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Résumé: Cette thèse aborde le clustering de sys-
tèmes énergétiques complexes et hétérogènes au
sein d’un système d’aide à la décision (SAD).
Dans le chapitre 1, nous explorons d’abord la théo-
rie des systèmes complexes et leur modélisation,
reconnaissant les bâtiments comme des Systèmes
Sociotechniques Complexes. Nous examinons l’état
de l’art des acteurs impliqués dans la performance
énergétique, identifiant notre cas d’étude comme le
Tiers de Confiance pour la Mesure et la Performance
Énergétique (TCMPE). Face à nos contraintes, nous
nous focalisons sur le besoin d’un système d’aide à
la décision pour fournir des recommandations éner-
gétiques, le comparant aux systèmes de supervision
et de recommandation et soulignant l’importance de
l’explicabilité dans la prise de décision assistée par
IA (XAI). Reconnaissant la complexité et l’hétérogé-
néité des bâtiments gérés par le TCMPE, nous ar-
gumentons que le clustering est une étape initiale
cruciale pour développer un SAD, permettant des re-
commandations sur mesure pour des sous-groupes
homogènes de bâtiments.
Dans le Chapitre 2, nous explorons l’état de l’art des
systèmes semi-automatisés pour la prise de déci-
sions à haut risque, mettant l’accent sur la néces-
sité de gouvernance dans les SAD. Nous analysons
les régulations européennes, mettant en lumière le
besoin d’exactitude, de fiabilité, et d’équité de notre
SAD, et identifions des méthodologies pour adresser
ces besoins, telles que la méthodologie DevOps et le
data lineage. Nous proposons une architecture dis-
tribuée du SAD qui répond à ces exigences et aux
défis posés par le Big Data, intégrant un datalake
pour la manipulation des données hétérogènes et
massive, des datamarts pour la sélection et le trai-
tement spécifiques des données, et une ML-Factory
pour peupler une bibliothèque de modèles. Diffé-
rentes méthodes de Machine Learning sont sélec-
tionnées pour les différents besoins spécifiques du
SAD.
Le Chapitre 3 se concentre sur le clustering

comme méthode d’apprentissage automatique pri-
maire dans notre cas d’étude, il est essentiel pour
identifier des groupes homogènes de bâtiments.
Face à la nature plurielle - numérique, catégorique,
séries temporelles - des données décrivant les bâ-
timents, nous proposons le concept de clustering
complexe. Après avoir examiné l’état de l’art, nous
identifions la nécessité d’introduire des techniques
de réduction de dimensionnalité, associé à des mé-
thodes de clustering numérique et mixte état de
l’art. La Prétopologie est proposée comme approche
novatrice pour le clustering de données mixtes et
complexes. Nous soutenons qu’elle permet une plus
grande explicabilité et interactivité, en permettant
un clustering hiérarchique construit sur de règles
logiques et de notions de proximité adaptées au
contexte. Les défis de l’évaluation du clustering com-
plexe sont abordés, et des adaptations de l’évalua-
tion des jeux de donnée numérique sont proposées.
Dans le chapitre 4, nous analysons les perfor-
mances computationnelles des algorithmes et la
qualité des clusters obtenus sur différents jeux de
données variant en taille, nombre de clusters, distri-
bution et nombre de dimensions. Ces jeux de don-
née sont publique, privées ou généré pour les tests.
La Prétopologie et l’utilisation de la réduction de
dimensionnalité montrent des résultats prometteurs
comparés aux méthodes de clustering de données
mixtes de l’état de l’art.
En conclusion, nous discutons des limitations de
notre système, y compris les limites d’automatisa-
tion du SAD à chaque étape du flux de données.
Nous mettons l’accent sur le rôle crucial de la qualité
des données et les défis de prédire le comportement
des systèmes complexes au fil du temps. L’objecti-
vité de nos méthodes d’évaluation de clustering est
questionnée en raison de l’absence de vérité terrain.
Nous envisageons des travaux futurs, tels que l’auto-
matisation de l’hyperparamètrisation et la continua-
tion du développement du SAD.
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Abstract: This thesis addresses the clustering of
complex and heterogeneous energy systems within
a Decision Support System (DSS).
In chapter 1, we delve into the theory of complex
systems and their modeling, recognizing buildings
as complex systems, specifically as Sociotechnical
Complex Systems. We examine the state of the art
of the different agents involved in energy perfor-
mance within the energy sector, identifying our case
study as the Trusted Third Party for Energy Mea-
surement and Performance (TTPEMP.) Given our
constraints, we opt to concentrate on the need for a
DSS to provide energy recommendations. We com-
pare this system to supervision and recommender
systems, highlighting their differences and comple-
mentarities and introduce the necessity for explaina-
bility in AI-aided decision-making (XAI). Acknowled-
ging the complexity, numerosity, and heterogeneity
of buildings managed by the TTPEMP, we argue
that clustering serves as a pivotal first step in de-
veloping a DSS, enabling tailored recommendations
and diagnostics for homogeneous subgroups of buil-
dings. This is presented in Chapter 1.
In Chapter 2, we explore DSSs’ state of the art,
emphasizing the need for governance in semi-
automated systems for high-stakes decision-making.
We investigate European regulations, highlighting
the need for accuracy, reliability, and fairness in our
decision system, and identify methodologies to ad-
dress these needs, such as DevOps methodology
and Data Lineage. We propose a DSS architecture
that addresses these requirements and the chal-
lenges posed by big data, featuring a distributed ar-
chitecture comprising a data lake for heterogeneous
data handling, datamarts for specific data selection
and processing, and an ML-Factory populating a mo-
del library. Different types of methods are selected
for different needs based on the specificities of the
data and of the question needing answering.
Chapter 3 focuses on clustering as a primary ma-

chine learning method in our architecture, essential
for identifying homogeneous groups of buildings. Gi-
ven the combination of numerical, categorical and
time series nature of the data describing buildings,
we coin the term complex clustering to address this
combination of data types. After reviewing the state-
of-the-art, we identify the need for dimensionality
reduction techniques and the most relevant mixed
clustering methods. We also introduce Pretopology
as an innovative approach for mixed and complex
data clustering. We argue that it allows for grea-
ter explainability and interactability in the clustering
as it enables Hierarchical clustering and the imple-
mentation of logical rules and custom proximity no-
tions. The challenges of evaluating clustering are ad-
dressed, and adaptations of numerical clustering to
mixed and complex clustering are proposed, taking
into account the explainability of the methods.
In the datasets and results chapter, we present the
public, private, and generated datasets used for ex-
perimentation and discuss the clustering results. We
analyze the computational performances of algo-
rithms and the quality of clusters obtained on dif-
ferent datasets varying in size, number of clusters,
distribution, and number of categorical and numeri-
cal parameters. Pretopology and Dimensionality Re-
duction show promising results compared to state-
of-the-art mixed data clustering methods.
Finally, we discuss our system’s limitations, including
the automation limits of the DSS at each step of the
data flow. We focus on the critical role of data quality
and the challenges in predicting the behavior of com-
plex systems over time. The objectivity of our cluste-
ring evaluation methods is challenged due to the ab-
sence of ground truth and the reliance on dimensio-
nality reduction to adapt state-of-the-art metrics to
complex data. We discuss possible issues regarding
the chosen elbow method and future work, such as
automation of hyperparameter tuning and continuing
the development of the DSS.
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Introduction

In this pivotal era of human history, we find ourselves at multiple crossroads.
The ongoing collapse of our planetary ecosystem and escalating global warming
are not distant concerns but immediate realities. Concurrently, topics once rele-
gated to science fiction, like Artificial General Intelligence and Smart Cities, are
increasingly discussed in the present tense. Yet, it appears that the decisions we
make now in these domains will shape the decades to come. Among these to-
pics, leveraging Big Data and Machine Learning (ML) to mitigate the human im-
pact on our ecosystem emerges as a potentially very impactful research area.
Specifically, in Europe, where the building sector contributes over 35% of green-
house gas emissions, harnessing vast datasets from already existing smart sen-
sors in energy grids presents a great opportunity. By applying ML to the ever-
increasing data at our disposal, we can develop actionable strategies to enhance
energy efficiency, particularly through the identification and analysis of homoge-
neous building groups. This approach enables us to discern consumption patterns
and associate themwith other building characteristics, fostering novel categoriza-
tions and specific performance scales. Such targeted insights are vital for optimi-
zing resource allocation in energy efficiency renovations and suggesting relevant
changes in energy usage.

To face the urgency of climate change mitigation and to enforce effective ac-
tions, the European Climate Law, enacted on 29 July 2021, mandates a legally bin-
ding target of net-zero greenhouse gas emissions by 2050 [2]. This ambitious goal,
necessitating concerted efforts at both EU and national levels, underscores the
need to address the significant energy consumption in the building sector. Ac-
cording to the European Commission, as of 2023, approximately 35% of the EU’s
buildings are over 50 years old , and almost 75% are energy inefficient, yet only
about 1% undergo renovations annually [34]. Enhancing the energy efficiency of
existing buildings could substantially reduce the EU’s total energy consumption by
5-6% and decrease CO2 emissions by roughly the same percentage [33]. Beyond
meeting our climate objectives, such investments in energy efficiency stimulate
the economy. The construction industry, for instance, accounts for about 9% of
Europe’s GDP and provides 18 million jobs. Small and medium-sized enterprises,
in particular, stand to gain from a revitalized renovation market, contributing si-
gnificantly to the EU’s building sector’s added value [1].

However, identifying the buildings that require renovation and making rele-
vant recommendations demands a lot of time, money, and qualified personnel. I
have personally heard during meetings how money allocated to energy renova-
tion in buildings in territorial collectivities was sometimes never spent because
of a lack of knowledge of how to use it best. Indeed, when dealing with a large
number of heterogeneous buildings, the solutions to apply are not easily identi-
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fiable. If the buildings vary in usage, size, meteorological environment, and year
of construction, identifying those with abnormal consumption is not easy, and
conducting an energy audit on all of them can be extremely costly and time-
consuming. Hence, the needs for the clustering of buildings according to the buil-
ding characteristics. Those characteristics are of heterogeneous natures ; some
are categorical, others are numerical, and others are time series.

Based on this case study, this thesis will describe scientific theories, metho-
dologies, and the associated technical tools for decision support in the Trusted
Third Party for Energy Measurement and Performances (TTPEMP), focusing on
clustering as the first step in making energy performance diagnostic and recom-
mendation. This contribution is not restricted to energy systems, it can be applied
in numerous other contexts dealing with heterogeneous systems clustering and
recommendation systems regarding Complex Socio-Technical System (CSTS). Ap-
plications to other systems will be discussed throughout this thesis.

The main contributions of this thesis are the following. The identification of
challenges in our case study. A comprehensive state-of-the-art analysis of the va-
rious topics studied in this thesis, some theoretical somemore practical, including
the modeling of CSTS, smart energy systems, the governance of decision support
systems, the advanced clustering of mixed and complex data as well as cloud ar-
chitecture tools. During this thesis we introduce the architecture of a Decision
Support System (DSS) and present innovative clustering methods and tools spe-
cifically designed for the clustering of mixed and complex data. Additionally, we
introduce a library for mixed data clustering and analysis, adapting state-of-the-
art clustering methods to accommodate mixed data types. The thesis further ex-
plores and proposes complex clusteringmethodologies using a developed cluste-
ring and analysis platform, demonstrating the practical application and utility of
the research findings in real-world scenarios.
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Chapter 1

Context : Complex Energy Systems

This thesis studies buildings and their energy management systems. Buildings
and their stakeholderswithin energy systems are quintessential examples of Com-
plex Socio-Technical System (CSTS)[23]. These systems demonstrate properties
that significantly influence not only the theories, methods, and tools employed
for analysis and recommendation generation but also the design and conception
of the recommendation systems themselves. This dual influence is crucial for en-
suring both the relevance and long-term usability of these systems.

CSTSs are characterized by intricate interactions between human, technologi-
cal, and organizational components. The complexity of these systems arises not
only from the individual elements but, more importantly, from their interconnec-
tions and the emergent behaviors that result [32]. Therefore, understanding these
systems requires a holistic approach that considers both social and technical di-
mensions. Moreover, designing recommendation systems for these contexts is
not a straightforward task. It necessitates a deep understanding of the system’s
properties to ensure that the solutions proposed are not only technically sound
but also socially acceptable and practically implementable. The long-term success
of these systems hinges on their ability to adapt to evolving conditions and to be
sensitive to the needs and constraints of the various stakeholders involved.

In this chapter, we present a comprehensive overviewof the foundational prin-
ciples of complex systems and theirmodeling, followed by a state-of-the-art about
building and smart energy systemmodeling. We then introduce our case study as
a Trusted Third Party for Energy Measurement and Performances (TTPEMP). The
chapter further delves into the specifics of modeling the TTPEMP, focusing on its
nature as a Decision Support System (DSS). Finally, we discuss the integration of
Explainable Artificial Intelligence (XAI) to enhance the DSS, leading to an explora-
tion of pretopology for clustering mixed data. This approach effectively bridges
the gap between theoretical complexity and practical application in energy mana-
gement systems.

1.1 Definition of Complex Systems

According to Johnson [74], Complexity Science can be seen as the study of the
phenomena that emerge from a collection of interacting objects.

However, there is no simple definition of a Complex System (CS) on which all
scientists agree, as it varies from one domain to another, and arriving at a defini-
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tion of complexity through necessary and sufficient conditions seems difficult if
not impossible. Therefore in this section, without giving a final definition, we will
present several properties that are associated with complexity in the literature.

First, we can briefly differentiate between complex and complicated. A com-
plicated system can be subdivided into simpler problems using traditional analy-
tical methods. On the contrary, the simplification of a complex problem is often
considered a source of more complexity because it reduces the intelligibility of
the system [89]. Most of CSs are defined as follows in the literature :

Définition 1.1. A Complex System is a systemwith three complexity factors :
• Multiplicity of space and time scales ;
• Heterogeneity of the components ;
• Emergenceproperties observedduring sudden andunpredictable phase
transitions.

From these factors, Ladyman et al. [87] identify that CSs are associated to the
following concepts :

Définition 1.2. A Complex System is a systemwith the following properties :
irreducibility, non-linearity, feedback, self-organization, emergence, distribu-
ted control, hierarchical organization, and numerosity.

To better understand the concept of CS, let us introduce all these properties.
Irreducibility [86] : To give an overview of the subject, we note that the study

of systems has led scientists to extract common characteristics of systems des-
cribed as complex. They are non-deterministic and sensitive to initial conditions,
are often of large scales and reduced scale analysis does not take into account all
the aspects of these systems. They are therefore irreducible.

Nonlinearity [50] : Nonlinearity is often considered to be essential for com-
plexity. Many CSs respond non-linearly to stimuli. Nonetheless, being subject to
non-linear dynamics is not a necessary condition for a CS. For example, there are
structures involving linearmatrices that describe networks, and there are CSs sub-
ject to game-theoretic and quantum dynamics all of which are subject to linear
dynamics.

Feedback [115] : Consider the dynamic interaction within a flock of birds. Each
bird adjusts its flight based on the position and movement of its nearby compa-
nions. However, this adjustment then influences the behavior of these neighbors
in return. Consequently, when the bird plans its subsequent move, the current
state of its neighbors is partially a response to its own previous actions. This illus-
trates a continuous loop of action and reaction, showcasing the concept of feed-
back within the group.

Self-organization and emergence [32] : Emergence is the way in which com-
plex structures and behaviors are born from simple elements interacting with one
another [39]. The system may converge to different organizations with the emer-
gence of various patterns and behaviors. Considering the flock of birds, its size
and dynamics depend on the intrinsic specificities of the studied species.

Distributed control [141] : The order observed in theway a flock of birds stays
together despite the individual and erratic motions of its members is stable in the
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sense that the buffeting of the system by the wind or the random elimination of
some of the members of the flock does not destroy it.

Hierarchical organisation [142] : The best example of such a system is an
ecosystem or the whole system of life on Earth. Other systems that display such
organization include individual organisms, the brain, the cells of complex orga-
nisms, and so on. A non-living example of such organization is the cosmos itself
with its complex structure of atoms, molecules, gases, liquids, chemical kinds, and
geological kinds, and ultimately stars and galaxies, and clusters and superclusters.

Numerosity [120] : Many more than a handful of individual elements need
to interact to generate CSs. CSs often include heterogeneous elements in a very
large quantity. There is no clear-cut threshold for this property.

The great variety of CS observed legitimizes the abstraction and an interdis-
ciplinary approach [118]. This approach seeks to describe the characteristics of
a system while accounting for the intertwining and entanglement between the
elements. The systemic analysis consists of describing the different parts of the
system as subsystems and describing the interaction of these subsystems with
other subsystems at different time and space scales. These interactions are often
feedback loops.

Figure 1.1 – The complex adaptive systemsmodels characteristic of complex adap-
tive systems, a model by Marshall Clemens [31].

Loup-Noé Lévy Context : Complex Energy Systems 5
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1.2 Modeling of Complex Systems

To describe the systemic analysis, we must go into greater detail on the struc-
ture in space and the evolution in time of CSs. We will refer to the diagram of
Figure 1.1 from Marshall Clemens’ works [31].

The systemic analysis allows us to highlight the various obstacles the system
faces and to provide a modeling methodology.

Thismethodology takes into account the three factors of a CS discussed in Sec-
tion 1.1 : Multiplicity of space and time scales, Heterogeneity of the components,
and emergence dynamics.

Distributed intelligence :ACS is composedof interacting entitieswhose feed-
back, behavior, or evolution cannot be determined via a direct (immediate and
macroscopic) calculation. The entities must have a reactive or cognitive behavior
of their own that allows them to adapt to their environment and to learn the im-
pact of their actions on it.

Self-organization and evolution : The interacting entities have specific and
common characteristics. The association of entities forms subsystems with their
specific and common characteristics. Its subsystems can again form new larger
subsystems until the system is formed in its entirety. Entities and subsystems are
subject to internal constraints due to the entities and external constraints from
other entities or the environment. The constraints and interactions trigger an evo-
lution of the entities’ characteristics in time and space at any scale of the system.

Attractors : It is easy to imagine CSs as a living organism subject to inter-
nal and external constraints at different scales, and varying in time and space.
It should be noted that these systems are subject to Chaos Theory, therefore they
have stable states (attractors) and transition states in time and space. A CS tends
to converge to a stable state if it is in a transition state.

A CS is characterized by the fact that the behavior of the system cannot be de-
duced from that of its components. Therefore, a CS must be modeled and simu-
lated adequately to observe the emergence of behaviors. The simulations allow
us to subsequently rectify the modeling.

Let us now define the concept of CSTS and give an overview of some of the
most important CSTSs in the energy ecosystem. We will define a CSTS as follows :

Définition 1.3. Complex Systems that are subject to the interactive influences
of socio-organizational and technical factors are Complex Socio-Technical Sys-
tem.

They include the influences related to human activities and the ones related to
their organization. We canmention the organizational structure of the workplace,
the formal and informal relationships of command and control, or the number
and types of functions of the employees [64]. The technical tools and systems
that support a work-related activity, as well as the processes and techniques used
to perform the work, are called technical factors.

6 Context : Complex Energy Systems Loup-Noé Lévy
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1.3 Related work

Our research is focusedon thedomain of building energy efficiency andenergy
usage. To provide a context for this area of study, we will briefly outline the key
concepts and current trends in this field. The discussion in this section draws upon
comprehensive surveys, including the state-of-the-art review by Belussi et al. [19],
which offers an insightful overview of recent advancements and methodologies
in energy efficiency.

1.3.1 Modeling of Building

We define buildings as any structure intended to provide shelter or insulation.
We chose such a broad definition because we want to encompass the wide range
of building types that are present in our case study. Yoshino et al. [160] identify
six socio-technical factors that influence energy consumption in buildings.

Définition 1.4. Factors influencing energy consumption in buildings are cli-
mate, building envelope and other physical characteristics, equipment, indoor
environmental conditions, operations and maintenance, and user behavior
[160].

Buildings are CSTS in part because of user behaviors. The way in which the in-
habitants of a building respond to technology in the context of energy efficiency
is particularly difficult to model and remains a scientific challenge [157]. However,
certain characteristics of building users can allow us to better predict consump-
tion. For example, household income has been determined to be correlated to
energy use [121].

1.3.2 Grey box modeling

The methods to study one building cannot all be applied to a great number
of buildings[78]. Conventional mechanistic or heuristic approaches quickly reach
their limits when generalizing or extending to a larger scale. More statistical ap-
proaches, such as Machine Learning (ML) techniques, are better suited to reveal
typical behaviors on large sets of buildings. White Box, Black Box, or Grey Box
model can be used to model the buildings [98]

White Boxmodeling, also known as forwardmodeling, employs physics-based
equations to simulate the behavior of building components, sub-systems, and en-
tire systems. This approach aims to accurately predict aspects like energy consump-
tion and indoor comfort within buildings, focusing on detailed, component-level
interactions. Due to the detailed dynamic equations in White Box models, they
have the potential to capture precisely the building dynamics, but they are time-
consuming to develop and to solve [99]. Even though these elaborate simulation
tools are effective and accurate, they require detailed information and parame-
ters of buildings, energy systems, and outside weather conditions. These parame-
ters, however, are always difficult to obtain, and even sometimes are not available.
What’s evenmore challenging, creating theseWhite Boxmodels normally requires
expert work, and the calculation is extremely time-consuming, which is the major
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barrier for White Box building models to be used in on-line model-based control
and operation [99].

Black Box models, on the other hand, are simple to build and demand less
computation. They are therefore very relevant to issues regarding a large park of
buildings. However, such models often require long training periods and a large
forecasting range for the model to encompass all the possible situations. The de-
velopment of IoT makes this last condition less and less constraining [98].

However, in many situations, we wish to extract understandable knowledge
fromourmodel rather than just predictions. Hence the need for Grey BoxModels.
Grey BoxModels are hybridmodels that use simplified physical descriptions to si-
mulate the behavior of the systems. Using the simplified physical models reduces
the requirement of training data sets and calculation time. Model coefficients are
identified based on the operation data using statistics or parameter identification
methods.

In order to model a building in our context, it is necessary to build a Grey Box
Model.

1.3.3 Modeling of Smart Energy Systems

We will now present some energy systems that are transformed by or born
from the convergence of global environmental challenges, datamassification, and
innovation in energy and information technologies. Here, the notion of hierarchi-
cal organization of CSs presented in Section 1.1 is important. Indeed, the presen-
ted systems are of different scales and are in interaction with each other, some
entirely encompassing others.

To determine the most relevant approach to model smart energy systems, we
found in the currently published literature the following concepts :
• The Smart Grid (SG) [6] : an intelligent, robust, and flexible energy grid
that includes communication between each element of the grid. It inte-
grates various technologies like advanced metering infrastructure, rene-
wable energy sources, and energy-efficient resources. SGs play a crucial
role in modernizing the energy system, enhancing energy efficiency, and
ensuring sustainable energy management.
• The Internet of Energy (IoE), or Energy Internet [75] : refers to an ad-
vanced networking infrastructure that facilitates the integration and ma-
nagement of distributed energy resources. It considers energy manage-
ment as a network packet management, similar to the internet process.
IoE encompasses the convergence of energy and information technology,
enabling enhanced control, efficiency, and reliability in energy distribution
and consumption. It supports the dynamic balancing of energy supply and
demand, advanced energy analytics, and the integration of renewable energy
sources.
• Corporate Real Estate Management Systems [63] : this SG model offers
advice on issues such as sustainability, workplace productivity, real estate
performance measurement, change management, and customer focus.
• Bottom-up Building Stock Models [84] : dynamic bottom-up simulation
tool designed to assess the impact of economic and regulatory incentives
on buildings’ energy demands, energy carrier mix, CO2 reductions, and as-
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sociated costs related to heating, cooling, hot water, and lighting. It allows
for the simulation of various scenarios, including changes in energy prices,
renovation packages, and consumer behaviors, to project future energy de-
mand and themix between renewable and conventional energy sources at
both national and regional levels.
• Multi-agent Based Building Energy Management Systems [83] : Opti-
mize behavior for energy performance and comfort optimization using a
Multi Agent model of the users and of the devices of the building. Necessi-
tates a detailed models and comprehensive sensors and actuators.
• The Trusted Third Party for Energy Measurement and Performances

(TTPEMP) [23, 92] is an actor in the IoE. Born from the need to certify
the energy savings achieved within the framework of Energy Performance
Contracts, the TTPEMP aims to be neutral in the process of implementing
energy-saving solutions. This neutrality allows it to position itself as a trus-
ted third party. It validates or questions themeasurementsmade by energy
producers or the parties who have deployed energy reduction solutions.
The TTPEMPbridges the gapbetweenmajor energy producers, typical consumer-
producers, and service providers implementing energy performance im-
provement solutions. It constitutes an external actor considered reliable
and having no interests either in the sale of energy resources (or similar)
or in the sale of renovation or installation contracts (or similar).
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Property Complex Systems Classic Systems

Multiplicity of
scales

Operate across multiple
space and time scales.

Typically operate within a
single scale or have limited
scale variation.

Heterogeneity Composed of heteroge-
neous components.

Components are usually ho-
mogeneous or less varied.

Emergence Exhibit emergent properties
through sudden and unpre-
dictable phase transitions.

Lack of emergent proper-
ties ; system behavior is di-
rectly related to component
behavior.

Irreducibility Cannot be simplified wi-
thout losing the intelligibility
of the system.

Can be subdivided into sim-
pler problems using traditio-
nal analytical methods.

Nonlinearity Respond non-linearly to sti-
muli ; not all complex sys-
tems are subject to non-
linear dynamics.

Responses and behaviors
are often linear or predic-
table.

Feedback Dynamic interactions and
feedback loops are pre-
valent.

Feedback loops, if present,
are simpler and more pre-
dictable.

Distributed
control

Control is distributed ; no
single element dictates the
behavior of the system.

Control is often centralized
or hierarchical with clear
control elements.

Hierarchical or-
ganization

Display hierarchical organi-
zation, but with complex in-
terdependencies.

May display hierarchical or-
ganization, but with simpler
and more linear relation-
ships.

Numerosity Composed of a large num-
ber of interacting elements.

The number of elements is
limited or interactions are
simpler.

Distributed
intelligence

Entities exhibit autono-
mous behavior, adapting
and learning from their
environment.

Behavior is often centrally
controlled or directed, with
limited autonomy or lear-
ning capacity in entities.

Self-
organization
and evolution

Entities and subsystems
evolve over time, self-
organizing into new struc-
tures in response to internal
and external constraints.

Tend tomaintain initial orga-
nization and structure over
time, withminimal evolution
or self-organization.

Attractors and
Chaos Theory

Systems have stable and
transition states, influenced
by Chaos Theory, conver-
ging to stable states from
transitions.

Typically do not exhibit be-
havior influenced by Chaos
Theory, with more predic-
table and stable states.

Table 1.1 – Comparison between Complex Systems and Classic Systems
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Table 1.2 – Comparison of Smart Energy System Approaches

System Scale Key Concepts Technology Used Input / Output Real-time

actuation

SG Grid-wide Advanced metering, Rene-
wable integration, Energy
efficiency

Advanced Energy Grid
Infrastructure interfacing
with IoE

Energy produc-
tion, transpor-
tation, storage,
consumption

Yes

IoE Internatio-
nal

Network packet manage-
ment, Enhanced control,
Renewable integration

IoT infrastructure for
Energy

All information re-
garding energy

Yes

Corporate Real Es-
tate Management
Systems

Building /
Corporate
level

Sustainability, Workplace
productivity, Real estate
performance

Real estate management
software

User behavior No

Bottom-up Building
Stock Models

National
to interna-
tional

Energy efficiency, Consu-
mer behavior

Modeling tools, Bottom Up
models, Economic simula-
tion

Energy policy,
incentives and
recommendations

No

Multi-agent Based
Building Energy Ma-
nagement Systems

Building Digital twins Multi-agent systems mo-
dels

User and systems
behaviors

Yes

TTPEMP Building Energy savings recommen-
dation and validation

Data analytics, Decision
Support, Machine Learning

User behaviors,
Buildings renova-
tions

No
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By studying all the systems cited above we realize that they are all encom-
passed in one larger system : the IoE. There is no agreed upon definition of IoE,
however it is often described as the continuation and the extension of the SG
[161, 162, 76]. Therefore, IoE is sometimes also called the SG 2.0. Indeed the IoE
is wider than the SG. For instance, in most definitions the SG is restrained to elec-
tricity whereas the IoE is not. It is also described as the IoT principles applied to
the energy world [76, 66, 69].

IoE is a concept first explored systematically in The third industrial revolution :

how lateral power is transforming energy, the economy, and the world published in
2011 [134]. However, there is still no consensus on the definition of IoE [152].
Rifkin present IoE as a new system of energy use that, through the Internet, inte-
grates renewable energy, distributed generation, hydrogen, energy storage tech-
nologies and electric vehicles.

1.3.4 Monitoring of Smart Energy Systems

Themonitoring of SG andmicrogrid can be a source of inspiration for our case
study. Most monitoring systems include Internet of Things (IoT) and an analysis
platform. We present the main subjects of these subsystems :
• Building energymanagement systems (BEMSs) are used tomonitor and
control a building’s energy requirements. They can lead to a net energy
building also known as zero-energy building through the management of
devices, local production and batteries [61].
• Microgrids are Demand-Response systems : a combination of sensorsmo-
nitoring with forecasting and peer-to-peer exchange are used in real time
to manage the production and consumption. Blockchain can be relevant in
this situation [100]. The goal of these system is to manage the demand in
energy according to the production. They can add a dashboard where the
customer may change their needs or behaviors and can be extended to
multiple microgrids to enhance the flexibility of the grid. The tools used for
the monitoring of microgrids are often cloud based tools used for IoT. As
the open source data visualization software Grafana [67, 53], or the cloud-
based IoT analytics software Thingspeak [146]. Thesemicrogrids can be iso-
lated from the grid such as NRLab [43] or isolated smart houses such as
Al Summarmad’s model [146], or connected to the network [53]. Micro-
grids are based onWireless Sensor Networks [102] which can bemonitored
using Binary Logistic Regression.
• Somemodels act as digital twins of real systems. Public transport such as
trains or a fleet of electric vehicles need to be monitored according to cus-
tomers and the Demand-Response system. These systems are huge consu-
mers but include various strategies to manage and smooth their impact to
the grid. For example, Crotti et al. [36] present a monitoring system with
braking systems, reversible substations and on-board storage systems to
limit the impact of a railway system . Khan andWang propose amulti-agent
simulation, as a digital double, to monitor and schedule a microgrid with
electric vehicles aggregators [81] ;
• A Smart Grid Architecture Model (SGAM) is a conceptual framework for
SG design and deployment. It was proposed by the European Committee
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for Electro-technical Standardization and the European Telecommunica-
tions Standards Institute [29]to manage and pilot smart energy systems.
They include the Demand-Response system and can simulate large scale
energy networks such as a whole island in the H2020MAESHA project [148]
or the InteGrid project [129].We refer to the following article for an in-depth
review of the existing SGAMs [123].

Our system refers to the BEMs. As services, our system aims to propose va-
rious strategies to enhance the use of energy in a building according to its specifi-
city such as building renovation, devices organization, human-centered manage-
ment, integration of artificial intelligence for Demand-Response, etc. Our model
must include a feedback system to understand how a strategy impacts a building
and how the strategy could impact another building as a prediction.

1.4 TheTrustedThirdParty For EnergyMeasurement

AndPerformances (TTPEMP) as aComplex Socio-

Technical System

In this section, we will present our case study, a TTPEMP, we will explain why
and how it can benefit from the complex approach.

The TTPEMP acts as a link between large energy producers, typical consumer-
producers, and providers of energy efficiency solutions [92].

Définition 1.5. The TTPEMP is an external actor that is considered trustwor-
thy and has no interest in the sale of energy resources (or similar) or in the
sale of retrofit or installation contracts (or similar). However, the TTPEMP acts
as a social and economic actor in the evolution of the system [23, 92].

We also introduce the TTPEMP that provided funding for this work, including
its specificities and needs. This TTPEMP is named Energisme [45]. Energisme is a
company whose field of activity is historically the measurement of energy perfor-
mance. It describes itself as a new actor of the IoE [45].

TTPEMPs model buildings for several reasons :
• Energy management, and energy performance policy ;
• Personnel management and activities policy ;
• Security policy ;
• Partnership with other organizations (subcontracting, etc.).

The aspect of energymanagement andperformancepolicy are adressed.While
the TTPEMP functions as a monitoring system, its primary purpose is to facilitate
decision-making, we will therefore focus on his nature as a DSS. To meet these
challenges, we implement an Information Technology (IT) solution that not only
models but also simulates building operations, effectively functioning as a com-
prehensive virtual platform. It ensures the collection and monitoring of data as
well as the supervision of the simulation of the elements as follows :
• The diversity of the types of sensors allows the measurement of all the
energy consumptions of the buildings (electricity, water, gas, heating and
cooling networks, etc.) ;

Loup-Noé Lévy Context : Complex Energy Systems 13
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• Energy billing data ;
• Meteorological data and other data whose sources are external to the buil-
dings studied ;
• Meta-data of the buildings such as their location, the buildings materials,
the plan of the buildings ;
• Buildings’ usage such as their usage category, peak and off-peak times or
frequency, metadata provided by personnel management or Customer Re-
lationship Management software ;
• Operations and maintenance that have been performed on the buildings ;
• Relationshipsmaintained by the buildings installations, for example the re-
lationship between the consumption of the air conditioning system and the
sensors of room temperature, external temperature and human frequen-
tation of the building.

The study of the energy performance of the buildings opens the possibility
of extracting the common characteristics of groups of buildings. This notion of
groups of buildings will be used for :
• The study of building stocks over time and space ;
• The study of the similarities between buildings grouped by the same geo-
graphical location or by the same typologies of usage or energy consump-
tion ;
• The establishment of a profile map allowing the extrapolation of new buil-
dingswithout establishing a systemicmodeling of these buildings. For example,
it is possible for an entity to bemanaging only a part of a building, such as a
story. In this case, it is necessary to estimate the missing parts using a simi-
lar known system to be able to estimate the evolution of the consumption
and production of the whole building.
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All these data describe the material reality of a building at a « human » scale.
The TTPEMP uses these data to put intelligence into the studied system, abstrac-
ting level by level the different components of its environment to form the syste-
mic modeling of the problem.

The TTPEMP has to face the complexity of developing a virtual platform for
intelligent energy management supervision. The platform e2-Diagnoser introdu-
ced by [128] is a good example of a possible architecture but does not sufficiently
dive in the needs of the new IoE actor that is TTPEMP. The virtual platform must
highlight the complex and socio-technical aspects of the studied system, taking
into consideration the socio-technical factors to answer the issues related to the
maintainability and scalability of the platform. They must also take into account
the TTPEMP actors who will maintain the information system. These are the deve-
lopers, operators and managers who are in charge of development and produc-
tion. In the context of our complex approach, it seems relevant to consider the
interaction between these people and the supervision platform.

By broadening the context, it becomes clear that the supervision system pro-
duced for intelligent energy management is itself a CSTS composed of the plat-
form and the people working to maintain it. In this context, the solutions that
would be applied to guarantee the robustness and stability of the supervision sys-
tem should integrate the hazards resulting from human factors. These problems
can be partly solved thanks to a theoretical approach and an adapted design pre-
sented in the chapter 2, especially in section 2.1. In the next section, we present
related works on the modeling and monitoring of building and smart energy sys-
tems and on microservices systems.

1.5 Modeling the TTPEMP

1.5.1 Hybrid Modeling Approach

In this thesis, we aim to define amodeling approach tailored for our case study.
To achieve this, we adopt an approach akin to that employed by Bosom in their
doctoral work. Our research is a continuation and further development of the
investigative field initiated by Bosom, building upon and expanding their founda-
tional concepts.

Bosom [23] presents three different approaches for the modeling of intelli-
gent energy systems in the TTPEMP context. The analytical approach focuses on
the elements that make up the system but faces issues regarding biases arising
from the complexity of this system. The systemic approach consists of studying
the system in a bottom-up way with appropriate theoretical tools. In this specific
context, each actor pursues their own goal. Using systemic approach, one should
identifies three generic subsystems from a regulated and identifiable active phe-
nomenon : operating, information, and decision subsystems.

The third approach is an hybrid of the analytical and systemic ones. It makes it
possible to combine the benefits of the two methods, one operational, consisting
in abstracting the components identifiable thanks to the data, the other systemic,
arranged in the subsystems participating in the complexity of the TTPEMP pro-
jects. We therefore adapt a hybrid approach for the same reasons. We therefore
present the specificities of each approach useful for our work.
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1.5.1.1 Analytical Approach

The analytical approach is also referred to as data-driven in the literature [10].
This approach focuses on functions and seeks to identify the most influential pa-
rameters. Thus, the input data of the system is seen as a source of values. It is
based on a data processing pipeline that collects, cleans, formats, and automati-
cally or semi-automatically extracts significant characteristics. The latter are then
exploited thanks to data mining techniques, ML methods, knowledge extractions,
and discovery methods. The intelligence obtained by this process must be asso-
ciated with an adequate representation and visualization system to give meaning
to the studied system.

The analytical approach is subject to biases that prevent us from considering
it as the sole approach for the modeling of a CSTS [132, 40] :
• It is very effective when the interactions are linear but it is less suitable for
the study of systems that reach a certain level of complexity, uncertainty,
or emergent logic ;
• The causes of dysfunction are often wrongly attributed to human factors
rather than the more diffuse influences of socio-technical factors [23] ;
• It only favors the use of knowledge already available and thus limits the
search for alternative solutions.

Before presenting the hybrid approach, let us examine the contributions of a
systemic approach.

1.5.1.2 Systemic Approach

The systemic theory provides tools for modeling any CS. Indeed, contrary to
the previous approach, each actor pursues its own goal. Therefore, the system
cannot be summarized with a single purpose. It must be seen as a list of subsys-
tems and associated actors.

For a CS, subsystems must be identified and articulated. Each subsystem is
seen as a functional level of the system, i.e., a stable intermediate system that
we call a project [89]. Each of these projects is represented in a relatively auto-
nomous way by its network and can be increasingly complex (via modeling). By
iteration between projects and their representation, we seek to compose or ag-
gregate these levels by taking into account possible feedback.

The decision system can be partitionedmore finely to highlight its ability to co-
ordinate the many decisions about actions, develop and evaluate new strategies,
implement the chosen strategy through the operating system. When the subsys-
tems of a CS are identified, we can articulate projects and actions in networks with
possible levels as a graph, multi-graph, or more generally a lattice. However, de-
termining the subsystems is a complicated task that requires expertise in the CS
and amodeling and simulation system to continuously improve the system to get
closer to the reality of the CS.

1.5.1.3 Hybrid Approach

While maintaining an analytical approach, we decide to also adopt a systemic
approach to organize the application of data-driven methods. In other words, our
modeling allows us to find a compromise between two approaches, one highligh-
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ting the subsystems involved in the complexity of the considered projects, the
other, more operational, consisting in abstracting the identifiable components
using the data. The aim of the model is to be able to take into account emergent
phenomena, interactions, andnon-productivemodifications brought about in par-
ticular by human behavior.

In the context of building energy efficiency, the TTPEMP facesmany constraints
andobjectives that coexist and cannot all be satisfied (competingmulti-objectives).
The model we build must, therefore, allow us to sort and prioritize them to build
a supervision policy with measurable effects. Modeling these influencing factors
and,more generally, the buildings supervisedby the system, requires the exploita-
tion of the datamade available by the actors. Moreover, to identify leverage points,
i.e., the places where the energy actor can intervene on the system, it is also ne-
cessary to rely on the data.

Ourmodel is itself structured as a CSTS, taking into account both the objectives
of the model, but also the actors having to use the model.

Table 1.3 – Comparison of Analytical, Systemic, and Hybrid Approaches

Approach Description

Analytical Focuses on functions and the most influential parameters, em-
ploying a data processing pipeline for collecting, cleaning, format-
ting, and extracting significant characteristics. It is effective for li-
near interactions but less suitable for complex, uncertain systems
or emergent logic.

Systemic Utilizes a bottom-up analysis with theoretical tools to view the sys-
tem as a network of subsystems and actors, each with their own
goals. It emphasizes the importance of identifying and articula-
ting subsystems, considering feedback, and dealing with the com-
plexity through a holistic perspective.

Hybrid Combines the operational efficiency of the analytical approach
with the comprehensive insight of the systemic approach. It allows
for the abstraction of components identifiable through data and
arranges them in subsystems to address the complexity of pro-
jects, accommodating emergent phenomena and interactions.

1.5.2 Hybrid Approach Applied to TTPEMP

The first step consists of building an abstract model thanks to the systemic ap-
proach tomake the proof of concept and to integrate all the actors. Then, the data-
driven approach enables the analysis of the existing data structures and thus the
validation and completion of the designedmodel. Each of the elements is structu-
red in the formof a graph. It contains the relations between the subsystems or the
relation to a data source operated by an actor. These two approaches enrich one
another. This process of mutual enrichment constitutes a feedback loop allowing
the models to converge towards a common and stable representation.
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The modeling of the data model (in GraphQL) allows the mutual validation of
the hybrid approach. Themethods of Development andOperations (DevOps) help
to set up iterative design and evolution. They also meet a strong need for scala-
bility and contribute to the resilience of the platform. They will be presented in
Section 2.2.1. The GraphQL model highlights the APIs required to meet the needs
of data insertions or transformations and exchanges between agents or links with
the outside world. Most of the time, a microservice will respond to an API.

The organization of the concurrent execution of these numerous services raises
the question of the orchestration of services which arises for the distributed com-
puting. It is taken into account by a Microservices Architecture (MSA) for imple-
mentation. MSAs reduce the interdependence of services and thus facilitate the
integration of new IT tools (new database technologies, infrastructure changes,
etc.). The development of these new implementations then allows to meet three
main categories of functionality :
• The ones expressed by the TTPEMP (see Section 1.4) which include, notably,
business algorithms for the prediction of energy behaviors and IT tools for
monitoring, alerting, and personalization ;
• The ones raised by the modeling, to respond to the APIs and that are decli-
ned in microservices ;
• The ones born of the need for coherence and supervision of the IT platform
itself, especially orchestration.

The hybrid modeling approach presented highlighted an iterative method for
the evolution of our system when facing new elements, making the platform re-
silient.

1.6 Decision Support System for the TTPEMP

1.6.1 Supervision System

Bosom [23] highlights the necessity for the TTPEMP to have an effective su-
pervision system. Supervision, as commonly understood in the context of system
management, refers to the ongoing monitoring and control of a system’s opera-
tions [11, 30]. Our focus, however, is on the decision support subsystem, which is
crucial for providing stakeholders with information tailored to their specific needs
for understanding. Such a system is commonly known in the literature as a DSS.

In the context of the TTPEMP, distinguishing between a supervision system
and a DSS is crucial, as they serve different but complementary functions in the
management of energy systems. A supervision system is essentially the corners-
tone of operationalmanagement in energy systems. It is designed to continuously
monitor and oversee the entire energy system, ensuring that all components ope-
rate within their specified parameters and performance thresholds. This system
is responsible for real-time surveillance, control, and immediate response to any
operational anomalies or emergencies. It ensures the system’s stability and relia-
bility by constantly checking for deviations, faults, or inefficiencies and can trigger
automatic corrective actions or alert human operators to intervene. In the TT-
PEMP framework, the supervision system plays a critical role in maintaining the
integrity and smooth functioning of operations, focusing predominantly on the
operational and technical aspects.
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1.6.2 Decision Support Systems

On the other hand, a DSS in the TTPEMP setup serves a higher-level strategic
function. Unlike the supervision system, which focuses on immediate operational
issues, the DSS is designed to assist in making informed, data-driven decisions.
It integrates and analyzes complex datasets collected from various sources, in-
cluding the supervision system, to provide actionable insights and recommenda-
tions. A DSS aids stakeholders in interpreting data, understanding trends, evalua-
ting potential impacts of different decisions, and planning future strategies. In the
realm of energy management, this could involve optimizing energy distribution,
forecasting future energy needs, or developing new energy-saving initiatives. The
DSS is more about strategic analysis and planning, providing a broader perspec-
tive to guide decision-making processes.

The concept of Decision Support Systems has evolved significantly over time.
Early references in the 70s [56] lay the groundwork for understanding what DSS
is.

Définition 1.6. A Decision Support System can be defined as an interactive com-

puter based systems, which help decision makers utilize data and models to solve

unstructured problems [144].

Subsequent works, like Power’s definition [130], further refine this understan-
ding by emphasizing DSS as systems aiding in making decisions based on ac-
cessible data, analytical tools, and models. In the literature, a DSS is widely ac-
cepted as a computerized system that aids in decision-making processes. It is a
knowledge-based system that provides comprehensive information and tools for
analysis to improve the quality of decisions [79]. A DSS typically includes an inter-
active software-based system that compiles useful information from a combina-
tion of raw data, documents, personal knowledge, or business models to identify
and solve problems and make decisions.

The integration of a DSS within the TTPEMP aligns seamlessly with the hybrid
approach discussed in Chapter 2. This approach combines systemic thinking with
data-driven methods, where the DSS plays a pivotal role in synthesizing informa-
tion from various subsystems and data sources. The ability of the DSS to pro-
cess complex data sets and provide actionable insights is crucial in the context
of energy management and performance monitoring. The hybrid approach en-
hances the DSS’s capabilities by allowing for a more nuanced understanding of
both the systemic and data-specific aspects of energy management. This synergy
between the systemic and analytical components within the DSS framework en-
sures a more holistic and effective decision-making process in the context of TT-
PEMP.

The DSS for the TTPEMP, as presented in Chapter 2, represents a crucial com-
ponent in the overarching management and operational strategy of the TTPEMP.
By leveraging both systemic and data-driven approaches, the DSS offers a robust
platform for informed decision-making, essential for the effective and efficient
functioning of the TTPEMP.

The DSS allows decision makers to navigate situation in which the amount of
information, their complexity and the number of possible choices makes deci-
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sion making too difficult a task. They offer comprehensive data analysis, leading
to more informed and effective decision-making, they reduce the time taken to
gather and process information. DSS also must present Flexibility by adapting to
the changing needs of the organization. However they also present issues such
as Complexity and Cost in their development and maintenance. They can lead to
over reliance and lack of critical thinking by the users. Finally, they can be mis-
leading if they are fed with poor quality data. These points will be addressed in
Chapter 2 and 5.

1.6.3 Recommender System

The study of recommender systems can be an inspiration for the design of
certain aspects of our DSS. Recommendation systems are primarily used to re-
commend products or content to online consumers. The goal of these systems is
to assist in selecting the product most likely to be chosen based on the characte-
ristics of the consumer and/or based on choices made by similar users.

Recommendation systems are broadly classified into the following categories
based on the underlying technique used for making recommendations [4, 73,
124] :

• Collaborative filtering : It assesses the relevance of an item for a user based
on the opinion of members of a community (or cluster) [117]. It is based on
the principle that users with similar interests tend to prefer similar items.
• Content-based filtering : Such systems are developed on the principle that
items with similar characteristics will be evaluated similarly by users [156].
That is, they recommend items similar to those liked by the user in the past.
• Knowledge-based recommendation systems : Such a system recommends
products based on specific domain knowledge about how certain item fea-
tures satisfy the needs and specifications of users [133].
• Hybrid recommendation systems : Any combination of the above techniques
can be classified as a hybrid recommendation system [73].

Similar methods can be applied by the TTPEMP, making a recommendation
for a specific type of energy performance action is similar, as we can also make
a recommendation based on knowledge of the building and/or based on recom-
mendations made for similar buildings.

However, the choice of an energy performance decision is much more signifi-
cant and has a far greater impact than choosing which advertisement to display
on a web page or which video to suggest on a streaming platform. This situation is
more akin to decision-making in a commercial, medical, or judicial environment,
where the decision process is aided by a computer, but where human governance
is necessary. Hence our choice of ultimately designing a DSS.
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1.7 Explainable Artificial Intelligence and clustering

for the TTPEMP

1.7.1 Introduction to Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) represents a fundamental shift in the
paradigm of AI systems, particularly in their application to complex domains like
energy systems [14]. At its core, XAI aims to make the decisions and functioning
of AI models transparent and understandable to human users. This shift is driven
by the increasing complexity and ubiquity of AI systems, where decisionsmade by
black-box models can have significant and far-reaching consequences [54]. XAI is
not merely a technical necessity but also an ethical imperative, ensuring that AI
systems are accountable, fair, and align with human values [15]. As AI systems be-
comemore involved in critical decision-making processes in energymanagement,
the ability to interpret and trust their outputs becomes paramount. This necessity
births various XAI techniques, each striving to peel back the layers of complex AI
algorithms, making them more interpretable to users and stakeholders [14].

The relevance of XAI in energy systems is further underscored by the sector’s
increasing reliance onAI formanaging complex tasks such as demand forecasting,
grid optimization, and renewable energy integration [14]. Traditional black-box
models, while efficient, often lack the transparency needed for stakeholders to
fully trust and understand their decision-making processes [131].

1.7.2 Explainable Artificial Intelligence for the TTPEMP’s Deci-

sion Support System

The integration of XAI into DSS represents a significant advancement in energy
management. This synergy is critical in making complex AI-driven decisions trans-
parent, understandable, and actionable for stakeholders involved in energy sys-
tems. DSS, which are crucial in aiding decision-making through data analysis and
model-based insights, can greatly benefit from XAI’s ability to elucidate the inner
workings of AI models. In the context of energy systems, where decisions have
far-reaching impacts, the clarity provided by XAI is not just a value addition ; it’s a
necessity for informed decision-making.

XAI enhances the functionality of DSS in energy management by providing a
layer of interpretability over complex AI algorithms. This transparency is essential
for stakeholders to trust the recommendations made by the DSS. For example,
in scenarios like energy load forecasting or optimization of energy distribution,
stakeholders can make more informed decisions if they understand the rationale
behind the AI’s predictions or recommendations. XAI techniques, such as feature
importance analysis or model-agnostic methods, can be incorporated into DSS
to provide clear explanations of AI outputs. These explanations enable energy
managers and decision-makers to comprehend the factors driving AI decisions,
thereby fostering a higher degree of confidence and trust in the system.

Furthermore, the implementation of XAI within DSS aligns with regulatory and
ethical standards, ensuring that AI-based decisions in energy management are
both accountable and transparent. As energy systems increasingly rely on AI for
critical operations, the demand for governance and compliance with regulatory
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frameworks grows. XAI-driven DSSmeet these demands by offering not only high-
performance analytics but also ensuring that these analytics are understandable
and justifiable. This aspect is particularly pertinent in scenarios involving stake-
holder engagement, policy implementation, and strategic planning in energy ma-
nagement. Thus, the marriage of XAI and DSS in the energy sector paves the way
for more responsible, efficient, and transparent decision-making processes, en-
hancing the overall efficacy and reliability of energy management systems.

1.7.3 Pretopology in Clustering Mixed Data

Pretopology offers a novel and robust approach to clustering in AI, particu-
larly within the domain of complex energy systems. As a generalization of classi-
cal topology, pretopology extends beyond the limitations of traditionalmethods in
handling diverse data types, a common characteristic in energy systems. This flexi-
bility is particularly relevant when dealing with mixed data, encompassing time
series, numerical, and categorical variables.[96] Pretopology excels in providing a
hierarchical understanding of such data structures, crucial for dissecting and in-
terpreting the multifaceted relationships within energy systems. The hierarchical
clustering facilitated by pretopology aligns well with the layered nature of energy
systems, from individual consumer behaviors to large-scale grid dynamics. This
alignment enables a more intuitive and insightful grouping of data points, enhan-
cing the interpretability and applicability of clustering results in practical energy
management scenarios.

A pivotal aspect of pretopological space definition which we will use in the
context of XAI is the use of Disjunctive Normal Form (DNF) [85]. DNF in pretopo-
logy explicitly outlines the logical rules underpinning the construction of clusters,
thus contributing significantly to the explainability of the clustering process. This is
particularly advantageous in energy systems, where understanding the ’why’ be-
hind groupings can be as critical as the groupings themselves. [91]. For instance, in
load forecasting or anomaly detection in energy consumption patterns, knowing
the logical rules that lead to certain groupings can provide insights into underlying
causes or potential areas of intervention. Moreover, the DNF representation ali-
gns with human cognitive processes, making the explanations generated by such
models more accessible and actionable for decision-makers and stakeholders in
the energy sector.

This first chapter laid the foundational groundwork for understanding themul-
tifaceted nature of CSTSs, with a special focus on energy systems. We started by
defining Complex Systems, unraveling their characteristics such as multiplicity of
space and time scales, heterogeneity of components, and emergent properties.
These definitions set the stage for deeper discussions on the interactions and be-
haviors that typify Complex Systems.

Through various models and theoretical discussions, we explored how Com-
plex Systems manifests in the energy sector, particularly within smart energy sys-
tems and their associated stakeholders. We examined how these systems neces-
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sitate a blend of technological, organizational, and human components, and how
their interplay requires an approach that is both holistic and nuanced.

We presented our use case, a new actor in the energy domain : the TTPEMP.
We have identified one of its role as a DSS.

The chapter highlighted the challenges inherent in designing and implemen-
ting DSS for these complex environments. It underscored the need for a deep
understanding of the systems’ properties to ensure that solutions are not only
technically sound but also socially acceptable and practically implementable. The
discussions emphasized that the long-term viability of these systems depends on
their adaptability to changing conditions and sensitivity to diverse stakeholder
needs.

We also analyzed variousmodeling approaches that are instrumental in captu-
ring the essence of Complex Systems, providing insights into their dynamics and
guiding the development of effective strategies formanaging them.We presented
a hybrid model for the energy system of our case study, which is both practical
in a technical environment and considerate of the complex properties of Socio-
Technical Systems.

Finally we presented XAI as a central concept for DSS allowing users to grasp
themechanisms leading to a recommendation, prediction or analysis. We then in-
troduced the application of pretopology in clustering mixed data, highlighting its
potential to provide a more intuitive understanding of data structures in energy
systems. This approach promises to improve the interpretability of clustering out-
comes, facilitating more informed decision-making in energy management prac-
tices.

Summary of Chapter 1

Complex Systems : Complex systems are characterized by features such
asmultiplicity of scales, heterogeneity, emergence, irreducibility, non-linearity,
feedback, self - organization, distributed control, hierarchical organization,
and numerosity. These systems require a holistic approach for understan-
ding, focusing on how various subsystems interact. Complex Socio-Technical
System (CSTS) are especially noted for their blend of socio-organizational and
technical factors, including human activities and organizational structures, in-
dicating the intricate relationships that define their operations.

Modeling of Building : In the realm of energy consumption, buildings are
recognized as CSTS due to the significant impact of socio-technical factors. The
modeling of buildings, particularly through the application of Grey Box mo-
dels, exemplifies the need for a method that merges physical and statistical
models. This approach facilitates a deeper analysis of energy dynamics within
buildings, accounting for the complex interplay between various influencing
factors.

Modeling of Smart Energy Systems : A comprehensive review of smart
energy systems highlights the necessity for innovative modeling techniques.
This review brings to the forefront key concepts such as Smart Grids, the In-
ternet of Energy (IoE), Corporate Real EstateManagement Systems, andMulti-
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agent Systems.Within this ecosystem, the Trusted Third Party for EnergyMea-
surement and Performances (TTPEMP) emerges as a pivotal mediator, ensu-
ring trustworthiness in energy performance verification and recommendation
by connecting consumers, and efficiency solution providers.

Monitoring of Smart Energy Systems : The importance of real-time ma-
nagement and decision support is underscored through the integration of IoT
and analysis platforms. Systems such as Building Energy Management Sys-
tems (BEMSs), microgrids, digital twins, and Smart Grid Architecture Models
(SGAM) are surveyed for their contributions to optimizing energy manage-
ment. Feedback systems, in particular, are highlighted for their crucial role
in analyzing the impact of various energy management strategies.

TTPEMP : Our case study is identified as a TTPEMP, recognized as a com-
plex socio-technical system that operates at the intersection of social, organi-
zational, and technical dimensions. We focus on its natureas a Decision Sup-
port System (DSS). Indeed the TTPEMPaims to facilitate decision-making through
a comprehensive suite of IT solutions, encompassing data collection and sys-
tematic modeling. However, the development of an architecture for such an
intricate system presents significant challenges, including the integration of
human factors to ensure robustness and system stability.

Modeling the TTPEMP :We explores a hybrid modeling approach for the
TTPEMP, integrating both analytical and systemic methodologies. The analyti-
cal approach focuses on data-driven functions and parameters, while the sys-
temic approach views the system through its subsystems and actors, empha-
sizing a holistic perspective. The hybrid model combines these strategies to
address complex systems’ challenges, accommodating emergent phenomena
and interactions, particularly within the realm of building energy efficiency. It
aims to create a resilient, scalable model that incorporates data analysis, sub-
system identification, and actor integration, facilitated by a feedback loop for
continuous refinement and adaptation.

DSS : Designing a relevant DSS architecture is pivotal for strategic func-
tionality of the TTPEMP, integrating and analyzing complex datasets to aid
in informed decision-making. The incorporation of DSS enhances the capa-
bilities of energy management, leveraging both systemic and data-driven ap-
proaches for a holistic decision-making process. These systems face challenges
in development complexity and must remain flexible to adapt to the evolving
needs of the organization.

Explainable Artificial Intelligence (XAI) : The paradigm shift towards XAI
emphasizes the need for transparency in AI decisions, ensuring these de-
cisions are accountable and aligned with human values. XAI’s relevance to
energy systems is particularly critical for tasks such as demand forecasting
and grid optimization, where understanding the basis of AI-driven decisions
is paramount.

Pretopology in Clustering Mixed Data : Pretopology introduces a novel
approach for handling mixed data types within AI, offering a hierarchical un-
derstanding of data structures. Utilizing Disjunctive Normal Form (DNF) within
pretopology significantly enhances the explainability of clustering processes.
This method proves beneficial for energy systems by providing actionable in-
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sights into underlying causes or potential interventions, thereby facilitating
informed decision-making.
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Chapter 2

Governance and Architecture of the

Decision Support System

In Chapter 2, we delve into the intricacies of governance and architecture wi-
thin the realmof Decision Support System (DSS), specifically tailored formanaging
Complex Socio-Technical System (CSTS) in the context of energy management.

We will analyze the theoretical underpinnings and practical methodologies es-
sential for the effective governance of semi-automated DSS, addressing the pivo-
tal balance between automation and human oversight in critical decision-making
processes.

Through a comprehensive exploration of semi-automation, algorithm-in-the-
loop, and human-in-the-loop frameworks, we attempt to sheds light on the ethi-
cal, reliable, and accurate deployment of automation within significant societal
domains.

Furthermore, we will discuss the challenges and opportunities presented by
distributed and big data architecture in DSSs. We will examine the strategies for
handling and analyzing vast datasets to inform and improve decision-making pro-
cesses. The importance of integrating various modeling techniques and adapting
to the continuously evolving energy sector landscape are highlighted.

By providing insights into the development, implementation, and continual im-
provement of the DSS, a comprehensive understanding of the tools and strategies
necessary for effective energy management in complex systems is given.

Finally we propose a DSS architecture building upon the state of the art. The
overview of this DSS allows us to analyses its complex nature and to present dif-
ferent use cases.

2.1 Theory and Method for the Governance of Deci-

sion Support Systems

This section presents the methods and tools needed for the governance of a
supervision system. The need for these methods and tools was made apparent
by the systemic and analytical modeling of a CSTS of energy management.
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2.1.1 Governanceof Semi-AutomatedDecision Support Systems

2.1.1.1 State of the art

The idea of governance is closely related to the concept of monitoring but also
to the concept of automation. Crucial elements of our society are being automa-
tized in areas such as health, justice, and banking. Just as energy consumption
management, these elements cannot be automatized without the need for an ef-
ficient and reliable governance so that the trust in these key institutions is main-
tained. In the past, decision-making was a social issue ; today, it has become a
socio-technical problem.

The first thing to note is that automation involving important decision making
is rarely total. Most of the time it involves a contribution of an automated system
and of a human. Many terms are employed to fill this gray area such as semi-
automation, quasi-automation, algorithm in the loop, or human in the loop decision
making. These terms will be discussed below.

In this case where the decision process is aided by a computer, but where hu-
man governance is necessary, we talk about « algorithm-in-the-loop » decision-
making, or, in the case of a more automated process where human intervention
is simply intended to prevent a significant and consequential error, we talk about
« human-in-the-loop » decision-making. [59] These new algorithm-in-the-loop

decision-making processes raise two questions - one normative, the other empi-
rical - that must be resolved before machine learning is integrated into some of
the most important decisions in society : (1) What criteria characterize an ethical
and responsible decision when a person is informed by an algorithm? (2) Do the
ways in which people make decisions when informed by an algorithmmeet these
criteria?

In their article « The Principles and Limits of Algorithm-in-the-Loop »Green and
Chen [59] identify the following 3 desiderata :
• Accuracy : People using the algorithm should make more accurate predic-
tions than they could without the algorithm.
• Reliability : Users should accurately assess their own performance and
that of the algorithm and calibrate their use of the algorithm to account for
its accuracy and errors.
• Fairness : People should interact with the algorithm impartially concerning
race, gender, and other sensitive attributes.

The Trusted Third Party for EnergyMeasurement and Performances (TTPEMP),
being involved in social issues such as assistance with energy poverty, all these
questions may arise. The degree of automation of a system can also be assessed
using the following 7 points, identified by Wagner [151] :
• The time available to the individual human operator relative to the task :
the less time allocated to the human operator, the higher the probability
of quasi-automation.
• The degree of qualification of the humanoperator of the system to perform
the specific task : the less qualified the individual is to perform a specific
task, the more likely it is to be quasi-automated.
• The degree of responsibility that will be attributed to the human operator
in case of failure : the higher the amount of legal responsibility attributed
to a human operator in case of failure, the more likely it is that humans
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are engaged in the process only to ensure that they can assume responsi-
bility in case of failure of the automated system (Dannenbaum, 2010 [37] ;
Maurino, Reason, Johnston, & Lee, 2017 [104]).
• Level of support that the individual receives to carry out the task sustaina-
bly : many involved tasks require very high degrees of concentration and
often involve making very disturbing decisions in a short time. Here, higher
levels of psychosocial support or other forms of support are likely to be an
indicator that runs counter to quasi-automation.
• Adaptation : the more a human operator must adapt to the system, rather
than the systembeing designed to serve the operator, themore the system
is quasi-automated.
• Access to information : the humanoperatormust have access to all relevant
information in order to make the right decision.
• Agency : the human operator must have enough « authority [. . .] to modify
the decision » (Article 29 Data Protection Working Party, 2017, p. 10) and
must actually do so regularly. If the only function of the human operator is
to regularly agree with the machine and is very rarely in disagreement with
it, it is highly likely that the human operator’s agency is insufficient.

If the TTPEMP remains in its role of decision aid, then it only recommends
actions, one can then wonder to what extent the responsibility for the energy
performance action rests entirely on the actor who used the recommendations.
However, the role of the TTPEMP should be to enable actors to make informed
decisions in order to recognize aberrant recommendations that could be made
following an error or erroneous information, or simply to have the elements allo-
wing them to make a choice themselves, perhaps depending on external factors
unknown to the TTPEMP? If the TTPEMP wishes in the future to transform and
become an actuator of energy performance, then it will have to take into account
all the elements presented above.

2.1.1.2 European Regulation

Article 22 of the EU GDPR includes a « prohibition of fully automated indivi-
dual decision-making, including profiling, which has a legal effect or a similarly
significant effect » (Article 29 Data Protection Working Party, 2017, p. 9), as well as
specific safeguards for fully automated decisions. Thus, by putting humans in the
loop, companies can attempt to escape some of these limitations and safeguards.
Moreover, many companies currently resort to human intervention in systems
supposed to be fully automated - that is, they pretend that an advanced AI sys-
tem transcribes your voicemail rather than a call center in the Philippines - without
informing users[143].

This approach is summarized in Regulation (EU) No 376/2014 on the reporting,
analysis, and follow-up of events in civil aviation, which calls for a « just culture »
that is « a culture in which frontline operators or other persons are not punished for
actions, omissions, or decisions that they take which are proportionate to their ex-

perience and training, but in which gross negligence, willful violations, and destructive

acts are not tolerated. » This approach - also evident in several legal decisionsmade
in the aviation sector, which focus on organizational responsibility [25] rather than
individual responsibility - is increasingly common in judicial decisions [137], which
focus on improving Socio-Technical Systems at scale rather than solely identifying
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culprits. [151]

In this context, abiding to the recommendation described above is crucial. To
do so, it is important to be able to monitor the system and to guarantee the ac-
curacy and reliability of this CSTS. We will see in the next session how these issue
relates to Development and Operations (DevOps)

2.2 Addressing Governance with Devops and Data

Lineage Methodologies

2.2.1 DevOps Methodology

DevOps is a set of practices and cultural philosophies that aims to unify soft-
ware development (Dev) and software operation (Ops). The primary goal of De-
vOps is to shorten the system development life cycle while delivering features,
fixes, and updates frequently in close alignment with business objectives. This
approach emphasizes the collaboration and communication of both software de-
velopers and IT professionals while automating the process of software delivery
and infrastructure changes. It aims to establish an environment where building,
testing, and releasing software can happen rapidly, frequently, and more reliably.

2.2.1.1 Continuous Integration, Continuous Delivery, and Continuous De-

ployment

DevOps is strongly associated with Continuous Integration, delivery, and de-
ployment [139]. We refer to the works of Shahin et al. [140] for a complete review.
For a detail review, refer to Continuous Integration, Delivery and Deployment : A
Systematic Review on Approaches, Tools, Challenges and Practice s[140].

Continuous integration (CI) is the practice of integrating code changes of
a project frequently from multiple developers. This practice is well established
in the software development industry. CI allows software companies to increase
the frequency of the release cycle, the quality of software, and the productivity
of their teams. This practice includes automated software building and testing.
Automated tools are used to build then assert the new code’s correctness before
integration.

Continuous DElivery (CDE) ensures that an application is ready to go into
production environment after passing automated testing and quality control. CDE
automatically delivers software into a production environment using IC and de-
ployment automation. This practice offers reduced deployment risk, lower costs
and faster user feedback.

Continuous Deployment (CD) is the automatic release of approved changes
from a developer to production, where they are usable by customers. It addresses
the problem of overloading operations teams with manual processes that slow
down application delivery. It builds on the benefits of continuous delivery by au-
tomating the next step in the pipeline.
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2.2.1.2 Addressing accuracy and reliability

One of the primary reasons DevOps has gained prominence is its ability to
address issues of accuracy and reliability in software development and deploy-
ment . By fostering a culture of continuous improvement and collaboration, De-
vOps practices help reduce human errors typically associated with manual pro-
cesses. Automated testing and continuous integration enable early detection of
errors, ensuring higher accuracy in the final product. Additionally, DevOps pro-
motes the use of monitoring and logging practices throughout the software de-
velopment lifecycle, enhancing the reliability of applications by allowing teams to
quickly identify and respond to issues in real-time [90].

2.2.1.3 Adressing biases

Addressing the question of whether DevOps can solve issues of unwanted
biases in DSS requires a nuanced understanding. DevOps itself primarily focuses
on improving the efficiency and reliability of software development and opera-
tions. It streamlines processes, encourages frequent testing, and fosters a culture
of continuous improvement and feedback, which can indirectly contribute to iden-
tifying and addressing biases in software systems.

However, the specific issue of unwanted biases in DSS is more closely rela-
ted to the fields of data science and AI ethics rather than DevOps. Biases in DSS
usually stem from biased data sources, flawed algorithms, or biases in the users
or developpers. While DevOps practices can facilitate quicker iterations and res-
ponses to identified issues, including biases, it doesn’t inherently provide tools or
methodologies to detect or correct biases in data or algorithms.

Ensuring data quality and transparency in the dataflow through data lineage,
as well as avoiding black box models through Explainable Artificial Intelligence
(XAI) must be therefore be taken into account.

2.2.2 Data lineage

Data lineage refers to the lifecycle of data, including its origins, what happens
to it, and where it moves over time. It creates a comprehensive view of the data
flow through the entire system, from source to destination, including all the trans-
formations it undergoes. Understanding data lineage is crucial for ensuring relia-
bility, correctness, and fairness in automated decision-making systems.

In terms of reliability, data lineage provides a clear map of where data comes
from and how it’s processed. This transparency helps in identifying and correcting
errors quickly, ensuring that the data used for decision-making is accurate and
trustworthy. For example, if an automated decision system makes unexpected
recommendations, tracing the data lineage can help pinpoint whether incorrect
data input, a processing error, or a flawed transformation led to the issue.

Correctness is closely related to reliability but focuses more on the integrity of
data throughout its journey. Data lineage ensures that data transformations and
aggregations are performed correctly, maintaining the integrity of the data. This
aspect is critical in automated decision systems, where the correctness of data
directly impacts the validity of the decisions made. By having a detailed account
of each step in the data’s lifecycle, organizations can verify that the data meets
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all the required standards and compliances before it’s used in decision-making
processes.

Fairness in automated decision systems is a complex issue, particularly with
the growing concern over biases that can be embedded in algorithms. Data li-
neage can play a pivotal role in addressing fairness by providing visibility into the
data sources, transformations, and decisions based on that data. With a clear un-
derstanding of the data’s origin and how it’s used, analysts can identify potential
biases in the dataset or in the data processing stages. For instance, if a dataset
predominantly includes data from a certain demographic, leading to biased deci-
sions, data lineage can help trace back to this source issue. Moreover, by ensuring
transparency in how data is processed, data lineage supports the implementation
of fairness algorithms and the adjustment of processes to mitigate bias, thereby
promoting equity in automated decisions.

2.3 Decision Support System architecture

Energy performance of building requires DSSs because of the complexity of
the energy systems, the overwhelming amount of information, and the plurality
of solutions (see 1.6). Indeed, the energy performance issues require to be able
to apply different clustering, classification and prediction methods on buildings,
which requires the training and inference of several models. Wewill address them
in the management of data using the Data Lake and the Datamart, in the choice
and training ofMachine Learning (ML) algorithms using theMachine Learning Fac-
tory (ML-Factory), and we will present a global architecture of the DSS. The DSS
for TTPEMP is presented in the Figure 2.2 and 2.1 . We will explain in the following
subsections each part of the DSS.
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2.3.1 Distributed Architecture

Distributed architecture refers to a system design paradigm that divides tasks
among multiple components or services, which communicate over a network to
achieve a common goal. This approach contrasts with traditional monolithic ar-
chitectures, where all components of a system are tightly integrated and run as a
single service. In the context of a DSS for governance of semi-automated systems,
employing a distributed architecture offers several advantages that directly align
with the objectives of correctness, reliability, and fairness.

Correctness : In distributed architectures, the separation of concerns allows
for modular development, where each module can be designed, implemented,
tested, and deployed independently. This modularity facilitates thorough verifica-
tion of each component’s functionality, contributing to the overall system’s cor-
rectness. Additionally, updates or bug fixes can be rolled out to individual compo-
nents without affecting the entire system, ensuring that the system remains in a
correct state even as changes are made.

Reliability : Distributed systems are inherently designed for high availability
and fault tolerance. By distributing tasks and data across multiple nodes, the sys-
tem can continue to operate even if one or more nodes fail. This redundancy
ensures that the DSS remains operational, providing consistent support for go-
vernance decisions. Moreover, distributed architectures can dynamically adjust
to workload changes by scaling components independently, thereby maintaining
performance and avoiding bottlenecks that could compromise decision-making
processes.

Fairness : The decentralized nature of distributed architectures can enhance
the fairness of a DSS by promoting transparency and accountability in decision-
making. With data and processing logic spread across different nodes, it becomes
easier to audit and trace how decisions are made, ensuring that no single com-
ponent has undue influence over the outcomes. This setup supports implemen-
ting data lineage practices effectively, allowing stakeholders to understand how
data is used and transformed within the DSS, thus promoting fairness and trust
in the system.

Big Data : Incorporating distributed architecture is particularly advantageous
in the context of big data, a domain characterized by the immense volume, ve-
locity, and variety of data. Distributed systems are inherently designed to handle
big data challenges by distributing the data storage and processing tasks across
multiple nodes in the network. This parallel processing capability allows for the ef-
ficient handling of large datasets, ensuring that data can be processed quickly and
accurately, which is crucial for the timely and correct functioning of a DSS. Moreo-
ver, distributed architectures facilitate scalability, enabling the system to accom-
modate growing data demands without significant reengineering. As the volume
of data increases, additional nodes can be seamlessly integrated into the system
to maintain performance levels. This scalability is essential for governance sys-
tems that may experience fluctuating data loads due to regulatory changes, sys-
temupgrades, or evolving operational requirements. Additionally, distributed sys-
tems can leverage advanced data storage solutions, such as distributed databases
and data lakes, which are optimized for big data. These technologies support so-
phisticated datamanagement practices, including data lineage, by efficiently orga-
nizing, indexing, and providing access to vast amounts of data across distributed
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environments. Thus, a distributed architecture not only addresses the immediate
needs of handling big data but also ensures the system’s long-term adaptability
and resilience.

Furthermore, distributed architectures support DevOps practices by enabling
continuous integration and deployment (Continuous Integration/Continuous De-
ployment (CI/CD)) pipelines that streamline development, testing, and deploy-
ment processes. This integration ensures that the system can rapidly adapt to new
requirements or changes in governance policies whilemaintaining high standards
of quality and performance.

In summary, adopting a distributed architecture for a DSS in the governance
of semi-automated systems presents a strategic approach to addressing the chal-
lenges of correctness, reliability, and fairness. It leveragesmodularity, redundancy,
and decentralization to create a robust, adaptable, and transparent system ca-
pable of supporting complex governance tasks in a dynamic environment.

2.3.2 Big Data Processing

In this subsection, we specify the implemented solutions in order to ensure
the performances during the data processing. The energy data to be processed
falls into the category of Big Data.

Définition 2.1. The 5 V’s of Big Data (velocity, volume, value, variety and ve-
racity) are the five main and innate characteristics of Big Data.

A large amount of data must be processed (Volume). Indeed, it is necessary
to process the power consumption history of several hundreds of thousands of
buildings over several years with a time step often of the order of a minute. Mo-
reover, the consumption data are updated day after day (Velocity). The energy
data are also heterogeneous (Variety). Because of the multitude of sources, all
buildings do not have the same descriptive data or the same consumption data
(electricity, gas, water. . .), but even when the same values are described there is
heterogeneity of formats (unit, time step, file type, indexing. . .). Some buildings
do not even have meter collecting energy data and the only information available
is accessible through PDF files of energy invoice. In addition to consumption data
and physical description of the system, external data such as the meteorological
consumption are also relevant. Some data describing for example the type of use
of the building are entered by the customers and can present errors (Veracity). Of
course, the datamust also undergo numerous pre-processing operations in order
to manage anomalies and to process outliers or missing values (Variability).

The architectural solutions proposed to deal with these issues are the Data
Lake for the storage and integration of energy data, and the Datamarts for the
processing and specific formatting of these data in order to respond to the dif-
ferent issues of energy actors.

2.3.2.1 Data Lake (see 2.2 : B)

Storing suchmassive and heterogeneous data, coming from different sources,
requires an adapted storage repository.
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Définition 2.2. A data lake is a centralized repository that provides massive
storage of unstructured or raw data fed via multiple sources, the information
has not yet been processed or prepared for analysis, there is no need to clean
and process data before ingesting. [149]

However, the data stored in a data lake is not easily exploitable. And a data
lake can easily turn into a Garbage Dump : a one way data lake in which a mas-
sive amount of unstructured data are stored but never exploited [72]. The data
lake therefore needs to be used in conjunction with a more structured form of
database called Datamarts.

2.3.2.2 Datamart (see 2.2 : C, D, E, F)

Datamarts (see figure 2.2 : C, D, E, F) The recommendation system relies on
various methods (clustering, classification, prediction). Spatio-temporal data can
be structured in different ways depending on the question being investigated,
therefore the data marts C, D, E, and F in figure 2.2 will not extract the same data
and will not format it in the same way [16].

In Kimball’s vision of the data mart : the data warehouse is nothing more than
the union of all the Datamarts [82]. Contrary to Kimball, Inmon considers that
a data warehouse and a Datamart are physically separate. The data warehouse
has its own physical existence and is oriented towards storage, traceability, and
scalability in response to new requirements. Meanwhile, Datamarts have their
own physical existence and offer a structure oriented towards the performance
of data retrieval in response to user requirements. We aremuch closer to Inmon’s
conception of the Datamart. [159]

Figure 2.3 – Inmon vs Kimball architecture [159]

IBMdefines aDatamart as a targeted version of a datawarehouse that contains
a more restricted subset of important and necessary data for a single team or a
selected group of users within an organization. A Datamart is built from an exis-
ting data warehouse (or other data sources) through a complex procedure that
involves multiple technologies and tools to design and construct a physical data-
base, feed it with data, and set up complex access and management protocols. 1

In our case, the main data source will be the data lake, but information such
as national weather data could be integrated into the Datamarts without coming

1. https ://www.ibm.com/cloud/learn/data-mart
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from the data lake. With its smaller, targeted design, a Datamart presents several
benefits for the end user, including the following :

Cost-efficiency : There are many factors to consider when setting up a Data-
mart, such as scope, integrations, and the extraction, transformation, and loading
process (ETL : which stands for extract, transform and load, is a data integration
process that combines data from multiple data sources into a single, coherent
data store that is loaded into a data warehouse or another target system). Howe-
ver, a Datamart generally incurs only a fraction of the cost of a data warehouse.

Simplified data access : Datamarts contain only a small subset of data, so
users can quickly retrieve the data they need with less effort than they would
when working with a larger data set from a data warehouse.

Faster access to information : Insights obtained fromadatawarehouse favor
strategic decision-making at the enterprise level, impacting the entire business.
A Datamart fuels business intelligence and analytics that guide decisions at the
department level. Teams can exploit data targeted to their specific goals. As teams
identify and extract valuable data in a shorter timeframe, the business benefits
from accelerated business processes and increased productivity.

Simplified datamaintenance : A data warehouse contains amultitude of bu-
siness information, with scope for multiple business sectors. Datamarts focus on
a single line, housing less than 100 GB, resulting in less clutter and easier mainte-
nance.

Simpler and quicker implementation : Setting up a data warehouse involves
significant implementation time, especially in a large company, as it collects data
from a multitude of internal and external sources. On the other hand, a small
subset of data is required when setting up a Datamart, so the implementation
tends to be more efficient and involve less setup time.

2.3.3 Machine Learning Methods

Increasing energy efficiency of a system correspond to making that system
consume less energy to produce the same amount of services or useful output
[125]. Energy performance however ismore difficult to define since energy perfor-
mance indicators are multiple and complex and depend on a methodology which
may vary on the national or even regional level [47]. Energy performance indi-
cators that can be considered are not the same depending on the building type,
hence the need for accurate estimates and reliable benchmarks for each type of
building [22]. Therefore one of the first step in evaluating energy performances is
to classify buildings based on their type. The type of a building corresponds to its
main usage. Types of building can be identified by two approaches, supervised or
unsupervised.

2.3.3.1 Unsupervised (Clustering/Profiling) (see 2.2 : C)

The first possibility is non supervised learning such as clustering methods.

Définition 2.3. Clustering is the task of grouping a set of objects in such a
way that objects in the same group (called a cluster) are more similar to each
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other than to those in other groups.

In this process homogeneous groups of sites are identified based on their phy-
sical characteristics, their meteorological situation and their consumption.

Because the TTPEMP is bound to have a very high heterogeneity in the system
it studies (is a hydraulic pump for public garden comparable to an office?) and
the quality of the clustering made by its clients is never perfectly assured (see
Veracity of Big Data). Because of this, being able to cluster the entirety of the
clients into similar groups presents both a challenge and an opportunity to gain
insight into the profiles and groups that we are studying. This might allow us to
discover profiles of buildings sharing similar characteristics but that have not been
classified together before.

After having identified the profiles, a knowledge extraction step is necessary
in order to identify the key indicators that define the groups. This step is neces-
sary to give meaning to the classification, and therefore to determine the energy
performance actions which is the most relevant to each building type.

2.3.3.2 Supervised and Semi-Supervised (see 2.2 : D, E)

Contrary the non-supervised learning, the supervised learning consider data
(or most of them) have already (or partially) a label/group. Through supervised
learning, the objective is to classify sites into already established groups. It can be
building usage, which has been identified to be a key element in evaluating energy
performance of buildings [22], or it can be a site profile that has been identified
using clustering methods.

2.3.3.3 Forecasting/Prediction (see 2.2 : E)

The prediction of consumption based on consumption history, building des-
criptive data, andbuilding identifiedprofile, canhelp evaluate energy performance
evolution. Indeed, by comparing predicted energy consumption with measured
energy consumption, one can detect improvement or deterioration of consump-
tion of a building.

2.3.3.4 Model Selection in ML-Factories (see 2.2 : G, L)

Using the features extracted in the Datamarts, the system should be able to
select one or several algorithms to apply to the dataset. For example in the case of
forecasting, Feature-based FORecast Model Averaging (FFORMA) can outperform
simple averagingmethods in the forecasting of time series [114]. Similarly, several
clustering methods can be combined to give a more relevant and robust cluste-
ring [158]. Finally, this process also perfectly works on deep-learning forecasting
methods [147].

2.3.4 Machine Learning Factory (see 2.2 : G)

We want to extend the application of automation methods recommended by
DevOps to ML algorithms. ML models require special processing because they
must be trained on previously defined and labeled data sets. An ML-Factory is a
model life cycle including ML methods.
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Définition 2.4. We identify three main stages in an ML-Factory :
• A prototyping phase during which the developer explores the data, de-
fines the format of the expected dataset and compares several candi-
date models ;
• A model training phase that can last several days and that is carried
out, usually, on a larger dataset ;
• An inference phase,making themodel callable, preferablywith the best
possible performance.

In others words, an ML-Factory, is an iterative process that covers iteratively :
(1) the constitution of the training data ; (2) the identification of theML algorithms ;
(3) the training of the models and their hyper-parametrization ; (4) the recording
of the trained models in an adequate library ; (5) the deployment on the chosen
platform; (6) the supervision and monitoring of the model in production ; (7) the
iterative improvement of the models.

In the context of TTPEMP, it is preferable to rely on algorithms that will be trai-
ned from start to finish and to orchestrate the entire pipeline. Indeed, this control
provides flexibility for each step and allows data scientists better introspection
into the models they develop. An ML-Factory can include other tools such as a
specialized database to allow data enrichment (features).

2.3.5 Recommendation, FeedbackandContinuous Improvement

The goal of the ML-Factory is to determine profiles of consumers to determine
which strategies can be used to improve their energy efficiency.

By applying the DevOps principle described in Section 2.2.1, the DSS must be
able to identify critical points in the system. These points require human interven-
tion to make sense of the algorithmic results and prevent aberrant responses. In
addition to ensuring the quality of the recommendations, it is necessary to en-
sure the system’s ability to adapt to changes in data and data sources, but also
to integrate new methods of processing information in a fluid manner. Thus, the
systemwill be resilient to the transformations of the studied building stock as well
as to the integration of newmethods of data processing. This requires integrating
the DevOps methods described in Section 2.2.1 in the design, maintenance and
operation of our system as follows :
• Take into account the feedback of its clients and partners : by evaluating
the energy saving that have beenmade and improving the DSS accordingly
(scoring algorithm based on the energy savings, using ML to improve the
quality of the recommendation. . . ) ;
• Thanks to the Microservices Architecture (MSA), adaptation of the informa-
tion system to new technology can be relativelly seameless and easy.

Already present in Figure 2.1, the feedback loop which is so essential for go-
vernance and resilience can be found in Figure 2.2 representing the DSS global
architecture.

With each element and their role clearly described let us now look at the DSS
architecture as a whole. In accordance with the hybrid approach model (1.5.1.3,
our system begins with the input of information from energy actors feeding us
consumption and descriptive data (fig. 2.2 : A). By identifying consumption type
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and learning from historical energy recommendations, the DSS must allow to
identify leverage point for the client to undertake change in its consumption (whe-
ther it be behavioral or material) (fig. 2.2 : H. Following the Hybrid approach the
feedback loop is central in the design of our system, allowing for constant update
by integrating the feedback of the energy system on the DSS (fig. 2.2 : J). This is
made possible by the methodology of DevOps, and by the tools presented above.

2.3.6 Overview of the Decision Support System

The energy data is multiple and heterogeneous. It consists of time series of
consumption in electricity, but also in gas or water (A). These time series are not
in the same format, do not have the same time steps or the same units. They are
stored in their raw form in a Data Lake (B). In addition to this, there are descriptive
data of the buildings as well as meteorological data, which are also uneven and
heterogeneous. Moreover, some data will be missing or false. The data prepro-
cessing will be carried out in different Datamarts. As the preprocessing is specific
to the machine learning methods to be applied, several different Datamarts exist
and will be specific to the various issues related to energy performance. In our
system, we designed 3 « final » Datamarts. A Datamart for unsupervised profiling
(C), a Datamart for semi-supervised profiling (D), and a Datamart for consumption
prediction (E). (Other Datamarts concerning different business uses case can be
used by the TTPEMP (F))

An important aspect of preprocessing for machine learning is feature extrac-
tion, these features are also specific to the methods to be applied. For profiling,
the features usedwill be elements that allow distinguishing relevant consumption
categories from the point of view of energy performance. For example, consump-
tion during the night can give indications of superfluous energy consumption.Mo-
reover, high consumptions at certain hours of the day or week can inform about
the type of use of the building (housing, office, gym, commerce). In return, the
type of use of the building can be a new feature added to the Datamart in order
to make finer and more relevant diagnostics. (see figure 2.5 The building profiles
that will be identified are not necessarily defined in advance, so it is a matter of
unsupervised learning (C). The profiles identified by our algorithms will then be
analyzed to extract specific diagnostics and recommendations (H) and help user
evaluate their consumption using specific performance scales (see figure 2.4.

One of the objectives of our system is to follow the evolution of the perfor-
mance of buildings and therefore to verify if they change consumption profile
category. For this, it is necessary that these categories be fixed (one cannot follow
the passage from one category to another if the categories themselves are mo-
vable). Placing an element in a set of predefined categories corresponds to semi-
supervised learning. This is the second type of method that we will apply (D). This
will allow us to detect evolutions in the consumption of buildings (change of type
of activities, deterioration of the building) and to evaluate if the recommended
energy performance actions have been effective (I).

Finally, another branch of the system will consist of comparing the predicted
consumption of a building with its actual consumption. This will allow evaluating
the energy savings resulting from the proposed energy performance actions (J).
This will also identify abnormal consumptions of buildings. See figure 2.6
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Figure 2.4 – Specific performance scales allowed by the clustering

In order to stay at the forefront of advances inMachine Learning, it is necessary
to be able to use newmethods and train newmodels easily, aswell as to select and
hybridize themost efficient models over time. This will be done using Energisme’s
ML-Factory and the development of complex inference graphs (G).

Finally, data lineage will be used to allow the system to adapt to the evolution
of the data and context, as well as to ensure the quality and veracity of the data
exploited.

2.3.7 Complex properties of the Decision Support System

After this overview of the DSS system, let us explore the complex properties of
our DSS for energy management. Key features of the DSS—scalability, resiliency,
feedback loops, distributed control, and heterogeneity (see 1.1)—mirror the dy-
namics of complex systems, enabling it to effectively navigate and adapt to the
evolving energy sector. We delve into how these properties enhance the system’s
functionality, ensuring it remains robust and responsive to the challenges and
opportunities in energy management.

Scalability (Distributed Architecture) : Our DSS leverages a distributed ar-
chitecture to handle the multiple and heterogeneous nature of energy data. This
design choice not only accommodates the vast volume of data from different
sources but also allows the system to scale up or down efficiently as the data vo-
lume grows or the processing needs change. Scalability is essential in complex sys-
tems for managing dynamic environments without compromising performance.

Resiliency (Distributed Architecture and DevOps) : The combination of dis-
tributed architecture and DevOps practices enhances the system’s resiliency. By
distributing data and processing across multiple nodes, the system can maintain
operations even if parts of it fail. DevOps practices further contribute to resiliency
by enabling continuous integration, continuous deployment, and rapid response
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Figure 2.5 – Specific diagnosis allowed by the clustering

Figure 2.6 – Energy perfomance actions evaluation allowed by forecasting
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to issues, ensuring the system remains robust and reliable in the face of changes
and challenges.

Feedback Loops (DevOps) : DevOps facilitates a culture of continuous lear-
ning and improvement through iterative development and feedback loops. In our
DSS, these feedback loops allow for the constant refinement of machine learning
models and preprocessing techniques based on performance outcomes and evol-
ving data characteristics. This adaptive approach is reflective of feedback mecha-
nisms in complex systems, where the system evolves through interactions within
itself and with its environment.

Distributed Control (Distributed Architecture) : The distributed nature of
our DSS implies that control and decision-making are not centralized but rather
spread across different components of the system. This distributed control mir-
rors complex systems where numerous agents or entities interact under local
rules without a central command, leading to more flexible and adaptive beha-
viors.

Heterogeneity (Complex Architecture) : The inherent heterogeneity of com-
ponents and actors within the DSS for energy management underscores its iden-
tity as a CSTS. This diversity spans various dimensions, including the multiplicity
of data types—ranging from energy consumption metrics across different utili-
ties to descriptive building data and variable meteorological conditions—and the
spectrum of stakeholders involved, from system developers and data scientists to
policy-makers and end-users. Each component and actor brings unique require-
ments and perspectives to the system, contributing to its complexity and neces-
sitating a nuanced approach to its governance and operation.

The application of DevOps methodologies plays a crucial role in harmonizing
these diverse elements, enabling the alignment of disparate actors towards the
efficient functioning of the DSS. By fostering a culture of continuous integration,
continuous deployment, and collaborative feedback, DevOps facilitates a dyna-
mic environment where the evolving needs of various stakeholders are met with
agility and precision. This collaborative approach ensures that technological de-
velopments are in step with the needs of the system’s users and the objectives
of energy management, thereby enhancing the system’s overall coherence and
effectiveness.

Self-organizationandevolution : TheDSS for complex energy systems exem-
plifies the principles of self-organization and evolution, crucial for navigating the
rapidly changing technological, environmental, economic, andpolitical landscapes
that challenge entities like the TTPEMP Energisme. This adaptability is not merely
a feature but a core aspect of the system’s design, allowing it to dynamically adjust
to new data types, emerging consumption patterns, and evolving regulatory fra-
meworks. By leveraging data lineage, the system ensures the integrity and quality
of data are preserved as the data landscape transforms.

Additionally, the integration of Energisme’s ML-Factory into our DSS facilitates
the continuous adoption and optimization of novel machine learning methodolo-
gies. This capability for self-organization extends the system’s evolution, enabling
it to autonomously refine its performance and strategies in response to external
changes. Such evolutionary adaptability guarantees that the DSS not only main-
tains its effectiveness amidst shifts in the energy sector but also empowers the
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TTPEMPEnergisme to proactively tackle forthcoming challenges and seize newop-
portunities. This self-organizing and evolutionary property ensures the system’s
sustained relevance and operational excellence in a dynamic environment.

Emergence? : This inherent capacity for self-organization and evolution wi-
thin the DSS means that the architecture itself is inherently mutable, subject to
changes and evolutions in ways that are unpredictable. Consequently, the spe-
cifics of the current architecture may eventually become obsolete, as the system
continuously adapts to new challenges and technologies in amanner that we can-
not precisely foresee.

In conclusion, the DSS for energy management is a quintessential example of
a complex system in action, embodying key characteristics such as scalability, re-
siliency, feedback loops, distributed control, heterogeneity, self-organization, and
the potential for emergent behavior. These properties are not merely incidental ;
they are integral to the system’s design, enabling it to effectively manage and na-
vigate the complexities of energy data and its governance. The DSS’s distributed
architecture and DevOps practices underpin its adaptability and robustness, en-
suring that it can scale and evolve in response to the rapidly changing landscape of
energy management. By embracing the principles of complex systems, the DSS is
poised to offer sustainable, adaptable, and innovative solutions to the challenges
faced by entities like the TTPEMP Energisme, demonstrating the profound impact
of applying complex systems theory to practical, real-world problems in energy
management.

In this chapter, we explored the governance and architecture of DSS within
the context of managing complex socio-technical systems, with a specific focus
on energy management. The discussion underscored the importance of balan-
cing automation with human oversight to ensure ethical, reliable, and accurate
decision-making in critical societal domains. Through the lens of semi-automation,
algorithm-in-the-loop, andhuman-in-the-loop frameworks, we addressed the chal-
lenges and opportunities these systems present in achieving fair and effective go-
vernance.

The adoption of DevOps methodologies and data lineage principles was high-
lighted as essential for maintaining the accuracy, reliability, and fairness of DSS.
These approaches not only facilitate rapid adaptation to new requirements but
also enhance the system’s ability to manage and process big data effectively. We
discussed the significance of distributed architectures in supporting scalability,
reliability, and transparency in decision-making processes.

Through the introduction of a proposed DSS architecture, we provided a de-
tailed overview of how such a system can be structured to handle the complexity
of energy data and decision-making processes. This architecture incorporates Big
Data processing techniques, machine learning methods, and a ML-Factory to en-
sure continuous improvement and adaptation of models and recommendations.

The chapter concluded by emphasizing the complex properties of the DSS,
including scalability, resiliency, feedback loops, distributed control, and hetero-
geneity. These characteristics are indicative of a complex socio-technical system

Loup-Noé Lévy Decision Support System 45



Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy
Management

capable of self-organization and evolution,making it well-equipped to address the
dynamic challenges in energy management. By applying complex systems theory
to the practical issues of energy management, the DSS demonstrates its potential
to offer sustainable, adaptable, and innovative solutions.

In essence, the governance and architecture of DSS for energy management
represent a confluence of technology, ethics, and policy, requiring a nuanced un-
derstanding of automation, human oversight, and data processing. The strategies
and methodologies discussed in this chapter provide a roadmap for developing
DSS that are not only technologically advanced but also ethically sound and so-
cially responsible.

Summary of Chapter 2

Governance of Semi-AutomatedDSSs :Governance in semi-automated DSS
integrates monitoring and automation, essential in high stakes sectors like
health, justice, and banking, to maintain trust in automated decisions. The
blend of automated systems and human intervention, known as « algorithm-
in-the-loop » or « human-in-the-loop » decision-making, ensures ethical, res-
ponsible decisions are made with algorithmic assistance.

Criteria for Ethical Decision-Making : Ethical algorithm-informed decision-
making requires accuracy, reliability, and fairness, with systems providing bet-
ter predictions than humans alone, users accurately assessing performance
and errors, and impartial interaction regardless of sensitive attributes.

Assessment of Automation Degree : The degree of automation can be eva-
luated based on time allocation for human operators, their qualification level,
the legal responsibility in case of failure, support for sustainable task perfor-
mance, system adaptation by the operator, access to relevant information,
and the operator’s agency to modify decisions.

European Regulation on Automated Decision-Making : EU GDPR Article 22
restricts fully automated decision-making with significant effects, advocating
for human intervention to ensure decisions adhere to ethical standards and
« just culture » principles, promoting a systemwhere frontline operators aren’t
penalized for actions on which they had little responsibility but where gross
negligence and willful violations are not tolerated.

DevOpsMethodology : Emphasizes the unification of software development
and operations, aiming to shorten development cycles and enhance reliability
through continuous integration, delivery, and deployment. Automated pro-
cesses and collaborative practices are key to its success, addressing issues of
accuracy and reliability in software deployment.

Addressing Accuracy, Reliability, and Biases : DevOps promotes a culture
of continuous improvement to minimize human errors and improve software
quality. While it can indirectly contribute to identifying biases in DSS through
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frequent testing and iteration, addressing biases directly requires specific data
science and AI ethics considerations.

Data Lineage for DSSs : Critical for ensuring the reliability, correctness, and
fairness of automated decision-making systems by providing a comprehen-
sive view of data’s journey and transformations. Data lineage helps identify
and correct errors, maintain data integrity, and address potential biases by
ensuring transparency in data processing.

Distributed Architecture : Facilitates scalability, reliability, and fairness, with
modular development, high availability, fault tolerance, and transparent decision-
making, suitable for managing big data and supporting DevOps practices for
rapid adaptation.

Big Data Processing : Utilizes Data Lake for raw data storage and Datamarts
for structured data processing, addressing the 5 V’s of Big Data—velocity, vo-
lume, value, variety, and veracity—through specific, efficient storage and pro-
cessing solutions.

Machine Learning Methods : Employs unsupervised clustering for building
profiling, supervised and semi-supervised learning for categorization, and fo-
recasting for performance evaluation, utilizing a ML-Factory for continuous
improvement and adaptation of models.

ML-Factory Integration : Adopts DevOps principles to extend automation
to ML algorithms, ensuring flexibility, iterative improvement, and adaptability
in processing and analysis, supporting continuous development and deploy-
ment.

Recommendation, Feedback, and Continuous Improvement : Focuses on
system resilience and adaptability to changes in data and methodologies, in-
corporating feedback mechanisms to refine recommendations and enhance
energy efficiency strategies.

Architecture of the DSS The proposed DSS detailed architecture can address
the governance and big data issues while maintaining a high level of automa-
tion and leveraging the state of the art Machine Learning methods for Deci-
sion Support in energy managment.

Complex System Properties : The DSS architecture demonstrates scalability,
resiliency, feedback loops, distributed control, andheterogeneity, indicative of
a complex socio-technical system capable of self-organization and evolution,
prepared to address the dynamic challenges in energy management.
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Chapter 3

Clustering Complex Systems

This chapter delves into the advanced algorithms for the clustering of com-
plex systems, with a particular focus on mixed data sets. It introduces the first
necessary family of methods employed by the Decision Support System (DSS) de-
tailed in Chapter 2. Our objective is to unpack and explore a variety of clustering
techniques, including partitional, hierarchical, model-based methods, and the in-
novative pretopology-based clustering, eachmeticulously tailored to navigate the
intricacies of mixed data.

A pivotal aspect of our discussion centers on Dimensionality Reduction (DR)
techniques. These techniques play a critical role in preprocessingmixed data, sim-
plifying its complexity to facilitate more effective clustering.

Moreover, we introduce pretopology-based clustering as a novelmixed hierar-
chical clustering approach. This method stands out for its high degree of customi-
zation and parametrization, offering substantial interpretability and applicability
across various domains.

The evaluation of clustering outcomes is another focal point, where we delve
into metrics indispensable for assessing the quality of clusters in terms of cohe-
sion, separation, and overall structure, enabling the validation of clustering me-
thodologies.

We introduce Complex Clustering as the clustering of dataset comprising nu-
merical, categorical and time series data.Wepresent innovative solution to cluster
and evaluate these data, one of which is the use of pretopology.

This chapter not only bridges the gap to understanding the sophisticated me-
thodologies enabling effective clustering of complex datasets but also highlights
their potential utility in energy systems and various other complex fields. Further-
more, it provides a solid foundation for analysing the datasets and results discus-
sed in the following chapter.

3.1 State of the Art

Research in the domain of mixed data clustering has mainly focused on mo-
difying existing clustering algorithms designed for either numerical or categorical
datasets to perform well on mixed data. From the survey [8], we can distinguish
four main types of clustering on which these works are based : partitional cluste-
ring, hierarchical clustering, model-based clustering and neural-network based clus-

tering.
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Partitional clustering works by dividing the dataset into a set of disjoint clusters
and evaluating the partition according to a defined cost function. Each cluster is
defined by a centroid created so that for each cluster, the distance between the
data points in this cluster and its centroid is minimum compared to the other
clusters’ centroids. Datapoints are iteratively relocated between clusters until an
optimal partition is reached, minimizing the cost function. The latter is generally
the summation of the distance between each datapoint of the dataset and the
cluster centroid nearest to it.

Hierarchical clustering aims to group the data into a hierarchy of clusters. It can
be divided into two main types : agglomerative and divisive. In the agglomerative
approach, we start by considering each datapoint as a cluster of its own. Then,
the algorithm calculates the similarity of each cluster with all the other clusters by
computing the similarity matrix. After this, it merges the nearest pairs of clusters
into one cluster. These two steps are repeated until only one cluster is remaining,
forming the hierarchy tree of clusters. The divisive approach is the opposite, star-
ting with one cluster containing all datapoints and recursively performing splits as
we move down the hierarchy. In both approaches, the observations of any num-
ber of clusters can be selected by cutting the hierarchy at the appropriate level.

Model based clustering is an approach in which we consider that a data object
matches a model, which in many cases, is a statistical distribution. From the data
objects we try to recover this original model which defines the clusters and the
assignment of data objects to these clusters.

One of themost well-knownmodels inmodel-based clustering is the finite mix-
ture model (FMM). In this approach, we assume that the dataset was generated
from a finite mixture of probability distributions, and aim to partition the dataset
into G different clusters. An FMM withG components is a probability distribution
in which the probability density function is a weighted summation of G distribu-
tions. Model-based clustering is an estimation problem that attempts to estimate
the value of G and the best partitioning based on the data.

Let X = (X1, ...,XM ) be aM -dimensional random variable. X represents the
different features values that a data object can have in a given dataset. If we de-
note x = (x1, ...,xM ) as one particular outcome of X , x is a possible data object
drawn from this dataset. It is said thatX follows a finite mixture distribution ofG
components if its probability density function denoted ψ can be written as :

ψ(x;α) =
G

∑

g=1

πghg(x;αg) (3.1)

where every distribution hg is parameterized by αg, {πg}
G
1 are the mixing proba-

bilities such that :
∑G

g=1πg = 1 and α= ((πg,αg);g = 1, ...,G). The distributions can
be from the same family or from different families, for example from beta and
normal distributions.

Neural-network based clustering methods mostly use deep neural networks to
transform input dataset into clustering-friendly representations ([12, 110, 77]).
Neural networks such as Multilayer Perceptron (MLP), Convolutional Neural Net-
works (CNN) or Generative Adversarial Network (GAN) can be used for this pur-
pose. Then, the representations, called latent features, are extracted from one or
more layers and are used as inputs of a specific clustering method. Typically, the
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loss function used for the network training is a combination of a network loss and a
clustering loss. Network loss constraints the network during the learning of latent
features to avoid the loss of information. Clustering loss is specific to the cluste-
ring method and the clustering-friendliness of the learned representations.

In our context, we may encounter mixed datasets with various characteristics.
Since some algorithms do not handle mixed data, we also introduced some DR
methods in the next section.

We implemented each of the following algorithms with similar input and out-
put. We present the following algorithms (many algorithms from the survey by
Ahmad and Khan [8] need a lot of change to be adapted to any dataset) :
• Dimensionality reduction

– Factorial Analysis of Mixed Data (FAMD), introduced by [46], see section
3.2.1 ;

– Laplacian Eigenmaps, introduced by [18], see section 3.2.2 ;
– UniformManifold Approximation and Projection (UMAP), introduced by
[107], see section 3.2.3 ;

– Pairwise Controlled Manifold Approximation and Projection (PaCMAP),
introduced by [154], see section 3.2.4.

• Partitional

– K-prototypes, introduced by Huang [70], see section 3.3.1 ;
– Convex K-Means also known as Modha-Spangler, introduced by Modha
and Spangler [113], see section 3.3.2 ;

• Model-based

– KAy-means forMIxed LArge data (KAMILA), introducedby Foss et al. [48],
see section 3.3.3 ;

– Model Based Clustering for Mixed Data (ClustMD), introduced by Mc-
Parland and Gormley [108], see section 3.3.4 ;

– Mixed Dataset and Dataset with Missing Values (MixtComp), introduced
by Biernacki [21], see section 3.3.5.

• Hierarchical

– Philip and Ottaway, introduced by Philip and Ottaway [127], see section
3.3.6 ;

– HDBSCANwith dimensionality reduction (DenseClus), introducedbyMcInnes
and Healy [106], see section 3.3.7 ;

– Pretopology, introduced by Lévy et al. [93], see section 3.3.8.

3.2 Dimensionality Reduction

Tohandle high-dimensionalmixeddata, and translate it into lower-dimensionality
numerical data, we need DR techniques. We use these techniques for preproces-
sing data, evaluating or visualizing results.

3.2.1 Factorial Analysis of Mixed Data (FAMD)

FAMD is a factorial method used to analyze mixed data. The idea here is to
apply factorial analyses on 2 separate groups of features (numerical and catego-
rical), then to combine the results.

Loup-Noé Lévy Clustering Complex Systems 51



Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy
Management

On a dataset includingK numerical variables k = 1, ...,K andQ categorical va-
riables q = 1, ...,Q. With z a numerical variable, we consider r(z,k) the correlation
coefficient between z and k and η2(z,q) the squared correlation ratio between z
and q. The mains steps of FAMD are :

1. Split data into 2 groups : one for numerical features, and one for categorical
features

2. Perform a Multiple Correspondance Analysis (MCA) over categorical fea-
tures. The objective is to maximize

∑

k r(z,k).

3. Perform a Principal Component Analysis (PCA) over the numerical features.
The objective is to maximize

∑

q η
2(z,q).

4. Perform a global PCA over the results of the 2 previous factorial analyses.
Then, the global objective of FAMD is to maximize :

∑

k

r(z,k)+
∑

q

η2(z,q) (3.2)

The explained inertia represents the amount of variance in the data that is ex-
plained by the principal components obtained from the analysis. It is similar to the
concept of explained variance in PCA for numerical data. With FAMD, the explai-
ned inertia is known (as it is a factorial method) and it does not require hyperpara-
meter tuning, which can lead to instability. However, FAMD may be limited when
there are too few observations (MCA becomes unstable) or when the number of
numerical features is much smaller than the number of categorical features. An
example of FAMD is shown in Figure 3.1a.

3.2.2 Laplacian Eigenmaps

Laplacian Eigenmaps is a spectral embedding technique, used for non-linear
DR. Laplacian Eigenmaps main steps are :

1. Compute the pairwise distance matrix of the dataset. To compute it over
mixed data, we use Huang’s distance :

dij = dN
ij +γdC

ij (3.3)

where : dij is the distance between two data points ; dN
ij is the squared Eu-

clidean distance over numerical features ; dC
ij is the Hamming distance over

categorical features ; γ is proportional to the average standard deviation of
numerical features. Ratio is user defined, usually its half.

2. Build an adjacency matrix from the distance matrix. This matrix W repre-
sents the edges of aweighted graph. To compute it,multiple solutions exist,
but themost common is theHeat Kernelmethod. The adjacencyWij is com-

puted from the distance dij usingWij = exp(−
dij

t ) where t is user-defined.

3. Compute the Laplacian matrix. Using a diagonal matrixD representing the
sum of the weights for every node, Dii =

∑

jWji. The Laplacian matrix is
L=D−W . Then, compute the eigenvectors f for the problem : Lf = λDf .

4. Select the eigenvectors that formour embedded low-dimensional space. As
the first eigenvector corresponds to the eigenvalue 0, them next following
eigenvectors are selected to build am dimension embedding.
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(a) FAMD in 2D with explained inertia
61.40%. (b) Laplacian Eigenmaps 2D with t = 1.

(c) UMAP 2D with k = 15.

(d) PaCMAP in 2 dimensions on the Pal-
mer Penguins Dataset with FAMD initia-
lization

Figure 3.1 – Dimensionality reduction on the Palmer Penguins dataset.
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This approach is similar to the one used by spectral clustering, and its results
may be interpreted within a clustering framework, see [18]. However, multiple
techniques can be used to compute the adjacency matrix, and these techniques
require hyperparameters, such as the parameter t, which can lead to significant
variations in the results. Additionally, unlike with factorial methods, the axes in
the low-dimensional space obtained through spectral embedding do not have a
specific meaning, leading to less interpretable results as shown in Figure 3.1b.

3.2.3 UniformManifold Approximation and Projection (UMAP)

UMAP is a non linear dimension reduction algorithm, that seeks to preserve
the local topological structure of the data. The idea is to initialize a first embed-
ding, then optimize it using gradient descent. The process is as follows :

1. Compute the pairwise distance matrix of the dataset. For mixed data, we
use Huang’s distance (Equation 3.3).

2. Compute the adjacencymatrix, representing the edges of aweighted graph.
To do so, we need an hyperparameter k, that is user defined (most com-
mon value is 15). The k nearest points are the « neighbors » of each node.
The similarity simij between nodes i and j is computed using Equation 3.4.

simij = exp(
dij−dN

σ
) (3.4)

where : dij is the distance between i and j ; dN is the distance between i and
its nearest neighbor ; σ is adjusted for each node, so that the sumofweights
for each node is log2(k). As this similarity is not symmetrical (simij 6= simji),
the final weight stored in the adjacency matrix is Wij = (simij + simji)−
simij ∗ simji.

3. Initialize UMAP with Spectral Embedding (such as Laplacian Eigenmaps)
over this graph. Any dimension reduction technique could be used for the
initialization (even a randomprojection in a low-dimension space), but Spec-
tral Embedding gives faster convergence.

4. Optimization. For a datapointA, select oneneighborN andonenot-neighbor
F datapoints. For those two points, compute the similarity score s with A
such that

s=
1

1+αdβ
(3.5)

with d the distance in the low-dimension space, α= 1.577 and β = 0.8951.
From sAN and sAF the similarities between A and N and between A and
F , compute the cost function (3.6) :

cost= log(
1

sAN
)− log(

1

1− sAF
) (3.6)

From this cost function, the point A is moved, using Stochastic Gradient
Descent to find the optimal position is the low-dimensional space.

UMAP preserves coherence over the local structure of the data as illustrated
in Figure 3.1c. This focus on the local structure leads to well defined groups of da-
tapoints in the projected space. Indeed, UMAP improves the results of numerical
clustering algorithms as shown by [13]. However, the number of neighbors k has
an impact on the results and could cause bias in their interpretation.
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3.2.4 Pairwise Controlled Manifold Approximation and Projec-

tion (PaCMAP)

PaCMAP method is quite similar to UMAP. Its idea is also to initialize a first
low-dimensional embedding, then to optimize it. However, PaCMAP aims to pre-
serve both local and global structures, whereas UMAP focuses mainly on the local
structure. PaCMAP’s main steps are :

1. Initializiation. With numerical-only data, Principal Component Analysis is
used to build a first low-dimensional embedding. With mixed-data, we use
FAMD, as it is considered as PCA’smixed-data counterpart. Note that contrary
to UMAP, initialization changes the results of PaCMAP.

2. Optimization : the following steps are repeated for 450 iterations. PaCMAP
relies on the concepts of Neighbors, Mid-Near Pairs and Further Pairs. For a
given datapointA, theNeighbors are the pairs formedbyA and its k (hyper-
parameter, typically 10) closest neighbors. Then, to define Mid-Near pairs,
sample 6 observations, and select the pair ofA 2nd closest sampled obser-
vation. The Further Pairs are the pairs of A and every other datapoint. The
number of Mid-Near and Further Pairs given by hyperparameters, relying
on the number of Near-Pairs.

3. Define a weighted graph (new graph for each iteration). The weights wNB ,
wMN and wF P for Neighbors, Mid-Near Pairs and Further Pairs are defined
depending on the kind of pair and the iteration.
• - First 100 iterations : wNB = 2, wMN linearly going from 1000 to 3,
wF P = 1 ;
- Iteration 101 to 200 : wNB = 3, wMN = 3, wF P = 1 ;
- Last 250 iterations : wNB = 1, wMN = 0, wF P = 1.

4. For each datapoint i, compute the loss function given by :

Loss= wNB×
∑

J

d̃ij

10+ d̃ij

+wMN ×
∑

K

d̃ij

1000+ d̃ik

+wF P ×
∑

L

d̃il

1+ d̃il

(3.7)

where : J the neighbors j of i ; K the mid-near points k of i ; L the further
points l of i ; ˜dAB = 1+ | |yA−yB | |

2.

5. Move i using Stochastic Gradient Descent over the computed Loss function
(Equation 3.7), to find its optimal position in the low-dimension space.

The use ofMid-Near Pairsmakes PaCMAPpreserve the global structure of data
better than UMAP does. Yet, in some cases, preserving the global structure (and
not only the local structure) might offer no benefits. An example of PaCMAP is
shown in Figure 3.1d.

3.3 Algorithms

In this section, we describe each implemented algorithm with its hyperpara-
meters and its pros and cons. We summarize the methods to provide a good un-
derstanding and overview of their process with a homogeneous vocabulary and
notations.
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3.3.1 Partitional clustering – K-prototypes

Themost knownpartitional clustering algorithm formixeddataset is K-prototypes.
By combining the dissimilarity measure between two numerical features, taken
from K-Means algorithm, and a matching dissimilarity measure between two ca-
tegorical features, taken fromK-Modes algorithm, the paper proposes a newdissi-
milaritymeasure (see Equation 3.3) between twomixed-type objects. In K-prototype,
a prototype is a mix between a centroid for numerical features and a mode for
categorical features.

Let γ be a user-defined hyperparameter. It is a weight for categorical attributes
in a cluster, in order to balance the influence of the two types of features. Let k
be a user-defined hyperparameter.

The algorithm can be decomposed in three steps :

1. Initial prototypes selection : For each of the k clusters, it selects a data ob-
ject from the dataset as the initial prototype.

2. Initial allocation : From the set of the initial prototypes, it allocates each
data object of the dataset to a cluster of data objects having the same clo-
sest prototype, according to the proposed dissimilarity measure. The pro-
totypes are updated after each data object assignment.

3. Re-allocation : After the assignment of each data object to a cluster, the
dissimilarity measures of each data object against each prototype is com-
puted. If a data object is more similar to the prototype of another cluster, it
is reallocated to this cluster. Then, the prototypes of the modified clusters
are updated.

The step (3) is repeated until no data objects have changed of cluster after all the
objects of the data dataset have been tested.

The main problem of the K-prototype is that the Hamming distance does not
capture well the similarity between categorical features, which is represented as
a 0 or 1 value depending on whether they are the same or different. To overcome
this problem, [7] modify Huang’s approach.

A major difference is in the similarity measure used for categorical features,
which is not anymore binary like the Hamming distance. Given a categorical fea-
ture, its distancewith another categorical feature value is computed regarding the
overall distribution in the dataset of these two features and their co-occurrence
with the other features, i.e the different combinations of the other features’ values
with these two features that are encountered in the observed datapoints.

Another major difference lies in the cost function, which uses for each nume-
rical features a weight that represents their significance, i.e. their importance in
the dataset and how they will influence the clustering. This parameter is not user-
defined like the previous γ parameter, but is determined from the dataset using
the proposed similarity measure. The numeric features are divided into intervals,
which are assigned to a categorical value, to compute this parameter. This dis-
cretization do not happen for clustering, which still use the Euclidean distance.
The new cost function also has a new centroid representation, represented by
the mean of all numerical values in the cluster (like in Huang’s algorithm) and the
proportional distribution of categorical values in the cluster.
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3.3.2 Partitional clustering – Convex K-Means

In Convex K-Means, given a dataset S of N data objects such that S = (xi; i =
1, ...,N), each data object xi is represented as a tuple ofM components of column
vectors such that xi = (F(i,m);m = 1, ...,M) where Fm = (F(i,m); i = 1, ...,N) is a
column vector denoted as a feature vector.

Given a dataset, a feature space is defined by a set of features chosen from
this dataset. This feature space contains all the values possible that the features
of this set can take. The dimension of this space is equal to the number of features
in the set.

Given a feature vector Fm, its components are all the values that the feature
m takes along the different data objects of S. For all xi, the components F(i,m) lie
in the same feature space Fm.

Given a data object xi = (F(i,1),F(i,2), ...,F(i,m), ...,F(i,M)), xi lies in a feature
spaceF , created by theM -fold Cartesian product of the features spaces {Fl}

M
m=1,

such that : F = F1×F2× ...×Fm× ...×FM . A feature vector Fm can differ from
the other feature vectors by its properties, especially by the type of the feature
m. Then, each feature spaceFm has its own properties (dimensions, topologies...)
and is different from the others.

Given two data objects xi = (F(i,m);m= 1, ...,M) and xj = (F(j,m);m= 1, ...,M),
they propose a distortion measure Dm between the two corresponding feature
vectors components F(i,m) and F(j,m). Dm is assigned to the feature space Fm

where F(i,m) and F(j,m) lie. From theM distortion measures that can be obtained,
they define aweighted distortionmeasureDα between xi and xj as a weighted sum
of theM distortion measures, such that :Dα(xi,xj) =

∑M
m=1αmDm(F(i,m),F(j,m)).

The features weighting is represented by the vector α= (αm;m= 1, ...,M), which
contains the weights relative to each Dm. They are refered to as feature weights
and define the importance of a feature vector in the clustering.

To adapt their algorithm to the mixed data case, they consider their dataset
to have two feature spaces : one consisting of numerical features and the other
consisting of categorical features. They represent a data object xi as a tuple of a
numerical feature vector component F(i,1) and a categorical feature vector com-
ponent F(i,2), such that : xi = (F(i,1),F(i,2)). The distortion measures D1 and D2

are respectively the Euclidean distance and the cosine distance.
Let the dataset be partitioned by the clusters {Cu}

U
u=1. Given a cluster Cu,

the cluster centroid is a tuple cu of M components, such that : cu = (c(u,m);m =

1, ...,M). Along the features spaces {Fm}
M
m=1, they denote the vector component

c(u,m) as the centroid of the cluster u lying in Fm with all the components of the
feature vectorFm. The centroid cu is determined by the data object thatminimizes
the sum of theDα between this data object and all the other data objects contai-
ned in Cu. To do so, each component c(u,m) is determined in the same way as cu,
but by minimizing the sum of the Dm between the feature vector components,
such that : c(u,m) = argmin

F(j,m)∈Fm

(
∑

xi∈uDm(F(i,m),F(j,m))).

They propose a method to automatically identify feature weights in order to
reach a gooddiscrimination between clusters along the features spaces {Fm}

M
m=1.

To do so, they define in the feature space Fm the average within-cluster distortion
denoted Γm and the average between-cluster distortion denoted Λm. A given fea-
tures weighting α gives : Γm(α) =

∑U
u=1

∑

x∈Cu
Dm(Fm, c(u,m)) where x= (Fm;m=
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1, ...,M) andΛm(α) =
∑N

i=1Dm(F(i,m), cm)−Γm(α)where c= (cm;m= 1, ...,M) de-
notes the generalized centroid of the dataset. The « best » α minimizes the M -
product of the ratio between Γm and Λm and this optimal weighting scheme is
found through an exhaustive grid-search. This is done by repeatedly running the
algorithm with different features weightings over a fine grid on the interval [0,1].

The algorithm can be decomposed into three steps :

1. Start with an arbitrary partitioning by selecting initial centroids.

2. Find the closest centroid for each data object using the proposed distortion
measure.

3. Compute thenew centroids using the centroids definitionmentioned above.

Steps (2) and (3) are repeated until a stopping criterion is met.
The main drawback of this algorithm is its computational cost, which is high

due to the brute-force search of feature weightings. The hyperparameters of the
algorithm are the number of clusters to determine k and the granularity of the
exhaustive grid-search. Due to its limitations, Convex K-Means does not meet our
needs and often fails to provide satisfactory results on large datasets.

3.3.3 Model-based clustering – KAMILA

KAMILA is a combination of k-means clustering with the Gaussian-multinomial
mixture model.

Parametric assumptions refers to how algorithms assume the data to be « sha-
ped ». For example, k-means clustering typically assumes that the clusters’ shapes
are spherical and are of similar size. A Model-based clustering assume that the
clusters’ shapes are defined by a given statistical distribution. Some parametric
assumptions are more restrictive than others and algorithms’ performances de-
pend on how strong the parametrics assumptions are but also if the data meet
them.

Like theK-means clustering algorithm, KAMILA assumes that the clusters’ shapes
for numerical data are spherical or elliptical, which are not strong parametric as-
sumptions. KAMILA also uses the properties of Gaussian-multinomialmixturemo-
del [71] to equitably balance the effects of numerical and categorical data without
making the user specify the weights of both.

The use of the Kernel Density Estimation (KDE) to estimate the mixture distri-
bution of numerical data relaxes the Gaussian assumption. Indeed, assuming that
numerical data follows a Gaussian distribution with its parameters (mean and co-
variance), a non parametricmethods like KDE can estimate the probability density
function without information about the distribution.

Let the dataset S consists of N observations, such that : S = (Xi; i = 1, ...,N)
whereXi is the i-th observation.P denotes the number of numerical features and
Q the number of categorical features. Each Xi is a (P +Q)-dimensional vector
of random variables (V T ,W T )T , such that : Xi = (V T

i ,W
T
i )T where V = (Vi; i =

1, ..,N) andW = (Wi; i= 1, ..,N). Vi is aP×1 vector of numerical randomvariables
andWi is a Q×1 vector of q = 1,2, ...,Q categorical random variables, such that :
Wi = (Wi1, ...,Wiq, ...,WiQ)T where Wiq is a categorical random variable that can
have Lq categorical levels, i.e the Lq different categorical values thatWiq can take,
such that :Wiq = {1, ..., l, ...,Lq}. Then, a mixed data object xi is modeled as vector
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composed of a numerical part represented by a vector vi and a categorical part
represented by a vector wi, such that : xi = (vi,wi)

Each Vi follows a finite mixture ofG spherical or elliptical distributions (choice
madeby theuser) such that in this case (see Equation 3.1) :hg(x;αg) = fV,g(vi; (µg,Σg))
where µg denotes the centroid of the g-th cluster and Σg the scaling matrix of the
g-th cluster.

Each Wi follows a finite mixture of G multinomial distributions such that in
this case (see Equation 3.1) : hg(x;αg) = fW,g(wi;θg) =

∏Q
q=1 η(wiq;θgq) where θg =

(θqg;q = 1, ...,Q), θqg denotes the parameters vector of the multinomial distribu-
tion corresponding to the q-th categorical variable contained in the cluster g and
η is the multinomial mass function. θqg is a Lq× 1 vector such that θqg = (θgql; l =
1, ...,Lq). Each θgql is the probability that the q-th categorical variable has the cate-
gorical level l if the data object xi is in cluster g. The multinomial mass function is
written as :

η(wq;θgq) =
Lq
∏

l=1

θ
I{wq=l}
gql (3.8)

where I{·} denotes the indicator function.
Under the assumption that V andW are independent, the dataset S follow a

finite mixture of G joint probability distributions of (V T ,W T )T such that in this
case (see Equation 3.1) : hg(x;αg) = fV,W,g(v,w; (µg,Σg, θg)) = fV,g(v; (µg,Σg))×
fW,g(w;θg).

We denote µ̂g the estimator of µg and θ̂gq the estimator of θqg. The algorithm

starts by initializing at iteration t= 0 a set of centroids µ̂(t)
g and a set of parameters

θ̂
(t)
gq . µ̂

(0)
g can be initialized by random draws from an uniform distribution, but

another work of [49] specifies that random draws from the numerical variables

of the observations give better results. θ̂(0)
gq is initialized by a random draw from a

Dirichlet distribution.
First comes the partition step, which assigns each observation i to a cluster g

according to the quantity H(t)
i (g). At the t-th iteration, with the set µ̂(t)

g and θ̂(t)
gq ,

the assignment of an observation i can be decomposed in 4 steps :

1. For the numerical features, the Euclidean distances d(t)
ig between vi and

each µ̂
(t)
g are computed before extracting the minimum distance. These

two substeps are performed for the N observations before obtaining the
set r(t) of the N minimum distances.

2. r(t) is used to estimate fV through an univariate KDE step. KDE is a non-
parametric estimationmethod used to estimate a density function of a ran-
dom variable. This estimation is denoted f̂V .

3. For the categorical features, the probability fW,g(wi;θg) of observing wi in
cluster g is calculated.

4. The functionH(t)
i (g) = log(fW,g(wi;θg))+log(f̂V (d

(t)
ig )) is calculated. The ob-

servation i is assigned to the cluster that maximizes H(t)
i (g).

Then comes the estimation step, where µ̂(t+1)
g and θ̂(t+1)

gql are calculated. They
are computed respectively as the mean of the numerical values in cluster g over
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the number of data objects in g and the mean of the number of occurrences of
the categorical level l in cluster g over the number of data objects in g. The two
estimators are then used as inputs for the partition step of the next iteration.

The process consisting of these two steps is repeated until a partition with
stable clusters. Multiple runs of this process are performed with different initia-
lization. At the final iteration of a given run, the sum over the N observations of

the highest value of H(final)
i between the G clusters. The algorithm outputs the

partition generated by the run that maximizes the objective function.
The hyperparameter of this algorithm is the number of runs to perform.

3.3.4 Model-based clustering – ClustMD

ClustMD uses a latent variable model (LVM). LVM’s main idea is that the ob-
served datapoints are correlated and forms particular patterns because they are
influenced by hidden variables, called latent variables.

LetS denote a dataset ofN observeddata objects, such thatS= (xi; i= 1, ...,N).
Each observed data object is a vector that contains m mixed types variables (nu-
merical, ordinal or categorical), such that : xi = (xim;m = 1, ...,M). The proposed
model assumes that a given observed data object xi is the manifestation of an
underlying latent numerical vector zi, such that zi = (zim;m = 1, ...,M). This re-
presentation enables to represent the different types of data with one unified
type of variable.

The model proposes 3 ways to represent an observed datapoint regarding its
type :
• Case of numerical data : A given numerical variable xim is a numerical ma-
nifestation of a latent numerical variable zim that follows a Gaussian distri-
bution. Both are of the same type, then : xim = zim ∼N (µm,σ

2
m).

• Case of ordinal data : A given ordinal variable xim withLm levels is a catego-
rical manifestation of a latent numerical variable zim following a Gaussian
distribution, i.e zim ∼N (µm,σ

2
m). Both are of different type, so an adapta-

tion is needed. Let γm denotes a Lm + 1 vector of thresholds that partition
the real line, such that : γm = (γ(m,l); l = 1, ...,Lm). The observed datapoint
xim is defined such that if γ(j,l−1) < zim < γ(j,l), then xim = l. After this adap-
tation, xim is numerical so : xim = zim ∼N (µm,σ

2
m).

• Case of categorical data : A given categorical variable xim with Lm levels is
a categorical manifestation of the components of a numerical latent vector
zim of dimension Lm− 1. The vector zim follows a Multivariate Gaussian
(MVN) distribution, i.e. zim = (zl

im; l = 1, ...,Lm − 1) ∼ MVNLm−1(µ
m
,Σm),

whereµ
m
is themean vector andΣm is the covariancematrix. The observed

data object xim is defined such that :

xim =







1 if maxl{z
l
im}< 0 ;

l if zl−1
im = maxl{z

l
im} and z

l−1
im > 0 for l = 2, ...,Lm

They represent the dataset as a matrix of N rows andM columns. Supposing
that the numerical variables are in the first C columns, the ordinal and binary va-
riables in the followingO columns and the categorical data in the finalM−(C+O)
columns. Let P = C +O+

∑M
m=C+O+1(Lm− 1), which is equal to the number of
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mixed type variablesM . In ClustMD, zi follows a mixture of Gmultivariate Gaus-
sian distributions of P dimensions, i.e zi ∼

∑G
g=1πgMVNP (µ

g
,Σg), where πg is the

marginal probability of belonging to cluster g, µ
g
the mean for cluster g and Σg

the covariance for cluster g.

The ClustMDmodel is fitted, i.e obtaining the parameters of the statistical dis-
tributions in the mixture for which ClustMD describes the best the observed data,
using an Expectation-Maximization (EM) algorithm. EM is an iterativemethodused
to find the maximum likelihood estimate of a latent variable, in our case zi. The
ClustMD model derives firstly the complete data log-likelihood. Then, the Expec-
tation step will compute the expectation of this complete data log-likelihood with
respect to zi. If categorical variables are present, a Monte Carlo approximation al-
gorithm is used for the Expectation step. Finally, the Maximisation step will maxi-
mize the value of this expectation with regard to the model parameters.

3.3.5 Model-based clustering – MixtComp

This model-based clustering aims to cluster mixed dataset and dataset with
missing values in a moderate dimensional setting. It is a statistical method for
clustering mixed data, which combines the strengths of model-based clustering
and Bayesian approaches. The method models mixed data as a mixture of mul-
tivariate distributions, with each component representing a cluster. It can handle
different types of data, including continuous, discrete, and mixed data, as well as
missing data. The method incorporates a latent variable model that captures the
hidden structure of the data, enabling it to handle complex data structures. The
clustering is performed through a Bayesian inference process, which estimates
the number of clusters, cluster parameters and the latent variables that capture
the underlying structure of the data.

Let the dataset S consists of N observations, such that : S = (Xi; i = 1, ...,N)
where Xi is the i-th observation. One particular outcome of Xi is the data object
xi, which hasM different features, such that : xi = (xim;m= 1, ...,M). A data object
is decomposed in three parts : numerical, categorical and integer, such that : xi =
(xnumi ,xcati ,xinti ). Each xim is contained in one of the three parts.

EachXi follows a finite mixture distribution ofG probability distributions such
that (see Equation 3.1) :h(xi;αg) = f(xnumi ;αnumg )×f(xcati ;αcatg )×f(xinti ;αintg )where
αg = (αgm;m= 1, ...,M). The density function f is an univariate distribution asso-
ciated to the featurem if the data object xi is in cluster g.

The probability distribution of g is chosen depending on the type of its corres-
ponding featurem :

• Numerical type : the Gaussian model of [28] is used.
• Categorical type : the multinomial model is used in the same way as KA-
MILA algorithm described in section 3.3.3. In this case, let the data object
xim haveLm categorical levels, i.e xim ∈ {1, ..., l, ...,Lm}. Then, f(xim;αgm) =
η(xim;αgm) where αgm = (αgml; l = 1, ...,Lm) (see Equation 3.8).
• Integer type : the Poisson distribution of parameter αgm is used, such that :

f(xim;αgm) = (αgm)xime−αgm

xim! .

To fit the model, MixtComp uses a variation of EM algorithm.
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3.3.6 Hierarchical clustering – Philip and Ottaway

[127] propose to use Gower’s similarity measure to obtain a similarity matrix,
which is then used as input for a hierarchical clustering algorithm. Gower’s si-
milarity measure separates categorical and numerical features into two subsets,
creating one categorical feature space and one numerical feature space. In the
categorical feature space, the similarity between two datapoints is computed by
a weighted average of similarities between all categorical features, which is cal-
culated using Hamming distance. In the numerical feature space, the similarity
between two datapoints is computed by the sum of the similarities between all
numeric features.

The equation for Gower’s similarity measure is (by [58]) :

sij =

∑p
k=1w

(k)
ij s

(k)
ij

∑p
k=1w

(k)
ij

(3.9)

where sij is the similarity between data points i and j, s(k)
ij is the similarity between

data points i and j for feature k, p is the number of features.w(k)
ij is equal to 0when

s
(k)
ij cannot be calculated because of missing values (or for other reasons).

If feature k is categorical, then s(k)
ij is defined as :

s
(k)
ij =







1 if data points i and j have the same value for feature k,

0 otherwise.
(3.10)

If feature k is numerical, then s(k)
ij is calculated as follows :

s
(k)
ij =

|x
(k)
i −x

(k)
j |

Rk
(3.11)

where x(k)
i and x(k)

j are the values of data points i and j for feature k, and Rk is
the range of values for feature k.

3.3.7 Hierarchical Density-Based clustering – DenseClus

Amazonproposes a pythonmodule namedDenseClus 1. Thismodule performs
aDRwithUMAPmethodbefore using acceleratedHDBSCANalgorithm from [106],
an extension of HDBSCAN algorithm from [27].

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with
Noise) is a hierarchical density-based clustering algorithm. A density-based clus-
tering algorithm identifies contiguous regions of high density of objects in a data
space, separated from other such clusters by contiguous regions of low density.
The objects in the separating regions of low density are typically considered as
noise/outliers (see [136]).

Given a dataset S of N objects, such that S = (xi; i = 1, ...,N), they define a
core distance of a data object xi with regard to the hyperparameter k, denoted

1. https://github.com/awslabs/amazon-denseclus
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dcore(xi), as the distance from this data object to its k-nearest neighbor, i.e the
k-th data object closer to it. Core distance is smaller for a data object in a dense
region of data objects, while sparser regions give larger core distances to objects.
Core distance enables to estimate the density of a region, by taking the inverse of
the core distance.

They also define a data object xi as an ǫ-core object for every value of the para-
meter ǫ that satisfies dcore(xi)≤ ǫ. This is equivalent to saying that the data object
xi has its k-nearest neighbors in the neighborhood defined by ǫ.

From the concept of the core distance, they define a new distance metric bet-
ween two objects called mutual reachability distance. Given two objects xi and xj ,
the mutual reachability distance is computed as :

dmreach(xi,xj) = max{dcore(xi),dcore(xj),d(xi,xj)}

where d(·, ·) denotes a metric distance. The mutual reachability distance cap-
tures not only the distance between the two objects in the Euclidean space but
also the density of their neighborhood.

They represent their data as a weighted graph called the Mutual Reachability
Graph. In this graph, the objects are considered to be the vertices. An edge bet-
ween any two objects is considered to have a weight equal to the mutual rea-
chability distance between the two objects. To model the cluster, all edges having
weights greater than ǫ are removed and the remaining groups of connected ǫ-core
objects constitutes the clusters. The remaining unconnected objects are conside-
red as « noise ».

Clusters hierarchy is built with a divisive fashion (considering firstly all objects
being contained in a single cluster) and by varying the value of ǫ. After computing
the core distance with regard to k for all data objects in S, the algorithm com-
putes the graph and extract the Minimum Spanning Tree (MST) from it using the
Prim’s algorithm. A MST is a subset of a graph that connects all the vertices of
this graph together such that the sum of the edges weight is minimum. Then, it
iteratively removes all edges from the MST in decreasing order of weights. This is
done by sorting the edges of theMST in an increasing order and gradually decrea-
sing the value ǫ so that a given edge with a weight above ǫ is removed. ǫ acts as
a distance threshold, so that its variation gradually disconnect objects from their
clusters. This is equivalent to gradually increasing a density threshold λ = 1

ǫ , so
that a cluster not dense enough will be split. λ is increased until no split is perfor-
med anymore.

Splits are not performed in a classical way but occurs under particular constraints.
A minimum cluster size parameter ω defines the minimum number of objects ac-
cepted in a cluster. When a parent cluster is split into two child clusters, if any
of the two child cluster contains fewer objects than ω, the split is considered as
« spurious ». The child cluster in question will be considered as « falling out of the
parent cluster » at the given λ value, labelled as « noise » and removed from the
cluster. Three cases can be encountered after a cluster split :

1. The two child clusters’ sizes are below ω. The child clusters are removed
from the parent cluster. No other splits are executed after.

2. If only one child cluster’s size is higher than ω, it is considered as the conti-
nuation of the parent cluster and takes its parent cluster’s label. The same
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cluster size evaluation process is repeated on it while the other child cluster
is removed.

3. If more than one child cluster containsmore than ω data objects, the split is
considered as « true ». Two child clusters are obtained and the same cluster
size evaluation process is repeated on them.

We can consider that the parent cluster is « shrinking » through the splits of
case (2), until case (1) or case (3) is encountered.

From the obtained dendrogram, the clusters extraction is applied according
to the stability of the clusters, i.e their capacity to keep shrinking until a « true »
split occurs as λ increases. Let S be partitioned by the clusters {Cu}

U
u=1. Given

a cluster Cu and a data object x, they define λmin,Cu
(x) as the minimum λ value

for which the data object x is contained in Cu. In other words, λmin,Cu
(x) is the

value of λ at which this cluster became a cluster of its own (after a split or from
the root of the dendrogram). They define λmax,Cu(x) as the value of λ when the
data object x falls out of cluster Cu. Then, the stability of a cluster Cu, denoted
σ(Cu), is determined as : σ(Cu) =

∑

x∈Cu
λmax,Cu(x)−λmin,Cu

(x). The partition of
U clusters that maximizes the score

∑

u∈U σ(Cu) is selected under the following
constraint : the partition cannot contain overlapping clusters. This is equivalent to
the following condition : if a cluster is selected, its child clusters cannot be selected.

The algorithmhas a quadratic complexity, which limits its applicability for large
amount of data. To overcome this problem, [106] proposes an accelerated ver-
sion of HDBSCAN. In this algorithm, Prim’s algorithm is replaced by the Dual Tree
Boruvka algorithm proposed by [103], which is designed to determine MST in a
metric space. Accelerated HDBSCAN adapted this algorithm to themutual reacha-
bility distance and presents a log-linear complexity.

3.3.8 Hierarchical clustering – pretopoMD

Pretopology allows for the extraction, organization, and structuring of data
into homogeneous groups, aswell as the integration ofmulticriteria analysis (using
quantitative data, qualitative data, and other types of characteristics describing
complex systems, such as time series). Pretopology-based clustering exploits the
logical construction of pretopological spaces to define the construction of hierar-
chical structures according to the similarity between elements on specific cha-
racteristics. The theory of Pretopology is described in more details in the next
section (3.4), Pretopology-based clustering and its application for clustering com-
plex energy systems have been presented in [93], and it’s application on different
dataset are discussed in Chapter 4 and in Subsection 5.2.6).

A pretopological space is based on the concept of pseudoclosure : let (U,a(.))
be a tuple, where U is a set of elements and a(.) is a pseudoclosure function on
U , constitutes a pretopological space.

We define a pseudoclosure function a : ℘(U)→ ℘(U) on a set U , is a function
such that : a(∅) = ∅ ; ∀A | A⊆ U : A⊆ a(A), where ℘(U) is the power set of U.

The mathematical formalization of a pretopological space used in the cluste-
ring algorithm presented is based on three elements :
• A set of weighted directed graphsG=G1(V1,E1),G2(V2,E2), ...,Gn(Vn,En),
• A set of thresholds Θ = θ1, θ2, ..., θn
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• A boolean functionDNF (.) : (℘(U),U)→ True,False, expressed as a posi-
tiveDisjunctiveNormal Form (DNF) in termsofnboolean functionsV1(A,x), . . . ,Vn(A,x),
each associated with a graph, and whose truth value depends on the set A
and the item x.

We determine if an item x ∈ U belongs to the pseudoclosure of a set A in the
following way :
• ∀Vi(A,x), Vi(A,x) = True⇐⇒

∑

exy∈Gi,y∈Aw(exy)≥ θi, where exy is the edge
going from x to y, and w(e) is the weight of the edge e.
• The item x ∈ U will belong to the pseudoclosure of A⇐⇒ theDNF (.) eva-
luates to True

This formalization was introduced in [85].
Exploiting the built preotopological space, the construction of a hierarchical

clustering is applied following the following algorithm :

1. Determine a family of elementary subsets called seeds.

2. Construct the closures of the seeds by iterative application of the pseudo-
closure function.

3. Construct the adjacency matrix representing the relations between all the
identified subsets (even the intermediate ones).

4. Establish the quasi-hierarchy by applying the associated algorithm on the
adjacency matrix.

This pretopological-based clustering approach is being implemented in a Py-
thon library and can be applied simultaneously to various data types, making it a
versatile and powerful clustering method.

3.3.9 In short

Table 3.1 shows the characteristics of the different algorithms such as its type
or the use of tandem analysis. An algorithm’s ability to produce outliers, or to
handlemissing valuesmight differentiate it from others. Also, algorithms needing
a hyperparameter k for the number of clusters to findmust use the ElbowMethod
to find k, which could extend the computation time artificially.

Algorithm Type Needs K Tandem Missing Values Outliers
K-Prototypes Partitional Yes - No No
Modha-Spangler Partitional Yes - Yes No
Phillip & Ottaway Hierarchical Yes - No No
Kamila Model-Based Yes - No No
ClustMD Model-Based Yes - No Yes
MixtComp Model-Based Yes - Yes Yes
DenseClus Hierarchical No UMAP No Yes
Kmeans-FAMD Partitional Yes FAMD No No
Pretopology Hierarchical No FAMD

UMAP
PaCMAP

No Yes

Table 3.1 – Characteristics of the different algorithms.
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Figure 3.2 – Example of a pseudoclosure function.

3.4 Pretopology

3.4.1 Theoretical Framework of Pretopology

In this section, we provide an overview of the fundamental concepts and de-
finitions in pretopology. We will start with a description of pretopological space
and pseudoclosure.

Définition 3.1. A pseudoclosure function a : ℘(U)→ ℘(U) on a set U of ele-
ments is a function that satisfies :
• a(∅) = ∅
• ∀A | A⊆ U : A⊆ a(A)

where ℘(U) represents the power set of U .

The pretopological space for a dataset is constructed based on the features of
the dataset, taking into account the different types (numerical, categorical, etc.).
Through the pseudoclosure function, it establishes relationships between sets of
elements and their subsets.

Définition 3.2. A pretopological space is a tuple (U,a(.)), where U is a set of
elements and a(.) is a pseudoclosure function on U .

The previous definition determines the most general pretopological space. By
asking the function to fulfill some additional conditions we get more specific pre-
topological spaces :

Définition 3.3. If ∀ A,B | A ⊆ U , B ⊆ U : A ⊆ B =⇒ a(A) ⊆ a(B), then we
get a pretopological space of type V . Otherwise we call it a non-V space.
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Figure 3.3 – Closure of set A, a4(A) = F (A).

Définition 3.4. In a pretopological space, the closure of a set A denoted as
F (A) is determined by iteratively applying the pseudoclosure operator to the
set and its subsequent images until no further expansion occurs (see Figure
3.3).

Définition 3.5. Given a pretopological space (U,a(.)), any subset A of U is
said to be a closed subset of U if and only if A= a(A)

Définition 3.6. In a pretopological space, the closure of a subset A of U is
the smallest closure that contains A, denoted as F (A).

Nowwe introduce our framework for formalizing a pretopological space,which
is based on, and adapts the work of Julio Laborde [85]. This framework is illustra-
ted in figure 3.4 . In this framework, a pretopological space is characterized by a
tuple (G,Θ,DNF (.)), where :
• G=G1(V1,E1),G2(V2,E2), ...,Gn(Vn,En) represents a collection of nweigh-
ted directed graphs.
• Θ = θ1, θ2, ..., θn is a set of n thresholds, each associated with a specific
graph.
• DNF (.) : (℘(U),U)→ True,False is a boolean function defined as a posi-
tive DNF involving the n boolean functions V1(A,x), ...,Vn(A,x), each asso-
ciated with a graph. The truth value depends on the set A and the element
x.

To determine if an element x ∈ U belongs to the pseudoclosure of a set A, we
determine the values for V function and the DNF :
• For eachVi(A,x),Vi(A,x) =True if andonly if

∑

exy∈Gi,y∈Aw(exy)≥ θi, where
exy denotes the edge from x to y, and w(e) represents the weight of the
edge e.
• The element x ∈ U belongs to the pseudoclosure of A if and only if the
DNF (.) evaluates to True.
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Figure 3.4 – Illustration of the framework formalizing a V-type pretopological space
[85]
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In essence, this process checks if the sum of the edge weights connecting the
element x to the elements within A is greater than the threshold associated with
the graph in each graph. If this condition is met, the boolean variable corres-
ponding to that graph takes the value True ; otherwise, it takes the value False.
If DNF (.) evaluates to True given the values of the boolean functions Vi(A,x),
then the element belongs to the pseudoclosure.

A pretopological space is created from a dataset in the following way. Each
graph in G corresponds to a characteristic of the dataset. In each graph, a vertex
represents an element of the system under study, and an edge represents the
similarity between two elements with respect to the corresponding characteristic.

The thresholds, similarity functions, and the DNF are hyperparameters deter-
mined based on the nature of the characteristic and its importance in the cluste-
ring process. Default values and functions for these hyperparameters are discus-
sed in subsection 3.4.3.

3.4.2 PretopoMD Algorithm

This section outlines the algorithms developed in a Python library for construc-
ting closures and building hierarchical clustering of mixed data. The algorithm,
provided as pseudocode in Algorithm 1, is organized into four stages :
• Identify a family of elementary subsets, referred to as seeds.
• Construct closures of seeds through iterative application of the pseudoclo-
sure function.
• Create the adjacency matrix representing relationships between all reco-
gnized subsets, including intermediate ones.
• Determine the quasi-hierarchy by applying the corresponding algorithm to
the adjacency matrix.

Algorithm 1 QuasistructuralAnalysis : Algorithm for building a quasi-hierarchy
from pretopological space.

Require: ((U,a(.)),d,seed_Func(.), thqh)
Ensure: Setsqh,Adjqh

seed_List← Set_Seeds((U,a),d,seed_Func)
Setsipc← Iterative_Pseudoclosure((U,a), seed_List)
Atr← Attraction_Matrix(Setsipc)
Setsqh,Adjqh←QuasiHierarchy(Setsipc,Atr, thqh)

Several methods can be employed to identify seeds. As a result, the algorithm
is influenced by the following two hyperparameters :
• The seed_Func(.) function, which determines a set of nearby elements for
a given element, constituting a seed.
• The degree d specifies the size of the seeds.

An additional hyperparameter is required by the Extract_Quasihierarchy algo-
rithm to establish the quasi-hierarchy : thqh, representing the threshold above
which two sets are considered related in the hierarchy.

We will now discuss each stage of the algorithm in detail.
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Computation of a Family of Elementary Sets or Seeds

The goal here is to determine elementary subsets of size d, referred to as
seeds, using the seed_Func(.) function, which is responsible for finding the re-
quired d neighbors. This is accomplished by iterating over all points in the set U ,
associated with the pretopological space p. The pseudocode for the resulting al-
gorithm (named Elem_Quasiclosures) is provided in Algorithm 2.

Algorithm 2 Set_Seeds : Construction of the seeds of size d by applying the func-
tion seed_Func(.) on all the elements of the set U .

Require: ((U,a(.)),d,seed_Func(.))
Ensure: seed_List
seed_List← list()
for all x ∈ U do

seed← seedFunc(x,d)
seed_List.append(seed)

end for

Creation of Subsets through Iterative Pseudoclosure Applications

The Set_Seeds function constructs the subsets that will be organized by the
quasi-hierarchy algorithm, utilizing the seed list seedList previously computed by
Elem_Quasiclosures. For each seed in seed_List, the membership function is itera-
tively applied until the pseudoclosure no longer results in larger sets.

The subsets are stored in a list of sets calledQFtmp, which indexes the subsets
according to the number of elements they contain. The subsets of size s are stored
in the s-th position ofQFtmp. Because the pseudoclosure function a(.)only returns
a set that is larger or equal in size, applying the pseudoclosure function to the sets
in ascending order of size ensures that all elements are processed once and only
once.

The list Setsipc, constructed from the lists in QFtmp, is then returned. The cor-
responding pseudocode is provided in Algorithm 3.

Creation of the Attraction Matrix

The iterative application of a pseudoclosure to two seeds can create distinct
sets that have non-empty intersections. Traditional hierarchies of sets only deal
with sets that either have no intersection or are contained within one another
(i.e., subsets and supersets). Hence, another type of relationshipmust be defined,
called a quasi-hierarchy.

First, in algorithm 4, an attraction matrix is built, representing the “attraction”
that sets have for each other. We use the term attraction to represent a non-
symmetrical relationship between two intersecting sets, based on the size of each
set and the size of their intersection. It is based on the following principles :
• Two subsets should only be attracted to each other if their intersection is
non-empty (i.e., A∩B 6= ∅),
• The larger the cardinality of the intersection A∩B relative to that of A, the
stronger the attraction between A and B,
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Algorithm 3 Iterative_Pseudoclusure : Calculation of subsets by iterative appli-
cation of the pseudo-closure function.

Require: ((U,a(.)), seed_List)
Ensure: Setsipc

QFtmp a list of Size(U) of empty sets
for all seed ∈ seed_List do

QFtmp[Size(seed)].append(seed)
end for

for all i ∈ range(1,Size(U)+1) do
for all s ∈QFtmp[i] do

as← a(s)
if as not in lists of QFtmp then

QFtmp[Size(as)].append(as)
end if

end for

end for

Setsipc← list()
for all i ∈ range(Size(QFtmp)) do

Setsipc.extend(QFtmp[i])
end for

• The larger the cardinality of the subset B relative to that of A, the less ne-
cessary it is for A∩B to be large for the relation between A and B to be
strong. In other words, a very large set will attract smaller sets even if their
intersection is not very large.

Algorithm 4 Attraction_Matrix : Construction of the attraction matrix for the
quasihierarchy.

Require: (Setsipc)
Ensure: Atr
Atr← Squared_Matrix_Zeros(size(Setsipc))
for all A,B ∈ Setsipc do

A_has_B← Size(A∩B)/Size(B)
B_has_A← Size(A∩B)/Size(A)
A_bigger_B← Size(A)/Size(B)
B_bigger_A← Size(B)/Size(A)
Atr[B_index,A_index] =B_bigger_A∗B_has_A
Atr[A_index,B_index] = A_bigger_B ∗A_has_B

end for

Creation of the Quasi-Hierarchy

The quasi-hierarchy is defined by a list of sets and an adjacency matrix. The
adjacency matrix is derived from the attraction matrix by determining whether
the attraction values in the attractionmatrix surpass the threshold thqh. The quasi-
hierarchy is established by applying the following rules to the values of Atr :
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Figure 3.5 – The quasi-hierarchy allows to define relationship between sets that
are intersecting

• A link between two subsets is established in the quasi-hierarchy if their
attraction exceeds the threshold thqh.
• Two subsets with strong mutual attraction (i.e., surpassing the threshold
thqh) are considered equivalent, and only one of them is retained. If the
sets are of equal size, one of them is selected at random; otherwise, the
smaller set is removed.
• The updated list of sets, along with their adjacency matrix, determines the
quasi-hierarchy.

Algorithm 5 Quasi_Hierarchy : Ensures QuasiHierarchy

Require: Setsipc, Atr, thqh

Ensure: Setsqh, Adjqh

Adjqh← Squared_Matrix_Zeros(size(Setsipc))
Adjqh[Atr > threshold]← 1
for all i, j ∈Range(size(Setsipc)) do

if Adjqh[i, j] = 1 & Adjqh[j, i] = 1 then
if size_of_set(i)>= size_of_set(j) then

remove set j from Adjqh and Setsipc

else

remove set i from Adjqh and Setsipc

end if

end if

end for

3.4.3 Hyperparameters

The definition of the pretopological space has a significant influence on the
formation of clusters. For instance, all n numeric features can be considered to-
gether, with their Euclidean distances calculated in one graph of G. Similarly, the
Hamming distances for all categorical values of the dataset can be calculated in
another graph ofG. Through this generic parsing of data, we obtain a simple pre-
topological space. The DNF could be a logical « AND » or « OR » combination of the
Euclidean and Hamming distances. However, features can be considered indivi-
dually, each with its own graph, similarity measure, and threshold. This approach
makes the DNF more extensive and specific.
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Thresholds are automatically calculated to adapt to the number of points, the
number of close neighbors each point has, and the dispersion in the dataset, or
they can be set manually. Parameters in the threshold calculation function can
be adjusted to obtain either high thresholds, yielding small clusters with low in-
ner dispersion and a high number of outliers, or lower thresholds, yielding larger
clusters with fewer outliers.

The threshold thqh used in the construction of the quasi-hierarchy is usually
fixed (to 0.1).

The DNF function defines the logical rules determining the formation of clus-
ters. Using a logical AND (i.e., Gi AND Gj ) creates a more constrained clustering,
wherein clusters exhibit similar values for characteristics i and j. On the other
hand, a logical OR (i.e., Gi OR Gj ) results in less constrained clusters, wherein
clusters show similar values for either characteristic i or j.

3.5 Metrics for clustering evaluation

To establish a benchmark, we need metrics. Some of those metrics are used
to assess the cluster tendency of a dataset, while others are used to evaluate the
result of a cluster analysis [122].

An important proportion of the datasets we use to compare the different algo-
rithms have no feature considered as « true clusters », or this featuremight not be
relevant. Therefore, we do not focus on external indices that compare a clustering
with « true clusters ». We mainly use internal indices, that evaluate the quality of
a partition.

One of the characteristics of this study is the use of mixed data. As we do not
use numerical-only data, we cannot use traditional clustering evaluation indices
without preprocessing, as they often require a Euclidean space to compute. To
use them, we use dimension reduction techniques to translate our data into a Eu-
clidean space, then compute evaluation indices in this space.

3.5.1 Cluster tendency – Hopkins Statistic

To evaluate the results of a dimension reduction, or simply to discuss the clus-
ter tendency of a dataset, we use the Hopkins Statistic from [65]. It behaves like
a statistical hypothesis test, where the null hypothesis is that the datapoints are
uniformly distributed. To compute it on a set X of n points in d dimensions :
• Generate X̃ , a random sample ofm≪ n datapoints from X . [88] suggests
sampling 5% of X .
• Generate Y , a set ofm randomly and uniformly distributed datapoints.
• Define ui the minimum distance of yi ∈ Y to its nearest neighbor in X .
• Define wi the minimum distance of x̃i ∈ X̃ to its nearest neighbor in X .

Then compute H the Hopkins Statisitc defined by :

H =

∑m
i=1u

d
i

∑m
i=1u

d
i +

∑m
i=1w

d
i

(3.12)

H is bounded between 0 and 1. A value close to 1 indicates that the data has
a high clustering tendency, its data points are typically much closer to other data
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points than to randomly generated ones. A value close to 0 indicates uniformly
spaced data, and values around 0.5 indicate random data. The Hopkins Statistic
usually is a useful measure. However datasets with only one very dense cluster
might obtain a high score, although running a cluster analysis over them would
be pointless.

3.5.2 Cluster tendency – Improved Visual Assessment of Clus-

ter Tendency

In partitional clustering, the question of cluster tendency, i.e the number of
clusters necessary to obtain a good partitioning, can have a high influence of the
final performance of an algorithm. Usually, it is manifested by an hyperparameter
k inputted by the user before running the algorithm (e.g k-means, k-prototypes,
...). To address this question, [62] propose the Improved Visual Assessment of
Cluster Tendency (iVAT) algorithm.

Given a dataset, a dissimilarity matrix can be computed. It is a square and
symmetric matrix where each element represent the dissimilarity between two
data objects of the dataset. Each element is scaled to the range [0,1], the value
0 describes the highest dissimilarity between two objects and the value 1 the lo-
west. From this matrix, a visual interpretation can be extracted which is an image
of greyscale pixels, where each pixel represent the dissimilarity between two ob-
jects. Each pixel’s colors depends on the value of the corresponding dissimilarity,
such that the darker a pixel is, the lower the dissimilarity value is. The image is
characterized by a black diagonal of pixels, because each data object is exactly
similar with itself.

iVAT will reorder this matrix in order to have a visualisation of the cluster ten-
dency. Reordering is done in a way to have one or more dark blocks along the
diagonal of the image. A potential cluster is represented by a dark block, which
is a submatrix with low dissimilarities values. Objects that are members of a dark
block are relatively similar to each other. Cluster tendency is determined by the
number of black blocks along the image diagonal.

iVAT can be a good alternative to Elbow Method, which can have decreased
performannce in case of outliers in the dataset. However, iVAT is a visual me-
thod and the extraction of the number of cluster must be done by the user. Dif-
ferent viewers can have different interpretation of cluster tendency, especially in
the case of unclear boundaries between the different dark blocks. To address this
problem, [153] propose a similar algorithm named aVAT that uses some image
processing techniques to determine automatically the number of cluster. Unfor-
tunately, the source code is anavailable and the algorithm is not well documented.

In our benchmark, we use iVAT to determine the relevance of the computed
Hopkins statistics on a dataset. Indeed, only knowing the clustering friendliness of
a dataset throughHopkins Statistic can lead to a bad evaluation of the dataset. For
example, a dataset with a good Hopkins statistic can present a cluster tendency
of only one cluster through iVAT. In this case, clustering would be useless despite
of the different interpreation we could have with Hopkins statistic.
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3.5.3 Cluster analysis – Calinski-Harabasz

A standard index to evaluate the definition of clusters is the Calinski-Harabasz
index from [26], also known as the Variance-Ratio Criterion. From a set of data
points, and the result of a cluster analysis, we compute s as described in Equation
3.14. For a dataset E, with nE individuals, divided into k clusters, the Calinski-
Harabasz index is is the ratio of the sum of between-clusters dispersion and of
within-cluster dispersion for all clusters (respectivelyBk andWk, defined in Equa-
tion 3.13), where dispersion is defined as the sum of distances squared.

Wk =
k

∑

q=1

∑

x∈Cq

(x− cq)(x− cq)T , Bk =
k

∑

q=1

nq(cq− cE)(cq− cE)T (3.13)

with Cq the set of nq points in a cluster q of center cq, and cE the center of E. The
index s is calculated by :

CH =
tr(Bk)

tr(Wk)
×
nE−k

k−1
(3.14)

This index returns a positive real number, where a higher Calinski-Harabasz
score relates to a model with better-defined clusters.

3.5.4 Cluster analysis – Silhouette

The Silhouette Coefficient, from [135], also evaluates the definition of clusters.
It is only computed using pairwise distances. Therefore, it is not only possible to
use it along with dimension reduction techniques, but also with Huang’s Distance
(Equation 3.3). A score is computed for each data point as described in Equation
3.15, using a the mean distance of a point with the other points of its cluster, and
b the mean distance with the points of the nearest cluster.

silhouette=
b−a

max(a,b)
(3.15)

The Silhouette Coefficient of a set of points is the mean of the Silhouette Co-
efficient for each sample. It is bound between -1 for incorrect clustering, and +1
for highly dense clustering. A score of zero indicates that clusters are overlapping.

3.5.5 Cluster analysis – Davies-Bouldin

To evaluate clusters separation, we use the Davies-Bouldin index from Davies
and Bouldin in (1979). For each pair of clusters i and j, a similarityRij is computed
(Equation 3.16). Then, the Davies-Bouldin index DB is the mean of the highest
similarities for each cluster (Equation 3.17).

Rij =
si + sj

dij
(3.16)

where Rij is the similarity between clusters i and j ; si and sj are the average
distances of points of clusters i and j to their centroids ; dij is the distance between
the centroids of clusters i and j.
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Figure 3.6 – Illustration of the different distances used in the calculation of the
different cluster quality indices

DB =
1

k

k
∑

i=1

max
i6=j

Rij (3.17)

A lowDavies-Bouldin index indicates well-separated clusters, where zero is the
lowest possible score.

3.5.6 In short

Index Advantages Drawbacks

CH
- Higher for well-defined clusters
- Widely used in the litterature
- Fast to compute

- Higher for convex clusters
than other concepts of
clusters (i.e. Density Based)
- Needs a Euclidean Space

Silhouette
- Higher for well-defined clusters
- Does not require a Euclidean Space
- Bound between -1 and +1

- Higher for convex clusters
- Results are often less
eloquent than other indices

DB
- Low when clusters are well
separated
- Simple computation

- Higher for convex clusters
- Needs a Euclidean Space

Table 3.2 – Advantages and Drawbacks of the different interval validation indices

Table 3.2 summarizes the advantages and drawbacks of the different internal
validation indices. Those characteristics are given in terms of computation com-
plexity, interpretability, and mathematical limitations.

3.6 Clustering of complex data (including time se-

ries)

The popularity of mixed data clustering algorithms has increased due to the
prevalence of real-world datasets containing both numeric and categorical fea-
tures. Various methods have been proposed for clustering mixed data, though
a unified research framework is still lacking in this field [9]. Time series features
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have also been an active area of research, with various methods proposed to ad-
dress the challenges associated with handling time series.

However, there is little to no scientific literature addressing the clustering of
elements defined by categorical, numerical, and time series features, despite the
presence of such data in various fields studying complex systems. For example, a
customer, a patient in a hospital, or amachine in any IoT context will not be descri-
bed solely by fixed features, nor will they be described by time series alone. Fixed
features are essential to cluster complex systems ; for humans, it can be the date
of birth, place of birth, or blood type. In a shorter timeframe, it can be address,
socio-economic status, sex, height, or hobbies. For machines, buildings, or indus-
trial plants, fixed features can be construction date, model name, specifications
of any sort, and so on.

Many features describing humans, organizations, machines, or buildings are
time series, such as weight, blood glucose, income, expenses, energy input or out-
put, or temperature. In many contexts, these features are essential to administer
a diagnosis, whether it is for medical diagnosis, energy performance recommen-
dations, or predictive maintenance. Clustering involving fixed and fluctuating fea-
tures is necessary to identify homogeneous groups of complex elements.

Another challenge tackled is the explainability, exploitability, and parametri-
zation of heterogeneous and complex system clustering. Since unsupervised me-
thods identify clusters in data without predefined labels, no clustering is inhe-
rently considered as the ’true’ clustering. Ideally, the number of clusters, where
they separate, and how depends on the specific needs and vision of each user
and their context.

Hierarchical clustering is useful for handling this complexity, as it allows the
user to identify coherent structures within each cluster, providing scalability and
interpretability to the clustering. Allowing the user to adjust several clusteringme-
thod parameters and easily understand their role in constructing clusters is also
a way to enable more parametrization and interpretability of the clusters.

In the existing scientific literature, there is minimal focus on clustering data
composed of numerical features, categorical features, and time series. However,
there is substantial literature on mixed data clustering and time series cluste-
ring. We present relevant concepts and state-of-the-art methods for clustering
and cluster evaluation of mixed data and time series.

The Curse of Dimensionality is a phenomenon that arises in high-dimensional
spaces, particularly in clustering and machine learning tasks, where the increase
in dimensions leads to exponentially larger search spaces,making it difficult for al-
gorithms to operate efficiently [20, 150]. Furthermore, distance metrics that work
well in lower-dimensional spaces may not be as effective in higher-dimensional
spaces, leading to poor performance in clustering tasks [145]. This problem is par-
ticularly relevant in the context of complex data containing time series, as time
series often have high dimensionality due to the numerous time points involved
[150]. A solution to break this curse is often dimensionality reduction.

DR can be used to break the Curse of Dimensionality, and it is often employed
as a preliminary step for clustering high-dimensional data. It can also be used to
reduce mixed data. FAMD [46] is a DR technique specifically designed for such
tasks. Additionally, although not initially adapted for mixed data reduction, Uni-
form Manifold Approximation and Projection (UMAP) [107] or Pairwise Control-
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led Manifold Approximation Projection (PaCMAP) [154] can be adapted. UMAP
is adapted by using the Huang Distance, that is suited for mixed data, and PaC-
MAP can be initialized with FAMD. Then, these techniques are able to convert a
high-dimensionalmixeddataset into a low-dimensional numerical dataset. Subse-
quently, state-of-the-art numerical clustering algorithms, such as K-means, can be
applied to the transformeddataset, and cluster visualization on the low-dimensional
data can be performed. DR is also a prevalent preprocessing approach for time
series clustering, aiming to decrease the complexity and computational cost as-
sociated with high-dimensional data.

3.6.1 State of the Art on Time Series Clustering

Time series clustering has been an area of active research for several years due
to its widespread applicability in fields such as finance, healthcare, and IoT [5] . The
primary goal of time series clustering is to group similar time series, considering
their temporal dynamics and patterns. This section reviews the state of the art in
time series clustering, focusing on the major methods and techniques developed
to address the unique challenges associated with time series data.

Distance-based Clustering

is one of the most common approaches for clustering time series. This ap-
proach computes pairwise distances between time series, using a distancemetric
to measure similarity. The most widely used distance metrics for time series clus-
tering are Euclidean distance, Dynamic Time Warping (DTW) [116], and Longest

Common Subsequence (LCSS) [41]. DTW is particularly popular because it allows
for non-linear alignment between time series, providing a more flexible similarity
measure compared to the Euclidean distance.

Feature-based Clustering

It involves extracting time series features (TSF) and using these features to
represent the time series in a lower-dimensional space. This approach can reduce
the dimensionality of the data and the computational complexity associated with
clustering. Common features extracted from time series include statistical fea-
tures (e.g., mean, standard deviation), frequency domain features (e.g., Fourier
transform, wavelet transform), and shape-based features [51].

Multivariate time series feature extraction

It involves deriving additional features or new time series from the analysis
of links between two or more time series. Specific features can be extracted de-
pending on the case study ; for instance, in building classification and clustering,
features are often calculated based on outside temperature and energy consump-
tion. In general, the extracted features involve the evaluation of the correlation
between different time series [138]. The use of autoregressive modeling to form
augmented-feature vectors [80] is also an option.

After feature extraction, traditional clustering algorithms, such as k-means or
hierarchical clustering, can be applied to the reduced feature space.
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Model-based Clustering

Those methods assume that each time series is generated by an underlying
model, and the goal is to group time series based on the similarity of their genera-
tive models. Some popular model-based clustering techniques include clustering
based on Hidden Markov Models (HMM) [119], autoregressive models [101],
andGaussian Processmodels [105]. Thesemethods often require fittingmodels
to each time series and comparing the models to compute pairwise similarities,
which can be computationally expensive.

3.6.2 Cluster evaluation for complex data

Evaluating the quality of clusters is more challenging than evaluating classifi-
cations due to the absence of ground truth for comparison. Instead, the focus is
on the quality of a partition, based on metrics such as dispersion and distances
within and between clusters [122].

Calinski-Harabasz (CH)

The CH index [26] is a well-established metric for evaluating the definition of
clusters. The index, also known as the Variance-Ratio Criterion, is computed as
the ratio of the sum of between-cluster dispersion and within-cluster dispersion
for all clusters, where dispersion is the sum of squared distances. A clustering
with a high CH score indicates a model with well-defined clusters. This method
provides a robust approach to assess the quality and explainability of mixed data
clustering. A higher CH score is indicative of a model that exhibits more distinct
and well-defined clusters.

Davies-Bouldin (DB)

The DB index [38] is used to assess the separation of clusters. The similarity
between a pair of clusters is the ratio of the sumof the average distance in each of
the two clusters and the distance between the centroids of the two clusters. The
DB index is then computed as the average of the maximum similarities for each
individual cluster. Lower values of the DB index signify better-separated clusters,
with the minimum possible score being zero.

Silhouette Coefficient (SC)

The SC indicates how well-defined the clusters are. A score is calculated for
each data point as shown in Equation 3.15. The SC for a group of points is de-
termined by averaging the SC of each individual sample. The coefficient ranges
between -1 for improper clustering and +1 for highly compact clustering. A score
of zero implies that clusters are overlapping.

One issue with mixed data clustering is that these metrics are defined for nu-
merical spaces. Therefore, the application of the DR techniques described earlier
is necessary for any cluster evaluation. Similarly, for complex data, it must be re-
duced before the clusters are evaluated. In order to calculate the CH, DB, and SC
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Figure 3.7 – Clustering on Mixed Features and Time Series based on distance or
model.

scores, datasets are transformed into Euclidean spaces using FAMD, which en-
sures that the output space has the same number of dimensions as the original
space. FAMD is chosen for its known inertia, deterministic nature, and minimal
reliance on hyper-parameters. Additionally, since the SC score is the only index in
the study that accepts a pairwise distancematrix as input, it is computed using the
Gower matrix to prevent any bias towards FAMD or provide extra insights when
FAMD has low inertia. We will call it the Gower Silhouette Coefficient (GSC).

3.6.3 Pretopology-based clustering for complex data

This subsection introduces the essential concepts and definitions in pretopo-
logy, such as pretopological space and pseudoclosure, before describing the pri-
mary algorithm for pretopological hierarchical clustering.

The primary insight obtained from this pretopological framework and its as-
sociated algorithm is that pretopology enables the abstraction of the complex na-
ture of the elements being studied by focusing on the relationships between them
based on their characteristics. Each characteristic has its own weighted graph,
which allows the calculation of a distance for each characteristic. For example,
a Manhattan distance can be computed for a pair of longitude and latitude coor-
dinates, while a corresponding volume difference can be calculated for a 3D space
describing anobject’s dimensions. Similarly, the distance between twohighly time-
dependent series can be measured using Euclidean space, while DTW can be em-
ployed to compare time series where the overall profile is more relevant. Once
this set of graphs is defined, the DNF establishes the logical rules by which pseu-
doclosure, and consequently hierarchical clustering, are generated.

3.6.4 Methods for clustering complex data

We introduce various approaches that appear relevant for clustering complex
data. These approaches are combinations of the different components presen-
ted in the state of the art. The figure illustrates a case study in which time series
correspond to energy consumptions and weather values.

Method1 : Clustering on Mixed Features and Time Series using each time

step as dimension

(Figure 3.7)
This approach involves using each time step of the time series as a numerical

feature and applying mixed clustering methods such as K-prototype.
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Advantages : Simple to implement and uses state-of-the-art mixed clustering
methods.

Disadvantages : In this case, the « weight » of each measure of the time se-
ries is the same as other features, and simple numerical or categorical features
will be overshadowed due to the sheer volume of time series values, leading to
inadequate consideration in the resulting clusters.

Explainable Artificial Intelligence (XAI) :Medium.

Method2 : Clustering on Mixed Features and Time Series using specific dis-

tances

(figure 3.7)
In this approach, specific distances are calculated for particular features or

groups of features. These distances are subsequently aggregated in the clustering
process, using either a weighted sum or logical rules.

Advantages : All available information is fully exploited to create the most
relevant clusters possible.

Disadvantages : This approach requires a deep understanding of the dataset
and specification of the appropriate AHC or PretopoMD.

XAI : High to very high.

Method3 : Clustering on numerical data only via DR

(figure 3.8)

Figure 3.8 – Clustering on numerical data only via dr.

In this method, we use DR to create a low-dimensional numerical representa-
tion of all features (numerical, categorical, and time series). To apply DR on time
series, we consider a time series as a point in a high-dimensional space, where
each time step is a dimension.

Advantages : State-of-the-art numerical clustering methods can be applied.
Disadvantages : DR of long time series can be challenging due to the « Curse

of Dimensionality ».
XAI : Very low.

Method4 : Clustering onmixed features and pre-clustered Time Series labels

as categorical features

(figure 3.9)
In this method, we apply one or several time series clustering methods on

each time series. We obtain a label corresponding to which cluster the time se-
ries belongs to. This label is then considered as a categorical feature. Mixed data
clustering methods are then used on the enriched dataset.
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Figure 3.9 – Clustering on mixed features and pre-clustered Time Series labels as
categorical features.

Figure 3.10 – Clustering on Mixed Features and Time Series Features

Advantages : The similarity between time series is considered through the
time series clusteringmethods. State-of-the-artmixed dataset clusteringmethods
can be applied.

Disadvantages : The choice of methods (including metrics and hyperparame-
ters) can affect the quality of time series clusters labels.

XAI : Very high.

Method5 : Clustering onmixed features and pre-clustered time series labels

as categorical features using DR

(figure 3.9)
In this method, the same preliminary steps as in method 4 are executed to ob-

tain time series labels. Next, a DRmethod is applied to create a numerical dataset
on which numerical clustering is performed.

Advantages : State-of-the-art numerical clustering methods can be applied.
Disadvantages : DR can create a loss of information and explainability.
XAI : Low.

Method6 : Clustering on Mixed Features and Time Series Features

(figure 3.10)
In thismethod, as inmethods 4 and 5, we donot apply clustering on time series

in their raw form. Instead, we extract TSFs to capture their essence in numerical
and categorical representations. By doing so, we enable the application of mixed
clustering methods on the extracted data.

Advantages : Mixed clustering methods can be applied. The features extrac-
ted are specific to the context and therefore can allow the clustering to be relevant
from a field point of view

Disadvantages : The amount of information lost during preprocessing is im-
portant, though varying depending on the nature of the time series and the quality
of the feature extraction process.
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XAI : High.

Method7 : Clustering on Mixed Features and Time Series Features using DR

(figure 3.10)
We add a DR step to the sixth method.
Advantages : State-of-the-art numerical clustering methods can be applied.
Disadvantages : Information loss both during feature extraction and DR
XAI : Low.

3.6.5 Cluster Quality Indicators

Using the evaluation metrics presented in Section 3.5, we can asses the out-
comes of various clustering algorithms.

To calculate the CH, DB, and SC scores, we transform datasets into Euclidean
spaces using FAMD, ensuring that the output space has the same number of di-
mensions as the original space. We choose FAMD as the DR method because it
is not too dependent on hyperparameters, because the inertia of the model is
known (as it is a factorial method), and for its deterministic nature.

Moreover, since the SC score is the only index that can accept a pairwise dis-
tancematrix as input, we also compute it using theGowermatrix. Thismayprevent
any bias towards FAMD and provide additional insights in cases where FAMD
achieves low inertia.

It should be noted that in certain situations, an algorithm might produce a
single cluster or only outliers. In such cases, we present the worst possible score
or an infeasible value.

In this chapter, we explored the landscape of clustering mixed data, particu-
larly focusing on what we call complex datasets that incorporate numerical, ca-
tegorical, and time series features. We began by examining the current state of
mixed data clustering research, identifying keymethodologies such as partitional,
hierarchical, model-based, and neural-network-based clustering. Each of these
approaches offers unique approchaes for handling mixed data.

We delved into dimensionality reduction techniques, such as Factorial Analy-
sis of Mixed Data (FAMD), Laplacian Eigenmaps, UniformManifold Approximation
and Projection (UMAP), and Pairwise ControlledManifold Approximation and Pro-
jection (PaCMAP), which are crucial for simplifyingmixed datasets. Thesemethods
enhance algorithm compatibility and computational efficiency and allow power-
full visualisation, thereby facilitating more effective and insightful clustering.

Throughout our exploration, we reviewed specific clustering algorithms, in-
cluding K-prototypes, Convex K-Means, KAMILA, ClustMD, MixtComp, DenseClus,
and Pretopology-based clustering. Each algorithmwas discussed in detail, with an
emphasis on its suitability for mixed datasets and the unique advantages it offers
for clustering such data.
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Furthermore, we introduced the key concepts of pretopology and a foundatio-
nal framework for organizing and analyzing data within a pretopological space.

ThePretopoMDalgorithmswere proposed, illustrating theprocess of construc-
ting closures and building hierarchical clustering from pretopological spaces. This
approach emphasized the role of hyperparameters and function definitions in
shaping the clustering process and the structure of the pretopological space.

To evaluate the quality of clusters, we presented metrics such as the Hop-
kins Statistic, Improved Visual Assessment of Cluster Tendency (iVAT), Calinski-
Harabasz (CH), Silhouette Coefficient (SC), andDavies-Bouldin (DB) Indexes. These
metrics allow us to assess the cohesion and separation of clusters, providing va-
luable insights into the effectiveness of different clustering methods.

In our discussion on clustering complex data, including time series, we empha-
sized the challenges and outlined several methods for clustering data with mixed
features and time series. Each method was evaluated in terms of its advantages,
disadvantages, and levels of explainability and interpretability (XAI), highlighting
the importance of selecting the right approach for each specific dataset.

Through the detailed exploration of these methodologies, we have seen that
the proper selection and tuning of these algorithms are crucial for achieving mea-
ningful and actionable clusters. The challenges in clustering mixed data types
have underscored the importance of understanding both the theoretical under-
pinnings and practical implications of each method. Our methodology has also
highlighted the necessity of considering both the local and global structures of
data, the balance between numerical and categorical data, and the need for algo-
rithms to adapt to various data characteristics.

The insight given by this chapter will allow us to understand the implementa-
tion and results presented in the next chapter.

Summary of Chapter 3

Mixed Data Clustering Research : Explored various key approaches such as
partitional, hierarchical, model-based, and neural-network-based clustering,
identifying the diversity and scope of current methodologies.

Dimensionality Reduction Techniques : Highlighted the critical role of tech-
niques like FAMD, Laplacian Eigenmaps, UMAP, and PaCMAP in simplifying
mixed datasets, facilitating subsequent clustering processes.

Specific Clustering Algorithms : Reviewed algorithms specifically tailored for
mixed datasets, including K-prototypes, Convex K-Means, KAMILA, ClustMD,
MixtComp,DenseClus, andPretopology-based clustering, offering insights into
their unique advantages and applications.

Importance of Dimensionality Reduction and Algorithm Selection : Em-
phasized the necessity of effectively managing the diversity inherent in mixed
datasets through careful selection of dimensionality reduction methods and
clustering algorithms.
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Pretopology Theory : Introduced fundamental concepts such as pretopolo-
gical space and pseudoclosure function, establishing a comprehensive theo-
retical framework for organizing and analyzing complex datasets.

PretopoMDAlgorithm :Detailed a comprehensive approach for constructing
closures and building hierarchical clustering from pretopological spaces, un-
derscoring the critical influence of hyperparameters in shaping the clustering
outcome. The pseudocode for the algorithms is detailed.

Clustering EvaluationMetrics :Discussed keymetrics including the Hopkins
Statistic, iVAT, Calinski-Harabasz Index, Silhouette Coefficient, andDavies-Bouldin
Index, crucial for assessing cluster quality in terms of cohesion, separation,
and overall structure.

ClusteringMethods for ComplexData :A classification of various approaches
is made based on the possibilities offered by features creation and manipu-
lation in complex datasets and their interaction with dimensional reduction
and with numeric, mixed, or complex clustering methods, balancing the need
to preserve data integrity, clustering explainability and with achieving mea-
ningful clustering results, and adapting evaluation metrics to complex data
scenarios.
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Chapter 4

Datasets and results

This chapter delves into the comparative analysis of various clustering algo-
rithms applied to a rangeof datasets, frompublicly available to custom-generated,
to private ones, each presenting unique challenges due to their mixed and com-
plex nature. Through the lens of benchmark datasets such as Palmer Penguins,
Heart Disease, and Sponge datasets, alongside a sophisticated custom dataset
generator, we explore the performance, limitations, and practical implications of
state-of-the-art clustering techniques. This investigation not only highlights the
capabilities and shortcomings of each algorithm but also provides insights into
their suitability for specific types of data challenges.

We will commence with a detailed examination of the datasets employed in
our study, underscoring the rationale behind their selection and the specific chal-
lenges they pose. Following this, we will present the results of applying various
clustering algorithms presented in chapter 3 to these datasets. This section will
not only showcase the algorithms’ performance but also discuss the computatio-
nal costs, technical limitations, and the impact of dataset characteristics on the
effectiveness of each clustering approach.

This analysis extends to complex data clustering, a crucial aspect where the
interplay between numerical, categorical, and time-series data within a single da-
taset requires sophisticated strategies for effective clustering. These strategies
are explored using a complex dataset generation tool. Finally the clustering of a
private energy dataset is analyzed.

Through comprehensive analysis and evaluation, we seek to offer a roadmap
for selecting appropriate clustering techniques based on specific dataset charac-
teristics and clustering objectives.

4.1 Datasets

To compare the results of different clustering algorithms, we need to establish
a benchmark. Therefore, we use multiple datasets used in the literature (Palmer
Penguins 1, Heart Failure 2, Sponge 3). Additionally, we have implemented a data-
set generator to compare the algorithms across as many configurations as pos-
sible.

1. https://www.kaggle.com/datasets/parulpandey/palmer-archipelago-antarctica-penguin-data

2. https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

3. https://archive.ics.uci.edu/ml/datasets/sponge
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4.1.1 Public datasets

Palmer Penguins

The first results we present (others are available on the Github) are done on
the Palmer Penguins dataset. This dataset is built upon physical measurements of
344 penguins in the Palmer Archipelago, in Antarctica [55]. It contains 4 numerical
and 4 categorical features. We use it as a base case, as it is widely used in the
literature, and its shape is pretty common. Also, it has high clustering tendency
over the different dimension reductions (Figure 4.1), especially over UMAP and
PaCMAP.

Figure 4.1 – Hopkins Statistic and iVAT for every dimension reduction over the
Palmer Penguins dataset.

Heart Disease

The Heart Disease dataset belongs to the field of medicine. It combines 5 data-
sets over 13 features (5 numerical, 4 categorical, 4 ordinal). It contains 918 obser-
vations. Mixing in equal numbers each kind of features makes this dataset com-
plex and the choose of metric or Dimensionality Reduction (DR) may completely
change the clustering results.

Sponge

The Sponge dataset also belongs to the field of marine biology. Its aims is to
describe and classify marine sponges. It has a pretty uncommon shape, as it only
contains 75 individuals, with 42 categorical and 3 numerical features. Having both
few individuals and a lot of categorical features makes this dataset harder to pro-
cess, therefore interesting in the context of benchmarking.

4.1.2 Dataset generator

4.1.2.1 Mixed dataset

To evaluate the different algorithms over every desired configurations, we use
a dataset generator. The most common way to generate datasets to benchmark
and evaluate clustering algorithms is to generate isotropic gaussian blobs. This

88 Datasets and results Loup-Noé Lévy



Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy
Management

method is natively present in the widely used scikit-learn for Python by [126], Mix-
Sim for R by [109] and Linfa for Rust 4.

First, we generated cluster centers, with an average pairwise distance of 1.
Then we generate samples from a gaussian mixture model with the density des-
cribed by :

p(x) =
1

k

k
∑

i=1

N (µi,Σi) (4.1)

where :
- k is the number of clusters
- µi are the cluster centers
- Σi refers to the cluster covariances. Here, it is a diagonal matrix of the clusters
variance.

Inspired by [35], we split features upon quantiles to transform them into ca-
tegorical features. Thus, we get a mixed dataset. With this method, the different
parameters we can tune to obtain different configurations are :
• The number of samples to generate (the number of individuals) ;
• The number of clusters k ;
• The number of numerical features ;
• The number of categorical features ;
• The number of unique values taken by categorical variables ;
• The standard deviation of clusters.

4.1.2.2 Complex dataset generator (with time series)

Since health datasets can be technically long to explain and to display, we
present a generated dataset with categorical, numerical features and time series.

To evaluate the clustering methods, we generated a dataset consisting of ele-
ments characterized by four features : their position in a 2D space (numerical),
their size (numerical), their shape (categorical with four possible values), and a
time series consisting of a hundred data points. The dataset comprises 50 ele-
ments. The motivation for selecting such a dataset was to enable visualization wi-
thout the need for DR, allowing for a direct understanding of the cluster construc-
tion (see Figures 4.2 and 4.23). This approach demonstrates how the logical rules
defining thePretopoMDalgorithmcanenable customized clustering that addresses
specific field requirements.

4.1.3 Private Datasets

4.1.3.1 Energy dataset

A proprietary dataset was constructed using data from Energisme, encompas-
sing a diverse range of building characteristics. This dataset is comprehensive,
encompassing categorical, numerical, and time series data to describe each buil-
ding thoroughly.

4. https://rust-ml.github.io/linfa/
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Figure 4.2 – In this example, the hierarchical clustering has been made using the
Disjunctive Normal Form (DNF) condition Position AND TS. Thus, the subcluster
elements are spatially close and have similar time series.

For categorical data, buildings are classified based on a detailed typology sys-
tem, including Section, Division, and specific activities. An example of this classi-
fication would be : Section : Trade ; Division : Retail Trade, Excluding Automobiles
and Motorcycles ; Activity : Retail Sale of Clothing in Specialized Stores.

The numerical data encompasses geographical coordinates (latitude, longi-
tude, altitude), the building’s surface area, and the year of construction.

Time series data provides a dynamic view of each building, capturing electricity
and/or fuel consumption, along with meteorological conditions such as tempera-
ture, humidity, and sunlight.

A critical aspect of preparing this dataset involves cleaning and preprocessing
the time series data. This process includes standardizing the time steps across the
series and filling in minor gaps to maintain data continuity.

Additionally, wederive newdata from the existing ones. For instance, consump-
tion per square meter is calculated to provide a more nuanced understanding of
energy usage. Thermal sensitivity is determined through a linear regression bet-
ween the change in consumption and the variation in Heating degree days

Several transformations are applied to the consumption time series data to
aid in analysis. The first transformation involves smoothing the consumption over
a two-year period to facilitate straightforward comparison of consumption pat-
terns. Another transformation creates an ’average week’ of consumption, calcu-
lated by averaging the values for each 10-minute interval over a week. Therefore
1008 average values are calculated. This approach effectively captures the buil-
ding’s typical energy usage pattern without losing crucial temporal information.

Theuse ofDynamic TimeWarping (DTW)was initially considered for calculating
the average week in our analysis. However, a significant limitation of DTW in this
context is its potential to obscure the precise timing of consumption events. In
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Figure 4.3 – Example of week euclidan barycenters, or « average weeks »

our case study, two similar consumption patterns occurring at different times are
not equivalent, as they provide crucial insights into the building’s usage patterns.
Therefore, to preserve this vital temporal information, DTW was ultimately not
employed.

Similarly, similarity metrics based on DTW were deemed unsuitable for the
clustering process due to their potential to misrepresent the timing of consump-
tion patterns.

To supplement our analysis, we extracted various numerical features from the
time series data. These included the average, standard deviation, percentiles, and
the dates of maximum and minimum consumption. These calculations were per-
formed not only on the entire time series but also on the derived average week
time series, providing a comprehensive view of consumption patterns over dif-
ferent time scales.

4.2 Clustering Results

For the results, we will provide the analysis over the Penguins dataset and the
dataset generator. More results are available on the Github.

4.2.1 Computation cost and technical limitations

Clustering algorithms are generally computation-heavy. Their respective com-
putation times and memory usage should not be neglected, as they could cause
technical limitations. The following execution statistics are obtained upon testing
on a configuration with an AMD Ryzen 7 5800H CPU, on a 3.20GHz frequency with
512KB of L1 cache and 32GB of DDR4 RAM.

To benchmark the memory usage and computation time of the different al-
gorithms, we measure those indices over several different generated datasets.
The aim is to determine the impact of the dataset characteristics (number of in-
dividuals, number of numerical and categorical features) on its computation cost.
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To do so, we start from a « base configuration » (Figure 4.4) with 500 individuals,
5 numerical and 5 categorical features. Then, we evaluate the impact of those 3
characteristics on the memory usage and computation time. Our measurements
only include the clustering algorithm (not the data generation phase). We then
measure the memory usage of this algorithm every 10 times/second, and keep
the maximum.

Figure 4.4 – Time and Memory usage of the different algorithms, on a base case
with 500 individuals, 5 numerical and 5 categorical features.

4.2.1.1 Number of Individuals

First, we evaluate the impact of the number of individuals on the computa-
tion time and memory usage. We include configurations with 50, 100, 250, 500,
1000, 1750, 2500 and 5000 individuals. From Figure 4.5, we note that we have
significative differences between the algorithms. The different variations of the
pretopological algorithm have a steep curve, meaning that their memory usage
increases faster than the other algorithms. On the other hand, we may note that
most of the algorithms have similar memory usages with 5000 individuals.

Figure 4.5 – Maximum memory usage depending on the number of individuals

Concerning the computation time (Figure 4.6), the pretopological algorithms’
curves are closer to being linear, even if steeper than most algorithms. Yet the
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UMAP version takes 6 times more time with 5000 than with 2500 individuals. We
may also note that ClustMD obtains very high computation time that may cause
technical limitations, even if it seems linearly related to the number of individuals.

Figure 4.6 – Computation time depending on the number of individuals

4.2.1.2 Number of dimensions

Then, we must evaluate how the number of dimensions impact the compu-
tation time and memory usage of the algorithms. As some algorithms treat nu-
merical and categorical features in a totally different fashion, we evaluate their
respective impacts separately. We measure the computation time and memory
usage on generated datasets with 2, 5, 10, 20, 50 and 100 numerical/categorical
features (depending on the characteristic we evaluate).

Number of Numerical Features

Thenumber of numerical features seemingly has less impact onmemory usage
than the number of individuals (Figure 4.7). Most algorithms barely use more me-
mory with 100 numerical dimensions than with 2, so their results in terms of me-
mory stay close to the base case. However, ClustMD’s results are close to quadra-
tic, and could cause limitations.

Figure 4.7 – Maximum memory usage depending on the number of numerical
features.
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Observing the execution time leads to similar results than the memory usage
(Figure 4.8). The number of numerical seems to have close to no impact there,
except on ClustMD. We might also note that Modha-Spangler’s execution time
also increases slightly.

Figure 4.8 – Computation time depending on the number of numerical features.

Number of Categorical Features

Measuring thememory usage of the algorithmsover datasets over the number
of categorical features leads to results very close to numerical features’ ones, for
every algorithm (Figure 4.9).

Figure 4.9 – Maximum memory usage depending on the number of categorical
features.

In terms of computation time (Figure 4.10), themain difference in the impact of
the number of categorical and numerical features can be observed in MixtComp.
Its computation time is close to linearly related to the number of categorical fea-
tures, while it was increasing slower upon the number of numerical features.

4.2.1.3 Discussion

Determining the number of clusters

A significant number of algorithms requireK , the number of clusters, as a pa-
rameter. When K is unknown, the Elbow Method is commonly employed to de-
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Figure 4.10 – Computation time depending on the number of categorical features

termine it. Typically, this involves plotting the explained variation as a function of
the number of clusters and selecting the ’elbow’ of the curve as the optimal num-
ber of clusters. The underlying intuition is that increasing the number of clusters
naturally improves the fit, explainingmore variation due to the increased number
of parameters, but that beyond a certain point, it leads to overfitting. The ’elbow’
in the plot reflects the point between optimization and overfitting.

Nevertheless, in mixed data clustering, more clusters rarely equate to better
performance indicators, diverging from this traditional approach. Therefore, for
mixed data, the Elbow Method combines the Gower distance with the Calinski-
Harabasz metric for each value of K in a K-Means algorithm. With the Calinski-
Harabasz index,we look for themaximumvalue,which signifies the ’elbow’, contras-
ting with the traditional method. This adaptation is demonstrated in figure 4.11.

However, employing the Elbow Method is computationally demanding, some-
times exceeding the time required for the actual clustering process. Figure 4.12
illustrates the memory usage over time during various phases of the Philip and
Ottaway algorithm, applied to a generated dataset comprising 1000 individuals
and 50 features of each type. While the Elbow Method does not consume more
memory than the actual clustering process, it requires more than twice the time.
Yet, every algorithm needing K as a parameter would take at least this time to
process.

4.2.2 Mixed Clustering Results

With the discussedmaterials andmeasures, we are able to evaluate the results
of the different clustering algorithms.

In order to compute theCalinski-Harabasz, Davies-Bouldin and Silhouette scores,
we translate datasets into Euclidean spaces using Factorial Analysis of Mixed Data
(FAMD), with the output space having the same number of dimensions as the ini-
tial space. Here, FAMD is chosen over other techniques for the following reasons :
• It is a factorial method, the inertia of the model is known
• It is deterministic
• It does not rely heavily on hyper-parameters

Also, as the Silhouette score is the only index of the study that can take a pairwise
distancematrix as an input, we compute it with the Gowermatrix. It might avoid a
bias towards FAMD, or just add to the analysis in cases FAMD obtains low inertia.

Loup-Noé Lévy Datasets and results 95



Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy
Management

Figure 4.11 – Determining the number of clusters using k-means and the Gower
distance with Calinski-Harabasz metric on the base generated dataset

Figure 4.12 – Impact of the Elbow Method on the computation cost.

Also, note that in some cases an algorithm may return only one cluster, or only
outliers. In those cases, we display « - » in the results table. The following results
come from the Penguins dataset, more results are available on the Github.

Palmer Penguins

DenseClus and algorithms utilizing the Elbow Method segregate the Palmer
Penguins dataset into two clusters. Being constrained by the Elbow Method to
identify the same quantity of clusters—two in this instance—these algorithms se-
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 169.74 0.33 0.44 1.24
DenseClus 169.74 0.33 0.44 1.24
Phillip & Ottaway 169.74 0.33 0.44 1.24
Kamila 169.74 0.33 0.44 1.24
K-Prototypes 169.74 0.33 0.44 1.24
MixtComp 169.74 0.33 0.44 1.24
Modha-Spangler 169.74 0.33 0.44 1.24
Kmeans-FAMD 169.74 0.33 0.44 1.24
Pretopo-FAMD 158.70 0.65 0.65 0.75

Pretopo-UMAP 169.74 0.33 0.44 1.24
Pretopo-PaCMAP 52.93 0.29 0.24 1.12
Pretopo-Louvain 70.05 0.20 0.29 2.38
Pretopo-Laplacian 2.05 -0.41 -0.52 2.36
PretopoMD 105.17 0.24 0.26 1.72

Table 4.1 – Results of the selected Algorithms on the Palmer Penguins dataset.

lect an identical partitioning of the dataset, resulting in equal outcomes (refer to
Table 4.1 for details). The Pretopo MD algorithm too identifies two clusters, and
with more balanced quantities. However, these clusters yield lower scores when
evaluated with the chosen metrics. This is not mirrored in the three versions of
the pretopological algorithm using dimenssionality reduction. The UMAP variant
delineates three distinct clusters, while the PaCMAP version identifies eleven, ac-
companied by 112 outliers. The FAMD version of the pretopological algorithm, on
the other hand, segments the data into twenty-six clusters. It is noteworthy that
the algorithm producing the highest number of clusters achieves the most opti-
mal indices, suggesting that its partition carries extensive information about the
dataset. The FAMD inertia for this dataset reaches a noteworthy 98.2%, indicating
a high level of data variance representation.

Sponge

The Sponge dataset has many categorical features, yet has a relatively small
sample size. FAMD applied to this dataset has a lower inertia than the Penguin da-
taset (86.13%). It also results to a low Hopkins statistic (0.63), indicative of a weak
clustering tendency. Visualization of internal clustering structure (iVAT) further
reinforces this observation, providing no clear evidence of inherent cluster struc-
ture. Conversely, PaCMAP yields a substantially higher Hopkins statistic (0.88) and
a more distinct iVAT, suggesting a comparatively easier task for subsequent clus-
tering algorithms, though not necessarily better clusters in the end. The Calinski-
Harabasz (CH) scores are roughly an order of magnitude lower than those obser-
ved with the Penguin dataset, signaling the existence of less well-defined clusters.
In fact, all cluster evaluationmetrics for the Sponge dataset are poorer than those
for the Penguin dataset, consistent with the reduced clustering tendency. Preto-
pological FAMD clustering demonstrates a notably low Davies-Bouldin (DB) score,
yet underperforms onother indices. It identified 62 outliers and created 6 clusters,
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Figure 4.13 – AdjustedMutual Information (AMI) of the selected Algorithms on the
Palmer Penguins dataset.

each comprising 2 to 3 elements. In contrast, PretopoMD managed to identify a
singular, prominent cluster of 74 elements and a single outlier. Considering the
weak clustering tendency of the dataset, this result appears pertinent, earning it
the highest FAMD Silhouette score and the lowest DB score.

Heart Disease

On this large dataset, the Elbow Method suggests 2 clusters. The algorithms
utilizing the Elbow Method consequently identify 2 clusters, decompozing the da-
taset in two with one cluster representing the two third of the dataset. In this
dataset, the best-performing algorithms are Phillip & Ottway, Kmeans on FAMD
reduced dataset, PretopoMD on Louvain reduced dataset, and PretopoMD, with
PretopoMD obtaining the top score on two indicators with two clusters. Pretopo-
Louvain identifies four distinct clusters and no outliers. The inertia from FAMD is
notably high at 99.9%, indicating that the dimension reduction process success-
fully captured all the variance present in the original dataset.
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 0.000 -1.000 -1.000 -1.000
DenseClus 0.000 -1.000 -1.000 -1.000
Phillip & Ottaway 9.706 0.168 0.418 2.226
Kamila 10.220 0.121 0.224 2.454
K-Prototypes 10.239 0.108 0.311 2.726
MixtComp 0.000 -1.000 -1.000 -1.000
Modha-Spangler 10.322 0.112 0.234 2.367
Kmeans-FAMD 10.228 0.141 0.328 2.471
Pretopo-FAMD 1.520 -0.071 -0.168 1.500
Pretopo-UMAP 6.884 0.074 0.142 2.828
Pretopo-PaCMAP 0.000 -1.000 -1.000 -1.000
Pretopo-Louvain 5.107 0.041 -0.037 2.680
Pretopo-Laplacian 5.805 0.068 0.109 2.342
PretopoMD 6.371 0.484 0.013 0.384

Table 4.2 – Results of the selected Algorithms on the Sponge dataset.

Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 32.416 0.090 0.117 2.855
DenseClus 0.000 -1.000 -1.000 -1.000
Phillip & Ottaway 72.814 0.214 0.416 1.755
Kamila 51.922 0.161 0.209 2.298
K-Prototypes 37.488 0.115 0.109 2.708
MixtComp 61.022 0.212 0.414 1.947
Modha-Spangler 50.625 0.159 0.196 2.326
Kmeans-FAMD 72.814 0.214 0.416 1.755
Pretopo-FAMD 12.021 -0.029 -0.049 1.910
Pretopo-UMAP 0.000 -1.000 -1.000 -1.000
Pretopo-PaCMAP 40.654 0.116 0.211 1.904
Pretopo-Louvain 22.982 0.054 0.003 2.524
Pretopo-Laplacian 8.916 0.404 0.216 2.120
PretopoMD 67.883 0.248 0.416 1.311

Table 4.3 – Results of the selected Algorithms on the Heart Disease dataset.
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Figure 4.14 – Adjusted Rand Index (ARI) of the selected Algorithms on the Palmer
Penguins dataset.

Base Generated Case (500 individuals, 5 features num/cat, 3 clusters, 3 cat

uniques, 0.1 std)

The algorithms were also tested on generated datasets. In the base configura-
tion, the Elbow Method determines k=3 as the optimal number of clusters. Since
this aligns with the intended number of clusters, algorithms that utilize the Elbow
Method have an advantage. Consequently, these algorithms produce very similar
partitions of the dataset, with results closely aligned across all four indices. The
two algorithms that employ UMAP, DenseClus and PretopoMD on UMAP reduced
dataset, yield similar results evenwithout the ElbowMethod, while Pretopo-FAMD
reports 444 outliers. PretopoMD on PaCMAP reduced dataset identifies six clus-
ters and 124 outliers.Meanwhile, PretopoMDdetects three sizable clusters and 60
outliers. As observed with other datasets, adjusting the hyperparameters might
either improve or deteriorate the results obtained with PretopoMD.

Generated dataset with 10 clusters

We generated a dataset using the same parameters as the « base case, » but
with a distinction : it now contains 10 clusters. If a dataset hasmore clusters, while
retaining the same number of individuals and deviation, it might pose a challenge

100 Datasets and results Loup-Noé Lévy



Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy
Management

Figure 4.15 – 26 clusters identified by PretopoMD on FAMD reduced dataset in the
FAMD reduced space representing the penguins dataset

Figure 4.16 – 2 clusters identified by both KAMILA and K-Prototype in the Laplacian
Eigenmap reduced space of the sponge dataset
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Figure 4.17 – 2 clusters and outliers (in grey) identified by Pretopo-MD in the FAMD
reduced space of the Heart Dataset
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Figure 4.18 – 3 clusters identified by almost all methods in the reduced FAMD
space of the Base Generated Case
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 296.330 0.395 0.521 1.071

DenseClus 295.224 0.395 0.519 1.074
Phillip & Ottaway 290.557 0.389 0.515 1.084
Kamila 296.330 0.395 0.521 1.071

K-Prototypes 296.330 0.395 0.521 1.071

MixtComp 294.322 0.395 0.519 1.071

Modha-Spangler 296.330 0.395 0.521 1.071

Kmeans-FAMD 296.246 0.395 0.523 1.071

Pretopo-FAMD 24.146 0.053 0.061 2.968
Pretopo-UMAP 293.835 0.392 0.517 1.078
Pretopo-PaCMAP 129.698 0.195 0.243 1.709
Pretopo-Louvain 77.688 0.028 0.008 3.394
Pretopo-Laplacian 1.177 -0.358 -0.453 2.231
PretopoMD 127.339 0.230 0.308 1.508

Table 4.4 – Results of the selected Algorithms on the Base Generated Case

for clustering because the individual clusters are less dense. The Elbow Method
identifies k=2 as the optimal number of clusters, which significantly deviates from
the intended 10.

DenseClus and PretopoMD both identify approximately 300 outliers from the
500 data points, even though the generated datasets are not designed to contain
noise. Lastly, Pretopo-UMAPdivides thedataset into 10distinct clusters and achieves
the highest score across all indicators. This indicates that Pretopo-UMAP is very
effective in such case. K-means On the UMAP reduced space didn’t identify all the
clusters and fused some of them, giving it a much lower score.

Generated dataset with 15 categorial features and 15 categorical unique va-

lues

Then, we analyze how the different algorithms perform in a high dimension
context. To do so, we generate a dataset with 15 categorical features with 15 dif-
ferent values of each size. There, the Elbow Method finds k = 2 clusters. ClustMD,
PretopoMD, Pretopo-UMAP andMixtComp don’t converge on such a dataset, and
only produce noise. Pretopo-FAMD finds 498 outliers out of the 500 individuals.
Pretopo-UMAP produces 1 cluster of 332 individuals and 168 outliers (that might
be merged into another cluster). DenseClus and Pretopo-PaCMAP both find 3 ba-
lanced clusters, and the latter findsmore balanced clusters and therefore obtains
a slightly better score on the 4 indices. KAMILA, K-prototype and Philip and Otta-
way havemerged two clusters into one and therefore find One cluster of approxi-
mately 333 elements and one cluster of around 137 elements.

Generated Dataset with 1000 individuals

Gave fairly equilibrated results with most methods identifying the 3 clusters
well apart fromPretopo-FAMD, Pretopo-PaCMAP, Pretopo-Louvain, Pretopo-Louvain,
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 0.000 -1.000 -1.000 -1.000
DenseClus 91.514 0.184 0.180 1.866
Phillip & Ottaway 105.311 0.297 0.348 1.389
Kamila 111.239 0.258 0.257 1.464
K-Prototypes 96.461 0.230 0.199 1.487
MixtComp 95.644 0.223 0.200 1.514
Modha-Spangler 112.780 0.296 0.258 1.314
Kmeans-FAMD 131.886 0.341 0.373 1.209
Pretopo-FAMD 30.539 0.048 0.028 1.552
Pretopo-UMAP 134.738 0.372 0.375 1.152

Pretopo-PaCMAP 48.594 0.160 0.141 1.561
Pretopo-Louvain 88.408 0.294 0.292 2.166
Pretopo-Laplacian 2.599 -0.358 -0.450 1.578
PretopoMD 88.679 0.203 0.278 1.658

Table 4.5 – Results of the selected Algorithms on a generated dataset with 10 clus-
ters.

Figure 4.19 – The ten generated clusters identified by Pretopo-UMAP in the UMAP
reduced space
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 0.000 -1.000 -1.000 -1.000
DenseClus 118.504 0.216 0.102 1.708
Phillip & Ottaway 119.712 0.197 0.087 1.839
Kamila 121.389 0.199 0.088 1.825
K-Prototypes 118.497 0.194 0.085 1.869
MixtComp 0.000 -1.000 -1.000 -1.000
Modha-Spangler 121.389 0.199 0.088 1.825
Kmeans-FAMD 121.389 0.199 0.088 1.825
Pretopo-FAMD 0.946 -0.092 -0.015 2.080
Pretopo-UMAP 90.615 0.153 0.073 2.096
Pretopo-PaCMAP 123.388 0.226 0.107 1.664

Pretopo-Louvain 37.727 0.029 0.001 3.847
Pretopo-Laplacian 0.436 -0.095 -0.019 3.501
PretopoMD 0.000 -1.000 -1.000 -1.000

Table 4.6 – Results of the selected Algorithms on a generated dataset with 15 ca-
tegorial features and 15 categorical unique values

Figure 4.20 – Three clusters identified by Pretopo-PaCMAP in the PaCMAP reduced
generated dataset with 15 categorical values
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 183.449 0.150 0.131 2.118
DenseClus 132.056 0.121 0.143 2.711
Phillip & Ottaway 3.512 0.088 0.169 2.157
Kamila 183.719 0.150 0.131 2.127
K-Prototypes 180.026 0.147 0.127 2.155
MixtComp 120.243 0.106 0.111 2.369
Modha-Spangler 168.726 0.142 0.144 2.218
Kmeans-FAMD 184.044 0.150 0.131 2.120
Pretopo-FAMD 1.316 0.035 0.043 2.104
Pretopo-UMAP 188.827 0.179 0.175 1.915
Pretopo-PaCMAP 200.106 0.189 0.188 1.861

Pretopo-Louvain 39.915 0.017 -0.007 4.050
Pretopo-Laplacian 1.199 0.059 0.093 2.340
PretopoMD 19.286 -0.017 -0.040 2.868

Table 4.7 – Results of the selected algorithms on a generated dataset with 1000
individuals, 10 dimensions of each type, and a deviation of 0.15

and PretopoMD

Generated Dataset with 1000 individuals, 10 dimensions of each type and a

deviation of 0.15

For the moment, we only studied the results of our algorithms on configu-
rations with a clusters deviation of 0.10. Therefore, we generated a dataset to
analyze how the different algorithms perform on sparser clusters. This dataset
contains 1000 individuals, 10 dimensions of each type, and has a deviation of
0.15 (while the base case has 0.10). On this dataset, the Elbow Method deter-
mines k = 2 as the optimal number of clusters, while the generated dataset is
supposed to contain 3. The algorithms that obtain the more optimal scores are
the algorithms that use UMAP and PaCMAP. As those reduction move the neigh-
bors closer to each other, it is not surprising to see them performwell on datasets
with a higher clusters deviation. Among those 3, Pretopo-PaCMAP is the only one
that produces no outlier, therefore it obtains the highest Calinski-Harabasz and
Silhouette scores.

4.2.2.1 Results analysis

In conclusion of this subsection, after conducting a comprehensive analysis of
the results obtained from executing the algorithm on the generated dataset and
other datasets, we can draw several significant observations.

First and foremost, it is clear that both ClustMD and MixtComp often struggle
to achieve convergence, highlighting a notable limitation in these approaches. Si-
milarly, while DensClus and PretopoMD generally shows promise, they are not
immune to convergence issues either.
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Figure 4.21 – 3 clusters identified by Pretopo-PaCMAP in the Louvain reduced ge-
nerated dataset with 1000 individuals

Figure 4.22 – 3 clusters identified by Pretopo-PaCMAP in the Laplacian Eigenmap
generated dataset with 1000 individuals
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The Pretopo-UMAP algorithm sometimes group the dataset into a single, large
cluster, accompanied by outliers. This clustering pattern does not receive suffi-
cient penalization according to our current calculation method for the indicators
(please refer to 5.2.3 for more details). This aspect deserves attention for future
improvements in metric design.

In cases of ambiguous data patterns, Pretopo-FAMD tends to create a domi-
nant central cluster surrounded by several smaller clusters. This can complicate
the interpretability of the resulting clusters. It’s important to note that Pretopo-
FAMDdid not performwell on the presented dataset, except for the penguin data-
set, where it achieved the highest scores on 3 out of 4 indicators after identifying
28 clusters.

Algorithms that rely on the ElbowMethod face a significant limitation. Regard-
less of the algorithm’s sophistication, if it is set to identify an incorrect number of
clusters, it cannot achieve optimal partitioning. This makes it challenging to ana-
lyze each algorithm individually in detail, especially since they often produce very
similar partitions.

In contrast, Pretopo-PaCMAP consistently delivers superior results across va-
rious configurations. Its independence from the constraints of the ElbowMethod,
combined with its ability to avoid the convergence issues observed in other algo-
rithms, positions it as a robust and reliable approach for data partitioning.

PretopoMD, which is independent of both DR and the ElbowMethod, tends to
identify a small number of sizable clusters along with a few outliers. Across the
datasets on which it was evaluated, it sometime outperformed other methods on
at least one of the employed indicators but didn’t shine on the generated datasets
and often couldn’t identify any clusters.

It is worth noting that across each of the seven presented datasets, the various
applications of the pretopological algorithms consistently ranked among the top
two to four performers. This underscores their potential as a valuable addition to
the toolkit of clustering techniques when dealing with mixed datasets.

After analyzing the performance of the algorithms on the quality indexes we
have selected, the following recommendation could be made.

On a datasets that contain a high number of clusters, the algorithm Pretopo-
UMAP seems to be the most relevant on all indexes. On a dataset with a high
number of categorical features, the algorithm that seems to be the most rele-
vant is Pretopo-PaCMAP, followed closely by KAMILA, Modha-Spangler, Philip and
Ottaway, DenseClus and K-prototypes. On a dataset with a high number of ele-
ments, Pretopo-PaCMAP seem to be the most relevant, followed by ClustMD and
KAMILA. On a dataset with a high deviation, Pretopo-PaCMAP seem to be themost
relevant, followed by ClustMD and KAMILA.

On average with all scores being normalized between 0 and 1 with 1 being the
best score of the table, the best algorithms on average for CH and for Silhouette
Coefficient (SC) are Kmeans-FAMD, KAMILA and Modha-Spangler because they
have the most consistently good score even when they are not always the best
scoring algorithms. For Gower Silhouette Coefficient (GSC) the best algorithms on
average are Philip and Ottaway, Kmeans-FAMD and Modha-Spangler. On the DB
score, the best scoring on average were attained by DenseClus, Pretopo-UMAP
and Pretopo-PaCMAP (see : table 4.8).
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Calinski
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies
Bouldin

ClustMD 0.575 0.367 0.298 0.084
DenseClus 0.596 0.403 0.365 0.000

Phillip & Ottaway 0.798 0.939 1.000 0.155
Kamila 0.938 0.975 0.856 0.350
K-Prototypes 0.906 0.960 0.859 0.416
MixtComp 0.558 0.336 0.341 0.065
Modha-Spangler 0.933 0.970 0.882 0.379
Kmeans-FAMD 1.000 1.000 0.938 0.337
Pretopo-FAMD 0.128 0.538 0.449 0.429
Pretopo-UMAP 0.779 0.798 0.700 0.020

Pretopo-PaCMAP 0.532 0.671 0.524 0.042

Pretopo-Louvain 0.302 0.530 0.409 1.000
Pretopo-Laplacian 0.000 0.000 0.000 0.643
PretopoMD 0.395 0.316 0.210 0.257

Table 4.8 – Average normalized scores of the algorithms on all the datasets

4.2.3 Complex Clustering Results

4.2.3.1 Clustering complex generated data

Here we will present the results of PretopoMD. We have created four prenet-
works for this instance : one for the position features, one for the size feature, one
for the shapes of the elements, and one for the time series. For each prenetwork,
a distance matrix is calculated. We use Euclidean distance for numerical features,
Hamming distance for categorical features, and DTW for time series.

Different DNFs were used, and the DNF that scored highest on CH, SC, and
GSC was the one using only TS, indicating that clustering based solely on the time
series was more effective than using more complex clustering methods. The only
score that did not favor this DNF was DB, which preferred Position AND Size AND

TS OR Shape. This DNF provided better cluster separation because it had more
AND rules, which made it more likely to divide the dataset into many clusters with
similar position, size, and time series characteristics.

However, other DNF combinations could be chosen depending on the user’s
needs, as the relevance of the clustering varies according to the application. For
illustrative purposes, a clustering using the simple Position AND Time Series rule
is shown in Figures 4.2 and 4.23, identifying 8 clusters. Each cluster consists of
elements that are close in space and have similar time series patterns. This ob-
servation also applies to the subclusters within the larger clusters. The result of
a more complex DNF, corresponding to more specific needs, is also presented in
Figure 4.25.

We observe that Pretopo-FAMD achieves the best results in terms of CH, DB,
and SC Scores. This can be attributed to the fact that clustering in conjunctionwith
DR is highly effective on time series data as it mitigates the Curse of Dimensiona-
lity. It is also worth noting that the CH, DB, and SC Scores are all calculated on
the dataset after applying FAMD, thereby favoring clustering methods that utilize
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Figure 4.23 – Visualisation of mixed hierarchical clustering using time series.

FAMD in their preprocessing. Had we evaluated the clusters using CH, DB, and SC
by reducing the dataset with another DR method, we would have obtained dif-
ferent results. Additionally, we can note that Pretopo-FAMD does not have a good
score on GSC despite being the best on the other metrics.

If we normalize and add up our scores, the best algorithms in descending or-
der are : Pretopo-FAMD, Kmeans-FAMD, Pretopo-PaCMAP, Kmeans-FAMD with
TSF instead of the whole time series, and Pretopo-PaCMAP with TSF instead of
the whole time series. Just below these are AHC_Gow_DTW with three clusters,
Philip and Ottaway, KAMILA, K-prototypes, and PretopoMD using only time series
values. These methods have identified clusters that correspond exclusively to the
time series.

Interestingly, these methods that identified only the time clusters (AHC with
three clusters, Philip andOttaway, KAMILA, K-Prototype, and PretopoMDusing the
DNF Time Series) achieved the highest GSC Score, all at equal values. It means that
the other features are not only deemed irrelevant by these clusteringmethods but
also the GSC Score. For example, AHCwithmore than three clusters employ other
features for clustering but are considered worse than AHC_3.

There are several interpretations of this phenomenon. First, K-prototypes, KA-
MILA, and Philip and Ottaway treat each time step as a feature, making non-time
series features less significant in the resulting clusters due to their comparatively
low numbers.

As for AHC, it was specifically designed to address this issue by incorporating
a distance specific to time series in addition to the Gower distance for other fea-
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Figure 4.24 – The DTW distance between the time series slightly outweighs the
Gower distance between themixed features in this dataset. All evaluationmetrics
rewards the separation in 3 clusters

tures. By examining the dendrogram in Figure 4.24, we can observe that the three
clusters arewell-separated because the distance between time series ismore pro-
nounced than the distance between other features. However, this is more attri-
butable to the test dataset, in which the time series are extremely similar, rather
than the Hierarchical Clustering methods itself. In this instance, when clustering
into three clusters, it made sense to cluster based on time series similarity. When
more clusters were demanded from AHC, it provided a finer separation of the da-
taset, taking into account other features. However, no indicators rewarded such
behavior. This is the case with and without normalized distance in AHC. What was
not attempted here was assigning weights to different distances based on specific
needs or characteristics. In a case study, one could decide to give more weight to
a certain set of parameters for them to have a more significant influence on the
resulting hierarchical clustering.

Another point concerning the evaluation metrics is that none of the extracted
features used for some of the clustering were added to the dataset. Adding the
dataset with pre-identified time series clusters or extracted features might have
changed the way the clusters are evaluated.

Exploring further cluster evaluation metrics and aggregating them might be a
solution for hyperparameterization. The objectivemight not simply be to have the
highest average score but to find a clustering that has scores relatively high for all
metrics.

However, one must accept that the quality of clustering is highly dependent
on the objectives of the user, especially in the case of complex data. Depending
on the case study, the relevance of one aspect of the data can vary significantly.
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Figure 4.25 – A subcluster of the hierarchy build with the DNF (Position AND Shape

AND TS) OR (Size AND TS) prioritizes TS, then Size then equally Position and Shape

Visually analyzing the data in its raw decomposed form, such as in time series,
or visualizing it through different DR techniques can allow users to view it from
various perspectives (quite literally) and realize how one clustering might seem
more appropriate when viewed through FAMD and another more relevant when
viewed through UMAP. Ultimately, it is the meaning behind the features and the
coherence of the final clusters that give relevance to a clustering method.

Therefore, hierarchical clustering techniques such as PretopoMD, which func-
tion extremely well with DR, might actually be more relevant without DR when
complex rules and distances must be used to identify clusters according to speci-
fic requirements. AHCmight also be used in thismanner simply through the use of
weights. Both have the advantages of allowing the user to zoom in on a cluster to
identify subgroups, which is often relevant in complex data contexts. For example,
the AHC dendrogram allowed us to view how the relatively high distance between
the time series cluster influenced the separation of the complex dataset and how
weighting the different distance might have changed this separation (see figure
4.24).

Regarding pretopology, the example in figure 4.2, as well as more complex
DNFs allow for some very interesting hierarchie. For example, a hierarchical clus-
tering built with the DNF (Position AND Shape AND TS) OR (Size AND TS) (see figure
4.25) will return the same clusters as the DNF TS, but will return a hierarchy with
subclusters of elements that are necessarily close in terms of time series but are
also as close as possible in terms of position, size, or shape, with size being the
first criterion of aggregation. That is, the smaller clusters are necessarily close in
time series and are mostly close in size. Then they expand by integrating other
elements according to the other criteria. Adjusting the DNF in this manner en-
ables the construction of hierarchies tailored to meet the complex requirements
specific to various case studies. Furthermore, besides the DNF, the diverse pa-
rameters of PretopoMD facilitate extensive customization of the dispersion, size,
and number of outliers within the clusters.
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Method CH DB SC GSC

Method 1

Phillip & Ottaway 8.01 2.69 0.12 0.93
Kamila 8.01 2.69 0.12 0.93
K-Prototypes 8.01 2.69 0.12 0.93
Pretopo_Euclid_Hamm 4.27 2.16 -0.04 -0.26

Method 2 AHC

AHC_Gow_DTW_6 3.61 4.64 -0.03 0.38
AHC_Gow_DTW_5 4.38 4.55 0.01 0.52
AHC_Gow_DTW_4 5.79 3.07 0.06 0.73
AHC_Gow_DTW_3 8.01 2.69 0.12 0.93

Method 2 PretopoMD

Pos_&_Size_or_Shape_&_TS 4.10 4.90 0.06 0.54
Pos_or_Size_&_Shape_or_TS 4.10 4.90 0.06 0.54
Pos_&_Size_&_TS_or_Shape 7.48 1.01 0.12 0.19
Pos_&_Size_or_Shape_&_TS 1.20 3.22 -0.27 -0.49
Pos_&_TS 2.58 3.75 -0.14 0.28
TS 8.01 2.69 0.12 0.93

Method 3

DenseClus 0.00 -1.00 -1.00 -1.00
Kmeans-FAMD 26.84 1.03 0.48 -0.07
Pretopo-FAMD 28.06 0.81 0.51 -0.07
Pretopo-Laplacian 0.40 3.62 -0.12 -0.28
Pretopo-UMAP 7.49 2.76 0.11 0.87
Pretopo-PaCMAP 25.84 1.03 0.47 -0.08
Pretopo-Louvain 2.97 3.30 -0.16 0.21

Method 4

DenseClus 0.00 -1.00 -1.00 -1.00
Phillip & Ottaway 1.40 5.77 0.01 0.00
K-Prototypes 1.08 6.57 0.00 0.01
Pretopo_Eucl_Hamm 1.80 2.49 -0.25 -0.51

Method 5

Kmeans-FAMD 1.08 6.57 0.00 0.01
Pretopo-FAMD 3.86 2.07 -0.06 -0.15
Pretopo-Laplacian 1.05 5.81 -0.18 -0.34
Pretopo-UMAP 0.95 7.38 -0.09 -0.12
Pretopo-PaCMAP 11.04 1.79 0.23 -0.04
Pretopo-Louvain 1.08 5.32 -0.05 -0.15

Method 6

Phillip & Ottaway 8.43 2.51 0.11 0.57
K-Prototypes 7.67 2.51 0.08 0.38
Pretopo_Eucl_Hamm 5.99 2.10 0.10 0.11

Method7

DenseClus 0.00 -1.00 -1.00 -1.00
Kmeans-FAMD 16.73 1.37 0.32 0.08
Pretopo-Laplacian 2.21 3.66 0.02 0.01
Pretopo-UMAP 6.34 2.65 0.09 0.49
Pretopo-PaCMAP 15.79 1.40 0.32 0.06
Pretopo-Louvain 6.45 2.21 0.06 0.42
Pretopo-FAMD 2.48 2.36 -0.03 -0.13

Table 4.9 – Cluster evaluation scores of the 7 different complex clustering me-
thods on the generated dataset.
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Calinski-
Harabasz

Silhouette
FAMD

Silhouette
Gower

Davies-
Bouldin

ClustMD 0.000 -1.000 -1.000 -1.000
DenseClus 0.000 -1.000 -1.000 -1.000
Phillip & Ottaway 14.443 0.157 0.437 2.145
Kamila 15.519 0.167 0.421 2.070
K-Prototypes 15.519 0.167 0.421 2.070
MixtComp 0.000 -1.000 -1.000 -1.000
Modha-Spangler 15.411 0.165 0.404 2.079
Pretopo-FAMD 1.502 -0.063 -0.173 1.641
Pretopo-UMAP 6.933 0.063 0.138 2.734
Pretopo-PaCMAP 0.000 -1.000 -1.000 -1.000
PretopoMD 6.371 0.484 0.013 0.384

Table 4.10 – Results of the selected algorithms on a private dataset of energie
consumption data and building characteristics

4.2.3.2 Clustering complex energy data

The methods described here is the methods number 4 (see figure 3.9) consisting in
applying one or several clustering on the time series in order to extract labels before
applying mixed clustering on the entire enriched dataset.

We applied three clustering methods on the smoothed time series as well as on the
average week :
• Self Organising Map (SOM)
• Kmeans
• Kmeans with DR

Both SOM and Kmeans necessitate the number of cluster. On figure 4.28, 4.29 and
4.31, you can see the result of the different clustering, with the line in red representing
the average values for the cluster.

SOM, K-means, and K-means with DR produced different clusters. Subsequently, we
used the results from these three clustering methods as labels, creating three additional
categorical variables.

Both KAMILA and K-prototypes identified the same clustering pattern, consisting of
three clusters of varying sizes, whereas PretopoMD identified two clusters, with one en-
compassing most of the dataset. This clustering is supported by SC and DB scores, even
though it does not seem highly relevant. However, because PretopoMD is hierarchical, we
identifiedmore balanced clusterswithin the hierarchy. Similarly, Philip andOttaway found
one dominant cluster containing almost the entire dataset and two very small clusters.
This demonstrates that the indicators do not always select the most balanced clustering.
Upon examining the reduced dataset (see figure 4.26), this clustering seems to somewhat
align with the general ’shape’ of the dataset.

This chapter has delved into the intricate domain of datasets and the performance
analysis of diverse clustering algorithms, highlighting the complex challenges andmetho-
dologies applicable to mixed and complex data. The exploration began with a focus on
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Figure 4.26 – 3 clusters identified by Pretopo-UMAP in the UMAP reduced ener-
gisme dataset

several public datasets—namely, the Palmer Penguins, Heart Disease, and Sponge data-
sets—each chosen for its unique characteristics and relevance to mixed data clustering.
These datasets served as a foundation for comparing the efficacy of various clustering
algorithms, showcasing the algorithms’ capabilities and limitations in handling datasets
with varying complexity.

A significant part of the analysis was dedicated to a custom dataset generator, de-
signed to facilitate the comparison of algorithms under a wide range of configurations.
This tool allowed for the generation of isotropic Gaussian blobs, which are crucial for
benchmarking clustering algorithms’ performance across numerous scenarios, including
different numbers of clusters, samples, and feature types. The generator’s ability to trans-
form numerical features into categorical ones further enriched the dataset’s complexity,
offering a closer simulation of real-world mixed datasets.

The chapter also introduced a complex dataset generator, incorporating numerical,
categorical, and time series data. This advanced generator aimed to replicate the multi-
faceted nature of real-world data, highlighting the challenges inherent in clustering such
diverse datasets. Through this generator, the chapter provided an insightful examination
of various clustering algorithms, including Pretopo-PaCMAP and PretopoMD, emphasi-
zing their performance in specific data configurations.

The analysis underscored several key findings, notably the critical impact of dataset
characteristics on the algorithms’ computational costs and technical limitations. Factors
such as the number of individuals, the diversity of feature types, and the clusters’ dis-
persion significantly influenced thememory usage and computation time, revealing stark
differences in the efficiency of different algorithms. This section shed light on the neces-
sity of choosing the right algorithmbased on specific data characteristics and the intended
clustering objectives.

Moreover, the exploration of clustering results on mixed and complex datasets offe-
red valuable insights into the algorithms’ performance. It highlighted the effectiveness of
Pretopo-PaCMAP in handling datasetswith a larger number of clusters andhigh-dimensional
data. The chapter also discussed the challenges faced by algorithms like ClustMD and
MixtComp, particularly in achieving convergence on complex datasets.
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Summary of Chapter 4

Benchmark Establishment for Clustering Algorithms :Utilized public datasets and
a custom dataset generator for algorithm comparison. Public datasets included Pal-
mer Penguins, Heart Disease, and Sponge datase.

Palmer Penguins Dataset Analysis : Demonstrated high clustering tendency, espe-
cially with UMAP and PaCMAP dimension reductions.

Utilized for benchmarking due to its commonality in literature and balanced mix
of numerical and categorical features.

Heart Disease Dataset : Amedical dataset combining various feature types over 918
observations, illustrating the complexity of clustering mixed datasets.

Sponge Dataset : Focused on marine biology, characterized by a small sample size
and a high number of categorical features, highlighting the challenge in clustering
datasets with few individuals and numerous categorical features.

Custom mixed Dataset Generator : Enabled testing of algorithms under diverse
configurations, emphasizing the generation of isotropicGaussian blobs and the trans-
formation of numerical features into categorical ones to simulate mixed datasets.

Custom Complex Dataset Generation : Included numerical, categorical, and time
series data, underlining the intricacy of clustering in real-world scenarios.

Evaluation of Clustering Algorithms Mixed and Complex Datasets : Discussed
computation cost and technical limitations, noting significant differences in memory
usage and computation time across algorithms.

Highlighted the impact of dataset characteristics on algorithmperformance, inclu-
ding the number of individuals, the number of clusters, the number of dimensions or
the dispersion.

Provided detailed analysis of clustering performance on various datasets, sho-
wing the effectiveness of certain algorithms like Pretopo-PaCMAP in specific configu-
rations.

Examined the role of dimensionality reduction in clustering and the challenges in
clustering high-dimensional and complex datasets.

Comprehensive Analysis of Clustering Techniques :

Illustrated the necessity of customizing clustering approaches to fit specific data
characteristics and objectives.

Emphasized the importance of understanding algorithm limitations and selecting
appropriate techniques based on dataset intricacies.
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Figure 4.27 – iVAT of the energie data
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Figure 4.28 – Kmeans with 9 clusters
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Figure 4.29 – Kmeans after reduction with 9 clusters
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Figure 4.30 – Kmeans after reduction with 9 clusters, viewed from the reduced
dataset point of view
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Figure 4.31 – SOM applied to the whole smoothed time series over two years
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Chapter 5

Discussion

This final chapter serves as a reflective discussion on the journey undertaken in this
thesis, focusing on Advanced Clustering and AI-Driven Decision Support System (DSS) for
Smart Energy Management. We’ll revisit the key themes explored, from the conceptual
framework of complex socio-technical systems to the intricate challenges of developing
ai-driven DSS and applying clustering methods to mixed data types. Each section aims to
critically assess our approaches, acknowledge the limitations encountered, and suggest
directions for future work. This chapter is an opportunity to consider the broader impli-
cations of our findings, the gaps in current methodologies, and the potential for further
research in the field. Through this discussion, we hope to encapsulate the insights gained
and contribute to the ongoing dialogue in energy management and data analysis.

5.1 Limits of the recommender system

5.1.1 Limits of the Decision Support System Architecture’s Au-

tomation

The DSS has several limitations on its entire chain of information. Each paragraph is
focused on a limit.

Datalake : The selection of the relevant data in the datalake must be performed with
extreme seriousness and irrelevant data sources must be dealt with promptly. Otherwise
the datalake will become a « garbage dump ». This process must be conducted conti-
nuously as the data sources are always evolving. This process is not automatable as it
requires understanding of the clients and company needs.

Datamarts : Similarly, the preprocessing of the datamust be adapted to the evolution
of data being sent as well as to the evolution of the clients needs. Monitoring changes and
adapting the entire data chain is the role of data lineage.

The automated selection of algorithms based on certain performance criteria is ac-
complished through tools such as multi-armed bandit. However, identifying the relevant
criteria for the selection of algorithms requires understanding of the clients’ needs. They
may want explainable models (White Box models) or simply want efficient models (more
likely Black Box models).

Knowledge extraction of building clustering is bound to be to be one of the most
challenging aspect for the DSS. Indeed, clustering being a non-supervised method, there
is no certainty of obtaining an interpretable result and the interpretation requires a pro-
found understand of building consumptions types. Even with algorithms displaying the
importance of each feature in the clustering process, human expertise is still required.
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Setting up the recommendations for energy performance based on building profile
can only be performed either by Machine Learning (ML), or by human input and with the
knowledge of the existing and experimented recommendations. To calibrate the recom-
mendation system through ML, one would need a database of building energy perfor-
mance actions and their effects on building consumption. Using this, one would correlate
building type with successful building performance actions. The other option is to ana-
lyse the clusters through human expertise and to calibrate the recommendations of the
system based on that human expertise.

Retroaction based on the effect of the energy performance recommendations will be
difficult because of the time factor inmost energy performance actions, the time between
energy performance action and analysable result might be long and therefore the system
will learn slowly.

5.1.2 Limits regarding the data

In this thesis, wehave emphasized the critical roles ofMicroservices Architecture (MSA),
Development and Operations (DevOps) methodologies, feedback cycles, and quality as-
sessments in the domain of data-driven decision-making. These aspects are crucial across
various sectors, including energy systems, medicine, marketing, finance, law, and biology,
where poor data quality—marked by incompleteness, inconsistency, or noise—can signi-
ficantly skew clustering results and the effectiveness of subsequent recommendations.
The challenge of clustering becomes even more pronounced when dealing with diverse
data types, such as numerical, categorical, and time series data.

Furthermore, we highlighted the necessity for robust data pre-processing, sophistica-
ted cleansing techniques, the development of resilient algorithms, adherence to DevOps
best practices, and the implementation of a Distributed Architecture.

However, it’s important to recognize that even the most rigorous practices and tools
cannot overcome the fundamental limitations posed by the quality of the dataset itself.
Creating a comprehensive and high-quality dataset is frequently obstructed by privacy
concerns and the proprietary nature of data, particularly in sensitive sectors likemedicine
and finance.Within the context of an industrial thesis with a Trusted Third Party for Energy
Measurement and Performances (TTPEMP), assembling a large dataset of clean, detailed,
and comprehensive data for analysis has proven to be a surprisingly hard challenge. As of
this writing, we are in the process of compiling a dataset that includes tens of thousands
of buildings, encompassing more than two years of historical data at a detailed time step,
and furnished with sufficient descriptive data for effective clustering.

This thesis highlights the fact thatwhilemethodologies and architectures can establish
a foundation for efficient data management and analysis, the quality and breadth of the
underlying dataset are crucial in realizing the full potential of any data-driven system,
particularly in the context of complex clustering and recommendation scenarios.

5.1.3 Complex System Analysis

Complex system analysis plays a crucial role in understanding and optimizing energy
building clustering for energy efficiency recommendation systems. However, it’s essen-
tial to acknowledge its inherent limitations. Firstly, complex systems are by nature in-
tricate and dynamic, comprising numerous interconnected components that can exhibit
emergent behaviors. This complexity often leads to challenges in accuratelymodeling and
predicting system dynamics, especially when considering the diverse interactions within
energy building clusters.
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Secondly, the availability and quality of data significantly impact the effectiveness of
complex system analysis. In the context of energy efficiency recommendation systems,
data collection and integration from various sources such as building sensors, weather
databases, and occupant behavior records is often incomplete or unreliable. This can in-
troduce uncertainties and biases into the analysis, potentially limiting the accuracy of re-
commendations generated by the system.

Moreover, complex system analysis often relies on simplifying assumptions and mo-
dels to make the problem tractable. While these simplifications aid in understanding sys-
tem behavior, they can oversimplify reality and overlook critical nuances present in the
actual system. In the context of energy building clustering, factors such as building he-
terogeneity, temporal variability, and external influences may not be fully captured by
simplified models, leading to suboptimal recommendations.

Furthermore, the scalability of complex system analysis poses a challenge when dea-
ling with large-scale energy building clusters. As the number of interconnected buildings
increases, the computational complexity of analyzing the system grows exponentially.
This can strain computational resources and limit the feasibility of performing compre-
hensive analyses, especially in real-time or near-real-time scenarios where timely recom-
mendations are essential.

5.1.4 Machine Learning Factory implementation

Implementing an Machine Learning Factory (ML-Factory) within a DevOps methodo-
logy presents unique challenges and considerations, particularly in the context of energy
building clustering for energy efficiency recommendation systems. Firstly, integrating ML
pipelines into the DevOps workflow requires careful orchestration to ensure seamless
collaboration between data scientists, software developers, and operations teams. This
involves establishing automated processes for model training, testing, deployment, and
monitoring that align with the principles of Continuous Integration/Continuous Deploy-
ment (CI/CD).

Secondly, managing the lifecycle of ML models within a DevOps framework entails
addressing version control, reproducibility, and scalability challenges. Unlike traditional
software artifacts, ML models are sensitive to changes in data distributions, feature engi-
neering techniques, and hyperparameters, necessitating robust versioning and tracking
mechanisms. Additionally, deploying ML models at scale requires efficient resource allo-
cation, monitoring, and scaling strategies to accommodate varying workloads and ensure
reliable performance in production environments. (see [23]

Furthermore, ensuring the reliability and interpretability of ML-driven recommenda-
tions in energy building clustering presents additional complexities. The opaque nature
of some ML algorithms may hinder stakeholders’ understanding of model predictions
and recommendations, posing challenges for validation, trust, and regulatory compliance.
Therefore, incorporating explainability and interpretability techniques into the ML pipe-
line is essential for enhancing transparency, accountability, and user acceptance of the
recommendation system.

Moreover, integrating feedback loops and continuous learning capabilities into the
ML-Factory enables adaptive optimization of energy efficiency recommendations over
time. This involves collecting real-time feedback from building sensors, user interactions,
and environmental factors to refine and update ML models iteratively. However, imple-
menting effective feedbackmechanisms requires robust data infrastructure, anomaly de-
tection algorithms, and model retraining pipelines to detect drift, mitigate biases, and
adapt to evolving system dynamics.

To enhance the efficiency and effectiveness of the ML-Factory, integrating AutoML
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(Automated Machine Learning) capabilities can offer several compelling advantages. Au-
toML streamlines and automates various stages of the machine learning pipeline, from
data preprocessing to model selection and hyperparameter tuning, thereby accelerating
model development and deployment processes. By leveraging AutoML within the ML-
Factory framework, organizations can significantly reduce the time and resources requi-
red for building and maintaining machine learning models, allowing data scientists and
engineers to focus on higher-level tasks and innovation.

AutoML also democratizes machine learning by enabling individuals with varying le-
vels of expertise to develop sophisticated models without extensive knowledge of ma-
chine learning algorithms or programming languages. This democratization expands the
pool of individuals capable of contributing to the ML-Factory, fostering collaboration and
innovation across diverse teams within the organization.

Furthermore, AutoML enhances model performance and generalization by systema-
tically exploring a wide range of algorithms, preprocessing techniques, and hyperpara-
meter configurations. This exhaustive search helps identify optimal model architectures
and configurations tailored to specific datasets and problem domains, ultimately leading
to more accurate and robust machine learning models.

Additionally, AutoML facilitates model reproducibility and transparency by automati-
cally documenting the entire model development process, including data preprocessing
steps, model architectures, hyperparameters, and evaluation metrics. This transparency
enhances trust and accountability in the ML-Factory’s outputs, enabling stakeholders to
understand and validate model decisions effectively.

Incorporating AutoML into the ML-Factory not only accelerates model development
but also ensures scalability and adaptability to evolving data and business requirements.
By automating repetitive tasks and leveraging computational resources efficiently, Au-
toML enables the ML-Factory to handle large-scale datasets and complex modeling tasks
effectively, positioning organizations to derive actionable insights and maintain a compe-
titive edge in dynamic market environments.

In conclusion, integrating AutoML capabilities into the ML-Factory represents a stra-
tegic investment to enhance productivity, democratize machine learning, improve model
performance, ensure transparency and reproducibility, and foster scalability and adap-
tability. By harnessing the power of AutoML, organizations can unlock the full potential
of their data assets and accelerate innovation in delivering AI-driven solutions to address
complex business challenges.

5.1.5 Complex data clustering

The current state-of-the-art clustering methods face several limitations when dealing
with mixed data types, such as combining numerical, categorical, and time series data wi-
thin energy building clustering for energy efficiency recommendation systems. One chal-
lenge lies in appropriately representing and handling diverse data types within the clus-
tering algorithm. Traditional methods may struggle to effectively capture the inherent
relationships and dependencies present in mixed data, leading to suboptimal clustering
results.

Another limitation arises from the differing scales and distributions of various data
types. Numerical data, for example, may have different ranges and variances compared
to categorical or time series data. Clustering algorithms designed for homogeneous data
may struggle to accommodate such differences, potentially leading to biased cluster as-
signments or inaccuracies in representing the underlying structure of the data.

Furthermore, mixed data clustering often requires specialized techniques for simila-
rity or distance computation between heterogeneous data types. While some methods
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exist for handling specific combinations of data types, such as numerical and categorical
data, integrating time series data adds another layer of complexity. Time series data inhe-
rently contains temporal dependencies and patterns that may not be adequately captu-
red by traditional distance metrics, requiring tailored approaches for effective clustering.

Additionally, the scalability of clustering methods when dealing with mixed data and
time series can be a significant concern. As the dimensionality and volume of data in-
crease, computational resources and processing time may become prohibitive, particu-
larly in real-time or large-scale applications. This scalability issue poses challenges for im-
plementing clustering algorithms within energy efficiency recommendation systems for
complex building clusters, where timely and resource-efficient analysis is crucial.

Moreover, the interpretability and explainability of clustering results in the context
of mixed data and time series can be limited. While clustering algorithms can identify
patterns and group similar data points, understanding the underlying reasons for cluster
assignmentsmay be challenging, especially when dealing with heterogeneous data types.
This lack of interpretability can hinder the adoption of clustering-based approaches in
practical applications where actionable insights are essential for decision-making.

In conclusion, while clustering methods have shown promise in analyzing mixed data
types, including time series data, several limitations must be addressed to enhance their
effectiveness in energy building clustering for energy efficiency recommendation sys-
tems. Overcoming these limitations requires advancements in algorithmic development,
scalability, interpretability, and integrationwith domain-specific knowledge to enablemore
robust and actionable insights for optimizing energy efficiency in complex building envi-
ronments.

5.1.6 Discussion on Design Formalism

In contemplating future work on the design and development of the DSS detailed in
Chapter 2, the integration of Unified Modeling Language (UML) offers a compelling path-
way forward. UML’s role as a standardized design pattern, endorsed both in academia and
industry, provides a robust foundation for articulating the system’s architecture explicitly.
Its capacity to adapt and describe emerging technologies, including blockchain-based IT
systems as noted by Górski [60], renders it particularly suitable for our purposes. Given
UML’s prevalence and its regular updates, employing UML for both theoretical validation
and practical applicability ensures the DSS’s relevance and usability within the developer
community.

Futureworkwill focus on employingUML for a thoroughmodeling of theDSS’s compo-
nents, as outlined in Section 2. This includes leveraging UML to delineate dynamic beha-
viors, data structures, and component interactions, which are crucial for the DSS’s opera-
tion within energy systems management. Specifically, the creation of UML class diagrams
could provide deep insights into the system’s datamodel, while sequence diagrams could
shed light on operational workflows. Deployment diagrams would also be vital, offering a
view of the DSS’s infrastructure and elucidating how components are distributed across
physical and virtual resources.

The synergy betweenUMLandDevOpsmethodologies, particularly theModel-to-Code
Transformation, presents a vital area for future exploration, as discussed by Górski [57].
This approach aligns with the continuous practices essential in today’s agile development
environments, enabling rapid prototyping, continuous integration, and deployment. Inte-
grating UML into the development workflow could significantly streamline the transition
from design to implementation, enhancing the DSS’s development cycle and facilitating
its iterative refinement.

Engaging the developer community through UML modeling of the DSS offers a struc-
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tured framework that fosters better understanding and collaboration. This strategy not
only supports the technical realization of the DSS but also ensures the design’s robust-
ness, scalability, and alignment with user needs.

In summary, future endeavors should aim to leverageUML’s comprehensivemodeling
capabilities to encapsulate the intricate dynamics of the DSS, emphasizing its integration
with DevOps practices for a more collaborative and responsive development process.
These efforts are anticipated to significantly advance the design, implementation, and
usability of the DSS in managing complex energy systems, as envisaged in this thesis.

5.2 Improvements concerning Complex Data Clus-

tering

5.2.1 Elbow Method

In many instances, clusterings relying on the elbow method have shown unsatisfac-
tory results. The core of the issue might be in the application of Gower’s distance matrix
across the entire dataset without dimensionality reduction or data preprocessing. This
might lead to an « inadequate » number of clusters. Gower’s distance is especially advan-
tageous for mixed data types, as it adeptly manages both categorical and numerical data,
creating a comprehensive distance matrix. Nevertheless, this method can sometimes veil
the inherent clustering patterns within the data, especially in high-dimensional spaces
where the curse of dimensionality might dilute meaningful distances between observa-
tions.

One possible solution to enhance the relevance of the elbow method would involve
« correcting » the approach by calculating the elbow on a reduced dataset rather than
using the Gower distance matrix on the complete dataset. This strategy aims to simplify
the data structure and highlight more pronounced clustering tendencies, potentially lea-
ding to more accurate and meaningful determination of the optimal cluster count. Adop-
ting a dimensionality reduction step could mitigate the effects of irrelevant features and
reduce noise, allowing the elbow method, when applied to the resulting simplified data-
set, to more effectively discern the point at which addingmore clusters yields diminishing
returns. Consequently, this « correction » could lead to significantly better clustering re-
sults, offering a more precise understanding of the data’s inherent groupings and facili-
tating more informed decision-making based on the identified clusters.

5.2.2 Feature selection

We have not explicitly addressed the feature selection step in every machine learning
pipeline. Feature selection, a critical phase in every machine learning pipeline, involves
identifying and selecting a subset of relevant features from the dataset to simplify the
model, improve its performance, or reduce overfitting. This process is particularly pivotal
when dealingwithmixed datasets, as highlighted by Li et al. [97], due to their susceptibility
to the Curse of Dimensionality. Feature selection effectively addresses this challenge by
reducing the dataset’s dimensionality, thereby enhancing the efficiency and accuracy of
subsequent analyses.

In mixed datasets, where both categorical and continuous variables coexist, feature
selectionmust navigate the complexity introduced by this diversity. While categorical fea-
tures can be directly compared with other types of features, analyzing multicollinearity
without resorting to Dimensionality Reduction (DR) techniques proves to be challenging.
Converting categorical into numerical features facilitates this analysis, allowing for the
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application of statistical tests like chi-square, t-tests, or mutual information to assess the
importance and information content of features.

However, in distance-based clustering or classification methods, the distinction bet-
ween continuous and discrete values diminishes, overshadowed by the challenges of fea-
ture scaling andnormalization. Such challenges are exacerbated in datasets characterized
by sparsity or high levels of noise. While exploring features can unveil varying insights into
the dataset, these insights may not be directly comparable across categorical and nume-
rical features due to their inherent differences.

Furthermore, employing metrics such as mutual information or entropy necessitates
discretizing numerical features, potentially oversimplifying their complexity. This simplifi-
cation, while reducing computational demands, may also diminish the nuanced informa-
tion these features carry. Additionally, the statistical assessment of feature significance
often requires distinct approaches for categorical and numerical features, emphasizing
the need for meticulous feature selection in mixed data contexts to preserve the integrity
and interpretability of the analysis.

For a deeper understanding of feature selection techniques and their critical role
in managing mixed datasets, consulting resources like the SPMF database by Philippe
Fournier-Viger or the comprehensive review by Li et al. [97] can provide valuable insights.
Moreover, embracing feature selection not only as a preprocessing step but also as a
strategy for enhancing model interpretability and performance is essential in the realm
of machine learning, especially when navigating the complexities of mixed datasets.

5.2.3 Distance metric selection and Clustering Comparison

Many of the metrics commonly applied in the context of mixed data comparison are
originally designed for classification tasks rather than clustering, as the Adjusted Rand
Index (ARI) for example. Presently, the prevailing best practice involves utilizing metrics
tailored for quantitative data and adapting them for mixed data.

The primary limitation of these methods lies in the considerable loss of information
due to DR. Moreover, a substantial portion of these metrics primarily assesses the com-
pactness of clusters and their overall design. However, it is important to note that, similar
to the behavior of the DBSCAN algorithm, a clustering algorithm for mixed data may not
necessarily identify spherical clusters. Consequently, the challenge of identifying suitable
metrics for assessing mixed data clusters persists.

Some measures in this domain rely on information-theory concepts such as entropy
or mutual information but often demand a significant amount of memory for computa-
tion. In the realm of mixed data clustering, there is a pressing need to adapt these me-
thods to gauge how the quality of clustering might degrade if the clusters were to un-
dergo changes. Introducing a sense of mathematical logic that governs the relationships
between elements could enhance our understanding of both metrics and algorithms in
this context.

Another avenue to address the challenges ofmixed data clustering involves examining
entanglement, which refers to the similarity between two different clusterings. Given the
absence of ground truth and the limitations of internal measures, introducing a measure
to assess the similarities or differences between clusterings can provide valuable insights
into their results. For instance, a strategy could entail selecting the clustering solution that
exhibits the highest average ARI in regard to the other clustering solutions.

Furthermore, comparing two clusterings, independent of themethods/preprocessing
used, that yield substantially different numbers of clusters poses a challenge. Even if
one clustering appears to exhibit worse indicators, it can be challenging to immediately
conclude its inferiority, particularly when the differing numbers of clusters offer distinct
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interpretations of the dataset.

5.2.4 Data Mining

Data mining, as a practice, entails the automated exploration of vast datasets to un-
cover underlying trends and patterns that extend beyond conventional analysis. Data mi-
ning often finds application in Exploratory Data Analysis, facilitating a deeper understan-
ding of the inherent relationships among data objects. For an exhaustive review of data
mining methods, metrics, and algorithms, we recommend consulting the SPMF database
curated by Philippe Fournier-Viger 1. Additionally, Mirkin [111] provides an extensive in-
troduction to clustering methods specifically tailored for data mining, with a particular
emphasis on mixed data types.

One promising avenue within the domain of data mining is the potential creation of
logical graphs or graph structures based on metrics (such as confidence or lift) to leve-
rage their insights. Analysis of such graphs can encompass techniques like community
clustering (akin to the Louvain algorithm, as discussed in [44]) or multi-level clustering
approaches, as proposed by [42].

In practice, data mining often serves as a preprocessing step that enables the mo-
deling of relationships between data objects, thereby providing a novel perspective for
applying clustering methods.

5.2.5 Time series

Another method for handling time series comparisons is the Temporal Distortion In-
dex (TDI) proposed by [52]. TDI is a dimensionless metric ranging between 0 and 1, where
0 signifies zero temporal distortion and 1 represents maximum temporal distortion. The
bounded nature of this measure enhances its interpretability compared to Dynamic Time
Warping (DTW).

Additionally, we introduce the RdR score 2 as a novel approach. It involves comparing
the time series curves to a ground truth. In this context, consider a k-Means clustering ap-
proach where themeans represent the ground truth. It becomes feasible to compute RdR
scores for each time series in relation to each ground truth, and assign them to the cluster
that yields the best score. Subsequently, new ground truths are computed as the means
of the time series within each cluster. This process iterates until the clusters stabilize.

Furthermore, a persistent challenge lies in dealing with complex data. Just as metrics
and algorithms are often ill-suited for mixed data, analogous challenges emerge when
grappling with datasets that incorporate time series information.

5.2.6 Clustering methods and limitation

As our datasets comprisemixed data and necessitates a structure between clusters to
establish a clear relationship while ensuring their interpretability and explicability, hierar-
chical clustering emerges as the most suitable approach. Notably, pretopological cluste-
ring methods have demonstrated superior performance in several datasets. Subsequent
research endeavors will be directed toward further refining and enhancing this methodo-
logy.

Interpreting the results of mixed data clustering poses a notable challenge. This com-
plexity arises from the amalgamation of diverse data types within the clustering process,

1. https://www.philippe-fournier-viger.com/spmf/

2. https://github.com/CoteDave/blog/tree/master/RdR%20score
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resulting in clusters that may not readily lend themselves to intuitive interpretation. Addi-
tionally, some clustering algorithms may lack transparency in elucidating the mechanics
behind cluster formation, rendering it difficult to discern the underlying data patterns.
Interpretability is a crucial factor, particularly in applications where clustering outcomes
inform decision-making processes or guide subsequent analyses.

Furthermore, the realmof eXplainable Artificial Intelligence (Explainable Artificial Intel-
ligence (XAI)) assumes paramount importance for any novel algorithm. Hierarchical clus-
tering, such as the pretopological clustering employed here, offers a valuable advantage
in this regard. The dendrogram generated by hierarchical clustering can be harnessed
to gain deeper insights into the inherent relationships between each cluster within the
hierarchy, thus enhancing the algorithm’s transparency and interpretability.

Conversely, the concept of robustness in clustering pertains to an algorithm’s ability
to consistently produce reliable results despite the presence of noise, outliers, and va-
rious sources of data variability. Mixed data clustering introduces unique challenges in
maintaining robustness, given the diverse nature of data types that may be influenced by
distinct sources of variability.

To foster a comprehensive understanding of clustering results, we recommend em-
ploying multiple clustering algorithms for evaluation. Each algorithm possesses its own
strengths and weaknesses, and a multifaceted analysis approach can enrich discussions
by providing a more holistic perspective on the outcomes. Detecting variations between
results can be particularly informative, as it aids in identifying biases, such as systematic
errors or distortions, which may lead to inaccurate or misleading interpretations of the
clustering results.

5.2.7 Deep Learning

Neural Network, and more specificaly, deep learning was presented as part of the
state of the art on mixed clustering.

Deep learning, with its robust feature extraction capabilities and flexibility in handling
various data types, is a powerful approach for tackling the intricacies of mixed and com-
plex datasets [17]. Deep learning models, renowned for their ability to learn hierarchical
representations, offer a unique advantage in processing mixed data. Through layers of
abstraction, thesemodels can uncover latent structures and relationships within the data,
facilitating more nuanced clustering and predictive analytics. Techniques like autoenco-
ders for dimensionality reduction and recurrent neural networks (RNNs) for time-series
analysis exemplify the potential of deep learning in extracting meaningful insights from
complex datasets.

However, the application of deep learning to mixed and complex data goes beyond
mere data representation. It encompasses the development of novel architectures and
trainingmethodologies that can inherently accommodate the heterogeneity of data types,
enhancing the models’ ability to learn from and interpret such data effectively.

Despite the apparent potential of deep learning in this domain, its exploration wi-
thin the scope of this thesis was constrained by several factors. Primarily, the intensive
computational resources required for training deep learning models posed a significant
challenge. Deep learning’s reliance on large datasets for training, coupled with the need
for high-performance computing infrastructure (e.g., GPUs), rendered it a less feasible
option given the time and resource limitations encountered during the research period.

Additionally, the development and fine-tuning of deep learning models for mixed and
complex data require specialized knowledge and expertise. The intricacies involved in de-
signingmodels that can seamlessly integrate and analyze diverse data types necessitate a
thorough understanding of both the data and the underlying deep learning technologies.
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Looking ahead, the integration of deep learning into our research framework for clus-
tering mixed and complex data is a central component of our planned future work. Re-
cognizing its untapped potential, we aim to allocate resources towards developing deep
learning models tailored to our specific dataset characteristics.

5.2.8 Dataviz

An effective approach to address the explainability issues associated with clustering,
particularly in the case of complex data, is to have a comprehensive understanding of both
the dataset and the various steps involved in a clusteringmethod,while adhering to logical
rules and parameter settings. Developing improved visualization tools that can help in
understanding the value of clusters in high-dimensional contexts is also an important
area of research.

In the realm ofmixed data clustering, we often encounter datasets withmultiple types
of data interrelated in intricate ways. Representing these complex relationships in a mea-
ningful manner can pose a significant challenge, particularly when dealing with non-linear
or high-dimensional relationships among data types.

To address these formidable challenges, it would seem interesting to employ a combi-
nation of visualization techniques, including heatmaps, scatterplots, and network graphs.
These tools would enable us to effectively depict the various data types and their intri-
cate relationships. Another approach involves DR to transform the data into a more ma-
nageable Euclidean space. However, it’s crucial to recognize that such approaches may
present only one facet of the problem or potentially distort the true nature of the dataset.
As previously discussed regarding clustering method limitations, maintaining explainabi-
lity and robustness is essential for results usability the results fully. Proper interpretation
is vital to ensure that the clustering outcomes carry meaningful insights and can guide
informed decision-making processes.

One notable bottleneck encountered during our study is the absence of dedicated
methods for visualizing mixed data. This deficiency becomes evident when examining
resources like data-to-viz 3, a platform that catalogs data visualization methods across
R, Python, and d3.js 4 (used as the foundation for Plotly in Python). Notably, there are
currently no established techniques capable of effectively handling both quantitative and
qualitative features concurrently. Consequently, the most comprehensible approach for
presenting results from mixed data, as demonstrated in our paper, often involves DR
followed by the application of conventional visualization methods.

This domain remains an uncharted challenge, and the potential solution may lie in
dynamic graph representations, such as those demonstrated in d3.js. However, addres-
sing the challenge of displaying dynamic graph-based results in a traditional paper format
remains an ongoing area of exploration.

5.2.9 Application to our case study

We are currently undertaking the project of assembling a comprehensive database
that will include detailed information on over 10,000 buildings. Each entry will feature
more than two years of energy consumption history, alongside descriptive data such as
building typology, geographic coordinates (latitude and longitude), altitude, and internal
surface area. This endeavor forms the cornerstone of our thesis, enabling us to explore
the intricate patterns of energy usage across a diverse array of buildings.

3. https://www.data-to-viz.com/

4. https://d3js.org/
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Upon completion of the database, a meticulous statistical analysis will be carried out
to discern the most suitable clustering technique for our dataset. This analysis will draw
upon insights from the preliminary discussions presented in Chapter 4 of this thesis. Preli-
minary evaluations suggest that PretopoMD with PaCMAP, K-means with FAMD, and AHC
and PretopoMD may emerge as promising candidates. The precise hyperparameters, in-
cluding the construction of the pretopological space for PretopoMDand the distance func-
tion for AHC, will be fine-tuned in collaboration with energy management experts from
Energisme.

The analysis of the clusters, conducted with the valuable input of Energisme’s experts
in the field of energy management, aims to fulfill two critical objectives. Initially, it will fa-
cilitate the generation of initial hypotheses regarding potential energy inefficiencies and
recommendations tailored to distinct clusters. This process is essential for translating
complex data patterns into practical, actionable insights, enhancing the efficacy of energy
efficiency measures and deepening our understanding of energy consumption behaviors
across different building types through a collaborative effort between data-drivenmetho-
dologies and domain-specific knowledge.

In concluding this chapter, we’ve explored the complexities of developing AI-driven
DSS and applying advanced clustering techniques within the context of smart energy ma-
nagement. This discussion has emphasized the nuanced challenges faced in modeling
complex socio-technical systems, the critical importance of data quality, and the intrica-
cies of algorithm selection and system design. Through a reflective lens, we have identi-
fied key limitations and areas for future improvement, grounding our exploration in the
realities of current methodologies and the practicalities of implementation.

The process of compiling a comprehensive dataset for analysis, refining the architec-
ture of decision support systems, and exploring effective clusteringmethods has highligh-
ted themultifaceted nature of this research area. These tasks, while challenging, outline a
clear direction for advancing the field of smart energy management through data-driven
approaches.

Future work will inevitably need to address the limitations identified throughout this
thesis, particularly focusing on enhancing data quality, improving system scalability and
flexibility, automating hyperparameter optimization and developing more interpretable
clustering techniques. The importance of interdisciplinary collaboration has also been un-
derscored, as the convergence of expertise from various domains will be crucial in over-
coming the current challenges and pushing the boundaries of what can be achieved in
smart energy management.

As this thesis concludes, it’s evident that the journey of innovation and discovery in AI-
driven energymanagement systems is ongoing. The insights and reflections shared in this
chapter serve as a foundation for further research, with the goal of not only addressing
the challenges identified but also exploring new opportunities for advancement. The path
forward is marked by a commitment to continuous improvement and the pursuit of more
efficient, reliable, and user-centric energy management solutions.

Summary of Chapter 5
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Conceptual Framework and Challenges : Exploration of complex socio-technical
systems, development challenges for AI-driven DSS, and the application of clustering
methods to mixed data types.

Recommender System Limitations : Challenges with DSS architecture automation
across various stages, from data lake management to algorithm selection. The non-
automatable nature of certain processes due to the need for deep understanding
and continuous adaptation.

Data Limitations : The critical role of high-quality, comprehensive datasets and the
challenges in creating such datasets due to privacy concerns and data availability.

Complex System Analysis : The inherent limitations in modeling dynamic, intercon-
nected components of energy building clusters and the impact of data quality on
system effectiveness.

ML-Factory Implementation : The unique challenges and considerations for inte-
grating ML pipelines within a DevOpsmethodology, focusing on scalability, reliability,
and interpretability. The potential of AutoML to enhance efficiency, democratization,
and scalability of machine learning in energy management.

Design Formalism : Future work considerations, including the use of UML for detai-
led system modeling and its integration with DevOps for improved DSS design and
implementation.

Improvements in Data Clustering : Addressing challenges in the elbow method,
feature selection, distance metric selection, and the need for improved data visua-
lization methods. The ongoing challenge of clustering mixed data and the potential
directions for enhancing interpretability and robustness of clustering results.

Addition of Deep Learning methods to the Benchmark : Future work include the
implementation of Deep Learning methods, as they are a powerful tool for clustering
mixed data and time series.

Application to Case Study : The endeavor to compile a comprehensive database
for energy management and the collaboration with experts to fine-tune clustering
techniques and develop energy efficiency recommendations.
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Conclusion

This thesis addresses the problemof clustering of complex andheterogeneous energy
systems within a Decision Support System (DSS).

For this purpose, we delved into the theory of complex systems and their modeling,
recognizing buildings as Complex Systems, specifically as Complex Socio-Technical Sys-
tems. We examined the state of the art of the different agents involved in energy per-
formance within the energy sector, identifying our case study as the Trusted Third Party
for Energy Measurement and Performances (TTPEMP). Given our constraints, we opted
to concentrate on the need for a DSS to provide energy recommendations. We identified
the necessity for explainability in AI-aided decision-making (XAI) in high stakes scenarios.
Acknowledging the complexity, numerosity, and heterogeneity of buildings managed by
the TTPEMP, we argued that clustering serves as a pivotal first step in developing a DSS,
enabling tailored recommendations and diagnostics for homogeneous subgroups of buil-
dings.

During this thesis we argued that our problematic can be addressed by proposing a
DSS distributed architecture comprising a Data Lake, Datamarts, anML-Factory, and an al-
gorithm library featuringmachine learningmethods, including clustering. The governance
of such complex semi-automated system requires methodologies such as DevOps and
data lineage to address the identified needs for Accuracy, Reliability and Fairness. States
of the art clustering methods had to be adapted to the specificities of our case study. In-
deed, the datasets wemanipulate are composed of numerical, categorical and time series
data. We coined the term Complex Clustering to address the clustering of this combina-
tion of data types. Such methods include Dimensionality Reduction technics, adaptation
of mixed or numerical state-of-the-art technics and the use of Pretopological clustering
with customproximity definition. Statistical evaluation of the clusters usingmethods such
as Calinsky-Harabasz, Silhouette, or Davis-Bouldins scores were adapted to this context
by using Dimensionality Reduction.

Our contributions include proposing a comprehensive DSS architecture for the TT-
PEMP and developing solutions that leverage state-of-the-art clustering techniques for
Complex Datasets. We identified innovative ways to evaluate these clustering. We ana-
lyzed the computational performances of algorithms and the quality of clusters across
datasets varying in size, number of clusters, distribution, and number of categorical and
numerical parameters. We analyzed the specific strengths and shortcomings of the me-
thods, identifying howPretopology andDimensionality Reduction showpromising results,
especially in large dataset, with high standard deviation in clusters. This effort was com-
plemented by the creation of a dedicated library, and of interactive tools for visualization
and evaluation of clusteringmethods. All of these works have been the subject of internal
reports as well as international publications [91, 92, 93, 94, 95, 96].

Yet we have acknowledged that the proposed clustering methods and the DSS exploi-
ting them are limited by several factors. Each step of the dataflow in the DSS architecture
presents limitations, ranging from the quality and completeness of the data to the diffi-
culty in evaluating the effectiveness of the recommendation, as well as the difficulty of
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converging on a clustering that is both statistically sound and that is judged business-
relevant by experts. The technical issues regarding the maintenance and update of the
ML-Factory were also discussed.

Our research is actively continuing as this thesis is written. We are currently working
on automating the adjustment of the pretopological space parameters to better match
the data’s unique characteristics, automatic hyperparametrization efforts are to be made
for several other methods. Clustering using deep learning methods is also planned in or-
der to have a more comprehensive benchmark. The effort to compile a comprehensive
dataset comprising over 10,000 buildings is ongoing.Moreover, the evaluation of our clus-
tering results by industry experts has just begun, with their feedback still emerging. Our
ongoing research efforts are also focused on further enhancing the Datamarts, Machine
Learning and Decision Support components of our infrastructure.
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Résumé en Français

Cette thèse traite du regroupement de systèmes énergétiques complexes et hétéro-
gènes au sein d’un système d’aide à la décision (SAD).

Dans le chapitre 1, nous abordons la théorie des systèmes complexes et leur modé-
lisation, en reconnaissant les bâtiments comme des systèmes complexes, plus précisé-
ment comme des systèmes sociotechniques complexes. Nous examinons l’état de l’art
des différents agents impliqués dans la performance énergétique du secteur de l’éner-
gie, en identifiant notre cas d’étude comme étant celui du Tiers de Confiance pour la Me-
sure et la Performance Énergétique (TCMPE). Compte tenu de nos contraintes, nous choi-
sissons de nous concentrer sur le besoin d’un SAD pour fournir des recommandations
énergétiques. Nous comparons ce système aux systèmes de supervision et de recom-
mandation, en soulignant leurs différences et leurs complémentarités et introduisons la
nécessité d’une explicabilité dans la prise de décision assistée par l’IA (XAI). Reconnaissant
la complexité, la numérosité et l’hétérogénéité des bâtiments gérés par le TCMPE, nous
soutenons que le regroupement en clusters est une étape essentielle pour développer
un SAD, permettant des recommandations et diagnostics adaptés à des sous-groupes
homogènes de bâtiments.

Dans le chapitre 2, nous explorons l’état de l’art des SAD, en mettant l’accent sur la
nécessité de la gouvernance dans les systèmes semi-automatisés pour la prise de déci-
sion à enjeux élevés. Nous examinons les réglementations européennes, en mettant en
évidence le besoin de précision, de fiabilité et d’équité dans notre système de décision, et
identifions des méthodologies pour répondre à ces besoins, telles que la méthodologie
DevOps et la traçabilité des données (Data Lineage). Nous proposons une architecture
de SAD qui répond à ces exigences et aux défis posés par le big data, avec une architec-
ture distribuée comprenant un data lake pour la gestion des données hétérogènes, des
datamarts pour la sélection et le traitement des données spécifiques, et une ML-Factory
alimentant une bibliothèque demodèles. Différents types deméthodes sont sélectionnés
pour différents besoins en fonction des spécificités des données et de la problématique
à traiter.

Le chapitre 3 se concentre sur le regroupement en clusters en tant queméthode prin-
cipale d’apprentissage automatique dans notre architecture, essentiel pour identifier des
groupes homogènes de bâtiments. Compte tenu de la combinaison des données numé-
riques, catégorielles et des séries temporelles décrivant les bâtiments, nous inventons le
terme « regroupement complexe » pour aborder cette combinaison de types de données.
Après avoir passé en revue l’état de l’art, nous identifions le besoin de techniques de ré-
duction de dimensionnalité et lesméthodes de regroupementmixtes les plus pertinentes.
Nous introduisons également la prétopologie comme une approche innovante pour le re-
groupement de données mixtes et complexes. Nous soutenons qu’elle permet une plus
grande explicabilité et interactivité dans le regroupement en permettant le regroupement
hiérarchique et la mise en œuvre de règles logiques et de notions de proximité person-
nalisées. Les défis de l’évaluation du regroupement sont abordés, et des adaptations du
regroupement numérique au regroupement mixte et complexe sont proposées, en te-
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nant compte de l’explicabilité des méthodes.
Dans le chapitre 4, portant sur les jeux de données et les résultats, nous présentons

des jeux de données publics, privés et générés utilisés pour l’expérimentation et discutons
des résultats du regroupement en clusters. Nous analysons les performances computa-
tionnelles des algorithmes et la qualité des clusters obtenus sur différents ensembles de
données variant en taille, nombre de clusters, distribution, et nombre de paramètres caté-
goriels et numériques. La Prétopologie et la Réduction de Dimensionnalité montrent des
résultats prometteurs par rapport aux méthodes de regroupement de données mixtes
de l’état de l’art.

Enfin, dans le dernier chapitre, nous examinons les limitations de notre système, y
compris celles liées à l’automatisation du SAD à chaque étape du flux de données. Nous
mettons l’accent sur le rôle crucial de la qualité des données et les défis liés à la pré-
diction du comportement des systèmes complexes dans le temps. L’objectivité de nos
méthodes d’évaluation du regroupement est examinée à la lumière de l’absence de don-
nées de référence et de la dépendance à la réduction de dimensionnalité pour adapter les
métriques de l’état de l’art aux données complexes. Nous abordons les problèmes poten-
tiels liés à la méthode du coude choisie. Une discussion sur les perspectives de travaux
futurs s’ensuit, incluant l’automatisation du réglage des hyperparamètres, la poursuite
du développement du SAD, et la nécessité d’innover dans la visualisation des données
complexes.
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nable Artificial Intelligence
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Adjusted Mutual Information Use ARI when the ground truth clustering has large
equal sized clusters. Use AMI when the ground truth clustering is unbalanced and
there exist small clusters 5 [155]. 153

Adjusted Rand Index The Adjusted Rand Index (ARI) is a measure used to evaluate
the similarity between two data clusterings. It is an adjusted version of the Rand
Index, modified to account for the chance grouping of elements. ARI is particu-
larly useful in the context of clustering validation, as it provides a way to compare
the agreement between two different clusterings of a dataset, independent of the
number of clusters. ARI values range from -1 to 1, where 1 indicates perfect agree-
ment between two clusterings, 0 indicates random labeling, and negative values
suggest greater than random dissimilarity. 6 [155]. 153

Application Programming Interface An Application Programming Interface (API) is
a set of rules, protocols, and tools for building software and applications. It spe-
cifies how software components should interact and provides a way for different
software applications to communicatewith each other. APIs are used to enable the
integration of systems, allowing them to exchange data and functionalities easily
and securely. They play a crucial role inmodern software development, facilitating
the creation of complex systems and services by providing modular components
that can be reused and interconnected.. 153

Big Data Big Data refers to extremely large datasets that are beyond the capability of
traditional data processing tools to capture, store,manage, and analyze effectively.
Characterized by the three Vs: Volume (immense amount of data), Velocity (high
speed of data in and out), and Variety (range of data types and sources), Big Data
requires advanced techniques and technologies for proper handling and analysis.
This concept is significant in various fields like business, science, and technology,
where it is used to uncover hidden patterns, correlations, and insights through
sophisticated analytics. The rise of BigData has been facilitated by the proliferation
of data-generating devices, the Internet of Things (IoT), and the advancement of
storage and computational resources.. 1, 36, 39

Black Box Black box model is also known as purely data driven model. Statistical
models are directly applied to capture the correlation between building energy
consumption and operation data. This type of models needs on-site measure-
ments over a certain period of time to train the models to be able to predict the
building operation under different conditions. These black box models are also
widely applied in existing studies to determine building control strategies to re-
duce energy consumption and energy cost. Black box models are easy to build
and computationally efficient, however, such models often require long training

5. https://stats.stackexchange.com/questions/260487/adjusted-rand-index-vs-adjusted-mutual-information

6. https://stats.stackexchange.com/questions/260487/adjusted-rand-index-vs-adjusted-mutual-information
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period and are bounded to building operating conditions that they are trained for
which sometimes can cause huge forecasting error when training data does not
cover all the forecasting range. [99]. 7, 8, 123, 159, 160

Chaos Theory Chaos theory is a branch of mathematics focusing on the behavior
of dynamical systems that are highly sensitive to initial conditions, a phenome-
non popularly referred to as the butterfly effect. This theory suggests that small
changes in the initial conditions of a system can lead to vastly different outcomes,
making long-term prediction of their behavior impossible in general. This is often
due to these systems possessing non-linear dynamics.. 6, 10

ClustMD Model Based Clustering for Mixed Data (ClustMD) introduced by [108]; it
uses a latent variable model (LVM). LVM’s main idea is that the observed data-
points are correlated and form particular patterns because they are influenced by
latent variables. The clustMD model is fitted using an Expectation-Maximization
(EM) algorithm. EM is an iterative method used to find the maximum likelihood
estimate of a latent variable. If categorical variables are present, a Monte Carlo
approximation algorithm is used for the Expectation step. See 3.3.4. 51, 60, 61, 83,
84, 93, 94, 104, 107, 109, 116

Complex Clustering In this thesis, Complex Clustering refers to the process of grou-
ping data that includes a mix of different types, notably numerical, categorical,
and time series data, among others. This approach is distinguished by its capacity
to handle the intricacies and nuances of mixed data types within a single data-
set, employing specialized algorithms and methodologies to discern patterns and
relationships. The utilization of innovative techniques for Complex Clustering like
pretopology are discussed in this thesis. 49, 135

Complex Socio-Technical System Complex Socio-Technical Systems (CSTS) refer to
the integrative study of complex systems where social and technological elements
are deeply intertwined. These systems are characterized by multiple interacting
components, both human and machine, whose collective behavior exhibits pro-
perties not evident from the individual parts. Key features include emergent be-
havior, non-linearity, and selfk-organization. CSTS are prevalent in contexts like
urban infrastructure, organizational networks, and energy systems, where human
decisions and technological processes coexist and influence each other. The study
of CSTS focuses on understanding these interactions to improve system design
and management.. 6, 135, 153

Complex System There is no concise definition of a complex system on which all
scientists agree. And arriving at a definition of complexity through necessary and
sufficient conditions seems difficult if not impossible. In their article Ladyman et al.
[87] identify that complex systems are associated to the following concepts, read
their article for more details.
• Nonlinearity
• Feedback
• Spontaneous order
• Robustness and lack of central control
• Emergence
• Hierarchical organisation
• Numerosity

. 6, 23, 24, 135, 153

Continuous Integration/Continuous Deployment Continuous Integration (CI) and
Continuous Deployment (CD) refer to the practices in software engineering where
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developers regularly merge their code changes into a central repository, followed
by automated builds and tests. The primary goal of CI is to provide rapid feed-
back so that if a defect is introduced, it can be identified and corrected as soon
as possible. Continuous Deployment extends this to automatically deploy all code
changes to a testing or production environment after the build stage. These prac-
tices are part of theDevOps approach and aim to increase software delivery speed,
improve software quality, and enhance the responsiveness to changes.. 153

Convex K-Means Convex K-means also known as Modha–Splanger introduced by
[113] is partitional Clustering method; the cluster centroids are forced to lie wi-
thin the convex hull of the data points assigned to that cluster. To compute the
distortion measures, they use the Euclidean distance between the numerical fea-
tures vectors and the cosine distance between the categorical features ones. The
methodminimizes the average within-cluster distortion and the average between-
cluster distortion. The hyperparameters of the algorithm are the number of clus-
ters to determine k and the granularity of the exhaustive grid search. See 3.3.2.
51, 57, 58, 83, 84, 161

Curse of Dimensionality The curse of dimensionality is a phenomenon that arises
in high-dimensional spaces, particularly in clustering and machine learning tasks,
where the increase in dimensions leads to exponentially larger search spaces, ma-
king it difficult for algorithms to operate efficiently [20, 150]. Furthermore, dis-
tancemetrics thatworkwell in lower-dimensional spacesmay not be as effective in
higher-dimensional spaces, leading to poor performance in clustering tasks [145].
This problem is particularly relevant in the context of complex data containing
time series, as time series often have high dimensionality due to the numerous
time points involved [150]. A solution to break this curse is often DR.. 77, 81, 110,
128

Data Lake A Data Lake is a centralized repository that allows for the storage of struc-
tured, semi-structured, and unstructured data at any scale. It is designed to store
vast amounts of data in its native, raw format. Data Lakes are used for storing big
data and are an essential component of big data analytics frameworks. They en-
able the storing of data in various formats, including files, images, audio, and video,
and facilitate flexible, large-scale data analysis and machine learning. A Data Lake
provides a high level of scalability and can support various analytics and machine
learning tools, allowing for comprehensive data processing and insights extrac-
tion.. 32, 135

Data Lineage Data Lineage refers to the lifecycle of data as it moves through various
stages in the data ecosystem, including its origins, what happens to it, and where
it moves over time. It encompasses the data’s journey from its initial source to
its final destination, including all the processes it undergoes, such as transforma-
tion, storage, and aggregation. Data lineage is crucial for data governance, quality,
and compliance, offering visibility into the data’s accuracy, reliability, and usage
throughout an organization. It enables organizations to trace errors back to their
source, understand the impact of changes in data, and ensure that data used for
decision-making is trustworthy.. 135

Datamart A Datamart is a subset of an organization’s data store or warehouse, often
focused on a single subject area or business unit. Unlike a data warehouse, which
stores data from multiple sources and covers an entire enterprise, a datamart is
usually smaller in scope and size and is tailored to meet the specific needs of a
particular group of users. Datamarts provide a more focused view of data and are
optimized for data access and reporting. They are useful for departmental data
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analysis and can improve data retrieval efficiency by reducing the volume of data
to be processed.. 32, 36–39, 41, 47, 123, 135, 136

Decision Support System A Decision Support System (DSS) is a computer-based in-
formation system that supports business or organizational decision-making acti-
vities. DSSs serve the management, operations, and planning levels of an organi-
zation and help to make decisions, which may be rapidly changing and not easily
specified in advance. They encompass a variety of data, including documents, raw
data, and businessmodels to assist in problem-solving and decision-making. DSSs
can be either fully computerized, human-powered, or a combination of both.. 20,
135, 153

DenseClus DenseClus, developed by Amazon, integrates dimensionality reduction
via UMAP with an accelerated version of the HDBSCAN algorithm, facilitating hie-
rarchical density-based clustering. It is tailored for identifying high-density regions
in datasets, thereby distinguishing between clusters andnoise/outliers. It represent
the data as a weighted graph called the Mutual Reachability Graph. In this graph,
we consider the objects to be the vertices and an edge between any two objects
to have a weight equal to the mutual reachability distance of the two objects. To
model the cluster, all edges having weights greater than ǫ are removed and the re-
maining groups of connected ǫ-core objects constitute the clusters. The remaining
unconnected objects are considered as "noise". This method is heavily dependent
on hyperparameters but the we propose embedded ways to optimize them. The
algorithm constructs clusters hierarchically, adjusting the density threshold toma-
nage cluster connectivity. See 3.3.7. 51, 62, 83, 84, 96, 100, 104, 109

DevOps DevOps is a set of practices that combines software development (Dev) and
IT operations (Ops) with the goal of shortening the systems development life cycle
and providing continuous delivery with high software quality. DevOps emphasizes
collaboration, automation, and integration between developers and IT professio-
nals, fundamentally changing howdevelopment, deployment, andoperations teams
work together. This approach enhances the speed andquality of software develop-
ment and deployment, improves responsiveness to customer needs, and fosters
a culture of continuous improvement.. 135, 153

Dimensionality Reduction Dimensionality Reduction (DR) is a process used in data
analysis and processing to reduce the number of variables under consideration.
It is achieved by obtaining a set of principal variables. Techniques like Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD) are commonly
used for this purpose. DR is especially valuable in dealing with high-dimensional
data, as it helps to simplify the dataset, reduce noise, and make the data more
manageable for analysis. It is widely applied in fields such as machine learning,
data mining, and pattern recognition. It can also be used to deal with mixed data
[68] as in this thesis.. 135, 153

Disjunctive Normal Form DisjunctiveNormal Form (DNF) is a standardization or nor-
malization of a logical formula in propositional logic. It is a canonical form where
the formula is expressed as an OR of ANDs. Each AND is referred to as a conjunct,
consisting of literals (variables or their negations). DNF makes it easy to evaluate
the truth value of a formula by breaking it down into simpler parts. It is commonly
used in boolean algebra, computer science, and digital circuit design, as it provides
a structured and simplified way of representing complex logical expressions.. 153

Dynamic Time Warping Dynamic TimeWarping (DTW) is an algorithmused formea-
suring similarity between two temporal sequences which may vary in speed. It is
commonly used in time series analysis, especially in speech recognition, to align
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sequences of data points by stretching or compressing them in time. DTW calcu-
lates an optimal match between two given sequences with certain restrictions and
rules. The algorithm allows for more flexibility than traditional methods like Eucli-
dean distance, making it more effective for data where the timing varies, but the
pattern or sequence is still meaningful.. 153

Elbow Method The ElbowMethod is a heuristic used in cluster analysis to determine
the optimal number of clusters. In this method, the sum of squared distances of
samples to their nearest cluster center is plotted against the number of clusters.
As the number of clusters increases, this sum decreases until it reaches an "elbow
point," where the rate of decrease sharply changes. This point is considered to be
an indicator of the appropriate number of clusters. The Elbow Method is widely
used due to its simplicity and intuitive interpretation, though it is not always de-
finitive and depends on the dataset’s characteristics.. xiv, 65, 74, 94–96, 98, 100,
104, 107, 109

Energy Efficiency In general, energy efficiency refers to using less energy to produce
the same amount of services or useful output. [125]. See energy efficiency index.
1, 7, 13, 18, 38, 40

Energy Efficiency Index Energy Efficiency Index (EEI), or sometimes known as Buil-
ding Energy Index (BEI), is the most commonly used index as a Key Performance
Indicator (KPI) to track and compare performance of energy consumption in buil-
dings. The concept of this index is widely spread because it is beneficial to have a
universal index for energy efficiency practices in buildings. Generally, EEI can be
viewed as the ratio of the energy input to the factor related to the energy using
component, as given in the following equation: EEI = Energy input / Factor related
to the energy using component. The above definition for EEI is dependent on the
parameters used as the energy input and the factor related to the energy using
component. In general, the EEI for a building is tied to the size of the building as
the energy used is considered to be based on the building floor area [64,65]. Some
researchers define EEI as the ratio between the performance in terms of energy
consumption or carbon dioxide emissions of an actual building to that of a re-
ference building [18]. Regardless of the definition, the saving targets are always
based on the lowest EEI for the building. [3]. 159

Explainable Artificial Intelligence Explainable Artificial Intelligence (XAI) refers to
methods and techniques in the field of artificial intelligence (AI) that allow the re-
sults of the solution to be understood by humans. It contrasts with the Black Box
nature of many AI models, where the decision-making process is not transparent
or interpretable. XAI is crucial for validating and trusting AI in various applications,
especially those involving critical decisions. It involves the integration of AI trans-
parency, interpretability, and accountability into AI systems.. 154

Factorial Analysis of Mixed Data Factorial Analysis ofMixed Data (FAMD) is a statis-
tical method introduced by [46]. It is designed for analyzing datasets that consist
of both numerical and categorical variables. FAMD extends the principles of princi-
pal component analysis (PCA) to mixed data, allowing for the efficient reduction of
dimensionality and the visualization of complex datasets in a lower-dimensional
space. It is particularly useful in exploratory data analysis, enabling the identifi-
cation of patterns and relationships within mixed datasets. For more details, see
Section 3.2.1.. 153

Grey Box Grey Box Modeling is an approach that combines elements of both White
Box (transparent) and Black Box (opaque) models. It integrates empirical data (as
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in Black Boxmodels) with physical, theoretical, or logical reasoning (as inWhite Box
models) to provide a balanced understanding of the system being modeled. This
approach is particularly useful in scenarios where complete information about a
system is not available or where a full White Box model would be too complex.
Grey boxmodels are commonly employed in various fields, including system iden-
tification, control engineering, andmachine learning, offering a pragmatic balance
between simplicity and accuracy. A grey box modeling of a building can be found
in [99].. 7, 8

Heating degree days Heating degree days (HDDs) are a measure of how cold the
temperature was on a given day or during a period of days. For example, a day
with a mean temperature of 40°F has 25 HDDs. Two such cold days in a row have
50 HDDs for the two-day period... 90

Internet of Energy The Internet of Energy [75] (IoE) refers to an advanced networ-
king infrastructure that facilitates the integration and management of distributed
energy resources. IoE encompasses the convergence of energy and information
technology, enabling enhanced control, efficiency, and reliability in energy dis-
tribution and consumption. It supports the dynamic balancing of energy supply
and demand, advanced energy analytics, and the integration of renewable energy
sources. For further understanding.. 153

KAMILA KAy-means for MIxed LArge data (KAMILA) introduced by [48]; it is a com-
bination of k-means clustering with a Gaussian-multinomial mixture model [71]
to equitably balance the effects of numerical and categorical data without making
the user specify the weights of both. The algorithm outputs the partition genera-
ted by multiple runs that maximizes the objective function. The hyperparameter
of this algorithm is the number of runs to perform. see Section 3.3.3.. xiv, 51, 58,
61, 83, 84, 101, 104, 109, 111, 115

K-prototypes The K-prototypes algorithm is a partitional clusteringmethod designed
for mixed datasets, integrating the dissimilarity measure for numerical features
from the K-Means algorithm and a matching dissimilarity measure for categori-
cal features from the K-Modes algorithm. It creates prototypes as a combination
of centroids for numerical features and modes for categorical features. The algo-
rithm operates through initial prototype selection, initial allocation of data objects
based on the closest prototype according to a new dissimilarity measure, and real-
location of data objects to enhance cluster quality. It addresses the limitations of
the Hamming distance in capturing similarity between categorical features by em-
ploying a more nuanced similarity measure that considers the overall distribution
and co-occurrence of feature values. Additionally, it introduces a cost function that
assigns weights to numerical features based on their significance, determined by
the proposed similarity measure. For more details, see Section 3.3.1.. 56, 83, 84,
109, 111, 115

Laplacian Eigenmaps Laplacian Eigenmaps introduced by [18]; it is a spectral em-
bedding technique used for non-linear dimensionality reduction. This method has
one hyperparameter. see 3.2.2. 51–54, 83, 84

Machine Learning Machine Learning is a branch of artificial intelligence (AI) focu-
sed on building systems that can learn from and make decisions based on data.
It involves the development of algorithms that can analyze and interpret complex
data, learn from it, and then apply the knowledge to make informed decisions or

160 Glossary Loup-Noé Lévy



Advanced Clustering and AI-Driven Decision Support Systems for Smart Energy
Management

predictions. Machine learning enables computers to improve their performance
on a task with increasing experience or data over time, without being explicitly
programmed for the specific task. This field intersects with statistics, computer
science, and information theory and has widespread applications in areas like na-
tural language processing, image recognition, and predictive analytics. For a detai-
led understanding, see [112], which provides an in-depth exploration of the fun-
damental concepts and methodologies of machine learning.. 154

Microservices Architecture Microservices Architecture (MSA) is an architectural style
that structures an application as a collection of loosely coupled services, which im-
plement business capabilities. Each microservice is a small, independent process
and is deployed separately. MSA enables continuous deployment of large, com-
plex applications and allows organizations to evolve their technology stack. This
approach contrasts with traditional monolithic architecture, where different com-
ponents of an application are tightly coupled and interdependent. Microservices
are typically developed and deployed using containerization technologies, facilita-
ting independence and scalability.. 154

MixtComp Mixed Dataset and Dataset with Missing Values (MixtComp) introduced
by [21]. It is a statistical method for clustering mixed data, which combines the
strengths of model-based clustering and Bayesian approaches. It can handle dif-
ferent types of data, including continuous, discrete, and mixed data, as well as
missing data. The method models mixed data as a mixture of multivariate distri-
butions, with each component representing a cluster. The clustering is performed
through a Bayesian inference process, which estimates the number of clusters,
cluster parameters, and latent variables. See 3.3.5. 51, 61, 83, 84, 94, 104, 107, 116

ModhaSpangler see Convex K-Means. 51, 94, 109

Multi-Institution Building Energy System The Multi-Institution Building Energy System

(MIBES), introduced by Bosom et al. [24] is a hierarchical graph model used to
model the TTPEMP [24, 23]. 153

ORC Language . 154

PaCMAP Pairwise Controlled Manifold Approximation and Projection (PaCMAP) is a
dimensionality reduction technique that balances the preservation of local and
global structures within high-dimensional data, making it suitable for visualization
and exploratory analysis. It controls the attraction and repulsion between data
points in the reduced space to accurately represent both nearby and distant rela-
tionships from the original high-dimensional space. This approach addresses com-
mon issues like crowding and loss of global structure, making PaCMAP applicable
across various fields for data visualization, exploratory data analysis, and as a pre-
processing step for further machine learning tasks.. xiv, 51, 53, 55, 78, 83, 84, 88,
97, 106, 107, 117, 133

Philip and Ottaway Philip and Ottaway propose to use Gower’s similarity measure
to obtain a similarity matrix, which is then used as input for a hierarchical clus-
tering algorithm. Gower’s similarity measure separates categorical and numerical
features into two subsets, creating one categorical feature space and one nume-
rical feature space. In the categorical feature space, the similarity between two
datapoints is computed by a weighted average of similarities between all categori-
cal features, which is calculated using Hamming distance. In the numerical feature
space, the similarity between two datapoints is computed by the sum of the simi-
larities between all numeric features.. 51, 95, 104, 109, 111, 115
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PretopoMD PretopoMD leverages pretopology for clustering, organizing data into
homogeneous groups while accommodating multicriteria analysis across diverse
data types, including quantitative, qualitative, and time-series data. Pretopology
utilizes the concept of pseudoclosure in a set to define hierarchical structures
based on element similarities. A pretopological space is defined by a set of ele-
ments and a pseudoclosure function, defining how elements relate and group to-
gether. The clustering process involves creating weighted directed graphs, setting
thresholds, and applying a boolean function in Disjunctive Normal Form (DNF) to
determine element inclusion in group closures. This methodology facilitates the
construction of a hierarchical clustering by identifying elementary subsets (seeds),
expanding these through iterative pseudoclosure application, and mapping rela-
tionships via an adjacency matrix to establish a quasi-hierarchy. Its implementa-
tion in a Python library underscores its potential for broad applicability in data
analysis and system categorization.. 81, 84, 89, 98, 100, 104, 107, 109–111, 113,
115, 116, 133

Smart Grid The SmartGrid (SG) is an intelligent, robust, andflexible energy gridwhich
includes communication between each element of the grid. It integrates various
technologies like advanced metering infrastructure, renewable energy sources,
and energy-efficient resources. Smart Grids play a crucial role in modernizing the
energy system, enhancing energy efficiency, and ensuring sustainable energy ma-
nagement. Refer to [6] for a detailed exploration of Smart Grid concepts and ap-
plications.. 154

Trusted Third Party for Energy Measurement and Performances This term refers
to an independent and impartial entity responsible for measuring and assessing
energy performances. Trusted Third Parties in the context of energy efficiency play
a crucial role in verifying and ensuring the accuracy and reliability of energy data,
providing an essential service in the validation of energy-savingmeasures and per-
formance contracts. . 135, 154

UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimensionality
reduction technique thatmapshigh-dimensional data to a lower-dimensional space,
aiming to preserve the local and global structure of the original data. It operates
under the assumption that the data lies on a uniform manifold and uses a fuzzy
simplicial set approach to model the high-dimensional geometric structure. By
optimizing a cost function that aligns this structure with a lower-dimensional re-
presentation, UMAP seeks to maintain the topological relationships among data
points. This makes UMAP particularly useful for exploratory data analysis, visuali-
zation, and improving the performance of machine learning models by reducing
the complexity of data. UMAP’s flexibility, speed, and preservation of both local
and global data structures distinguish it from other dimensionality reduction tech-
niques, offering a powerful tool for uncovering insights in complex datasets.. xiv,
51, 53–55, 62, 77, 78, 83, 84, 88, 93, 97, 100, 104, 105, 107, 113, 116, 117

Unified Modeling Language The Unified Modeling Language (UML) is a standardi-
zed general-purpose modeling language in the field of software engineering. UML
provides a unified way to visualize the design of a system. It is used for specifying,
constructing, visualizing, and documenting the artifacts of software systems. UML
combines a variety of modeling techniques, including structural, behavioral, and
interaction modeling. It is widely used in object-oriented analysis and design and
facilitates the process of understanding and designing software systems, particu-
larly in complex software projects.. 154
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White Box White box or forward modeling approach uses detailed physics based
equations to model building components, sub-systems and systems to predict
whole buildings and their sub-systems beha- viors, such as their energy consump-
tion and indoor comfort. Due to the detailed dynamic equations in white box mo-
dels, they have the potential to capture the building dynamics well, but they are
time consuming to develop and solve.[99] Even though these elaborate simulation
tools are effective and accurate, they require detailed information and parame-
ters of buildings, energy systems and outside weather conditions. These parame-
ters, however, are always difficult to obtain, and even sometimes are not available.
What’s even more challenging in creating these white box models is that they nor-
mally require expert work, and the calculation is extremely time-consuming, which
is the major barrier for white box building models to be used in on-line model ba-
sed control and operation. [99]. 7, 8, 123, 159, 160
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