced_subdigraphs = [C3_C3]

6

7 #import T1, T2, T3 and T4

8 for i in range(1,5):

9 candidate = DiGraph(9)

10 nx = networkx.read_pajek("T"+str(i)+".pajek")

11 for e in nx.edges():

12 candidate.add_edge(int(e[0]),int(e[1]))

13 list_candidates.append(candidate)

14

15 print("We start from the ", len(list_candidates), " candidates on 9

vertices.")

16

17 #We want to prove that a 3-dicritical semi-complete digraph does not

contain a digraph in {F+,F-}. By directional duality, it is

sufficient to prove that it does not contain F+.

18 #For each candidate computed above, we try to add a new vertex that

dominates the transitive tournament, and then we build every

possible orientation between this vertex and the three other

vertices.

19 print("Computing for F+...")

20 list_Fp = []

21 printProgressBar(0, 8)

22 for orientation in range(2**3):

23 binary = bin(orientation)[2:]

24 while(len(binary)<3):

25 binary = ’0’ + binary

26 for T9 in list_candidates:

27 iterator = iter(binary)

28 T10 = DiGraph(10)

29 T10.add_edges(T9.edges())

30 for v in range(6):

31 T10.add_edge(9,v)

32 for v in range(6,9):

33 if(next(iterator) == ’0’):

34 T10.add_edge(v,9)

35 else:

36 T10.add_edge(9,v)
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37 check = can_be_subgraph_of_3_dicritical(T10,[],

list_forbidden_induced_subdigraphs)

38 if(check):

39 list_Fm.append(T2)

40 printProgressBar(orientation+1, 8)

41

42 print("Number of 1-extensions of {T1,T2,T3,T4} containing F+: ",len(

list_Fp))

Running this code produces the following output after roughly 1 second of execution on a
standard desktop computer:

1 We start from the 4 candidates on 9 vertices.

2 Computing for F+...

3 Process: |##################################################| 100.0%

Complete

4 Number of 1-extensions of {T1,T2,T3,T4} containing F+: 0

A.5 Code used in the proof of Lemma 5.4.8

We here give the code used in the proof of Lemma 5.4.8.

1 import networkx

2 load("tools.sage")

3

4 all_candidates = []

5 current_candidates = []

6 next_candidates = []

7

8 list_forbidden_subdigraphs = [S4, K2_K2, O4, O5, K2_C3, C3_K2, C3_C3]

9 list_forbidden_induced_subdigraphs = [TT8]

10

11 #import the candidates T1, ..., T4 on 9 vertices:

12 for i in range(1,5):

13 candidate = DiGraph(9)

14 nx = networkx.read_pajek("T"+str(i)+".pajek")

15 for e in nx.edges():

16 candidate.add_edge(int(e[0]),int(e[1]))

17 current_candidates.append(candidate)

18 print("We start from the tournaments {T^1,T^2,T^3,T^4} on 9 vertices,

and look for every possible completion of them that is potentially

a subdigraph of a larger 3-dicritical semi-complete digraphs.\n")

19

20

21 all_candidates.extend(current_candidates)

22 #completions of T1, ..., T4

23 while(len(current_candidates)>0):

24 for old_D in current_candidates:

25 for e in old_D.edges():

26 #we try to complete old_D by replacing e by a digon. It

actually makes sense only if e is not already in a digon.

27 if(not (e[1],e[0],None) in old_D.edges()):
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28 new_D = DiGraph(9)

29 new_D.add_edges(old_D.edges())

30 new_D.add_edge(e[1],e[0])

31 #we check whether this completion of old_D is

potentially a subdigraph of a larger 3-dicritical semi-complete

digraph.

32 check = can_be_subgraph_of_3_dicritical(new_D,

list_forbidden_subdigraphs, list_forbidden_induced_subdigraphs)

33 for D in next_candidates:

34 check = check and (not D.is_isomorphic(new_D))

35 if(check):

36 next_candidates.append(new_D)

37 all_candidates.extend(next_candidates)

38 current_candidates = next_candidates

39 next_candidates=[]

40

41 print("-----------------------------------------")

42 print("There are",len(all_candidates),"possible completions (up to

isomorphism) of {T^1,T^2,T^3,T^4} that are potentially subdigraphs

of a larger 3-dicritical semi-complete digraphs.\n")

43

44

45 count_dic_3 = 0

46 for D in all_candidates:

47 if(not is_two_dicolourable(D)):

48 count_dic_3 += 1

49 print(count_dic_3, " of them have dichromatic number at least 3. In

particular,",count_dic_3,"of them are 3-dicritical.\n")

50

51 current_candidates = all_candidates

52 next_candidates = []

53 for n in range(10,12):

54 #computes the extensions on n vertices of {T1,T2,T3,T4}

55 print("-----------------------------------------")

56 print("Computing "+str(n-9)+"-extensions of the candidates on 9

vertices that are potentially subtournaments of 3-dicritical

tournaments (up to isomorphism).")

57 printProgressBar(0, 3**(n-1))

58

59 for orientation in range(3**(n-1)):

60 ternary_code = ternary(orientation,n-1)

61 #build every 1-extension of current_candidates

62 for old_D in current_candidates:

63 new_D = DiGraph(n)

64 new_D.add_edges(old_D.edges())

65 for v in range(n-1):

66 if(ternary_code[v] == ’0’):

67 new_D.add_edge(v,n-1)

68 elif(ternary_code[v]==’1’):

69 new_D.add_edge(n-1,v)

70 else:

71 new_D.add_edge(v,n-1)
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72 new_D.add_edge(n-1,v)

73 check = can_be_subgraph_of_3_dicritical(new_D,

list_forbidden_subdigraphs,list_forbidden_induced_subdigraphs)

74 for D in next_candidates:

75 check = check and (not new_D.is_isomorphic(D))

76 if(check):

77 next_candidates.append(new_D)

78 printProgressBar(orientation+1, 3**(n-1))

79

80 print("Number of ", n-9,"-extensions up to isomorphism: ",len(

next_candidates))

81 #check if one of the candidates has dichromatic number at least 3.

82 count_dic_3 = 0

83 for D in next_candidates:

84 if(not is_two_dicolourable(D)):

85 count_dic_3 += 1

86 print(count_dic_3, " of them have dichromatic number at least 3. In

particular,", count_dic_3,"of them are 3-dicritical.\n")

87 current_candidates = next_candidates

88 next_candidates = []

Running this code produces the following output after roughly 12 minutes of execution on a
standard desktop computer:

1 We start from the tournaments {T^1,T^2,T^3,T^4} on 9 vertices, and look

for every possible completion of them that is potentially a

subdigraph of a larger 3-dicritical semi-complete digraphs.

2

3 -----------------------------------------

4 There are 14 possible completions (up to isomorphism) of {T^1,T^2,T^3,T

^4} that are potentially subdigraphs of a larger 3-dicritical semi-

complete digraphs.

5

6 0 of them have dichromatic number at least 3. In particular, 0 of them

are 3-dicritical.

7

8 -----------------------------------------

9 Computing 1-extensions of the candidates on 9 vertices that are

potentially subtournaments of 3-dicritical tournaments (up to

isomorphism).

10 Process: |##################################################| 100.0%

Complete

11 Number of 1 -extensions up to isomorphism: 34

12 0 of them have dichromatic number at least 3. In particular, 0 of them

are 3-dicritical.

13

14 -----------------------------------------

15 Computing 2-extensions of the candidates on 9 vertices that are

potentially subtournaments of 3-dicritical tournaments (up to

isomorphism).

16 Process: |##################################################| 100.0%

Complete

17 Number of 2 -extensions up to isomorphism: 0
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18 0 of them have dichromatic number at least 3. In particular, 0 of them

are 3-dicritical.

A.6 Code used in the proof of Lemma 5.4.10

We here give the code used in the proof of Lemma 5.4.10.

1 load("tools.sage")

2

3 def possible_completions(graph_to_complete, nb_vertices,

list_forbidden_subdigraphs, list_forbidden_induced_subdigraphs,

progress=0):

4 if(progress == nb_vertices-1):

5 return [graph_to_complete]

6 else:

7 result = []

8 for i in range(3):

9 #we make a copy of the graph_to_complete

10 new_D = DiGraph(nb_vertices)

11 new_D.add_edges(graph_to_complete.edges())

12

13 #we consider every possible orientation between the

vertices (nb_vertices-1) and (progress)

14 if(i==0):

15 new_D.add_edge(nb_vertices-1, progress)

16 elif(i==1):

17 new_D.add_edge(progress, nb_vertices-1)

18 else:

19 new_D.add_edge(nb_vertices-1, progress)

20 new_D.add_edge(progress, nb_vertices-1)

21

22 #for each of the 3 possible orientations, we check whether

the obtained digraph is already an obstruction. If it is not, we

compute all possible completions recursively

23 if(can_be_subgraph_of_3_dicritical(new_D,

list_forbidden_subdigraphs, list_forbidden_induced_subdigraphs)):

24 result.extend(possible_completions(new_D, nb_vertices,

list_forbidden_subdigraphs, list_forbidden_induced_subdigraphs,

progress+1))

25 return result

26

27 for tt in range(1,8):

28 transitive_tournament = DiGraph(tt)

29 for i in range(tt):

30 for j in range(i):

31 transitive_tournament.add_edge(j,i)

32

33 next_transitive_tournament = DiGraph(tt+1)

34 for i in range(tt+1):

35 for j in range(i):

36 next_transitive_tournament.add_edge(j,i)
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37

38 list_forbidden_subdigraphs = [S4, K2_K2, O4, O5, K2_C3, C3_K2,

C3_C3, F]

39 list_forbidden_induced_subdigraphs = []

40 if(tt<7):

41 list_forbidden_induced_subdigraphs = [

next_transitive_tournament]

42 else:

43 list_forbidden_induced_subdigraphs = reversed_TT8

44

45 print("\n--------------------------------------------------------\n

")

46 print("Generating all 3-dicritical semi-complete digraphs with

maximum acyclic induced subdigraph of size exactly " + str(tt) + ".

")

47

48 n=tt+1

49 candidates = [transitive_tournament]

50 next_candidates = []

51 while(len(candidates)>0):

52 print("\nComputing candidates on "+str(n)+" vertices.")

53 printProgressBar(0, len(candidates))

54 for i in range(len(candidates)):

55 old_D = candidates[i]

56 new_D = DiGraph(n)

57 new_D.add_edges(old_D.edges())

58 all_possible_completions_new_D = possible_completions(new_D

, n, list_forbidden_subdigraphs, list_forbidden_induced_subdigraphs

)

59 for candidate in all_possible_completions_new_D:

60 check = True

61 for D in next_candidates:

62 check = not D.is_isomorphic(candidate)

63 if(not check):

64 break

65 if(check):

66 next_candidates.append(candidate)

67 printProgressBar(i + 1, len(candidates))

68

69 #check the candidates that are actually 3-dicritical.

70 print("We found",len(next_candidates),"candidates on "+str(n)+"

vertices.")

71 dicriticals = []

72 for D in next_candidates:

73 if(not is_two_dicolourable(D)):

74 dicriticals.append(D)

75 print(len(dicriticals), " of them are actually 3-dicritical.\n"

)

76 for D in dicriticals:

77 print("adjacency matrix of a 3-dicritical digraph that we

found:")

78 print(D.adjacency_matrix())
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79

80 candidates = next_candidates

81 next_candidates = []

82 n+=1

Running this code produces the following output after roughly 2 hours of execution on a
standard desktop computer:

1 --------------------------------------------------------

2

3 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 1.

4

5 Computing candidates on 2 vertices.

6 Process: |##################################################| 100.0%

Complete

7 We found 1 candidates on 2 vertices.

8 0 of them are actually 3-dicritical.

9

10

11 Computing candidates on 3 vertices.

12 Process: |##################################################| 100.0%

Complete

13 We found 1 candidates on 3 vertices.

14 1 of them are actually 3-dicritical.

15

16 adjacency matrix of a 3-dicritical digraph that we found:

17 [0 1 1]

18 [1 0 1]

19 [1 1 0]

20

21 Computing candidates on 4 vertices.

22 Process: |##################################################| 100.0%

Complete

23 We found 0 candidates on 4 vertices.

24 0 of them are actually 3-dicritical.

25

26

27 --------------------------------------------------------

28

29 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 2.

30

31 Computing candidates on 3 vertices.

32 Process: |##################################################| 100.0%

Complete

33 We found 5 candidates on 3 vertices.

34 0 of them are actually 3-dicritical.

35

36

37 Computing candidates on 4 vertices.

38 Process: |##################################################| 100.0%

Complete
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39 We found 5 candidates on 4 vertices.

40 0 of them are actually 3-dicritical.

41

42

43 Computing candidates on 5 vertices.

44 Process: |##################################################| 100.0%

Complete

45 We found 0 candidates on 5 vertices.

46 0 of them are actually 3-dicritical.

47

48

49 --------------------------------------------------------

50

51 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 3.

52

53 Computing candidates on 4 vertices.

54 Process: |##################################################| 100.0%

Complete

55 We found 13 candidates on 4 vertices.

56 0 of them are actually 3-dicritical.

57

58

59 Computing candidates on 5 vertices.

60 Process: |##################################################| 100.0%

Complete

61 We found 37 candidates on 5 vertices.

62 1 of them are actually 3-dicritical.

63

64 adjacency matrix of a 3-dicritical digraph that we found:

65 [0 1 1 0 0]

66 [0 0 1 0 1]

67 [0 0 0 1 1]

68 [1 1 0 0 1]

69 [1 0 1 1 0]

70

71 Computing candidates on 6 vertices.

72 Process: |##################################################| 100.0%

Complete

73 We found 8 candidates on 6 vertices.

74 0 of them are actually 3-dicritical.

75

76

77 Computing candidates on 7 vertices.

78 Process: |##################################################| 100.0%

Complete

79 We found 1 candidates on 7 vertices.

80 1 of them are actually 3-dicritical.

81

82 adjacency matrix of a 3-dicritical digraph that we found:

83 [0 1 1 0 0 0 1]

84 [0 0 1 0 1 1 0]
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85 [0 0 0 1 0 1 1]

86 [1 1 0 0 0 1 0]

87 [1 0 1 1 0 0 0]

88 [1 0 0 0 1 0 1]

89 [0 1 0 1 1 0 0]

90

91 Computing candidates on 8 vertices.

92 Process: |##################################################| 100.0%

Complete

93 We found 0 candidates on 8 vertices.

94 0 of them are actually 3-dicritical.

95

96

97 --------------------------------------------------------

98

99 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 4.

100

101 Computing candidates on 5 vertices.

102 Process: |##################################################| 100.0%

Complete

103 We found 27 candidates on 5 vertices.

104 0 of them are actually 3-dicritical.

105

106

107 Computing candidates on 6 vertices.

108 Process: |##################################################| 100.0%

Complete

109 We found 116 candidates on 6 vertices.

110 0 of them are actually 3-dicritical.

111

112

113 Computing candidates on 7 vertices.

114 Process: |##################################################| 100.0%

Complete

115 We found 10 candidates on 7 vertices.

116 0 of them are actually 3-dicritical.

117

118

119 Computing candidates on 8 vertices.

120 Process: |##################################################| 100.0%

Complete

121 We found 0 candidates on 8 vertices.

122 0 of them are actually 3-dicritical.

123

124

125 --------------------------------------------------------

126

127 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 5.

128

129 Computing candidates on 6 vertices.
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130 Process: |##################################################| 100.0%

Complete

131 We found 49 candidates on 6 vertices.

132 0 of them are actually 3-dicritical.

133

134

135 Computing candidates on 7 vertices.

136 Process: |##################################################| 100.0%

Complete

137 We found 266 candidates on 7 vertices.

138 0 of them are actually 3-dicritical.

139

140

141 Computing candidates on 8 vertices.

142 Process: |##################################################| 100.0%

Complete

143 We found 20 candidates on 8 vertices.

144 0 of them are actually 3-dicritical.

145

146

147 Computing candidates on 9 vertices.

148 Process: |##################################################| 100.0%

Complete

149 We found 0 candidates on 9 vertices.

150 0 of them are actually 3-dicritical.

151

152

153 --------------------------------------------------------

154

155 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 6.

156

157 Computing candidates on 7 vertices.

158 Process: |##################################################| 100.0%

Complete

159 We found 80 candidates on 7 vertices.

160 0 of them are actually 3-dicritical.

161

162

163 Computing candidates on 8 vertices.

164 Process: |##################################################| 100.0%

Complete

165 We found 500 candidates on 8 vertices.

166 0 of them are actually 3-dicritical.

167

168

169 Computing candidates on 9 vertices.

170 Process: |##################################################| 100.0%

Complete

171 We found 39 candidates on 9 vertices.

172 0 of them are actually 3-dicritical.

173
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174

175 Computing candidates on 10 vertices.

176 Process: |##################################################| 100.0%

Complete

177 We found 0 candidates on 10 vertices.

178 0 of them are actually 3-dicritical.

179

180

181 --------------------------------------------------------

182

183 Generating all 3-dicritical semi-complete digraphs with maximum acyclic

induced subdigraph of size exactly 7.

184

185 Computing candidates on 8 vertices.

186 Process: |##################################################| 100.0%

Complete

187 We found 110 candidates on 8 vertices.

188 0 of them are actually 3-dicritical.

189

190

191 Computing candidates on 9 vertices.

192 Process: |##################################################| 100.0%

Complete

193 We found 459 candidates on 9 vertices.

194 0 of them are actually 3-dicritical.

195

196

197 Computing candidates on 10 vertices.

198 Process: |##################################################| 100.0%

Complete

199 We found 16 candidates on 10 vertices.

200 0 of them are actually 3-dicritical.

201

202

203 Computing candidates on 11 vertices.

204 Process: |##################################################| 100.0%

Complete

205 We found 0 candidates on 11 vertices.

206 0 of them are actually 3-dicritical.

The adjacency matrices in the output are exactly those of the digraphs
←→
K3,H5 and P7.
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Coloration de Graphes Dirigés

Lucas PICASARRI-ARRIETA

Résumé

Cette thèse est dédiée à l’étude de la dicoloration, une notion de coloration pour les digraphes
introduite par Erdős et Neumann-Lara à la fin des années 1970, ainsi que le paramètre qui lui
est associé, à savoir le nombre dichromatique. Lors des dernières décennies, ces deux notions
ont permis de généraliser de nombreux résultats classiques de coloration de graphes.
Nous commençons par donner différentes bornes sur le nombre dichromatique des digraphes
dont le graphe sous-jacent est un graphe cordal. Ensuite, nous améliorons la borne donnée par
le théorème de Brooks pour les digraphes sans arcs antiparallèles et introduisons une notion de
dégénérescence variable pour les digraphes, ce qui nous permet de prouver une version plus
générale du théorème de Brooks.
Nous étudions ensuite les digraphes k-dicritiques, c’est-à-dire les obstructions minimales à la
(k − 1)-dicolorabilité. En particulier, nous généralisons un résultat de Gallai au cas dirigé, et
nous prouvons une conjecture de Kostochka et Stiebitz dans le cas particulier k = 4. Nous
discutons également la densité maximum de tels digraphes, et prouvons qu’il n’y a qu’un
nombre fini de digraphes semi-complets 3-dicritiques. On donne par la suite certains résultats
structurels sur les digraphes dicritiques de grand ordre.
Enfin, nous étudions la notion de redicoloration pour les digraphes. En particulier, nous prou-
vons que de nombreux résultats soutenant la conjecture de Cereceda se généralisent au cas
dirigé.

Mots-clés : Digraphes, dicoloration, nombre dichromatique, reconfiguration, digraphes dicritiques.

Abstract

This thesis focuses on a notion of colouring of digraphs introduced by Erdős and Neumann-
Lara in the late 1970s, namely the dicolouring, and its associated digraph parameter: the
dichromatic number. It appears in the last decades that many classical results on graph colour-
ing have directed counterparts using these notions.
We first give a collection of bounds on the dichromatic number of digraphs for which the
underlying graph is chordal. We then introduce a notion of variable degeneracy for digraphs
which leads to a more general version of Brooks Theorem. We also strengthen this theorem on
a large class of digraphs which contains digraphs without antiparallel arcs.
Next we prove a collection of results on k-dicritical digraphs, the digraphs that are minimal
obstructions for the (k−1)-dicolourability. We first generalise a result of Gallai to the directed
case, and then prove a conjecture of Kostochka and Stiebitz in the particular case k = 4. We
also discuss the maximum density of such digraphs and prove that the number of 3-dicritical
semi-complete digraphs is finite. We then give a collection of results on the substructures in
large dicritical digraphs.
We finally study the notion of redicolouring for digraphs. In particular, we prove that a large
collection of evidences for Cereceda’s conjecture admit a directed counterpart.

Keywords: Digraphs, dicolouring, dichromatic number, reconfiguration, dicritical digraphs.
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