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Résumé

La Reconnaissance Automatique du Locuteur (RAL) a été intégrée dans di�érentes
applications, allant de la sécurisation des accès ou l'identi�cation en criminalistique.
Son objectif est de déterminer automatiquement si deux échantillons vocaux provien-
nent du même locuteur. Les systèmes de RAL reposent principalement sur des réseaux
neuronaux (DNN) complexes et présentent leurs résultats par une seule valeur. Malgré
leurs performances élevées, ils sont incapables de fournir des informations sur la na-
ture des représentations vocales utilisées, leur encodage et leur in�uence sur la prise de
décision. Ce manque de transparence pose d'importants dé�s pour aborder les préoc-
cupations éthiques et légales, en particulier dans des applications à haut risque telles
que la comparison de voix criminalistique. Cette thèse introduit une approche en trois
étapes basée sur l'apprentissage profond, conçue pour fournir des résultats de RAL
interprétables et explicables.

Dans la première étape, nous représentons un extrait vocal par la présence ou
l'absence d'un ensemble d'attributs vocaux, partagés entre des groupes de locuteurs
et sélectionnés pour être discriminants du point de vue locuteur. Cette information
est encodée par un vecteur binaire où un coe�cient égal à 1 indique la présence de
l'attribut correspondant dans l'extrait vocal et 0 son absence. Cette représentation
permet d'apporter de l'interprétabilité, tout en o�rant un niveau de performance proche
de celui des systèmes état de l'art (SOTA) de RAL.

La deuxième étape s'intéresse au calcul explicite du score de RAL, représenté ici
par un rapport de vraisemblance (LR). Nous proposons pour cela une méthode denom-
mée BA-LR qui décompose le processus de calcul en sous-processus, chacun dédié à un
attribut. Un LR d'attribut, est estimé pour chaque attribut en utilisant uniquement
la présence ou l'absence de celui-ci et sa description, dé�nie par trois paramètres com-
portementaux explicites. Le LR �nal est calculé comme le produit des LR d'attribut,
en supposant leur indépendance. Cette estimation permet un calcul transparent du
LR, associé à des explications détaillées sur la contribution de chaque attribut à la
valeur �nale du LR, à même d'aider les utilisateurs, tels que les juges, dans leur prise
de décision.

La troisième étape est dédiée à la découverte de la nature des attributs. Nous pro-
posons une description automatique des attributs en informations acoustiques, phoné-
tiques et phonémiques à l'aide de di�érentes méthodes d'explicabilité. Les explications
obtenues permettent de mieux appréhender les attributs de la voix utilisés en RAL et
o�rent des perspectives pour les phonéticiens.

Pour valider l'e�cacité de notre approche en criminalistique, nous l'avons évaluée à
l'aide d'une base de données spéci�que à ce domaine. Nous avons dé�ni pour cela une
approche de calibration adaptée aux domaine. Les résultats démontrent la robustesse
et la capacité de généralisation de BA-LR dans un contexte criminalistique.

Les di�érentes contributions de cette thèse ouvrent une nouvelle perspective en
termes d'explicabilité en RAL, en proposant d'accompagner l'inférence, le LR, par les
explications nécessaires à une prise de décision transparente, avec un niveau de per-
formance comparable aux systèmes SOTA. En criminalistique, notre approche semble
prometteuse, facilitant la compréhension des éléments de décision par les experts et leur
prise en compte par la cour. Elle o�re également aux phonéticiens un outil pour mieux
comprendre les informations vocales. Toutefois, ces résultats encourageants doivent
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être approfondis avec une variété de cas d'utilisation avant d'être appliqués dans des
contextes réels en criminalistique, en respectant le "devoir de précaution" propre à ce
domaine.
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Abstract

Automatic speaker recognition (ASpR) has been integrated into critical applications,
ranging from customised assistant services to security systems and forensic investiga-
tions. It aims to automatically determine whether two voice samples originate from the
same speaker. These systems primarily rely on complex deep neural networks (DNN)
and present their results by a single value. Despite the high performance demonstrated
by DNN-based ASpR systems, they struggle to provide transparent insights into the
nature of speech representations, its encoding, and its use in decision-making process.
This lack of transparency presents serious challenges in addressing ethical and legal
concerns, particularly in high-stakes applications such as forensics.
This thesis introduces a three-step methodology based on deep learning, designed to
provide interpretable and explainable ASpR results.

In the �rst step, we represent a speech extract by the presence or absence of a
set of speech attributes, shared among groups of speakers and selected to be speaker
discriminant. This information is encoded by a binary vector where a coe�cient equal
to 1 represent the presence of the corresponding attribute in the speech extract and
0 its absence. This binary and attribute-based modelling facilitates interpretability
and allows for a better handle of the speech information. The results show that the
obtained representations are more interpretable and o�er a level of performance close
to that of State-Of-The-Art (SOTA) ASpR.

In the second step, the goal is to ensure transparent computation of the likelihood
ratio (LR), thereby facilitating a more informed assessment of the value of speech
evidence in a courtroom setting. We therefore propose theBinary-Attribute-based
LR (BA-LR) framework, that breaks down the scoring process into independent sub-
processes, each dedicated to an attribute. An attribute-LR is a LR estimated using only
the presence or absence of the attribute and its description, de�ned by three explicit
behavioral parameters. The �nal LR is calculated as the product of the attribute-
LRs, assuming independence between them. This framework enables transparent LR
computation and a clearer understanding of the value of evidence. It also provides
detailed explanations of the contribution of each attribute's information to the �nal
LR value, aiding juries and judges in decision-making.

In the third step, we conduct a discovery of the nature of attributes. This inves-
tigation employs statistical techniques, surrogate models as well as backpropagation
and alignment strategies to provide a description of attributes in terms of acoustic,
phonetic and phonemic information. The obtained explanations serve as a valuable
tool for phoneticians to interpret the contributing attributes to a given LR.

Additionally, our three-step approach is validated through the application of BA-
LR on a forensically realistic dataset. In such context, we apply a Logistic Regression
model to handle the mismatch between the training conditions and a real-world sce-
narios. Results demonstrate the robustness and the generalisation ability of BA-LR in
a forensic context.

Overall, this thesis opens a new perspective on explainable ASpR, by proposing
a solution for a transparent decision making, with a level of performance comparable
to SOTA systems. Our approach shows promise in o�ering forensic practitioners and
the court insights into the value of evidence while also serving as a discovery tool for
phoneticians helping them better understand and interpret speech information. As
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always in the �eld of forensics, these encouraging results require further evaluation
through additional studies before being applied in real-world situations.
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Chapter 1

Introduction

The richness of human voice is an extraordinary phenomenon, that goes far beyond
simple language transmission. It conveys not only words, but a huge amount of details
about the speaker. Each person's voice is a combination of elements such as pitch, tone,
rhythm and resonance. This combination holds a remarkable potential to uncover the
speaker's identity, decode his/her emotional state, and even unveil his demographic
trait. In human-to-human interactions, our brain's ability to recognize and identify
individuals by their vocal characteristics is an innate skill, often taken for granted in
our everyday lives. Consider the moment when we pick up the phone to engage in
conversation, before any exchange, we subconsciously start by con�rming the identity
of the person on the other end. We recognize our loved ones, friends, and people we
are familiar with by the sound of their voices. This intuitive process, known asnaïve
speaker recognition[1], is a testament to our remarkable ability to discern familiar
voices from the crowd.

In our modern technology-driven world, speaker recognition applications extend far
beyond everyday interactions. Speaker recognition has transitioned into a fully auto-
mated process where machines carry out the recognition task, known asAutomatic
Speaker Recognition (ASpR). It �nds applications across various �elds [2, 1, 3]. For
instance, within the domain of audio archives management [4], ASpR technology has
been integrated into the work�ow of archivists. This technology accesses the wealth of
personal information embedded within a speaker's voice in order to provide more e�-
cient organization and structuring of audio content. ASpR systems have also emerged
in more sensitive �elds such as security and access control to con�dential information.
These systems operate by either granting or denying access based on voice authentica-
tion. This approach is mainly employed in secure facilities and banking applications.
Furthermore, ASpR technology �nds utility in voice assistants1. It serves for both user
authentication and personalization such as interacting based on individual preferences
and pro�le.

Another particular application of ASpR systems lies in forensic investigations. Tra-
ditionally, forensic experts utilize analysis techniques to extract and determine whether

1e.g. Siri, Alexa...
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the vocal characteristics of a trace speech sample align with those of a suspect recording.
Then, a Likelihood Ratio (LR) report is generated, evaluating the value of evidence.
This ratio indicates the likelihood that the two voice samples originate from the same
individual divided by the likelihood that they belong to di�erent individuals. This en-
tire process is known asForensic Voice Comparison. Recently, the integration of ASpR
technology has automated this process, now referred to asForensic Automatic Speaker
Recognition (FASpR). This transition has been mostly driven by the increasing use of
cell phones for criminal communications. ASpR systems are now employed to extract
information from audio evidence (e.g. telephone intercepts), providing useful insights
to the investigation of criminal cases.

Inspired by the widespread adoption of arti�cial intelligence (AI) in real-world appli-
cations, speaker recognition systems have also emerged as bene�ciaries of the robustness
and the high performance ofDeep Neural Networks (DNN) . In this scenario, a DNN
model is trained to extractSpeaker Embeddingsrepresenting speech data. These em-
beddings are compared using similarity score, allowing the system to determine whether
two audio recordings originate from the same or di�erent speakers. Researchers pri-
marily directed their attention towards enhancing performance through increasingly
complex models. However, this complexity comes at the cost oftransparencyand leads
to several problems about providing informed decision making. Questions have arisen
regarding the fairness and equity of these models [5, 6], such that the system's results
lead to decisions that are skewed towards a certain group of individuals with speci�c
voice attributes such as social origins, gender, or age [7]. The biases existing in real-
world data might be inherently fed to the model during the learning process. As a
result, certain groups may encounter unfair restrictions in accessing and authenticat-
ing platforms, while others might become more exposed to potential threats or more
susceptible to be identi�ed as criminals. Perhaps one of the most sensitive �elds to
this issue are forensics and law enforcement applications, where the risk of introducing
discrimination bias [5] due to a black box model, is a paramount concern that can
cause serious issues. In recent years, concerns have emerged within the criminal justice
system regarding the potential for discriminatory practices associated with AI-based
algorithms [8]. In 2016, ProPublica's examination [9] of Correctional O�ender Man-
agement Pro�ling for Alternative Sanctions tool, COMPAS, revealed that although the
algorithm's overall accuracy is similar for both white and black defendants (� 62%),
the types of errors it makes di�er. It tends to categorize black defendants more fre-
quently as high-risk when they are not, while it more often categorizes white defendants
as low-risk when they are not. Similarly, another predictive algorithm, PredPol, used
by law enforcement, has faced criticism for its potential to disproportionately target
low-income, Black communities [10]. Such discrimination raises serious ethical ques-
tions regarding the trustfulness on those systems which have decisions over people's
lives.

Recent works proposed some recommendations to controlling the model learning
and using balanced data to reduce bias [11, 7]. However, with all precautions con-
sidered, this bias remains present [11] and constitutes a big challenge to those com-
plex black box models. These issues have fueled a growing demand for increasing
transparency in AI models. For instance, the ENFSI Expert Working Group Foren-
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sic Speech and Audio Analysis proposed a best practice guide for performing forensic
examinations[12], underscoring that, within the context of forensics, simply presenting
the output of an automated system is insu�cient. To ensure the credibility and ethi-
cal integrity of results, additional research are mandatory. This highlights the ethical
imperative of ASpR systemsexplainability and interpretability 2 to maintain fairness
and equitability in its decision-making process.

In this thesis, our primary objective is to address the lack of interpretability and
explainability of ASpR systems in general applications with a speci�c focus on forensic
context. Our choice to position ourselves in high-risk scenarios is motivated by the crit-
ical signi�cance of interpretability and explainability. In these contexts, relying solely
on a single value derived from an ASpR system, namely the LR, proves insu�cient.
Therefore, the central question guiding this thesis is whether it is possible to enhance
con�dence in DNN models by providing explanations of the ASpR system output that
are easily interpretable in a courtroom setting and comprehensible to forensic experts.

To this end, we propose a three-step approach summarized in Figure.1.1. This ap-
proach builds upon existing DNN-based ASpR systems, introducing a novel perspective
that prioritizes interpretability and explainability. It is designed in such a way that
each step enhances the overall level of interpretability and explainability.

Figure 1.1: An overview of our three-step approach

The �rst step, namely Step1, aims to incorporate an inherent explainability into
the speaker embeddings. It mainly drives them towards a desired representation that
is more easily interpretable. This representation is an embedding space where the
coe�cients are binary and encode the presence or absence of a voice attribute (i.e.
On or O�). This representation is denoted asBinary-attribute-basedembedding. The
main idea is to propose a binary and attribute-based modeling of speaker embeddings.
This step serves as the foundation of our approach, enabling for a bottom-up discovery
of attributes.

2These two terms are discussed and de�ned in further details in Chapter 4
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The goal of the second step,Step 2, is to address the lack of informative and in-
terpretable scores produced by general ASpR systems. The objective of this step is
to simplify the computation of the score for better comprehension in a legal setting
and to provide additional explanations regarding the information it encapsulates. For
this end, we propose theBinary-Attribute-based LR estimation (BA-LR) framework.
This framework estimates the LR based on the binary attributes encoded in the em-
beddings. It �rstly estimates the "behavior" of these attributes in terms of typicality
(i.e. discriminatory power) and reliability. Then it uses this behavior to calculate a
LR per attribute, namely an attribute LR. The global LRof a speech comparison pair
is calculated as the product of all these attribute LRs. This framework enables the
comprehension of the individual contribution of each attribute to the LR value through
attribute LR values. When combined with behavioral parameters for each attribute, it
forms a robust explanation of a given LR value. All these explanations represent a very
useful tool for the forensic practitioner to understand the output of DNN models and
an understandable framework for the court to take in hands the weight of evidence.

Thus far, the level of provided explainability remains incomplete as the information
encoded into attributes has not been yet explored. This leads us to the third step of
our approach, namelyStep 3, consisting in a bottom-up attribute discovery. In this
step, we introduce a novel methodology that aims to explore the information encoded
within binary attributes of speaker embeddings including a range of acoustic, phonetic,
phonemic, and temporal descriptors. This would help to understand the nature of
attributes and the speci�c vocal characteristics encoded in speaker embeddings and
contributed to the LR computation.

Overall, this work draws attention to an unexplored area such as the interpretability
and explainability of DNN-based ASpR systems in general and more speci�cally in
forensic context. It introduces a di�erent perspective to make ASpR system more
interpretable and explainable. This solution represents as a whole a powerful tool for
experts to comprehend the output of automatic systems and identify any potential
discrimination bias. It provides informative support for the court, thereby facilitating
the decision-making process.

This thesis is organized into three main parts. The�rst part includes a litera-
ture review and de�nes fundamental concepts related to this work. In Chapter 2, we
present existing works in DNN-based ASpR systems and provide an overview of the en-
tire speaker recognition framework. This overview encompasses key components such
as feature extraction, DNN speaker modeling, scoring techniques, and evaluation tools.
Chapter 3 focuses on the application of ASpR systems in the forensic context, high-
lighting the adaptation of ASpR systems to the Bayesian framework and the central
role of the LR in the judicial process. Particular attention is given to the challenges
associated with the use of ASpR methods in forensic, emphasizing the need for caution
and the importance of interpretability in DNN models. Chapter 4 further explores
this direction. It underscores the adoption of AI interpretability and explainability
methods to address the opaqueness in DNN models, both within high-risk contexts,
such as forensics, and more broadly. It clari�es the dilemma in the terminology of
interpretability and explainability in the literature and de�ne a taxonomy of the dif-
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ferent methods. Building upon these theoretical de�nitions and fundamental concepts,
we present in thesecond part our proposed solution and contributions. Chapter 5
is dedicated to �rstly introduce the initial inspiration of our approach and give an
overview of the three steps, while positioning each step within the explainability and
interpretability dilemma. Following that, we dedicate a distinct chapter for each step
of our proposed approach. Chapter 6 is focused on describing Step 1 of our solution,
providing further details about the proposed binary-attribute-based modelling. Chap-
ter 7 introduces the core concept of the BA-LR3 scoring proposed in Step 2. Chapter 8
describes the methodology proposed in Step 3 of our approach. It explains the nature
of attributes, with an acoustic and phonetic description of attributes. Thethird part
is showcasing a real application of our approach and introducing further re�nements
and improvements. This part o�ers di�erent perspectives on the three steps of our
approach, underscoring its high potential. Additionally, it introduces supplementary
work dedicated to enhance the reliability and validity of our approach. Chapter 9
illustrates the application of BA-LR scoring, namely Step 1 & 2, within a forensic
context employing a forensically realistic database. In addition to this application,
the chapter introduces an adaptation and an improvement of our approach to suit the
speci�c conditions of forensic data. Chapter 10 proposes an improvement over Step
1. It provides a dedicated binary-attribute-based extractor to extract more accurate
binary speaker embeddings. This chapter aims to reinforce the validity and the poten-
tial of our approach, thereby paving the way for further exploration in this direction.
Finally, we conclude this thesis in chapter 11 by o�ering a comprehensive summary of
the key �ndings. From a broader perspective, we emphasize the main contributions
made by this work and we provide insightful suggestions on potential future directions
for expanding upon the concepts explored in this thesis.

3BA-LR framework has been recognized with the Best Paper Award in [13]
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Chapter 2

DNN-based automatic speaker recog-
nition systems
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This chapter presents a literature review about automatic speaker recognition mod-
els. We provide a comprehensive overview of the entire speaker recognition framework,
including key components such as feature extraction, speaker modeling, scoring tech-
niques, and evaluation tools. Finally, we conclude the chapter by discussing the foun-
dational choices of this work with respect to existing literature.
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2.1 Introduction

The exploration of automatic speaker recognition (ASpR) dates back to the 1960s
[14]. Over the subsequent four decades, many technological advancements promoted
the evolution of speaker recognition. In the early 2000s, the Gaussian mixture model-
based universal background model (GMM-UBM) was introduced [15]. This approach
paved the way for several prominent models such as i-vectors [16] until the emergence of
deep learning-based speaker recognition. More recently, driven by the performance and
robustness of Deep Neural Networks (DNN) models, various approaches have emerged
for ASpR, marking a new era in the �eld.

In this chapter, we begin with an overview of the historical development of sta-
tistical ASpR models predating the emergence of DNN models. We then delve into
the fundamental components of the DNN-based ASpR framework. Firstly, we describe
the feature extraction stage designed to convert the continuous speech signal into dis-
crete frame features, while capturing distinctive characteristics speci�c to each speaker.
Next, we provide an overview of DNN models utilized in speaker modeling. Finally, we
explore the various scoring techniques employed in the ASpR task, accompanied by a
discussion of the evaluation tools and metrics used to report system decisions.

2.2 A look back at statistical models

Historically, diverse statistical models played a central role in the evolution of speaker
recognition systems. To start with, Vector quantization (VQ), introduced to speaker
recognition in the 1980s [17, 18], is a technique that models a speaker using a set of
prototype vectors. This technique is �rstly used for data compression applications for
the purpose of computational speed-up techniques [19]. VQ aims to map a feature
vectors space to a set of clusters in that space, each represents a speaker characteristic.
The centroids of the clusters are therefore considered as a compressed representation
of the feature vectors, namely a codebook, as show in Figure 2.1. This codebook is
trained for each speaker using clustering algorithms (e.g. K-means). During inference,
a matching score is calculated between a new feature vector and a speaker codebook.

Figure 2.1: The VQ codebook training[20]

In the early 2000s, the Gaussian mixture model-based universal background model
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(GMM-UBM) was introduced [15], serving as a foundational framework for speaker
recognition for over a decade. The GMM, is a generative speaker model trained in
an unsupervised manner. It is constructed of a limited mixture of multivariate Gaus-
sian components. These components represent various spectral features essential for
creating a comprehensive speaker model, resulting in a speaker-dependent probability
density function (PDF). With GMM, we passed from a discrete prototype vectors mod-
eling in VQ to a continuous representation. Compared to VQ, the probabilistic nature
of GMMs has demonstrated their superiority as speaker models, because it permits for
a better modeling of variability.

GMM approach was bene�cial for speaker identi�cation tasks. For speaker recog-
nition, a reference model is needed for comparison with the claimed speaker's model to
make the �nal decision. This reference model promoted the development of a universal
model, also referred to as the universal background model (UBM), �rstly introduced
in [21]. UBM is a very large GMM trained to capture the speaker-independent distri-
bution of speech features for a broad range of speakers. Building upon it, GMM-UBM
approach was proposed [15], to adapt a speaker's GMM model by updating the param-
eters of the UBM model. GMM-UBM signi�cantly improved performance and opened
the door for various representative models, such as support vector machines [22] and
joint factor analysis [23].

As statistical models evolved, the notion of GMMSupervectorsemerged, repre-
senting �xed-dimensional vectors for modeling variable-duration utterances. These
high-dimensional vectors were typically generated by concatenating the parameters of
a GMM model. The �eld of speaker recognition was then transformed with the proposal
of the identity vector or i-vector in [16]. I-vectors e�ectively reduced the dimensional-
ity of these Supervectors into more compact representations. The GMM-UBM/i-vector
approach [24] remained the state-of-the-art for speaker recognition for several years,
until the emergence of DNN-based ASpR models.

2.3 DNN-based ASpR framework

Using DNN models, the framework of ASpR is mainly composed of two operational
phases as illustrated in Figure 2.2. During the training phase, acoustic features are
�rstly extracted from speech utterances belonging to a prede�ned set of speakers. These
features are fed into a DNN model, trained for a supervised speaker classi�cation task.
The goal of this task is to encode and inject more speaker information into the DNN
model. The trained model becomes therefore able to generate speaker representations,
known asspeaker embeddings.

In the testing phase, the classi�er component is removed from the process. For a
speaker recognition task, given two speech utterances, the same process is applied to
extract the corresponding speaker embeddings for the two utterances using the trained
DNN model. Scoring is then performed by comparing these two embeddings, and the
result is compared to a prede�ned threshold in order to determine the �nal decision.
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Figure 2.2: DNN-based ASpR framework

In the remainder of this section, we delve into a detailed description of each com-
ponent within the DNN-based ASpR framework, as illustrated in Figure 2.2. We start
by outlining feature extraction methods, categorizing them into two main groups: 1)
Conventional handcrafted features, and 2) Self-supervised features extracted using pre-
trained models. Subsequently, we explore the DNN speaker models, ranging from the
classic d-vector model to the most recent advancements. Finally, we present the mostly
employed scoring techniques within the DNN-based ASpR framework.

2.3.1 Feature extraction: hand-crafted features

Before we dive into the feature extraction process of handcrafted features, we �rstly
describe the Voice Activity Detection (VAD) technique followed by other preprocessing
steps that precede features extraction. Subsequently, we show particular emphasis
on the most commonly used features, namely Filter-banks and MFCC. This focus is
justi�ed by our adoption of these features in this work. The whole process is illustrated
by Figure 2.3, and further described in the following.

Figure 2.3: Preprocessing and feature extraction block diagram

Voice Activity Detection

It is important to note that VAD serves as a fundamental preprocessing step not only in
DNN-based ASpR but also in general speaker recognition systems. VAD is a technology
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used in speech processing to distinguish between speech and non-speech segments in
an audio signal [25]. VAD algorithms typically consider factors such as energy levels,
spectral features, and amplitude variations over time. When speech is detected, VAD
marks the corresponding segments as active or "voice," and when non-speech or silence
is detected, it marks those segments as inactive [1]. In ASpR systems, VAD helps
reduce the amount of irrelevant information, making it easier for the system to focus
on the meaningful speech content. The most simple and widely used technique is
detection based on energy, namelyEnergy-basedtechnique.

Preprocessing

A preliminary preprocessing stage is essential to prepare the speech signal [26] before
feature extraction. This stage primarily involves the conversion of the continuous time-
domain speech signal into discrete frames. It is composed of three steps as shown in
Figure 2.3. The whole process is described as follows:

ˆ Pre-emphasis: In voiced sections of speech, the energy decreases as the frequency
increases. Pre-emphasis counteracts this e�ect by increasing the energy in those
segments by employing a high-pass �lter with a coe�cient denoted as� .

ˆ Framing: The speech signal is dissociated into short segments,Frames, usually
of 25 milliseconds (ms). The overlap between every two consecutive frames is
generally 10 ms.

ˆ Windowing: Each frame is multiplied by a smooth window function to minimize
the signal discontinuities at the beginning and end boundaries. The most popular
window function is Hamming.

Filter-bank and MFCC extraction

Various types of features that describe the short term spectral content, have been pro-
posed in the literature [20]. Linear Prediction Coe�cients (LPC) [27], Perceptual Lin-
ear Prediction (PLP) coe�cients [28] and Mel-Frequency spaced Cepstral Coe�cients
(MFCC) [29] were widely used and are shown to be e�ective for speaker recognition
systems. MFCC is the most commonly used feature extraction method. The extraction
steps of these features shown in Figure 2.3 are described as follows [26]:

ˆ Fast Fourier Transform (FFT) : The FFT is applied to transform the speech
signals from the time domain into the frequency domain. This transformation
yields the magnitude frequency response of each frame, which represents how the
energy is distributed across di�erent frequencies.

ˆ Mel-scaled �lters: The N magnitude coe�cients are converted to a fewerK
Filter-bank outputs. These �lters reduce the detailed spectral information in-
cluding noise, and retain only e�cient representation. Typically, triangular �l-
ters are employed for this purpose, speci�cally with a Mel scale. The Mel-scale
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aims to replicate the non-linear perception of sound by the human ear, priori-
tizing discrimination at lower frequencies and reducing discrimination at higher
frequencies.

ˆ Log Filter-bank values: The logarithm operation is applied to the Filter-bank
values. This operation serves two main purposes. First, it expands the scale of
the coe�cients. Second, it decomposes multiplicative components into additive
ones. The outcome of this step is a set of Filter-bank energies, with each channel
representing energy within a di�erent frequency band.

ˆ Discrete cosine transform (DCT): This step converts the log Filter-bank spectral
values into cepstral coe�cients using DCT. The purpose of this step is to decor-
relate the Filter-banks coe�cients and provide a compact representation of the
Filter-bank resulting in the MFCC features.

One additional step to the resulting features is general feature normalization. In
the log-spectral (i.e. Filter-banks) and cepstral domains (i.e. MFCC), features are
prone to variations due to channel noise that becomes additive. By subtracting the
mean vector, feature sets obtained from di�erent channels become zero-mean and the
e�ect of the channel is substantially reduced [30]. This feature normalization technique
is the simplest and the mostly used among many proposed techniques in the literature
[31, 1].

This resulting spectral or cepstral sequence representation is the starting point
for almost all speech-related tasks. In the recent approaches, simple �lter-bank energy
features are shown to be more e�ective than MFCC when large neural networks are used
for modeling [32]. They are used as an input representation to many DNN approaches,
including large pretrained models, such as Whisper [33].

2.3.2 Feature extraction: self-supervised features

With the recent growth in computational resources and capabilities, there has been
notable advancement in the development of deep learning feature extraction models,
especially in the domain of speech recognition. These features have surpassed conven-
tional handcrafted features by generating highly abstract embedding features directly
from audio waveform. These extracted features provide a rich and powerful repre-
sentation for various subsequent tasks, including speaker recognition. One important
advantage of these models is that they learn patterns from large amount of unlabeled
audio data in a self supervised learning(SSL). The most popular models are Wav2vec
and WavLM that we describe as follows.

Wav2Vec

Wav2vec is a SSL model proposed by Facebook AI in 2019 [34] for automatic speech
recognition task. The goal was to train a model on huge amount of data without the
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need of transcriptions. This model was then trained by learning the di�erence between
original speech examples and modi�ed examples. Recently, in [35], the same company
proposed a second version of this model, Wav2vec 2.0, with more complex architecture
that includes up to 317 million parameters. The main idea was to mask some parts of
the speech input and then try to predict them. This process allows to capture many
aspects of the speech signal including speaker traits, noise, etc.

Figure 2.4: The architecture of wav2vec 2.0 model1

The model architecture presented in Figure 2.4 is composed of three main modules:
the latent feature encoder, the quantization module and the context network. Given a
raw waveform of the speech audioX , for each 25 ms, a multilayer convolutional neural
network generates latent audio representationsZ of 512 dimensions. These represen-
tations are then discretized into speech units learned in the quantization module [36].
The transformer encoder [37] takes the latent feature vector with approximately half
of the audio representations being masked. Finally, the output of the transformer is
used to solve a contrastive task. This task pushes the model to predict the correct
discretized speech units for the masked parts of the speech. Table 2.1 illustrates the
number of parameters of Wav2vec 2.0 based on the variant [34]. Wav2vec 2.0 Base
model comprises around 95 million parameters, while the large model uses� 316.62
million parameters.

WavLM

WavLM, introduced recently in [38], represents a SSL model designed to acquire a
comprehensive speech representation that encapsulates various speech characteristics.
The fundamental concept underlying WavLM involves masking noisy or overlapped seg-
ments within speech data, after which the model tries to predict the original speech, ef-
fectively performing both denoising and prediction tasks. Similar to Wav2Vec, WavLM

1https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html
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adopts a transformer-based architecture as shown in Figure 2.5. Similarly to Wav2vec
2.0, the scale of WavLM varies, as shown in Table 2.1, with WavLM Base and WavLM
Base+ models comprising 94.70 million parameters, while the larger WavLM Large
model features� 316 million parameters [38].

Figure 2.5: The architecture of WavLM model [38]

The remarkable success achieved by WavLM and Wav2Vec models for feature ex-
traction is mainly driven by their ability to handle unannotated data, the complexity
of their architectures and the huge number of parameters they incorporate. As is of-
ten the case, Table 2.1 shows that larger models tend to exhibit increased complexity
and improved accuracy [39]. Notably, as shown in Table 2.1, WavLM outperforms the
performance of Wav2Vec 2.0 in speaker recognition task on SUPERB benchmark [40].

Table 2.1: Comparison of speaker recognition performance in terms of EER (de�ned
later in this chapter) between pretrained Wav2vec and WavLM [38] on SUPERB Bench-
mark [40]

Model # of parameters EER (lowest is best)
WavLM Base 94.7M 4.69%

WavLM Base+ 94.7M 4.07%
WavLM Large 316.6M 3.77%

Wav2vec 2.0 Base 95.04M 6.02%
Wav2vec 2.0 Large 317.38M 5.65%

2.3.3 DNN speaker model

In the domain of speaker recognition, there has been a dedicated e�ort to employ DNN
models for the direct modeling of speaker characteristics. Typically, these models
use spectral or cepstral features extracted from audio waveform as their input (as
described in Ÿ2.3.1), and they are speci�cally trained for a speaker classi�cation task
(Figure 2.2). The main idea behind these models is to generate �xed-length speaker
embeddings for the variable length speech utterances of the speaker. For this purpose,
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they adopt a common framework with distinct network architectures, consisting of
three key components as illustrated in Figure 2.6. 1) The DNN frame-level extractor
which extracts temporal representations from input features. 2) A pooling layer that
leverages the information from all the frames to obtain an utterance-level representation
of �xed-length, namely the speaker embeddings, 3) A speaker classi�er that takes these
embeddings as input and use them to classify between di�erent speaker classes during
the training phase.

Figure 2.6: The components of a DNN speaker model

In the following, we provide an overview of the architectural designs and models
proposed in the literature for each component of the speaker recognition framework.

DNN-based extractor architectures

ˆ D-vectors: One of the earliest DNN-based speaker embeddings are,d-vectors,
proposed in 2014 by Google [41] for a text-dependent speaker recognition task.
The model is mainly a feed-forward neural network of multi layers that inputs
Filter-banks features of training frames that are stacked together with their sur-
rounding context frames. This network di�ers from the multi-layer perceptron
(MLP) in that it uses a maxout DNN [42] which is a strategy that consists in
dropping out some neurons from the layers of the network for optimisation rea-
sons. The speaker representation, denoted d-vector, is therefore obtained by
accumulating the activations of the last layer for each frame.

ˆ Time Delay Neural networks (TDNN): Instead of stacking frames at the input of
the network, a TDNN architecture is introduced in [43] to handle short-term tem-
poral context. TDNN is a kind of one dimensional convolutional neural network.
Compared to DNN-models, the architecture of TDNN is designed to handle the
context of the input cepstral acoustic features of frames (i.e. MFCC). It was
�rstly used in speech recognition in [44]. As described in Figure 2.7 (with gray
lines), at each layer of the network, a value is computed using a window of 5
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Figure 2.7: TDNN computation diagram [43]

frames, then 4 frames, then 7 frames and then 10 frames respectively for layers 1,
2 , 3 and 4. The network starts by considering a local context at the bottom lay-
ers and as long as we achieve upper layers of the network, the considered context
become larger. However, as can be noticed, due to the huge amount of compu-
tations during training, a subsampling strategy was applied to the layers of the
network [43]. This strategy consists in discarding some connections between the
units of two successive layers in order to both reduce computation and consider
larger context from precedent layers. This subsampling strategy is clearly shown
in Figure 2.7 with the red lines across the layers of the TDNN architecture. This
architecture allows to capture local and long term temporal correlation between
speech frames. The number of parameters involved in the training of the TDNN
model are 7.7 million parameters.

TDNN architecture becomes one of the most popular structure for speaker recog-
nition [43, 45]. It is then adopted by the well known x-vector [46, 47], with the
con�guration shown in Figure 2.8. X-vector system takes as input Filter-banks
of 24 dimensions with a frame-length of 25ms, mean-normalized over a sliding
window of up to 3 seconds. Given a speech utterance ofT frames, the �rst �ve
layers consider increasingly temporal context for frame numbert. Subsequently,
a statistical pooling layer leverage information from all T frames and calculates a
mean and a standard deviation. The output of this layer represents the speaker
embedding, namely the x-vector.

Figure 2.8: TDNN architecture con�guration for x-vectors [47]
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Motivated by the success of x-vectors, many variants based on an improved
TDNN architecture are later developed. For instance, an extended TDNN ar-
chitecture (E-TDNN) was introduced in [48], which outperforms the x-vector
baseline [47]. It is trained with a slightly wider temporal context than TDNN
[49, 50]. The authors in [51] proposed factorized TDNN (F-TDNN) to reduce the
number of parameters for training. It aims to factorize the weight matrix of each
TDNN layer into the product of two low-rank matrices. It also constrains the
�rst low-rank matrix to be semi-orthogonal to prevent loss of information when
reducing dimensions [49, 50]. Some components were combined with TDNN ar-
chitecture for better results. For example, [52] added a statistic pooling after each
layer of the TDNN architecture to manage the variation of temporal context in
the frame-level transformation. Many works combined TDNN with other DNN
models to enhance performance and capture more information at di�erent levels
such as TDNN-LSTM [53], TDNN-BLSTM [54], CNN-LSTM-TDNN [55].

ˆ Residual networks (ResNet)[56]: The main di�erence between ResNet architec-
ture and a standard multi-layer CNN is the skip connections orIdentity shortcut
connections added to the CNN blocks, as shown in Figure 2.9. It allows the
model to skip one or more layers. The main goal of these skip connections is to
address the problem of gradient vanishing due to very deep neural network. A
residual block is composed of two 2-dimensional CNN layers separated by a Rec-
ti�ed Linear Unit (ReLU) activations. The input of the residual block is added
to its output in order to constitute the input of the next residual block.

Figure 2.9: Identity Shortcut connection [56]

Figure 2.10 describes the architecture of a variant of ResNet, ResNet34, used
to extract x-vectors [57]. The input of this ResNet is 40 Filter-banks features.
Filter-bank features are very commonly employed as input for ResNet by most
of the works [57, 58, 59, 60, 61]. The �rst step before entering the common layer
behavior is Conv2D-1, consisting of a convolution, batch normalization and max
pooling operation. Then the 4 residual blocks all follow the same strategy. They
perform 3x3 convolution with a �xed feature map dimension [32, 64, 128, 256]
respectively, bypassing the input every 2 convolutions. Each convolutional layer
is followed by a batch normalization layer and a ReLU activation function.

Many works investigated over ResNet in speaker recognition �eld such as [62, 63,
64, 65, 66]. Some other works modi�ed over the baseline ResNet architecture of
x-vectors [60, 61, 65, 66, 67] focusing both on dealing the dependency between
frames as well as the interdependence of the channels (i.e. the feature dimension).
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For instance, [68] introduced a block to the ResNet namedSqueeze and excitation
(SE) block. The idea behind this block is to learn the interdependence between
the channels, and give weights to some channels in order to highlight informative
features and remove less useful ones [69, 70].

Figure 2.10: ResNet con�guration for x-vectors [57]

ˆ ECAPA-TDNN : It is a variant of TDNN architecture that incorporates skip
connection property of ResNet and the SE blocks to enhance the performance
of the x-vector. It is �rstly proposed in [71]. It aims to produce �ner-grained
features extracted at multiple scales of the network. Figure 2.11 illustrates the
structure of SE-Res2block, being the main component in the ECAPA-TDNN
architecture.

Figure 2.11: Structure of the SE-Res2Block of the ECAPA-TDNN architecture [71]

For each frame, two dense layers are enveloping a dilated convolutional layer that
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is meant to gradually constructing the temporal context. The �rst dense layer
serves for feature dimensionality reduction while the second one restores the orig-
inal dimension of features. This is followed by a SE-block to model interdepen-
dency between channels. As the number of channels increases, the performance
of ECAPA-TDNN are shown to be better [71, 72]. Each SE-Res2block involves a
residual connection. As shown in Figure 2.12, features from each SE-Res2block
are then aggregated in a Multi-layer Feature Aggregation (MFA) fashion.

Figure 2.12: The architecture of ECAPA-TDNN [71]

ˆ MFA-Conformer : It is proposed by [73] to handle local and global context fea-
tures. Its architecture is based on a combination of Transformer and CNN. Given
that the transformer could e�ectively capture long term context, the CNN is
shown to be very good at capturing details about features and local context.

Table 2.2 illustrates a comparison of speaker recognition performance between the
di�erent architectures of speaker model on VoxCeleb1-O dataset [57]. WavLM large
model presents the best performance on VoxCeleb1-O compared to other models. MFA
conformer is shown to outperform ResNet and ECAPA-TDNN. Additionally, the use of
Wav2vec 2.0 features as input to TDNN [74] is proved bene�cial for speaker recognition
performance.

21



Table 2.2: Comparison of speaker recognition performance in terms of EER between
di�erent model architectures on VoxCeleb1-O

Model # of parameters EER (lowest is best)
TDNN 7.7M 1.46%[43]

ResNet34 23.2M 1.03%[73]
ECAPA-TDNN 20.8M 0.82%[73],1.01%[38]
MFA-Conformer 20.5M 0.64%[73]

Wav2vec 2.0-TDNN(XLS-R 1B[75]) 265M 0.69%[74]
WavLM Base+ 94.7M 0.84%[38]
WavLM Large 316.6M 0.617%[38]

Pooling layers

The pooling layer serves as an intermediate between frame-level layers and utterance-
level layers of the DNN-based speaker models. It aims to aggregate, in some way, all
variable length temporal information to produce �xed-length representation, namely
speaker embedding. In the following, we present the most used pooling layers in DNN-
based speaker model.

ˆ Statistical pooling: This is the most typical and classical pooling method that
appeared with the x-vectors architecture[47, 57]. It computes the mean and
the standard deviation of the frame-level representations, concatenates them and
propagates them through the segment-level layers of the network. The work in
[76] used di�erent pooling layers such as statistical measures (maximum, mean,
standard deviation, skewness, kurtosis...) to evaluate ResNet performance for
di�erent classi�cation tasks. The authors in [77] found that the use of standard
deviation in pooling layer improves the results, highlighting that dynamic infor-
mation encoded by standard deviation not only contains the phonetic information
but also provides speaker-dependent information.

ˆ Attentive pooling: In the frame-level representations, [78, 79] showed that only
some set of features are more involving in discriminating speakers than others.
Thus, many works incorporated attention mechanism in the pooling layer to
give more importance to some frames with respect to others. It computes at-
tentive weights for each frame, while focusing on the most important frames to
discriminate speakers. [80] introduced an attentive statistics pooling method,
which computes importance-weighted standard deviations and weighted means
of frame-level features using attention mechanism. Following the same mecha-
nism, other works such as [62, 81, 82] mainly focused to improve the quality
of the aggregation of the pooling layer for better performance. The attention
mechanism drives and orients temporal information in the speaker classi�cation
direction which adds more interpretability to the speaker embedding regarding
temporal information.
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Classi�er loss functions

DNN-based speaker recognition systems usually adopt classi�cation-based objective
functions to classify between classes of speakers. The utterance-level representation
extracted from pooling layer is propagated through a fully connected layer for the
classi�cation step.

ˆ Softmax: The Softmax loss is typically used for deep embedding. For instance,
in x-vectors[46] and d-vectors [41] extractors, the objective function used is the
minimum cross entropy which takes the Softmax as the output layer.

ˆ Angular Softmax: The Softmax loss is very e�ective in maximizing the between-
class distance, but lacks constraints to minimize the within-class variance. A
new variant of Softmax was proposed in the �eld of face recognition [83, 84],
namely angular softmax(ASoftmax). It introduces an angular margin between
embeddings of di�erent classes [85]. In a study conducted by Xiang et al. [86],
the importance of three di�erent Angular-based losses in producing distinctive
speaker embeddings was investigated. ASoftmax losses o�er several advantages
over the softmax loss [87]; they transform the learned feature distribution in an
angular fashion, which is well suited with similarity scoring methods like cosine
similarity during speaker recognition inference. Furthermore, these losses help
minimize within-class variance by introducing an angular component to have bet-
ter control over the decision boundaries between speaker classes. Consequently,
ASoftmax loss has become the state-of-the-art choice for many DNN-based mod-
els dedicated for speaker recognition task.

2.3.4 Scoring

The scoring component evaluates the similarity between two speaker embeddings stem-
ming from two speech utterances, and then compares this score with a threshold. Linear
Discriminant Analysis (LDA), Probabilistic Linear Discriminant Analysis (PLDA), and
cosine distance are the widely used scoring techniques for speaker recognition.

ˆ Linear Discriminant Analysis (LDA) : LDA is a supervised dimensionality reduc-
tion and classi�cation technique. It aims to �nd a linear combination of features
that is more e�ective in discriminating between classes. It projects the data to
a lower dimensional subspace in a way that it maximizes the variability between
classes and minimizes the variability within the classes [88]. The covariance ma-
trices of between (Sb) and within classes (Sw) are illustrated by Equation (2.1)
and Equation (2.2) respectively.

Sb =
1
S

SX

s=1

(� s � � )( � s � � )T (2.1)

Sw =
1
S

SX

s=1

1
ns

nsX

i =1

(x i;s � � s)(x i;s � � s)T (2.2)
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WhereS is the total number of speakers,� s is the mean of samples at the speaker
s, � is the mean of all samples,x i;s is an utterance belonging to a speakers and
ns if the number of utterances of speaker s. The projections of LDA are found
by optimizing Equation (2.3) [89]:

V =
AT SbA
AT SwA

(2.3)

Where A is a projection matrix.

ˆ Probabilistic Linear Discriminant Analysis (PLDA) : PLDA is a probabilistic vari-
ant of LDA that handles unseen classes [90]. PLDA assumes that speech samples
are following a Gaussian distribution[91]. A classical Gaussian PLDA model
implies that a speaker embedding is constructed as follows:

x = m + Vy + z (2.4)

Where m is the mean of the speaker embeddings,y is the speaker latent vari-
able, and z is normally distributed with zero mean and full covariance matrix.
To estimate Vy and the covariance ofz, PLDA uses Expectation maximization
algorithm [92].

For a speaker recognition task, the veri�cation score between two speaker em-
beddings is therefore calculated using the log-likelihood ratio of two hypotheses.
H0 assuming that both embeddings are coming from the same speaker, andH1

assuming that they are coming from di�erent speakers. This score is modeled as
follows:

score= log
p(x1; x2jH0)
p(x1; x2jH1)

(2.5)

Where x1 and x2 are two speaker embeddings. If the score is greater than the
threshold, then both embeddings come from the same speaker, otherwise, the
speakers are di�erent. The PLDA assumes a general format of speaker embed-
dings as in Equation. (2.4).

From Equation (2.5), and Equation (2.4), the PLDA score is calculated as fol-
lowing:

PLDA score = logN (

"
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x2

# "
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� logN (
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#
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(2.6)

where � tot = V VT + � , � ac = V VT and m is the average of all speaker embed-
dings.

ˆ Cosine distance: The cosine distance is mainly computed from the cosine sim-
ilarity. Cosine similarity determines the angle between two vectors in a high-
dimensional space. In [93] the cosine similarity measure-based scoring was pro-
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posed for speaker recognition. Given a comparison pair, the cosine score com-
presses two speaker embeddings into one single value. Cosine similarity is in-
versely proportional with cosine distance and it can be written as:

cos(� ) =
A:B

jjAjj :jjB jj
(2.7)

In contrast to PLDA, cosine similarity scores do not necessitate the training of a back-
end model. With DNN models trained with a ASoftmax objective function, it has been
found that Cosine similarity outperforms PLDA scoring for speaker recognition (Table
2.3) which is not the case for i-vectors [93]. This is promoted by the use of ASoftmax.
[94] found that the PLDA is more robust to test data with di�erent acoustic conditions
and domain mismatch as illustrated in Table 2.3.

Table 2.3: Comparison of scoring backends of ResNet model using EER for two test
datasets

Scoring Dataset EER (lowest is best)
Cosine VoxCeleb1 1.06% [94]
PLDA VoxCeleb1 1.86% [94]
Cosine CNCeleb1(domain mismatch) 10.11% [94]
PLDA CNCeleb1(domain mismatch) 8.90% [94]

2.4 Evaluation protocols and metrics

The speaker recognition system is evaluated based on the accuracy of the speaker
model. This accuracy can be determined from the false acceptance ratio (FAR) and
false rejection ratio (FRR). FAR (Equation (2.8)) represents the proportion of times
the system incorrectly accepts an input as a match (i.e. target). Conversely, FRR
(Equation (2.9)) is the percentage of times the system erroneously rejects an input
as a non-match (i.e. non-target or imposter) when it is an actual match trial. In a
speaker recognition system, the process involves comparing two speaker embeddings
stemming from two speech samples by calculating a similarity score. To reach a con-
clusive decision, the system employs a prede�ned threshold. This threshold serves as a
reference point for comparing the scores and determining whether the comparison pair
corresponds to a target or an imposter.

False Acceptance Rate (FAR)=
Number of FA errors

Number of non-target trials
(2.8)

False Rejection Rate (FRR)=
Number of FR errors

Number of target trials
(2.9)

The Equal Error Rate (EER), the Detection Cost Function (DCF) and the Detection
Error Trade-o� (DET) curve are commonly used evaluation metrics in the speaker
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recognition2 literature. A description of these evaluation metrics is provided in the
remaining of this section.

Figure 2.13: Relationship between FAR, FRR and EER

2.4.1 Equal Error Rate

The EER determines a posteriori the threshold value where false acceptance rate and
its false rejection rate are equal. The point at which the rates are intersected, as shown
in Figure 2.13, is referred to as the equal error rate (EER). The lower the EER value,
the better the recognition system.

2.4.2 Detection Cost Function

The Detection Cost Function (DCF) was introduced by NIST, where each type of error
can be penalized di�erently [95]. In scenarios like banking authentication systems,
where security is of paramount importance, a system that exhibits a bias towards
rejecting a target user might be preferable than the one that easily accepts users. As a
result the DCF is considered as application dependent measure. The DCF is computed
as the sum of weighted sum of FRR and FAR for a given threshold� as follows:

DCF (� ) = CF R PF R (� )Ptarget + CF A PF A (� )(1 � Ptarget ) (2.10)

Where CF R and CF A are the penalties of FR and FA errors respectively.Ptarget is the
prior probability of target speaker. PF R is the probability of FR given that the pair is
target and the threshold is� and PF A is the probability of FA given that the pair in
non target and a threshold� .

2The Log Likelihood Ratio Cost (C l lr ) is also a commonly used metric and it is de�ned in the next
chapter.
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2.4.3 DET curve

Figure 2.14: Plot of DET Curves for a speaker recognition evaluation [96]

The DET curve, as introduced in [96], serves as a graphical tool for illustrating the
trade-o� between FAR (i.e. False alarm probability) and FRR (i.e. Miss probability),
as illustrated by Figure 2.14. What sets it apart is its use of a uniform scale for both
axes, which results in a spread-out plot and enhanced di�erentiation among systems
with varying performance. As a system's performance improves, the curve gradually
moves closer to the origin. Similarly to DCF, the FAR can be minimized by increasing
the detection threshold to a signi�cant level, this comes at the cost of a higher FRR.
This is generally very dependent on the application of the system [95].

2.5 Summary

In this chapter, we provided an overview of various state-of-the-art approaches used in
each component of the speaker recognition framework. This comprehensive summary
allows us to establish the foundational choices underpinning our work for each stage of
the ASpR framework.

In the context of the feature extraction stage, we highlighted that traditional hand-
crafted features o�er a user-friendly and computationally e�cient alternative when
compared to deep speech representations such as WavLM and Wav2vec. Additionally,
these handcrafted features are more readily interpretable and explicit, in contrast to
deep representations, which encode a vast amount of speech-related information that
remains abstract and largely unexplored. In the realm of speaker modeling stage, we
detailed the progression of DNN-based methods designed to extract speaker embed-
dings. For the sake of performance, these models have been embracing progressively
complex architectures and increasing number of parameters to e�ectively address the
diverse forms of speech variability and deliver better results. Nevertheless, they of-
ten sacri�ce the transparency of information �ow and the comprehensibility of their
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architecture.

In line with the state-of-the-art DNN speaker recognition systems, this thesis adopts
Filter-bank features in the initial version of embeddings extraction phase. As long as
the main focus of this thesis is providing informing and interpretable ASpR system,
the initially proposed solution of our work is based upon the baseline ResNet archi-
tecture with a standard deviation pooling and ASoftmax objective. From a critical
perspective, the choice of ResNet is may be not the most accurate, but it is thought
to be a good compromise between performance and complexity (Table 2.2). Also, we
agree that employing of an attentive pooling instead of a statistic pooling could be
more advantageous in terms of interpretability. Introducing attention at this stage
would enhance interpretability and facilitate the localization of important frames for
the training task. This remains a consideration for future perspectives.
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Chapter 3

Forensic application of automatic
speaker recognition
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In the previous chapter, we provided an overview of the fundamentals of ASpR
systems, highlighting the remarkable progress of DNN-based models to achieve greater
performance. In the present chapter, our focus shifts to the practical application of
ASpR in the speci�c �eld of forensics. We concentrate on adapting ASpR systems to
the Bayesian framework to assess the value of speech evidence in the judicial process.
Subsequently, we highlight the central role of the Likelihood Ratio and its interpretation
by the court. Lastly, we point out the challenges associated with the use of ASpR
models in forensic applications.
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3.1 Forensic Automatic Speaker Recognition

Forensic science, is a multidisciplinary �eld that involves the application of various sci-
enti�c and investigative techniques to gather, analyze, and interpret physical evidence
found in a crime scene. The role of forensics is the provision of accurate and reliable in-
formation that can be used in legal proceedings.Forensic Speaker Recognition (FSpR),
also referred to asForensic Voice Comparison, is the procedure of determining whether
a speci�c individual, namely the suspect speaker, can be identi�ed as the source of a
provided voice recording, known asthe trace. In this practice, a forensic expert ex-
amines the two recordings, conducting a comparative analysis [97]. Then, the value of
this evidence is reported in the form of a Likelihood Ratio (LR).

FSpR addresses the challenges associated with forensic speech material, which in-
troduces additional complexities to the general variability of speech. These challenges
include short voice records, low voice quality, background noise, and uncontrolled foren-
sic conditions such as screaming over the phone or a speaker disguising their voice [98]
(refer to Figure.3.1). Additionally, FSpR aligns with the speci�c requirements for
presenting the value of evidence in a courtroom setting. Speci�cally, it requires the
adaptation of the general speaker recognition process to the Bayesian framework, often
seen as the "logically and legally correct" framework [99] for the court's interpretation
of the weight or the value of evidence.

Figure 3.1: Speaker recognition Vs. Forensic Speaker Recognition

Forensic Automatic Speaker Recognition (FASpR)refers to the use of ASpR meth-
ods by forensic practitioners in the process of evaluating the value of evidence [100].
ASpR models aim to compare two recordings and return a score. This score is used
in ASpR systems to make decisions about whether the two recordings belong to the
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same speaker. In a forensic context, this score is used to estimate the LR under the
Bayesian framework (Figure.3.1), assessing the value of evidence. It is essential to en-
sure that the �nal decision is ultimately deferred to the court only. FASpR �eld relies
and usually follows the progress of ASpR methods developed in non-forensic context.
From the use of GMM-UBM models [101, 102] to the use of x-vectors [103] until the
very recent use of ECAPA-TDNN [71] in a real forensic voice comparison case [104,
105]. Despite the limited literature on the use of DNN models in FSpR [106, 107,
108], some software solutions based on DNN-based approaches have been developed
and adopted by legal institutions. For instance, VOCALISE, a commercial product
of Oxford Wave Research introduced in 2012 [109], has incorporated x-vectors [47] in
its latest version released in 2019 [103]. Notably, this biometric software has received
support and collaboration from institutions such as the German Bundeskriminalamt,
the Netherlands Forensic Institute (NFI), and the UK Ministry of Defence. Another
commercial product, Phonexia Voice Inspector [110], uses DNN models to provide po-
lice forces and forensic experts with a speaker recognition tool. This system has been
used and evaluated by the German Federal Criminal Police1. However, while automatic
methods are increasingly integrated into the judicial process, its use within the forensic
context should not be taken for granted and requires a high level of caution.

In the next sections, we further detail the forensic �eld, presenting the frequentist
paradigm and the shift toward the Bayesian paradigm actually employed by FSpR
systems. Subsequently, we draw attention to the centrality of the LR, including the
approaches for its estimation and its interpretation in the legal context. Finally, we
highlight the potential risks associated with the use of automatic and AI-based ap-
proaches in forensics, emphasizing the need for cautions.

3.2 Bayes paradigm assessing the value of evidence

Two common strategies for assessing the evidence in a forensic context are the frequen-
tist and Bayesian approaches. In the speci�c forensic context, such approaches serve to
evaluate the value of evidence from crime scene and report the conclusions to the court.
In this section, we mainly describe both approaches, while highlighting the paradigm
shift from frequentist to Bayesian framework followed by the Bayesian interpretation
of the evidence by the court.

3.2.1 From frequentist to Bayesian approach

According to [111], the key distinction between Bayesian and frequentist approaches lies
in their focus: the Bayesian approach considers the probability of hypotheses, whereas
the frequentist approach solely deals with the probability of observed data.

In the frequentist approach, a single hypothesis is examined, positing that the
sample belongs to a speci�c dataset. It is then compared to a "null hypothesis" that

1https://ondatashop.com/phonexia-voice-inspector/
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assumes the data is a result of random chance. The probability of this event occurring
by chance is calculated. If this probability is exceptionally low (below a predetermined
threshold), the null hypothesis is rejected. This decision supports the hypothesis under
investigation [101]. The frequentist approach has faced criticism from proponents of
the Bayesian methodology, as discussed in [111, 112, 99]. One fundamental challenge
with the frequentist approach is that forensic experts must make assumptions about
prior probabilities, which are often based on convention instead of considering the
speci�c circumstances of the case. An "uninformative prior" is frequently employed,
assuming that each possible explanation is equally likely. Furthermore, the choice of
the alternative hypothesis, which represents the odds against a match occurring by
chance, may not always be appropriate for a given case.

In contrast, in the Bayesian approach, when interpreting evidence, it is important
to consider the context [113] and not just focus on one hypothesis. Instead of solely
looking at the probability of one scenario (i.e the questioned sample coming from
the suspect), the expert must also think about the probability of the evidence in the
context of alternative scenarios (i.e. the questioned sample coming from someone else).
This helps in evaluating how strongly each scenario is supported by the evidence.
This approach is now the commonly used among all forensic disciplines, becoming the
standard framework [99].

3.2.2 The Bayesian interpretation and the court

In a FASpR scenario, the court is faced with a decision-making under uncertainty
[114]. The judge needs to know how much likely the di�erences or similarities between
two speech samples (i.e. the evidence) prove that the suspect speaker has or has not
produced the trace sample [97, 114]. This is determined by the ratio of the conditional
probability at Equation (3.1).

P(HpjE)
P(HdjE)

(3.1)

ˆ Hp represents the prosecution hypothesis which states that the two speech sam-
ples under comparison are coming from the same source speaker.

ˆ Hd is the defence hypothesis which states that the two speech samples belong to
di�erent speakers.

ˆ E is the evidence from the crime scene like DNA trace, a vocal recording...

The solution of this statement is given by the Bayes theorem in Equation (3.2)
which says that the posterior odds are determined from a combination of the prior
odds (i.e. the use case related information) and a new data which is the questioned
sample. Evett et.al [113] states that this equation is". . .the fundamental formula of
forensic science interpretation".
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P(HpjE)
P(HdjE)
| {z }

Posterior odds (Role of the court)

=
P(EjHp)
P(E jHd)
| {z }

Likelihood ratio (Role of the expert)

�
P(Hp)
P(Hd)
| {z }

Prior odds (Given by the court)

(3.2)

The prior odds in Equation.3.2 represent the view on the prosecution (Hp) and the
defence (Hd) hypotheses before seeing the evidence. The posterior odds can be seen
as an update of the prior odds in light of knowledge of the scienti�c evidence. This
update is done by multiplying the prior odds by the LR corresponding to the evidence.
The LR is the ratio of the likelihood that the trace and suspect speech samples have
the same source, and the likelihood that they come from di�erent sources.

The LR estimate is the responsibility of the forensic expert and it summarizes his
statement (Equation.3.2). Then, it is up to the court to evaluate its worth and decide
whether to take it as an aid to their decision or not [114]. The court is responsible for
estimating the prior odds based on the case related information and then determines
the posterior odds using the LR provided by the expert. The expert is not able to make
an estimation of the probability of a hypothesis such as these two samples were/were
not spoken by the same speaker using only the evidence, which is stressed out by many
researchers in the �eld. For instance, Aitken in [115] states:

"It is very tempting when assessing evidence to try to determine a value for
the probability of guilt of a suspect, or the value for the odds in favour of guilt
and perhaps even reach a decision regarding the suspect's guilt. However,
this is the role of the jury and/or judge. It is not the role of the forensic
scientist or statistical expert witness to give an opinion on this. . . . It
is permissible for the scientist to say that the evidence is 1000 times more
likely, say, if the suspect is guilty than if he is innocent."

This is also supported by Champod and Meuwly in [99] that"the analysis of the
scienti�c evidence does not allow the scientist alone to make an inference on the identity
of the speaker". It is therefore the role of the court to make its decisions based on the
strength of evidence reported by the forensic expert. Rose also agreed in [116] that
"It is neither logically nor legally correct for the forensic expert to attempt to state the
probability of a hypothesis given the evidence".

3.3 Centrality of likelihood ratio

Within the forensic science community, the LR is commonly adopted as the"logically
and legally correct"framework to evaluate and present the strength of evidence to the
court [99, 117, 118]. In this section, we focus on the interpretation of the LR followed
by the commonly employed methods for its computation, primarily based on similarity
scores, derived from ASpR models. Lastly, we describe the evaluation of performance
of these LR methods.
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3.3.1 LR interpretation

The LR is the statement of the support degree for the prosecution hypothesis against
the defence hypothesis [119]. Referring to Equation(3.2), the numerator of the LR,
P(EjHp), quanti�es the degree of similarity between the trace and the suspect samples,
while the denominator,P(E jHd), quanti�es the degree of typicality of both the trace
and suspect samples in the relevant population. As the similarity between two samples
increases, the likelihood of them originating from the same speaker also increases,
resulting in a higher ratio. However, this must be counterbalanced by their typicality.
The more typical the samples, the more probable it is that they were randomly selected
from the relevant population, leading to a lower ratio [114]. The value of the LR is,
therefore, a result of the interplay between these two factors: similarity and typicality
[99].

The LR value is the degree of support of one hypothesis versus its alternative. In
simpler terms, if theLR > 1 then the evidence supports the prosecution hypothesis, but
if the LR < 1 the evidence supports the defence hypothesis. Furthermore, assuming
a LR = 3, this means that the evidence supports the prosecution hypothesisHp three
times more than the defence hypothesisHd. Thus, a single LR value is self su�cient,
in contrary to a similarity score from ASpR system, that may have a meaning only if
it is compared to a prede�ned threshold or to another set of scores. It is important to
note that the LR supports a belief about the hypotheses, but it is in no case a belief
about the hypotheses [120, 119]. For this reason, with the LR only, one could not make
any decision.

3.3.2 LR estimation from similarity scores

Across di�erent branches of forensic, the estimation of LR could be performed mainly
by two methods: score-based approach [121, 122, 123] or feature-based approach [121,
123, 122, 124, 125]. Feature-based approach, also referred to as the direct method [100,
101], calculates the LR as the ratio of two density functions of the feature vectors of
the comparison pair directly under prosecutionHp and defenceHd hypotheses. An
example of the use of this approach in FASpR is the traditional i-vector modeling
followed by PLDA scoring described in Ÿ2.3.4 [100]. Score-based approach estimates
the LR as the ratio of the two likelihoods of the scores underHp and Hd hypotheses.

In FASpR systems, the most commonly used approach is score-based, because of
its ease of implementation and its robustness face to feature variations. It is composed
of two main steps: 1) a similarity score is calculated between two representations, the
trace sample and the suspect sample, extracted using any ASpR system, 2) the score
is transformed into a likelihood ratio [120]. This approach could be easily plugged into
any DNN-based ASpR model that outputs a score. The transformation of scores to LR
values could be done by three main methods described and further detailed as follows.

ˆ Probability density estimation: LR computation in forensics has been classically
performed modeling the hypotheses-conditional distribution of the scores (i.e.
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univariate distributions under each hypothesis) [101]. It is described mathemat-
ically as follows:

LR =
P(SjHp)
P(SjHd)

(3.3)

The probability density function P(SjHp) is the intra-variability distribution. Its
evaluation gives a measure of the probability density of observing the evidence
under Hp. The P(SjHd) in the denominator is the inter-variability distribution,
and its evaluation gives a measure of the probability density of observing the
evidence underHd [119]. The generally used is a Gaussian distribution [126].
This is the less recommended method for score transformation as explored in
[119].

ˆ Pool Adjacent Violators (PAV): Firstly introduced in [127], it transforms scores
into a set of LR values. PAV algorithm could be trained on a set of training scores
under prosecution and defence respectively, then apply the trained transformation
on the score of a new data. This requires ground truth labels (i.e. target/non-
target) of the training scores [119].

ˆ Logistic regression: Firstly used for LR computation in[127, 128]. It aims to
obtain an a�ne transformation by shifting and scaling a set of scores in order
to optimize an objective function. Given a set of scoreS as evidence, this a�ne
transformation can be de�ned as follows:

f lr = log(
P(HpjS)
P(HdjS)

) = a + b� s = log( O(HpjS)) (3.4)

Where O(HpjS) is the posterior odds that could be de�ned in function ofHp

only, sinceHp and Hd are complementary events. It is expressed as follows as:

O(HpjS) =
P(HpjS)

1 � P(HpjS)
(3.5)

The Bayes'theorem gives the logarithm of the LR for a given priorO(Hp):

log(LR ) = a + b� s � log(O(Hp)) (3.6)

This leads us to the logistic model:

P(HpjS) =
1

1 + e� f lr
=

1
1 + e� log(LR )� log(O(H p ))

(3.7)

The coe�cients (a; b) are learned during model training. For target scores we may
de�ne the obtained value asf t

lr = a+ b:st and for non-target scoresf nt
lr = a+ b:snt .

Then, the coe�cients are learned by makingP(HpjS) as close as possible to 1
for target trials and to 0 for non-target trials [120].

The logistic regression has been found to be more robust to over�tting and dataset
shift than PAV in forensically realistic conditions [119].
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3.3.3 Calibration of LR into well-calibrated LR

Transforming similarity scores into LRs is not enough to say that we obtained well
calibrated LRs. Additionally, the obtained LRs should be also as best calibrated as
possible. Calibration is a property of a set of LRs, where the LR is interpreted as a
measure of the weight of evidence [119, 129]. A LR system is well calibrated when
the output gives calibrated LR values [130, 131]. In contrary to the probability den-
sity estimation that often gives non calibrated LR values, PAV transformation and
logistic regression methods transform the scores into directly calibrated LRs [119].
Ill-calibrated LRs necessitates a further post-hoc step of calibration that yield a bet-
ter calibrated LRs [130]. This calibration could be also performed by either logistic
regression or PAV algorithm.

In forensic science, there are some speci�c performance metrics that are stated to
be adequate and commonly used to evaluate LR computation and calibration. The
Log Likelihood Ratio Cost (Cllr ) has been proposed in speaker recognition [127] and
then applied in forensic [132, 133] to measure the performance of LR values. The lower
is the value of Cllr the better is the performance. This value is de�ned as follows:

Cllr =
1

2:Np

X

i p

log2(1 +
1

LR i p

) +
1

2:Nd

X

j d

log2(1 +
1

LR j d

) (3.8)

Where i p and j d are summing over theNp LR values givenHp is true and overNd LR
values givenHd is true, respectively. LR i p and LR j d are the likelihood ratios derived
from test pairs known to be target and non-target comparisons respectively.Np and
Nd are the number of target and non-target comparisons respectively. In [127], PAV
algorithm is used to decomposeCllr as follows:

Cllr = Cllrmin + Cllrcal (3.9)

Where Cllrmin represents the discrimination cost of the LR method, whereasCllrcal is
the calibration cost of the system. The Cllr is referred to also asCllract which is the
actual Cllr .

3.4 On the use of automatic methods in forensic science

The use of AI models for FASpR systems is an emerging �eld progressing at a modest
rate. For instance, in the Dutch criminal justice system, FASpR has been in use at
the Netherlands Forensic Institute (NFI) since December 2018 only [134]. Before this
date, no general decision about its admissibility was required. Now, it is used in almost
a third of the forensic speaker comparison cases undertaken by the NFI [134]. Police
agencies also have already embraced FASpR systems that are unregulated and operate
as black boxes, in collaboration with technology companies. However, this raised a lot
of ethical concerns about its trustworthiness in such high-risk �eld [135, 136, 137].

In this section, we draw attention to the acceptability of all judicial parties the
use of automatic systems in the forensic context. Firstly, we recapitulate the di�erent
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positions taken by the courts regarding the general use of automatic methods in crim-
inal cases. We then emphasize the responsibility of forensic scientist when employing
automatic models to assess the strength of evidence. Lastly, we highlight the need for
caution and the requirement for interpretable and explainable AI models within the
critical �eld of forensic science.

3.4.1 Acceptability by the court

To illustrate the positions taken by the courts regarding the use of automatic AI mod-
els in the criminal justice system [137], we propose a categorization into three distinct
positions. This proposed categorization is presented in Figure 3.2. 1)Over reliance:
Certain judges blindly accept the value of evidence, even when aware that it is derived
from an automatic system. 2)No trust : Others neglect the value of evidence when
assessed using a black box method. 3)Reasonable reliance: Some other courts ex-
press concerns about the use of black box systems in criminal cases, demanding more
comprehensive explanations regarding the assessment of evidence.

One example of the �rst position is a court in Pennsylvania2 that is responsible for
reviewing a defense challenge. The court denied the defense's request for an external,
independent evaluation of the software used in the case. This is further detailed in
Ÿ.A.1.1. Another example to add here is some other courts that have also admitted a
speci�c software, asserting its reliability without providing a clear rationale for permit-
ting its use3. The courts have assumed it su�cient that the software developer claimed
to have validated the software. Further details are in Ÿ.A.1.1.

A one telling example of the second position is a ruling in 20194, described in
Ÿ.A.1.2, where a state trial judge determined that it was a mistake to rely on such
forensic evidence. The judge further proposed that any convictions stemming from the
use of this software should undergo a review. The judge underscored that the software
was essentially a "black box," since no independent expert was allowed to examine its
internal workings.

In an example showing the third position, a federal judge made an unusual decision
to compel the O�ce of the Chief Medical Examiner in New York City to reveal the
source code of its probabilistic genotyping software, which was employed for analyzing
DNA mixtures [138]. This action led to the emergence of various concerns regarding
the software's accuracy, ultimately resulting in its discontinuation [138]. Another ex-
ample5, described in Ÿ.A.1.3, in the same direction mentioned in [139] where the judge
considered that�without access to value-added equations, computer source codes, deci-
sion rules, and assumptions, teachers could not exercise their constitutionally-protected
rights to due process�.

2Commonwealth v. Foley, 38 A.3d 882 (Pa. Super. Ct. 2012)
3U.S. v. Russell, No. CR- 14- 2563 MCA, 2018 WL 7286831, at *8 (D.N.M. Jan. 10, 2018).
4People v. Thompson, 65 Misc. 3d 1206, 2019 N.Y. Slip Op. 51521, 118 N.Y.S.3d 383 (N.Y. Sup.

Ct. 2019)
5Local 2415 v. Houston Independent School District, 251 F. Supp. 3d 1168 (S.D. Tex. 2017), p.

17.
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Figure 3.2: Our proposed categorization of the di�erent positions of the court regarding
the use of automatic methods

Even if there is no common applied regulations about the use of DNN models to
assess the value of evidence, this does not mean that these models are not prone to
error or to discrimination bias. Judges should not only assess the reliability of the
expert's chosen method but also the consistency of its application to the speci�c facts
at hand [139, 135, 136].

3.4.2 A help or a burden for forensic scientist?

Is the use of AI models in evaluating the evidence a help or a burden for forensic
scientists? Does it entail greater responsibility or o�er an escape from it?

Enchanted by the magic of DNN-based models, forensic practitioners, particularly
software engineers, increasingly rely on the high performance of these models. However,
having a DNN model that has demonstrated remarkable accuracy on certain datasets
is insu�cient to justify trust in its reliability, nor to assume it will perform equally
well on di�erent types of data. What if the model has acquired a bias towards a
particular accent or nationality? Given that the forensic practitioner had no intention
of introducing such bias, and often may not even be aware of it, who should be held
responsible for this?

The absence of awareness among forensic practitioners regarding the potential for
bias is unacceptable in such a critical �eld [137, 140]. The role of a forensic practitioner
extends beyond merely assessing the strength of evidence and presenting conclusions
in court. He should also be able to provide explanations for the value assigned to
evidence and the process used to derive it [141]. This includes details such as the
training data used for the model, the patterns it has learned, the information encoded
in its generated representations, and whether it exhibits biases toward speci�c classes,
among other considerations. The authors in [137] formulated the required explanation
that the forensic practitioner should provide through three questions:What were the
main factors in a decision? Would changing a certain factor have changed the decision?
Why did two similar-looking cases get di�erent decisions, or vice versa?. It is not only
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the judge and jury who have the right to inquire about the trustworthiness of the AI
model in use, "the prosecution and defense also have a fundamental right: the right to
explanation" [142, 137]. That is why, the forensic scientist should always be able to
provide explanations about any stage of the evaluation process when requested.

3.4.3 Requirement for explanations in forensic science

The integration of explainable AI (XAI) in forensics have only recently begun to attract
attention. Some works were published from the 2020's to the present to emphasize the
signi�cance of AI interpretability in forensic context and criminal justice [143, 142,
135, 136, 144, 145, 139, 146, 147, 140, 141]. For instance, some very recent works
[142, 139] focus on the issues of black box AI models and the importance of XAI
models used in digital forensics. The work in [144] clari�es the legal requirement of
explainability in judicial decisions. The authors emphasized this requirement by the
European Court of Human Rights�In accordance with Article 6 (refer to ŸA.2.1) of the
Convention, judgments of courts and tribunals should adequately state the reasons on
which they are based�. This is also justi�ed by some European countries having such
obligations in their regulations such as in Belgium6 (refer to ŸA.2.2). The authors also
mentioned the example of the United Kingdom, where it is a common law principle
that a judgment must be reasoned, meaning that it�explains to the parties and to any
wider readership why the judge has reached the decision he has made.�If a judgment
is not su�ciently explained, it can be vacated by a higher court. As a result, the
authors in [144] proposed four required levels of AI explainability in forensics such as
providing the main features used in an output, providing all the processed features,
providing a comprehensive explanation of the output and providing an understandable
representation of the whole model. In [148], the author explored the necessity and
methodology behind providing explanations for a speci�c judicial decision, taking into
account various factors such as the decision's signi�cance and the decision-maker's role.
The author also emphasized that when a judge issues a criminal sentence, which is one
of the most crucial decisions in court, it is imperative to provide an explanation to
enable the defendant to identify and address any potential impropriety or error. [137]
focused on the signi�cance of regulating AI models to ensure accountability in a forensic
context.

The demand for interpretability and explainability7 of black box models within
the forensic context remains an open issue, lacking clear implementation in practical
rules and regulations. Consequently, existing literature is only restricted to address-
ing the necessity and prerequisites without delving into the practical application of
explainability methods on currently employed automatic techniques.

6art. 149 of the Constitution of the Code on judicial proceedings
7These two terms are discussed and de�ned in Chapter 4
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3.5 Summary

In conclusion, within this chapter, we outlined the use of ASpR methods in the �eld
of forensic science, addressing the related challenges. We speci�cally introduced the
Bayesian framework considered as the logically and legally accepted approach for pre-
senting the value of evidence to the court. Within this framework, we demonstrated
the adaptation of ASpR methods output, transforming similarity scores into a straight
interpretable LR value by the court.

Moreover, we draw a particular attention to a noteworthy challenge, concerning the
use of DNN black box models for assessing the value of evidence in FASpR system. This
challenge involves the risk of discrimination bias in the forensic context. We pointed
out that all stakeholders in the judicial process, including the court and forensic prac-
titioners, should be aware of this risk. Cautions should be exercised when employing
AI and DNN-based models and it is imperative that all parties take responsibility for
the system's output, o�ering comprehensive explanations for the model's �ndings and
decisions.
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Interpretability and explainabil-
ity in AI
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In the precedent chapters, we �rstly presented an overview of state-of-the-art ASpR
systems based on DNN models, highlighting their inherent complexity, that often leads
to opaqueness. Then, we described the particular use of DNN-based ASpR systems
in a critical �eld such as forensics and we emphasized the need for cautions and the
requirement for explanations when using black box models. In this chapter, our focus
shifts towards the adoption of AI interpretability and explainability methods, aiming
to address the opaqueness in DNN models, within the speci�c forensic context and in
a broader sense.
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4.1 Introduction

Arti�cial intelligence (AI) is incorporated in many applications of our daily lives. It is
becoming an indispensable actor that drive our decisions. AI is involved in the most
critical domains and life-changing decisions such as disease diagnosis and criminal ac-
cusation. However, this shift towards AI-driven decision-making has arisen a lot of
critical inquiries regarding trust, transparency, and ethical issues. Though AI models
are shown to be increasingly powerful, they are not without limitations. The most
signi�cant one is the opaqueness or the lack of transparency of highly complex archi-
tectures. This opaqueness prevents human from being able to verify or understand the
reasoning of the system and how particular decisions are made. Systems whose deci-
sions cannot be well-interpreted, should not be easily trusted, especially in �elds, such
as healthcare or forensics, where moral and fairness issues are of paramount concern.

The imperative to enhance the transparency and interpretability of AI models has
given rise to the �eld of Explainable AI (XAI). In the following sections, we start
by de�ning the context of XAI, emphasizing the growing awareness and the demand
for interpretable systems. Then, we de�ne a terminology of the related concepts as
de�ned in the literature. This is followed by the taxonomy of XAI methods in the
broader domain of AI. Afterwards, we speci�cally review the existing literature on
XAI in speech tasks. Finally, we address the challenges and limitations faced in the
�eld.

4.2 Context of explainable AI

The core objective of XAI [149] �eld is to develop techniques and methods that makes
AI models more comprehensible to humans, while preserving their predictive perfor-
mance. The term "Explainability" has its origins dating back to the late 1980s, when
there was an exploration of the ability of expert systems to provide explanations for
their decisions [150]. Nevertheless, with the emergence of powerful AI models in the
last decade, the focus was mainly oriented towards performance enhancement, while
neglecting the ability of these models to explain their decisions. With the rapid de-
velopment of AI models in critical domains where the stakes are extraordinarily high,
XAI �eld regained attention. Figure 4.1, generated by Google Trends1, shows the evo-
lution of the research interest of the two terms "interpretability" and "explainability"
from 2004 until now. This growing interest is also illustrated by many calls from in-
ternational organizations to make AI explainable. In the following, we illustrate this
awareness by some examples and we highlight the need for XAI in some particular
�elds.

1https://trends.google.fr/trends/
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Figure 4.1: Google trends for research interest of the terms "interpretability" and "ex-
plainability" from 2004 until September 2023

4.2.1 Awareness of explainability

The prevalence of AI models in various aspects of our daily lives has fueled an in-
creasing demand for ensuring transparency and interpretability within these models.
As a response, many initiatives and policy changes have emerged. In 2016, the White
House O�ce of Science and Technology Policy released the U.S. report on AI titled
"Preparing for the Future of Arti�cial Intelligence", focusing on AI systems that are
open, transparent, and comprehensible to facilitate decision justi�cations for individ-
uals [151]. In 2018, the Pentagon allocated $2 billion to its "AI Next" initiative, led
by the Defense Advanced Research Projects Agency of the United States Department
of Defense (DARPA), aiming to promote AI research and development. This initiative
marked the beginning of the XAI �eld [152].

Moreover, the European General Data Protection Regulation (GDPR), announced
in 2018, speci�cally in articles Ÿ.A.3.1 and Ÿ.A.3.2, that data subjects are provided
with "The right to be informed". They have the right to an explanation of algorithmic
decisions, including the provision of a list of contributing factors to the decision upon
request [153, 154, 155]. Following the GDPR regulations, the European parliament
announced in 2021, the European Union's Arti�cial Intelligence Act (AI Act) [156].
This regulatory framework aims to ensure an ethical and responsible AI that respects
the fundamental rights and societal values. It also regularizes the use of AI in high-risk
systems such as Law enforcement and encourages to promote transparency in these
systems. This is pronounced by Recital 38 in Ÿ.A.4.

4.2.2 The need of explainability

One of the most important motivation behind providing explainability is the adoption
of AI models in many high-stake (i.e. high-risk) applications. in these particular
contexts, the risk of encountering a wrong prediction is substantial. In the following,
we show that providing interpretability and explainability is an ethical imperative in
three most critical �elds.

ˆ Healthcare sector: Medical diagnosis models carry the responsibility of human
lives. Inaccurate diagnoses resulting from wrong decision factors can have harmful
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consequences, and subsequently a misguided patient treatment. The need for
interpretability in these models is evident. It ensures that the rationale behind
medical diagnoses is transparent for the medical practitioner and comprehensible
for patients who have the right to understand the reasoning behind their diagnoses
and treatment plans. A lot of works in the literature show interest in applying
XAI methods in healthcare applications [157, 158, 159].

ˆ Banking sector: In banking applications such as voice-based authentication,
granting the access to a wrong user is very dangerous. Customers need to have
con�dence in the security and reliability of voice authentication, especially when
it comes to accessing their �nancial accounts. For instance, a report of BBC
in 2017 detailed how a UK bank (HSBC) was forced to suspend its speaker
recognition technology upon uncovering that a malicious actor could deceive the
system by employing a vocal recording of the account holder [160]. The system
exhibited a notable rate of unauthorized approvals, enabling an unauthorized in-
dividual to gain access to the account holder's funds. Thus, this indicates that
it is essential to provide explanations of how voice authentication model works
and how the decision is made by the system to build trust with customers [161,
162]. Furthermore, regulatory requirements, such as Know Your Customer and
Anti-Money Laundering [163] guidelines, necessitate a clear understanding of the
decision-making processes behind voice authentication systems. Another famous
banking application involves predicting loan approval through machine learning
models [164]. According to the regulation B of theEqual Credit Opportunity
Act (ECOA) 2, all loan applicants have the right for explanations (refer to ŸA.5).
Moreover, this regulation prohibits creditors from discriminating against credit
applicants based on factors such as color, religion, sex, etc. This underscores
the imperative to provide explanations for the used models to avoid any risk of
discrimination bias [165].

ˆ Forensic science and legal sector: Another very critical domain of AI application,
encountered in the previous chapter, is the legal system. Here the consequences
of any misleading decision are highly severe, such as the cases where people are
incorrectly denied parole [166] or incorrect bail decisions by the court that al-
lows the release of potentially dangerous criminals [167]. Unfortunately, there
is already clear evidence on existing biased systems that produced discrimina-
tory decisions in the criminal justice [8]. In 2016, ProPublica's examination [9]
of Correctional O�ender Management Pro�ling for Alternative Sanctions tool,
COMPAS, revealed that although the algorithm's overall accuracy is similar for
both white and black defendants (i.e. individuals accused with a crime in a legal
proceeding) (� 62%), the types of errors it makes di�er. It tends to categorize
black defendants more frequently as high-risk when they are not, while it more
often categorizes white defendants as low-risk when they are not. Similarly, an-
other predictive algorithm, PredPol, used by law enforcement, has faced criticism
for its potential to disproportionately target low-income, black communities [10].
Such discrimination raises serious ethical questions regarding whether to trust
these systems which have decisions over people's lives [139]. An article published

2ECOA law signed in U.S 1974 described in appendix A
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in The New York Times in 2017 [166] entitled,"When a Computer Program Keeps
You in Jail: How Computers are Harming Criminal Justice", illustrates the im-
pact of using AI in criminal justice with some real cases of denied parole people.
Transparency of the decision-making produced by an AI-based system in the legal
context is therefore a real MUST, even at the cost of accuracy [145, 168]. In the
literature, still there is very few works that are dedicated to apply explainable
methods on automatic AI-based systems used in the legal context [169, 170].

Another perspective of the need of explainable and interpretable AI models is a
technological necessity. Gaining a deep understanding of how AI models function can
yield new insights and fresh perspectives on the underlying data. The authors in [171]
present a categorization of the need for explainability and interpretability, identifying
four key axes from a technological perspective. These axes include the need 1) to
explain to justify model decision, 2) to explain to control over the model behaviour,
3) to explain to improve upon existing models and 4) to explain to discover new ideas
and new axes. However, explanations are not for free [172]. Generating explanations
or making an AI model interpretable takes time and e�ort and could lead to a decrease
in performance. Therefore, the utility of explanations must be balanced between the
cost of generating them and the requirement of providing them.

In this thesis, we focus on the domain of forensics and criminal justice, pointed
out in the previous chapter, which represents a particularly sensitive �eld requiring
explanations and interpretations for decisions made by automated systems.

4.3 Terminology

So far, the terms "Interpretability" and "Explainability" were used interchangeably.
Nevertheless, it is important to note that the de�nitions of these two terms exhibit
important distinctions in the literature of various �elds such as social science [173],
philosophy [174], psychology [175]... This distinction is subject to a philosophical
dilemma where no universally accepted de�nition adopted of both terms. On the other
hand, other researchers do not distinguish between the two concepts and prefer to use
them interchangeably [176]. In the following, we report the de�nitions of both concepts
exactly as presented in the literature, followed by some related concepts that we �nd
relevant.

4.3.1 Interpretability

The de�nitions of interpretability in the literature are very ambiguous and do not have
any clear formalism behind [177, 178]. Considering the challenging aspect of this sub-
ject, we went for a categorization of these de�nitions based on our own interpretation.
Please note that the following categorization is a simpli�cation for the purpose of clar-
ity and does not provide an exhaustive representation of the diverse viewpoints about
this dilemma.
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1. The ability of a model to be understandable: Fiok et. al in [179] de�ne inter-
pretability as "the model's ability to present its decisions in terms that humans
can understand", that is agreed by [180, 181]. Another very recent de�nition in
the same category is the one of [136]"we refer to predictive models whose calcu-
lations are inherently capable of being understood by people". Rudin provides a
more clear de�nition in [145] that says"interpretable ML3 focuses on designing
models that are inherently interpretable"that is fully adopted by [178].

2. Using interpretability methods or human reasoning: This category groups def-
initions that could de�ne interpretability as, the methods applied to interpret a
model in a way that is understandable, or by human reasoning. [182] says that
"The goal of interpretability is to describe the internals of a system in a way that
is understandable to humans". Also Doshi-Velez and Kim de�ne interpretability
of AI systems as"the ability to explain or to present in understandable terms
to a human", which is also adopted by [137]. Molnar in his book [183] precises
that interpretability "refers to methods and models that make the behavior and
predictions of machine learning systems understandable to humans". Adadi and
Berrada in [171] agree with Linardatos in [184] that interpretability could be
de�ned as "the more interpretable a machine learning system is, the easier it is
to identify cause-and-e�ect relationships within the system's inputs and outputs".
In the same direction, Montavon et. al in [185] say that it is"the mapping of an
abstract concept, for instance, a predicted class, into a domain that the human
can make sense of".

3. Human understandability of the model: From social science perspective, Miller
in [173] de�nes interpretability as "the degree to which a human can understand
the cause of a decision". We classify this de�nition in a di�erent category because
we think that it depends on the human ability to understand things and that it
is very relative to human judgement even in the case of two humans of the same
expertise.

4.3.2 Explainability

Regarding the de�nition of explainability, this controversial is less important where a
group of authors in literature agree that explainability is describing and clarifying the
internals of the model. For instance, Linardatos in [184] de�nes explainability as it
"is associated with the internal logic and mechanics that are inside a machine learning
system. The more explainable a model, the deeper the understanding that humans
achieve in terms of the internal procedures that take place while the model is training
or making decisions". Following the same direction, Fiok et. al in [179] de�ne it as a
seeking to clarify the model's functioning. Similarly to Rudin [145] and Garret [136]
de�nition in that says that "explainable ML is a tool permitting to provide post hoc
explanations for existing black box models".

3interpretable machine learning
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Di�erently, Molnar in his book [183] says that "an explanation usually relates the
feature values of an instance to its model prediction in a humanly understandable way".
Another de�nition adds another perspective to de�ning explainability in [181], which
is the relationship between explainability and the target of the explanations"Given an
audience, an explainable Arti�cial Intelligence is one that produces details or reasons
to make its functioning clear or easy to understand.".

4.3.3 Other related concepts

Due to the diversity of interpretations in the �eld, various related concepts have inter-
sected with the interpretability and explainability terms, each o�ering another perspec-
tive derived from both terms. For the sake of precision and in relation with this work,
we found it useful to explicitly de�ne and distinguish some of these related concepts,
as outlined below:

ˆ Transparency: Is the capacity of the model to explain its own functioning even
when it behaves unexpectedly [181, 185, 177]. Recently, Garret et.al in [136]
discussed this idea by di�erentiating betweenTransparency and Interpretability
saying that they are di�erent and that a model could be transparent but not
interpretable or interpretable but not transparent.

ˆ Causality: The ability of a method to clarify the relationship between input and
output in a speci�ed context of use [177, 186, 187].

ˆ Understandability: Is the property of a model to make a human understand its
operation without elucidating its internal structure or the internal operations by
which the model processes data [187, 177].

ˆ Informativeness: The ability of the method to provide useful information to the
end-user via its output [177, 187].

At this stage, we do not aim to �rmly establish our position regarding the termi-
nology of interpretability and explainability. Instead, in the next section, we continue
to use both terms interchangeably, and we provide a clear de�nition towards the end
of this chapter.

4.4 Literature review: Taxonomy

In this section, we aim to present the taxonomy of interpretability and explainability
methods by providing illustrative examples from the literature of each class. Figure
4.2 presents a taxonomy that we propose based on the existing works [171, 181, 188,
184, 176, 189].

Explainability/interpretability could be either provided under a globally or locally
scoop. It could be also divided into post-hoc explanations, intrinsic explanations or
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inherently interpretable models. Post-hoc (i.e. after training of the model) explainabil-
ity could be further classi�ed into model-speci�c or model agnostic, while intrinsic is
by de�nition a model-speci�c interpretability. In the following, we de�ne each of these
boxes as shown in Figure 4.2.

Figure 4.2: Our proposed explainability and Interpretability taxonomy

4.4.1 Local Vs. Global

Local interpretability/explainability consists in explaining the reasons behind a partic-
ular prediction of the model [171, 184]. This is used to understand the decision of the
model regarding a single instance. Global interpretability/explainability on the other
hand provides an overview about the general model behavior given all the predictions
[187, 171]. This permits to having an entire view of the model.

4.4.2 Inherently Vs. Intrinsic Vs. Post-hoc

Figure 4.3: Inherently Vs. Intrinsically interpretable/explainable models
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Inherently Interpretable models are models that are interpretable by nature. These
models exhibit a white box architecture and referred to asTransparent models[190,
180, 149]. Logistic regression model, Decision Tree, Rule sets [191] are some examples
of this family. These models provideglobal interpretability and they are designed to be
simple and basic for understandability purposes. However, they are very limited and
do not e�ectively re�ect real-world interactions. Figure 4.3 shows a simple example of
a Decision Tree where we can clearly see how we predicted the output (Fit/Un�t) from
understandable features like (Age, Sport, and Fast food).

Intrinsic interpretability/explainability on the other hand, is achieved by applying
some constraints in the model architecture during training to orient them to be ex-
plainable, as shown in Figure 4.3. Such constraints could be by imposing sparsity,
monotonicity, causality, or physical constraints that come from the domain knowledge
[145, 176]. This type of methods is therefore oftenglobally interpretable/explainable
and it is very relative and application-dependent. Figure 4.3 shows clearly the distinc-
tion between inherently and intrinsically interpretable/explainable.

Post-hoc interpretability/explainability refers to methods that are applied on the
model after training to explain its behavior or its decision [176]. It is noteworthy that
these methods could be also applied on the two previously mentioned types (i.e. inher-
ently interpretable models or on intrinsically interpretable models) to enhance the in-
terpretability/explainability of the model. Intrinsic interpretability could be achieved,
by de�nition, using model-speci�c methods, while Post-hoc could be performed, both
globally and locally, using eithermodel-speci�cor model-agnosticmethods as described
in the following.

Figure 4.4: Post-hoc explainability methods

4.4.3 Model-speci�c Vs. Model-Agnostic

Model-speci�c interpretability is restricted to some particular model architectures, and
it could be local and/or global. Among the most known methods in the literature, there
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is a collection of methods speci�c to neural networks. They are mostly based on the
back-propagation of the gradient into the neural network architecture to feature the
impact of any change of the input with respect to the output such as Integrated-
Gradients [192, 193], Guided backpropagation [194], Grad-CAM [195] applied to CNN
models. In the same direction, [196] proposed Layer-wise Relevance Propagation (LRP)
to be applied on more complex architecture. Starting from the output neurons going
back through the lower layers of the network to the input-layer neurons where each
neuron redistributes to the lower layer the same amount of information received from
the higher layer. All model-speci�c methods generally provide local interpretations.

On the other hand, model-agnostic methods are designed to be plugged to any
model in order to explore its behavior and its output. Among these models, we describe,
in the following, the commonly used ones with a particular focus on Shapley values
[197] as they are mainly used in this thesis.

Figure 4.5: Train a surrogate model on input and output of black box model

ˆ Surrogate models: The fundamental concept of this method is to create a simpli-
�ed model that closely mimics the predictions of the complex black-box model
while also o�ering interpretability [183, 176]. There is a common confusion4 re-
garding the use of simpler models to interpret black-box models: why create a
complex black-box model when we could opt for directly interpretable models like
Linear Regression or Decision Tree? The reason is the inherent trade-o� between
accuracy and interpretability. While interpretable models are straightforward,
they often sacri�ce accuracy when dealing with intricate data. Complex models,
such as deep learning models, excel at handling complexity but lack the inter-

4https://maheshwarappa-a.gitbook.io/explainable-ai-1/model-agonistic-methods/surrogate-model
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pretability of simpler models. Surrogacy aims to bridge this gap by developing a
simple model that can replicate the predictions of the black-box model, balancing
accuracy and interpretability. It gives some insights about the black box model
functioning. Figure 4.5 describes how a surrogate model could be used for expla-
nations. It takes the input and predictions of the black box models and tries to
provide explanations. Surrogate models could be either global or local (Ÿ.4.4.1).
Local surrogate model is used by a popular explanation method, namely LIME,
described in the following.

ˆ Local Interpretable Model-Agnostic Explanation (LIME): Proposed in [198] to pro-
vide local explanations. It approximates a black box model with a local surrogate
model to explain each single prediction [183]. This method proves particularly
e�ective when the emphasis is on comprehending individual predictions rather
than analyzing a set of predictions made by a model.

ˆ Shapley Additive explanations (SHAP): A very powerful tool proposed by Lund-
berg and Lee in [199]. This approach employs Shapley values from coalitional
game theory, as introduced in [200], to equitably allocate gains among players
who have contributed unevenly. The game, in this context, represents a pre-
diction task for a speci�c instance, with the players being the feature values
associated with that instance. These players collaborate to share the gains fairly.
The Shapley value, quanti�es the marginal contribution of a feature value to the
overall prediction across all conceivable "coalitions" or feature subsets. It deter-
mines the share that each "player" (or feature) receives after the game and is
mathematically de�ned as follows:

� i (x) =
1

jF j!

X

S� F=f i g
| {z }

Average

jSj!(jF j � j Sj � 1)!
| {z }

Weight

[f S[f i gxS[f i g � f SxS]
| {z }

Marginal Contribution

(4.1)

Where x is the input instance, � i (x) is the shapley value for the featurei for
the input x for the model f . F is the set of all features whileS is a subset of
features. f S is the trained black box model on the subset of featuresS. f S[f i g is
the trained model on the subsetS and featurei . xS is the x representation using
the subset of featuresS. xS[f i g is same but usingS and featurei . F=f ig is the set
of all features without featurei . Equation (4.1) shows that the Shapley value of
feature i is a weighted average of the marginal contributions ofi over all subsets
S of F . The �rst part is averaging over all possible combinations. For a subsetS,
the weight is the product of the number of permutations ofS and the number of
permutations of the complement ofS and i . The marginal contribution analysis
the di�erence in the output by including or excluding featurei .
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Table 4.1: Axioms de�nition of Shapley values

Properties De�nition

E�ciency The sum of the Shapley values of all features equals the value
of the prediction trained with all the features, so that the total
prediction is distributed among the features.

Symmetry The contributions of two feature values should be the same if
they contribute equally to all possible coalitions.

Linearity If two models described by the prediction functionsf and g
are combined, the distributed prediction should correspond
to the contributions derived fromf and the contributions de-
rived from g.

Dummy The features that do not contribute should have a Shapley
value of 0.

Figure 4.6: SHAP explanations of a black box model

SHAP respects a set of four fairness properties, as detailed in Table 4.1, to ensure
the equitable distribution of gains among participants in a collaborative game.
This method, presented in [199], serves as an explainability tool that quanti�es
the impact of individual features on model predictions. In Figure 4.6, we pro-
vide an illustrative example of SHAP-based explanation. The �gure showcases
the contributions of speci�c feature values, depicted as red and blue polygons,
to the �nal output prediction. The explanation commences from the base rate,
indicating the fundamental gain when no features are considered, and progres-
sively highlights the contribution of each feature, culminating in the ultimate
output value. SHAP o�ers the signi�cant advantage of adaptability to a wide
range of model types. To further enhance explainability performance, several
SHAP variants have been introduced, each optimized for speci�c types of black-
box models. For example,LinearSHAP is tailored for linear models,TreeSHAP
is optimized for tree-based models,KernelShaputilizes specially-weighted local
linear regression to estimate SHAP values for any model,DeepSHAPprovides a
high-speed approximation for SHAP values in deep learning models, andExpected
Gradients is designed for neural networks, drawing inspiration from Integrated
Gradients. Another notable advantage of SHAP is its ability to generate both lo-
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cal and global explanations from individual predictions. However, it is important
to mention that with a large number of features, Shapley values become more
complex to compute.

4.5 XAI for speech system decision

Most studies in ASpR literature concentrate predominantly on enhancing performance,
with only few works focusing on interpretability and explainability of the information
embedded within the speaker embeddings. For instance, the work in [201] applied
a Gradient-based visualisation method, namely Guided Backpropagation [194], on a
CNN-based model, taking as input a raw waveform for speaker identi�cation task.
This technique estimates the relevance of the signal to quantify the contribution of
each input sample. Recently, the work in [202] proposed the use of three visualisation
methods based on class activation map (CAM) [195] to localize the important regions in
spectrogram for speakers identi�cation. It shows a saliency map that demonstrates the
important regions in the spectrogram used by a ResNet34 with squeeze-and-excitation
model [68] to identify a particular class of speaker.

The exploration of model explainability and interpretability have been more em-
phasized in the general �eld of speech recognition. The work in [203] developed a
bi-directional Gate Recurrent Units based speech recognition model on which the layer-
wise relevance propagation (LRP) [196] is applied to explain the recognition task. The
explanation provided by this work is presented by the relevance of some parts of the
audio sentence into the prediction of the phoneme recognition task. In the same direc-
tion, [204, 205] used Shapley values [199] to retain the most important acoustic frames
in�uencing an automatic speech recognition task.

For other di�erent tasks, the work in [206] recently proposed employing post-hoc
model-speci�c methods, including Taylor decomposition [207], LRP, and Integrated
gradients [192, 193], to o�er interpretations for the deepfake audio detection task. The
study focused on a CNN-LSTM model, using a Mel spectrogram as input. Explainable
methods were employed to analyze attribution scores calculated based on input energy,
that distinguish between deepfake and real voices. In [208], the implementation of
LRP was compared across two tasks: digit classi�cation and gender classi�cation using
speech data. Each task utilized AlexNet [209] for training, with input being either raw
waveforms or spectrograms. This study indicates that speci�c patterns in the input
play a crucial role in the classi�cation of both tasks, using both types of inputs. For
explaining speech enhancement task, the authors in [210] proposed an explanation of
the predictions of speech enhancement model using DeepShap method. The idea was
to �gure out which time-frequency bins of the input spectrogram of a noisy signal are
used by the DNN model to predict the mask.
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4.6 Challenges

In the previous sections, we highlighted the growing interest in interpretability across
multiple domains and showcased the diverse array of methods that mark substantial
progress in this �eld. However, it is important to mention that despite these advance-
ments, challenges persist, complicating the task of interpretability in AI models.

ˆ Trade-o� Interpretability/Accuracy : This arises from the fact that achieving
higher accuracy often requires using complex, highly optimized models that are
capable of capturing intricate patterns in complex data. While these models excel
at prediction tasks, they tend to be less interpretable due to their intricate inner
workings. Balancing accuracy and interpretability is a challenge because it forces
a choice between two crucial aspects of machine learning [181]. This trade-o�
dilemma is very dependent of the application in question whether it is worthy to
sacri�ce performance for the sake of interpretability or not.

ˆ No formalism of interpretability : The lack of a universally accepted de�nition
and clear distinction between interpretability and explainability in the �eld un-
derscores a fundamental challenge [137]. This ambiguity is not only limited to
de�nitions but also extends to the absence of standardized metrics to evalu-
ate the quality and e�ectiveness of explanations and interpretations provided by
XAI methods[181]. This presents a double-edged issue, as without a consensus
on what interpretability and explainability mean, it becomes challenging to de-
velop a comprehensive framework for measuring the value and reliability of the
generated explanations [145].

ˆ Data and algorithmic complexity : The variability within data, intricate feature
interactions, resource constraints, limited annotated data, and inherent biases in
real-world datasets pose substantial challenges in generating clear and reliable
explanations. Consequently, the complexity of AI algorithms employed to handle
this data variability further compounds the di�culty of interpretation, making
it almost impractical in certain cases.

4.7 Conclusion

In this chapter, we provided an overview of XAI methods within the existing literature,
that would serve as a justi�cation for our choices in the remaining of this thesis. We
also underscored the critical need for interpretability/explainability in various high-risk
domains, including banking, healthcare, and forensics. Moreover, we have drawn atten-
tion to the terminology ambiguity that often surrounds the de�nitions and distinctions
between interpretability and explainability in the literature. Additionally, we provided
an overview of the limited existing works on XAI in the speech domain. Finally, we
acknowledged the inherent challenges of achieving interpretability/explainability and
emphasized that it often comes with associated costs.
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Although we have used interpretability and explainability interchangeably thus far,
we now intend to establish a clear di�erentiation between them for the remainder of
this thesis. For the de�nition of interpretability we are more aligned with the third
category mentioned in Ÿ.4.3.

Interpretability is " The human ability to understand the model behavior
and describe its decisions in understandable way".

As an inspiration of many de�nitions from literature, we precise that:

Explainability is "Using methods to describe the output of a black box
model in terms of input features either by going through its internal
functioning or by using inherently interpretable models that mimic its
behavior".

We believe that interpretability and explainability are mutually reinforcing concepts.
Even in cases where a model is inherently interpretable, the incorporation of explain-
ability can o�er additional insights, as highlighted in [182]. Nevertheless, it is crucial
to highlight that explanations come with their own costs. They require time and e�ort,
and certain explainability models may introduce further complexity. Thus, the utility
of explanations must be carefully balanced against the resources needed to produce
them and the necessity of providing them.

In the context of this thesis, we speci�cally focus on the forensic �eld as a distinct
high-risk application of automatic speaker recognition. Our objective is to explain the
decision-making process of our DNN-based ASpR system within this forensic context.
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Part II

Proposed solution and contributions
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Chapter 5

Inspiration and proposed method-
ology

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Drawing inspiration from DNA: Caution is required! . . . . . . 60

5.2.1 Biological traits information . . . . . . . . . . . . . . . 61
5.2.2 DNA individualisation . . . . . . . . . . . . . . . . . . 62
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5.2.4 Speech is not DNA! . . . . . . . . . . . . . . . . . . . . 65

5.3 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 66
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5.4 Positioning in the interpretability/explainability dilemma . . . 68
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

In the previous part, we presented the fundamentals of ASpR systems, the ap-
proaches and the advances. Then, we particularly focused on the forensic application
of ASpR. Afterwards, we showed the importance of AI models interpretability in such
critical �eld. In this chapter, we introduce our three-steps approach, that aims to
build an interpretable and explainable ASpR system suitable for forensic applications.
Before delving into the steps of our approach, we begin by exploring the original DNA
concept that serves as the inspiration for our work.
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5.1 Introduction

Within the forensic context, individualisation or alsoindividualisation by DNA is the
well-established framework in forensic examination, contributing to the resolution of
thousands of crimes. Apart from the challenges associated with the circumstances
of a crime, DNA evidence is known for its straightforward interpretation, both by
forensic practitioners and the court, thanks to its transparent and easily comprehensible
process. Consequently, this framework served as the �rst inspiration of inference of
identity of source with other types of evidence.

In this chapter, we draw a particular inspiration from a simpli�ed DNA foren-
sic individualisation process to build the basics of our approach. This is done while
emphasizing on precautions related to the di�erence between DNA and speech mate-
rial. Afterward, we introduce our three-steps approach, clarify its assumptions and
terminology. Finally, we position our work within the context of interpretability and
explainability dilemma.

5.2 Drawing inspiration from DNA: Caution is required!

Deoxyribonucleic acid (i.e. DNA) is the molecule that carries all genetic information
about our organism as well as its functioning. In other words, DNA encodes our
identity. While we acknowledge the complex nature of DNA, we choose to simplify the
concepts for the sake of clarity. In this section, we particularly de�ne some concepts
and terminology related to DNA. Following that, we provide a simpli�ed explanation
of the individualisation process by DNA in forensics, highlighting some misleading
phenomena related to it. Throughout, we present some re�ections and we engage in
a discussion that explores a potential analogy to the �eld of speech. This discussion
is followed by some research questions that we aim to address through the three-steps
of our proposed solution. Finally, we point out that the analogy between DNA and
speech is never straightforward and it needs a lot of precautions.

Figure 5.1: Process of alleles information extraction from DNA1

1https://www.cybgen.com/information/courses/2010/DUCLE/Perlin_DNA_Identification_
for_Lawyers_CLE/page.shtml
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5.2.1 Biological traits information

As illustrated in Figure.5.1, in each cell's nucleus, our DNA is packaged into 23 pairs
of chromosomes including sex chromosomes. In each chromosome, we have loci where
the genesare encoded. For each gene, we have a pair ofalleles localised in the same
locus originating each from one of our parents. Genes encode physical characteristics
(i.e. color of the eyes) and alleles are the di�erent forms of the same trait (i.e. brown).

DNA information is mainly represented by two terms: the genotype and the phe-
notype as illustrated in Figure.5.2:

ˆ The genotypeis the set of alleles of an individual for a given gene.

ˆ The phenotypeis all of its observable characteristics or physical traits which are
in�uenced and determined by both its genotype and the environment factors.
The phenotype consists only of visible and expressed traits of a gene.

Figure 5.2: Quantitative and qualitative biological traits

A biological trait is an individual characteristic determined by the genotype like hair
color, eyes color, height, blood type...etc. One characteristic may have di�erent forms
expressed by the variations in the gene that is controlled by the pair of alleles. A trait
could be eitherqualitative or quantitative as described in Figure.5.2.

ˆ Qualitative traits are controlled by a single gene and they are categorical such as
blood type.

ˆ Quantitative traits tend to be more complex and they are usually a�ected by the
environment conditions or controlled by multiple genes in complex interaction
between each others like the Height.

Re�ection...

These de�nitions served as inspiration for our work, leading us to draw a speci�c
analogy between speech and biological traits, as illustrated in Figure.5.3.

61



ˆ What if each gene locus corresponds to a dimension within a speci�c speaker
embedding, encoding a distinct form of a speaker voice characteristic?

ˆ What if alleles correspond to the forms of the voice characteristics encoded in-
herently by a combination of acoustic, phonetic and phonemic parameters?

ˆ Voice characteristics could be also either quantitative such as nasality that needs
many parameters to be encoded or qualitative like sex that is mostly (and could
be) determined by the fundamental frequency (i.e. F0).

(a) Quantitative and qualitative
biological traits

(b) Quantitative and qualitative
voice characteristic

Figure 5.3: DNA analogy to voice characteristic

RQ1: Thus, is it feasible to construct a speech representation, where each dimension
represents a form of a speci�c voice characteristic?

This is a central research question (RQ) that we aim to address in this thesis. How-
ever, it is essential to acknowledge that, in contrast to genes, which are predetermined
and directly linked to biological traits2, the dimensions within a speech representa-
tion are generally not directly linked to speci�c forms of voice characteristic neither
identi�ed by prede�ned phonetic and acoustic parameters.

5.2.2 DNA individualisation

Although aware of the challenges associated to DNA individualisation, it is important
to note that we are focusing here on an idealized scenario to provide a simpli�ed de-
scription. In the process of DNA individualisation, a trace extracted from a crime
scene is ampli�ed in the laboratory and transformed to allele data. DNA molecules
are ampli�ed during the polymerase chain reaction (PCR) thermocycling process (Fig-
ure.5.1). First the alleles are detected by capillary electrophoresis and then the signal
is denoised to give the peaks representing the alleles and their height provides a semi-
quantiative information on the relative abundance of DNA of the source. A speci�c

2For which a structural physical reality exists
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number of peaks is selected as the result of applying a threshold on the ampli�ed alle-
les to determine the genotype. This is generally applied to reduce the impact of trace
contamination and environment factors.

Figure 5.4: DNA individualisation

The DNA trace genotype is composed of a set of alleles localized at prede�ned
loci [211, 212]. It is compared to the suspect genotype, as illustrated in Figure.5.4.
A likelihood ratio is therefore calculated to evaluate the value of evidence given the
prosecution Hp (i.e. there is a match between the trace and the suspect), and the
defence hypothesesHd (i.e. the trace matches someone else in the population by
coincidence). In DNA, a partial LR is calculated for each locus independently, using the
presence or absence of alleles in both parts of the comparison under the two alternative
hypotheses [213]. Thanks to the independence between the prede�ned loci involved in
the comparison, the global LR is therefore obtained as the product of these partial
LRs (Figure.5.4). This method of quantifying the evidence enables the comprehension
of the signi�cance of each locus linked to a speci�c gene and the factors in�uencing
the evidence's values. It o�ers simplicity in interpretation for the court and clarity in
explanation for the forensic practitioner [214, 215, 119].

Re�ection...

The idea of calculating the �nal LR as the product of the partial LRs, each related
to a speci�c allele and calculated based on the presence or absence of the allele in the
genotype, seems very intuitive. This formulation is generally straightforward for the
forensic practitioner and easily interpretable by the court.

Indeed, the independence assumption between the prede�ned loci is the reason that
made this LR computation feasible without lose of information. Returning to the earlier
analogy, in speech context, it is important to acknowledge that dimensions are generally
not independent in the speech representation, unless applying some constraints to
push it this way. Constraining independence between dimensions is a very challenging
task in speech, because dimensions are often encoding low-level features in a complex
interaction between each others. This constraint should be carefully considered and
not neglected.

RQ2: In continuation of the previous question, what if we represent a speech
sample by a vector indicating the absence or the presence of a certain voice charac-
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teristic, ensuring independence between dimensions? Then, we calculate the LR in
a DNA-like fashion?

5.2.3 Misleading phenomena

While the suspect genotype involves the whole pro�le of the suspect signaling all alleles,
the genotype of the trace could be presenting some alleles that were masked, hiden or
altered due to extraction conditions and environment factors. This introduced uncer-
tainty is due to the nature of forensic conditions that may lead to insu�cient, masked
or degraded material. This may lead to two main phenomena [216, 217, 218, 219]:
Drop-in and Drop-out.

Drop-in

It describes the presence of "foreign" allele in the DNA genotype [220]. It is de�ned
as the false detection of an allele. The drop-in phenomenon is typically associated
with poor DNA conditions. The drop-in phenomenon occurs when a fragmented DNA
molecule contaminates a tube or other consumable that contains a sample extract. This
results in the appearance of an extra allele that cannot be attributed to the known
suspect genotype [220, 216]. Since drop-in is related to noise and contamination of
data. it is shown to be a bit di�cult to estimate mathematically [216].

Drop-out

It follows the principle: "UNSEEN does not mean NOT EXISTED". Drop-out is
the phenomenon of missing alleles at one or more loci. The reasons behind this disap-
pearance may be a dominant allele randomly fails to PCR amplify, or an existing allele
misgenotyped because of factors such as PCR or electrophoresis artifacts or human
errors in reading and recording data [221, 218, 217, 222]. Drop-out is estimated by a
logistic analysis [223] or by an empirical approach [224].

This uncertainty is involved into the partial LRs estimation of each locus for a
better quanti�cation of the evidence [222, 217, 216].

Re�ection...

Indeed, the integration of these uncertainty phenomena into the LR calculation en-
hances the interpretability of the value of evidence and boosts con�dence in the quan-
ti�ed information [214]. It is our belief that incorporating both of these phenomena
into the context of speech data can be fully justi�ed. In speech, the phenomenon of
drop-out could occur in two scenarios: 1) either the voice characteristic is not present
due to speech variability, or 2) the voice characteristic is not detected due to insu�-
ciency of data, where the characteristic is related to particular linguistic or phonemic
aspect3. The phenomenon of drop-in could as well occur in speech due to noise caused

3The characteristic is linked to a speci�c phoneme or a speci�c group of phonemes which are not
part of the recording
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by multiple factors such as environment, recording conditions, quality of device, etc.
Drawing attention to these two phenomena could be an innovative approach to model
the uncertainty in speech data.

RQ3: Building upon our analogy, what about quantifying and incorporating both
uncertainty phenomena in the LR calculation of speech evidence?

5.2.4 Speech is not DNA!

Thus far, we draw a distinctive analogy between DNA information and speech charac-
teristics. However, we are aware that this analogy is far from the real world scenario
and it is essential to approach it with careful precautions:

1. It is important to mention that DNA scenarios and challenges (e.g. DNA mixture)
are signi�cantly more complex than the simpli�ed version described here. Our
main intention is to simplify the process for the sake of clarity and for an easier
comprehension of the core concept.

2. While acknowledging the intricate interplay that can exist among genes encoding
biological traits, it is important to mention that almost all of these genes are
prede�ned and localized in speci�c loci. This is in contrast to the extraction
of speech representation, that does not capture all the aspects of speech, where
a single vocal characteristic is encoded by information from numerous abstract
dimensions that lack inherent interpretability.

3. Indeed, unlike DNA genotype, which re�ects a full pro�le of an individual, speech
representations model speci�c speech segments with distinct content, background
noise, and speaker variability. While a DNA genome comprises all the ground
truth information about an individual, the notion of a speaker pro�le, contain-
ing all conceivable variabilities, from aging to emotions, health conditions, and
background noise remains a myth.

4. It is critical to mention that for DNA, drop-in and drop-out phenomena are
occurring in the trace side because it is prone to error, but not in the suspect
genotype which presents the ground truth genetic information. In contrary, for
speech data these phenomena are probable to happen in both sides, in the trace
sample as well as the suspect sample.

Despite these precautions, we �rmly believe that the inspiration from biological
DNA is innovative and valuable. It can be viewed as the ideal scenario that quanti�es
and presents the value of evidence in an understandable manner, while retaining only
the useful information.
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5.3 Proposed methodology

As illustrated in the literature review part of this thesis, the use of automatic DNN-
based speaker recognition systems in high-risk applications such as forensic science
requires speci�c consideration. The inherent opacity of these AI-driven systems, em-
ployed to assess the value of speech evidence, may raise concerns about potential dis-
crimination bias and provokes ethical questions regarding the reliability of the eviden-
tial value. To address the lack of interpretability in DNN-based ASpR systems, both in
the general context and more speci�cally within the �eld of forensics, we introduce in
this section our proposed three-steps solution. We start by presenting the assumptions,
building upon the above DNA inspiration, then we give an overview of our proposed
approach.

5.3.1 Assumptions

Following the inspiration drawn from DNA individualisation, we establish some as-
sumptions as the foundation for formulating our solution. Figure.5.5 illustrates some
of these assumptions in a toy example of an ideal speech representation composed only
of three voice characteristics. So in this work we assume that:

ˆ Assumption 1: A speech sample is represented by a discrete representation, where
each dimension is assumed to encode a speci�c form of voice characteristic or an
Attribute . E.g in Figure.5.5 we show three forms of three voice characteristics.

Figure 5.5: An illustration of assumptions of the ideal representation

ˆ Assumption 2: A voice attribute is assumed to be shared between a group of
speakers.

ˆ Assumption 3: Although the number of voice characteristics is unde�ned, we
assume a closed set of a reduced number of voice characteristics.
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ˆ Assumption 4: Whatever the voice attribute is qualitative (e.g. female in Fig-
ure.5.5) or quantitative (e.g. Age=61), we assume them all to be qualitative by
converting them to categorical (e.g. category of ages>60 in Figure.5.5).

ˆ Assumption 5: In the speech representation, each dimensions is assumed to en-
code the presence (i.e 1) or absence (i.e 0) of the form of voice attribute (Fig-
ure.5.5).

ˆ Assumption 6: Each form of a voice attribute encoded in a dimension is assumed
as inherently encoded by a combination of acoustic, phonetic and phonemic pa-
rameters (Figure.5.5).

ˆ Assumption 7: The dimensions of the speech representation are assumed to be
highly decorrelated or independent.

ˆ Assumption 8: Drop-in and drop-out phenomena are assumed to occur in speech
data and are used to quantify uncertainty.

5.3.2 An overview of the approach

In this section, we present our solution for approaching the lack of interpretability and
explainability in DNN-based ASpR systems. The primary objective of this solution is
to o�er an interpretable and explainable system for speaker recognition in general and,
more speci�cally, to enhance the evaluation of the evidence in forensic context. This
approach is mainly inspired from the interpretable DNA individualisation process, and
built upon the formulated assumptions, while respecting all necessary precautions.

In the following, we provide an overview of our proposed solution, as illustrated in
Figure.5.6, which mainly consists of three key steps.

Step 1: Binary and attribute-based speaker embeddings

In this �rst step, our goal is to model a binary and attribute-based speech representa-
tion, following the previously set assumptions. This speci�c representation is mainly
inspired from the concept of DNA genotyping where the absence or presence of an allele
is considered for forensic DNA individualisation (as described in Ÿ5.2.2). In this step,
we aim to represent a speech segment by a binary vector, where each dimension of the
vector indicates the presence (i.e. 1) or absence (i.e. 0) of a speci�c attribute. This rep-
resentation is based on SOTA ASpR systems and automatically generates attributes.
Further description and details about the extraction process as well as the used model
are discussed in chapter 6, along with some improvements proposed in chapter 10.

Step 2: Binary and attribute-based likelihood ratio estimation

In this second step, we aim to elaborate an interpretable and explainable scoring process
that uses the binary and attribute-based speaker embeddings, to assess the value of
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evidence for a forensic speaker recognition task. During a test scoring of a given pair
of speech samples, a LR is computed for each attribute independently of the others,
referred to asattribute-LR. This LR per attribute is computed under the prosecution
and defence hypotheses. As illustrated in Figure.5.6, it is based on: 1) the value of the
attribute in both sides of the comparison, 2) An estimation of the discrimination of the
attribute. and 3) An estimation of uncertainty of the attribute (i.e. drop-in and drop-
out). A global LR is then computed as the product of these attribute-LRs, assuming
that these attributes are independent. This process is untitledBA-LR framework,
referring to asBinary-Attribute-based LR. This approach is far more informative than
an LR derived solely from a similarity score. The resulting LR not only serves as a
transparent framework for forensic practitioners to enhance their understanding of the
evidence but also acts as an interpretable process for decision-makers, including juries
and judges, o�ering greater insight into the information that describes the value of
evidence. Consequently, this would a�ord more control and �exibility in the process of
evidence evaluation. The formulation of this framework as well as the proposed scoring
process, inspired from DNA individualisation, are addressed in more details in chapter
7.

Step 3: Attribute explainability

Up to this stage, attributes encoded in the speaker embeddings are issued from a
bottom-up process and are not yet identi�ed or described in an understandable manner.
In this third step, we propose a methodology that aims to describe these attributes.
It is based on a theoretical modeling of three worlds: a real world that represents the
speech data, a representation world which is the binary speaker embeddings and an
informative world which contains all information concerning speech samples such as
acoustic, phonetic and phonemic parameters. The goal is to �nd a mapping function
between the representation world and the informative world to provide an automatic
description for attributes. Thus, two attributes descriptions are provided using two
types of mapping functions, as described in Figure.5.6: 1) An utterance-level mapping
that provides phonetic description of the attribute. 2) A frame-level mapping that
describes attributes in terms of localized temporal information, phonemes and phonetic
classes. Both approaches aim to enhance the explainability level of the attribute and
to prepare it to be more interpretable by an expert. This is further detailed in chapter
8.

5.4 Positioning in the interpretability/explainability dilemma

As discussed in Ÿ.4.3, the lack of a uni�ed de�nition of interpretability and explainabil-
ity poses a signi�cant challenge. In order to avoid ambiguity, we proposed a de�nition
for each term that we believe are suitable for this work in Ÿ.4.7. In the following, we
remind these proposed de�nitions:

ˆ Interpretability: The human ability to understand the model behavior and de-
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scribe its decisions in understandable way.

ˆ Explainability: Using methods to describe the output of a black box model in
terms of input features either by going through its internal functioning or by
using inherently interpretable models that mimic its behavior.

With these de�nitions in mind, we believe that our three-step solution tackles both,
interpretability and explainability. Our goal is to clarify our position, at each step,
within the de�nitions and taxonomy (Ÿ4.4) of explainability and interpretability, as
described in Figure 5.6.

Figure 5.6: Positioning of our approach in the interpretability/explainability dilemma

ˆ In Step 1 of our approach, and according to the established de�nitions, orienting
the speaker model to form binary attributes within speaker embeddings o�ers
explainability. It does not directly yield interpretable representations in an in-
tuitively "understandable way" but rather, it serves as a signi�cant step that
generates representations that are ready to explore and more easy to explain.
Thus, as described in the proposed taxonomy Ÿ4.4, this constraint falls under the
categoriesGlobal, Intrinsic and Model-speci�c explainability .

ˆ The main goal of Step 2 is to provide a computation of the LR that is both
explainable by the forensic expert in terms of contributing factors, and inter-
pretable by the court in terms of evidence quanti�cation. The BA-LR framework
is intentionally designed to beinherently interpretable , explicitly revealing the
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role of each attribute in the �nal LR calculation. Together with a characteriza-
tion of the attribute, this enhances the interpretability of this framework for the
court, enabling them to more easily comprehend the presented evidence value.
Speci�cally, the attribute-LR values allow the forensic practitioner to explain the
contribution of each sub-process to the �nal decision both locally and globally.
At this stage, still both the interpretability and explainability of the value of
evidence by both the court and the forensic practitioner is not fully satis�ed.
Indeed, we have an estimated characterization of each attribute, but yet they are
not described or identi�ed in a humanly understandable way. This is addressed
in the next step.

ˆ Step 3 aims to describe the attributes deriving from DNN model, where no in-
formation about their nature is provided. For this end, we propose a method-
ology that describes the attribute at two levels: 1) At the utterance-level using
a Global, Post-hoc, Model-Agnostic explainability method to automatically de-
scribe attributes in terms of phonetics. 2) At the frame-level by reversing the
DNN's �ow to explore the relationship between each attribute and its associated
phonemes and temporal information. This approach is considered asPost-hoc,
Model-speci�c because it is speci�c to the DNN. The attribute description pro-
vided by this step is more accessible for a forensic phonetician, who can listen
to the audio regions, interpret this information and translate it into higher-level
voice characteristics more comprehensible for the court.

5.5 Conclusion

Even thought the inspiration from DNA might be dangerous, we �rmly believe that it
sparked a novel and innovative idea. While carefully approaching this inspiration, we
aim to create a new direction and elaborate the core concept of our solution. In the
rest of this thesis, we further detail the proposed three-step, presenting each step in a
dedicated chapter.
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Chapter 6

Step 1: Binary and Attribute-based
modelling of speaker embeddings

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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This chapter describes the architecture of the DNN-based extractor employed in
Step 1 of our solution. This DNN model is designed to extract binary-attribute-based
speaker embeddings. In this chapter, we present an initial version of this extractor
which serves as the foundation for the subsequent steps of our work.
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6.1 Introduction

As seen previously, the analogy between speaker recognition and DNA identi�cation
is far from straightforward. Nevertheless, this inspiration can serve as a motivation to
create a more interpretable modelling of speaker embeddings, driven by the presence
or absence of a set of attributes. In contrast to the dense and unstructured nature of
continuous DNN-based speaker representations, such binary representation may o�er
a more e�cient means of organizing and condensing diverse speaker information into
distinct dimensions, thereby simplifying the handling of encoded information.

In this chapter, we conduct an overview of the existing methods in the literature
that produce binary speaker embeddings. Then, we precise requirements for this rep-
resentation as well as the proposed DNN-based extractor. After, we conduct some
experimental analysis to evaluate the resulting representation with regard to the re-
quirements and ASpR performance. Finally, we discuss the results and summarize our
conclusions and perspectives.

6.2 Related work: Binary speaker embedding

In the literature, a limited number of works only focus on representing a speech sample
with a binary representation [225, 226]. Most of the works are speci�cally dedicated to
generate binary speaker embeddings for speaker recognition task. We categorize these
works into three main groups based on their objective: 1) to model speaker speci�c
discriminant information, 2) to preserve privacy and enhance the security of speaker
information in the embedding, and 3) to reduce both time and computation costs.

Regarding the �rst group, the work in [227, 228] proposed an approach that moves
from a continuous probabilistic space based on GMM-UBM to a discrete, binary space,
able to handle directly the speaker discriminant information. This process leverages
an UBM to partition the acoustic space into distinct regions. Within each region, a set
of Gaussian models is employed to highlight speaker-speci�c characteristics. Conse-
quently, each acoustic frame is transformed into the discriminative binary space, where
it activates or deactivates various speci�cities, creating a binary vector. The work in
[229] builds upon the same approach while exploring both frame- and segment-level
speaker speci�c information.

The second group uses binary speaker embedding for security purposes, referred to
asSecure binary embedding(SBE) [230]. The work in [231, 232] builds upon the i-vector
system by computing SBE hashes of i-vectors. It converts real-valued i-vectors to bit
sequences which represent the SBE hashes in such a way that when the Euclidean dis-
tance between two i-vectors falls below a prede�ned threshold, the Hamming distance
between their respective hashes is directly related to the Euclidean distance between
the i-vectors. But, if the Euclidean distance surpasses this threshold, the hashes fail to
provide meaningful information about the actual distance between the two i-vectors.

Other researchers took bene�ts from binary vector to reduce computational costs.
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They generally uselocality-sensitive hashing(LSH)-based technique for performing fast
similarity searches. This technique consists in computing randomized hash functions
that encourage a high probability of collision for similar vectors. For instance, [233]
presented a binarization approach within the GMM-UBM framework that e�ciently
search large populations of speakers using kernel LSH [234]. The work in [235] con-
verts i-vectors to binary vectors or codes by a hash function. The binary codes are
obtained by both a LSH using a set of random hash functions and a Hamming distance
learning approach, where the hash function is trained using variable-sized blocks, inde-
pendently projecting each dimension of the original i-vectors into variable-sized binary
codes. More recently, the work in [236] proposed an ordered binary auto-encoder for
speaker recognition that sorts the dimensions of the embedding vector, the x-vector,
and converts the sorted vectors to binary codes using Bernoulli sampling. This is shown
to reduce memory storage and speed up retrieval tasks.

Despite the scarcity of research on this topic, representing a speaker embedding
with a binary vector o�ers numerous advantages. These include handling high dimen-
sionality while maintaining a compact representation, concealing speaker information
for security purposes, and guaranteeing reduced memory storage, minimized computa-
tional and time costs, and expedited retrieval tasks.

Clearly, our goal is not to generate a binary code through hashing functions where
dimensions lack meaning beyond quantization. Instead, we aim to create a binary-
attribute-based speaker embedding that encodes speaker-speci�c information within a
speech recording. This aligns closely with the �rst group of methods [227, 228, 229].
Although these methods are based on statistical GMM-UBM models, the idea behind
their binarization approach is intuitive and inspiring for our requirements.

6.3 Binary-Attribute-based modelling

In this step, we introduce a binary-attribute-based modelling that encourages speaker
embeddings to concentrate speaker-speci�c information into distinct dimensions, re-
ferred to as attributes. This is tackled following a set of requirements and aligning
with DNN-based ASpR architectures. In this section, we clarify these requirements.
Following that, we introduce our proposal and provide rationales behind our selection
of the architectural design.

6.3.1 Requirements

We start by de�ning some important requirements for the proposed modelling of
speaker embeddings, as follows:

ˆ Fixed-sized binary vector: a �xed-length vector of binary attributes. Each di-
mension indicates whether the corresponding voice attribute is present (i.e. 1) or
absent (i.e. 0).
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ˆ Shared attributes: an attribute is shared by a speci�c group of speakers. At-
tributes should follow the behavior of voice characteristics where some are shared
by few speakers (rare), others are shared by half of the speakers, and others shared
by most of the speakers (typical).

ˆ Independence: attributes are assumed to be independent or highly decorrelated.

6.3.2 Proposed model: ResNet with thresholding

With these requirements in mind, we propose for this step an initial solution built
upon the ResNet DNN-based extractor, outlined in Ÿ2.3.3. In this section, we present
the motivation behind this extractor and the constraints applied to push the desired
representation. Then, we set some notations that we �nd useful for this work.

Figure 6.1: ResNet training with thresholding function

The idea is to incorporate a thresholding function into the DNN model to promote
a substantial contrast in the activation levels among di�erent dimensions (i.e. neurons)
of the speaker embedding. The objective is to guide the network to prioritize certain
dimensions during training, promoting high activation in these dimensions, while al-
lowing the others to remain weakly activated or ignored. This thresholding function
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is an activation function that is added at the utterance-level of the network after the
fully connected layer as illustrated in Figure 6.1.

This modi�ed model is therefore trained for a speaker classi�cation task. During
training, the model pushes some neurons to be more activated than others for each
speaker class, referred to asspeaker attributes. This way and given the �xed-length of
the embedding, each attribute would be certainly shared by a subset of speakers. After
the training process, the extracted speaker embeddings remain non-binary. To address
this, we apply a post-training threshold, which converts very low values (i.e., <1e-4)
to 0 and sets positive values to 1. This way we obtain binary-attribute-based speaker
embeddings.

Why ResNet ?

The initial choice of ResNet is mainly driven by the observation that it o�ers a sat-
is�ed compromise between complexity and performance (Table 2.2), in our point of
view, compared to TDNN that is less accurate and ECAPA-TDNN that is much more
complex to follow for the next steps of the approach. However, it is important to note
that involving such thresholding function into the DNN model is totally independent
of the architecture and could be applied to any other ASpR network.

Which thresholding function?

ReLU function is the most used activation in DNN models training. It is linear for
positive values and zero in the origin and over the negative values as illustrated in
Figure 6.2 in red. Thus, when the input becomes zero or negative, the gradient of the
function becomes zero and as a consequence it will not perform the backpropagation
operation. This is called "The dying ReLU". To prevent such phenomenon during
training, a smooth variant of ReLU, referred to asSoftplus function[237], is shown to
be di�erentiable around zero allowing more small negative values to be activated as
shown in Figure 6.2. The vectors deriving from both functions (refer to Figure 6.1) after
training are referred to asactivation vectors. To achieve binary speaker embeddings,
a post-training thresholdingfunction is employed on activation vectors, as illustrated
in Figure 6.2, where green threshold is dedicated to Softplus function, red threshold
referred to ReLU,x is the input to the activation function and f (x) is the activation
values. The post-training thresholding function is expressed in the following equation
as:

8
<

:
0 f (x) < 1e� 4

1 Else
(6.1)

Clearly, the post-training threshold is applied to obtain exactly zero values. This
is because during training, values do not become exactly zeros, neither for ReLU nor
Softplus. Instead, we obtain vectors with very small values close to 0, indicating almost
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Figure 6.2: ReLU and Softplus activation functions, along with post-hoc thresholding
functions.

null activation. This phenomenon is frequent when no regularization is applied to the
training of the network.

Notations

For clarity reasons, we unify the notations used in our approach by denoting the fol-
lowing:

ˆ BA: A given Binary Attribute.

ˆ BA-extractor : The ResNet model modi�ed with a thresholding function during
training.

ˆ BA-vector: The vector of binary attributes, referred to as binary-attribute-based
speaker embedding.

ˆ ReLU-vector: The vector of activations derived from ReLU.

ˆ Softplus-vector: The vector of activations derived from Softplus.

ˆ Neurons: Refers to the dimensions of ReLU- or Softplus-vectors.

ˆ Attributes: Refers to the dimensions of the BA-vector.

6.4 Experiments and results

In this experimental section, we begin by introducing the experimental framework.
Following this, we conduct a comparative analysis between ReLU and Softplus acti-
vations. This analysis involves examining the distribution of 0s in attributes for both
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ReLU and Softplus vectors and measuring the correlation and dependence between di-
mensions (i.e. neurons) in both types of vectors. Finally, we evaluate the performance
of the extracted BA-vectors in a speaker veri�cation task.

6.4.1 Setup

We �rstly outline the experimental setup for this step, which involves a description of
the data sets used and the evaluation protocol designed for speaker veri�cation task.
Subsequently, we specify some details regarding the extractor con�guration.

Data sets and protocol

This step is mainly performed using VoxCeleb data set [57, 39], a commonly used
corpus frequently used in ASpR systems available in two versions: VoxCeleb 1 & 2.
It consists of short clips of human speech, extracted from interviews with celebrities
in YouTube. The dataset is diverse, with speakers from 145 di�erent nationalities,
o�ering a wide range of accents, ages, ethnicities, and languages. A description1 of
both data sets is provided as follows:

ˆ VoxCeleb2 [63]: It is a vast speaker recognition dataset consisting of more than a
million utterances from over 6,000 speakers. It mimics a real-world dataset with
various types of noise like laughter, cross-talk, music, and other environmental
sounds. Table 6.1 summarizes the number of speakers and speech extracts in the
development set which we use in this work.

ˆ VoxCeleb1 [238]: consists of more than 150,000 utterances from 1251 celebrities.
It is almost balanced in term of gender, with 55% male and 45% female.

Table 6.1: Data set and protocol description

VoxCeleb2 VoxCeleb1
# of speakers 5,994 1,251
# of extracts 1,021,175*51 153,516
# Test pairs 56,295*22

1 1 original and 4 augmented versions per extract
2 1 for target and 1 for non-target trials

VoxCeleb1 and VoxCeleb2 datasets do not share any speakers in common. In this
work, we use VoxCeleb2 dataset for training the DNN extractor. Additionally, we
apply data augmentation [46] using MUSAN dataset2, such as adding babble, rever-
beration, music, and incorporating noise to introduce more variability and improve the

1https://www.robots.ox.ac.uk/ vgg/data/voxceleb/
2http://www.openslr.org
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DNN model's robustness (refer to Table 6.1). VoxCeleb1 primarily serves as a test
set to evaluate our DNN embeddings based on the speci�ed requirements and speaker
veri�cation performance.

Using this test set, we construct the comparison pairs useful for speaker veri�cation
task following the protocol outlined below; we create a set of comparison pairs using
the test set, selecting the �rst ten utterances for each of the 1251 speakers in VoxCeleb1
to form the target (i.e. same-speaker) and non-target (i.e. di�erent-speakers) pairs.
This yields a total of 56,295 target comparison pairs, with 45 pairs for each speaker
as shown in Table 6.1. To maintain a balanced dataset, an equal number of 56,295
non-target pairs are randomly selected.

BA-extractor con�guration

The BA-extractor is mainly based on the baseline ResNet architecture [59, 57] (re-
fer to Ÿ2.3.3 for more information). It takes as input 61-�lterbank extracted with
Kaldi recipe [239]. The extraction of �lterbank values follows the same process de-
scribed in Ÿ.2.3.1 and Ÿ.2.3.1. The ResNet comprises of four consecutive residual CNN
blocks, followed by a standard deviation pooling layer (Std) and a fully connected
layer with batch normalization, which ultimately yields 256-dimensional speaker em-
beddings. Our thresholding process is applied to this fully connected layer, resulting
in the modi�ed speaker embeddings.

For this experiment, we deploy three models: a baseline ResNet model and two
di�erent modi�ed models, each featuring a distinct activation function. In the �rst
modi�ed model, we introduce a ReLU activation solely to the fully connected layer,
preserving the baseline architecture intact. In the second model, we make speci�c
alterations by removing the batch normalization associated with the fully connected
layer to prevent the spread of speaker information across neurons during training.
Subsequently, we incorporate the Softplus activation function. All models are optimized
for a speaker classi�cation task using the ASoftmax objective [83].

6.4.2 BA-vectors analysis

In this section, we carry out analyses of the BA-vectors issued from activation functions
extracted from the test set. This analysis would allow us to study closely the behavior
of ReLU and Softplus activations with respect to the resulting embeddings.

Figure 6.3 shows the distribution of zeros in BA-vectors derived from both ReLU-
and Softplus-vectors of the test set. It is important to mention that a phenomenon
known as 'dead neurons' is observed in the BA-vectors, where speci�c neurons remain
inactive across all speech excerpts (i.e. 100% of zeros). This phenomenon substantially
reduces the total number of attributes. In our case, this led to a reduction in the num-
ber of attributes derived from both activation functions, with 256 attributes reduced
to 197 and 205 for ReLU- and Softplus-vectors, respectively. Furthermore, a important
portion of the attributes (i.e., over 100) from ReLU-vectors exhibit a high percentage
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of zeros across speech excerpts (refer to Figure 6.3a). Both phenomena may lead to
a substantial loss of information within the corresponding BA-vectors. However, this
is not the case for Softplus-vectors, where the distribution of zeros within attributes
demonstrates a more balanced pattern compared to ReLU-vectors (see Figure 6.3b).
This di�erence may be attributed to the Softplus function's ability to smoothly accom-
modate certain small negative values while maintaining their activation, in contrast to
the ReLU function, which deactivates all negative values.

(a) Binary attributes from
ReLU-vectors

(b) Binary attributes from
Softplus-vectors

Figure 6.3: Distribution of 0s in the BA-vectors

6.4.3 Measuring attributes correlation and dependence

Indeed, in this BA-extractor, no constraint is applied to encourage the independence
assumption. Thus, it is not theoretically guaranteed. In this section, we aim to experi-
mentally evaluate its level of compliance. For comparison reasons, we show in Figure 6.4
three Pearson correlation matrices, that measure the linear correlation between the di-
mensions of the x-vector and between the neurons of both ReLU and Softplus-vectors.
To have more closer look into correlation values, we show their respective distributions
through boxplots in Figure 6.5. Upon comparing the three matrices, it is clear that
the baseline x-vectors exhibit already relatively low correlation between dimensions.
Although there are a few high correlations among speci�c pairs (refer to Figure 6.5c),
the overall correlation matrix predominantly reveals moderate values, as depicted in
Figure 6.4c. Unlikely, ReLU-vectors exhibit a more pronounced contrast in correla-
tions, with notably higher correlations observed between certain pairs of dimensions,
while showing notably lower correlations among others as shown in Figure 6.4a. On
the other hand, the Softplus-vectors exhibit notably weak correlations, with almost
values falling within the range of -0.2 to 0.3, as illustrated in Figure 6.5c.

To further illustrate this decorrelation, we employs another measure, theMutual
Information (MI) [240], that not only considers linear correlations but also takes into
account independence which is a stronger statement than decorrelation. It is estimated
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(a) ReLU activations (b) Softplus activations

(c) X-vectors dimensions

Figure 6.4: Pearson correlation between neurons activation

(a) ReLU correlations (b) Softplus correlations (c) X-vectors correlations

Figure 6.5: Distribution of correlation values in boxplots
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as follows:

MI (x; y) =
X

x

X

y
P(x; y) � log(

P(x; y)
P(x) � P(y)

) (6.2)

WhereP(x; y) is the joint probability and P(x) and P(y) are the marginal probabilities.
Figure 6.6 shows the mutual information calculated between binary attributes deriving
from both ReLU- and Softplus-vectors. As can be noticed, the mutual information
between binary attributes of Softplus-vectors reveals a notably low level of dependence
between attributes (see Figure 6.6b), in contrast to ReLU, where certain attribute pairs
exhibit a considerably higher degree of mutual dependence (refer to Figure 6.6a).

(a) ReLU binary attributes (b) Softplus binary attributes

Figure 6.6: Mutual information between binary attributes

6.4.4 Speaker recognition performance

Table 6.2 presents the results of a speaker veri�cation process employing the baseline
x-vector model, ReLU model, and Softplus model. The results report the performance
in terms of EER (Ÿ2.4.1) and Cllrmin=act

3 (Ÿ3.3.3). The evaluation of the three systems
is conducted using cosine similarity scores (Ÿ2.3.4), which are calculated based on
comparison pairs composed from VoxCeleb1 following the experimental protocol set
earlier.

Table 6.2: Performance comparison in terms of EER and Cllr of the three systems on
VoxCeleb1 using cosine similarity.

X-vectors ReLU-vectors BA-vectors Softplus-vectors BA-vectors
# of dim 256(�oat32) 197(�oat32) 197(bit) 205(�oat32) 205(bit)

EER 1.37% 3.84% 5.82% 3.38% 3.42%
Cllr min=act 0.057/0.81 0.14/0.89 0.21/0.95 0.13/0.86 0.13/0.86

As can be noticed in Table 6.2, the overall performance of both ReLU and Softplus-
vectors has shown a decrease compared to the baseline x-vector. This performance

3The minimum C ll / the actual C ll
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decline is manifested by approximately 2% average absolute increase in EER for both
activation vectors. This loss can be explained by the attenuation and suppression
of some dimensions, leading to a more compact binary-attribute-based embeddings.
This reduction in performance is more pronounced in the case of ReLU-vectors than
in Softplus-vectors. One potential explanation of this gap may be attributed to the
smooth behavior of Softplus, which allows for the acceptance of certain small negative
values as 1. When comparing the BA-vectors, one can notice that the conversion of
ReLU-vectors to BA-vectors results in a supplementary increase in EER, with nearly
2%. In contrast, binarizing Softplus-vectors, interestingly, maintains almost the same
performance, with negligible reduction of 0.04%.

6.5 Discussion

In this chapter, we proposed a �rst version of the binary-attribute-based extractor. We
showed that extracting speaker embeddings that respect our requirements is a chal-
lenging task. The idea to incorporate an activation function at the speaker embedding
level seems to be an appropriate trick, which reshapes the embeddings, orienting them
towards binarization. Furthermore, we believe that integrating this activation function
during the model's training process e�ectively concentrates speaker-speci�c informa-
tion into selected neurons. This would guide the most of the �ow of information within
the DNN model layers towards these targeted neurons. Given that the training is op-
timized for the speaker classi�cation task, these neurons would subsequently function
as shared attributes across groups of speakers.

Although not directly involving the independence constraint into the DNN model
training, we demonstrated that this constraint is satis�ed experimentally through corre-
lation and dependence measures. Our �ndings illustrate that the inclusion of activation
function at the speaker embedding level is advantageous with respect to our require-
ments. It is thought to e�ciently alleviate information correlation between attributes,
resulting in pronounced decorrelation and increased levels of independence. In par-
ticular, the utilization of the Softplus activation demonstrates an enhanced ability to
decorrelate the activation vector neurons, thereby promoting attribute independence.
Furthermore, it has shown greater stability in activations, with the added bene�t that
converting these activations to binary attributes does not have an impact on ASpR
performance. Indeed, we observed a decline in ASpR performance when utilizing the
activation vectors. However, this was expected since we concentrated the �ow of infor-
mation during the DNN training into some neurons only. This compact representation
of speaker information may be the cause of some loss in information during the training
process.

Despite the simplicity of this solution and as a �rst attempt, we believe that these
results are encouraging. It is important to recall that our goal in this work is not
to present a more accurate speaker recognition system, but rather to present a more
explainable and a more easily interpretable ASpR model. Although not enhancing
performance, the incorporation of activation function can be seen as a �rst step towards
preparing the DNN model for explanations.
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Nevertheless, it is also worth mentioning that the choices we made so far can be
criticized. We are aware that this extractor is not without its limitations and that there
is large room for further improvements. Indeed, the ResNet used in this extractor is not
the most accurate ASpR system compared to recently proposed models such as WavLM
and ECAPA-TDNN models. Given that the incorporation of thresholding function is
indeed independent of the DNN architecture, these newer architectures may provide
better performance, following the same process. However, still the challenges about
these architectures explainability remains complex and unresolved. Furthermore, we
are aware that the concept of binarizing vectors post-training may not be ideal. Instead,
a more favorable approach would involve training a dedicated binary extractor designed
to directly extract binary vectors. In an e�ort to explore a novel perspective for the
BA-extractor, we propose in chapter 10 a di�erent modelling of the attribute-based
representations. This model extracts directly binary vectors and achieves improved
performance while respecting our representation assumptions.

In the upcoming steps of this work, we adopt the BA-vectors generated from the
Softplus-vectors as the binary-attribute-based speaker embeddings.
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Chapter 7

Step 2: Binary-Attribute-based like-
lihood ratio estimation

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 The core concept of BA-LR . . . . . . . . . . . . . . . . . . . 86
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7.4.2 Global LR estimation . . . . . . . . . . . . . . . . . . . 96

7.5 Analyses and evaluation of speaker recognition performance . 97
7.5.1 Data sets and protocols . . . . . . . . . . . . . . . . . 97
7.5.2 Analyses of behavioral parameters . . . . . . . . . . . . 98
7.5.3 Speaker recognition performance and generalization ability100

7.6 Explainability of the LR . . . . . . . . . . . . . . . . . . . . . 100
7.6.1 Distribution of attribute-LLR values . . . . . . . . . . 101
7.6.2 Shapley-like explanations . . . . . . . . . . . . . . . . . 102

7.7 Discussion and perspectives . . . . . . . . . . . . . . . . . . . 104

In this chapter, we build on the binary-attribute-based speaker embeddings men-
tioned earlier, for the second step of our approach. This step is designed to establish an
interpretable and explainable framework to estimate the LR for speaker recognition.
More speci�cally, we position ourselves in a forensic context where the LR is employed
to evaluate the evidence. Even though we emphasize this context interpretability is
a paramount, it is noteworthy that this framework might be applied more broadly to
any ASpR system.
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7.1 Introduction

ASpR systems are designed to determine whether two voice recordings belong to the
same speaker using a machine that outputs a score. In ASpR literature, the predom-
inant focus lies on enhancing performance, often neglecting the interpretability and
explainability of the information which drives the output prediction. In a forensic
context, the output of FASpR system is typically expressed as a LR, representing the
ratio between two likelihoods corresponding to two competing hypotheses: either the
two voice samples are spoken by the same person, or each voice sample is spoken by a
di�erent person. Even though the LR is meaningful and self-su�cient by nature [99],
presenting a single number as the output of forensic automatic system is becoming
a serious weakness with respect to regulatory compliance and ethical considerations
[145, 135, 136]. Assessing the evidence necessitates an examination of the elements
and factors that contribute to its value to be informed of any sort of discrimination
bias and to help the court in their decision-making.

To address the aforementioned concern, this chapter introduces an interpretable
and explainable framework for estimating the LR value, named Binary-attribute-based
LR (BA-LR). In the following sections, we begin by presenting the core idea and
motivations of BA-LR framework. Subsequently, an estimation of key parameters is
proposed, followed by a LR estimation using these parameters. The results of apply-
ing BA-LR scoring scheme to an ASpR task are therefore presented, evaluating both
performance and explainability aspects. Finally, we summarize and report conclusions
and perspectives derived from this framework.

7.2 The core concept of BA-LR

In this section, we begin by highlighting the inherent lack of interpretability in LR
calculation within a forensic ASpR system. Following that, we clarify the motivation
behind introducing the BA-LR framework and draw inspiration from DNA individual-
isation process. Subsequently, we present our visionary BA-LR framework through an
idealized example. Lastly, we outline some research questions that will be explored in
this chapter.

Lack of interpretability in LR computation

Figure 7.1 introduces the lack of interpretability in the LR calculation in a scenario
reporting the value of a vocal evidence.
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Figure 7.1: An illustration of the assessment of the value of speech evidence using
ASpR system

Let us imagine a crime scene where a vocal trace, potentially containing the voice
of the perpetrator (i.e. criminal), is retained as evidence. In this case, the vocal
trace and a voice recording of a suspect speaker are both processed using a DNN-
based ASpR system to extract corresponding speaker embeddings. Subsequently, a
similarity score is computed and transformed into a LR value, which is then presented
in court. Assigning a LR value of 20 (i.e. LLR=Log(LR)=3) e�ectively conveys that
the evidence supports the prosecution's hypothesis 20 times more than the defense's
hypothesis. According to the courts positions discussed in Ÿ3.4.1, our focus here lies in
the case where the court requires further explanations about the value of evidence. In
such case, simply relying on the LR value falls short. The court would inquire about
the elements that in�uence the LR estimate and their properties to verify that the
decision is not based on a discrimination bias [135, 136, 145, 147].

Motivation

Returning to the earlier illustrative example, Figure 7.2 shows how improvements
can be made to o�er a more interpretable perspective, moving beyond a mere sup-
port for one hypothesis over the other. Saying that the LLR equal to3 is obtained
from a composition of four LLRs, as shown in Figure 7.2, each dedicated to one factor
and worth 2, � 0:5, 2:5 and � 1 respectively, not only indicates the same support for
the prosecution hypothesis but it also provides a detailed composition of this support.
In this context, one may say that this support comes mainly from the factors with
LLR = 2 and LLR = 2:5. However, adding more information to the identi�ed factors
may grandly help the judge, jointly with the other case information, to take in hands
the value of evidence. For instance, supplementing information about the intrinsic
characteristics of the factors, such as their discriminant power and the expected reli-
ability of their estimation, would o�er more insights into the �nal LLR. The work in
[214] emphasized the importance of involving the uncertainty of estimation (i.e. the
probabilities of errors) related to LR estimation by saying that:"With estimation comes
always a degree of uncertainty, and it should be acknowledged that this uncertainty in-
duces a risk of jumping to the wrong conclusions at court [...] Nevertheless, having the
uncertainty in mind when reporting the likelihood ratio will reduce the risk of making
an erroneous conclusion at court". Therefore, returning to our example, a LLR of2:5
could arise from highly discriminant factor but with a low estimation reliability, while
the LLR of � 0:5 may be linked to a factor with a moderate discriminant power but
with a very reliable estimation as illustrated in Figure 7.2.
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Figure 7.2: An illustration of an interpretable assessment of the value of speech evidence
using ASpR system

This process is inspired from evaluating the evidence in forensic DNA individualisa-
tion, where the decomposition of the LR into partial LRs was �rstly introduced [213].
This is further detailed in Ÿ5.2; To summarize the process, the expert compares a trace
extracted from a crime scene and a suspect pro�le, both represented by a �nite set of
allele pairs at pre-de�ned loci [211, 212]. For each locus, the presence or absence of
alleles in both parts of the comparison is used to estimate a partial LLR. Due to some
sources of ambiguity [222], uncertainty by locus exists [214] and is quanti�ed by drop-
out and drop-in probabilities of alleles [218, 219]. These probabilities are also involved
into the partial LLRs computations [216]. The global LLR is therefore obtained as the
sum of the partial LLRs thanks to the independence between the loci involved.

The dreamlike BA-LR framework

Our novel BA-LR approach is primarily motivated by this process. The main goal is
to present an interpretable computation of the �nal score as described by the previous
example. In Figure 7.3, we describe the ultimate goal of our approach with a dreamlike
toy scenario that illustrates our vision for the interpretable computation of LR.

Figure 7.3: A dreamlike interpretable likelihood ratio calculation

Given two speech extracts X and Y, two binary-attribute-based embeddings are
extracted, as demonstrated in chapter 6. Each dimension in these embeddings is repre-
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sented by a voice attribute in a binary fashion, where a value of 1 denotes the presence
of the voice attribute, while a value of 0 signi�es its absence. Let us consider in this
example a set of only four prede�ned voice attributes as shown in Figure 7.3. For each
attribute k, a LLR is calculated denoted asf k

ij taking into account both the valuesij
in both sides of the comparison (i.e. 00, 11, 01 or 10) and two behaviors related to
the attribute that we model by typicality and reliability. Typicality [241] re�ects how
typical is the attribute among some population, while reliability indicates the degree of
con�dence in that attribute. Thus for this example, a potential interpretation of the �-
nal LLR value of 3 could be the following; the LLR of3 means at the �rst place that the
evidence supports, in the LR domain, the prosecution hypothesis 20 times more than
the defence hypothesis. Additionally, this support is deriving from the contribution
of four voice attributes including female voice, voice nasality, use of English language,
and having an age of over 60 years. The most reliable voice attributes that are pre-
senting the biggest contribution are mainly Female sex and voice nasality, with the
former is rare attribute (i.e. highly discriminant) and the latter possessing a moderate
typicality. It is thus becoming clear that the �nal value is driven by the contribution of
discriminant attributes that are present in both samples. English language attribute is
also reliable but very typical (i.e. not discriminant) among our population. Therefore,
its absence in both comparison sides is adding a small contribution to the �nal value.
We believe that providing this level of explanations when a LR is proposed can make
it easier for decision makers to understand the existing information in the evidence.

Research questions

To bring this dreamlike framework to fruition, we aim in the next sections to address
the following research questions:

ˆ RQ1: How to estimate the behavior of a given attribute?

ˆ RQ2: How to elaborate an interpretable formulation of the LLRs per attribute
as a function of the attribute behavior?

ˆ RQ3: Is the BA-LR framework applicable in a speaker recognition task?

ˆ RQ4: Are we able to o�er additional explanations for the �nal score? Which
attribute behavior has a greater impact on the �nal score?

7.3 Estimation of behavioral parameters

In BA-LR approach, each voice attribute, denoted as BA, is characterized by two
key behaviors: its typicality and its reliability. Drawing inspiration from the DNA
individualisation process, as detailed in Ÿ5.2, these behaviors are represented in our
approach through three behavioral parameters per BA; The �rst parameter is the
typicality [242] that re�ects the attribute's discriminant power. The two remaining
parameters concern the reliability that quanti�es two probabilities of errors associated
with the attribute. These probabilities were initially incorporated in the computation
of LR in forensic DNA analysis, namely the Drop-in and Drop-out [220, 216, 222].
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In this section, we present the de�nitions of the behavioral parameters. Subse-
quently, we introduce a simple and a straightforward proposal for their estimation,
inspired by DNA concepts. Please note that these estimations are may be not the
best, they are chosen to mainly prioritize simplicity and ease of understanding.

7.3.1 Typicality

We de�ne the typicality of an attribute BA i , denoted asTi , as the frequency of speaker
pairs sharing the attribute in the relevant population. The typicality re�ects the dis-
criminative power of an attribute [243, 242, 216]. The more typical an attribute is, the
more frequent it is in the reference population, the less discriminating it is [243]. We
propose a basic estimation of the typicality in Equation (7.1) calculated as the number
of speaker couples sharing that attribute divided by the total number of couples in the
reference population.

Ti =
P N c PS1 \ PS2 = f BA i = 1g

Nc
(7.1)

Where PS1 and PS2 are the pro�les of the two speakersS1 and S2 in the couple and
Nc is the number of speaker couples in the relevant population. The notions ofspeaker
pro�le and relevant populationare clari�ed and further explained in the following.

The relevant population

The relevant population is de�ned by [101, 100, 242] as the set of speakers chosen when
formulating the defence hypothesis in forensic speaker recognition. Drygajlo et. al in
[100] state that: "Although possible in theory that the di�erent-speaker hypothesis
includes any possible speaker, this hypothesis is usually more restricted at least to
speakers of the same sex, but often also to speakers of the same language and perhaps
even the same language variety". They also state that the de�nition of the relevant
population could be related to technical procedure such as an ASpR model that is
already trained on a set of speakers, or it could be de�ned based on an authority
request of speci�c pro�les related to the case."If the mandating authority or party
requests a speci�c relevant population, it needs to be assessed by the forensic expert
whether this request can be met. If the mandating authority or party does not request
any speci�c relevant population it is necessary that the forensic expert de�nes a relevant
population that is compatible with the circumstances of the case at hand and for which
the necessary databases and other resources are available."[100].

In this work, our relevant population comprises the speakers within the training
data set of our DNN model. This is because the attributes are learned based on this
population, and also because a larger population allows us to cover more cases and
gain a wider view on the behavior of these attributes.
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The "elusive" speaker pro�le

As discussed in Ÿ5.2, unlike the DNA pro�le that comprises all information about
an individual, the notion of a speaker voice pro�le is impractical and close to un-
achievable. This is due to the various variabilities inherent in our voice, often beyond
control, in contrast to the more stable nature of DNA. Additionally, a crucial factor
is the linguistic content, bringing forth additional variabilities. The content is consis-
tently changing. Due to brief speech segments or the infrequent occurrence of certain
phonemes by the speaker, this aspect would highly impact the de�nition of the speaker
pro�le. This gives raise to the drop-out phenomenon de�ned later in this section.

Thus, in this work, we set our own de�nition of the speaker pro�le. For a given
speaker Sj , we consider an attribute,BA i , present in his pro�le PSj , when it is present
in at least one speech extract or utteranceU of the speaker as expressed in Equation
(7.2).

PSj (BA i ) =

8
<

:
1 if

P
U2 Sj

U(BA i ) � 1

0 Else
(7.2)

While aware that this de�nition may not align with reality, we are adopting a generous
position toward the speaker pro�le, minimizing the risk associated with the potential
presence of the attribute. In our view, it is safer and more prudent to regard the
attribute as present if it occurs at least once, rather than searching for an optimal
presence threshold for each attribute, which is never evident. This choice is reinforced
by the incorporation of the drop-out notion, which re-compensates any potential over-
estimation of the attribute's presence.

7.3.2 Drop-out

The drop-out is �rstly de�ned in DNA �eld [222, 216, 221, 218, 217] as the disappear-
ance of some alleles from the pro�le due to technical process (refer to Ÿ5.2). It might
occur in two scenarios: 1) afalse negative detectionof the attribute. 2) a non-presence
of the attribute due to speech variability or due t insu�ciency of data. Here, we de�ne
it as the probability that an attribute does not appear in a given utterance while it
was observed in at least one other utterance of the considered speaker. The drop-out
is directly linked to the fact that a given speech extract is not containing all the speech
information about a given speaker.

In this work, drop-out probability of an attribute is estimated �rstly per each
speaker, denoted by DoutSi , as expressed in equation (7.3). It is calculated as the
number of utterancesUS, not having a BAi given that this BA i is present in the pro�le
of speaker S, divided by the number of utterances of that speakerNS. Then a drop-out
of an attribute, denoted asDout i , is averaged over all theN speakers having that
attribute in the relevant population as expressed in equation (7.4). This two steps
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estimation is followed because the number of utterances is variable amon speakers.

DoutS
i =

P NS
U2 S(U(BA i = 0) jPS(BA i ) = 1)

NS
(7.3)

Dout i =
P N

j =1 DoutSj
i

N
(7.4)

7.3.3 Drop-in

Similarly to attribute drop-out, drop-in phenomenon is directly inspired from DNA
process [220, 222]. It might occur in speech due to noise caused by multiple factors
such as environment, recording conditions, quality of device...etc. In this work, we
de�ne drop-in as the probability of encountering a noise leading to the false presence
of an attribute in a given speech utterance. It can be considered as afalse positive
detection of the attribute. The Drop-in phenomenon is considered as independent of
attributes as it re�ects the general noise in the data [222]. It is estimated with a noise
factor Din multiplied by Ti , the typicality of the attribute, expressed in Equation (7.5).
This represents the idea that a drop-in occurred in an attribute along with its presence
frequencyTi .

Pdin = Din � Ti (7.5)

Even in DNA, it was shown to be di�cult to estimate the drop-in. Gill et.al in
[216] say that:

"There is no absolute method to determine if drop-in or contamination has
occurred in a casework sample, but negative controls can be used to estimate
the probability of drop-in within casework samples" [...] "To calculate the
risk of a drop-in event in a casework pro�le, we multiply together the proba-
bility of drop-in with the probability of the speci�c allelea that is conditioned
to have dropped in: Pr(C)pa [220]".

7.4 Estimation of likelihood ratios

The goal of the proposed BA-LR method is to decompose the LR into attribute LRs and
subsequently employ an interpretable formulation to estimate these attribute LRs, in-
corporating the attribute behavioral parameters [13]. Figure 7.4 presents an overview of
BA-LR approach; Given two speech samplesX and Y representing a suspect recording
and a vocal trace, respectively, we �rstly extract the corresponding BA-vectors using
step 1, as outlined in Chapter 6. Subsequently, we calculate an LR for each attribute.
This calculation takes into account the value of the attribute on both sides of the com-
parison, along with the attribute's behavioral parameters estimated from the training
dataset. The global LR value assessing the comparison pair is therefore computed as
the product of the attribute LRs.
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Figure 7.4: Global likelihood ratio estimation using BA-LR

In this section, we introduce two versions for attribute LRs estimation, along with
their interpretations within a forensic context. Subsequently, we infer the �nal LR
value calculated using these attribute LRs for a pairwise comparison.

7.4.1 Attribute LR estimation

The estimation of the attribute LRs is inspired from [216, 222, 223, 221]. An attribute
LR is computed following two hypotheses, expressed in Equation (7.6), as the ratio
of the probability of the attribute given prosecution hypothesis Hp divided by the
probability of the attribute given the defence hypothesis Hd.

LR i
X i ;Yi

=
P(X i ; Yi jHp)
P(X i ; Yi jHd)

(7.6)

Based on binary values of BAi , four potential cases of(X i ; Yi ) could be encountered
and therefore four values of LRs per attributei are considered such asLR i

0;1, LR i
1;0,

LR i
0;0 and LR i

1;1. A �rst case is when the attribute is present in X and not in Y (e.g.
BAn in Figure 7.4). A second case is when it is absent in X but present in Y. A third
case is when the attribute is absent in both X and Y (e.g. BA1 in Figure 7.4). The
forth case is when the attribute is present in both X and Y (e.g. BA2 in Figure 7.4).

Based on the four cases just described, we propose two versions of attribute-LRs
estimation. The �rst version is referred to asDNA-inspired Attribute LR estimation ,
while the second version is namedSpeech-adapted Attribute LR estimation . The
di�erence between both versions is mainly driven by the assumptions set in each version.
In the following, both proposals are presented.
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DNA-inspired

This version is referred to as anaive version, wherein we apply the same reasoning as
done in DNA individualisation [222], adopting the following assumptions:

ˆ The drop-in and drop-out phenomena could occuronly in the vocal trace.

ˆ The suspect recording is considered as the reference of the suspect's voice.

ˆ The case in which a drop-in could occur is re�ected by a factorDin multiplied
by Ti , the typicality of the attribute, which means that a drop-in happened in
BA i with probability Ti as done in [222]. The case in which there is no drop-in,
it is irrelevant to multiply by the complementary of the typicality.

We describe in the following, the forensic hypothetical rationale for formulating the
attribute LRs in the four cases, expressed in Equation (7.7):

ˆ Y: (BA i =0) ; X: (BA i =1) : Under H p, the numerator, the prosecutor asserts that
the drop-out observed at BAi in the trace is simply a result of inherent variability.
However, in reality, the trace is attributed to the suspect.Under H d hypothesis,
in the denominator, the defense explores all potential scenarios involving random
individuals. Consequently, the defense argues that the drop-out at BAi in the
trace may be a consequence of an attribute-speci�c error. Alternatively, it could
be linked to another speaker in the population for whom BAi was not observed,
eliminating the possibility of a drop-out.

ˆ Y: (BA i =0) ; X: (BA i =0) : Under H p there is a 100% correspondence at BAi ,
the trace is certainly belonging to the suspect. Conversely,under Hd, the defense
acknowledges the absence of BAi in the trace and additionally proposes that the
BA i might be present in the trace, but a drop-out could have occurred.

ˆ Y: (BA i =1) ; X: (BA i =1) : Under H p, there is a 100% correspondence at BAi , it
is absent in both samples. Conversely,under Hd, the defence would argue that
there might be no drop-out in the trace, or perhaps BAi is absent in the trace,
but a drop-in caused its appearance.

ˆ Y: (BA i =1) ; X: (BA i =0) : Under H p, a drop-in occurred, leading to the appear-
ance of BAi in the trace, but in fact the trace belong to the suspect. However,
under Hd, the defence is faced to two scenarios: there might have been a drop-in,
or perhaps there was no drop-in, and alternatively, the trace could belong to
someone else in the population.

94



LR i
X i ;Y i

=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Dout i

Ti � (Dout i + Dout i )
if Y (BA i = 0) ; X(BA i = 1)

1

Ti � (Din + Dout i )
if Y (BA i = 0) ; X(BA i = 0)

1

Ti � (Dout i + Din � Ti )
if Y (BA i = 1) ; X(BA i = 1)

Din � Ti

Ti � (Din � Ti + Din)
if Y (BA i = 1) ; X(BA i = 0)

(7.7)

Equation (7.7) illustrates the proposed attribute LRs computation for the four cases,
where Din = 1 � Din and Dout = 1 � Dout. These formula are elaborated upon
prosecution and defence hypotheses based on Equation (7.6).

This formulation is mainly built on the assumption that the phenomena of drop-in
and drop-out might occur only in the trace sample. However, unlike DNA where we
have always a ground truth about the suspect, in a speech comparison case, errors could
occur in both sides of the pairwise comparison. As a �rst attempt, we opt to merge the
cases01 and 10 into one case, by symmetrizing them as expressed in Equation (7.8).

LR i
0;1 = LR i

1;0 =
LR i

0;1 + LR i
1;0

2
(7.8)

Indeed, this solution uni�es the di�erent case attribute-LR but it may not be entirely
logical. A more proper solution is proposed in the second version where the case01
and 10 are initially formulated similarly.

Speech-adapted

This version is referred to as amore logical version. In this version, di�erent assump-
tions are made as follows:

ˆ Drop-out and drop-in phenomena could occur in both,X and Y recordings.

ˆ Drop-out and drop-in phenomena occurring inX are independent of those oc-
curring in Y.

ˆ Similarly to DNA-inspired, the absence drop-in is represented byDin , whereas
the absence of drop-out is re�ected byDout i .

ˆ (X i ; Yi ) is re�ected by two states. The observed state in the time of comparison,
and the actual state without the impact any misleading phenomenon.

The forensic hypothetical rationale for formulating the attribute LRs in the four
cases, for this version, is described in the following. Please refer to Appendix.B for a
visual representation of all combinations:

ˆ Y: (BA i =0) ; X: (BA i =0) : The observed state is(0; 0). Under Hp, the pros-
ecution considers two possibilities: either the true state is also(0; 0), or it is
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(1; 1) but with drop-out on both sides resulting in(0; 0). Under Hd, the defense
presents various scenarios. He argues that the true state could be either(0; 1) or
(1; 0), but with drop-out on one side, leading to(0; 0). Thus, this possibility is
counted twice. Moreover, it is possible that with drop-out on both sides,(0; 0)
is observed from the true state(1; 1). Additionally, if there are no drop-ins on
either side,(0; 0) is obtained from the true state(0; 0).

ˆ Y: (BA i =1) ; X: (BA i =1) : Under Hp, there is a 100% correspondence. Alterna-
tively, if the true state is (0; 0) but experiences drop-out on both sides, this would
lead to observe(1; 1). Under Hd, the true state could be either(0; 1) or (1; 0),
but with a drop-in on one side or the other, resulting in(1; 1). Additionally, it is
possible that with a drop-in on both sides, we observe(1; 1) from the true state
(0; 0). Furthermore, there may be no drop-outs on either side.

ˆ Y: (BA i = 1j0) ; X: (BA i = 0j1): Under Hp, the observed state is(1; 0) or (0; 1), but
they should belong to the same speaker. Thus, it is possible that the true state
was(0; 0), experiencing a drop-in on one side but not the other. Alternatively, the
true state could be(1; 1), but a drop-out occurred on only one side, not the other.
Under Hd, since both samples belong to di�erent speakers, it is conceivable that
the true state is (0; 1) or (1; 0). There could be a drop-in on one side and not the
other. A dropout on one side but not the other. A simultaneous drop-in on one
side and a dropout on the other side.

Equation system (7.9) presents the mathematical formulation of this reasoning follow-
ing the forensic hypothesis.

LR i
X i ;Y i

=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

1 + Dout2
i

Ti � (2 � Dout i � Din + Dout2
i + Din

2
)

if(BA Y
i = 0 ; BA X

i = 0)

1 + ( Din � Ti )2

Ti � (2 � Din � Ti � Dout i + ( Din � Ti )2 + Dout i
2
)

if(BA Y
i = 1 ; BA X

i = 1)

Din � Din � Ti + Dout i � Dout i

Ti � (Din � Din � Ti + Dout i � Dout i + 1 + Din � Ti � Dout i )
if(BA Y

i = 0 ; BA X
i = 1)

Din � Din � Ti + Dout i � Dout i

Ti � (Din � Din � Ti + Dout i � Dout i + 1 + Din � Ti � Dout i )
if(BA Y

i = 1 ; BA X
i = 0)

(7.9)
This formulation is shown to be more logically presented and interpreted, since it
considers a real voice comparison case. Here, based on the followed reasoning, the case
01 and 10 are automatically behaving similarly.

7.4.2 Global LR estimation

To be able to provide a global LR as the product of the attribute LRs (see Figure
7.4), the assumption of independence between attributes should be respected in both
versions. Referring to the previous chapter 6, we demonstrated experimentally, in
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Ÿ6.4.3, that the attributes in the BA-vectors ful�ll this assumption. As a result, the
global LR is calculated as shown in Equation (7.10):

LR (X; Y ) =
nY

i =1

LR i
X i ;Yi

(7.10)

In practice, the logarithmic versions of the LRs are used in order to move into the
Log(LR) domain and take advantage of its additive nature. In light of this, the Log of
the �nal LR becomes the sum of the attribute LLRs as shown in Equation (7.11).

LLR (X; Y ) =
nX

i =1

LLR i
X i ;Yi

(7.11)

7.5 Analyses and evaluation of speaker recognition per-
formance

In this section, our goal is to evaluate the overall performance of BA-LR approach in
terms of speaker discrimination and generalization capabilities across di�erent datasets.
To achieve this, we begin by outlining the datasets employed and their corresponding
evaluation protocols. Subsequently, we conduct some analysis of the behavioral pa-
rameters followed by a comparative analysis of the speaker veri�cation performance
between the two versions of our approach and the baseline x-vector system.

7.5.1 Data sets and protocols

Table 7.1: Description of data sets

Train Test
VoxCeleb2 VoxCeleb1 SITW VOiCES

# of speakers 5,994 1,251 180 100
# of utterances 1,021,175 153,516 2,883 11,392

# of comparison pairs 35, 9642*21 56,279*21 3,658*21 36,443*21

1 1 for target and 1 for non-target comparison pairs
2 The number of target pairs is composed from all speakers with only 3 utterances

for each speaker.

In this experiment, we use four corpora such as: VoxCeleb1&2, SITW [244] and
VOiCES [245], as summarized in Table 7.1. During steps 1 and 2 of our BA-LR
approach, VoxCeleb2 data set is used for training the BA-extractor and computing
behavioral parameters related to attributes (Ti , Dout i , Din ). VoxCeleb1, SITW, and
VOiCES are used for testing only, and have no intersection with VoxCeleb2 in terms
of speakers. While VoxCeleb1&2 are extensively detailed in Ÿ6.4.1, the descriptions of
SITW and VOICES are provided below.
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ˆ SITW 1. It is composed of speech samples in English from open-source media
representing unconstrained or wild conditions and pronounced by 180 speakers.
We use the evaluation corpus of SITW dataset [244] that gives 3,658 target pairs
and we select randomly the same number of non-target pairs.

ˆ VOiCES2. It is composed of excerpts pronounced by 100 speakers in acoustically
challenging and reverberant environments. We use the evaluation of �VOiCES
Distance Speaker Recognition Challenge 2019" [245, 246]. It included 36,443
target pairs and we select randomly 36,443 non-target pairs.

7.5.2 Analyses of behavioral parameters

To experimentally estimate the attribute behavioral parameters, it is necessary to
�rst de�ne our relevant population. The training dataset, VoxCeleb2, consisting of
approximately 6000 speakers, is employed here without any data augmentation to
accurately represent our relevant population. All the parameters,Ti , Dout i and Din
factor, are calculated using VoxCeleb2.

To have an overview about the speakers pro�les in terms of the number of attributes,
Figure 7.5 presents the distribution of present attributes in speakers pro�les of the
training data. It is important to recall that the initially extracted number of attributes
on VoxCeleb2 is 256 per BA-vector without considering dead neurons (refer to chapter
6). As can be seen in the �gure, the majority of speakers exhibit between 150 and 175
present attributes out of 256. Towards the extremes of the distribution, there are a few
speakers with certain present attributes (75-100) and others with over 200 attributes.

Figure 7.5: The number of speakers as a function of the number of present attributes
in their pro�les

Based on these pro�les, typicality and drop-out parameters are estimated. Figure
7.6 illustrates the distributions of attributes typicality and drop-out values. Approx-
imately 50% of the BAs exhibit a typicality in the range of [0:6; 0:8], indicating a

1http://www.speech.sri.com/projects/sitw/
2https://iqtlabs.github.io/voices/
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modest discrimination power, while around 25% display a high discrimination power
with a typicality of approximately [0:15; 0:57]. The drop-out values range from 0.4 to
0.8. This high range could be attributed to short speech extracts that may not capture
all speech and linguistic variabilities or variations in the number of utterances among
speakers. The high values of typicality and drop-out parameters, demonstrated in the
distributions, are indeed a direct consequence of their reliance on the speaker pro�le.
Also, they could be seen as indicative of the quality of BA-vectors in the training data.

Figure 7.6: Distributions of attributes typicality and drop-out values

Drop-in probability, on the other hand, is estimated based on theDin parameter.
This parameter is tuned and optimised using a set of comparison pairs from the train
dataset (refer to Table 7.1). The evaluation process is performed using both versions
of BA-LR estimation to estimate a Din value for each version. Given a set ofDin
values, the optimisation of this parameter is performed in such a way that the Cllract

[127] and the Cllrmin (refer to 3.3.3) of the train comparison pairs become as close as
possible. This process is described in Figure.7.7 under both versions of BA-LR. The
convergence is quite regular, with an optimum in a �at region around [0.11,0.15] for
DNA-inspired (Figure.7.7a), giving an optimum value forDin of � 0.12. For Speech-
adapted (Figure.7.7b), the �at region is around [0.24,0.27], with an optimumDin value
of � 0.26.

(a) Using DNA-inspired, Din = 0 :12 (b) Using Speech-adapted,Din = 0 :26

Figure 7.7: Estimation of the optimal value of Din on the training data

99



7.5.3 Speaker recognition performance and generalization ability

Table 7.2: Speaker recognition performance in terms of EER andCllrmin=act

Dataset X-vectors BA-vectors
Cosine DNA-inspired BA-LR Speech-adapted BA-LR

EER Cllrmin=act EER Cllrmin=act EER Cllrmin=act

Vox1 1.37% 0.06/0.82 3.70% 0.14/0.31 3.50% 0.13/0.48
SITW 1.40% 0.06/0.82 3.50% 0.13/0.28 4.00% 0.14/0.49

VOiCES 3.96% 0.15/0.87 4.70% 0.18/0.46 5.12% 0.19/0.89

The speaker recognition performance of the BA-LR approach is assessed by EER and
Cllrmin=act . Table 7.2 presents the performance of the two versions of BA-LR and X-
vector baseline for speaker discrimination, evaluated on three datasets. The overall
performance of BA-LR shows its good discriminative power across the three datasets,
with respect to the well-known trade-o� between performance and explainability. De-
spite having on average 1.7% and 1.96% absolute increase in EER, for DNA-inspired
and speech-adapted versions respectively, compared to the X-vector system, we believe
that this loss is rather small. This is to be compared with the important dimension-
ality reduction, from 8192 bits for X-vectors of 256 �oats to 205 bits for BA-vectors.
Additionally, one crucial aspect to mention is that BA-LR scoring retains only the
information that it is able to explain. As can be observed, in terms of EER, speech-
adapted is slightly better than DNA-inspired on Vox1, the closest set to the training
set, and slightly worse for the other sets which far from train conditions. Despite the
small di�erence betweenCllrmin and CllrAct for BA-LR, 0.2 for DNA-inspired and 0.46
for Speech-adapted, the LLRs are shown to be poorly calibrated. Considering this, a
subsequent calibration step should be taken into consideration.

As this work primarily aims to demonstrate the interpretability and explainability
of LR, in the next section we will solely focus on the VoxCeleb1 comparison pairs.

7.6 Explainability of the LR

This section aims to explain the contribution of each attribute-LLR to the �nal LLR.
Before delving into the explanation of LLRs, it is relevant to �rst examine the dis-
tribution of the attribute LLRs, under the two versions of BA-LR. Subsequently, we
draw an analogy to the post-hoc SHAP method (refer to Ÿ4.4.3) for estimating the
contribution of each attribute to the �nal LR estimation.
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7.6.1 Distribution of attribute-LLR values

Figure 7.8 illustrates the distribution of attribute-LLR values for the three cases:
00, 11, and 01j103, for both BA-LR versions, computed on VoxCeleb1 comparison
pairs. As expected, theLLR 11 values are predominantly positive for DNA-inspired
and Speech-adapted, con�rming the robust presence of an attribute on both sides of
a pair. Conversely, theLLR 01j10 values are generally negative for DNA-inspired and
Speech-adapted, except for some outliers, indicating a con�ict when a given attribute
is present in only one side of the pair. However, this distribution is more adjusted
for Speech-adapted with only one outlier, as indicated in Figure.7.8b, than for DNA-
inspired in Figure.7.8a. The Speech-adapted distribution for this case seems to be more
logical than DNA-inspired. Lastly, LLR 00 values are primarily centered around 0 for
both versions, contributing minimally, with occasional positive high exceptions. This
aligns with the notion that sharing the absence of a rare feature imparts little informa-
tion, while sharing the absence of a highly present feature can signi�cantly in�uence
the �nal value.

(a) Using DNA-inspired BA-LR (b) Using Speech-adapted BA-LR

Figure 7.8: Distribution of attribute LLRs values for 00, 11 and 01j10 cases, computed
on VoxCeleb1 comparison pairs

A more dedicated comparison between the attribute LLRs of both versions of BA-
LR is demonstrated in Figure.7.9. This �gure shows the relationship between attribute-
LLRs of DNA-inspired and Speech-adapted. As can be observed,LLR 11 in Speech-
adapted are having positively higher values than DNA-inspired.LLR 00 are shown
to behave almost similarly in Speech-adapted and DNA-inspired with a very slight
translation to a bit higher values. In contrary to DNA-inspired, LLR 01j10 values are
shown to be all localized under zero for Speech-adapted, except for one outlier.

3The case "01" or "10"
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Figure 7.9: Relationship between attribute-LLRs of DNA-inspired and Speech-adapted
versions

7.6.2 Shapley-like explanations

Referring to the Shapley values [197] properties described in Ÿ4.1, one may notice
that the attribute LLRs possess these same properties, including E�ciency, Symmetry,
Linearity, and dummy. This enables us to leverage the complete capabilities of SHAP
functionalities4 to quantify the impact of each speech attribute on the �nal LLR value
(See Figure 4.6). From this perspective, the attribute LLRs are regarded as Shapley-like
values, serving to quantify the contribution of each attribute to the �nal LLR. Using
this approach, we explore explanations of the BA-LR framework, creating a transparent
and user-friendly system for forensic practitioners, ensuring ease of interpretation in a
court setting. Thus, we provide two types of explanations for the �nal LR: at the local
level for a single comparison pair, and at the global level averaging all local explanations
across all comparison pairs. This is further detailed in the remaining of this section.

Local explanations

The local explanations concern a single observation. These explanations are given by
the contributions of attributes to the �nal LLR of this observation. It is important to
note that we provide here an example of a local explanation using the DNA-inspired
of BA-LR. This is to avoid repetition, since the same reasoning could be applied for
each observation using either version.

Figure 7.10 shows the type of explanation SHAP provides for two single predictions,
a target (above) and a non-target (below) comparison pairs. This �gure is called a
force plot [199]; it follows the basic idea that each input attribute contributes a force
to push the model towards a certain output [183]. The forces, polygon widths, are the
calculated Shapley-like values (i.e. attribute LLRs), and each prediction is considered

4https://github.com/slundberg/shap
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starting from the base value. The valuef (x) represents the predicted value, and the
forces are made to balance on the prediction, similar to balancing weights on a seesaw.
The value3 given to the attribute is a category indicating that the attribute is present
in both sides of the comparison11. Unless not shown in the �gure, value2 and 1
are given as categories to00 and 01j10, respectively. In these examples, the BA-LR
approach is correctly estimating the target and non-target pairs. The attributes in red
push the prediction towards the positive direction, and the blue attributes push the
prediction to the inverse direction. It is worth noting that the overall LLR value can
be driven by a few LLRs with high positive value or by a majority of partial LLRs with
negative values. According to the force plot, the most signi�cant contributing factors
toward the prediction are BA9, BA223, BA224 and BA110,BA25, BA224 for target and
non-target predictions, respectively. More information about these most contributing
attributes are further detailed in Table 7.3.

Figure 7.10: Attributes contributions to the �nal LLR for a target (above) and a non-
target (below) comparison pairs.

Table 7.3: Details about the most contributing attributes for two speech pairs, a target
pair and a non-target pair

target pair non target pair
BA9 BA223 BA110 BA25 BA224

(X i ,Yi ) (1,1) (1,1) (1,1) (1,1) (0,1)

Attribute LLR 2.43 2.32 2.0 2.96 -1.23

Typicality 0.15 0.39 0.37 0.21 0.96

Dropout 0.45 0.80 0.68 0.79 0.44

Final LLR 35:35 � 18:73

Examining Table 7.3 reveals a noteworthy observation: the presence of the most
in�uential attributes, speci�cally denoted as (1; 1) on both sides of the comparison,
signi�cantly contributes to the �nal LR with notably high values. These attributes
exhibit lower typicality values compared to others, re�ecting their discriminant power.
Recognizing that the �nal LR value is in�uenced predominantly by these discriminant
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attributes provides persuasive evidence, whether in the positive direction, as exempli-
�ed by BA 9, or in the negative direction, as illustrated byBA 224. As addressed earlier,
the dropout values have been demonstrated to be generally high. However, given this
Table, one may reasonably deduce that attributesBA 223 and BA 25 are most likely not
reliable attributes because of the high probability ofDout.

Global explanations

Global explanations are provided by averaging all the local explanations across a set
of comparison pairs. This gives a much better understanding of attribute importance.
Here, we provide a global description for each version of BA-LR.

(a) Using BA-LR (DNA-inspired) (b) Using BA-LR (Speech-adapted)

Figure 7.11: Average contribution of attributes among all pairs Vs. their behavioral
parameters, typicality & drop-out

Figure 7.11 elaborates a relationship between the attributes average contribution
to LLR and their associated behavioral parameters, using the two versions. Each
point in the �gure represents one attribute. For DNA-inspired, clearly, attributes with
typicality values ranging from 0.15 to 0.4, as well as those with values from 0.8 to 1,
drive most of the contribution. As expected, the high contribution from the former is
regarded as reasonable, considering their strong discriminatory capability. It is even
straightforward and more easy to explain for the latter, given their low discriminant
power but high reliability, indicated by the low dropout values. For Speech-adapted,
we can observe a practically similar behavior but less clear. Apart from the extremities,
the attributes presenting moderate typicality values ranging from 0.4 to 0.8 in DNA-
inspired are weakly contributing to the output with contribution values below 0.5.
This could be linked to the fact that their contribution does not decisively in�uence
the output. This is also the case for Speech-adapted with some outliers.

7.7 Discussion and perspectives

In this chapter, we presented the second step of our approach, which builds upon the
binary-attribute-based embeddings extracted in the �rst step in the previous chapter.
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While existing speaker recognition solutions fall short of delivering an acceptable level
of interpretability and explainability, our aim in this work is to introduce a novel
solution that establishes an interpretable and explainable framework for calculating
the LR in a speaker recognition task.

Figure 7.12: Overview of Step 1 & 2 of our approach with interpretability and explain-
ability aspects

Figure 7.12 summarizes an overview of the two steps, along with the added ex-
plainability and interpretability aspects. Within the proposed BA-LR framework, the
initial step involves extracting binary-attribute-based vectors from two given speech
samples. Subsequently, the LR is computed as a product of factors, each dedicated
to a speci�c speech attribute. The behavior of each attribute, characterized by its
discriminant power and reliability, is directly involved in the computation of attribute
factors, denoted as attribute LRs. These attribute LRs are calculated, with two ver-
sions, based on prosecution and defense hypotheses derived from a forensic context,
demonstrating their inherent interpretability and informativeness. In the speci�c case
of forensic science, presenting a LR computation that is fully transparent and inter-
pretable to the court allows a better handling of the value of evidence and facilitates
the decision-making by judges5. Supplementing this LR with details about the most
in�uential attributes, their behaviors, and their impact on the �nal value ensures a reli-
able and explainable quanti�cation of the evidence. Even though the BA-LR approach
is initially designed based on forensic principles for LR calculation, its applicability
is not restricted to forensic science. Rather, it is crucial to mention that it extends

5Which is one aspect, the other aspect is relying also on the quality assurance, validation and
accreditation of the method
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beyond forensic science to encompass general speaker recognition tasks.

Below, we delve into a more detailed discussion regarding the advantages and lim-
itations concerning each phase of BA-LR approach. Additionally, we outline some
improvements that may be addressed later or considered in future perspectives.

Advantages of BA-LR approach

Our BA-LR approach o�ers several signi�cant advantages, which can be summa-
rized as follows:

ˆ Easy to understand behavioral parameters: The attributes are characterised in
our approach by behavioral parameters that are easy to understand for a human.
We proposed in this chapter a basic and a straightforward estimation of these
parameters. This initial estimation draws inspiration from the DNA process,
intentionally prioritizing simplicity over robustness to o�er an easily understand-
able calculation, following the de�nitions.

ˆ Inherently interpretable LR estimation: The attribute LRs composing the �nal
LR are inherently interpretable . Their calculation takes into account both the
behavioral parameters of the attribute and the presence or absence of the at-
tribute. This quanti�cation is more reliable than a mere cosine similarity, which
compacts all information from both necessary and unnecessary dimensions into
a single abstract score. In a forensic context, these interpretable attribute LRs
are inherently persuasive and highly appreciated by the court, since they are
computed based on prosecution and defense hypotheses.

ˆ Proposal of two BA-LR versions: The attribute LRs are computed using two
versions. A �rst naive version that was inspired directly from DNA individuali-
sation. A second version, more logically adapted to the case of voice comparison,
provides automatically similar formulations for the case01 or 10. This second
formulation is also shown to correct the distribution ofLLR 01j10 pushing them
to be almost negative and therefore more convincing.

ˆ Discrimination and generalisation abilities: BA-LR estimation is evaluated for
a speaker veri�cation task on three di�erent test datasets having no overlap
in terms of speakers with the train dataset. It is essential to recall that the
behavioral parameters used to calculate the attribute LRs are estimated on the
train dataset and used for the evaluation. Based on that, our solution generally
demonstrates discrimination abilities, using both versions, on all three datasets.
Compared to the baseline, it shows a slight absolute loss of 1.72% and 1.96%, for
DNA-inspired and Speech-adapted, respectively. Given that it uses a� 40 times
more compressed speaker embeddings, this loss is deemed acceptable with respect
to the well-known trade-o� between performance and explainability [181, 247].
These results lead us to �rmly believe that our proposal possesses a high potential
to build a fully interpretable speaker recognition framework. This potential is
further validated and reinforced through the results obtained with a new version
of the BA-extractor provided in Chapter 10.
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ˆ Inherently explainable LR estimation: One key advantage of BA-LR framework,
is that attribute LRs share similar properties with Shapley values, allowing their
use accordingly (Figure 7.12). This makes the BA-LR approachinherently ex-
plainable as well, reducing the need for additional methods and saving both time
and e�ort for the forensic practitioner. These explanations are provided at the lo-
cal level, for each single comparison pair. They are as well provided at the global
level by averaging the contribution of attributes across all comparison pairs, while
reporting the overall aspect of LR calculation.

Self-criticism and perspectives of BA-LR approach

BA-LR approach presents an interpretable and explainable system for speaker
recognition task. So far, it is shown to provide satisfactory results. Nevertheless, as an
initial attempt to implement this approach, we are aware that the solution presented in
this chapter may exhibit some shortcomings and requires additional improvements. In
the following, we discuss these limits from a critical perspective, and suggest avenues
for improvement:

ˆ The notion of speaker pro�le is misleading: As previously mentioned in Ÿ7.3, the
concept of a speaker pro�le inspired by DNA cannot be directly applied to speech
data. It is crucial to emphasize that obtaining ground truth information about
the speaker pro�le, where a speaker pro�le contains all voice characteristics of a
speaker, is inherently challenging. Indeed, speaker pro�le notion represents the
most delicate and challenging foundation of our approach.

ˆ Limits of the proposed speaker pro�le estimation: The method used to calculate
the speaker pro�le in this solution was notably optimistic, impacting the sub-
sequent estimation of behavioral parameters built upon it. A speaker with 10
utterances of variable lengths should not be considered similarly to a speaker
having 100 utterances. Additionally, linguistic content represents another sig-
ni�cant variability a�ecting the speaker pro�le. For example, a speaker distin-
guished by the distinct pronunciation of an infrequent phoneme may possess only
a single utterance featuring this phoneme. As a result, this would increase the
drop-out probability of this attribute. Speaker pro�le estimation is certainly not
straightforward, and further studies are required to delve into this direction. As
perspective, the speaker pro�le could be better modeled using a �xed number of
utterances having all the same duration and chosen based on phonemic content.

ˆ Limits of the proposed estimation of behavioral parameters: Indeed, the estima-
tion of typicality and dropout is easy to understand, but we believe that it is not
as robust as expected. The fact that these parameters are based on the speaker
pro�le would in some way or another make their values higher. We acknowl-
edge that averaging the drop-out values calculated per speaker to derive the �nal
drop-out per attribute overlooks the variations in the number of utterances and
the variable length of the utterances among speakers. We suggest that the es-
timation of these behavioral parameters could be improved by employing more
sophisticated statistical processes that consider both the number and length of
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speech excerpts per speaker. Another suggestion could be to model attributes
using Bernoulli-beta distribution using, for a given attribute, the number of ones
per each speaker.

ˆ Final LLR estimation : The calculation of the LLR as the simple sum of attribute
LLRs might be a source of information loss. Even though we experimentally
demonstrated in the previous chapter (see Ÿ6.4.3) that the dependence between
attributes is very low, we agree that it is not perfect. One potential solution to
address this imperfection would be to involve assigning weights to the attribute
LLRs during the computation of the �nal LR. This might contribute to balancing
the existing dependence and, concurrently, improve the overall calibration of LRs.
This solution will be speci�cally applied in chapter 9.

ˆ Non calibrated LLRs: The results provided with the two versions of BA-LR in
terms of Cllrmin=act demonstrate that the obtained LLR scores are miscalibrated.
This is crucial when using LLRs, since non calibrated LLRs are not interpretable
as real LLRs. Thus, a further step of calibration is highly required in this case.
This is investigated in more details in chapter 9.

ˆ Trade-o� performance Vs. interpretability : While our BA-LR approach is appli-
cable to any general speaker recognition task, and not limited solely to foren-
sic contexts, the established trade-o� between performance and interpretability
might not seem convincing for ASpR systems unless coupled with applications in
critical �elds, like forensic science.

Indeed, so far, the level of explainability and interpretability of the whole approach is
not yet fully achieved. An unanswered and legitimate question that may arise at the
end of this chapter is: What precisely do these attributes represent in terms of voice
characteristics? Or, what is the nature of these attributes and the information encoded
within them? This will be e�ectively addressed in the next step of our approach, namely
Step 3.
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So far, we have characterized the attributes within the BA-LR framework based
on their discriminant power and reliability. However, we currently lack information
regarding the vocal characteristics of these attributes. In this chapter, our objective
is to provide a description of the attributes, shedding light on their nature in terms
of acoustic, phonetic and phonemic aspects. This third step would enhance the ex-
plainability level of our approach, o�ering better insights about which information is
encoded in the BA-vectors.
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8.1 Introduction

The BA-LR scoring framework has demonstrated its potential to e�ectively enhance
interpretability in ASpR systems. However, the employed BA-extractor, discussed in
Step 1, adopts a bottom-up approach to extract the binary-attribute-based embed-
dings. This extractor provides no information or labels associated to the attributes
within the embeddings. In the literature, explaining the information encoded within
speech representations poses a considerable challenge, especially when these embed-
dings originate from complex architectures.

Most of the existing research commonly employs probing classi�ers to illustrate the
presence of speci�c prede�ned speaker characteristics within the representations. For
instance, the work in [248] delved into the encoding of various properties, including
speaker identity, gender, speaking rate, text content, and channel information, within
speaker embeddings. The authors in [249] adopt the same approach to reveal infor-
mation related to the speaker, channel, transcription (i.e. sentence,words, phones),
and meta information about the utterance (i.e. duration and augmentation type) from
speaker embeddings. In the context of an automatic speech recognition task, the work
in [250] demonstrates how information such as speech style, accent and broadcast type
are encoded through the layers of the neural networks. Concurrently, the work in [251]
shows how accent information is re�ected in the internal representation of speech. In a
dialect identi�cation task, the work in [252, 253] explores the encoding of non-dialectal
information within the model, comparing it with dialectal information through probing
classi�ers for gender, voice identity, languages, and channel quality. Notably, all these
works are based on �nely labeled data to perform the supervised probing classi�cation,
which is a resource that is both critical and scarcely available due to its associated
costs.

In a di�erent avenue, some other works analyzed the presence of phonemic infor-
mation along neural network layers [254, 255, 256]. For a speaker recognition task, the
work in [257] extracts a frame-level representation from each layer of the neural network
and studied the encoding of phonemes as well as the phonetic classes to investigate the
functioning of the speaker embedding model. A recent study by [258] focuses on the
presence of acoustic features (i.e. F0, intensity, duration, formants...etc) in model lay-
ers. It explored how the network encodes this information by establishing relationships
between these variables and activations across the intermediate convolutional layers of
the model.

In this chapter, our objective is to explain the binary-attribute-based embeddings.
More speci�cally, we aim to describe the nature of the attributes extracted in our ap-
proach without relying on any form of annotation. To ful�ll this objective, we introduce
a novel explainability methodology that enables automatic description of attributes in
terms of any type of available information. This represents the third step of our three-
step approach. In the next sections, we start with an overview of this methodology.
Then, we propose two levels of attribute description: an utterance-level and a frame-
level. For the former, we detail the applied methodology then we present our �ndings
quantifying the e�ectiveness and the �delity of this phonetic description in accurately
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representing the nature of the attributes. The explanations are provided on both an
individual attribute basis and collectively for groups of attributes that share common
phonetic information. For the latter, we describe the association of each attribute to
frame-level information, then we use this information to provide an explanation using
phonemes, classes of phonemes and the localized temporal information. In summary,
we conclude this chapter with a discussion of our �ndings.

8.2 The three-world explainability method

In this section, we introduce the core concept of the three-world explainability method,
building upon the description of attributes. Figure 8.1 illustrates a description of this
method, as an interaction between three worlds de�ned as follows:

Figure 8.1: The three-world illustration of our proposed methodology

ˆ A Real world (� ) representing a speech extract, from which it is possible to derive
two di�erent worlds using two functions G() and F ().

ˆ A Representation world (D) which illustrates a high-dimensional discrete or con-
tinuous representation of the real world (e.g. BA-vectors). This representation
is typically extracted using a DNN model denoted by the functionG().

ˆ An Informative world (I ) that contains all available information about the real
world (e.g. Emotions, gender, phonemes...etc) as well as information that is
directly extracted from the real world (e.g. pitch, formants, jitter,...etc). The
extraction of this information is generally and ideally performed by a human
annotator. But it could be also done using automatic tools denoted by the
function F ().
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Following this idea, a central question arises:How to determine a function M () that
establishes a mapping betweenD and I ?

Indeed, the determination of this mapping would serve as a way to explain the
encoded information inD in terms of the available information in I . This mapping
could be any function that establishes a relationship betweenI information and D
representations. It could be seen as a classi�cation problem whereI are features used
to predict speci�c dimensions ofD (i.e. 0 or 1) seen as target, or it could be some
statistical or information-theory techniques that establishes this relationship. The key
advantage of this method is its �exibility. Even in the absence of labels and annotations,
explainability of the D world could be performed from the� data itself.

8.3 Utterance-level: attribute phonetic description

The extracted attributes of the speaker embeddings currently lack information related
to voice characteristics. In this section, we build upon the three-world explainability
method to introduce a novel methodology speci�cally designed to automatically de-
scribe the inherent nature of attributes. We begin by outlining the prerequisites to
be met. Following that, we introduce the main idea and foundations of the proposed
approach. Subsequently, we delve into the detailed description of each sub-step of this
methodology.

Prerequisites

The prerequisites we set for this methodology are the following:

ˆ To explain attributes deriving from a bottom-up BA-extractor.

ˆ To not require labels or annotations or any additional manual labeling.

ˆ To produce an automatic and accurate description.

8.3.1 Methodology

Based on the-three world methodology, we formulate the following de�nitions, referring
to our requirements:

ˆ The � world is de�ned by speech extracts.

ˆ The D world is de�ned by the binary-attribute-based embeddings, namely the
BA-vectors.

ˆ The G() function represents our BA-extractor that extracts the BA-vectors.

ˆ The I world is represented by acoustic, phonetic, phonemic and temporal infor-
mation, namely Descriptive variables.
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ˆ The F () function represents any automatic tool that is able to automatically
extract this information directly from the � world.

ˆ The M () function is the mapping to be determined between each attribute in the
D world and available information in theI world.

With these de�nitions in mind and given the binary nature of our D world, our
methodology is built under the assumption that:

If we can identify variables in the I world that e�ectively di�erentiate
between the presence and the absence of a particular attribute in the
D world, THEN these variables are likely to be good descriptors of the
attribute.

The proposed methodology follows a three sub-steps strategy applied independently
for each attribute BAi [259], as illustrated in Figure 8.2.

Figure 8.2: Methodology of an attribute explainability following (a), (b), and (c) sub-
steps, as applied to each attribute

a) Selection of speech extracts

Using theD world, the speech extracts of the train dataset in the� world, are grouped
into two sets as depicted in Figure 8.2-a. The �rst set, denoted �S1�, groups the
extracts where the considered attribute, BAi , is present. The second set, denoted �S0�,
contains the extracts fromspeakers other than those present in S1, and obviously
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where the attribute has a value of 0. In other words, S1 contains positive examples
of the attribute pronounced by the set of speakers who share this attribute, while S0

presents negative examples pronounced by other speakers, who never had the attribute.
The intentional absence of speaker overlap between the two sets is designed to not be
in�uenced by drop-out phenomenon (refer to Ÿ7.3.2). Finally, some randomly selected
extracts are eliminated from S0 to balance the number of extracts in the two sets in
order to avoid bias during the selection process.

b) Extraction of descriptive variables

The second sub-step, in Figure 8.2-b, is dedicated to extract information ofI world
from the � world. For this purpose, we choose a set of descriptive variables of theI
world, which can be of any type, as long as they can be computed automatically from
speech. For this speci�c work, we opt to use descriptive phonetic variables1, but any
other variable type ,available in theI world, is possible, such as available annotation,
phonemic [260, 261, 262] or language-related variables [263]. The values of the variables
are then extracted for each speech extract.

c) Mapping function

The last sub-step, in Figure. 8.2-c, is to determine the mapping functionM () between
the descriptive variables of theI world and the attribute values in the D world. The
strategy relies on determining the variables that best explain the di�erence between
sets S1 and S0 of the attribute. For this purpose, we propose two solutions. The �rst
one consists in training an inherently interpretable classi�er to separate examples of
sets S1 and S0. It uses the descriptive variables extracted from each training example
as features. The most in�uential variables are the ones that best describe the attribute
in question. To ensure the relevance of this choice and to have a comparison basis, we
use a second solution based on a statistical test, which is less powerful, but provides a
simpler solution. Both solutions are further detailed in the remaining of this section.

8.3.2 Inherently interpretable classi�er

The goal of this �rst method is to �nd a model that is interpretable by nature and able
to discriminate between the two classes of the attribute using the descriptive variables
as features. The idea of using an inherently interpretable model to predict the black
box model output and explains its predictions, is inspired from surrogate models (refer
to Ÿ4.4.3). The ideal candidates are those inherently interpretable models, capable of
giving su�cient separability performance between class 1 (i.e.S1) and class 0 (i.e.
S0) examples. Additionally, they should be easy to train, fast and characterized by
stability and minimal computational costs. In line with these criteria, we opt for a
Decisiontree, given its reputation for speed, simplicity, and inherent interpretability.

1such as F0, formants, jitter, shimmmer, etc.
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This Decisiontree model serves to verify whether the descriptive variables, taken as
features, are able to separate the two classes of the attribute as illustrated in Figure
8.3.

Following this, if the model proves an acceptable separability performance between
the two classes for the attribute, then a further step is needed to retrieve the most con-
tributing descriptive variables to this separation. To this end, we use TreeExplainer
from SHAP toolkit 2, which computes Shapley values [199] adapted for Decisiontree
models. This variant of SHAP is fast and e�cient especially when applied on Deci-
siontree models.

Figure 8.3: Application of the Decisiontree classi�er for Attribute BAi with TreeEx-
plainer from SHAP

Shapley values are calculated following Equation (4.1) and they are used to estimate
the average feature contribution to the classi�er predictions following Equation (8.1),
where Xj is a given descriptive variable, BAi is the attribute described, M is the
number of descriptive variables andShapMean(X j ) is the average of Shapley values
obtained for Xj across all instances using the BAi model.

Contribution BA i (X j ) =
ShapMean(X j )

P M
k=1 (ShapMean(X k))

(8.1)

8.3.3 Statistical test

The second method consists in a statistical test that selects a subset of the most im-
portant variables to separate the two classes. In this work, we propose to use Stepwise
Linear Discriminant Analysis (SLDA) [264, 265] as a statistical method that identi�es
a linear combination of the descriptive variables that most discriminate the examples
of the two classes 1 and 0. Feature selection is based on theWilk's Lambda criterion3

as expressed in Equation (8.2), wheredet is the determinant, A is the within class

2https://github.com/slundberg/shap
3https://www.blackwellpublishing.com/specialarticles/jcn_9_381.pdf
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covariance matrix, andB is the between class covariance matrix.

Wilk's lambda =
det(A)

det(A + B)
(8.2)

Wilk's Lambda is calculated for each descriptive variable and re�ects the discrimi-
nant power of the variable. The selection procedure follows a systematic step-by-step
approach. Initially, the algorithm identi�es the variable with the highest discrimi-
nant power for the classes until Wilk's Lambda achieves statistical signi�cance. In
subsequent steps, the model is reassessed: the variable not currently in the model
but contributing the most to the discriminant power is incorporated. Among all vari-
ables already in the model, if the variable contributing the least to the discriminant
power, as measured by Wilk's lambda, exceeds the signi�cance threshold, set to 0.01
[<empty citation> ], the variable is removed. This iterative process continues until all
variables are tested.

8.4 Experiments and results

In this section, we conduct experiments to validate the proposed methodology. We
begin by setting up the datasets, followed by detailing the extraction of descriptive
variables and con�guring the models. Next, we demonstrate the discrimination ca-
pabilities of the inherently interpretable models associated to the attributes. This
discrimination ability enables us to subsequently identify the most in�uential variables
contributing to this di�erentiation. Following this, we provide an automatic description
of an example of an attribute, explaining its nature in terms of acoustic and phonetic
information. This description is strengthened and validated through the �ndings of the
statistical method. Expanding our perspective, we demonstrate that certain groups of
attributes share common phonetic and acoustic aspects. Finally, this description is
evaluated to show its robustness and accuracy.

8.4.1 Setup

Datasets

In this experiment, we use two datasets:

ˆ The train dataset is the same as the training dataset of the BA-extractor, namely
VoxCeleb2 (Vox2) (Ÿ6.4.1). This choice is driven by the assumption that attribute
information is more robust and present under the training dataset. This is be-
cause the extractor was primarily trained on this dataset for the extraction of
these attributes. This dataset is divided into two subsetsS0 and S1 for each
attribute, then used to train the mapping functions. This yields 205S0 and S1

sets of utterances from train data.
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ˆ A test dataset, namely VoxCeleb1 (Vox1) (Ÿ6.4.1), is employed in this experiment
to evaluate the stability and the �delity of the information learned by the inher-
ently interpretable classi�ers. This dataset is also divided into two setsS0 and
S1 for each attribute. We recall that there is no intersection in terms of speakers
between both datasets.

Following the �rst sub-step, BA-vectors are extracted and speech samples are se-
lected to form two setsS0 and S1 per attribute for both datasets. Further details
regarding the number of speech extracts chosen in both train and test datasets for
each attribute are provided in Appendix C in Table C.1.

Descriptive variable extraction

In order to extract the descriptive variables, we opt to use OpenSmile4 toolkit, an
open-source audio feature extraction toolkit. We speci�cally use the pre-de�ned set of
variables eGeMAPS5 [266], which contains 25 low-level descriptors (LLD), extracted
at the frame level, grouped as follows:

ˆ Frequency related parameterssuch as the pitch (F0), Jitter and Formant 1, 2,
and 3 (F1, F2, F3) frequency and bandwidth.

ˆ Energy or Amplitude related parameters such as the shimmer, Loudness, Harmonics-
to-Noise Ratio (HNR).

ˆ Spectral parameters such as Alpha Ratio, Hammarberg Index, Spectral Slope,
Formant 1, 2, and 3 relative energy, Harmonic di�erence H1-H2, Harmonic di�er-
ence H1�A3, MFCC 1�4 Mel-Frequency Cepstral Coe�cients and Spectral �ux
di�erence of the spectra of two consecutive frames.

All LLD are averaged over time. Arithmetic mean and standard deviation are applied
as functionals to all LLD. 8 additional functionals are applied to loudness and pitch:
20-th, 50-th, and 80-th percentile, the range of 20-th to 80-th percentile, and the
mean and standard deviation of the slope of rising/falling signal parts. Added to that,
6 temporal features are incorporated such as the rate of loudness peaks, the mean
length and the standard deviation of both continuously voiced regions and unvoiced
regions and the number of continuous voiced regions per second. This �nally yields 88
parameters. Further details regarding the de�nitions of these parameters can be found
in [266]. The extraction of descriptive variables is performed for both the train and
test datasets.

Decisiontree and SLDA con�guration

After selecting train setsS0 and S1 of 88 descriptive variables for a speci�c attribute,
we begin by standardizing the training data by centering on the mean and scaling to

4https://github.com/audeering/opensmile
5In this work, the set of parameters is arbitrary chosen.

117



unit variance. Subsequently, we train the Decisiontree classi�er, with a key parameter
being Max_depth, indicating the depth of the tree. To determine the optimal tree
depth for each attribute, we conduct a grid search to identify the value that enhances
training accuracy. Further details about the number of samples in train and test for
each model as well as models con�guration are provided in Table C.1. Simultaneously,
we utilize the same standardized data for the statistical test. As previously explained in
Ÿ8.3.3, the SLDA algorithm requires only a signi�cance threshold to stop the addition
of variables. This threshold is consistently set at 0.01 for all attributes.

8.4.2 Discrimination ability of the attribute model

In this section, we use the inherently interpretable model solution in order to build
automatic descriptions of the di�erent attributes in terms of descriptive variables. The
three sub-steps process previously described (Ÿ8.3.1) is performed independently for
each attribute. An attribute model is trained to classify between 0 and 1 classes using
the 88 descriptive variables of the train data. Then, the model is evaluated on speech
samples of the test data selected with respect to the concerned attribute using the
same process. For further details, refer to AppendixC in Table C.1.

Figure 8.4: Accuracy of attribute models on Vox2 (train) and Vox1 (test) along with
their associated typicality values.

Figure 8.4 shows the accuracy values obtained for all attribute models on both the
train (i.e. VoxCeleb2) and test datasets (i.e. VoxCeleb1), ranked by the typicality of
the BAs, from lowest to highest. The attribute models exhibit relatively high accuracy
values on the training set, ranging from 0.6 to 0.97. This demonstrates the discrimina-
tion capability of each attribute model. The fact that these models are trained using
the set of descriptive variables signi�es that these variables are e�ective in distinguish-
ing between the two classes of the attribute. As can be noticed, some attribute models
are shown to be better than others. This could be explained by the fact that the
descriptive variables are e�ectively held by these attributes. The slight di�erence in
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accuracy values, averaging 0.11, between the train and test datasets not only suggests
well-chosen and well-�tted models but also highlights the stability and �delity of the
information conveyed by the attributes in relation to descriptive variables.

The rationale behind adding the typicality of the attribute is mainly to establish a
relationship between the behavior of the attribute and the robustness of information
held by the attribute. Figure 8.4 shows a strong inverse correlation between attribute
typicality and accuracy, indicating that the attributes that carry the greatest power to
discriminate between speakers are also the best represented by the descriptive variables.

8.4.3 Attribute explainability in terms of phonetics

In this section, we present the explainability of an attribute following three phases.
1) We describe an attribute by the most important descriptors, selected by the in-
herently interpretable model and SLDA, demonstrating a convergence between results
of both methods. 2) We evaluate this attribute description by training 88 inherently
interpretable sub-models, using each time, increasing number of the most important
descriptive variables. 3) We provide a global description grouping all attributes and
showing the corresponding contribution of the families of variables.

Here, we choose to investigate 1 and 2 phases of this process for one example
attribute. We opt for BA 9 attribute because of its high discrimination capability. The
results for the other attributes can be found in our GitHub repository6.

Example of attribute BA 9 description

Given the discrimination capability of the attribute classi�er, TreeExplainer is applied
to select the most contributing descriptive variables of the attributes. In Figure 8.7,
the contributions of descriptive variables to BA9 are illustrated, organized by families.
These families represent the LLD descriptors composed of groups of functionals as
depicted in the �gure. As observed, a functional of the F0 family stands out as the
primary contributor, accompanied by other less contributing functionals associated
with F1 and F2 formants.

To establish a comparison and reinforce this description, we apply the SLDA method
for the same attribute example, BA9. It is important to recall that SLDA method
selects descriptive variables based on the Wilk's Lambda which quanti�es the discrim-
inant power of the variable. Figure 8.5 shows the Lambda values as a function of the
selected number of variables. A closer look into the 10 most discriminant variables re-
veals certain similarities with the description o�ered by the attribute model in Figure
8.7.

6https://github.com/LIAvignon/BA-LR/tree/main/Step3/explainability_results/Explainability
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Figure 8.5: Wilk's Lambda values as a function of the 65 selected variables for attribute
BA9, with a closer look on the �rst 10 variables

To measure the similarity between variables identi�ed by both methods, we choose
the variables from the attribute classi�er that collectively represent 75% of the contri-
bution and we assess their intersection with the variables selected by the SLDA method.
We obtain approximately 80% convergence between both methods. This enhances our
con�dence in the obtained attribute description.

Evaluation of attribute BA 9 description

Figure 8.6: Evolution of accuracy of sub-models of BA9, each trained with incremental
number of descriptive variables: from most to least contributive
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Thus far, we have employed two distinct methods to describe the attribute, and
remarkably, we have obtained convergent results between the two approaches. This
convergence not only serves as a means of veri�cation but also strengthens the resulting
attribute description. To further evaluate this attribute description, we conduct a
dedicated experiment on this attribute, namely BA9.

In this experiment, we train 88 sub-models on the training dataset, each con�gured
identically to the attribute model, using an incremental number of descriptive vari-
ables�from the most to the least contributing. To elaborate, the �rst sub-model is
trained with only the most contributing descriptive variable, the second with the two
most contributing, the third with the three most contributing, and so forth. Figure 8.6
shows the evolution of the accuracy of these sub-models trained with incremental num-
ber of descriptors. Remarkably, even with only the most contributing (Figure 8.7) and
discriminant variable (Figure 8.5), i.e "F0semitoneFrom27.5Hz_sma3nz_percentile50",
the accuracy of the �rst sub-model in classifying between the 0 and 1 classes of BA9

is approximately 88.7%. With only the �ve most contributing variables, the �fth sub-
model achieves an accuracy of 94.5%. This demonstrates the reliability and accuracy
of the provided attribute description.

Description per group of attributes

Figure 8.8: Heatmap illustrating the contribution of variable families to attributes
grouped into clusters

From a broader perspective, we calculate the average contributions of descriptive vari-
ables per family across all attributes using Equation (8.1). Figure 8.8 illustrates a
shared phonetic description among groups of attributes in terms of families of vari-
ables. The de�nition of these families is provided in Figure 8.7. The attributes in
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Figure 8.8 are ordered by hierarchical clustering with single linkage. The di�erences
between the attributes (i.e, BAs along the x-axis) reinforce the hypothesis that the at-
tributes encode di�erent phonetic information. Notably, certain variable families, such
as the F0 family and the mf family (i.e., MFCCs), exhibit a more pronounced emphasis
on average. This is evident in the concentration of contribution within these families
for certain groups of attributes, as opposed to others where the overall contribution is
more evenly distributed among all families.

8.5 Frame-level: attribute phonemic and temporal de-
scription

This section is dedicated to provide a description of attributes in terms of phonemes
and a localization of temporal information. Our objective is to introduce an additional
dimension to the previous description, providing a more comprehensive understand-
ing of its nature. For this end, we employ a post-hoc, model-speci�c explainability
methodology. The concept involves retracing the �ow of information associated with
a speci�c attribute through the layers of the DNN architecture of the BA-extractor
until reaching the input. This process enables us to associate each attribute with its
frame-level information and to explore a �ner-grained level of description, following the
three-world methodology.

Research questions

In this section, our focus is on addressing the following questions:

ˆ How can we localize and extract frame-level information associated with a speci�c
attribute?

ˆ Can we establish an alignment between attributes and input frames?

ˆ Are there attributes that speci�cally encode certain phonemes? Is there a distinct
class of phonemes consistently encoded across attributes?

ˆ Do attributes di�er in terms of the localized temporal information?

8.5.1 Attribute related frame-level information

In this section, we aim to obtain an alignment between attributes and frame-level
units. To accomplish this, we �rstly recall the DNN architecture of the BA-extractor
of Step 1 and apply a modi�cation to create a direct access to frame-level information
from attributes. Secondly, we localize this information. Finally, we detail the process
of retracing back the �ow into the DNN model, yielding into an alignment between
attributes and input frames.
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Revisiting the DNN architecture and modi�cation

It is important to recall that the BA-extractor, discussed in Step 1 (Ÿ6.3), is initially
trained to extract activation vectors, such as Softplus-vectors. These vectors are bi-
narized after training to obtain the BA-vectors. Figure 8.9 revisits the architecture of
the BA-extractor, which takesN f frames of 61 �lterbank outputs as input. The archi-
tecture comprises a ResNet extractor that produces temporal units of 2048 dimensions
�attened over 256 �lters, each of 8 dimensions. Progressing to the utterance-level,
a pooling layer averages information across all temporal units, succeeded by a fully
connected layer (FC) and a Softplus activation, yielding the Softplus-vector.

Figure 8.9: DNN architecture of the BA-extractor

Figure 8.10 illustrates the modi�cation on the BA-extractor to represent attributes
with frame-level units. The key modi�cation is to eliminate the pooling layer from
the network. The output frame-level units from the ResNet extractor are denoted as
MegaFrames (MF). The FC layer with Softplus activation is added after the ResNet's
output following Equation (8.3). Here, M represents the matrix output from the
ResNet extractor, sizedNF multiplied by 2048, whereNF denotes the number of
MegaFrames. The matrixW sized 2048*256 and vectorb sized 256 comprise weights
and biases, respectively, learned during the training of the BA-extractor.

Figure 8.10: Modi�ed DNN architecture for frame-level information extraction

Softplus( M|{z}
(NF � 2048)

� W T
| {z }

(2048� 256)

+ b|{z}
(256)

) = A|{z}
(NF � 256)

(8.3)

The resulting matrix A, sizedNF *256, corresponds to theSoftplus matrix, representing
MegaFrames activations to BAs, which are 0 or positive value. This matrix enables
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an automated selection of active (i.e. non zero) MegaFrames for each BA. So far,
for a given input utterance, we can obtain two distinct activation representations: 1)
an utterance-level representation, which is the Softplus-vector, and 2) a frame-level
representation, which is the Softplus-matrix. Further analyses of these representations
are provided in Appendix C.

Localizing frame-level information through the network

Figure 8.11: A closer look into the ResNet extractor illustrating the relationship be-
tween the input frames and the output MegaFrames through ResNet blocks.

Examining the ResNet extractor in detail allows us to trace the �ow of information
from MegaFrames back to the input frames of �lterbanks. We recall that the employed
ResNet architecture consists of four convolution blocks with a con�guration described
in Figure 8.11. Here,S denotes the stride,F is the �lter, P represents the padding,
and K is the kernel size, here, 3. For a given input utterance ofN f frames and
the con�guration of each block, Equation (8.4) is iteratively applied in each block to
determine the number of units at the output of each block. The output of the �nal
block represents the number of MegaFrames, denoted asNF and expressed in Equation
(8.5).

Output(I ) =
I + 2 � P � K

S
+ 1 (8.4)

NF = Output(Output(Output(Output(N f )))) (8.5)

Alignment between attributes and input frames

With this con�guration in mind, we can infer that a MegaFrame is represented by
14 frames, with an overlap of 7 frames with the next MegaFrame. This alignment
is visually demonstrated in Figure 8.12, where we showcase an example of attribute
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alignment. In this speci�c example, the attribute BA1, being active for the correspond-
ing utterance, selects MegaFrames MF0 and MF1. Examining these two MegaFrames
allows us to align the attribute, through the network, with its corresponding input
frames from f0 to f22.

Figure 8.12: An example of attribute alignment with input frames through selected
MegaFrames.

8.5.2 Attribute explainability in terms of phonemes

In this section, we aim to describe attributes in terms of phonemes and classes of
phonemes. To achieve this, we start by extracting a transcription and an alignment
of phonemes for VoxCeleb1 dataset, forming theI world. Then, we show an example
of utterance from a single attribute perspective, highlighting the mapping between
attribute and selected phonemes. Following that, we employ this mapping to describe
each attribute with the number of selected phonemes and classes of phonemes across
a set of utterances.

Transcription and phonemes alignment

In the absence of publicly available ground truth transcriptions and phoneme align-
ments for the VoxCeleb datasets, we use a transcription proposed during JSALT work-
shop20237. A pre-trained English speech recognition model, in this work WhisperX8,

7Done by the linguistic team from Xdiar project of the JSALT workshop2023
8https://github.com/m-bain/whisperX
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is used to generate transcriptions with word-level timestamps for a subset of Vox-
Celeb1 English utterances only. This yields in a subset of only 4822 English utterances
transcribed. Subsequently, the Montreal Forced Aligner9 (MFA) is applied to extract
phone boundaries and align them with corresponding timestamps. Table 8.1 presents
the employed phonemes grouped by classes following the chart used by MFA.

Table 8.1: Phonemes and corresponding classes based on MFA chart

Class Phonemes
Vowels AA0, AA1, AA2, AE0, AE1, AE2, AH0, AH1,

AH2, AO0, AO1, AO2, AW0, AW1, AW2, AY0,
AY1, AY2, EH0, EH1, EH2, ER0, ER1, ER2, EY0,
EY1,EY2, IH0, IH1, IH2, IY0, IY1, IY2, OW0,
OW1, OW2, OY0, OY1, OY2,UH0, UH1, UH2,
UW0, UW1, UW2

Fricative F, V, TH, DH
Stop P, B, T, D, K, G
Nasal M, N, NG
A�ricate CH, JH
Sibilant S, Z, SH, ZH
Approximant W, R, Y
Lateral L

Mapping between attributes and phonemes

Figure 8.13: Normalized activations of MFs to BA11=1 in a portion of 0.8s of a speech
utterance of 5s, aligned with phonemes and classes of phonemes

Figure 8.13 illustrates an example of utterance alignment with phonemes and classes
of phonemes along with the normalized activations of MFs corresponding to a speci�c
present attribute (i.e., BA11 = 1) in the utterance. The normalization of activations is
obtained by dividing each MF activation by the maximum MF activation corresponding
to a given attribute. As depicted in the �gure, the selection of active MFs associated

9https://montreal-forced-aligner.readthedocs.io/en/latest/
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with the attribute (i.e., MF 2 and MF3) indirectly establishes a connection between
the attribute and the phonemes. Additional examples of alignment for various present
attributes in the utterance are provided in Appendix C, ŸC.3.

Description of attributes in terms of phonemes

Figure 8.14: Occurrence of each class of phonemes, clustered per BAs

In order to obtain a global description of the attribute in terms of phonemes and classes
of phonemes, we need to aggregate phoneme information across all utterances. To
achieve this, for each attribute, we count the occurrences of each phoneme and class of
phoneme selected by the corresponding active MFs and accumulate these counts across
all utterances where the attribute is present (i.e., BAi =1).

Figure 8.14 demonstrates the occurrences of classes of phonemes per attribute,
while grouping attributes sharing similar classes behavior. As can be noticed, the
"Vowels" class is the mostly selected by attributes compared to other classes, followed
by the "Stops" class and, then "Nasals" class. This result is aligned with other works in
[257, 267, 268] for the vowels and nasals, where they are both shown to be important to
discriminate speakers. However, for the stop class, this was not expected. Additionally,
along the attributes, we can identify some groups that are having a more pronounced
selection of classes than others. This is clearly demonstrated for vowels class.

Delving into each class of phonemes, we examine the occurrences of each phoneme
to understand whether the class behavior is con�ned to speci�c phonemes or is shared
among phonemes within the same class. Figure 8.15 illustrates this analysis. In the
case of vowels, the phoneme "AH0" stands out as the highly selected by certain BAs
compared to all phonemes across all classes (white zones in the heatmap). This selection
is similar in terms of BAs but less pronounced for the "IH0" vowel. For stops, the
phoneme "T" shows particular importance for some attributes, closely followed by the
phoneme "D". In the nasals, it is the phoneme "N" that emerges as highly selected by
certain BAs. In the remaining classes, the frequency of phoneme selection by attributes
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is less pronounced, yet there are consistently preferred phonemes within each class. For
instance, within the fricative class, the "DH" phoneme is more frequently selected than
others. Except for the a�ricate class, where the selection of phonemes is notably low,
indicating their relatively lower importance to BAs.

Figure 8.15: Occurrence of each phoneme in its phonetic class

In Figure 8.16, we add a global view of all phonemes together, which clearly shows
that there is only some subsets of BAs that particularly selects the vowels, stops and
nasals phonemes.

8.5.3 Attribute explainability in terms of localized temporal informa-
tion

In this section, we are interested in another description of attributes, speci�cally in
terms of localized temporal information. To accomplish this, we rely on the mapping
established between attributes and input frames. We brie�y describe the process of
temporal information localization and extraction per each attribute. Then, we present
the description of attributes using this information.

Localized temporal information extraction

The used temporal information in this work, are LLDs extracted at the frame-level
for each utterance. These LLD descriptors, described in Ÿ8.4.1, are extracted using
the same window used for �lterbank output extraction in the feature extraction phase
of our BA-extractor. Each window is 25ms with 10ms of overlap with the next. This
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Figure 8.16: Occurrence of all phonemes together, clustered by BA
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experiment is also performed on VoxCeleb1 dataset considering for each attribute, the
utterances where it is present and the corresponding selected frames. In this setting,
we limit the number of frames for each attribute to 2 million.

Figure 8.17: Distribution of the mean and std values per descriptor across all BAs

Description of attributes in terms of localized temporal information

Figure 8.17 illustrates the distribution of mean and standard deviation (std) values
for each descriptor across attributes. While this �gure presents a global behavior of all
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attributes compared to each others, it distinctly reveals important variations between
attributes in terms of encoded temporal information. To provide a closer look, let's
consider the "Loudness_sma3" descriptor as an example. Notably, the mean and the
std values exhibit substantial di�erences, ranging from 0.4 to 1.2 for the means and
between 0.1 and 0.8 for the std.

8.6 Discussion and perspectives

In this chapter, we proposed a novel method that explains the nature of information
encoded within binary-attribute-based speaker embeddings. This method, namely the
three-world methodology, draws an interaction between the speech real world, the
representation world and an informative world that presents any type of available in-
formation extracted from the real world. The idea is to �nd a mapping between the
representation world and the informative world, which would provide more explana-
tions about the representation world. The main goal of this chapter is to adopt this
methodology to provide explanations of attributes through two levels. At the utterance-
level, we provided acoustic and phonetic description of attributes. At the frame-level,
we provided a phoneme and a temporal localization of attributes. The three-world
methodology, along with the provided explanations of attributes, bring forth numerous
noteworthy advantages and perspectives that we highlight in the following:

ˆ Flexibility : The three-world methodology is �exible, straightforward to under-
stand, easy to apply and practical. It represents a general concept that could be
applied to any available or automatically extracted information about the speech
data in the informative world. No additional annotations or manual labeling are
required to explain information in the encoded representation. This explainabil-
ity method operates akin to a self-supervised learning model; in this context, it
can be referred to as a self-explanatory method. Also, it allows for �exible choice
of the mapping function based on the requirements. From a broader perspec-
tive, it is essential to highlight that this method is not con�ned solely to binary
attribute representation; instead, it has the �exibility to be applied to any dis-
cretized representation. In Appendix D ŸD.2.2, the step 3 methodology is applied
to di�erent binary representations in a di�erent context.

ˆ Accurate and reliable description: The achieved accuracy by attribute models in
training indicates the capability of descriptors to e�ectively di�erentiate between
the two classes of the attribute. The accuracy of these models underscores both
the presence and robustness of the information carried by these descriptors in
de�ning attributes. This performance signi�cantly enhances con�dence in the
selection of the most in�uential descriptors. Additionally, the convergence of
the attribute models and SLDA at the utterance-level description enhances trust
in this description. Given that explainability lacks a well-de�ned formulation,
we believe that validations using other mapping functions and evaluation with
di�erent ways are important to ensure reliable explainability of attributes.

ˆ Fidelity of attribute description: Utilizing the BA-extractor train data to describe
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attributes through attribute classi�ers and SLDA proves advantageous, given the
robust presence of encoded information. The attribute model has shown its
�delity and consistency to test data. As these attributes primarily represent neu-
rons learned during the extractor training, we believe that applying the extractor
to di�erent data sets is not supposed to alter the information encoded in these
attributes during training.

ˆ A dedicated mapping between attributes and input frames: Thanks to the thresh-
olding applied to the BA-extractor during training and the modi�cation applied
to access the frame-level information, we were able to map each attribute with
its corresponding set of frames. This was possible through the activations of
the MegaFrames corresponding to one attribute. The fact that only a subset
of MegaFrames is active when an attribute is present was helpful and made the
backpropagation into the DNN more straightforward, by focusing solely on high-
lighted MegaFrames. This added another dimension to the explainability of the
attribute and provided a multi-level description.

ˆ Useful tool for phoneticians: The obtained attribute descriptions serve not only as
valuable aids for phoneticians in o�ering interpretations of speech representations,
but it also may serve as powerful tools enabling them to uncover novel patterns
and combinations of descriptors. For instance, the BA-vectors could be used
in a classi�cation task such as gender or emotion and then, by identifying the
most contributing attributes to the classi�cation permits to have a task-oriented
explanation. The available description of these attributes would provide further
insights into the phonetic information encoding speci�c vocal characteristics. An
illustration of this example is provided in Appendix D.

Indeed, our proposed method achieved enhanced explainability level thus far. However,
from a critical standpoint, it still lacks certain elements necessary to attain a complete
level of interpretability that can be easily understood by a human. In the following,
we highlight some of these elements:

ˆ Explainable but not fully interpretable: While the obtained descriptions at both
the utterance- and frame-levels provide insightful explanations, they remain some-
what challenging for individuals without expertise in phonetics and acoustics to
fully comprehend. Consequently, the method lacks a higher level of interpreta-
tion tailored speci�cally for phoneticians. For instance, the variations between
attributes in terms of phonetic descriptors and temporal information could be
more easily explained by phoneticians in terms of higher-level vocal character-
istics. Moreover, the exploration of phonemes and their classes uncovered an
unexpected pattern within the stops class, underscoring its importance for spe-
ci�c attributes. This outcome deviates from typical �ndings in the literature and
may bene�t from interpretation by a phonetician. Another possibility is that
it could be attributed to a potential hallucination within the BA-extractor or
related to an error of the speech recognizer, as no ground-truth transcription is
available.
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ˆ Other mapping functions are to be explored: Even though in this work we tested
three mapping functions such as a machine learning function, a test statistic
and backpropagation through the network, yet there exist many other mapping
functions that could be applied. For instance, we could use information theory-
based methods such as the mutual information or entropy between descriptors
and attribute classes. Other mapping functions are tested for a di�erent binary
representation in ŸD.2.2.

ˆ Need for more data per attribute: It is noteworthy that having larger setsS0 and
S1 per attribute is important to provide explanations per attribute. The avail-
ability of more data per attribute boosts the stability of the attribute description
and provides more trustful explanations. This would also help to explore further
insights and to discover some composed explanations of the attribute.

ˆ Further analyses of temporal descriptions are to explore: Indeed, the provided
frame-level and temporal information descriptions are indicative and preliminary,
and further studies are warranted. For instance, conducting phoneme and tem-
poral descriptions directly on the training data would likely yield more reliable
and robust results. This approach could provide a more general identi�cation
of certain attributes as e�ective detectors of phoneme classes. Furthermore, to
enhance the robustness of descriptions and establish greater con�dence in ex-
planations, an additional exploration into aligning utterance-level phonetic de-
scriptions with frame-level temporal information would be bene�cial. Such an
investigation would contribute to a more precise attribute description. Further-
more, it serves as a validation step for the mapping process between attributes
and frame-level units.
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Part III

Improvements and application of our
approach in forensic context
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Chapter 9

Calibration and application of BA-
LR on forensically realistic database

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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Thus far, we have outlined the three steps of our approach designed to enhance the
interpretability and explainability of a speaker recognition system. In this Chapter, our
focus shifts towards the practical application of BA-LR framework, speci�cally involv-
ing steps 1 and 2, to report an interpretable LR for forensically realistic database. Due
to data con�dentiality concerns, step 3 could not be executed. In order to adapt BA-
LR to the speci�c conditions of the forensic data, we apply a calibration method that
aims to transform miscalibrated Log Likelihood Ratio LLRs into well-calibrated LLRs.
This application provides also an opportunity to introduce a fusion and calibration
approach for LLRs that improves both performance and calibration.
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9.1 Introduction

During a visit to the Netherlands Forensic Institute (NFI), the author of this thesis
applied BA-LR framework on one of their forensically realistic database. The goal is
to further evaluate the generalization capability of BA-LR framework on other data.
In this context, the mismatch in domain, conditions, and populations between training
and evaluation may lead to poorly calibrated LLRs [269]. This miscalibration was
previously observed and highlighted in Chapter 7 for certain evaluation datasets. In
such scenarios, a calibration step becomes essential to transform these scores into well-
calibrated LLRs. The traditional approach to calibration consists in employing an
a�ne function with trainable parameters [127, 270]. These parameters are �ne-tuned
by optimizing an objective function. This function computes the LLRs of a development
(Dev) set of target and non-target pairs, given their respective scores [271]. The learned
parameters are used to transform the scores of the evaluation data (Test) into calibrated
LLRs. The e�ectiveness of this transformation depends on how well the conditions of
the Test pairs are re�ected by the Dev pairs [272]. This is a common practice in speaker
recognition evaluations organized by NIST [273].Logistic Regressionis the standard
calibration approach frequently employed in speaker recognition [271, 273, 127, 270,
274, 119]. This method presents an a�ne transformation, shifting and scaling non-
calibrated scores1 to obtain well-calibrated LLRs.

In scenarios where multiple parallel scores are obtained using di�erent ASpR sys-
tems,Logistic Regression Fusionis a frequently employed technique [275, 100, 273] that
combines these scores, resulting in more accurate and well calibrated LLRs. Thus, this
approach is not only bene�cial for LLRs calibration, but also for performance improve-
ment [127, 119, 272, 276].

In this chapter, we focus on applying BA-LR framework on forensically realistic
data, namely NFI-FRIDA. This database has been introduced and evaluated only once
in the literature [277, 278] using Vocalise software [103] based on DNN x-vector [47].
Through this application, we aim to achieve three main objectives: 1) Assess the gener-
alization capability of BA-LR in a forensic context. 2) Improve the global calibration of
the �nal LLRs. 3) Explore the impact of a Logistic Regression fusion of attribute LLRs
on both, speaker discrimination and calibration performance. In the next sections, we
start by de�ning the global calibration approach. Following that, we introduce a fusion
approach of attribute LLRs. Subsequently, we detail the experimental protocol, includ-
ing the NFI-FRIDA dataset as well as the applied methodology. Finally, we present
and discuss the results in terms of speaker recognition performance and calibration.

9.2 Global calibration

As discussed in Chapter 7, in BA-LR framework, the attribute LLRs are computed us-
ing both the behavioral parameters of the attributes and the attribute values on both
sides of the pair (see Ÿ7.4.1). It is important to recall here that the used behavioral

1We intentionally use the term "score" to refer to non-calibrated LLR

138



parameters are estimated from a reference population of the train dataset, namely the
6000 speakers of VoxCeleb2. In scenarios where an evaluation dataset presents di�er-
ent conditions and distinct quality, a mismatch between the training and evaluation
datasets may arise, leading to non-calibrated LLRs. To address this mismatch, we train
and apply a logistic regression model on the �nal LLRs. This model is mathematically
de�ned as follows.

Let us consider a datasetf si ; yi gn
i =1 , whereSi = ( s1; s2; : : : ; sm ) is anm-dimensional

variable, and the target variableYi is a binary variable, being 0 or 1. The logistic
regression model is as follows:

log(
P(yi = 1jsi )

1 � P(yi = 1jsi )
) = � +

mX

j =1

� j � sij (9.1)

Where P(yi = 1jsi ) is the posterior probability of the positive class, givensi , � repre-
sents the intercept. � j is a regression coe�cient and� = ( � 1; : : : ; � m )T is the regression
coe�cient vector. The logarithmic likelihood function is therefore expressed as follows:

l(�; � ) =
nX

i =1

[yi � (� +
mX

j =1

� j � sij ) � log(1 + exp(� +
mX

j =1

� j � sij ))] (9.2)

The global calibration of LLRs using logistic regression [272, 119, 100] is illustrated
in Figure 9.1. Given a set ofn comparison pairs(X 1i ; X 2i ) where i = 1:::n, Si is
a 1-dimensional variable representing the �nalLLR X 1i ;X 2i scores, andYi is a target
variable representing the ground truth of scores being target (i.e =1) or non-target (i.e.
=0) pairs. The logistic regression model in this case is a univariate model withm = 1:

LLR 0
X i ;X 2i

= � G + � G � LLR X 1i ;X 2i (9.3)

Where � and � are scalars and denoted by� G and � G, respectively. The obtained
LLR 0

X 1i ;X 2i
represent therefore the calibrated LLRs.

Figure 9.1: Global calibration of the �nal LLR using univariate logistic regression
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9.3 Selective fusion of attribute LLRs

The primary objective of the fusion approach is to reduce the impact of the inde-
pendence assumption between attributes in the �nal LLR computation [272]. In this
section, we propose a weighted fusion of attribute-LLRs, rather than a straightforward
summation of all attribute-LLRs. This approach selects only an e�ective subset of at-
tributes. We pursue this method through two main concepts: 1) Using a multivariate
logistic regression model for the weighted fusion of attribute LLRs. 2) Integrating a
sparsity regularization in this model to retain only relevant attributes while discarding
irrelevant ones.

9.3.1 Weighted fusion of attributes

The application of logistic regression fusion requires two key elements: 1) A training
dataset consisting of scores from comparison pairs with known target and non-target
ground-truth [279, 272]. 2) Multiple sets of scores from parallel comparison pairs
conducted on the same data using di�erent systems [100, 275, 276]. These systems
could be di�erent automatic systems. For instance, the work in [280] illustrates the
fusion of LLRs from a forensic ASpR system with those derived from a forensic semi-
ASpR system. It could be also systems that use di�erent modelling techniques, or
even di�erent acoustic-phonetic systems where each system tackle information from a
distinct phonetic unit within the same data [272].

Figure 9.2: A weighted fusion of attribute-LLRs using a multivariate logistic regression
model

In our case, each attribute represents a system that output an attribute LLR. We
represent each comparison pair(X 1i ; X 2i ) by an m-dimensional variableS, which com-
prises m attribute LLRs, denoted as Si = ( LLR 0

X 1i ;X 2i
; LLR 1

X 1i ;X 2i
; :::; LLR m� 1

X 1i ;X 2i
),

and a binary target variableYi indicating whether the pair is a target or non-target.
Logistic regression is then applied and modeled on multivariate data to optimise fusion
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weights of the m attribute-LLRs in order to obtain a well-calibrated LLR 00
X 1i ;X 2i

, as
illustrated in Figure 9.2 and expressed in Equation (9.4).

LLR 00
X 1i ;X 2i

= � +
mX

j =1

� j � LLR j
X 1i ;X 2i

(9.4)

9.3.2 Selection of attributes

Regularizing logistic regression involves incorporating a term into the objective func-
tion, penalizing the distance from the estimated parameters to a default set of parame-
ters. This technique is frequently employed to enhance the robustness of the calibration
model and mitigate the risk of over�tting [281]. The most commonly used regulariza-
tion are Lasso [282](L1 sparse regularization), ridge regularization (L2 regularization)
[283] and Elastic-Net [284]. The use ofregularized logistic regressionfor the calibration
of speaker recognition systems has been studied in various works [270, 281, 285].

In our case, in order to push the logistic regression model to select only a truly rele-
vant set of attribute-LLRs, a L1 regularization term [286] is added to the log-likelihood
function of the logistic model as expressed in Equation.9.5. This regularization encour-
agessparsity, pushing the weights of some attributes to be exactly zero. This penalty
term is usually added to the objective function to achieve the e�ect of sparsity and
compression [287, 288, 77, 285]. The regularization parameter� controls the strength
of the penalty applied to the coe�cients. By increasing the value of� , the penalty
on large coe�cients becomes stronger. This encourages the model to shrink the coef-
�cients towards zero, e�ectively reducing the impact of less important attribute scores
and promoting sparsity in the coe�cient vector. This L1 regularization results in a
more interpretable and e�cient model while helping to prevent over�tting [270].

(�̂; �̂ ) = argmin
�;�

(
� l (�; � )

n
+ �

mX

j =1

j� j j) (9.5)

9.4 Experimental protocol

This section outlines the experimental setup, providing details into the NFI-FRIDA
database and o�ering an overview of the applied experimental protocol for the calibra-
tion and fusion approaches.

9.4.1 Database description

NFI-Forensically Realistic Inter-Device Audio (NFI-FRIDA) [277, 278] is a Dutch
database comprising of speech samples recorded by various forensically relevant record-
ing devices. This dataset comprises 302 male speakers representing a speci�c reference
population. In the following, we describe the database in terms of recording devices
and sessions.
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Speakers

The dataset includes 302 male volunteer participants2 who were not university edu-
cated. About 80% were aged between 18 and 35, with the remaining 20% aged up to 55.
Among them, 50% had a native Dutch background, 25% had a Moroccan immigrant
background, and another 25% had a Turkish immigrant background. Most partici-
pants were Amsterdam natives, and all recorded speech in the dataset is in Dutch,
often including colloquialisms and street language.

Recording devices

The speech was simultaneously recorded with 5 devices in each session type. The
devices were chosen to re�ect conditions encountered in NFI casework. In this work,
we are limited to three devices only, namely device 1, 4 and 5. We ignore devices 2 and
3 because they present similar quality as device 1. Devices 1 and 4 are recorded with a
sampling rate of 48KHz, while device 5 has a sampling rate of 8KHz. The description
of these devices is provided in Table 9.1 and is as follows:

Table 9.1: Recording devices description

Recording device Session
Device 1 Shure WH20 HQ Headset 1,2,3,4,5,6,7,8
Device 4 Shure SM58 far 1,2,3,4
Device 5 Intercepted telephone 1,2,3,4,5,6,7,8

ˆ Recording device 1 (device 1): A headset microphone that exhibits a high quality
recording.

ˆ Recording device 4 (device 4): Recordings contain considerable reverberation
and have a higher noise level. It presents low quality police interview recordings.

ˆ The intercepted telephone recordings (device 5): Provided by Dutch police.
They are extracted through telephone interception system that is used in actual
criminal investigations. Either an iPhone 4 or a Nokia 1280 telephone was used
as shown in Table 9.2, according to the session. The iPhone 4 was chosen as it
was the most widely used smartphone at the time of recording, and the Nokia
1280 was chosen to represent a cheap phone, often encountered in casework.

Sessions

Speakers were recorded across 16 sessions, engaging in spontaneous conversations on
various topics over two days. These sessions were spaced apart by a minimum in-
terval of one week. Each day comprised eight sessions recorded in diverse locations,

2The speakers are not from real forensic cases, but they represent a simulation of forensic cases
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using di�erent telephones, and varying in environmental noise, as detailed in Table
9.2. Each session lasted approximately 5 minutes, featuring telephone conversations
between participants. In indoor sessions, a noisy environment included static radio
noise, while outdoor sessions alternated between quiet and noisy street locations.

Table 9.2: Sessions description

Session Location Environment Telephone
1 Inside Silent Nokia 1280
2 Inside Silent iPhone 4
3 Inside Noisy Nokia 1280
4 Inside Noisy iPhone 4
5 Outside Calm Nokia 1280
6 Outside Calm iPhone 4
7 Outside Busy street Nokia 1280
8 Outside Busy street iPhone 4

9.4.2 Experiments setup

In this section, we detail the data preparation step and provide speci�c information
about the datasets used in each experiment. Following that, we present a comprehen-
sive description of the experimental protocol, while precising the baseline employed.It
is noteworthy to mention here that all experiments are conducted using the second
version of BA-LR, namely the Speech-based version.This choice is motivated by the
aim of presenting a logical and reasonable calculation of the LR in a forensic speech
context.

Data preparation

In this experiment, we combine for the same device the data of each two sessions sharing
the same location and environment in one session, as shown in Table 9.3. This table
provides details on the number of utterances and speakers used in each combination of
(device, session pair).

It is important to precise that, contrary to [277], no editing is applied to the data; all
experiments use raw speech recordings under real conditions. However, given that the
recordings of device 5 have a sampling rate of 8kHz, as they are telephone intercepts,
we proceed with up-sampling these �les to 16kHz. This adjustment is made to align
with our BA-extractor.
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Table 9.3: Experiment data description

Device Sessions #utterances #Speakers

1

1&2 1,190 302
5&6 1,186 302
3&4 1,187 302
7&8 1,184 302

4
1&2 1,190 302
3&4 1,183 302

5

1&2 772 202
5&6 766 203
3&4 765 203
7&8 768 204

Protocol description

To apply the calibration and fusion approaches on NFI-FRIDA data, we establish the
protocol illustrated in Figure 9.3. For a given devicei -sessionj , Dev and Test sets of ut-
terances are selected and de�ned with 15-fold cross-validation. In each fold, utterances
are randomly selected for the Dev and Test sets, ensuring that speakers are randomly
assigned to each set with no overlap between speakers. For Dev and Test sets, the
BA-vectors are �rstly extracted using our BA-extractor trained on VoxCeleb2 dataset.
Then target (tar) and non-target (non) comparison pairs are composed. The BA-LR
framework is thus applied on these pairs to compute the attribute-LLRs and the global
LLR. The Dev pairs are employed for training the logistic regression models, while the
Test pairs are utilized for evaluation of SR performance and calibration. Details are
provided in Figure 9.3 and are as follows:

Figure 9.3: Description of experimental protocol using calibration and fusion ap-
proaches
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ˆ Training phase: In the global LLR calibration, the Dev global LLRs are employed
to train the logistic regression model, determining the optimal shifting and scal-
ing parameters,� G and � G. In the selective fusion, the Dev attribute-LLRs are
�rstly standardized, then used to train sparse logistic regression model, �nding
the intercept � and the optimal fusion coe�cients of attribute-LLRs f � j gm� 1

j =0 .
During the training of the latter, a grid search is conducted to identify the op-
timal sparsity parameter � , ensuring the best discrimination performance and
calibration on Dev set.

ˆ Testing phase: In evaluation, we use the learned parameters� G, � G and we apply
global calibration on LLRs as in Equation (9.3). For a more calibrated LLR and
more accurate fusion of attribute-LLRs, we use the learned parameters� , � j and
� as in Equation (9.4).

Table 9.4: Description of Dev and test sets of the best fold for each experiment

Device Sessions #Dev speakers #Dev tar/non #Test speakers #Test tar/non

1

1&2 150 870/30,000 152 897/30,000
5&6 150 872/30,000 152 884/30,000
3&4 150 880/30,000 152 887/30,000
7&8 150 866/30,000 152 884/30,000

4
1&2 150 870/30,000 152 897/30,000
3&4 150 857/30,000 152 892/30,000

5

1&2 150 568/30,000 52 547/30,000
5&6 150 540/30,000 53 555/30,000
3&4 150 553/30,000 53 541/30,000
7&8 150 553/30,000 54 546/30,000

We select, for both approaches, the same fold composition that provides the best
average performance and calibration. The obtained results are later based on this fold
composition. These experiments �nally yield, for each approach, 4 models for device 1,
2 models for device 4 and 4 models for device 5. Details about the number of speakers
and the target and non-target scores of Dev and Test sets are provided in Table 9.4.
Note that the number of Non-target pairs is always restricted to 30,000 pairs.

Baseline

The experimental protocol employed in this work diverges from the protocol used in
[277], which initially assessed NFI-FRIDA data for a speaker recognition task using the
proprietary VOCALISE software. The unavailability of this software as open source,
combined with the con�dentiality of the database, prevents us from establishing a
baseline for direct comparison with our results. For this reason, we establish our own
baseline using the x-vector system employed in step 1 (Ÿ6.4.4). Please note that the
results obtained with this baseline incorporateall the Dev and Test comparison pairs
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for each experiment. Due to con�dentiality constraints, we are unable to access the
x-vectors to rerun these experiments only on test sets.

9.5 Calibration and speaker recognition performance

BA-LR generalisation ability

Table 9.5 presents the EER of the application of Speech-based version of BA-LR
on Test sets, before and after fusion approach. Before applying the selective fusion,
the overall ASpR performance of BA-LR in all experiments indicates its discrimination
capability and its generalization3 ability to the Dutch data. The superior discrimination
performance observed on device 1 data, in contrast to device 4 and device 5, can be
explained by the higher quality of recordings in device 1. Furthermore, device 4 and
device 5 represent forensic conditions and telephone intercepts, respectively, which are
not covered in either the training data of the BA-extractor or the attribute behavioral
parameters used in the BA-LR framework.

Table 9.5: Speaker recognition performance of BA-LR Speech-based version on Test
sets before and after selective fusion

Device Sessions BA-LR Selective Fusion
EER (205 BAs) EER #BAs

1

1&2 1.037% 1.87% 132
5&6 0.96% 1.2% 139
3&4 1.22% 1.83% 149
7&8 0.43% 0.5% 159

4
1&2 2.07% 2.37% 119
3&4 4.27% 2.82% 144

5

1&2 10.05% 7.31% 101
5&6 11.2% 7.84% 128
3&4 10.72% 7.18% 127
7&8 12.61% 7.59% 124

BA-LR Vs. baseline X-vector

For comparison reasons, results from the x-vector baseline on all comparison pairs
are provided in Table 9.6. It is crucial to recall that the results presented with the base-
line x-vector are computed using a combination of train and test comparison pairs. Any
comparison made with our results against this baseline should be considered indicative
only, as it re�ects the average performance across both sets. Before fusion, Compared
to baseline x-vector, an average slight absolute increase in EER of 0.85% for all devices
is observed using BA-LR, except for device 4 of forensic conditions with 1.66% absolute
increase of average EER.

3The training data predominantly consists of English speech samples.

146



Table 9.6: Speaker recognition performance of X-vectors on all comparison pairs. These
results are indicative only, as they are calculated based on all comparison pairs corre-
sponding to the combination of (device, sessions).

Device Sessions X-vector

1

1&2 1.02%
5&6 0.85%
3&4 0.74%
7&8 0.28%

4
1&2 1.59%
3&4 1.43%

5

1&2 8.16%
5&6 9.53%
3&4 9.7%
7&8 11.1%

Table 9.7: Cllrmin=act computed with BA-LR before (Non-Calibrated) and after (Cali-
brated) applying calibration and fusion approaches (results for the best fold)

Device-Sessions Non-Calibrated Calibrated
Global Fusion

Cllr min Cllr act Cllr min Cllr act Cllr min Cllr act

d1-1&2 0.04 0.60 0.04 0.08 0.07 0.10
d1-5&6 0.04 0.64 0.04 0.06 0.05 0.078
d1-3&4 0.04 0.64 0.04 0.06 0.07 0.08
d1-7&8 0.01 0.59 0.01 0.03 0.02 0.02
d4-1&2 0.08 1.71 0.08 0.10 0.10 0.10
d4-3&4 0.16 8.26 0.16 0.16 0.1 0.12
d5-1&2 0.35 8.78 0.36 0.38 0.26 0.30
d5-5&6 0.41 10.2 0.41 0.45 0.28 0.30
d5-3&4 0.35 10.0 0.35 0.38 0.26 0.27
d5-7&8 0.42 10.1 0.42 0.43 0.27 0.28

Calibration and fusion results

As shown in Table 9.7 the LLRs obtained with BA-LR are initially miscalibrated,
which is particularly noticeable for device 4 and device 5 with an important di�erence
between Cllrmin and Cllract . After calibration, the global calibration approach e�ec-
tively converts these miscalibrated scores into well calibrated LLRs. As expected, this
calibration is not supposed to impact the discrimination performance, and the EER
remains unchanged. Interestingly, in addition to the calibration improvement, the se-
lective fusion approach remarkably improves the overall discrimination performance of
BA-LR on device 4 and device 5 (Table 9.5). Nevertheless, for device 1, where the
recordings are of high quality, the fusion approach shows a slight increase in EER com-
pared to the EER calculated using all BAs. This might be due to an over�tting of the
model to the high-quality data in device 1. Moreover, it is noteworthy to highlight
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that the BA-LR fusion approach outperforms the ASpR performance of the x-vector,
especially on telephone intercepts of device 5, despite using a reduced number of binary
attributes, as shown in Table 9.5, compared to the 256 �oats of the x-vectors.

EER and Cl lr Vs. Number of selected attributes

Using the selective fusion model, each experiment results in the selection of a subset
of attributes, as illustrated in Table 9.5. On average, the number of attributes selected
for weighted fusion represents� 67% of the initial total number of attributes in BA-LR
(i.e., 205 BAs), for both device 4 and device 5 experiments. For more insights into this
selection process, Figure 9.4 illustrates an example of the evolution of both EER and
Cllr cal (i.e., Cllract -Cllrmin ) with respect to increasing number of attributes selected by
the � of the sparse regularization, speci�cally for the optimal fold. As the values of�
decrease, and consequently, the number of attributes increases, the EER consistently
decreases until reaching a certain number of attributes, after which it starts to rise
again. The Cllrcal exhibits a parallel behavior to the EER, with the optimal EER
aligning with the minimum Cllr cal . This observation facilitates the identi�cation of the
optimal number of attributes that ensures both e�cient discrimination and calibration
performance.

Figure 9.4: An example of EER and Cllrcal evolution using BA-LR, along with the
number of attributes for the optimal fold

Given that these results are obtained using the Speech-based version of BA-LR, we
show in Table E.2 and E.1 a comparison between the two BA-LR versions in terms
of performance and calibration. Before fusion, the performance of both versions is
comparable. After fusion and calibration, we obtain approximately same results for
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both versions in terms of EER and Cllrmin=act .

9.6 Discussion

In this chapter, we evaluated the performance of BA-LR framework on the forensically
realistic NFI-FRIDA database. A calibration and a fusion approaches were applied to
address the mismatch between training and evaluation datasets. The two approaches
use logistic regression model; The global calibration approach aims to produce well
calibrated �nal LLRs, whereas the selective fusion approach aims to �nd an optimal
fusion of attribute-LLRs using BA-LR to obtain more accurate and well calibrated
LLRs. This fusion was found bene�cial for BA-LR, as it assigns weights to relevant
attribute-LLRs and entirely eliminates the in�uence of others, rather than simply sum-
ming all attribute-LLRs to determine the �nal LLR.

Even thought our BA-extractor was trained on VoxCeleb2, the attributes behav-
ioral parameters are estimated on VoxCeleb2, and VoxCeleb2 being predominantly an
English dataset (Ÿ6.4.1), the overall performance of BA-LR on NFI-FRIDA, a Dutch
data, proves its strong generalization capability. Since this data re�ects real forensic
conditions, a mismatch is noticed in speaker recognition performance and calibration.
This mismatch was more pronounced in device 5 comprising of telephone intercepts, as
this speci�c data variability was not considered during the training of our BA-extractor.
The global calibration approach is shown to address this mismatch by converting the
LLRs into well calibrated LLRs.

Although the independence assumption is not explicitly imposed and respected in
step 1 of our approach, the fusion approach allowed the regulation of the potential cor-
relation between attributes by applying appropriate weights. By selecting an optimal
subset of attributes only, the fusion approach e�ectively addressed the miscalibration
of scores by enhancing not only the discrimination performance of BA-LR but also the
calibration. Remarkably, it is even shown to outperform the discrimination of x-vector
baseline in the case of device 5 experiments.

As a perspective, another possible solution to tackle the mismatch between train
and evaluation data is to �netune the extractor on some telephone intercept samples
and on dutch data recorded in forensic conditions. This was not possible in our case
due to the con�dentiality constraint on the NFI data.

From a broader perspective, the fusion approach applied to BA-LR scores reveals
interesting interpretability aspect. By examining the weights assigned to the attribute-
LLRs, one can gain direct insights into the importance of each attribute in the �nal LLR
calculation. Combined with step 3 of our approach, the description of each attribute
along with its weight permits to enhance the interpretability of the �nal LLR value.

However, while these results are indeed promising, it is crucial to approach the
forensic application of BA-LR with caution. Further research is necessary for real-world
deployment. Speci�cally, larger and more diverse databases should be experimented.
This would help understanding the in�uence of the selected training database's sig-
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ni�cance and the extent to which our �ndings can be generalized to speci�c cases
commonly encountered in forensic contexts.
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Attribute-based binary auto-encoder
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Up to this point, the BA-extractor proposed in Step 1 has been utilized in all
experiments. In this chapter, we introduce a new direction designed to enhance the
performance of the binary-attribute-based representations of Step 1 of our approach.
For this end, we explore two di�erent solutions based on an auto-encoder able to
produce binary embeddings.
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10.1 Introduction

In the �rst step of our approach, we introduced an initial version of the binary-
attribute-based extractor (BA-extractor). This extractor, although not optimal, meets
the requirements for attribute-based representations, treating dimensions as binary
attributes shared between speakers with relative independence. While this extractor
proves bene�cial for explainability, still it presents some limitations. Secondly, the ob-
jective of shared attribute modeling is indirectly and not explicitly driven or taken into
account. Thirdly, binarization is not integrated into the modeling, but applied after
the training of the model. Finally, its ASpR performance falls short compared to the
baseline x-vector.

To address these limitations, we explore two alternative solutions for extracting
binary and attribute-based vectors in an auto-encoder fashion, using ResNet x-vectors
as input. The �rst auto-encoder, named as SParse Interpretable Neural Embeddings
(SPINE), is initially introduced by [289] and applied in the context of JSALT workshop
20231 to extract sparse, interpretable and binary speaker vectors. The second extractor,
termed Attribute-based Binary Auto-Encoder (BAE), is a novel approach proposed in
this work with the speci�c purpose of directly generating binary and attribute-based
representations. It is important to emphasize that the aim of the extractor is not only
to extract binary vectors that improve ASpR performance, but also to ensure that
these binary vectors meet the requirements of our goal representation. The adherence
to these requirements is crucial for the subsequent applicability of BA-LR framework.

In this chapter, we begin by detailing the modeling process for the two extractors,
SPINE and BAE, respectively. We then outline the experimental protocol, covering
model con�gurations and additional analyses to verify the compatibility of binary vec-
tors with the BA-LR framework. Subsequently, we assess the performance of these
vectors in terms of speaker recognition, followed by an application of BA-LR on the
compatible binary vectors. Finally, we summarize the chapter and engage in discussions
and perspectives.

10.2 SPINE: Sparse binarized speaker representation

During the 2023 edition of the JSALT workshop2, the topic of explainability in the
case of speaker diarization system was tackled3, aiming to answer the question, "who
speaks? when? and why?". The ultimate goal of the project4 is to explore speaker
embeddings to provide explainable automatic diarization results.

Inspired from our three-step approach, the proposed speaker model involves learning
a representation space speci�cally designed for interpretability [290] . This extractor5

1The Jelinek Summer Workshop on Speech and Language Technology 2023
2This work was supported by Johns Hopkins University and H2020-MSCA ESPERANTO
3We participated in a collaborative e�ort within an international, multidisciplinary team.
4https://jsalt2023.univ-lemans.fr/en/explainability-for-diarization.html
5No publication about this work is available for the moment
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is mainly based on the work in [289] that generates interpretable word representa-
tions. The resulting representations are referred to as SParse Interpretable Neural
Embeddings (SPINE). This extractor aims to promote two desirable properties in the
representations:sparsity and non-negativity [291, 292, 293]. In this section, we justify
the choice of these two properties then we describe SPINE architecture used in this
step.

10.2.1 Why sparsity?

The idea of introducing sparsity in DNN training is mainly inspired from our brain
functioning. It is shown in many studies such as [294] that our biological neurons
are silent most of the time, with the exception of a percentage of neurons getting
activated all at the same time. It is shown that given a speci�c stimulus, only a
highly selective, small subset of neurons will activate. Sparsity is a property used
frequently in DNN models to push their explainability and interpretability [295, 296].
The goal is that the sparsity constraint decorrelates the overall information distributed
over the representation by focusing only on a set of neurons being activated for a
speci�c output. Thus, the contribution of any neuron to the explanation of the input
data can be easily determined [295, 297]. Several recent works, mainly in the �eld of
natural language processing, employed this property to enhance interpretability in word
embeddings [292, 298, 289], language models [296] and extraction of semantic properties
[299]. These studies indicate that sparsity pushes the explainability aspect of the DNN
models [289, 297]. Another key advantage of sparsity is that it is independent of the
DNN architecture, it can be rather incorporated into any DNN structure.

10.2.2 SPINE model

SPINE [289, 298] is a k-sparse auto-encoder that imposes constraints on the latent
space, ensuring that onlyk neurons are active at any given time [300]. Figure.10.1
illustrates the architecture of SPINE auto-encoder.

Figure 10.1: SPINE architecture adapted to speech
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It is composed of an encoder with a single linear layer followed by a HardTanh
activation function [290], expressed in Equation (10.1). This encoder takes x-vectors
(X ) of 256 dimensions as input and produces sparse embeddingsZ X of 500 dimensions
in the latent space. In contrast to conventional auto-encoders, SPINE diverges by
not compressing the representation within the latent space; instead, it expands the
number of dimensions. This divergence is motivated by the fact that sparsity inherently
achieves information compression. Subsequently, a decoder, consisting of a linear layer,
reconstructs the input X from these sparse embeddings.

HardTanh(x) =

8
>><

>>:

1 if x � 1

0 if x � 0

x Otherwise

(10.1)

In order to impose sparsity constraint into the auto-encoder, the following loss function
is being minimized during training:

L(D) = RL(D) + � 1 � ASL(D) + � 2 � PSL(D) (10.2)

whereD denotes the set of input x-vectors.RL is the reconstruction loss as expressed
in Eq.(10.3). ASL is the average sparsity loss andPSL is the partial sparsity loss that
enforcek sparse activations in the latent spaceH [289]. � 1 and � 2 are the weights
given to ASL and PSL losses, respectively.

RL (D) =
1

jD j

X

x2 D

jjX � X̂ jj 2
2 (10.3)

The goal of theASL loss, expressed in Equation.(10.4), is to penalize any deviation
of the observed average activation value� h;D from the desired average activation value
� �

h;D of a given neuron, over a given data set.

ASL(D) =
X

h2 H

(max(0; � h;D � � �
h;D ))2 (10.4)

The PSL loss, as expressed in Eq.10.5, serves to penalize values that are neither close
to 0 nor 1, pushing them close to either 0 or 1.

PSL(D) =
1

jD j

X

x2 D

X

h2 H

(Z X
h � (1 � Z X

h )) (10.5)

After the training phase, SPINE sparse embeddings are extracted from the latent
space. Binary vectors are therefore obtained by thresholding, preserving zero values
while converting others to 1.

However, as outlined in Chapter 6 regarding the BA-extractor, the post-training
binarization process is not the most e�ective solution. This method tends to set all
activations, both small and high, to 1. A more favorable approach would be to train
a dedicated binary extractor explicitly designed to produce binary vectors. Moreover,
while the auto-encoder does promote sparsity during training for reconstruction pur-
poses, it lacks constraints that encourage dimensions to exhibit shared patterns among
speakers.
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10.3 BAE: attribute-based Binary Auto-Encoder

Drawing inspiration from the architecture and the constraints incorporated in SPINE,
we propose a more purpose-oriented auto-encoder, referred to as attribute-based Binary
Auto-Encoder (BAE). In the literature, most of the works that use binary auto-encoders
are mainly for hashing purposes [301, 302], for preserving information [303, 304] or for
data compression [305, 306, 307]. More aligned with our work, [308] uses a textual auto-
encoder with latent space consisting of binary vectors for a text modelling task. It is
noteworthy that the training of a binary auto-encoder is not straightforward due the
non-di�erentiability of the gradient during training. The generation of binary vectors
in the latent space makes the backpropagation of the gradient not possible. In this
context, we aim to design a BAE model that meets the following criteria:

ˆ To push dimensions to exhibit attribute-like behavior, shared across groups of
speakers.

ˆ To directly generate binary embeddings.

ˆ To address the non-di�erentiability of gradient during the training in the case of
binary auto-encoder.

In the following, we describe the architecture of the binary auto-encoder model and
introduce the proposed loss functions designed to guide the model in generating the
desired representations.

10.3.1 Binary auto-encoder model

Before delving into the proposed architecture of the BAE, we de�ne a commonly used
technique, namely Straight-through estimator, that makes the training of the BAE
possible.

Straight-through estimator

The Straight-Through Estimator (STE), as introduced by [309], serves as a technique
for training neural networks involving discrete latent variables, such as binary codes
or discrete embeddings. It addresses the inherent challenges associated with back-
propagation through non-di�erentiable operations. In the typical neural network back-
propagation process, gradients �ow backward to update model parameters. However,
with discrete binary variables, these gradients are often unde�ned due to their non-
di�erentiability. STE tackles this issue by employing a "relaxed" or "straight-through"
gradient during the backward pass. This approach treats the discrete variable as if it is
continuous, facilitating the �ow of gradients as if the variable is non-discrete. The gra-
dients are approximated using this continuous relaxation, providing a means to update
model parameters. STE was used in various works such as [308, 310, 311, 305].
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Architecture

The proposed BAE takes the baseline 256-dimensional x-vectors as input with the
objective of reconstructing them. The BAE architecture, illustrated in Figure.10.2,
consists of an encoder, which includes two linear layers with 256 and 512 units, followed
by ReLU+batch normalization and Tanh activations, respectively. A representation of
512 dimensions, denoted asz, is obtained in the latent space. In the forward pass, this
representation is binarized with a thresholding function that converts negative values
or zeros to zeros and values strictly superior to zero to ones. This binary representation
is therefore denoted as theBAE-vector. The decoder is composed of a linear layer of
512 followed by a Tanh activation and a linear layer of 256 units. In the backward
pass, the gradient should back-propagate without passing through the BAE-vector.
The Hardtanh function (Equation.10.1) is applied to clamp the gradient between -1
and 1.

Figure 10.2: Architecture of the attribute-based Binary Auto-Encoder

The whole model is trained with two objective functions. In addition to the con-
ventional reconstruction loss (MSE) in auto-encoders that takes as input x-vectors and
tries to reconstruct them, we introduce a sparsity loss described in the next section.

10.3.2 Proposed attribute-oriented loss

The goal of the attribute-oriented loss is to push the model to encode binary repre-
sentations modeled by shared discriminant attributes between speakers. In order to
clarify the idea of this loss, let's consider in Figure 10.3 a toy example illustrating the
relationship between utterances activations before binarization and speaker pro�le. It
is important to remind that an attribute is considered present in the pro�le, if the sum
of all utterance activations per attribute for a speaker is non-zero (refer to Chapter
7). We remind also that typicality is linked to the pro�le, computed as the presence
frequency of attribute among speakers pro�les. So back to our BAE,what if we regu-
late the activations of the latent space dimensions before binarization to ensure that
only a subset of speakers has a particular dimension present in their pro�les?
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Figure 10.3: A toy example illustrating the relationship between utterances activations
and speakers pro�les used to compute the typicality

To address this, we propose a loss that aims to guide the dimensions towards achiev-
ing a desired presence frequency among speakers. This encapsulates the concept of typ-
icality, where an attribute may be rare, moderately present, or typical among speakers.
Consequently, ensuring the absence of an attribute in the speaker's pro�le entails driv-
ing the sum of activations across all their utterance vectors to 0. Conversely, for an
attribute to be considered present in the speaker's pro�le, it su�ces for only one vector
of the speaker to possess this attribute.

The formulation of this loss is mainly inspired from the ASL loss of SPINE [289,
300] in Equation 10.4, while applying some modi�cations to adapt it to our need. More
precisely, instead of constraining k-sparsity in the vectors of the latent space, we impose
more strict constraint that pushes each dimension to follow a speci�c sparsity while
considering speakers. To do so, a speci�c organization of the input batch of x-vectors
is followed in this work.

Figure 10.4: Illustration of the sparsity loss computation during training using the
latent space representation before binarization

Figure.10.4 illustrates the batch organization in the latent space and the calculation
of the proposed sparsity loss, following the annotations de�ned below:

ˆ Let X be the input batch of 256-dimensional x-vectors. This batch is struc-
tured into sets of N speakers, where each speaker package consists ofn x-vectors
belonging to that particular speaker.X is therefore a matrix of size(N � n; 256).
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ˆ Let Z be the output batch representation from the encoder of 512 dimensions,
constituting the latent space. Instead of compressing the representation of the
latent space, we opt here to increase the dimensionality due to the sparsity aspect
of vectors. These representations are the Tanh activations ranging between -1
and 1. Z is a matrix of size(N � n; 512).

ˆ Let Y be the obtained speakers summary batch representation. This batch is
calculated following equation.10.6 by summing alln activations of each speaker
in each dimension.Y is a matrix of size(N; 512).

Yi;j =

 nX

k=1

Zk;j

!

(10.6)

ˆ Let V be a vector of 512 dimensions representing the desired frequency presence
of attribute. This vector is generated randomly with values between 0 andn
strictly.

As shown in Figure.10.4, givenY and V, the �nal attribute-oriented loss is calcu-
lated in such a way that the sum ofn activations of each speaker in one dimension
should be as close as possible to the desired frequency of that dimension inV. Since
the dimensions activations are between -1 and 1, then the sum of the values would be
always less thann. This sum for each speaker is subtracted by the desired dimension
frequency ofV. The result is then subjected to a max operation between 0 and the
computed value to avoid negative values, followed by squaring. The summation of all
these values represents the �nal loss, as expressed in Equation.(10.7) for one batch
during training.

LS =
X

i

(max(0; Yi;j � Vj ))2 (10.7)

The MSE loss in this case is expressed as follows:

MSE =
1

N � n

N � nX

i =1

(x i � x̂ i )2 (10.8)

The total loss to be minimized during training is therefore expressed in Equation.(10.9),
where� is the weight given to the attribute-oriented loss.

L = MSE + � � LS (10.9)

10.4 Experimental protocol and analyses

In this section, we �rst setup our experiments, along with models con�gurations. Next,
we verify the compatibility of SPINE and BAE binary vectors with BA-LR framework.
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10.4.1 Setup

In the following section, we present some details concerning the setting and training
of the two models. Speci�cally, for the SPINE system, we specify the weights assigned
to the sparsity loss functions. Additional details regarding the training parameters of
the SPINE model will be provided in an o�cial publication of the work conducted in
JSALT20236 by the authors. We also detail the training of the BAE model, showing
the evolution of the two losses.

SPINE model

The sparsity of SPINE vectors is mainly controlled by the two weights� 1 and � 2.
Based on the sparsity level, three systems are proposed, as depicted in Table.10.1. It
is important to note that sparsity indicates the percentage of zeros. All three systems
are trained using VoxCeleb2 x-vectors extracted with our ResNet baseline explained
in Chapter 6. The evaluation of these systems as well as the baseline is performed on
VoxCeleb17 trials.

Table 10.1: SPINE con�guration for three systems

System � 1 � 2 Sparsity

SPINE-15% 1 1 15%
SPINE-50% 1 10 50%
SPINE-70% 50 10 � 70%

BAE model

In this experiment, we setup our BAE model as follows:

ˆ Batch con�guration : N =27 speakers andn=10 x-vectors per speaker for each
batch, which yields to a batch of 270 x-vectors.

ˆ Training parameters: The number of epochs=2000, learning rate=0.001,� =0.01.

ˆ Train and test data : The x-vectors of VoxCeleb2 and VoxCeleb1, respectively,
extracted with the baseline ResNet.

ˆ Evaluation protocol : We employ the same experimental protocol for composing
comparison pairs, as described in Table.7.1.

Figure 10.5 illustrates the evolution of MSE and attribute-oriented losses over a spe-
ci�c number of training epochs of BAE model. Notably, the attribute-oriented loss

6https://jsalt2023.univ-lemans.fr/en/explainability-for-diarization.html
7https://www.robots.ox.ac.uk/ vgg/data/voxceleb/meta/veri_test.txt

159



exhibits a more rapid decrease compared to the MSE loss, justifying our choice of its
smaller weighting factor� in relation to MSE. Additionally, a closer examination of the
evolution of these two losses reveals a reciprocal relationship: as the MSE decreases,
there is a slight increase in attribute-oriented loss, and vice versa. This behavior can
be associated to the distinct optimization directions of the two losses. Throughout
training, the model's goal is to �nd an optimal point that simultaneously satis�es and
minimizes both objectives. The best optimal model is chosen based on the EER found
for VoxCeleb1.

(a) MSE loss (b) Attribute-oriented loss

Figure 10.5: Snapshot of the losses evolution during the training ofBAE model

10.4.2 Compliance with attribute-based criteria

To apply the BA-LR framework on binary vectors, it is crucial for these vectors to
conform to the prede�ned criteria of attribute-based representations. These criteria
primarily involve ensuring the decorrelation or independence between dimensions and
promoting attribute-like behavior, treating dimensions as attributes shared between
subsets of speakers. In the following, we focus on the veri�cation of these two aspects
in binary vectors.

Dimension correlation

To verify the decorrelation assumption among the dimensions of the BAE-vector as
well as the SPINE-vector, we compute the Pearson correlation. For SPINE-vectors, we
opt to work with the best performing system, SPINE-15%.
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(a) BAE-vectors (b) SPINE-15%-vectors

Figure 10.6: Distributions of Pearson correlation values between dimensions

Figure 10.6 depicts the distribution of correlation values of the two vectors, revealing
consistently low values, falling within the range of -0.3 to 0.3. Notably, this correlation
range closely resembles that of the BA-vectors.

Attribute-like behavior

The attribute-like behavior of a dimension is indirectly related to its typicality among
speakers. To verify this behavior in binary vectors, we calculate the typicality values
of dimensions across the train dataset for each binary vector.

Figure 10.7: Sorted typicality values across dimensions of the three binary vectors.

Figure 10.7 shows the typicality values corresponding to the dimensions of BA-
vectors, SPINE vectors and BAE-vectors. In the case of BAE-vectors, the initial 400
dimensions consistently display high typicality, ranging between 1 and 0.8. Conversely,
the �nal 100 dimensions exhibit lower typicality values (i.e., 0.8-0.2). In contrast,
BA-vectors exhibit a more uniform distribution of typicality values across all 205 di-
mensions. It is clear that contrary to BA-vectors and BAE-vectors, the dimensions of
SPINE vectors do not exhibit attribute-like behavior. All dimensions in SPINE-vector
consistently demonstrate the same behavior across all speakers, always present and
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highly typical. This violates a key requirement of the binary-attribute-based repre-
sentation (Ÿ.6.3.1), which speci�es that attributes should be shared among groups of
speakers.

Given this behavior, where SPINE dimensions do not adhere to the characteristics
of attributes, these vectors are only binary vectors and not binary-attribute-based
vectors. Applying the BA-LR framework of Step 2 in our approach to SPINE-vectors
is therefore unfeasible. However, this does not prevent the application of Step 3 on
SPINE vectors to explore and explain information encoded within these vectors. This
study is left in Appendix D.

10.5 Speaker recognition evaluation

In this section, we conduct an evaluation in terms of speaker recognition performance
using two di�erent scoring systems. 1) Using cosine similarity to evaluate for all sys-
tems. 2) Through the application of BA-LR scoring for BAE system exclusively.

10.5.1 Using cosine similarity scores

Table 10.2: Speaker recognition performance of the three systems on VoxCeleb1 in
terms of EER using cosine similarity scoring

Systems BA-extractor BAE SPINE
Binary vectors BA-vectors BAE-vectors SPINE-15% SPINE-50% SPINE-70%
#Dimensions 205 512 500 500 500

Average Sparsity level 65% 75% 15% 50% 70%
EER1 3.42% 2.22% 1.66% 2.6% 3.3%

1 The baseline x-vector exhibit an EER of 1.37%.

Table 10.2 illustrates the ASpR performance in terms of EER based on the �ve dif-
ferent binary representations, namely BA-vectors,BAE-vectors and the three variants
of SPINE-vectors8. The EER is calculated based on the cosine similarity scores. The
overall ASpR performance of these systems highlights the e�cacy of the binary rep-
resentations in discriminating between speakers. Notably, BAE-vectors demonstrate
a notable reduction of 1.2% in EER, compared to the BA-vectors (refer to Chapter
6). This improved performance is thought to be comparable to the baseline x-vector,
taking into account the binary aspect and dimensionality. On the other hand, the best
SPINE-vectors, namely SPINE-15%, demonstrate superior performance compared to
both BA-vectors and BAE-vectors, with a decrease in EER of approximately 0.29%
compared to the baseline x-vector. However, it's essential to consider this performance
in conjunction with the average sparsity level of these vectors relative to others. This
trade-o� between ASpR performance and sparsity is illustrated in the table for the

8More evaluation results are provided in Ÿ.D.2.1
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three variants of SPINE-vectors, namely SPINE-15%, SPINE-50%, and SPINE-70%.
Notably, the decrease in ASpR performance becomes more pronounced with higher
sparsity levels.

10.5.2 Application of BA-LR on BAE-vectors

In this section, we begin by estimating behavioral parameters such as Typicality, Drop-
out and Drop-in using BAE-vectors. The ASpR performance of BAE-vectors is then
evaluated using the two versions of BA-LR in a ASpR task.

Behavioral parameters analyses

Behavioral parameters such as Typicality and Drop-out are estimated on the train set
of BAE-vectors following Equations (7.1) and (7.4), respectively. Figure 10.8 illustrates
the relationship between typicality and drop-out values of BAE-vectors in comparison
with BA-vectors. In contrast to BA-vectors, many dimensions in BAE-vectors exhibit
high typicality values. Notably, the �rst 400 attributes have typicality values ranging
from 1 to 0.8, while only 112 attributes fall within the range [0.8, 0.2]. Drop-out values
are observed in the range [0.4, 0.7] for attributes with high typicality, whereas they
increase in the range [0.7, 0.9] for attributes with low typicality. This behavior of drop-
out was expected. This re�ects the idea that when an attribute is present in the pro�le
while its occurrence is observed in very few utterances, this yields to a high drop-out.

(a) 205-dimensional
BA-vectors

(b) 512-dimensional BAE-vectors

Figure 10.8: Relationship between typicality and drop-out of BA-vectors and BAE
vectors

Drop-in parameter on the other hand is estimated while setting multiple values of
Din then choose the optimal value that �nds the minimum di�erence between Cllract

and Cllrmin for some trials of the train data, as described in Table.7.1. The evaluation
of these trials is performed using the two versions of BA-LR. Thus, aDin factor should
be �nd for each version. Figure.10.9 shows the search process for the optimal value
of Din for BAE-vectors corresponding to each BA-LR version. While the drop-in is
assumed to quantify the noise in the data, the values 0.58 and 0.75 for DNA-inspired
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and Speech-based, respectively are considered highDin values. This is to be compared
with BA-vectors, where Din is 0.12 and 0.26 for DNA-inspired and Speech-based,
respectively (See Figure.7.7).

(a) Using DNA-inspired,
Din = 0 :58

(b) Using Speech-based,Din = 0 :75

Figure 10.9: Search for the optimal drop-in value for each version of BA-LR using the
train set of BAE vectors

Speaker recognition performance

Table 10.3 provides an overview of the evaluation results for the BAE system with
BA-LR scoring in a speaker recognition task. This evaluation integrates also a trace
of the information loss across di�erent phases of the BAE system, including the input
x-vectorsX , the sparse latent space vectorsZ , the binary BAE-vectors, and the recon-
structed x-vectors cX . This is to �rstly quantify how well the auto-encoder preserves
input information during reconstruction.

Table 10.3: Speaker recognition performance of BAE system and BA-extractor on
VoxCeleb1 in terms of EER andCllr min=act

Input Latent space Output BA-extractor
X Z BAE-vectors bX BA-vectors

#Dimensions 256 512 512 256 205
Evaluation Cosine Cosine Cosine DNA-inspired Speech-based Cosine DNA-inspired Speech-based

EER 1.37% 1.75% 2.22% 1.96% 2.46% 1.80% 3.7% 3.5%
Cllr min=act 0.057/0.81 0.07/0.91 0.073/0.83 0.08/0.15 0.097/0.58 0.073/0.83 0.14/0.31 0.13/0.48

In the latent space, the obtained sparse vectorsZ exhibit a marginal absolute
increase in EER of only0:38% compared to the input. Transitioning to the binary
version of these vectors results in a further absolute EER increase of0:47%, using
cosine similarity scores. In terms of reconstruction, the ASpR performance ofcX vectors
indicates a low information loss compared to the input, with an absolute increase in
EER of approximately � 0:4%.

Applying the two versions of BA-LR on BAE-vectors reveals interesting discrimi-
nation performance with an average absolute loss of� 0:84% compared to the input.
Remarkably, in comparison to BA-vectors initially proposed in Step 1, the BAE-vectors
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achieve a signi�cant absolute decrease, averaging around� 1:39% in EER. This im-
provement is more pronounced using DNA-inspired version than Speech-based version
of BA-LR. However, in terms of Cllr, it is important to note also that BA-LR scores
are not well calibrated, especially for Speech-based.

10.6 Discussion and perspectives

In this chapter, we introduced two auto-encoders designed to generate binary and
attribute-based representations. The �rst extractor, namely SPINE, is motivated by
incorporating sparsity in the latent space to facilitate binarization. This auto-encoder
aims to encourage sparsity, which yield into more interpretable representations. How-
ever, utilizing this extractor necessitates an extra binarization step on the produced
sparse vectors, and the attribute-based behavior is not inherently modeled in the rep-
resentations. The second extractor, namely BAE, is a binary auto-encoder proposed
in this work to directly generate binary and attribute-based representations. This ex-
tractor imposes constraints on the latent space to guide the binary vectors towards the
desired representation. This is accomplished through the introduction of an attribute-
oriented loss function that pushes dimensions to exhibit attribute-like behavior con-
cerning speakers.

The overall performance of SPINE and BAE binary vectors in ASpR task evaluated
on VoxCeleb1 using cosine similarity is highly promising. Notably, they signi�cantly
outperform the performance of the initially proposed BA-vectors. Compared to BA-
vectors, binary vectors generated by the best SPINE system exhibited an absolute
reduction of 1:76%in EER, whereas BAE-vectors showed an absolute decrease of1:2%
in EER.

In contrary to BAE-vectors, SPINE-vectors are shown to be incompatible with the
application of the BA-LR scoring because of the absence of attribute-like behavior in the
representations. This reinforces the idea that not every binary vector is necessarily an
attribute-based vector. Without explicitly emphasizing this aspect during the training
of the auto-encoder, this behavior is not straightforward.

The proposed BAE-vectors demonstrated signi�cantly improved results when using
the BA-LR scoring on VoxCeleb1, surpassing the performance of the BA-extractor.
Notably, it achieved a noteworthy reduction in EER, with an average decrease of ap-
proximately � 1.39% using both versions of the BA-LR framework. These results of
the proposed binary auto-encoder are very encouraging and promising, providing fur-
ther evidence of the high potential of our three-steps approach in terms of improved
performance. While the performance of the BAE is limited by the quality of the in-
put x-vectors, employing more accurate input vectors would undoubtedly enhance the
overall performance of the binary vectors.

However, still the proposed binary auto-encoder needs further exploration and im-
provements. First, even though the overall training of the auto-encoder aims to vary
attribute typicality, choosing the right convergence point for the model is crucial to
avoid exaggeration and reduce the reliability of attributes. Both drop-out and drop-in
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are impacted by this behavior. Drop-out re�ects the idea that when an attribute is
rare among speakers, its probability of error becomes higher. It appears that when an
attribute is present in the pro�le while its occurrence is observed in very few utter-
ances, this yields to a high drop-out. This is likely due to the imposed constraint and
the training process of the auto-encoder, where each batch contains only 10 samples
of the speaker. One potential solution could be to consider all samples of each speaker
in a batch. Drop-in is also shown to be very high, indicating that the encoding of
binary vectors is noisy. These two behavioral parameters impact the attribute LLRs
interpretability.

Second, considering that the optimal model of the BAE is picked up looking at
the minimal EER on VoxCeleb1, it is important to acknowledge that this may not
necessarily represent the truly optimal model. Therefore, two considerations arise:
�rstly, evaluating this model on other datasets, and secondly, exploring alternative
criteria for selecting the optimal model, such as basing the choice on the estimation of
behavioral parameters from the training data.

Third, given that the results of BA-LR in terms of Cllr min=act re�ect miscalibrated
LLR scores, A further step of calibration is clearly needed. As discussed in the previous
chapter, a logistic regression fusion might be a good option to e�ectively select pertinent
attributes and obtain enhanced discrimination performance and well calibrated LLRs.

Finally, in this chapter we have exclusively examined Steps 1 and 2 of our approach.
The application of Step 3 to the BAE-vectors is left for future investigation, o�ering the
opportunity to uncover the encoded information within these attributes. Nevertheless,
it is important to note that extra explainability analyses of the application of BA-LR
on BAE-vectors as well as the application of Step 3 on SPINE-vectors is provided in
appendix D.
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Chapter 11

Conclusion and perspectives

Automatic speaker recognition (ASpR) systems have found their way into numerous
applications, including security systems, access control, forensic investigations, and
personalized assistant services. These systems utilize complex black box deep neu-
ral networks (DNN) and convey their outcomes through a single value. Despite their
high performance, current ASpR systems fall short of providing an acceptable and
satisfactory level of interpretability and explainability of the encoded speech repre-
sentations and their role in the decision-making process. This opacity poses notable
challenges in addressing ethical and legal issues, especially in critical domains like foren-
sics, where the risk of introducing discrimination bias due to a black box DNN model,
is a paramount concern.

This thesis introduced a three-step methodology based on deep learning, designed
to achieve a trade-o� between performance and providing interpretable and explain-
able ASpR results. This work has been positioned within a forensic context due to the
critical requirement for interpretability and explainability in such settings. The goal of
this work is to provide all stakeholders in the judicial process, including forensic prac-
titioners and the court, with an interpretable and explainable assessment of the value
of evidence. The concept behind the developed solution in this thesis was inspired by
forensic DNA identi�cation, renowned for its straightforward and easily understand-
able framework for identifying criminals. Drawing upon this inspiration and with all
cautions considered, we engaged into a careful yet innovative analogy to introduce in-
terpretability aspects into the ASpR process. This inspiration served as the dreamlike
solution we aspired to achieve in this thesis. Our proposed methodology is composed
of three steps, where each step is dedicated to add a further level of interpretability
or/and explainability for ASpR system.

The �rst step aimed to extract and represent speech samples through attribute-
based representations, modeled by a set of discriminant and independent voice at-
tributes shared among groups of speakers. This representation is more easily under-
standable, allowing for a clear restructuring of the speaker information encoded within
speaker embeddings. For this purpose, as a �rst attempt, we modi�ed a SOTA ASpR
model, speci�cally ResNet, to concentrate speaker information into distinct dimensions,
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known as attributes, during the training for speaker classi�cation. The experimental
results demonstrated a slight decrease in ASpR performance compared to a baseline
x-vector with approximately 2% in absolute EER on VoxCeleb1 dataset. Neverthe-
less, the obtained representations showed a better handle of the information encoded
into a reduced number of dimensions than x-vectors, thereby achieving an acceptable
trade-o� between performance and interpretability.

Building upon these representations, thesecond stepaddresses the lack of inter-
pretability and explainability in the process of score calculation for an ASpR task. In
forensics, this score is represented by the Likelihood Ratio (LR), seen as the gold stan-
dard for evaluating evidence in legal proceedings. The goal is to provide a transparent
process using DNN-based representations to estimate the LR. This enhances the con-
�dence of the court in the value of evidence and allow to gain further insights into the
factors in�uencing this value. To this end, we introduced BA-LR, a fully transparent
and understandable framework for computing the LR value. This framework decom-
poses the LR estimation process into independent sub-processes, each dedicated to a
particular attribute. The sub-processes are mainly attribute-LRs that are computed
based on two forensic hypotheses: prosecution and defense. These attribute-LRs are
explicitly estimated using attribute behavioral parameters such as typicality and un-
certainty. In this work, we presented two versions of attribute-LR calculation. The
�rst version is inspired by DNA, while the second is grounded in more reasonable and
speech-based assumptions. It accounts for the likelihood of error on both sides of a
comparison pair. The �nal log LR value is computed as the sum of attribute-log LRs,
assuming independence between attributes. Evaluated on three di�erent test corpora,
namely VoxCeleb1, VOiCES and SITW, our solution demonstrated its generalisation
abilities. In terms of ASpR results, BA-LR showed comparable performance to a base-
line x-vector on all datasets for both versions, with an absolute average loss of 1.72%
compared to the baseline, even though it uses a speech representation that is� 40
times more compact. In terms of explainability results, BA-LR demonstrated inher-
ent explainability by presenting attribute-log LRs akin to Shapley-like explanations.
The obtained explanations revealed that the �nal LR is not arbitrary; instead, it is
predominantly in�uenced by discriminant and rare attributes.

The third step focuses on explaining the encoded information in attribute-based
representations. Speci�cally, we provided an automatic description of the nature of at-
tributes encoded in the binary vectors, aligning them with voice characteristics. This
description o�ers insights about the vocal information encoded by the DNN model
and involved in the process of ASpR scoring. To achieve this, we introduced a novel
methodology establishing a mapping between attributes and descriptors automatically
extracted from speech, without requiring additional labeling or annotations. This fully
automatic explainability method operates at both the utterance and frame levels. At
the utterance level, we directly mapped extracted acoustic parameters from speech sam-
ples of the train set, VoxCeleb2, to binary vectors. The obtained phonetic descriptions
of attributes using two di�erent mapping methods, statistic SLDA and an inherently
interpretable model, demonstrated convergence of up to 80%, enhancing trust in these
descriptions. Also, evaluated on a test set, VoxCeleb1, these descriptions have shown
their �delity, generalisation and consistency. For frame-level representations, another
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approach and additional processing was employed. Through backpropagation in the
ResNet architecture, we demonstrated the ability to align each present attribute with
its corresponding input frames. Thanks to this alignment, we were able to localize
particular temporal information related to each attribute and provide a �ner grained
description in terms of phonemes. The phonemic descriptions showed a higher fre-
quency of selection for vowels and nasals among attributes, with a more pronounced
presence in certain attributes compared to others. The resulting descriptions and ex-
planations revealed that attributes encode generally distinct phonetic and phonemic
information. They also provided new combinations of phonetic and acoustic features,
serving as an informative tool for phoneticians.

Building upon these three steps, we presented an application of BA-LR framework
in a forensic context using the NFI forensically realistic database, NFI-FRIDA. The
aim is to further evaluate our approach and to handle the existing mismatch between
training conditions of VoxCeleb2 dataset and the evaluation forensic scenarios. In this
context, we developed a global Logistic Regression model that e�ectively calibrate the
�nal LLRs. A fusion approach of attribute-LLRs using sparse logistic regression was
also introduced to select only signi�cant set of attributes involved in the �nal LLR
computation. The overall ASpR performance obtained on NFI-FRIDA proved the
generalization power of BA-LR, even though the BA-extractor model and BA-related
parameters were trained on a di�erent language and condition far from the forensic
ones. Compared to baseline x-vector, an average slight increase in absolute EER of
0.85% for all devices is observed using BA-LR, except for device 4 of forensic conditions
with 1.66% increase of average absolute EER. The Logistic-Regression based calibration
approach showed its abilities to produce well calibrated LLRs, even when the mismatch
with the training set was particularly large. The fusion approach enabled us to regulate
any potential correlation between attributes. It o�ered signi�cant performance gains
in di�cult scenarios, occasionally surpassing x-vectors. This was achieved thanks to
its ability to completely eliminate the in�uence of certain BAs, particularly a�ected by
domain mismatches. As expected, this Logistic Regression based fusion also provided
a level of calibration equivalent to the global calibration.

Finally, we added one improvement over the �rst step of our approach, aiming to
address some limitations of the initial BA-extractor. Firstly, the objective of shared at-
tribute modeling is not explicitly taken into account into the BA-extractor. Secondly,
binarization is not directly involved into the modeling, but applied after the train-
ing of the model. To address these limitations, we proposed two solutions based on
auto-encoder model. The �rst is SPINE auto-encoder that encourages sparsity in the
generated vectors. Experimental analyses revealed that despite its comparable ASpR
performance to x-vectors, a 0.29% increase of absolute EER of SPINE on VoxCeleb1
using cosine similarity, this model fails to accurately model attribute behavior in the
representations. Hence, it is shown to be incompatible with BA-LR framework. As
a second solution, we proposed a binary auto-encoder, BAE model, that includes a
dedicated loss function pushing to model attribute-based behavior in the binary rep-
resentations. Experiments on VoxCeleb1 showed the e�ectiveness of our BAE model,
with an absolute average reduction in EER of 1.39% compared to the BA-extractor,
from 3.7% to 1.8% of EER, while o�ering the same level of explainability. These results
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are not only promising but they also underscore the high potential of our approach to
achieve an excellent trade-o� between performance and explainability/interpretability.

Overall, the three-step method1 introduced in this thesis opens a new perspective
on explainable and interpretable ASpR systems. It provides a practical tool for better
understanding the intricate information encoded by DNN models. While its appli-
cability extends beyond forensic scenarios, its importance is particularly notable in
forensics, where the interpretability of the results often outweighs performance. In this
regard, our approach serves as a valuable resource for forensic practitioners, shedding
light on the inner workings of DNN-based ASpR systems and the factors in�uencing
their outputs and helping them to discover more about vocal information. It also holds
great potential for aiding the court in making well-informed decisions.

Perspectives and future work

The results obtained in this thesis present a promising direction for future work in
interpretability and explainability for ASpR systems. Given that future work is dis-
cussed at the end of each chapter, we suggest here more global perspectives related to
the entire work. These perspectives include suggestions for enhancing performance and
extending the application of our three-step approach to other domains and contexts.

Taking a broader perspective on recent advancements in DNN speaker models and
their performance, we believe that the binary-attribute-based extractor of Step 1 has
the potential to achieve performance comparable to SOTA models. One avenue of im-
provement is to use the recent speaker architectures such as ECAPA-TDNN or MFA-
conformer and incorporate both, the binary aspect and the attribute-oriented aspect
into the generation of speaker embeddings. This could be done either in a speaker
classi�cation task, or in an auto-encoder fashion by training from scratch or by �ne-
tuning. In the former solution, the STE technique, the batch organization and the
attribute-oriented loss are added. In this case the model is trained to classify speakers
using the generated binary vectors. For the latter, it is the architecture of the BAE
encoder that could be replaced by one of the SOTA architecture, while maintaining
the same auto-encoder. Another perspective on this extractor to be investigated, is
inspired from Vector quantization. Instead of directly generating binary vectors, this
extractor might be an auto-encoder that is designed to learn a set of separated clusters
of dimensions in the latent space. Each cluster of dimensions form an attribute. Then
a binary vector is composed having as dimensionality the number of clusters where
each dimension indicates if an attribute is present in the corresponding cluster or not.

Even though the dimensions of all the proposed extractors in this thesis have been
experimentally demonstrated to be well decorrelated, the independence assumption is
not explicitly enforced as a constraint during the training of any of them. This aspect
remains an area for future exploration and improvement. As a potential solution, we
suggest that the incorporation of decorrelation or independence objective functions
during training such as Barlow Twins [312] or Hilbert-Schmidt Independence Criterion

1The code for most of our work is available on GitHub: https://github.com/LIAvignon/BA-LR
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2 would be a good option.

Similar to the work conducted in the JSALT2023 workshop context in Appendix
D, we believe that our approach has the potential to o�er insights into the encoding
of various voice characteristics. For instance, when investigating the characteristics
contributing to nasality, voice quality, or any other attribute, the third step of our
approach can be utilized to uncover the relevant acoustic and phonetic parameters
encoding these characteristics. Our approach stands as a valuable tool for phoneticians,
providing a means to understand certain aspects of vocal information. Another ongoing
PhD work is currently exploring this aspect further, aiming to uncover combinations
of phonetic features as high-level features using our approach.

An interesting avenue for investigation involves the application of our work to atext-
dependent speaker recognition task, where the recognition requires that the speaker
utter speci�c prede�ned words or passphrases. Such task is commonly employed for
authentication purposes in applications like banking. Given that banking applications
fall into the category of high-stakes contexts, this explainable and interpretable ap-
plication would be bene�cial. Implementing our three-step approach in this context,
where linguistic content is predetermined, allows not only to better map attributes
with phonemes but also to focus more on other speaker variabilities while eliminating
content-related variability. For instance, this would inform us whether the recognition
of a speaker is based on his pronunciation of speci�c phonemes.

Another pertinent application of our approach lies in the domain ofspeaker di-
arization, tasked with determining "who speaks when?". By modifying the hypotheses
employed for likelihood ratio calculation, where the prosecution assumes the speech
sample belongs to speaker A and the defense hypothesis posits it belongs to speaker
B, likelihood ratios can be computed for each pair of speakers in a speech segment.
Using the interpretable BA-LR framework for these likelihood ratios allows to explore
the reasons behind transitions to di�erent speakers at speci�c points within the speech
segment.

The obtained descriptions of attributes in this work can also serveprivacy-related
tasks by enabling the hiding of personal information about the speaker. Understand-
ing the nature of attributes facilitates the identi�cation and suppression of speci�c
attributes directly linked to sensitive characteristics, thereby enhancing privacy pro-
tection.

Finally, we also believe that our approach is not restricted to speech and could be
applied on other types of data. For instance, exploring its application inforensic text
comparison could unveil speci�c characters or distinctive writing styles that di�eren-
tiate individuals. If adhering to the prede�ned criteria established for the extraction
of binary vectors to represent samples, we believe that the same process described in
this work could be applied to text, images, or any other data type.

2https://jejjohnson.github.io/research_journal/appendix/similarity/hsic/
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Appendix A

Extracts from Case text and ju-
dicial articles

A.1 Courts positions in use cases

A.1.1 Over reliance position

Superior Court of Pennsylvania

A summary from People v. Lang: In Commonwealth v. Foley (Pa. Super. Ct. 2012)
38 A.3d 882, 890 (Foley), a Pennsylvania appellate court upheld admission of testimony
based on the interpretation of data using the TrueAllele program against a challenge
that it did not meet the Frye standard1.

Some extracts from the case text are the following:[...] Pennsylvania continues
to adhere to the Frye test, which provides that �novel scienti�c evidence is admissible
if the methodology that underlies the evidence has general acceptance in the relevant
scienti�c community.� [...]The trial court did not expressly determine whether Dr. Per-
lin's testimony was �novel scienti�c evidence.� Opinion and Order of Court, March 3,
2009, at 2�3. Instead, the court found that Dr. Perlin's methodology was a re�ned
application of the �product rule,� a method for calculating probabilities that is used
in forensic DNA analysis. See id., at 2. The Pennsylvania Supreme Court has held
that scienti�c evidence based on the product rule is admissible in the Commonwealth.
See Commonwealth v. Blasioli, 552 Pa. 149, 713 A.2d 1117, 1118 (1998). Because
Dr. Perlin's calculations were made using newer technology, the trial court rhetorically
asked �at what point does the use of the product rule become novel science.� Opinion
and Order of Court, March 3, 2009, at 2. The trial court went on to �nd that Dr. Per-
lin's methodology was generally accepted. [...] we �nd no legitimate dispute regarding

1The Frye standard is a legal precedent that determines the admissibility of scienti�c evidence in
court.
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the reliability of Dr. Perlin's testimony. Dr. Perlin used proprietary software called
TrueAllele to interpret the data he received from the FBI. See N.T., March 12, 2009,
at 130.

UNITED STATES COURT OF APPEALS FOR THE SIXTH CIRCUIT

A summary from People v. Davis: Noting that there were more than 50 published
peer-reviewed articles addressing STRmix at the time of the evidentiary hearing, and
that one expert opined that it was the most tested and peer-reviewed probabilistic
genotyping software available

A.1.2 No trust position

Supreme Court, New York County

[...] In each case the defense challenged the introduction of DNA evidence created by the
Forensic Statistical Tool ("FST"). The FST was an analytic tool with which the city's
O�ce of the Chief Medical Examiner ("OCME") assigned "likelihood ratios" to forensic
samples made up of DNA from not one, but two or three, individuals. A scientist could
use FST results to opine that a two-person DNA mixture was X times more (or less)
likely to be made up of DNA from a particular known individual and one unknown,
unrelated individual than DNA from two unknown, unrelated individuals. Similarly,
the analyst could testify that a three-person mixture was X times more (or less) likely
to be from a particular known individual and two unknown, unrelated individuals than
from three unknown, unrelated individuals.

[...]The defendants' challenges asserted that the FST results were not the product
of procedures generally accepted in the "community" of DNA forensic scientists. This
court once before faced such a claim, and ruled after a Frye hearing that FST results
should indeed be excluded on that ground. People v. Collins , 49 Misc 3d 595 (Sup
Ct Kings Co 2015). For this case, this court assessed whether developments in the
community of forensic scientists since the Collins decision of July 2, 2015, should
change that conclusion. For the reasons noted below, this court decided on October 16,
2017 that it should again exclude the challenged FST evidence. The court has continued
reviewing developments as best it can in the period since, seeing no basis to re-think
the conclusion that nothing has changed.

A.1.3 Reasonable reliance position

The Supreme Court of the United States

A summary of the case from "BRIEF FOR THE AI NOW INSTITUTE, AMERICAN
CIVIL LIBERTIES UNION, ELECTRONIC FRONTIER FOUNDATION, CENTER
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ON RACE, INEQUALITY, AND THE LAW, AND KNIGHT FIRST AMENDMENT
INSTITUTE AS AMICI CURIAE SUPPORTING THE RESPONDENT": Govern-
ments are also implementing automated decision making systems to evaluate the perfor-
mance of employees including, for example, public school teachers. A school district in
Texas implemented one such �data driven� teacher evaluation model through privately
developed software that purported to compare the results of a teacher's students to
classroom statistics across the state and within the teacher's prior performance record.
Teachers sued the district, arguing that the software was fundamentally inscrutable
and that there was no way for teachers to know whether the software was accurately
assessing their job performance. The court agreed, holding that the �teachers have no
meaningful way to ensure correct calculation of their [evaluation] scores, and as a re-
sult are unfairly subject to mistaken deprivation of constitutionally protected property
interests in their jobs.� Id. at 1180. Similar systems purporting to measure the e�cacy
of government employees are likely to proliferate. Without meaningful transparency,
these systems will raise serious concerns about fairness and accuracy.

A.2 Judicial articles

A.2.1 Article 6 from the European Court of Human Rights

Right to a fair trial

In the determination of his civil rights and obligations or of any criminal charge
against him, everyone is entitled to a fair and public hearing within a reasonable time by
an independent and impartial tribunal established by law. Judgment shall be pronounced
publicly but the press and public may be excluded from all or part of the trial in the
interests of morals, public order or national security in a democratic society, where the
interests of juveniles or the protection of the private life of the parties so require, or to
the extent strictly necessary in the opinion of the court in special circumstances where
publicity would prejudice the interests of justice. Everyone charged with a criminal
o�ence has the following minimum rights:

ˆ a) to be informed promptly, in a language which he understands and in detail, of
the nature and cause of the accusation against him[...];

ˆ e) to have the free assistance of an interpreter if he cannot understand or speak
the language used in court.

A.2.2 Article 149 from The Belgian Constitution

Each judgment is supported by reasons. It is made public according to the terms spec-
i�ed by the law. In criminal matters, the operative part is pronounced publicly.
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A.3 GDPR articles

A.3.1 Article 15: Right of access by the data subject

The data subject shall have the right to obtain from the controller con�rmation as to
whether or not personal data concerning him or her are being processed, and, where
that is the case, access to the personal data and the following information:

ˆ (a) the purposes of the processing;

ˆ (b) the categories of personal data concerned;

ˆ (c) the recipients or categories of recipients to whom the personal data have been
or will be disclosed, in particular recipients in third countries or international
organisations;

ˆ (d) where possible, the envisaged period for which the personal data will be stored,
or, if not possible, the criteria used to determine that period;

ˆ (e) the existence of the right to request from the controller recti�cation or erasure
of personal data or restriction of processing of personal data concerning the data
subject or to object to such processing;

ˆ (f) the right to lodge a complaint with a supervisory authority;

ˆ (g) where the personal data are not collected from the data subject, any available
information as to their source;

ˆ (h) the existence of automated decision-making, including pro�ling, [...], at least
in those cases, meaningful information about the logic involved, as well as the
signi�cance and the envisaged consequences of such processing for the data subject.

A.3.2 Article 22: Automated individual decision-making

ˆ 1. The data subject shall have the right not to be subject to a decision based
solely on automated processing, including pro�ling, which produces legal e�ects
concerning him or her or similarly signi�cantly a�ects him or her.

ˆ 2. Paragraph 1 shall not apply if the decision: (a) is necessary for entering into,
or performance of, a contract between the data subject and a data controller; (b)
is authorised by Union or Member State law to which the controller is subject and
which also lays down suitable measures to safeguard the data subject's rights and
freedoms and legitimate interests; or (c) is based on the data subject's explicit
consent.
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ˆ 3. In the cases referred to in points (a) and (c) of paragraph 2, the data controller
shall implement suitable measures to safeguard the data subject's rights and free-
doms and legitimate interests, at least the right to obtain human intervention on
the part of the controller, to express his or her point of view and to contest the
decision.

ˆ 4. Decisions referred to in paragraph 2 shall not be based on special categories of
personal data [...] applies and suitable measures to safeguard the data subject's
rights and freedoms and legitimate interests are in place.

A.4 AI act: Recital 38

Furthermore, the exercise of important procedural fundamental rights, such as the right
to an e�ective remedy and to a fair trial as well as the right of defence and the pre-
sumption of innocence, could be hampered, in particular, where such AI systems are
not su�ciently transparent, explainable and documented. It is therefore appropriate to
classify as high-risk a number of AI systems intended to be used in the law enforcement
context where accuracy, reliability and transparency is particularly important to avoid
adverse impacts, retain public trust and ensure accountability and e�ective redress.

A.5 The Equal Credit Opportunity Act

It shall be unlawful for any creditor to discriminate against any applicant, with respect
to any aspect of a credit transaction.

ˆ (1) on the basis of race, color, religion, national origin, sex or marital status, or
age (provided the applicant has the capacity to contract).

ˆ (2) because all or part of the applicant's income derives from any public assistance
program.

ˆ (3) because the applicant has in good faith exercised any right under this chapter.
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Appendix B

Appendix to Step 2

Figure B.1: All possible combinations of observed and real (i.e. actual) state for
Speech-based version of BA-LR
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Appendix C

Extra analyses and results of Step
3

C.1 Details of the BA models

Table C.1: Further details about the number of speech extracts selected for the �rst
16 BAs (out of 205) for train and test datasets.

Train 1 Test1 Tree depth Accuracy train Accuracy test

BA 2 141,998 45,759 8 0.70 0.60
BA 3 28,090 63,068 6 0.73 0.59
BA 4 89,254 51,830 10 0.77 0.64
BA 5 278,619 36,604 9 0.90 0.73
BA 8 160,936 23,923 9 0.67 0.60
BA 9 210,359 44,027 11 0.95 0.90
BA 10 39,603 39,360 9 0.67 0.56
BA 11 64,687 43,540 9 0.62 0.53
BA 12 140947 37,157 9 0.75 0.62
BA 13 131,764 23,534 10 0.68 0.62
BA 15 158,655 31,442 9 0.74 0.57
BA 16 37,541 62,536 8 0.61 0.61
BA 17 58,132 24,373 9 0.73 0.61
BA 18 143,791 21,413 10 0.70 0.63
BA 19 155,179 39,262 9 0.75 0.76
BA 20 117,696 14,997 8 0.87 0.59

... ... ... ... .. ...

1 1 Number of speech extracts per set. Number of speech extracts is balanced forS0

and S1
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C.2 Correlation between attributes in terms of frames

Figure C.1: A heatmap illustrating the binarization of the Softplus-matrixA for a given
utterance, with clustering of BAs in terms of MegaFrames using Jaccard distance.

Figure C.1 presents a heatmap of a binarized version of the Softplus-matrixA for
a given utterance. The binarization employs the same threshold used to derive BA-
vectors from Softplus-vectors. A value of 1 signi�es the selection of the MF by the
BA, while a value of 0 indicates that the MF is not selected. This �gure presents
also a clustering of BAs in terms of MFs using Jaccard distance. This distance is
calculated between two binary vectors as the ratio of the intersection divided by the
union of elements. It is evident that the MFs are not uniformly selected by the BAs.
Each BA demonstrates a unique representation in terms of frame-level units. However,
distinctions can be observed among groups of BAs, with some selecting a larger number
of MFs compared to others that select a more limited set of MFs.

Correlation between attributes in terms of MegaFrames

For a clearer understanding of the shared temporal information between attributes,
we present in Figure C.2 the correlation between attributes across VoxCeleb1 utter-
ances. The procedure is as follows: for each utterance, we select pairs of present BAs,
calculate the intersection and union between them in terms of MFs, and then accumu-
late these intersections and unions across all utterances where the pair of attributes
is present. The �nal correlation matrix between BAs is therefore calculated as the
sum of intersections divided by the sum of unions of MFs as expressed in the following
equation:

CorrBA i ;BA j =
P

Intersection(BA i ; BA j )
P

Union(BA i ; BA j )
(C.1)

184



Figure C.2: Correlation between attributes in terms of MegaFrames contributing to
100%

C.3 Alignment of MegaFrames with phonemes for an at-
tribute

Thus far, we have introduced a temporal characterization of attributes, highlighting
that attributes exhibit distinct patterns in terms of MegaFrames. In this section, our
objective is to delve into the information encoded in these MegaFrames to o�er a tem-
poral description of attributes. To achieve this, we establish an alignment between
MegaFrames selected by a speci�c attribute and input frames by retracing the �ow
through the ResNet extractor. This alignment enables the identi�cation of frames re-
lated to a particular attribute. Figures C.3, C.4, C.5, C.6,C.7 show the MF activations
for �ve di�erent BAs for the same portion of utterance. These �gures show that for
each BA, the activated MFs are not behaving similarly. For instance, BA11 re�ects
the activation of MF2 and MF3 while BA17 presents null activation for that part of
utterance. This might be explained by the fact that this portion of the utterance does
not contain any pattern detected by BA17.

Figure C.3: MegaFrames activations to BA10=1 in a portion of 0.8s of a speech utter-
ance of 5s aligned with phonemes and classes of phonemes
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Figure C.4: MegaFrames activations to BA11=1 in a portion of 0.8s of a speech utter-
ance of 5s aligned with phonemes and classes of phonemes

Figure C.5: MegaFrames activations to BA12=1 in a portion of 0.8s of a speech utter-
ance of 5s aligned with phonemes and classes of phonemes

Figure C.6: MegaFrames activations to BA17=1 in a portion of 0.8s of a speech utter-
ance of 5s aligned with phonemes and classes of phonemes
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Figure C.7: MegaFrames activations to BA23=1 in a portion of 0.8s of a speech utter-
ance of 5s aligned with phonemes and classes of phonemes
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Appendix D

Extra results and analyses of BAE
and SPINE vectors

D.1 Extra explainability analyses of BA-LR scoring on
BAE system

Thus far, we have demonstrated that applying the BA-LR framework to the proposed
BAE model yields in superior speaker recognition performance compared to the BA-
extractor. In this section, our objective is to delve into some explainability aspects
pertaining to the calculation of LLRs using di�erent versions of BA-LR. To achieve
this, Figure D.1 illustrates the distributions of di�erent attribute LLRs types applying
both versions of BA-LR.

(a) Using DNA-inspired (b) Using Speech-based

Figure D.1: Distribution of attribute LLRs using BAE-vectors

Clearly, the attribute LLR values in Speech-based are more explainable and rea-
sonably distributed compared to the attribute LLRs in DNA-inspired. For instance,
the attribute LLRs 11 exhibit positive values in Speech-based, while in DNA-inspired,
some values display slightly low negative values. Similarly, for attribute LLRs01j10,
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Speech-based exclusively presents negative values, whereas in DNA-inspired, certain
attribute LLRs are observed to be positive which should not be the case.

(a) Using DNA-inspired (b) Using Speech-based

Figure D.2: Relationship between behavioral parameters and the contribution of at-
tribute LLRs using BAE-vectors

Figure D.2 depicts the contributions of BAE attributes in the two versions of LLRs
computation, correlated with the behavioral parameters. It is crucial to note that these
contributions represent the attribute LLR values themselves. As expected, attributes
with low typicality [0.2, 0.4] exhibit the highest contributions to the �nal LLR, falling
within the range [0.4, 0.7] and [0.25, 0.4] for DNA-inspired and Speech-based, respec-
tively. The vast majority of attributes demonstrate very high typicality, ranging from
0.6 to 1, resulting in low contributions within the range [0.1, 0.2] for both DNA-inspired
and Speech-based. Given that drop-out is more pronounced for lower typicality values,
attributes with the highest contribution exhibit higher drop-out compared to others.

D.2 An additional investigation of Step 3 on SPINE-vectors
in JSALT workshop

This section focuses on explaining the SPINE speaker embeddings using the Step 3
methodology of our approach. This work was done in JSALT workshop2023. In the
next sections, We evaluate the performance of these representations in a speaker recog-
nition task. Subsequently, we delve into the explainability schema proposed to explore
information in these binary representations, adopting our Step 3 methodology. Finally,
we conclude with a discussion and potential future directions.

D.2.1 Evaluation of SPINE representations

Figure D.3 presents the speaker recognition performance of the three SPINE systems on
VoxCeleb1 trials for a speaker recognition task, in terms of EER. In contrast to the less
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sparse system, SPINE-15%, which exhibits a minimal discrimination performance loss
of approximately 0.29% compared to the baseline x-vector (1.37%), the loss becomes
more pronounced with higher sparsity levels. Notably, the binarized version of the
SPINE-vectors shows a negligible loss, maintaining nearly the same ASpR performance
as the sparse vectors.

Figure D.3: EER% using SPINE-vectors on VoxCeleb1

D.2.2 Explainability of SPINE representations

In this section, our goal is to explore the information encoded within speci�c dimensions
of SPINE binary vectors, particularly those that are signi�cantly important for two
probing tasks. These dimensions are later referred to as features.

Figure D.4: An overview of the explainability schema for SPINE representations

Figure.D.4 provides an overview of the explainability framework for SPINE rep-
resentations. Using SPINE binary vectors, we �rstly assess their performance in two
probing tasks: gender and emotion detection. Subsequently, we conduct a feature
selection process to identify the most in�uential features for each classi�cation task.
Employing our three-world explainability method, thesetask-speci�c featuresare high-
lighted within the SPINE binary vectors, establishing a mapping between these features
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and certain phonetic descriptors. Consequently, this facilitates the extraction of a pho-
netic description for these features. The subsequent sections delve deeper into the
exploration of each block in this process.

Probing and features selections of SPINE representations

In this section, SPINE-vectors and their binary version are probed for gender and
emotion detection, in order to investigate the presence of this information in these
vectors. Following that some selection methods are used to select the most contributing
features of SPINE-vectors to each task.

Emotion and gender classi�ers are trained using a RandomForest (RF) model with
cross validation. Two datasets are used to evaluate each task, namely VoxCeleb1 for
gender and IEMOCAP [313] for emotion, where 80% of data is dedicated for train and
20% for test. IEMOCAP1 is an acted, multimodal and multispeaker English database
and it is annotated into 4 classes such as anger, happiness+excitement, sadness, neu-
trality. The number of samples per class for each task is illustrated in Table.D.1.

Table D.1: Number of samples per class for emotion and gender detection

Emotion classes Gender classes
Anger Happiness Sadness Neutral Male Female

#Samples 1103 1636 1084 1708 90450 63066

Table.D.2 presents the performance of SPINE-vectors, their binary version and x-
vectors for gender and emotion detection tasks.

Table D.2: Evaluation of performance in emotion and gender detection tasks

Emotion (UAR) Gender (AUC)

Datasets IEMOCAP VoxCeleb1
Binary 49% 97%
Sparse 54% 99%

X-vector 55% 98.5%

For gender detection, accuracy is employed as the evaluation metric, while emotion
detection utilizes the unweighted average recall (UAR). The UAR calculation involves
considering the recall (sensitivity) for each emotion class independently and then aver-
aging these values without weighting. Emotion detection proves to be a challenging task
for x-vectors, yielding performance close to randomness, when using SPINE sparse and
binary vectors. Signi�cantly, SPINE-vectors are shown to be good gender detectors,
with sparse vectors exhibiting a slight improvement over x-vectors. This performance

1https://sail.usc.edu/iemocap/
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distinction underscores the strong presence of gender information in SPINE-vectors,
while indicating a more subtle presence of emotion information.

To select the most contributing features of SPINE-vectors to each classi�cation task,
we choose three di�erent methods: Gini Index of RF [314], Shap [199] and test statistic
SLDA [264, 265]. The use of three distinct methods aims to enhance con�dence in the
selected features. In the following, we review the used selection methods:

Figure D.5: Most important features for gender detection selected using three methods

ˆ Shap: Shapley values are calculated considering one feature at once along with
the impact of all its permutations on the RF model output.

ˆ RF (Gini index) :The Gini Index is a measure of impurity or disorder within a
node of a decision tree, and it is employed in Random Forests to determine the
best split for a node based on the feature that maximally reduces impurity. It
does not inherently account for feature correlations.

ˆ SLDA: It is not based on the RF model, but it quanti�es the discriminant power
of each feature independently of others with respect to the output class.

Figure D.5 depicts the six most crucial features for gender detection task, as chosen
by the three selection methods. The size of the lines matching features with methods
indicates the rank attributed to the feature by the corresponding method, with larger
lines indicating a higher importance ranking. The large lines in the �gure signify
that the �rst three features are identi�ed as the most important by all three methods.
Conversely, the last three features are shown to be less signi�cant and exhibit lower
con�dence, as not all methods converge in their ranking.

The task of selecting the most in�uential features for emotion detection proved
to be highly challenging, with no convergence observed among the three methods.
This was expected, given the di�culty of accurate emotion detection and the limited
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discriminant information between emotion classes. As a result, we opt to proceed
with the features selected by the SLDA method (i.e F290, F329, F192, F342), for the
subsequent exploration.

Mapping between SPINE features and descriptors

In this section, our objective is to explore the phonetic information encoded in these
selected task-speci�c features. To accomplish this, we employ the three-world explain-
ability method introduced in Step 3 of our approach. This involves establishing a
mapping between these features, which represent theD world, and the same set of
descriptors used in Step 3 (eGeMAPs)[266], forming theI world. It is essential to
note that this mapping is performed individually for each feature, employing phonetic
descriptors to discriminate between the two classes (0 or 1) of the feature, as illustrated
in Step 3 methodology.

To enhance con�dence in the phonetic description of task-speci�c features, various
mapping functions are employed to select most relevant descriptors for each feature,
including a surrogate model such as RF followed by Shap or by Gini index, the SLDA,
and a Mutual Information-based method known as Double Input Symmetrical Rele-
vance (Disr) [315]. The �rst three methods have been previously described and utilized
in the earlier task, while the latter is introduced here for the �rst time. Disr considers
that the combination of descriptors provides more information about the output class
than considering each descriptor individually.

Table D.3: Families of descriptors

Family Descriptors
F0 F0, logRelF0

MFCC MFCCs 1, 2, 3, 4
F1 F1 parameters
F2 F2 parameters
F3 F3 parameters

Spectral alpharatio, slope, spectralFlux and hammarbergIndex
Rythm Unvoice/voiced parameters

Loudness loudness parameters and equivalent-sound level
VoQ jitter, shimmer and HNR parameters

Figure.D.6 and Figure.D.7 show the phonetic description of task-speci�c features
using the selected descriptors grouped by families. The grouping of descriptors into
families is proposed in Table.D.3. The size of the lines liking features with descriptors
and families re�ects the level of convergence in ranking among the four methods, where
larger lines indicate a higher degree of consensus in their selections. Figure D.6 reveals
that gender-speci�c features are predominantly described by two signi�cant families:
F0 and MFCC. For instance, Feature 318 encodes information primarily related to
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Figure D.6: Phonetic description of gender-speci�c features, grouped by families of
descriptors

formants F1 and F2 families, along with the F0 family. Feature 481 is rich in infor-
mation related to F0, while Feature 121 encodes more information about MFCC and
F1 families. Feature 205 is predominantly associated with F0, while Feature 290 is
more closely related to voice quality (VoQ) and F0. This description highlights the
importance of F0 and MFCCs for the task of gender detection.

Figure D.7: Phonetic description of emotion-speci�c features, grouped by families of
descriptors

Figure D.7 illustrates emotion-speci�c features, primarily characterized by F3, spec-
tral parameters, MFCC, loudness, rythm and voice quality. For example, Feature 290
is primarily encoding spectral characteristics with high con�dence, along with F3, F2,
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rhythm, and loudness. Feature 329 con�dently encodes voice quality, along with some
MFCCs and rhythm, while Feature 192 predominantly encodes spectral characteristics
with high con�dence, in addition to MFCC and loudness. Feature 342 is more dis-
tinctly described by the F3, F0, spectral features, and MFCCs familes. The description
of these features demonstrates the importance of prosody and spectral characteristics
for emotion detection.

The disparity in descriptors selection by the four methods for certain features could
be attributed to the high correlation among eGeMAPS descriptors [266] (Figure.D.8).
This correlation introduces divergence in the chosen descriptors by each method, as
each method employs its unique approach to handle selection.

D.2.3 Discussion & perspectives

We introduced an alternative perspective of the Step 3 methodology from our approach,
speci�cally the three-world method, aiming to enhance the explainability of speaker
embeddings. The main goal is to explore SPINE-vectors and describe the encoded
information. This is accomplished by emphasizing certain task-speci�c features within
the dimensions of the embeddings and providing a phonetic mapping with these fea-
tures. Our three-world explainability method proves highly bene�cial in establishing
this mapping and delivering a meaningful description of these task-speci�c features.

Advantages of SPINE binary vectors and their explainability

SPINE-vectors holds some signi�cant advantages, summarized as follows:

ˆ General aspect: It is demonstrated in this chapter that Step 3 of our approach is
general and totally independent of Step 1 and 2 and that it could be applied to
provide explanations on any other binary or discrete representations.

ˆ Binarization does not impact encoded informationSPINE-vectors exhibit good
performance in gender detection and achieve results close to x-vectors in emotion
detection task. The binarization aspect of SPINE-vectors is de�nitely useful and
facilitates the application of the three-world explainability method.

ˆ Reliable feature selection: The use of di�erent selection methods reinforces the
con�dence in the selected speci�c features for each task.

Criticisms and perspectives of SPINE binary vectors

However, from a critical perspective, we acknowledge that this work does not en-
compass certain crucial aspects, leaving room for various future perspectives to enhance
it, as highlighted below:

ˆ Trade-o� sparsity Vs. performance: In terms of performance, SPINE-vectors do
not surpass BA-vectors. Speci�cally, under the same sparsity level, SPINE-70%
vectors exhibit performance closely comparable to BA-vectors.
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ˆ SPINE dimensions are not attributes !: While SPINE-15% vectors demonstrate
notable performance, it is essential to note that their success does not neces-
sarily imply that these binary vectors can be unequivocally regarded as binary-
attribute-based representations. In contrast, SPINE dimensions lack an attribute-
like behavior. This renders the application of the BA-LR framework on SPINE-
vectors impractical. This observation emphasizes the considerable challenge in
extracting binary-attribute-based speaker embeddings, justifying the criteria es-
tablished in Step 1 of our approach.

ˆ Inaccurate probing classi�er, inaccurate features !: It is crucial to emphasize
that a probing task exhibiting poor performance suggests that the discriminative
information between classes is weak and not explicitly apparent in the SPINE-
vectors. In other words, it means that the vector features are not able to solve
the task. In such cases, the selection of the most important features may prove
ine�cient and unfaithful such as in emotion detection.

ˆ Choice of mapping functions: The divergence among the selection methods was
less noticeable for feature selection than for descriptor selection. This can be
explained by the high correlation observed among descriptors (Figure D.8), in
contrast to features, which demonstrate weak correlation based on Pearson cor-
relation (Figure 10.6b). This correlation might be handled in di�erent ways by
the mapping functions. Indeed, the utilization of di�erent mapping functions
strengthens con�dence in feature selection. However, it is essential to choose
these mapping functions judiciously, ensuring compatibility with the relationship
between the features in question.

ˆ Lack of description interpretability: While this explainability method serves as
a valuable tool for phoneticians to understand the encoding of speci�c vocal
characteristics, it is important to note that the provided description in this work
lack interpretability, where it requires some phonetic expertise to be interpreted.
This aspect of interpretability remains a subject for future exploration.
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Figure D.8: Pearson correlation between OpenSmile eGeMAPs descriptors
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Appendix E

Extra results for BA-LR calibra-
tion

Table E.1: Comparison of speaker recognition performance of BA-LR Speech-based
and DNA-inspired versions on Test sets before and after fusion

Device Sessions BA-LR Selective Fusion
EER (205 BAs) EER #BAs

DNA-inspired Speech-based DNA-inspired Speech-based DNA-inspired Speech-based

1

1&2 1.21% 1.037% 1.81% 1.87% 123 132
5&6 0.93% 0.96% 1.3% 1.2% 139 139
3&4 0.78% 1.22% 1.82% 1.83% 146 149
7&8 0.43% 0.43% 0.56% 0.5% 159 159

4
1&2 2.46% 2.07% 2.37% 2.37% 120 119
3&4 6.85% 4.27% 2.79% 2.82% 164 144

5

1&2 11.39% 10.05% 7.45% 7.31% 105 101
5&6 13.12 11.2% 7.89% 7.84% 113 128
3&4 11.7% 10.72% 7.06% 7.18% 131 127
7&8 13.85% 12.61% 7.48% 7.59% 123 124

Table E.2: Comparison of Cllrmin=act between DNA-inspired and Speech-based versions
of BA-LR before (Non-Calibrated) and after (Calibrated) applying calibration and
fusion approaches

Device Sessions Non-Calibrated Calibrated
Global Fusion

DNA-inspired Speech-based DNA-inspired Speech-based DNA-inspired Speech-based

1

1&2 0.03/0.2 0.037/0.60 0.03/0.06 0.037/0.081 0.07/0.11 0.07/0.10
5&6 0.04/0.23 0.04/0.64 0.04/0.05 0.04/0.059 0.058/0.08 0.054/0.078
3&4 0.029/0.28 0.042/0.64 0.029/0.049 0.042/0.065 0.07/0.093 0.07/0.08
7&8 0.018/0.22 0.014/0.59 0.018/0.028 0.014/0.03 0.021/0.028 0.019/0.024

4
1&2 0.09/1.3 0.082/1.71 0.09/0.10 0.08/0.10 0.094/0.11 0.096/0.10
3&4 0.24/8.38 0.16/8.26 0.24/0.25 0.16/0.16 0.10/0.13 0.1/0.12

5

1&2 0.4/6.03 0.35/8.78 0.4/0.42 0.36/0.38 0.27/0.30 0.26/0.3
5&6 0.46/7.52 0.41/10.2 0.46/0.49 0.41/0.45 0.29/0.31 0.28/0.30
3&4 0.38/7.25 0.35/10.0 0.38/0.40 0.35/0.38 0.26/0.27 0.26/0.27
7&8 0.46/7.53 0.42/10.1 0.46/0.48 0.42/0.43 0.27/0.28 0.27/0.28
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