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ABSTRACT iii

Title: Multi-image restoration for computational photography and videography

Abstract: This manuscript explores multi-image approaches for image as well as
video restoration. Image restoration using multiple images is studied through real
raw burst denoising, where multiple images corrupted with real noise caused by
the photographic acquisition process are combined to produce a single image with
less noise. A popular classical algorithmic approach of the raw burst denoising
literature is thoroughly explained, analyzed and reimplemented in an open source
fashion. Given the increasing ubiquity of deep neural networks and their state-of-
the-art performance for image and video restoration over the last half-decade, a
second learning-based and data-driven approach is proposed for multi-frame raw
burst denoising. Comparing the two clearly shows the appeal of properly designed
convolutional neural networks for this kind of task. Video restoration can also
leverage mutual information of multiple images to produce more appealing re-
sults. This topic is explored here via a Deep Plug-and-Play (PnP) method. Such
methods consist in plugging a denoising deep neural network in an optimization
scheme used to solve inverse problems, e.g. using the denoising network as a re-
placement for the proximal operator of the data prior under a Bayesian formalism.
While Plug-and-Play methods have extensively been studied for image restora-
tion, their use in video restoration is relatively uncharted territory, and is a key
focus of this manuscript. This manuscript presents a novel method for restoring
digital videos via a Deep Plug-and-Play approach. With it, a network trained
once for denoising can be repurposed for multiple different video restoration tasks
such as video deblurring, super-resolution, demosaicking and interpolation of ran-
dom missing pixels. Our experiments all show a clear benefit to using a network
specifically designed for video denoising, as it yields better restoration performance
and better temporal stability than a single image network with similar denoising
performance using the same PnP formulation. Said method compares favorably
to applying other state-of-the-art PnP schemes separately on each frame of the
sequence, opening new perspectives in the field of video restoration.

Keywords: Computational photography, image restoration, video restoration,
raw burst denoising, photography pipeline, deep learning, Convolutional Neural
Network (CNN), Bayesian imaging, proximal methods, Plug-and-Play (PnP)



iv RÉSUMÉ

Titre : Restauration multi-images pour la photographie et vidéographie
computationnelles

Résumé : Ce manuscrit explore les approches multi-images pour la restauration
d’images et de vidéos. La restauration d’image à l’aide d’images multiples est
étudiée à travers le débruitage de rafales brutes réelles, où plusieurs images
corrompues par du bruit réel causé par le processus d’acquisition photographique
sont combinées pour produire une seule image avec moins de bruit. Une approche
algorithmique classique populaire de la littérature sur le débruitage de rafales
est expliquée en détail, analysée et réimplémentée en open source. Compte
tenu de l’omniprésence croissante des réseaux de neurones profonds et de leurs
performances de l’état de l’art pour la restauration d’images et de vidéos au
cours de la dernière demi-décennie, une deuxième approche basée apprentissage
et guidée par les données est proposée pour le débruitage de rafales brutes. La
comparaison des deux approches montre clairement l’intérêt accru pour ce type
de tâche des réseaux de neurone convolutifs correctement conçus. La restauration
de vidéos peut également tirer parti de l’information mutuelle de plusieurs
images pour produire des résultats plus attrayants. Ce sujet est exploré ici via
une méthode Deep Plug-and-Play (PnP). Ces méthodes consistent à introduire
un réseau de neurones profond de débruitage dans un schéma d’optimisation
utilisé pour résoudre des problèmes inverses, par exemple en utilisant le réseau
de débruitage pour remplacer l’opérateur proximal de l’a priori sur les données
dans un formalisme Bayésien. Alors que les méthodes Plug-and-Play ont été
largement étudiées pour la restauration d’images, leur utilisation en restauration
de vidéos est un territoire relativement inexploré, et constitue un élément clé de ce
manuscrit. Ce manuscrit présente une nouvelle méthode de restauration de vidéos
numériques via une approche Deep Plug-and-Play. Avec cette approche, un réseau
entraîné une fois pour du débruitage peut être réutilisé pour de multiples tâches
différentes de restauration vidéo telles que le défloutage vidéo, la super-résolution,
le dématriçage et l’interpolation de pixels manquants aléatoires. Toutes nos
expériences montrent un avantage clair à utiliser un réseau spécifiquement conçu
pour le débruitage vidéo, car il donne de meilleures performances de restaura-
tion et une meilleure stabilité temporelle qu’un réseau mono-image avec des
performances de débruitage similaires utilisant la même formulation PnP. Cette
méthode se compare favorablement à l’application d’un autre schéma PnP de
l’état de l’art séparément sur chaque image de la séquence, ouvrant de nouvelles
perspectives dans le domaine de la restauration vidéo.

Mots-clés : Photographie computationnelle, restauration d’images, restauration
de vidéos, débruitage de rafales brutes, pipeline de photographie, apprentissage
profond, réseaux de neurones convolutifs, imagerie Bayésienne, méthodes proxi-
males, Plug-and-Play (PnP)
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Introduction (FR)

Le compromis est un trait caractéristique de la photographie depuis ses débuts.
Le concept de base de la photographie (d’où elle tire son nom) est la capture de la
lumière émise par une scène sur une surface. Les compromis dans ce processus sont
omniprésents. D’aucuns pourraient se demander : combien de temps doit durer le
processus de capture pour que la scène soit correctement visible ? Une réponse
possible est que cela dépend de la quantité de lumière émise par la scène pendant
un temps donné ; mais cela dépend aussi de la quantité de lumière que le système
photographique ou système d’imagerie est capable de capturer pendant ce temps
donné ; cela dépend aussi de la luminosité que l’on veut donner au résultat final. On
pourrait également se demander : que faut-il capturer exactement ? Une réponse
pourrait être de réfléchir soigneusement à la composition de la scène : comme un
système d’imagerie a un champ de vision et une résolution limités, tout ne peut pas
être capturé en même temps ; si la durée de la capture (le temps d’exposition) est
longue, on pourrait vouloir s’assurer que le dispositif d’imagerie (l’appareil photo)
et la scène restent immobiles, sans quoi les objets qui bougent pendant le processus
de capture apparaîtraient à plusieurs endroits de la surface, les rendant flous. Il
est facile d’imaginer ces réflexions sur les compromis jusque dans la tête des tout
premiers photographes, comme Nicéphore Nièpce quand il plaça sa camera obscura
devant une fenêtre de sa maison de Saint-Loup-de-Varennes pour capturer Point
de vue du Gras en 1827. La plaque en étain recouverte de bitume photosensible
qui en résulte est la plus ancienne photographie conservée. Elle est présentée avec
une copie retouchée en Figure 1.

Dans la photographie numérique, les interactions chimiques complexes de son
homologue analogique ou argentique sont remplacées par un processus de capture
électronique. La principale différence entre les deux est la surface sur laquelle la
lumière est capturée : les appareils photo numériques comportent généralement
un ensemble matriciel de diodes sensibles à la lumière ou photosites qui génèrent
un courant qui est fonction du nombre de photons incidents. Cet ensemble est un
composant du système appelé capteur d’image qui peut enregistrer une matrice
de valeurs numériques à chaque photosite (ou pixel), chaque valeur correspondant
au nombre de photons rencontrés par ledit photosite pendant un certain laps de
temps. La matrice enregistrée est une image ou photographie numérique. Comme
pour la photographie argentique, la photographie numérique comporte son lot de
compromis. Certains peuvent découler du processus de formation d’image : lorsque
le mouvement de l’appareil photo ou de la scène n’est pas négligeable par rapport

1
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Plaque en étain originale. La copie retouchée de l’historien Helmut
Gernsheim.

Fig. 1 : Point de vue du Gras, la première photographie par Nicéphore Nièpce
(1827).

au temps d’exposition, certaines parties de l’image peuvent apparaître floues,
comme l’illustre la figure 2. Pour éviter le flou d’image, il est préférable d’utiliser
des temps d’exposition plus courts ; mais pour compenser la perte de luminosité
associée de l’image, il faut augmenter le gain analogique et numérique de l’appareil
photo, représentés par le réglage ISO. Cependant, augmenter l’ISO amplifie le bruit
de l’image, ce qui est particulièrement visible en situation de faible luminosité. Le
bruit d’image numérique est en fait de l’aléa dans les valeurs attendues d’une
image numérique. Ses sources sont multiples : le processus d’émission des photons
est lui-même un processus aléatoire ; les processus qui sous-tendent la lecture du
capteur ont également leur propre lot d’imprécisions ; la conception électrique et
thermique de la caméra peut également induire une stochasticité de l’image. La
Figure 3 présente un exemple de photographie nocturne avec une GoPro HERO
11 Black où la réduction du temps d’exposition et l’augmentation de la sensibilité
ISO amplifient le bruit de l’image.
La conception et la sélection des capteurs d’image impliquent également des

compromis. Par exemple, des pixels plus petits emmagasinent moins de lumière
et sont plus sensibles au bruit ; on pourrait donc être tenté d’augmenter la taille
individuelle des pixels, mais les capteurs avec moins de pixels ont une résolution
limitée. Les capteurs plus grands produisent généralement de meilleures images,
mais nécessitent des systèmes optiques plus grands et consomment plus d’énergie.
Il existe même des compromis liés à la nature numérique des photographies : une
meilleure qualité d’image implique généralement des coûts de stockage plus élevés.

La popularité de la photographie numérique a explosé depuis la généralisation
de l’utilisation des smartphones dans les années 2010. Des milliards de personnes
transportent désormais partout avec elles un appareil doté d’un ou de plusieurs
appareils photo numériques. Les caméras d’action sont dotées d’une technologie
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ISO 800, temps d’exposition 1/9s ISO 100, temps d’exposition 1s

Fig. 2 : Le flou d’image réel apparait lorsque le mouvement est non négligeable
devant le temps d’exposition.

similaire : ces appareils permettent aux utilisateurs de capturer rapidement des
événements de leur vie et de partager ces expériences avec un large public,
même dans les cas où l’utilisation d’un smartphone pourrait être déconseillée (par
exemple, lors de la pratique de sports extrêmes ou de la prise de vue sous l’eau).
Comme beaucoup d’autres appareils électroniques grand public, les smartphones et
les caméras d’action sont des systèmes d’imagerie qui sont intrinsèquement limités
par certaines de leurs exigences de conception :

• Ils doivent utiliser des capteurs et optiques de petite taille pour maintenir
un encombrement physique limité. À titre d’exemple, la taille relative du
capteur d’une caméra d’action GoPro HERO 11 Black par rapport à celle
d’un appareil photo plein format Canon EOS 6D Mark II est illustrée dans
la figure 4.

• Ils doivent avoir une consommation d’énergie raisonnable afin que l’appareil
puisse être utilisé pendant de longues sessions de capture.

• Ils doivent être performants dans une grande variété de scénarios de capture :
à l’intérieur, à l’extérieur, pour des portraits, des paysages, des photos et des
vidéos, à différentes résolutions et fréquences d’image, etc.

• Ils doivent être fabriqués avec des pièces d’un coût raisonnable afin de pouvoir
être vendus en grandes quantités à des prix acceptables.

Notez que ces contraintes ne sont pas communes à tous les dispositifs d’imagerie
numérique : les microscopes, les IRM, les caméras hyperspectrales sur les satellites
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ISO 100, temps d’exposition 5s

ISO 800, temps d’exposition 1s

Fig. 3 : Le bruit d’image réel est particulièrement visible en basse lumière à haut
ISO. (La longue exposition n’est pas floue parce que l’appareil photo et la scène
sont statiques ; les deux images sont des crops 1000×500 d’images brutes de taille
5568 × 4872 traitées de manière minimale avec Adobe Lightroom).
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6240 × 4160

Fig. 4 : Taille relative du capteur 27MP d’une GoPro HERO 11 Black (cyan)
par rapport au capteur 26MP d’un Canon EOS 6D Mark II (rouge). La résolution
d’image maximale disponible pour chaque caméra est indiquée dans les rectangles.

ou le télescope spatial James Webb ont des exigences complètement différentes.

L’amélioration continue de la puissance de traitement des petits appareils a été
le catalyseur de nombreuses avancées dans le domaine de la photographie et de la
vidéographie computationnelles, où des algorithmes sont utilisés pour surmonter
les propriétés physiques limitées des systèmes d’imagerie. Les algorithmes de
restauration ou d’amélioration tels que le débruitage, le défloutage, la super-
résolution, l’inpainting ou l’interpolation de trames sont un sujet très récurrent
et actif de la littérature scientifique, puisque la dégradation des images est un
processus complexe qui produit généralement des problèmes mal posés et sous-
contraints. L’imagerie computationnelle a également son propre lot de compromis :

• La maximisation des ressources de calcul pour des algorithmes plus puissants
se fait généralement au détriment de l’efficacité énergétique.

• Pour un algorithme donné, la performance maximale va souvent à l’encontre
de la polyvalence (c’est-à-dire la bonne performance dans une variété
de scénarios) ou la réutilisabilité (c’est-à-dire que la méthode peut être
facilement mise à jour ou réutilisée pour des applications différentes).

• Les algorithmes qui doivent être exécutés en temps réel ou “en ligne” (par
exemple, pendant la capture d’une vidéo) sont généralement beaucoup plus
contraints que ceux qui peuvent être exécutés après la capture ou “hors
ligne”.

• Même dans un contexte hors ligne, les algorithmes qui peuvent être exécutés
directement sur le système d’imagerie ou “on-device” disposent généralement
de ressources informatiques limitées. Il est possible de bénéficier de ressources
supplémentaires en exécutant ces algorithmes sur du matériel plus puissant
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ou “off-device” (par exemple en transférant une photo ou une vidéo vers le
cloud et en exécutant un algorithme sur un serveur), mais le processus de
transfert et le matériel supplémentaire ont leurs propres coûts et compromis.

Alors que de nombreux algorithmes de restauration n’utilisent que les
informations stockées dans l’image d’entrée (on parle généralement de méthodes
mono-image), d’autres proposent d’exploiter l’information contenue dans des
images supplémentaires (par exemple, des séquences vidéo ou des rafales)
tout en apportant des contraintes supplémentaires au problème (il s’agit alors
d’algorithmes multi-images). La question au cœur de ce manuscrit est la suivante :
comment peut-on concevoir des algorithmes qui bénéficient de l’information et
des contraintes supplémentaires de plusieurs images pour améliorer la restauration
d’images et de vidéos ? Ce manuscrit apporte une réponse partielle à cette question
très ouverte, et suit principalement l’ordre chronologique des travaux menés au
cours de trois années de recherche.

Chapitre 1 est une introduction pratique au problème de restauration multi-
images de débruitage de rafales brutes réelles par le biais d’une méthode classique
“fait main”. Il consiste en une analyse, explication et réimplémentation approfondie
de HDR+, un pipeline de traitement d’image conçu par les chercheurs de Google
présenté pour la première fois en 2016 dans [Has+16] et intégré dans certains de
ses smartphones Pixel. Bien que le pipeline soit décrit en détail dans [Has+16], il
s’agit d’un système complexe composé de nombreuses parties, certaines pouvant
bénéficier d’observations et d’expériences supplémentaires. La publication n’étant
accompagnée d’aucun code source, notre réimplémentation en Python a été mise
à la disposition de la communauté scientifique en même temps que notre article
d’analyse et s’est révélée assez populaire.
HDR+ étant conçu comme un pipeline de photographie complet, il contient
plusieurs étapes de traitement d’image supplémentaires après la partie débruitage
de rafales brutes. Bien que ce ne soit pas l’objet principal de ce chapitre, ces
étapes constituent une bonne introduction au concept de pipeline d’imagerie lui-
même ; chaque fabricant d’appareil (y compris GoPro) a son propre ensemble
ordonné et interconnecté d’algorithmes de traitement d’image, avec des principes
de conception, des réglages et des compromis spécifiques.

Depuis la fin des années 2010, les algorithmes de restauration d’image
traditionnels basés sur des modèles mathématiques et physiques sont de plus en
plus surpassés par les méthodes basées sur l’apprentissage. Ces méthodes exploitent
de grandes quantités de données pour résoudre des problèmes d’optimisation
à grande échelle et apprendre des représentations implicites complexes de ces
données. Le Chapitre 2 explore donc le problème du débruitage des rafales
brutes réelles de Partie I via une approche apprentissage profond. Il s’appuie
sur FastDVDnet [TDV20], une contribution d’un précédent travail de doctorat
avec GoPro sur le débruitage vidéo gaussien, et le modifie pour un nouveau cas
d’utilisation pratique. Les pipelines d’imagerie font leur retour ici, puisque deux
paradigmes sont explorés pour entraîner un modèle de débruitage de rafales brutes
réelles : générer des données brutes synthétiques variées à partir d’images traitées
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existantes en appliquant les opérations inverses d’un pipeline d’imagerie, ou utiliser
des données brutes réelles provenant de scénarios de capture contrôlés mais limités.

Pour en revenir aux compromis dans le domaine de la photographie
computationnelle, il ressortira des deux chapitres précédents que les méthodes
basées sur des modèles physiques et mathématiques et les méthodes basées
sur l’apprentissage ont chacune leurs propres forces et faiblesses. Il n’est donc
pas surprenant qu’une part croissante de la recherche dans ce domaine tente
d’adopter une approche “meilleur des deux mondes”, en tirant parti à la fois
de la modélisation explicite du processus de dégradation de l’image et des
représentations implicites de plus en plus puissantes apprises à partir de grandes
quantités de données. Le Chapitre 3 de la Partie II de ce manuscrit étudie l’une
de ces approches pour la restauration vidéo. La composante multi-images de cette
thèse prend une tournure légèrement différente avec l’amélioration de vidéos,
puisque l’entrée et la sortie de la méthode ont toutes deux plusieurs images, alors
que les méthodes de restauration de rafales des chapitres précédents combinent
plusieurs images en une seule. L’approche “meilleur des deux mondes” explorée
dans ce chapitre est le cadre Plug-and-Play (PnP) : en résumé, il combine un
terme d’attache aux données orienté modèle et un terme de régularisation défini
par un algorithme de débruitage dans un schéma d’optimisation alterné afin de
résoudre des problèmes inverses de restauration. En particulier, le Chapitre 3 se
concentre sur le Deep Plug-and-Play, où l’algorithme de débruitage est un réseau
de neurones profond. De nombreuses expériences sont menées dans différentes
tâches de restauration vidéo telles que la super-résolution, la déconvolution ou
l’interpolation de pixels. À notre connaissance, il s’agit du premier travail étudiant
l’utilisation du cadre Deep Plug-and-Play pour la restauration de vidéos.

Les principales contributions de cette thèse sont les suivantes :

• Une analyse approfondie du pipeline de photographie en rafale HDR+ est
fournie dans [MDV21] et est accompagnée d’une démo interactive1 et d’une
implémentation Python open-source2.

• Avec RBDnet, nous nous appuyons avec succès sur les fondations de
FastDVDnet pour l’application du débruitage de rafales brutes réelles. Des
expériences sur les réseaux multi-images versus mono-image, les avantages et
inconvénients des données d’entraînement synthétiques et réelles, ainsi que
des études d’ablation multiples sont réalisées pour fournir des informations
sur la conception et l’entraînement d’un réseau de débruitage de rafales
brutes. Notre réseau surpasse HDR+ de manière significative et obtient des
résultats acceptables par rapport aux méthodes d’apprentissage profond de
l’état de l’art. Nos expériences seront soumises à la revue scientifique en ligne
Image Processing On Line, avec une démo interactive et le code open-source.

1https://ipolcore.ipol.im/demo/clientApp/demo.html?id=336
2https://github.com/amonod/hdrplus-python

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=336
https://github.com/amonod/hdrplus-python
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• Nous démontrons la viabilité et la polyvalence du framework Deep Plug-
and-Play pour la restauration vidéo, où un seul réseau de débruitage
peut être réutilisé pour de multiples tâches de restauration. A travers
deux publications [MDT22 ; Mon+22b] et des expériences supplémentaires
dans ce manuscrit, nous montrons l’intérêt d’utiliser un réseau profond
spécifiquement conçu pour le débruitage vidéo plutôt qu’un débruiteur mono-
image, aussi bien en terme de qualité de restauration par image que de
stabilité temporelle. Bien qu’une telle comparaison ne soit pas très répandue
dans la littérature Plug-and-Play, nous effectuons l’inévitable comparaison
de notre méthode avec celles basées apprentissage. Il en ressort que les
méthodes Deep PnP sont plus robustes aux changements dans le processus
de dégradation sans qu’il soit nécessaire de réentraîner le réseau, mais que les
méthodes basées sur l’apprentissage sont nettement plus performantes que
les méthodes PnP pour le modèle de dégradation spécifique pour lequel elles
ont été entraînées. Toutes nos expériences sont en cours de mise à disposition
et seront reproductibles en ligne3.

3https://github.com/amonod/pnp-video

https://github.com/amonod/pnp-video
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Compromises have been a defining trait of photography since its very beginning.
The core concept behind photography (which is where it get its name from) is
the capture of the light emitted by a scene on a surface. Compromises in this
process are everywhere. One might ask: how long must the capture process last
for the scene to be correctly visible? An answer could be that it depends on how
much light the scenes emits for a given quantity of time; but it also depends on
how much light the photographic or imaging system is able to capture during that
given quantity of time; it also depends on how bright one wants the final result to
appear. One might also ask: what exactly should be captured? An answer would
be to carefully think about scene composition: because an imaging system has a
finite field of view and resolution, not everything can be captured at once; if the
duration of capture (the exposure time) is long, one might want to make sure both
the imaging device (the camera) and the scene remain still, or else objects that
move during the capture process will appear at multiple locations of the surface,
making them blurry. It is easy to imagine all these thoughts about compromises
even in the heads of the very first photograpers, such as Nicéphore Nièpce when he
put his camera obscura in front of a window of his house in Saint-Loup-de-Varennes
to capture Point de vue du Gras in 1827. The resulting tin plaque coated with
light-sensitive bitumen is the oldest surviving photograph. It is showcased along
with an enhanced copy print in Figure 5.

In digital photography, the complex chemical interactions of its “analog” coun-
terpart are replaced by an electronic capture process. The main difference between
the two is the surface on which light is captured: digital cameras typically feature
an array of light-sensitive diodes or photosites that generate a current as a function
of the number of incident photons. This array is a component of the system called
image sensor that can record an array of numerical values at each photosite (or
pixel), each value corresponding to the number of photons encountered by said
photosite during a certain amount of time. The recorded array is a digital image,
picture or photograph. As in film photography, digital photography has its set of
compromises. Some might stem from the image formation process: when camera
or scene motion is not negligible with respect to exposure time, parts of the image
can appear blurry as illustrated in Figure 6. To avoid image blur, one might want
to use shorter exposure times; but to compensate for the associated loss of image
brightness, one must increase the camera analog and digital gain, represented by
its ISO setting. However, increasing ISO will amplify image noise, which is partic-

9
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Original tin plaque. Historian Helmut Gernsheim’s enhanced
copy print.

Figure 5: Point de vue du Gras, the first photograph by Nicéphore Nièpce (1827).

ISO 800, 1/9s exposure time ISO 100, 1s exposure time

Figure 6: Real image blur occurs when motion is non negligible with respect to
exposure time.
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ularly visible in low light scenarios. Digital image noise is effectively randomness
in the expected values of a digital image. It has multiple sources: the photon
emission process itself is a random process; the processes behind sensor readout
also have their own set of inaccuracies; the electrical and thermal design of the
camera can also induce image stochasticity. Figure 7 showcases an example of
night time photography using a GoPro HERO 11 Black where lowering exposure
time and increasing ISO amplifies image noise.

Designing and selecting image sensors also implies making compromises. For
example, pixels that are smaller receive less light and are more sentitive to noise,
so one might be tempted to increase the size of individual pixels; but sensors with
fewer pixels have limited resolution. Larger sensors usually produce better images,
but require bigger optical systems and consume more electrical power. There are
even compromises that arise from the digital nature of the photographs: better
image quality usually implies larger storage costs.

The popularity of digital photography has exploded since the generalization of
the use of smartphones in the 2010s. Billions of people now carry a device that
has one or multiple digital cameras everywhere with them. Similar technology is
featured in action cameras: these devices allow users to quickly capture events of
their life and share these experiences to a large audience, even in cases where using
a smartphone might be ill-avdised (e.g. when practicing extreme sports or filming
underwater).
As many other consumer electronics devices, smartphones and action cameras are
imaging systems that are inherently limited by some of their design requirements:

• They must use small sensors and optics to maintain a limited physical foot-
print. As an example, the size of the sensor of a GoPro HERO 11 Black
action camera relative to the sensor size of a Canon EOS 6D Mark II full-
frame camera is illustrated in Figure 8.

• They must have reasonable power consumption so that the device can be
used for long capture sessions.

• They must perform well in a wide variety of capture scenarios: indoors,
outdoors, for portraits, for landscapes, for photos and videos, at various
resolutions and framerates, and so on.

• They must be made with parts that are of reasonable cost so that they can
be sold in large quantities at acceptable prices.

Notice that these constraints are not common to all digital imaging devices: mi-
croscopes, IRMs, hyperspectral cameras on satellites, or the James Webb Space
Telescope have completely different requirements.

Continuous improvement in the processing power of small devices has been
the catalyst of many advances in computational photography and videography,
where algorithms are used to overcome the limited physical properties of imaging
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ISO 100, 5s exposure time

ISO 800, 1s exposure time

Figure 7: Real image noise is particularly visible in low light at high ISO settings.
(The long exposure is not blurry because the camera and the scene are static; both
images are 1000 × 500 crops of 5568 × 4872 raw images minimally processed using
Adobe Lightroom.)
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6240 × 4160

Figure 8: Relative size of the 27MP sensor in a GoPro HERO 11 Black (cyan)
compared to the 26MP sensor in a Canon EOS 6D Mark II (red). The maximum
image resolution available for each camera is indicated in the rectangles.

systems. Restoration or enhancement algorithms such as denoising, deblurring,
super-resolution, inpainting or frame interpolation are a very recurrent and active
topic of the scientific literature, as image degradation is a complex process that
yields typically ill-posed and under-constrained problems. Computational imaging
also has its own set of tradeoffs:

• The maximization of computing resources for more powerful algorithms is
typically at the expense of energy efficiency.

• For a given algorithm, maximum performance is often at odds with versatility
(i.e. performing well on a variety of scenarios) or reusability (i.e. the method
can easily be updated or repurposed for different applications).

• Algorithms that have to run in real-time or “online” (e.g. during the capture
of a video) are typically far more constrained that ones that can run after
capture or “offline”.

• Even in an offline context, algorithms that can run directly on the imaging
system or “on-device” usually have limited computing resources. It is possi-
ble to benefit from additional resources by running the algorithms on more
powerful hardware or “off-device” (e.g. by transferring a photo or video to
the cloud and running an algorithm on a server), but the transfer process
and the extra hardware have their own costs and compromises.

While many restoration algorithms only use the information stored in the in-
put image (they are usually referred to as single-frame methods), others suggest
leveraging information stored in additional images (e.g. video sequences or bursts)
while providing additional constraints to the problem (these being multi-frame al-
gorithms). The question at the core of this manuscript is the following: how can
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we design algorithms that benefit from the additional information and constraints
of multiple images to improve image and video restoration? This manuscript pro-
vides a partial answer to this very open-ended question, and mostly follows the
chronological order of the work conducted during three years of research.

Chapter 1 is a hands-on introduction to the multi-frame restoration problem
of real raw burst denoising through a classical handcrafted method. It consists of
a thorough analysis, explanation and reimplementation of HDR+, an image pro-
cessing pipeline designed by Google researchers first presented in 2016 in [Has+16]
and embedded in some of its Pixel smartphones. While the pipeline is extensively
described in [Has+16], it is a complex system made of many parts, some of which
could use additional insights and experiments. Since the publication did not come
with any source code, our Python reimplementation was made available to the
scientific community alongside our analysis article and has shown popularity.
HDR+ being designed as an end-to-end photography pipeline, it contains several
additional image processing steps after the raw burst denoising part. Although it
is not the main focus of the Chapter, these steps are a good introduction to the
concept ot the imaging pipeline itself; every device manufacturer (GoPro included)
has their own ordered and interconnected set of image processing algorithms, with
specific design principles, tuning, and tradeoffs.

Since the late 2010s, handcrafted and model-based image restoration algo-
rithms are increasingly outperformed by learning-based methods. These methods
leverage high amounts of data to solve large-scale optimization problems and learn
complex implicit representations of said data. Chapter 2 then explores the real
raw burst denoising problem of Part I via a deep learning approach. It builds
upon FastDVDnet [TDV20], a contribution of a previous PhD work with GoPro
on Gaussian video denoising, and modifies it for a new, practical use case. Imaging
pipelines make a return here, as two paradigms are explored to train a real raw
burst denoising model: generate varied synthetic raw data from existing processed
images by applying the reverse operations of an imaging pipeline, or use real raw
data from controlled but limited capture scenarios.

Going back to tradeoffs and compromises in computational photography, it
will become apparent from reading the two previous chapters that methods built
on physical and mathematical models and learning-based methods each have their
ownstrengths and weaknesses. It is no surprise then than an increasing part of
the research in the field tries to take a “best of both worlds” approach, leveraging
both the explicit modeling of the image degradation process, and the ever-more
powerful implicit representations learned from large amounts of data. Chapter 3
of Part II of this manuscript studies one of these approaches for video restora-
tion. The multi-frame component of this thesis takes a slightly different turn with
video enhancement, as both the input and the output of the method have multiple
frames, while the burst restoration methods of the previous chapters combine mul-
tiple images into one. The “best of both worlds” approach explored in this chapter
is the Plug-and-Play (PnP) framework: in a nutshell, it combines a model-based
data fidelity term and a regularization term defined by a denoising algorithm in an
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alternate optimization scheme to solve inverse restoration problems. In particular,
Chapter 3 focuses on Deep Plug-and-Play, where the denoising algorithm is a deep
neural network. Numerous experiments are conducted in many different video
restoration tasks such as super-resolution, deconvolution, or pixel interpolation.
To the best of our knowledge, it is the first work studying the use of the Deep
Plug-and-Play framework for video restoration.

The main contributions of this thesis are the following:

• An in-depth analysis of the popular HDR+ burst photography pipeline is
provided in [MDV21] along with an interactive demo4 and an open-source
Python implementation5.

• With RBDnet, we successfully build upon the foundations of FastDVDnet
for the real-world application of raw burst denoising. Experiments on multi-
frame versus single-frame networks, pros and cons of synthetic versus real
training data, and multiple ablation studies are performed to provide insights
when designing and training a raw burst denoising network. Our network
outperforms HDR+ significantly and performs acceptably when compared
to state-of-the-art deep learning methods. Our experiments will be submit-
ted to the peer-reviewed Image Processing On Line journal, along with an
interactive demo and the open-source code.

• We demonstrate the viability and versatility of the Deep Plug-and-Play
framework for video restoration, where a single denoising network can be re-
purposed for multiple restoration tasks. Through two publications [MDT22;
Mon+22b] and additional experiments in this manuscript, we showcase the
benefit of using a deep network specifically designed for video denoising
instead of a single-frame denoiser both in terms of per-frame restoration
quality and temporal stability. Though such a comparison is not very preva-
lent in the Plug-and-Play literature, we perform the inevitable comparison
of our method to state-of-the-art learning-based ones. The takeaway is that
Deep PnP methods are more robust to change in the degradation process
without the need to retrain the network, but state-of-the-art learning-based
methods clearly outperform PnP methods for the specific degradation model
they were trained on. All our experiments are in the process of being made
available and reproductible online6.

4https://ipolcore.ipol.im/demo/clientApp/demo.html?id=336
5https://github.com/amonod/hdrplus-python
6https://github.com/amonod/pnp-video

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=336
https://github.com/amonod/hdrplus-python
https://github.com/amonod/pnp-video
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Part I

Raw Burst Denoising
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Chapter 1

An Analysis and Implementation
of the HDR+ Burst Denoising
Method

1.1 Background
Image noise is a common issue in digital photography, and that issue is even more
prominent in smaller sensors used in devices like smartphones or action cameras.
Algorithms that aim at removing digital noise are a very recurrent topic of the
computational photography literature. Most of them only use the information
stored in the input image (they are usually referred to as “single-frame” algo-
rithms), while others suggest the use of information stored in additional images
(usually videos or bursts). These multi-frame “denoisers” usually make use of
similarity measurements in order to combine the information of multiple pixels or
patches [Bua+09].

A multi-frame denoising algorithm is at the heart of the HDR+ system. It was
first officially introduced as a feature within the Google Camera App in the newly
released Nexus 5 and Nexus 6 smartphones in fall 20141. In 2016, a full raw image
processing pipeline with the same HDR+ moniker was presented in [Has+16]. This
method is the main subject of this chapter. The pipeline was embedded in smart-
phones such as the Google Nexus 6, 5X and 6P and first generation Google Pixel.
Further algorithm refinements and optimizations were included in the Google Pixel
2 which was released in fall 2017. This device was the first to embed HDR+ in
a dedicated Google-designed Image Processing Unit2. The same raw burst align-
ment and merging technique was included in a new “Night Sight” mode that was
launched alongside the Pixel 3A. The changes and optimizations of this mode were
presented in a new publication in 2019 [Lib+19]. As such, the complex HDR+
system is not only part of a detailed, frequently compared and quoted scientific
publication, but also embedded into multiple recent mass-produced consumer elec-

1https://tinyurl.com/hdrplus-2014
2https://tinyurl.com/pixel-visual-core
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tronics devices (which have received praise for their camera performance3), making
it a relevant subject of study.

In this chapter, we will describe the core part of the system, a raw burst de-
noising algorithm (although it will not be our main focus, we will also mention the
rest of the pipeline). This chapter is complemented by a publicly available HDR+
Python implementation (with a simplified finishing pipeline)4, along with an inter-
active demo on Image Processing On Line5. The Chapter is structured as follows:
Section 1.2 presents the design principles of the HDR+ pipeline; Section 1.3 details
the burst alignment part of the algorithm; Section 1.4 describes the Wiener-based
temporal and spatial denoising in the Fourier space. The rest of the pipeline is
described in 1.5, while comparison against denoising results provided by Google
is performed in Section 1.6. Section 1.7 showcases running our implementation
off-device on real bursts captured by a GoPro camera.

1.2 Characteristics of the HDR+ Pipeline
HDR+ was designed as a consumer-centric smartphone photography pipeline. Its
goal is to produce individual pictures with good contrast and dynamic range, little
noise and motion blur, and pleasing colors in most shooting scenarios, all while
looking natural and requiring little to no user input. In order to achieve that goal,
the authors of [Has+16] conceived a system with the following constraints:

• The images that are captured and processed are raw images, as they typically
have higher bit depth and a better known noise model than their post-
processed and compressed 8-bit JPEG counterparts.

• Images are underexposed at capture time to avoid clipped highlights and
saturated pixels, which effectively allows the capture of more dynamic range.
Thanks to a custom auto-exposure algorithm, a gain is also memorized to
compensate later in the pipeline for that under-exposure.

• Images also have high shutter speed (or short exposure time) to avoid motion
blur (from the scene or the camera).

• For a fixed gain, images that have a shorter exposure time tend to have a
lower signal-to-noise ratio; to compensate for that, multiple images are actu-
ally captured (usually between 2 and 8 images depending on scene brightness
measurements, also selected through the auto-exposure algorithm), and the
temporal information of the burst is combined through an alignment and
merging procedure. All images have identical shutter speed (meaning that
unlike some HDR fusion methods, exposure is not bracketed) and the inter-
val between each frame is constant. This allows both a similar noise profile

3https://tinyurl.com/dxomark-pixel2
4https://github.com/amonod/hdrplus-python
5https://ipolcore.ipol.im/demo/clientApp/demo.html?id=336

https://tinyurl.com/dxomark-pixel2
https://github.com/amonod/hdrplus-python
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=336
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across the burst and easier, more accurate motion estimation and compen-
sation.

• The resulting higher bit depth, high dynamic range, and less noisy image
is then tone mapped to compensate for underexposition and to produce a
more natural look, even in high contrast scenarios (in that case, shadows are
boosted while as few highlights as possible are clipped).

• Additional processing is performed to produce a more visually pleasing final
image with a distinctive “HDR+ look” (c.f. Section 1.5.1).

• Total burst processing time on a mobile device is only a few seconds, and
the mode is transparent to the user (they do not know that several pictures
are being taken or what processing needs to be performed).

• The whole process is automatic and parameter-free for the photographer.

Figure 1.1: The HDR+ pipeline (extracted from [Has+16], lens shading and chro-
matic aberration correction have been omitted for brevity)

A representation of the whole image processing pipeline can be seen in Fig-
ure 1.1. For more information on the capture process, including the functioning
of the example-based auto-exposure algorithm, please refer to the original arti-
cle [Has+16], and its supplemental material6. In the next sections, we will explain
the whole processing pipeline after capture.

1.3 Bayer Tile-based Alignment
Before combining the information of multiple noisy images to produce a single,
clean image, one must make sure that all images feature similar content. Since
they share the same exposure time, scene brightness can be considered constant
for the duration of the burst. Even though that exposure time is short, there

6https://static.googleusercontent.com/media/hdrplusdata.org/en//hdrplus_supp.
pdf

https://static.googleusercontent.com/media/hdrplusdata.org/en//hdrplus_supp.pdf
https://static.googleusercontent.com/media/hdrplusdata.org/en//hdrplus_supp.pdf
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can be apparent motion in the burst, mainly due to camera shake (the pipeline
being designed for smartphones, most pictures will be taken handheld) and objects
moving in the scene. That motion has to be compensated.

The strategy to compensate motion across the burst is to cleverly select one
image as a reference, and then estimate motion between that image and each one of
the other burst images (sometimes referred to as alternate frames). To that end,
the reference image is divided into a regular array of square tiles and, for each
tile, the corresponding tile in the alternate image is the one of minimal distance
within a defined search radius around the original location of the reference tile.
Estimating the motion of image tiles instead of individual pixels is sufficient for
the merging phase, and as we will explain in Section 1.4, the rest of the algorithm
is robust to alignment errors.

1.3.1 Reference Image Selection
The reference image is selected among the first three images of the burst in order
to minimize perceived shutter lag (the content of subsequent images of the burst
can be quite different from what it was when the user pressed the shutter). Among
these, the sharpest image is picked, the reasoning being that images that are less
sharp are more likely to feature motion blur, and will not merge well with images
that are sharp in the same regions. Sharpness is measured by the magnitude of
gradients within a single (green) channel. We did not re-implement this part of
the algorithm in our own implementation: for bursts provided by Google (which
we’ll discuss in Section 1.6.1), we simply reuse their selected reference image. In
the case of new bursts, we let the user select the reference or default to the first
image otherwise.

For the remainder of the alignment step, the full resolution Bayer images are
converted to single channel, lower resolution grayscale images using a simple 2 × 2
box filter: each R, G, G, B square Bayer pattern is averaged in order to produce
a single intensity value. Since the motion estimation of the grayscale images pro-
duces final results at pixel level, motion can only be estimated in multiples of 2
pixels in the original full-size raw images. Although this could be considered as a
lack of precision, it is actually convenient because the arrangement of color planes
in the Bayer image will be preserved after alignment (the value of a blue pixel will
never be replaced by the value of a red pixel).

1.3.2 Multi-scale Pyramid Alignment
In order to quickly cover a large search area to find the tiles with minimal distance,
the following multi-scale coarse-to-fine alignment strategy is adopted:

• Gaussian pyramids of the single channel burst images are constructed (e.g. in
the HDR+ article supplement, it is typically 4-level, with successive down-
sampling factors of 2, 4 and 4 from the grayscale image to the coarsest level
of the pyramid).
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• At each pyramid level starting from the coarsest (i.e. lowest resolution) level,
the reference image is divided in equally spaced square tiles (e.g. in the
HDR+ supplement tiles of size 8 × 8 at the coarsest level and 16 × 16 at
other levels). For each reference tile, we compute the L2 or L1 distance
between it and each possible tile of the alternate frame within a specified
search radius (e.g. + or - 4 pixels) around some initial guess (that guess
being the location of the reference tile at the coarsest level)

𝐷𝑝(𝑢, 𝑣) =
𝑛−1
∑
𝑖=0

𝑛−1
∑
𝑗=0

|𝑇 (𝑖, 𝑗) − 𝐼 (𝑖 + 𝑢 + 𝑢0, 𝑗 + 𝑣 + 𝑣0)|𝑝 , (1.1)

where 𝑇 is the reference tile of size 𝑛×𝑛, (𝑢, 𝑣) is the possible location of the
alternate image tile within the larger search area 𝐼 currently evaluated, 𝑝 is
the power of the norm used (1 or 2) and (𝑢0, 𝑣0) is the initial guess which
indicates the location of the search area (𝑢0 = 𝑣0 = 0 at the coarsest scale).
As suggested in the HDR+ supplement, the L2 distance (written in the case
where 𝑢0 = 𝑣0 = 0 for brevity) can be rewritten as

𝐷2(𝑢, 𝑣) =
𝑛−1
∑
𝑥=0

𝑛−1
∑
𝑦=0

𝑇 (𝑖, 𝑗)2 +
𝑛−1
∑
𝑖=0

𝑛−1
∑
𝑗=0

𝐼(𝑖+𝑢, 𝑗+𝑣)2 −2
𝑛−1
∑
𝑖=0

𝑛−1
∑
𝑗=0

𝑇 (𝑖, 𝑗)𝐼(𝑖+𝑢, 𝑗+𝑣),

(1.2)
where the second term can be computed by filtering the squared elements of
𝐼 with a 𝑛×𝑛 box filter, and the third is proportional to the cross-correlation
of I and T, which can be computed quickly using fast Fourier transforms.
The displacement from the location of the reference tile to the location of the
alternate tile with minimal distance gives us the motion vector attributed to
the reference tile.

• Alignments are upsampled, meaning that motion vectors are scaled and prop-
agated to the correct number of tiles in the finer level. For example, if tiles
are 16 × 16 at both levels and the upsampling factor is 4, a tile with a (2, 1)
motion vector at the coarser level implies 16 tiles with a (8, 4) motion vector
at the finer level.

• An additional step is added in order to mitigate some potential upsampling
problems, particularly when coarse-scale tiles straddle over the boundaries of
moving objects. For each tile at a new (finer) level, instead of directly using
the upsampled motion vector of the corresponding coarse-scale tile as the
initial alignment guess (𝑢0, 𝑣0), 3 candidates are evaluated: the alignment of
the coarse-scale tile, plus those of the nearest coarse-scale tiles in each spatial
dimension. The candidate alignment that minimizes the L1 distance between
the reference tile and the corresponding alternate tile at the new pyramid
level becomes the new initial alignment guess. This step is illustrated in
Figure 1.2.

• The selected upsampled motion vectors are then used as the location of
the search area for the motion estimation at the subsequent pyramid level.
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Figure 1.2: Blue: coarse-scale motion field (arrows: motion vectors, dotted lines:
tiles). Red: finer-scale tile. Yellow: its 3 nearest coarse-scale tiles. The 3 motion
vectors extracted from those neighboring tiles will be the candidates evaluated at
the finer scale (shown in red).

For example, if (𝑢𝑚, 𝑣𝑚) is the upsampled motion vector resulting from the
previous steps, the initial guess (𝑢0, 𝑣0) will be updated to (𝑢0+𝑢𝑚, 𝑣0+𝑣𝑚).

(a) Image pair (ref=top) (b) Coarse-to-fine motion fields (hue: direction, satura-
tion: magnitude)

Figure 1.3: Multi-scale tile-based alignment using Gaussian pyramids

An example of coarse-to-fine motion fields can be seen in Figure 1.3. Given that
the alignments are computed for downsampled grayscale versions of the original
images, motion vectors must be multiplied by a factor of 2 to go back to the raw
Bayer array size.
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1.3.3 Subpixel Alignment
We implemented subpixel alignment as defined in the article: between two pyramid
scales, for each motion estimation result, we fit a bivariate quadratic polynomial
to the 3×3 window surrounding the L2 distance minimum, and find the minimum
of the polynomial.

As described in the article supplement7, 𝐷2 can be approximated as

𝐷2(𝑢, 𝑣) ≈ 1
2

[𝑢; 𝑣]⊤ 𝑨 [𝑢; 𝑣] + 𝒃⊤ [𝑢; 𝑣] + 𝑐, (1.3)

where 𝑨 is a 2×2 positive semi-definite matrix (because the shape of 𝐷2 is assumed
to be an upward-facing quadratic surface near the minimum), 𝒃 is a 2 × 1 vector
and 𝑐 is a scalar.

If (�̂�, ̂𝑣) is the estimated distance minimum, the technique consists in con-
structing a weighted least-squares problem fitting a quadratic polynomial to the
3 × 3 window of 𝐷2 centered around (�̂�, ̂𝑣), which we call 𝐷𝑠𝑢𝑏

2 . Without loss of
generality, we can solve the problem assuming (�̂�, ̂𝑣) = (0, 0) and then shift the
estimated subpixel position 𝜇 by (�̂�, ̂𝑣).

The free parameters of the quadratic can be estimated by computing the inner
product of 𝐷𝑠𝑢𝑏

2 with a set of six 3 × 3 filters, each corresponding to an unknown
parameter in (𝑨, 𝒃, 𝑐)

𝑨 = [
𝐹𝐴1,1

⋅ 𝐷𝑠𝑢𝑏
2 𝐹𝐴1,2

⋅ 𝐷𝑠𝑢𝑏
2

𝐹𝐴1,2
⋅ 𝐷𝑠𝑢𝑏

2 𝐹𝐴2,2
⋅ 𝐷𝑠𝑢𝑏

2
] ,

𝒃 = [ 𝐹𝑏1
⋅ 𝐷𝑠𝑢𝑏

2
𝐹𝑏2

⋅ 𝐷𝑠𝑢𝑏
2

] ,

𝑐 = 𝐹𝑐 ⋅ 𝐷𝑠𝑢𝑏
2 .

(1.4)

In some cases, additional operations might be required so that 𝑨 is guaranteed
positive semi-definite. Please refer to the supplement for demonstrations, including
the derivation of the filters.

Once the quadratic approximation parameters are estimated, we can compute
the minimum of the fitted surface

𝝁 = −𝑨−1𝒃, (1.5)

which, in the case of a bivariate polynomial is equivalent to

𝜇 = −
[𝑨2,2𝒃1 − 𝑨1,2𝒃2, 𝑨1,1𝒃2 − 𝑨1,2𝒃1]T

𝑨1,1𝑨2,2 − 𝑨2
1,2

. (1.6)

The location of the minimum of the quadratic 𝜇 yields a subpixel displacement
vector (because we assumed (�̂�, ̂𝑣) = (0, 0) to solve the problem, when in reality

7https://static.googleusercontent.com/media/hdrplusdata.org/en//hdrplus_supp.
pdf

https://static.googleusercontent.com/media/hdrplusdata.org/en//hdrplus_supp.pdf
https://static.googleusercontent.com/media/hdrplusdata.org/en//hdrplus_supp.pdf
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(�̂�, ̂𝑣) can be at any position). We simply need to add this displacement to the
original location of the pixel level minimum. This procedure is quite vulnerable to
image noise and flat regions, so we only take that displacement into account if it
is less than a pixel away from the original distance minimum location: if ||𝝁|| ≤ 1,
we update the estimated motion vector (�̂�, ̂𝑣) to (�̂�, ̂𝑣) + 𝝁.

Even though this procedure is supposed to help with the upsampling of motion
vectors from one level of the pyramid to the next, we have found very few visual
improvements to the overall result in our experiments. Subpixel alignment is
not applied at the end of the finest pyramid level: because we are dealing with
downsampled Bayer to grayscale images, having subpixel motion vectors at the
last scale could imply having pixels aligned to pixels from different Bayer CFA
channels, which would induce significant color shifts (which we verified in our
experiments).

The pseudo-code of the overall alignment strategy of the HDR+ pipeline is
described in Algorithm 1.
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Algorithm 1: HDR+ tile-based alignment
input : {𝐼0, … , 𝐼𝑁−1} burst of 𝑁 downsampled grayscale images

𝐼0=reference image
input : {𝑝0, … , 𝑝3} ∈ {1, 2}4 norm power at each pyramid level

Typically {2, 2, 2, 1}
output: Sets of aligned tiles at reference image location (𝑖, 𝑗)

{𝑇0(𝑖, 𝑗), … , 𝑇𝑁−1(𝑖, 𝑗)}

foreach 𝑘 ∈ {0, … , 𝑁 − 1} do
Compute 𝐺𝑙

𝑘, 𝑙 ∈ {0, … , 3} 4-level coarse-to-fine Gaussian pyramid of 𝐼𝑘,
𝐺3

𝑘 = 𝐼𝑘.

foreach 𝑘 ∈ {1, … , 𝑁 − 1} do
(𝑢−1, 𝑣−1)(𝑖, 𝑗) ← (0, 0) ∀𝑖, 𝑗 Initial guess at coarse scale: no offset.
foreach pyramid level 𝑙 ∈ {0, … , 3} do

Divide 𝐺𝑙
0 in equally spaced tiles 𝑇 𝑙

0 of size 𝑛𝑙 × 𝑛𝑙
if 𝑙 > 0 then

Upsample the previous level alignments (𝑢𝑙−1, 𝑣𝑙−1)(𝑖, 𝑗), ∀𝑖, 𝑗
foreach reference tile 𝑇 𝑙

0 at location (𝑖, 𝑗) do
if 𝑙 > 0 then

Update the upsampled (𝑢𝑙−1, 𝑣𝑙−1)(𝑖, 𝑗) by keeping the
alignment that minimizes 𝐷1(𝑢𝑙−1, 𝑣𝑙−1) among those of
the 3 nearest coarse-scale tiles

Get all possible (𝑢, 𝑣) locations in 𝐺𝑙
𝑘 of tiles of size 𝑛𝑙 × 𝑛𝑙 in a

search area of size (𝑛𝑙 + 2𝑟𝑙) × (𝑛𝑙 + 2𝑟𝑙) centered around
(𝑖 + 𝑢𝑙−1, 𝑗 + 𝑣𝑙−1) 𝑟𝑙: search radius.

Compute all possible distances 𝐷𝑝𝑙
(𝑢, 𝑣), 𝑝𝑙 ∈ {1, 2} Equation

(1.1).
(𝑢𝑙, 𝑣𝑙)(𝑖, 𝑗) ← (𝑢𝑙−1, 𝑣𝑙−1)(𝑖, 𝑗) + argmin𝑢,𝑣 𝐷𝑝𝑙

(𝑢, 𝑣) Add
computed displacement to initial guess.

if 𝑙 < 3 then
Compute subpixel displacement vector 𝝁(𝑢𝑙, 𝑣𝑙)
if ||𝝁|| < 1 then

(𝑢𝑙, 𝑣𝑙)(𝑖, 𝑗) ← (𝑢𝑙, 𝑣𝑙)(𝑖, 𝑗) + 𝝁

Associate to the reference tile at finest scale 𝑇 3
0 at location (𝑖, 𝑗) the

tile 𝑇 3
𝑘 of 𝐼𝑘 at location (𝑖 + 𝑢3, 𝑗 + 𝑣3)

1.4 Fourier Tile-based Merging

For a given reference tile, we now have a set of corresponding tiles (one per alternate
frame according to the results of the alignment step). If these tiles feature the same
image content, i.e. if motion (or lack thereof) is correctly estimated, intensity
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differences between them can only be attributed to noise, and we can merge these
tiles to obtain a single, temporally denoised tile.
This is of course an ideal case, and in practice, tiles can also differ because of
errors in the motion estimation. The method presented in Section 1.3 has several
limitations that can lead to alignment errors:

• The alignment is tile-based, so pixels that belong to different objects can be
part of the same tile and therefore be attributed the same motion.

• Motion is estimated locally as the most likely translation of a tile of fixed size
in the image plane, according to a minimal L1 or L2 norm. This means that
any object motion that is not parallel to the image plane is not guaranteed
to be correctly approximated.

• Depending on the selected parameters (successive downsampling factors, tile
sizes, search radii and norm types) versus the actual motion, motion esti-
mation could be stuck in a local mininum. That said, since most real world
scenes will feature motion that is compatible with the short exposure time
of the burst, a good choice of parameters will mitigate that problem.

• The motion estimation is sensitive to noise: the higher the noise level with
respect to the image content, the higher the likelihood of having an incorrect
tile minimizing the distance.

• As with many motion estimation techniques, it does not bode well with
occlusions: areas that are not occluded in the reference frame but are in the
alternate frame will probably yield incorrect motion vectors.

Such errors are expected given the relatively simple nature of the alignment. Keep
in mind that it is designed to run quickly on systems like smartphone systems on
a chip (SoCs). Moreover, this fast, imperfect motion estimation can be sufficient
for subsequent processing steps, provided the merging step takes those potential
alignment errors into account. In this section, we will discuss the strategy employed
by the authors of [Has+16] to perform temporal denoising while being robust to
alignment errors.

1.4.1 Noise Level Estimation
For a set of tiles, the first prerequisite of the merging step is an estimation of the
noise level. Since the noise profile is considered identical for all the images of the
burst, we perform that estimation on the reference image.

In the HDR+ pipeline, raw image noise is estimated using the Poisson-Gaussian
model described in [Foi+08], where it is composed of two mutually indepen-
dent parts: a Poissonian signal-dependent component and a Gaussian signal-
independent component. It is further simplified to a heteroscedastic Gaussian
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model where the noise variance 𝜎2 can simply be expressed as an affine function
of the signal level 𝑥:

𝜎2(𝑥) = 𝜆𝑠𝑥 + 𝜆𝑟 (1.7)

where the parameter 𝜆𝑠 can be tied to photonic / shot noise, and 𝜆𝑟 can be tied
to read noise [Mil+18].

There are multiple ways to obtain these two noise curve parameters:

• One can take one or several pictures of a scene that features multiple uni-
form (typically gray) areas and perform mean and variance measurements
of intensities [Foi+08; HK94]. (𝜆𝑠, 𝜆𝑟) can then be computed from simple
linear regression.

• In [Has+16], the values of (𝜆𝑠, 𝜆𝑟) are claimed to be function of the analog
and digital gain settings selected at capture time. Since the authors im-
plemented their pipeline on a specific set of smartphones and sensors, they
could likely use a look-up-table that gives them the appropriate per-camera
(𝜆𝑠, 𝜆𝑟) tuple as a function of the applied gain settings. In some raw DNG
files, 𝜆𝑠 and 𝜆𝑟 can be directly found in the NoiseProfile DNG tag8.

• The NoiseProfile tag is not present in all DNG files, and separate analog
and digital gain values are not directly accessible in image metadata. A
single value is usually specified: ISO, which combines analog and digital
gain differently from one manufacturer to another. This makes it difficult
to extract noise curve parameters a posteriori, especially given that different
sensors can have different shot versus read noise curves [Mil+18]. That
said, even though they might not correspond to the actual values of 𝜆𝑠 and
𝜆𝑟 of the image, we found that computing a (𝜆𝑠, 𝜆𝑟) tuple from the image
ISO and baseline values of 𝜆𝑠 and 𝜆𝑟 for an image at ISO=100 produces
equally pleasing results for the rest of the merging step. We use the following
formula:

𝜎2 (𝛼ISO𝑥) = (𝛼ISO)2 𝜎2(𝑥)

= (𝛼ISO)2 (𝜆𝑠ISO100
𝑥 + 𝜆𝑟ISO100

)

= 𝛼ISO𝜆𝑠ISO100
𝛼ISO𝑥 + (𝛼ISO)2 𝜆𝑟ISO100

= 𝜆′

𝑠𝑥′ + 𝜆′

𝑟,

(1.8)

where 𝛼ISO = ISO
ISO100

is the ratio between the ISO setting used at cap-
ture time and ISO100 (considering that ISO100 = 100 is the baseline ISO
where no gain is applied), 𝑥′ = 𝛼ISO𝑥 is the actually observed image, and
(𝜆𝑠ISO100

, 𝜆𝑟ISO100
) are the baseline noise curve parameters at ISO100 (these

could be known for a given camera, averaged from a certain amount of ISO-
normalized images, or arbitrary).

8https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_spec_1_6_0_0.
pdf

https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_spec_1_6_0_0.pdf
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_spec_1_6_0_0.pdf
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• Another solution is to use an off-the-shelf noise curve estimation algorithm
directly on the input image. These algorithms usually revolve around find-
ing homogeneous regions within the image and computing the variance and
means of said regions [CB13; RA16]. Using a noise curve estimation algo-
rithm would effectively allow the HDR+ burst denoising algorithm to run
blind, as all necessary information is stored in the raw Bayer data. That said,
extra care should be taken to verify the robustness of these algorithms and
the consistency of their outputs. In our experiments, we found that sticking
to image metadata or computing (𝜆𝑠, 𝜆𝑟) from ISO and baseline values pro-
duced more consistent results, all while requiring less computational time
and fewer external dependencies.

In order to avoid potential problems due to the undersampled nature of the red
and blue channels of a Bayer pattern, the noise estimation and the remainder of
the merging method are performed separately for each color plane (the two green
channels are also treated independently). Since we computed pixel-level alignment
for tiles of downsampled grayscale images, we can actually assign the same tile size
and motion vectors to each individual color plane.

For computational efficiency, even though the noise is claimed to follow a signal-
dependent model across the reference image, the noise variance is actually consid-
ered signal-independent within each reference image tile. This means that for a
given tile 𝑇, a single intensity value 𝜌 is used to evaluate the noise model. Instead
of taking the average of all intensities within the tile, the authors of [Has+16]
decided to consider the root-mean-square (RMS) of the tile

𝜌(𝑇 ) = RMS(𝑇 ) = ( 1
𝑛2

𝑛−1
∑
𝑖=0

𝑛−1
∑
𝑗=0

𝑇 (𝑖, 𝑗)2)

1
2

. (1.9)

The reasoning being that given two tiles of the same average, one having a higher
contrast than the other, the higher contrast tile will have a higher root-mean-square
(and thus a higher estimated noise variance), which will allow a more aggressive
temporal denoising.

1.4.2 Pairwise Wiener Temporal Denoising
Given a set of tiles (the reference tile and the alternate tiles selected by motion
estimation), each alternate tile 𝑇𝑧 is compared to the reference 𝑇0. The difference
between the two tiles 𝐷 = 𝑇0 −𝑇𝑧 is computed, and that difference is compared to
the estimated noise variance 𝜎2(𝜌(𝑇0)). That comparison is then used to compute
a weighted average of 𝑇𝑧 and 𝑇0 (if the difference between the two tiles is far
greater than the estimated noise level, the alternate tile will have a very small
weight and we fall back to the reference).

The final temporally denoised result is the average of all pairwise merges. This
method is actually performed in the frequency space (i.e. via the 2D DFT of tiles),
which allows each spatial frequency bin to be treated individually. This can be
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useful in cases where alignment failure is partial (i.e. some frequencies match well
while others do not) as not all the content of the tiles will be discarded.

Mathematically,

̃𝑇0(𝝎) = 1
𝑁

𝑁−1
∑
𝑧=0

(1 − 𝐴𝑧)𝑇𝑧(𝝎) + 𝐴𝑧(𝝎)𝑇0(𝝎), (1.10)

where the shrinkage operator 𝐴𝑧(𝝎) is similar to a Wiener filter

𝐴𝑧(𝝎) = |𝐷𝑧(𝝎)|2

|𝐷𝑧(𝝎)|2 + 𝑐𝜎2(𝜌(𝑇0))
, 𝐷𝑧(𝝎) = 𝑇0(𝝎) − 𝑇𝑧(𝝎), (1.11)

where 𝑐 is defined in the original article as a scaling and tuning factor9. For the
sake of simplicity in this chapter, we will set 𝑐 = 𝑘𝜏 where 𝑘 is the scaling factor and
𝜏 is the tuning factor that effectively controls the strength of temporal denoising.
In [Has+16], 𝑘 is fixed to 𝑛2 × 1/42 × 2, where 𝑛 is the tile length. However,
the justification for this in the article is questionable, because they are trying to
scale a single variance value computed in the spatial domain to a per-frequency-bin
Wiener filter of the squared difference of two images. Still, we leave the value of
𝑘 as is, since its influence can be superseded by simply changing the values of 𝜏.
The pseudo-code of temporal denoising is described in Algorithm 2. If 𝜏 → 0,

̃𝑇0(𝝎) → 𝑇0(𝝎): we stick to the reference frame and the result is not temporally
denoised. If 𝜏 → +∞, ̃𝑇0(𝝎) → 1

𝑁 ∑𝑁−1
𝑧=0 𝑇𝑧(𝝎): the result is equivalent to an

average of all aligned frames in the spatial domain, which can showcase alignment
errors. These edges cases can be observed in Figure 1.4.

(a) Reference image
crop

(𝜏 = 0)

(b) Temporal
denoise
(𝜏 = 75)

(c) Temporal denoise
(𝜏 = +∞, ghosting)

(d) Burst average
(no alignment)

Figure 1.4: Impact of the tuning factor 𝜏 on the result of temporal denoising.

9This 2D frequency-based denoising technique bears similarities with the burst deblurring
method of Fourier Burst Accumulation [DS15; AM17]. However, the comparison of 2D frequency
bins in HDR+ serves a different purpose: if 𝑇0 is sharp, and it is still matched to a blurry tile
𝑇𝑧 after alignment, the frequency content corresponding to the blurry elements ot 𝑇𝑧 will be
discarded, but only because it does not match that of 𝑇0. On the contrary, if we have a blurry
𝑇0, but a sharp 𝑇𝑧, there is also a strong frequency mismatch and we will not merge that content
either. In effect, the Wiener filter does not introduce additional blur from other images, but it
does not remove blur either.
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Algorithm 2: HDR+ per-channel, tile-based, pairwise temporal denois-
ing

input : Set of aligned tiles {𝑇0, … , 𝑇𝑁−1} of size 𝑛 × 𝑛 at reference
image location (𝑖, 𝑗) (all tiles correspond to a single channel of
the Bayer image)

input : Noise curve parameters 𝜆𝑠, 𝜆𝑟, temporal denoising tuning factor 𝑐
output: Single denoised tile ̃𝑇0 at reference image location (𝑖, 𝑗)

𝜌 ← RMS(𝑇0) = ( 1
𝑛2 ∑𝑛−1

𝑖=0 ∑𝑛−1
𝑗=0 𝑇0(𝑖, 𝑗)2)

1
2

Compute the
root-mean-square of 𝑇0.

𝜎2 ← 𝜆𝑠𝜌 + 𝜆𝑟 Compute the noise variance assigned to 𝑇0.
foreach 𝑧 ∈ {0, … , 𝑁 − 1} do

𝑇𝑧(𝝎) ← FFT(𝑇𝑧)(𝝎) DFT of 𝑇𝑧(𝑥, 𝑦).
̃𝑇0(𝝎) ← 𝑇0(𝝎) ∀𝝎

foreach 𝑧 ∈ {1, … , 𝑁 − 1} do
foreach frequency bin 𝝎 ∈ {0, … , 𝑛 − 1}2 do

𝐷𝑧(𝝎) ← 𝑇0(𝜔) − 𝑇𝑧(𝝎)
𝐴𝑧(𝝎) ← |𝐷𝑧(𝝎)|2

|𝐷𝑧(𝝎)|2+𝑐𝜎2

̃𝑇0(𝝎) ← ̃𝑇0(𝝎) + (1 − 𝐴𝑧)𝑇𝑧(𝝎) + 𝐴𝑧(𝝎)𝑇0(𝝎) Sum pairwise
temporal denoisings.

̃𝑇0(𝝎) ← 1
𝑁

̃𝑇0(𝝎) Average pairwise temporal denoising.
̃𝑇0(𝑖, 𝑗) ← FFT−1( ̃𝑇0)(𝑖, 𝑗) Inverse DFT of ̃𝑇0(𝝎).

1.4.3 Wiener Spatial Denoising
In addition to temporal filtering, spatial filtering is performed on the 2D DFT of
tiles in order to remove some of the residual noise. Since we expect the noise level
to be significantly reduced after temporal denoising, the estiated noise variance is
updated to 𝜎2(𝜌(𝑇0))/𝑁 (this implies a perfect averaging of all 𝑁 frames, which
is not the case in practice but allows for a more conservative spatial denoising).
We compute a shrinkage operator similar to the one used for temporal denoising
and apply it to the spatial frequency coefficients

̂𝑇0(𝝎) =
∣ ̃𝑇0(𝝎)∣

2

∣ ̃𝑇0(𝝎)∣
2

+ 𝑓(𝝎)𝜎2(𝜌(𝑇0))
𝑁

̃𝑇0(𝝎), (1.12)

where 𝑓(𝝎) is a noise shaping function; in [Has+16], it is a piecewise linear function
that increases the “effective noise level” for higher spatial frequencies, tuned to
subjectively maximize image quality. As we do not know the specifics of said
shaping function, we simply replaced it with 𝑓(𝝎) = 𝛾 |𝝎|, which also effectively
increases the noise level for higher frequencies, and features a scaling and tuning
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factor 𝛾. We set 𝛾 = 𝑘
2𝑠, where 𝑘 is the scaling factor defined in Section 1.4.2 and

𝑠 controls spatial denoising strength.
Mathematically, if 𝑠 = 0 we do not perform any spatial denoising. The higher

the 𝑠, the more aggressively we filter higher spatial frequencies and obtain a lower-
frequency final image (with little to no edges and textures within a tile in extreme
cases). We typically set it to 0.1 to remove a bit of high frequency residual noise
without loosing too much detail. The influence of 𝑠 on the spatial denoising can
be observed in Figure 1.5.

(a) Reference image (b) Temporal
denoise
(𝑠 = 0)

(c) Temporal +
spatial denoise

(𝑠 = 10)

(d) Temporal +
spatial denoise

(𝑠 = 1012)

Figure 1.5: Impact of the tuning factor 𝑠 on the result of spatial denoising

This frequency-based denoising technique (and particularly our simplified im-
plementation) is not expected to be as efficient as state-of-the-art spatial denois-
ing algorithms [Dab+09; LBM13; ZZZ18]. However, this step is used as a very
computationally light complement to temporal denoising (since we are already in
frequency space), which can be tuned to be fairly gentle and not remove image
detail.

1.4.4 Overlapped Tiles and Raised Cosine Window
The steps described so far are the following: we start by dividing the reference
image in equally spaced tiles; we then associate each reference tile to a specific stack
of alternate tiles (one for each other image of the burst according to the result of
the alignment step); after that, each stack is merged using the strategy described
in the previous steps of Section 1.4. Once all stacks are merged, we obtain a set
of denoised tiles of the same number and disposition we had after dividing the
reference frame, which we can call tiles of the merged image. Unfortunately, these
steps are not sufficient to create both a less noisy image and a realistic looking one.
Because we merge each stack independently of others, and because different stacks
have different image content, a different noise variance estimation, and can feature
different alignment errors, continuity between adjacent tiles is not guaranteed.
Additional artifacts can be seen on tile edges, because the merging operation is
performed in the DFT domain (we compute the FFT of a tile stack, merge it, and
then compute the inverse FFT to obtain a merged tile). These issues can be seen
in Figure 1.6.



34 CHAPTER 1. AN ANALYSIS AND IMPLEMENTATION OF HDR+

(a) Noisy reference image crop (b) Merged image crop. Discontinuities be-
tween tiles and artifacts on tile edges due
to DFT can be observed

Figure 1.6: Results obtained with the steps described so far

In order to create smoother images with less visually noticeable artifacts while
retaining image detail, the solution of the authors of [Has+16] is twofold:

• Tiles (for both the alignment and merging steps) are overlapped by half
in each spatial dimension. This means that the total number of tiles
(and thus the number of operations for alignment and merging) is actually
multiplied by a factor of 4.

• The window used for blending is a modified raised cosine window, de-
fined in 1D as

𝑤1(𝑥) = 1
2

− 1
2

cos (2𝜋 (𝑥 + 1
2

) /𝑛) , 0 ≤ 𝑥 ≤ 𝑛 − 1. (1.13)

If 𝑥 is a vector of positions from 0 to 𝑛−1, this window function is centered,
and has nonzero values at 0 and 𝑛 − 1 which means that content on edges
is not fully discarded. As can be seen in Figure 1.7a, another interesting
property is that when they overlap by half, the sum of two such windows is
always equal to 1. When dealing with tiles that overlap by half in two spatial
dimensions, the actual window used for blending (visible in Figure 1.7b) is
the product of the 1D version in each dimension

𝑤2(𝑖, 𝑗) = 𝑤1(𝑖)𝑤1(𝑗), 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1. (1.14)

This window allows the smooth blending of the overlapped tiles and has the
added benefit of removing DFT artifacts on tile edges.

Going back to our real burst denoising example, Figure 1.8 showcases that
using the aforementioned blending technique does create a more pleasing image
without loosing image detail.
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Figure 1.7: Modified raised cosine window.

(a) Merged image crop without overlapped
tiles

(b) Merged image crop with overlapped
tiles + cosine window

Figure 1.8: Using overlapped tiles and the modified raised cosine window prevents
observable discontinuities and edge artifacts while retaining image detail.

1.5 Finishing
After the alignment and merging steps, we obtain a single raw image based on
the reference but with significantly less noise. The system described in [Has+16]
being a full camera pipeline, the subsequent steps that lead to a final .jpg image
are also presented. Even though this chapter mainly focuses on the temporal
denoising part of the HDR+ solution, this section discusses the remainder of the
image processing pipeline.

1.5.1 Google’s Pipeline
The system described in [Has+16] being a full camera pipeline, the subsequent
steps that lead to the final image are also presented:

• Black level subtraction: saved values of additional sensor pixels that are
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shielded from the light are subtracted so that image pixels that do not receive
any light have a 0 value.

• Lens shading correction: areas on the image corners that are darker are
brightened. Low-resolution lens shading maps that are provided by the ISP
are used for that compensation.

• White balance: colors are shifted so that objects human observers would
perceive as gray actually appear as gray in the final image. Gains are ap-
plied to each one of the 4 RGGB channels individually, and those gains are
provided by the ISP.

• Demosaicking: the raw Bayer image where each pixel corresponds to a sin-
gle color channel is converted to an RGB image of the same size where each
pixel has 3 color channels. The raw image being undersampled, an inter-
polation algorithm is used (the algorithm in the HDR+ pipeline is said to
use a combination of techniques featured in [Gun+05] and is most likely
proprietary).

• Chroma denoising: even after the temporal and spatial denoising steps, the
image can still contain artifacts such as red and green blocks in dark areas,
especially in the case of low-light images. To that end, the HDR+ authors
apply a sparse 3 × 3 tap non-linear kernel in two passes to the image in the
YUV space, acting as an approximate bilateral filter.

• Color correction: a 3 × 3 matrix supplied by the ISP is used to convert the
image from sensor RGB to linear sRGB values.

• Dynamic range compression / local tone mapping: aside from burst denois-
ing, the HDR+ pipeline aims at improving the dynamic range of the final
image in specific scenarios (hence its name): in scenes that feature a high
dynamic range, darker areas of the image must be brightened, while brighter
content must remain unsaturated and local contrast must be preserved. To
that end, a local tone mapping method derived from the exposure fusion al-
gorithm [MKV09; Hes18] is employed. However, since this method requires
several images of different brightness (usually several captures at different ex-
posure times), two gamma-corrected “synthetic exposures” are created from
the intermediate result: one short (a gamma-corrected grayscale version of
the current image, which features the exposure time used during the burst
capture) and one long exposure (a gamma-corrected grayscale version of the
current image with a gain applied according to the auto-exposure algorithm
specific to that pipeline). From these two images, the exposure fusion algo-
rithm uses image pyramids to create a smoothly blended image where each
pixel is best-exposed. The gamma correction is then inverted and the image
re-colorized by keeping the chroma ratios of the intermediate image.
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• Dehazing: an extra global tone curve that pushes low pixel values even lower
while preserving highlights and midtones is applied in order to mitigate the
effect of veiling glare.

• Global tone adjustment / gamma curve: an S-shaped contrast enhancing
tone curve is concatenated to the sRGB color component transfer function to
transform the linear sRGB image to a nonlinear sRGB image where contrast
is increased.

• Chromatic aberration correction: longitudinal and lateral chromatic aberra-
tion are corrected by replacing chroma values on high contrast edges by those
of nearby pixels that are less likely to be affected by chromatic aberration.

• Sharpening: the authors implement unsharp masking10 through a sum of
Gaussian kernels constructed from a 3-level convolution pyramid.

• Hue-specific color adjustments: some custom transformations are applied to
the image colors (shifting bluish cyans and purples towards light blue, and
increasing the saturation of blues and greens generally), which is said to
make vegetation and blue skies more visually appealing.

• Dithering: to mitigate quantization artifacts when reducing from 10/12 to
8 bits per pixel (sRGB images are typically destined for viewing on 8-bit
displays), dithering is implemented by adding blue noise from a precomputed
table.

• JPEG quantization and compression: the image is quantized and encoded
to 8 bits where the lossy compression is set to a quality level of 95, resulting
in the final .jpg file.

All these steps are performed via software (i.e. in a smartphone, these opera-
tions can run on the CPU/GPU and not necessarily on the ISP).

1.5.2 Our Simplified Pipeline
Since we decided to mainly focus on the denoising part of the HDR+ algorithm
for this chapter, we implemented a simpler finishing pipeline. It still features parts
of Google’s own solution, and it is presented as a proof of concept, to showcase
some of the decisions they made when designing their pipeline. It does not aim for
parity with Google in terms of visual quality, as it would require a considerable
amount of additional development time and a lot of trial and error, especially given
the relatively sparse description of these steps in the original article.

Using rawpy, a Python wrapper of the LibRaw library11 we transform a tem-
porally and spatially denoised 16 bit Bayer array (even though smartphone raw

10https://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/
unsharpmask/index.html

11https://pypi.org/project/rawpy/

https://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/unsharpmask/index.html
https://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/unsharpmask/index.html
https://pypi.org/project/rawpy/
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images typically have a 10 or 12 bit precision, they are often stored on 16 bit
arrays) into a 16 bit linear RGB image of the same resolution with the following
operations:

• Black level subtraction

• White balance: rawpy uses the gains stored in the As Shot Neutral Exif
metadata tag in the .dng file of the reference image to apply scales to the
red and blue Bayer channels.

• Demosaicking: the raw Bayer image where each pixel corresponds to a
single color channel is converted to a RGB image of the same size where
each pixel has 3 color channels. We use the AHD algorithm [HP05] since
it was both used for burst fusion comparisons in the HDR+ supplement
(where it was deemed “representative of the algorithms used by mobile ISPs”)
and available in rawpy. That algorithm is not the proprietary one used in
Google’s implementation.

• Color correction: rawpy uses image metadata such as the Color Matrix
Exif tag in the .dng file of the reference image to convert the image from
sensor linear RGB to standard linear sRGB color space.

Once we are done with rawpy postprocessing, we apply additional custom opera-
tions:

• Hdr tone mapping: we use a technique similar to the one employed
in [Has+16], where two synthetic exposures are created from a single image
and combined with exposure fusion [MKV09] (a similar strategy is extended
and demonstrated in [Hes19]). From the result of all previous steps (which
stems from an underexposed burst), we get a grayscale image by averag-
ing the 3 color channels and then synthesize two exposures: we apply the
standard sRGB gamma correction to get a short exposure, and we apply a
gain followed by the same gamma correction to synthesize the long expo-
sure. We then perform exposure fusion using the OpenCV mergeMertens
implementation12. Given that we are blending grayscale images, and that in
their implementation, the authors of [Has+16] use “a fixed weighting func-
tion of luma that favors moderately bright pixels”, we found that only taking
the “well-exposedness” weights of exposure fusion into account for blending
(we set the exposure_weight parameter to 1 and contrast_weight and
saturation_weight to 0 when calling the createMergeMertens function)
produced convincing results (Figure 1.9 shows an example of the applied ex-
posure fusion). We undo the gamma correction of the fused grayscale image,
and compute a per-pixel scaling with the element-wise division of the result
by the original grayscale image. We then apply that scaling to each channel
of the underexposed RGB image to obtain the tone-mapped result.

12https://docs.opencv.org/master/d7/dd6/classcv_1_1MergeMertens.html

https://docs.opencv.org/master/d7/dd6/classcv_1_1MergeMertens.html
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(a) Synthetic short expo-
sure

(b) Long exposure
(gain=15)

(c) Exposure fusion result

Figure 1.9: Dynamic range compression / local tone mapping.

• Contrast enhancement / global tone mapping: our next step is to
increase image contrast by applying the following simple S-shaped function
to each color channel

𝑦 = max(0, min(𝑥 − 𝛼 sin(2𝜋𝑥), 1)). (1.15)

This makes dark areas of the image darker and bright areas brighter, thus
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 = 0.1
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Figure 1.10: S-shaped contrast enhancement curve.

enhancing contrast. As illustrated in Figure 1.10, the 𝛼 parameter must be
carefully selected to avoid completely black or white regions while retain-
ing a visually pleasing result. Although it is probably different from the
one used in Google’s own HDR+ implementation, this S-shaped contrast
enhancing curve is actually very similar to the one referenced and used in
another Google publication, namely “Unprocessing images for learned raw
denoising” [Bro+19] which we’ll discuss in greater detail in Chapter 2 of this
manuscript.

• Gamma compression: pixel values are shifted from linear to non-linear
sRGB space in order to both reduce the required bandwidth and produce a
more pleasing and identifiable look, taking advantage of the human visual
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sensitivity which is also non-linear (for example, humans are more sensi-
tive to brightness differences in darker tones versus brightness differences in
brighter tones). The sRGB transfer function is defined by the IEC 61966-2-1
international standard13 as

𝑉𝑜𝑢𝑡 = {
12.94𝑉𝑖𝑛, 0 ≤ 𝑉𝑖𝑛 ≤ 0.0031308,
1.055𝑉

1
2.4

𝑖𝑛 − 0.55, 0.0031308 < 𝑉𝑖𝑛 ≤ 1.
(1.16)

• Sharpening: we get a final sharper image by computing the average of 3
images obtained via unsharp masking

𝐼𝑠ℎ𝑎𝑟𝑝 = 1
3

3
∑
𝑚=1

𝐼𝑠ℎ𝑎𝑟𝑝𝑚
, (1.17)

where

𝐼𝑠ℎ𝑎𝑟𝑝𝑚
(𝑥, 𝑦) = {

𝐼(𝑥, 𝑦) + 𝛼𝑚(𝐼(𝑥, 𝑦) − 𝐼𝜎𝑚
𝑏𝑙𝑢𝑟(𝑥, 𝑦)) If ∣𝐼(𝑥, 𝑦) − 𝐼𝜎𝑚

𝑏𝑙𝑢𝑟(𝑥, 𝑦)∣ > 𝜏𝑚,
𝐼(𝑥, 𝑦) otherwise,

(1.18)
𝐼𝜎𝑚

𝑏𝑙𝑢𝑟 being the result of the convolution of 𝐼 with a Gaussian kernel of
standard deviation 𝜎𝑚, 𝛼𝑚 controls the sharpening strength and 𝜏𝑚 is a
threshold that controls which pixels will actually be sharpened. We em-
pirically found that setting 𝛼𝑚 ∈ {1, 0.5, 0.5}, 𝜎𝑚 ∈ {1, 2, 4} and 𝜏𝑚 ∈
{2%, 4%, 6%}, 𝑚 ∈ {1, 2, 3} produced visually pleasing results (image that
looks a bit sharper while remaining natural-looking, little to no noise rein-
troduced after sharpening homogeneous regions). This mask is certainly
different from the one employed in [Has+16] given that its parameters are
unknown.

• JPEG quantization and compression: the image is quantized and en-
coded to 8 bits, resulting in the final .jpg file. We set the quality level of
the lossy compression to 100 to minimize compression artifacts.

Although these steps produce less visually pleasing images than the full HDR+
finishing pipeline, they still showcase one of its most defining aspects: HDR tone
mapping from a single underexposed merged image. A full or partial combination
of these steps can be used for any raw .dng image, including the noisy reference
image, or intermediate results of Google’s own implementation. This will come in
handy for visual comparisons, which we’ll discuss in Sections 1.6.2 and 1.6.3.

1.6 Comparison to the Original HDR+ Imple-
mentation

13http://www.color.org/chardata/rgb/srgb.xalter

http://www.color.org/chardata/rgb/srgb.xalter
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1.6.1 The HDR+ Dataset
In 2018, [Has+16] was completed by a very large dataset captured with several
smartphones, simply named the HDR+ dataset14. It is comprised of 3640 raw
bursts (28461 images total), for a total of 765 GB. Each burst contains the fol-
lowing files:

• a set of raw images stored in the open and commonly used Adobe Digital
Negative (.dng) format, which can be read by rawpy and contains useful
metadata such as exposure time, ISO, black level as well as white balance
gains estimated by the camera.

• additional metadata stored in separate files, such as maps for lens shading
correction and color correction matrices.

A curated subset of 153 bursts is also available. Since the HDR+ algorithm is not
learning-based, we mostly focused on that subset for the purposes of this chapter.

Two sets of Google’s own results are available on the dataset website: the 2016
results, said to correspond to the algorithm and parameters described in [Has+16],
while the 2017 ones correspond to a more recent version of the pipeline with
“algorithm refinements and updated tuning”. For each raw burst, a set of results
comes with the following data:

• A raw merged.dng file which is said to correspond to the result of the align-
ment and temporal denoising steps (the dataset authors claim no additional
processing of the raw image).

• A final.jpg file, which is obtained after the full finishing pipeline described
in Section 1.5.1 is applied to the merged result.

• A reference.txt file that contains the index of the picked reference frame.

1.6.2 Comparison to Google’s Merged Results
The inclusion of Google’s raw alignment and temporal denoising results along
with the chosen reference frame allows for an apples-to-apples comparison with our
open-source Python implementation of the burst alignment and merging algorithm:
we can measure similarity between the raw images and/or put the alignment and
merging results through the same finishing pipeline for visual comparison.

Statistical Comparison of Raw Merged Images

We first wanted to compare our raw merged results to the 2016 Google ones, be-
cause they are said to be the closest to the implementation presented in the article.
However, by putting these files through a simplified finishing pipeline (black level

14HDR+ Burst Photography Dataset, http://www.hdrplusdata.org/

http://www.hdrplusdata.org/
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subtraction, white balance, demosaicking, color correction, gamma curve), we ac-
tually found that it is very likely that the 2016 version of the merged.dng files also
features spatial denoising, while the 2017 might not. Significant differences can be
observed in Figure 1.11.

(a) 2016 “Merged” image (post-processed) (b) 2017 “Merged” image (post-processed)

Figure 1.11: The Google 2016 results seem to feature less residual noise except
around strong high contrast features / specular highlights, which is typical of
spatial denoising as stated in [Has+16].

On the subject of spatial denoising, the article provides no indication of the
slopes of the “piecewise linear function” of spatial frequency (or of any potential
tuning of the spatial denoising strength). Therefore, it would be ill-advised to
compare the 2016 results to our own. We instead decided to perform comparisons
against the 2017 results. Even though they are said to feature different tunings
and algorithm refinements (we do not know all the 2016 tuning factors either), the
alignment and merging results seem more in line with what we were able to obtain
with our own implementation.

Using the subset of 153 bursts provided in the HDR+ dataset, we thus took the
bursts where the raw reference image and the 2017 Google “merged.dng” result
were of the same size (for an unknown reason, some Google images are larger than
the reference), and set out to compute two PSNRs:

• the PSNR between Google’s result and the noisier reference image it is based
on.

• the PSNR between Google’s result and our own result, tuned to match
Google’s result as much as possible:

– Coarse-to-fine upsampling factors of the 4-level Gaussian pyramid: 4,
4, 2 (as suggested in the HDR+ supplement).
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Figure 1.12: PSNR between Google’s and our merged result on the applicable
bursts of the “20171106_subset”.

– Coarse-to-fine tile sizes: 8, 16, 16, 16 (as suggested in the HDR+ sup-
plement).

– Type of norm used for tile distance computation: L2 at all levels except
the finest, L1 for the finest (as suggested in the HDR+ supplement).

– Temporal denoising factor 𝜏: 75 (it is claimed to be set to 8 in [Has+16],
but we were not able to reproduce similar temporal denoising perfor-
mance with our own way of computing the noise parameters (𝜆𝑠, 𝜆𝑟)
and thus 𝜎2).

On that topic, Google decided to increase the bit depth (and in turn change the
black and white levels) of their raw merged result to put emphasis on the accuracy
gained after alignment and temporal denoising, so we had to normalize the images
before computing those PSNRs (our merged result has the same black and white
levels as the reference image). With these settings, we achieve an approximate
+7dB PSNR improvement when compared to the reference on average, our results
having higher PSNR for every burst. This suggests that our implementation does
perform alignment and temporal denoising somewhat similarly to Google’s imple-
mentation. Bear in mind that we are trying to be close to images whose tuning
and algorithm refinements are unknown. These similarity measurements can be
seen in Figure 1.12.

Visual Comparison of Minimally Processed Merged Images

If we put the three raw images (the reference image, our merged result, and
Google’s) through the same minimal finishing pipeline (identical demosaicking +



44 CHAPTER 1. AN ANALYSIS AND IMPLEMENTATION OF HDR+

white balance + color matrix + gamma curve), we can visually assess the simi-
larity between Google’s implementation of the alignment and temporal denoising
steps and our own.

Looking at the subset of 153 bursts, some images seem to have less residual
noise on our end, while others look more noisy than Google’s result. The most
likely candidates for noticeable differences between the two are:

• The way we compute the (𝜆𝑠, 𝜆𝑟) noise curve parameters: we either extract
them from .dng metadata when possible, or compute them as a function
of baseline ISO 100 values and actual ISO (as explained in Equation (1.8)
of Section 1.4.1), while Google can derive these parameters from the analog
and digital gain set at capture time.

• In [Has+16], the authors claim to typically use 16 × 16 tiles for alignment
(at the finest pyramid level) and merging, except for very dark scenes where
they use 32 × 32 tiles. We do not make that distinction and always use
16 × 16 tiles.

• Google could use different tuning factors from ours (this interacts with the
two previous potential differences anyways).

• The so called “algorithm refinements” of the 2017 results we are unaware of.

Selected crops can be observed in Figure 1.13. Full-size results for the whole subset
of 153 bursts can be consulted and downloaded from a Google Photos album15.

1.6.3 Visual Comparison to Google’s Final Results
The presence of their final results also enables visual comparison of their consumer-
grade raw to JPEG finishing pipeline against our own. That said, given the sim-
plified nature of our own finishing step, if we compare our final images to Google’s
cleverly chroma denoised, tone-mapped, sharpened, dehazed, color corrected (and
so on and so forth) final HDR+ results, such comparison is definitely not in our
favor in the vast majority of cases. It would certainly make sense to fully imple-
ment these additional finishing steps, but that would require a lot of additional
development, testing and fine-tuning time to reach a similar level of quality. The
added complexity would also likely imply longer processing times in our Python
implementation, and would stir this chapter away from our main subject of focus,
the raw burst alignment and merging algorithm. Still, if we compare our images to
a simple post-processing of the reference image (demosaicking + white balance +
color matrix + gamma curve), we can see that our pipeline does provide significant
visual improvement. Some examples are featured in Figure 1.14. Final full-size
results for the whole subset of 153 bursts can be consulted and downloaded from
another Google Photos album16.

15https://photos.app.goo.gl/mEhyNrqKc2x7rbqj9
16https://photos.app.goo.gl/QurTFcvUMc8i1DM7A

https://photos.app.goo.gl/mEhyNrqKc2x7rbqj9
https://photos.app.goo.gl/QurTFcvUMc8i1DM7A
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Reference Ours merged Google merged

Figure 1.13: Visual comparison of crops of minimally processed versions of the
reference image, our “merged” result and Google’s “merged” result (viewers are
invited to zoom in). Both alignment and merging procedures significantly reduce
noise. Top row: both merged results are virtually indistinguishable. Second row:
Google seems to further reduce noise. Third row: our result seems more denoised.
Fourth row: Google’s residual noise seems to be of lower spatial frequency com-
pared to ours (they might be using a larger tile size for this low-light image).
Bottom row: for this image, ghosting is slightly stronger in our result.
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Reference Ours final Google final

Figure 1.14: Visual comparison of crops of the minimally processed reference im-
age, our final result and Google’s final result (viewers are invited to zoom in).
Google’s different spatial denoising, tone mapping, sharpening and additional op-
erations (chroma denoising, lens shading correction, dehazing, color adjustment,
dithering, etc) ensure better results in almost any scenario. First Row: our re-
sults can be similar to Google’s in some static, well lit environments. Second row:
Google’s more aggressive tone mapping produces an image with better dynamic
range at the expense of more residual noise. Third row: since we do not apply any
chroma denoising, residual noise can be amplified by our tone mapping and sharp-
ening operations. Bottom row: Google also seems to perform hot pixel removal,
which we do not (look at the top right corner of the crops).
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1.7 Results on GoPro Bursts
In order to further verify the appeal of the HDR+ raw burst denoising algorithm
and the improvements provided by parts of its finishing pipeline, we set out to test
our own implementation on bursts that were not part of the HDR+ dataset. We
used GoPro HERO 8 Black and Hero 9 Black action cameras as an alternative to
the Android devices used by Google. They feature similar sensors (Sony CMOS
sensor with relatively small pixels) but much wider lenses when compared to the
main camera typically found in modern smartphones.

We captured sequences of 10 raw images using the dedicated burst mode of the
HERO 8 and 9, all while trying to follow the base principles described in [Has+16]
(underexposed bursts, with identical focal length and short exposure time for all
images, and scene and camera motion that is manageable with respect to exposure
time). Here are the HERO9 parameters we had access to in order to respect these
principles as much as possible:

• We did not have direct control of the exposure time, as it is handled by the
auto-exposure algorithm of the camera. Instead, we could specify the burst
rate (how many images we want in a specified amount of time). We set it
to its fastest value (10 images in 1s when capturing raw images), ensuring a
maximum exposure time of 0.1 s.

• We could also change the EV compensation parameter (which controls how
bright the burst images are). Since we wanted the bursts to be underexposed,
we typically set it between 0 and -2 depending on scene brightness, selected
ISO and the expected behavior of the auto-exposure algorithm.

• Finally, we could set minimum and maximum ISO values. We actually had
to set both parameters to the same value if we wanted all images of the burst
to feature the same ISO (had we not done that, the AE algorithm might have
selected different values for different images of the same burst). This means
that we had to manually pick ISO before capture. We usually set ISO to 100
in most scenarios (in order to avoid clipped highlights) except in low light
where we might set it between 200 and 800.

We deliberately shot most bursts in very low light / high dynamic range scenarios
to ensure these would have a lot of noise. Since GoPro cameras output raw images
in their proprietary .gpr format, we converted them to Adobe Digital Negative
(.dng) files using Adobe DNG Converter17, which is the same format used for
the HDR+ dataset. We then simply executed the exact same code we ran on the
images provided by Google, without changing any tuning parameter.

We applied our own finishing pipeline (described in Section 1.5.2) to both the
reference image and the result of the alignment and merging steps in order to assess
their impact on noise reduction. We also added a minimally processed version of

17https://helpx.adobe.com/photoshop/using/adobe-dng-converter.html

https://helpx.adobe.com/photoshop/using/adobe-dng-converter.html
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the reference image (with no tone-mapping) to show how bright the original raw
image actually is. We can see that noise is significantly reduced by the alignment
and merging procedure (even on image edges, where these steps might perform
worse because of image distortion induced by the wide lens). Residual noise can
however still be quite present in some images (particularly in very low light), and
some of it can be amplified by the tone mapping and sharpening steps of our
pipeline. Figure 1.15 showcases some of these results, while the full-size results on
17 GoPro bursts can be consulted and downloaded from Google Photos18. The 17
raw DNG bursts can also be downloaded from Google Drive19.

1.8 Summary
Throughout this chapter, we presented the core principle at the heart of the HDR+
digital photography pipeline: a raw burst alignment and merging algorithm. It
uses a Wiener filter variant to combine the information of aligned tiles stacks in
the 2D DFT space, to produce individual tiles with significantly less noise. Little
priors and image metadata are required to produce convincing results, the most
important one being a crude estimation of the noise level. When tuned properly,
a good compromise between residual noise and ghosting artifacts can be found,
resulting in natural, visually pleasing images. Many additional steps are required
after alignment and merging to obtain a final RGB image acceptable for consumer-
grade products, especially when trying to stand out from competitors. When com-
pared to more recent state-of-the art approaches, the constrained computational
complexity of the whole pipeline makes it well suited for mobile photography, but
the strategies employed are versatile enough to improve image quality on many
different types of cameras.

18https://photos.app.goo.gl/XKiiSSNmqUEMYpYS8
19https://tinyurl.com/gopro-dng-google-drive

https://photos.app.goo.gl/XKiiSSNmqUEMYpYS8
https://tinyurl.com/gopro-dng-google-drive
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Reference (minimal pro-
cessing)

Reference + finishing
pipeline

Merged + finishing
pipeline

Figure 1.15: Visual comparison of crops of the minimally processed reference im-
age, the reference processed by our finishing pipeline, and our alignment and merg-
ing result processed by our finishing pipeline (viewers are invited to zoom in).
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Chapter 2

RBDnet: turning FastDVDnet
into a Raw Burst Denoising
network

In Chapter 1, we presented a handcrafted raw burst denoising algorithm inside
an end-to-end photography pipeline. Classsical methods like this one typically
blend physics-based mathematical models and engineering tips and tricks. They
also tend to feature many tuning hyperparameters that can dramatically change
the output each time the algorithm runs. In this Chapter, we will explore another
paradigm to solve the same real raw burst denoising problem, namely deep learning
methods. It is structured as follows: Section 2.1 is a comprehensive review of the
deep learning image restoration literature, including multi-image methods and the
raw denoising problem. Section 2.2 describes the design choices behind RBDnet,
our raw burst denoising network. Quantitative and qualitative performance of
our method is discussed in Section 2.3, with additional experiments and ablation
studies in Section 2.4, including comparisons to single frame variants of our model.

2.1 State of the Art of learning-based methods
for single and multi image restoration

While the mechanism of backpropagating an error through linear units to learn
representations was already presented in the second half of the 1980s [RHW86]
and rapidly suggested for computer vision tasks [LeC+89], the resurgence of neu-
ral networks can be traced back to the 2010s, where fast-paced CPU, GPU and
storage performance increases in computers, combined with easier access to large
amounts of data, have allowed neural networks (especially deeper ones) to be viable
(if not better performing) alternatives to standard “handcrafted” algorithms. In
the 2020s, deep learning is effectively a center-stage computer science and applied
mathematics research topic. Learning-based methods are also prevalent in com-
putational image and video restoration, sometimes called low-level vision, where
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Figure 2.1: DnCNN architecture (extracted from [ZZZ18]). The first block is
composed of 64 convolution filters of size 3 × 3 × 𝑐 (where 𝑐 is the number of
channels of the input image) and a ReLU activation function, yielding 64 channels.
It is then followed by 𝐷−2 blocks of 64 3×3×64 filters with batch normalization
and ReLU activation. The final block is made of 𝑐 filters of size 3 × 3 × 64 and
outputs the residual of the noisy image.

deep neural networks achieve state-of-the-art performance on tasks such as denois-
ing [Bro+19; Zam+20], super-resolution [Wan+18; SC20] or deblurring [Tao+18;
Car+21].

2.1.1 The rise of convolutional architectures
The ever-growing popularity of convolutional architectures for computer vision
tasks such as image recognition [KSH12; SZ14; He+16] or optical flow estima-
tion [Wei+13] in the early 2010s has been a great source of inspiration for the
restoration community. In 2017, Zhang et al. introduced DnCNN [Zha+17a], a
simple yet powerful deep CNN architecture for image noise removal. It is mainly
comprised of a succession of learned convolution filters and Rectified Linear Unit
(ReLU) activation functions. Key intuitions of this publication are the use of batch
normalization, and the dense prediction of the noise residual instead of the noise-
free image: formally, if we write the noise generation problem as 𝑦 = 𝑥 + 𝑛 with
𝑦 the noisy observation, 𝑥 the underlying clean image and 𝑛 the noise, DnCNN
learns to directly map 𝑦 to the residual 𝑅(𝑦) = 𝑦 − 𝑥 = 𝑛, and the denoised image
can be recovered with 𝑥 = 𝑦 − 𝑅(𝑦). The architecture of DnCNN is showcased in
Figure 2.1. For Gaussian denoising, DnCNN outperformed classical methods such
as BM3D [Dab+07], EPLL [ZW11] or WNNM [Gu+14]. Zhang et al. also propose
training a single version of DnCNN for three different tasks: Gaussian denois-
ing, super-resolution, and JPEG image deblocking, which showcased competitive
performance with back-then state-of-the-art methods as well.

Many works have since then replaced straightforward convolutional architec-
tures by CNNs with a multiscale convolutional encoder-decoder layout with skip
connections. This is in great part thanks to the introduction of the seminal
U-Net [RFB15], initially proposed for biomedical image segmentation, but very
quickly adopted in many low-level vision tasks such as denoising [Mil+18; Bro+19;
Zha+21a] or deblurring [Car+21; Che+21]. The “hourglass” layout of the U-Net
allows learning representations at multiple image scales (e.g. noise or texture at
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Figure 2.2: Architecture of DRUNet, a deep denoising network based on U-Net
that also includes residual blocks presented in [He+16] (extracted from [Zha+21a]).

Figure 2.3: MPRNet architecture (extracted from [Zam+21]). Please refer to the
original publication for additional details on the different blocks of the network.

different spatial frequencies), while the skip connections allows the preservation of
higher frequency detail in spite of successive downscaling operations while limit-
ing the vanishing gradient problem. An example of a U-Net based architecture is
presented in Figure 2.2.

Some works propose more complex architectures that can include both multi-
scale and single-scale subnetworks, as well as connections between these scales,
such as MPRNet [Zam+21]. It is a 3-stage progressive architecture, where each
stage handles different non-overlapping patches of the image and contributes to
the global training loss. Stages 1 and 2 include a multi-scale architecture based
on the U-Net, while stage 3 remains at full image resolution. The network also
performs fusion of feature maps accross different scales, and includes channel at-
tention blocks [Zha+18]. The multi-scale and multi-stage design of MPRNet make
it a robust and powerful neural network architecture that is competitive with other
state-of-the-art single image restoration methods for multiple applications such as
denoising, deblurring or deraining.



54 CHAPTER 2. RBDNET: A RAW BURST DENOISING NETWORK

Figure 2.4: Left: Scaled Dot-Product Attention. Right: Multi-Head Attention
consists of several attention layers running in parallel (extracted from[Vas+17]).

2.1.2 Trends in the restoration literature of the early 2020s
In the early 2020s, previously state-of-the art convolutional architectures for image
restoration are progressively being supplanted by transformer-based architectures.
At their core lies the attention mechanism first introduced in 2017 in [Vas+17]. In
a nutshell, an attention function computes a compatibility between a query vector
𝑞 and a set of key vectors 𝑘 to produce a weighted sum of value vectors 𝑣, yielding
a final output vector. In particular, scaled dot-product attention computes the dot
product between the vectors 𝑞 and 𝑘𝑖 each of dimension 𝑑𝑘, for each possible key
𝑘𝑖. Each product is then normalized by √𝑑𝑘 and a softmax function is applied
to obtain the weigths that will be applied to 𝑣𝑖. Formally, if we simultaneousy
evaluate multiple queries by packing them in a matrix 𝑄, and if we pack the set
of keys in a matrix 𝐾 and the associated values in the matrix 𝑉, we have:

Attention (𝑄, 𝐾, 𝑉 ) = softmax (𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 . (2.1)

In [Vas+17], several scaled dot-product attention modules are put in parallel, and
different learned linear combinations are applied to their queries, keys and values.
The outputs of these parallel modules are then concatenated and then linearly
combined using other learned weights. This block is called a multi-head attention
layer. Scaled dot-product attention and multi-head attention layers are illustrated
in Figure 2.4. The seminal transformer network includes multi-head attention
layers along with feed-forward layers in an encoder-decoder architecture.

A key property of transformers is that they can perform similarity measure-
ments between elements that are arbitrarily far away from each other. In contrast,
convolution layers architectures mostly perform learned local filtering; CNNs usu-
ally circumvent the problem of limited receptive field of the network by adding
many layers and/or by adding operations that induce changes in scale. While
the transformer architecture was originally used for natural language processing
in [Vas+17], following works have proposed transformer architectures for computer
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vision applications by suggesting to compute attention between patches [Dos+20].
This includes image restoration, where attention-based architectures yield remark-
able performance in e.g. denoising [Lia+21] or super-resolution [Yan+20; Lia+21].
Another interesting property of transformer networks is that they can easily in-
corporate multimodal information, as the attention mechanism can be computed
between queries, keys and values of different shapes and/or properties. Transform-
ers typically do not need as many training parameters as CNN architecture with
similar performance, but they are usually slower and more computationally ex-
pensive as multi-head attention layers are computationally quadratic. While some
works try to reduce the computational burden of visual transformers (particularly
for non-dense computer vision applications [WT22; Men+22; Tan+22; Zha+22;
Yin+22]), these types of architecture are still not realistic targets for on-device
inference in systems with constrained computational power such as mobile phones
or action cameras, especially in the case of dense prediction applications such as
image or video restoration where per-pixel restored estimates must be provided.

Another interesting trend of the image restoration literature in the early 2020s
is the introduction of normalizing flows and invertible networks. These neural
networks map a vector of a known (typically Gaussian) distribution to a target
distribution using a sequence of differentiable and invertible blocks. While this
additional constraint of differentiabilty and invertibility reduces the number of
possible architectures, a key property of these networks is that they can be used
for both density estimation from a sample (forward mapping) as well as sam-
pling (inverse mapping). This has shown prowess in tasks such as noise model-
ing [ABB19; Mal+22], super-resolution [Lug+20], or raw to sRGB / sRGB to raw
mapping [XQC21].

Some publications of the restoration field propose a single architecture for mul-
tiple tasks. In general, one application and the other only differ by the nature of the
degradation from clean to corrupted samples. Because neural networks are usually
trained through a large scale optimization problem using a large set of examples,
one might expect samples corrupted by a certain kind of degradation to lead to
a local minimum of the problem, and samples corrupted by a different degrada-
tion to lead to a different minimum. It is not surprising then than most works
presenting the same architecture for different restoration tasks required separate
trainings [Xue+19; Lia+21; Zam+21; Zam+22; Lia+22b]. However, some publi-
cations of the early 2020s have started proposing a network architecture trained for
multiple restoration applications at once. A common trait of these works is to try
to explicitly distinguish samples corrupted by a certain type of degradations from
samples corrupted by a different degradation. For example, [Che+22] and [Li+22a]
leverage contrastive learning to push one degradation task away from the others
in the training loss; a transformer architecture trained for deraining, desnowing,
and dehazing using distinct weather queries is presented in [VYP22]. Potential
benefits of these multi-task approaches is increased robustness of the network to
unkown degradations [Li+22a], as well as reduced memory footprint, as only the
weights of a single network must be stored, which can be appealing to embedded
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systems.

Setting new network architectures and training techniques aside, another wel-
come trend in the learning-based image and video restoration scientific community
is research and challenges that go beyond the pursuit of solely maximizing restora-
tion performance in terms of metrics such as PSNR or SSIM. For example, state-of-
the-art networks that maximize said metrics typically cannot run on systems with
constrained memory and compute requirements, including some high-end smart-
phones of the early 2020s that have started featuring dedicated ”neural engines”
for hardware-accelerated inference of neural networks. Designing architectures
that meet these requirements while providing adequate performance is a research
topic of its own. In the case of image restoration for example, the NTIRE 2022
workshop has proposed an Efficient super-resolution challenge [Li+22b], where
the objective is to design and train a network that yields a PSNR > 29 dB with
minimal runtime, size, and FLOPs. Good performers of this challenge typically
used training techniques such as knowledge distillation (teach a smaller ”student”
network to reproduce the behaviour of a larger ”teacher” network that learns the
target mapping), pruning and reparametrization to meet the requirements.

2.1.3 Beyond traditional supervised network training
A majority of end-to-end deep neural networks for image restoration are trained
with supervised learning:

𝜃⋆ = argmin
𝜃

∑
𝑖

𝐿(𝑓𝜃(𝑥𝑖), 𝑦𝑖) (2.2)

where 𝜃 are the learnable parameters of the neural network represented by the
function 𝑓𝜃, the observation 𝑥𝑖 is a degraded version of the clean target 𝑦𝑖, and 𝐿 is
a cost function. Successfully training such networks usually requires large datasets
of pairs of degraded and clean images (𝑥𝑖, 𝑦𝑖). There are multiple instances where
they can be difficult to create:

• if one chooses to synthetically create 𝑥𝑖 from an image 𝑦𝑖 deemed ”clean”,
it is not easy to reproduce the degradations process of real photographs, as
it can originate from multiple sources (e.g. motion blur, defocus blur, noise,
undersampling), and each of these sources of degradation can be difficult to
accurately model.

• if one instead chooses to capture pairs of real images (e.g. one noisy short
exposure image and one long exposure image with less noise), it can be
difficult to ensure than both images capture the exact same underlying scene.
This is even more difficult when dealing with dynamic scenes.

However, recent advances in unsupervised and self-supervised approaches in com-
puter vision have also been ported to image restoration tasks to circumvent these
issues. With the Noise2Noise paradigm [Leh+18], two or more independent noisy
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realisations of the same latent clean target can be used to train a denoising net-
work. For example, if we use pairs of noisy images (𝑥𝑖, 𝑥′

𝑖) drawn from the same
underlying distribution conditioned on the clean target 𝑦𝑖, the optimization prob-
lem becomes

𝜃⋆ = argmin
𝜃

∑
𝑖

𝐿(𝑓𝜃(𝑥𝑖), 𝑥′
𝑖), s.t. 𝑥𝑖 ∼ 𝑝(𝑥 ∣ 𝑦𝑖), 𝑥′

𝑖 ∼ 𝑝(𝑥 ∣ 𝑦𝑖). (2.3)

In [KBJ19], a denoising network is successfully trained using individual noisy image
patches as both input and target in conjunction with a blind-spot architecture
(enforcing the use of neighboring pixels to predict the value of a pixel hidden in
the input). In [UVL18], the sole structure of an untrained neural network is used
to extract useful image statistics from a single degraded sample, thus allowing
to solve image restoration problems without access to additional data (i.e. the
handcrafted network structure is an image prior itself). An example application
is noise removal, where the network can output the denoised image after being
optimized to reconstruct the noisy image, said optimization being interrupted after
a fixed number of iterations before convergence (and thus reconstruction of noise
artifacts; this strategy is called early stopping). These unsupervised and self-
supervised methods are typically slightly less performant than their supervised
counterpart, but said counterpart might not exist in some applications as discussed
before1.

2.1.4 Deep learning for raw image denoising
On the subject of image denoising, many algorithms of the deep learning literature
focus on the removal of additive white Gaussian noise (AWGN), for which variance
does not depend on image content, on top of pre-existing images. This has been
shown to be limited in efficiency for the denoising of real photographs [PR17],
where noise inherent to the physical properties of the sensor is typically signal-
dependent2. Moreover, it is important to be mindful of the step of the image
processing pipeline at which one wishes to characterize noise (and in turn perform
denoising). The stochasticity of the acquisition process can be quite accurately
modeled thanks to the known physical properties of imaging devices, meaning that
the noise model of raw images can be considered tractable. On the other hand,
accurately modeling the noise after many image processing steps is a very difficult
task: it is then typically correlated, and blended with other artifacts (compression,
quantization, saturation, etc.) [Ber18].

It is no surprise then that many publications of the denoising literature have
suggested handling noise modeling and denoising as early as possible in the image
generation pipeline, including works presenting deep learning methods. Looking at

1Classical / handcrafted restoration methods usually do not require pairs of corrupted and
clean images either; one might argue that the design of said methods also incorporates a priori
knowledge of images.

2Applying a variance stabilizing transform such as the Anscombe transform does increase the
performance of Gaussian denoising methods when applied to real photographs [MF12].



58 CHAPTER 2. RBDNET: A RAW BURST DENOISING NETWORK

Figure 2.5: Left: clean DND sample processed to sRGB. Right: associated noisy
sample (extracted from [PR17]).

methods leveraging supervised learning to train their models, the data generation
approaches used therein can be divided in two main categories:

• capture pairs of real clean and noisy images. This concept was first intro-
duced in 2017 with the creation of the Darmstadt Noise Dataset (DND)
[PR17]. To produce a pair, the same scene is captured twice by the same
camera: the reference image is captured at a low ISO, and the correspond-
ing noisy image is captured at a higher ISO (with an appropriately adjusted
higher shutter speed to keep the same exposure). A DND scene is illustrated
in Figure 2.5. This benchmark is still used in the early 2020s to compare the
performance of state-of-the-art denoising methods. A similar concept was
used for the creation of the See-in-the-Dark (SID) dataset [Che+18] with a
bigger emphasis on low-light images, where the SNR is lower. This dataset
was used in the same publication to train a CNN model to directly map a
noisy raw image to a clean sRGB image (using a processed version of the
raw image as target during training).
The main drawbacks of this data generation paradigm are the time-consuming
aspect to the construction of these datasets (especially at large scale, which
is usually required for learning-based methods to generalize well to images
not seen during training), and their inherent bias towards static scenes.

• create synthetic pairs of clean and noisy raw data. This other approach was
introduced in 2018 and refined in 2019 in two publications of UC Berkeley
and Google Research [Mil+18; Bro+19]. The idea is to convert sRGB images
considered clean to synthetic clean raw images using a series of mathematical
operations representing the inverse of a typical raw to sRGB pipline. Noise
is then added to these synthetic clean raw images according to a model
that approximates real image noise. Neural networks can then either be
trained using these synthetic clean and noisy raw pairs [Mil+18], or on the
original sRGB clean image and reprocessed sRGB versions of the noisy raw
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image [Bro+19; Zam+20].
The paradigm of realistic synthetic noisy data generation has been found and
improved in many publications since then. When using a model trained on
synthetic data for real denoising, the quality of the restoration is heavily de-
pendent on the “realistic” properties of the added noise itself. While several
works have used a combination of a Poissonian and a Gaussian distribution
(or its signal-dependent Gaussian approximation), this model is a limited
aproximation of real raw image noise. For example, thermal fluctuations
of the sensor can cause spatial variations in noise statistics; quantization of
noise comes into play during sensor readout; and additional, not i.i.d noise
sources are non-negligible in some specific capture scenarios such as the pres-
ence of row noise in very low light. Two main techniques have been proposed
to synthesize more realistic noisy data: leverage more complex and realis-
tic noise models [Wei+20] or leverage the power of data-centric generative
models [ABB19; Cha+20; Mon+22a].
The main benefit of synthetic data generation is its reduced cost when com-
pared to the capture of pairs of real images, and one of its main risks is the
potential domain gap between synthetic and real images. Some publications
actually bridge the gap between the synthetic and the real raw approaches
by adding synthetic noise to real raw data. In [Wan+20], synthetic noise
is added to raw long exposure images of the SID dataset according to cali-
brated noise parameters of a target device, the Oppo Reno 10x smartphone.
A mobile-friendly U-Net like architecture is then trained on the generated
pairs of noisy and clean raw images and is shown to provide good restoration
performance with reasonable memory and compute requirements, allowing
it to be included as the night shot feature of several flagship smartphones
released in 2019.

2.1.5 Deep networks for burst and video restoration

As with classical methods, some learning-based restoration methods also try lever-
aging the information of multiple frames to further improve the quality of their
output. In [Mil+18], an architecture based on U-Net takes a concatenated noisy
raw burst as input, and outputs per pixel 3D kernels that are convolved with the
input to output a single image. In [AD18], an architecture also based on the U-
Net is used for deblurring bursts of abitrary sizes, where copies of the autoencoder
process each frame, but information is shared between copies using max pooling
and concatenation of these common features to local features of each copy. These
publications can be categorized as multi-frame approaches in the sense that they
directly take several consecutive images as input. By contrast, other publica-
tions have proposed recurrent architectures to leverage the temporal redundancy
of image sequences. Deep Burst Denoising [GMU18] uses a “two track recurrent
architecture” for sRGB denoising. The first track is dedicated to single frame
denoising, and features produced in this track are fed as inputs to the second
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track, which uses recurrent connections to combine these features with the previ-
ous state of this track (which encompasses features of the previous frame of the
burst) Efficient Multi-Stage Video Denoising with Recurrent Spatio-Temporal Fu-
sion [Mag+21] also proposes a recurrent CNN architecture for raw video denoising.
It combines learnable color and frequency transforms, temporal fusion of frames
using a recursive convex combination at two different scales, and a spatial denois-
ing and refinement modules. Variations of the architecture with different numbers
of convolutions and filters are proposed, and while the bigger variants are com-
petitive with state-of-the-art methods such as [Wan+19; Yue+20], the publication
emphasizes on smaller variants that retain acceptable performance for a signif-
icantly smaller computational footprint: their 5 GFLOPs model yields 42.63dB
of PSNR on the CRVD raw multi-frame dataset [Yue+20], compared to the 1965
GFLOPs of RViDeNet [Yue+20] and 3089 GFLOPs of EDVR [Wan+19] that yield
a PSNR of 44.08 and 44.71 respectively. This smaller model is ported to a Huawei
p40 Pro smartphone and runs locally at around 30fps for a single-precision 720p.

An additional complexity of multi-image restoration algorithms is misalign-
ment of images. Some methods require registration by an external, off-the-shelf
algorithm before or during network inference [GMU18; Mil+18; TDV19b]. Other
methods include dedicated motion estimation / alignment modules within their
network architecture [Xue+19; Yue+20; Bha+21; Dud+22]. Other methods have
skipped the image registration step altogether, arguing that a CNN with a suf-
ficiently large receptive field should be able to implicitly align images or feature
maps thanks to its many successive learned convolution filters. For example, the
two-stage architecture with U-Net like blocks of FastDVDnet [TDV20] has shown
remarkable performance in Gaussian video denoising, both in terms of restora-
tion quality and temporal stability, without any explicit alignment. It has been
shown in a publication by different authors [She+21] that FastDVDnet performs
adaptative spatio-temporal filtering, and that the shift induced by said adaptive
filter (obtained by differentiating the network) matches optical flow-based motion
estimation applied on the same noise-free sequence fairly well.

Trends of image restoration literature of the early 2020s have also trickled down
to multi-image publications. The unsupervised Noise2Noise [Leh+18] paradigm
was a direct inspiration of Frame-to-Frame [Ehr+20] for video denoising, consid-
ering that consecutive video frames are observations of the same underlying clean
image provided one frame is warped to the other after optical flow estimation. In
a follow-up work, a self-supervised approach was proposed in [Dew+21] to fine-
tune pre-existing multi-image denoising networks so that they better generalize
to noise models not seen during training. Inspired by the blind-spot training of
Noise2Void [KBJ19], a multi-image denoising network based on FastDVDnet was
trained without requiring clean data [She+21]. Transformer-based architectures
are also gaining popularity in video restoration and outperforming CNN-based
architectures: given that patch-based attention can be computed between ele-
ments that are arbitrarily far away from each other, these architectures can easily
leverage large spatio-temporal windows. Transformer architectures have been pro-
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posed for tasks such as video denoising [Lia+22b], super-resolution [Lia+22a],
deblurring [JY22], or frame interpolation [Shi+22], but remain computationally
expensive for embedded applications.

2.2 Designing a Raw Burst Denoising Network
Having presented some of the relevant publications and methods of the literature
of deep learning for the real raw burst denoising problem, we will now present
how we designed our own network in this Section. It builds upon the work of
a previous PhD collaboration between GoPro and the MAP5 laboratory, namely
Tassano, Delon, and Veit’s FastDVDnet [TDV20], a network originally designed
for Additive White Gaussian Noise (AWGN) removal of standard sRGB videos.
We show that we can adapt it to real raw burst denoising with little changes in the
architecture by focusing on relevant training data for multi-image raw denoising.
Two main approches are studied: synthetic noisy raw data generation from sRGB
image sequences, and the use of real paired clean and noisy raw data captured in
a limited and controlled setting.

2.2.1 Background: FastDVDnet architecture
To produce a denoised version of the video frame at time 𝑡, FastDVDnet uses
frames at times 𝑡 − 2, 𝑡 − 1, 𝑡, 𝑡 + 1 and 𝑡 + 2. Because of this, in order to denoise
a whole video while ensuring the output video retains the same size, the noisy
input video 𝒗 is increased by 4 frames by mirroring: 𝒗 = {𝑓0, … , 𝑓𝑁−1} → 𝒗′ =
{𝑓2, 𝑓1, 𝑓0, … , 𝑓𝑁−1, 𝑓𝑁−2, 𝑓𝑁−3}.
To produce a denoised estimate of the center frame from a 5 frame window, the
network uses two instances of a Denoising Block, a U-Net like autoencoder with
residual connections (Fig. 2.6a). These blocks are cascaded in a two-stage manner
(Fig. 2.6b):

1. the first block is used to denoise 3 sequences of 3 consecutive frames:
[𝑓𝑡−2, 𝑓𝑡−1, 𝑓𝑡], [𝑓𝑡−1, 𝑓𝑡, 𝑓𝑡+1], and [𝑓𝑡, 𝑓𝑡+1, 𝑓𝑡+2]

2. the second block uses the three outputs of the first stage as input and outputs
the final denoised version of 𝑓𝑡.

FastDVDnet also takes an estimation of the standard deviation of the noise as
additional input, implemented as a constant per-pixel noise map. This noise map
can also be used ad hoc to control the strength of the denoising [TDV19a].

2.2.2 From noisy sRGB videos to noisy raw bursts
Domain gap: sRGB video vs raw bursts.

The differences between processed videos and sRGB image bursts are pretty mi-
nor: the main difference is compression artifacts of video files typically not present
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(a) architecture of a Denoising Block (b) two-stage architecture

Figure 2.6: FastDVDnet architecture. It comprises two instances of a Denoising
Block, used in a cascaded, two-stage fashion (extracted from [TDV20])

in bursts, but we’ll consider these negligible for the rest of this chapter. However,
the domain gap is larger between processed sRGB images corrupted with AWGN,
and raw images containing real noise caused by the photon acquisition process and
the physical properties of the imaging device. Raw images also have greater, un-
compressed dynamic range, and typically do not feature degradation and artifacts
due to subsequent image processing steps (demosaicking, color correction, gamma
compression, sharpening, etc.), while sRGB images do.

Noise model: Gaussian vs clipped heteroscedastic Gaussian.

While ubiquitous in the denoising literature, the AWGN model is not suitable
to approximate the noise present in real images. A better approximation is the
Poisson-Gaussian (PG) model [Foi+08], where the noise is composed of two mutu-
ally independent parts: a Poissonian signal-dependent component, and a Gaussian
signal-independent component. This model can be further approximated by a het-
eroscedastic Gaussian distribution: a normal distribution whose variance can be
expressed as an affine function of the signal level. Formally, given 𝑥𝑝, the intensity
of a clean image at pixel location 𝑝, we have:

𝜎2(𝑥𝑝) = 𝜆𝑠𝑥𝑝 + 𝜆𝑟 (2.4)

where (𝜆𝑠, 𝜆𝑟) are camera and ISO-specific noise parameters: 𝜆𝑠 is characteristic of
photonic / shot noise; 𝜆𝑟 characterizes read noise (encompassing various sources
such as sensor readout noise, thermal noise, dark current noise, etc.)3. Notice
that Gaussian noise is a subset of that model with 𝜆𝑠 = 0: in theory, a network
trained for Poisson-Gaussian noise should be able to denoise images corrupted with
Gaussian noise, while the opposite is not guaranteed. Note that we clip images
after adding noise in order to remain consistent with the black level and white
level values of the original image.

3Poisson-Gaussian and heteroscedastic Gaussian noise will be used interchangeably to describe
the model of Equation 2.4 for the remainder of this chapter.
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Figure 2.7: Unprocessing pipeline as performed in [Bro+19].

2.2.3 Training a raw burst denoising model
We have presented the design principles of RBDnet, our multi-frame raw burst
denoising model. Other than the number of input noise maps and the number of
input image channels, the architecture of RBDnet is identical to FastDVDnet: it
still uses 5 consecutive images and two cascaded U-Net blocks with skip connec-
tions, and residual learning to produce an estimate of the noise-free central image.
We now present the training data and parameters of the two main versions of the
network: one is trained on synthetic noisy raw data created from sRGB videos,
while the other is trained on a supervised dataset of paired noisy and noiseless raw
stop-motion sequences.

Synthetic noisy raw bursts

For our first version, we use the same sequences as in the original FastDVD-
net publication for training, namely 480p versions of videos of the DAVIS 2017
dataset [Pon+17]. We transform them into synthetic raw image sequences before
adding heteroscedastic Gaussian noise. To do so, we use the sRGB to raw un-
processing pipeline presented in [Bro+19]. In this paper, a camera Image Signal
Processing pipeline (ISP) that transforms a raw image to a processed sRGB image
is simulated through a series of simple mathematical operations. These operations
are representative of typical image processing blocks: demosaicking, white balance,
digital gain, camera RGB to sRGB color matrix, gamma, contrast-enhancing tone
curve. The reverse mathematical operations are also described, and these can be
used to create synthetic data similar to raw images from standard sRGB data. In
such images, intensities change linearly with respect to illumination change, only
one color channel is available per pixel according to a Bayer color filter array, and
neighboring pixels are less correlated by subsequent image processing steps. This
process, which is called unprocessing, is illustrated in Figure 2.7.

We thus generate synthetic raw training patches from standard sRGB videos
with the following operations:

• we extract 5 consecutive frames from a video

• we extract sRGB patches of size (𝑤, 𝑤, 3) by cropping patches at a random



64 CHAPTER 2. RBDNET: A RAW BURST DENOISING NETWORK

spatial location (same location for all 5 frames)

• we unprocess the patches to obtain (𝑤/2, 𝑤/2, 4) synthetic clean raw patches
that will be the ground truth

• we add clipped heteroscedastic Gaussian noise to obtain the corresponding
noisy patches. Consistent with other algorithms of the literature [Mil+18;
Bro+19], the corresponding noise map is constructed with a per-pixel es-
timation of the standard deviation of the noise given the intensity of the
observed noisy pixel ̃𝑥𝑝:

�̂�( ̃𝑥𝑝) = √𝜆𝑠 max(0, ̃𝑥𝑝) + 𝜆𝑟. (2.5)

During model training, we use this estimate instead of the ground truth
variance to allow denoising of images where the underlying clean image is
not known (which is obviously the case for real images).

Noise parameters of real raw datasets. In order to carefully select (𝜆𝑠, 𝜆𝑟),
the parameters of the PG noise we add to our training samples, we conducted a
small survey of the noise parameters of raw images of publicly available datasets
(both mono-frame and multi-frame). The datasets surveyed here are the Darm-
stadt Noise Dataset (DND) [PR17], CRVD [Yue+20], the Smartphone Image De-
noising Dataset (SIDD) [ALB18], and a subset of the HDR+ dataset [Has+16].
For each dataset, we retrieve the noise parameters either from the original article,
the associated code, or directly in the raw image metadata (e.g. in some files of
the HDR+ dataset, 𝜆𝑠 and 𝜆𝑟 can be directly found in the NoiseProfile DNG
tag). Noise parameters of the aforementioned datasets are shown in Figure 2.8,
which clearly shows that the space of noise parameters featured in popular denois-
ing datasets is pretty broad. In order to improve the generalization capabilities
of our model, we thus decided, for each training sample, to randomly draw noise
parameters in the rectangle (𝜆𝑠 ∈ [10−4, 10−2] , 𝜆𝑟 ∈ [10−8, 10−3]), which covers
most of the samples featured in Figure 2.8. Covering a wide range of noise pa-
rameters might yield lower performance when compared to a model trained for
a specific noise level or camera-specific noise parameters, but said model might
perform worse at noise levels not seen during training.
Training details. We train our model using 128 × 128 RGB crops (which pro-
duces 4 64 × 64 Bayer [R, Gr, Gb, B] channels after unprocessing). This crop size
is increased when compared to the 96×96 RGB crops of the original FastDVDnet,
because the generated raw patches are 2 times smaller after unprocessing, and
larger patches typically yield better restoration performance. We also train our
model with L1 loss (instead of L2 for the original FastDVDnet) because it has been
shown to be beneficial for image restoration tasks [Zha+17b] and is commonly used
in the raw denoising literature [Bro+19; Yue+20]. Other training parameters are
unchanged compared to the original FastDVDnet model (80 epochs; batch size of
64; random 90° rotations and flips; learning rate of 10−3 for the first 50 epochs,
10−4 until epoch 60 then 10−6 until end of training; bias-free convolutions; SVD
orthogonalization of filters every 50 batches until epoch 60).
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Figure 2.8: Noise parameters of images in the SIDD, DND, CRVD and HDR+
datasets

Real noisy raw bursts

We train a second version of our model on real raw image sequences. To do
so, we use the Captured Raw Video Dataset (CRVD) [Yue+20]: it features 11
indoor 7-frame raw sequences, and each sequence is repeatedly captured at ISO
1600, 3200, 6400, 12800 and 25600. This data can be used to train a multi-
frame denoising model in a supervised fashion, as each noisy raw image has a
corresponding “ground truth” image, generated by averaging multiple captures of
the exact same image content combined with slight additional spatial denoising
performed using BM3D. Two noisy frames of one such scene and the corresponding
ground truth are illustrated in Figure 2.9.

Contrary to the noise added in our synthetic data generation pipeline, the noise
in CRVD images is actually part of the capture process. While training a model
on real raw image sequences might seem unconditionally better than synthetic raw
data at first glance, the CRVD dataset is not without its own drawbacks. Indeed,
because of the strenuous protocol required to obtain pairs of noisy and noise-free
multi-image sequences, the number of scenes with ground truth is limited to 10
sequences of 7 consecutive frames, shot indoors, with static illumination, no camera
or object motion during capture, and at a finite set of camera and ISO specific
noise levels. This could impair model generalization to real raw bursts captured
in the wild.
Training details. Given that we use a different dataset with a different number
of training samples, we set training hyperparameters of this version of RBDnet by
mixing-and-matching those of our synthetic version with UDVD, another multi-
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Figure 2.9: 2 consecutive 1920 × 1080 frames of a CRVD indoor scene at ISO
25600. Top row: noisy images. Second row: clean images. (best viewed digitally;
images processed to sRGB for visualization)

image model trained on CRVD [She+21]. We use all training sequences, i.e. scenes
1, 2, 3, 4, 5, and 6 at ISO 1600, 3200, 6400, 12800 and 25600. Even though the
real noise in these images does not stritcly follow the PG model [Wei+20], we
still construct noise maps using the per-pixel standard deviation estimation of
Equation 2.5 and calibrated, ISO-specific values of (𝜆𝑠, 𝜆𝑟) for the camera used in
the CRVD dataset4. We extract all possible 128 × 128 crops with a stride of 64
pixels of the original 1920 × 1080 Bayer images (yielding 4 64 × 64 Bayer channels
after stacking). The other training parameters are the following: L1 loss; 4 epochs;
batch size of 8; learning rate of 10−4 for the first 2 epochs, 5 × 10−5 until epoch 3
then 2.5×10−5 until end of training; bias-free convolutions; SVD orthogonalization
of filters every 50 batches until epoch 3.

2.3 Results

In the following Section, we compare the denoising performance our RBDnet mod-
els trained on synthetic versus real raw data, both quantitatively and qualitatively.

4https://github.com/cao-cong/RViDeNet/blob/master/pdf/supplementary_material.
pdf
https://github.com/cao-cong/RViDeNet/blob/master/train_pretrain.py

https://github.com/cao-cong/RViDeNet/blob/master/pdf/supplementary_material.pdf
https://github.com/cao-cong/RViDeNet/blob/master/pdf/supplementary_material.pdf
https://github.com/cao-cong/RViDeNet/blob/master/train_pretrain.py
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Table 2.1: Denoising: PSNR on unprocessed gopro_540p

ISO 1600 3200 6400 12800 25600

noisy 39.47 36.49 33.58 30.58 27.58
RBDnet (DAVIS) 43.50 41.52 39.67 37.85 36.13
RBDnet (CRVD) 41.54 39.80 38.09 36.37 34.64

2.3.1 Quantitative results
Raw bursts synthesized from gopro_540p sequences

We first evaluate the performance of both RBDnet variants on a dataset of syn-
thetic raw bursts. This dataset is created using the sRGB videos of the gopro_540p
dataset originally used as validation dataset in the original FastDVDnet paper.
We start by extracting all possible bursts of 5 frames from the hypersmooth,
motorbike, rafting and snowboard sequences. Each burst is then turned into
a synthetic raw burst using the “unprocessing” methodology described in Sec-
tion 2.2.3 (on full-size 960 × 540 images instead of crops), and PG noise is added
to produce the noisy versions. We select the central frame of each burst in its noise-
free, synthetic raw version as ground truth. Given that our models are trained to
handle multiple levels of noise, we repeat the noisy burst creation process at 5
noise levels, each corresponding to a certain ISO setting of a certain camera. We
re-use the camera-specific noise parameters of the CRVD dataset corresponding
to ISOs 1600, 3200, 6400, 12800 and 25600. The results are shown in Table 2.1.
While both versions perform well on images not seen during training, it is clear
that on this synthetic dataset, the version trained on synthetic raw data performs
better (around +1.5dB PSNR) than the model trained on the real noisy images
of CRVD. This performance delta can be explained by a smaller domain gap be-
tween unprocessed video sequences of DAVIS and gopro_540p when compared
to the stop-motion CRVD Bayer data, as well as the domain gap between het-
eroscedastic Gaussian noise and real raw image noise; the values of the calibrated
noise parameters of the CRVD dataset (which were provided by its authors) can
also negatively impact performance when using synthetic data, as the by nature
imperfect estimation of said parameters is performed a posteriori on real data,
while they are considered perfectly calibrated when used to generate synthetic
noise.

Real raw bursts of the CRVD dataset

We also compare the denoising performance of both versions of RBDnet on indoor
test sequences of the CRVD dataset. While neither model has seen these images
during training, these sequences are very similar to the ones seen by the model
trained on the other CRVD sequences. Unsurprisingly, Table 2.2 shows that the
model with the smallest domain gap performs better. That said, it is worth noting
that the other version of RBDnet also performs quite well (the performance delta
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Table 2.2: Denoising: PSNR on CRVD indoor test sequences

ISO 1600 3200 6400 12800 25600

noisy 38.57 35.15 31.98 28.08 26.32
HDR+ [MDV21] 41.20 38.77 37.77 35.48 33.28
RBDnet (DAVIS) 47.10 45.26 43.35 40.51 40.38
RBDnet (CRVD) 47.62 45.88 43.91 41.34 41.21

being smaller than 1dB at every ISO), even though it was only trained on synthetic
data that is far easier to acquire, at a larger range of possible noise levels to boot.

As a bonus, we added to our comparison a classical, non-learning-based method
in the form of HDR+ [Has+16] (more specifically our open-source reimplementa-
tion of Chapter 1). The algorithm is fed with 5 raw frames and the associated
noise parameters. While this method does improve PSNR over the noisy input sig-
nificantly at every ISO, its denoising performance is significantly lower than both
RBDnet models (the PSNR gap being systematically greater than 5 dB). Bear in
mind that contrary to our deep models, HDR+ is a classical method that requires
hyperparameter setting, and that its default values have been selected empirically
on a limited number of examples (and are not guaranteed to be optimal regardless
of the capture setting and/or ISO).

2.3.2 Qualitative / visual results
Our quantitative evaluation shows that the data selected for training will directly
impact the denoising performance of our multi-frame raw denoising model, but
this also depends on the data selected for said quantitative evaluation, making a
conclusive pick of a “better model” difficult. In this Section, we show through
visual assessment that both RBDnet variants do remove noise, but have their own
strengths and weaknesses. We also show that both models generalize well to a
dataset neither has seen during training.
Before we dive in comprehensive visual comparison, we wanted to let the reader
know that out of all models we trained for this chapter, we noticed that only
one of them (RBDnet trained on unprocessed DAVIS with per-channel per-frame
noise maps) sometimes produced strange artifacts near high intensity and high
contrast regions. Examples of said artifacts are shown in Figure 2.10. In our
experiments, training the model during additional iterations or intializing training
with a different random seed might have reduced the occurence of these artifacts, or
changed the bursts they appear on, but did not make them disappear completely.
These artifacts did not occur with any of the other models we trained (models
trained on real data, models with different noise maps, single-frame models, etc.).
We did find that adding dithering to the synthetic raw data generation pipeline
made those artifacts disappear, which we’ll discuss in Section 2.4.4. Nevertheless,
we will focus on images that do not exhibit these artifacts for the rest of this
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Figure 2.10: Artifacts observed on some bursts after denoising with RBDnet
trained on unprocessed DAVIS with per-channel per-frame noise maps.

section.

CRVD outdoor noisy sequences

We first inspect the denoising capabilities of our models on another subset of
CRVD: its outdoors sequences. Unlike the indoors subset, these raw multi-image
sequences are captured in an uncontrolled setting and thus feature illumination
change and object motion (but no apparent camera motion, as it is likely fixed on
a tripod). This subset features 10 sequences, each being shot at ISO 1600, 3200,
6400, 12800 and 25600 (two versions of a given scene shot at a different ISO might
feature different image content, because of different exposure times and potentially
different moments of capture). Most of the scenes are captured at night and/or
in low light environments to emphasize lower-SNR scenarios, and images have no
noise-free / ground truth counterparts because of the uncontrolled capture setting.
In order to visualize the noisy and denoised raw images, we perform minimal
processing with fixed arbitrary white balance, bilinear demosaicking, identity color
matrix, sRGB gamma compression and 8 bit quantization.

An example of denoising a raw burst of 5 frames extracted from a CRVD
sequence with our two RBDnet variants is shown in Figure 2.11. We again include
the HDR+ implementation of [MDV21] with the hyperparameter values of its
online demo as a non learning-based comparison point. We typically notice that
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(a) noisy (b) HDR+ [MDV21]

(c) RBDnet (DAVIS) (d) RBDnet (CRVD)

Figure 2.11: Burst denoising of frame 2 of CRVD sequence 4 (ISO 6400; all models
take 5 1920 × 1080 Bayer frames as input; 500 × 420 crops are shown here)
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(a) noisy (b) HDR+ [MDV21]

(c) RBDnet (DAVIS) (d) RBDnet (CRVD)

Figure 2.12: Burst denoising of frame 2 of CRVD sequence 3 (ISO 25600; all models
take 5 1920 × 1080 Bayer frames as input; 720 × 480 crops are shown here)



72 CHAPTER 2. RBDNET: A RAW BURST DENOISING NETWORK

the model trained on the synthetic raw data tends to keep a bit more high frequency
detail, even though it was trained on lower resolution data. At high ISOs, HDR+
sometimes produces ghosting artifacts (characteristic of too agressive temporal
denoising, as in Figure 1.4c of Chapter 1) and ringing artifacts on high contrast
edges (characteristic of too agressive spatial denoising, similar to Figure 1.4c of
Chapter 1), as mentioned in [Has+16] and [MDV21].

Real raw bursts of the HDR+ dataset

We also visually assess the performance of our RBDnet models on 8 real raw bursts
of the HDR+ dataset [Has+16]5 that have at least 5 frames and noise parameters
(𝜆𝑠, 𝜆𝑟) embedded in raw image metadata. Like the outdoor CRVD sequences,
images have no ground truth counterparts. The bursts of the HDR+ dataset
differ from CRVD outdoor sequences in that they are captured both indoors and
outdoors, at various noise levels, lighting conditions and time of day, using several
different smartphone cameras in a handheld fashion. As such, they can feature
various amounts of noise, camera and scene motion, and illumination change.

Visual results are showcased in Figures 2.13 and 2.14. Both our RBDnet mod-
els perform very well on this dataset. HDR+ (tuned with rather conservative
hyperparameters) tends to retain as much high frequency detail as possible, at the
expense of stronger residual noise. As with CRVD outdoor sequences, we notice
that the model trained on the synthetic raw data tends to produce sharper images;
recall that said model was trained on a much broader range of noise levels, while
the model trained on CRVD is limited to the 5 camera-specific noise levels of its
dataset.

5http://www.hdrplusdata.org/

http://www.hdrplusdata.org/
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(a) noisy (b) HDR+ [MDV21]

(c) RBDnet (DAVIS) (d) RBDnet (CRVD)

Figure 2.13: Burst denoising of frame 2 of burst 9bf4_20150824_210544_967 (ISO
816; all models take 5 4080 × 3028 Bayer frames as input; 480 × 360 crops are
shown here)
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(a) noisy (b) HDR+ [MDV21]

(c) RBDnet (DAVIS) (d) RBDnet (CRVD)

Figure 2.14: Burst denoising of frame 2 of burst 33TJ_20150820_190702_015 (ISO
1877; all models take 5 4208 × 3120 Bayer frames as input; 540 × 540 crops are
shown here)
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2.4 Ablation studies and additional experiments
In this Section, we evaluate individual components of RBDnet, and conduct ad-
ditional experiments that give us more insights on how to design a raw burst
denoising network.

2.4.1 Ablation: 1 vs 5 frame models
Intuitively, and because of how the architecture of RBDnet is designed (it takes 5
frames as stacked inputs), we think that the network uses additional information in
the surrounding 4 frames to produce an estimation of the denoised center frame. It
has also been shown in [She+21] that a network trained on 1 or 3 frames performs
worse than a 5 frames one. In a similar fashion, we evaluate the usefulness of using
multiple frames by training RDnet, a single frame denoising network made of a sin-
gle denoising block. The original denoising block takes three frames concatenated
with the noise maps as input, so we modify the first convolution layer input to a
single frame concatenated with its corresponding noise map. Given that RBDnet
uses two blocks, RDnet has approximately 2x less parameters, which is expected
to yield lower denoising performance. In order to make sure that a smaller num-
ber of parameters is not the sole cause of degraded performance, we also train
another single frame model made of a single denoising block that features more
convolutions (48 channels at the first U-Net scale, 92 channels at the second scale,
and 184 at the third scale, instead of 32, 64 and 128 channels in the standard
denoising block). This model, which we call RDnet_x2, has approximately the
same number of parameters as RBDnet . We train both RDnet and RDnet_x2
using the exact same hyperparameters and training samples as RBDnet, but we
only feed the center frame to the network instead of the 5 frame sequence.

Quantitative denoising performance of RDnet and RDnet_x2 on synthetic raw
bursts of gopro_540p and on CRVD indoor test sequences are presented in Ta-
ble 2.3 and Table 2.4. The performance of RBDnet is presented again here for
comparison purposes. We also report the number of learnable parameters, as
well as the number of Multiply-ACcumulate operations (MACs)6 of each model
to indicate respectively architecture and numerical complexity. We can see that
RBDnet consistently outperforms both single-frame models, even the one with a
similar number of parameters, validating the intuition that it leverages the in-
formation of surrounding frames to produce a better estimation of the denoised
center frame. The quantitative performance gap between RBDnet and RDnet_x2
is small on synthetic data (typically between 0.1 and 0.2 dB), but larger for real,
higher resolution data (typically more than 0.5 dB on CRVD). This better denois-
ing performance comes at the expense of additional numerical complexity (and
thus higher runtimes), which is expected given that RBDnet is a convolutionnal
neural network that takes 5 frames (and their associated noise maps) as input

61 MAC ≃ 2 FLOating Point operations (FLOPs) as discussed here: https://github.com/
Lyken17/pytorch-OpCounter/tree/master/benchmark.

https://github.com/Lyken17/pytorch-OpCounter/tree/master/benchmark
https://github.com/Lyken17/pytorch-OpCounter/tree/master/benchmark
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Table 2.3: Denoising: PSNR of single vs multi frame models on unprocessed
gopro_540p

ISO 1600 3200 6400 12800 25600 # params MACs

noisy 39.47 36.49 33.58 30.58 27.58
RDnet 42.90 41.00 39.16 37.30 33.51 1.22M 18.4G

RDnet_x2 43.28 41.39 39.56 37.72 35.97 2.53M 38.6G
RBDnet 43.50 41.52 39.67 37.85 36.13 2.49M 85.2G

Table 2.4: Denoising: PSNR of single vs multi frame models on CRVD indoor test
sequences (all models trained on DAVIS+unprocessing)

ISO 1600 3200 6400 12800 25600 # params MACs

noisy 38.57 35.15 31.98 28.08 26.32
RDnet 46.25 44.13 41.97 39.12 38.47 1.22M 73.3G

RDnet_x2 46.70 44.61 42.64 39.49 39.86 2.53M 153G
RBDnet 47.10 45.26 43.35 40.51 40.38 2.49M 338G

and performs three separate forwards in the first denoising stage, while the other
models only take a single frame and perform a single forward. Not discussed here
is the ability of the cascaded 5 frames architecture to produce more temporally
consistent results when dealing with long frame sequences in a sliding window
fashion; while this is a key characteristic for video restoration (the original use
case of FastDVDnet), it is less relevant for burst denoising (temporal consistency
is not relevant when dealing with one burst at a time), although the architecture
of RBDnet could very much be used for Bayer video denoising.
A visual comparison of the output of RDnet and RDnet_x2 compared to that of

RBDnet is presented in Figure 2.15. Although both RBDnet and RDnet_x2 vastly
outperform RDnet (recall that it has twice as few parameters), the multi-frame
model retains a bit more high frequency detail without featuring more residual
noise.

2.4.2 Ablation: noise maps
Another experiment we wanted to conduct was evaluating the influence of the way
noise maps are constructed on the final raw denoising performance of the model.
In the original FastDVDnet, the estimation of the input noise level is constructed
as a constant, single channel noise map, concatenated with each input frame of
each denoising block. Given that under the heteroscedastic Gaussian model, the
estimated noise variance is dependent on the input image intensity values, and that
said values are different accross all frames and channels of a burst, the intuition is
that giving per frame, per channel noise maps (i.e. 5 × 4 = 20 noise maps in the
case of raw burst denoising) as additional input to RBDnet should lead to maximal
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(a) noisy (b) RBDnet

(c) RDnet (d) RDnet_x2

Figure 2.15: Multi-frame vs single-frame denoising of frame 2 of CRVD sequence
1 (ISO 25600; all models are trained on the same DAVIS samples; 480 × 480 crops
are shown here)
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Table 2.5: Denoising: PSNR vs number of noise maps on unprocessed gopro_540p

ISO 1600 3200 6400 12800 25600

noisy 39.47 36.49 33.58 30.58 27.58
RBDnet (blind) 42.98 41.24 39.50 37.75 36.04

RBDnet (5× cst. (𝜆𝑟, 𝜆𝑠)) 43.32 41.47 39.67 37.87 36.12
RBDnet (5 × 1 maps) 43.59 41.60 39.74 37.92 36.20
RBDnet (5 × 4 maps) 43.50 41.52 39.67 37.85 36.13

Table 2.6: Denoising: PSNR vs number of noise maps on CRVD indoor test
sequences (all models trained on DAVIS+unprocessing)

ISO 1600 3200 6400 12800 25600

noisy 38.57 35.15 31.98 28.08 26.32
RBDnet (blind) 47.01 45.26 43.35 40.50 39.91

RBDnet (5× cst. (𝜆𝑟, 𝜆𝑠)) 47.00 45.24 43.39 40.57 40.44
RBDnet (5 × 1 maps) 47.20 45.29 43.34 40.43 40.14
RBDnet (5 × 4 maps) 47.10 45.26 43.35 40.51 40.38

performance7. We verify that intuition by comparing the denoising performance of
a RBDnet model that only uses a single noise map per input frame (we arbitrarily
set it to an estimate of the noise variance of the first green Bayer channel of each
input frame), and we train a third, blind model to verify if any number of noise
maps is better than none for raw burst denoising. We also experiment with feeding
the network with constant maps of 𝜆𝑟 and 𝜆𝑠 (2 constant maps per input frame)
instead of augmenting the burst frames with per-pixel, signal-dependent estimates
of the noise; in theory, given the noise model of 1.7, those maps are sufficient for
the network to get the exact same information about the input noise.

Table 2.5 and Table 2.6 showcase the denoising performance of RBDnet models
depending on the number and the kind of input noise maps. A first observation is
that the blind model is typically outperformed by the other versions, confirming
that our model leverages addtional information through the noise estimation. That
being said, its performance remains very competitive. Another observation is that
all models with noise maps perform very similarly to one another. Interestingly,
the model with a single noise map per frame, which incidentally has the smallest
number of parameters, performs better on synthetic data than the models with
more parameters: when dealing with synthetic data, the information contained in
a single noise map is sufficient for the network to have a good estimation of the
noise level as the noise behaves identically for each channel. The opposite occurs
on real raw data at high ISO values: when dealing with real data, where the
noise does not strictly follow the heteroscedastic Gaussian model, having a larger
number of parameters might slightly compensate for the domain gap between the

7All models discussed outside of this section do use per channel, per frame noise maps.
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theoretical noise model and the actual noise samples.

2.4.3 Training on single-channel vs stacked Bayer patches

Our raw denoising models have Bayer images or patches as input. For computa-
tional efficiency and to adopt a similar strategy to the original sRGB FastDVDnet,
we have up to this point fed the network Bayer images as stacked 4-channel ten-
sors. However, because of the geometrical structure of the Bayer Color Filter
Array, two pixel values at the same spatial location of two different stacked chan-
nels will pertain to different locations in the original Bayer raw image and the
underlying scene.
Instead of stacking channels, we could also consider Bayer patches or images di-
rectly as single channel images, and train our raw model using these kinds of images
as input. If we only change how the input is structured and keep the rest of the
network architecture unchanged, it will have a smaller receptive field, as the first
convolution kernel (if we maintain its 3 × 3 size) will effectively be applied to an
area that is two times smaller in the original Bayer / scene space. Moreover, single
channel Bayer images have their own set of peculiar properties, particularly in
terms of dynamic range and pixel values, as intensity values of pixels correspond-
ing to the same underlying Bayer channel would typically have higher correlation
than other channels. This suggests that training a model on either arrangements
of Bayer patches on the same underlying data would lead to very different kinds of
kernels, which combined with different receptive fields might lead to nonidentical
performance.
We thus set out to compare the performance of a RBDnet model trained on
𝐻 × 𝑊 × 1 patches versus 𝐻/2 × 𝑊/2 × 4 patches. All other training parameters
are unchanged, and we only train the model on synthetic data for the purposes of
this experiment (DAVIS+unprocessing).

Quantitative denoising performance of RBDnet trained on stacked versus single
channel Bayer patches are available in Tables 2.7 and 2.8. The single channel model
outperforms the stacked model regardless of ISO on synthetic data. When looking
at real raw data of the CRVD dataset however, the stacked model outperforms
the single channel one for ISOs 6400, 12800, and 2560, and the performance gap
widens as ISO increases. The smaller receptive field hinders performance at higher
noise levels, where it is effective to look at a spatially larger neighborhood of
pixels, especially for a multi-image model where the input images are not explicitly
aligned. As a sidenote, using Pytorch, the 𝐻 × 𝑊 × 1 model takes roughly 30%
longer to train: while the first convolution kernel of the network has shallower
depth (i.e. the model also has slightly fewer parameters), all convolutions must be
performed on four times as many pixels.
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Table 2.7: Denoising: PSNR with 𝐻 × 𝑊 × 1 patches versus 𝐻/2 × 𝑊/2 × 4
patches on unprocessed gopro_540p

ISO 1600 3200 6400 12800 25600 #params MACs

noisy 39.47 36.49 33.58 30.58 27.58
RBDnet (𝐻/2 × 𝑊/2 × 4) 43.50 41.52 39.67 37.85 36.13 2.49M 338G

RBDnet (𝐻 × 𝑊 × 1) 43.90 41.90 40.03 38.19 36.46 2.48M 1.31T

Table 2.8: Denoising: PSNR with 𝐻×𝑊 ×1 patches versus 𝐻/2×𝑊/2×4 patches
on CRVD indoor test sequences (all models trained on DAVIS+unprocessing)

ISO 1600 3200 6400 12800 25600 #params MACs

noisy 38.57 35.15 31.98 28.08 26.32
RBDnet (𝐻/2 × 𝑊/2 × 4) 47.10 45.26 43.35 40.51 40.38 2.49M 338G

RBDnet (𝐻 × 𝑊 × 1) 47.22 45.30 43.29 39.89 40.08 2.48M 1.31T

2.4.4 Tone-curve and quantization aware dithering
The original sRGB images used by the models trained on synthetic are quantized
to 8 bit. After unprocessing, the training patches have intensity histograms that
are more sparse than typical real Bayer patches. We illustrate this in Figure 2.16
by comparing the 12 bit histograms of a CRVD Bayer image and the histogram of
the same image processed, quantized to 8 bit, unprocessed then requantized to 12
bits.

These more sparse histograms might entail lower expressivity and dynamic
range than using real data. We experiment with adding dithering to our synthetic
raw generation pipeline to see if it can improve the denoising performance of our
model. Simply adding uniform noise of amplitude 1/255 to our normalized 8 bit
images before unprocessing is not effective, because different intensity values of
the sRGB images are changed differently according to the mathematical opera-
tions of the pipeline. We isolate two deterministic, color-independent steps of the
pipeline: the inversion of the tone mapping / smoothstep and the inversion of
gamma compression (gamma expansion), which we call 𝜁−1 and 𝛤 −1 respectively:

𝜁−1(𝑦) = 1
2

− sin (sin−1(1 − 2𝑦)
3

) (2.6)

𝛤 −1(𝑦) = max(𝑦, 𝜖)2.2 (2.7)

where 𝜖 = 10−8 prevents numerical instabilities. These unprocessing operations
are the first to be applied to the 8 bit quantized sRGB image 𝑥𝑞:

𝑦 = 𝛤 −1(𝜁−1(𝑥𝑞)). (2.8)
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Processed image.

Raw image histogram.

Processed, quantized then unprocessed raw image histogram.

Figure 2.16: Comparison of the 12 bit histograms of frame 2 of CRVD indoor scene
9 (ISO 6400). Processing, quantization and unprocessing yield sparser histograms.
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Figure 2.17: Effect of 8 bit quantization after gamma compression and tone map-
ping.

If we assume that all 8 bit sRGB images were obtained after gamma compression,
tonemapping and quantization of some image 𝑦, we have

𝑥𝑞 = 𝑞8(𝜁(𝛤(𝑦))) (2.9)

where 𝑞8 is the 8 bit quantization process. The main issue here is that because
of the tone curve and quantization process, many values of 𝑦 will map to a single
value of 𝑥𝑞. This is illustrated in Figure 2.17.

In turn, when unprocessing, Equation 2.8 maps each possible value of 𝑥𝑞 to a
single value of 𝑦, instead of any value that would map to said value of 𝑥𝑞 according
to Equation 2.9. To mitigate this problem, we propose adding adaptive uniform
noise that depends on the intensities of 𝑦 after smoothstep inversion and gamma
expansion. The uniform noise has a density 𝑑 defined as

𝑑(𝑦) = {
1

𝛤 −1(𝜁−1(𝑥𝑞+𝑠𝑞))−𝛤 −1(𝜁−1(𝑥𝑞)) for 𝑦 ∈ [𝛤 −1(𝜁−1(𝑥𝑞 + 𝑠𝑞)), 𝛤 −1(𝜁−1(𝑥𝑞))[
0 otherwise

(2.10)
where 𝑠𝑞 is the quantization step. We illustrate this “gamma-smooth aware dither”
in Figure 2.18.

We assess the appeal of our dithering technique by comparing the performance
of a RBDnet model trained with and without it. We also train a model with
uniform 8 bit dithering noise added before unprocessing to showcase its lack
of positive impact on denoising performance. Quantitative results on synthetic
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Figure 2.18: Gamma-smooth aware dithering. Intervals shown in green correspond
to the range of possible values of 𝑦 after dithering for a given 8 bit quantized value.

Table 2.9: Denoising: PSNR of RBDnet with and without dithering on unpro-
cessed gopro_540p (no dithering added for testing)

ISO 1600 3200 6400 12800 25600

noisy 39.47 36.49 33.58 30.58 27.58
RBDnet (no dith.) 43.50 41.52 39.67 37.85 36.13

RBDnet (uniform dith.) 43.57 41.59 39.74 37.92 36.20
RBDnet (gamma-smooth aware dith.) 43.66 41.65 39.79 37.96 36.23

data (unprocessed gopro_540p with no dithering) and CRVD are available in
Tables 2.9 and 2.10. Interestingly, both dithering techniques improve denoising
performance on synthetic data, possibly because of the less sparse and thus more
diversified training data. When denoising real raw data however, uniform dither-
ing decreases performance when compared to our non-dithered baseline, while our
gamma-smooth-aware dithering improves it, validating it as a practically cost-free
technique to improve training on synthetic data created from 8 bit sRGB images.
The performance gap is more significant at higher ISOs, which is expected be-
cause of the larger impact of quantization on high intensity values as shown in
Figure 2.17.

From a visual standpoint, it seems that this dithering technique can help RBD-
net produce smoother gradients of color when compared to the undithered version,
as shown in Figure 2.19. We also observe that models trained with synthetic data
and dithering do not present the artifacts shown in Figure 2.10. We illustrate a
few examples of artifacts present in the baseline but not the gamma-smooth aware
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Table 2.10: Denoising: PSNR of RBDnet with and without dithering on CRVD
indoor test sequences (all models trained on DAVIS+unprocessing)

ISO 1600 3200 6400 12800 25600

noisy 38.57 35.15 31.98 28.08 26.32
RBDnet (no dith.) 47.10 45.26 43.35 40.51 40.38

RBDnet (uniform dith.) 47.05 45.09 43.16 40.22 40.32
RBDnet (gamma-smooth aware dith.) 47.15 45.32 43.45 40.65 40.61

noisy RBDnet (DAVIS, no dither-
ing)

RBDnet (DAVIS, gamma-
smooth aware dithering)

Figure 2.19: CRVD outdoor, frame 2 of sequence 7, ISO 25600: our gamma-
smooth aware dithering produces a smooth gradient between two light sources of
different color, while the model without dithering produces a more quantized result
(360 × 360 crop shown).
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RBDnet (DAVIS, 5 × 4 maps, no dithering)

RBDnet (DAVIS, 5 × 4 maps, gamma-smooth aware dithering)

Figure 2.20: Dithering prevents the kinds of artifacts encountered in Figure 2.10
(the artifacts are slightly different because the RBDnet model was retrained from
scratch on a different system, with a different seed).

dithered model in Figure 2.20; this probably accounts in part for the difference in
PSNR.

2.4.5 Comparison to state-of-the-art methods
In this section, we compare our RBDnet models trained on synthetic and real raw
data to two state-of-the-art multi-frame raw denoising methods: RViDeNet [Yue+20]
and UDVD [She+21]. While both are initially described as raw video denoising
methods, they take multiple raw images as input and return a denoised version of
the center one, which is not very different from our own method.
RViDeNet was presented in [Yue+20] along with the CRVD dataset in 2020. It
takes three images as input, treats Bayer channels separately, performs channel
motion compensation using guided deformable convolutions, followed by feature
refinement using spatial, channel and temporal attention, then temporal and spa-
tial fusion to produce the denoised raw image (which can be turned into a sRGB
image with a learned ISP). The architecture of the network is shown in Figure 2.21.

Presented in 2021, Unsupervised Deep Video Denoising [She+21] is effectively
an unsupervised version of FastDVDnet. Inspired by Noise2Void [KBJ19], it cre-
ates a blind spot architecture by leveraging vertically causal convolutions and the
creation of 4 rotated versions of the 5 input frames. In a nutshell, each rotated ver-
sion of the 5 frames is separately fed to the network, and because of the vertically
causal convolutions, the output only depends on the pixels above (0◦ rotation),
to the left (90◦), below (180◦) or to the right (270◦) of the noisy input pixel



86 CHAPTER 2. RBDNET: A RAW BURST DENOISING NETWORK

Figure 2.21: RViDeNet architecture (extracted from [Yue+20])

respectively. As in [KBJ19], early stopping is performed during training to avoid
learning an identity mapping. The blind spot architecture of UDVD is illustrated
in Figure 2.22.

For quantitative comparison of the burst denoising performance of RBDnet
against UDVD and RViDeNet, we use CRVD yet again since it is the only available
multi-frame raw dataset with real noisy images and clean ground truth. We use
the networks off-the-shelf, with weights provided by the authors of the respective
publications. Worth mentioning here is the data used to train the models:

• RViDeNet was trained using a supervised synthetic raw dataset which the
authors call SRVD, then fine-tuned on the CRVD training set (indoor se-
quences 1 to 6). Since the author provide the weights of both the model
trained on SRVD and the model trained on SRVD then fine-tuned on CRVD,
we use both versions in our quantitative comparison.

• On the other hand, while UDVD is trained in an unsupervised fashion and
thus never uses clean images, it is trained on noisy images of the CRVD
test set (indoor sequences 7 to 11). We argue that this training procedure
mentioned and used in [She+21] for performance comparison on the very
same test set against RViDeNet (which did not see these sequences during
training) is an unfair overfitting scenario, and are surprised that it was per-
mitted in the review process of a nevertheless very interesting publication.
A probably more fair comparison would require to retrain UDVD in an un-
supervised manner on the CRVD training sequences, but we did not have
the time to do that so we used the provided overfitted weights instead.

Table 2.11 showcases the performance of our two main RBDnet models against
RViDeNet and UDVD. Unsurprisingly, UDVD performs the best since it has seen
the same kind of images that the ones used for testing. It is also worth noting that
RBDnet and RViDeNet have very similar performance: both models trained only
on synthetic data perform roughly the same (i.e. well but slightly worse than the
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Figure 2.22: UDVD and its blind-spot architecture (extracted from [She+21])

model trained on real data), and the performance gap between synthetic and real
data is very similar for both models.
Also worth mentioning here is performance with respect to complexity, both in
terms of architecture and computational cost. We report the number of learn-
able parameters and MACs in Table 2.11 as indicators of said complexity. While
RViDeNet is disadvantaged against RBDnet by only taking 3 raw frames as in-
put, it compensates by having around 3.5× more learnable parameters and a far
more complex architecture. This translates to around 6.2× more operations than
RBDnet to perform burst denoising of a 1920 × 1080 CRVD image with an almost
identical PSNR. UDVD has around 14% less parameters than RBDnet: they have
a very similar architecture, but UDVD inputs are stacked single channel Bayer
images with no noise maps. However, because of how its blind spot receptive field
is constructed, UDVD must perform four rotations and separate forwards through
the network for each target pixel. This amounts to an explosion in complexity,
with around 85× more MACs than RBDnet to burst denoise a CRVD image. In
practice, forwarding a 5 frame 1920 × 1080 Bayer burst through UDVD yields an
out of memory (OOM) error on a 40GB NVIDIA A100 GPU (meaning that we
had to divide input images in patches and denoise each set of patches separately).
Because of their evidently increased complexity compared to our model that re-
tains the original simplicity and efficiency of the original FastDVDnet, UDVD and
RViDeNet are not realistic targets for on-device inference in embedded systems of
the first half of the 2020s, even as high end devices tend to feature more and more
powerful dedicated hardware for neural network applications.
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Table 2.11: Denoising: PSNR on CRVD indoor test sequences

ISO 1600 3200 6400 12800 25600 Avg. # params MACs

noisy 38.57 35.15 31.98 28.08 26.32 32.02
RBDnet (DAVIS) 47.10 45.26 43.35 40.51 40.38 43.32 2.49M 338G
RBDnet (CRVD) 47.62 45.88 43.91 41.34 41.21 43.99 2.49M 338G

RViDeNet [Yue+20] (SRVD) 47.14 45.21 43.24 40.53 40.51 43.33 8.57M 2.1T
RViDeNet [Yue+20] (SRVD+CRVD) 47.73 45.87 43.79 41.15 41.10 43.93 8.57M 2.1T

UDVD [She+21] 47.90 46.30 44.62 42.16 41.91 44.58 2.13M 28.7T
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A visual comparison of burst denoising of RBDnet, RViDeNet and UDVD on a
CRVD outdoor sequence (which in this case UDVD did not see during training) is
shown in Figure 2.23. Even though it was only trained on the indoor stop-motion
sequences of the CRVD training set (using only noisy images to boot), UDVD pro-
duces the most pleasing results, which are certainly helped by the “test-time data
augmentation” of feeding the network four rotated versions of the input images.
RViDeNet tends to denoise well but often at the expense of high frequency im-
age detail, which is similar to what we observed when comparing RBDnet trained
on CRVD to RBDnet trained on unprocessed DAVIS in Section 2.3.2 (c.f . Fig-
ures 2.11, 2.12, 2.13 and 2.14). RBDnet trained only on synthetic data produces
pleasing results at a reduced computational cost.
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noisy RBDnet (DAVIS)

RViDeNet [Yue+20] (SRVD+CRVD) UDVD [She+21]

Figure 2.23: Burst denoising of frame 2 of CRVD outdoor sequence 4 ISO 25600.
RBDnet (DAVIS) and UDVD are better at preserving the grid pattern than RVi-
DeNet.
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2.5 Summary
In this Chapter, we have studied the raw burst denoising problem with a deep
learning approach. The 5-to-1 frame architecture of FastDVDnet originally de-
signed for Gaussian video denoising can be turned into RBDnet, a powerful raw
burst denoising model, with very little changes in the network design. Bigger
changes must be made regarding training data. We experimented with two main
approaches: (i) generate synthetic noisy multi-image raw data from sRGB videos
using a sRGB to raw unprocesssing pipeline [Bro+19], or (ii) use a dataset of real
noisy raw sequences and their corresponding noise-free counterparts [Yue+20].
Both approaches have their strengths and weaknesses. Large amounts of paired
synthetic data are easy to obtain, and our model can be trained on virtually any
possible noise level, but the noise model and synthetic raw images are approx-
imations of the real thing and thus necessarily imperfect. On the other hand,
capturing paired real raw data is a very costly process that limits the variety of
training images in terms of scene and camera motion, illumination, or available
noise parameters. Objectively comparing the two approaches is not an easy en-
deavour: quantitative evaluation will favor models with the smallest domain gap,
but test data suffers from the exact same limitations as training data. In 2022,
a new dataset named PVDD [Xu+22] was proposed as an answer to the lack of
diversity of CRVD [Yue+20], but it has its own set of shortcomings, the biggest
one being that noisy raw images are obtained by adding synthetic noise on top of
raw images deemed sufficiently clean. The imperfect nature of quantitative evalu-
ation for the real raw burst denoising problem is confirmed by the fact that in our
experiments, the best model quantitatively does not necessarily equate the best
model qualitatively. When visualizing the ouput of RBDnet on real data captured
in the wild, the version trained on synthetic data produces sharper results than
the model trained on real data only.

In terms of opportunities for future work, it would be interesting to see the
robustness of our models (and their single-frame or blind variants) to noise levels
or even noise types not seen during training. In [Moh+20], CNNs with bias-free
convolutions and no batch normalization better generalize to unseen noise lev-
els, but these experiments are conducted with AWGN and sRGB images so the
findings might not necessarily translate to real raw denoising. Another possible
avenue is the use of more complex noise models than the heteroscedastic Gaussian
one in our synthetic models, e.g. incorporating row noise and quantization noise
as in [Wei+20], or sampling from real dark frames (images where the sensor is
completely shielded from incident light that only contain camera-specific noise)
as in [Zha+21b]. One could also experiment with adding an extra Bayer to RGB
demosaicking step to our model; similar experiments are suggested in [Dew+23]
and its supplementary material8, where two approaches are proposed: perform
demosaicking before feeding the RGB output to FastDVDnet, or modifiy the ar-

8https://openaccess.thecvf.com/content/WACV2023/supplemental/Dewil_Video_
Joint_Denoising_WACV_2023_supplemental.pdf

https://openaccess.thecvf.com/content/WACV2023/supplemental/Dewil_Video_Joint_Denoising_WACV_2023_supplemental.pdf
https://openaccess.thecvf.com/content/WACV2023/supplemental/Dewil_Video_Joint_Denoising_WACV_2023_supplemental.pdf
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chitecture to include upsampling operations. Assessing real multi-image joint de-
mosaicking and denoising quality also has its own set of challenges, because only
synthetic data can be used to evaluate demosaicking performance.



Part II

Plug-and-Play Video Restoration

93





Chapter 3

Video Restoration with a Deep
Plug-and-Play Prior

In this Chapter, we explore the use of video denoisers as regularizers within a
PnP scheme and how they compare to the use of image denoisers on each frame
separately. Section 3.2 describes our PnP method and how it integrates image and
video denoisers. In Section 3.3, we perform an extensive experimental evaluation of
these algorithms on video deblurring, super-resolution and interpolation of random
missing pixels, as well as comparisons to state-of-the-art PnP and deep learning
methods. Concluding remarks and opportunities for future research are presented
in Section 3.4.

3.1 Background and state of the art

3.1.1 Image restoration as an inverse problem.
Many image restoration problems can be seen as inverse problems. In this context,
image degradation is described through a direct form, or forward / observation
model

𝑦 = 𝒜(𝑥) + 𝑛 (3.1)

where 𝑦 ∈ ℝ𝑚 is the degraded observation, 𝑥 ∈ ℝ𝑑 is the unknown image to
be recovered, 𝒜 is a linear or non-linear degradation operator, and 𝑛 ∈ ℝ𝑚 is a
realization from a known noise distribution.

As such, the goal of an inverse problem is to recover or estimate 𝑥 from the
observation 𝑦. These problems are often ill-posed: different values of 𝑥 can yield
the same 𝑦 after degradation, making the solution not necessarily unique.

Inverse problems are also often ill-conditioned: the degradation 𝒜 might be
non-trivially invertible and/or low rank, and some estimators might be very sensi-
tive to the input data or to the additional of the noise 𝑛 (making e.g. the estima-
tor ̂𝑥 = 𝒜−1(𝑦) a very poor choice). It is necessary to provide extra information
about 𝑥 to make the problem well-posed in the Hadamard sense: a solution exists,

95
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𝑥 𝐴 𝑦 = 𝐴𝑥 + 𝑛

(a) Masking.

𝑥 𝐴 𝑦 = 𝐴𝑥 + 𝑛

(b) Blurring.

Figure 3.1: Examples of image degradation with linear operators one might en-
counter in inverse problems (𝑛 ∼ 𝒩(0, 𝜎2 Id), 𝜎 = 0.1).
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is unique, and depends in a Lipschitz continuous manner w.r.t. 𝑦 [Lau+23].

One common way to include said additional information in order to build
reliable and robust estimators of 𝑥 from 𝑦 is to use a Bayesian formalism. In
it, one assumes that the unknown 𝑥 follows a law of density 𝑝(𝑥), called the prior.
Using Bayes’ rule, the marginal 𝑝(𝑥) can be combined with 𝑝(𝑦|𝑥), the likelihood
of the observation 𝑦 given 𝑥 (derived from the degradation model (3.1)) to obtain
the posterior density 𝑝(𝑥|𝑦):

𝑝(𝑥 ∣ 𝑦) = 𝑝(𝑦 ∣ 𝑥)𝑝(𝑥)
𝑝(𝑦)

. (3.2)

Multiple estimators can be derived from this distribution and selected as solutions
of the inverse problem. One of them is the Minimum Mean Squared Error (MMSE):

̂𝑥MMSE = 𝔼𝑥∼𝑝(𝑥∣𝑦) [𝑥] . (3.3)

Computing the MMSE is typically non-trivial and computationally expensive, as
it requires computing an expectation w.r.t. 𝑥 ∣ 𝑦. It is more common in the image
restoration literature to compute another estimator from the posterior distribution,
the Maximum A Posteriori (MAP):

̂𝑥MAP = argmax
𝑥

𝑝(𝑥 ∣ 𝑦) = argmax
𝑥

log 𝑝(𝑦 ∣ 𝑥) + log 𝑝(𝑥). (3.4)

If 𝑛 follows a Gaussian distribution 𝒩(0, 𝜎2
𝑛 Id) 1, the likelihood of 𝑦 given 𝑥 can

be written as
𝑝(𝑦|𝑥) = exp (−‖𝒜(𝑥) − 𝑦‖2

2
2𝜎2

𝑛
) , (3.5)

and estimating the MAP can be rewritten as the minimization problem

̂𝑥 = argmin
𝑥

1
2𝜎2

𝑛
‖𝑦 − 𝒜(𝑥)‖2

2 + 𝛼ℛ(𝑥), (3.6)

where 𝛼ℛ(𝑥) = − log 𝑝(𝑥). If we speak in terms of potentials, notice that this is
actually equivalent to the variational problem

̂𝑥 = argmin
𝑥

ℱ(𝑥) + 𝛼ℛ(𝑥) (3.7)

where ℱ is a least-squares data fidelity term that depends on the observation
model, and ℛ is a regularization term that encapsulates a priori information on
the image.

1The distribution of noise observed in real images is typically not uniquely Gaussian [Foi+08;
Wei+20]. However, this model is ubiquitous in the image processing literature, and it features
mathematical properties that are essential to the theory presented in this Chapter.



98 CHAPTER 3. DEEP PLUG-AND-PLAY VIDEO RESTORATION

3.1.2 Model-based methods and explicit image priors.
For a long time, Bayesian and variational restoration has relied on explicit priors
(e.g. total variation [ROF92; LM13; DMP18] or Tikhonov regularization [EHN96]),
expressing regularity assumptions on 𝑥 either in the image space [KTF11] or
in transformed spaces (wavelet transforms [DJ95], patch spaces [ZW11; DH18],
etc.). When ℛ is known and convex, there are numerous efficient numerical
schemes to find the solutions of (3.6) [chambolle2016introduction]. These in-
clude gradient-based methods [BT09], as well as newer convex optimization algo-
rithms introduced in the early 2010s that make use of the proximal operator [CP11],

prox
𝑓

(𝑥) = argmin
𝑧

1
2

||𝑥 − 𝑧||22 + 𝑓(𝑧). (3.8)

Proximal splitting algorithms typically operate sequentially on ℱ and ℛ through
their proximal operator.

3.1.3 Learning-based methods and end-to-end neural net-
works.

Over the past decade, a great success has been encountered by learning-based
methods that circumvent the explicit modeling and solving of Equation 3.6 by
directly applying a parametrized mapping to the observed data 𝑦 that yields a
solution ̂𝑥:

̂𝑥 = 𝑁𝜃⋆(𝑦). (3.9)
More specifically, in the case of end-to-end neural networks, 𝑁 is typically a succes-
sion of learnable linear weights and non-linear activation functions, and the optimal
values of the parameters 𝜃⋆ are obtained by the minimization of an empirical risk
ℒ over some training set2:

𝜃⋆ = argmin
𝜃

∑
𝑖

ℒ (𝑁𝜃 (𝑦𝑖) , 𝑥𝑖) (3.10)

where the set of training samples (𝑥𝑖, 𝑦𝑖) can be constructed with an explicit
degradation model (Equation (3.1)) [Zha+17a; Bro+19] or by the acquistion of
real images [Che+18; Rim+20]. Solving Equation 3.10 is typically done through
a large scale optimization problem. With the rise of deep and convolutional neu-
ral networks, learning-based methods have outperformed traditional model-based
methods for most image and video restoration problems (see [ZZZ18; Bro+19;
TDV20; Zam+21] for examples of efficient image or video restoration networks).
Training these networks requires large amounts of data and computing resources
(and these, along with network sizes, tend to keep increasing over the years).
Moreover, a network trained for a given degradation model must be retrained as
soon as the degradation model or its parameters change.

2Training an end-to-end image restoration neural network with a quadratic loss is an approx-
imation of an underlying (and unknown) MMSE estimator [Lau+23].



3.1. BACKGROUND AND STATE OF THE ART 99

3.1.4 Plug-and-Play methods and Regularization by De-
noising.

During the same decade that saw the exponential growth of interest in neural
networks, some methods have tried to bridge the gap between model-based and
learning-based approaches, arguing that explicitly defined regularity assumptions
might be insufficient to capture the actual distribution of complex, natural and
clean images 𝑝(𝑥). These methods combine a likelihood defined explicitly accord-
ing to the direct model (3.1), and a prior ℛ implicitly defined by an efficient
denoising algorithm. This combination is done algorithmically, typically within
an alternate optimization scheme that splits the data fidelity and regularization
subproblems.

Plug-and-Play (PnP) methods can be traced back to the seminal 2013 publi-
cation by Venkatakrishnan et al. [VBW13] that introduces a PnP version of Al-
ternating Direction Method of Multipliers (ADMM) [Boy+11] where the proximal
operator of ℛ is replaced by a denoiser. A similar approach was featured a year
later in [Hei+14] where a Gaussian denoising algorithm is used as the proximal
operator of the regularization for multiple image restoration inverse problems.

Regularization by Denoising (RED) is another framework where the gradient
of the regularization is explicitly defined by a denoiser. It proposes a Laplacian
regularization term ℛ proportional to the inner product between an image and its
denoising residual:

ℛ(𝑥) = 1
2

𝑥𝑇(𝑥 − 𝐷(𝑥)). (3.11)

The authors of [REM17] stated that if the denoiser 𝐷 is locally homogeneous
and nonexpansive, the gradient of the regularization has the simple form ∇ℛ =
𝑥 − 𝐷(𝑥), and it can easily be plugged in gradient-based optimization schemes.

PnP and RED formulations of many optimization algorithms have been pro-
posed, including (but not limited to) ADMM [VBW13; REM17; Ryu+19], Stochas-
tic Gradient Descent [Lau+23], Primal-Dual [Mei+17; Hei+14], Iterative Shrink-
age Thresholding (ISTA) [GC20; Xu+20], fast-ISTA [KMW17], Half Quadratic
Splitting [Zha+21a] or Forward-Backward Splitting [Ryu+19; Pes+21; HLP22b].
All of these methods allow repurposing a single denoising algorithm for many
restoration tasks such as super-resolution [BRE16; Zha+21a], denoising [RGE16;
Buz+18], or image deblurring [WC17; Mei+17]. The Plug-and-Play operators
framework has also been shown to be very efficient with Approximate Message
Passing (AMP) algorithms [DMM09; Ahm+20], particularly for applications in-
volving randomised forward operators, where it is possible to characterise AMP
schemes in detail (see, e.g., [BM11; JM13]). The restriction on the forward oper-
ator does not hold for the inverse problems considered in this Chapter where we
focus instead on classical optimization schemes such as the ones described above.

A large diversity of denoisers have been used in these frameworks. In early
works, BM3D has been used the most [Hei+14; Dar+16; KMW17]. Many methods
have then made the switch to deep denoising neural networks [Mei+17; Ryu+19;
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Lau+23]. In [Zha+21a], an analysis of the efficiency of the different deep denois-
ers for multiple PnP image restoration tasks is provided. Recently, some works
have suggested using denoising networks specifically designed to provide additional
convergence guarantees of their PnP/RED method [Ryu+19; Coh+21; HLP22a;
Pes+21; HLP22b].

3.1.5 Theoretical and practical convergence of PnP meth-
ods

Theoretical aspects of PnP/RED methods have been a very active field of research.
Developing the theory has many benefits: providing additional use cases where the
methods work; improving the stability and final performance of the output; relying
less on hyperparameter tuning or have a better understanding of its impact; better
grasp the required properties of the denoisers; and so on. First convergence proofs
of PnP algorithms in the literature assumed strong properties on the denoiser, like
boundedness or non-expansiveness and being the sub-gradient of a convex func-
tion [CWE16; Sre+16]. In [Ryu+19], a fixed-point convergence proof is provided
for PnP-ADMM3 and PnP-DRS using a deep CNN denoiser, if the residual of said
denoiser 𝑅𝜎 = Id −𝐷𝜎 is Lipschitz-continuous. In practice, they train a residual
denoising network 𝑅 to be 1-Lipschitz4 by performing spectral normalization of
each convolution layer of the network, through a power iteration at each training
step, as done in [Miy+18]. Each layer has then spectral norm < 1, and spectral
norm of the whole network is the product of the norm of all layers, so is tends to be
significantly smaller than 1. This hard constraint limits the type of possible neu-
ral network architectures: Ryu et al. use a straightforward DnCNN architecture
with convolution layers and ReLU activation functions. The proof of convergence,
however, holds only if ℱ(𝑥) = 1

2𝜎2
𝑛

||𝒜𝑥 − 𝑦||2 is strongly convex, which is not the
case in inverse problems such as super-resolution or pixel inpainting.

Rather than convergence to a fixed point of the optimization algorithm, other
works have discussed the more appealing convergence to a minimum of the global
objective function ℱ + 𝛼ℛ. In [REM17], if the denoiser 𝐷 is locally homogeneous
and of 1-Lipschitz gradient (i.e. it has a symmetric Jabocian), the explicit regular-
ization term is a convex function, and RED algorithms are guaranteed to converge
to a global optimum solution if the data fidelity term is also convex. Several popu-
lar denoisers are analyzed in [REM17], however the required assumptions are only
verified empirically, when in fact they typically do not have a symmetric Jacobian.

Convergence to a global optimum is also discussed in [CEM21] where regu-
larization is performed through the fixed points of a denoiser: if a denoiser is
presented with a clean image, it should do nothing, i.e. clean images should be

3PnP-ADMM and PnP-FBS share the same fixed points (Remark 3.1 of [Mei+17] and Propo-
sition 3 of [SWK19])

4In [Ryu+19], the Lipschitzness of the residual is only empirically verified by tracking the
expansiveness between iterates ||𝑅𝜎(𝑥𝑛+1) − 𝑅𝜎(𝑥𝑛)||/||𝑥𝑛+1 − 𝑥𝑛|| on a limited number of
examples.
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Figure 3.2: Demicontractive operators and their subclasses (extracted
from [CEM21])

fixed points of 𝐷. RED [REM17] is thus reformulated as the convex optimization
problem

min
𝑥

1
2

||𝐴𝑥 − 𝑦||22 s.t. 𝑥 ∈ 𝐹𝑖𝑥(𝐷) (3.12)

which is then solved through projected gradient descent. Their method, called
RED-PRO, is guaranteed to converge to a solution of 3.12 if the denoiser 𝐷 is
demi-contractive, which is a weaker constraint than being a nonexpansive or a
proximal mapping as illustrated in Figure 3.2. However, many denoisers used in
PnP schemes have a limited fixed point set, making the condition 𝑥 ∈ 𝐹𝑖𝑥(𝐷)
unattainable in some cases. As such, Cohen et al. introduce a relaxed version of
their method, where the solution needs only to be in a neighborhood of a fixed
point5.

Many convergence proofs of the literature assume that the denoiser is an MMSE
or MAP estimator. Since such estimators are in the form of gradients, they must
exhibit symmetric Jacobians. However, many denoisers used in the PnP/RED
literature typically do not have a symmetric Jacobian. This problem is addressed
in [Coh+21], where they enforce the condition by training a potential-driven de-
noiser based on DnCNN. This denoiser, which they call GraDnCNN, is the gradient
of an explicit potential parametrized by a neural network. At its core lies a network
ℛ𝜎 whose output is a scalar, trained at multiple noise levels, including 𝜎 = 0. The
network has non-negative weights and uses convex activation functions, making it
a convex potential. The potential-driven denoiser is then defined as

𝐷𝜎(𝑥) = 𝑥 − ∇ℛ𝜎(𝑥) (3.13)

and using this convex potential in gradient-based optimization methods yields con-
vergence to global minima if ℱ is convex.

5[CEM21] also bridges some of the gaps between RED and PnP frameworks by showing that
PnP-FBS and RED using accelerated gradient descent are a special case of RED-PRO.
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A very similar approach is actually featured in [HLP22a]. The authors suggest
training a denoising operator 𝐷𝜎 explicitly as a gradient step of the regularization
term ℛ ∶ ℝ𝑛 → ℝ:

𝐷𝜎(𝑥) = 𝑥 − ∇ℛ𝜎(𝑥) = 𝑁𝜎(𝑥) + 𝐽𝑁𝜎
(𝑥)𝑇 (𝑥 − 𝑁𝜎(𝑥)) (3.14)

where ℛ𝜎(𝑥) is explicitly defined as 1
2 ‖𝑥 − 𝑁𝜎(𝑥)‖2 (notice that it yields a scalar

as in [Coh+21]), and 𝑁𝜎 is parametrized by a differentiable deep neural network
(which allows computing the Jacobian 𝐽𝑁𝜎

(𝑥) through automatic differentiation).
Using such a denoiser in GSPnP, a relaxed version PnP-FBS, allows convergence
to the minimum of the explicit functional ℱ+𝛼ℛ. Said convergence stills requires
∇ℛ𝜎 to be L-Lipschitz, but in practice this is controlled indirectly using a back-
tracking procedure that updates the step size so that it yields sufficient decrease
property of the optimization algorithm.

[HLP22b] follows [HLP22a] by providing additional convergence guarantees in
settings where the data fidelity term is not strongly convex. In this work, their
denoiser explicitly defined as a gradient step is also rewritten as the proximal
operator of a nonconvex function. ∇ℛ𝜎 still needs to be 1-Lipschitz for PnP-FBS
and PnP-DRS to converge to a stationary point of an explicit functional. To do
so, Hurault et al. fine-tune their gradient step / prox denoiser with a loss where
the reconstruction term is augmented a penalty term enforcing the Jacobian of the
residual Id −𝐷𝜎 = ∇ℛ𝜎 to have spectral norm < 1:

ℒ𝑆(𝜎) = 𝔼𝑥∼𝑝,𝜉𝜎∼𝒩(0,𝜎2) [‖𝐷𝜎 (𝑥 + 𝜉𝜎) − 𝑥‖2

+𝜇 max (∥𝐽(Id −𝐷𝜎) (𝑥 + 𝜉𝜎)∥
𝑆

, 1 − 𝜖)]
(3.15)

where 𝜆 is a parameter controlling the tradeoff between reconstruction quality and
non-expansiveness of Id −𝐷𝜎, and 𝜀 > 0. The spectral norm is approximated using
power iterations.

This soft constraint is direclty inspired by [Pes+21], where convergence prop-
erties arise from standard tools of monotone operatory. In that publication, a
denoising neural network 𝐷 is used as an approximation of the resolvant of a sta-
tionary maximally monotone operator 𝐴. Said operator 𝐴 is maximally monotone
if and only if there exists a 1-Lipschitz operator 𝑄 = 2𝐷−Id. If 𝑄 is non-expansive,
𝐷 is firmly non-expansive, 𝐴 is maximally monotone, and PnP-FBS is guaranteed
to converge. In practice, the non-expansiveness of 𝑄 is obtained through a soft
constraint during the training of 𝐷 (change Equation 3.15 by replacing 𝐽(Id−𝐷𝜎)
with 𝐽(2𝐷𝜎−Id)).

3.1.6 Extensions of PnP methods
Deep Unfolding / Unrolling Networks.

More recently, deep unfolding networks (DUNs) [Dia+18] have been proposed for
specific image restoration tasks, such as super-resolution [ZVT20], or joint de-
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blurring, demosaicking and denoising [ESP21]. Just like PnP methods, these ap-
proaches (like unrolling algorithms in general [MLE21]) incorporate some advan-
tages of both learning-based and model-based methods. Compared to standard
learning-based methods, unrolled algorithms can be trained correctly on much
smaller datasets [GOW19]. Compared to PnP methods, DUNs usually yield better
results in fewer iterations, as they translate the truncated unfolded optimization
into an end-to-end training of a deep network. An additional advantage of the
latter is that the manual setting of optimization hyperparameters can be avoided
in the unfolded scheme. In contrast, PnP methods remain more flexible and versa-
tile, as DUNs need a separate training for each restoration task. The concepts of
optimization theory being common to both DUNs and PnP methods, innovations
in one field can impact the other.

Laroche et al. tackle the topic of super-resolution with non-uniform blur in [LAT22]:
using a method such as PnP-ADMM for that problem would require the inversion
of the forward operator to compute the proximal operator of the data fidelity term,
which would in turn be very computationally heavy with non-uniform blur. As
such, the authors of this paper introduce a linearized version of ADMM which
substitutes the splitted variable 𝑧 by a linear mapping and features a linear ap-
proximation of the regularization term of the augmented Lagrangian, which in the
end allows avoiding the inversion of the blur matrix. Linearized-ADMM is used
within a Deep Unfolding Network that yields impressive results in super-resolution
with non-uniform blur.

PnP sampling.

In many image restoration inverse problems, the degradation operator 𝒜 is poorly
conditioned or rank deficient. One might then want to consider estimating the
whole posterior distribution instead of a specific pointwise estimators such as
MMSE or MAP. Sampling from the posterior can then be performed to com-
pute said estimators, quantify uncertainties or generate multiple candidates for
image restoration. In [Lau+22], both the observation 𝑦 and the unknown 𝑥 are
seen through a Bayesian prism and thus considered random variables 𝑋 and 𝑌. A
Plug-and-Play version of the Unadusted Langevin Algorithm is proposed:

𝑋𝑘+1 = 𝑋𝑘 − 𝛿∇𝐻(𝑋𝑘) +
√

2𝛿𝑍𝑘+1 (3.16)

where (𝑍𝑘) ∼ 𝒩(0, Id) iid, 𝐻 = − log 𝑝(𝑦 ∣ 𝑥)−𝑙𝑜𝑔𝑝(𝑥) and 𝛿 controls the tradeoff
between asymptotic distribution accuracy and convergence speed. The algorithm
is guaranteed to converge to a unique stationary distribution if ∇𝐻 is L-Lipschitz
and 𝛿 < 1/𝐿. Notice the similarities and differences between ULA and Gradient
Descent / Stochastic Gradient Descent, which are illustrated in Figure 3.3.

Combination of implicit and explicit priors.

While the denoisers used in standard PnP methods contain an implicit represen-
tation of the space of clean images 𝑝(𝑥), some applications might benefit from
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𝑋𝑘+1 = 𝑋𝑘 − 𝛿𝑘∇𝐻(𝑋𝑘) (GD)
𝑋𝑘+1 = 𝑋𝑘 − 𝛿𝑘∇𝐻(𝑋𝑘) + 𝛿𝑘𝑍𝑘+1 (SGD)
𝑋𝑘+1 = 𝑋𝑘 − 𝛿∇𝐻(𝑋𝑘) +

√
2𝛿𝑍𝑘+1 (ULA)

Figure 3.3: Illustration of the exploration properties of ULA compared to GD and
SGD with 𝑝𝑋(𝑥) ∝ 𝑒−𝐻(𝑥).
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additional explicit regularization to ill-conditioned inverse problems by including
e.g. smoothness assumptions. In 2014, [Hei+14] proposed replacing the single
regularization term of an optimization scheme such as ADMM or Primal-Dual
by a weighted sum of three regularizers: a gradient sparsity prior, a denoising
prior and a cross-channel correlation prior. The global proximal operator is then
constructed by stacking the proximal operators of each prior. This technique is
reused in [Mei+17], where the implicit image prior represented by the denoiser is
combined to an explicit TV prior for image deblurring.

Image restoration priors beyond denoising networks.

While they veer away from the theoretical backbone of PnP and RED methods,
some works have suggested substituting the denoisers by other types of restoration
algorithms as implicit image priors, in order to be applied to new use cases or pro-
vide additional regularization beyond i.i.d. noise removal. In [Liu+20], a variant
of RED where the denoiser is replaced by a general artifact removal network is pro-
posed. They use a network based on DnCNN trained on heavily undersampled 4D
MRI data (using only pairs of degraded images similarly to Noise2Noise [Leh+18])
as an example of implicit prior. In [EVM21], a residual U-Net is trained as a recon-
nective network that ensures continuity in images of blood vessels. Said network is
then plugged alongside standard TV regularization in the Primal-Dual algorithm.

3.1.7 Connections to other related works
Denoisers as projections on a manifold of clean images.

In effect, the denoiser in PnP and RED schemes is used to iteratively “refine”
the prediction of the data fidelity term, according to a certain image prior. But
what does that refinement step entail, and what does that prior look like? The
original RED paper [REM17] argues that noise-free images lie on a manifold ℳ,
and that after contamination by additive noise, an image “pops out of the manifold
along the normal to ℳ with high probability”. The reverse process of denoising
would then be an orthogonal projection of an image onto ℳ. This idea is also
explored in [Moh+20], where bias-free denoising networks are shown to perform
interpretable adaptive linear filtering. Such networks project noisy images in a
low-dimensional adaptive subspace, which can be visualized using singular value
decomposition. The authors thus show that the denoiser represents an implicit
prior that lies on a generalized cone manifold. In a followup work [KS21], a bias-
free CNN trained using L2 loss is used in a Iterative Score Ascent scheme. This
method can be seen as a gradient ascent with coarse-to-fine sampling onto the
manifold of the prior that lies in the denoiser. In this work, they define the prior
predictive density as

̃𝑥(𝑦) = 𝑦 + 𝜎2∇𝑦 log 𝑝(𝑦) (3.17)

where 𝑝(𝑦) here is a blurred version of the prior on natural images 𝑝(𝑥): 𝑝𝜎(𝑦) =
𝑔𝜎(𝑧) ∗ 𝑝(𝑥), 𝑔𝜎(𝑧) being a Gaussian distribution of variance 𝜎2. Under additive
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white Gaussian noise, there is equivalence to the prior predictive density and the
MMSE [Miy+61]. The authors of [KS21] also propose a stochastic variant of their
method by adding noise at each iteration. Using that method when starting from
noise samples allows sampling from the image manifold; this method is also used
for linear image restoration problems such as inpainting or super-resolution.

Image priors in self-supervised and unsupervised learning.

Since PnP / RED methods use an iterative process to map the degraded observa-
tion 𝑦 to an estimate of the underlying clean image 𝑥, they can be seen as a special
kind of self-supervised learning. The use of a denoiser (that is a neural networks
in some works) as an implicit prior also tie them back to other works like Deep
Image Prior [UVL18], where a degraded image and the handcrafted structure of a
restoration neural network are sufficient to provide an estimate of the underlying
clean image. Formally:

𝜃∗ = argmin
𝜃

𝐸 (𝑁𝜃(𝑧); 𝑥0) , 𝑥∗ = 𝑁𝜃∗(𝑧) (3.18)

where the network parameters 𝜃 are randomly initialized, and the minimizer is
sought after using an optimization algorithm (a strategy of early stopping must be
used to avoid learning an identity mapping). The combination of the information
contained in degraded images to the implicit knowledge contained within denoisers
can also remind of publications of the unsupervised and self-supervised denoising
literature such as [Leh+18; BR19; KBJ19], which have shown competitive (if not
slightly lesser) performance against denoisers trained with traditional supervised
learning.

In the Deep PnP framework, denoising neural networks can be seen as im-
plicitly encapsulating the distribution of clean images, or as projections towards
a manifold. This bears similarity with other fields that make use of implicit rep-
resentation through neural networks, such as neural fields. In the seminal work
NeRF [Mil+20], a coordinate-based Multi-Layer Perceptron is used to map the
coordinates of a point and viewing direction in 3d space to a color / radiance.
The MLP encapsulates an implicit three-dimensional representation of the scene,
and is only learned from a set of 2D images. Said implicit representation is grid-
less and continuous, and the network is connected to a fully differentiable ren-
der to synthesize novel views of the scene. Following this work, radiance fields
and related implicit coordinate-based representations have been used extensively
in many fields other than 3D view synthesis, including inverse problems such as
Sparse-view Computed Tomography [Sun+21b], Intensity Diffraction Tomogra-
phy [Liu+22] as well as general image and video restoration tasks such as spheri-
cal image super-resolution [Yoo+21], raw burst denoising [PTK22] or video frame
interpoloation [Sha+22].
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3.1.8 Video restoration with Plug-and-Play methods.
To the best of our knowledge, the work presented in this chapter is the first one
describing the use of neural networks in a PnP method for video restoration prob-
lems. In [Yua+21], the video denoiser FastDVDnet [TDV20] is used in a PnP
scheme, but to solve a specific problem of snapshot compressive imaging where
the observation is a single frame. The work [KB21] uses the PnP-ADMM algo-
rithm for video super-resolution, but employs the patch-based single-image de-
noiser BM3D [Dab+07].

3.2 A video Plug-and-Play method
We now present our method for PnP video restoration. To emphasize that we
are now dealing with frame sequences instead of individual images, variables that
represent videos will be noted in bold, e.g. 𝒙. Our experiments in this chapter use
the PnP version of ADMM because we have empirically found it to be the alter-
nate optimization method that is the most stable and the least sensitive (but not
insensitive) to hyperparameters for our use case. That said, many other schemes
such as the ones described in Section 3.1 could also be used.

3.2.1 PnP-ADMM
Let us start by recalling the principle of the ADMM optimization method. Suppose
that we want to solve our inverse problem of video restoration by minimizing
Equation (3.6), which we rewrite here for clarity:

�̂� = argmin
𝒙

1
2𝜎2

𝒏
‖𝒚 − 𝒜(𝒙)‖2

2 + 𝛼ℛ(𝒙). (3.6)

We start by defining the augmented Lagrangian

𝐿𝜀(𝒙, 𝒛, 𝒗) = 1
𝛼

1
2𝜎2

𝒏
‖𝒚 − 𝒜(𝒙)‖2

2⏟⏟⏟⏟⏟⏟⏟
𝐹(𝒙,𝒚)

+ℛ(𝒛) + 1
2𝜀

‖𝒙 − 𝒛‖2
2 + 𝒗𝑇(𝒙 − 𝒛) (3.19)

that we wish to minimize in (𝒙, 𝒛) and maximize in 𝒗. In this formulation, 𝒗
plays the role of a Lagrange multiplier, and this whole saddle-point problem is
optimized by alternating descent steps in 𝒙 and 𝒛 with an update in 𝒗, which
yields the following scheme (setting 𝒖 = 𝜀𝒗)

𝒙𝑘+1 ← argmin
𝒙

𝐿𝜀(𝒙, 𝒛𝑘, 𝒖𝑘/𝜀) = prox 𝜀
𝛼 𝐹(.,𝒚)(𝒛𝑘 − 𝒖𝑘)

𝒛𝑘+1 ← argmin
𝒛

𝐿𝜀(𝒙𝑘+1, 𝒛, 𝒖𝑘/𝜀) = prox𝜀ℛ(𝒙𝑘+1 + 𝒖𝑘)

𝒖𝑘+1 ← 𝒖𝑘 + 𝒙𝑘+1 − 𝒛𝑘+1,

(3.20)
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where, if the degradation operator 𝒜 is linear and represented by a matrix 𝐴,

prox𝜏𝐹(.,𝒚)(𝒛) = ( 𝜏
𝜎2

𝑛
𝐴∗𝐴 + 𝐼𝑑)

−1

( 𝜏
𝜎2

𝑛
𝐴∗𝒚 + 𝒛) , (3.21)

with 𝜏 ∈ ℝ+, 𝐼𝑑 the identity matrix in dimension 𝑑 and 𝐴∗ the adjoint matrix
of 𝐴. When the prior ℛ is convex, the iterates (𝒙, 𝒛, 𝒗) of the algorithm satisfy
𝒙 − 𝒛 → 𝟎, and thus give us solutions of (3.6).

Consider that we know how to build a denoiser 𝒟𝜀 which can be expressed
as the MAP estimator for a denoising problem (for an i.i.d. Gaussian noise of
variance 𝜀) with log-prior ℛ. By definition of the MAP, we then have exactly

𝒟𝜀(𝒙) = argmin
𝒛

1
2𝜀

‖𝒙 − 𝒛‖2
2 + ℛ(𝒛) = prox𝜀ℛ(𝒙) (3.22)

so we can directly “plug” this denoiser in the previous optimization scheme. In
practice, Plug-and-Play schemes are successfully used even with denoisers that do
not satisfy this property, and the study of their convergence is a very active research
field [CWE16; Ryu+19; Xu+20; Lau+23; HLP22a; HLP22b]. The corresponding
PnP-ADMM algorithm is summarized in Alg. 3.

Algorithm 3: PnP-ADMM scheme
Require: 𝒙0 ∈ ℝ𝑑, 𝒚 ∈ ℝ𝑚, 𝐾 ∈ ℕ⋆, 𝜀 > 0, 𝛼 > 0
Initialization: Set 𝒛0 = 𝒙0, and 𝒖𝑘 = 𝟎
for 𝑘 ∈ {0, … , 𝐾 − 1} do

𝒙𝑘+1 ← prox 𝜀
𝛼 𝐹(.,𝒚) (𝒛𝑘 − 𝒖𝑘)

𝒛𝑘+1 ← 𝒟𝜀 (𝒙𝑘+1 + 𝒖𝑘)
𝒖𝑘+1 ← 𝒖𝑘 + (𝒙𝑘+1 − 𝒛𝑘+1)

return 𝒙𝐾

3.2.2 Case of video
In the case of inverse problems on digital videos, we propose in this chapter to use
the previous scheme directly on the whole video 𝒙, which means that the proximal
and denoising steps in the PnP-ADMM scheme are applied to the whole sequence
at each step. This allows considering cases where the operator 𝒜 cannot be written
in a separable way over all images of the sequence (in the case of temporal blur,
for example). This also allows the use of networks specifically designed for video
denoising, such as FastDVDnet [TDV20].

Note that if one uses a single-frame denoiser (applied separately on each frame
of the video), and if the degradation operator 𝒜 is separable (i.e. can be writ-
ten as a degradation on each frame of 𝒙 separately), then the iterative ADMM
scheme working on the whole video is equivalent to a succession of iterative ADMM
schemes applied on each frame of the video. This is obviously no longer the case
with video specific denoisers that are applied to the video in a non-separable way.



3.2. A VIDEO PLUG-AND-PLAY METHOD 109

3.2.3 Performance of deep PnP Gaussian denoisers
Most of the experiments conducted in the next sections compare DRUNet [Zha+21a]
and FastDVDnet [TDV20], two state-of-the-art networks for Gaussian denoising.
DRUNet is a single-image network designed specifically to be integrated within a
PnP approach for image restoration. FastDVDnet is a network designed for video
denoising: it makes use of the additional information contained in neighboring
images to provide a better and more temporally stable denoised estimate, with no
explicit image alignment. Both networks use U-Net autoencoders [RFB15]: Fast-
DVDnet combines two small U-Net blocks with residual connections and batch-
norm in a cascaded architecture (c.f . Figure 2.6 of Chapter 2); DRUNet has a
single deeper block with more subsampling steps (c.f . Figure 2.2) and replaces the
standard convolution layers with ResBlocks [Lim+17].

We use these networks (and their weights) as provided by the authors of
the original publications, without re-training them. Before studying the perfor-
mance of these networks in PnP restoration, it is interesting to evaluate their
denoising performance. It seems reasonable to think that the denoising perfor-
mance of the network has an impact on the maximum achievable performance in
PnP restoration [Zha+21a]. DRUNet denoises all the frames of the video sepa-
rately. To produce a denoised version of the image at time 𝑡, FastDVDnet uses
the images at times 𝑡−2, 𝑡−1, 𝑡, 𝑡+1 and 𝑡+2. To ensure the output video re-
tains the same size, the noisy input video is increased by 4 frames by mirror-
ing: 𝒙 = {𝑥0, … , 𝑥𝑁−1} → 𝒙′ = {𝑥2, 𝑥1, 𝑥0, … , 𝑥𝑁−1, 𝑥𝑁−2, 𝑥𝑁−3}. We include
DnCNN [Zha+17a] and FFDNet [ZZZ18] to the comparison for reference; while
they are not considered state-of-the-art denoisers in the early 2020s, they are both
staples of the denoising literature and variants of DnCNN are still used in re-
cent PnP/RED methods [Liu+20; Coh+21; Pes+21; Liu+21]. Also included to
our comparison is GS-DRUNet [HLP22a], the denoising operator explicitly de-
fined as a gradient step (c.f . equation (3.14); in [HLP22a] GS-DRUNet is used in
GSPnP, their modified version of PnP-HQS, which we’ll include in some of our
PnP video restoration experiments). The range of noise levels seen in training
is 𝜎 ∈ [5/255, 55/255] for FastDVDnet and 𝜎 ∈ [0, 50/255] for DRUNet, GS-
DRUNet and FFDNet. DnCNN being trained at a fixed noise level of 𝜎 = 25,
noisy frames where 𝜎≥25 are multiplied by a scale factor (25/𝜎≥25) before being
fed to the network. We evaluate the video denoising performance of the networks
on the test set of the DAVIS-2017 dataset [Pon+17], in its 480p version. This
dataset consists in 30 video sequences of varying length. None of the networks
have seen these sequences in training.

Quantitative video denoising results of these networks can be seen in Table 3.1.
FastDVDnet performs slightly better than DRUNet at most noise levels, even
though it has around 13 times less parameters and takes about half the time to
denoise one video frame. We also notice that GS-DRUNet remains very compet-
itive with DRUNet for 𝜎𝒏 ≤ 50/255 despite featuring roughly 50% less parame-
ters. DRUNet, however, is the network whose performance degrades the least at
𝜎𝒏 = 100/255, a noise level not seen in training for all networks. Like FastDVD-
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net, the convolution layers of DRUNet are without biases; but DRUNet has no
batch-norm layers, while FastDVDnet does (with biases in them) and DRUNet was
trained with L1 loss, while GS-DRUNet and FastDVDnet were trained with the
L2 loss. These results are consistent with those of [Moh+20], where it was shown
that unbiased L1 networks generalize better at noise levels outside the interval
seen in training.
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Table 3.1: Denoising: PSNR/SSIM on DAVIS-2017-test-480p [Pon+17] (8 CPU AMD 7F52 / 1 NVIDIA Tesla T4 / 16GB
RAM)

𝜎𝒏 10/255 25/255 50/255 100/255 # params runtime (s/img.)

noisy 28.13/0.634 20.17/0.314 14.15/0.146 08.13/0.053
DnCNN [Zha+17a] 35.66/0.946 31.45/0.884 28.21/0.796 25.05/0.664 0.668M 0.20
FFDNet [ZZZ18] 36.24/0.952 31.68/0.889 28.43/0.809 25.33/0.689 0.852M 0.08

DRUNet [Zha+21a] 38.90/0.967 34.40/0.921 31.27/0.861 28.32/0.781 32.6410M 0.48
GS-DRUNet [HLP22a] 38.81/0.967 34.30/0.919 31.11/0.856 24.39/0.495 17.010M 0.52
FastDVDnet [TDV20] 39.20/0.969 35.05/0.931 31.97/0.878 26.84/0.655 2.4791M 0.23
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3.3 Experiments
We are now interested in the performance of our PnP-ADMM method using the
networks of Section 3.2.3 for several video restoration problems such as non-blind
deblurring, super-resolution, demosaicking, and interpolation of random missing
pixels. These results aim at presenting the viability of our method, and at evalu-
ating the impact of the chosen denoiser on the final result.

In the following experiments, we restrict each sequence to its first 30 frames to
harmonize computation times and complexity per video.

3.3.1 Optimal setting of PnP parameters
For a given video restoration problem, our formulation of PnP-ADMM has several
parameters that can have an impact on final performance:

• 𝒟𝜀, the Gaussian denoiser used as the proximal operator of the prior term.

• 𝜀, which represents the strength of said denoiser. When the denoiser is
designed to handle varying levels of noise in a non-blind fashion, (as is the
case of FastDVDnet and DRUNet), 𝜀 can be set in the form of a noise map
that is fed as an additional input to the denoiser.

• 𝛼, which represents the tradeoff between the data fidelity and prior terms of
Equation (3.6).

• 𝐾, the total number of ADMM iterations. It needs to be large enough
to allow convergence of the algorithm, but not too large in cases where
convergence is not guaranteed.

For a given problem and a given denoiser (i.e. 𝒜, 𝜎𝒏 and 𝒟 are fixed), to find
optimal values for said parameters, we perform a 2D grid search on 𝜀 and 𝛼 for an
empirically found sufficient number of iterations 𝐾. Since we have no guarantees
that these values are optimal for every possible 𝒙, we perform that grid search on a
subset of the data we wish to evaluate our method on (in our case, 256×256 center
crops of the first 30 frames of the aerobatics, girl-dog, horsejump-stick and
subway of DAVIS-2017-test-480p [Pon+17]). We retain the (𝜀, 𝛼, 𝐾) tuple that
yields the higher PSNR on that subset for a given denoiser. An example of a grid
search of (𝜀, 𝛼) for a given video deblurring problem is illustrated in Figure 3.4.
The parameter values obtained for the video restoration problems studied in this
work are given in Tables 3.2, 3.3, 3.4 and 3.8.

3.3.2 Non-blind video deblurring
Our first use case is relatively straightforward: we generate blurry videos by con-
volving each frame by a known 2D kernel and by adding noise of standard deviation
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Figure 3.4: Grid search of optimal (𝜀, 𝛼) for video deblurring (𝜎𝒏 = 2.55/255)

Table 3.2: Video deblurring: selected values of (𝜀, 𝛼, 𝐾) PnP-ADMM parameters

𝜎𝒏 2.55/255 7.65/255

DRUNet

√
𝜀 × 255 20 50

𝛼 1.25 1.25
𝐾 10 10

FastDVDnet

√
𝜀 × 255 20 20

𝛼 1 0.5
𝐾 20 20

Table 3.3: Video super-resolution: selected values of (𝜀, 𝛼, 𝐾) PnP-ADMM pa-
rameters

s.f ×2 ×4 ×4
kernel Gauss. (𝜎 = 1.6) Gauss. (𝜎 = 1.6) Gauss. (𝜎 = 3.2)

𝜎𝒏 0 2.55/255 0 2.55/255 0 2.55/255

DRUNet

√
𝜀 × 255 40 55 60 60 60 70

𝛼 0.075 1.25 1 1.25 0.025 0.25
𝐾 10 10 10 10 10 10

FastDVDnet

√
𝜀 × 255 20 30 55 55 50 55

𝛼 0.025 0.5 0.75 0.75 0.025 0.25
𝐾 20 20 20 20 20 20
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𝜎𝒏 to the result. For the sake of simplicity, we assume a cyclic convolution opera-
tor 𝒌. The convolution with 𝒌 can also be represented by a multiplication with a
block circulant matrix 𝐻 with circulant blocks. The degradation model becomes

𝒚 = 𝒌 ∗ 𝒙 + 𝒏 = 𝐻𝒙 + 𝒏. (3.23)

In order to simulate blur which varies throughout the video (e.g. blur caused by
camera shake due to random hand tremor), we randomly sample a kernel among
the 8 samples used in [Lev+09] for each frame. While this type of non-blind
deconvolution problem can also be solved on a frame-by-frame basis, it is still
relevant for digital video.

For the sake of simplicity, let us assume that frames of 𝒙 are periodic. Ap-
plying 𝐻 can then be done very simply in the Fourier domain, writing ℱ(𝐻𝒙) =
ℱ(𝒌)ℱ(𝒙), where 𝒌 denotes the 2D blur kernel, ℱ(.) denotes the 2D Fourier
transform, ℱ(.) its conjugate and ℱ−1(.) its inverse. Using (3.21) with 𝐴 = 𝐻
and the fact that the operators 𝐻 and 𝐻∗𝐻 are diagonal in the Fourier domain,
we see that the proximal operator of the data fidelity term of (3.6) can be written
as

prox𝜏𝐹(.,𝒚)(𝒛) = ( 𝜏
𝜎2

𝑛
𝐻∗𝐻 + 𝐼𝑑)

−1

( 𝜏
𝜎2

𝑛
𝐻∗𝒚 + 𝒛) (3.24)

= ℱ−1 (
𝜏

𝜎2
𝒏

ℱ(𝒌)ℱ(𝒚) + ℱ(𝒛)
𝜏

𝜎2
𝒏

ℱ(𝒌)ℱ(𝒌) + 1
) . (3.25)

Results. The quantitative results of our PnP-ADMM method for video deblurring
with the 8 randomized kernels of [Lev+09] on DAVIS-2017-test-480p [Pon+17] for
𝜎𝒏 ∈ {2.55, 7.65} /255 are presented in Table 3.5. For reference, the table also
includes the comparison of our method to DPIR [Zha+21a] and GSPnP [HLP22a],
two state-of-the-art PnP image restoration methods. DPIR uses DRUNet in PnP-
HQS with an annealing strategy on the noise level of their denoiser across it-
erations. GSPnP uses GS-DRUNet, the shallower version of DRUNet explicitly
trained as a gradient step, in a slightly modified version of HQS. For both methods,
we perform PnP restoration of each video frame sequentially, using the parameter
values recommended by their respective authors for deblurring:

• (𝜎1, 𝜎𝐾, 𝜆, 𝐾) = (49, 𝜎𝒏 ×255, 0.23, 8) using the notations of [Zha+21a]: 𝜎𝐾
and 𝜎𝐾 are the level of the denoiser at the first and last of the 𝐾 iterations,
and 𝜆 controls the tradeoff between data fidelity and regularization.

• (𝜎, 𝜆𝜈, 𝜖, 𝐾) = (1.8𝜎𝒏, 0.1, 10−5, 400) using the notations of [HLP22a]: 𝜎
is the noise level the denoiser is set to, 𝜆𝜈 = 𝜎2

𝒏𝜆 where 𝜆 is the tradeoff
parameter that relaxes the denoising step, 𝜖6 is the value of the relative
difference between consecutive values of the objective function under which
the algorithm is terminated, and 𝐾 is the maximal number of iterations.

6not to be confused with 𝜀, the variance of the denoiser in our notations.
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(a) Unknown / ground truth

(b) Observation PSNR = 28.34 dB

Figure 3.5: Example of video blur (𝜎𝒏 = 2.55) with different kernels per frame on
giant-slalom of DAVIS-2017-test-480p [Pon+17].

We turn off periodical geometric self-ensemble in DPIR (which consists in rotating
/ flipping 𝒙 and 𝒛 at each iteration with a period of 8 iterations to improve
the performance of the denoising step), as it could also be implemented in our
method but only yields marginal improvements and is not necessarily relevant
to the comparisons of this chapter. With our video PnP-ADMM method, using
FastDVDnet instead of DRUNet yields a higher PSNR/SSIM in almost all of the
30 videos observed at both noise levels. The performance gap is smaller between
PnP-ADMM using FastDVDnet and DPIR, even though it also uses DRUNet; this
suggests that using identical denoisers but a different optimization algorithm and a
different set of parameters can lead to different PnP restoration results. Figure 3.5
illustrates an example of our video blur use case, and Figure 3.6 showcases the
visual comparison of deblurring results. GSPnP also yields better performance
than video PnP-ADMM with DRUNet, with a very similar performance profile
to DPIR. It can be observed that FastDVDnet restores more image detail and its
results are more temporally stable, whereas DPIR yields smoother frames with
somewhat less high frequency content.

3.3.3 Video super-resolution
For video super-resolution, we use the classical degradation model where the low
resolution video is obtained by downsampling the original high resolution video
by a certain scale factor 𝑠 in each dimension after convolution by a known anti-
aliasing kernel 𝒌. Writing 𝐻 the 𝑑 × 𝑑 matrix representing the cyclic convolution
operator and 𝑆 the 𝑚 × 𝑑 downsampling matrix, the degradation model can be
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(a) Ours - DRUNet (
√

𝜀 = 20/255, 𝛼 = 1.25) PSNR = 39.06 dB

(b) Ours - DRUNet (
√

𝜀 = 20/255, 𝛼 = 1) PSNR = 37.84 dB

(c) Ours - FastDVDnet (
√

𝜀 = 20/255, 𝛼 = 1.0) PSNR = 40.38 dB

(d) DPIR [Zha+21a] PSNR = 39.77 dB

Figure 3.6: Video deblurring (𝜎𝒏 = 2.55) on giant-slalom of DAVIS-2017-test-
480p [Pon+17]. Ours - DRUNet and FastDVDnet are using their optimal values of
(𝜀, 𝛼) (we also show Ours - DRUNet with 𝛼 = 1 for identical regularization weight
versus Ours - FastDVDnet). While all methods perform well, Ours - FastDVDnet
restores more image detail and its results are more temporally stable, whereas
DPIR yields smoother frames with somewhat less high frequency content. GSPnP,
while not included here because it is a late addition to the performance comparison,
yields a PSNR of 40.02 dB.
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written
𝒚 = 𝑆𝐻𝒙 + 𝒏. (3.26)

Replacing 𝐴 by 𝑆𝐻 in (3.21), we deduce that the proximal operator of the data
fidelity term can be written in this case

prox𝜏𝐹(.,𝒚)(𝒛) = ( 𝜏
𝜎2

𝑛
𝐻∗𝑆∗𝑆𝐻 + 𝐼𝑑)

−1

( 𝜏
𝜎2

𝑛
𝐻∗𝑆∗𝒚 + 𝒛) . (3.27)

Using this formulation directly is not possible since it requires to invert a huge
𝑑 × 𝑑 matrix, which is not diagonal in the frequency domain. Instead, as done
in [Zha+21a; HLP22a], we use the closed-form expression proposed in [Zha+16].
First, following the notations of [HLP22a], we write ̂𝑧𝜏 = 𝜏

𝜎2
𝑛

𝐻∗𝑆∗𝒚+𝒛 and observe
that

prox𝜏𝐹(.,𝒚)(𝒛) = ( 𝜏
𝜎2

𝑛
𝐻∗𝑆∗𝑆𝐻 + 𝐼𝑑)

−1

̂𝑧𝜏 (3.28)

= ̂𝑧𝜏 − 𝜏
𝜎2

𝑛
𝐻∗𝑆∗ ( 𝜏

𝜎2
𝑛

𝑆𝐻𝐻∗𝑆∗ + 𝐼𝑚)
−1

𝑆𝐻 ̂𝑧𝜏. (3.29)

The 𝑚×𝑚 matrix 𝑆𝐻𝐻∗𝑆∗ +𝐼𝑚 can be inverted much more easily in the Fourier
domain. Following again the notations of [HLP22a], we write 𝛬 = diag(ℱ(𝒌)) the
𝑑 × 𝑑 diagonal matrix containing the Fourier transform of the convolution kernel
𝒌 on the diagonal. This matrix can also be written as a block diagonal matrix
𝛬 = diag (𝛬1, … , 𝛬𝑠2), with blocks 𝛬𝑘 (also diagonal) of size 𝑚×𝑚. Now, writing
𝛬 = [𝛬1, … , 𝛬𝑠2 ] ∈ ℝ𝑚×𝑑, it follows easily that the operator 𝑆𝐻 corresponds to
1
𝑠𝛬 in the Fourier domain, i.e. ℱ(𝑆𝐻𝒛) = 1

𝑠𝛬ℱ(𝒛) for all 𝒛 ∈ ℝ𝑑. Finally, the
proximal operator of the data term can be computed explicitly as

prox𝜏𝐹(.,𝒚)(𝒛) = ̂𝑧𝜏 − 𝜏
𝜎2

𝑛𝑠2 ℱ−1 (𝛬∗ ( 𝜏
𝜎2

𝑛𝑠2 𝛬𝛬∗ + 𝐼𝑚)
−1

𝛬ℱ( ̂𝑧𝜏)) . (3.30)

Results. The quantitative results of our PnP-ADMM method for ×2 and ×4
super-resolution with two Gaussian kernels for 𝜎𝒏 ∈ {0, 2.55, 7.65} /255 are pre-
sented in Table 3.6. Once again, we also include the comparison to DPIR [Zha+21a]
and GSPnP [HLP22a], with the parameter values recommended by the authors for
super-resolution:

• (𝜎1, 𝜎𝐾, 𝜆, 𝐾) = (49, max(𝑠, 𝜎𝒏×255), 0.23, 24) using the notations of [Zha+21a].

• (𝜎, 𝜆𝜈, 𝜖, 𝐾) = (2𝜎𝒏, 0.065, 10−6, 400) using the notations of [HLP22a].

As in Section 3.3.2, we turn off periodical geometric self-ensemble for DPIR. Simi-
larly to the previous restoration problem, PnP-ADMM with FastDVDnet produces
better results than PnP-ADMM with DRUNet. We also observe that our method
with FastDVDnet outperforms DPIR in the noiseless case, and is competitive with
DPIR and GSPnP in noisy cases. An example is illustrated in Figure 3.7.
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Table 3.4: Video interpolation of random missing pixels: selected values of
(𝜀, 𝛼, 𝐾) PnP-ADMM parameters

𝜌 0.5 0.9
𝜎𝒏 0 2.55/255 7.65/255 0 2.55/255 7.65/255

DRUNet

√
𝜀 × 255 30 30 30 50 50 50

𝛼 0.5 3.0 2.5 2.75 2.5 2.75
𝐾 200 200 200 200 200 200

FastDVDnet

√
𝜀 × 255 20 20 20 30 30 40

𝛼 1.75 3.0 1.5 2.25 2.75 1.5
𝐾 200 200 200 200 200 200

Table 3.5: Video deblurring: PSNR/SSIM on DAVIS-2017-test-480p [Pon+17]
(each video limited to its 30 first frames)

𝜎𝒏 2.55/255 7.65/255

blurred 22.75/0.599 12.66/0.533
Ours - DRUNet 36.20/0.938 32.07/0.856

Ours - FastDVDnet 37.11/0.949 33.29/0.893
DPIR [Zha+21a] 36.97/0.950 32.92/0.890
GSPnP [HLP22a] 36.69/0.947 32.81/0.885
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Table 3.6: Video super-resolution: PSNR/SSIM on DAVIS-2017-test-480p [Pon+17] (each video limited to its 30 first frames)

s.f. kernel 𝜎𝒏 LR + bicubic Ours - DRUNet Ours - FastDVDnet DPIR [Zha+21a] GSPnP [HLP22a]

×2 Gauss.
(𝜎 = 1.6)

0 27.76/0.816 36.47/0.955 36.86/0.958 35.62/0.945 N.A.
2.55/255 27.52/0.784 32.12/0.874 32.37/0.874 32.56/0.895 32.03/0.896
7.65/255 26.06/0.615 29.86/0.806 30.25/0.817 30.59/0.845 30.39/0.848

×4 Gauss.
(𝜎 = 1.6)

0 24.74/0.714 30.00/0.844 30.12/0.839 29.75/0.840 N.A.
2.55/255 24.61/0.689 29.23/0.809 29.38/0.805 29.31/0.823 29.06/0.817
7.65/255 23.78/0.563 28.18/0.772 28.47/0.780 28.29/0.783 28.48/0.786

×4 Gauss.
(𝜎 = 3.2)

0 23.98/0.665 30.07/0.844 30.15/0.841 29.70/0.830 N.A.
2.55/255 23.88/0.642 26.42/0.634 27.46/0.711 27.94/0.767 27.80/0.759
7.65/255 23.17/0.518 26.37/0.698 26.54/0.701 26.53/0.713 26.84/0.720
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3.3.4 Video interpolation of random missing pixels
We evaluate a final use case of our Plug-and-Play video restoration method: in-
terpolation, which consists in estimating the values of hidden or missing pixels. In
our experiments, we mask a proportion 𝜌 of the pixels in the video according to
a random spatio-temporal pattern. This inverse problem can be seen as a special
case of compressed sensing [Don06] . The degradation model can be expressed as

𝒚 = 𝑴 ⊙ 𝒙 + 𝒏 (3.31)

where 𝑴 is random with a proportion 𝜌 of elements set to 0 and 1 elsewhere and
⊙ denotes pixel-wise multiplication. The proximal operator of the data term for
this type of problem can be written as

prox𝜏𝐹(.,𝒚)(𝒙[𝑖]) =
⎧{
⎨{⎩

𝒙[𝑖]+𝒚[𝑖] 𝜏
𝜎2𝒏

1+ 𝜏
𝜎2𝒏

if 𝑴[𝑖] = 1

𝒙[𝑖] if 𝑴[𝑖] = 0
(3.32)

where 𝒙[𝑖] is the value of the pixel 𝑖 at a specific spatial location of a specific
channel of a specific frame of the RGB video 𝒙.

In the case where 𝜎𝒏 = 0, the data-fitting term takes the form of a hard
constraint and its proximal operator admits a closed form that is independent of
𝜏 (and thus of 𝛼 in our PnP-ADMM method since we have 𝜏 ≡ 𝜀/𝛼):

prox𝜏𝐹(.,𝒚)(𝒙) = (1 − 𝑴) ⊙ 𝒙 + 𝑴 ⊙ 𝒚. (3.33)

Results. Results of our method for interpolation of missing pixels for 𝜌 ∈
{0.5, 0.9} and 𝜎𝒏 ∈ {0, 2.55, 7.65} /255 are shown in Table 3.7. We include
GSPnP [HLP22a] to our comparison, with their parameter setting described for
50% of missing pixels and no noise: no backtracking procedure, 𝜎 = 50 for the
first 10 iterations then 𝜎 = 10, 𝜆𝜏 = 1 (where 𝜆 relaxes the denoising step and 𝜏 is
the fixed step size), 𝜆 = 0.1, 𝐾 = 100 using the notations of [HLP22a]. While we
cannot be sure that these parameters are also suitable for the harder case where
𝜌 = 0.9, we keep them as is because we have found no performance improvement
by e.g increasing the number of iterations 𝐾 to 200 or 400. We do not compare
the performance of our method to DPIR here, as this problem is not part of the
original publication. In this experiment, since the amount of missing pixels and
their locations change from one frame to another, GSPnP and the DRUNet-based
scheme that in effect operate on each frame separately clearly lag behind. Our
FastDVDnet-based scheme takes advantage of its neighbor-using denoising step
to provide a much more reliable and stable interpolation of the video. A visual
example is also proposed in Figure 3.8.

3.3.5 Bayer to RGB video demosaicking
In addition to deblurring, super-resolution and interpolation of random missing
pixels, we evaluate a very recurring topic of digital photography: demosaick-
ing [Gun+05]. Indeed, the vast majority of CMOS image sensors currently used
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(a) LR + bicubic PSNR = 34.17 dB

(b) Ours - FastDVDnet (
√

𝜀 = 20/255, 𝛼 = 0.025) PSNR = 44.35 dB

(c) DPIR [Zha+21a] PSNR = 42.91 dB

Figure 3.7: Video SR (×2/ Gauss. (𝜎 = 1.6), 𝜎𝒏 = 0) on the deer sequence of
DAVIS-2017-test-480p [Pon+17]. Our video PnP-ADMM method with FastDVD-
net retains slightly more detail than DPIR (Ours - DRUNet is not shown as it is
similar to Ours - FastDVDnet with 43.97 dB).

Table 3.7: Video interpolation of random missing pixels: PSNR/SSIM after 200
iterations of PnP-ADMM on DAVIS-2017-test-480p [Pon+17] (each video limited
to its 30 first frames)

𝜌 𝜎𝒏 masked Ours - DRUNet Ours - FastDVDnet GSPnP [HLP22a]

0.5
0 9.44/0.142 44.73/0.992 45.00/0.991 38.87/0.965

2.55/255 9.43/0.138 39.89/0.970 41.83/0.981 37.41/0.945
7.65/255 9.40/0.117 37.37/0.954 38.08/0.960 32.61/0.819

0.9
0 6.88/0.047 26.14/0.820 32.40/0.914 28.41/0.801

2.55/255 6.88/0.044 26.28/0.821 32.22/0.910 28.36/0.797
7.65/255 6.86/0.032 26.70/0.813 32.21/0.886 27.97/0.766
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(a) Unknown / ground truth

(b) Observation PSNR = 8.23 dB

(c) Ours - DRUNet (
√

𝜀 = 50/255, 𝛼 = 2.75) PSNR = 26.18 dB

(d) Ours - FastDVDnet (
√

𝜀 = 30/255, 𝛼 = 2.25) PSNR = 29.55 dB

(e) GSPnP [HLP22a] PSNR = 25.35 dB

Figure 3.8: Video interpolation of random missing pixels (𝜌 = 0.9, 𝜎𝒏 = 0) on the
horsejump-stick sequence of DAVIS-2017-test-480p [Pon+17]. Our video PnP-
ADMM method with FastDVDnet produces significantly better, temporally more
stable results than both Ours - DRUNet and GSPnP, as it is the only method that
leverages neighboring frames to solve the problem.
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in smartphones, cameras and various computer vision systems are monochrome
sensors stacked with an array of per-pixel colored filters called Color Filter Array
(CFA). The most common array is the repetition of a 2 × 2 Bayer pattern, where
two green color filters are put diagonally and the other two filters are red and blue.
This means that the sensor output is undersampled in terms of colors at each pixel
location, and an interpolation algorithm must be used to recover red, green and
blue values at each pixel. Videos are of course not spared from that problem since
they also come from CMOS image sensors. The degradation model for a synthetic
video demosaicking inverse problem can be written as

𝒚 = 𝑴 ⊙ 𝒙 + 𝒏 (3.34)

where 𝑴 is a binary mask corresponding to the CFA pattern and ⊙ denotes pixel-
wise multiplication. Notice that this is actually the same degradation model as the
interpolation problem of Section 3.3.4 with a different, fixed mask.The proximal
operator of the data term is thus identical to the expressions of Equations 3.31
and 3.32.
Parameter setting of the demosaicking problem. For this specific problem
only, we experiment with a variant of our method of video PnP-ADMM: an an-
nealed version, where the strength of the denoiser 𝜀 changes accross iterations.
Annealing is used for demosaicking but not other problems because we have found
no empirical improvements elsewhere. We are not the firsts to consider that kind
of strategy, as variants of ADMM where the penalty parameter is updated at
each iteration are already mentioned in [Boy+11], and similar annealing strate-
gies were used both in PnP-ADMM [BRE16; CWE16] and other schemes such as
PnP-SGD [Lau+23] and PnP-HQS [Zha+21a]. Annealing strategies such as this
one are typically introduced to provide additional stability of iterative algorithms,
particularly in cases that have limited guarantees of convergence.

We have seen in other restoration problems that the best value of 𝛼 for a given
denoiser and a given problem typically depends on the selected value of 𝜀. This
could be a problem for our annealing strategy, since we want 𝜀 to change across
iterations (we might have to change 𝛼 across iterations as well, making our 2D
grid search strategy impossible in that case). Luckily, as shown in Equation (3.33)
of Section 4.3, in both masking problems, when there is no noise (or little noise),
the proximal operator of the data term does not depend on 𝛼, allowing us to
consider our strategy of annealing of 𝜀 while keeping the same 𝛼 across iterations.
Similarly to what is done in [Zha+21a], we uniformly sample

√
𝜀 from a large

noise level
√

𝜀0 to a small one √𝜀𝐾−1 in log space. We set √𝜀𝐾−1 = 5/255 for
FastDVDnet since it was trained for noise levels in [55, 5]/255, and appropriate
denoising performance is not guaranteed at noise levels outside of this range (as
shown in Table 3.1). Given that DRUNet was trained for noise levels in [50, 0]/255
and that it generalizes better to unseen noise levels, we set √𝜀𝐾−1 = 1/255 when
using annealing with that network. An example of annealing of 𝜀 for 𝐾 = 200
iterations (an empirically found sufficient number of iterations for PnP-ADMM
applied to video demosaicking) is shown in Figure 3.9.
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Figure 3.9: Example of annealing of 𝜀 with √𝜀𝑘 ∈ [55, 5] /255 and 𝐾 = 200

As done in other problems, we thus perform our grid search of optimal values
of 𝜀 and 𝛼 for FastDVDnet and DRUNet for Bayer RGGB to RGB demosaicking,
at three noise levels 𝜎𝒏 = 0, 𝜎𝒏 = 2.55/255 and 𝜎𝒏 = 7.65/255. We perform
that grid search both with and without annealing of 𝜀 to later compare the perfor-
mance of both PnP-ADMM versions. The resulting parameter values are shown
in Table 3.8.

Besides from potentially increasing performance, another added benefit of de-
creasing 𝜀 across iterations is that it forces the distance between 𝒙 and 𝒛 to decrease
when trying to minimize the augmented Lagrangian (Equation (3.19)), yielding ad-
ditional stability of our PnP method in this problem where the data fidelity term
is not strictly convex. This is illustrated in Figure 3.10.

Results. As done in Sections 4.1 and 4.2, we include DPIR [Zha+21a] to our per-
formance comparison, with the parameter values recommended by the authors for
demosaicking: (𝜎1, 𝜎𝐾, 𝜆, 𝐾) = (49, max(0.6, 𝜎𝒏 ∗ 255), 0.23, 40) using the nota-
tions of [Zha+21a] (we disable here again the periodical geometric self-ensemble).
It is interesting to note that DPIR initializes to an already crudely demosaicked
version of the observation (the authors of [Zha+21a] use MATLAB’s demosaic
function). In contrast, we simply start from the mosaicked observation: 𝒛0 = 𝒚,
as initializing to MATLAB’s demosaic output yielded little improvements to our
PnP-ADMM results both in term of final performance and convergence speed.
A drawback is that our method typically requires more iterations (100 to 200)
than DPIR with its MATLAB initialization (40). Conversely, we found in our
experiments that DPIR would also require more iterations with a mosaicked ini-
tialization, but we leave that out of our performance comparison, as no number of
iterations 𝐾 was provided by its authors for such a use case. Quantitative results
of our PnP-ADMM methods on the 2017 test set of the DAVIS dataset [Pon+17]
are available in Table 3.9. These results confirm the benefit of using an annealed
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Table 3.8: Video demosaicking: selected values of (𝜀, 𝛼, 𝐾) PnP-ADMM parame-
ters

𝜎𝒏 0 2.55/255 7.65/255

DRUNet

√
𝜀 × 255 60 60 60

𝛼 0.25 2.5 3
𝐾 200 200 200

FastDVDnet

√
𝜀 × 255 20 20 20

𝛼 0.25 3 1.5
𝐾 200 200 200

√𝜀0 × 255 70 70 70
DRUNet 𝛼 0.25 0.75 0.5

(annealing) 𝐾 200 200 200
√𝜀0 × 255 30 55 50

FastDVDnet 𝛼 0.25 1 0.5
(annealing) 𝐾 200 200 200

Figure 3.10: Demosaicking (𝜎𝒏 = 0): PSNR of split variables across iterations
𝒙𝑘, 𝒛𝑘 with and without annealing (FastDVDnet, √𝜀0 =

√
𝜀 = 20/255). Re-

sults are computed and averaged on 256 × 256 crops of the first 30 frames of
sequences aerobatics, girl-dog, horsejump-stick and subway of DAVIS-2017-
test-480p [Pon+17]



126 CHAPTER 3. DEEP PLUG-AND-PLAY VIDEO RESTORATION

Table 3.9: Video demosaicking: PSNR/SSIM on DAVIS-2017-test-480p [Pon+17]
(each video limited to its 30 first frames)

𝜎𝒏 0 2.55/255 7.65/255

mosaicked 8.21/0.100 8.21/0.096 8.18/0.079

Ours - DRUNet 33.23/0.921 32.20/0.879 31.22/0.847

Ours - FastDVDnet 39.78/0.971 38.78/0.964 36.68/0.952

Ours - DRUNet 45.15/0.992 40.55/0.973 36.75/0.951(annealing)
Ours - FastDVDnet 43.92/0.990 41.04/0.981 36.40/0.951(annealing)

DPIR [Zha+21a] 45.72/0.993 40.05/0.972 34.48/0.905

version of PnP-ADMM for demosaicking. In this non strongly convex case where
the degradation pattern is identical for all frames, FastDVDnet performs better
than DRUNet in some scenarios, while the opposite is true in others. It is worth
noting that DPIR performs better than our method (with annealing and either
denoiser) in the noiseless case, but worse than our method (with annealing and
either denoiser) at 𝜎𝒏 = 7.65/255.

3.3.6 Video 3D Deconvolution
Another experiment we conducted was 3D deconvolution. This use case is more of
a toy example where the video degradation process cannot be directly applied to
each individual frame. The convolution operation can again be represented by a
multiplication with a block circulant matrix 𝐻 with circulant blocks, but the cyclic
convolution operator 𝒌 will be 3D and thus have the ability to average values of
pixels of multiple frames. Formally the forward degradation model is identical to
Equation 3.23. If the kernel is uniform of size 𝑑 × 1 × 1, where 𝑑 is the number of
frames of interest, we are performing frame averaging.
Results. In this case, per-frame PnP methods such as DPIR or GSPnP cannot
be applied. However, we can still evaluate the usefullness of a video denoiser by
comparing FastDVDnet to DRUNet in our video PnP-ADMM method. For each
model, we reuse the optimal parameter setting for video deblurring (Table 3.2) in
order to avoid rerunning the 2D grid search for this specific problem. Quantitative
results of our method on the DAVIS test set [Pon+17] for uniform 3D kernels can be
found in Table ?? As in other experiments, FastDVDnet significantly outperforms
DRUNet, once again showcasing the interest of using a multi-frame denoiser for
video restoration. Figure 3.11 showcases an example where FastDVDnet produces
a lot less ghosting artifacts originating from the content of surrounding frames.
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Table 3.10: Video 3D deconvolution: PSNR/SSIM on DAVIS-2017-test-
480p [Pon+17] (each video limited to its 30 first frames)

kernel unif. (4 frames) unif. (8 frames)
𝜎𝒏 2.55/255 7.65/255 2.55/255 7.65/255

convolved 23.72/0.722 22.71/0.536 21.73/0.642 21.04/0.466
Ours - DRUNet 35.71/0.928 30.82/0.792 33.73/0.923 29.86/0.820

Ours - FastDVDnet 37.51/0.946 32.75/0.866 36.05/0.938 30.51/0.839

If we were to apply a particular succession of 3D uniform and zero-valued
kernels, we can obtain a 3D deconvolution case akin to temporal deblurring which
could be applied to datasets such as GoPro [NKL17] or REDS [Nah+19] where
the blurry videos are obtained by averaging successive frames to produce a single
blurry image resembling a long exposure image (the zero-valued kernels in this
case are to take into account that all frames used to produce a blurry image will
not be used in the subsequent blurry image, which is different from applying the
same uniform 3D kernel). This experiment will be the subject of future work.

3.3.7 Expansiveness of video denoising operators
We have seen with our previous experiments that the original FastDVDnet can
produce satisfactory results and early convergence in video PnP restoration. How-
ever, this network was only trained for Gaussian noise removal, and we have no
guarantees that it is nonexpansive or Lipschitz-continuous. Let us experimentally
study the expansiveness of FastDVDnet (with its pretrained weights provided by
the authors of [TDV20]) for video denoising.

To do so, we first set ourselves to compute the spectral norm of the Jaco-
bian of the denoising operator using power iterations until convergence as done
in [HLP22b; Pes+21]. We select 256 × 256 center crops of the first 30 frames of
videos of the DAVIS-2017-test-480p [Pon+17] as our evaluation dataset. We also
evaluate the expansiveness of DRUNet for video denoising, as well as the residual
of both denoisers at noise levels 𝜎𝒏 ∈ {10, 25, 50, 100}/255. As can be seen in
Table 3.11, neither vanilla FastDVDnet nor DRUNet (as discussed in [HLP22a;
HLP22b]) are 1-Lipschitz, and neither are their residuals. This means that we
cannot directly build upon the theoretical convergence guarantees of [Ryu+19]
or [Pes+21] for PnP video restoration when using these operators. FastDVDnet
consistently has a lower spectral norm than DRUNet however.

Furthermore, in our PnP restoration experiments, we have noticed that video
PnP-ADMM with FastDVDnet is significantly less prone to divergence than both
video PnP-ADMM with DRUNet and DPIR [Zha+21a]. To illustrate this, we
perform x4 super-resolution using two different kernels at two noise levels on 4
video sequences, using our method and DPIR for 2000 iterations on purpose to
assess their long-term behaviour. Results are shown in Figures 3.12, 3.13, 3.14



128 CHAPTER 3. DEEP PLUG-AND-PLAY VIDEO RESTORATION

(a) Unknown / ground truth

(b) Observation PSNR = 16.14 dB

(c) Ours - DRUNet (
√

𝜀 = 20/255, 𝛼 = 1.25) PSNR = 31.96 dB

(d) Ours - FastDVDnet (
√

𝜀 = 20/255, 𝛼 = 1) PSNR = 36.69 dB

Figure 3.11: Video 3D deconvolution (unif. (8 frames), 𝜎𝒏 = 2.55) on the
rollercoaster sequence of DAVIS-2017-test-480p [Pon+17]. Our video PnP-
ADMM method with FastDVDnet produces more temporally stable results and
less ghosting than Ours - DRUNet.
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Table 3.11: Maximal value of the spectral norm of the Jacobian of video denoising
operators on 256 × 256 30-frame videos of DAVIS-2017-test-480p [Pon+17] at
various noise levels

𝜎𝒏 10/255 25/255 50/255 100/255

||𝐽(FastDVDnet)||𝑆 2.94 4.08 4.78 2.67
||𝐽(DRUNet)||𝑆 10.99 8.30 10.96 6.91

||𝐽(Id −FastDVDnet)||𝑆 1.94 3.08 3.78 1.67
||𝐽(Id −DRUNet)||𝑆 9.99 7.30 9.96 5.92

||𝐽(2FastDVDnet−Id)||𝑆 4.87 7.15 8.56 4.33
||𝐽(2DRUNet−Id)||𝑆 20.98 15.61 20.93 12.83

and 3.15. We observe on these long runs that PnP-ADMM with DRUNet is very
unstable, and can easily diverge on some experiments. DPIR is usually more stable
than Ours - DRUNet (probably in part thanks to its annealing strategy) but also
diverges in some cases. In contrast, Ours - FastDVDnet showcases greater stability
and does not diverge.

In future work, we would like to train non-expansive versions of FastDVDnet
and evaluate the impact of 1-Lipschitzness on denoising as well as PnP restoration.
To do so, we would adopt a strategy of training with a soft constraint very similar
to [Pes+21; HLP22b]: we start by pretraining FastDVDnet for standard Gaussian
denoising with L2 loss, then fine-tune the network with a training loss that has
an additional penalty term enforcing the spectral norm of the Jacobian of some
operator to be < 1. We would conduct experiments with contraining the denoiser
𝐷 itself, its residual Id −𝐷 (for fixed-point convergence guarantees as in [Ryu+19])
or the operator 2𝐷 − Id (the denoiser then being the resolvant of a maximally
monotone operator as in [Pes+21]).

3.3.8 Runtimes
Plug-and-play methods are typically not real-time methods, because they imply
multiple iterations of an alternate optimization algorithm, and each iteration itself
includes a forward pass through a denoising algorithm. Our method is no excep-
tion. That said, our method is typically faster than DPIR when performing video
restoration with similar initialization, since the number of iterations required by
DPIR for a single frame must be multiplied by the number of frames of the video.
In contrast, one iteration of our method processes the whole video at once. Ac-
tual runtimes of course depend on the required number of iterations, which can
in turn depend on the scene content, the difficulty of the problem, the type of
initialization and the choice of parameters. Here are the runtimes with the pa-
rameters described in the article (8 CPU AMD, 1 NVIDIA A100, 64GB RAM,
DAVIS-2017-test-480p [Pon+17]):
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Figure 3.12: Long term behaviour of Video PnP-ADMM and DPIR [Zha+21a] for
x4 super-resolution (Gauss.(𝜎 = 1.6), 𝜎𝒏 = 0) on four center-cropped 256 × 256
30-frame videos of DAVIS-2017-test-480p [Pon+17]
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Figure 3.13: Long term behaviour of Video PnP-ADMM and DPIR [Zha+21a]
for x4 super-resolution (Gauss.(𝜎 = 1.6), 𝜎𝒏 = 2.55) on four 256 × 256 30-frame
videos of DAVIS-2017-test-480p [Pon+17]
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Figure 3.14: Long term behaviour of Video PnP-ADMM and DPIR [Zha+21a] for
x4 super-resolution (Gauss.(𝜎 = 3.2), 𝜎𝒏 = 0) on four 256 × 256 30-frame videos
of DAVIS-2017-test-480p [Pon+17]
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Figure 3.15: Long term behaviour of Video PnP-ADMM and DPIR [Zha+21a]
for x4 super-resolution (Gauss.(𝜎 = 3.2), 𝜎𝒏 = 2.55) on four 256 × 256 30-frame
videos of DAVIS-2017-test-480p [Pon+17]



134 CHAPTER 3. DEEP PLUG-AND-PLAY VIDEO RESTORATION

• deblurring: Ours - FastDVDnet 1.2s/frame (20 it.), Ours - DRUNet 1.4s/frame
(10 it.), DPIR 2.7s/frame (8 it.)

• super-resolution: Ours - FastDVDnet 1.2s/frame (20 it.), Ours - DRUNet
1.4s/frame (10 it.), DPIR 8.1s/frame (24 it.)

• interpolation: Ours - FastDVDnet 12s/frame (200 it.), Ours - DRUNet 29s/frame
(200 it.)

• demosaicking: Ours - FastDVDnet 12s/frame (200 it.), Ours - DRUNet 29s/frame
(200 it.), DPIR 14s/frame (40 it.)

• 3D deconvolution: Ours - FastDVDnet 1.2s/frame (20 it.), Ours - DRUNet
1.4s/frame (10 it.)

3.3.9 Comparison to state-of-the-art learning-based meth-
ods

While Plug-and-Play methods try to combine advantages of model-based and
learning-based methods and have the added flexibility of being reusable for differ-
ent restoration problems with a single denoising algorithm, we do not expect them
to perform as good as state-of-the-art learning-based methods specifically trained
for a given task. We put that expectation to the test in this Section by compar-
ing our video PnP-ADMM method to powerful deep learning video restoration
methods. Said comparison is performed for the ×4 video super-resolution task,
as the other experiments we have conducted (deblurring with varying per-frame
kernels, interpolation of random missing pixels, 3D deconvolution) feature degra-
dation processes that are unlikely to be found in most works of the deep learning
video restoration literature (e.g. video inpainting methods typically mask large
areas of an image instead of random pixels, and video deblurring methods usually
generate blurry images by averaging frames captured at a higher framerate).

We compare our method to three state-of-the art learning-based video SR meth-
ods:

• EDVR [Wan+19] performs video super-resolution in a sliding window fash-
ion, taking 2𝑁 + 1 (𝑁 ∈ {2, 3} depending on the version) frames as input
and outputs a high resolution version of the center frame. Key features
of the architecture include an alignment module that uses deformable con-
volutions to align feature maps in a coarse-to-fine pyramid structure, and
a feature fusion module that leverages temporal and spatial attention (by
computing element-wise correlation in an embedding space between different
feature maps to weigh them before fusion). The network is presented as a
generic architecture suitable for many restoration tasks such as denoising,
deblocking, deblurring or super-resolution. EDVR won all four tracks of the
NTIRE 2019 video deblurring and super-resolution challenges [Nah+19].
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• BasicVSR [Cha+21] is an architecture designed around four main compo-
nents of video super-resolution: propagation, alignment, aggregation, and
upsampling. It is a bidirectional recurrent network (i.e. it performs forward
propagation by looking at the current frame and the next, and backward
propagation by looking at the current frame and the previous). The propa-
gation branches contain a flow estimation module, a spatial warping module
and residual blocks; forward and backward propagation outputs are inputs to
the upsampling module that contains multiple pixel-shuffle and convolution
operations. BasicVSR performs competitively with EDVR for a significantly
smaller number of parameters and runtime.

• BasicVSR++ [Cha+22] is an enhanced version of BasicVSR whose main
improvements are second-order grid propagation (i.e. use the previous frame
and the second previous frame for backward propagation), and flow-guided
deformable alignement (combine deformable convolutions and optical flow for
alignment). BasicVSR++ ranked first place three times and second place
once on the NTIRE 2021 video SR tracks [Son+21].

We compare our method using DRUNet and FastDVDnet as regularizers to EDVR,
BasicVSR and BasicVSR++ on two datasets, DAVIS-2017-test-480p [Pon+17]
which we’ve used in many of our experiments so far, and Vid4 [CD14], a popular
video super-resolution dataset comprised of four video sequences of varying res-
olution and length. Said dataset is a bit less diversified than DAVIS, as it only
features four videos and some of them feature very little camera or scene motion,
but we still include it because these are potential use cases of video SR and is
widely used in the video SR literature. It is important to emphasize that the SR
degradation process used during training has a direct impact on the SR perfor-
mance at test time. Sadly, off-the-shelf versions of EDVR are only trained with
×4 bicubic downsampling, so performance on our use case of kernel convolution
+ downsampling will be reduced. On the other hand, we use the versions of Ba-
sicVSR and BasicVSR++ trained specifically for Blur Downsampling (BD), which
actually uses a Gaussian blur kernel of standard deviation 1.6 (which is a kernel
that we also used in some of our experiments of Section 3.3.3).
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Table 3.12: Video super-resolution: PSNR↑/SSIM↑/LPIPS↓ on DAVIS-2017-test-480p [Pon+17]

sf / kernel ×4 / Gauss. (𝜎 = 1.6) ×4 / Gauss. (𝜎 = 3.2)
𝜎𝒏 0 2.55/255 0 2.55/255

bicubic 25.07/0.71/0.40 24.93/0.69/0.46 24.44/0.67/0.53 24.31/0.65/0.56
Ours - DRUNet 29.93/0.83/0.29 29.18/0.80/0.36 30.01/0.83/0.30 26.42/0.65/0.61

Ours - FastDVDnet 30.08/0.83/0.27 29.33/0.80/0.36 30.12/0.83/0.28 27.44/0.72/0.52
EDVR [Wan+19] 29.01/0.84/0.19 28.00/0.77/0.32 25.53/0.70/0.50 25.18/0.66/0.54

BasicVSR [Cha+21] 29.61/0.86/0.18 28.21/0.77/0.36 25.90/0.71/0.49 25.33/0.64/0.58
BasicVSR++ [Cha+22] 29.76/0.87/0.17 28.46/0.79/0.33 25.89/0.71/0.49 25.41/0.65/0.58

Table 3.13: Video super-resolution: PSNR↑/SSIM↑/LPIPS↓ on Vid4 [CD14]

sf / kernel ×4 / Gauss. (𝜎 = 1.6) ×4 / Gauss. (𝜎 = 3.2)
𝜎𝒏 0 2.55/255 0 2.55/255

bicubic 20.37/0.51/0.54 20.33/0.50/0.58 19.85/0.45/0.70 19.82/0.44/0.73
Ours - DRUNet 23.29/0.68/0.42 23.10/0.66/0.46 23.50/0.68/0.43 21.89/0.54/0.67

Ours - FastDVDnet 24.01/0.72/0.38 23.77/0.70/0.42 23.78/0.70/0.40 22.46/0.59/0.58
EDVR [Wan+19] 23.16/0.73/0.26 22.99/0.68/0.32 20.58/0.49/0.66 20.48/0.47/0.67

BasicVSR [Cha+21] 24.03/0.78/0.22 23.63/0.72/0.34 20.84/0.50/0.64 20.69/0.47/0.60
BasicVSR++ [Cha+22] 24.40/0.80/0.21 23.97/0.74/0.30 20.84/0.50/0.64 20.71/0.47/0.70
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Quantitative results are presented in Tables 3.12 and 3.13. As seen in previous
experiments, our method with FastDVDnet typically outperforms using DRUNet.
Since the learning-based methods were not trained with additional noise and two
out of three methods were trained with BD using a Gaussian kernel of standard
deviation 1.6, let us first look at the first column (×4 / Gauss.(𝜎 = 1.6), 𝜎𝒏 = 0).
Learning-based methods yield higher SSIM and LPIPS than our PnP method,
including EDVR that was trained using bicubic downsampling: they are better
at recovering textures of the high resolution video, and generally yield higher
perceptual similarity. By contrast, our PnP method tends to maximize the PSNR
(i.e. minimize the mean-squared error) and generally produces frames that are
perceived as blurrier. This is illustrated in Figures 3.16, 3.17 and 3.18. Looking
at the other columns of Tables 3.12 and 3.13, when the learning-based methods
encounter sequences with a LR degradation process that differs from the one seen
during training (e.g. different blur kernel, noise added to downsampled frames),
their performance tends to decrease rapidly. On the other hand, our PnP method
has the added flexibility of handling any blur kernel and varying amounts of noise
without retraining (another perk not shown in the results is the possibility to
select a different super-resolution factor). An example of ×4 super-resolution
with a different kernel (Gaussian of standard deviation 3.2) and added noise with
𝜎𝒏 = 2.55 is shown in Figure 3.19. Figure 3.20 illustrates using a model trained
using bicubic downsampling (EDVR) on a sequence downscaled with the classical
kernel convolution + downsampling method.
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(a) Ours - FastDVDnet PSNR↑/SSIM↑/LPIPS↓ 29.08/0.87/0.19

(b) BasicVSR [Cha+21] PSNR↑/SSIM↑/LPIPS↓ 26.07/0.85/0.17

(c) ground truth

Figure 3.16: Super-resolution (×4 / Gauss.(𝜎 = 1.6), 𝜎𝒏 = 0) on the aerobatics
sequence of DAVIS-2017-test-480p [Pon+17] (256 × 256 center crop of frame 10
shown here). While Ours - FastDVDnet has higher PSNR/SSIM and BasicVSR
has higher relative absolute error around edges, BasicVSR produces a result whose
perceived sharpness is closer to the ground truth.
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(a) Ours - FastDVDnet PSNR/SSIM 23.88/0.69/0.37

(b) BasicVSR [Cha+21] PSNR/SSIM 23.98/0.74/0.27

(c) ground truth

Figure 3.17: Super-resolution (×4 / Gauss.(𝜎 = 1.6), 𝜎𝒏 = 0) on the foliage
sequence of Vid4 [CD14] (256 × 256 center crop of frame 13 shown here). While
both methods are close in terms of PSNR, BasicVSR produces a sharper result
and is better at recovering structure of the original sequence.
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(a) Ours - FastDVDnet PSNR↑/SSIM↑/LPIPS↓ 19.98/0.53/0.57

(b) BasicVSR [Cha+21] PSNR↑/SSIM↑/LPIPS↓ 20.93/0.67/0.34

(c) ground truth

Figure 3.18: Super-resolution (×4 / Gauss.(𝜎 = 1.6), 𝜎𝒏 = 0) on the calendar
sequence of Vid4 [CD14] (256 × 256 crop of frame 13 shown here). BasicVSR
significantly outperforms our method, recovering more high frequency detail and
sharper edges.
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(a) Ours - FastDVDnet PSNR↑/SSIM↑/LPIPS↓ 25.66/0.73/0.39

(b) BasicVSR [Cha+21] PSNR↑/SSIM↑/LPIPS↓ 22.44/0.64/0.53

(c) ground truth

Figure 3.19: Super-resolution (×4 / Gauss.(𝜎 = 3.2), 𝜎𝒏 = 2.55) on the
aerobatics sequence of DAVIS-2017-test-480p [Pon+17] (256 × 256 center crop
of frame 10 shown here). Our method can adapt to any blur kernel and vari-
ous amounts of noise, while BasicVSR simply upscales the blurry and noisy input
frames.
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(a) Ours - FastDVDnet PSNR↑/SSIM↑/LPIPS↓ 24.60/0.70/0.35

(b) EDVR [Wan+19] PSNR↑/SSIM↑/LPIPS↓ 23.62/0.71/0.21

(c) ground truth

Figure 3.20: Super-resolution (×4 / Gauss.(𝜎 = 1.6), 𝜎𝒏 = 0) on the city se-
quence of Vid4 [CD14] (256 × 256 center crop of frame 26 shown here) EDVR
(recall it is trained with bicubic downsampling) produces a sharper result but
tends to hallucinate structure that does not match with the ground truth.
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3.4 Summary
In this Chapter, we tackled the inverse problem of video restoration with the
Deep Plug and Play framework. It combines a model-based data fidelity term
and a regularization term parametrized by a deep denoising network in an alter-
nate optimization scheme. We explored two main strategies for restoring degraded
videos using Plug & Play algorithms: using (i) a state-of-the-art image denoiser
(DRUNet) as a regularizer, and (ii) a lightweight, competitive video denoiser (Fast-
DVDnet) as a regularizer. While the first approach is equivalent to applying a PnP
algorithm separately on each frame, the second approach is explored here for the
first time. Our experiments show that the second approach outperforms the first
one in the vast majority of problems tested (deblurring, super-resolution, interpo-
lation of missing pixels), both in terms of PSNR and temporal consistency. The
performance delta is even larger when the degradation changes from one frame to
another, as in our deblurring and pixel interpolation problems. This difference is
quite remarkable, as FastDVDnet has 13× less parameters than DRUNet. Promis-
ing results for video interpolation of random missing pixels and 3D deconvolution
paves the way for other video restoration problems where the degradation operator
cannot be separated frame by frame, such as frame interpolation or spatio-temporal
deconvolution. Another potential direction for future work is the exploration of
other more complex and evolved video denoising architectures, e.g. other multi-
frame architectures like [Sun+21a; Lia+22b], or even recurrent architectures as
in [Mag+21; Lia+22a]. The evaluation of these denoisers could take multiple
forms: one could study their impact on final PnP restoration performance, both
in terms of per-frame quality and consistency from one frame to another; one could
also study them in terms of convergence speed and stability. In future work, we
also intend to provide convergence guarantees for video restoration PnP schemes
under very mild conditions on the data-fitting term. A promising way to do so
would be to generalize the work of [HLP22a; Pes+21; HLP22b] to video denoisers.
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Conclusion

Throughout this manuscript, we have explored three computational imaging ap-
proaches that leverage the information of multiple frames to improve image and
video restoration.

Part I focused on the problem of real raw burst denoising, where multiple raw
images corrupted with real noise are combined to produce a single image with
higher signal-to-noise ratio. Chapter 1 presented a thorough analysis and reim-
plementation of HDR+, a burst photography imaging pipeline featured in Google
Pixel smartphones. It performs burst denoising in two main steps: multi-scale
distance-based alignment of Bayer patches, and Wiener-based temporal fusion
of patches in the Fourier space. Since HDR+ is a full photography pipeline, it
contains many additional processing steps such as spatial denoising, HDR tone
mapping using synthetic exposure fusion, and color correction. Like many other
handcrafted methods, it has many tuning hyperparameters that can drastically
change is output. The HDR+ pipeline is a realistic target for embedded systems
given that it is a complex system made of many simple parts and that it has
already been included in smartphones.

Chapter 2 tackled the raw burst denoising problem with a deep learning ap-
proach. By designing RBDnet, we successfully transformed a CNN video denoising
method designed for Additive White Gaussian Noise removal [TDV20] into a burst
denoising algorithm that significantly outperforms handcrafted methods such as
HDR+. Its streamlined and elegant cascaded architecture with two U-Net blocks
is competitive with state-of-the-art methods with significantly higher architectural
or numerical complexity. It is also interesting to note that a model only trained
on varied synthetic data can perform as well as, if not better (when looking at
real noisy images with no ground truth), than the same model trained on real raw
data captured in limited controlled scenarios. With the increasing availabilty of
dedicated neural chips in embedded systems, RBDnet (or a variant of it) could be
a realistic target for on-device inference in smartphones or action cameras in the
first half of the 2020s.

In Part II and its singular Chapter 3, we studied an approach that bridges
the gap between model-based and learning-based approaches for video restora-
tion, namely the deep Plug-and-Play framework. We have shown that a single
deep neural network trained for Gaussian denoising can be used for multiple video
restoration inverse problems such as deconvolution, super-resolution or pixel in-
terpolation. Our experiments show that using a network specifically designed for
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video denoising instead of a single image denoiser improves stability and final
restoration performance. While PnP methods are versatile and have an elegant
mathematical background, their iterative nature and their sensitivity to input
data and optimization hyperparameters do not make them an obvious choice for
real-time applications and embedded systems but better suited for offline and/or
off-device applications.

Circling back to compromises in photography and videography, it is clear that
these three approaches each have their strengths, weaknesses and tradeoffs.

Model-based or handcrafted method are fully explainable, and they can easily
be modified, augmented or fine-tuned. However, they often require painstaking
hyperparameter tuning and extensive engineering and programming that might
lead to technical debt in the long term.

In contrast, learning-based methods usually require less software development
time and can provide giant performance leaps when compared to model-based
techniques. That being said, correctly training neural networks is a skillset of its
own: the process usually features many variables and hyperparameters, such as
architecture design, or choice of learning rate, training data, number of iterations,
optimizer hyperparameter values, and so on. Perfecting neural network training
also involves a lot of trial and error, a lot of time, and a lot of computing re-
sources, this requirement seemingly increasing at a frantic pace, which might seem
at odds with the growing environmental concerns of society at large in the early
2020s. Just like deep learning models that manage to captivate the attention of
the general population thanks to major technological breakthroughs or disruption
such as image generation algorithms or large language models, neural networks for
image and video restoration also suffer from the infamous “black box” problem.
While it is possible to know what data and objective functions were used to train
a network, or why its architecture was designed a certain way, it is sometimes
difficult to formally explain its behaviour in all use cases, to grasp what specific
representations of the data the network actually learns, or to understand what
leads to some failure cases (e.g. the artifacts of Figure 2.10 present in only some
variations of our model).

Unsurprisingly, Plug-and-Play methods carry some of the pros and cons of both
model-based and learning-based algorithms. They can yield better performance
than classical methods, while being more explainable than neural networks. A
single framework can be applied to many restoration tasks with very little adjust-
ments, while most neural networks need to be retrained each time the degradation
changes. On the other hand, PnP methods are quite sensitive to the denoiser
used and to the hyperparameters of the alternate optimization scheme. Moreover,
additional robustness and convergence guarantees of the method actually require
additional properties and assumptions on the denoiser than simply being a Gaus-
sian denoising algorithm. In the Deep PnP case, it can mean having to retrain or
fine-tune the denoising neural network, which entails all the trial and error and
the various costs described above.
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To conclude this manuscript, let us discuss opportunities for future research
that may build upon the work conducted during this thesis. We could start from
experiments that were initiated during it but did not make it into this document.

The architecture and denoising performance of FastDVDnet could be improved,
both for a raw burst denoising version like RBDnet or as a Gaussian Plug-and-
Play video denoiser. One might take a brute-force approach and simply increase
the number of examples. For example, by replacing the U-Net blocks by bigger
autoencoders based on DRUNet [Zha+21a] (with deeper residual blocks instead of
convolution layers and 3 dowsampling stages instead of 2), it is possible to achieve
+0.45dB of PSNR of video denoising on DAVIS-2017-test-480p [Pon+17], but
this “FastDVDnet_DRUNet” has 36M parameters instead of FastDVDnet’s 2.5M.
Another possibility would be to improve communication between the features of
both U-Net blocks e.g. by using cross-stage feature fusion similarly to [Zam+21]
or channel-wise attention as in [Zam+22].

In the case of video PnP restoration, one might want to provide additional
theoretical convergence guarantees by training regularized versions of FastDVDnet.
As in [Pes+21; HLP22b], it is possible to add a penalty term to the training loss
that enforces FastDVDnet (or its residual) to have specral norm < 1 (although the
spectral norm approximation using power iterations is a bit more complex given
that the network has 5 input frames and 1 output frame). Another possibility
inspired by [HLP22a] would be to explicitly train FastDVDnet as a video denoising
gradient step, e.g. by using sequences of more than 5 consecutive noisy images and
automatically computing the non-zero gradients of output frames with respect to
input frames in a sliding window fashion.

A last possible direction of research would be multi-image restoration of more
complex or combined degradations. In addition to raw denoising, one might one
want to concurrently perform Bayer to RGB demosaicking as recently explored
in [Dew+23]. Real raw deblurring is another possibility; however, gathering paired
blurry and sharp images with realistic, non-uniform blur is difficult, whether us-
ing real or synthetic blurry data. Realistic blurry data generation in the raw
domain was actually the subject of the 6 months long masters degree intership
of Yacine Bouaouni, co-supervised with Charles Laroche, also a GoPro / MAP5
PhD student. This internship has shown promising results, including generating
gyroscope-guided non-uniform blurry images, and the work is ongoing in hopes of
being published.
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