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General introduction

General introduction

P roteins are the building blocks of life. They serve multiple roles, from participating in cellular
mechanisms to forming the structure of the cell. Their expression is dynamic, varying not just
across different cell types and tissues but also temporally. Molecular biology is committed to
studying the complex processes at stake in gene expression, and to do so, it notably relies on
proteomics, which purpose is to identify and quantify the complex mixture of proteins found in
biological samples, at large-scale.

To do so, high performance liquid chromatography coupled to tandem mass spectrometry (a.k.a.
LC-MS/MS) is the most widespread method. The work presented here revolves around it, and
more specifically around the so-called label-free bottom-up LC-MS/MS analyses: This type of
analysis notably involves the characterization of protein fragments called peptides, in each sample
independently. This technology generates massive amounts of data, from which the extraction of
biological knowledge requires specific statistical processing. Briefly, peptides must be identified
(by comparing the MS signals to the peptides’ theoretical signature), and quantified (thanks to the
MS signal intensity). This leads to a data summary, usually of tabular form, listing peptides and
their abundance, which is of prime importance to discover biomarkers of specific phenotypes.

Several challenges are inherent in this data processing pipeline. First, two important steps
often contribute to false positives: peptide identification and biomarker identification. The former
is challenging due to the numerous comparisons between noisy experimental spectra and their
theoretical counterparts. The latter is not easier, given the multitude of candidate proteins that are
tested for biomarker discovery. These problems intersect at the need for false discovery rate (FDR)
control, which aims at determining appropriate thresholds for retaining peptide identifications or
potential biomarkers of sufficiently high confidence as to minimize false positives (i.e., incorrect
identifications or spurious biomarkers). Another major issue relates to missing values (MVs), which
are abundant and cannot be ignored. Unfortunately, current imputation methods do not adequately
address this challenge, notably because of the complex and manifold origin of these MVs.

This thesis presents contributions to the overcoming of these issues of FDR control and of
missing value imputation. They are hereafter presented as follows:

• Chapter I introduces the basic principles of molecular biology and of LC-MS/MS proteomics.
It more precisely defines the biostatistical issues tackled in this manuscript, the theoretical
foundations necessary to solve them and the current solutions used in LC-MS/MS proteomics.

• Chapter II zooms in on the FDR control. It presents three publications, two of which
revolve around a general FDR control framework referred to as knockoff filters, that we put
in perspective regarding proteomic applications [Etourneau22, Etourneau23]. The last one
extends biomarker selection (under FDR control constraints) to their combination to improve
the diagnosis of a liver disease.

• Chapter III introduces a novel imputation algorithm specifically tailored for proteomic data,
which can also incorporate transcriptomic quantitative information.

• We conclude with a summary of our findings, perspectives based on our presented works,
and more general thoughts upon LC-MS/MS proteomics and missing value imputation.
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1
Statistical proteomics background

We introduce here the main concepts of statistical proteomics, from the
biological, chemical, computational, and mathematical point of views,
as well as some important related challenges that are addressed in
this thesis.
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1.1. Applicative Context

1.1 Applicative Context

1.1.1 The central dogma of biology

Proposed by F. Crick in 1957 [Cobb17], the central dogma of molecular biology is a powerful
concept to describe the flow of genetic information at molecular level inside a biological system.
We can sum it up as following: a gene is a piece of a long sequence of nucleotides (4 biomolecules
pictured as A, C, G, T), called DNA (desoxyribonucleic acid). This sequence is transcribed into
another sequence of nucleic acids, called transcript or mRNA (messenger ribonucleic acid). Finally,
the transcript is translated into a coiled sequence of amino acids (AA), called a protein. Proteins
are often referred as the “building blocks of life” as they are involved in most of the tasks of the
cell life, through various functions [Alberts17]: they constitute the cell membrane, act as catalysts,
receptors, switches, tiny motors or pumps, etc.

The function of a protein is largely determined by its 3D structure, which is itself largely
determined by its amino acid sequence [Hinz10], and hence the information encoded in the
transcript and gene sequences. Yet, relying only on the central dogma is limiting to understand the
whole molecular dynamics resulting from genes. For example, while the central dogma ensures
that information is transmitted from genes to proteins through transcripts, it does not provide
quantitative insight on the expression of genes (i.e., which quantity of the resulting proteins are
produced). For a given gene inside a cell, the number of mRNA copies may vary dramatically over
time, and the relation between the number of mRNA copies and the number of resulting protein
copies depends on many biochemical and environmental factors [Liu16]. For example, small RNAs
(short non-coding RNA sequences) can hinder the expression of more than 60% of protein-coding
genes, either by disabling mRNA translation by docking on them, or the gene transcription by
altering chromatin configuration (the support of DNA) [Stuwe14]. Therefore, a high transcription
level at a given time in a cell does not necessary implies a large protein amount, and vice-versa.
Also, a same gene can be transcribed into different mRNAs, then referred to as isoforms, because
of the alternative splicing mechanism [Marasco22]. It refers to the fact that some parts of the
initial mRNA are not kept for translation, and the remaining parts can be reassembled in various
ways. Additionally, post-translational modifications (a.k.a. PTMs –modifications occurring after
translation, which can change a function of a protein or affect its biological activity [Uversky13])
can occur and this additional information cannot be derived from transcript analysis. Alternative
splicing and PTMs are typical of the exploding combinatory leading to proteins configurations,
which drastically complicates the study of the gene expression products.

1.1.2 The omic paradigm

Since 1953 and the discovery of the structure of DNA by J. Watson and F. Crick, research in
genetics have essentially resulted in an analytical approach, by isolating a given gene, its different
interactions and forms, and depicting an exhaustive description of it [Lay06]. However, in the
90’s, the development of sequencing technologies leveraging increasingly powerful computational
resources has enabled a new complementary approach, privileging a global view of gene information.
This approach was coined genomic, as the discipline of the genome, the kingdom of genes.

From that point on, molecular biology has thrived into multiple "omic" fields (an almost
exhaustive list of those that have emerged thanks to the development of various high-throughput and
cheapest instruments is given on this page [Wikipedia23]). To date, any field coined thingy-omics
refers to the study of the thingy type of biomolecule at large-scale. By large-scale, one means an
attempt to characterize (identify and quantify) the kingdom of thingies (the thingies-ome) within a
sample as exhaustively as possible. Then, with bioinformatics and statistical tools, one then extracts
knowledge from these large-scale (a.k.a. high-throughput) thingy-omics data.

Accordingly, the transcriptome and proteome have respectively been defined as the set of
all transcripts and of all proteins contained inside an organism, tissue, or cell. Their associated
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discipline, the transcriptomics [Lowe17] and the proteomics [Anderson98] focus on gene expression,
as to give a snapshot of the current biological state of an organism, tissue or cell (the phenotype),
which explains their particular interest for biology and medical sciences. Indeed, unlike the genome,
which remains relatively stable across time and different environmental conditions, the phenotype
is dynamic. As another example, the genome of the caterpillar and resulting butterfly is the same,
but their phenotype differs drastically. However, genomics remain mandatory to address hereditary
questions. More generally, each of the omics sheds a specific light on the molecular interactions
in an organism, thus offering complementary biological information. For example, metabolomics
(metabolites are product of chemical reactions inside an organism) covers a set of biomolecules that
are not mentioned in the central dogma (even though these chemical reactions often imply proteins).
Hence the direct measurement of metabolome provides a better understanding of the physiology
and mechanistic of cells, which would be hardly achievable otherwise [Villate21]. Also, some
omics can help to fill the gap of others. As it will appear latter, proteomics and transcriptomics do
not provide the same access to the phenotype; and to identify proteins in a proteomic analysis, one
classically relies on sequence databases derived from the genomic studies of the specie of interest.

1.1.3 Measuring gene expression by transcriptomics and proteomics

Proteomics and transcriptomics both aim at measuring gene expression at large scale. We give here
an overview of the two approaches, the current technologies used and comparative elements.

Transcriptomic analysis today relies on RNA-Seq technology (often considered among Next
Generation Sequencing methods [Behjati13]), which sequences and counts the transcript fragment
(referred to as reads) in the sample. It is a powerful technology as it requires no prior knowledge
on the sequences, and it almost exhaustively covers the transcriptome. Yet, the processing of read
counts is still challenging. For instance, whether zero count for a given read should be interpreted as
a zero measurement or an absence of measure, is still controversial [Silverman20]. A fast-emerging
field is single-cell transcriptomics (referred to as scRNA-Seq). As opposed to bulk-level analysis,
scRNA-Seq enables the resolution of transcriptome at cell level, and for thousands of them. Hence,
scRNA-Seq experiments can capture the cell variability over a tissue, which has particular interest
in oncology for example [Kanter15].

The field of proteomics aims at characterizing and quantifying the proteome [Anderson98]. For
the reasons mentioned above, it brings a finer level of understanding of gene expression than the
sole study of transcriptome. An important application lies in finding biomolecular differences, i.e.,
biomarkers, between different biological conditions (e.g., healthy and diseased patients), which can
lead to more precise diagnosis in clinical context. More generally, proteomics analysis helps biolo-
gists to understand differences between different cells, tissues, wild-type and mutated species etc.
The domain has gained in popularity over the last decades, and to date, many biomedical research
teams rely on proteomics for their investigations. Although one lab may not be representative, this
is illustrated by the activity of the proteomic service platform partnering the lab where this thesis
was prepared (EDyP lab): it contributed to 50 publications in 2012 and to 130 publications in 2022.

High-throughput proteomics mostly relies on mass-spectrometry coupled with liquid chromatog-
raphy (LC-MS/MS). Other methods such as enzyme-linked immunosorbent assay (ELISA, [An-
derson98]), relying on antibody linking, has long been used to precisely quantify proteins in a
sample, however these are mostly targeted methods, i.e., they can only deal with a limited number
of different proteins. On the opposite, LC-MS/MS enables a wide covering of the proteome, and
unlike RNA-Seq, offers a direct view to the phenotype (rather than a gene transcription-based
proxy). However, LC-MS/MS still has some limitations. First, LC-MS/MS experiments mostly
rely on databases of known proteins and PTMs, preventing the discovery of new proteoforms (i.e.,
the different forms of a protein produced from the genome with a variety of sequence variations,
splice isoforms, and PTMs). Alternative methods such as de novo sequencing in LC-MS/MS may
cope with this, but current methods lack accuracy for a stand-alone use [Muth18]. Secondly, the
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cost of analysis of a single sample in LC-MS/MS experiments oscillates between 700C and 1100C
whereas one RNA-Seq analysis costs between 100C and 200C. Recent methods in proteomics
allow sample multiplexing (notably TMT technology [Thompson03]), so that several samples can
be analyzed in the same LC-MS/MS experiment. However, the effective gain of cost becomes
significant for a high number of samples only, and the quantifications obtained are often prone to
distortions [Pappireddi19]. Finally, and probably most importantly, the coverage of LC-MS/MS,
in terms of number of genes expressed, is limited compared to the RNA-Seq technology, mainly
because of the sensitivity of the instrument (more detailed explanations in the next section).

Although LC-MS/MS based proteomics has up to date some limitations regarding the RNA-Seq
approach, its potential to directly unveil gene expression at an unprecedented level justifies the
efforts made in methodological development, from the analytical, bioinformatics, and statistics
standpoints.

1.1.4 Large-scale proteomics by label-free LC-MS/MS

This section summarizes the main steps of a standard bottom-up label-free LC-MS/MS proteomic
experiment (see Figure 1.1), also referred to as “discovery proteomics,” as well as the processing of
the resulting data, both according to the typical workflows at use in EDyP lab (many variants or
alternative approaches described in the literature are thus ignored).

Figure 1.1: The bottom-up proteomic workflow, in data-dependent acquisition mode (from F. Xie
et al. [Xie11]). 1. Proteins are digested by specific enzymes into peptides. 2. The peptide mixture
is separated by LC and ionized before entering the mass spectrometer. 3. Full MS spectrum is
acquired for the peptides that are eluting from the LC column at any given time. 4. In a data-
dependent acquisition setting, one of the most intensive ion species (i.e., peptides) is then isolated
and fragmented to obtain the MS pattern of its fragments, i.e., MS/MS spectrum). 5. The peptide
sequence can be deduced from the MS/MS spectrum.

Biochemical and analytical treatment

First, proteins are extracted from a biological sample, and then digested by a specific enzyme
(which cleaves the binding between specific patterns of amino acids), resulting in a complex
mixture of peptides (i.e., fragments of proteins, i.e., shorter sequences of amino acids). This
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Chapter 1. Statistical proteomics background

explains the term "bottom-up" proteomics, as, starting from now in the process, one only deals
with peptides instead of entire proteins. The reason is that peptides are easier to analyze by mass
spectrometry than intact proteins [Tsiatsiani15, Gillet16]. Recovering protein-level information
from peptide-level measurements (a step referred to as peptide-to-protein aggregation) is thus an
essential computational step that is discussed later. To improve the sensitivity and the proteome
coverage, the peptides are separated by liquid chromatography (LC) before entering the mass
spectrometer (MS) [Niessen06]. The mass spectrometer then ionizes and analyzes the peptides
on the fly as they elute from the LC, and, at each time stamp, produces an MS (or MS1, or Full
MS) spectrum. Broadly, an MS spectrum is a plot of the intensity values measured as a function of
the mass to charge ratio (denoted by m/z) of the measured ionized peptides (a.k.a. precursor ions
or precursors). Yet, these spectra are not sufficient to identify the peptides analyzed for a simple
reason: several peptides have exactly or almost the same mass, so that they would produce a peak
at the same m/z point. To differentiate between them, the mass spectrometer isolates peptides in
a chosen m/z region, fragments them and analyzes these fragments. This yields a second type of
MS spectra, called MS/MS (or MS2, or fragmentation spectra), which contains the signature of
the amino acid sequence, enabling identification of the peptide. Several m/z regions are analyzed,
resulting in several MS/MS spectra per MS spectrum. This process of one MS followed by MS/MS
acquisitions forms a cycle that is iterated during the whole elution time of the LC.

Peptide identification
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Figure 1.2: Illustration of peptide identification from MS/MS spectra in bottom-up label-free LC-
MS/MS experiments.

There are two acquisition modes for MS/MS spectra: either data-dependent (DDA) or data-
independent (DIA). In DDA mode, the different m/z regions selected for MS/MS correspond to
the N most intense peaks in the MS1 spectrum (as suggested in Figure 1.1), where N is user-
defined [Stahl96]. In DIA, the MS1 spectrum is decomposed in several m/z windows of same sizes
(regardless of the spectrum content), which are then analyzed separately in MS/MS [Vidova17,
Doerr14]. At first look, the DIA approach appears to be ideal, as it enables to cover the complete m/z
range. Compared to DDA, in which only a few peaks are analyzed, it looks much more exhaustive.
However, in DIA, each MS/MS spectrum contains a complex and multiplexed signal, as it depicts
the fragmentation patterns of several peptides (which peaks are entangled). Thus, the identification
of peptides in MS/MS requires a particular processing, often specific to the type of sample analyzed,
and with variable performances regarding the tool used [Fröhlich22]. Conversely, in DDA, one
MS/MS spectrum corresponds to a single peptide (unless two have the same mass and elute at same
time, which occurs only occasionally), making the peptide identification more straightforward.
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Even if some datasets produced in DIA have been used to benchmark our contributions, the rest of
this chapter focuses on the DDA mode, as it is simpler and sufficient to set the basic principles that
govern peptide identification.

Assuming each MS/MS spectra pertain to a single precursor ion (thus following DDA princi-
ples), it is searched against a reference (or target) database of peptide sequences, in the following
manner (depicted in Figure 1.2). First, a database of protein sequences related to the species of
interest is extracted from a large publicly available protein database (e.g., RefSeq [Zahn-Zabal20],
UniProt [Bateman21], or neXtProt [O’Leary16]). Note that these large databases heavily rely on
the discovery of coding sequences in the genome, sequencing of variants and experts’ annotations,
which shows how advances in genomics and transcriptomics expand proteomic coverage. Then,
in silico digestion and fragmentation of proteins is performed to obtain a list of target peptides,
with their associated theoretical MS/MS peak positions. Finally, the list of peak positions of the
experimental spectrum is compared with those of each item of the target database, and the best
match (the notion of "best" being based on a tool-specific score) defines a peptide-spectrum match
(PSM).

The whole process is performed automatically by search engines such as Mascot [Perkins99],
Andromeda [Cox11], X!Tandem [Craig04], OMSSA [Geer04] and many others [Verheggen16].
As the number of pairwise comparisons to obtain PSMs is huge, we can expect that many of them
occur by chance (the spectrum randomly matches the theoretical peaks of an unrelated sequence
from the database). To cope with this, practitioners need to set a score threshold below which PSMs
are assumed to depict a match of too poor quality to be relied on. Ideally, this threshold should
guarantee that the probability of a random match is controlled and kept under a certain acceptable
risk value. The computation of this score is a major issue of statistical proteomics and will be more
extensively discussed in subsection 1.2.2.

Peptide quantification

Figure 1.3: Illustration of the XIC peptide quantification by integrating the MS1 signal over elution
time (from M. Chion and J. Bons [Chion21]).

The most classical approach to quantify peptides is to integrate the MS1 signal over the elution
time, in the specific m/z window where each precursor has been identified (see Figure 1.3). Hence,
peptides at a specific m/z value can be identified at few time points, but it does not ensure they
can be quantified (the signal may be too discontinuous). This type of quantization is referred to as
Extracted-Ion Chromatogram (XIC) [Bantscheff12].

The interpretation of peptide abundances constrains the downstream analysis of proteomics data
resulting from LC-MS/MS experiments. The reason is the height of a peak in an MS1 spectrum
does not only relate to the peptide quantity, but also to its chemical properties (which notably
influence how it ionizes). Therefore, different XIC values cannot be compared unless they pertain
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to the very same peptide sequence; quantitative comparisons only make sense in a relative way, for
a same peptide across different samples. As a result, XIC quantification requires cautiousness: to
compare XIC values across samples, the molecular composition of the samples should be similar.
This is why some quality control steps are then required before computing XIC when quantification
results are aggregated over different samples [Bateman14].

Of note, it is possible to mark proteins or peptides using isotopic standards as to derive absolute
quantitation methods, but such labelled-based approaches are more cumbersome and do not easily
scale-up to broad proteome analysis, so that this work has only focused on data produced with
label-free yet relative quantitation approaches.

Filtering and normalization
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Figure 1.4: Illustration of the peptide abundance table obtained for a bottom-up label-free LC-
MS/MS experiment.

At this step, the quantification results of different samples can be aggregated in a single table
(illustrated on Figure 1.4), with peptides in rows, samples in columns, and an abundance value
in each cell (note that in practice we deal with log-abundances to compress the expression scale,
as well as to have broadly normally-distributed expression values in samples). As samples are
analyzed independently, the non-overlapping identification and/or quantifications across samples
induces missing values (MVs) in the table. Hence, some peptides with too many MVs are often
filtered out from the table.

Then, intensities of samples may be normalized to correct unwanted variability between
samples (e.g., samples preparation, mass spectrometer calibration shift, etc.). Various normalization
methods are used in proteomics: mean, median, or quantile alignment, as well as some other more
specific ones developed for microarray gene expression data (Variance Stabilizing Normalization-
VSN [Huber03], Removal of Unwanted Variation-RUV [Jacob16]) or metabolomic data (RUV for
metabolomics [Livera15]). In any case, the choice of the method, and how it applies to the samples
according to the experimental design is project specific.

Imputation of missing values

The peptide quantification table obtained contains an important amount of missing values. For
example, it is not rare to have between 20 and 40% of MVs [Liu21, Webb-Robertson15], whereas
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in many datasets, more than 50% of peptides have at least one MV. Yet, reader should keep in mind
the MVs rate strongly varies according to the nature of the experiment, as MVs have many sources.

The first one is the non-overlapping of peptide identifications across samples. Hence, a dataset
produced from the analysis of different types of tissues should have much more MVs than if
it involves related samples: First, because the proteins may indeed differ between the tissues;
And second, because the mass spectrometer has a certain sensitivity, such that abundant proteins
identified in a tissue may not be so in another if their concentration is too low.

This leads us to the second source of MVs: the mass spectrometer has a dynamic range of
view. It is comparable to a human pupil that dilates itself depending on the overall light intensity.
Hence, the lower limit of detection of the instrument varies across elution time and from sample to
sample, depending on the overall quantity of biological material currently analyzed. This results in
a stochastic left-censoring of the abundances data, which is particularly difficult to account for.

Finally, a large proportion of MVs is expected to occur randomly in the dataset, due to the
complexity of the biological samples and to the experimental procedure. For example, some
peptides may not be cleaved as expected during digestion step, such that we cannot detect them
properly. Without pretending to be exhaustive, we can give many other examples: misidentification,
bad ionization, weak response in mass spectrometer, or scarce MS signal over elution time [Lazar16].
In any case, proteomists must keep in mind that there is no reliable way to determine the underlying
cause of a given MVs, let it be because of low abundance or because of an issue in the experimental
pipeline.

Several options are available to handle missing values and will be discussed in detail thereafter.
Among them, imputation of missing values, i.e., their replacement by a plausible value, is the
approach chosen in EDyP Lab analysis pipeline.

Protein inference and aggregation of abundances

Prot 2 Prot 3 Prot 4

Pep 2 Pep 4Pep 3

Prot 1

Pep 1

Protein Group 1 Protein Group 2 Protein Group 3

Figure 1.5: Illustration of protein groups. Prot 2 has a specific peptide (Pep 2) and thus defines its
own protein group. Prot 1 only has one peptide, shared with Prot 2, and is thus grouped with Prot
2 in another protein group. Prot 3 and 4 are grouped as they only have peptides shared between
them.

So far, the analytical and statistical steps have been conducted at peptide-level. However,
proteins are the molecules of interest for measuring gene expression levels. For this reason, most of
proteomic pipelines include a peptide-to-protein aggregation step. This requires first to identify the
proteins represented by the peptide-level abundance table. When an identified peptide sequence is
specific to a unique protein in the reference database, it simply proves the existence of the protein.
However, an identified peptide sequence can also be shared between several proteins. Hence, if
a protein does not have any specific peptide identified, it must be grouped with other proteins
they share peptides with, leading to a so-called protein group (as its different constituting proteins
cannot be discriminated using MS evidence), as illustrated on Figure 1.5. Second, once the proteins
or protein groups are defined, one needs to endow them with an abundance value. This is usually
done by averaging or summing (for each sample) the abundances of the peptides associated to the
protein or the protein group [Blein-Nicolas16], although more sophisticated methods have been
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developed [Zhang15,Bubis17]. A major difficulty is that, by the nature of abundance measurements
(see section 1.1.4), we cannot know how much each of these abundances contribute to the total
protein amount. Also, we do not know the distribution of shared peptides intensities across their
associated proteins, thus complicating their integration in protein abundance.

Note that even to obtain quantification at peptide-level, an aggregation step is required, but it is
not as challenging. In fact, during the MS analysis, a given peptide can be ionized in several ways
(e.g., with a charge +1, +2, etc.), resulting in separate identifications and quantifications for different
ionized versions of the same peptide (the precursor ions). Fortunately, the precursor-to-peptide
aggregation has much less impact on downstream analysis, than from peptide to protein. First,
because most peptides have only one precursor, and only few have as much as three of them; and
second, because there are no such thing as shared precursors. Hence, it has long been assumed that
this aggregation can be done before peptide filtering or after imputation without dramatic changes
on data.

Differential analysis

We now have an abundance table at protein-level, without missing values. The most common
question answered by label-free LC-MS/MS experiments is that of differential analysis. It consists,
for each protein, in testing whether the fold change of abundances between several conditions is
significantly different [Wieczorek17], thus detecting proteins differentially expressed. We then
obtain a large number of p-values, for which many of them may be significant by chance. Thus,
similarly to the identification problem (see section 1.1.4), there is a need to define a p-value cutoff
to control the number of proteins falsely considered as differentially abundant (in the statistical
jargon, one has prevented an excessive probability of type I error). We will also discuss this issue
in the next section. Yet, proteomics experts have interest in other types of downstream analyses,
such as visualization of the data, or clustering of proteins according to their abundance pattern over
the different conditions.

The match-between-run option

An optional, yet often used MS signal processing step is known as match-between-run (MBR)
[Tyanova16] (also referred to as cross-assignment, depending on the software used [Bouyssié20]).
The idea is to associate the quantification of a non-identified peptide in a sample A, when it has
been identified and quantified in another sample B. Given its MS peak attributes such as m/z, charge
state, and retention time in sample B, the objective is to locate a peak in the MS signal of sample A
that most likely corresponds to the same peptide. Then, we can consider this peptide to be present
in sample A and compute a XIC value from the peak retrieved. This option enables to reduce the
number of missing values in the peptide table, based on real XIC abundances instead of statistically
imputed values. However, while tackling the MV issue, MBR also increases significantly the
number of falsely detected peak [Lim19]. Thus, a rigorous statistical procedure should be involved
to limit their number. However, doing so is not straightforward as it cannot be included in the
identification procedure (see section 1.1.4) because of the lack of matching MS/MS spectra, and
further methodological developments are needed in this direction. Hence, although MBR can
reduce the number of MVs, it can only do so to a certain extent, as an important number of MVs
still needs to be tackled afterwards.

Methodological development at EDyP Lab

The entire label-free LC-MS/MS pipeline can be broadly decomposed in two main parts: the “wet-
lab” processing, encompassing sample preparation, digestion, and the LC-MS/MS analysis; and the
“dry-lab” processing, with all the computational steps (identification, quantification, and statistical
analysis). For the “wet-lab” part, EDyP Lab uses commercial tools and products. However, most of

12



1.1. Applicative Context

computational tools are in-house products, as the processing of high-throughput LC-MS/MS data is
an active field of research. EDyP has for example developed Proline (a software tool proposing a
variety of functionalities for precursor to protein aggregations and for quantification [Bouyssié20])
and Prostar (for the statistical analysis [Wieczorek19]).

The work of this thesis is part of a drive to develop robust and efficient statistical tools, which
can be integrated to these in-house software tools. As both are freely accessible, we ambition their
continuous improvement can benefit to the entire proteomic community.

1.1.5 Major statistical issues in proteomics

We address in this thesis work three major issues in the statistical processing of proteomic data,
which are thereby described.

False Discovery Rate control

In statistics, the multiple testing problem arises when a large number of statistical inferences
are made simultaneously from observed values. The more inferences are made, and the more
frequent spurious inferences are. For example, let us suppose that researchers are testing several
drugs individually to see whether they can cure an illness. If the drug efficiency is measured on
a biological variable subject to stochastic variations on a too small number of patients, there is
a chance that random fluctuations perfectly match the severity of the cohort patients, so that one
ineffective drug is believed effective. Naturally, the probability of such event increases with the
number of drugs: the more drugs tested, the higher the risk.

This issue occurs in two major steps of LC-MS/MS pipeline: the identification of peptides and
the differential analysis. In the first case, the inferences correspond to the list of PSMs obtained
from the search on the target database, with their associated score. In the second case, the inferences
are the statistical tests and associated p-values comparing mean abundances for each protein. In
both cases, we seek a threshold that would retain as many correct inferences as possible, while
limiting the number of inferences retained by chance.

The false discovery rate (FDR) framework fits particularly well the issue here. It can be defined
as the following. We establish a large number of hypotheses, referred to as null hypotheses (e.g.,
"the protein abundances do not differ between two biological conditions"), and define for each the
corresponding alternative hypothesis (e.g., "the protein abundances differ between two biological
conditions"). We then apply a procedure to select which null hypotheses are rejected in favor of the
alternative one (a rejected null is called a discovery). This procedure often consists in computing
a p-value or a score for each null, and the rejection is assessed when it falls beyond a specified
threshold value t. Formally, the FDR at level t reads:

FDR(t) := E
[

# of true null rejected at level t
# of null rejected at level t

]
= E [FDP(t)]

Where the expectation here is taken over the distribution of the data, and FDP(t) refers to the
false discovery proportion (it can be viewed as 1-precision, in the statistical classification jargon),
which is in practice unknown. Then, to control for the FDR, we need to have a procedure which
gives the threshold t such that:

FDR(t)≤ α

where α is user defined risk value, such as for example, at 1% or 5%.
In differential analysis, the FDR control has long been relied on (e.g., for RNA microarray

type experiments [Efron02, Tusher01]), and has solid guarantees as the null hypothesis is usually
well characterized. However, the null hypothesis for PSM at identification step is much harder
to characterize: let it be “the PSM occurred by chance,” how do we define “by chance?” Even
though the concept of FDR control is more recent for validating PSM than for testing the mean
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equality between two groups, a lot of efforts have been put by the proteomic community into the
development of appropriate methods. However, until recently, those methods lied on empirical
rules without further theoretical guarantees. Recent theoretical advances in statistics could help
justifying a posteriori these empirical rules, however, they also suggest modifying them. Therefore,
a significant part of this thesis has been focused on unifying and landmarking these elements from
distinct scientific communities.

General FDR control methods are described in section 1.2 and as well methods used in
proteomics, both for differential analysis and identification of peptides.

The missing values issue

The important proportion of MVs, as well as the complexity of their nature, which cannot be
determined (see section 1.1.4), drastically complicates their handling, and can strongly affect
subsequent analysis. For example, if a peptide has many MVs in a given biological condition with
respect to another, not accounting for the low abundance censoring can lead to biased estimation of
means, and we may miss a reliable biomarker.

To the best of our knowledge, no concrete evidence exists regarding whether MV should be
handled at precursor or peptide level. However, it is preferable to treat them before the aggregation
of abundances to protein-level [Lazar16]. In fact, aggregating observed and non-observed peptide
values with current pipelines often amounts to imputing by the neutral element of the aggregation
rule employed (for example a zero in case of sum-based aggregation). This implicit imputation is
not desirable as it risks distorting the protein signal, especially when few peptides are used in the
aggregation.

Two main approaches can be distinguished to handle missing values in proteomics [Taylor22].
Firstly, one can simply keep the MVs as such during the data processing. This is possible when
the data processing tools can handle MVs by relying on the observed values available only. For
example, it is always possible to perform a t-test on the abundance values between two different
conditions as long as at least two values are observed in the compared conditions, even though it
may lack of power. Alternatively, one can impute these values, i.e., replace MVs with plausible
values regarding the structure of dataset, and then treat the dataset as a completely observed one,
enabling any type of analysis. As doing so may lead to place too much confidence on "created
data," a refinement of this approach is to perform multiple imputations [Chion22]; one runs a
non-deterministic imputation algorithm several times on the same dataset, as to account for the
uncertainty of the imputation. As a downside, it requires specific strategies to subsequently integrate
them into a stand-alone result, which are discussed in subsection 1.3.2. In any case, the treatment
of missing data in LC-MS/MS experiments is challenging as it can strongly affect downstream
analysis, and no consensus has emerged yet on how they should be handled.

We define the missing values in proteomics from a statistical point of view, and present state of
the art methods to handle them in section 1.3. We specifically focus on imputation, which is the
method preferred by EDyP Lab, and present our main contributions on this topic.

Proteogenomics and transcriptomic integration

Proteogenomics refers to the joint study of proteomics and transcriptomics (or genomics) [Tariq21].
It falls within the scope of the so-called "multi-omics" approaches, which aim at combining different
omics to extract more and better knowledge than with a single omic technology.

In gene expression studies, the combined use of proteomics and transcriptomics is of interest to
leverage both the high coverage and precision of RNA-Seq technology, and the direct but often less
complete measurement of protein abundances by LC-MS/MS. Proteogenomics typically involves
enhancing proteomics analysis by utilizing the transcriptomic identifications or genome of the same
sample to construct the target database, with the goal of improving protein inference [Miller22] (see
section 1.1.4) or peptide identification [Fancello22]. While other studies have suggested integrating
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transcriptomic expression data to improve peptide identification [Shanmugam14, Ma17], no study
has yet focused on enhancing the quantification of proteome using transcriptomic analysis. Yet,
variations in transcript levels between several conditions could give valuable information when
dealing with missing peptide abundances. However, the integration of transcriptomics analyses to
improve or extend proteomic quantitation poses considerable challenges, notably because of the
complexity of both quantitative and qualitative dependencies between them two.

We discuss some works depicting the relationship between quantities of mRNAs and proteins,
and we present state-of-the-art methods to extrapolate protein measurements from transcriptomics,
as well as our contribution on proteogenomic imputation in section 1.4.

1.2 The control of FDR in proteomics

1.2.1 FDR control methods

The notion of FDR has been introduced in 1995 by Y. Benjamini and Y. Hochberg [Benjamini95]
as a radically new solution to the classical problem of multiple testing problem. It has since then
thrived into a large family of methods. We hereafter give an overview of most common ones.

Benjamini-Hochberg procedure

The Benjamini-Hochberg (BH) procedure [Benjamini95] was originally designed to control for
the FDR using a list of p-values resulting from independent statistical tests. It consists in selecting
a threshold beyond which null hypotheses are rejected, given a user probabilistic defined upper
bound on the FDR. Further work [Benjamini01] demonstrated that the FDR remained controlled
under positive regression dependency between test statistics, thus proving the procedure’s efficiency
for a great variety of applications. Also, the estimation of the overall proportion of null hypotheses
among all of them, denoted π0, can be integrated to the procedure, and enables a more precise FDR
estimate [Storey03]. We next summarize the general patterns common to the most used BH-related
procedures, as well as a bit of the underlying intuition.

Consider m hypothesis H1, . . . ,Hm tested with their associated p-values p1, . . . , pm. Let us
denote p(1), . . . , p(m) the sorted p-values by increasing order, and H(i) the null hypothesis associated
to p(i). Let q∗ be a user-defined risk threshold (often referred to as the target FDR by proteomists):
it means one wants the FDR of our selection procedure to be lower than q∗, resulting in a so-called
conservative control. Let us suppose we estimated an overall proportion of null π0 among the m
hypothesis (an intuition on how to do so is given later). Note that setting π0 to 1 (as in the seminal
BH article) will always result in a conservative procedure, although it is usually not optimal. Then,
the BH procedure reads as:

Choose k, the largest i such that
p(i)π0m

i
≤ q∗, (1.1)

Then reject all null hypothesis H(i) for i ∈ {1, . . . ,k}.

Doing so ensures that FDR(p(k))≤ q∗, but contrarily to a rather frequent misconception in the
proteomic community, it does not ensure that the FDP(p(k))≤ q∗. The quantity

p(i)π0m
i can only be

viewed as a “guess-timate” of FDP(p(i)) as illustrated on Figure 1.6. However, its minimum over
the i’s≥ k, which is mini:i≥k

p(i)π0m
i is an estimate of FDR(p(k)), also referred as a q-value [Storey02].

The FDR control is tighter when π0 is well estimated and the p-values are well calibrated (i.e., the
p-values of true null hypotheses are effectively uniformly distributed on [0,1]), as illustrated on
Figure 1.6 for a given p-value threshold q∗ = α . Broadly speaking, knowing the distribution of
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p-values under null hypothesis, one can "subtract" this distribution to the observed one to have an
estimate of the FDR. The uniformity of null p-values distribution also helps to correctly estimate
the value of π0: far away from rejection region (usually concentrated near 0), we expect to have
only null p-values, therefore the height of the histogram on the right side should relate to π0.
Yet, p-values are in practice almost never as well calibrated as on Figure 1.6, so that more robust
methods have been proposed to estimate π0 (e.g. [Storey03, Storey04, Pounds06]), and some of
them are routinely used in proteomics [Giai Gianetto16].

Figure 1.6: Illustration from [Burger18] of the estimation of FDP in the BH procedure. The red area
corresponds to the density of p-values from true null hypothesis, while the green area corresponds
to the one from true alternatives.

Empirical Bayes approaches

According to the definition above, the BH procedure is limited to situations where p-values are
available. Empirical Bayes approaches [Efron02, Efron01] have enabled to extend it to other types
of scores, not even necessarily related to a statistical test. It consists in estimating the distribution of
scores under the null hypothesis, before its subsequent "subtraction" from the complete distribution.
This estimation can be performed using parametric assumption on the data distribution, or via an
alteration of observed data signal, such that the distribution of resulting scores distribute like under
the null, for example by randomly permuting samples [Efron01].

Similarly to the above example, let us take a list of ordered scores y(1), . . . ,y(m). In this example
we consider the lower the score is, the less the null hypothesis is plausible. Thus, we also aim at
finding a threshold below which we reject null hypotheses, given a target FDR q∗. Let us denote
F̄ the empirical cumulative distribution function (c.d.f.) of the scores y(i) and F0 the cumulative
distribution function of the null scores. In this setting, we can control for the FDR at level q∗ by
tuning the rejection threshold to the largest y(i) such that:

π0F0(y(i))
F̄(y(i))

≤ q∗ (1.2)

Note that, when the distribution of null scores is exactly known, this method is akin to the BH
approach, as the term F0(y(i)) can be viewed as the p-value resulting from the test statistics y(i),
knowing then that F̄(y(i)) = i/m. An important advantage of this approach is that arbitrary scores
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can be used, as long as it is possible to approximate the associated null distribution. This can be
done in a pseudo-generative manner: for example, let us consider a table with thousands of gene
expressions. For each gene, if one randomly shuffles its values across all samples, the distribution
of statistics assessing difference of mean between conditions should be the one from the null
hypothesis (i.e., there is no mean difference). Then, one approximates F0 by the c.d.f. of the
statistics obtained [Efron01].

Knockoff filter

More recently, a new framework has been proposed for FDR control, called knockoff filters [Bar-
ber15, Candès18]. It was originally designed to control for the FDR in a variable selection task
on tabular data, as to select a subset of features from a set X = (X1, . . . ,Xm) that best explains an
outcome variable Y (e.g., a severity state of a disease.) The null hypothesis for a given variable Xi

can then be stated as: Y and Xi are independent conditionally to the other variables X−i = X \{Xi}.
To control for the FDR resulting from testing each variable, this method aims at generating so-called
knockoff variables, i.e., a set of variables X̃ of the same size as X , which respects two properties:

1. Exchangeability:
∀S ⊂ {1, . . . ,m},(X , X̃) = (X , X̃)swap(S),

where the equal sign stands for equality in distribution, and (X , X̃)swap(S) is obtained from
(X , X̃) by swapping the entries Xi and X̃i for each i ∈ S.

2. Conditional independence: X̃ and Y are independent conditionally to X .

While the second property ensures that variables generated are truly under the null hypothesis,
the first one is crucial for the following step. One then computes a contrast score Wi for each
i ∈ {1, . . . ,m}. A high positive (resp. low negative) contrast score Wi indicates that the variable Xi

is more (resp. less) explanative of the outcome variable Y than its original knockoff counterpart
X̃i. A necessary condition on these scores for the procedure to work is that that the contrast scores
of variables under the null hypothesis distributes symmetrically around 0. The exchangeability of
knockoff variables aims at fulfilling this symmetry condition. Therefore, the contrast score must be
carefully defined accordingly.

In any case, we should keep in mind that simply copying the original data distribution to
generate knockoffs will result in poor statistical power (i.e., high type II error), as the requirement
2 of knockoff definition would be poorly fulfilled. The more the knockoff variable is independent
from its original variable, the more power we can expect, and this is what the proposed methods
attempts to do.

Finally, to control for the FDR at a given target value q∗, one rejects the null hypothesis for
variables with a contrast score greater than a threshold t, defined as:

t = min
{

τ > 0 :
1+#{i : Wi ≤−τ}

#{i : Wi ≥ τ}
≤ q∗

}
(1.3)

After the seminal work of Barber and Candès, multiple methods have thrived to generate
knockoffs from various data types [Candès18, Romano19, Kurz22, Sesia19] as to improve this new
approach to FDR control. Indeed, the resulting type of estimators strongly differs from the BH
and empirical Bayes related methods, as here the selection is made according to contrast scores
with different properties than score simply reflecting the importance of a variable. In fact, the
term 1+#{i:Wi≤−τ}

#{i:Wi≥τ} can be viewed as a conservative estimate of FDP(τ) [Candès18], as the term
#{i : Wi ≤−τ} is equal in theory to the number of null variables with contrast score above τ , and
the +1 term ensures we are on average above the FDP.
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1.2.2 Applications of FDR control methods to proteomics

In LC-MS/MS proteomic experiments, FDR control is required both at peptide identification step
and differential analysis. However, methods dedicated to control false peptide identifications have
been developed and have spread based on empirical arguments only, and efforts to theoretically
support them have long remained scarce.

FDR control for identification of precursor peptides

We recall first the multiple testing issues encountered at the identification step. Each MS/MS
spectra obtained is used to query a reference target database of theoretical spectra that can be found
in the protein mixture analyzed. The best match of the MS/MS spectra onto the target database is
referred as a peptide-spectrum match (PSM), which is a triplet {MS/MS spectra, target sequence
matched, matching score}. Regarding the large number of PSMs obtained, as well as the varying
quality of the MS/MS spectra, we expect a non-negligible number of PSMs to result from a random
match, and thus to be devoid of biological validity. As such random matches are expected to be
less frequent when the match score is high than when it is low, it makes sense to define a cutoff
score to retain the sufficiently confident PSMs only. In a multiple test correction parlance, the null
hypothesis for a given PSM is that the assignment between the MS/MS and the target one is random
(and thus incorrect). We then aim at controlling for the FDR by selecting a rejection region on the
range of PSM scores.

To do so, the most common methods require a so-called decoy database. It is alike the
target database except that it contains amino acid sequences that should not be found in the
sample (and which do not appear in the target database). These sequences are often generated
to mimic the target database, for example by reversing the target sequences [Moore02], shuffling
the target sequences [Klammer06], generating the decoy sequences at random using a Markov
model with parameters derived from target sequences [Colinge03], or by other methods. Yet, no
clear consensus on how they should be generated has been established, neither on the choice of the
decoy database size (which for simplicity is often equal to that of the target database) [Jeong12].
This decoy database can be used in two different manners (see Figure 1.7), which forms the two
main approaches to FDR control that have been used, confronted, and compared in the proteomics
literature for the last 15 years.

…
…

…

…
…

…
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6.1
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Target
Database
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MS/MS spectra

A) Separated search B) Concatenated search

Figure 1.7: Illustration of separated (A) vs concatenated (B) database searches when using decoy
database to control FDR at identification step. Each line represents either a target PSM (green) or
a decoy PSM (orange) in the search setting given.
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The first one consists in applying the search procedure twice: one on the target database, and
another one on the decoy database [Moore02, Käll08]. This is often referred to as a separated
search. The second one consists in concatenating the target and decoy databases, and operating the
search on the resulting concatenated database [Peng03, Elias07a]. In this setting, for each MS/MS
spectrum, the target and the decoy databases "compete" to propose the best match, which is why
concatenated search is also often referred to as target-decoy competition (TDC).

Both methods share features: First, they rely on an important assumption referred to as the
Equal Chance Assumption (ECA). It states that incorrect matches on the target database and decoy
matches are equally probable. Although intuitively grounded, the ECA can hardly be assessed, and
strongly depends on how the decoys are generated.

Second, both methods have inspired creative researchers with a biology or biochemistry
background, who have proposed many FDR guess-timates based in the counts of target and decoy
matches passing a given threshold. Among them, few should nonetheless be retained, as they were
more motivated by improving the statistical rigor than by artificially inflating the rejection region.
Notably, the ratio D/T , where T (respectively D) is the number of target (respectively decoy) PSMs
passing the significance threshold, has been first proposed in separated search setting [Käll08],
whereas (D+1)/T has only recently been proposed for TDC [Levitsky17].

Controlling for incorrect peptide identifications is still an active field of research, and new
methods are continuously emerging. Except from [Couté20], which authors proposed to bypass
decoy generation by directly relying on the properties of the search engines scores (as to recover
p-values for subsequent application of BH procedure), most elaborate on more refined uses of
the target and decoy databases. Among them, one is worth mentioning, as it tightly relates to the
work present in chapter 2: Madej and Lam have proposed in [Madej22] a general null PSM score
distribution (based on the empirical Bayes FDR framework) estimated from plenty of publicly
available datasets. The idea is that this null distribution, referred as Common Decoy Distribution
(CDD) is not dataset-specific, but only depends on search engine and on some search parameters.

Differential analysis

Differential analysis is a task common to many omic approaches, and it has long relied on FDR
theory. The first FDR control methods, notably BH and empirical Bayes, have long found practical
applications in Genome Wide Association Studies (GWAS) or RNA microarray data [Sun06,
Efron02]. When proteomics emerged, it naturally borrowed this know-how, which explains why
they are now used in most proteomic experiments. Yet, it should be noted that other recent methods
enable to incorporate prior knowledge or informative covariates to prioritize, weight and group
the hypothesis tested (detailed review in [Korthauer19].) This can be useful in proteomics as for
example, the number of identified peptides or the number missing values can affect our confidence
on a detected biomarker [Burger18]. It can lead to more accurate and "personalized" q-values for
each protein.

1.2.3 Beyond FDR: variable selection for patient diagnosis

FDR control and more generally multiple testing correction methods are common approaches to
propose new biomarker candidates, as they make it possible to quantify and control the risk that
a candidate appears to be a false positive. These are univariate approaches that do not cope with
dependencies between variables. However, combining several variables can yield more powerful
biomarkers for complex biological status (e.g., to diagnose the state of a patient), and to do so,
classical FDR procedures are limited. For example, FDR control can lead to discover several
biomarker candidates, but, if these are well correlated, their combination in a multivariate model
(often referred as a "panel" in clinical context) will not necessarily increase prediction performances
with respect to a univariate model. However, there are popular variable selection methods such as
Lasso [Tibshirani96] or Elastic Net [Zou05] that enable to select the set of variables that explains
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the best, altogether, an outcome variable Y . These methods require hyperparameter tuning, which
can be unstable when too few data are available, and unlike the FDR approach, do not address any
quality control requirements.

To compare panels, generalized linear models (GLMs, which are flexible generalization of
ordinary linear regression) are insightful, as they enable comparison between several nested
models [McCullagh19]. A GLM A is said to be nested in another GLM B if all its variables are
included in those of B. Hence, a nested comparison test between A and B fitted on the same dataset,
consists in testing whether additional variables included in B bring significant improvement to
the likelihood or not. These tests are particularly convenient when a small number of variables is
considered, and when prior knowledge about some of them being efficient is available, as then,
the combinatory remains low. Therefore, FDR approach can be used to select a small subset of
biomarkers from a large list of covariates, and nested hypothesis tests would then help to decide
which combination of covariate has the highest predictive performances. However, doing so requires
being careful about data leakage between the various steps, as to avoid overfitting [Desaire22].

1.2.4 Contributions

We sum up here our main contributions related to FDR control in proteomics, which are thereby
detailed in chapter 2:

1. Univariate contrast scoring for knockoff procedure: In section 2.2, we apply knockoff
procedure on proteomic quantitative data for differential analysis. To cope with high dimen-
sionality of the data, we adapt the knockoff procedure by proposing a univariate p-value
based contrast scoring method.

2. Novel theoretical considerations on TDC enlighten by knockoff filter: Theoretical links
between TDC and knockoff procedure have been identified by the proteomic community.
Whereas they were often used to justify the TDC approach, we present in section 2.3 some
important discrepancies. Regarding those, some limitations of the TDC approach naturally
appear, and we propose perspectives on how they could be overcome.

3. Development of a diagnosis panel from biomarker selected with FDR control: We pro-
pose an original way to combine previously discovered biomarkers with new ones discovered
in a study performed at EDyP Lab, to establish a multivariate diagnosis score. This highlights
a practical application following up biomarker discovery under FDR control.

1.3 Missing Values in Proteomics

1.3.1 Statistical considerations on proteomics MVs

Rubin proposed more than 40 years ago a statistical classification of the mechanism underlying
missing values [Little19]. We define them here formally. For simplicity and without loss of
generality, let us have a complete random vector X containing the information of interest. We
denote M the random vector associated to the missing response for each entry of X (containing a 0
for an observed entry and 1 for a missing one), and subscripts “obs" and “mis" respectively the set
of indices of observed and missing entries in X . We refer as missingness mechanism the conditional
probability distribution P(M|X ,Γ) where Γ denotes unknown missingness parameters. Then the
missingness mechanism falls in one of these three cases:
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• Missing Completely at Random (MCAR): the probability for an entry to be missing does
not depend on any other entry:

P(M|X ,Γ) = P(M|Γ) (1.4)

• Missing at Random (MAR): the probability for an entry to be missing may only depend on
observed entries:

P(M|X ,Γ) = P(M|Xobs,Γ) (1.5)

• Missing Not at Random (MNAR): any other case, i.e., when the probability for an entry to
be missing depends on missing entries.

MVs on which MNAR mechanism applies (that we refer to as MNAR values) are the most
challenging as we do not assume any simplification over the dependence between M and X . It
thus means we need to account for the missingness response of entries to infer conclusions from
the dataset. We illustrate this issue with a situation where one wants to estimate the parameters Θ

describing the complete data X by a maximum likelihood estimation (MLE). In the presence of
missing values, a natural way to estimate Θ is to maximize the joint likelihood of the entire data
available, i.e., of the joint observations of (Xobs,M). Indeed, more than Xobs is available, as the
knowledge of M and of its possible dependency to Θ is informative too. Let us suppose then that Θ

and Γ are distinct, i.e., their joint parameter space is the cross product of each of their parameter
space. In an MAR or MCAR setting, it is straightforward to show that [Josse18]:

P(Xobs,M|Θ,Γ) = P(M|Xobs,Γ)P(Xobs|Θ) (1.6)

This result shows that, in such setting, we can find an MLE of Θ by simply maximizing the
likelihood of the observed values Xobs; as P(M|Xobs,Γ) does not depend on Θ. Oppositely, in
the MNAR setting, the latter term would depend on Θ, so that it is necessary to account for the
missingness mechanism to perform MLE.

In LC-MS/MS proteomics, we usually assume there are two missingness mechanisms at
stake [Lazar16, Webb-Robertson15]. Missing values that occur randomly because of some unex-
pected issues during the complex LC-MS/MS pipeline, such as mis-cleavage, mis-identification,
or other (see section 1.1.4 for more details), are considered MCAR. On the other hand, missing
values related to the dynamic range of view of the instrument, low abundance, or even the complete
absence of the peptide in the sample, are considered MNAR.

No convincing MAR mechanism has been identified yet. In a dataset of peptide abundances,
such mechanism would occur if the missingness of a peptide would only depend on the missingness
of other observed peptides. A recent paper [Gardner21] claimed that MVs due to peptide mis-
identification (leading to an observed but wrongly assigned value in another peptide) can be
considered MAR. This statement seems to lack support as the missingness response of the missing
peptide mostly depends here on the missingness response of the peptide carrying the wrongly
assigned value, and not the value itself.

To handle MNAR values, Little and Rubin [Little19] defined two approaches, corresponding to
two different factorizations of the joint distribution of M and X :

• The selection model:
P(X ,M|Θ,Γ) = P(X |Θ)P(M|X ,Γ) , (1.7)

where we retrieve the distribution of the entire distribution of X in the first factor, and the
missingness mechanism in the second.

• The pattern-mixture model:

P(X ,M|Ψ,Ω) = P(X |M,Ψ)P(M|Ω) , (1.8)
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where the first factor characterizes the distribution of X given the pattern of missingness,
parameterized by Ψ, and the second refers to the marginal distribution of missingness
response defined by parameter Ω (again we assume Ω and Ψ are distinct).

The choice between these two models depends on the type of data and on the application en-
countered [Little19]. The selection model seems natural when we are interested by dependencies
between covariates of X over the whole dataset. On the other hand, the pattern-mixture model often
provides more interpretable parameters for subject-matter experts, and is thus particularly used in
sensitivity analysis, which aims at evaluating the uncertainty of the output of a model linked to
few parameters. However, strong restrictions on the parameter space are always necessary in the
pattern-mixture approach [Little19].

Most of the work modelling the distribution of LC-MS/MS proteomic missing data rely more
or less explicitly upon the selection model [Karpievitch09,Luo09,Ryu14,Chen14,O’brien18,Li23],
as the estimation of the missingness mechanism, related to the instrument quantitation limits, seems
to be a natural approach to understand the underlying overall distribution of the data. Among them,
some works [Chen14, O’brien18, Li23] do not model the presence of MCAR values and instead
consider only a global random left censoring mechanism, for example with a Probit (the normal
cumulative distribution function) or a Logit (the logistic function) mechanism. This choice is
simpler and may not be far from the experimental reality, as, in any case, we do not have any direct
way to know whether a value for a given peptide is MCAR or MNAR. Also, a selection model that
integrates a Probit or Logit missingness mechanism is guaranteed to be identifiable under some
assumptions [Miao16]. Identifiability means here that two different parameters cannot lead to the
same joint distribution (Xobs,M), and it is thus a desirable mathematical property for parameter
estimation.

1.3.2 Handling MVs in proteomics

In LC-MS/MS proteomics, complete-case analysis [Little19], i.e., filtering out all peptides con-
taining MVs and conducting data analysis subsequently, is not considered. As the proportion of
peptides having at least one MV in as dataset often reaches more than 60% [Liu21], complete-case
analysis would discard way too much information. Also, because of the expected large amount of
MNARs, any subsequent analysis of the data would be highly biased (cf. subsection 1.3.1). Yet, in
practice, peptides with too few observed values are filtered out, as we consider they may not be
reliable in the subsequent analysis.

Another approach, referred to as available-case analysis [Little19], consists in leaving missing
values as such, and conducting subsequent analysis, nonetheless. The corresponding methods will
be referred to as “imputation-free,” and naturally depend on the objective(s) of the analysis. For
example, one can compute a variance and a mean when two values are observed in each biological
condition, and then use them to perform a t-test. One of the most popular tools for differential
analysis in gene expression tables, limma [Ritchie15], can natively handle MVs, as long as at least
one value is observed in at least two conditions. However, it does not cope with the presence
of MNAR values and would thus return biased conclusions on LC-MS/MS proteomics data. On
the other hand, numerous tools have been developed to handle MNARs in proteomic differential
analysis. Among them, some [Ryu14,O’brien18] rely on similar Probit missingness mechanisms to
determine the mean peptide abundances in each condition, with Bayesian or MLE based estimators.
The tools MSqRob [Goeminne20] relies on an orthogonal approach, as it aggregates p-values from
differential expression and differential detection (testing whether a peptide is more detected in a
condition than in another) to assess whether the peptide is relevant or not. Finally, a recent and
yet unpublished method [Chion23], uses a Bayesian framework that leverages the intra-condition
correlations between the peptides resulting from same proteins to assess the posterior distribution
of the mean and variance in each condition. These posterior distributions can then naturally be used
for differential analysis. This latter method is, one of the first attempts to leverage dependencies
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between peptides from same proteins to improve quantitative analysis, which is a path we have also
focused on (see chapter 3).

The clear advantage of imputation-free methods with respect to imputation methods, whether
there are used to infer parameters or for differential analysis, is that they avoid any risk of data
distortions. For example, imputing MVs that are known to be left-censored by a too low value
may artificially increase peptides variances in some conditions, resulting in a loss of power in
differential analysis. Following an inverse logic, imputing missing values by the observed mean of
their respective condition is probably the worst thing to do, as the intra-condition variance would
shrink, and hence most of imputed peptides would appear as significant. This latter example also
raises the question on whether the imputation should be done by accounting for the experimental
conditions, which is an issue we discuss in section 2.5. Yet, a main advantage of imputation is
that it enables any type of downstream analysis. In fact, if properly done, there is no need to
create, for each type of downstream analysis, a model or pipeline dealing specifically with random
left-censored MNARs. We distinguish here three different frameworks regarding missing value
imputation in LC-MS/MS proteomics.

First, single imputation consists in imputing a dataset once (with one method), and then in
conducting the analysis as if the dataset had been fully observed. The imputation methods used to
do so can often be classified between MCAR/MAR-devoted methods and left-censored oriented
methods (hereafter referred to as MNAR-devoted methods for simplicity). We provide a selective
review as well as references towards more exhaustive reviews in the following section.

Second, we call meta-imputation any method that consists in aggregating results from several
single imputation methods. The underlying motivation is often that combining MCAR and MNAR
values should limit imputation bias, either by interpolating the results [Ma20], by iterative sampling
with different imputation methods [Wei18,Wang22] or by selecting the appropriate method for each
MV [Giai Gianetto20, Gardner21]. Among the latter, let us mention the imp4p package [Giai Gi-
anetto20]. It proposes several meta-imputation strategies, all based on a preliminary diagnosis: for
each MV, it estimates the probability of being either MCAR or MNAR. Then, this probability is
used to refine the combination of several imputations accordingly. Note that imp4p directly falls in
the scope of the pattern-mixture model, where we aim at characterizing the marginal distribution of
each pattern (MCAR, MNAR and observed values).

Last, we refer to as multiple imputation methods, any method that imputes several times a
dataset and store the resulting multiple imputations for subsequent data analysis. The multiple
imputations can either be done by different algorithms (for example MCAR- and MNAR-devoted
ones) and/or with a stochastic algorithm that is given different seeds as input. Only few works
follow this direction in proteomics. A well supported approach [Chion22] relying on Rubin’s
rule [Little19] has recently been proposed with an interesting feature: it proposes to include the
variability of the multiple imputed values in the estimation of parameters (such as intra-condition
mean and variance), as to directly cope with the variability due to the imputation-related uncertainty
in the subsequent data analysis.

Finally, we have noticed one article which lies between imputation-based approaches and
imputation-free ones, and which was an important source of inspiration for this doctoral work:
PEMM (a penalized EM algorithm incorporating missing data mechanism [Chen14]) aims at esti-
mating the overall mean and covariance matrix of peptides by considering an original missingness
mechanism. As the missing values are the latent variables of the model, they are generated at each
E-step, so that, according to the authors, it yields a natural imputation algorithm. Unfortunately, the
authors did not benchmark the imputation capabilities and focused on the parameter estimation
under incomplete data instead. The few attempts to use PEMM for imputation explicitly that can
be found in the literature ( [Hediyeh-zadeh23, Kong23], confirmed by our experiments) let us think
it is indeed not adapted for this task, for a variety of reasons, among which, convergence issues,
lack of scalability, and the necessity to manually tune the missingness parameter. Other limitations
are discussed in detail in chapter 3.
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1.3.3 State of the art on single imputation

Among the several options available regarding imputation, our work focuses on single imputation
for several reasons. From a practical point of view, single imputation is the most straightforward
and simple method to deal with MVs. Likewise, it is also the standard approach in most labs
worldwide, including EDyP, thanks to its easy-of-use and versatility with respect to downstream
data analysis. Therefore, this focus makes our work easy to integrate in most homemade statistical
pipeline. Also, from a methodological point of view, the quality of the results obtained by meta or
multiple imputation approaches directly depends on the quality of the single imputation method
they stem from. Thus, the improvement of single imputation methods, adapted to LC-MS/MS
proteomics data is an inescapable long term issue. We give here an overview of imputation methods
that are commonly used or benchmarked in proteomics experiments, with first MCAR/MAR- and
then MNAR-devoted methods.

MCAR/MAR-devoted methods include first methods based on dimensionality reduction, using
a variety of state-of-the-art algorithms: Singular Value Decomposition (SVD) [Troyanskaya01],
Probabilistic Principal Component Analysis (PPCA) [Ilin10] or Bayesian Principal Component
Analysis (BPCA) [Oba03]. They all consist in finding a low dimension latent decomposition of the
dataset, considering the dimensions removed are not relevant (as essentially containing noise, which
in some case, can be explicitly modeled, as with PPCA or BPCA). Also, methods based on similarity
between peptides are often considered, such as K-nearest neighbors (KNN) [Troyanskaya01],
Sequential-KNN (SeqKNN) [Kim04], or Local Least Squares (LLS) [Kim05]. They first consist in
finding the K closest peptides of the peptide to impute, according to a certain metric (Pearson’s
correlation, Euclidian distance etc.), and then either aggregating results by a weighted average
(KNN) or by fitting linear models on each neighbor (LLS). At first glance, these methods do not
seem suited for high dimensional setting, as the chances of finding apparently close peptides based
on few observed values, and without any true dependencies, are high. This issue is yet partially
addressed by SeqKNN [Kim04] which performs KNN iteratively from the peptides with the fewest
MVs, to those with the largest amount. Finally, ImpSeq [Verboven07], a method that iteratively
estimates the sample-wise covariance matrix and imputes missing values accordingly, has recently
been introduced in comparisons benchmarks as it showed very good results. This approach is
quite singular as contrarily to most imputation methods, it does not assume that the samples are
independently distributed. However, this approach makes sense as most proteomics experiments
involves several replicated samples per phenotype.

Most of these MAR/MCAR methods have been developed primarily for other gene expression
studies (RNA-seq or microarray data), and usually report good performances on them. Although
they capture global or local dependencies in the dataset, they do not account for the presence of
left-censored MNAR values, which makes them ill-suited for LC-MS/MS data.

MNAR methods, on the opposite, are rather simple and empirical methods, which are most
of the time univariate. For example, LOD (Limit of Detection) [Lazar15], simply imputes by the
lowest value (or a low quantile of the distribution) in the sample or in the peptide; MinProb a
slightly refined version, samples from a normal distribution around this LOD. QRILC (Quantile
Regression Imputation of Left-Censored data) [Lazar15] first estimates the parameters of a Gaussian
distribution by quantile regression and then imputes by sampling from this normal distribution
truncated at LOD. A refined version of QRILC, named IGCDA (Imputation under a Gaussian
Complete Data Assumption) [Giai Gianetto20] moderates the variance of impute values of QRILC.
MsStats [Kohler23] relies on an accelerated failure time model [Taylor13], considering all missing
values as censored by a fix detection threshold, in a similar manner as QRILC. However, few
MNAR methods are not univariate.

First, trKNN (truncated KNN) [Shah17] is similar to the KNN approach, but instead of using
the observed mean and variance estimates to compute the peptide correlations, it estimates these
parameters by fitting a truncated normal distribution of each peptide with MVs. The choice of the
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truncation point is however empirical and fixed to the minimum value observed in the dataset. A
latter and recent method called msImpute [Hediyeh-zadeh23] has shown promising results. Briefly,
it applies a low-rank SVD factorization on each condition independently, and then interpolates
these results with a MinProb type algorithm, where interpolation weights depend on the intra-
condition MV ratio. Thus, msImpute should adapt to varying missingness mechanism in the data.
Here again, we retrieve implicitly the pattern-mixture model, as imputed values are a weighted
average of different missingness patterns, corresponding to the number of MVs in a given condition.
However, we have witnessed an issue with this interpolation approach: it does not always increase
the performances of the algorithm (see chapter 3), so that adaptability to various missingness
mechanisms is in fact limited.

There exists numerous reviews comparing the aforementioned imputation tools on LC-MS/MS
proteomics data [Karpievitch12, Webb-Robertson15, Lazar16, Jin21, Liu21, Shen22]. However, no
general consensus has emerged yet on which one to use, and conclusions regarding the best methods
are often contradictory. The reasons behind this may be two-fold. First, apart from msImpute, no
single imputation method explicitly copes with different missingness mechanisms, although they
can vary from a dataset to another. Second, the validation procedure used for benchmarking often
varies from one review to another, as there is no global consensus on the gold standard validation
method [Harris23].

The validation of proteomics data imputation algorithms generally consists in two main ap-
proaches. The first one is mask-and-impute validation. It is based on introducing “pseudo-MVs”
in a dataset with a chosen missingness mechanism, imputing the whole dataset, and computing
the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) or the correlation coeffi-
cient between the ground-truth and imputed values for each imputation method (see Figure 1.8
as well as subsection 3.6.5 for the RMSE/MAE definitions). Most of the related works have
proposed mechanisms that controls the proportion of MNARs and MCARs among the masked
values [Lazar16, Jin21, Wang22]. Thus, the sensitivity with respect to this proportion can be
evaluated. Yet, the issue with these experiments is that we can draw conclusions only regarding the
type of MNAR mechanism (Probit, Logit, non-parametric etc.) chosen for validation, as the true
one remains unknown.
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Figure 1.8: Description of typical mask-and-impute validation procedure.

The second main validation approach is oriented towards differential analysis. It consists
in using benchmark datasets resulting from artefactual proteomic experiments. They are built
as following: one spikes few human proteins (generally, one of the so-called Universal Protein
Standards, or UPS, proposed by Sigma-Aldrich) at different (i.e., varying across samples) known
concentrations into a constant (i.e., stable across samples) yeast or E. coli proteome, referred to
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as the background; as to mimic a situation where only a few known (i.e., labelled with a ground
truth) proteins are differentially abundant. Technical replicates are produced for subsequent LC-
MS/MS analysis and summarized in an abundance table. It has become customary to use those
benchmark datasets to compare imputation strategies, by applying the following procedure: (1)
impute the abundance table with different methods, (2) test each peptide for differential abundance,
and (3) assess for each method whether low p-values correspond to UPS peptides with a ROC
(Receiving Operating Characteristic) or (Precision-Recall) curve (see Figure 1.9). In addition,
some authors [Liu21, Hediyeh-zadeh23, Harris23] assess whether the UPS fold-change (i.e., the
difference between mean abundances) computed after imputation agrees with the experimental
procedure. A main advantage here is that validation relies on a known ground-truth and well
controlled experimental conditions. However, this differential analysis validation has its limits, as
these benchmark datasets are oversimplified and often unrealistic. Moreover, it does not ensure that
well-performing methods in this context would remain so for other types of downstream analysis.
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Figure 1.9: Description of differential-analysis oriented validation procedure. UPS here stands for
peptides that are ground-truth differentially abundant.

To sum up, no global consensus exists on the standard validation procedures in proteomics,
mainly because of the presence of MNAR values. A recent work [Harris23] suggested validations
should almost entirely rely on benchmark datasets and account for other types of features which are
interesting for downstream analysis (detection limit, peptides that are usable for protein quantifica-
tion, runtime, etc.). However, owing to the simplistic natures of benchmark datasets, and to the
importance of the imputation error, we disagree with this view.

1.3.4 Contributions

Our contributions to the missing value problem in discovery proteomics, thereby detailed in
chapter 3, can be summed up as following:

1. Development of a new imputation algorithm: We developed a novel and original imputa-
tion algorithm named Pirat (Peptide or Precursor level imputation under random truncation).
Pirat is easy to use and only requires few samples and at least one observed value per peptide
(although keeping such peptide is often questionable). Finally, it has been implemented in an
R package available on GitHub (https://github.com/prostarproteomics/Pirat).

2. Pirat copes with biochemical dependencies: Pirat drastically reduces the dimensionality of
the imputation problem, by accounting for the dependencies between peptides or precursors
derived from the same proteins, which has never been proposed in proteomic imputation
before.
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3. Modelling the missingness for imputation: Pirat’s underlying model is based on Rubin’s
selection model. A great advantage of Pirat is that the missingness mechanism is automati-
cally inferred from the dataset, enabling a better generalization of the method. Also, it does
not require hyperparameter tuning as the latter ones are automatically set without additional
computational costs.

4. Pirat obtained the best performances on benchmark datasets with endowed ground-truth
about differentially abundant peptides. It also achieved best performances on mask-and-
impute experiments with significant (and realistic) MNAR proportions.

1.4 Multi-omic integration for proteomics

1.4.1 Types of multi-omic applications in literature

The term “multi-omic integration” in quantitative gene expression data stands for a wide range of
works, with different purposes [Rohart17, Argelaguet18, Song20, Tariq21]. Without pretending to
be exhaustive, we mention here some of them:

• Discovery of biological pathways, or enrichment of previously discovered ones,

• Gene-set enrichment analysis, which aims at identifying classes of genes or proteins that are
over-represented in some phenotypes,

• Classification of samples or individuals,

• Inference of an omic modality in an individual or sample from other omic modalities, which
we thereby refer to as “sample extrapolation,”

• Inference of a whole unseen feature in a given omic modality from other omics modalities,
which we thereby refer to as “feature extrapolation,”

• Missing value imputation,

• In general, compensation of weaknesses and limitations of different omic modalities.

The proteogenomics approach defined in section 1.1.5 globally falls in the range of the three
latter points, as it aims at increasing the reliability and exhaustiveness of proteomic analyses
by integrating transcriptomic and genomic information. We will thus focus on missing values
imputation and sample/feature extrapolation for proteomics data from transcriptomics data in the
rest of this section (description in Figure 1.10). Note that sample or feature extrapolation can
directly be used as an imputation method, although it is intrinsically suboptimal, as it does not use
the information available in the sample/feature that one seeks to impute. Moreover, we also restrict
to cases where transcriptomics expression table of same or related samples are accessible, as well
as optionally, the relation graph between genes, transcripts, and proteins.

1.4.2 Quantitative relationship between a transcript and a protein

To infer protein levels from the knowledge of transcript levels (where the term level refers here to a
general quantity, either absolute or relative), we must assume there is a dependence between the two.
This is particularly difficult to model at the scale of a single cell, as discrepancies may occur between
these two levels across time (e.g., the difference between half-lives of proteins and mRNAs, delay
of translation process, etc., see [Liu16]). However, a review based upon numerous works related to
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Figure 1.10: Possible quantitative integrations of transcriptomics data to increase coverage of
proteomics data.

mRNA-protein quantitative analysis concludes that the number of protein copies in a bulk sample
in steady-state conditions (i.e., the overall number of protein/mRNA copies remains relatively
stable across time) should be primarily determined by the number of transcripts copies [Liu16].
More particularly, it concludes that the difference between the number of protein copies across
different genes is relatively well explained by the difference between the number of mRNA copies
of the different genes. This means we can expect high gene-wise correlations between proteins
and transcripts abundances (see Figure 1.11). Other authors clearly demonstrate this over various
human tissues [Edfors16] and go even further by claiming that we can predict protein abundances
from transcript abundances across different human tissues using gene-specific translation factors.
However, this claim is probably overstated as rebutted by other authors [Fortelny17], because of
the validation procedure at use being highly biased by the high overall gene-wise correlations.
On the other hand, Fortelny et al. show that tissue-wise (or sample-wise) correlations between
transcripts and proteins of a same gene are low, with a median correlation of 0.21. These apparent
contradictory results are due to the fact that the variation of protein level across replicates or across
biological conditions is in general much lower than the variations of the average mean protein
level across different genes (an effect similar to Simpson’s paradox [Fortelny17]). This result
concurs with the statement of the former review [Liu16], explaining that gene-wise correlations
by themselves are not sufficient to infer differences of protein levels between different tissues,
replicates or conditions.

Unfortunately, the gene-wise protein/transcript correlation makes poor sense in the case of
label-free LC-MS/MS proteomics quantitative data, as the relative abundances are not comparable
across proteins (of note, absolute label-based quantification was used in [Edfors16]). However,
these results suggest that large transcript variations (as the ones between different genes) should in
general produce large protein level variations. Also, the aforementioned distribution of sample-wise
correlations [Fortelny17] suggests there are cases where they are significant and meaningful to infer
protein levels. Finally, these correlations were computed using Spearman’s correlation, which only
copes for linear dependency. Non-linear dependency could also be considered, as to reflect the
complex underlying biochemical relationship, although it would probably require a larger number
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Figure 1.11: Illustration of gene-wise and sample-wise correlations between a transcriptomic and
a proteomic dataset. We consider on this figure that proteomics and transcriptomic samples are
paired, or at least derive from the same biological condition.

of samples.

1.4.3 Inferring protein abundances with transcriptomic and genomic information

We focus here on tools that can impute or extrapolate protein levels from transcript quantitative
information. Note that, in the current state-of-the-art, and to the best of our knowledge, no tool
has been specifically used (and benchmarked) to impute proteomics abundances issued by the
very technology we focus on in this work, namely LC-MS/MS. Considering the specificities of
this instrumental workflows and its consequences on the data distribution, this blind spot of the
state-of-the-art is noteworthy.

Some popular tools rely on a common latent representation of different omics modalities. These
representations enable to perform numerous multi-omic integration tasks on various omics types,
including gene expression arrays. For example, MOFA (Multi-Omics Factor Analysis) [Arge-
laguet18] relies on the BPCA framework to find a matrix factorization of different omics modalities
with common latent factors. In parallel, it includes tools to interpret and use them in various
inference tasks. On the other hand, the MixOmics package [Rohart17] relies on multi-blocks Partial
Least Squares (PLS) to find a latent decomposition of several omic modalities. For example, with
one proteomic and one mRNA dataset, it iteratively identifies pairs of latent factors with maximum
covariance. Both MOFA and MixOmics can extrapolate protein levels that have not been measured
in samples. MOFA has a multi-omic imputation feature, contrarily to MixOmics. Oppositely,
MOFA, and regardless of the analysis type, has never been tested on LC-MS/MS proteomics data.

Whereas these two methods can find common latent structures, regardless of transcript/protein
correspondences, the following ones specifically aim at characterizing the conditional distribution
of the protein levels with respect to their corresponding transcript levels. Two related work [Nie06,
Torres-García09] have tested different approaches (linear Poisson model, gradient boosted trees)
on the same dataset for proteomic feature extrapolation. In addition to mRNA levels, they take as
input various gene specific features, such as sequence length, protein weight, gene category etc.
Unfortunately, these works rely on an outdated quantification procedure (based on the count of
MS/MS spectra instead of XIC), and the validation method relies on biological criteria specific to
the experimental setup. Authors from the same group [Torres-García11] have also proposed gradient
boosted trees including various gene-specific features for sample extrapolation in a longitudinal
study, but here again, the methodological development and the validation procedure are specific
to this experimental design. More recently, Barzine et al. [Barzine20] has proposed a deep neural
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network to extrapolate protein LC-MS/MS measurements, as well as a cross-species extension. The
neural network takes as input the mRNA expression, the identifier of the biological condition, and
a binary vector representing gene annotation. Experiments show that including gene annotation
information significantly improves performances of the model. Finally, Ochoteco Asension et
al. [Ochoteco Asensio22] train several linear and non-linear models with a couple of hundreds
of features to extrapolate samples. These features are related to mRNA expression, transcript
characteristics (strand, length, etc.), protein characteristics (length, mass, etc.) as well as the
expression of micro RNAs and circular RNAs that can have regulatory effects on the transcript
considered (cf. “small RNAs” subsection 1.1.1). Surprisingly, their results show that protein specific
features such as mass and protein length are among the features with the highest importance in
random forest models, along with those related to mRNA expression.

All these works show that including protein or gene characteristics globally helps for extrap-
olation of samples or proteins, as long as these proteins or related ones (e.g., with similar gene
annotations) are seen in the training phase. The fact that the prediction accuracy is significantly
increased by including protein-related features (as gene annotation, or molecular characteristics)
suggests that these models have learned the feature-protein mapping, which results in imputing
by a value close to the observed mean protein’s abundance value [Ochoteco Asensio22]. In fact,
as discussed in subsection 1.4.2, it is possible to infer the order of magnitude of a protein level
knowing mRNA levels and protein characteristics. However, inferring protein variations across
biological conditions or replicates, which are often of much smaller amplitude than those with other
proteins, remains a difficult task. This difficulty may be the reason why none of these works have
proposed a benchmark with other LC-MS/MS proteomics imputation methods, although some of
their authors [Barzine20, Ochoteco Asensio22] claimed it could be used in practice for imputation.
We hypothesize their performances would not reach those of the state-of-the-art imputation methods
for LC-MS/MS data.

In the single-cell community, let us finally note the development of quantitative proteogenomics
approaches. In fact, scRNA-seq can now be used in combination with quantification of surface
proteins at single-cell resolution. Some methods, notably cTP-Net [Zhou20] and Seurat [Stuart19],
have then proposed to impute or extrapolate missing protein levels. For example, cTP-Net [Zhou20]
learns the entire joint mapping between scRNA-seq levels in a cell and surface protein levels in the
same cell with neural networks. Seurat [Stuart19] is a very general tool that can transfer learning
between cells with/without observed protein levels to extrapolate protein levels. Although these
single-cell methods leverage enormous sample size (thousands of cells) which is not compatible
with bulk LC-MS/MS proteomics and transcriptomics, they are worth mentioning as a source of
inspiration.

Overall, we conclude that although there exist methods for general multi-omic imputation
and sample or protein extrapolation suited to LC-MS/MS proteomics, so far, no method proposes
LC-MS/MS proteomics data imputation that follows a quantitative proteogenomics paradigm,
i.e., which leverages transcriptomic data from same or related samples. We have nevertheless
identified a preliminary work (i.e., not peer-reviewed yet) presented in a poster at ISMB-EECB
2023 conference ambitioning to explore this path [Gupta23]: the authors rely on Graph Neural
Networks to infer missing protein abundances in LC-MS/MS proteomics data, taking as input the
abundances of available peptides and mRNAs. Although still preliminary, interesting outputs are
expected.

1.4.4 Contributions

We present in chapter 3 our contributions regarding transcriptomic integration for LC-MS/MS
proteomics data, which can be summarized as following.

1. Development of an integrative imputation method for LC-MS/MS proteomics: In Pirat
imputation pipeline, we developed an option to integrate transcriptomic data in a gene
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specific manner, naturally compatible with Pirat’s model, including the peptide missingness
mechanism. This integration can be achieved as long as matching phenotypes are represented
in proteomics and transcriptomics data (notably, paired samples are not a necessity, even
though they improve the results).

2. Transcriptomics integration does not deteriorate imputation: our integration method is
based upon observed peptide/transcript correlations, and thus only impacts imputation when
these are significant, as experimentally demonstrated.

3. Increasing coverage of poorly covered proteins: our approach increases imputation perfor-
mances on weakly covered proteins (i.e., proteins having only one specific peptide identified
and quantified in at least one sample), and in a setting where proteomic and transcriptomic
samples are paired.
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2
New insights on FDR control in proteomics and

applications

This chapter establishes links between different FDR control frame-
works, both for differential analysis and peptide identification, gives
some perspectives about their usage and presents a practical applica-
tion of proteomic variable selection in high dimensional setting.
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2.1. Motivations

2.1 Motivations

We explained in the previous chapter why FDR control is necessary to LC-MS/MS proteomics.
We provided an overall description of the methods currently used, both for peptide identification
and differential analysis. An expert reader may have already drawn some parallels between these
two applications, although they were developed independently, with more or less robust theoretical
foundations. For example, in methods dedicated to peptide identification, the scores of decoy PSMs
can be viewed as the distribution of scores under the null hypothesis. Hence, the whole BH and
Empirical Bayes frameworks could be applied there, as long as this distribution truly reflects the
null hypothesis. In addition, in TDC, a widely used FDR estimator for a given score rejection
threshold t (assuming the higher the score, the more confident we are) reads [Levitsky17]:

F̂DR(t) =
1+#{Decoy PSMs scores ≥ t}

#{Target PSMs scores ≥ t}
, (2.1)

which clearly resembles the one used in the knockoff procedure (see Equation 1.3).
We bring in this chapter new insights on FDR control in proteomics by investigating these

similarities in two original works. In the first one, we have applied and then adapted the knockoff
procedure to proteomic differential analysis in a protocol format paper, which illustrates its behavior
with several experiments as to draw some parallels with TDC. The second work is a perspective
article that details the duality between competition-based approaches (knockoff filters, TDC) and
competition-free ones (target-decoy without competition or BH and its Bayesian extensions). In
this article, we also rely on the conclusions from the protocol to highlight some weaknesses of
TDC (although it is widely used) and propose some improvement paths in view of the theoretically
grounded knockoff filters.

Yet, biomarker selection by means of an FDR control is not necessarily the ultimate goal of
proteomic analysis, and methodological development of FDR control can only bring us so far. For
example, in a clinical context, medical experts often need a score to assess the state of a patient, with
known error rates. Although many "FDR-controlled biomarkers" can be used to do so, practitioners
anticipate their educated combination should improve the specificity/sensibility ratio. However,
doing so is not trivial as FDR control procedures are often univariate. In this context, we also
present an applicative work pertaining to the severity score of a disease using several biomarkers
which have been individually selected subsequently to an FDR controlled procedure.

2.2 Publication 1: Unveiling the Links Between Peptide Identification
and Differential Analysis FDR Controls by Means of a Practical
Introduction to Knockoff Filters

2.2.1 Foreword

This first work is a protocol paper of the Methods in Molecular Biology (MiMB) series and was
thus published as a book chapter –of note, this book has been edited by one of my supervisors.
This protocol format is unusual in the biostatistics community: it consists in a detailed step-by-
step recipe, code lines included, with many footnotes (for details, interpretations, etc.), without
conclusion, and that should be accessible for a non statistics or computer science expert. We apply
in this work the knockoff procedure to a standard benchmark proteomic dataset. We propose some
experiments to compare different variations of the knockoff filters procedure and scoring methods,
and interpret their behavior.
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This work was conducted at the very beginning of my thesis, and was motivated by various
scientific, speculative, and personal aspects. First, the knockoff filters were quite recent at this time,
and had not been tested on proteomic data yet, which has the particularity to have few samples for
thousands of features. We thus wanted to assess the FDR control quality of this type of dataset.
Secondly, and more practically, it gave a short-term objective of writing and results, to maintain mo-
tivation in the Covid pandemic period (My PhD contract started during a shutdown, so that my first
months of work were remote). Finally, one of my supervisors hoped that a deeper understanding of
the knockoff generation framework could give inspiration for a multi-omic imputation method (that
could include transcriptomic data), which was one of the major objectives of this PhD thesis. This
link was unfortunately too thin, yet, unexpectedly, this work on knockoffs enlightened so many
similarities with TDC that we exploited them to draw conclusions from this protocol, and push
further the reasoning in the next article.

The reference of this protocol reads:
Etourneau, L.; Varoquaux, N.; Burger, T. Unveiling the Links Between Peptide Identification

and Differential Analysis FDR Controls by Means of a Practical Introduction to Knockoff Filters.
Methods Mol. Biol. 2023, 2426, 1–24. doi:10.1007/978-1-0716-1967-4_1.

2.2.2 Abstract

In proteomic differential analysis, FDR control is often performed through a multiple test correction
(i.e., the adjustment of the original p-values). In this protocol, we apply a recent and alternative
method, based on so-called knockoff filters. It shares interesting conceptual similarities with the
target-decoy competition procedure, classically used in proteomics for FDR control at peptide
identification. To provide practitioners with a unified understanding of FDR control in proteomics,
we apply the knockoff procedure on real and simulated quantitative datasets. Leveraging these
comparisons, we propose to adapt the knockoff procedure to better fit the specificities of quantitative
proteomic data (mainly very few samples). Performances of knockoff procedure are compared with
those of the classical Benjamini-Hochberg procedure, hereby shedding a new light on the strengths
and weaknesses of target-decoy competition.

2.2.3 Introduction

Controlling the false discovery rate (FDR) is a well-established practice in most -omic approaches,
as it answers a pervasive question: Considering quantitative measurements for many covariates (be
they genes, transcripts, metabolites, or proteins) in a set of samples split in at least two different
biological conditions, how can we shortlist some differentially expressed ones, while controlling the
risk of false positives (i.e. wrongly selected covariates due to their looking differentially expressed
while they are not)? To cope with this, the most commonly used procedure is without a doubt the
Benjamini-Hochberg one (BH) [Benjamini95]. However, due to its large field of application, FDR
control has focused a lot of additional efforts in biostatistics, and many authors have proposed to
improve upon BH FDR control [Benjamini06, Efron72], or have proposed alternative frameworks
to do so [Barber15, Candès18, Stephens17].

In the specific case of proteomics, FDR control is not only used in the aforementioned biomarker
selection problem. It is also an essential quality control metric when matching experimental
fragmentation spectra onto in silico spectra (i.e., derived from reference database of protein
sequences). However, for historical reasons, the associated FDR control is not performed using
classical tools from biostatistics. On the contrary, a rather empirical approach termed target-
decoy [Elias07b] is almost exclusively used. It consists in searching two databases: the first one,
referred to as target, containing the genuine protein sequences, and another one, referred to as
decoy, containing artefactual sequences. Under the assumption that target mismatches and decoy
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matches are equally likely, the number of decoy matches can be used to estimate the number of
target mismatches, thus opening the door to FDR control.

For a long time, FDR control for peptide identification and for protein differential analysis
have been considered as largely independent. However, theoretical connections exist: Notably, it
has long been established [Käll08] that if target and decoy databases are searched independently,
then the procedure is broadly equivalent to relying on empirical null theory to estimate the FDR
in a BH-related way [Efron72]. More recently, it has been shown ( [Couté20] that BH procedure
could be a user-friendly and computationally attractive alternative to target decoy competition
(TDC)1. However, recent developments in theoretical biostatistics have made the links between both
approaches to FDR control even tighter. Notably, the authors of [Barber15] have proposed to tackle
the biomarker research FDR control using an algorithmic procedure akin to that of TDC. Broadly,
this novel approach, denoted as "knockoff-filter," works as follows. First, knockoff variables
are simulated to be as independent as possible from conditions of samples, but yet preserve the
covariance structure of the original variables2. Second, a competition is organized between each
original variable and its associated knockoff. Third, the proportion of retained knockoffs is used to
estimate the proportion of wrongly selected original covariates (see Table 2.1 for a more detailed
comparison with TDC). Conversely, authors have recently leverage the theory underlying knockoff
filters to propose improved TDC strategies (see [Emery19]).

Overall, the framework of knockoff filters is particularly insightful to provide a global under-
standing of FDR control in proteomics and the purpose of this protocol is to root such unified view
on empirical comparisons using both real and simulated data. Interestingly, the results of these
comparisons are compliant with empirical knowledge about the various strengths and weaknesses
classically associated to each FDR control method.

2.2.4 Notations

We first start by reviewing commonly used yet conflicting notations in biostatistics and proteomics.

Classical notations in biostatistics

In biostatistics, the false discovery rate (FDR) and the false discovery proportion (FDP) are distinct
notions. The FDP corresponds to what was classically and informally referred to as the “true
FDR” in proteomics, i.e., the exact proportion of false positives among the proteins that passed
the user-defined selection threshold, and therefore deemed as differentially abundant. Of course,
except for benchmark artificial or simulated datasets, this quantity is unknown in practice.

The FDR reads as FDR = E[FDP], where E stands for the expectation, which broadly amounts
to the long run average of the FDP on an infinite number of related experiments subject to
stochastic fluctuations. This quantity is also unknown but it is much easier to estimate, and such
estimate is classically noted F̂DR. Estimating the FDR is insightful, but unfortunately, not always
sufficient [He15]. An unbiased FDR estimate is expected to provide a value closed to E[FDP].

1Target-Decoy Competition. TDC is a specific target-decoy strategy where both databases are concatenated, so that
each spectrum can only match to either a decoy or a target spectrum; in other words, both databases are competing for
the matches.

2On the generation of knockoffs. Knockoff variables, under second order approximation, are simulated (section 2.2.4
for mathematical notations) such that: (1) a knockoff variable XKo

i has the same mean as the original variable Xi; (2)
the covariance between knockoff variables is equal to the covariance between the original variables: cov(XKo

i ,XKo
j ) =

cov(Xi,X j); (3) the covariance between knockoff variables and original variables is equal to the covariance between the
original variables: cov(XKo

i ,X j) = cov(Xi,X j) ∀i ̸= j; (4) but the variance between a knockoff variable and the original
variable is null: cov(XKo

i ,Xi) = 0. Fulfilling all of those constraints in the data simulation process is impossible. Thus,
an optimization procedure is used to fulfill them to the best extent possible. Note that knockoff variables are generated
without looking at the condition of samples. This ensures that knockoff variables are independent from response y
conditionally to original variables, as explained in [Candès18].
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Target-Decoy Competition Knockoff filter (2nd order approxi-
mation)

1. Construct peptide decoys such that
decoy PSMs have same score distribu-
tion than erroneous target PSMs

1. For each protein, generate knockoff
abundances with same mean and corre-
lation matrices as original abundances.

2. For each real spectrum obtained, find
the best match among all targets and
decoys, and retain its score.

2. For each protein, compute a score
describing whether the original abun-
dances vector or its knockoff best pre-
dicts the condition.

3. The number of selected PSMs from
decoys at a given cutoff enables to esti-
mate the FDR on selected target PSMs.

3. The number of selected knockoffs
at a given cutoff enables to estimate
the FDR on selected original proteins
deemed differentially abundant.

Table 2.1: Comparison of the target-decoy and knockoff filter procedures for FDR control. (PSM
stands for Peptide-Spectrum Match).

However, on a given dataset, this value may be larger or smaller than the FDP. While a slightly
too large estimate implies a conservative behavior (there will be less false positives than expected
among the shortlisted biomarkers), a too small FDR implies a too liberal quality control and
subsequent risks in post-proteomics experiments.

To cope with weaknesses of FDR estimation, FDR control procedures have been developed:
they rely on more conservative assumptions that yield slightly lesser selected discoveries at a given
cut-off parameter. If we note as F̂DRα the FDR estimate resulting from controlling the FDR at
level α (α being classically tuned to 1%) it is likely that

F̂DRα ≤ α.

In other words, if one cuts-off a list of putative biomarkers according to an FDR controlled at 1%,
the FDR estimate on this very list is likely to be slightly lower than 1%. However, as the FDP
remains unknown, it is the only way to safely assume that the FDP is equal to or lower than 1%.

Classical notations in proteomics

In proteomics, most of the notions described above (section 2.2.4) are conflated. Since the mid-
2010s, discriminating between the FDP and the FDR has progressively become standard. However,
distinction between FDR (as equal to E[FDP]), F̂DR, F̂DRα , and α is scarce. The reason is obvious:
except for specific methodological publications, most of them are not useful to the community.
Indeed, in practice, a proteomic researcher only needs to manipulate α , the cut-off parameter, and
to understand that after applying the FDR control accordingly, the FDP is not necessarily strictly
equal to α , but possibly slightly smaller. However, the everyday language is error-prone: when one
says or writes “We selected the putative biomarkers at an FDR of 1%,” what is referred to as FDR
is not E[FDP], F̂DR, or F̂DRα , but α .

To cope with this, it is possible to rely on other notations. They are not as formal as those
of mainstream biostatistics (section 2.2.4) although they are sometimes reported in mathematics
works [Bouret18]. However, they are sufficient for a rigorous everyday work in a proteomic lab.
Essentially, it amounts to conflate the FDR estimate with α , and to define the FDR control as a
procedure which provides the following guarantee with a sufficiently high probability:

FDR ≥ E[FDP] . (2.2)

This formulation can be misleading in the sense it gives the impression that the FDR control
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procedure indeed controls the FDP3. However, it has two advantages: First, it makes the everyday
language compliant with the minimum amount of statistical notions possible; second, it simplifies
the understanding of other statistical notions such as “q-value” or “adjusted p-value,” as using this
formalism, they are simply equivalent to the FDR, as detailed in [Burger18]. In the rest of the
protocol, the naming conventions resulting from Eq. 2.2 are used, so that FDR refers to α , the FDR
level tuned by the practitioner to perform FDR control.

Other notations used in this protocol

Hereafter, the following mathematical notations are used:

1. n: the number of biological samples.

2. p: the number of proteins to include in differential analysis.

3. X ∈ Rn×p: the matrix of protein abundances, where each row corresponds to a sample and
each column corresponds to a protein.

4. X j: the vector of abundance of the j-th protein, i.e. the j-th column of X .

5. xi, j: the abundance value of j-th protein for the i-th replicate.

6. y: the vector representing the condition label (numerical value) of biological samples, of
length n. For example, the i-th coefficient of y is 1 if the i-th sample comes from the healthy
condition, and -1 if it comes from the disease condition.

7. XKo ∈ Rn×p: the knockoff dataset, generated from original dataset matrix X .

8. XKo
j : the knockoff vector of abundance of the j-th protein.

9. W : the vector of scores of all proteins (only the original ones, not the knockoff), of length p.

10. Wj: the score associated to the j-th protein. A large positive value Wj is evidence that the
protein j is differentially expressed. It is typically constructed by comparing the predictive
power of X j and XKo

j of the sample conditions. Swapping X j and XKo
j should swap the sign

of Wj. A null Wj means that both XKo
j and XKo

j bring the same amount (or lack thereof) of
information on the condition.

2.2.5 Material

R version

R version 4.0.3 (or above) is required to use the following packages. We recommend using an
integrated development environment like Rstudio to execute the commands of this protocol. It can
be downloaded from https://www.rstudio.com/.

3FDR or FDP control? Directly controlling the FDP is more difficult than controlling its expectation, the FDR.
However, some papers have tackled this challenge [Romano06, Luo09]. The notion of “control” is tightly defined in
statistics and various FDRs have been defined to induce different form of FDR control (for instance exact, strong, or
weak controls, such as discussed in [Ge03]). However, Equation 2.2 does not suggests that the procedure controls the
FDR (as it now refers to α) but the FDP, although indirectly, through its expectation. We acknowledge this could be a
source of confusion, ant tentatively propose to coin the term “indirect FDP control.”
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2.2.6 Packages

The following packages are necessary:

1. The packages knockoff, lars ( [Hastie13]), and glmnet ( [Friedman10]) must be installed
from the CRAN:

install.packages("knockoff")
install.packages("lars")
install.packages("glmnet")

2. cp4p [Giai Gianetto19] provides two datasets with controlled ground truth: They result from
analysis of samples containing different abundance of 48 human proteins spiked in a yeast
background [Ramus16]. The p-values from a Welch t-test associated to each protein are
also provided, along with functions to apply Benjamini-Hochberg procedure for differential
analysis. To install cp4p package, it is first necessary to install the BioConductor [Huber15]
packages it depends on:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager :: install("multtest")
BiocManager :: install("limma")
BiocManager :: install("qvalue")

3. Then cp4p can be installed from the CRAN:

install.packages("cp4p")

4. Finally, load the packages in the environment:

library(cp4p)
library(knockoff)
library(lars)

Data Format

This protocol relies on a data format which is quite uncommon in proteomics4. The input data X on
which FDR control is applied should have at least 3 rows, i.e. at least biological 3 samples in total
are needed. The number of proteins to include in differential analysis can be arbitrary. Values of
abundance in X should be log2-scaled.

For conveniency, we use two datasets in this protocol: A dataset resulting from real mass-
spectrometry output, called LFQRatio25 (section 2.2.6), and a simulated dataset with adjustable
parameters (section 2.2.6).

Data loading from cp4p

The following commands enable to load and prepare LFQRatio25 dataset [Giai Gianetto19]:

1. Load the dataset with the following command:

data("LFQRatio25")

4Data format. In proteomics, data tables are generally structured with proteins as rows and replicates in columns.
However, knockoff and lars packages were designed for more general use cases. Hence, they adopt another convention
widely used in statistics, with features as columns and samples as rows.
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2. Then, abundances values for all 6 samples are extracted to form the rows of the X_yups
variable:

X_yups = t(LFQRatio25 [ ,1:6])

3. Similarly, vector y_yups contains the condition labels of these samples:

y_yups = c(1,1,1,-1,-1,-1)

4. For this particular dataset, differentially abundant proteins (or in statistical language, variables
under the alternative hypothesis H1) are known. It is possible to display their name and their
index in the list of proteins. These are the 46 first proteins, as the output of this code chunk
suggests 5:

mask_human = LFQRatio25$Organism == "human"
names_diff_yups = LFQRatio25$Majority.protein.IDs[mask_human]
idx_diff_yups = which(mask_human)
idx_diff_yups

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
[35] 35 36 37 38 39 40 41 42 43 44 45 46

5. Check the dataset to make sure the same dataset is obtained:

head(X_yups [ ,1:5])

[,1] [,2] [,3] [,4] [,5]
A.R1 31.27392 29.48101 29.80982 29.10410 26.85626
A.R2 31.27147 29.46032 29.84163 29.22384 27.11535
A.R3 31.26327 29.45797 29.83771 29.00945 26.94358
B.R1 29.83022 28.04973 28.41002 27.45505 25.71735
B.R2 29.81413 28.02686 28.38101 27.58463 25.74196
B.R3 29.84867 28.00774 28.42514 27.52028 24.62264

Data simulation

The following commands enable to prepare a simulated dataset:

1. The code below randomly generates a dataset broadly akin to LFQRatio25. Due to random-
ness, it will be different from one run to another. To ensure the results are reproducible and to
obtain same results as in the remaining of the protocol, use the following optional command
to set the random seed6:

set.seed (1234)

5Missing proteins in cp4p. Th UPS1 mixture contains 48 human proteins. However, according to [Ramus16], only 46
are confidently identified and quantified by mass spectrometry. Therefore, when processing the LFQRatio25, only 46
differentially abundant UPS1 proteins are sought.

6Seed in R. Setting the seed of the random number generator should give you the same sequence of random numbers
as presented here. However, different versions of R may yield different sequences of random number due to changes in
the pseudo-random number generator.
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2. Tune the parameters of the dataset:

n_h1 = 50 # Number of proteins differentially abundant
n_rep = 3 # Number of replicates of each condition
p=1500 # Number of proteins
mu = runif(p, 24, 32)
sigma1 = diag(runif(p,0 ,0.02))
sigma2 = diag(runif(p,0 ,0.02))
mu_diff = c(runif(n_h1, 0.5, 2)*sign(runif(n_h1, -1, 1)),

rep(0, p-n_h1))

3. Create and concatenate arrays of both conditions:

p = length(mu)
X1 = matrix(rnorm(n_rep*p),n_rep) %*% chol(sigma1)
X2 = matrix(rnorm(n_rep*p),n_rep) %*% chol(sigma2)
X1 = t(t(X1)+mu+mu_diff /2)
X2 = t(t(X2)+mu -mu_diff /2)
X_sim = rbind(X1,X2)
y_sim = c(rep(1, n_rep), rep(-1, n_rep))
idx_diff_sim = 1:n_h1

4. Check the dataset to make sure there are no mistakes:

head(X_sim [ ,1:5])

[,1] [,2] [,3] [,4] [,5]
[1,] 23.96519 28.55181 27.95301 29.64470 31.05108
[2,] 24.04396 28.21652 27.74679 29.56570 31.51248
[3,] 24.05717 28.39634 27.90406 29.74762 31.56869
[4,] 25.65308 29.55612 29.92890 28.21821 30.47228
[5,] 25.74846 29.63377 29.77653 28.30777 30.32441
[6,] 25.89306 29.58248 29.80624 28.33325 30.52107

2.2.7 Methods

This section falls into the following subsections:

1. We explain how to apply the original knockoff-filter procedure to control the FDR for
differential expression analysis. Precisely, we show how to (1) generate knockoff variables;
(2) compute a score for each protein/knockoff pair; (3) select differentially abundant proteins
for a predefined target FDR.

2. We detail how to replace the default scoring strategy with other ones, and compare these
alternative knockoff procedures to the classical Benjamini-Hochberg (BH) procedure.

3. We propose some code to illustrate the sensitivity of the knockoff filter procedure to the
random generation of knockoffs.

Original knockoff procedure

1. Choose the dataset on which applying the knockoff procedure:

(a) To apply it on the LFQRatio25 dataset, use:
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X_data = X_yups
y_data = y_yups
idx_diff = idx_diff_yups

(b) Alternatively, to apply it on the simulated dataset, use:

X_data = X_sim
y_data = y_sim
idx_diff = idx_diff_sim

For the rest of this section, we will use the LFQRatio25 dataset.

2. Rescale the data to have null mean and unitary variance for each protein abundance vector
(i.e. for each X j)7:

X_data = scale(X_data)

3. Execute these commands to generate the knockoff dataset from original data with a fixed
seed8:

set.seed (1234)
X_data_k = create.second_order(X_data)

4. For each protein, compute a score based on the Lasso path of covariates9. An inevitable
warning concerning the lack of replicates appears: “one multinomial or binomial class has
fewer than 8 observations; dangerous ground.”

set.seed (1234)
W_lasso = stat.lasso_lambdasmax_bin(X_data , X_data_k, y_data)

5. Set the value of targeted FDR, compute the resulting threshold, and select proteins for which
their score is above this threshold. The target_fdr parameter must be a number between
0 and 1. The offset parameter determines which FDR estimator to use, it can be set to
either 0 or 110 . When offset is 0, a biased FDR estimate is used, and when offset is 1, a

7Data scaling. This step is particularly important when variable variances span over a large range. To give an order
of magnitude, in the LFQRatio25 dataset, the lowest variance among all covariates equates 0.001 while the largest
one equates 9. If the dataset is not scaled, the program used to generate knockoff converges after 10 minutes, while
40 seconds are sufficient with scaled data.

8Warnings in knockoff generation. We have observed that the following warnings “Reached upper boundary” and
“only 0 eigenvalue(s) converged, less than k = 1,” may appear in some environments. We assume these warnings come
from the too high dependence between the columns which corresponds to differentially abundant proteins, yet, the
algorithm can still operate.

9Scoring methods. The knockoff package already provides the functions to compute scores according to dif-
ferent methods. A classical scoring method used in the original knockoff procedure is based on the Lasso path of
variables, thus we try to apply it first. However, other methods using Lasso are proposed in the package, such as
stat.lasso_lambdadiff_bin and stat.lasso_coefdiff_bin (this last one is not applicable on our data by lack
of samples). Also, a method based on random forests is proposed, but during our preliminary experiments, it gave poorer
results on our datasets.

10Offset parameter. The offset parameter corresponds to the difference between the natural FDR estimate and the
conservative estimate yielding FDR control. The former reads

# of knockoffs selected at α level
# of original variables selected at α level

while the second reads:
# of knockoffs selected at α level+1

# of original variables selected at α level
.

This distinction also exists in the TDC procedure [He15] where the natural estimate reads d/t and the conservative ones
(d +1)/t, where t and d respectively denote the number of selected target and decoy PSMs. In the knockoff literature,
the “+1” is termed “offset,” and when equal to 0 (respectively 1), it leads to the biased (respectively, non-biased) estimate.
The non-biased estimate is then more conservative than the biased estimate.
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non-biased, yet more conservative estimate is used.

target_fdr = 0.05
thres = knockoff.threshold(W_lasso , fdr=target_fdr , offset=0)
selected_lasso = which(W_lasso >= thres)

6. This step and the following ones are optional, as they can only be applied for a dataset
endowed with a ground truth, such as LFQRatio25 or a simulated dataset. Display the
names of proteins selected as differentially abundant at the FDR tuned with the target_fdr
parameter (here 0.05).

names_diff_yups[selected_lasso]

[1] P02768upsedyp ALBU_HUMAN_upsedyp - CON__P02768-1
[2] O00762upsedyp UBE2C_HUMAN_upsedyp
[3] P00709upsedyp LALBA_HUMAN_upsedyp
[4] P02788upsedyp TRFL_HUMAN_upsedyp
[5] P06396upsedyp GELS_HUMAN_upsedyp
[6] P12081upsedyp SYHC_HUMAN_upsedyp

7. This code instantiates useful functions to compute the FDP and power from ground truth
data. For a certain selection level α , the power is defined as

Powerα =
# of selected original variables under H1

# of original variables under H1
.

Where H1 denotes the alternative hypothesis, i.e. “the protein is differentially abundant.”
The power gives a measure of how well our selection covers all the proteins differentially
expressed:

compute_fdp = function(selected , nonzero) {
if (length(selected) != 0) {

return(1-sum(nonzero %in% selected)/length(selected))
}
return (0)

}

compute_power=function(selected , nonzero) {
if (length(selected) != 0) {

return(sum(nonzero %in% selected)/length(nonzero))
}
return (0)

}

8. The following code computes the FDP and power of the procedure for a user-defined range
of target FDRs (for both offset values):

FDR = seq (0 ,0.5 ,0.04)
template = rep(0,length(FDR))
FDP = list(template , template)
POWER = list(template , template)

for (t in 1: length(FDR)) {
for (offs in 1:2) {

thres = knockoff.threshold(W_lasso , fdr=FDR[t],
offset=offs -1)

selected = which(W_lasso >= thres)
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FDP[[offs ]][t] = compute_fdp(selected , idx_diff)
POWER[[offs ]][t] = compute_power(selected , idx_diff)
}

}

9. Using the results computed at the previous step, the following code displays the FDP and
power as a function of the FDR (see Figure 2.1 for LFQRatio25 and Figure 2.2 for simulated
dataset):

par(pty=’s’)
cols = c("red","blue", "black")
plot(FDR , FDR , type=’l’, ylab = "FDP", xlab = "FDR",

ylim=c(0 ,0.5), xlim=c(0 ,0.5))
lines(FDR , FDP[[1]] , col="red")
lines(FDR , FDP[[2]] , col="blue")
points(FDR , FDP [[1]], col="red", pch=1)
points(FDR , FDP [[2]], col="blue", pch=2)
legend("topleft", legend=c(0,1, "y=x"), col=cols ,

pch=c(1,2,-1), lty = 1, title="Offset")

plot(1, type="n", ylab = "Power", xlab = "FDR",
ylim=c(0 ,0.4), xlim=c(0 ,0.5))

lines(FDR , POWER [[1]] , col="red")
lines(FDR , POWER [[2]] , col="blue")
points(FDR , POWER [[1]], col="red", pch=1)
points(FDR , POWER [[2]], col="blue", pch=2)
legend("topleft", legend=c(0,1), col=cols , pch=c(1,2),

lty = 1, title="Offset")

Figure 2.1: FDP and power vs. FDR for LFQRatio25 dataset, with and without offset, for the
knockoff filter procedure with Lasso-based scores.

We notice that FDP and power curves on Figure 2.1 and 2.2 are almost always horizontal. This
means that variables selected remain the same whatever the FDR target chosen. When the offset
equates 1 (unbiased estimator), no proteins are deemed differentially expressed below a certain
value of FDR. Thus, even though their are no false positive, there are no true positive either, making
the FDR control through knockoff filters practically useless.

We mainly explain this over-conservativeness by the usage of variable selection with the Lasso
algorithm, at the step of W scores computation. In fact, in the setting n << p, the Lasso algorithm
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Figure 2.2: FDP and Power vs. target FDR for the simulated dataset, with and without offset, for
knockoff procedure with Lasso-based scores.

will only select n variables. This is problematic for differential expression analysis where the total
number of samples rarely exceeds the number of a priori differentially expressed proteins. On top
of that, as very few covariates are selected, and some original variables are much more differentially
abundant than all the others, knockoff variables are almost never selected. Thus, estimating the
number of false discoveries from the number of selected knockoffs is not appropriate in our cases.
These efficiency of variable selection with Lasso is thoroughly discussed in [Zou05].

Scoring methods based on forward stagewise regression and t-test

Preliminary experimental comparisons highlighted the knockoff procedure accuracy highly depends
on the chosen feature selection algorithm. We herefater describe two procedures that we found
to address the issue described above (section 2.2.7). The first scoring method consists in using
forward stagewise selection (FS) algorithm11. The second one is derived from the variable selection
procedure classically used in proteomics: it amounts to computing a t-test p-value for both original
and knockoff variables; then, the final score (i.e., Wj) is defined by the log difference of p-values
(LDP) obtained between each original variable and its knockoff.

1. To instantiate the functions that compute the Wi’s for the FS and LDP methods, use the follow-
ing chunks of code (it is advised to run them both, so as to allow subsequent comparisons):

(a) For the FS method:

stat_forward_sel=function(X, X_k, y) {
Xconcat = cbind(X, X_k)
res = lars(Xconcat , c(1,1,1,-1,-1,-1), type="for",

use.Gram = FALSE)
lambdas = rep(0, 2*ncol(X))
lambdas[res$entry != 0] = res$lambda[res$entry]
W_fs = lambdas [1: ncol(X)]-lambdas [-(1: ncol(X))]

11Lasso vs forward stagewise. From a theoretical point of view, the forward stagewise algorithm behaves very much
like the Lasso [Efron04]. However, it copes with the issue of the Lasso being unable to select more variables than
the number of samples, an essential feature in proteomics. The FS score we use is based on the norm of predictors
coefficients when a given variable enters the model, similarly to the Lasso method. This method is already proposed in the
knockoff package and the associated paper [Candès18] through the stat.forward_selection function. However,
we use slightly modified approach relying on the lars package to obtain an equivalent regularization term, instead of
variable selection ranking.

46



2.2. Publication 1: Unveiling the Links Between Peptide Identification and Differential Analysis
FDR Controls by Means of a Practical Introduction to Knockoff Filters

W_fs
}
W_fs = stat_forward_sel(X_data , X_data_k, y_data)

(b) For the LDP method:

stat_log_diff_pval=function(X, X_k) {
Xconcat = cbind(X, X_k)
pvals = apply(Xconcat , 2, function(x){res =

t.test(x[1:3], x[4:6]);return(res$p.value)})
pvals_or = pvals [1:( length(pvals)/2)]
pvals_k = pvals [( length(pvals)/2+1):length(pvals)]
W_pvals = (-log(pvals_or)+log(pvals_k))
W_pvals

}

W_ldp = stat_log_diff_pval(X_data , X_data_k)

2. Plot the histogram of Wi’s to better visualize the selection process (see Figure 2.3 for
LFQRatio25 dataset):

hist(W_ldp[W_ldp!=0], col=c(rep("red", 2), rep("grey", 4),
rep("blue", 11)), main="Histogram of W", xlab="W")

axis(1, at=c(-5, -2, 0, 2, 5, 10))

3. To illustrate the interest of using FS and LDP within the knockoff filter procedure, we
compare those two approaches with the classically used Benjamini-Hochberg (BH) procedure.
Depending on the dataset being LFQRatio25 or the simulated one, the code differs:

(a) With LFQRatio25, the p-values resulting from Welch t-test are provided in the dataset:

pvals = LFQRatio25 [,7]
res = adjust.p(pvals , pi0.method = 1)

(b) With the simulated dataset, p-values must be computed beforehand (a Welch t-test is
also used here):

pvals = apply(X_data , 2, function(x){res = t.test(
x[1:n_rep], x[(n_rep+1):(2*n_rep)]);
return(res$p.value)})

res = adjust.p(pvals , pi0.method = 1)

4. Compute the FDP and power for BH and knockoff filter procedure with LDP and FS methods
(with offset=1), at different FDR levels:

FDP = list(template , template , template)
POWER = list(template , template , template)
W_list = list(W_fs, W_ldp)

for (t in 1: length(FDR)) {
for (W_idx in 1:2) {

thres = knockoff.threshold(W_list[[W_idx]], fdr=FDR[t],
offset=1)

selected = which(W_list[[W_idx]] >= thres)
FDP[[W_idx]][t] = compute_fdp(selected , idx_diff)
POWER[[W_idx ]][t] = compute_power(selected , idx_diff)

}
selected_bh = which(res$adjp$adjusted.p<=FDR[t])
FDP [[3]][t] = compute_fdp(selected_bh , idx_diff)
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POWER [[3]][t] = compute_power(selected_bh , idx_diff)
}

5. Finally plot the FDP and power vs. FDR level, as illustrated on Figure 2.4 and 2.5, respectively
for the LFQRatio25 and simulated datasets):

par(pty=’s’)
cols = c("red", "blue", "orange")
leg = c("Knockoff w F.S.", "Knockoff w log diff.", "B-H.")
plot(FDR , FDR , type=’l’, ylab = "FDP", xlab = "FDR",

ylim=c(0 ,0.6), xlim=c(0 ,0.15))
for (i in 1:3) {

lines(FDR , FDP[[i]], col=cols[i])
points(FDR , FDP[[i]], col=cols[i], pch=i)

}
legend("topleft", legend=leg , col=cols , pch=1:3,

title="Procedure")

plot(1, type="n", ylab = "Power", xlab = "FDR",
ylim=c(0 ,1.2), xlim=c(0 ,0.15))

for (i in 1:3) {
lines(FDR , POWER [[i]], col=cols[i])
points(FDR , POWER[[i]], col=cols[i], pch=i)

}
legend("topleft", legend=leg , col=cols , pch=1:2,

title="Procedure")

Figure 2.3: Histogram of scores Wi’s obtained with log diff of p-values scoring method, on
LFQRatio25 dataset. The blue area correspond to original variables that are selected, and the red
area represent knockoff variables selected, both at a threshold of 2 (hence, a conservative FDR
estimate at a selection threshold of 2 reads F̂DR = red area+1

blue area ).

We observe that the knockoff filter procedure with LDP broadly follows the same trend as the
BH one on LFQRatio25 (see Figure 2.4). By construction, the LDP scores is never null, yielding a
rather symmetric distribution (see Figure 2.3). The largest positive scores (depicted in the right
hand tail) result from differentially abundant proteins, while the left hand one amounts to selected
knockoff proteins. The distribution being more symmetric than when using the Lasso, it is possible
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Figure 2.4: FDP and power vs. target FDR for knockoff filter procedure with offset=1 applied with
forward stagewise selection and log diff of p-values scoring, and Benjamini-Hochberg procedure,
obtained with LFQRatio25.

to select a larger subset of proteins at a given FDR. However, when using the FS based scores,
knockoff filters roughly behaves as with the Lasso, yielding a greater but yet insufficient power.

Finally, the BH procedure also yields anti-conservative results on LFQRatio25, as the FDP is
always higher than the FDR. However, this can be explained by other preprocessing steps (match
between runs, normalization, imputation, etc.) which tends to shrink the within-condition variance
prior to differential analysis as well as to increase the risk of false positives that are not accounted
by FDR control. Indeed, Benjamini-Hochberg is conservative on simulated data (see Figure 2.5).

Sensitivity of FDR control to knockoff used

Knockoff generation with create.second_order function (section 2.2.7) involves the random
draw of a knockoff matrix (similarly to the random generation of decoy sequences). Hence, on a
given dataset, running two consecutive FDR control procedures with knockoff filters should lead to
slightly different results. We hereafter propose several experiments to illustrate the sensitivity of
the knockoff filter procedure to the knockoff generation, as well as to evaluate its magnitude.

1. Generate 30 knockoff datasets and store them in a list (depending on the machine, this step
may last between 30 minutes to an hour):

set.seed (3456)
n_k = 30
l_k = list()
for (i in 1:n_k) {

l_k[[i]] = create.second_order(X_data)
}

2. Apply the knockoff filter procedure to each knockoff series, with FDR varying from 1%
to 15%. In this example, the scoring method used is LDP. For all the knockoff series, the
effective FDP vs. FDR curves are iteratively plotted, leading to a display akin to that of
Figure 2.6. The proteins selected at an FDR of 5% for each knockoff series are retained in a
matrix referred to as scores:

par(pty=’s’)
FDR = seq (0.01 ,0.15 ,0.01)
FDP <- POWER <- matrix(rep(0,n_k*length(FDR)), nrow=n_k)
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Figure 2.5: FDP and power vs. target FDR for knockoff procedure with offset=1 applied with
forward stagewise selection and log diff of p-values scoring, and Benjamini-Hochberg procedure,
obtained with simulated data.

scores = matrix(rep(0, n_k*ncol(X_sim)), nrow=n_k)

plot(FDR , FDR , type=’l’, ylab = "FDP", xlab = "FDR",
ylim=c(0 ,0.7), xlim=c(0 ,0.15))

for (i in 1:n_k) {
W = stat_log_diff_pval(X_data , l_k[[i]])
for (t in 1: length(FDR)) {

thres = knockoff.threshold(W, fdr=FDR[t], offset=1)
selected = which(W >= thres)
FDP[i,t] = compute_fdp(selected , idx_diff)
if (FDR[t] == 0.05) {

scores[i,selected] = 1
}

}
lines(FDR , FDP[i,], col=i)

}
legend("topleft", legend = "y=x", lty=1, col="black")

3. Finally, plot a heatmap featuring the scores matrix which highlights with different colors
the selected proteins under H0 and H1 for each knockoff filter series, at an FDR target of 5%.
(see Figure 2.7):

par(mar=c(5, 5, 2, 8), xpd=TRUE , mgp=c(1,1,0))
heights = sort(colSums(scores), decreasing = T,

index.return = T)
heights_in_plot = heights$ix[heights$x>0]
submat = scores[,heights_in_plot]
submat [( submat == 1) & t(matrix(rep(heights_in_plot >46,

nrow(scores)), ncol=nrow(scores)))] = 2

image(t(submat), col=c("grey", "blue", "red"),
xlab="Proteins (selected at least once)", axes=F)

mtext(text=c(paste("Knockoff",c(1,15 ,30))), side=2, line=0.1,
at=seq (0.0 ,1 ,1/2), las=1, cex=0.9)

legend("topright",inset=c(-0.23, 0),
legend=c("Selected H_0","Selected H_1", "Not selected"),
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fill=c("red","cyan", "grey"))

Figure 2.6: Curves of FDP vs. FDR for 30 different Knockoff procedure, applied with log diff of
-values score on LFQRatio25 dataset.

Figure 2.7: Proteins selected according to 30 different knockoff procedure iterations (using LDP
score) on the LFQRatio25 dataset. Blue cells depict original differentially abundant proteins
(human proteins) that were selected using a given knockoff. Similarly, red cells depict non-
differentially abundant proteins (yeast proteins) mistakenly selected. Proteins are sorted from the
most selected one (left hand side) to the least selected one (right hand side).
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Figure 2.5 and 2.7 emphasize the important variability resulting from the random nature
of knockoff filters. To counter this variability, [Nguyen20] proposes a method to aggregate
multiple knockoffs. In fact, similar sensitivity has already been commented upon with target-decoy
procedures [Keich19], so it seems to be a problem ubiquitous to FDR control procedures which
involve simulating artifactual data under the null hypothesis. Finally these observations provide an
intuitive support for the tools described in [Emery19], which relies on multiple decoy databases to
construct a knockoff-like score.

2.3 Publication 2: Challenging Targets or Describing Mismatches? A
Comment on Common Decoy Distribution by Madej et al.

2.3.1 Foreword

As a follow-up to the MiMB protocol, we give a global view on FDR control at peptide identification
step in a perspective article published in Journal of Proteome Research. To submit it, we took the
opportunity of commenting an article by Madej et al. [Madej22] that proposed an FDR control
method mixing both competition based and free approaches, which naturally addressed an issue
regarding their theoretical foundations and assumptions.

Concretely, we first give a recap of FDR control methods at peptide identification and explain
the differences between the competition based and free approaches. We then push the parallel
between TDC and knockoff procedure further than in the book chapter and highlight discrepancies
between them two. Finally, we set warnings inherent to the competition procedure, which extend
those formulated in the previous work, and give some perspectives on how TDC could benefit from
more theoretical foundations.
This article is referenced as:

Etourneau, L.; Burger, T. Challenging Targets or Describing Mismatches? A Comment on
Common Decoy Distribution by Madej et Al. J. Proteome Res. 2022, 21 (12), 2840–2845.
https://doi.org/10.1021/acs.jproteome.2c00279.

2.3.2 Abstract

In their recent article, Madej et al. (Madej, D.; Wu, L.; Lam, H. Common Decoy Distributions
Simplify False Discovery Rate Estimation in Shotgun Proteomics. J. Proteome Res.2022, 21
(2), 339–348) proposed an original way to solve the recurrent issue of controlling for the false
discovery rate (FDR) in peptide-spectrum-match (PSM) validation. Briefly, they proposed to
derive a single precise distribution of decoy matches termed the Common Decoy Distribution
(CDD) and to use it to control for FDR during a target-only search. Conceptually, this approach
is appealing as it takes the best of two worlds, i.e., decoy-based approaches (which leverage a
large-scale collection of empirical mismatches) and decoy-free approaches (which are not subject
to the randomness of decoy generation while sparing an additional database search). Interestingly,
CDD also corresponds to a middle-of-the-road approach in statistics with respect to the two main
families of FDR control procedures: Although historically based on estimating the false-positive
distribution, FDR control has recently been demonstrated to be possible thanks to competition
between the original variables (in proteomics, target sequences) and their fictional counterparts (in
proteomics, decoys). Discriminating between these two theoretical trends is of prime importance for
computational proteomics. In addition to highlighting why proteomics was a source of inspiration
for theoretical biostatistics, it provides practical insights into the improvements that can be made to
FDR control methods used in proteomics, including CDD.
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2.3.3 A short history of FDR in biostatistics and in proteomics

A False Discovery Rate (FDR) is a statistical estimate of the expected proportion of features
that pass by chance a significance threshold (a.k.a., false discoveries). With the advent of high-
throughput analyses, the number of measurable features have sky-rocketed. To avoid producing
a proportional increase in false discoveries, it has become essential to control for the FDR (i.e.,
to conservatively select features based on the FDR). Although the starting point of FDR theory
is unquestionably dated to 1995 with the publication of the seminal article by Benjamini and
Hochberg (BH) [Benjamini95], few later publications acknowledge the importance of pre-existing
work [Benjamini10, Goeman14]. After few technical improvements [Yekutieli99, Benjamini16]
between 1995 and 2000, the subject really gained momentum with the publication of the human
genome [Venter01], which revealed how high-throughput biology could dramatically take advantage
of these hitherto purely theoretical advances. The early 2000s thus saw the emergence of several
innovations. On the theoretical side, a group of researchers from Stanford reformulated the BH
framework to better fit applications in biostatistics [Storey02, Storey03, Efron02, Efron01]. This
notably led to the now well-established concepts of q-value (or adjusted p-value) and empirical null
estimation.

Meanwhile, in the proteomics community, questions akin to FDR estimation showed up
under several names (e.g., “false identification error rates” [Keller02] in 2002 and "false-positive
identification rate" [Masselon03] in 2003). It also coincided with the moment when Elias and
Gygi et al. [Peng03] formulated their intuitions about false positive simulation through decoy
permutations, preceding what is now known as Target-Decoy Competition [Elias07a] (TDC). It
should be noted that this was a complete conceptual breakthrough at the time, as there was no
statistical theory to support the idea that fictional variables (i.e., decoy sequences) created from
the original ones (i.e., target sequences) could be used to control for FDR. This is also why decoy
databases were soon proposed for use in ways that were more compliant with the pre-existing
theory of FDR control. Notably, in 2007–2008, two groups independently proposed that target
and decoy searches be performed on separate databases, i.e., without organizing a competition
between them (hereafter referred to as TDwoC, to emphasize the absence of competition) [Käll07,
Martínez-Bartolomé08]. The first article [Käll07], shorter and more conceptual, became the
benchmark (despite the fact that the estimator proposed was far from optimal [Keich15]). This
article notably established the theoretical exactness of TDwoC by linking the approach to empirical
null estimation [Efron02, Storey03], a concept to which one of the coauthors had also contributed.
In addition, they raised concerns about TDC in the conclusions of the article, as in their opinion,
the additional competition procedure made it difficult to derive the distribution of target mismatch
scores (a.k.a. target null PSMs). However, despite this warning as well as rare voices pointing out
the apparent inaccuracy of TDC [Cooper12], the TDC approach progressively became the reference
method over the course of the following decade.

This gap between practical approaches to FDR in proteomics and theoretical background in
biostatistics was tentatively filled by He et al. (in works that remained largely unpublished [He15,
He18a] until recently [He18b]). Briefly, these authors demonstrated that FDR could be controlled
(at the peptide-only level, as opposed to the more classically considered PSM level) using decoy
sequences. They connected their demonstration to simultaneously emerging studies from the
Candès group [Barber15]. Although Barber and Candès’ seminal work unleashed an important and
ongoing renewal of FDR theory in the statistics community [Candès18, Gimenez18, Ge21, Xing21],
it may seem old to proteomics researchers, as its core idea is to fabricate uninteresting putative
biomarkers in silico (i.e., fictional variables referred to as “knockoffs”) and to use them to challenge
each real putative biomarker through pairwise competition.
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2.3.4 Two distinct approaches to FDR

Today, the FDR can be controlled in two ways, both in theoretical statistics and in proteomics:
based on a description of how false-positives distribute; or based on competition, by challenging
the variables of interest with fictional ones (a.k.a. knockoffs or decoys). We hereafter summarize
the two trends, along with their specificities.

“Describing mismatches” or the null-based approach

The oldest approach is based on a simple rationale: The scores of observations we are not interested
in (spectrum/peptide mismatches) form the so-called null distribution in statistics. If enough is
known about the null distribution, then it is possible to “subtract” it from the distribution observed.
We will be left with observations that lie beyond the null distribution, which can therefore be
considered of significant interest (discoveries); in sum, to be correct PSMs. Despite a complex
mathematical vehicle, necessary for statistical guarantees, the original BH procedure is the first and
simplest implementation of this approach. However, this procedure relies on a strong assumption:
that the scores distributed are p-values, as the null distribution of such values only is known to be
uniform [Burger18], at least in theory [Giai Gianetto16, Wieczorek19]. As such, the BH procedure
is the natural tool to control for the FDR when analyzing differential expression, where statistical
tests are applied to all putative biomarkers. However, it can also be applied for peptide identification,
provided PSM scores can be converted into p-values [Couté20, Fancello22].

If no p-value can be determined from the PSM scores, the approach remains valid, but an
additional preliminary step is necessary. The purpose of this step is to estimate how PSM scores
distribute under the null hypothesis (to keep the subsequent subtraction from the observed distri-
bution feasible). This extension of the BH framework is naturally referred to as “empirical null
estimation” (or “Empirical Bayes estimation” when the alternative hypothesis is also accounted
for). Related approaches have been used in proteomics for two decades [Keller02, Choi08], and
are still under investigation [Prieto20]. TDwoC is their quintessence, as it provides a universal,
conceptually simple, and easy-to-implement means to derive the distribution of random matches.

To summarize, when decoy sequences are used for empirical null modeling, they must be
considered as a whole, essentially as a means to describe the data under the null hypothesis. As this
distribution will subsequently be subtracted from the target distribution, it must remain unaltered.
Notably, this implies that all the decoys must be accounted for, which seems incompatible with
selecting only a subset of them based on how they compete against target sequences.

“Challenging targets” or the competition-based approach

The second approach makes no attempt to elicit the null distribution. It only assumes the existence
of a procedure to mimic the features of interest (be they amino acid sequences or quantitative
vectors describing hypothetical differential abundances). Each feature thus fictionalized is used to
challenge an original feature through pairwise competition. Then, the FDR can be estimated thanks
to the overall analysis of all the competition results. Despite regular use in proteomics over 15
years as part of TDC, this approach has only recently been theoretically justified [He15, Barber15].
Therefore, it is now tempting to consider it as the posthoc support for TDC applications that has
been sought for more than a decade. Unfortunately, detailed analysis of this so-called knockoff
framework, that we will summarize below, appears to partially contradict this view.

Knockoff-based FDR is notably applied in biomarker discovery. It considers as input an
array-like quantitative data set, where each covariate (e.g., a vector of abundances, polymorphism
presence/absence across samples, etc.) is a potential biomarker. The first step of the method aims
to fabricate a “knockoff” array of the exact same size as the original one. This knockoff array can
be pictured as similar to the permutated array used in permutation-based FDR [Tusher01], except
for two differences: first, the knockoff values are randomly generated from scratch rather than by
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shuffling the samples. Second, whereas permutation-based FDR relies on an overall description of
the null distribution (like BH), knockoff covariates are paired with the originals in order to fit the
so-called exchangeability property [Barber15]. Respecting this property is challenging, notably
when the number of features considerably exceeds the number of samples [Candès18]. Multiple
methods have now been described to generate the knockoffs. Figure 2.8 presents the original
procedure, which, despite its complexity, only approximately obeys the exchangeability property.
More specifically, the covariance matrix for the joint original and knockoff covariates must read as:

cov(X , X̃) =

 Σ Σ−diag(s)

Σ−diag(s) Σ

 (2.3)

where X and X̃ refer to original and knockoff covariates, respectively, where Σ is the estimated
covariance matrix of X , and diag(s) is a diagonal matrix build upon a vector s > 0. To enable
sampling of the knockoff covariates, s must be chosen so that cov(X , X̃) is invertible. In addition,
the power of the FDR control procedure depends directly on the coefficients of s being large enough.
As a result of this trade-off, tuning s in a high-dimensional setting is challenging. In our view,
this clearly illustrates the difficulty of fabricating sufficiently realistic fictional variables. From
a more practical viewpoint, TDC-based FDR presents a similar pitfall. As formally defined by
He et al. [He15], the accuracy of TDC depends on whether the decoy database complies with the
Equal Chance Assumption during the subsequent competition. Although it is necessary to assume
equally probable target mismatches and decoy matches to control the FDR at the peptide level,
little is known about the true validity of the assumption. Notably, it has already been reported that
instrument mass tolerance filters [Couté20] or on gene expression filters [Fancello22] can affect
the correctness of this assumption. Therefore, many other experimental details may have similar
impacts. Likewise, it has recently been reported that the diversity of decoy fabrication methods
(see next section) or competition modes [Lin21, Lin22] affects the liberal/conservative behavior of
the FDR estimate, and we postulate that the knockoff framework may be useful in explaining these
effects.

Figure 2.8: General framework of FDR control with knockoff variables (p denotes the number of
covariates).

After the knockoffs were generated, a competition is organized between each pair of original
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and knockoff covariates. This competition produces a symmetric score Wi measuring which of
the i-th original/knockoff covariates is the best suited to a dedicated task (for differential analysis,
this task is classically predicting biological status). The more negative the score, the more it
indicates the knockoff outperformed the original feature; and conversely, the more positive the
score, the more it indicates the original feature outperformed the knockoff (zero corresponds to
a draw between the two). Finally, FDR control at level α is achieved as follows: the minimum
score threshold t is chosen such that the ratio (Kt +1)/Ot is lower than α , where Kt (respectively
Ot) is the number of original/knockoff pairs with relative scores lower than −t (respectively larger
than t), see Figure 2.8. All original covariates with a relative score above t are selected. At this
point, the parallel with TDC is easy to draw. First, as argued by Keich et al. [Keich19], searching a
single concatenated database (the original TDC formulation) or two separate databases followed
by a competition step is equivalent. Thus, TDC implements a pairwise competition between the
target and decoy sequences best matching each spectrum. Second, the FDR control formula is the
same as that recently adopted for peptide identification [He15, Keich19, Levitsky17] (as opposed
to the original formula [Peng03, Elias07a]). However, at this stage, a small difference emerges.
According to the knockoff procedure, the TDC scores (i.e., the Wi’s) should be obtained using an
antisymmetric function (meaning that f (x,y) = − f (y,x)). In practice, the following formula is
used:

Score(PSMi) =Wi = f (Zt
i ,Z

d
i ) = sign(Zt

i −Zd
i )×max(Zt

i ,Z
d
i ) (2.4)

where PSMi is the PSM associated to the i-th spectrum, and Zt
i and Zd

i refer, respectively, to the
best target and decoy scores with respect to this spectrum. Using this formula, the score complies
with the knockoff framework. However, whereas one should retain a null score when Zt

i = Zd
i in

classical TDC implementations, Zt
i is often returned instead, thereby breaking the antisymmetry

property. Although justified by practical considerations (if a random amino acid sequence appears
to be equivalent to an existing peptide, it should not prevent the peptide from being identified), it
may hamper the overall statistical correctness of the procedure in practice.

To summarize, although the parallels between TDC and knockoffs are strong, three discrepan-
cies should be kept in mind: the statistical framework cannot handle FDR control at PSM level; the
TDC score may not be perfectly symmetrical; and the procedure used to shuffle amino acids does
not guarantee compliance with the exchangeability property.

To conclude on the competition-based approach, introducing a pairwise competition step be-
tween the fictional and the original variables corresponds to a significant change in the FDR control
procedure: it is supported by a distinct mathematical theory and requires specific implementations to
work. This calls for caution in the proteomics community, where switching between frameworks has
essentially been taken to mean the target and decoy databases are concatenated (competition-based
approach) or kept separate (null-based approach).

2.3.5 Perspectives inspired by this history

As we have seen, FDR control is possible using two distinct and orthogonal mathematical theories.
When applied to peptide identification, both can rely advantageously on decoy generation. However,
the role of the decoy database fundamentally differs, depending on whether the method applied
relies on BH and its empirical null extensions (then, decoys are used to “describe the mismatches”)
or whether it relies on a competition-based approach (then, decoys must adequately “challenge the
target sequences”). In our view, this fundamental distinction is worth highlighting, as it provides
interesting cues to analyze and improve the tools used for peptide identification.

First, TDC improvements can be expected if we better acknowledge the requirements for
generation of knockoffs. Notably, the discrepancy between the TDC scoring function and knockoff
requirements (see above) should encourage the investigation of alternative scoring systems, for
instance leveraging the difference between the best decoy and best target scores. Following this
trend, Emery et al. [Emery20, Emery19] proposed the use of multiple decoy database searches and
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an antisymmetric score based on the proportion of best decoy matches that were outperformed by
the best target matches, similar to other theoretical variations on the knockoff framework [He18a,
Gimenez18]. Knockoffs are also inspiring for decoy generation. Essentially, a good knockoff
amounts to a random variable following the null hypothesis given its original counterpart. However,
this distribution is more difficult to define for mismatching amino acid sequences than for differential
expression (where knockoffs easily apply). In fact, this question pervades the problem of decoy
fabrication, as a number of methods (reverse, shuffle, De Bruijn, etc.) [Moosa20, Jeong12] have
been proposed to allow a trade-off between unrealistic and target-like decoys. However, no
consensus has yet emerged. In the knockoff framework, this question boils down to balancing
the fit to the exchangeability property, and the assumptions about the null hypothesis. A number
of original and inspiring tools have been proposed to achieve this balance, such as the Deep
Knockoff approach [Romano19]. This suggests using a generic distribution learner, like a variational
autoencoder, with a loss function penalized by the similarity between the target and decoy scores
over the training spectra.

Second, and more pragmatically, swapping the default FDR control methods and the use-
cases highlights the pros and cons of each approach. We applied BH to peptide identification
data [Couté20, Fancello22] and conversely, for differential analysis, we replaced BH by knock-
offs section 2.2. Our results concurred and showcased the considerable instability of the competition-
based approach relative to null-based approach. This instability is presumably linked to random
fluctuations during decoy generation, which directly influence the results of pairwise competitions.
In contrast, the overall description provided by the null distribution should be less sensitive to
random variations. To cope with these fluctuations, it has been proposed to run multiple TDCs and
to average the target and decoy counts to estimate the FDR [Keich19] (an approach that should not
be confused with the multiple knockoff approaches mentioned above [Gimenez18]). However, any
such averaging strategy comes at an extra computational cost, which is not required when applying
the null-based approaches.

This difference in stability also provides a possible explanation for the results presented
by Madej et al. in [Madej22]. More specifically, the authors proposed to apply the Common
Decoy Distribution (CDD) in two distinct ways: BH-CDD (Benjamini-Hochberg CDD) and PP-
CDD (PeptideProphet CDD). Technically speaking, both implementations amount to a null-based
approach, as both use the CDD as an empirical null distribution. The BH-CDD copes with the
lack of available p-values by relying on a simple empirical null model to estimate an overall FDR,
whereas PP-CDD, following PeptideProphet approach [Keller02, Choi08], uses a joint modeling of
the null and alternative hypotheses to estimate the local FDR distribution [Efron01]. Madej et al.
reported that, compared to BH-CDD, PP-CDD produces FDR estimations with greater variance.
Considering the lack of stability intrinsic to the random generation of fictional variables (whether
knockoffs or shuffled sequences), we believe that the minimal data-dependency of BH-CDD (in
contrast to PP-CDD, which requires an additional distribution to be estimated from the data) explains
its relative stability. As for the reported overconservativeness of BH-CDD, refinements using the
PIT (Percentage of incorrect target PSMs [Käll07], a.k.a π0) are known to be efficient [Keich15,Giai
Gianetto16].

Regardless of the strategy applied (PP-CDD or BH-CDD), the distinction between the null- and
competition-based approaches sheds an interesting light on the proposal presented in [Madej22].
Indeed, it constitutes a middle-of-the-road approach, as the construction of the CDD involves
pairwise competitions, whereas the FDR estimate relies on the empirical null paradigm. Is such an
in-between theoretically supported? So far, it does not appear to be, to the best of our knowledge.
However, the experimental results reported seem at least partly compliant with a well-calibrated
FDR control procedure. This can be explained in a number of ways.

First, when a peptide identification task is conducted with most available database search
engines, the null hypothesis is not that of random mismatches, but that of the best mismatches
over the entire database (most search engines only return the few best-scoring PSMs, whether
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targets or decoys, and classically, only the best one is retained). In other words, even a decoy-only
search entails a kind of competition step (in the sense that it amounts to taking the highest of
several scores), regardless of its subsequent use (with or without competition against target results).
Potentially, after the competition involving the entire decoy database, adding another level of
competition with the best target does not significantly alter the distribution. Of course, it should
yield a more conservative CDD as only some decoys (those defeating the targets) are considered
to describe the null distribution. However, let us recall that depending on how the databases are
filtered [Couté20, Fancello22], the TDC-based FDR can be anticonservative. The two errors could
thus compensate for each other. An alternative explanation can also be presented: although we
currently lack theoretical results, a mixed approach may still hold. It should be remembered that the
concept of TDC emerged more than 10 years earlier than the theoretical framework of knockoffs.
Similarly, future statistics studies may give grounds for mixing strategies rooted in computational
proteomics, where the overall null distribution is determined from a series of pairwise competitions.
Although taking a slightly different path, some theoretical attempts to bridge the gap between
knockoff- and p-value-based FDRs are already emerging [Etourneau23, He18a, Nguyen20].

In any case, the results reported by Madej et al. in [Madej22] are in line with those summarized
above: To date in a proteomics application context, competition-based approaches do not appear
to us as mature as their null-based counterparts. Owing to the random fluctuations inherent to the
generation of fictional features, and the difficulty of ensuring that this generation remains compliant
with the mathematical constraints of the underlying theory (which, broadly speaking, is essential to
comply with the Equal Chance Assumption), null-based FDR controls should be preferred. More
precisely, we tend to promote the BH control, as it is the most stable and the least computationally
demanding. Unfortunately, it cannot easily be used with many search engines that do not directly
provide p-values. In this context, the most striking application of CDD we envision is a universal
method to convert search engine scores to p-values. By definition, p-values distribute like their
theoretical quantiles; therefore, the empirical quantiles of the scores attributed by a search engine
to a CDD provide a correspondence table between the scores and the p-values for the search engine
in question. Subsequent application of the BH procedure then becomes straightforward. In addition
to the gains in terms of accuracy and simplicity for FDR control, this would give a common ground
to simplify the comparison of the various search engines available in the literature.

2.3.6 Conclusions

In conclusion, the objective underlying the definition of a CDD is as interesting as the new
applications it makes possible. However, its practical use raises many questions, mainly because it
requires a distinction to be made between two uses of decoy sequences when controlling for the
FDR: either to challenge the target sequences in a pairwise competition setting, or to refine the
description of the null hypothesis (a.k.a. target mismatches). Doing so in a proteomics context is
difficult, since both trends have been tightly intertwined over the past 20 years. The reason for this
intermingling is that our community adopted the FDR concept in a progressive and sinuous manner,
fueled by a mix of empirical considerations and concomitant theoretical results. Fortunately, the
recent advent of knockoff theories is insightful in this respect. In this context, the proposal from
Madej et al. constitutes a milestone encouraging further investigations in multiple directions. First,
casting the CDD principle into a fully empirical null framework (by removing the competition step
during CDD construction) would produce a tool that could be extensively used to convert search
engine scores into p-values. Second, by providing the means to explore a range of target-decoy
strategies, CDD could well become a practical tool to refine our current approaches to FDR control
(e.g., stability studies, antisymmetric scores, averaging results from multiple small databases
vs using a single large one, π0 estimate, etc.). Finally, in the longer term, such explorations
should contribute to more theoretical investigations; notably attempts to bridge the gap between
the statistical rationales of the null- and competition-based approaches, possibly leading to the
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emergence of a unified theory.

2.4 Deriving a composite diagnosis score from FDR-controlled biomarker
selection

2.4.1 Foreword

This last work, still unpublished, results from a collaboration with David Pérez, another PhD student
in molecular biology from EDyP lab, on a project representing the core of his thesis, and for which
I am only a contributor. My involvement was motivated by the need to develop a score assessing
liver fibrosis severity using a panel of biomarkers either discovered by proteomics experiments
or resulting from bibliographical survey. It is an essential follow-up of the proteomics work, as
some biomarkers selected using univariate differential analysis and subsequent FDR control may
correlate well with one another. Hence, the gain of information by naively combining them may be
low.

My involvement in this project was a great opportunity to work directly with experts from other
fields and to gain experience, as I ambition to continue my career in interdisciplinary research.
This applicative work was yet challenging as the methods to build the prediction model had to
fit the constraints of the wet-lab experiments, carried out before my involvement, such as patient
variability, size of dataset, potential data leakage etc.

This chapter is organized as follows: The next section provides a summary of the article draft
to avoid the necessity of reading it. Then, subsection 2.4.3 gathers copied-pasted parts of the article
draft or of its supplementary materials, which correspond to my contributions.

2.4.2 Bioclinical context and biomarkers identification

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a disease linked to the spread
of obesity, and affects up to 1.9 billion adults, with increasing prevalence [Gadiparthi20,Huang20a].
The most reliable available method to diagnose and characterize MASLD is liver biopsy, which
is used to stratify patients with liver steatosis, fibrosis, or inflammation. However, liver biopsy is
not without risks, and presents a certain number of limitations in this scenario. Based on its link
with mortality [Dulai17], fibrosis is the most urgent variable to be determined in MASLD, and an
essential parameter for the medical decision-making process. In particular, the distinction between
early stages and advanced stages of fibrosis is critical, as it largely determines whether the patient
should receive liver transplantation.

In this context, we are then interested in finding fibrosis biomarkers in blood plasma, to diagnose
fibrosis severity (i.e., early vs late stage) in an non-invasive fashion with a blood test. Samples were
collected from two cohorts of MASLD patients from different hospitals, one of 160 patients, the
other of 200 patients.

A first LC-MS/MS-based discovery proteomics analysis was performed using 158 plasma
samples from the Grenoble cohort. The aim was to identify candidate biomarkers with abundance
levels making it possible to differentiate early fibrosis from advanced fibrosis. The strategy deployed
reliably identified and quantified 235 plasma proteins. The statistical analysis (limma test) of the
difference between relative abundances of each protein in the samples from patients with early and
advanced fibrosis revealed 72 differentially abundant proteins (FDR inferior to 5% according to the
Benjamini-Hochberg procedure).

Then, a verification phase enabled to assess whether absolute quantification of target protein
(obtained with ELISA assays) differed significantly between samples from the advanced and early
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fibrosis groups. To select appropriate candidates for verification, several criteria were applied to
the potential biomarkers identified by discovery proteomics: substantial fold-change between the
conditions compared, availability and performance of ELISA assays, and predominant expression
of the proteins in the liver according to the Protein Atlas database (https://www.proteinatlas.
org/). Based on these criteria, from the 72 differentially abundant proteins identified in discovery
phase, two proteins were selected for the verification study: ALS and LG3BP. ALS and LG3BP
concentrations were determined in the same 158 plasma samples from the Grenoble cohort using
ELISA assays. The results showed similar trends in terms of relative abundances for each protein
between the discovery and verification studies for the different fibrosis stages.

The validation study aimed to confirm the usefulness of the biomarkers with samples from an
independent cohort. To do so, 200 samples from the MASLD patients attending Angers Hospital
were analyzed by ELISA. The trends for ALS and LG3BP abundances through fibrosis stages were
similar for the two cohorts, whatever the analytical method used. Finally, results obtained for early
and advanced stages of fibrosis in the discovery/verification and validation cohorts were statistically
compared by applying a Mann-Whitney test. Statistically significant levels were obtained for the
discovery, verification, and validation studies for ALS (9.4E-07, 4.4E-07, 3.0E-09) and LG3BP
(1.3E-06, 4.1E-07, 2.8E-09, respectively). These levels of significance suggest that the abundances
of both proteins can discriminate MASLD patients with early disease from those with advanced
liver fibrosis.

2.4.3 Comparison with FibroTest for the non-invasive assessment of liver fibrosis

We then focused on how well ALS and LG3BP differentiated early versus advanced liver fibrosis,
examining the biomarkers either independently or in combination. For this analysis, we performed
an AUROC calculation on the validation cohort (Angers) using (1) the concentration of ALS
measured by ELISA, (2) the concentration of LG3BP measured by ELISA, and (3) the combined
concentrations of LG3BP and ALS Figure 2.9. The AUROC values were compared with those
obtained with the FibroTest (for the same cohort) as it is widely used and has been tested in several
MASLD studies [Lassailly11, Munteanu16, Munteanu18]. FibroTest was initially defined as a
panel (i.e., a composite biomarker) of three protein concentrations, one enzymatic activity, one
metabolite concentration, age and sex, combined in a logistic regression model and validated on
independent cohorts [Poynard05]. In our comparison, ALS and LG3BP provided surprisingly
similar performances to the original FibroTest: ALS 0.744 [0.673 – 0.816], LG3BP 0.735 [0.661 –
0.81], FibroTest 0.758 [0.691 – 0.825]. Notably, their 95% confidence intervals (CIs) were found
to largely overlap (Figure 2.9). Using the same logistic regression methodology applied to the
discovery cohort (Grenoble), we determined the weightings for ALS and LG3BP as a two-protein
panel, termed {ALS, LG3BP} on Figure 2.9. With an AUROC of 0.796 [0.731 – 0.862], the {ALS,
LG3BP} panel improved fibrosis differentiation as compared to ALS or LG3BP alone, but also
compared to the FibroTest panel.

Based on the results obtained, we hypothesized that the combination of ALS and LG3BP with
FibroTest (or with at least some of the FibroTest variables) in a multivariate model could improve
the overall stratification performance. However, this hypothesis requires careful validation, as
modifying a pre-existing panel by adding (or removing) variables must be supported by a precise
assessment of each variable’s contribution to the overall performance. For this type of validation,
nested hypothesis testing has long been relied upon [Krämer86], however, it could not be directly
used here because FibroTest was trained on a distinct cohort. To deal with this difficulty, we
computed an intermediate mathematical object, called FibroTest RF (re-fitted), which basically
consisted in retraining the weightings of the original FibroTest variables using the same original
logistic regression, but with data for our discovery cohort (Grenoble). The associated AUROC on
the Angers cohort was much higher (0.843 [0.789 – 0.898]) Figure 2.10 than that obtained with the
original FibroTest (0.758 [0.691 – 0.825]) (Fig. 4). Despite this apparently dramatic difference, we
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Figure 2.9: Plasma concentration of ALS and LG3BP discriminate early (F0-2) from advanced
(F3-4) fibrosis as well as the FibroTest panel; as a 2-protein panel they outperform FibroTest. ROC
curves and AUROCs are shown with their respective 95% CIs for ALS/LG3BP ELISA quantifications,
original FibroTest score (left). Combined concentrations of ALS and LG3BP compared to original
FibroTest (right). Data presented correspond to the Angers cohort. 95% CIs around ROC curves
were computed over 2000 stratified bootstrapped replicates of the cohort, using the pROC R package,
as described in [Carpenter00]. 95% CIs for AUCs were also computed using pROC, but applying
the DeLong methodology [DeLong88], as it is an asymptotically exact method; the curves are
displayed on two distinct plots for the sake of clarity only, as a result of the extensive overlaps in
CIs).

cannot claim that the FibroTest RF represents an improvement upon the original FibroTest as the
two were assessed on distinct cohorts. Therefore, FibroTest RF should essentially be interpreted as
an abstract mathematical model, providing a baseline for fair comparisons: any modification of the
panel yielding a larger AUROC than FibroTest RF can be considered to improve upon the original
FibroTest. This conclusion will apply even in the worst-case scenario where the performance
difference due to the change of cohort cannot be accounted for. In this context, the results presented
in Figure 2.10 support the conclusion that combining previously identified biomarkers with ALS
and LG3BP should yield a more powerful panel, better distinguishing between early and advanced
stages of fibrosis.

To explain the performance gap between the original and the re-fitted FibroTest, we hypoth-
esized that some of its variables were not true markers of disease severity in the Grenoble and
Angers cohorts, and that they could therefore be safely removed from the re-fitted version without
loss of performance. We verified this hypothesis by calculating iterative likelihood ratio tests for
the Grenoble cohort: at each iteration, we removed the variable the least likely to contribute to the
model’s performance (see Table 2.2) until only significant variables remained. From this process,
we concluded that five variables could be safely removed from the model without decreasing
performance, and hence retained only A2M and GGT (gamma-glutamyltransferase). This result
is supported by the fact that there is almost no change in AUROC between the re-fitted FibroTest
(0.843 [0.789 – 0.898]) and its reduced version A2M, GGT (0.84 [0.785 – 0.895]) (Figure 2.10.)

We then examined whether adding ALS and LG3BP to FibroTest RF or to data related to A2M,
GGT improved discrimination between early and advanced fibrosis stages. From the data presented
in Figure 2.10, we can see that adding ALS and LG3BP increased the overall AUROCs for these
two panels by 0.01 and 0.015, respectively. However, it is difficult to estimate the true gain as CIs
considerably overlap. To further assess the comparison, we performed likelihood ratio tests for
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these models fitted to the Angers cohort alone (see Table 2.3). Specifically, we tested whether the
models including ALS, LG3BP, or both, fit the data significantly better than the models lacking
these markers (i.e., FibroTest RF and A2M, GGT models). We obtained p-values of 0.007 and
0.009, respectively, when both ALS and LG3BP were added to these two models. When ALS
was added alone, p-values of 0.004 and 0.011 were obtained, respectively, whereas with LG3BP,
p-values of 0.066 and 0.0278 were obtained.

By combining ROC curves with nested significance testing, we found that using both previously-
discovered biomarkers from the FibroTest alongside ALS and LG3BP produced a more powerful
panel to distinguish between early (F0-2) and advanced (F3-4) fibrosis stages. Relying on the
Ockham’s razor principle, and as we observed no significant effect of the other variables included
in FibroTest (i.e., Haptoglobin, Age, Bilirubin, ApoA1 and sex) on our cohorts, we propose a new
biomarker panel for liver fibrosis composed of A2M, GGT, ALS, LG3BP. This panel provided an
AUROC of 0.855 [0.802 – 0.908] with data for the Angers cohort.
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al Alpha2m 8.50E-6 8.18E-6 5.79E-6 6.46E-6 2.46E-6 2.67E-7

GGT 1.60E-3 1.50E-3 1.42E-3 1.40E-3 2.60E-3 2.70E-3

Age 0.271 0.248 0.252 0.226 0.317

0.733

ApoA1 0.238 0.254 0.249 0.258

Sex 0.598 0.6134 0.6435

Haptoglobulin 0.734 0.656

Bilirubin 0.763

Table 2.2: P-values from likelihood ratio tests with the lrtest package [Zeileis15] between a given
model (in columns), and the same model excluding one variable (given by rows). A low p-value
indicates that the variable significantly improves the model’s likelihood. We start with the full
FibroTest RF model (leftmost column) and iteratively remove the least important variables until
only significant ones remained. These tests were performed on the Grenoble cohort. The last
column shows the result of tests where all previous variables were removed at the same time.
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Figure 2.10: Combination of re-fitted FibroTest with ALS and LG3BP improves performance, even
with FibroTest reduced to two variables A2M, GGT. ROC curves and AUROCs with their respective
95% CIs are shown for ALS and LG3BP combined with re-fitted FibroTest (FibroTest RF) (left)
and A2M, GGT (right), with same methodology as previously. Models were fitted to data from the
Grenoble cohort, and ROC-AUROCs were measured using data from the Angers cohort.

Variable(s) added

ALS LG3BP ALS & LG3BP

Default model
{A2M, GGT} 0.011 0.028 0.009

FibroTest RF 0.004 0.066 0.007

Table 2.3: Likelihood ratios tests for A2M, GGT and FibroTest RF improved when ALS, LG3BP, or
both were added to the test panel. Improvement was measured using data for the Angers cohort,
data are represented as p-values; the lower the value, the more discriminant the test. The null
hypothesis for a given p-value in the i-th row and j-th column is that variable(s) in the j-th column
do not contribute when added to the i-th model. The alternative hypothesis is that the j-th variable(s)
make a significant improvement to the i-th model.

2.5 Closing remarks about FDR and feature selection in proteomics

The three works presented enable us to draw conclusions about the FDR control methods and
their limitations in proteomics, as well as about the more general problem of variable selection in
high dimensional setting.

Firstly, we highlighted the similarity between knockoff filters and TDC: they have essentially
the same scoring method and FDR estimators, and present the same instability with respect to
the knockoff filters/decoy database, which seems inherent to competition-based methods. The
knockoff theory provides a generic (but unfortunately still approximate) way to generate knockoff
with theoretical guarantees, and an indicator assessing the quality of the knockoffs. On the other
hand, up to date, no such thing exists for decoy generation, as they are essentially generated with
empirical rules. There is thus a need for methods to generate decoys that ensures the Equal Chance
Assumption (or more formally, that decoys fulfill the knockoff requirements). Moreover, to allow
for an easy use in the proteomics community, an indicator assessing the ECA fulfillment is also
necessary.

Secondly, we found out that in knockoff framework, a simple univariate p-value based scoring
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was more suited to high-dimensional proteomics dataset than multivariate scores derived from
LASSO or others, as proposed in the original knockoff papers. We conclude that the interest of
multivariate knockoffs may be reduced when very few samples are available compared to the
number of features, such as in proteomics datasets. Yet, classical univariate FDR control methods
are limiting to build a composite biomarker, as they do not cope for dependencies between variables.
Doing so after the biomarker discovery task requires a variable selection procedure (such as LASSO
or ElasticNet [Zou05]) or nested hypothesis tests, which is what we employed on MASLD. Whilst
the biomarker combination significantly improved upon results in the MASLD case, it was not
guaranteed at all, as the discovery phase was performed in univariate setting (with BH-based FDR
control) and did not account for potential correlations with previously known biomarkers. The
knockoff approach to build composite biomarkers would have been useful here, but should have
been used prior to my involvement in the discovery phase, as to cope for variable dependencies and
FDR control concomitantly.

Lastly, the development of a multi-omic imputation method based on the knockoff framework
turned out to be an impasse. An original idea was to use to joint original-knockoff covariance
matrix generation tool to apply constraints to the covariance matrix of the joint proteomics and
transcriptomics datasets, and then use it for imputation (in a similar fashion as knockoff filters
are sampled from their conditional distribution with respect to all other knockoffs and original
variables). This actually seemed a too difficult path, as the constraints on the covariance matrix
used for knockoffs cannot be easily modified, and because of the difficulty to estimate such high
dimensional covariance matrices. We can yet draw some lessons about the impact of imputation on
differential analysis. In fact, a conservative imputation procedure (in the sense of the subsequent
differential analysis) is preferable in proteomics, to avoid to artificially generate false positives.
The knockoff framework tells us that generating such variables (that are by definition under the
null hypothesis) should be performed without looking at the outcome variable, which is in our
case the phenotype or biological/experimental condition of each sample. Thus, we believe it is
preferable to impute missing values on the entire dataset at once, instead of separating the different
conditions before imputation. This opinion has strongly influenced the strategy underlying Pirat, the
imputation algorithm presented in the next chapter. On top of that, it has been recently proven that,
in MAR setting, if a variable is missing, its univariate distribution can be also used as a knockoff,
thus demonstrating that univariate imputation on a feature is by nature conservative [Koyuncu22]
with respect to the differential analysis constraints. The impact of imputation on differential analysis
is more deeply addressed in next chapter.

64





3
A new take on missing value imputation for

bottom-up LC-MS/MS proteomics

We present here a novel and original work on missing value imputation
for discovery proteomics. This work relies on a statistical model
thereafter described, and on biochemical assumptions that allow for
quantitative transcriptomic integration.
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Chapter 3. A new take on missing value imputation for bottom-up LC-MS/MS proteomics

3.1 Motivations and context of publication

The last two challenges presented in chapter 1 (i.e., MV imputation of LC-MS/MS proteomics
data and transcriptomics integration) have motivated the work presented in this chapter.

When starting this thesis, we hoped that transcriptomic integration would enable to overcome
to some extents the quantitation limits of LC-MS/MS analyses, which are inherent to the physics
of the instruments. The imputation approach presented here, referred to as Pirat, was originally
developed towards this goal. However, along its methodological development, the explicit modeling
of the instrumental censorship by a missingness mechanism rapidly showed promising results.
We therefore dug more deeply towards a “single-omic” imputation strategy, and only proposed
a multi-omic extension of it. In the end, the proposed approach to transcriptomic integration is
more naive than anticipated, however, we believe it demonstrates the interest of this direction. We
thus hope our proof of concept will foster the development of more refined multi-omic imputation
approaches, even though the limitations of the central dogma should not be minimized: As discussed
in subsection 1.4.2, overall, the sample-wise peptide/transcript linear correlations are weak.

Anyhow, our algorithm, Pirat, demonstrates outstanding performances, either with or without
complementary transcriptomic information. The underlying statistical method and its evaluation
on a variety of proteomics datasets have been summarized in a preprint (https://www.biorxiv.
org/content/10.1101/2023.11.09.566355v1) that will be soon submitted to a journal, and
that is reproduced in the rest of this chapter.

3.2 Abstract

Label-free bottom-up proteomics using mass spectrometry and liquid chromatography has
long established as one of the most popular high-throughput analysis workflows for proteome
characterization. However, it produces data hindered by complex and heterogeneous missing
values, which imputation has long remained problematic. To cope with this, we introduce Pirat, an
algorithm that harnesses this challenge following an unprecedented approach. Notably, it models
the instrument limit by estimating a global censoring mechanism from the data available. Moreover,
it leverages the correlations between enzymatic cleavage products (i.e., peptides or precursor ions),
while offering a natural way to integrate complementary transcriptomic information, when available.
Our benchmarking on several datasets covering a variety of experimental designs (number of
samples, acquisition mode, missingness patterns, etc.) and using a variety of metrics (differential
analysis ground truth or imputation errors) shows that Pirat outperforms all pre-existing imputation
methods. These results pinpoint the potential of Pirat as an advanced tool for imputation in
proteomic data analysis, and more generally underscore the worthiness of improving imputation by
explicitly modeling the correlation structures either grounded to the analytical pipeline or to the
molecular biology central dogma governing multiple omic approaches.
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3.3. Introduction

3.3 Introduction

Bottom-up label-free LC-MS/MS (tandem mass spectrometry coupled with liquid chromatogra-
phy) stands out as one of the most widely used method to characterize the proteome of biological
samples. Analysing the massive amount of MS signals generated by such assays to produce an
abundance matrix (a data table storing the abundance of each protein measured in each replicate
sample, where samples are listed row-wise and proteins column-wise) requires robust, mathemat-
ically well-grounded and fast-evolving software, which development raises computational and
theoretical challenges. Notably two difficulties are specific to the bottom-up label-free workflow:
First, protein abundances are not directly measured, as sample preparation involves proteolysis (i.e.,
the cleavage of each protein into several peptides using an enzyme like trypsin) and as MS measure-
ments require the peptides to be ionized beforehand (they are then referred to as precursor ions, or
simply precursors). Thus, inferring the identity and quantity of proteins requires two aggregation
steps: from precursors to peptides, and from peptides to proteins. Second, raw LC-MS/MS data are
hampered by the presence of a large number of missing values (MVs) in the abundance matrices:
the overall MVs rate can reach 50% [Lazar16] (whether that is at the level of precursor, peptide, or
protein abundances); and at least 50% of peptides usually have at least one MV [Liu21].

The origin of MVs is complex and multi-faceted: since [Karpievitch12], it has been customary
to separate them into two types. The first one gathers all the MVs resulting from the various
workflow imperfections (such as peptide ionization issues, enzymatic miscleavages, too complex
samples, false peptide identifications, etc.) and which may affect proteins broadly randomly,
regardless of their abundance. The second category corresponds to the censorship mechanism
resulting from the instrumental limit: precursors with an abundance below this limit yield MVs.
A major issue with this censorship relates to its stochastic and dynamic nature, as the MS range
changes along the acquisition process [Vidova17]. As a downside of the dramatic proportion
and complex nature of MVs, analysing only fully observed biomolecules (be them precursors,
peptides or proteins) is usually not considered, as it would discard too much biologically relevant
information.

While it is theoretically safer to conduct the analysis keeping MVs as such [Little19] (e.g., it is
possible to identify differentially expressed proteins using models that cope with MVs [Chen14,
Ryu14, O’brien18, Goeminne20, Chion23]), many downstream investigation techniques require
in practice to impute the MVs first (i.e., to estimate the missing abundances), despite the risk of
introducing biases in the original data. This is why, finding methods to accurately impute the
manifold of MVs has long been a key challenge of computational proteomic research.

Based on a decade old and vast literature, some consensus about proteomic MV imputation
has emerged. First, imputing missing protein abundances has been demonstrated to be subopti-
mal [Lazar16] as a result of the effect of the peptide-to-protein aggregation operator on missing
values. However, whether imputation should be performed at precursor- or peptide-level has not
been sorted out yet. Second, it is insightful to distinguish MVs according to the following well-
acknowledged statistical categories [Little19]: Missing Completely At Random (MCAR), where
the probability that a value is missing does not depend on any observed or missing value in the data;
Missing At Random (MAR), where the same probability may only depend on observed values;
and Missing Not At Random (MNAR) in any other case. Accordingly, in bottom-up label free
proteomics, MVs resulting from the lower instrumental limit are classically assumed to follow an
MNAR mechanism [Karpievitch12, Webb-Robertson15, Lazar16], while other MVs, in absence of
sufficiently refined MAR-based description, are modelled as MCARs. Third, on the MVs classified
as MCARs and on those classified as MNARs, the algorithms providing the best imputations are
not the same [Lazar16]. This is notably why their co-existence has motivated the development of
meta-imputation tools, i.e., algorithms taking as input one or several imputation methods(s), and
delivering as output a more refined imputation result (e.g., [Wei18, Ma20, Giai Gianetto20, Gard-
ner21,Wang22,Chion22]); as well as of diagnosis tools capable of proposing an imputation strategy
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tailored to the data specificities [Wang20,Kong22]. Regardless of their practical interest, leveraging
those approaches is only possible if classical imputation methods are available in the first place,
which explains why we hereafter restrict to them.

Numerous as exhaustive as possible reviews propose comparisons between a host of imputation
algorithms (see for example [Lazar16, Karpievitch12, Webb-Robertson15, Jin21, Liu21, Shen22], as
well as subsection 3.6.3). Although those works generally concur on the least-accurate approaches,
they do not on the most accurate ones, which depend on the dataset or on the experimental
design. Moreover, while MCAR/MAR-devoted methods have established their robustness in many
scientific domains where MVs have hardly specific behaviors, the MNAR-devoted methods used
in proteomics are often simple and univariate, thus poorly informative [Chion23] and leading
to larger imputation errors. A notable exception is msImpute [Hediyeh-zadeh23], which very
recent publication has unveiled promising results. Contrarily to most anterior methods, msImpute
simultaneously tackle MCARs and MNARs, as it estimates the type of each MV, and interpolates
MAR and MNAR imputation distributions accordingly. Yet, some parameters (as the barycenter
weights or the MNAR assumption) are fixed in a predetermined manner, which may hinder the
generalization capabilities of the approach. Pushing the logic a step further, few works [Chen14,
Li23] propose to bypass any MCAR/MNAR distinction, as the relevant model should directly
estimate the probability of missing depending on the intensity, thus in a full MNAR setting. Among
them PEMM [Chen14], has been an important source of inspiration for this work. It proposes
a penalized likelihood model involving a random left-censoring mechanism of the mean and
covariance matrix of the protein-level data, which estimation yields natural parametric imputations.
Unfortunately, this essentially theoretical proposal has shown many practical limitations, which
explains its scarce use on real proteomics data.

More broadly, proteomic MV imputation aims at filling gaps in otherwise difficult to interpret
biological data, as does multi-omic data integration: This field has elaborated on the natural
assumption that a single omic modality contains partial-only information which can be compensated
for if multiple omics technologies can be applied to same or related samples. To do so, it is often
proposed to estimate a common latent distribution modelling the underlying biological phenomena
(classically using either matrix factorization [Argelaguet18, Leppäaho17, Rohart17, Meng19] or
deep learning [Zhou20, Barzine20]). Then, the latent model is instrumental for a variety of tasks,
such as pathway identification [Rohart17, Argelaguet18, Meng19], sample extrapolation [Rohart17,
Barzine20, Zhou20], gene-set analysis [Meng19], and possibly imputation [Flores23], even though
none of the available methods was specifically developed (and tested) to fulfil this task in the
challenging context of bottom-up label-free LC-MS/MS data. We have however remarked a recent
(still unpublished) attempt by Gupta et al. [Gupta23] to train graph neural network in a gene-specific
manner to impute protein-level MVs from such data, following a logic broadly akin to the one
presented here.

Our most important contribution is to propose a concrete route to improve the imputation of
LC-MS/MS-based label-free bottom-up proteomic data by leveraging a well-established analytical
and biochemical truism: precursors or peptides originating from the same protein should exhibit
correlations that are insightful to guess the trend of a protein across several samples. In addition, as
insightful correlations can also be exploited between different omics modalities, we have generalized
the approach to incorporate quantitative transcriptomic data, hereby opening the path to multi-omic
based imputation of proteomic data. Doing so is however not sufficient to tackle the MNAR issue.
We have thus implemented these concepts using an imputation algorithm which estimates a single
model for both censored and random MVs. Although the model roots on PEMM [Chen14], its
estimation is achieved using a completely different strategy, more stable, scalable, and without
parameter-tuning or functional approximations, as to fit the concrete constraints of proteomic data
analysts. The resulting software, referred to as Pirat (available on GitHub https://github.com/
prostarproteomics/Pirat), significantly outperforms all other imputation methods on a variety
of tasks, datasets, and situations. All our results are reproducible with the code available on GitHub
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(https://github.com/TrEE-TIMC/Pirat_experiments).

3.4 Results

3.4.1 Pirat: a novel imputation method for proteomics data

Pirat (standing for Precursor or Peptide Imputation under Random Truncation) software works as
follows: Firstly, depending on the input data, it creates either Peptide Groups or Precursor Groups.
Both are based on protein belonging (details in section 3.6.1) and are abbreviated as PGs, whereas
peptides or precursors in a same PG are qualified as siblings. For sake of readability, we hereafter
refer to peptides only, precursors being mentioned only if they require specific processing. The
resulting biochemically informed dependence graph can optionally be enriched with transcriptomic
data: for any PG, one then appends the sample-wise abundance vector(s) of transcript(s) (details in
section 3.6.1).

Secondly, Pirat estimates over all the PGs a global missingness mechanism:

P(Mi, j = 1|Xi, j,Γ) = min(1,exp(−γ0 − γ1Xi, j)) , (3.1)

where Γ = {γ0,γ1} is referred to as the missingness parameter, and where Mi, j (respectively, Xi, j)
denotes the missingness response (respectively, abundance value) of the i-th sample and the j-th
peptide. The missingness parameter is estimated using a kernel regression (details in section 3.6.1)
as to fit the missingness pattern of each dataset.

Thirdly, Pirat estimates the same model as PEMM [Chen14] (derived from Rubin’s selection
model [Little19]), yet using an original approach. Briefly, it aims at maximizing the penalized
log-likelihood of observed data and missingness response, which amounts to maximizing the
following quantity:

logP(Xobs|µ,Σ)+ logEXmis|Xobs,µ,Γ [P(Mmis|Xmis,Γ)]+QK,λ (Σ) ,

where µ and Σ are the mean and covariance matrix of a multivariate Gaussian distribution, Q is
a penalty on Σ and subscripts “obs" and “mis" respectively refer to indices of the missing and
observed parts of the dataset (see section 3.6.1 for the detailed mathematical notations). In Pirat,
this model is fitted on each PG independently, with respect to µ and Σ, considering Γ is known.
Likewise, penalty hyperparameters K and λ are automatically set for each PG in the empirical Bayes
framework (details in section 3.6.1). To avoid the approximations of the missingness mechanism
(defined in Equation 3.3) that hamper PEMM’s results, we propose a tractable and differentiable
lower bound of the above quantity. Therefore, the lower bound can be maximized with respect
to µ and Σ using a quasi-Newton optimization procedure (L-BFGS [Liu89]). Finally, to decrease
computation costs and memory usage, as well as to enforce Σ positive definiteness, Pirat leverages
an alternative parameterization of Σ based on its log-Cholesky factorization.

Fourthly, once the model is fitted, we propose to impute the MVs by their conditional mean
with respect to observed values and their missingness response. The conditional mean being devoid
of closed form, it is computed using standard Monte-Carlo integration [Robert99].

3.4.2 Pirat outperforms state-of-the-art on differential analysis task

We first evaluate our method on several biomarker selection tasks where significantly differentially
expressed proteins are sought. We rely on three benchmark datasets for which differentially
expressed proteins are known as their relative abundances are controlled. They essentially involve
spiked standard proteins in a complex yet constant biological background. These datasets have
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been produced with different MS acquisition modes (either data dependent or independent, a.k.a.
DDA or DIA), at precursor- or peptide-level, and using different standard mixtures (see Section
3.6.2).

The feature selection is performed using the p-values resulting from the significance testing
of the peptides’ differential abundance, after imputing with our method (Pirat) as well as with
15 different state-of-the-art or popular methods (described in Section 3.6.3). Although receiving
operating characteristic (ROC) curves are classically used to assess feature selection (they can be
found in Sup. Mat. Figure 3.5), we have relied on precision-recall (PR) curves (Figure 3.1) instead.
They provide broadly similar rankings, but the PR curves display the False Discovery Proportion
(FDP), which directly relates to the FDR one often controls in proteomic experiments [Burger18].
More precisely, FDR being classically controlled at 1% or 5%, we present on Figure 3.1 partial PR
curves focused on the high precision (low FDP) region to better assess selection performances in
this setting. Global area under the entire PR curve (AUCPR) are also given in Table 3.1. On the
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Figure 3.1: Differential abundance PR curves between 90% and 100% precision comparing Pirat
to 15 imputation procedures on three benchmark datasets (A - Bouyssié2020, B - Cox2014, C -
Huang2020), for which the name of the study, the imputation level (peptide or precursor), the type
of acquisition (DIA or DDA), and the total number of replicates (n) are indicated in the subplot
titles. The 1% and 5% FDP level are shown by the dotted lines.
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AUCPR % (rank)

Dataset A - Huang2020 B - Cox2014 C - Bouyssié2020

BPCA 66.06 (10) 29.96 94.57 (5)

GMS 66.30 (9) 31.25 92.57 (7)

ImpSec 67.20 (7) 31.20 95.08 (2)

ImpSecRob 64.11 29.74 90.47 (9)

KNN 59.33 51.94 (6) 79.94

LLS 62.76 31.48 92.19 (8)

MinProb 72.56 (4) 37.62 (7) 63.96

MissForest 63.81 3.60 88.97

MLE 63.38 34.56 (9) 23.72

msImpute_mar 73.47 (3) 57.37 (5) 94.85 (3)

msImpute_mnar 75.62 (2) 75.68 (2) 94.77 (4)

Pirat 76.89 (1) 87.25 (1) 97.22 (1)

QRILC 68.08 (6) 62.41 (4) 84.66

SeqKNN 66.60 (8) 34.91 (8) 93.81 (6)

SVD 64.54 31.83 (10) 89.66 (10)

trKNN 68.35 (5) 70.49 (3) 81.68

Table 3.1: Global area under the precision-recall curves (and ranking into brackets) comparing
Pirat with 15 imputation algorithms on a differential analysis task using three benchmark datasets
(Bouyssié2020, Cox2014, Huang2020).

three benchmark datasets, Pirat achieves the highest AUCPR (by a margin of 1.25% to 11.6% with
respect to the second-best methods), thus indicating it best preserves the differential abundances
without introducing false positives. Precisely, Pirat provides the best PR trade-off on Huang2020
and Bouyssie2020 in the low FDP region, and almost entirely dominates the other methods on
Cox2014. Beyond Pirat performances, these experiments are insightful with many respects: Several
highly popular methods like MissForest, KNN, SVD, or MLE have poor performances with respect
to other less popular yet old methods like TrKNN or ImpSec. Moreover, both msImpute methods
(one of the most recent methods, published in April 2023) are very efficient, yet not as much as
indicated in their seminal paper [Hediyeh-zadeh23]. The reason is twofold: First, although well
ranked in terms of global AUCPR, which concurs with the published results, they are outperformed
by many other methods in the low FDP region (for example, SeqKNN exhibits a better PR tradeoff
at low FDP than both on Figure 3.1 A and C.) Second, they cannot impute missing values if less
than 4 quantitative values are observed, so that the performances drop on datasets with fewer
samples, like Cox2014 (more detailed explanations in subsection 3.6.3). Conversely, Pirat clearly
outperforms other methods on this dataset, which shows it can safely be applied in context of
scarce samples. Most importantly, the lack of stability of other methods with respect to Pirat is
worthwhile: Across the 3 datasets, the top scoring methods vary, first because the differences
being sometimes marginal, the ranking is sensitive to random fluctuations; but also because of the
changes in the MCAR/MNAR proportion. On Bouyssie2020, the MAR/MCAR oriented methods,
such as msImpute_mar, ImpSeq, BPCA, and SeqKNN perform best, whereas on Cox2014 and
Huang2020 some MNAR oriented methods (like trKNN, msImpute_mnar, MinProb, and QRILC)
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display the best performances. Overall, only Pirat remains in the top 3 for all datasets, and it does
so with the first rank. Such performances are achievable only because Pirat automatically estimates
the missingness mechanism underlying each dataset (see section 3.6.1). In a context where the
MCAR/MNAR proportion is often unknown, it is of the utmost importance to have imputation
algorithms which are resilient to the nature of missing values, so that a single method can be applied
regardless of the data.

3.4.3 Pirat’s performances are more stable with respect to MNAR ratio

Although Pirat displays the highest performances in an end-to-end task like biomarker discovery, a
detailed analysis of its strengths and weaknesses is of interest to better outline its application scope.
To do so, we hereafter refine the evaluations of Pirat by means of mask-and-impute experiments
(i.e., missing values are artificially added in real datasets, so that it is possible to measure the
difference between the masked values and their imputed counterparts). To provide a baseline to
the evaluations, we compare to the best ranked methods according to the previous experiments.
However, we were not able to include msImpute_mnar, msImpute_mar, and trKNN despite their
relatively good performances, because of their restriction on the number of observed values (see
Section 3.6.3). Therefore, the subsequent evaluations compare Pirat with ImpSec (ranked 2 on the
MAR dataset Bouyssie2020), SeqKNN (3 times in the top 10), QRILC, MinProb, and BPCA (1
time in the Top 5 and in the Top 10). Like Pirat, they can handle peptides with at least two observed
values, while constituting reference methods for the MCAR (ImpSec, SeqKNN, and BPCA) and
MNAR (QRILC and MinProb) scenarios.

In this experiment, we rely on datasets from two other LC-MS/MS proteomic analyses, detailed
in subsection 3.6.2. The first one (Capizzi2022 [Capizzi22]) is composed of 10 samples processed
at the peptide level (16% of MVs). The second one (Vilallongue2022 [Vilallongue22]) contains
8 samples processed at the precursor level (14% of MVs). For both datasets, we only consider
the subset of peptides or precursors with no missing value, to which we introduce artificial MVs
at a rate equal to that of the original dataset. Finally, we filter out peptides or precursors with
one or zero remaining observed values. These artificial MVs are a mix of MCARs and MNARs,
where the former ones are generated according to a Probit mechanism [Miao16], as described in
Section 3.6.5. Then, we impute the missing values using the algorithms to benchmark and compute
their associated Root Mean Square Error and Mean Absolute Error (RMSE and MAE, see Section
3.6.5). We repeat this operation for different MNAR proportions (0%, 25%, 50%, 75%, and 100%)
and seeds, leading to the curves of Figure 3.2. We do not display QRILC and MinProb results in
Figure 3.2 as their MAE and RMSE is 3 to 4 times higher than that of other methods (full plots
available in Sup. Mat. Figure 3.6). For those methods, the difference of performances between
mask-and-impute and differential analysis is striking although easily explainable: these MNAR-
devoted methods are highly biased towards low abundances and work in a univariate setting (i.e.,
apart from the knowledge of a ill-defined instrumental limit, no information is used), thus resulting
in poor quantitative predictions. Yet, such erroneous predictions may not hinder differential analysis
when the low abundance bias is biologically relevant: for example, when a protein is not expressed
in a phenotype, imputing its peptides with excessively low values is sometimes harmless.

All the other reference methods tested (PBCA, ImpSeq, and SeqKNN) have similar trends in
terms of RMSE and MAE: As MCAR-devoted methods, the associated RMSE and MAE increase
with the MNAR proportion (as opposed to QRILC and MinProb, see Sup. Mat. Figure 3.6).
Although these three methods are broadly equally performing, ImpSec seems slightly but con-
sistently more accurate, regardless of the MNAR ratio. As for Pirat, even if it is outperformed
on Vilallongue2022 in scenarios with a majority of MCAR values, its performances are closer
to the top MCAR methods than to MNAR ones on MCAR values. As for the MNARs, it clearly
outperforms any other methods. Finally, over the entire range of MNAR/MCAR ratio, Pirat has
more stable and more accurate MAE and RMSE trends.
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Figure 3.2: Average RMSE (top) and MAE (bottom) of best imputation methods (according to
the previous results) in function of the proportion of MNAR values on Capizzi2022 (left) and
Vilallongue2022 (right). The imputation level (peptide or precursor), the type of acquisition (DIA
or DDA), and the total number of replicates (n) are indicated in the subplot titles. The errors
averaged over 5 different seeds and margins correspond to standard deviations.

Although a no-MNAR (or full-MCAR) scenario is not realistic in LC-MS/MS analyses, com-
paring the associated errors (MAE or RMSE) sheds an interesting light on Pirat’s behaviour. When
there are few to no MNAR values, the left-censoring model of Pirat loses its interest. In this
case, the model boils down to a multivariate abundance one: the estimation can only leverage
the correlations between sibling peptides. Conversely, BPCA, SeqKNN, and ImpSeq can lever-
age the entire feature-wise or sample-wise dependency structure. Hence, the performances on
MCARs seem directly related to the magnitude of the within-PG correlations (in the worst case
of completely uncorrelated peptides, Pirat would amount to a univariate mean imputation, with
likely poor performances). To verify this, we have developed a graphical tool (see Sup. Mat. 3.7.4),
which helps assessing the within-PG correlations. Using it on Capizzi2022 and Vilallongue2022
is insightful to understand the difference of performances: With good within-PG correlations, it
is not surprising that Pirat performs excellently on Capizzi2022, even with small MNAR ratios.
Conversely, with mediocre correlations, Vilallongue2022 is naturally more challenging for Pirat.
Pushing the logic further, we evaluated Pirat on a dataset with within-PG correlations hardly larger
than between-PG ones (see Sup. Mat. 3.7.4). Without surprise, on this dataset, Pirat is competitive
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only in the 100% MNAR scenario. Estimating the precise MNAR ratio of real datasets has always
been challenging [Giai Gianetto20, Lazar16]. Even though the amount of MNARs is generally
assumed to be significant, we recommend Pirat users to visually assess the within-PG correlations
using the tool of Sup. Mat. 3.7.4 as to check whether it will exploit a sufficient amount of common
information to correctly impute the few MARs of the dataset. In case both the correlations and
the MNAR ratio are anticipated to be low, it might be wiser to prefer a classical algorithm of
the state-of-the-art, like for instance ImpSeq. This should notably be the case for peptidomics,
top-down, or metabolomics experiments where enzymatic digestion is not used, de facto leading to
the absence of PGs and thus of within-PG correlations. However, in classical bottom-up proteomics
experiments, visualizing no differences between within-PG and random correlations (as in Sup.
Mat. 3.7.4) should raise awareness about the quality of the data. Indeed, low within-PG correlations
implies that the siblings peptides have possibly different quantitative trends across samples, so
that the subsequent protein roll-up will be hazardous, regardless of the imputation quality. Before
imputation, it seems important in those cases to question the data acquisition than to opt for an
algorithm that does not account for within-PG correlations. Conversely, for datasets where high
within-PG correlations are verified using our graphical tool or where classical amounts of MNAR
values are anticipated, Pirat will provide unmatched imputation quality.

Finally, Pirat’s requirement for solid within-PGs correlations unveils a possible weakness:
Weakly-covered proteins (e.g., proteins for which too few peptides are available, which occur in all
proteomic experiments) may not be correctly imputed, as no correlation can be leveraged. To assess
the performances of Pirat in those situations, we have also considered a degenerated version of
Pirat (referred to as Pirat-Degenerated on Figure 3.2), which processes peptides in a univariate way
(i.e., as if all PGs were of size 1). Then, Pirat essentially boils down to an imputation by a shifted
mean (where the shift depends on the estimated γ1 parameter, see section 3.6.1). As expected, the
imputation performances decrease significantly compared to Pirat: Although the trend is similar to
that of Pirat thanks to the censorship model, the broadly constant gap between them confirms the
importance of leveraging correlations to boost the imputation performances, while highlighting the
risk of lower-quality imputation for weakly-covered proteins.

3.4.4 Improving peptide imputation for proteins with low coverage

We now evaluate various options to best process the peptides of weakly covered proteins. Precisely,
we focus on PGs of size 1 (i.e., proteins for which only a single MS evidence is available), thus the
most difficult situation for Pirat. We refer to these PGs as singleton PGs. As borderline cases, there
is no unique satisfactory way to process them: we therefore propose three possible approaches,
among which the experimental context (rather than the purely numerical performances) should
help choosing. The first one is to adopt a quantitative version of the two-peptide rule often used
at peptide identification [Munteanu18], which would lead to filter out singleton PGs with missing
values. The second one is to leverage sample-wise correlations for imputation, with a similar
logic as other algorithms (e.g., like ImpSeq or BPCA). The third one is to rely on complementary
transcriptomic analyses, opening the path to a multi-omic view on imputation.

To evaluate these approaches, we rely on two datasets involving both label-free proteomics and
transcriptomics: Ropers2021 [Ropers21] and Habowski2020 [Habowski20]. Ropers et al. studied
the effect of a synthetic growth switch on E. coli by performing paired proteomic and transcriptomic
analyses of a wild-type and mutated strain at respectively 2 and 4 timepoints, thus resulting in 6
conditions (3 replicates each). In the mutated strain, protein and mRNA expressions are expected
to decrease over time at different rate due to the differences of half-life of mRNA and proteins. As
such, the samples have similar compositions leading to a relatively low MV rate at precursor-level
(about 15%,) and we expect the transcriptomic-proteomic correlations to be exploitable thanks to
the paired design.

In contrast, Habowski2020 results from unpaired transcriptomic and proteomic analyses of
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six types of mouse colon cells (3 replicates each for the proteomic experiments and 2 to 5 for
the transcriptomic ones). Each condition being a different cell type, the sample composition in
proteins varies dramatically between the different conditions. This results in an important amount
of precursor-level MVs (which reaches 50%) with values missing on an entire condition (a.k.a.
MEC [Wieczorek19]). Note that, compared to Ropers2021, this second dataset is crucial to (1)
measure the possible negative impact of uncorrelated transcriptomic data in a multi-omic imputation
approach; (2) assess the importance of within-PG correlations to correctly impute poorly observed
peptides, containing mostly MNARs (notably MECs). See section 3.6.2 for more details on both
datasets.

To evaluate the performance of these three approaches, we rely on a mask-and-impute experi-
ment similar to the previous one, with the additional goal to perturbate the true distribution of MVs
the least amount possible. For this reason, we use the entire set of precursors (instead of using
precursors with no MVs) and we add only a small amount of MVs (1% of the total number of true
MVs in each dataset). This results in a few values that can be used to assess the performance of the
approaches. We thus consider only the two extreme scenarios: 0% and 100% MNARs (respectively
named MCAR and MNAR scenarios in the following experiments) and repeat this process ten
times to assess the overall distribution of errors in each scenario.

Quantitative two-peptide rule

Even though it is technically possible, one should wonder whether it is reasonable to impute
missing values for singleton PGs. First, protein abundances for those PGs will directly result from
imputation. Consequently, the quality of the imputation will weight a lot in downstream analysis
(e.g., differential analysis for biomarker discovery). Second, we cannot exploit the peptide-wise
covariances for imputation, and thus suspect deterioration of the imputation for singleton PGs. To
confirm this, we compare the median imputation error on singleton PGs with the error of PGs of
size greater than two in the MNAR and MCAR settings. Results from this experiment (Figure 3.3,
Sup. Mat. Figure 3.9) show that in most cases MVs from singleton PGs are indeed harder to impute
than for all other PGs. Akin to the two-peptide rule in protein identification, a simple but effective
strategy is to filter out singleton PGs that require missing value imputation to avoid errors in the
imputation step to excessively affect downstream analysis. We call this strategy the quantitative
two-peptide rule or simply the two-peptide rule.

Looking more closely at Figure 3.3, the results of Habowski2020 in the MNAR setting are
intriguing: we do not observe that the pseudo-MNAR values in this dataset are harder to impute on
singleton PGs than on other PGs. A plausible explanation is that the pseudo-MVs of non-singleton
peptides (which we compute the error on) in this setting are located on peptides containing mostly
MVs. To confirm this, we show in Sup. Mat. Figure 3.10 (A, B, C, D) the histograms of the
number of MVs contained in non-singleton-peptides carrying pseudo-MVs. We see that histogram
A, representing Habowski2020 MNARs, has a clearly different trend from other scenarios: It is
the only situation where pseudo-MVs are, for the vast majority, carried by very scarce peptides
containing mostly MECs. Hence, correlations estimated by Pirat are uninformative as they are based
on very few values coming from other conditions, which concurs with the drop of performances
over non-singleton PGs with respect to singleton PGs in the MNAR setting.

Despite its unquestionable statistical cautiousness, the two-peptide rule approach is sometimes
unsatisfactory. Beyond the case of Habowski2020 illustrated above, consider the rather frequent
scenario of a confidently identified protein-specific peptide. In such cases, observing distinct
observation/missingness patterns hints towards a promising putative biomarker, and consequently,
the proposed quantitative version of the two-peptide rule is too stringent. To cope with this, we
propose an alternative approach that leverages sample-wise correlations.
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Figure 3.3: Boxplots of the distributions of the differences (denoted as ∆AE ) between (i) the absolute
errors in singleton PGs and (ii) the median of the absolute errors in all other PGs, after Pirat
imputation, for a given dataset (Habowski202 or Ropers2021) and MNAR / MCAR scenario. Hence,
for a given dataset and MNAR setting, the part of the boxplot that is above zero corresponds to
absolute errors that are greater than the median of absolute errors for non-singleton PGs.

Sample-wise correlations

Pirat is based on the assumption the samples are independently distributed, see section 3.6.1. Yet,
other algorithms like ImpSec [Verboven07] assume differently and leverage dependencies between
samples. This suggests the following ad-hoc strategy: First, impute all non-singleton PGs using
Pirat; second, extract sample-wise covariance matrix of the completed data; third, use this matrix
to impute the remaining MVs in singleton PGs (more details in section 3.6.1). We refer to this
extension as Pirat-S (sample-wise correlation).

Figure 3.4 shows, among others, the absolute errors of Pirat and Pirat-S. Clearly, Pirat-S
improves upon Pirat in the MCAR setting for both datasets. This is not surprising: Pirat-S is
conceptually close to ImpSeq, which has demonstrated excellent performances on MCARs (see
subsection 3.4.3). The improvement is more nuanced in the MNAR setting. Specifically, it seems
to deteriorate the performances on Habowski2020, for the same reason as exhibited with the
quantitative two-peptide rule, but on singleton peptides: As pseudo-MNAR MVs are mostly carried
by empty peptides (see histograms E, F, G and H of Sup. Mat. Figure 3.10), too few values are left
to derive informative correlations, notably when they do not originate from the same sample (as
with MECs). Although Pirat-S seems to be a safe choice in all other cases, medium-only imputation
performances on MNARs with MEC (or similar) patterns reveal a limit of this approach. Indeed,
such patterns often result from proteins either absent or too close to the quantitation limit to be
consistently measured, so that improving their imputation would de facto amount to extending
the quantitation range of MS-proteomics. This is why, we propose a third alternative leveraging
transcript/protein correlations.
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Figure 3.4: Boxplot of absolute errors for singleton PGs in A - Habowski202 and B - Ropers2021
datasets of Pirat, Pirat-S and Pirat-T.

Integrating transcriptomic information

The transcriptome-informed version of Pirat is termed Pirat-T and works as follows: For a given
singleton PG, it simply concatenates the transcript abundance vector(s) to the peptide or precursor
ones (more details are given in section 3.6.1). Intuitively, the performance increment is expected
to depend on the correlations between peptides and transcripts abundances. This is verified
on Figure 3.4: the distribution error is shifted downwards on Ropers2021, where proteomic and
transcriptomic samples are paired. On the contrary, the differences seem marginal on Habowski2020,
where samples are not paired, thus making the transcriptomic patterns hardly exploitable on the
proteomic data. Importantly, although transcriptomics is not helpful in this case, it does not
deteriorate the performances either. This indicates that even in case a researcher wonders about the
transcriptomic data quality or about their correlations with proteomics, it is not riskier to incorporate
them for downstream imputation: Pirat-T robustly integrates transcriptomic data for imputation,
without over interpreting mRNA variations. When comparing Pirat-S and Pirat-T, it appears the
latter do not outperform the former, indicating that in general, sample-wise correlations can be more
robustly leveraged than transcriptomic-proteomic ones (see [Fortelny17] for a discussion related
to this topic). Although disappointing from a multi-omics integration perspective, this conclusion
suffers one noteworthy exception: Habowski2020 on the MNAR setting, and despite the lack of
paired design. Following the same logic as before, we conclude that Pirat-T is instrumental for
datasets with MECs, as frequently observed when comparing different tissues. As a matter of fact,
this confirms the intuition that complementary omic studies can be effective sources of information
to explore more safely the proteome beyond the quantitation limit of mass spectrometry.
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3.5 Conclusions

In this work, we show that Pirat outperforms previously published imputation methods across
various experimental settings. On datasets endowed with differential abundance ground truth labels
but with different missingness patterns and replicate numbers, Pirat consistently achieves the best
PR trade-off (notably at low false discovery proportion), whereas other competitive methods display
less stable and less accurate performances. Likewise, on mask-and-impute experiments, Pirat
exhibits lower imputation errors (whatever the metrics, be it RMSE or MAE) for all scenarios with
a majority of MNARs. As for the other hardly realistic scenarios with no to few missing values
resulting from the instrument censorship, the performances are more variable, yet close to the best
ones in the worst cases.

The only weakness our experiments have uncovered relates to Pirat’s sensivity to the correlation
structure, which has led us to provide the users’ community with a diagnosis tool. More specifically,
Pirat performances vary with the correlation level amongst sibling peptides. Even though “discor-
dant" peptides among siblings are likely to be observed as a result of unknown post-translational
modifications or of poorly quantified peptides [Dermit21], they should be too scarce to affect the
correlation distribution. Therefore, too low correlations should raise the experimenter’s awareness
about the biochemical consistency of the assay. The above case suffers one exception, peptides
without siblings (i.e., in singleton PGs), for which the difficulty to impute using Pirat does not
relate to the experiment quality. To process them, we propose three alternatives to the original
approach: (i) the quantitative two-peptide rule, i.e., discarding proteins with a single not fully
quantified peptide (ii) If transcriptomic data is available, using Pirat-T can be insightful when
correlations between peptide and transcript levels are anticipated (notably with paired assays),
while it will at least not impair imputation otherwise. (iii) If transcriptomic is not available or
not relevant for the proteomic study, sample-wise correlations can be leveraged using Pirat-S.
However, this requires similar sample compositions to avoid power loss. With this regard, we
draw attention to the marginal differences of global performances between Pirat, its two-peptide
rule extension, Pirat-T, and Pirat-S: Once averaged on an entire dataset, the imputation error on
singleton PGs alone does not weight as much as the experimental design to drive the imputation
strategy. We therefore encourage Pirat’s users to question their need with respect to proteins with
low coverage before opting which strategy to use. Lastly, our experiments have reported Pirat’s
excellent performances on peptide- and precursor-level datasets, thus ensuring its safe use in both
cases. These results unfortunately do not allow us to formulate an educated opinion about which
level is most appropriate to impute. Closing this debate would require testing the two approaches
with a metric authorizing their comparison.

Considering its performances, we believe future research in proteomics imputation will advan-
tageously leverage Pirat’s paradigms. Let us recall them: (i) the estimation of a global missingness
mechanism inferred from the data; (ii) an explicit modeling of the biochemical dependencies that are
known to result from the analytical pipeline; (iii) the possibility to include other omic measurements
that are expected to correlate to the proteomic ones. Pushing further the developments in either
of these three trends may require a different mathematical backbone than that of Pirat (i.e., not
necessarily involving the penalized likelihood model of Equation 3.4), however, multiple paths are
promising: regarding the missingness mechanism, a natural parameter estimator reads as the maxi-
mum likelihood estimate (MLE) over all the PGs. However, it requires replacing the optimization
procedure described in section 3.6.1 by a joint MLE, which memory and computation cost would
be prohibitive. Fortunately, as Pirat processes each PG independently, it is highly parallelizable
if acceleration is needed. Also, other missingness patterns like Probit or Logit [Li23] can fit the
data, but before investigating them, some guarantees are necessary about their log-likelihood (or
any lower bound, see section 3.6.1) being tractable and differentiable. From a biolgical standpoint,
databases of known protein-protein interactions (PPI) are a source of supplementary correlation
patterns, and incorporating them can be instrumental, notably for singleton PGs (as to find them
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pseudo-siblings capable of guiding the imputation). Likewise, known biologically or analytically
relevant interactions can also be encoded in the prior of the covariance matrix Σ. For example, the
correlations between protein-specific sibling peptides are expected to be larger than those involving
either shared peptides, transcripts or PPI, so that it would make sense to adapt accordingly the
scaling matrix prior described in section 3.6.1. Finally, Pirat proposes to incorporate transcriptomic
data, but other high-throughput technologies provide access to gene-wise or PG-wise quantitative
information, which integration into Pirat follows the same logic (broadly speaking, one just ap-
pends the quantitative vectors of the various omics into a single matrix). Therefore, Pirat naturally
opens the path to more elaborated integrative multi-omic methods to futher tackle the challenge of
proteomic data imputation.

3.6 Method

3.6.1 Pirat algorithm

Notations

Before diving into the description of the Pirat algorithm, let us introduce some notations.

• X : a complete matrix of peptide log2 abundances, with rows referring to samples and columns
to peptides, of size n× p.

• Xi, j: the abundance value in X of i-th row (sample i) and j-th column (peptide j); when i
(respectively, j) is replaced by “.”, one refers to the to j-th column of X (respectively, the
i-th column of X): X., j thus depicts the peptide vector (respectively, Xi,. depicts the sample
vector).

• M: an indicator matrix of the same size as X , reflecting whether an abundance value is
missing or not. The same indexing notations as of X applies to M (Mi, j, M., j, Mi,.).

• Mi, j: missingness indicator of abundance value of j-th peptide in i-th sample (1 if missing, 0
otherwise).

• Xobs,Mobs (resp. Xmis,Mmis): all values of X and M corresponding to observed (resp. missing)
abundance values.

• x, m, etc.: We use uppercase letters (e.g., Xi, j and Mi, j) when considering random variables
and lowercase ones (e.g., xi, j and mi, j) when considering their realisations.

• {i,obs} (resp. {i,mis}): for a given sample i, set of (i, j) pairs such that xi, j is observed
(resp. missing). For clarity, brackets are removed when using this notation as subscript.

• µ: the vector of the theoretical mean abundance of the p peptides.

• Σ: the covariance matrix of the peptide’s abundances, of size p× p. The same indexing
notation as for matrices X and M (Σ j, j′ indicates the covariance between peptides j and j′).

• Γ: the set of parameters defining the missingness mechanism (see definition in Section 3.6.1).

• I denotes the identity matrix.
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Creating peptide groups

We define peptide groups or precursor groups (PGs) according to protein belonging. It is usually
assumed that sibling peptides and precursors will quantitatively behave similarly across treatment
groups/biological conditions, even though the presence of isoforms, post-translational modifications,
or miscleavage can impact these correlations [Dermit21]. Peptides from nested proteins form a
unique PG and we duplicate peptides that are shared between PGs. We impute MVs in each PG
separately and the multiple imputations obtained for shared peptides are averaged. For sake of
readability, peptides or precursors are hereafter simply referred to as peptides, as PGs are processed
similarly in both cases.

Model’s assumptions

Our model relies on the following four main assumptions regarding the whole peptide dataset (here,
X and M refer to all the peptides of all the PGs of the dataset):

1. The Xi,. are i.i.d. and normally distributed with parameters µ and Σ.

2. The missingness mechanism is self-masked for all peptides [Sportisse20], (i.e., the probability
of an abundance value being missing, knowing the entire sample’s abundances, only depends
on the abundance itself):

P(Mi, j = 1|Xi,.) = P(Mi, j = 1|Xi, j) ∀i, j (3.2)

3. The missingness responses for each peptide of a sample are independent conditionally to
their abundance [Sportisse20]:

4. The missingness mechanism can be written as [Chen14] :

P(Mi, j = 1|xi, j,Γ) = min(1,exp(−γ0 − γ1xi, j)), where Γ = {γ0,γ1} with γ1 ≥ 0; (3.3)

We assume here that there is a minimum detection threshold −γ0/γ1 below which no peptide
can be quantified, and that the probability for a peptide to be missing exponentially decays
with log-intensity.

These assumptions ensure identifiability of µ , Σ, and Γ parameters in univariate and multivariate
cases, as demonstrated in [Sportisse20, Miao16].

Estimation of the missingness parameters

The set of parameters Γ over the whole peptide dataset is estimated as follows:

1. Sort the peptides by their observable mean, and denote by αi the mean of the i-th peptide i in
the ordered vector α;

2. For i = ⌈ k+1
2 ⌉, . . . , p+1−⌊ k+1

2 ⌋ (where ⌈.⌉ and ⌊.⌋ denotes the upper and lower rounding),
compute the rolling average of the missingness percentage yi over the ordered peptides, with
a window of size k; which leads to p− k+1 points (αi,yi);

3. Fit a linear model on the points (αi,yi) by ordinary least squares, and set the parameters of
the missingness mechanisms 3.3 as the coefficients obtained.

At k = 10, we observe a clear and smooth decreasing trend log(y) with respect to α on two real
datasets (Habowski2020 and Ropers2021) and a satisfying R2 (representing goodness of fit, see
Sup. Mat. Figure 3.11). This value is thus used in all experiments. The parameters γ0 and γ1 are
hereafter considered fixed and known.
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Penalized likelihood model

Considering the missingness parameters Γ known, we now propose to maximize the joint log-
likelihood L of the observed values and of the missingness response (following Rubin’s selection
model [Little19]) with respect to the Gaussian parameters µ and Σ, iteratively for each PG:

(µ̂, Σ̂) = argmax
µ,Σ

L (µ,Σ|Xobs,M,Γ)+QK,λ (Σ), (3.4)

where X and M hereafter refer to the abundance matrix and missingness response of a single PG,
and where QK,λ (Σ) is a penalty term on Σ with hyperparameters K and λ (see Section 3.6.1), as
proposed in [Chen14]. Hence, maximizing this penalized log-likelihood amounts to maximizing
the posterior distribution of parameters µ , Σ, and Γ. Considering previous assumptions, the
log-likelihood of the selection model decomposes as:

L (µ,Σ|Xobs,M,Γ) = logP(Xobs|µ,Σ)+ logP(Mobs|Xobs,Γ)+ logEXmis|Xobs,µ,Γ [P(Mmis|Xmis,Γ)]

(3.5)

= logP(Xobs|µ,Σ)+ logP(Mobs|Xobs,Γ)

+
n

∑
i

logEXi,mis|Xi,obs,µ,Σ

[
∏

j∈{i,mis}
P(Mi, j = 1|Xi, j,Γ)

]
.

Penalty over Σ

We estimate Σ and µ for each PG independently by optimizing Equation 3.4. Therefore, the penalty
hyperparameters λ and K must be tuned automatically (as many times as PGs). To do so, we rely
on a Bayesian interpretation of the penalty term QK,λ (Σ): it can be viewed as an inverse Wishart
prior of the covariance matrix Σ. This penalty can be rewritten as:

QK,λ (Σ) =
1
2

2K log(|Σ|)+ 1
2

tr(2λ IΣ
−1) (3.6)

= log[pW −1(2K−p−1,2λ I)(Σ)]+C ,

where pW −1(2K−p−1,2λ I) denotes the density of an inverse Wishart distribution with parameters
(2K − p−1,2λ I), and where C is constant with respect to Σ. Hence, K is related to the number of
degrees of freedom in Σ estimate, and λ is related to the scaling matrix 2λ I.

This leads us to empirically estimate the hyperparameters of each PG from the set of all fully
observed peptides by relying on the empirical Bayes framework [Efron72] where we leverage
that, in the univariate case, the inverse Wishart distribution boils down the inverse-gamma one.
Specifically, we compute their empirical variance and estimate the parameters of an inverse-gamma
distribution (denoted α and β ) through an MLE. Finally, by setting K = α + p and λ = β , the
marginal prior distribution of each diagonal element of Σ (the variance of each peptide) is an inverse-
gamma with parameters (α,β ). Hence, the peptide’s variances have the same prior distribution
among all PGs (this property is instrumental as before looking at any data, one would not expect the
variance of a peptide to depend on the PG it belongs to). Without relaxing this property, we increase
α by a factor 2 to better constrain the estimation of the covariance matrix (following [Chen14],
which showed in various scenarios that increasing K improves the estimation of Σ).

Deriving a lower-bound of the penalized log-likelihood to estimate µ and Σ

A main issue regarding the estimation of µ and Σ by maximizing Equation 3.5, is that the expectation
from the log-likelihood is not analytically tractable for any missingness mechanism. To compute it,
Chen et al [Chen14] approximated Equation 3.3 as:

P(mi, j = 1|xi, j,Γ) = exp(−γ0 − γ1xi, j) (3.7)
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and set any observed value below −γ0/γ1 as missing. We claim that this approximation makes
the log-likelihood unbounded, and hinders convergence in some cases, according to the following
results. Indeed, using this approximation, we have (see [Chen14], Supp. Mat. Appendix D)
∀i ∈ {1, ...,n}:

EXi,mis|Xi,obs,µ,Σ[P(Mi,mis|Xi,mis,Γ)] = exp(−γ0|{i,mis}|− γ11T
µ̃i +1/2·γ2

1 1T
Σ̃i1) , (3.8)

where µ̃i, Σ̃i are the parameters of the normal distribution Xi,mis|Xi,obs. The above quantity diverges
towards +∞ if any coefficient of Σ̃i tends towards +∞, which is not consistent with the definition
of a probability distribution.

However, using Jensen’s inequality, and the original missingness mechanism from Equation 3.3,
we can derive a tractable and differentiable lower bound of the likelihood that can be optimized.
Concretely, to estimate µ and Σ for a given PG, we propose to maximize the following lower bound,
∀i ∈ {1, ...,n}:

logEXi,mis|Xi,obs,µ,Σ[P(Mi,mis|Xi,mis,Γ)]≥ EXi,mis|Xi,obs,µ,Σ

[
∑

j∈{i,mis}
logP(mi, j = 1|xi, j,Γ)

]
≥ ∑

j∈{i,mis}
EXi, j|Xi,obs,µ,Σ

[
logP(mi, j = 1|xi, j,Γ)

]
. (3.9)

Let Wi ∼ Xi,mis|Xi,obs,µ,Σ ∼ N (µ̃i, Σ̃i), let wi be the realisation of Wi, and let nmis
i be the

number of missing values in the i-th sample. Using the parametric model from Equation 3.3,
∀ j ∈ {i,mis}:

EXi, j|Xi,obs,µ,Σ

[
logP(mi, j = 1|xi, j,Γ)

]
=

∫ +∞

− γ0
γ1

(−γ0 − γ1wi, j)φ(wi, j|µ̃i, j, σ̃i, j)dwi, j (3.10)

=−γ0

(
1−Φ

(
−γ0

γ1

∣∣∣µ̃i, j, σ̃i, j

))
− γ1

∫ +∞

− γ0
γ1

wi, jφ(wi, j|µ̃i, j, σ̃i, j)dwi, j ,

where φ( · |µ,σ) (resp. Φ( · |µ,σ)) denotes the (resp. cumulative) distribution function of a normal
distribution with parameters µ,σ . Then, using properties of truncated normal distribution, we have:

EXi, j|Xi,obs,µ,Σ

[
logP(mi, j = 1|xi, j,Γ)

]
=−

(
1−Φ

(
−γ0

γ1

∣∣∣µ̃i, j, σ̃i, j

))
×
(

γ0 + γ1E
[
Wi, j

∣∣∣Wi, j ≥−γ0

γ1

])
(3.11)

=−
(

1−Φ

(
−γ0

γ1

∣∣∣µ̃i, j, σ̃i, j

))
(γ0 + γ1µ̃i, j)

− γ1σ̃
2
i, jφ

(
−γ0

γ1

∣∣∣µ̃i, j, σ̃i, j

)
.

The expression of Equation 3.12 is differentiable with respect to parameters µ̃i, j, σ̃i, j. These two
are the parameters of the conditional distribution of Xi, j with respect to Xi,obs. They are obtained
by the linear combination of µ and the Schur complement of the covariance matrix of observed
values in i-th sample. Schur complement is differentiable with respect to Σ so that µ̃i, j and σ̃i, j

are differentiable with respect to Σ and µ . Hence, we can use any automatic differentiation tool,
combined with optimization algorithm, to maximize the following lower bound of Equation 3.4:

L̃ (µ,Σ, |Xobs,M,Γ) = logP(Xobs|µ,Σ)+ logP(Mobs|Xobs,Γ)+ (3.12)
n

∑
i

∑
j∈{i,mis}

EXi, j|Xi,obs,µ,Σ

[
logP(mi, j = 1|Xi, j,Γ)

]
+QK,λ .
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Specifically, we use L-BFGS (a quasi-newton method) combined with Armijo backtracking
line-search, implemented with Pytorch [Shi21].

To ensure Σ positive-definiteness during the optimization process, we re-parametrize Σ by its
log-Cholesky factorization [Pinheiro96]. Finally, to avoid ill-conditioned matrix that could cause
numerical instabilities, we apply Tikhonov regularization method and subsequently add a fixed
value εΣ = 10−4 to the diagonal of Σ. Doing so does not impact on the optimum solution, as the
minimum variance observed in all the datasets processed so far has been ≥ 10−3.

Imputation

Once all parameters µ , Σ, and Γ are estimated, we impute missing values by their conditional mean.
To do so, we use the following result [Chen14]:

EXi,mis|Xi,obs,Mi,.,µ,Σ,Γ[Xi,mis] =
EXi,mis|Xi,obs,µ,Σ[P(Mi,mis|Xi,mis,Γ)Xi,mis]

EXi,mis|Xi,obs,µ,Σ[P(Mi,mis|Xi,mis,Γ)]
(3.13)

The distribution on which the left expectation is computed is not accessible, however, the distribu-
tions of the right expectations are Gaussian. Hence, we use Monte-Carlo integration to estimate
them and compute the conditional mean of Xi,mis. Note that, using the same approach, the order 2
moment of Xi,mis can be computed by simply squaring it in the above equation, which gives access
the variance of Xi,mis.

Sample wise correlation to impute PGs singleton

We propose in Pirat-S to leverage sample-wise correlations to impute peptides of singleton PGs. To
do so, we first estimate missingness parameters Γ and hyperparameters K and λ on the whole dataset
and impute only PGs of size > 1 with the classical version of Pirat, described above. Second, we
compute the empirical sample mean and sample-wise covariance matrix of the transposed imputed
part of the dataset. Finally, we impute the remaining MVs by their conditional mean with respect to
observed values, only using the observed values and the empirical sample mean and covariance
matrix.

Transcriptomic integration

Pirat-T extends Pirat by enabling the integration of transcriptomic quantitative information, when
available, as to guide peptide imputation. To do so, it requires a dataset of log2 mRNA expressions
of samples from the same phenotype(s) as the proteomic ones. However, increments in imputation
performances may require paired transcriptomic and proteomic samples. It also requires a corre-
spondence table between transcripts and PGs, for instance, based on their original gene(s). In this
work, transcriptomics is essentially used to improve singleton PG imputation (see section 3.4.4).
However, Pirat’s methodology is more versatile and the packaged code makes it possible to tune
which PGs are imputed using complementary transcriptomic information, depending on their size.

Concretely, Pirat-T works as follows: for each PG, it integrates all the transcripts (i) for which
non-zero values are measured in at least two conditions, and (ii) which are associated to at least
one of the proteins of the PG. In the case proteomic and transcriptomic samples are paired, the
log-count vectors of the transcripts are simply appended to the PGs. Otherwise, a condition-wise
mean log-count vector is used instead. In fine, each mRNA log-count vector is processed like an
additional (fully observed) peptide, and thus contributes to imputation depending on its correlation
with the sibling peptide(s).

3.6.2 Datasets

To conduct our experiments, we rely on the following publicly available datasets:
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• Cox2014 [Cox14]: a mixture of 48 recombinant human proteins that are available as an
equimolar mixture (UPS1) or mixed at defined ratios spanning 6 orders of magnitude (UPS2)
with respect to UPS1 (10, 1, 10−1, 10−2, 10−3, 10−4). UPS1 and UPS2 are separately
digested and resulting peptides are spiked into a E. coli lysate, resulting in two distinct
experimental conditions. Each condition is analysed four times in data dependent acquisition
(DDA, i.e., a single precursor is iteratively selected for fragmentation and identification by
the mass spectrometer according to its response level in the first MS acquisition), resulting in
four technical replicates per conditions. We use the file peptide.txt available at repository
PXD000279, containing peptide-level abundances.

• Bouyssie2020 [Bouyssié20]: a mixture of UPS1 proteins spiked at different concentrations
in the same yeast lysate. The dataset contains 10 conditions with 4 technical replicates each
(each condition corresponding to a different UPS1 quantity, namely, 0.01-0.05-0.1-0.250-0.5-
1-5-10-25-50 fmol, for 1µg of yeast lysate). Hence, unlike Cox2014, within each condition,
all the UPS proteins are spiked in with identical concentrations. Replicates are analysed
in DDA mode. We use peptide intensities from allsamples_sum.xlsx file available at
repository PXD009815.

• Huang2020 [Huang20b]: the UPS2 mixture spiked in tissue lysates from 25 mouse cerebel-
lum samples. Five conditions (with 5 technical replicates each) are generated from spiked
UPS2 proteins in known and different concentrations (namely 0.75-0.83-1.07-2.04-7.54
amol/µl) into mouse cerebellum samples. The LC-MS/MS runs are acquired by the data
independent method (DIA, i.e, a set of precursors in a given mass to charge range are
iteratively selected for fragmentation and identification, in order to cover the whole MS
acquisition, regardless of the measured intensities). We use the published Spectronaut re-
sults in Spike-in-biol-var-OT-SN-Report.txt available at repository PXD016647, and
imputed MS1 quantification at precursor level.

• Capizzi2022 [Capizzi22]: a study on Huntington’s disease effect on axonal growth in mouse.
Two conditions with 5 biological replicates each are compared using LC-MS/MS in a data
dependent acquisition mode (DDA), representing wild-type vs genetically modified model.
Details of sample preparation can be found in the original article. The accession number for
this dataset is PXD023885. Raw data is processed in the same manner as described in the
original paper to obtain peptide-level quantification table.

• Vilallongue2022 [Vilallongue22]: a study on the influence of injury on visual targets in
mouse. Five different tissue types are analysed by LC-MS/MS in DDA acquisition mode
in independent quantification tables, with each time a control and an injured condition (4
biological replicates each). To test our method, we choose the two tissues that show the
best and worse within-PG peptide correlations among the five (see 3.7.4): respectively, the
suprachiasmatic nucleus tissue (SCN), and the superior colliculus (SC). The details of sample
preparation can be found in the original article. The accession number for this dataset is
PXD029325. Raw data is processed in the same manner as described in original paper to
obtain precursor-level quantification table.

• Habowski2020 [Habowski20]: a study on the differentiation of mouse colon epithelial cells.
Stem cells and 5 differentiated cells are analysed at proteomic and transcriptomic levels in
an unpaired manner. Three biological replicates are used for each cell type in proteomic
analyses. The transcriptome dataset is produced by Illumina paired-end stranded sequencing.
The proteome dataset is produced by LC-MS/MS in DDA acquisition mode.

- Transcriptomic data processing
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We download the raw sequencing data from GEO (GSE143915). Preprocessing and
quality control are performed using the Trimmomatic [Bolger14] and FastQC tools
respectively. Trimmed reads are aligned to the mouse GRCm39 genome assembly
(filename given in Sup. Mat. subsection 3.7.2) by the STAR mapping software (version
2.7.8a) [Dobin13] provided with the Ensembl gene model given in Sup. Mat. sub-
section 3.7.2 for mapping splices. Read counts are generated using HTSeq (version
0.9.1; option -s no) [Anders15]. DESeq2 version 1.22.1 [Love14] is used to generate
normalized counts.

- Proteomic data processing
We download the raw spectra from ProteomeXchange (accession ID: PXD019351).
Peptides and proteins are identified using Mascot (version 2.7.0.1, Matrix Science)
searching the Ensembl protein database for Mus musculus GRCm39 (filename given in
Sup. Mat. subsection 3.7.2) appended with an in-house classical contaminant database.
Mascot search is performed with the following parameters: trypsin/P as enzyme and
two missed cleavages allowed; precursor and fragment mass error tolerances at 10
ppm and 20 ppm, respectively. The following peptide modifications are allowed
during the search: Acetyl (Protein N-term, variable) and Oxidation (M, variable).
The Proline software [Bouyssié20] is used to validate identifications: conservation
of rank 1 peptides, peptide length ≥ 7 amino acids, false discovery rate (FDR) of
peptide-spectrum-match identifications < 1% as calculated by Benjamini-Hochberg
procedure and minimum of 1 specific peptide per identified protein group. Peptide ion
intensities are calculated from extracted mass spectrum intensities of all peptides and
normalized using variance stabilizing transformation with Prostar [Wieczorek17]. A
more detailed description of the parameters used in the quantification step are provided
in Supplementary Table 1.

• Ropers2021 [Ropers21]: a study on growth-arrested and wild type E. coli cells carrying a
plasmid for glycerol production at various time points. A wild type and a modified strain are
analysed in a paired manner at proteomic and transcriptomic levels. The modified strain is
analysed at four different time points, resulting in four different conditions, and two others
from the wild-type on the two first time points. Three biological replicates are made for each
condition. The transcriptome dataset is produced by stranded sequencing on the Ion S5 using
the Ion 540 chip. The proteome dataset is produced using LS-MS/MS in DDA acquisition
model.

- Transcriptomic data processing: Same procedure than for Habowski2020 is applied.
GEO accession number is GSE168336. Trimmed reads are aligned to the reference E.
coli K12 substrain MG1655 genome (Genbank assembly accession: GCA_000005845)
provided with the Ensembl gene model given in Sup. Mat. subsection 3.7.2 for mapping
splices.

- Proteomic data processing:

The same procedure than for Habowski2020 is applied, except for the following:
Raw spectra are downloaded from ProteomeXchange (accession ID: PXD024231).
Peptides and proteins are identified by searching the same Ensembl protein database
used in transcriptomic analysis (for this Ensembl genome assembly of E. coli the
protein identifier is identical to the transcript identifier), appended with an in-house
classical contaminant database, the plasmid pCL1920 protein sequences and the protein
sequences of the GPD1 and GPP2 yeast genes which were cloned into it (Uniprot
accessions: Q00055 and P40106). Carbamidomethyl (C, fixed) peptide modification is
additionaly allowed during search. Peptides with length ≥ 6 amino acids are conserved
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at validation of identifications. A more detailed description of the parameters used in
the quantification step are provided in Supplementary Table 2.

On all datasets, we remove peptides or precursors having strictly less than 2 observations.
Finally, we apply log2 transformation both on peptide or precursor intensities and transcript
normalized counts (when available).

3.6.3 List of competitive methods

To benchmark Pirat, we use 15 state-of-the-art imputation methods, many of which have already
been pinpointed by NAguideR evaluation software [Wang20]: Bayesian Principal Component
Analysis (BPCA) [Oba03] and SVD [Troyanskaya01] parametrized with a number of components
equal to the number of compared conditions in each dataset; GMS [Li20] with 3 fold cross-validation
for the tuning of its inner parameter (termed λ ); K-nearest neighbors (KNN) [Troyanskaya01]
SeqKNN [Kim04], trKNN [Shah17] with the number of neighbors k set to 10; ImpSeq [Verboven07]
and its outlier oriented version ImpSeqRob [Branden09], Local Least Square (LLS) [Kim05],
MinProb [Lazar16], MissForest [Stekhoven12], MLE [Love14], msImpute in MAR and MNAR
versions [Hediyeh-zadeh23], and QRILC [Lazar16] with default parameters. MissForest and LLS
were tested with an input format where peptides are in columns and samples in rows, contrarily
to all other methods. Amongst those methods, the following ones are specifically devoted to low
abundance censored values: MinProb, msImpute_mnar, QRILC, TrKNN.

While most methods require only 2 observed values (sometimes less) per peptide, GMS and
trKNN require at least 3 of them, and both msImpute versions, 4 of them. This is an issue for
two reasons: First, because, on controlled datasets, the biological variability is so small that not
imputing those peptides before testing for differential abundance does not hamper the results, hereby
artificially boosting the feature selection performances with respect to real-life cases. Second,
because observing only two values is common for peptides nearby the detection limit, so that a
concrete assessment on the MNAR imputation error is not possible with these algorithms. This is
why, regardless of their performances on the biomarker selection task (see Section 3.4.2), GMS,
trKNN, msImpute_MNAR, and msImpute_MAR could not be considered in the mask-and-impute
experiments.

Likewise, three remaining state-of-the-art methods could not be included in the benchmark for
various reasons: (i) Penalized Expectation Maximization for Missing Values (PEMM) [Chen14],
which had originally been validated on a simulated dataset with 100 proteins and could not scale up
to an entire real-life peptide/precursor dataset as a result of its prohibitive computational cost; (ii)
The PIMMS methods [Webel23] which are based on deep-learning approaches, and which conse-
quently require large cohorts (more than 50 samples) to be fully efficient; (iii) ProJect [Kong23], a
general purpose omics imputation method which code has not yet been commented, structured and
packaged at the time of our evaluations, so that we could not make it work on the benchmark data.
Finally, few elder methods with previously demonstrated poor performances (e.g., zero imputation,
mean imputation, accelerated failure time [Taylor13] etc.) where not included in the benchmark,
for sake of clear enough plots.

Finally, in our experiments, we did not consider any meta imputation algorithm (post-processor,
like GSimp [Wei18, Wang22], ensemble imputation like IMP4P [Giai Gianetto20], chained impu-
tation like MICE [van Buuren11], etc.), as their performances directly relates to the imputation
algorithm they rely on, and as most of them can be extended to incorporate new input algorithms
like Pirat.

3.6.4 Differential abundance validation

On datasets with known ground-truth about differentially expressed proteins [Cox14, Bouyssié20,
Huang20b], we compare our methods with those described in Section 3.6.3 using the following
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procedure: (i) Impute missing peptide (or precursor) abundance values. (ii) Test the all-mean
equality of each peptide (or precursor) using the one-way ANOVA omnibus test (from R package
stats [R Core Team13]) and retain the resulting p-values. If a peptide cannot be imputed by a given
algorithm (because of too few observed values), the test is performed nonetheless if the number of
observed values allows for it (see [R Core Team13] for details), otherwise we set its p-value to one.
(iii) Display the precision-recall curves for the precision range [90%, 100%] (i.e., low FDP setting)
for each method, and compute the global area under the curve.

3.6.5 Mask-and-impute experiments

To precisely evaluate imputation errors, it has become customary to add pseudo-missing values
with different MCAR/MNAR proportions, and to compute Root Mean Square Error (RMSE) or
Mean Absolute Error (MAE) between imputed and ground-truth values, which read as:

RMSE(X ,X imp) =

√
1
n ∑
(i, j)∈Ipseudo

(Xi, j −X imp
i, j )2 , (3.14)

MAE(X ,X imp) =
1
n ∑
(i, j)∈Ipseudo

|Xi, j −X imp
i, j | (3.15)

where Ipseudo is the set of indices of pseudo-missing values and where X imp is the imputed
matrix. We generate pseudo MNAR values using a Probit left-censoring mechanism, i.e. the
probability for a value x to be missing is 1 - Φ(x|ν ,τ), where the ν and τ are mean and standard
deviation from the Gaussian cumulative distribution function Φ [Miao16]. The overall missing value
rate α and the MNAR/MCAR proportion β are controlled by applying the following procedure
(adapted from [Lazar16]):

1. Set τ = σ/2 where σ is the overall standard deviation of the dataset.

2. For each values of ν ′ on a linear scale between µ−3σ and µ (the overall mean of the dataset),
compute the expected overall rates q of missing values when applying Probit left-censoring
wih parameters ν ′ and τ , and retain these values. In practice we compute 100 points in total.

3. Interpolate points (ν ′,q) obtained.

4. Compute ν associated to βα (the desired overall MNAR rate) with interpolated curve. If αβ

is not in the range of interpolated curve, choose larger scale for ν ′ at step 2.

5. Add MNAR values using Probit left-censoring with parameters ν and τ .

6. Add MCAR values with probability α(1−β )
1−αβ

.

This method ensures that:

• The overall MNAR rate is βα (by construction of interpolated curve of (ν ′,q)).

• The overall MV is rate is α , as

P(x is missing) = P((x is MCAR )∪ (x is MNAR))

= P(x is MCAR)+P(x is MNAR)−P(x is MCAR ∩ x is MNAR)

=
α(1−β )

1−αβ
+βα − βα2(1−β )

1−αβ
= α , (3.16)

where x is an observed abundance value.

Finally, we compare all the methods in our mask-and-impute experiments on the very same
artificially masked datasets.
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3.7 Supplementary Materials

3.7.1 ROC curves
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Figure 3.5: ROC curves from p-values associated to the differential analysis validation on the three
datasets Huang2020, Cox2014 and Bouyssié2020. We show the curves between 100% and 99%
specificity to better differentiate the methods when a stringent selection threshold is applied, which
is often the case when FDR is controlled.

3.7.2 Ensembl Gene models, genome assembly, protein databases

This section refers to the filenames of Ensembl gene model, genome assembly and protein databases
used to build proteomic and transcriptomic datasets of Ropers2021 and Habowski2020 (see subsec-
tion 3.6.2).

Ropers2021

The Ensemble genome assembly used for read alignment in transcriptomic analysis is the following:
GCA_000005845.2.fasta

The Ensemble gene model used for mapping slices in transcriptomic analysis and for peptide
identification in proteomic alignment is the following :

Escherichia_coli_str_k_12_substr_mg1655_gca_000005845.ASM584v2.51.gtf
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Habowski2020

The Ensembl genome assembly used for read alignment in transcriptomic analysis is the following:
Mus_musculus.GRCm39.dna.primary_assembly.fa

The Ensemble gene model used for mapping slices in transcriptomic analysis is the following:
Mus_musculus.GRCm39.104.gtf

The Ensemble protein database used for peptide identification in proteomic analysis is the
following:

Mus_musculus.GRCm39.pep.all.fa

3.7.3 Mean MAE and RMSE for QRILC and MinProb
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Figure 3.6: Average RMSE (top) and MAE (bottom) of MinProb, QRILC, BPCA, ImpSeq, Pirat,
Pirat-Degenerated and SeqKNN in function of the proportion of MNAR values on Capizzi2022 (left)
and Villalongue2022 (right). The imputation level (peptide or precursor), the type of acquisition
(DIA or DDA), and the total number of replicates (n) are also indicated. The average RMSE and
MAE was computed over 5 different seeds, and margins correspond to standard deviation.
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3.7.4 Correlations of peptides in Capizzi2022 and Vilallongue2022
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Figure 3.7: Empirical densities of correlations between peptides chosen randomly and between
sibling peptides, for Capizzi2022 and Vilallongue2022 (SCN tissue).
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Figure 3.8: Empirical densities of correlations between peptides chosen randomly and between
sibling peptides, for Vilallongue2022 (SC tissue), and associated RMSE and MAE vs MNAR
proportion curves for different imputation methods on this dataset, according the experimental
setting from subsection 3.4.3.

We show on Figure 3.7 the empirical densities of correlations between peptides taken randomly in
the dataset, and between siblings, for Capizzi2022 and Vilallongue2022 (the empirical densities
are smooth with a gaussian kernel to enhance interpretation). These can be easily plotted with the
plot_pep_correlations function available in Pirat package. The more the within-PG correlation
distribution is right-shifted with respect to that of random correlations, the more within-PGs
correlations can be leveraged to impute MVs, and the better Pirat’s performances. We observe on
Figure 3.7 that the two distributions differ more in Capizzi2022 than in Vilallongue2022, resulting
in improved RMSE/MAE performances, especially in MCAR setting (see subsection 3.4.3).

We also give a counter-example of a dataset for which within-PG peptide correlations are very
low (the data also come for Vilallongue2022 study, but with a different tissue, referred to as SC)
compared to the random peptide correlations (see Figure 3.8). In this setting, Pirat hardly competes
with other methods in terms of RMSE and MAE, and only outperforms them in 100% MNAR
setting.
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3.7.5 Absolute errors for PGs of size one and others on Habowski2020 and Rop-
ers2021
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Figure 3.9: Boxplot of absolute errors of Pirat on PG of size equal to one and PGs of size superior
to 1 on A - Habowki2020 and B - Ropers2021. Note that in the mask-and-impute experiment,
much more pseudo-MVs comes from PGs of size superior to one than in singleton PGs (sometimes
50 times more), which explains the large difference between the number of outliers between for
different PG size.
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3.7.6 MV distribution in Habowski2020 and Ropers2021 experiments
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Figure 3.10: Histograms counting, for each pseudo-MV, the number of MVs (real or pseudo) in the
same peptide, for Habowski2020 (A, B, E, F) and Ropers2021 (C, D, G, H), in MCAR (A, C, E, G)
and MNAR (B, D, F, H) setting, and over 10 different seeds. We separate histograms for peptides
contained in singleton PG (A, B, C, D) and non-singleton PGs (E, F, G, H). Note that the number
of samples equals 18 in both datasets.
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3.7.7 Fitting of missingness mechanism
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Figure 3.11: Regression of the log-probability of missing onto mean observed abundance following
method described in section 3.6.1, for Habowski2020 and Ropers2021, for k = 1 and k = 10.
Residuals sum of squares (R2) of the linear regression are also displayed.
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General conclusions and perspectives

Summary of contributions

My contributions to the statistical treatment of bottom-up label-free LC-MS/MS proteomics
data lies at two main levels. First, regarding FDR control in LC-MS/MS proteomics, I investigated
the links between empirical methods developed in the proteomics community and theoretical
ones used for various purposes: peptide identification and differential analysis. These theoretical
considerations enabled us to draw recommendations and guidelines regarding future investigation
paths in peptide identification. Second, regarding the MV imputation problem, I developed a
novel imputation algorithm, Pirat, which reaches state-of-the-art results on various validation
tasks. It is also the first imputation method for LC-MS/MS proteomics allowing for quantitative
transcriptomics data integration to help for imputation.

These two research axes both contribute to increasing the peptide coverage and the power of
discovery proteomics analyses, while improving their robustness and reliability.

Perspectives

We give here a few perspectives and possible improvements that are directly related to our
contributions in chapter 2 and chapter 3, and conclude by a more personal view over the domain.

Differential analysis using knockoffs at peptide level

Our work on imputation suggests alternative ways to generate multivariate knockoffs adapted
the high-dimensionality of proteomics data. We concluded in chapter 2 on the original knockoff
multivariate approach being not efficient on an entire proteomic dataset, as the estimator of the
full protein covariance matrix almost shrinks to a diagonal one. However, at peptide level, the
approximation from chapter 3 where within-PG correlations only are considered could be leveraged.
This would avoid complete covariance matrix shrinkage, as only a small proportion of covariance
weights will be non-zero. We can then expect more powerful knockoff variables, as they would
cope for biochemically meaningful dependencies with others, and replicate with greater precision
the covariance structure of the original data.

Improving upon Pirat’s imputation framework

We discussed at the end of our article (section 3.5) few paths of improvement for Pirat. We provide
here additional viewpoints, as we omitted them from the article for the sake of clarity.

First, as depicted on Figure 3.2, Pirat’s performances on mask-and-impute experiments are
usually better when evaluated using MAE instead of RMSE. This suggests that outlying imputed
values decrease the RMSE performances. We noticed that these outliers usually occur when
parameters have not converged yet (in particular, the variance parameters remain excessively high).
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This could be solved using a more stringent stopping criterion. To avoid a computational time
increment on each PG, an adaptive criterion can be sought: For example, requiring that all variances
fall below an upper limit derived from the values observed in the dataset. Alternatively, a norm that
better copes for outlier values (e.g., the infinity norm) could be interesting.

Second, it would be highly valuable to provide an estimate of the uncertainty of the imputed
value. A straightforward way is to compute the variance of the conditional distribution of Xi,mis with
respect to all other variables and parameters. It can easily be obtained by Monte-Carlo method, as
we can reuse Equation 3.13 to compute the order two moment of the distribution. However, we have
observed that this variance estimator has almost no correlation with the actual quadratic errors and is
thus a poor predictor of the uncertainty. We assume that this estimator is in fact strongly influenced
by the hyperparameter penalty (see section 3.6.1). Whereas this penalty is useful to constrain
the estimation and limit aberrant variance values, it may also considerably shrink the variance
estimates, and thus the uncertainty of the prediction. Estimation of peptide variances without the
penalty could be a remedy, although it would cost additional computational resources. Anyway, a
clear advantage of Pirat endowed with such imputation variance estimate, is that we could use it in
subsequent analysis with Rubin’s rules, for example for differential analysis [Chion22, Chion23],
or peptide to protein aggregation.

Improving upon Pirat’s transcriptomic integration feature

As mentioned in section 3.1, the transcriptomic integration feature of Pirat has some limitations.
Firstly, the unpaired transcriptomic and proteomic often arises in gene expression studies, and

thus Pirat should tackle this issue as best as possible. Our approach (see section 3.6.1) consists in
averaging all the transcriptomic intra-condition abundances for each proteomic sample. Although
relatively simple, it distorts dramatically the mRNA abundance signal. We have first considered a
possible two-step solution that could not be tested because of the constrained timing: first apply
Pirat on the intra-condition mean proteomic abundance matrix, as, in unpaired sample setting, only
intra-condition means can be paired (therefore, we can impute MEC values by their respective
imputed condition mean). Second, impute the POVs with regular Pirat (without transcriptomic
integration). This solution avoids the pitfall of variance distortion in transcriptomic data.

Secondly, our proposal for transcriptomic integration only concerns singleton PGs, mainly for
coherence and simplification of the article’s message. However, we also noticed in both datasets a
gain of performances when using Pirat-T on PGs of size 2 and 3. Assessing with a greater precision
the PGs that would benefit from transcriptomic integration seems then a natural extension. For
example, the package would benefit from a tool that compares the distribution of correlations
between transcripts and their associated peptides, with the distribution of intra-PG correlations
(similarly to the tool we propose to assess relevance of PGs, see subsection 3.7.4).

Integration of our contributions in the discovery proteomics pipeline

A limit of our contributions, which also applies to many works regarding statistical proteomics, is
that the issues we address are often considered independently from the rest of the analysis pipeline.
Indeed, because of its overall complexity, we cannot assess the combination of every concurrent
method for each step of the data processing workflow (FDR control, normalization, imputation,
filtering, etc.). However, because of some tight dependencies between some of these steps, studying
them in a more holistic manner would be beneficial to the field.

For example, the Match-Between-Run option (MBR, see section 1.1.4) raises major issues
on the data treatment, as is can affect more than 20% of total abundances produced in typical
experiments at EDyP Lab. First, MBR completely bypasses the FDR control procedure at peptide
identification. This is a long running issue and it will be investigated in a follow up project in the
lab. Second, as MBR and statistical imputation essentially play the same roles, i.e., completing the
dataset, it would be interesting to assess them together. For example, one might be preferable to
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the other depending on various factors (MECs, POVS, type of dataset, etc.) and, to the best of our
knowledge, no comparative study has been published on the subject. Yet, some preliminary tests in
EDyP have shown MBR to be more accurate than imputation on a benchmark dataset, but more
exhaustive and robust assessments are required.

A second important link to consider is the relationship between imputation and differential
analysis. We have partly addressed this issue in chapter 3 by comparing the imputation methods on
differential analysis task. Yet, we can go further by comparing Pirat with dedicated imputation-free
differential analysis tools (see subsection 1.3.2). If Pirat achieves similar (or better) performances
than imputation free methods, it then proves Pirat could be used in routine regardless of the
downstream analysis. Another related subject pertains to the influence of imputation on the
overall distribution of the final p-values, and thus on the quality of FDR control when using
BH type procedures. A convenient imputation method should not alter the distribution of p-
values of peptides under the null hypothesis, which should remain close to the uniform one
(supposing correct calibration before imputation). This evaluation metric has been used for example
in msImpute [Hediyeh-zadeh23]. Yet, uniformity of p-values under the null hypothesis is not
mandatory to control FDR. Notably, as we have seen in section 1.2, knockoffs filters with p-value
based score (see section 2.2) can overcome the uniformity limitation.

Finally, a last connection of our work with the overall data analysis pipeline pertains to the
question of imputing before or after precursor-to-peptide aggregation. Although we do not give
conclusion about this topic in chapter 3 (as we did not make any experiments to support this claim),
I think it is preferable to impute before aggregation to avoid an implicit imputation, as advocated in
favor of imputing before peptide-to-protein aggregation. However, another important argument is
that the estimation of the missingness mechanism should directly relate to the stochastic limit of
detection of the instrument, and hence should be involved as close as possible from the instrument’s
output, i.e., on precursors.

Personal view on missing value imputation in gene expression data

The abundant literature on imputation-free methods (see subsection 1.3.2), as well as the predom-
inance of differential analysis in proteomics experiments made me wonder about the practical
interest of imputation during my bibliographical research. My perspective on this has somewhat
shifted since then.

Precisely, I don’t think imputation is a sensible approach when there is no helpful external
information, and thus agree with Chion et al. [Chion23]. However, in LC-MS/MS data, it is doubly
not the case. First, as our work suggests, there are known biochemical dependencies to exploit for
missing data inference. Second, in the presence of an abundance dependent missingness mechanism,
the fact that the value is missing actually brings information in counterpart. In recent work, Chion
et al. [Chion23] only consider the first point and clearly argues against imputation in univariate
setting. However, they overlook the second point, which, in my opinion, is fundamental and adds
subtlety to their perspective. For example, if we have a known fixed detection threshold, then a
univariate imputation by a value slightly lower than this detection threshold makes more sense than
relying solely on variable dependencies. In the specific case of LC-MS/MS proteomics data, opting
for univariate imputation can be a sensible choice, as we can always rely on the presence of the
left-censoring mechanism. The univariate version of Pirat (that we refer to as “Pirat-Degenerated”)
actually competes with the other MAR multivariate methods in full MNAR setting (see Figure 3.2).
However, in order to rely on the presence of such left-censoring mechanism, it has to be “brutal”
enough to be informative. By “brutal”, I mean here that P(Mi, j = 1|Xi, j) should significantly
decrease when Xi, j increases (i.e., in Pirat framework, true γ1 should be high enough). Otherwise,
the missingness indicator is poorly related to the abundance value, and relying only on this in a
univariate imputation method would be suboptimal.

Finally, a last argument towards the development of robust imputation algorithms is that it
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encourages the development other types of downstream analysis, differing from differential analysis,
and thus widen the possible usages of LC-MS/MS proteomics analysis.

Personal overview and general perspectives on discovery proteomics for biomedical
research

At the beginning of my thesis, the high dimensionality of the data in bulk proteomics experiments
(few samples for tens of thousands of peptides) seemed a major challenge to me. In my opinion,
many multivariate analysis tools used in areas such as multi-omics integration, along with knockoff
filters, were not tailored to accommodate the curse of the dimensionality of the data. Finding new
alternatives appeared challenging. However, at least regarding imputation, I realized that the PG
strategy had never been proposed yet and could be a natural way to tackle this dimensionality issue.

Yet the number of samples obtained in bulk discovery proteomics studies remains, according to
me, a major limitation to innovation in the statistical treatment of the produced data. For example,
in most studies, we are essentially constrained to perform univariate differential analysis. Although
this procedure is very efficient to discover a few but important biomarkers, often endowed with
meaningful biological interpretation, it is limiting when the objective is to build a composite
biomarker, as correlations are not accounted for (see section 2.5). For example, the proteomic
signature of the development of a disease may include a large amount of proteins, thus requiring
huge cohorts to model their interactions (e.g. n > 500 in a recent study [Niu22]), which are rather
rare because of the cost of MS analyzes. On top of that, and until now, even if we obtain larger
sample size, we have weak guarantees that our data processing methods (aggregation, imputation,
etc.) would be well suited to the corresponding applications, as most of validation procedures are
oriented towards differential analysis.

Through conversations with a data scientist from OWKIN, a biomedical research company, and
talks given by researchers at ISMB EECB 2023 conference, I noticed that LC-MS/MS proteomics
analyses were rarely considered, probably for the latter reasons. Oppositely, and according to
them, single-cell approaches are gaining more and more interest in biomedical research. These
are particularly showcased for cancer research, to tackle the enormous variability among the
cancerous cells. Some scRNA-seq technologies enable to analyse thousands of cells per run and
can include additional spatial information. Hence, these analyses do not aim at discovering one or
few biomarkers.

Instead, large multivariate models can build latent representations of cells and tissues, which can
then be employed for a various tasks, such as clustering or classifying cancerous cells, predicting
their evolution, etc. Yet, the processing of scRNA-seq data, as of LC-MS/MS proteomics, is not
exempt from limitations: a great amount of zero expressed transcript with complex origins [Linder-
man22], normalization issues between samples [Stuart19], dubious cell embedding [Xia23], overall
lack of validation and quality control procedures, etc. Naturally, these problems are not unlike
those encountered in this manuscript. Besides the obstacles related to single-cell data analysis, the
analysis of scMS proteomics data encounters challenges similar to those encountered in classical
“bulk” bottom-up approaches. However, this technology is more recent than scRNA-seq, and
neither its gene covering, or cell throughput is comparable yet to that of scRNA-seq [Bennett23].
Overall, the need for robust and reliable statistical treatment in single-cell analyses (both scMS and
scRNA-seq), along with the wide possibilities offered by the sample size, motivates me to consider
this domain in the rest of my carrier.
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Résumé

Si le monde du vivant était un jeu de LEGO, les protéines en seraient les briques de
base. Ainsi, être capable d’identifier et quantifier toutes ces protéines à l’échelle de
quelques cellules, ou d’un être vivant (c’est-à-dire leur “protéome”), permet aux biol-
ogistes de mieux comprendre leur physiologie à un temps donné. Pour ce faire, on
utilise un spectromètre de masse, qui produit de nombreuses données complexes
et sujettes à de nombreux biais. Des algorithmes doivent alors automatiquement en
extraire de l’information utile et interprétable par les biologistes. Le but de ma thèse
est d’améliorer de tels algorithmes, tout en faisant en sorte qu’ils soient statistique-
ment robustes. J’ai contribué d’une part à limiter le taux de fausses découvertes
dans les expériences de protéomiques; et d’autre part, j’ai développé un algorithme
permettant d’inférer des valeurs d’abondance de protéines manquantes dans des
tableaux quantitatifs résultant de ces expériences.

Mots-clés : Biostatistiques, Protéomique, Imputation de Valeurs man-
quantes, Contrôle du FDR, Spectrométrie de masse, Transcriptomique

Abstract

Proteins are the basic molecular building blocks of life. Thus, being able to identify
and quantify all these proteins at the scale of a few cells, or of an organism, (i.e.,
their "proteome"), allows biologists to better understand their physiology at a given
time. To do this, a mass spectrometer is involved: it produces many complex data
that are subject to numerous biases. Algorithms must then automatically extract
useful information for subsequent biological interpretation. The goal of my thesis
is to develop these algorithms, while ensuring they are statistically robust. On the
one hand, I have contributed to controlling for the false discovery rate in proteomics
experiments, and on the other hand, I have developed an algorithm to infer the
missing abundance values of proteins in quantitative tables resulting from these
experiments.

Keywords : Biostatistics, Proteomics, Missing Value Imputation, FDR con-
trol, Mass Spectrometry, Transcriptomics
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