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Résumé

Les techniques d’apprentissage automatique (ML) jouent un rôle de plus en plus central dans
le paysage actuel. Le développement de nouvelles techniques de ML est essentiel, étant donné
leur rôle crucial dans divers domaines. Cela englobe la résolution des défis posés par les don-
nées à grande échelle et de grande dimension, ainsi que par les données déséquilibrées et la
rareté des données. Cette thèse se concentre sur le développement de nouvelles techniques de
ML pour résoudre des problèmes pressants dans trois domaines principaux : la gestion des
données à grande échelle, la gestion des données déséquilibrées dans le domaine financier et
l’atténuation de la rareté des données grâce à l’apprentissage par transfert dans le domaine de
la santé. Nos méthodologies de ML proposées reposent sur la programmation DC (Différence
de fonctions convexes) et les algorithmes DCA (DC), intégrant et améliorant trois techniques
de ML fondamentales : SVM, bagging et l’apprentissage en profondeur par transfert.

La thèse comprend cinq chapitres : Le chapitre 1 sert d’introduction, présentant les con-
cepts fondamentaux de ML, la programmation DC et DCA. Dans le chapitre 2, nous exam-
inons la technique de coordonnées par bloc pour traiter les problèmes à grande échelle dans
SVM dans le contexte des mégadonnées. En combinant cette technique avec DCA, nous pro-
posons l’algorithme appelé SVM DCA à coordonnées par bloc (BC-DCASVM), qui permet à
l’algorithme SVM à noyau de résoudre les problèmes liés à la grande dimensionnalité. Dans le
processus d’apprentissage, l’algorithme met à jour un bloc de coordonnées (dimensions) à la
fois pour réduire efficacement la valeur de l’objectif tout en maintenant les autres blocs fixes.
Le chapitre 3 se concentre sur l’étude de la technique du bagging et de divers problèmes fi-
nanciers, suivie de la proposition d’une solution pour relever ces défis. Le premier algorithme,
appelé Bagging DCA pondéré (BaggingDCA), vise à résoudre les problèmes qui peuvent sur-
venir lors de l’application du bagging à des problèmes d’apprentissage automatique généraux.
Le deuxième algorithme intègre BaggingDCA et des techniques de sensibilité au coût dans
l’algorithme de bagging, appelé Bagging DCA pondéré sensible au coût (CSB-DCA). Cet al-
gorithme s’attaque directement à l’un des problèmes les plus difficiles en ML, à savoir les
données déséquilibrées, qui affectent également de nombreuses tâches de classification finan-
cière. En incorporant BaggingDCA et la technique de sensibilité au coût, l’algorithme vise à
réduire le biais induit par le déséquilibre et à améliorer les performances prédictives sur des
ensembles de données financières biaisés. Nous concevons les algorithmes de bagging pondéré
basés sur DCA pour être polyvalents, permettant l’utilisation de différents apprenants de base
et de différentes fonctions de perte dans une conception unifiée. Le quatrième chapitre explore
divers problèmes de santé, où les données textuelles médicales sont souvent rares en raison de
leur sensibilité. En tirant parti des perspectives prometteuses de l’algorithme de DCA stochas-



tique à chaînes de Markov (MCSDCA), un optimiseur basé sur DCA pour l’apprentissage en
profondeur, qui a été évalué sur des architectures d’apprentissage en profondeur traditionnelles,
nous proposons une nouvelle architecture d’apprentissage en profondeur qui combine CNN et
BiLSTM avec l’algorithme MCSDCA pour relever certains défis cruciaux dans le domaine de
la santé. De plus, nous utilisons plusieurs modèles de langage pré-entraînés pour relever le défi
de la rareté des données, en nous inspirant des principes de l’apprentissage par transfert. En
comparant avec des optimiseurs populaires, des architectures d’apprentissage en profondeur et
des modèles de langage pré-entraînés, notre méthode démontre sa compétitivité par rapport aux
approches existantes. Enfin, le chapitre 5 sert de conclusion de la thèse, fournissant un résumé
complet des principales conclusions et des recommandations pour les orientations futures de la
recherche.

Mots-clés: Programmation DC (Différence de fonctions convexes) et algorithmes DCA (DC),
SVM à grande échelle, Bagging pondéré, Apprentissage par transfert



Abstract

Machine learning (ML) techniques are assuming an ever more pivotal role in today’s land-
scape. The development of new ML techniques is essential, given their crucial role in diverse
domains. This encompasses addressing challenges posed by large-scale and high-dimensional
data, as well as imbalanced data and scarcity of data. This thesis focuses on the development
of new ML techniques to address pressing issues in three main topics: Addressing large-scale
data, handling imbalanced data in the financial domain, and mitigating data scarcity using trans-
fer learning in healthcare. Our proposed ML methodologies are based on DC (Difference of
Convex functions) programming and DCA (DC Algorithms), integrating and enhancing three
fundamental ML techniques: SVM, bagging, and deep transfer learning.

The thesis comprises five chapters: Chapter 1 serves as an introduction, presenting funda-
mental concepts of ML, DC programming, and DCA. In Chapter 2, we investigate the block-
coordinate technique to handle large-scale problems in SVM within the context of big data.
By combining this technique with DCA, we propose the algorithm named Block-Coordinate
DCA SVM (BC-DCASVM), which enables the kernel-SVM algorithm to address problems
arising from high dimensionality. In the training process, the algorithm updates one block of
coordinates (dimensions) at a time to effectively decrease the objective value while keeping
the other blocks fixed. Chapter 3 focuses on studying the bagging technique and various fi-
nancial problems, followed by the proposal of a solution to address these challenges. The first
algorithm, called DCA weighted Bagging (BaggingDCA), aims to address issues that can arise
when applying bagging to general machine learning problems. The second algorithm inte-
grates BaggingDCA and cost-sensitive techniques into the bagging algorithm, which is named
Cost-Sensitive weighted Bagging DCA (CSB-DCA). This algorithm directly tackles one of
the most difficult issues in ML—imbalanced data—which also plagues many financial classi-
fication tasks. By incorporating BaggingDCA and the cost-sensitive technique, the algorithm
aims to reduce imbalance-driven bias and improve predictive performance on skewed financial
datasets. We design the DCA-based weighted bagging algorithms to be versatile, allowing the
use of various base learners and different loss functions within a unified design. The fourth
chapter explores various issues in health care, where medical text data is often scarce due to its
sensitivity. Leveraging the promising prospects of the Markov-chain stochastic DCA (MCS-
DCA) algorithm, an optimizer based on DCA for deep learning, which has been evaluated on
traditional deep learning architectures, we propose a new deep learning architecture that com-
bines CNN and BiLSTM with the MCSDCA algorithm to address some crucial challenges in
the healthcare field. Moreover, we employ several pre-trained language models to address the
data scarcity challenge, drawing inspiration from the principles of transfer learning. Through
comparisons with popular optimizers, deep learning architectures, and pre-trained language
models, our method demonstrates competitiveness with existing approaches. Lastly, Chapter 5



serves as the concluding chapter of the thesis, providing a comprehensive summary of the key
findings and recommendations for future research directions.

Keywords: DC (Difference of Convex functions) programming and DCA (DC Algorithms),
Large-scale SVM, Weighted bagging, Transfer learning



Introduction générale

Cadre général et nos motivations

Au cours des dernières décennies, l’apprentissage automatique (ML) a connu une augmentation
sans précédent de son application dans divers domaines, remodelant profondément le paysage
de nombreux secteurs de notre vie. Cette expansion est attribuée aux progrès remarquables de
la puissance de calcul, à la disponibilité de vastes ensembles de données et à l’amélioration
d’algorithmes sophistiqués. La combinaison de ces facteurs a fait de l’apprentissage automa-
tique un outil essentiel pour extraire des informations, faire des prédictions et automatiser des
tâches complexes.

Cette tendance actuelle est particulièrement remarquable dans les domaines de la finance
et de la santé, où la combinaison des progrès technologiques et de l’expansion rapide des don-
nées à grande échelle a conduit à l’apparition de nouvelles opportunités et défis. Ces sys-
tèmes d’apprentissage automatique sont désormais déployés avec succès dans de nombreuses
applications, notamment la détection de la fraude à la carte de crédit, l’évaluation du crédit
client, la prédiction des résultats financiers, ainsi que dans des contextes médicaux, en aidant à
l’identification de maladies rares et en soutenant la prise de décision clinique, etc.

La quantité croissante de données dans les domaines de la finance et de la santé, caractérisée
non seulement par son ampleur, mais aussi par son bruit inhérent, ses données déséquilibrées
ou rareté des données, a conduit à un besoin croissant de nouvelles approches d’apprentissage
automatique (ML) innovantes. Ces approches doivent être conçues pour relever le défi des
données à grande échelle et résoudre avec succès les problèmes découlant du big data, qui
peuvent avoir un impact négatif sur les modèles ML traditionnels.

Cette thèse tente d’explorer et de proposer de nouvelles techniques dans le domaine de
l’apprentissage automatique, en abordant les défis uniques posés par les domaines de la fi-
nance et de la santé, en particulier à l’ère du big data. Dans ce contexte, la thèse vise à pro-
poser de nouvelles méthodes d’apprentissage automatique en améliorant certaines méthodes
conventionnelles. En particulier, nous explorons les complications découlant des données de
grande dimension, des ensembles de données contaminés par du bruit, des distributions de
classes inégales et de la disponibilité limitée de données étiquetées. En comprenant et en sur-
montant ces obstacles, nous pouvons poser les bases de solutions d’apprentissage automatique
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Introduction générale

plus résilientes et efficaces, capables d’exceller dans des situations du monde réel, notam-
ment la méthode de descente de coordonnée par blocs, la méthode de bagging et la méthode
d’apprentissage par transfert.

Au cœur de l’efficacité du ML moderne se trouve la combinaison de plusieurs composants,
comprenant les données et les modèles d’optimisation. De nombreux algorithmes d’optimisation
ont été proposés pour le ML, et DCA est l’une des techniques d’optimisation exceptionnelles
qui s’est avérée très efficace dans diverses applications, en particulier l’optimisation non con-
vexe [39, 40, 41, 42]. Cependant, la recherche sur les applications de DCA pour le ML
afin de relever les défis de données susmentionnés est encore limitée. Afin de contribuer à
cette direction de recherche, la programmation DC et DCA sont les principales méthodologies
d’optimisation utilisées dans cette thèse.

Une fonction est dite DC (Difference of Convex) si elle peut être représentée comme la
différence entre deux fonctions convexes. Cette propriété conduit à la formulation d’un pro-
gramme DC comme suit :

α = inf {f(x) = g(x)− h(x) : x ∈ Rn} (Pdc)

òu g et h sont des fonctions convexes définies sur Rn et à valeurs dans R ∪ {+∞}, semi-
continues inférieurement et propres. La fonction f est appelée fonction DC avec les com-
posantes DC g et h, et g − h est une décomposition DC de f . DCA est basé sur la dualité DC
et des conditions d’optimalité locale. La construction de DCA implique les composantes DC g

et h et non la fonction DC f elle-même. Chaque fonction DC admet une infinité des décompo-
sitions DC qui influencent considérablement sur la qualité (la rapidité, l’efficacité, la globalité
de la solution obtenue ...) de DCA. Ainsi, au point de vue algorithmique, la recherche d’une
"bonne" décomposition DC et d’un "bon" point initial est très importante dans le développe-
ment de DCA pour la résolution d’un programme DC. L’utilisation de la programmation DC et
DCA dans cette thèse est justifiée par de multiple arguments [76]:

• La programmation DC et DCA offrent un cadre extrêmement diversifié pour les prob-
lèmes de ML: ML constituent une mine des programmes DC dont la résolution appro-
priée devrait recourir à la programmation DC et DCA. En effet, la liste non exhaustive
des références dans [43] illustre la vitalité, la puissance et la pertinence de cette approche
au sein de la communauté de la ML."

• DCA représente davantage une philosophie qu’un algorithme. Pour chaque problème, il
est possible de concevoir une gamme d’algorithmes basés sur les principes du DCA. La
souplesse du DCA dans le choix des décompositions DC peut conduire à des schémas
DCA qui surpassent les méthodes standards en termes de performance.

• L’analyse convexe offre des instruments puissants pour démontrer la convergence de
DCA dans un cadre général. Par conséquent, tous les algorithmes fondés sur DCA prof-
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itent (au moins) des propriétés de convergence générales du schéma DCA générique qui
ont été démontrées.

• DCA est une méthode efficace, rapide et scalable pour la programmation non convexe.
A notre connaissance, DCA est l’un des rares algorithmes de la programmation non con-
vexe, non différentiable qui peut résoudre des programmes DC de très grande dimension.

Il est essentiel de remarquer que grâce à la les techniques de reformulation en programmation
DC et à des décompositions DC appropriées, la plupart des algorithmes existants en program-
mation convexe/non convexe comme cas particuliers de DCA.

Nos contributions

La thèse se concentre principalement sur la conception et l’étude d’algorithmes innovants de
ML basés sur la programmation DC et le DCA pour relever de nouveaux défis dans les prob-
lèmes de ML du monde réel, en particulier les problèmes à grande échelle, les problèmes
financiers déséquilibrés et les problèmes de santé.

D’une part, nous proposons trois algorithmes de ML différents, du ML classique à l’apprentissage
en profondeur et à l’apprentissage par transfert, qui peuvent résoudre différents types de prob-
lèmes de ML ainsi que différents domaines de problèmes du monde réel. D’autre part, en
exploitant le DCA, qui est une puissante technique d’optimisation qui s’est avérée plus per-
formante que d’autres méthodes d’optimisation convexe dans diverses applications, notre al-
gorithme proposé peut ouvrir des approches potentielles à certains problèmes de ML, tels que
l’amélioration des performances et la réduction du bruit. Plus précisément, nous contribuons à
trois algorithmes différents de la manière suivante :

Tout d’abord, nous proposons une nouvelle méthode basée sur le DCA avec coordination
par blocs pour résoudre des programmes DC de grande dimension. Ensuite, la méthode pro-
posée est spécifiquement appliquée à la SVM à noyau à grande échelle de manière unifiée,
capable de traiter presque toutes les pertes couramment utilisées dans la SVM, y compris les
pertes convexes et non convexes, ainsi que celles pour la classification et la régression. Grâce
à l’approche de coordination par blocs avec une décomposition DC appropriée, l’algorithme
proposé peut gérer efficacement des ensembles de données avec une grande dimensionnalité et
un grand nombre d’instances tout en maintenant des performances compétitives, ce qui est sou-
vent un compromis pour les algorithmes existants à grande échelle. Ainsi, notre méthode peut
surmonter les goulots d’étranglement de stockage et de calcul des SVM classiques lorsqu’il
s’agit de traiter de grandes quantités de données. Cependant, pour traiter des problèmes à
grande échelle, tandis que d’autres méthodes utilisent des techniques d’approximation, telles
que la méthode de faible rang, qui peut être une limitation lors du traitement d’ensembles de
données non fortement corrélés, notre solution utilise l’approche de coordination par blocs qui
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est indépendante de la corrélation des données. Du point de vue théorique, l’algorithme pro-
posé garantit de trouver un point critique DC faible. Cette approche a le potentiel d’améliorer
les performances des SVM dans diverses applications telles que la classification d’images, le
traitement du langage naturel et la bioinformatique dans le contexte des mégadonnées.

La deuxième contribution de la thèse est la proposition de nouveaux algorithmes d’emballage
(bagging) basés sur le schéma LS-DC, qui est applicable à la majorité des fonctions de perte
existantes pour les problèmes de classification et de régression. Le premier algorithme pro-
posé, BaggingDCA, hérite des avantages de l’emballage standard, tels que la réduction de la
variance, la possibilité de mettre en place des calculs parallèles et l’aide à la prévention du
surajustement, en améliorant en outre la précision du modèle d’entraînement. Nous étendons
BaggingDCA pour traiter spécifiquement le déséquilibre de classe prévalent dans les problèmes
de classification financière. De plus, il est connu que les pertes non convexes, telles que la perte
en rampe, sont plus résistantes aux valeurs aberrantes que les pertes convexes. En utilisant la
perte en rampe avec le réglage du DCA, nos approches proposées améliorent encore les per-
formances de l’emballage, ce qui augmente la diversité des modèles de l’ensemble et améliore
leur robustesse aux données bruitées.

Troisièmement, notre thèse apporte une contribution en introduisant un algorithme d’apprentissage
en profondeur hybride CNN-LSTM avec des modèles de langage pré-entraînés tels que Word2Vec,
BERT, RoBERTa en conjonction avec le DCA stochastique de chaîne de Markov (MCSDCA).Alors
que le MCSDCA s’est avéré être une méthode permettant d’améliorer les performances de cer-
tains modèles classiques d’apprentissage en profondeur tels que CNN et LSTM pour certains
problèmes de séries chronologiques, le transfert d’apprentissage est une technique d’apprentissage
automatique qui utilise les connaissances des modèles pré-entraînés pour les tâches ultérieures
afin d’améliorer les performances et le temps d’entraînement de ces modèles. De plus, la
combinaison du CNN et du LSTM peut aider le modèle de fusion à apprendre des relations
plus complexes entre les mots et à comprendre plus précisément le sens du texte. Notre étude
propose également une évaluation complète de l’algorithme MCSDCA sur différentes archi-
tectures avancées d’apprentissage en profondeur. Cette approche offre un moyen plus efficace
de développer des modèles de traitement du langage naturel (NLP) pour les applications de
santé, qui peuvent être utilisés pour diverses tâches telles que le diagnostic, la planification du
traitement et la surveillance des patients.

Organisation de la thèse

La thèse se structure en cinq chapitres. Le Chapitre 1 présente des connaissances fondamen-
tales sur l’apprentissage automatique (ML), les méthodologies ML utilisées et introduit la pro-
grammation DC et le DCA. Dans le Chapitre 2, nous examinons la méthode de coordination
par blocs, une stratégie pour résoudre les défis du ML en grande dimension. Ensuite, une ap-
proche basée sur le DCA avec coordination par blocs est proposée pour la SVM à noyau. Le
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Chapitre 3 explore l’apprentissage ensembliste, ce qui conduit à la création de deux algorithmes
: BaggingDC et CSB-DCA adaptés aux problèmes financiers déséquilibrés. Le Chapitre 4 se
penche sur la méthode MCSDCA, appliquée à l’apprentissage par transfert dans le traitement
du langage naturel et les problèmes de santé. Enfin, le Chapitre 5 conclut la thèse.
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Chapter 1

Methodologies and Fundamentals

1.1 Machine learning and challenges

In recent years, the field of machine learning (ML) has experienced remarkable growth and has
become an essential component in various aspects of daily life. Particularly impactful domains
such as finance and healthcare have witnessed the successful integration of ML methodologies.
These ML systems are now deployed across numerous applications, including the detection of
credit fraud, customer credit approval, financial outcome prediction [18, 20, 102], and within
medical contexts, aiding in the identification of rare diseases and supporting clinical decision-
making [1, 12].

The recent achievements of these ML algorithms are rooted in their capacity to identify
patterns within large, complex datasets and effectively extend these patterns to new, unseen
data instances. The growth of data caused by social networks, cloud applications, IoTs, etc.
has created new challenges and opportunities in data processing and analysis. On the one hand,
large-scale data gives ML algorithms a vast quantity of data to analyze and process, thereby en-
hancing the quality of predictions. On the other hand, large-scale data also makes it challenging
for traditional ML algorithms to efficiently exploit and process. Furthermore, some challenges,
such as data imbalance, noise, and data scarcity, are also difficulties that algorithms face in
many important fields. The healthcare and finance sectors are no exception. Data in these
sectors tends to be highly sensitive, and errors could have severe consequences. Specifically
in healthcare and finance, state-of-the-art algorithms are still needed to safely and accurately
analyze private data and make predictions while avoiding potential harms that could come from
failures or limitations in current ML techniques. Promoting further research aimed at solving
challenges specific to these consequential domains is therefore still very urgently needed. This
thesis aims to take meaningful steps toward addressing these important challenges. Through
developing innovative ML algorithms, this endeavor seeks to contribute to resolving these ur-
gent problems.

The purpose of this chapter is to provide an introductory overview of ML and its essential
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Chapter 1. Methodologies and Fundamentals

methodologies within the context of big data. Here, we provide an introductory glimpse into
the world of ML, highlighting its challenges, fundamental concepts, and methodological tech-
niques. These elements collectively lay the foundation for the new algorithms we propose and
develop in this thesis.

1.1.1 Machine learning

ML is programming computers to optimize a performance criterion using example data or past
experience [2]. According to this interpretation, data and optimization algorithms are the two
crucial components of ML. The optimization algorithm, which serves as the core element of
most ML algorithms, works by processing the input data and iteratively adjusting its perfor-
mance on a given task in order to improve its effectiveness over sequential iterations. Through
this optimization procedure, the ML model enhances its ability to make data-related predic-
tions, classifications, and other decisions.

Let D be the dataset consisting of input-output pairs (xi, yi) where xi ∈ Rn represents the
input features and yi ∈ R is the corresponding output or label. The goal of ML is to learn a
function f : Rn → R that accurately maps input features to outputs. The approach involves
searching for a model h within a hypothesis spaceH that minimizes the expected loss over the
data.

h∗ = argmin
h∈H

E(x,y)∼D[L(h(x), y)]

In this context, the function L(h(x), y) quantifies the discrepancy between the predicted output
h(x) and the true label y. However, in practice, we optimize the empirical risk minimization
instead:

h∗ = argmin
h∈H

1

|D|

|D|∑
i=1

L(h(xi), yi)

The crux of the matter lies in estimating the function f using a hypothesis h from a
predefined family of functions H. This is achieved by minimizing a suitable loss function
L(h(xi), yi) over the dataset D. The fundamental idea emphasizes that the effectiveness of a
resulting ML model is closely linked to the characteristics of the readily available training data,
encompassing the quantity, quality, and variety of the data, as well as an adequate optimization
algorithm.

1.1.2 Data’s challenges

It is obvious that the efficacy of ML algorithms is highly dependent on the quantity, quality,
and relevance of the data. Insufficient or biased data may lead to poor generalization and over-
fitting. In the context of big data, where datasets are extensive and diverse, there are numerous
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challenges of data, such as large-scale data, noisy data, imbalanced data, and data scarcity
problems. These issues necessitate the continuous development of new advanced algorithms to
fully leverage large and complex real-world data.

Large-scale of data

The term "large-scale data" refers to the vast amounts of information generated from various
sources such as enterprise databases, social media, sensors, online transactions, and more. This
data flood presents both challenges and opportunities for businesses, researchers, and organiza-
tions across different sectors. Having more data for a machine learning model is undoubtedly
advantageous. Consider, for example, a machine learning algorithm that predicts stock prices
using historical data. If the algorithm has access to daily stock price data for hundreds of com-
panies spanning multiple years, it will be better able to identify market trends and relationships.
The number of instances, or data points, is significant because it enables the algorithm to un-
derstand patterns and relationships more effectively. With a larger, higher-quality dataset, the
algorithm has a greater opportunity to generalize and make more accurate predictions.

However, having abundant data also introduces an abundance of challenges for ML algo-
rithms. In these situations, the "curse of dimensionality" becomes increasingly relevant. The
concept of "large-scale data" isn’t just about the quantity of samples; it’s also influenced by
the complexity of the features in the data. As the number of features grows, the data becomes
sparse in the high-dimensional space, making it difficult for algorithms to find meaningful pat-
terns or relationships. This sparsity can result in overfitting [70], where models memorize noise
in the data rather than capturing true underlying trends. Moreover, the curse of dimensionality
can result in increased computational complexity and resource requirements, which substan-
tially slows down training and inference times. Despite the abundance of available data, the
enormous number of features can degrade the quality of extracted insights and increase the
chance of dealing with noisy, irrelevant, or redundant attributes.

Numerous proposed studies address the challenges of managing large-scale datasets. For
instance, techniques like Principal Component Analysis (PCA) [99] can reduce dimensionality
by selecting crucial features, optimizing model performance. Strategies such as Kernel Trick,
Approximation, Parallelization, and Distributed Computing enhance efficiency and tackle com-
plexities in high-dimensional data [8, 81, 111], Feature Selection and Sparse Models manage
dimensionality and computational loads [40, 45]. However, there is no one-size-fits-all solution
for the intricacies of large-scale and high-dimensional data. The choice of approach depends
on data specifics and problem objectives. In the future, continuous research and innovative
methods will remain pivotal to harnessing the potential of vast datasets in ML and data science,
aiming to optimize their utilization effectively.
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Noise data

In the context of big data, accompanied by the surge in massive-scale data, the issue of data
noise has come to the forefront. Data noise refers to unwanted, inaccurate, or incomprehensible
values that can appear within a dataset [101]. This can result from factors such as errors in data
collection, environmental interference, or inherent variations in the data. Data noise, can lead
to negative impacts on data analysis and ML tasks by distorting analytical outcomes with mis-
leading and erroneous information. If not carefully addressed, data noise can cause ML models
to overfit, where the model overly focuses on learning from noise rather than understanding
true patterns and relationships.

To handle data noise, in addition to working directly with the noisy data through prepro-
cessing steps and data cleansing, such as removing noisy values or imputing missing values,
one can employ ML models with "noise resistance" capabilities. For example, Support Vector
Machines (SVM) with loss functions designed to counter noise can help improve the model’s
generalization ability towards noisy data [108]. Moreover, techniques like regularization can
be employed to control the complexity of the model and prevent it from fitting noise too closely
[90]. This ensures that the model captures meaningful patterns while disregarding noise.

Imbalanced data

Imbalanced data presents a significant challenge in ML, that requires cautious consideration
due to its far-reaching implications. Imbalanced data refers to datasets in which the distribution
of classes is significantly uneven, a common phenomenon observed in numerous real-world
situations. Several factors contribute to the emergence of imbalanced data. Real-world circum-
stances, such as infrequent occurrences or minority groups (Fraud detection, credit approval
problem in the finance domain), frequently result in skewed class distributions. When data
acquisition is subject to biases or limitations, the collection process itself can also accidentally
result in imbalanced datasets.

The consequences of working with imbalanced data are far-reaching. As a result of their
bias towards the majority class, ML models trained on such datasets frequently struggle to
accurately predict the minority class. This can lead to suboptimal performance and skewed
decision boundaries, resulting in misclassification of the minority class instances.

In order to resolve the complexities posed by unbalanced data, researchers have employed
a variety of techniques. These techniques include methods of direct data manipulation as well
as enhancements to ML models in order to mitigate the negative effects of imbalanced data.
Solutions to the issue of imbalanced data include oversampling the minority class, undersam-
pling the majority class, and employing sophisticated algorithms such as SMOTE (Synthetic
Minority Oversampling Technique) [19]. Furthermore, ensemble methods like Random Forest
[15] and AdaBoost [27] have shown efficacy in handling imbalanced data. These techniques
construct a combination of multiple models, often providing improved generalization and miti-
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gating the bias caused by skewed class ratios. Additionally, cost-sensitive learning [25] assigns
varying misclassification costs to different classes, encouraging the model to focus on accurate
predictions for the minority class, thereby rectifying imbalanced data’s impact.

Data scarcity

The paradox of data scarcity presents itself as a confusing obstacle in the context of big data,
where our digital landscape has become overloaded with an abundance of information. This
puzzle, which contradicts the prevailing narrative of data abundance, requires a more profound
investigation. Delving into the heart of this paradox, several complex factors come to the fore,
shedding light on the underlying causes for the lack of suitable training data.

First and foremost, the overwhelming volume of available data can be misleading. Among
all the vast information out there, it’s actually quite hard to find data that’s both relevant and
well-organized for specific ML tasks. Take supervised machine learning models, for example.
They need data that’s labeled with precise annotations and categories. However, this labeling
process requires humans to intervene, and it takes a lot of time. This slows down the progress of
artificial intelligence. Lots of data exists, but it often does not match what we need for specific
learning goals, causing this scarcity problem. Secondly, concerns related to data privacy and
ethics impose limitations on data accessibility. With growing emphasis on user privacy and
data rights, obtaining comprehensive and unrestricted datasets becomes intricate. This ethical
aspect introduces obstacles to the collection of extensive real-world data, preventing the smooth
acquisition required for efficient machine learning model development. Lastly, the evolving
nature of tasks demands the obtaining of specialized data, which is frequently unavailable due
to novelty. Emerging domains such as medical diagnostics or predictions of rare phenomena
suffer from insufficient historical data, impeding the training process. For instance, in the field
of healthcare, obtaining abundant labeled datasets for training on certain types of rare cancers
like eye cancer [78] or endocrine cancer proves to be challenging.

Consequently, the paradox of data scarcity highlights the necessity for innovative approaches,
such as transfer learning to address this challenge and lead ML into a new era of progress.

1.2 Prerequisite knowledge for our methods

In this section, we will introduce fundamental ML and optimization techniques. These tech-
niques serve as the foundation for the development of novel algorithms in later chapters, which
address the challenges inherent to the aforementioned data scenarios.

1.2.1 Coordinate Descent method

Coordinate Descent (CD) [100] is an optimization technique used to solve large-scale opti-
mization problems that successively minimizes along coordinate directions or coordinate hy-
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perplanes to find the minimum of a function. During each iteration, the algorithm selects a
coordinate using the coordinate selection rule, then exactly or inexactly minimizes over the
corresponding coordinate hyperplane while keeping all other coordinates fixed.

Given a objective function that need to be minimized f(x) where x = (x1, x2, . . . , xn). The
optimization problem can be formulated as:

min
x

f(x) = f(x1, x2, . . . , xn),

subject to relevant constraints. At each iteration k, an index ik ∈ {1, 2, . . . , n} is selected, and
the decision vector is updated to approximately minimize the objective function along the ik-
th coordinate. The technique exhibits either deterministic or randomized behavior, contingent
upon the selection of the update coordinates. If the coordinate indices ik are chosen sequen-
tially from the set {1, 2, . . . , n}, then the approach is denoted as the Cyclic Coordinate Descent
(CCD) method. Conversely, if ik is uniformly sampled from {1, 2, . . . , n}, the resulting tech-
nique is termed the Randomized Coordinate Descent (RCD) method [29]. The CD method
iteratively updates each coordinate xj while keeping the others fixed. The update rule for the
i− th coordinate in the k-th iteration can be written as:

x
(k+1)
j = argmin

xj

f(x
(k)
1 , x

(k)
2 , . . . , x

(k)
j−1, xj, x

(k)
j+1, . . . , x

(k)
n )

The algorithm continues iteratively until convergence is achieved, indicating that further up-
dates to x do not significantly affect the function value. The CD algorithm is presented in
Algorithm 1 as follows:

Algorithm 1 Coordinate Descent algorithm

1. Initialize x0 = (x01, x
0
2, . . . , x

0
n) with initial guesses for each coordinate.

2. For k = 0, 1, 2, . . .:

(a) Choose a coordinate index ik ∈ {1, 2, . . . , n}. Fix all coordinates except xi: xk
−i =

(x1, x2, . . . , xi−1, xi+1, . . . , xn) at iteration k.

(b) Update xi by minimizing f over the xi-axis while keeping xk
−i constant:

xk+1
i = argmin

xi

f(xi,x
k
−i).

(c) Repeat step (b) for all coordinates.

3. Continue the iterations until a stopping criterion is met.

The optimization problem in step 2(b) of the Algorithm 1 can typically be solved for many
types of functions, making the CD method efficient.

Let’s illustrate the CD algorithm applied to the quadratic function f(x, y) = 3x2−4xy+5y2.
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We aim to minimize this function using the CD method described earlier. The process of the
function is illustrated in Figure 1.1 as follows:
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Figure 1.1: Illustrate the Coordinate Descent (CD) method applied to the function f(x, y) =
3x2−4xy+5y2, demonstrating the step-by-step iterative updates along the x and y coordinates,
leading to the approach of the minimum value. Starting from the point (x, y) = (−1.5,−1)
and first performing line-search along the x-axis, the CD algorithm alternates between updating
the x coordinate and the y coordinate in each iteration. This iterative process continues until it
reaches the minimum value at f(0, 0) = 0 (or stop criterion is met).

Block Coordinate Descent method

The Block Coordinate Descent (BCD) method is an extension of the CD method. By dividing
the variables into non-overlapping blocks, the BCD method introduces more flexibility in terms
of updating variables jointly, which can lead to improved convergence in some cases. Recent
studies [65, 7] have demonstrated the efficacy of BCD as a suitable method for addressing
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challenges posed by large-scale datasets.

In each iteration, this method selects a block of variables and updates them jointly while
keeping the other blocks fixed. The choice of block selection strategy, whether sequential or
randomized, affects the behavior of the algorithm. The update rule can be written as:

x
(k+1)
block = argmin

xblock
f(x

(k)
fixed, xblock)

where x(k)fixed represents the variables in the fixed blocks. This process is repeated for each
block until convergence.

The BCD method can be outlined in the Algorithm 2:

Algorithm 2 Block Coordinate Descent algorithm

1. Initialize x0 = (x01, x
0
2, . . . , x

0
n) with initial guesses for each coordinate.

2. Specify the number of blocks and divide the variables into non-overlapping blocks.

3. Initialize iteration counter k = 0.

4. While convergence criteria not met do:

(a) Select a block xblock for update (e.g. Randomized or Sequential).

(b) Fix the variables in the other blocks as x(k)fixed.

(c) Update the selected block by solving:

x
(k+1)
block = argmin

xblock
f(x

(k)
fixed, xblock)

(d) Update k = k + 1.

5. End While

1.2.2 Ensemble learning and Bagging

Ensemble learning [14, 83] is an ML technique that combines multiple individual models,
known as base models or weak learners, to create a more robust and accurate prediction model.
It leverages the concept of "wisdom of the crowd" by aggregating the predictions of multiple
models (whether these models employ the same or different algorithms) to make a final pre-
diction. This technique has gained popularity due to its ability to tackle complex problems
and enhance model accuracy in various domains, including classification, regression, and even
anomaly detection [5, 58, 85, 97].

The illustration of ensemble learning is in Figure 1.2 as follows:
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Figure 1.2: Illustration of ensemble learning (bagging). Each base model takes a subset of
samples from the original dataset. The base models are then trained sequentially or in parallel
to produce diverse predictions. The ensemble model combines the predictions of the base
models, usually by taking a majority vote or averaging, to make the final prediction.

Consider a supervised learning problem where we have a training dataset D consisting of
N samples, each with M features. The dataset can be represented as

D = {(x1, y1), (x2, y2), . . . , (xN , yN)},

where xi ∈ RM represents the feature vector for the ith sample, and yi is the corresponding
target label. In an ensemble, we have N base models indexed by i, each producing a prediction
denoted as fi(X). The ensemble prediction F (X) is a combination of these base model pre-
dictions. For aggregating the predictions of base models to make a final prediction, common
ensemble methods include:

• Voting: Each base model’s prediction contributes equally.

F (X) = mode(f1(X), f2(X), . . . , fN(X))

• Averaging: Averaging the predictions of base models.

F (X) =
1

N

N∑
i=1

fi(X)

• Weighted Averaging: Averaging with different weights wi.

F (X) =
N∑
i=1

wi · fi(X)

Ensemble learning can be broadly categorized into three main types: Bagging, Boosting,
and Stacking, each designed is to enhance predictive performance through model combination.
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Bagging builds diverse base models by training them independently on bootstrapped subsets
of data and aggregates their predictions, reducing variance and enhancing stability. In Boost-
ing, weak models are iteratively refined by assigning weights to correct previous mistakes,
ultimately creating a strong learner with improved accuracy. Stacking, on the other hand, em-
ploys a meta-model to integrate base models’ predictions, capturing a wide range of predictive
behaviors. In this thesis, the focus will be on the Bagging method.

Bagging

One of the most popular ensemble learning methods is Bagging, which stands for Bootstrap
Aggregating. Bagging involves creating multiple subsets of the original training data through
random sampling with replacement. Each subset is used to train a separate base model, and the
predictions from these models are combined to produce the final ensemble prediction by using
an aggregating method (e.g. voting, weighted average). The main idea behind Bagging is to
introduce diversity among the base models by training them on different subsets of the data.
This helps to reduce the variance of the overall ensemble model and improves its generalization
performance. By combining the predictions of multiple models, Bagging aims to achieve a
more accurate and stable prediction compared to individual models. In Bagging, multiple base
models are trained independently on different bootstrapped subsets of the training data. The
final prediction is then obtained by averaging (for regression) or aggregating (e.g. majority
voting) (for classification) the predictions of these base models:

Fbagging(x) =
1

N

N∑
i=1

fi(x) (for regression)

Fbagging(x) = Agregate{f1(x), f2(x), . . . , fN(x)} (for classification)

The steps involved in the Bagging ensemble learning process are as follows:

1. Data sampling: Random subsets of the original training data are created through boot-
strap sampling. Bootstrap sampling involves randomly selecting samples from the training data
with replacement, which means that some samples may appear multiple times in a subset, while
others may not be included.

2. Base model training: Each subset of the data is used to train a separate base model,
typically using the same learning algorithm or a set of similar algorithms. The base models
can be decision trees, neural networks, support vector machines, or any other suitable learning
algorithm.

3. Prediction aggregation: Once the base models are trained, they are used to make predic-
tions on the test data or new unseen data. The predictions from each base model are combined
using a specific aggregation method, such as majority voting for classification problems or aver-
aging for regression problems. The aggregated predictions form the final ensemble prediction.
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The standard setting of the Bagging method is presented in the algorithm 3 as follows:

Algorithm 3 Bagging algorithm
Input: Training dataset D, number of base models N
for i = 1 to N do

1. Sample a bootstrap dataset Di from D
2. Train base model fi on Di

end for
3. Combine predictions of base models to get F (X)
Output: Ensemble model F

1.2.3 Deep learning and Transfer learning

Transfer learning is a research problem in ML that allows knowledge gained from one task or
domain to be transferred and applied to another related task or domain. It leverages the idea
that the learned knowledge or representations in one domain can be useful in solving a different
but related problem. Instead of training a model from scratch for a new task, transfer learning
enables the reuse of pre-trained models or features, saving time and computational resources.

Motivating the study of transfer learning is the ability of humans to intelligently apply
previously acquired knowledge to the solution of new problems in a more effective manner or
with superior solutions. Consider the case of two individuals who desire to study the piano. One
person has no previous experience playing music, whereas the other has a broad knowledge of
music through playing the guitar. By transferring previously acquired musical knowledge to
the task of learning the piano, a person with an extensive musical background can learn the
piano more efficiently. Intuitive about transfer learning is presented in the figure 1.3:

Figure 1.3: Intuitive about transfer learning [113]. Taking inspiration from how people share
knowledge between different areas, transfer learning seeks to use what we know from one
related field to make learning better in a different area.
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Figure 1.4: Comparision of the learning process between Traditional ML and Transfer learning.
While Traditional ML constructs models from scratch using the available dataset and domain-
specific features, Transfer learning aims to extract the knowledge from one or more source
tasks and applies the knowledge to a target task.

Transfer learning definition

Technically, transfer learning [98] is defined as follows: A domain D is characterized by
two components: a feature space X and a marginal probability distribution P(X). Here,
X = {x1, . . . , xn} ∈ X . For a given domain D, a task T comprises a label space Y and a
predictive function f(·) learned from feature-label pairs {xi, yi}, where xi ∈ X and yi ∈ Y .
Thus, D = {X ,P(X)} and T = {Y , f(·)}. The source domain data is defined as DS =

{(xS1, yS1) . . . , (xSn, ySn)}, where xSi ∈ XS is the ith data instance of DS and ySi ∈ YS is
the corresponding class label for xSi. Similarly, the target domain data is defined as DT =

{(xT1, yT1) . . . , (xTn, yTn)}, where xSi ∈ XS is the ith data instance of DS and ySi ∈ YS is
the corresponding class label for xSi. We denote the source task as TS with predictive function
fS(·), and the target task as TT with predictive function fT(·).

Given a source domain DS with a corresponding source task TS and a target domain DT

with a corresponding task TT , transfer learning enhances the target predictive function fT(·) by
incorporating knowledge from the related source domain DS and source task TS . Depending
on the distinctions between the source domain and target domain, source task and target task,
various forms of transfer learning can be categorized. In comparison with traditional ML, the
knowledge transfer process from source task to target task of Transfer learning is presented in
figure 1.4.

Categorization

Transfer learning can be beneficial in several scenarios on various applications, such as image
classification, object detection, and image segmentation in computer vision or tasks like senti-
ment analysis, text classification, and machine translation in NLP. Firstly, when the amount of
labeled data for the target task is limited [34], transfer learning allows us to utilize knowledge
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Figure 1.5: Word2Vec architecture (Extracted from [84]).

from a different but related source task with more abundant data (e.g. in Zero-shot Learn-
ing, One-shot Learning, Self-Supervised Learning). Secondly, when the target task and source
task share similar underlying features or patterns, transfer learning helps in leveraging the pre-
existing knowledge to improve performance on the target task [91]. Lastly, even in cases where
the target and source tasks are not directly related (aka. Domain adaptation), transfer learning
can still provide useful initializations or insights that accelerate the learning process[106].

In recent years, deep neural networks have been widely employed for transfer learning.
Consequently, numerous strategies have emerged for implementing transfer learning using deep
learning models, including prominent techniques: Feature-based transfer learning and fine-
tuning. In feature-based transfer learning, the pre-trained model is used as a fixed feature
extractor, where the early layers are frozen, and only the later layers are modified and trained
for the target task. Fine-tuning, on the other hand, involves unfreezing and retraining some or all
of the pre-trained model’s layers on the target task, allowing the model to adapt to the specific
characteristics of the new task. In the domain of Natural Language Processing (NLP), both of
these methods have gained widespread adoption across various applications, often employing
pre-trained language models.

Pre-trained Language Model

The majority of available datasets for NLP applications are relatively small. This is especially
evident in fields such as healthcare, where it is difficult to acquire a large number of annotated
datasets for uncommon diseases. This lack of data presents a significant obstacle when training
deep neural networks, as they tend to overfit to the training data and have difficulty to gener-
alize to these limited datasets. For many years, pre-trained models with the ImageNet dataset
(e.g. VGG-16[89], Resnet[32]) have been standard practice in computer vision. This approach
involves imparting the model with foundational knowledge of image features, which can sub-
sequently be applied to diverse visual tasks like image classification and segmentation, yield-
ing outstanding outcomes. Pre-trained language models, which function as the "ImageNet"
equivalent in the NLP domain, are a comparable concept in NLP. It is an artificial intelligence
model designed to comprehend and generate human language, which has been trained on a
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massive amount of text data on a specific architecture of the neural network and is ready to
be fine-tuned for particular NLP tasks. For example, while GPT[80] and its variants excel in
question-answering tasks, BERT[24] and its variants have gained widespread popularity as a
multi-purpose model for a variety of downstream NLP tasks, such as text summarization, data
categorization, and question answering. The neural network used for the pre-training process
can be as simple as in Word2Vec [60] illustrated in Figure 1.5 or can be sophisticated in terms
of architecture like BERT in Figure 1.6.

Figure 1.6: Architecture of BERT_Base and BERT_Large (Extracted from HuggingFace1).
BERT_Base comprises 12 layers of Transformer encoders, a specialized neural network archi-
tecture, whereas BERT_Large incorporates 24 layers of Transformer encoders.

1.3 DC Programming and DCA

DC programming, along with the DC Algorithm (DCA), which represent the backbone of non-
convex programming and global optimization, were introduced in a preliminary form by Pham
Dinh Tao in 1985 [72]. These concepts have undergone notable enhancements from 1994
onwards, thanks to the collaborative efforts of Le Thi Hoai An and Pham Dinh Tao. This
algorithmic approach remains a prominent and widely acknowledged solution for navigating
the complexities of nonconvex optimization challenges, as exemplified in references such as
[43, 76].

This section introduces the fundamental DC optimization, as well as the standard DC Algo-
rithm upon which the computational methods of this thesis rely. The content presented in this
section has been sourced from the publication referenced as [43, 73].

1HuggingFace :https://huggingface.co/blog/bert-101
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1.3.1 Fundamental convex analysis

This section’s objective is to explore key concepts and findings in convex analysis and nons-
mooth analysis that hold crucial significance for this thesis.

Denote X the Euclidean space Rn, a subset C of X is said to be convex if (1− λ)x+ λy ∈ C
whenever x, y ∈ C and λ ∈ [0, 1].

Let f be a function whose values are in R and whose domain is a subset S of X . The set

{(x, t) : x ∈ S, t ∈ R, f(x) ≤ t}

is called the epigraph of f and denoted by epif .

We define f to be a convex function on S if epif is a convex set in X ×R. This is equivalent to
that S is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ S,∀λ ∈ [0, 1]

The function f is strictly convex if the inequality above holds strictly whenever x and y are
distinct in S and 0 < λ < 1.

The effective domain of a convex function f on S, denoted by dom f , is the projection on X of
the epigraph of f

dom f = {x : ∃t ∈ R, (x, t) ∈ epif } = {x | f(x) < +∞}

and it is convex.
The convex function f is called proper if dom f ̸= ∅ and f(x) > −∞ for all x ∈ S.
The function f is said to be lower semi-continuous at a point x of S if

f(x) ≤ lim inf
y→x

f(y)

Denote by Γ0(X) the set of all proper lower semi-continuous convex function on X .
Let ρ ≥ 0 and C be a convex subset of X . One says that a function θ : C 7→ R ∪ {+∞} is
ρ-convex if

θ[λx+ (1− λ)y] ≤ λθ(x) + (1− λ)θ(y)− λ(1− λ)
2

ρ∥x− y∥2

for all x, y ∈ C and λ ∈ (0, 1). It is equivalent to say that θ − (ρ/2)∥ · ∥2 is convex on C. The
modulus of strong convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X , is given by

ρ(θ, C) = sup
{
ρ ≥ 0 : θ − (ρ/2)∥ · ∥2 is convex on C

}
One says that θ is strongly convex on C if ρ(θ, c) > 0. A vector y is said to be a subgradient of
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a convex function f at a point x0 if

f(x) ≥ f
(
x0
)
+
〈
x− x0, y

〉
, ∀x ∈ X

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is denoted by
∂f (x0). If ∂f(x) is not empty, f is said to be subdifferentiable at x.
For ε > 0, a vector y is said to be a ε-subgradient of a convex function f at a point x0 if

f(x) ≥
(
f
(
x0
)
− ε
)
+
〈
x− x0, y

〉
, ∀x ∈ X

The set of all ε-subgradients of f at x0 is called the ε-subdifferential of f at x0 and is denoted
by ∂εf (x0).
We also have notations

dom ∂f = {x ∈ X : ∂f(x) ̸= ∅} and range ∂f(x) = ∪{∂f(x) : x ∈ dom ∂f}

Proposition 1. Let f be a proper convex function. Then

1. ∂εf(x) is a closed convex set, for any x ∈ X and ε ≥ 0.

2. ri(dom f) ⊂ dom ∂f ⊂ dom f where ri(dom f) stands for the relative interior of dom f .

3. If f has a unique subgradient at x, then f is differentiable at x, and ∂f(x) = {∇f(x)}.

4. x0 ∈ argmin{f(x) : x ∈ X} if and only if 0 ∈ ∂f (x0).

Let C be a nonempty closed subset of Rn. The indicator function χC(x) = 0 if x ∈ C,+∞
otherwise. For a closed subset C of Rn, the normal cone of C, denoted by N(C, x), is given by

N(C, x) = ∂χC(x) = {u ∈ Rn : ⟨u, y − x⟩ ≤ 0 ∀y ∈ C} .

The function f is said to be λ-Lipschitz if

∥f (x1)− f (x2)∥ ≤ λ ∥x1 − x2∥ ∀x1, x2 ∈ S.

The function f is called locally Lipshitz if for every x ∈ S there exists a neiborhood Ux of x
such that the restriction of f to Ux is Lipschitz.
Suppose that f is a locally Lipschitz function at a given x ∈ Rn. The Clark direction derivative

and the Clark subdifferential of f at x is given by the following formulas, respectively.

f ↑(x, v) = lim sup
(t,y)→(0+,x)

f(y + tv)− f(y)
t

,

∂↑f(x) =
{
x∗ ∈ Rn : ⟨x∗, v⟩ ≤ f ↑(x, v) ∀v ∈ Rn

}
.
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If f is continuously differentiable at x then ∂↑f(x) = ∇f(x). When f is a convex function,
then ∂↑f(x) coincides with the subdifferential ∂f(x).

Conjugates of convex functions

The conjugate of a function f : X 7→ R is the function f ∗ : X 7→ R defined by

f ∗(y) = sup
x∈X
{⟨x, y⟩ − f(x)}

Proposition 2. Let f ∈ Γ0(X). Then we have

1. f ∗ ∈ Γ0(X) and f ∗∗ = f .

2. f(x) + f ∗(y) ≥ ⟨x, y⟩, for any x, y ∈ X .

Equality holds if and only if y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y).

3. y ∈ ∂εf(x)⇐⇒ x ∈ ∂εf ∗(y)⇐⇒ f(x) + f ∗(y) ≤ ⟨x, y⟩+ ε, for all ε > 0.

Difference of convex (DC) functions

A function f is called DC function on X if it has the form

f(x) = g(x)− h(x), x ∈ X

where g and h belong to Γ0(X). One says that g − h is a DC decomposition of f and g, h are
its DC components. If g and h are in addition finite on all of X then one says that f = g−h is
a finite DC function on X . The set of DC functions (resp. finite DC functions) on X is denoted
by DC(X) (resp. DCf (X) ).

Remark 1. Given a DC function f with a DC decomposition f = g − h. Then for every

θ ∈ Γ0(X) finite on the whole X , f = (g + θ) − (h + θ) is another DC decomposition of f .

Thus, a DC function f has infinitely many DC decompositions.

1.3.2 DC Programming

In this section, we provide a brief summary of the standard DC optimization’s important results,
which serve as the theoretical foundation for our methodologies.

Standard DC program

In the sequel, we use the convention +∞− (+∞) = +∞.
For g, h ∈ Γ0(X), a standard DC program is that of the form

(P ) α = inf{f(x) = g(x)− h(x) : x ∈ X}
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and its dual counterpart

(D) α∗ = inf {h∗(y)− g∗(y) : y ∈ X}

There is a perfect symmetry between primal and dual programs (P ) and (D) : the dual program
to (D) is exactly (P ), moreover, α = α∗.

Remark 2. Let C be a nonempty closed convex set. Then, the constrained problem

inf{f(x) = g(x)− h(x) : x ∈ C}

can be transformed into an unconstrained DC program by using the indicator function χC , i.e.,

inf{f(x) = ϕ(x)− h(x) : x ∈ X}

where ϕ := g + χC is in Γ0(X).

We will consistently maintain the following assumption, which is derived from the finiteness
of α.

dom g ⊂ domh and domh∗ ⊂ dom g∗.

Optimality conditions for standard DC optimization

A point x∗ is said to be a local minimizer of g − h if x∗ ∈ dom g ∩ domh (so, (g − h) (x∗) is
finite) and there is a neighborhood U of x∗ such that

g(x)− h(x) ≥ g (x∗)− h (x∗) , ∀x ∈ U.

A point x∗ is said to be a critical point of g − h if it verifies the generalized Kuhn-Tucker
condition

∂g (x∗) ∩ ∂h (x∗) ̸= ∅

Let P and D denote the solution sets of problems (P ) and (D) respectively, and let

Pℓ = {x∗ ∈ X : ∂h (x∗) ⊂ ∂g (x∗)} , Dℓ = {y∗ ∈ X : ∂g∗ (y∗) ⊂ ∂h∗ (y∗)}

We present some fundamental results on DC programming [74] below.

Theorem 1.

1. Global optimality condition: x ∈ P if and only if

∂εh(x) ⊂ ∂εg(x),∀ε > 0.
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2. Transportation of global minimizers: ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh∗. The first inclu-

sion becomes equality if g∗ is subdifferentiable inD. In this caseD ⊂ (dom ∂g∗ ∩ dom ∂h∗).

3. Necessary local optimality: if x∗ is a local minimizer of g − h, then x∗ ∈ Pℓ.

4. Sufficient local optimality: Let x∗ be a critical point of g−h and y∗ ∈ ∂g (x∗)∩ ∂h (x∗).
Let U be a neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for any x ∈
U ∩ dom g, there is y ∈ ∂h(x) such that h∗(y)− g∗(y) ≥ h∗ (y∗)− g∗ (y∗), then x∗ is a

local minimizer of g − h. More precisely,

g(x)− h(x) ≥ g (x∗)− h (x∗) , ∀x ∈ U ∩ dom g

5. Transportation of local minimizers: Let x∗ ∈ dom ∂h be a local minimizer of g − h. Let

y∗ ∈ ∂h (x∗) and a neighborhood U of x∗ such that g(x)−h(x) ≥ g (x∗)− h (x∗) ,∀x ∈
U ∩ dom g. If

y∗ ∈ int (dom g∗) and ∂g∗ (y∗) ⊂ U

then y∗ is a local minimizer of h∗ − g∗.

Remark 3.

1. By the symmetry of the DC duality, these results have their corresponding dual part. For

example, if y is a local minimizer of h∗ − g∗, then y ∈ Dℓ.

2. The properties ii), iv) and their dual parts indicate that there is no gap between the

problems (P ) and (D). They show that globally/locally solving the primal problem (P )

implies globally/locally solving the dual problem (D) and vice-versa. Thus, it is useful if

one of them is easier to solve than the other.

3. The necessary local optimality condition ∂h∗ (x∗) ⊂ ∂g∗ (x∗) is also sufficient for many

important classes of programs, for example [51], if h is polyhedral convex, or when f

is locally convex at x∗, i.e. there exists a convex neighborhood U of x∗ such that f is

finite and convex on U . We know that a polyhedral convex function is almost everywhere

differentiable, that is it is differentiable everywhere except on a set of measure zero. Thus,

if h is a polyhedral convex function, then a critical point of g−h is almost always a local

solution to (P ).

4. If f is actually convex onX , we call (P ) a "false" DC program. In addition, if ri(dom g)∩
ri(domh) ̸= ∅ and x0 ∈ dom g such that g is continuous at x0, then 0 ∈ ∂f (x0) ⇔
∂h (x0) ⊂ ∂g (x0) [51]. Thus, in this case, the local optimality is also sufficient for the

global optimality. Consequently, if in addition h is differentiable, a critical point is also

a global solution.
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1.3.3 Standard DC Algorithm (DCA)

The DCA consists in the construction of the two sequences
{
xk
}

and
{
yk
}

(candidates for be-
ing primal and dual solutions, respectively) which are easy to calculate and satisfy the following
properties:

1. The sequences (g − h)
(
xk
)

and (h∗ − g∗)
(
yk
)

are decreasing.

2. Their corresponding limits x∞ and y∞ satisfy the local optimality condition (x∞, y∞) ∈
Pℓ ×Dℓ or are critical points of g − h and h∗ − g∗, respectively.

From a given point x0 ∈ dom g, DCA generates these sequences by the scheme

yk ∈ ∂h
(
xk
)
= argmin

{
h∗(y)−

〈
y, xk

〉
: y ∈ X

}
(1.1)

xk+1 ∈ ∂g∗
(
yk
)
= argmin

{
g(x)−

〈
x, yk

〉
: x ∈ X

}
. (1.2)

The interpretation of the above scheme is simple. At iteration k of DCA, we replace the second
component h in the primal DC program by its affine minorant

hk(x) = h
(
xk
)
+
〈
x− xk, yk

〉
, (1.3)

where yk ∈ ∂h
(
xk
)
. Then the original DC program reduces to the convex program

(Pk) αk = inf {fk(x) := g(x)− hk(x) : x ∈ X} (1.4)

that is equivalent to 1.1. It is easy to see that fk is a majorant of f at xk. Similarly, by replacing
g∗ with its affine minorant

g∗k(y) = g∗
(
yk−1

)
+
〈
y − yk−1, xk

〉
, (1.5)

where xk ∈ ∂g∗
(
yk−1

)
, we lead to the convex problem

(Dk) inf {h∗(y)− g∗k(y) : y ∈ X} (1.6)

whose solution set is ∂h
(
xk
)
.

Remark 4.

1. Finding yk, xk+1 by the scheme 1.4 is equivalent to solving the problems (Dk) and (Pk).

Thus, DCA works by reducing a DC program to a sequence of convex programs that can

be solved efficiently.
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2. In practice, the calculation of the subgradient of the function h at a point x is usually

easy if we know its explicit expression. But, the explicit expression of the conjugate of a

given function g is unknown, so calculating xk+1 is done by solving the convex problem

(Pk).

3. DCA is constructed from DC convex components g and h and their conjugates but not

from the DC function f itself, while a DC function has finitely many DC decomposi-

tions. Thus, it is useful to find a suitable DC decomposition since it may have crucial

impacts on the efficiency of DCA.

Well definiteness of DCA
DCA is well defined if one can construct two sequences

{
xk
}

and
{
yk
}

as above from an
arbitrary initial point x0. The following lemma is the necessary and sufficient condition for this
property

Lemma 1. ([74]) The sequences
{
xk
}

and
{
yk
}

in DCA are well defined if and only if

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗

Since for φ ∈ Γ0(X) we have ri(domφ) ⊂ dom ∂φ ⊂ domφ (Proposition 1.1). Moreover,
we also keep the assumptions dom g ⊂ domh, domh∗ ⊂ dom g∗. So, we can say that DCA in
general is well defined.

Convergence properties of standard DCA

Complete convergence of standard DCA is given in the following results [73, 44, 44].

Theorem 2. Suppose that the sequences
{
xk
}

and
{
yk
}

are generated by the DCA. Then we

have

1. The sequences
{
g
(
xk
)
− h

(
xk
)}

and
{
h∗
(
yk
)
− g∗

(
yk
)}

are decreasing and

• g
(
xk+1

)
− h

(
xk+1

)
= g

(
xk
)
− h

(
xk
)

if and only if
{
xk, xk+1

}
⊂ ∂g∗

(
yk
)
∩

∂h∗
(
yk
)

and [ρ(h) + ρ(g)]
∥∥xk+1 − xk

∥∥ = 0.

• h∗
(
yk+1

)
− g∗

(
yk+1

)
= h∗

(
yk
)
− g∗

(
yk
)

if and only if
{
yk, yk+1

}
⊂ ∂g

(
xk
)
∩

∂h
(
xk
)

and [ρ (h∗) + ρ (g∗)]
∥∥yk+1 − yk

∥∥ = 0.

DCA terminates at the k-th iteration if either of the above equalities holds.

2. If ρ(h) + ρ(g) > 0 (resp. ρ (h∗) + ρ (g∗) > 0 ), then the sequences
{∥∥xk+1 − xk

∥∥2}
(resp.

{∥∥yk+1 − yk
∥∥2} ) converge.
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3. If the optimal value α is finite and the sequences
{
xk
}

and
{
yk
}

are bounded, then every

limit point x∞ (resp. y∞) of the sequence
{
xk
}

(resp.
{
yk
})

is critical point of g − h
(resp. h∗ − g∗).

4. DCA has a linear convergence for general DC program.

The standard DCA scheme is presented in the following algorithm:

Algorithm Standard DCA scheme

Initialization: Let x0 ∈ Rn. Set k = 0.
repeat

1. Calculate yk ∈ ∂h
(
xk
)
.

2. Calculate xk+1 ∈ argmin
{
g(x)−

〈
x, yk

〉
: x ∈ Rn

}
.

3. k ← k + 1.
until convergence of

{
xk
}

.

For decades, numerous DCA-based algorithms have been developed to efficiently solve
a diverse number of large-scale problems in many application areas (see, e.g., [40, 77]), in
particular [39, 41]). A deeper insight into DCA has been given in [43, 75].
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Chapter 2

A block coordinate DCA approach for
large-scale kernel SVM

Abstract. In this chapter, we introduce a new block coordinate descent approach based on
DCA called BC-DCASVM for efficiently training large-scale kernel SVM models. The
proposed method employs a unified scheme that is capable of handling almost all common
losses in SVM. The key advantage of the block coordinate approach is that it divides the
high-dimensional optimization variables into blocks. Variables are then updated one block
at a time while holding other blocks fixed. This allows the objective value to decrease sub-
stantially at each step. Critically, it avoids overflowing memory, which enables efficient
training on big datasets. Numerical experiments are conducted intensively, which shows
the algorithm’s merits in both accuracy and computational cost.

2.1 Introduction

2.1.1 Context and related work

Support vector machines (SVM) that were first proposed by Vapnik [11, 22, 93] have been
shown to be a powerful machine learning method in the last two decades. Despite its advanta-
geous properties, SVM is incapable of effectively dealing with large-scale datasets encountered
in a variety of applications such as image classification, bioinformatics, or text classification,
which are often in the millions in terms of data samples and features, rendering the computa-
tional and storage costs for training SVM prohibitively expensive or even infeasible.

The content presented within this chapter has been extracted from the subsequent scholarly publication:
[1] Pham, V.T., Luu, H.P.H., Le Thi, H.A. (2022). A Block Coordinate DCA Approach for Large-Scale Ker-
nel SVM. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computa-
tional Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham.
https://doi.org/10.1007/978-3-031-16014-1_27.
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Chapter 2. A block coordinate DCA approach for large-scale kernel SVM

The block coordinate (BC) approach has been widely studied to address this challenge.
Thanks to their low iteration costs, low memory requirements, and the possibility of being im-
plemented in parallel, block coordinate algorithms have evolved as essential tools for tackling
some of the most challenging large-scale optimization issues. In principle, at each iteration,
these methods choose a block of coordinates of the optimization variable to update while keep-
ing the other variables fixed. As a result, the computation time is reduced while preventing the
computer’s memory from overflowing, which is crucial for big data computing.

Related Works. Various block coordinate algorithms for machine learning, including SVM
have been investigated in recent years. Hsieh et al. [33] introduced a dual coordinate descent
approach for linear SVM with L1 and L2-loss functions. Chou et al. [21] proposed several
coordinate descent approaches for linear one-class SVM and SVDD. Nutini et al. [67] proposed
greedy block-selection strategies to make block coordinate faster on some classic machine
learning problems. Numerous large-scale optimization problems have been successfully solved
using block-coordinate approaches and their modifications ([47, 52, 79]).

2.1.2 Motivation and contributions

Zhou and Zhou [111] proposed a unified SVM scheme using LS-DC loss for dealing with both
the convex and nonconvex loss functions based on the difference of convex functions algorithms
(DCA) [74, 75]. This approach is promising since most loss functions of SVM are LS-DC or
can be approximated by LS-DC. However, to address the large-scale problem, they employed
low-rank approximation, which might be inefficient in some circumstances when dealing with
the kernel matrix in SVM. For example, in natural language processing, image processing, or
bioinformatics, etc., where data have a large number of attributes, there is little chance that the
data will be strongly correlated. Due to the weak correlation in these cases, low-rank approxi-
mation algorithms are unable to efficiently reduce the rank of the kernel matrix. Additionally,
it is possible to lose a considerable amount of information if the training data are not strongly
correlated. This motivates us to use another approach for solving the large-scale problem. That
is, instead of reducing the problem’s size by approximation methods, we opt for customizing
the DCA scheme in such a way that it can work in a large-scale context. Specifically, in this
chapter we focus on applying the block coordinate technique to DCA in order to address the
large-scale kernel SVM.

Our contributions.

1. We propose a new block coordinate DCA based method for solving high-dimensional
DC programs. Then, the proposed method is specifically applied to the large-scale kernel
SVM in a unified manner that is capable of handling almost all common losses used in
SVM, including convex and nonconvex losses, as well as those for classification and
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2.2. Optimization problem of kernel SVM

regression. From the theoretical perspective, the proposed algorithm guarantees to find a
weakly DC critical point (the precise definition is given later).

2. To further reduce the computational cost, we replace some large sums arising when ap-
plying the block coordinate DCA to the kernel SVM with their approximations based on
the minibatch.

3. Finally, numerical experiments are carried out intensively for various datasets and loss
functions. It is consistent that our proposed method outperforms existing algorithms in
both solutions’ quality and computational time.

2.2 Optimization problem of kernel SVM

Given a training dataset {(xi, yi)}mi=1 where xi is a feature vector and yi is the corresponding
label, the kernel SVM that is based on structural risk minimization takes the following form

min
w∈H

1

m

m∑
i=1

ℓ(yi, ⟨w, ϕ(xi)⟩) +
λ

2
∥w∥2, (2.1)

where H is a reproducible kernel Hilbert space induced by a kernel κ(x, z) = ⟨ϕ(x), ϕ(z)⟩
where ϕ is a feature map from Rd to H, ℓ is a loss function measuring the fidelity of the
prediction and the true label, λ > 0 is the regularization parameter. Once learned, the found w∗

specifies a classifier f(x) = ⟨w∗, ϕ(x)⟩ that is expected to separate two classes. Due to the high
or even infinite dimension of H, the problem (2.1) can not be solved efficiently. By applying
the representor theorem [86, 87], we can substitute w =

∑m
i=1αiϕ(xi) in (2.1) to have the

finite dimensional optimization problem as follows:

min
α∈Rm

F (α) = λα⊤Kα+
1

m

m∑
i=1

ℓ (yi,Kiα) (2.2)

where K is the kernel matrix and Ki is the i-th row of K.

The problem (2.2) is an optimization problem in Rm space, whose properties (convex, non-
convex) depend on the structure of ℓ. For regression tasks, ℓ is usually of the form ℓ(y, t) =

ψ(y − t), where ψ can be the least square loss, absolute loss, ϵ-insensitive loss, etc. For clas-
sification tasks, ℓ is usually given as ℓ(y, t) = ψ(1 − yt) where ψ can be the least square loss,
hinge loss, ramp loss, etc. Each choice of ℓ leads to a different SVM problem for which an
algorithm must be designed. This is extremely inconvenient when there are numerous loss
functions, with each function having different merits. Therefore, Zhou and Zhou suggested a
unified model to simultaneously enjoy the benefits of various losses while minimizing effort in
designing algorithms, namely the least squares type DC loss (LS-DC). It is pointed out in [111]
that most losses used in the literature are LS-DC or can be approximated by LS-DC losses.
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With ℓ being an LS-DC loss, the problem (2.2) is a DC program. However, the dimension of
the optimization variable equals the number of data samples, posing a real scalability challenge.

2.3 Block coordinate DCA based method

2.3.1 Block coordinate DCA algorithm

When dealing with large-scale problems, data appear with an enormous number of observations
and/or features, which eventually results in high-dimensional optimization problems. Conse-
quently, the standard DCA could be prohibitively expensive or even impossible. This motivates
us to design and analyze a block coordinate DCA scheme to tackle a (high dimensional) DC
program (Pdc) in general. Let us denote Ω = {A : A ⊂ {1, 2, . . . ,m}, A ̸= ∅}, which is the set
of all non-empty subsets of {1, 2, . . . ,m}. A block of coordinates corresponds to an element of
Ω. Now we prescribe a probability distribution P over Ω. This probability distribution repre-
sents a strategy on how likely a block is chosen at each iteration. In a certain strategy, one can
simply assign a probability of 0 to blocks that are not supposed to be chosen. With a prescribed
probability distribution over Ω, at each iteration, we randomly generate a set S with respect to
the probability distribution P and perform one step of the DCA on the set S of coordinates.
The formal procedure is described in Algorithm 1.

Algorithm 1 Block coordinate DCA

Input: A starting point α0, a distribution P over Ω; Set k = 0.
repeat

1. Generate from the distribution P a set of coordinates S.
2. Compute a partial subgradient βk ∈ ∂αS

H(αk
S,α

k
SC ).

3. Solve the convex problem: α∗
S ∈ argminαS

{G(αS,α
k
SC )− ⟨βk,αS⟩}.

4. Update solution αk+1
i =

{
α∗

i if i ∈ S,
αk

i otherwise.
5. Set k ← k + 1.

until Stopping criterion.

For a given distribution P , we denote Supp(P) = {A ∈ Ω : P(A) > 0} the support of P .
We have established the following convergence results.

Proposition 1. Assume that either G or H is strongly convex. Then, almost surely, every

limit point α∗ of the sequence {αk} generated by the block coordinate DCA satisfies: ∀S ∈
Supp(P) : ∂αS

G(α∗) ∩ ∂αS
H(α∗) ̸= ∅.

In other words, the found solution α∗ is DC critical with respect to each block of coordinates
that is assigned a non-zero probability. We call such a point weakly DC critical point with
respect to the mentioned blocks of coordinates.
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2.3.2 Application to kernel SVM with LS-DC losses

According to Zhou and Zhou [111], a loss ℓ is called an LS-DC loss if there exists a constant
A > 0 such that the associated function ψ, i.e. ℓ(y, t) = ψ(1 − yt), has the following DC
decomposition ψ(u) = Au2 − (Au2 − ψ(u)) .

Let ℓ(y, t) be any LS - DC loss associated with ψ, the kernel SVM model (2.2) can be
written as the following DC program

min
α∈Rm

F (α) = λα⊤Kα+
1

m

m∑
i=1

ψ (1− yiKiα) := G(α)−H(α) (2.3)

with the DC components being given by

G(α) := λα⊤Kα+
1

m
A

m∑
i=1

(1− yiKiα)2 +
ρ

2
∥α∥2, (2.4)

H(α) :=
1

m

m∑
i=1

(
A(1− yiKiα)2 − ψ (1− yiKiα)

)
+
ρ

2
∥α∥2, (2.5)

where ρ > 0 is a regularization parameter to make both DC components strongly convex.

Since the DC program (3.4) is high dimensional, we shall employ the Block coordinate
DCA to handle it. At iteration k, we choose a block of coordinates S ∈ D := {1, 2, . . . ,m}
(1 ≤ |S| < m). Then, the partial subgradient of H on the set of coordinates S, β ∈
∂αS

H(αk
S,α

k
Sc), is computed as

βk =
1

m

m∑
i=1

2A(1− yiKiα
k)(−yiK [S]⊤

i )

− 1

m

m∑
i=1

(
ψ

′ (
1− yiKiα

k
)
(−yiK [S]⊤

i )
)
+ ραk

S,

where ψ′(u) denotes a subgradient of ψ at u. To further reduce the computational cost, we
approximate the two large sums above (each with m components) by a minibatch of data. For
convenience, the minibatch index set is chosen to be the same as S. So βk is approximated by:

β̃
k
=

1

|S|
∑
i∈S

2A(1− yiKiα
k)(−yiK [S]⊤

i )

− 1

|S|
∑
i∈S

(
ψ

′ (
1− yiKiα

k
)
(−yiK [S]⊤

i )
)
+ ραk

S. (2.6)
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Then, we solve the following convex subproblem

min
αS

G(αS,α
k
SC )− ⟨β̃

k
,αS⟩. (2.7)

We write the problem (2.7) in detail as follows. The first term of G(α) in (2.4) can be
expanded:

[αS,α
k
Sc]

⊤K[αS,α
k
Sc] = αS

⊤KSSαS + 2α⊤
SKSScα

k
Sc +α⊤

ScKScScα
k
Sc (2.8)

The second term of G(α) is as follows:

−2

[
m∑
i=1

yiK
S
i

]
αS +α⊤

S

[
m∑
i=1

y2i (K
S
i )

⊤KS
i

]
αS + 2α⊤

S

[
m∑
i=1

y2i (K
S
i )

⊤KSc
i

]
αk

Sc + C

(2.9)

where C is a constant which does not depend on α.
The optimization problem (2.7) can be written as follows:

min
αS

λ
(
αS

⊤KSSαS + 2α⊤
SKSScα

k
Sc

)
+

A

|S|

(
−2(

∑
i∈S

yiK
S
i )αS +α⊤

S (
∑
i∈S

y2i (K
S
i )

⊤KS
i )αS + 2α⊤

S (
∑
i∈S

y2i (K
S
i )

⊤KSc
i )αk

Sc

)
+
ρ

2
∥αS∥2 − ⟨βk,αS⟩

= min
αS

αS
⊤

(
λKSS +

A

|S|
∑
i∈S

y2i (K
S
i )

⊤KS
i +

ρ

2
I

)
αS (2.10)

+α⊤
S

(
2λKSScα

k
Sc −

2A

|S|
∑
i∈S

yi(K
S
i )

⊤ +
2A

|S|
(
∑
i∈S

y2i (K
S
i )

⊤KSc
i )αk

Sc − βk

)
.

This is a positive definite quadratic program, which results in a system of linear equations be-
ing solved at each iteration. Because αS has a relatively small dimension, the solution can be
efficiently solved using existing packages.

2.3.3 Block selection rule

Given a set of possible blocks, the block selection rule is used to identify which block of the
optimization variable to update. In our proposed method, we examined the random strategy
for selecting a block at each iteration. On the other hand, Lee and Wright [48] provided an
analysis to show that the random permutations cyclic selection (RPCD) is slightly better than
the random strategy (RCD) in terms of convergence rate. Therefore, we consider two strategies
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for selecting a block of variables S at each iteration: Random selection and cyclic selection
with random permutations. For the random strategy, the term iteration refers to the number of
times a block of variables passes through the algorithm. For the cyclic strategy, the number of
times the algorithm will run over the full training dataset is represented by the term epoch.

2.3.4 Block coordinate DCA for kernel SVM algorithm

Our proposed algorithm: Block coordinate DCA for kernel SVM algorithm is referred to as
BC-DCASVM, and is presented in Algorithm 2.

Algorithm 2 BC-DCASVM

Input: Given a training set D = {(xi, yi)}mi=1 with xi ∈ Rd and yi ∈ {−1,+1}; Kernel
matrix K satisfying Ki,j = κ (xi,xj); Any LS-DC loss function ψ(u) with parameter
A > 0; Set e = 0, α = 0, M > 0
repeat

for k = 1 . . .M do
1. Pick a block S cyclically or randomly.
2. Compute β̃

k
in (2.6).

3. Solve (3.1) to obtain α∗
S .

4. Update αk+1.
end for
5. Set e← e+ 1.

until Stopping criterion.

2.4 Datasets and numerical settings

In this section, we analyze the performance of our proposed algorithm BC-DCASVM with
two state-of-the-art SVM algorithms, including UniSVM [111] and LibSVM [17] on some
large datasets. To evaluate the two unified models: BC-DCSVM and UniSVM, four LS-DC
loss functions (for both convex and nonconvex) and their corresponding subdiferentials will be
used in our experiments:
1. Least squares: ψ(u) = u2 is a convex loss function;∇ψ(u) = 2u.
2. Truncated-least-squares: ψ(u) = min {u2, a}, with a > 0 is a nonconvex function; ∂ψ(u) =2u, |u| <

√
a

0, |u| ≥
√
a

.

3. Squared Hinge: ψ(u) = u2+ with A ≥ 1 is a convex function;∇ψ(u) = 2u+.

4. Truncated squared Hinge: ψ(u) = min
{
u2+, a

}
with A ≥ 1 and the truncated parameter

a > 0 is a nonconvex function; ∂ψ(u) =

2u, 0 < u <
√
a,

0, others
.

For each ψ(u), we replace a concrete subgradient as given above to (2.6) to get the correspond-
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ing algorithm.

2.4.1 Datasets

We perform the related algorithms on ten well-known benchmark datasets: Five datasets [NEWS20,
RCV1, GISETTE, MNIST, CIFA10] are from the LIBSVM website3. MNIST-17 (Dataset con-
sists of labels: 1 and 7), MNIST-38 (Labels: 3 and 8), CIFA10-CP (Labels: Car and Plane)
and CIFA10-TS (Labels: Truck and Ship) are the sub-datasets which extracted from two im-
age datasets MNIST and CIFA10. DEXTER is a text classification dataset from UCI Machine
Learning repository4. PCMAC dataset (PC vs Mac) is a subset of the 20 Newsgroups5 used in
[109]. GLI-85 is a microarray-bio dataset6. Table 2.1 summarizes the information included in
the datasets. Additional information of these datasets is available on the LIBSVM website and
the UCI Machine Learning Repository.

dataset name #samples #features
D1 GLI-85 85 22,283
D2 DEXTER 600 20,000
D3 PCMAC 1,943 3,289
D4 GISETTE 7,000 5,000
D5 MNIST-17 15,170 784
D6 MNIST-38 13,728 784
D7 CIFA10-TS 12,000 3,072
D8 CIFA10-CP 12,000 3,072
D9 RCV1 20,242 47,236
D10 NEWS20 19,996 1,355,191

Table 2.1: Information of the datasets (samples (m), features (n)) used in our experiments.

For model selection purposes, we use the 5-fold cross-validation strategy to search for the
best parameters (grid search). The binary datasets have the labels in {+1,−1} will be split into
two subsets of the labels [+1] and [−1]. To avoid overfitting and preserve the proportions of
the classes, each subset will be divided into 5 equal-sized subfolds, and then the subfolds of
the label [+1] will be merged with the corresponding subfolds of the label [−1] to produce 5
folds for training and testing. For evaluation, each fold will serve in turn as the testset, while the
remaining four folds will serve as the trainset. Before feeding the training data into the learning
models, the whole data will be shuffled, and then scaled by the median absolute deviation in
the range of [0, 1] by using the function normalize7 in MATLAB 2021a to avoid one feature
having a greater influence than the others in the Gaussian kernel values. The same process is

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/
4https://archive.ics.uci.edu/
5http://qwone.com/~jason/20newsgroups/
6https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse4412
7www.mathworks.com/help/releases/r2021a/matlab/ref/double.normalize.html
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applied to the test data. Finally, mean accuracy is obtained by averaging the results. The best
model is the one that achieves the highest average accuracy on the testset.

2.4.2 Set up experiments and parameters

The two algorithms BC-DCASVM and UniSVM are implemented in MATLAB. The source-
code of UniSVM8 is from the authors in [111]. The LibSVM model is compiled from the
LibSVM C++ source-code3 as MEX-files and run in MATLAB. All algorithms are performed
on a PC with an Intel Core i7-8700 CPU @3.20GHz×6 with a memory of 16GB. The com-
puter runs Windows 10 with the MATLAB-2021a version. For all algorithms, we particularly
consider the Gaussian kernel: κ(x, z) = exp (−γ∥x− z∥2) and used the following sets of
candidate values: {2−10, 2−8, 2−6, 2−4, 2−2, 20, 22} and {2−2, 20, 22, 24, 26, 28, 210} respectively
of the parameter γ (for the Gaussian kernel) and λ (the regularization parameter) in our experi-
ments. For the proposed algorithm, α0 is set as a vector with all zeros, ρ is set with value 10−5.
To solve the system of linear equations in (3.1), we use the function linsolve9 in MATLAB.
The block-sizes are set with different values depending on the number of samples of datasets
as follows:

GLI-85 (32) PCMAC (128) MNIST-38 (1024) MNIST-17 (1024) RCV1 (1024)
GISETTE (128) DEXTER (128) CIFA10-CP (1024) CIFA10-CP (1024) NEWS20 (1024)

2.5 Experiments and Discussion

We use three criteria for evaluating the performances of the comparative algorithms: the train
accuracy (TRAIN: in %), the test accuracy (TEST: in %) and CPU runtime (CPU: in seconds).
After tuning, we assess the models using the mean and the standard deviation of each evalua-
tion criteria. The bold values in the two tables are the best results. For any algorithm that is
unable to complete tasks due to the long training period (exceeding 1800 seconds), we denote
the outcomes as N/A. Three experiments will be conducted to comprehensively analyze the
proposed approach.

2.5.1 Experiment 1: Performance on large benchmark datasets

We evaluate the performances of BC-DCASVM, UniSVM and LibSVM on 10 datasets (as
described in Table 2.1). The BC-DCASVM and UniSVM models are trained with the Least
square loss function, which produced the best experimental results in terms of runtime, as
Zhou and Zhou [111] stated in their experiment. For our proposed algorithm, testing indicates
that just going over all of the data once is sufficient to get comparable results. Therefore, we

8https://github.com/stayones/code-unisvm
9www.mathworks.com/help/releases/r2021a/matlab/ref/linsolve.html
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use a single epoch with the random permutations cyclic technique for BC-DCASVM in this
experiment. The results of the experiment are in Table 2.2.

Dataset Metric BC-DCASVM UniSVM LibSVM
D1 TRAIN 100(0.00) 100(0.00) 100(0.00)

TEST 90.00(0.00) 90.00(0.00) 83.75(0.08)
CPU 0.05(0.00) 0.06(0.00) 0.19(0.00)

D2 TRAIN 100(0.00) 99.25(0.00) 100(0.00)
TEST 93.89(0.01) 94.00(0.01) 94.00(0.02)
CPU 0.13(0.00) 1.38(0.01) 0.33(0.01)

D3 TRAIN 99.25(0.00) 94.83(0.01) 96.10(0.01)
TEST 90.82(0.01) 90.82(0.02) 88.87(0.01)
CPU 0.30(0.00) 1.80(0.08) 1.27(0.02)

D4 TRAIN 100(0.00) 98.45(0.00) 100(0.00)
TEST 98.29(0.00) 97.54(0.00) 97.96(0.01)
CPU 3.13(0.01) 10.60(0.19) 176.60(1.37)

D5 TRAIN 100(0.00) 100(0.00) 100(0.00)
TEST 99.84(0.00) 99.62(0.00) 99.75(0.01)
CPU 2.01(0.03) 5.22(0.04) 196.47(2.42)

D6 TRAIN 100(0.00) 99.84(0.00) 100(0.00)
TEST 99.77(0.00) 99.63(0.00) 99.75(0.00)
CPU 2.10(0.17) 5.80(0.01) 165.48(2.03)

D7 TRAIN 99.77(0.00) 87.39(0.00) 99.77(0.01)
TEST 88.48(0.00) 86.81(0.01) 88.28(0.02)
CPU 5.36(0.08) 10.68(0.08) 762.84(4.85)

D8 TRAIN 98.51(0.00) 88.57(0.01) 100(0.00)
TEST 88.34(0.00) 87.36(0.01) 89.05(0.02)
CPU 5.21(0.07) 9.81(0.03) 685.26(5.01)

D9 TRAIN 99.38(0.02) 92.83(0.02) 99.81(0.00)
TEST 96.94(0.02) 92.61(0.01) 96.65(0.00)
CPU 7.08(0.06) 8.80(0.16) 1035.27(3.48)

D10 TRAIN 98.45(0.00) 84.02(0.00) N/A
TEST 95.83(0.00) 83.87(0.01) N/A
CPU 18.04(0.14) 39.12(0.11) N/A

Table 2.2: Performances of the related algorithms on 10 benchmark datasets. All results are
averaged over 5 folds with the standard deviations.

2.5.2 Experiment 2: Parameter analysis

This experiment is designed to validate our hypothesis on the proposed algorithm: The more
training epochs, the higher accuracy of the model. We conduct the experiment with ten runs of
the BC-DCASVM algorithm with numbers of epochs in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} respectively
on two datasets: CIFA10-CP and NEWS20. The optimal hyperparameters obtained from the
model selection process in Experiment 1 are used for training. Also, the Least square loss
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function is utilized to assess the influence of increasing the number of epochs on accuracy. The
cyclic strategy is used for block selection rule and the metrics: Accuracies on the trainset and
on the testset are used as evaluation criteria. Fig. 2.1 illustrates the results of this experiment.

(a) CIFA10-CP (b) NEWS20

Figure 2.1: Performances of BC-DCASVM on CIFA10-CP (2.1(a)) and NEWS20 (2.1(b)) as
the number of epochs increases.

Comments on the results of Experiment 1 and Experiment 2: According to Table 2.2,
our approach outperforms the comparative algorithms on almost all benchmark datasets. BC-
DCASVM is much faster than UniSVM, and greatly outperforms LibSVM in terms of runtime.
In some cases, BC-DCASVM is 5 times faster than UniSVM (for example, on D2 and D3)
and 100 times faster than LibSVM (on D7, D8, D9 and D10). As the dataset size increases,
while the classic SVM becomes slower (or even fails to handle), and UniSVM appears to make
a trade-off between accuracy and runtime, our method shows efficiency by working on smaller
data blocks. It is also important to note that, even though our approach is trained with only one
epoch, it outperforms the two state-of-the-art algorithms in terms of accuracy in most datasets.
That is, if runtime is not critical and accuracy is the primary concern, the algorithm can be
trained with more epochs to achieve higher accuracy. However, without contradicting machine
learning theory, Fig. 2.1 demonstrates that if training takes an excessive number of epochs, the
performance does not improve (even decreases) due to the model overfitting.

2.5.3 Experiment 3: Robustness on difference loss functions

To determine the effectiveness of the unified scheme, we compare the two unified algorithms
BC-DCASVM and UniSVM using different loss functions. Three additional loss functions are
investigated: One convex loss function-squared Hinge loss and two non-convex loss functions:
Truncated least square loss (a = 2) and truncated squared Hinge loss (a = 2). Five datasets:
D2, D4, D6, D8, and D10 are utilized for this experiment. Three metrics: Train accuracy,
test accuracy, and runtime are evaluated on five datasets with the random selection strategy
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Dataset Metric
Trunc-Least-Square Trunc-Squared-Hinge Squared-Hinge

BC-DCASVM UniSVM BC-DCASVM UniSVM BC-DCASVM UniSVM
D2 TRAIN 100(0.00) 100(0.00) 100(0.00) 100(0.00) 100(0.00) 100(0.00)

TEST 94.00(0.01) 94.00(0.01) 94.67(0.01) 94.83(0.00) 94.00(0.00) 94.00(0.00)
CPU 0.20(0.02) 1.28(0.03) 0.18(0.01) 1.13(0.01) 0.24(0.01) 1.34(0.01)

D4 TRAIN 99.89(0.00) 98.60(0.00) 100(0.00) 98.45(0.00) 100(0.00) 99.52(0.00)
TEST 97.81(0.00) 97.27(0.00) 98.21(0.00) 97.50(0.00) 98.06(0.00) 98.00(0.00)
CPU 3.25(0.07) 9.13(0.15) 3.37(0.09) 14.68(0.20) 3.11(0.05) 11.87(0.03)

D6 TRAIN 100(0.00) 99.84(0.00) 100(0.00) 99.95(0.00) 100(0.00) 99.98(0.00)
TEST 99.77(0.00) 99.65(0.00) 99.75(0.00) 99.71(0.00) 99.77(0.00) 99.77(0.00)
CPU 2.04(0.02) 5.42(0.02) 2.01(0.07) 5.33(0.09) 2.01(0.02) 6.22(0.06)

D8 TRAIN 96.57(0.02) 89.91(0.00) 99.84(0.02) 91.53(0.01) 99.84(0.00) 91.53(0.00)
TEST 87.22(0.03) 87.06(0.01) 89.36(0.03) 87.84(0.02) 89.36(0.00) 87.84(0.00)
CPU 5.78(0.05) 10.90(0.09) 5.83(0.15) 12.97(0.25) 5.75(0.18) 12.98(0.15)

D10 TRAIN 99.70(0.00) 87.28(0.01) 99.58(0.00) 92.93(0.00) 99.58(0.00) 93.98(0.01)
TEST 96.61(0.00) 86.58(0.01) 96.63(0.00) 91.98(0.00) 96.63(0.00) 92.15(0.00)
CPU 18.97(0.08) 39.73(1.37) 18.08(0.15) 45.37(0.64) 18.33(0.17) 41.56(0.34)

Table 2.3: Performances of the two unified algorithms: BC-DCASVM and UniSVM with three
loss functions: Truncated least square (Trunc-Least-Square), truncated squared Hinge (Trunc-
Squared-Hinge) and Squared Hinge.

(Number of iterations M =
⌈

m
block_size

⌉
. Table 2.3 summarizes the experimental outcomes.

Comments on the result of Experiment 3: The latest outcome of the experimentation, as
depicted in Table 2.3, demonstrates a noteworthy trend. By utilizing three additional loss func-
tions, our approach showcases superior performance compared to UniSVM across a majority
of evaluation metrics. Importantly, this enhanced performance is consistently maintained when
compared to the results from Experiment 1. That means, our technique can be effectively ap-
plicable to a variety of LS-DC loss functions. This observation substantiates the robustness and
reliability of our technique, underscoring its potential for effective application across a diverse
spectrum of LS-DC loss functions.

2.6 Conclusion

To conclude, in this chapter, we have proposed a new approach for solving the large-scale ker-
nel SVM, which applies DCA efficiently in combination with the block coordinate technique.
Owing to the block coordinate approach with a nice DC decomposition, the proposed algorithm
bc-DCASVM can efficiently handle datasets with high dimensionality and a large number of
instances, while maintaining competitive performance, which is often a trade-off for existing
large-scale algorithms. Thus, our method can overcome the storage and computation bottle-
necks of classic SVM when dealing with big-data. Despite the noisy and partial updates of
the block coordinate approach, our research shows that the power of DCA still remains. With
the unified scheme, like UniSVM, BC-DCASVM can apply to most of the existing loss func-
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tions. However, while UniSVM uses the low-rank method for approximation, which may be a
limitation when dealing with non-strongly correlated datasets, our solution employs the block
coordinate approach that is independent of data correlation. The experimental results on ten
real-world datasets show that our algorithm is more effective than the two mentioned methods.

Nonetheless, the proposed method has the following shortcomings that will be addressed
in our future research. First, there is a gap between theory and practice, as the approximation
errors caused by the use of mini-batch gradient have not been quantified. In addition, when
the overlap occurs in computing the kernel matrix over multiple epochs (iterations), our imple-
mentation has not been able to reuse the calculations from the previous iteration in the current
iteration. Moreover, there are aspects of the proposed algorithm that need to be further studied,
such as investigating better strategies for block selection rule and evaluating the effectiveness
of nonconvex losses in handling noisy data.
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Chapter 3

DCA-based bagging approaches and
application to solve the financial

imbalanced data

Abstract. Ensemble learning techniques such as bagging have shown promise in address-
ing issues with imbalanced classification. Bagging involves training multiple independent
models on resampled data subsets and combining their predictions, improving overall per-
formance. However, standard bagging does not adequately address high imbalance com-
mon to financial tasks involving rare but important events like fraudulent transactions or
loan defaults. In this chapter, we propose and evaluate two weighted bagging methods,
one for general cases and one tailored for financial imbalanced datasets. First, we intro-
duce BaggingDCA, which assigns each base model a weight based on its performance
thanks to LS-DC, a unified approach for various loss functions in ML, both convex and
non-convex. We evaluate the BaggingDCA algorithm on several benchmark datasets and
compared its performance to existing bagging methods. Furthermore, to directly mitigate
imbalance, we develop the CSB-DCA method by incorporating the cost-sensitive approach
to BaggingDCA. The weighted bagging method combines multiple base classifiers trained
on different subsets of the training data with different weights, which helps to improve the
overall performance of the classification model. In addition, the cost-sensitive approach
takes into account the cost of misclassifying instances of the minority class, which is typ-
ically higher than that of the majority class. To assess the effectiveness of CSB-DCA, we
perform thorough numerical experiments using some financial datasets from UCI machine
learning repository, Kaggle competitions and our financial dataset.

The content presented within this chapter has been extracted from the subsequent scholarly publications:
[1] Pham, V.T., Le Thi, H.A., Luu, H.P.H., Damel, P. (2023). DCA-Based Weighted Bagging: A New Ensemble
Learning Approach. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023.
Lecture Notes in Computer Science(), vol 13996. Springer, Singapore. https://doi.org/10.1007/978-981-99-5837-
5_11
[2] Pham, V.T., Le Thi, H.A. and Damel, P. (2023). Cost-sensitive weighted bagging DCA-based method for
imbalanced financial data. Submitted in: Proceedings of the 4th International Conference and Summer School
on Numerical Computations: Theory and Algorithms NUMTA 2023.
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3.1 Introduction and related works

3.1.1 Ensemble learning and bagging

Ensemble learning is defined as a method for combining predictions from multiple individual
ML models to produce a final prediction [14]. This is commonly referred to as “the wisdom
of the crowd", which indicates that the collective intelligence of a group of individuals is of-
ten more reliable and accurate than the intelligence of any individual member. Any form of
ML algorithm may be used as an ensemble learner (e.g., Decision trees, K-nearest neighbor,
SVM, Neural network, etc.). Ensemble learning has been proven as an effective method in ML
and successfully applied in a variety of domains, including image recognition, natural language
processing, and financial prediction [58, 85, 97].

Bagging [13], which stands for bootstrap aggregating, is one of the most popular techniques
in ensemble learning. Bagging is a well-studied subject in ML and the practice of bagging has
been demonstrated to be an effective method in a variety of fields, including classification,
regression, and anomaly detection. It involves aggregating the predictions from a variety of
models that were trained on various subsets of the training data in order to obtain the final
outcome. For the past few years, bagging has been the topic of extensive study, and various
modifications and additions have been proposed to further improve its effectiveness. Although
bagging has demonstrated outstanding performance and is widely used in many applications, it
appears that some modifications can be made on how the base learners are combined to improve
the bagging predictions [10, 62, 63, 97].

In ML, there are numerous loss functions because they are intended to optimize different
objectives, provide different levels of robustness, interpretability, computing efficiency and
are compatible with various regularization techniques. For instance, when the objective is to
minimize the difference between the predicted output and the actual output, the least square loss
is a valid choice. However, when the objective is to minimize the impact of noisy or mislabelled
data points, the ramp loss is a better option. While having many loss functions to choose from
can be advantageous in some cases, it is important to consider the potential downsides, such as
added complexity in designing ML algorithms. Zhou and Zhou [111] defined a type of loss with
a DC decomposition, named LS-DC loss, and demonstrated that all commonly used losses, both
convex and nonconvex loss functions, as well as for both classification and regression problems,
are LS-DC loss or can be approximated by LS-DC loss. As numerous loss functions can now
be utilized with the same implementation and in the same ML algorithm, this approach makes
the algorithm powerfully applicable and has a great deal of potential. Zhou and Zhou applied
the concept of LS-DC to the SVM algorithm for solving the large-scale problem. In this study,
we bring this method to the bagging technique in a new way that enhances the accuracy and
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robustness of model prediction.

3.1.2 Financial problems

Financial data analysis plays a critical role in the decision-making process for financial insti-
tutions, investors, and businesses. The accuracy and reliability of the analysis depend on the
quality of the data and the effectiveness of the algorithms used. However, financial data poses
several challenges that require specialized techniques for effective analysis. One of the major
challenges in financial data analysis is the problem of imbalanced data, where the number of
instances in the minority class is much lower than that of the majority class. In a number of
scenarios, such as fraudulent transactions and credit/loan approval, the significant variation in
distribution inconsistency among categories, ranging from tens to hundreds of times, results
in poor classification performance and biased predictions. Financial institutions face signifi-
cant financial losses and legal consequences if they misclassify transactions due to imbalanced
data. To mitigate these risks, ML algorithms must prioritize addressing imbalanced data and
ensuring unbiased decision-making.

Research on financial imbalanced data holds great significance in the field of financial data
analysis. It is one of the most extensively studied areas concerning imbalanced data. The
majority of studies in this domain have primarily focused on financial fraud detection, as well
as property refinance prediction, loan default prediction, corporate bankruptcy prediction, and
credit card approval [30]. In recent years, numerous algorithms have been proposed to address
the problem of imbalanced data in this domain [18, 38, 57, 95].

The bagging method has been shown to improve the classification performance of imbal-
anced data for financial analysis [23, 37, 103]. However, traditional bagging does not take into
account class distribution and may prioritize the majority class, leading to biased predictions.
Cost-sensitive learning and weighted bagging are two approaches that have been proposed
to address the challenges of imbalanced data [23, 66, 112]. Cost-sensitive learning involves
assigning different costs to misclassification errors based on the class distribution and the mis-
classification costs. The weighted bagging method combines multiple base classifiers that were
trained on different subsets of the training data, each with its own weight.

3.1.3 Our contribution

In this study, we propose a new bagging algorithm based on DC (BaggingDCA) that provides an
efficient training method for various kinds of base learners and loss functions. The performance
of this proposed method is carefully evaluated through extensive experimentation, comparing
its effectiveness with existing methods using widely accepted benchmark datasets.

Moreover, for tackling the imbalanced data in financial problems, we introduce a new ap-
proach, named cost-sensitive weighted bagging DCA-based (CSB-DCA) combining the strengths
of cost-sensitive learning and weighted bagging to improve the classification performance of
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imbalanced financial data. The cost-sensitive method assigns weights to each instance of data
based on its cost and importance, taking into account the class distribution and the misclas-
sification costs, while the weighted bagging method adjusts model contributions in the final
prediction to enhance the robustness and accuracy of the prediction model. We expect that
this combination ultimately results in a substantial enhancement to the classification model’s
overall performance.

3.2 Weighted bagging approach

3.2.1 Ensemble learning and Bagging method

Bagging, introduced by L. Breiman in 1996 [13] is a ML ensemble meta-algorithm intended
to increase the robustness and accuracy of ML algorithms. As an ensemble learning method,
bagging can improve the performance of a given learning algorithm by combining the outputs
of many classifiers via majority voting or averaging. Furthermore, by combining models trained
on various bootstrap resample versions of the training set, bagging decreases variance and
aids in avoiding overfitting. Although it is frequently used in conjunction with decision trees
techniques, it may be applied to any type of ML algorithm.

Random forest [15], is a tree-based variant of the bagging method. Each tree in the ran-
dom forest algorithm only examines a bootstrapped set of samples, and it also randomly picks
subsets of features (aka. feature bootstrapping or random subspace method) used in each data
sample. As the result, random forest is computationally efficient than the standard bagging
approach thanks to the fact that it only needs to deal with a subset of features. In addition, fea-
ture bootstrapping also helps to improve variance by decreasing correlation between trees and
the ability to rank the importance of features [4]. Brown and Mues demonstrated that random
forest worked effectively when dealing with samples with a significant class imbalance in the
context of credit scoring problem [16].

Bagging approaches provide a variety of advantages, such as the ability to enhance accuracy
and avoid overfitting, scalability, the capability to execute parallel processing. However, the
standard approach of bagging assumes that all models in the ensemble have equal prediction
ability, which may not be true in practice. Equal weights strategies may not be as effective as
weighted strategies for a variety of reasons, such as models may be better at predicting certain
subsets of data or models in the ensemble may have different levels of accuracy.

3.2.2 Weighted bagging

Suppose there is a bootstrap aggregating model from n individual base learner (aka. weak
classifier or weak leaner), the overall output of the bagging models is a weighted combination
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of the individual classifier outputs. This can be represented by the following equation

f(x) =
n∑

j=1

wjfj(x) (3.1)

where f(x) is the aggregated model, fj(x) is the jth classifier predictor, wj is the weight for
combining the jth classifier, and x is an input vector of the ensemble model.

The weights must be determined properly in order for the model to perform effectively.
Naturally, a straightforward way is to assign an equal weight to each classifier in a standard
bagging scheme. Another approach is to assign each classifier a weight value according to its
contribution to the aggregating model. There have been studies on weighted bagging in the
literature. Breiman [13] proposed the bagging method by using a majority vote to combine
multiple classifier outputs with equal weights. Wang et al. [97] proposed a dynamic weighting
approach that assigns a weight to each weak learner based on their performance. Leblanc
and Tibshirani [46] suggested using weights for the bagging algorithm with a non-negativity
constraint.

Let y be a vector of the expected classifier outputs and ŷj be the prediction from the jth

classifier predictor. Predictions from a set of n predictors can be put in a matrix as: ŷ =

[ŷ1ŷ2ŷ3...ŷn] The vector of predictions from the ensemble classifier f(X) can be represented as

y = ŷw = w1ŷ1 + w2ŷ2 + · · ·+ wnŷn

where each column corresponds to an individual predictor.

Given a training dataset {(xi, yi)}mi=1 where m is the number of samples of the training
dataset, yi is the corresponding label (either 1 or -1). We denote the output of the aggregated
model at data point ith as ŷi. In order to find an optimal set of weights, we will minimize the
following optimization problem

min
w∈Rn

K(w) =
1

m

m∑
i=1

ℓ(yi, ŷi) =
1

m

m∑
i=1

ℓ
(
yi,

n∑
j=1

wjfj(xi)
)

(3.2)

s.t.
n∑

j=1

wj = 1,

wj ≥ 0, ∀j = 1, . . . , n.

where ℓ which is given arbitrarily by the user depending on the training purposes is a loss to
measure the discrepancy between the predicted values and the true targets. The idea of finding
a good combination of base learners via optimizing this discrepancy is traced back to [69]
where the quadratic loss was studied. Here we aim to investigate a more general class of losses
(possibly nonconvex) that can be used flexibly in many cases.
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3.3 Optimization problem based on DCA

According to Zhou and Zhou [111], a loss ℓ is called an LS-DC loss if there exists a constant
A > 0 such that the associated function ψ, i.e. ℓ(y, ŷ) = ψ(1 − yŷ), has the following DC
decomposition

ψ(u) = Au2 −
(
Au2 − ψ(u)

)
. (3.3)

It is pointed out in [111] that almost all commonly used losses in ML are LS-DC or can be
approximated by an LS-DC loss.

Let ℓ(y, t) be any LS - DC loss associated with ψ, the optimization problem (3.2) can be
written as the following DC program

min
w∈Rn

K(w) =
1

m

m∑
i=1

ψ
(
1− yi

n∑
j=1

wjfj(xi)
)
:= G(w)−H(w) (3.4)

s.t.
n∑

j=1

wj = 1,

wj ≥ 0, ∀j = 1, . . . , n.

with the DC components being given by

G(w) :=
1

m
A

m∑
i=1

(
1− yi

n∑
j=1

wjfj(xi)
)2
, (3.5)

H(w) :=
1

m

m∑
i=1

(
A
(
1− yi

n∑
j=1

wjfj(xi)
)2
− ψ

(
1− yi

n∑
j=1

wjfj(xi)
))

. (3.6)

At iteration k, we have the subgradient of H computed as

∇H(wk) =
1

m

m∑
i=1

2A(1− yi
n∑

j=1

wk
j fj(xi))(−yifj(xi))j=1,2,...,n

− 1

m

m∑
i=1

ψ
′
(
1− yi

n∑
j=1

wk
j fj(xi)

)
(−yifj(xi))j=1,2,...,n (3.7)

=
1

m

m∑
i=1

(
ψ

′(
1− yi

n∑
j=1

wk
j fj(xi)

)
− 2A

(
1− yi

n∑
j=1

wk
j fj(xi)

))
(yifj(xi))j=1,...,n.

52



3.4. BaggingDCA performance on popular benchmark dataset

where ψ′(u) denotes a subgradient of ψ at u. Thus, we solve the following convex subproblem

min
w∈Rn

G(w)− ⟨∇H(wk), w⟩ = min
w∈Rn

A

m

m∑
i=1

(
1− yiwTF (xi)

)2
− ⟨∇H(wk), w⟩

= min
w∈Rn

−2A

m

m∑
i=1

wTyiF (xi) +
A

m

m∑
i=1

(
wTF (xi)

)2
− ⟨∇H(wk), w⟩

= min
w∈Rn

A

m
wT
( m∑

i=1

F (xi)F (xi)
T
)
w − wT

(2A
m

m∑
i=1

yiF (xi) +∇H(wk)
)

(3.8)

s.t.
n∑

j=1

wj = 1, wj ≥ 0, ∀j = 1, . . . , n.

The optimization problem (3.8) is a quadratic program. Because w has a relatively small di-
mension (e.g. commonly, number of base classifiers n < 1000), the solution can be efficiently
solved using existing packages.

3.4 BaggingDCA performance on popular benchmark dataset

3.4.1 Weighted bagging DCA algorithm

The strategy to solve (3.8) at each iteration and seek for the optimal weights of the problem 3.2
is a standard DC algorithm and is presented in Algorithm 1:

Algorithm 1 Weights calculation based on DCA

Input: Given a training set D = {(xi, yi)}mi=1 with xi ∈ Rd and yi ∈ {−1,+1};
Any LS-DC loss function ψ(u) with parameter A > 0;
Set of n weak classifiers F = {f1(x), f2(x), . . . , fn(x)};
Set k = 0, w0 = 1 ∈ Rn;
repeat

1. Compute ∇H(wk) in (3.7).
2. Solve (3.8) to obtain wk+1.
3. Set k ← k + 1.

until Stopping criterion.
Output: w

The process of the bagging method is as follows: Each base learner, using a specific tech-
nique such as decision trees, knn, or neural networks, is trained using a sample of instances
taken from the original dataset by sampling with replacement. Each sample normally includes
the same amount of instances as the original dataset in order to ensure a sufficient number of
instances per base learner. Bootstrapping features can also be used when combining multiple
base learner models, such as in bagging methods like random forests, for further reducing the
variance of models and improve the overall performance. After that, a base learner is trained
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on each random subset sample sequentially or more quickly through parallel training. Finally,
to determine the prediction of an unseen instance, majority vote of the base learners’ predic-
tions is performed. Thus, by integrating LS-DC to the bagging scheme, we have a new bagging
algorithm referred to as BaggingDCA, and is presented in the Algorithm 2:

Algorithm 2 BaggingDCA

Input: Given a training set D = {(xi, yi)}mi=1 with xi ∈ Rd and yi ∈ {−1,+1};
Base learning algorithm L;
Number of base classifiers n;
for j = 1 . . . n do

1. Generate a bootstrap sample Dj from D by sampling with replacement (with feature
bootstrapping).
2. Train a base classifier fj(x) = L (Dj).

end for
3. Calculate w ∈ Rn using algorithm 1.
4. Generate bagging model f(x)=

∑n
j=1wjfj(x).

Output: f(x)

3.4.2 BaggingDCA performance on popular benchmark dataset

In this section, we analyze the performance of our proposed algorithm BaggingDCA with two
algorithms: Standard Bagging (StdBagging) and dynamic weighting bagging [97] (Authors
used Lasso-logistic regression as the base learner and referred to it as LLRE; for the con-
venience of our experimental purposes with several base learners, we refer to the method as
DWBagging). In this study, we examine three comparison algorithms with four different base
learners: Decision-trees, K-Nearest neighbor, LinearSVM and Neural network. Each algorithm
will perform with feature bootstrapping, that means each base model will be trained on a subset
of the features. In the case of training tree-based estimators with subset of features, our bag-
ging algorithm is the standard random forest algorithm of L. Breiman [15]. We utilize several
datasets with different properties and characteristics in our experiment.

The authors of the study [111] showcased that the Least-squared loss function yields su-
perior accuracy performance, whereas the Ramp loss proves effective in managing noisy data.
Thus, in our experimental setup, we employ two types of loss functions: a convex LS-DC loss
function and a nonconvex LS-DC loss function and their corresponding subdiferentials:

1. Least squares: ψ(u) = u2 is a convex loss function;∇ψ(u) = 2u.

2. Smoothed ramp loss (As ramp loss is not LS-DC, this is a smoothed approximation):

ψ(u) =

 2
a
u2+, u ≤ a

2
,

a− 2
a
(a− u)2+, u > a

2
,
, with a > 0 is a nonconvex function;
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∂ψa(u) =

 4
a
u+, u ≤ a

2

4
a
(a− u)+, u > a

2

.

Numerical experiments will be performed with the two above loss functions: Least squares
and smoothed ramp loss. Thus, we denote our algorithms as BaggingDCA1, BaggingDCA2
corresponding with BaggingDCA with least squares loss, and BaggingDCA with smoothed
ramp loss.

3.4.3 Experimental setting and Datasets

The three comparison algorithms: BaggingDCA, StdBagging and DWBagging are imple-
mented in MATLAB and executed on a PC with an Intel Core i7-8700 CPU @3.20GHz×6
16GB. The PC runs Windows 10 with MATLAB-2021a. For creating bootstrap samples with
replacement to train each base learner, we use the function: ransample(n_learner,n_learner,true)

in Matlab. For choosing feature subsets, we use the function: ransample(m_feature,sqrt(m),false)

with the number of subset features to draw from m features is set as sqrt(m). For DCA algo-
rithm, the constant A is set as 1, the truncated parameter a of the non-convex loss is set as 2
and the initial weights are set as a vector of all ones. The stop condition of DCA is set as 10−5.
To solve the quadratic problem in (3.8), we use the function quadprog11 in MATLAB. The
number of base-classifiers: n = 500 is set for all algorithms. The base learners: Decision-trees,
K-Nearest neighbor, LinearSVM and Neural network for the comparison algorithms can be
obtained from corresponding functions: fitctree 12, fitcknn13, fitclinear14, fitcnet15 in Matlab.
All parameters of the four functions are set as default values.

Datasets

Benchmark datasets from LibSVM: To assess the generalizability and scalability of the pro-
posed algorithm, in the first experiment, we use seven well-known benchmark datasets from
the LIBSVM website16. All datasets consist of binary data and contain a variety of features
and samples. Table 3.1 summarizes the information included in the datasets. This table illus-
trates that the selected datasets include datasets with varying levels of size, features, and class
proportion. Additional information on these datasets is available on the LIBSVM website.

11https://www.mathworks.com/help/optim/ug/quadprog.html
12https://www.mathworks.com/help/stats/fitctree.html
13https://fr.mathworks.com/help/stats/fitcknn.html
14https://fr.mathworks.com/help/stats/fitclinear.html
15https://fr.mathworks.com/help/stats/fitcnet.html
16https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Dataset #of features #of instances #of label 1 #of label -1
Splice 60 3,175 1,648 1,527
Gisette 5,000 7,000 3,500 3,500
Mushroom 112 8,124 3,916 4,208
Australian 14 690 307 383
Phishing 49 10,000 5,000 5,000
Adult 123 48,840 11,687 37,153
W8a 300 49,761 1,491 48,270
Madelon 500 2,600 1,300 1,300
Mnist-1-7 784 15,170 7,877 7,293

Table 3.1: Nine benchmark datasets from LibSVM for evaluating the performance of Bag-
gingDCA

In the experiments, for evaluation purposes, the binary datasets that have labels in {+1,−1}
will be split into two separate sets: Trainset and testset. To avoid overfitting and preserve the
proportions of the classes, we use the function StratifiedShuffleSplit in Sklearn 1.1.1 17 to split
the dataset with proportions: 80% and 20% for trainset and testset, respectively.

3.4.4 Experiment 1: Evaluating BaggingDCA method on popular bench-
mark datasets

Due to the random nature of bagging algorithms, to prevent biased results caused by the random
sampling of subsets of data and subsets of features, we execute each base classifier of each
comparison method ten times, and then take the mean and standard deviation of the results for
reporting. For comparison purpose, the accuracy on testsets of related algorithms are reported.
The values that are highlighted in bold are the ones with the best results. The result of the
experiment is presented in Table 3.2.

17https://scikit-learn.org/.../sklearn.model_selection.StratifiedShuffleSplit.html
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Dataset Algorithm
Base learner

Decision tree K-NN Linear SVM Neural net
Splice StdBagging 95.47±0.56 93.93±0.71 80.95±0.79 93.83±0.74

DWBagging 95.62±0.56 94.04±0.68 81.12±0.86 94.02±0.74
BaggingDCA1 96.07±0.56 94.99±0.81 85.65±1.03 94.75±0.93
BaggingDCA2 95.90±0.52 94.99±0.81 84.99±1.05 94.72±0.95

Gisette StdBagging 95.86±0.16 93.39±0.31 93.31±0.24 91.26±0.14
DWBagging 95.85±0.18 93.44±0.28 93.35±0.20 91.25±0.18
BaggingDCA1 96.10±0.12 93.81±0.46 94.68±0.45 92.69±0.41
BaggingDCA2 96.07±0.25 93.81±0.46 94.26±0.44 92.43±0.50

Mushroom StdBagging 95.85±0.75 99.11±0.37 92.55±0.89 95.94±0.78
DWBagging 95.91±0.74 99.15±0.38 92.60±0.91 96.02±0.79
BaggingDCA1 99.92±0.24 99.71±0.32 99.33±0.41 99.86±0.22
BaggingDCA2 99.92±0.24 99.63±0.37 99.21±0.41 99.85±0.27

Australian StdBagging 87.74±0.83 79.27±0.62 83.80±0.90 83.43±0.98
DWBagging 87.74±0.83 79.34±0.77 84.01±0.80 83.43±0.60
BaggingDCA1 88.33±0.61 84.23±1.24 85.77±0.85 86.86±1.33
BaggingDCA2 88.18±0.72 84.23±1.24 84.89±0.49 86.79±1.47

Phishing StdBagging 98.91±0.12 99.36±0.15 96.60±0.63 97.97±0.45
DWBagging 99.01±0.10 99.40±0.16 96.85±0.66 98.12±0.42
BaggingDCA1 100.00±0.00 99.99±0.03 99.98±0.05 100.00±0.00
BaggingDCA2 100.00±0.00 99.99±0.03 99.98±0.06 100.00±0.00

Adult StdBagging 77.09±0.05 76.20±0.30 76.07±0.00 76.07±0.00
DWBagging 77.23±0.10 76.19±0.27 76.07±0.00 76.27±0.06
BaggingDCA1 83.87±0.22 83.63±0.23 83.44±0.24 83.30±0.37
BaggingDCA2 83.76±0.22 82.91±0.41 82.96±0.35 83.14±0.38

W8a StdBagging 97.06±0.01 97.07±0.03 97.04±0.02 97.06±0.01
DWBagging 97.16±0.03 97.07±0.03 97.04±0.02 97.10±0.04
BaggingDCA1 98.07±0.13 97.44±0.09 97.46±0.13 97.49±0.17
BaggingDCA2 97.82±0.09 97.65±0.09 97.65±0.06 97.86±0.12

Madelon StdBagging 65.19±1.41 63.04±2.01 61.00±0.85 59.38±0.86
DWBagging 65.63±1.67 62.98±1.86 60.98±0.74 59.78±1.24
BaggingDCA1 71.25±1.34 70.27±1.91 61.62±0.71 61.42±0.57
BaggingDCA2 71.22±1.24 70.27±1.91 61.27±0.62 61.31±0.81

Mnist-1-7 StdBagging 99.60±0.05 99.51±0.01 98.95±0.01 99.55±0.04
DWBagging 99.61±0.03 99.51±0.01 98.94±0.03 99.55±0.04
BaggingDCA1 99.74±0.05 99.70±0.04 99.43±0.09 99.74±0.10
BaggingDCA2 99.74±0.05 99.70±0.04 99.39±0.06 99.74±0.10

Table 3.2: Performance comparison (mean accuracy±std.) of related algorithms on nine bench-
mark datasets.

Comments: Table 3.2 compares the average accuracy of all comparison methods. Based on
the experimental result, it is evident that our BaggingDCA algorithms give better results than
StdBagging and DWBagging in most cases on nine benchmark datasets. There are cases where
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our algorithm is approximately 4% to 6% more accurate than the StdBagging and DWBagging
techniques, such as in the Mushroom and Adult datasets, or Madelon in the case of Decision
tree. When it comes to the base classifiers, Tree-based models typically produce superior out-
comes to K-nearest neighbor, LinearSVM and Neural network. Considering the comparative
results of the two loss functions, the method utilizing the least squares loss function performs
slightly better than the method using the smoothed ramp loss function in the majority datasets.

3.4.5 Experiment 2: Parameter analysis with different bagging sizes

In this experiment, we investigate the relationship between the bagging size and the accuracy of
machine learning models, with a focus on two proposed algorithms: BaggingDCA1 and Bag-
gingDCA2. The bagging size, or the number of models included in the ensemble, is a critical
parameter in bagging strategies. The result of this experiment can help us to better understand
the impact of bagging size on model accuracy. It also offers practical guidance for model hy-
perparameter tuning in real-world ML models. In this experiment, the base learner chosen is
the decision tree algorithm. By varying the size of trees from 50 to 1,000, we intend to investi-
gate the impact of base-learner size on the overall effectiveness of the proposed algorithms on
six benchmark datasets. The result of this experiment is depicted in Figure 3.1.
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Figure 3.1: Performances of related algorithms on benchmark datasets as the number of base-
learners increases.

Comments: The following conclusions can be drawn from the experimental results depicted
in Figure 3.1:

As the bagging size increases, the general tendency for both models BaggingDCA1 and
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BaggingDCA2, is to experience an enhancement in accuracy. However, the rate and intensity of
the accuracy increase are dataset-dependent. In other words, each dataset responds differently
to an increase in bagging size, exhibiting varying levels of improvement in model accuracy.
This might be due to the peculiar characteristics and inherent complexity of each dataset.

Interestingly, a further increase in bagging size beyond a certain threshold does not always
lead to an increase in accuracy. In some cases, when increasing the bagging size to a certain
size, the accuracy may plateau or even decrease slightly (e.g. in Mushroom, W8a, or Mnist_17).
This phenomenon aligns with the general principles of machine learning and can be attributed
to the model’s inability to learn any new patterns from the added bags due to their redundant or
noisy information.

3.5 Cost-sensitive Weighted Bagging DCA-based algorithm
for imbalanced data

3.5.1 Cost-sensitive learning

The study [25] introduced a cost-sensitive method that incorporates a cost matrix to account
for the higher cost associated with misclassifying instances from the minority class compared
to the majority class. Denoting the loss function of a base classifier as L, the authors introduce
the cost matrix C that assigns cost entry (i,j) to predict class i when the true class is j, where
i = j indicates a correct prediction and i ̸= j denotes an incorrect prediction. The optimal
prediction for an example x minimizes the loss function:

L(x, i) =
∑
j

P (j | x)C(i, j)

For each value of i, L(x, i) represents a sum over the alternative possibilities for the true class
of x. In this framework, the learning algorithm aims to produce a classifier that can estimate
the probability P (j | x) for each class j to be the true class of x. When making a prediction i
for example x, the algorithm assumes that i is the true class of x.

3.5.2 Cost-sensitive weighted bagging algorithm

By incorporating the DC algorithm into the cost-sensitive bagging framework, a novel bagging
algorithm called CSB-DCA is introduced. The detailed steps of CSB-DCA are presented in
Algorithm 3:

60



3.5. Cost-sensitive Weighted Bagging DCA-based algorithm for imbalanced data

Algorithm 3 CSB-DCA

Input: Given a training set D = {(xi, yi)}mi=1 with xi ∈ Rd and yi ∈ {−1,+1};
Base learning algorithm B;
Number of base classifiers n;
Any LS-DC loss function ψ(u) with parameter A > 0;
for j = 1 . . . n do

1. Generate a bootstrap sample Dj from D by sampling with replacement(with/without
bootstrap features).

2. Calculate cost matrix Cj =

(
CTN

j CFN
j

CNP
j CTP

j

)
with respect to Dj .

3. Train a cost-sensitive base classifier fj(x) = B (Dj) with cost Cj .
end for
4. Set k = 0, w = 1 ∈ Rn; F = {f1(x), f2(x), . . . , fn(x)};
repeat

5. Compute ∇H(wk) in (3.7).
6. Solve (3.8) to obtain wk+1.
7. Set k ← k + 1.

until Stopping criterion.
7. Generate bagging model f(x)=

∑n
j=1wjfj(x).

Output: f(x)

3.5.3 Experimental setting

To evaluate the effectiveness of the proposed CSB-DCA algorithm, we utilize several financial
datasets, including credit approval, fraud detection, and bankruptcy prediction. We compare
the performance of the proposed algorithm with two existing approaches, including traditional
bagging and cost-sensitive bagging. The cost-sensitive bagging is the traditional bagging with
cost-sensitive learning [25].

In Experiment 1, we have demonstrated that tree-based bagging outperforms other weak
classifiers, including Decision Trees, K-Nearest Neighbors, Logistic Regression, Support Vec-
tor Machines, and Neural Networks. In this experiment, we adopt the decision tree as the base
classifier for all comparison algorithms. When training a base classifier, the data is sampled
with replacement, while the features are sampled without replacement or bootstrap features.
Additionally, in the case of a tree-based classifier with bootstrap features, this approach corre-
sponds to the well-known random forest algorithm introduced by L. Breiman [15]. All com-
parison algorithms were implemented using MATLAB and executed on a PC equipped with an
Intel Core i7-8700 CPU @ 3.20GHz (6 cores) and 16GB of RAM. The PC ran Windows 10 op-
erating system with MATLAB-2021a. All setups related to DCA’s settings are the same in [71].
To set-up the misclassification cost matrix in the decision tree algorithm, we use the built-in
parameter “Cost" in the fitctree function. For simple, in this study, we use the misclassification

matrix C =

(
0 1

imb.ratio 0

)
, where imb.ratio = Nmajority instances

Nminority instances
.

61



Chapter 3. DCA-based bagging approach and application in financial imbalanced data

LS-DC losses

Similarly to Experiment 1, in this experiment, the CSB-DCA algorithm employs two loss func-
tions: Least squares loss and Smoothed ramp loss. Consequently, we label our algorithms
as CSB-DCA1 and CSB-DCA2, signifying Cost-sensitive weighted bagging DCA with Least
squares loss and Cost-sensitive weighted bagging DCA with Smoothed ramp loss, respectively.

Performance measures

Evaluating the performance of imbalanced data requires careful consideration due to the un-
equal distribution of classes. To obtain a comprehensive understanding of the model’s effec-
tiveness, evaluating performance on unbalanced data may necessitate a combination of distinct
methods. In this study, we employ four metrics: Accuracy, F-score, G-mean and Area Under
the ROC Curve-AUC to evaluate the performance of our algorithm and comparison algorithms.

1. Accuracy: Traditionally, accuracy can be a simple metric for analyzing the model’s correct-
ness. The accuracy of classification is determined by:
Accuracy = TP+TN

TP+FP+FN+TN

2. F-Score:

Precision: Refers to the ratio between true positives (TP) and overall positive predictions.
Simply, it informs us of the rate of the positive prediction is actually positive. Precision =

TP
TP+FP

Recall: Recall (also known as Sensitivity) indicates the proportion of positive samples that are
predicted to be positive. Recall = TP

TP+FN

F-Score: F-Score (also known as the F1 score) provides a balanced assessment of the model’s
performance, taking into account both precision and recall (the harmonic mean). F-Score =

2 ∗ Precision∗Recall
Precision+Recall

3. G-mean: G-mean [26] represents the geometric mean of the true rates, which is defined as
G− mean =

√
TP

TP+FN
× TP

TP+FP
=
√
Recall ∗ Precision

4. AUC: The AUC is a measure of the model’s ability to distinguish between positive and
negative classes. The ROC (Receiver Operating Characteristics) curve is a graphical represen-
tation of the model’s performance, plotting the true positive rate versus the false positive rate
for various threshold settings. To calculate AUC in Matlab, we use the trapezoidal rule in the
function trapz 18.

18https://www.mathworks.com/help/matlab/ref/trapz.html
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3.5.4 Imbalanced financial datasets

The Luxembourg banking client database

To evaluate the effectiveness of our algorithm, we have access to a real-world customer database,
the Luxembourg banking client database, obtained from a commercial bank located in Luxem-
bourg. Our original database contains 72 variables that are readily available within the bank’s
information system. The preliminary work required file merges, information reconciliations,
meetings to understand data quality and computer coding. Then, we can characterize the cus-
tomer information as follows:
- Information K.Y.C (Know you customer) on the economic, legal, tax criteria.
- Financial risk information (Probability of default – accounting information. . . ).
- Management control information or controlling (Customer profitability history and marketing
segment).
- Information on the operation of current and joint accounts (Savings – number of loans).
- Technical information related to the decision to accept or refuse the overdraft on the current
account.

Datasets from UCI and Kaggle

Real-world financial datasets are often limited in availability due to the sensitive nature of
financial data. In this research, we augment the evaluation of the CSB-DCA method by incor-
porating two datasets from UC Irvine Machine Learning Repository 19 and two datasets from
Kaggle2021, which were publicly accessible and extensively utilized by the ML community for
validation purposes.

UCI Polish companies bankruptcy: This dataset’s purpose is to forecast the bankruptcy of
Polish companies. The data was obtained from the Emerging Markets Information Service
(EMIS), a comprehensive database that provides information on emerging markets worldwide.

UCI default of credit card clients: This dataset aims to investigate the payment default pat-
terns of Taiwanese consumers and evaluate the predictive accuracy of the probability of default
using six distinct data mining techniques.

Kaggle credit card approval: This dataset utilizes credit scorecards in the financial industry
to predict future default probabilities and credit card usage using personal and applicant data.
It allows banks to make informed decisions (good or bad clients) regarding the credit card
issuance of applicants. The original dataset consists of 18 columns, and we followed the data
cleaning process described in 20 to prepare the dataset for evaluation.

Kaggle credit card fraud detection: Contains credit card transactions made by European
cardholders in September 2013, consisting of 284,807 transactions over a two-day period, with

19https://archive.ics.uci.edu/ml/index.php
20https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction
21https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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492 identified as frauds, indicating a highly unbalanced dataset where frauds make up only
0.172% of the total transactions. The "Time" column is excluded as a feature in our evaluation
model for this dataset.

Table 3.3 summarizes the information included in all the datasets, including the Luxem-
bourg credit approval dataset.

Table 3.3: Datasets for evaluation (dataset, abbreviation(abbr.), feature(fea.), instance(ins.),
positive(pos.), negative(neg.), class imbalance ratio(imb.ratio)).

dataset abbr. #fea. #ins. #pos. #neg. imb.ratio
Luxembourg credit dataset LuxCre 24 29,162 1,501 27,661 18.43
UCI Polish companies bankruptcy UCI-1 64 7,027 271 6,756 24.93
UCI default of credit card clients UCI-2 15 29,901 6,621 23.280 3.51
Kaggle credit card approval Kaggle-1 43 25,134 422 24,712 58.56
Kaggle credit card fraud detection Kaggle-2 29 284,807 492 284,315 577.88

3.5.5 Experiment 3: Data exploration and feature selection with the sta-
tistical test on Luxembourg Credit approval dataset

To understand the decisions of the credit approval process, we performed two statistics anal-
yses: F-test and T-tests (ANOVA; Means) to dissociate variables between decisions. While
the T-test helps to explain how significant the differences between group means are, the main
idea behind ANOVA for feature selection is to test the statistical significance of each feature’s
contribution to the response feature. The objective of these tests is to identify the relevant
variables to be considered in the decision-making process and to exclude features that are not
significantly related to the response feature, hence lowering the model’s complexity and maybe
enhancing its performance. The data analysis results are presented in Figure 3.2.

Comment: After examining the variables, we determined in Figure 3.2 that the following
factors are more likely to result in account approval:
- Low probability of bankruptcy (probabilities are calculated using logistic regression methods).
- Client has assets: Other accounts and investments.
- Active client: An active client is a profitable client in the sense of management control.
- Customer has many commitments with the bank (MT REVENU TOTAL, NB DOSCRED): It
is more difficult to decline when the company has to repay its debts.
- Client seniority matters: It is easier to say yes to a long-time client.
- When the account operating indicators are good (average account balance – number of days
of excess. . . ).
Moreover, the χ2 test result shows that there is no seasonality (alpha below 5%).

64



3.5. Cost-sensitive Weighted Bagging DCA-based algorithm for imbalanced data

Figure 3.2: F-test and T-test results.

The Luxembourg credit approval dataset

After conducting a comprehensive exploratory data analysis, we carefully selected 24 of the
original 72 variables as crucial features for training our prediction model. Figure 3.3 illustrates
the correlation matrix, which depicts the intricate interconnections and dependencies among the
selected variables, and Table 3.4 provides a comprehensive overview of the selected variables,
including their descriptive statistics.
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Figure 3.3: Features correlation matrix of the Luxembourg credit approval dataset. Both the X
and Y axes show different attributes present in the dataset.

Variable Observations Missing Minimum Maximum Mean StDev.
NB DOSCRED 29,162 0 0 10 3.562 2.660
V11 UNI 29,162 0 1 1,206 38.027 67.028
PROBABILITY DE DEFAULT 29,162 0 0 9,999 647.764 1115.465
MT REVENU TOTAL 29,162 0 -4,149 3727490.8 617.5 29559.8
GLOBAL ASSETS 29,162 0 0 37274908.0 6335689.3 10537986.4
ANCIEN CPT 29,162 0 137 10,743 5474.530 2383.977
INDICATEUR ACTIF 29,162 0 0 2 1.567 0.508
V32 UNI 29,162 0 -423555.0 3730762.0 57137.8 385265.8
NACT COM 29,162 0 0 1 0.794 0.404
NACT ETU 29,162 0 0 1 0.421 0.494
NACT FIN 29,162 0 0 1 0.538 0.499
NACT N/A 29,162 0 0 1 0.561 0.496
NACT PAT 29,162 0 0 1 0.550 0.497
NACT SAL 29,162 0 0 1 0.515 0.500
NACT SAN 29,162 0 0 1 0.279 0.448
NACT IND 29,162 0 0 1 0.605 0.489
NACT MIX 29,162 0 0 1 0.355 0.479
NACT NPO 29,162 0 0 1 0.321 0.467
NACT DIR 29,162 0 0 1 0.694 0.461
NACT VID 29,162 0 0 1 0.290 0.454
NACT FON 29,162 0 0 1 0.320 0.466
COO INT 29,162 0 0 1 0.117 0.322
COO NAT 29,162 0 0 1 0.485 0.500
COO AUTRE 29,162 0 0 1 0.401 0.490

Table 3.4: Statistics descriptive of the Luxembourg credit approval dataset.

The dataset exhibits a skewed distribution, consisting of 27,661 samples labeled as approval
and 1,501 samples labeled as refusal. The labels in this context represent the outcomes of the
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customer credit approval process, indicating whether an overdraft is approved or not. Specifi-
cally, we assign the labels in {-1, 1} to represent the outcomes, where -1 indicates an approved
overdraft and 1 indicates a disapproved overdraft.

3.5.6 Experiment 4: Assessing the efficacy of the CSB-DCA method in
handling imbalanced data across varied financial datasets

In order to assess the effectiveness of the proposed algorithm, we conduct comprehensive ex-
periments on five datasets. For evaluation, we employ 10-fold cross-validation for all the al-
gorithms in order to assess their performance comprehensively and reduce any potential bias
resulting from a single train-test divide. The data is partitioned into ten subsets or “folds", and
the algorithms were trained on nine folds and tested on the remaining fold after each iteration.
The test sets were sequentially rotated to ensure that all data points were both trained and tested
exactly once following the scheme of n-fold cross-validation. The average results including:
Accuracy, F-score, G-mean, AUC across the ten folds will be reported in our analysis. The
result of this experiment is presented in Table 3.5.

Dataset Algorithm Accuracy Fscore Gmean AUC
LuxCre StdRF 99.66 96.62 96.66 96.67

CSRF 99.94 99.28 99.34 99.34
CSB-DCA1 99.98 99.75 99.78 99.78
CSB-DCA2 99.98 99.75 99.78 99.78

UCI-1 StdRF 96.14 NaN 3.51 50.06
CSRF 96.16 NaN 6.07 50.58
CSB-DCA1 97.55 53.98 61.53 68.91
CSB-DCA2 97.57 54.68 62.13 69.28

UCI-2 StdRF 78.97 28.35 41.67 57.83
CSRF 80.19 46.94 61.33 65.75
CSB-DCA1 80.54 49.94 63.19 67.42
CSB-DCA2 80.55 50.92 64.25 68.05

Kaggle-1 StdRF 98.32 NaN 0.00 50.00
CSRF 98.77 53.59 65.28 71.23
CSB-DCA1 100.00 100.00 100.00 100.00
CSB-DCA2 100.00 100.00 100.00 100.00

Kaggle-2 StdRF 99.93 73.66 77.48 80.01
CSRF 99.93 75.96 80.39 82.31
CSB-DCA1 99.95 83.74 86.64 87.53
CSB-DCA2 99.95 83.97 87.07 87.90

Table 3.5: Performance of the four algorithms in handling imbalanced data across five financial
datasets

Comments: The following conclusions can be drawn from the experimental results depicted
in Table 3.5:
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The experimental results on the LuxCre dataset indicate that the cost-sensitive algorithms,
CSRF, CSB-DCA1, and CSB-DCA2, exhibit significantly higher performance in all four eval-
uation metrics compared to the standard algorithm, StdRF. This finding clearly proves that
the performance of the bagging algorithm on imbalanced financial datasets has been greatly
improved when a cost-sensitive technique is included.

Moreover, the CSB-DCA1 and CSB-DCA2 algorithms consistently outperform the StdRF
and CSRF algorithms across all evaluation metrics in all five datasets. They achieve higher ac-
curacy, F-score, G-mean, and AUC scores, indicating their improved and superior performance
in classifying the respective datasets. Notably, the CSB-DCA1 and CSB-DCA2 algorithms
demonstrate flawless performance in classifying the UCI-1 and Kaggle-1 datasets, while the
StdRF and CSRF algorithms give low performance in F-score, G-mean and AUC. Specifically,
for the Kaggle-1 dataset, CSB-DCA1 and CSB-DCA2 algorithms demonstrate superior perfor-
mance (100%) in all four evaluation metrics compared to StdRF and CSRF. The results clearly
demonstrate that the weighted bagging algorithm based on DCA has outperformed standard
bagging algorithms.

F-Score as NaN: For the algorithms StdRF and CSRF, the F-Score is reported as NaN in
some cases. When calculating the F-Score, if the values of TP, FP, or FN are equal to 0, or both
Precision and Recall are equal to 0, the result of the F-Score will be NaN. This occurs when
the dataset has no positive predictions (True Positive: TP = 0) or when there are no accurately
classified positive predictions (both Precision and Recall = 0). In the financial domain, posi-
tive instances could represent fraudulent transactions, high-risk customers, or other important
events that require attention or action. If a classifier in a financial organization gives a low or
zero TP, it means that the classifier is not effectively identifying positive instances correctly.

The presence of datasets with high accuracy but low F-score, G-mean, and AUC (UCI-1,
Kaggle-1, Kaggle-2) demonstrates the significance of incorporating diverse evaluation metrics,
such as F-score, G-mean, and AUC in addition to accuracy to provide a comprehensive and
unbiased evaluation of the models.

3.5.7 Experiment 5: Evaluating the robustness of the CSB-DCA method
on imbalanced datasets

The purpose of this experiment is to assess the resilience of the CSB-DCA method through
the introduction of noise to pre-existing datasets. We expect to gain a deeper comprehension
of the performance of the CSB-DCA method and its capacity to effectively handle noisy and
imbalanced data in a wide variety of financial contexts.

Adding random features to a dataset in ML testing refers to the process of including irrele-
vant or meaningless features in the dataset. A robust algorithm should be able to identify and
disregard these irrelevant features, while still accurately predicting the outcome variable. If the
algorithm is unable to do so, it may be overfitting the data and may not generalize well to new
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data. For this purpose, we introduce 5 new features to all the evaluation datasets by using the
function normrnd in Matlab following the standard normal distribution (mean = 0, standard
deviation = 1) and perform the experiment in the same way with Experiment 1.

Dataset Algorithm Accuracy Fscore Gmean AUC
LuxCre StdRF 99.01 89.32 89.82 90.34

CSRF 99.67 96.67 96.71 96.77
CSB-DCA1 99.97 99.75 99.75 99.76
CSB-DCA2 99.97 99.75 99.75 99.76

UCI-1 StdRF 96.13 NaN 0 50
CSRF 96.16 NaN 5.05 50.29
CSB-DCA1 97.48 53.43 61.81 68.87
CSB-DCA2 97.52 54.31 62.03 69.72

UCI-2 StdRF 78.86 21.35 35.17 55.59
CSRF 80.10 42.62 55.87 63.40
CSB-DCA1 81.68 47.95 60.03 66.12
CSB-DCA2 81.72 49.25 61.76 67.24

Kaggle-1 StdRF 98.32 NaN 0 50
CSRF 98.32 NaN 4.87 50.12
CSB-DCA1 100.00 100.00 100.00 100.00
CSB-DCA2 100.00 100.00 100.00 100.00

Kaggle-2 StdRF 99.93 74.04 78.08 80.48
CSRF 99.93 75.91 80.77 82.62
CSB-DCA1 99.95 83.55 86.92 87.56
CSB-DCA2 99.95 83.61 87.05 88.05

Table 3.6: The performance of four algorithms on five financial datasets after introducing five
random features.

Comments on the experimental results: As shown in Table 3.6, the proposed CSB-DCA
algorithms were able to maintain stable performance metrics across the scenarios tested in
Experiment 4, in contrast to the other baselines. Specifically, while the StdRF and CSRF ap-
proaches generally exhibited decreases in their evaluation metrics for most imbalanced datasets,
the CSB-DCA methods demonstrated robustness by consistently achieving comparable results.
(In the case of UCI-2 AND Kaggle-2, there is a slight increase in some metrics, however, the
difference is not significant).

3.6 Conclusion

In this chapter, we propose two new bagging algorithms based on the DCA scheme: DCBag-
ging, which is applicable to the majority of existing loss functions for both classification and
regression problems, and CSB-DCA, a variant of BaggingDCA that is combined with Cost-
sensitive techniques for solving the imbalanced financial data. The proposed algorithms inherit
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the benefits of standard bagging, such as decreasing variance, the ability to set up parallel com-
putations and helping to avoid overfitting, additionally, it improves the accuracy of the training
model.

The experiments were designed to thoroughly test the efficacy and robustness of the pro-
posed methods on various datasets, on both popular benchmark and real-world datasets across
multiple financial domains, such as fraud detection, credit approval, and bankruptcy company
prediction. By maintaining stable and in many cases improved performance relative to the
baselines, the results validate that our bagging methods not only enhance overall prediction
accuracy, but also impart greater robustness to issues commonly faced when applying machine
learning to many classification problems, especially imbalanced financial problems.

However, there are some other studies that employ alternative ensemble approaches with
different base classifiers, such as pasting, boosting, and stacking with various types of base
learners: Logistic regression, Deep Neural network, or a mixture of learners in [14, 35, 59, 82].
In the future, we will intensively study whether our proposed algorithm may improve these
types of ensemble learning problems.
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Chapter 4

Deep transfer learning with MCSDCA
and applications in Healthcare problems

Abstract. In this chapter, we provide a foundational understanding of Deep Learning
and Deep transfer learning, establishing the groundwork for our proposed method: a hy-
brid CNN-BiLSTM model enhanced by the Markov Chain Stochastic DCA (MCSDCA)
algorithm and pre-trained language models. We apply this approach to address specific
challenges in text classification within the healthcare domain. The hybrid CNN-BiLSTM
architecture enables the classification model to incorporate both local and sequential in-
formation from the text input data. Consequently, this empowers the model to grasp more
intricate connections among words and attain a higher level of precision in understanding
the text’s meaning. The presented case studies highlight the effectiveness of the proposed
approach in predicting cancer, classifying medical specialties from textual data, and clas-
sifying clinical actions based on discharge summaries. The proposed methodology intro-
duces the transfer learning framework with three common pre-trained language models:
Word2Vec, BERT, and RoBERTa. Experimental comparisons between CNN, LSTM, and
the proposed method are conducted, along with assessments of existing deep-learning op-
timizers and pre-trained language models.

4.1 Introduction

Healthcare is characterized by its complexity, where patient data may come in diverse forms of
textual data, ranging from Electronic Health Records (EHRs), and discharge summaries, and
prescriptions to genetic sequences and medical reports. The task of efficiently arranging and
comprehending this overwhelming amount of diverse unstructured data poses a considerable
obstacle. The utilization of Natural Language Processing (NLP) methodologies is frequently
employed to navigate the intricacies associated with this complexity. When combined with
Machine Learning (ML), Natural Language Processing (NLP) has the capability to extract pat-
terns, evaluate semantic meanings, and produce responses from diverse forms of unstructured
data. However, the traditional approach of developing specialized models for each task often
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requires substantial amounts of annotated data, which can be scarce and expensive to obtain in
the medical domain. This is particularly true for tasks that involve rare diseases or conditions.
Moreover, the rapid evolution of medical knowledge necessitates models that can adapt and
generalize effectively across various healthcare challenges.

Transfer learning based on Deep learning (DL) (Aka. Deep transfer learning) offers a com-
pelling solution to these challenges. By leveraging knowledge learned from related domains
or tasks, transfer learning enables models to overcome data scarcity and improve performance.
For example, pre-trained language models such as Word2Vec, BERT, AlBerta, and GPT are
trained on enormous general domain text and learn rich semantic and syntactic understanding.
These pre-trained models then act as strong baselines that can be fine-tuned for clinical NLP
applications using relatively small labeled datasets. By initializing models with knowledge ex-
tracted from large source domains, transfer learning enables information to successfully trans-
fer to different but relevant target domains that may have limited labeled data available. This
effective technique enables deep learning models to generalize effectively even when training
data is scarce.

Related work: In recent years, there has been a substantial amount of research conducted in
the healthcare domain utilizing deep transfer learning techniques. Turner et al. [92] employed
Word2Vec as text representation for text classification tasks to categorize lupus phenotypes.
Ayoub et al. proposed a new end-to-end technique [31] for the construction of a biomedi-
cal knowledge graph from clinical textual using a variation of BERT models. Li et al. [50]
demonstrated that BERT-based models have reached the state-of-the-art for biomedical and
clinical entity normalization. Numerous studies have been conducted to fined-tune general
pre-trained language models in order to develop specialized pre-trained language models in
healthcare and medical disciplines, for example, BioWordVec [107], Clinical Bert[3], BioBert
[49], BioGPT[54].

Pre-trained language models refer to DL models that have undergone prior training and
are readily applicable for a range of language processing applications. In order to leverage
the capabilities of deep transfer learning through pre-trained language models, there exist vari-
ous methodologies, with feature-based and fine-tuning being the two predominant techniques.
The training process of pre-trained language models, which rely on artificial neural networks,
follows to the standard training approach of DL. Luu et al. [55] proposed a new stochastic
algorithm called Markov chain stochastic DCA (MCSDCA) to handle a class of stochastic
(nonsmooth) DC programs with endogenous uncertainty in the absence of i.i.d. samples for
training deep neural networks. This approach to DL is completely novel and extremely promis-
ing. The authors have provided evidence to support the superiority of the MCSDCA model
over existing techniques. However, the researchers exclusively employed classical DL models
for the purpose of addressing time series prediction challenges in their study. In comparison to
classical DL models, this study will focus on a comprehensive evaluation of this new optimizer
for advanced DL schemes in Deep transfer learning for solving some problems in Healthcare.
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More specifically, in this study, we make contributions that can be summarized as follows:

1. We propose a new hybrid CNN-LSTM network architecture designed to extract both
local and sequential features from healthcare text data.

2. We conduct a thorough evaluation of the Markov chain stochastic DCA algorithm in
conjunction with the proposed architecture, utilizing diverse datasets and deep learning
algorithms.

3. Lastly, we address the scarcity problem in healthcare by integrating the proposed ap-
proach with state-of-the-art pre-trained language models.

4.2 Background

To lay the foundation, we introduce the fundamental concepts of Deep learning and Deep trans-
fer learning in NLP, explaining its principles and methodologies. We discuss how transfer
learning enables models trained on one task to be repurposed for related tasks, significantly
improving efficiency and performance in this section.

4.2.1 Deep transfer learning in NLP

Deep learning (DL), as its name suggests, is an ML subfield that concentrates on training
artificial neural networks, which are composed of multiple layers of interconnected nodes or
neurons to carry out complex tasks.

The depth of DL, which is represented as L signifies the number of layers in the neural
network. Mathematically, a deep neural network can be represented as:

f(X) = f (L)(f (L−1)(. . . f (2)(f (1)(X; Θ(1)); Θ(2)) . . . ; Θ(L−1)); Θ(L))

where X is the input data, f(X) is the output of the deep neural network for input X , L is the
total number of layers in the network, f (l) represents the transformation or mapping performed
by layer l and Θ(l) represents the parameters (weights and biases) of layer l.
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Figure 4.1: Visualization of a neural network composed of an input layer, an output layer, and
two hidden layers in between.

Each layer l applies a transformation to its input, which is passed through an activation
function σ(l) to introduce non-linearity:

f (l)(a(l−1); Θ(l)) = σ(l)(W (l)a(l−1) + b(l))

Where a(l−1) is the output of the previous layer, W (l) is the weight matrix for layer l, b(l) is
the bias vector for layer l, σ(l) is the activation function for layer l. Figure 4.1 depicts a Deep
Neural Network - DNN where the hidden layers are all feedforward neural networks.

DL involves learning the optimal values of Θ(l) through optimization techniques (e.g. Gra-
dient descent) to minimize a loss function J that quantifies the error between the predicted
output and the actual target values. As a result of their multilayered architecture and sophisti-
cated transformation, DL models excel at spotting complex patterns in raw data, in contrast to
conventional methods which may struggle to do so. There are some types of neural networks
that can also be used to learn features depending on the specific task, including Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM).

CNN

If feedforward neural networks are replaced by convolutional layers, we have the CNN model.
Suppose we have the input data as a 3D tensor X with dimensionsW ×H×D, where W is the
width, H is the height, and D is the number of channels (e.g., three for RGB images). Given
an input tensor X and a learnable filter (also known as kernel) K with dimensions F ×F ×D,
where F is the filter size, we perform the convolution operation to obtain a feature map (also
known as the activation map) A. Mathematically, the convolution operation can be defined as
follows:

Ai,j =
F−1∑
m=0

F−1∑
n=0

D−1∑
d=0

Xi+m,j+n,d ·Km,n,d

where Ai,j is the value at position (i, j) in the feature map, Xi+m,j+n,d is the value of the
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input data at position (i +m, j + n) in channel d, Km,n,d is the weight of the filter at position
(m,n) in channel d. This convolution process computes the dot product between the filter
K and the equally sized region in X centered at position (i,j). This sliding filter operation is
repeated at every position in X to compute the full feature map A. Then, an activation function
σ is applied element-wise to introduce non-linearity after a bias term b adding to each element
of the feature map:

Yi,j = σ(Ai,j + b).

Finally, to reduce the spatial dimensions of the feature maps, CNN often includes pooling
layers. A common pooling operation is max-pooling, where we take the maximum value from
a small region of the feature map. If we denote the pooling size as P , the operation can be
defined as:

Yi,j =
P−1
max
m=0

P−1
max
n=0

Zi·P+m,j·P+n.

Through training, the network learns the optimal values for the convolutional filter weights,
biases, and fully connected layer weights to perform tasks like image classification, object de-
tection, and more. The backpropagation algorithm is used to update these weights during train-
ing, optimizing the network’s performance. The operation of a typical CNN is demonstrated in
Figure 4.2.

Figure 4.2: A convolutional neural network (CNN) architecture, (Extracted from 22).
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LSTM

LSTM (Long Short-Term Memory) is a type of RNN (Recurrent Neural Network) that can
learn long-term dependencies. Given an input sequence (X = (x1, x2, ..., xT )) with T time
steps, an LSTM contains a memory cell (ct) to remember values over long periods of time and
three gates to control the flow of information: forget gate (ft), input gate (it) and output gate
(ot). The LSTM standard architecture is demonstrated in Figure 4.3.

Figure 4.3: LSTM standard architecture.

At each time step t, the LSTM cell performs the following operations:
- Forget Gate: (ft = σ(Wf · [ht−1, xt] + bf ))

- Input Gate: (it = σ(Wi · [ht−1, xt] + bi))

- Memory Cell Update: (ct = ft ∗ ct−1 + it ∗ tanh(Wc · [ht−1, xt] + bc))

- Output Gate: (ot = σ(Wo · [ht−1, xt] + bo))

- Hidden State: (ht = ot ∗ tanh(ct))
ct, which is determined by the input gate, input vector, and forget gate, is the state of the

memory cell at time step t. The final output of the LSTM is ht, and its size is determined by the
number of hidden layer nodes H . sigma is the sigmoid function. The network parameters are
denoted by W and b. Through training, the LSTM learns to adaptively capture dependencies
of different time scales in sequence data.

Representation learning

Deep neural network (E.g. CNN, LSTM, Autoencoders, GANs, Transformers, etc.) has been
widely proven the ability to learn features from raw data. The process of learning transfor-
mations or mappings of the data that capture the underlying factors of variations as well as
semantic relationships between samples for ML tasks is called representation learning. Ac-
cording to Bengio et al. [9], representation learning offers a distinct advantage in knowledge
transfer between tasks due to its capacity to capture high-level features and encourage feature

22learnopencv:https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
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re-use. Figure 4.4 visualizes how a DL model (CNN) learns features from the basic level to the
high level.

Figure 4.4: A convolutional neural network (CNN) acquires basic features in the first layers,
progresses to complex intermediate layers, and results in sophisticated high-level feature rep-
resentations that are then used for classification. (Modified from [104])

As a result, instead of extracting data features from scratch at each layer or processing
step, neural networks can reuse the features they have learned from previous layers. This helps
save time and enhances learning efficiency. Deep transfer learning adopts this idea. On one
hand, the traditional supervised ML paradigm is built on learning in isolation, utilizing a single
predictive model for a given task and a single dataset. This approach necessitates a substantial
quantity of training instances and delivers optimal results when applied to well-defined and
specific tasks. On the other hand, deep transfer learning applies the knowledge gained by a
pre-trained DL model to one task and applies it to a new, related task, which helps to train a
model from scratch. Typically, pre-trained language models use massive amounts of text data
for the pre-training process (e.g. millions of words in the case of Word2Vec or billions of words
in BERT). This allows the pre-trained language model to be adapted and specialized for a new
task, rather than learning from the beginning. The features and patterns learned on the original
task act as a starting point to learn the new task much faster and with less data. This makes
deep transfer learning highly effective for real-world applications where large datasets are not
readily available for every new problem.

4.2.2 Pre-trained language models

While transfer learning can be classified into various categories, in this study, we only consider
the form of deep transfer learning called pre-train language models (aka. Large Language
Models - LLMs for cases where the models are very large), which gain from the representation
learning process of a large text dataset (aka. corpus) on sophisticated DL architectures. Three
important pre-trained language models: Word2Vec, BERT, and RoBERTa, will be used in our
study. As we only employ these models to extract feature-based representations for evaluating
our proposed approaches and do not change the original structure of the models, we refrain from
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delving into the technical details of each model. Details regarding the techniques employed are
described in the cited publications.

Word2vec

Word2vec is an NLP approach that was published for the first time in 2013 by Mikolov et al.
[60]. The word2vec algorithm utilizes a neural network model (Figure 1.5) to learn word asso-
ciations from a huge corpus of text, called word embeddings. These embeddings are designed
to capture the meaning and context of words in a given corpus, and they can be utilized for a
range of NLP tasks like language translation, text classification, and information retrieval.

Figure 4.5: Word2Vec is capable of capturing multiple levels of similarity between words, al-
lowing semantic and syntactic patterns to be reproduced using numerical vectors. For example,
in the pairs of the words "man", "woman" and "king", and "queen", two of them refer to males
and two to females (extracted from 23).

The primary approach of Word2Vec is to learn a high-dimensional vector representation of
each word in a vocabulary, such that similar words are represented by similar vectors (Figure
4.5). This is accomplished by employing shallow neural networks such as a continuous bag-of-
words (CBOW) or skip-gram model. The CBOW model learns to predict a target word based
on the surrounding context, whereas the skip-gram model learns to predict the surrounding
context words based on a target word. Both models are trained on a huge corpus of text, and
the learned embeddings are then fed into other neural network models for downstream tasks.
Despite its popularity and success, there are also some limitations to Word2Vec. One limitation
is that the model uses a shallow neural network architecture, which might not be sufficient for
capturing more complex word relationships. Another limitation is that it is dependent on a
large corpus of text data, which is not always available or practical to obtain. Some alternatives
and extensions to Word2Vec have been proposed in recent years, such as GloVe, FastText, and
ELMO, which are also based on neural network architectures and aim to improve on some

23developers.google.com:https://developers.google.com/machine-learning/
crash-course/embeddings/translating-to-a-lower-dimensional-space
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of Word2Vec’s limitations. Despite its limitations, Word2Vec is still widely used in NLP and
remains an important tool for researchers and practitioners.

BERT

BERT (Bidirectional Encoder Representations from Transformers) is a transformer-based ML
technique for natural language processing pre-training developed by Devlin et al. [24]. BERT
is built on the transformer architecture, which processes input sequences using self-attention
mechanisms [94]. The model is trained on a large corpus of text using a technique known as
masked language modeling, with the objective of predicting a randomly masked word given
its context. BERT also employs an additional task known as next-sentence prediction in which
the model is trained to predict whether or not two sentences are consecutive. The bidirectional
nature of BERT, which enables the model to see the context from both the left and right sides
of the input, enables it to better comprehend the meaning of a given word and how it relates
to other words. This has been shown to be particularly effective for tasks that require under-
standing the context-dependent meaning of a word, such as question answering and natural
language inference. BERT has been shown to achieve state-of-the-art performance on a va-
riety of benchmarks for natural language understanding, including GLUE and SQuAD [24].
It has also been implemented in numerous applications, including chatbots, search engines,
summarizing lecture [28, 61, 68]. The architecture of BERT is depicted in Figure 1.6.

RoBERTa

RoBERTa (Robustly Optimized BERT Pre-training approach) was introduced in 2019 by Liu
et al. [51] as a variation of the BERT model. It builds upon the pre-training approach of BERT
by making several modifications to the training process, including increasing the size of the
training dataset as well as the number of steps in the training process. RoBERTa only uses the
masked language modeling objective and removes the next sentence prediction objective used
in BERT. Additionally, instead of the 10% used in BERT, it uses a dynamic masking pattern
where 15% of the tokens are replaced with a [MASK] token. Additionally, RoBERTa employs
a larger batch size and a longer training schedule to enhance the model’s learning capabilities.
Similarly to the BERT pre-trained model, the RoBERTa pre-trained model can be fine-tuned
on a variety of natural language understanding tasks, including question answering, sentiment
analysis, and named entity recognition, by adding a task-specific layer on top of the pre-trained
model and training it on the target task. It has been demonstrated that the enhancements to
RoBERTa’s pre-training procedure improved the model’s performance on a wide variety of
natural language understanding tasks. In particular, it has been demonstrated to outperform
BERT and other state-of-the-art models on the GLUE and SQuAD benchmarks and to produce
more consistent performance across a variety of fine-tuning tasks.
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4.3 Our methods

4.3.1 Markov Chain Stochastic DCA as DL optimizer

Luu et al. [55, 56] proposed a new stochastic algorithm called Markov chain stochastic DCA
(MCSDCA) to handle a class of stochastic (nonsmooth) DC programs with endogenous uncer-
tainty in the absence of i.i.d. samples for training deep neural networks. This approach to DL is
completely novel and extremely promising. The authors have demonstrated that the MCSDCA
model outperforms existing approaches. In their research, however, only classical DL models
were applied to time series prediction problems.

Through experimentation, the authors have demonstrated that the MCSDCA underdamped
Langevin dynamics (MCSDCA-udLD) algorithm exhibits superior performance compared to
the MCSDCA overdamped Langevin dynamics ( MCSDCA-odLD) algorithm. In this study, we
employed the MCSDCA-udLD algorithm for all experiments. The MCSDCA-udLD algorithm
is presented from the study [55] as follows:
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Algorithm 4 MCSDCA underdamped Langevin dynamics

Initialization. A starting point x0, a sequence of positive numbers {γk}, a sequence of
Markov chains’ length {nk}, the number of burn-in samples b, ϵ > 0, δ > 0, t > 0, set
k = 0.
repeat

Set the starting state of the Markov chain xk0 := xk, and vk0 := 0.
for i = 0 to nk − 2 do

1. Receive a minibatch of data Dminibatch.
2. Compute a stochastic gradient ∇̃f(xki ) of f using Dminibatch.
3. Compute the conditional expectation of vki+1 and xki+1 given xki and vki as follows

E(vki+1) = e−2δvki −
1

2
(1− e−2δ)

(
∇̃f(xki ) +

1

t
(xki − xk)

)
,

E(xki+1) = xki +
1

2
(1− e−2δ)vki −

1

2

(
δ − 1

2
(1− e−2δ)

)(
∇̃f(xki ) +

1

t
(xki − xk)

)
.

4. Sample vki+1 ∼ E(vki+1) +
√
c2N (0, I).

5. Sample xki+1|vki+1 ∼ E(xki+1) + c3c
−1
2 (vki+1 − E(vki+1)) +

√
(c1 − c23c−1

2 )N (0, I).
end for
Compute yk =

1

nk − b
∑nk−1

i=b xki .

Solve the following convex problem,

xk+1 = argmin
x

{
1

2t
∥x∥2 − 1

t
⟨x, yk⟩+ γk

2
∥x− xk∥2

}
, (4.1)

which has the closed-form solution

xk+1 =
tγk

1 + tγk
xk +

1

1 + tγk
yk.

k = k + 1.
until Stopping criterion

In this chapter, our emphasis will be on conducting a thorough assessment of this new
optimizer model concerning its application in advanced DL frameworks within the context of
Deep Natural Language Processing for Healthcare. On the one hand, we will compare our
proposed architecture, with traditional DL models, including CNN and LSTM. On the other
hand, MCSDCA will serve as the DL optimizer for comparison with established optimizers like
Gradient Descent and ADAM across various DL architectures employing diverse pre-trained
language models.

4.3.2 Hybrid CNN - BiLSTM architecture

CNN and LSTM models have been widely applied to NLP applications and text classification,
in particular [53, 96, 105, 110]. CNN is a powerful algorithm for NLP tasks, as it can extract
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local features from the individual words or sub-word units (such as n-grams), that can be used
to make predictions or perform other tasks. On the other hand, LSTM is particularly good
at handling sequential information, such as the order of words in a sentence. LSTM contains
memory cells that can store information from previous time steps and use it to manage long-
term dependencies, allowing them to comprehend relationships between words that are far
apart in the input text. This is especially useful for NLP tasks in which the meaning of a word
is dependent on its context. CNN-LSTM is a robust architecture that can be applied to a variety
of tasks and can significantly improve performance when compared to CNN or LSTM alone.
There are some variations of hybrid CNN-LSTM have been introduced, such as [36, 53, 105].

Combining the CNN and LSTM in a single model is a promising strategy for training.
The main advantage of this architecture is that it allows the model to consider both local and
sequential information in the input data, as a result, the model can learn more complex relation-
ships between words and comprehend the text’s meaning more precisely. BiLSTM, a variant
of LSTM, is proven to outperform the regular unidirectional LSTM [88] thanks to the ability
to capture the context of sequence input in two directions, so we use BiLSTM in our proposed
method. Thus, our proposed approach uses a pre-trained language model (Word2Vec, BERT,
RoBERTa) to extract initial features from the input. These embedding features are then fed
into a hybrid CNN-BiLSTM architecture, which acts as a further refined feature extractor. The
refined features from the CNN-BiLSTM are then passed through the classification layers (fully
connected layers) for predicting the output labels. Figure 4.6 illustrates how we combine CNN
with BiLSTM to form a hybrid model.
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Figure 4.6: The proposed CNN-BiLSTM model architecture diagram.

4.3.3 Hybrid CNN-BiLSTM with Word2Vec embedding

Word2vec layer: With the Word2vec layer, the raw text is transformed into vector operations
in the w-dimensional vector space through training.

The architecture of the CNN-BiLSTM with Word2Vec embedding is in Figure 4.7.
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Figure 4.7: The proposed CNN-BiLSTM model architecture with Word2Vec embedding.

4.3.4 Hybrid CNN-BiLSTM with BERT embedding

BERT embedding layer: BERT is a pretrained model that requires input text to be in a spe-
cific format. In BERT, text is transformed into numerical vectors through tokenization and
embedding. Tokenization involves splitting the input text into individual tokens, such as words
or subwords, and assigning them unique indices. These indices are then used as input to the
BERT model. Embedding involves mapping each token index to a dense vector, called an
embedding vector, which represents the token’s meaning in a continuous vector space. These
embedding vectors are learned during training and capture the contextual relationships between
words in the input text.

The architecture of the CNN-BiLSTM with BERT embedding is in Figure 4.8.
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Figure 4.8: Proposed CNN-BiLSTM model architecture with BERT embedding.

4.3.5 Hybrid CNN-BiLSTM with RoBERTa embedding

RoBERTa embedding layer: As a variant of BERT, RoBERTa is a transformer-based language
model that processes input sequences and generates contextualized representations of words in
a sentence using self-attention. The larger dataset and a more effective training technique
distinguish RoBERTa from BERT. RoBERTa also uses dynamic masking during training to
develop more robust and generalizable word representations. The architecture of the CNN-
BiLSTM with RoBERTa embedding is in Figure 4.9.
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Figure 4.9: The proposed CNN-BiLSTM model architecture with RoBERTa embedding.

4.4 Healthcare text classification problems and Datasets

In the medical and healthcare industry, textual information exists in a variety of formats, includ-
ing electronic health records (EHRs). This type of data is frequently processed using natural
language processing (NLP) methods. NLP (often associated with ML techniques) illustrates
how artificial intelligence collects and evaluates unstructured data from human language to ex-
tract patterns, meaning, and then provide feedback. As a result, the healthcare sector is able to
make the best use possible of unstructured data, including electronic clinical notes, discharge
summaries, and other kinds of information. NLP combined with ML techniques can assist
physicians in detecting various diseases from electronic health records, allowing managers at
medical facilities to automate management workflows, spend more time on patient care, and
enhance the patient experience using real-time data. This chapter will employ three healthcare
datasets in the following three demanding healthcare problems: 1. Predict hallmarks of cancer,
2. Extracting actions for physicians from hospital discharge notes, 3. Classification of medical
specialties from medical notes. The details of the datasets are shown in table 4.1.

4.4.1 Hallmarks of Cancer (HoC)

Created by Baker et al. at 2016 [6], the Hallmarks of Cancer (HoC) contains 1852 abstracts
from PubMed publications that have been manually annotated by subject matter experts. The
annotations were done using a hierarchical taxonomy containing 37 different classes. Each
sentence in the corpus may be assigned zero or more labels from this taxonomy. The dataset
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is for multi-class classification problems (10 classes). In this study, we only use one label: 1.

Sustaining proliferative signaling (PS) and transform it into a binary classification problem.

4.4.2 Extracting action items for physicians from hospital discharge notes
(CLIP)

CLIP [64] was built using the well-known MIMIC-III clinical dataset. This dataset poses a
multi-label classification problem, with labels being assigned at the sentence level. In total,
there are 107,494 sentences in the dataset after tokenization using the provided sentence tok-
enizer. Of these sentences, 12,079 have been assigned at least one label from the predefined
set of labels for the multi-label classification task. The sourcecode for processing the data is in
the GitHub link 24. The dataset is also for multi-class classification problems (7 labels). In this
study, to be simple for our text classification problem, we only use one label: Appointment and
transform it into a binary classification problem.

4.4.3 Medical transcriptions (MedTrans)

This dataset is public on the Kagglle website25. Obtaining medical data can be exceedingly
challenging due to the stringent privacy regulations imposed by HIPAA (Health Insurance
Portability and Accountability Act). To address this issue, this dataset offers a valuable so-
lution by making available a collection of medical transcription samples which are scraped
from scraped from mtsamples.com. The original dataset is designed for a text classification
problem with 40 labels, each representing a medical specialty, such as Surgery, Radiology,
Gastroenterology, and so forth. The number of instances per label varies significantly, ranging
from thousands to just a few dozen instances. To simplify the dataset, all labels with fewer than
200 instances have been grouped together under a single label named "other." As a result, the
classification problem has been transformed into one with a total of 9 labels.

4.4.4 Datasets’ information

dataset name #trainset #valset #testset #total
HoC_1 Hallmarks of cancer 1,482 185 185 1,852
CLIP_1 CLIP 86,280 10,786 10,785 107,851
MedTrans Medical Transcriptions 3,118 390 390 3,898

Table 4.1: Information of the datasets (Number of the trainset, valset, testset and total number
of samples in our experiments.

24https://github.com/asappresearch/clip
25https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions
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4.5 Experiment setting

4.5.1 Comparative algorithms and optimizers

We compare the proposed neural network architecture (CNN-BiLSTM) with the two following
baselines:

• CNN: the single CNN branch of 4.6 (On the right) without LSTM. This model includes
three 1D-convolutional layers with different kernel sizes (K = 3,4,5) and is followed
by Pooling layers. Then, a Dropout layer is added as a regularization layer to avoid
overfitting. Finally, all three results are concatenated as features for classification.

• BiLSTM: the single LSTM branch of 4.6 (On the left) without CNN. This model includes
one BiLSTM layer followed by a Dropout layer. The features from the BiLSTM layer
are then ready for classification at the next step.

Combination with three pre-trained language models: Word2Vec, BERT, RoBERTa with
MCSDCA, we compare our methods with 2 optimizers: Stochastic Gradient Descent (SGD)
and Adam algorithms to comprehensively evaluate the efficacy of MCSDCA on advanced DL
achitectures.

The goal of our experiments on two important optimizers: SGD26 and ADAM27 is to com-
prehensively evaluate the efficacy of MCSDCA in combination with these advanced DL archi-
tectures and optimization algorithms.

4.5.2 Experiment setup and model setting

In order to implement our proposed method CNN-BiLSTM implementations, we used Python
3 and the Pytorch 1.13.128 package as a DL framework. Pre-trained language models: BERT29,
RoBERTa30 is from HuggingFace library. Word2Vec is from the popular Github source31. The
training procedure is sped up by using a server with a graphic processing unit (GPU) and
CUDA (10.1) kernel. As a detail, the server computer DELL Precision 7820 Tower with a CPU
of Intel Xeon(R) Gold 5118 2.30GHz 2.29GHz (2 processors), 128 GB of memory (RAM),
and a GeForce RTX 1080, 8GB has been used to implement the training procedure.
Parameters of DL models:

• Setting for optimizers: For the baseline algorithms (Adam, SGD), we use the default
values of SGD (lr=1e-2, ) and ADAM (lr = 1e-3, weight decays = 0.0, exponential decay

26https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
27https://pytorch.org/docs/stable/generated/torch.optim.Adam.html?highlight=adam
28https://pytorch.org/
29https://huggingface.co/transformers/v3.0.2/model_doc/bert.html
30https://huggingface.co/docs/transformers/model_doc/roberta
31https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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rates: β1 = 0.9, β2= 0.999, eps=1e-08)) as described in Pytorch 1.13.1. For MCSDCA,
we set the values as the author set in their experiments in [56]. Thus, we set time 1/t =

10−4 · 1.001 and ϵ = 10−8. The Langevin step count is denoted as nk and is determined
by the formula nk = ninit + ⌊kλ⌋, where ninit is set to 20, λ is equal to 0.1, and k is
specifically equal to 1. The step size of the Langevin dynamics is set at 0.001.

• Setting for CNN-BiLSTM: The CNN layer size is (D, Fz) where D is the embedding size
and Fz is the out channels of CNN, here we set Fz = 100. The kernel number of the CNN
layers is 3 with kernel sizes in (3, 4, 5). The number of LSTM layers is one with layer
size (D, D

2
). For the classification layers, the size of the first fully connected layer is set

(L, L
2
), the size of the second fully connected layer is set (L

2
, C) with C is number classes

and L is the concatenated feature size of the CNN and BiLSTM layers, L = 3 ∗Fz + D
2

.
All dropout layers are set with a value of 0.4.

• Setting for pre-trained language models: Due to hardware constraints (8GB GPU), we
are limited to using smaller versions of BERT and RoBERTa, specifically bert-base-

uncased and roberta-base. The default embedding size for these models is set at 768.
Both of these pre-trained models are loaded directly from the HuggingFace transformers

package32. Furthermore, our tokenization process aligns with the established techniques
employed for BERT and RoBERTa within the transformers package. The Word2Vec
embedding size remains at its default setting of 300 dimensions.

4.5.3 Evaluation metrics

Two measurement metrics, including Accuracy and F1-Score, have been used to assess the pre-
dictive performance of our models. Using TP to represent True Positive, TN for True Negative,
FP for False Positive, and FN for False Negative, Accuracy is computed as follows:

Accuracy =
TP + TN

TP + FP + TN+ FN

To thoroughly evaluate the performance of a model, especially in cases where the dataset is
imbalanced in healthcare problems, we must consider both precision and recall. The F1 score
is a useful metric that takes into account both of them.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

=
TP

TP + 1
2
(FP + FN)

32https://huggingface.co/docs/transformers/index
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F1-score is referred to as the harmonic mean of precision and recall for a more balanced
summarization of model performance.

4.6 Numerical experiment and Discussion

4.6.1 Experiment 1: Comparison of CNN, LSTM and the proposed CNN-
BiLSTM with Word2Vec

Dataset Metric
Accuracy F1-Score

SGD ADAM MCSDCA SGD ADAM MCSDCA
HoC_1 CNN-Word2Vec 84.95 84.95 93.55 45.93 45.93 86.14

BiLSTM-Word2Vec 84.94 93.01 93.54 45.93 87.88 87.74
CNN-BiLSTM-Word2Vec 84.90 94.60 95.16 45.93 89.79 89.85

CLIP_1 CNN-Word2Vec 95.89 98.58 98.67 48.95 89.91 90.71
BiLSTM-Word2Vec 98.76 98.59 98.75 92.15 90.75 91.94
CNN-BiLSTM-Word2Vec 98.62 98.65 98.82 90.63 91.39 92.16

MedTrans CNN-Word2Vec 96.32 96.55 96.50 95.36 95.44 95.42
BiLSTM-Word2Vec 96.55 96.73 96.62 96.08 96.23 96.15
CNN-BiLSTM-Word2Vec 97.12 97.32 97.35 96.89 97.05 97.13

Table 4.2: Results of the proposed CNN-BiLSTM architecture and traditional methods with
Word2Vec embedding on the 3 healthcare datasets.

Comments on the experimental result: The experimental results presented in Table 4.2 com-
pare the performance of the proposed CNN-BiLSTM architecture with traditional methods, all
utilizing Word2Vec embeddings, across three healthcare datasets: HoC, CLIP, and MedTrans.
Notably, the CNN-BiLSTM architecture consistently outperforms CNN and BiLSTM in terms
of accuracy and F1-Score. In the HoC dataset, the CNN-BiLSTM-Word2Vec model stands
out with an accuracy of 95.16% and an F1-Score of 89.85%. For CLIP, the model also ex-
cels, achieving an accuracy of 98.82% and an F1-Score of 92.16%. In the MedTrans dataset,
the CNN-BiLSTM-Word2Vec model maintains strong performance, achieving an accuracy of
97.35% and an F1-Score of 97.13%. In the comparison of optimizers, while SGD is unstable
and performs poorly in some circumstances, ADAM and MCSDCA perform better on these
datasets, particularly in terms of F1-Score results. These results demonstrate the superiority
of the proposed CNN-BiLSTM architecture, particularly when coupled with MCSDCA, in the
context of healthcare datasets, offering promising avenues for further exploration in machine
learning and optimization.
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4.6.2 Experiment 2: Comparison of pre-trained language models

Dataset Model
Accuracy F1-Score

SGD ADAM MCSDCA SGD ADAM MCSDCA
HoC_1 CNN-BiLSTM-Word2Vec 84.90 94.60 95.16 45.93 89.79 89.85

CNN-BiLSTM-BERT 96.12 96.85 97.24 91.87 92.35 93.33
CNN-BiLSTM-RoBERTa 96.73 97.18 97.55 91.95 92.47 93.51

CLIP_1 CNN-BiLSTM-Word2Vec 98.62 98.65 98.82 90.63 91.39 92.16
CNN-BiLSTM-BERT 98.79 98.85 99.05 91.15 91.38 92.37
CNN-BiLSTM-RoBERTa 98.82 98.95 99.20 91.21 91.42 92.43

MedTrans CNN-BiLSTM-Word2Vec 97.12 97.32 97.35 96.89 97.05 97.13
CNN-BiLSTM-BERT 98.46 98.97 98.97 98.46 98.94 98.92
CNN-BiLSTM-RoBERTa 98.97 99.23 99.20 98.94 99.20 99.14

Table 4.3: Result of CNN-BiLSTM with different pre-trained language models: Word2Vec,
BERT and RoBERTa.

Comments on the experimental result: The experimental results presented in Table 4.3 show-
case the performance of CNN-BiLSTM models employing various pre-trained language mod-
els, namely Word2Vec, BERT, and RoBERTa, across three datasets: HoC, CLIP, and MedTrans.
In consistent the previous experiment result, the MCSDCA optimizer outperforms SGD and can
be comparable with ADAM in terms of accuracy and F1-Score. When comparing pre-trained
language models, it becomes evident that RoBERTa consistently delivers the most impressive
performance across all scenarios. These findings underline the significance of the MCSDCA
optimizer and highlight the effectiveness of RoBERTa in certain scenarios. RoBERTa’s con-
sistently impressive performance across various scenarios underscores the advantages of larger
pre-trained language models (In terms of data training and model architecture). Without addi-
tional training data, in summary, leveraging a larger pre-trained language model with the same
architecture typically results in improved performance.

4.7 Conclusion

In conclusion, this chapter has proposed a hybrid CNN-BiLSTM method incorporated with the
MCSDCA algorithm and pre-trained language models in an effort to mitigate data scarcity in
the domain of healthcare. Through the presentation of case studies, we have demonstrated the
efficacy of our proposed approach in tasks such as cancer prediction, classification of specialties
from medical text, and clinical action classification based on discharge summaries.

However, it’s important to acknowledge certain limitations in our current study. Due to
constraints of time, computational resources, and access to healthcare datasets, we were unable
to conduct tests on a broader range of datasets. Moreover, we have utilized the feature-based
method thus far. Notably, we have not yet incorporated techniques for fine-tuning our strategy.
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The application of the fine-tuning technique to larger clinical data corpora in future research can
enhance the performance of the proposed method. In addition, while our current research has
yielded promising results, we look forward to addressing these limitations and leveraging the
capabilities of state-of-the-art language models in our ongoing work to enhance the robustness
and applicability of the proposed method in healthcare-related tasks.
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Chapter 5

Conclusion and perspectives

This thesis focuses on solving three challenges in ML: large-scale data with kernel SVM, im-
balanced data for finance applications, and scarcity of data in the domain of healthcare. The
principal methodologies of this thesis are based on DC Programming and DCA, which are well-
known powerful tools due to their effectiveness and efficiency for non-smooth and non-convex
optimization problems.

In the first part, we have proposed a new block coordinate descent algorithm based on DCA
called BC-DCASVM to address large-scale learning challenges with kernel SVM. By integrat-
ing DCA with a unified scheme and applying the block coordinate method, BC-DCASVM is
capable of handling high-dimensional variables and large datasets efficiently. Specifically, at
each iteration of the training process, the method reduces the objective value by optimizing one
block of coordinates at a time while keeping other blocks fixed. Additionally, the problem to
solve at each iteration is a closed-form system of linear equations. Consequently, calculation
time can be considerably reduced while memory overflow is prevented, which is essential for
computing in the context of big data. Moreover, with the unified schema, the proposed method
is capable of handling various common loss functions in SVM, including convex and noncon-
vex losses, as well as classification and regression losses. Extensive experiments on real-world
datasets demonstrate that BC-DCASVM consistently outperforms existing alternatives in terms
of both accuracy and runtime. Notably, it solved high-dimensional problems much faster while
maintaining competitive prediction performance.

To solve the imbalanced data problem in the context of finance, we propose the weighted
bagging algorithms based on the DCA method with two versions, namely BaggingDCA and
CSB-DCA. BaggingDCA is a technique that provides weights to each base model based on its
performance. This is achieved through the use of LS-DC, a unified approach that can handle di-
verse loss functions in machine learning, regardless of whether they are convex or non-convex.
We conducted an evaluation of the BaggingDCA algorithm on multiple benchmark datasets and
subsequently compared its performance to that of existing bagging methods. CSB-DCA builds
upon BaggingDCA by integrating cost-sensitive learning to assign higher weights to misclas-
sified minority class instances, an important consideration for imbalanced financial problems
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where errors in the rare class may carry substantial costs. CSB-DCA is tailored to address
the challenges of imbalanced financial data classification. These proposed methods inherit the
advantages of traditional bagging, such as reduced variance, parallel computation support, and
the prevention of overfitting, while providing improved model accuracy. Experimental analysis
on various benchmark and financial datasets, including those from UCI and Kaggle, as well as
our own, validates their effectiveness in real-world scenarios, including fraud detection, credit
approval, and bankruptcy prediction. While this research focused on bagging-based methods,
future work could explore integrating the proposed weighting frameworks into other ensemble
techniques like boosting, stacking, or pasting. Additionally, evaluating alternative base learners
beyond traditional classifiers may provide additional performance gains.

In the last part, with an effort to reduce the effects of data scarcity in the domain of health-
care, we proposed a hybrid CNN-BiLSTM technique that incorporates the MCSDCA algorithm
and powerful pre-trained language models. Combining CNN and LSTM into a singular training
model is a compelling approach for training as it leverages the strengths of both architectures.
The key benefit of this combined model is its ability to simultaneously consider local as well
as sequential information within the input data. Consequently, this model can acquire a deeper
understanding of intricate word relationships, leading to a more precise comprehension of tex-
tual content. Moreover, using the promising prospects of the Markov-chain stochastic DCA
(MCSDCA) algorithm, an optimizer based on DCA for deep learning that has been evaluated
on traditional deep learning architectures [55], we evaluate the capacity of the algorithm on
advance deep learning architectures to address some significant challenges in the healthcare
industry. Additionally, we leverage several pre-trained language models, inspired by transfer
learning principles, to mitigate the data scarcity problem. Through comparisons with preva-
lent optimizers, deep learning models, and pre-trained language models, our approach shows
competitiveness with current methods. We have proved the efficacy of our proposed approach
in a variety of tasks, such as the classification of specialties from medical texts, the prediction
of cancer from hallmarks of cancer, and clinical action classification based on discharge sum-
maries. In future research, applying fine-tuning to larger clinical datasets in future studies could
further improve the proposed method’s performance. Additionally, while our current work has
shown promising results, we aim to address existing limitations and utilize advanced language
models in our ongoing research. The goal is to strengthen the proposed approach and make it
more widely applicable to healthcare tasks.
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