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Title of the thesis: Neuro-Computational Models of Language Comprehension: charac-
terizing similarities and differences between language processing in brains and language
models

Abstract
This thesis explores the synergy between artificial intelligence (AI) and cognitive neuro-
science to advance language processing capabilities. It builds on the insight that break-
throughs in AI, such as convolutional neural networks and mechanisms like experience
replay 1, often draw inspiration from neuroscientific findings. This interconnection is ben-
eficial in language, where a deeper comprehension of uniquely human cognitive abilities,
such as processing complex linguistic structures, can pave the way for more sophisticated
language processing systems. The emergence of rich naturalistic neuroimaging datasets
(e.g., fMRI, MEG) alongside advanced language models opens new pathways for align-
ing computational language models with human brain activity. However, the challenge lies
in discerning which model features best mirror the language comprehension processes in
the brain, underscoring the importance of integrating biologically inspired mechanisms into
computational models.

In response to this challenge, the thesis introduces a data-driven framework bridging the
gap between neurolinguistic processing observed in the human brain and the computational
mechanisms of natural language processing (NLP) systems. By establishing a direct link
between advanced imaging techniques and NLP processes, it conceptualizes brain infor-
mation processing as a dynamic interplay of three critical components: "what," "where,"
and "when", offering insights into how the brain interprets language during engagement
with naturalistic narratives. This study provides compelling evidence that enhancing the
alignment between brain activity and NLP systems offers mutual benefits to the fields of
neurolinguistics and NLP. The research showcases how these computational models can em-
ulate the brain’s natural language processing capabilities by harnessing cutting-edge neural
network technologies across various modalities—language, vision, and speech. Specifi-
cally, the thesis highlights how modern pretrained language models achieve closer brain
alignment during narrative comprehension. It investigates the differential processing of
language across brain regions, the timing of responses (Hemodynamic Response Function
(HRF) delays), and the balance between syntactic and semantic information processing.
Further, the exploration of how different linguistic features align with MEG brain responses
over time and find that the alignment depends on the amount of past context, indicating that
the brain encodes words slightly behind the current one, awaiting more future context. Fur-
thermore, it highlights grounded language acquisition through noisy supervision and offers
a biologically plausible architecture for investigating cross-situational learning, providing
interpretability, generalizability, and computational efficiency in sequence-based models.
Ultimately, this research contributes valuable insights into neurolinguistics, cognitive neu-
roscience, and NLP.

Keywords: brain encoding; natural language processing; fMRI; MEG; hemodynamic
response function delays; language models; brain language processing; Recurrent neural
network; Reservoir computing; Transformers.

1Human-level control through deep reinforcement learning [Mnih et al., 2015]
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RÉSUMÉ DE THÈSE

Titre de la thèse: Modèles neurocomputationnels de la compréhension du langage : car-
actérisation des similarités et des différences entre le traitement cérébral du langage et les
modèles de langage
Résumé Cette thèse explore la synergie entre l’intelligence artificielle (IA) et la neuro-
science cognitive pour faire progresser les capacités de traitement du langage. Elle s’appuie
sur l’idée que les avancées en IA, telles que les réseaux neuronaux convolutionnels et des
mécanismes comme le « replay d’expérience » 1, s’inspirent souvent des découvertes neuro-
scientifiques. Cette interconnexion est bénéfique dans le domaine du langage, où une com-
préhension plus profonde des capacités cognitives humaines uniques, telles que le traite-
ment de structures linguistiques complexes, peut ouvrir la voie à des systèmes de traitement
du langage plus sophistiqués. L’émergence de riches ensembles de données neuroimagerie
naturalistes (par exemple, fMRI, MEG) aux côtés de modèles de langage avancés ouvre de
nouvelles voies pour aligner les modèles de langage computationnels sur l’activité cérébrale
humaine. Cependant, le défi réside dans le discernement des caractéristiques du modèle qui
reflètent le mieux les processus de compréhension du langage dans le cerveau, soulignant
ainsi l’importance d’intégrer des mécanismes inspirés de la biologie dans les modèles com-
putationnels. En réponse à ce défi, la thèse introduit un cadre basé sur les données qui
comble le fossé entre le traitement neurolinguistique observé dans le cerveau humain et
les mécanismes computationnels des systèmes de traitement automatique du langage na-
turel (TALN). En établissant un lien direct entre les techniques d’imagerie avancées et les
processus de TALN, elle conceptualise le traitement de l’information cérébrale comme une
interaction dynamique de trois composantes critiques : le « quoi », le « où » et le « quand
», offrant ainsi des perspectives sur la manière dont le cerveau interprète le langage lors de
l’engagement avec des récits en conditions écologiques. L’étude fournit des preuves con-
vaincantes que l’amélioration de l’alignement entre l’activité cérébrale et les systèmes de
TALN offre des avantages mutuels aux domaines de la neurolinguistique et du TALN. La
recherche montre comment ces modèles computationnels peuvent émuler les capacités de
traitement du langage naturel du cerveau en exploitant les technologies de réseau neuronal
de pointe dans diverses modalités - langage, vision et parole. Plus précisément, la thèse
met en lumière comment les modèles de langage pré-entraînés modernes parviennent à un
alignement plus étroit avec le cerveau lors de la compréhension de récits. Elle examine le
traitement différentiel du langage à travers les régions cérébrales, le timing des réponses
(délais La fonction de réponse hémodynamique (HRF)) et l’équilibre entre le traitement de
l’information syntaxique et sémantique. En outre, elle explore comment différentes carac-
téristiques linguistiques s’alignent avec les réponses cérébrales MEG au fil du temps et con-

1Human-level control through deep reinforcement learning [Mnih et al., 2015]
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state que cet alignement dépend de la quantité de contexte passé, indiquant que le cerveau
code les mots légèrement en retard par rapport à celui actuel, en attendant plus de contexte
futur. De plus, elle met en évidence la plausibilité biologique de l’apprentissage des états
de réservoir de calcul, offrant ainsi une interprétabilité, une généralisabilité et une efficac-
ité computationnelle dans les modèles basés sur des séquences. En fin de compte, cette
recherche apporte des contributions précieuses à la neurolinguistique, à la neuroscience
cognitive et au TALN.

Mots-clés de la thèse: Traitement cérébral du cerveau; Apprentissage dévelopmental du
langage; Neurosciences computationnelles; codage cérébral; traitement du langage naturel;
Réseau de neurones récurrent; Calcul en réservoir; Transformateurs.

ÉNONCÉ DE THÈSE ET PLAN

Cette thèse s’articule autour de l’énoncé suivant : Combler l’écart entre les modèles actuels
de réseaux neuronaux profonds et la compréhension du langage dans le cerveau : 1) notre
compréhension mécaniste de la compréhension du langage dans le cerveau à travers la
plausibilité à long terme des modèles de langage, 2) une compréhension plus profonde du
traitement du langage dans le cerveau par l’interprétation des fonctions de réponse hémo-
dynamique grâce à la modélisation computationnelle, et 3) la performance au niveau des
mots et du sémantique des modèles de traitement automatique du langage naturel grâce au
transfert des insights du cerveau.
Chapitre 3 : Résume les derniers efforts sur la manière dont les réseaux neuronaux pro-
fonds commencent à résoudre des problèmes computationnels (encodage et décodage) à
travers diverses modalités (langage, vision et parole) et illuminent ainsi les calculs que le
cerveau accomplit sans effort. Nous discutons en particulier des représentations populaires
des stimuli de langage, de vision et de parole dérivées des embeddings de mots statiques,
des modèles basés sur des séquences, des transformateurs et des modèles basés sur des
transformateurs multimodaux. Nous présentons ensuite un résumé des ensembles de don-
nées cérébrales naturalistes et des métriques d’évaluation populaires, passons en revue les
architectures populaires d’encodage et de décodage basées sur l’apprentissage profond, et
notons leurs avantages et leurs limitations dans le contexte de l’alignement cérébral.

Un long article de revue a été soumis au journal Transactions on Machine Learning Re-
search (TMLR), actuellement en cours de révision.
Chapitre 4 : Résume l’efficacité de divers modèles de langage, notamment les réseaux
de mémoire à court terme (LSTMs), ELMo et Longformer, dans la prédiction de l’activité
cérébrale lorsque les sujets écoutent des histoires narratives. Bien que ces modèles aient
réussi à prédire l’activation cérébrale basée sur le texte, ils ne peuvent toujours pas gérer
les dépendances à long terme et fournir des aperçus des mécanismes neuronaux en jeu. Nos
résultats suggèrent que les états de cellule LSTM s’alignent mieux avec les enregistrements
cérébraux que les états cachés LSTM, indiquant leur capacité à capturer des informations à
long terme. De plus, les représentations ELMo et Longformer prédisent l’activité cérébrale
dans différentes régions du langage cérébral.
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Un long article a été publié précédemment lors de la 44e conférence annuelle de la Société
des sciences cognitives (juillet 2022, Toronto, Canada).

Chapitre 5 : Enquête sur la manière dont différents retards de fonction de réponse hémody-
namique dans la fonction de réponse du cerveau affectent l’alignement entre les représen-
tations des modèles de langage et les enregistrements cérébraux obtenus. En même temps,
les participants écoutent ou lisent une histoire. Nous explorons l’importance relative de
l’information syntaxique (c’est-à-dire, les embeddings syntaxiques basés sur les arbres
de constituants) par rapport à l’information sémantique en utilisant des modèles de lan-
gage open-source tels que BERT, GPT-2 et Llama-2. De plus, nous examinons différentes
longueurs de contexte et révélons des différences dans la façon dont le cerveau traite le
langage à travers différents retards.

Chapitre 6 : Résume l’utilisation de la magnétoencéphalographie (MEG), avec une réso-
lution temporelle plus élevée que l’IRM fonctionnelle, nous permet de regarder de manière
plus précise le timing du traitement des caractéristiques linguistiques. Inspirés par des
études précédentes d’encodage IRM fonctionnel, nous étudions l’encodage cérébral MEG
en utilisant des caractéristiques syntaxiques et sémantiques de base, avec différentes longueurs
de contexte et directions (passé vs futur), pour un ensemble de données de 8 sujets écoutant
des histoires. Nous avons montré que le modèle Bidirectional Transformer (BERT), con-
trairement à d’autres caractéristiques, conduit à une prédiction significative de l’activité
cérébrale MEG dans les régions auditives et langagières entre 50-550 ms (250-750 ms avec
un début de mot à 200 ms).

Un long article a été publié précédemment lors de la 24e conférence INTERSPEECH
(août 2023, Dublin, Irlande).

Chapitre 7 : Résume comment les enfants apprennent la langue et comment leur cerveau
la traite, en appliquant des connaissances à l’apprentissage automatique et à la robotique.
Nous nous concentrons principalement sur l’apprentissage trans-situationnel (CSL) en util-
isant des phrases complètes pour comprendre le développement précoce du langage. La
recherche compare différents modèles et représentations de mots, trouvant que les représen-
tations BERT affinées fonctionnent le mieux. Ces modèles peuvent aider l’interaction
humain-robot et améliorer notre compréhension de l’acquisition du langage chez les en-
fants.

Un rapport initial a été présenté lors de l’atelier Splu-RoboNLP à ACL en juillet 2021,
puis étendu en un article de revue. Il est actuellement en cours de révisions mineures pour
publication dans le journal Nature Scientific Reports.

RÉSUMÉ DES CONTRIBUTIONS

Les contributions de chaque chapitre de cette thèse peuvent être résumées comme suit :
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AMÉLIORER L’INFÉRENCE SCIENTIFIQUE POUR LES MODÈLES D’ENCODAGE
EN UTILISANT DES ENSEMBLES DE DONNÉES CÉRÉBRALES NATURALISTES
ÉTENDUS ET LES PROGRÈS DE L’IA GÉNÉRATIVE

L’objectif central des neurosciences est de comprendre comment le cerveau représente
l’information et la traite pour accomplir diverses tâches (visuelles, linguistiques, auditives,
etc.). Les réseaux neuronaux profonds (DNN) offrent un moyen computationnel de cap-
turer la complexité et la richesse sans précédent de l’activité cérébrale. L’encodage et le
décodage, formulés comme des problèmes computationnels, résument de manière succincte
ce puzzle. Le domaine évolue rapidement avec la disponibilité de vastes ensembles de don-
nées en neuroimagerie lorsque les participants traitent des stimuli dans des environnements
naturels. Parallèlement, il existe des progrès considérables dans les réseaux neuronaux
profonds (DNN) qui traitent efficacement et robustement des données multimodales. En
s’inspirant de l’efficacité des récents modèles d’IA générative pour le traitement du langage
naturel, la vision par ordinateur et la parole, nous passons en revue les architectures popu-
laires d’encodage et de décodage basées sur l’apprentissage profond et notons leurs avan-
tages et leurs limitations dans le contexte de l’alignement cérébral. Dans le chapitre 3, nous
résumons divers modèles d’encodage sous forme d’arbre de classification taxonomique. Ces
modèles s’adressent aux domaines de la vision, de l’auditif, du langage et des multimédias.
Étant donné l’abondance de publications récentes dans ce domaine, le chapitre 3 vise à fa-
ciliter les contributions de la communauté des neurosciences cognitives computationnelles,
contribuant ainsi à faire progresser le domaine de l’encodage et du décodage cérébral.

DÉVOILER LE SUBSTRAT NEURONAL : MODÈLES DE LANGAGE ET
DÉPENDANCES À LONG TERME DANS LA PRÉDICTION DE L’ACTIVATION
CÉRÉBRALE

Plusieurs modèles de langage préentraînés basés sur des séquences et populaires se sont
révélés efficaces pour la prédiction basée sur le texte des activations cérébrales [Jain and
Huth, 2018, Toneva and Wehbe, 2019]. Cependant, ces modèles manquent toujours de
plausibilité en termes de mémoire à long terme (c’est-à-dire, comment ils gèrent les dépen-
dances à long terme et l’information contextuelle) et d’aperçus des mécanismes sous-jacents
du substrat neuronal. De plus, les récents modèles Transformer préentraînés comme BERT
et GPT-2 ne peuvent pas traiter les dépendances à long terme (la longueur de séquence est
fixée à 512 mots) en raison de leur opération d’auto-attention. Pour surmonter cette limi-
tation, récemment, Beltagy et al. [2020] a introduit Longformer, facilitant le traitement de
documents de milliers de jetons ou plus et combinant une attention locale par fenêtre avec
une attention globale. En tenant compte de ces défis, le chapitre 4 de cette thèse vise à
éclairer la relation entre les activations de voxels fMRI et les représentations générées par
divers modèles de langage. Nos résultats suggèrent que le développement de modèles de
langage capables de gérer des informations contextuelles plus étendues et d’interpréter les
représentations internes de ces modèles peut conduire à une compréhension plus appro-
fondie de la manière dont les structures neuronales représentent l’information linguistique
et maintiennent une mémoire narrative plus longue.
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DÉVOILER L’INTERACTION DES RETARDS DE RÉPONSE HÉMODYNAMIQUE ET
DU TRAITEMENT DU LANGAGE DANS LE CERVEAU

L’augmentation de la disponibilité des ensembles de données fMRI issues de tâches écologiques
et des modèles neuronaux à grande échelle peut permettre une meilleure compréhension de
la réponse du cerveau aux stimuli naturels. Rien que ces dernières années, les chercheurs
ont montré que les réponses cérébrales des personnes comprenant le langage peuvent être
bien prédites par des modèles de langage basés sur le texte [Wehbe et al., 2014, Jain and
Huth, 2018, Toneva and Wehbe, 2019, Deniz et al., 2019, Caucheteux and King, 2020,
Schrimpf et al., 2021b, Caucheteux et al., 2021a, Toneva et al., 2022, Oota et al., 2022c,
Antonello et al., 2021, Aw and Toneva, 2023, Merlin and Toneva, 2022]. Cependant, les
études existantes sur l’alignement entre la compréhension du langage et le cerveau ont été
observées à un retard constant de la fonction de réponse hémodynamique (HRF) (environ
7.5 à 8 secondes). Il y a encore une exploration en cours sur la manière dont le langage et
les mécanismes de traitement du cerveau se synchronisent lorsque confrontés à différents
retards de HRF [Jain and Huth, 2018, Jain et al., 2020, Toneva and Wehbe, 2019, Deniz
et al., 2019, Toneva et al., 2022, Aw and Toneva, 2023, Oota et al., 2022c, 2023c]. De plus,
les études existantes ont principalement construit des modèles d’encodage cérébral en con-
sidérant un retard de HRF fixe et en analysant comment différentes régions d’intérêt (ROIs)
impliquées dans le traitement du langage influencent les aspects sémantiques et syntax-
iques du traitement de l’information dans le cerveau [Jain and Huth, 2018, Jain et al., 2020,
Toneva and Wehbe, 2019, Caucheteux et al., 2021a, Toneva et al., 2022, Merlin and Toneva,
2022, Aw and Toneva, 2023, Oota et al., 2022c, 2023c]. Dans cette thèse, l’interaction systé-
matique entre les retards de HRF et le traitement du langage est un domaine d’investigation,
visant à comprendre comment l’activité neurale liée aux tâches linguistiques s’aligne avec
la réponse hémodynamique subséquente, et comment cet alignement peut différer selon les
conditions variables des retards de HRF. Nos résultats suggèrent que la décomposition des
représentations en différentes caractéristiques linguistiques permet une compréhension fine
du traitement du langage par le cerveau à travers différents retards, ouvrant la voie à des
approches plus personnalisées et efficaces dans les applications linguistiques et cliniques.

EXPLORATION DU TIMING DU TRAITEMENT DES CARACTÉRISTIQUES
LINGUISTIQUES DANS LE CERVEAU AVEC MEG

Au cours de la dernière décennie, les interfaces cerveau-ordinateur (BCI) ont contribué à
des avancées significatives dans la compréhension du traitement du langage dans le cerveau
en utilisant un paradigme computationnel populaire : l’encodage cérébral, le processus
visant à mapper les caractéristiques des stimuli sur l’activité cérébrale. Il existe une vaste
littérature sur l’encodage cérébral linguistique pour l’IRM fonctionnelle (IRMf) liée aux
représentations syntaxiques et sémantiques. La magnétoencéphalographie (MEG), avec une
résolution temporelle plus élevée que l’IRMf, nous permet d’examiner plus précisément le
timing du traitement des caractéristiques linguistiques. Contrairement au décodage MEG,
peu d’études sur l’encodage MEG en utilisant des stimuli naturels existent. Les études
existantes sur l’écoute d’histoires se concentrent sur les phonèmes et les caractéristiques
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de mots simples, en ignorant des caractéristiques plus abstraites telles que le contexte, les
aspects syntaxiques et sémantiques. Pour comprendre quand le cerveau traite la structure
linguistique dans les phrases, dans cette thèse, le chapitre 5 exploite les représentations
textuelles en utilisant des caractéristiques syntaxiques de base et des caractéristiques sé-
mantiques, avec différentes longueurs de contexte, directions (passé vs futur) et importance
relative dans le contexte.

SUPERVISION BRUITÉE DANS L’ACQUISITION DE LANGAGE ANCRÉE : UNE
PERSPECTIVE DE MODÈLE DE LANGAGE

L’acquisition de langage ancrée englobe le processus d’acquisition d’une langue, dans lequel
les nourrissons apprennent en observant leur environnement, en interagissant avec les autres
et en saisissant les concepts d’une langue dans le contexte du monde réel [Yu and Ballard,
2004a,b, 2007, Chen and Mooney, 2008, Thomason et al., 2018, Juven and Hinaut, 2020,
Vanzo et al., 2020]. Cependant, l’acquisition du langage devient difficile. Un seul mot dans
une énonciation peut avoir plusieurs significations potentielles, introduisant une grande in-
certitude. Les approches traditionnelles de l’ancrage du langage se concentrent principale-
ment sur la mise en correspondance des commandes de langage naturel avec des représen-
tations, impliquant souvent des séquences d’actions robotiques fondamentales [Chen and
Mooney, 2011, Matuszek et al., 2013, Tellex et al., 2011]. De plus, les cadres robotiques
actuels Taniguchi et al. [2017], Roesler et al. [2018] ne traitent pas la manière dont les
enfants apprennent naturellement à comprendre des phrases complètes par l’apprentissage
inter-situationnel sans indices spécifiques. Face à ces défis, le chapitre 7 de cette thèse
se penche sur une enquête sur la façon dont les modèles de langage peuvent entrepren-
dre l’acquisition de langage ancrée dans des conditions de supervision bruyante. Il explore
également comment ces modèles peuvent rendre compte de la dynamique de l’apprentissage
dans le cerveau.
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1 INTRODUCTION

Human language is an incredibly complex ability, yet children can learn languages quickly
(in a few years). We still need to gain more knowledge of such language learning mecha-
nisms. Experiments in neuroscience and developmental psychology provide different hy-
potheses on potential mechanisms. However, it is difficult to grasp such mechanisms, partly
because of the multiple modalities (audition, vision, ...) implied in such processes. Thus,
modeling appears as an appealing and complementary tool to provide a deeper understand-
ing of such language mechanisms and take apart the plausible ones from the implausible
ones, finally providing a more transparent view for experimentalists. Furthermore, model-
ing has significantly impacted fields like artificial intelligence (AI) and machine learning
(ML). For instance, the exploration of cell receptive fields and the way information is pro-
cessed in the early visual system, as described by Hubel and Wiesel [1968], played a
crucial role in the creation of deep networks, convolutional neural networks introduced by
Fukushima and Miyake [1982]. These networks brought about a significant transformation
in the field of computer vision. Similarly, the understanding that replaying past experiences
in the hippocampus enhances memory consolidation, as proposed by McNaughton [1983],
served as inspiration for the development of experience replay, as articulated by McClelland
and Goddard [1996].

Deep Learning models have recently created a breakthrough in image and speech recog-
nition and Natural Language Processing (NLP) methods. However, no equivalent break-
through happened in understanding how brains perform similar functions. This break-
through did not happen because Deep Learning does not reproduce learning mechanisms
or brain dynamics. Thus, we still need critical neuronal mechanisms to model language
comprehension and production functions properly.

Developing new mechanistic models of brain activity can help better understand how
the brain works. This is particularly true for language, where a better understanding of
the cognitive mechanisms involved could lead to improved treatment for developmental
language disorders in children and rehabilitation methods for brain injuries that lead to
aphasia. The development of theoretical models for the neural dynamics underlying brain
functions, including learning, is essential to (1) better understand the general functioning
of the brain and (2) explore new paths that are not accessible using purely experimental
(neurobiological) methods.

Many functions (perception, attention, memory, language, . . . ) are studied in cognitive
neuroscience using different methods, including neuroimaging, electrophysiology, behav-
ioral testing, and computational modeling (e.g., brain encoding and decoding). Brain en-
coding is the process of learning the mapping from the stimuli representation to the neural
brain activation. Recent brain encoding studies highlight the potential for natural language
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Figure 1.1: Alignment between deep learning systems and human brains. This Figure is adapted
from Toneva and Wehbe [2019].

models to improve our understanding of language processing. Simultaneously, naturalistic
fMRI/MEG/EEG datasets are becoming increasingly available and present even further av-
enues for understanding the alignment between brains and models. However, with the many
available models and datasets, it can be challenging to know what aspects of the models are
essential for studying language comprehension in brain alignment. Thus, we need language
models using biologically plausible mechanisms from which plausible representations can
emerge better to understand the insights of the brain in language processing.

In this thesis, we introduce a data-driven framework that addresses these limitations by
establishing a direct link between information processing in the human brain, as measured
by techniques such as fMRI (functional Magnetic Resonance Imaging) and MEG (Magne-
toencephalography), and the functioning of natural language processing (NLP) computer
systems. Specifically, we explore the information processing in the brain as a multifaceted
and dynamic process that can be distilled into three key components: "what," "where,"
and "when." We leverage these three components to understand how the brain processes
language-related information, as observed through fMRI (i.e., where the activity is located)
and MEG (i.e., when the brain processes words and their semantics) measurements. In con-
clusion, our research aims to establish strong evidence between information processing in
the human brain and NLP systems and strives to pinpoint the "where" and "when" aspects
of this intricate interplay. By doing so, we contribute to neurolinguistics and NLP and pave
the way for a deeper understanding of the dynamic mechanisms underpinning language
comprehension and communication.

1.1 NLP MODELS FOR HUMAN LANGUAGE COMPREHENSION

When reading or listening to the sentence "The trophy does not fit into the brown suitcase
because it is too big", despite the unclear reference of "it" to either the trophy or suitcase,
we intuitively understand it refers to the trophy [Levesque et al., 2012]. Conversely, if the
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1.2 Thesis Statement and Outline

sentence were, "The trophy does not fit into the brown suitcase because it is too small", we
would deduce that "it" signifies the suitcase. This raises questions about how our brains
interpret these sentences and assign them real-world meanings. To explore this, we must
first address basic inquiries regarding processing information in the brain - specifically,
where and when this occurs and how the brain combines this information from various
places and moments.

Through the use of neuroimaging tools that monitor brain activity during language com-
prehension, neuroscientists have advanced our understanding of the ’what’, ’where’, and
’when’ aspects of this process. Research indicates that the meaning of individual words is
represented across the cortex in a way that is broadly similar among different individuals (as
shown in studies by [Mitchell et al., 2008, Wehbe et al., 2014, Huth et al., 2016]. Addition-
ally, a specific group of brain regions, known as the "language network", has been identified
as crucial for understanding language [Fedorenko et al., 2020]. The timing of word process-
ing has also been pinpointed, with evidence suggesting that the meaning of a word begins to
be processed between 200 and 600 milliseconds after the word is read [Salmelin, 2007]. De-
spite these advancements, the mechanisms by which the brain integrates information from
various areas and across different time intervals during language comprehension remain a
mystery.

1.2 THESIS STATEMENT AND OUTLINE

This thesis is centered around the following statement: Bridging the gap between current
deep neural network models and language comprehension in the brain: 1) our mechanistic
understanding of language comprehension in the brain through long-term memory plausi-
bility of language models (i.e. how they deal with long-term dependencies and contextual
information), (2) a deeper understanding of language processing in the brain by the inter-
pretation of hemodynamic response functions through computational modeling, and 3) the
word and semantic-level performance of natural language processing models through the
transfer of insight from the brain.
Chapter 3: Summarize the latest efforts in how deep neural networks begin to solve com-
putational problems (encoding and decoding) across various modalities (language, vision,
and speech) and thereby illuminate the computations that the brain accomplishes effort-
lessly. Specifically, we discuss popular representations of language, vision, and speech stim-
uli derived from static word embeddings, sequence, transformer-based, and multi-modal
transformer-based models. We then present a summary of the naturalistic brain datasets and
famous evaluation metrics, review the popular deep learning-based encoding and decoding
architectures, and note their benefits and limitations in the context of brain alignment.

A long review paper is submitted to Transactions on Machine Learning Research (TMLR)
journal, currently it is under review.
Chapter 4: Summarize the effectiveness of various language models, including Long
Short-Term Memory Networks (LSTMs), ELMo, and Longformer, in predicting brain ac-
tivity when subjects listen to narrative stories. While these models have succeeded in text-
driven brain activation prediction, they cannot still handle long-term dependencies and pro-
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vide insights into the neural mechanisms at play. Our findings suggest that LSTM cell states
align better with brain recordings than LSTM hidden states, indicating their ability to cap-
ture long-term information. Additionally, ELMo and Longformer representations predict
brain activity across different brain language regions.

A long paper was previously published at 44th Annual Meeting of the Cognitive Science
Society conference (July 2022, Toronto, Canada).
Chapter 5: Investigates how different hemodynamic response function delays in the brain’s
response function affect the alignment between language model representations and brain
recordings obtained. At the same time, participants listened to or read a story. We ex-
plore the relative importance of syntactic information (i.e., syntactic embeddings based on
constituency trees) versus semantic information using open-source language models such
as BERT, GPT-2, and Llama-2. Further, we examine various context lengths and reveal
differences in how the brain processes language across different delays.
Chapter 6: Summarize the use of Magnetoencephalography (MEG), with higher temporal
resolution than fMRI, enables us to look more precisely at the timing of linguistic feature
processing. Inspired by previous fMRI encoding studies, we study MEG brain encoding
using basic syntactic and semantic features, with various context lengths and directions (past
vs. future), for a dataset of 8 subjects listening to stories. We showed that Bidirectional
Transformer (BERT) model, contrary to other features, lead to a significant prediction in
MEG brain activity across auditory and language regions between 50-550ms (250ms to
750ms with word onset at 200ms).

A long paper was previously published at 24th INTERSPEECH conference (August
2023, Dublin, Ireland).
Chapter 7: Summarize how children learn the language and how their brains process it,
applying insights to machine learning and robotics. We mainly focus on cross-situational
learning (CSL) using complete sentences to understand early language development. The
research compares different models and word representations, finding that fine-tuned BERT
representations perform best. These models can aid human-robot interaction and enhance
our understanding of language acquisition in children.

An initial report was presented at the Splu-RoboNLP workshop at ACL in July 2021,
later extended into a journal article. It is now undergoing minor revisions for publication in
the Nature Scientific Reports journal.

1.3 SUMMARY OF CONTRIBUTIONS

The contributions of each chapter in this dissertation can be summarized as follows:
Chapter 3:

• We discuss popular representations of language, vision, and speech stimuli derived
from static word embeddings, sequence, transformer, and multi-modal transformer-
based models.

• We present a summary of the naturalistic brain datasets such as Moth-radio-hour,
Narratives, Little Prince, Harry Potter, Natural Scenes Dataset, Things, Short Movie
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1.3 Summary of Contributions

Clips, etc,. Further, famous evaluation metrics such as 2V2 accuracy, Pearson Corre-
lation, and normalized predictivity are discussed.

• We review popular deep learning-based encoding and decoding architectures and note
their benefits and limitations in the context of brain alignment. We summarize various
encoding models in the form of a taxonomic survey tree. Similarly, we synthesize
the literature related to decoding models into a survey tree and compare the vision,
auditory, and linguistic stimuli reconstructed using various decoding models. Finally,
we conclude with a summary and discussion about future trends.

Chapter 4:

• Given that a language model pre-trained on corpora by handling long-term depen-
dencies, we propose the problem of finding which of these are the most predictive of
fMRI brain activity for listening tasks.

• The investigation of the long-term context of language model results reveals that
ELMo and Longformer representations display better brain alignment during nar-
rative story listening. The layer-wise encoding performance results across brain lan-
guage ROIs reveal that the intermediate layers have better brain alignment.

• We also find that the internal memory representations of LSTM (cell state and hid-
den state) derive interesting insights that the cell state representations yield better
performance than hidden state representations.

Chapter 5:

• We examine how the intricate processing of diverse language regions at varying HRF
delays in the human brain corresponds with transformer-based language models. For
various HRF delays and context lengths, we analyze the impact on the alignment
between brain recordings and language model representations.

• Further, We explore the relative importance of syntactic information (i.e.syntactic
embeddings based on constituency trees) versus semantic information, using open-
source language models. Using different HRF delays, we find that bilateral temporal
lobes and frontal regions process syntactic information at early delays, while the an-
gular gyrus processes semantic information in higher HRF delays.

• We further investigate different context lengths and find that more extended context
may significantly increase HRF delays.

Chapter 6:

• We study how the brain encodes semantic and fine-grained syntactic features of words
using MEG recordings. We address some critical questions: (1) How much context is
maintained through time to process words? (2) Is the direction of context important
(past context vs. future context)?
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• We explore (a) basic syntactic features, (b) GloVe embeddings, and (c) semantic
BERT embeddings for MEG brain encoding. We find that BERT representations
predict MEG significantly but not other syntactic features or word embeddings (e.g.,
GloVe).

• We report that past context has greater predictive power than future context. R2 scores
are proportional to context length when dealing with past context.

Chapter 7:

• Grounded language acquisition is the process of learning a language - how infants can
learn language by observing their environments, interacting with others, and under-
standing the concepts of a language as it relates to the world. We take the language
acquisition perspective to machine learning and robotics, where part of the problem
is understanding how language models can perform grounded language acquisition
through noisy supervision and discussing how they can account for brain learning
dynamics.

• Our experimental results demonstrate that fine-tuned BERT representations are more
efficient and better at capturing the complex relations between words than other word
representations.

• We find that biologically plausible ESNs have a better trade-off on all three grounded
language datasets with better prediction error and low latency.

1.4 ADDITIONAL WORK

The author has contributed to other works during the PhD that relate to this research di-
rection to various extents. These works are summarized below, and interested readers are
encouraged to consult the full manuscripts for more details.
Joint processing of linguistic properties in brains and language models Language mod-
els effectively predict brain recordings of subjects experiencing complex language stim-
uli. For a deeper understanding of this alignment, it is essential to understand the corre-
spondence between the human brain’s detailed processing of linguistic information versus
language models. We investigate this correspondence via a direct approach, eliminating
information related to specific linguistic properties in the language model representations
and observing how this intervention affects the alignment with fMRI brain recordings ob-
tained while participants listened to a story. We investigate a range of linguistic properties
(surface, syntactic, and semantic) and find that eliminating each one significantly decreases
brain alignment. Specifically, we find that syntactic properties (i.e., Top Constituents and
Tree Depth) have the most significant effect on the trend of brain alignment across model
layers. These findings provide clear evidence for the role of specific linguistic information
in the alignment between brain and language models and open new avenues for mapping
the joint information processing in both systems.
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1.4 Additional Work

Subba Reddy Oota, Manish Gupta, and Mariya Toneva. “Joint processing of linguistic
properties in brains and language models”. In: Advances in Neural Information Processing
Systems. NeurIPS-2023.
How does the brain process syntactic structure while listening? Syntactic parsing is
the task of assigning a syntactic structure to a sentence. There are two popular syntactic
parsing methods: constituency and dependency parsing. Recent works have used syntac-
tic embeddings based on constituency trees, incremental top-down parsing, and other word
syntactic features for brain activity prediction given the text stimuli to study how the syn-
tax structure is represented in the brain’s language network. However, the effectiveness of
dependency parse trees or the relative predictive power of the various syntax parsers across
brain areas, especially for the listening task, still needs to be explored. In this study, we
investigate the predictive power of the brain encoding models in three settings: (i) indi-
vidual performance of the constituency and dependency syntactic parsing based embedding
methods, (ii) efficacy of these syntactic parsing based embedding methods when controlling
for essential syntactic signals, (iii) relative effectiveness of each of the syntactic embedding
methods when controlling for the other. Further, we explore the relative importance of syn-
tactic information (from these syntactic embedding methods) versus semantic information
using BERT embeddings. We find that constituency parsers help explain temporal lobe and
middle-frontal gyrus activations. In contrast, dependency parsers better encode syntactic
structure in the angular gyrus and posterior cingulate cortex. Although semantic signals
from BERT are more effective than any of the syntactic features or embedding methods,
syntactic embedding methods explain additional variance for a few brain regions.

Subba Reddy Oota, Mounika Marreddy, Manish Gupta, and Raju S. Bapi. “How does
the brain process syntactic structure while listening?” In: ACL. Findings 2023.
What aspects of NLP models and brain datasets affect brain-NLP alignment? Recent
brain encoding studies highlight the potential for natural language processing models to im-
prove our understanding of language processing in the brain. Recent brain encoding studies
highlight the potential for natural language processing models to improve our understand-
ing of language processing in the brain. Simultaneously, naturalistic fMRI datasets are
becoming increasingly available and present further avenues for understanding the align-
ment between brains and models. However, with the many available models and datasets, it
can be challenging to know what aspects of them are essential to consider. In this work, we
systematically study the brain alignment across five naturalistic fMRI datasets, two stim-
ulus modalities (reading vs. listening), and different Transformer text and speech models.
All text-based language models are significantly better at predicting brain responses than
all speech models for both modalities. Further, bidirectional language models better predict
fMRI responses and generalize across datasets and modalities.

Subba Reddy Oota, and Mariya Toneva. “What aspects of NLP models and brain
datasets affect brain-NLP alignment?” In: CCN. 2023.
Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI
Brain Activity?

Several popular Transformer based language models are successful for text-driven brain
encoding. However, existing literature leverages only pre-trained text Transformer models
and has yet to explore the efficacy of task-specific learned Transformer representations. In
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this work, we explore transfer learning from representations learned for ten popular nat-
ural language processing tasks (two syntactic and eight semantic) for predicting brain re-
sponses from two diverse datasets: Pereira (subjects reading sentences from paragraphs)
and Narratives (subjects listening to the spoken stories). Encoding models based on task
features predict activity in different regions across the whole brain. Features from corefer-
ence resolution, NER, and shallow syntax parsing explain more significant variance for the
reading activity. On the other hand, tasks such as paraphrase generation, summarization,
and natural language inference for the listening activity show better encoding performance.
Experiments across all 10 task representations provide the following cognitive insights: (i)
language left hemisphere has higher predictive brain activity versus language right hemi-
sphere, (ii) posterior medial cortex, temporo-parieto-occipital junction, dorsal frontal lobe
have higher correlation versus early auditory and auditory association cortex, (iii) syntac-
tic and semantic tasks display an excellent predictive performance across brain regions for
reading and listening stimuli resp.

Subba Reddy Oota, Jashn Arora, Veeral Agarwal, Manish Gupta, and Raju S. Bapi.
“Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain
Activity?” In: NAACL. 2022.
Speech language models lack important brain-relevant semantics Despite known dif-
ferences between reading and listening in the brain, recent work has shown that text-based
language models predict both text-evoked and speech-evoked brain activity to an impressive
degree. This poses the question of what types of information language models capture that
are correlated with features truly predicted in the brain. We investigate this question via
a direct approach, in which we eliminate information related to specific low-level stimulus
features (textual, speech, and visual) in the language model representations and observe how
this intervention affects the alignment with fMRI brain recordings acquired while partici-
pants read versus listened to the same naturalistic stories. We further contrast our findings
with speech-based language models, which would be expected to predict speech-evoked
brain activity better, provided they model language processing in the brain well. Using our
direct approach, we find that text-based and speech-based language models align well with
early sensory areas due to shared low-level features. Text-based models continue to align
well with later language regions even after removing these features, while, surprisingly,
speech-based models lose most of their alignment. These findings suggest that speech-
based models can be further improved to reflect brain-like language processing better.

Subba Reddy Oota, Emin Celik, Fatma Deniz, and Mariya Toneva. “Speech language
models lack important brain-relevant semantics”. Arxiv Preprint
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2 BACKGROUND AND RELATED WORK

The increasing availability of naturalistic fMRI datasets and large-scale neural models can
enable a better understanding of the brain’s response to natural stimuli. Just in the last few
years, researchers have shown that brain responses of people comprehending language can
be predicted well by text-based language models [Wehbe et al., 2014, Jain and Huth, 2018,
Toneva and Wehbe, 2019, Caucheteux and King, 2020, Schrimpf et al., 2021b]. Understand-
ing the processes that are involved in language comprehension has interested many philoso-
phers, linguists, psycholinguists, neurolinguists, and computer scientists. In this thesis, we
aim to bridge the empirical methodologies for understanding language comprehension in
the brain with language models designed to process language. This chapter summarizes the
relevant neurolinguistic findings about language in the brain and discusses the classical and
modern computational methods designed to process language.

2.1 LANGUAGE IN THE BRAIN

The invention of non-invasive imaging modalities that can sample large-scale brain activity
(as opposed to activity from only a few neurons at a time) has enabled neuroscientific studies
of cognitive functions, such as language, in healthy individuals. In this section, we give
details about the most popular non-invasive imaging modalities and summarize the previous
findings about language in the brain that these brain imaging modalities have enabled.

2.1.1 SAMPLING LANGUAGE IN THE BRAIN VIA BRAIN IMAGING
RECORDINGS

The most common non-invasive brain imaging modalities are Electroencephalography (EEG),
Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI).
These modalities present distinct advantages and drawbacks in capturing brain activity,
which we will provide a concise overview of below. Within the context of this thesis, we
leverage brain recordings obtained from two specific brain imaging modalities, fMRI and
MEG, which complement each other’s strengths.

FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) fMRI measures the Blood
Oxygen Level-Dependent (BOLD) signal, which refers to the change in oxygen levels in
the blood. When neurons in the brain are active, they consume more oxygen, increasing
blood flow to that specific region. A Magnetic Resonance Imaging device can detect this
change in blood flow because oxygenated and deoxygenated blood have different magnetic
properties, leading to a variation in magnetic signal. By tracking changes in blood flow,
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Figure 2.1: Non-invasive brain recordings: fMRI and MEG. This Figure is adapted from Toneva
et al. [2022].

fMRI creates maps that show which parts of the brain are involved in specific tasks, such as
sensory processing, motor function, language, visual, or memory. This change is called the
hemodynamic response function (HRF), and it refers to the pattern of changes in blood flow,
blood volume, and oxygenation that occurs in the brain in response to neuronal activity.
The HRF describes the characteristic time course of this hemodynamic response – the rise,
peak, and fall in blood oxygenation in a specific brain region following neural activity. For
example, in the language comprehension task, once neurons in a brain area are active, the
BOLD response takes about 12 seconds to return to its pre-activity baseline. The BOLD
response is typically sampled every 1 - 2 seconds. The spatial resolution of the fMRI image
depends mainly on the strength of the MRI magnet. A typical MRI with a 3T magnet
results in a sample of the BOLD response in every 1 - 2mm × 1 - 2mm × 1 - 2mm volume
pixel in the brain. A significant limitation of BOLD-based fMRI is that its measurements
correspond to blood flow and not actual neuronal activity.

MAGNETOENCEPHALOGRAPHY (MEG) Magnetoencephalography (MEG) is another non-
invasive, popular neuroimaging technique used to measure the magnetic fields produced by
the electrical activity in the brain. When neurons in the brain are active, they generate
electrical currents, and these currents produce small magnetic fields. MEG records these
magnetic fields, providing information about the timing and location of brain activity. One
of the critical strengths of MEG is its high temporal resolution. It can detect changes in
brain activity on the order of milliseconds, allowing researchers to study the precise timing
of neural events. MEG is often used in cognitive neuroscience and clinical applications
to study various brain functions, such as sensory processing, motor control, language, and
memory. It is beneficial in mapping brain activity associated with various cognitive tasks,
providing valuable information about the dynamics of neural processes.

Neuroimaging techniques like fMRI (functional Magnetic Resonance Imaging) and MEG
have superior temporal resolution, while fMRI typically has better spatial resolution.
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2.1 Language in the Brain

Figure 2.2: Summary of the stages of language processing in the brain. This Figure is adapted
from Friederici [2011].

2.1.2 INDIVIDUAL WORD PROCESSING

Using high temporal resolution brain imaging recordings, researchers have started decod-
ing the processing stages during language comprehension. These stages are outlined in
Fig. 2.2. Upon encountering a word through reading or listening, the respective visual or
auditory cortices are activated within 100 ms. Following this, at around 150 ms, the input
undergoes further processing as sequences of letters or phonemes. This occurs in the vi-
sual word form area during reading or in the posterior superior temporal gyrus and sulcus
(pSTG and pSTS) during listening. These areas show higher activity for language stimuli
than other visual or auditory inputs [Salmelin, 2007, Friederici, 2011]. Studies comparing
brain responses to actual and nonsensical words indicate that a word’s meaning is processed
between 200 and 600 milliseconds post-presentation, primarily involving the temporal cor-
tex [Salmelin, 2007, Friederici, 2011]. The subsequent stages of processing, which are
crucial for understanding sentences and longer language constructs, are further detailed in
Chapter 2.1.3.

WORD MEANING Language processing theories identify the temporal lobe as key to the
general retrieval and processing of words. However, these theories need more specifics on
how the brain represents the meaning of particular words or categories of words, such as
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tools, animals, and others. One hypothesis in neuroscience studies for representing concrete
concepts (like "dog") in the brain is the Grounded Cognition Model, also known as the Em-
bodied Cognition Model or the Simulation Model [Kemmerer, 2022]. This theory proposes
that concrete concepts are represented through associated perceptual experiences [Barsalou,
1999, Barsalou et al., 2008]. Research based on this hypothesis indicates that the semantic
attributes of concrete concepts are stored in a distributed yet organized way across the cor-
tex. Specifically, a particular semantic attribute (for example, an auditory feature) is stored
in the same cortical area responsible for related high-level sensory perception (like auditory
perception). Empirical evidence supports this organization for semantic attributes linked
to various senses, including color [Simmons et al., 2007], shape [Chao et al., 1999], mo-
tion [Damasio et al., 1996], and even olfaction and taste [Goldberg et al., 2006a,b]. Further
backing for this hypothesis comes from computational models that predicted fMRI record-
ings based on the semantic properties of words [Mitchell et al., 2008]. This study found
correlations between semantic properties and the functions of cortical regions where these
properties predicted fMRI activity. For instance, the semantic property of the verb "push"
significantly predicted activity in the motor cortex.

Integrating different semantic attributes into a higher-order representation is thought to be
facilitated by the bilateral anterior temporal lobes (ATL) [Visser et al., 2010]. The ATL plays
a crucial role in organizing these attributes, helping to differentiate between objects that fall
within or outside the scope of a specific concept. This representation is then accessible to
other brain areas for further processing.

Evidence supporting the ATL as a central hub for integrating semantic attributes comes
from various studies. Clinical observations have shown a strong correlation between the
progressive loss of object concept understanding and progressive atrophy in the ATL in pa-
tients [Bright et al., 2008]. Secondly, studies using repetitive Transcranial Magnetic Stimu-
lation (rTMS), an invasive imaging technique, demonstrate that temporarily disrupting the
ATL in healthy individuals impairs their ability to process object concepts [Pobric et al.,
2007, Ralph et al., 2009]. These findings collectively highlight the ATL’s pivotal role in
semantic attribute integration.

2.1.3 MULTI-WORD COMPOSITION

Comprehending a multi-word phrase involves more complex processing stages than those
required for individual word processing [Bhattasali et al., 2019]. Theories from linguistics
and cognitive psychology suggest that words are combined following various rule sets to
create a composite meaning. This summary explores the different hypothesized types of
composition and the evidence supporting these processes in the human brain.

SYNTACTIC COMPOSITION The grammar includes a set of rules for combining words.
For instance, an adjective followed by a noun typically forms a noun phrase. However,
syntactically correct combinations may not always make semantic sense, as in the example
“colorless green ideas sleep furiously" [Chomsky, 1957].

One marker for syntactic and logico-semantic composition in the brain is the P600 re-
sponse. This characteristic brain response is identified through electrophysiological record-
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Figure 2.3: Cortical organization of syntax. This Figure is adapted from Matchin and Hickok [2020].

ings like EEG or MEG. The P600 manifests as a positive shift in the recorded signal, occur-
ring between 500ms and 800ms after a stimulus is presented, peaking around 600ms. It is
primarily associated with syntactic violations [Kemmerer, 2014, Coulson et al., 1998] and
also with thematic role violations [Kutas et al., 2006, Kuperberg, 2007]. The generation of
the P600 is believed to occur in the bilateral temporal lobes, in areas posterior to where the
N400 response, which will be described subsequently, is generated [Service et al., 2007].

Fig.2.3 illustrates the neuroanatomy involved in the interface between the syntactic sys-
tem and the phonological and semantic networks, as outlined by Matchin and Hickok
[2020]. Auditory-based phonological features are processed in the pSTG region (Fig.2.3,
indigo), while the representation of hierarchical syntactic information occurs in the corti-
cal zone situated between the auditory-phonological and semantic zones. This cortical area
corresponds to the pMTG (Fig.2.3, green), which is proposed as the hub for hierarchical
lexical-syntactic processing.
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LOGICO-SEMANTIC COMPOSITION Logico-semantic composition is another set of rules
that focuses on forming predicate-argument structures [Pylkkänen, 2020]. Unlike syntac-
tic rules, logico-semantic composition deals with the meanings and relationships between
words, which are not always directly inferred from their syntactic arrangement [Partee and
Borschev, 2003]. Pylkkänen [2020] demonstrates this difference using phrases with similar
syntactic structures but different meanings: ’she liked my eye color’ versus ’she guessed my
eye color’. The disparity becomes clearer when ’eye color’ is replaced with ’eyes’. While
’She liked my eyes’ sounds correct, ’she guessed my eyes’ does not. This inconsistency
arises because verbs like ’guess’ and ’like’ carry different semantic requirements [Nathan,
2006]. ’Guess’ typically needs a question as its argument. Nouns that denote relations, such
as ’color’, can be transformed into a question format, while nouns representing entities, like
’eyes’, cannot. This illustrates how logico-semantic composition governs the compatibility
and meaning of word combinations beyond their syntactic structure.

The N400, like the P600, is a prototypical brain response occurring between 200ms and
600ms following the presentation of a stimulus [Kutas and Federmeier, 2011]. It is associ-
ated with the semantic processing effort required to integrate a word into a specific context
[Kutas et al., 2006]. The generation of the N400 is believed to primarily involve the tem-
poral lobes on both sides of the brain, specifically the superior temporal gyrus (STG) and
middle temporal gyrus (MTG). Research by Kutas and Federmeier [2011] and Kutas et al.
[2006] has particularly highlighted these areas about the N400. Unlike the P600, the N400
is generally not influenced by syntax, as studies such as Allen et al. [2003] indicate. This
response is more closely tied to the processing of meaning rather than language structure.

CONCEPTUAL COMPOSITION Syntactic and logico-semantic compositions do not en-
compass the conceptual content of combined words. This gap is addressed by a third type
of composition: conceptual composition [Pylkkänen, 2020]. Conceptual composition has
been a focus in cognitive psychology, particularly in adjective-noun and noun-noun com-
positions [Murphy, 1990, Smith and Osherson, 1984, Hampton, 2013]. The left anterior
temporal lobe (LATL) is considered a key site for conceptual composition, with its activ-
ity extending beyond what can be explained by syntactic and logico-semantic compositions
alone [Pylkkänen, 2020]. For instance, Pylkkänen [2020] found that no adjective-noun
combination uniformly triggered LATL activation. Instead, it depended on the specific con-
cepts described by the words and their meaning specificity [Westerlund and Pylkkänen,
2014, Zhang and Pylkkänen, 2015, Ziegler and Pylkkänen, 2016]. The underlying hypoth-
esis is that conceptual composition in the LATL is driven by how integrating the first word
modifies the feature space of the second word [Pylkkänen, 2020]. If the second word is
general, its feature space is relatively sparse, allowing the first word to contribute signif-
icantly to the final composed meaning. Conversely, a particular first word can also add
many features. From this, it follows that combinations with more specific first words and
more general second words would produce pronounced conceptual composition effects in
the LATL.
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2.2 LANGUAGE IN AI MODELS

To understand brain language processing, older methods for text-based stimulus represen-
tation include text corpus co-occurrence counts, topic models, syntactic, and discourse fea-
tures. Recently, semantic and experiential attribute models have been explored for text-
based stimuli. Semantic representation models include distributed word embeddings, sen-
tence representation models, recurrent neural networks (RNNs), and Transformer-based
language models [Vaswani et al., 2017].

2.2.1 NATURAL LANGUAGE PROCESSING SYSTEMS

Over the past decade, neural networks have experienced a transformative evolution driven
by the availability of larger datasets, increased computational power, and advanced opti-
mization methods. In language processing, these advancements have enabled multi-layer
neural networks to extract meaning from word sequences and execute a wide range of com-
plex linguistic tasks. A pivotal development in Natural Language Processing (NLP) systems
is their ability to learn statistics through a simple yet effective objective called language
modeling. This language modeling objective, foundational even in early neural network
research by Elman [1991], initially emerged within cognitive science before its integration
into modern NLP frameworks. Language modeling involves training the system to predict
the next word based on preceding context [Elman, 1991, Mikolov et al., 2013b, Graves
and Graves, 2012]. Although it seems straightforward, language modeling has become a
powerful technique in NLP, serving as a foundation for teaching networks a general under-
standing of language statistics during a pretraining phase. This pretraining phase is crucial
as it typically precedes a secondary phase where the network is fine-tuned to perform spe-
cific tasks [Devlin et al., 2019, Radford et al., 2019]. The NLP system’s parameters are
refined to enhance task-specific performance in this fine-tuning stage. This dissertation uti-
lizes publicly available NLP systems that have undergone extensive pretraining on large text
corpora. We focus on four specific language models: ELMo [Peters et al., 2018], which is
based on recurrent neural network architecture, BERT [Devlin et al., 2019], which employs
encoder transformer-based architecture, GPT-2 [Radford et al., 2019], which employs de-
coder transformer-based architecture and Longformer [Beltagy et al., 2020], which employs
encoder transformer-based architecture designed for longer context lengths. Further details
about each system are provided in the subsequent sections.

2.2.2 DISTRIBUTED WORD REPRESENTATIONS

Distributed word representations capture many precise syntactic and semantic word rela-
tionships in text classification problems.

• Word2Vec Embeddings Word2Vec model provides a non-deterministic way to de-
termine the word representations [Mikolov et al., 2013b]. Here, the word “non-
deterministic" primarily refers to the aspect of Word2vec training process where the
initialization of weights and the sequence of training samples can affect the final word
embeddings. This variability means that running the Word2Vec model multiple times
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can lead to slightly different word embeddings each time, even if the training data
remains the same. Further, It can learn similar word vectors for words in a similar
context.

• GloVe Embeddings The input used in the GloVe model is a non-zero word-word
co-occurrence matrix [Pennington et al., 2014], which adds the global context in-
formation by default, unlike the use of local context in Word2Vec [Mikolov et al.,
2013b].

• FastText Embeddings Since the FastText model considers the bag of character n-
grams to represent each word, it allows us to compute rare word representations [Joulin
et al., 2017].

2.2.3 PRETRAINED LANGAUGE MODELS

EMBEDDINGS FROM LANGUAGE MODELS (ELMO)

ELMo, a recurrence-based NLP system, utilizes multiple layers of Long Short-Term Mem-
ory units (LSTMs) to process language [Peters et al., 2018]. In ELMo, for each word token
t, an LSTM layer l generates a hidden representation hlt using a series of update equations.
These equations involve a combination of learned weights (wc, wf , wi, wo), biases (bc, bf ,
bi, bo), and gate states (forget gate ft, output gate ot, input gate it). The LSTM updates
the cell state ct and hidden state hlt as follows: For a word token t, an LSTM generates the
corresponding hidden representation hlt in layer l using the following update equations:

c̃ = tanh(wc[h
l
t−1;h

l−1
t ] + bc)

ct = ft × ct−1 + it × c̃t

hlt = ot × tanh(ct)

where bc and wc represent the learned bias and weight, and ft, ot, and it represent the forget,
output, and input gates. The states of the gates are computed according to the following
equations:

ft = σ(wf [h
l
t−1;h

l−1
t ] + bf )

it = σ(wi[h
l
t−1;h

l−1
t ] + bi)

ot = σ(wo[h
l
t−1;h

l−1
t ] + bo),

where σ(x) represents the sigmoid function and bx and wx represent the learned bias and
weight of the corresponding gate. The learned parameters are trained to predict the identity
of a word given a series of preceding words, in a large text corpus.

ELMo’s architecture combines the internal representations from two independent LSTMs
for each word token: a forward LSTM that processes previous words and a backward LSTM
that considers future words. This dissertation uses a pre-trained version of ELMo with two
hidden LSTM layers, as provided by Gardner et al. [2018]. Each independent LSTM (for-
ward and backward) in this version has a 512-dimensional hidden state, and the system has
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Figure 2.4: Transformer model architecture and its variants: BERT [Devlin et al., 2019] and
GPT2 [Radford et al., 2019]. The Transformer model architecture is adapted from
Vaswani et al. [2017].

13.6 million parameters. ELMo was trained on the One Billion Word Benchmark [Chelba
et al., 2014], a dataset comprising approximately 800 million tokens of news crawl data
from WMT 2011.

REPRESENTATIONS FROM TRANSFORMERS

Figure 2.5: BERT model workflow. (1) Self-attention with Bi-direction context. (2) Word prediction
with MLM modeling.

Transformer [Vaswani et al., 2017] is a prominent deep learning model that has been
widely adopted in various fields, such as natural language processing (NLP), computer
vision (CV), and speech processing. Transformer was initially proposed as a sequence-
to-sequence model [Vaswani et al., 2017] for machine translation. Later works show that
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Transformer-based pre-trained models (PTMs) can achieve state-of-the-art performances on
various tasks.

BIDIRECTIONAL ENCODER REPRESENTATIONS FOR TRANSFORMERS (BERT) BERT
is a pre-trained language model [Devlin et al., 2019] that provides bi-directional contextual
information, while earlier methods have uni-directional context, as shown in Fig. 2.4. The
bidirectional context means it considers both left and right-context words when encoding a
word, as shown in Fig. 2.5. BERT leverages a multi-layer transformer architecture and the
masked language modeling (MLM) objective to learn contextual representations of words
in a bidirectional manner, making it highly effective for various NLP tasks. During training,
a portion of the input tokens is randomly masked, and the model is trained to predict these
masked tokens. BERT consists of multiple layers of transformer encoders. The follow-
ing components can represent a single transformer layer: (1) Self-Attention Mechanism,
(2) Multi-Head Attention, (3) Position-wise Feed-Forward Network, and (4) Layer Nor-
malization. The BERT-base-uncased model consists of 12 transformer blocks, 768 hidden
dimensions, 12 self-attention blocks, and 110 million parameters in total. On the other hand,
the BERT-large-uncased model consists of 24 transformer blocks, 1024 hidden dimensions,
and 16 self-attention blocks.

GENERALIZED PRETRAINED TRANSFORMER (GPT-2) GPT-2 is a unidirectional trans-
former model [Radford et al., 2019] designed for generative tasks, such as text generation.
It is autoregressive, meaning it generates text one token at a time, conditioning on the pre-
viously generated tokens, as shown in Fig. 2.6. Similar to BERT, GPT-2 is a pre-trained
model, which means it was initially trained on a large corpus of text data before being
fine-tuned for specific tasks. This pre-training allows the model to understand and gen-
erate human-like text. GPT-2 comes in different sizes, with the most significant variant
having 1.5 billion parameters. The model’s size (regarding the number of parameters) di-
rectly correlates with its ability to understand and generate more complex text. Recently,
OpenAI released more advanced models like GPT-3, GPT-3.5, and GPT-4, which further
improved natural language understanding and generation capabilities. GPT-3+ models are
much larger than GPT-2 (with 175 billion parameters in GPT-3) and are capable of even
more sophisticated tasks.

LONGFORMER Transformer models like BERT [Devlin et al., 2019], RoBERTa [Liu
et al., 2019], or GPT2 [Radford et al., 2019] are typically pretrained to process up to 512 to-
kens. This is problematic because real-world data can be arbitrarily long. As such, different
models and strategies have been proposed to process longer sequences. One such model is
Longformer [Beltagy et al., 2020], designed to process longer input sequences based on ef-
ficient self-attention that scales linearly with the length of the input sequence. Longformer
also truncates the input, but it has the capacity to process up to 4,096 tokens rather than 512
tokens as in BERT or GPT2. Additionally, there are other Transformer models like BigBird
and Longformer Encoder Decoder (LED) that can process even longer sequences beyond
4,096 tokens.
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Figure 2.6: GPT-2 model workflow. (1) Masked Self-attention with Uni-direction context. (2) Word
prediction with CLM modeling.

2.2.4 LINGUISTIC PROPERTIES CAPTURED BY NLP SYSTEMS

Probing tasks [Adi et al., 2017, Hupkes et al., 2018, Jawahar et al., 2019, Mohebbi et al.,
2021] help unpack the linguistic features possibly encoded in neural language models.
These probing tasks are formulated as prediction tasks and focus on several aspects of sen-
tence structure. To understand the degree to which various English language structures are
encoded in Transformer-based encoders (BERT), Jawahar et al. [2019] focused on these
probing tasks including surface, syntactic and semantic, and shown that BERT captures
a rich hierarchy of linguistic information, with early layers encode surface information,
intermediate layers encode syntactic information and higher layers encode semantic infor-
mation, as shown in Fig. 2.7. Surface tasks probe for sentence length (SL) and word content
(WC) for the presence of words in the sentence. Syntactic tasks test for sensitivity to word
order (BShift) and the depth of the syntactic tree (TreeDepth). Semantic tasks check for
the subject (respectively direct object) number in the main clause (SubjNum, respectively
ObjNum).

In a similar study, Tenney et al. [2019] employed the edge probing tasks such as part-of-
speech, constituents, dependencies, named entities, semantic roles, coreference, semantic
proto-roles, and relation classification, defined by Tenney et al. [2018] to show the hier-
archy of encoded knowledge through BERT layers, as shown in Fig. 2.8. Moreover, they
observed that while most of the syntactic information can be localized in a few layers, se-
mantic knowledge tends to spread across the entire network. Both studies were aimed at
discovering the extent of linguistic information encoded across different layers.
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Figure 2.7: BERT composes a hierarchy of linguistic signals ranging from surface to semantic fea-
tures [Jawahar et al., 2019]. This Table is adapted from Jawahar et al. [2019].

Figure 2.8: Edge Probing model architecture [Tenney et al., 2019]. Local syntax (word-level) cap-
tured at initial-middle layers and High-level semantics captured at later layers. This Fig-
ure is adapted from Tenney et al. [2019].
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3 DEEP NEURAL NETWORKS AND

BRAIN ALIGNMENT (REVIEW)

Can we obtain insights about the brain using AI models? How is the information in deep
learning models related to brain recordings? Can we improve AI models with the help
of brain recordings? Such questions can be tackled by studying brain recordings like
functional magnetic resonance imaging (fMRI). As a first step, the neuroscience commu-
nity has contributed several large cognitive neuroscience datasets related to passive read-
ing/listening/viewing of concept words, narratives, pictures and movies. Encoding and de-
coding models using these datasets have also been proposed in the past two decades. These
models serve as additional tools for basic research in cognitive science and neuroscience.
Encoding models aim at generating fMRI brain representations given a stimulus automat-
ically. They have several practical applications in evaluating and diagnosing neurological
conditions and thus may also help design therapies for brain damage. Decoding models
solve the inverse problem of reconstructing the stimuli given the fMRI. They are useful
for designing brain-machine or brain-computer interfaces. Inspired by the effectiveness of
deep learning models for natural language processing, computer vision, and speech, several
neural encoding and decoding models have been recently proposed. In this survey, we will
first discuss popular representations of language, vision and speech stimuli, and present a
summary of neuroscience datasets. Further, we will review popular deep learning based en-
coding and decoding architectures and note their benefits and limitations. Finally, we will
conclude with a brief summary and discussion about future trends. Given the large amount
of recently published work in the computational cognitive neuroscience (CCN) community,
we believe that this survey enables an entry point for DNN researchers to diversify into
CCN research.

This chapter has been finalized based on our submission to the Transactions on Machine
Learning Research (TMLR) journal, which is currently under review [Oota et al., 2023b].

Subba Reddy Oota, Manish Gupta, Bapi Raju Surampudi, Gael Jobard, Mariya Toneva,
Frederic Alexandre, Xavier Hinaut, Deep Neural Networks and Brain Alignment: Brain
Encoding and Decoding (Survey)
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Figure 3.1: Brain Encoding and Decoding: Datasets & Stimulus Representations. In this Figure, the
encoding and decoding sub Figure is adapted from Ivanova et al. [2022].

3.1 INTRODUCTION

The central aim of neuroscience is to unravel how the brain represents information and
processes it to carry out various tasks (visual, linguistic, auditory, etc.). Two important
models related to how brain represents information are, how external stimuli are repre-
sented in the form of neural responses (the encoding model) and how stimuli are recovered
or reconstructed from the neuronal responses (the decoding model). The recent progress
in deep neural networks in processing visual, auditory, linguistics, and multimodal stimuli
makes one wonder if we could investigate these computational models and shed light on
how the brain solves these problems. Thus, deep neural networks (DNN) may offer a com-
putational medium to capture the unprecedented complexity and richness of brain activity,
leading to accurate encoding and decoding solutions. Previous surveys, Cao et al. [2021]
and Karamolegkou et al. [2023], have primarily focused on brain encoding and decoding
studies for language stimuli. But recent attempts in cognitive neuroscience have focused on
naturalistic and multimodal stimuli using DNNs. Hence, this survey systematically summa-
rizes the latest encoding and decoding efforts on (i) how DNNs have begun to explain the
underlying information processing in the brain for naturalistic stimuli of various modalities,
(ii) the ways in which DNN models may be improved using the brain data, and (iii) the
exploration of the shared underlying characteristics of both the systems.

The survey aims at introducing the problems in Computational Cognitive Neuroscience
(CCN) problems to AI researchers familiar with recent advances in deep neural networks
(DNNs). Therefore, in this survey we do not delve into architectural details and the learning
procedures for DNNs but highlight how the advances in DNNs are used for addressing CCN
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problems. This enables an entry point for DNN researchers to diversify into CCN research.
The key takeaways of the survey are

1. Clear exposition of various opensource ecological stimuli datasets available and a
curated GitHub repository for quick start of a study

2. An accessible taxonomy of models and approaches

3. A collection of open research problems in this fast-breaking research domain

Brain encoding and decoding: Two main tools studied in cognitive neuroscience are brain
encoding and brain decoding, as shown in Figure 3.1. Encoding is learning the mapping e
from the stimuli S to the neural activation F . The mapping can be learned using features
engineering or deep neural networks. On the other hand, decoding constitutes learning
mapping d, which predicts stimuli S back from the brain activation F . However, in most
cases, brain decoding aims to predict a stimulus representation R rather than reconstructing
S. In both cases, the first step is to learn a semantic representation R of the stimuli S at the
train time. Next, a regression function e : R → F is trained for encoding. For decoding,
a function d : F → R is trained. These functions d and e can then be used at test time to
process new stimuli and brain activations. Ridge regression is the most popular choice for
the functions d and e.

To study the brain response to various modalities of stimuli, neuroscience researchers
have curated several datasets. These datasets consist of stimuli and corresponding brain
activity while participants interact with the stimuli and optionally perform tasks such as
language comprehension, visual and auditory processing, etc. Next, we discuss various
techniques for obtaining the brain recordings and methods for representing stimuli.
Techniques for recording brain activations: Popular techniques for recording brain ac-
tivations can be broadly classified into invasive and non-invasive techniques, as shown in
Figure 3.2. Invasive techniques include single Micro-Electrode (ME), Micro-Electrode ar-
ray (MEA), and Electro-Corticography (ECoG). The non-invasive recording techniques in-
clude functional magnetic resonance imaging (fMRI), Magneto-encephalography (MEG),
Electro-encephalography (EEG), and Near-Infrared Spectroscopy (NIRS). Apart from the
dimension of invasiveness, these techniques differ in their spatial resolution of neural record-
ing and temporal resolution. fMRI recording enables data acquisition at high spatial but low
temporal resolution. Hence, they are suitable for examining which brain parts handle crit-
ical functions. A typical whole brain fMRI acquisition takes 1-4 seconds to complete a
scan. This is far slower than the speed at which humans can process language. On the other
hand, both MEG and EEG have high temporal but low spatial resolution. They can preserve
rich syntactic information but cannot be used for source analysis [Hale et al., 2018]. fNIRS
offers a compromise option. The time resolution is better than fMRI, and spatial resolution
is better than EEG. However, this spatial and temporal resolution balance may not compen-
sate for both loss and its restriction in terms of only recording cortical activity but not from
nuclei deeper in the brain such as the basal ganglia, amygdala, hippocampus, etc.
Stimulus Representations: Neuroscience datasets contain stimuli across various modali-
ties, including text, visual, audio, video, and other multimodal forms. Representations differ
based on the modality.
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Figure 3.2: Overview of different brain–machine interfacing methods and their spatial and temporal
resolution. Methods included: electroencephalography (EEG), magnetoencephalogra-
phy (MEG), near-infrared spectroscopy (NIRS), functional magnetic resonance imaging
(fMRI), electrocorticography (ECoG), microelectrode array (MEA) recordings and sin-
gle microelectrode (ME) recordings. This Figure is reproduced from Van Gerven et al.
[2009].

We briefly discuss the extraction of stimulus representations from DNN models accord-
ing to the following criteria: (1) Traditional and advanced models for text-based stimulus
representations. (2) Image-based representations from deep vision models. (3) Extraction
of low-level speech to Transformer-based speech-based auditory representations. (4) Fi-
nally, for multimodal stimulus representations, we explore both early fusion and late fusion
deep learning methods. Early fusion methods combine information across modalities at the
initial processing stages, whereas late fusion combines it only at the end. Further details on
different stimulus representation methods are discussed in Section 3.2.

Naturalistic Neuroscience Datasets: Several neuroscience datasets have been proposed
across modalities (see Figure 3.3). These datasets differ in terms of the following criteria:
(1) Method for recording activations: fMRI, EEG, MEG, etc. (2) Repetition time (TR),
i.e., the sampling rate. (3) Characteristics of fixation points: location, color, shape. (4)
Form of stimuli presentation: text, video, audio, images, or multimodality. (5) Task that
participant performs during recording sessions: question answering, property generation,
rating quality, etc. (6) Time given to participants for the task, e.g., 1 minute to list properties.
(7) Demography of participants: males or females, sighted or blind, etc. (8) Number of
times the response to stimuli was recorded. (9) Natural language associated with the stimuli.
We discuss details of proposed datasets in Sec. 5.2.

Evaluation of Brain Encoding and Decoding Methods: 2V2 accuracy and Pearson Cor-
relation are two famous metrics for evaluating brain encoding models. On the other hand,
brain decoding models are evaluated using metrics such as pairwise accuracy, rank accu-
racy, R2 score, and mean squared error. We discuss the detailed definitions of these metrics
in Sec. 6.4.3.

Computational Cognitive Neuroscience (CCN) Research goals: CCN researchers have
primarily focused on two main areas [Doerig et al., 2023].
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BOLD5000

Subset of Moth Radio Hour Pereira dataset

ShortClips

Natural Scenes Dataset (NSD)

Figure 3.3: Representative Samples of Naturalistic Brain Datasets: (Left) Brain activity recorded
when subjects are reading and listening to the same narrative [Deniz et al.,
2019], and (Right) example naturalistic stimuli from various public repositories:
BOLD5000 [Chang et al., 2019], ShortClips [Huth et al., 2022], Natural Scenes Dataset
(NSD) [Allen et al., 2022] and Pereira dataset [Pereira et al., 2018].

1. Improving predictive accuracy. In this area, the work is around the following ques-
tions.

• Compare feature sets: Which feature set provides the most faithful reflection of
the neural representational space?

• Test feature decodability: “Does neural data Y contain information about fea-
tures X?”

• Build accurate models of brain data: The aim is to enable the simulation of
neuroscience experiments.

2. Interpretability. In this area, the work is around the following questions.

• Examine individual features: Which contribute most to neural activity?

• Test correspondences between representational spaces: “CNNs vs ventral visual
stream” or “Two text representations”.

• Interpret feature sets: Do features X, generated by a known process, accurately
describe the space of neural responses Y? Do voxels respond to a single feature
or exhibit mixed selectivity?

• How does the mapping relate to other brain function models or theories?

We discuss these questions in Sections 3.5 and 3.6.
Brain encoding literature [Mitchell et al., 2008, Wehbe et al., 2014, Huth et al., 2016]

has focused on studying several important aspects: (1) Which models lead to better predic-
tive accuracy across modalities? [Toneva and Wehbe, 2019, Deniz et al., 2019, Schrimpf
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et al., 2021b] (2) How can we disentangle the contributions of syntax and semantics from
language model representations to the alignment between brain recordings and language
models? [Lopopolo et al., 2017, Reddy and Wehbe, 2021] (3) Why do some representations
lead to better brain predictions? How are deep learning models and brains aligned regarding
their information processing pipelines? [Merlin and Toneva, 2022, Aw and Toneva, 2023]
(4) Does joint encoding of task and stimulus representations help? [Oota et al., 2023c]. We
discuss these details of encoding methods in Sec. 3.5.

Brain decoding models aim to understand what a subject is thinking, seeing, and perceiv-
ing by analyzing neural recordings. Over the past decades, using non-invasive recordings,
the brain-computer interface (BCI) has made significant progress in decoding stimuli (lan-
guage/images/speech) from the brain. Like brain encoding literature, decoding literature
studies a few essential aspects: (1) In the context of language, how we compose the lin-
guistic meaning from different stimuli such as text, images, videos, or speech by analyzing
the evoked brain activity [Pereira et al., 2016, 2018]. (2) Given brain activations corre-
sponding to visual stimuli, how accurately can we decode a sentence representing the visual
stimuli? [Nishimoto et al., 2011, Beliy et al., 2019] (3) How can we decode natural speech
processing from non-invasive brain recordings using a single architecture and a data-driven
approach? [Denk et al., 2023] (4) How accurately can we reconstruct perceived natural
images or decode their semantic contents from non-invasive recording data using popular
deep learning models? [Takagi and Nishimoto, 2023a]. We discuss these details of decoding
methods in Sec. 3.6.

3.2 STIMULUS REPRESENTATIONS

This section discusses types of stimulus representations proposed in the literature across
different modalities: text, visual, audio, video, and other multimodal stimuli.
Text Stimulus Representations: Older methods for text-based stimuli representation in-
clude text corpus co-occurrence counts [Mitchell et al., 2008, Pereira et al., 2013, Huth
et al., 2016], topic models [Pereira et al., 2013], syntactic features and discourse fea-
tures [Wehbe et al., 2014]. Recently, for text-based stimuli, both semantic models and
experiential attribute models have been explored. Semantic representation models include
word embedding methods [Pereira et al., 2018, Wang et al., 2020b, Pereira et al., 2016,
Toneva and Wehbe, 2019, Anderson et al., 2017a, Oota et al., 2018], sentence represen-
tation models [Sun et al., 2020, 2019, Toneva and Wehbe, 2019], RNNs [Jain and Huth,
2018, Oota et al., 2019] and Transformer methods [Gauthier and Levy, 2019, Toneva and
Wehbe, 2019, Schwartz et al., 2019, Schrimpf et al., 2021b, Antonello et al., 2021, Oota
et al., 2022c, Aw and Toneva, 2023]. Popular word embedding methods include textual
(i.e., Word2Vec [Mikolov et al., 2013a], fastText [Bojanowski et al., 2017], and GloVe [Pen-
nington et al., 2014]), linguistic (i.e., dependency), conceptual (i.e., RWSGwn [Goikoetxea
et al., 2015] and ConceptNet [Speer et al., 2017]), contextual (i.e., ELMo [Peters et al.,
2018]). Famous sentence embedding models include average, max, concat of avg and max,
SIF [Arora et al., 2017], SkipThoughts [Kiros et al., 2015], GenSen [Subramanian et al.,
2018], InferSent [Conneau et al., 2017], ELMo, BERT [Devlin et al., 2019], RoBERTa [Liu
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Figure 3.4: Context representation of several orders: Past / Future context is constructed by consid-
ering words preceding / succeeding the current word (see Past / Future context illustrated
for current word vehicle for various orders).

et al., 2019], USE [Cer et al., 2018], QuickThoughts [Logeswaran and Lee, 2018] and GPT-
2 [Radford et al., 2019]. Transformer-based methods include pretrained BERT with various
NLU tasks, finetuned BERT, Transformer-XL [Dai et al., 2019], GPT-2, BART [Lewis et al.,
2020], BigBird [Zaheer et al., 2020], Longformer [Beltagy et al., 2020], and LongT5 [Guo
et al., 2022]. Experiential attribute models represent words in terms of human ratings of
their degree of association with different attributes of experience, typically on a scale of 0-
6 [Anderson et al., 2019, 2020, Berezutskaya et al., 2020, Just et al., 2010, Anderson et al.,
2017b] or binary [Handjaras et al., 2016, Wang et al., 2017].

In the practice of employing word embeddings, encoding studies often utilize the average
of word representations within a given context or derive complete sentence representations
through sentence embedding models. More recently, brain encoding research has shifted
towards the use of contextualized word representations, examining how the amount of con-
text affects the brain predictivity [Jain and Huth, 2018, Toneva and Wehbe, 2019]. To obtain
these contextualized word representations, Figure 3.4 illustrates how Past / Future context
is constructed by considering words preceding / succeeding the current word. Given the
constrained context length, each word is successively input to the network with at most C
previous tokens. For instance, given a story of M words and considering the context length
of 20, while the third word’s vector is computed by inputting the network with (w1, w2,
w3), the last word’s vectors wM is computed by inputting the network with (wM−20, . . . ,
wM ).
Visual Stimulus Representations: For visual stimuli, older methods used visual field filter
bank [Thirion et al., 2006, Nishimoto et al., 2011] and Gabor wavelet pyramid [Kay et al.,
2008, Naselaris et al., 2009]. As shown in Figure 3.5, recent methods use models like
CNNs [Du et al., 2020, Beliy et al., 2019, Anderson et al., 2017a, Yamins et al., 2014,
Nishida et al., 2020] and concept recognition models [Anderson et al., 2020].
Audio Stimuli Representations: For audio stimuli, phoneme rate and presence of phonemes
have been leveraged [Huth et al., 2016]. Further, low-level speech features like filter banks
(FBank), Mel Spectrogram, and MFCC from raw audio files, phonological features, artic-
ulation and power spectrum (PowSpec) feature vectors were used in Deniz et al. [2019].
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Figure 3.5: Extraction of image representations: Prior research has explored the impact of various
layer-wise image representations from CNN models [Yamins et al., 2014, Horikawa and
Kamitani, 2017], for both brain encoding and decoding models. The plot of the image
feature extraction was derived from the study by Horikawa and Kamitani [2017].

Recently, Nishida et al. [2020] used features from an audio deep learning model called
SoundNet for audio stimuli representation. To extract representations from Transformer-
based speech models such as Wav2Vec2.0, HuBERT and Whisper, Vaidya et al. [2022],
Antonello et al. [2024], Oota et al. [2023a] varied the length of the time windows from
16, 32, to 64 seconds, with strides ranging from 10 to 100 milliseconds, as illustrated in
Figure 3.6. Moreover, these studies utilized an autoregressive approach to derive speech
representations. This method involves considering the representations of the last frame
within each window, allowing for the capture of temporal dynamics and contextual nuances
in speech.
Multimodal Stimulus Representations: To jointly model the information from multi-
modal stimuli, recently, various multimodal representations have been used. These include
processing videos using audio+image representations like VGG [Simonyan and Zisserman,
2015] and SoundNet [Aytar et al., 2016] in Nishida et al. [2020] or using image+text com-
bination models like GloVe+VGG and ELMo+VGG in Wang et al. [2020b]. Recently,
the usage of multimodal text+vision models like Contrastive Language-Image Pretrain-
ing (CLIP) [Radford et al., 2021], Learning Cross-Modality Encoder Representations from
Transformers (LXMERT) [Tan and Bansal, 2019], and VisualBERT [Li et al., 2019] was
proposed in Oota et al. [2022f].

3.3 NATURALISTIC NEUROSCIENCE DATASETS

In this section, we discuss the popular text, visual, audio, video and other multimodal neu-
roscience datasets that have been proposed in the literature. Table 3.1 shows a detailed
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Figure 3.6: Representation of the last frame within each window allows for the capture of temporal
dynamics and contextual nuances in the speech signal. The length of the time window is
typically varied from 16, 32, to 64 secs, with strides ranging from 10 to 100 milliseconds.

overview of brain recording type, language, stimulus, number of subjects (|S|) and the task
across datasets of different modalities. Figure 3.3 shows examples from a few datasets.
Text Datasets: These datasets are created by presenting words, sentences, passages, or
chapters as stimuli. Some of the text datasets include Harry Potter Story [Wehbe et al.,
2014], ZuCo EEG [Hollenstein et al., 2018] and datasets proposed in Handjaras et al.
[2016], Anderson et al. [2017a, 2019], Wehbe et al. [2014]. In Handjaras et al. [2016],
participants were asked to verbally enumerate in one minute the properties (features) that
describe the entities the words refer to. There were four groups of participants: 5 sighted
individuals were presented with a pictorial form of the nouns, five sighted individuals with
a verbal-visual (i.e., written Italian words) form, 5 sighted individuals with a verbal au-
ditory (i.e., spoken Italian words) form, and 5 congenitally blind with a verbal auditory
form. Data proposed by Anderson et al. [2017a] contains 70 Italian words taken from seven
taxonomic categories (abstract, attribute, communication, event/action, person/social role,
location, object/tool) in the law and music domain. The word list contains concrete as well
as abstract words. ZuCo dataset [Hollenstein et al., 2018] contains sentences for which
EEG recordings were obtained for three tasks: regular reading of movie reviews, normal
reading of Wikipedia sentences, and task-specific reading of Wikipedia sentences. For this
dataset curation, sentences were presented to the subjects in a naturalistic reading scenario.
A complete sentence is presented on the screen. Subjects read each sentence at their own
speed, i.e., the reader determines how long each word is fixated on and which word to fixate
on next.
Visual Datasets: Older visual datasets were based on binary visual patterns [Thirion et al.,
2006]. Recent datasets contain natural images. Examples include Vim-1 [Kay et al., 2008],
BOLD5000 [Chang et al., 2019], Algonauts [Cichy et al., 2019], NSD [Allen et al., 2022],
Things-data [Hebart et al., 2023], and the dataset proposed in Horikawa and Kamitani
[2017]. BOLD5000 includes ∼20 hours of MRI scans per each of the four participants.
4,916 unique images were used as stimuli from 3 image sources. Algonauts contains two
sets of training data, each consisting of an image set and brain activity in RDM format
(for fMRI and MEG). Training set 1 has 92 silhouette object images, and training set 2
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Dataset Authors Type Lang. Stimulus |S| Task

Te
xt

Harry Potter Wehbe et al. [2014] fMRI/
MEG

English Reading Chapter 9 of Harry Potter and the Sorcerer’s Stone 9 Story understanding

- Handjaras et al. [2016] fMRI Italian Verbal, pictorial or auditory presentation of 40 concrete nouns,
four times

20 Property Generation

- Anderson et al. [2017a] fMRI Italian Reading 70 concrete and abstract nouns from law/music, five
times

7 Imagine a situation with
noun

ZuCo Hollenstein et al. [2018] EEG English Reading 1107 sentences with 21,629 words from movie reviews 12 Rate movie quality
240 Sentences with Content
Words

Anderson et al. [2019] fMRI English Reading 240 active voice sentences describing everyday situa-
tions

14 Passive reading

BCCWJ-EEG [Oseki and Asahara, 2020] EEG Japanese Reading 20 newspaper articles for ∼30-40 minutes 40 Passive reading
Subset Moth Radio Hour Deniz et al. [2019] fMRI English Reading 11 stories 9 Passive reading and Lis-

tening

V
is

ua
l

- Thirion et al. [2006] fMRI - Viewing rotating wedges (8 times), expanding/contracting rings
(8 times), rotating 36 Gabor filters (4 times), grid (36 times)

9 Passive viewing

Vim-1 Kay et al. [2008] fMRI - Viewing sequences of 1870 natural photos 2 Passive viewing
Generic Object Decoder Horikawa and Kamitani

[2017]
fMRI - Viewing 1,200 images from 150 object categories; 50 images

from 50 object categories; imagery 10 times
5 Repetition detection

BOLD5000 Chang et al. [2019] fMRI - Viewing 5254 images depicting real-world scenes 4 Passive viewing
Algonauts Cichy et al. [2019] fMRI/

MEG
- Viewing 92 silhouette object images and 118 images of objects

on natural background
15 Passive viewing

NSD [Allen et al., 2022] fMRI - Viewing 73000 natural scenes 8 Passive viewing
THINGS [Hebart et al., 2023] fMRI/

MEG
- Viewing 31188 natural images 8 Oddball Detection

A
ud

io

- Handjaras et al. [2016] fMRI Italian Verbal, pictorial or auditory presentation of 40 concrete nouns,
4 times

20 Property Generation

The Moth Radio Hour Huth et al. [2016] fMRI English Listening eleven 10-minute stories 7 Passive Listening
Narrative Brain Dataset Lopopolo et al. [2018] fMRI Dutch Spoken presentation of short excerpts of three stories 24 Passive Listening
- Brennan and Hale [2019] EEG English Listening Chapter one of Alice’s Adventures in Wonderland

(2,129 words in 84 sentences) as read by Kristen McQuillan
33 Question answering

- Anderson et al. [2020] fMRI English Listening one of 20 scenario names, 5 times 26 Imagine personal experi-
encs

Narratives Nastase et al. [2020b] fMRI English Listening 27 diverse naturalistic spoken stories. 891 functional
scans

345 Passive Listening

Natural Stories Zhang et al. [2020a] fMRI English Listening Moth-Radio-Hour naturalistic spoken stories. 19 Passive Listening
The Little Prince Li et al. [2021] fMRI English,

Chi-
nese,
French

Listening audiobook for about 100 minutes. 112 Passive Listening

MEG-MASC Gwilliams et al. [2023a] MEG English Listening two hours of naturalistic stories. 208 MEG sensors 27 Passive Listening
Music Genre Nakai et al. [2022] fMRI English Listening 540 music pieces from 10 music genres 5 Passive Listening

V
id

eo

BBC’s Doctor Who Seeliger et al. [2019] fMRI English Viewing spatiotemporal visual and auditory videos (30
episodes). 120.8 whole-brain volumes (∼23 h) of single-
presentation data, and 1.2 volumes (11 min) of repeated nar-
rative short episodes. 22 repetitions

1 Passive viewing

Japanese Ads Nishida et al. [2020] fMRI Japanese Viewing 368 web and 2452 TV Japanese ad movies (15-30s).
7200 train and 1200 test fMRIs for web; fMRIs from 420 ads.

52 Passive viewing

Pippi Langkous Berezutskaya et al. [2020] ECoG Swedish/
Dutch

Viewing 30 s excerpts of a feature film (in total, 6.5 min long),
edited together for a coherent story

37 Passive viewing

Algonauts Cichy et al. [2021] fMRI English Viewing 1000 short video clips (3 sec each) 10 Passive viewing
Natural Short Clips Huth et al. [2022] fMRI English Watching natural short movie clips 5 Passive viewing
Natural Short Clips Lahner et al. [2023] fMRI English Watching 1102 natural short video clips 10 Passive viewing

O
th

er
M

ul
tim

od
al

60 Concrete Nouns Mitchell et al. [2008] fMRI English Viewing 60 different word-picture pairs from 12 categories, 6
times each

9 Passive viewing

- Sudre et al. [2012] MEG English Reading 60 concrete nouns along with line drawings. 20 ques-
tions per noun lead to 1200 examples.

9 Question answering

- Zinszer et al. [2018] fNIRS English 8 concrete nouns (audiovisual word and picture stimuli): bunny,
bear, kitty, dog, mouth, foot, hand, and nose; 12 times repeated.

24 Passive viewing and lis-
tening

Pereira Pereira et al. [2018] fMRI English Viewing 180 Words with Picture, Sentences, word clouds; read-
ing 96 text passages; 72 passages. 3 times repeated.

16 Passive viewing and read-
ing

- Cao et al. [2021] fNIRS Chinese Viewing and listening 50 concrete nouns from 10 semantic cat-
egories.

7 Passive viewing and lis-
tening

Neuromod Boyle et al. [2020] fMRI English Watching TV series and movies (Friends, Movie10) 6 Passive viewing and lis-
tening

Table 3.1: Naturalistic Neuroscience Datasets. Publicly available datasets are linked to their sources
in the Dataset column. In this table, |S| represents the number of participants in each
dataset.
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has 118 object images with natural backgrounds. Testing data consists of 78 images of ob-
jects on natural backgrounds. Most visual datasets involve passive viewing, but the dataset
in Horikawa and Kamitani [2017] involved the participant doing the one-back repetition
detection task.
Audio Datasets: Most of the proposed audio datasets are in English [Huth et al., 2016,
Brennan and Hale, 2019, Anderson et al., 2020, Nastase et al., 2020b], while there is
one Handjaras et al. [2016] on Italian, and another one Li et al. [2021] in Chinese and
French. The participants were involved in a variety of tasks while their brain activations
were measured: Property generation [Handjaras et al., 2016], passive listening [Huth et al.,
2016, Nastase et al., 2020b], question answering [Brennan and Hale, 2019] and imagin-
ing themselves personally experiencing common scenarios [Anderson et al., 2020]. In the
last one, participants underwent fMRI as they reimagined the scenarios (e.g., resting, read-
ing, writing, bathing, etc.) when prompted by standardized cues. Narratives Nastase et al.
[2020b] used 17 different stories as stimuli. Across subjects, it is 6.4 days worth of record-
ings.
Video Datasets: Recently, video neuroscience datasets have also been proposed. These in-
clude BBC’s Doctor Who [Seeliger et al., 2019], Japanese Ads [Nishida et al., 2020], Pippi
Langkous [Anderson et al., 2020] and Algonauts [Cichy et al., 2021]. Japanese Ads data
contains data for two movies provided by NTT DATA Corp: web and TV ads. Four types of
cognitive labels are also associated with the movie datasets: scene descriptions, impression
ratings, ad effectiveness indices, and ad preference votes. Algonauts 2021 contains fMRIs
from 10 human subjects that watched over 1,000 short (3 sec) video clips.
Other Multimodal Datasets: Finally, beyond the video datasets, datasets have also been
proposed with other kinds of multimodality. These datasets are audiovisual ([Zinszer et al.,
2018, Cao et al., 2021]), words associated with line drawings [Mitchell et al., 2008, Sudre
et al., 2012], pictures along with sentences and word clouds [Pereira et al., 2018]. These
datasets have been collected using a variety of methods like fMRIs [Mitchell et al., 2008,
Pereira et al., 2018], MEG [Sudre et al., 2012] and fNIRS [Zinszer et al., 2018, Cao et al.,
2021]. Specifically, in Sudre et al. [2012], subjects were asked to perform a question-
answering (QA) task while their brain activity was recorded using MEG. Subjects were first
presented with a question (e.g., “Is it manmade?”), followed by 60 concrete nouns and their
line drawings in a random order. For all other datasets, subjects performed passive viewing
and/or listening.

3.4 EVALUATION METRICS

In this section, we discuss popular metrics for evaluation of brain encoding and decoding
models.

3.4.1 METRICS FOR BRAIN ENCODING MODELS

Two metrics are popularly used to evaluate brain encoding models: 2V2 accuracy [Toneva
et al., 2020, Oota et al., 2022c] and Pearson Correlation [Jain and Huth, 2018]. They are
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defined as follows. Given a subject and a brain region, let N be the number of samples. Let
{Yi}Ni=1 and {Ŷi}Ni=1 denote the actual and predicted voxel value vectors for the ith sample.
Thus, Y ∈ RN×V and Ŷ ∈ RN×V where V is the number of voxels in that region.

2V2 Classification Accuracy This metric evaluates how close the brain activity predic-
tion is from ground truth, such as Euclidean distance, cosine distance. This metric eval-
uates the fMRI predictions by using them in a classification task on held-out data in the
cross-validation setting. The classification task is to trying to match the predicted left-
out brain responses to their corresponding ground truth, as introduced in Mitchell et al.
[2008], Wehbe et al. [2014], Toneva et al. [2020], Aw and Toneva [2023]. Having two sets
of brain predictions Ŷi and Ŷj , and corresponding ground truth Yi and Yj , the 2V2 classi-
fication accuracy is computed as 1

NC2

∑N−1
i=1

∑N
j=i+1 I[{cosD(Yi, Ŷi) + cosD(Yj , Ŷj)} <

{cosD(Yi, Ŷj) + cosD(Yj , Ŷi)}] where cosD is the cosine distance function. I[c] is an indi-
cator function such that I[c] = 1 if c is true, else it is 0. The higher the 2V2 accuracy, the
better. Figure 3.7 (left) illustrates computation of 2V2 Accuracy for the case where sample
i and j correspond to the brain activity of concepts “dog” and “house”, respectively. This
metric was proposed to boost the signal-to-noise ratio in estimating the brain alignment for
single-trial data [Aw and Toneva, 2023]. Under this metric, chance performance is 50%.

Pearson Correlation This metric evaluates the similarity between the fMRI predictions
(Ŷi) and the corresponding true fMRI data (Yi) by computing the Pearson correlation for
each voxel i. The Pearson correlation for voxel i is computed as PCi=corr[Yi, Ŷi] where
corr is the correlation function. The average Pearson correlation across all voxels is then
computed as PCC= 1

N

∑n
i=1 corr[Yi, Ŷi], where N denotes number of voxels. This metric

is widely used in cognitive neuroscience [Jain and Huth, 2018, Toneva and Wehbe, 2019,
Caucheteux et al., 2021a, Goldstein et al., 2022, Aw and Toneva, 2023, Oota et al., 2022c,
2023c].

Noise Ceiling Estimate To account for the intrinsic noise in biological measurements and
obtain a more accurate estimate of the model’s performance, Schrimpf et al. [2021b] pro-
posed an approach to estimate the noise ceiling. This is achieved by estimating the amount
of brain response in one subject that can be predicted using only the data from a combi-
nation of other subjects, using an encoding model. For instance, consider Harry Potter
dataset with n=8 participants, the first step is to subsample—the data with n participants
into all possible combinations of s participants for all s ∈ [2, 8] (e.g. 2, 3, 4, 5, 6, 7, 8 for
n=8). In the second step, for each subsample, select a random participant as the target that
we attempt to predict from the remaining s − 1 participants (e.g., predict 1 subject from 1
(other) subject, 1 from 2 subjects, ..., 1 from 8, to obtain a mean score for each voxel in that
subsample. In the third step, extrapolate to infinitely many humans and thus to obtain the
highest possible (most conservative) estimate, as suggested by Schrimpf et al. [2021b], fit
the equation v = v0 ×

(
1− e

− x
τ0

)
where x is each subsample’s number of participants, v

is each subsample’s correlation score and v0 and τ0 are the fitted parameters. This fitting
was performed for each voxel independently with 100 bootstraps each to estimate the vari-
ance where each bootstrap draws x and v with replacement. The final ceiling value was the
median of the per-voxel ceilings v0.
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Figure 3.7: Evaluation Metrics for Brain Encoding and Decoding. (Left) 2V2 Accuracy [Toneva
et al., 2020], (Right) Pairwise Accuracy [Pereira et al., 2018]. The left Figure is adapted
from Toneva et al. [2020] and the right Figure is adapted from Pereira et al. [2018].

Normalized Brain Alignment The neural model predictivity values were normalized by
their respective subject estimated noise ceiling values, as proposed by Schrimpf et al. [2021b].
The final measure of a model’s performance (‘normalized brain alignment’ or ‘score’) on
a dataset is thus Pearson’s correlation between model predictions and neural recordings
divided by the estimated ceiling and averaged across voxel locations and participants.

3.4.2 METRICS FOR BRAIN DECODING MODELS

Brain decoding methods are evaluated using popular metrics like pairwise and rank accu-
racy [Pereira et al., 2018, Sun et al., 2019, 2020, Oota et al., 2022d]. Other metrics used for
brain decoding evaluation include R2 score, mean squared error, and using Representational
Similarity Matrix [Cichy et al., 2019, 2021].

Pairwise Accuracy is computed as follows. The first step is to predict all the test stimulus
vector representations using a trained decoder model. Let S = [S0, S1,· · · ,Sn], Ŝ = [Ŝ0,
Ŝ1,· · · ,Ŝn] denote the “true” (stimuli-derived) and predicted stimulus representations for n
test instances resp. Given a pair (i, j) such that 0 ≤ i, j ≤ n, score is 1 if corr(Si,Ŝi) +
corr(Sj ,Ŝj) > corr(Si,Ŝj) + corr(Sj ,Ŝi), else 0. Here, corr denotes the Pearson correla-
tion. Figure 3.7 (right) illustrates the computation of Pairwise Accuracy for the case where
sample i and j correspond to the brain activations for text stimuli “apartment” and “build-
ing” respectively. Final pairwise matching accuracy per participant is the average of scores
across all pairs of test instances.

Rank Accuracy is computed as follows. We first compare each decoded vector to all the
“true” stimuli-derived semantic vectors and rank them by their correlation. The classifi-
cation performance reflects the rank r of the stimuli-derived vector for the correct word,
or picture stimuli: 1 − r−1

#instances−1 . The final accuracy value for each participant is the
average rank accuracy across all instances.
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Authors Stimulus Representations |S| Dataset Delays
Jain et al. [2020] LSTM 6 Moth-Radio-Hour 8secs (4 TRs)
Jain and Huth [2018] LSTM 6 Moth-Radio-Hour 8secs (4 TRs)
Caucheteux et al. [2021a] GPT-2 345 Narratives 7.5secs (5 TRs)
Reddy and Wehbe [2021] Syntax Parsers, BERT 8 Harry-Potter 8secs (4 TRs)
Merlin and Toneva [2022] GPT2 8 Harry-Potter 8secs (4 TRs)
Aw and Toneva [2023] BART, LongT5, LED 8 Harry-Potter 8secs (4TRs)
Antonello et al. [2021] 100 Language Models 7 Moth-Radio-Hor 8secs (4 TRs)
Oota et al. [2023c] BERT and Probing Tasks 18 Narratives 21st-Year 9secs (6 TRs)
Oota et al. [2023g] BERT, GPT-2, Wav2Vec2.0 6 Moth-radio-hour 12secs (6 TRs)

Table 3.2: Summary of Brain Encoding Studies with constant HRF delays. Here, |S| denotes number
of participants. These are studies on English text using fMRI activations.

3.5 BRAIN ENCODING

Encoding is the learning of the mapping from the stimulus domain to the neural activation.
The quest in brain encoding is for “reverse engineering” the algorithms that the brain uses
for sensation, perception, and higher-level cognition. The foundational approach to con-
structing a brain encoder, illustrated in Figure 3.8, adopts a general brain alignment strategy
previously implemented in several notable studies [Jain and Huth, 2018, Toneva and Wehbe,
2019, Aw and Toneva, 2023, Oota et al., 2023c]. This method focuses on predicting fMRI
recordings at every voxel for each participant, utilizing DNN representations that mirror the
participant’s engagement in tasks such as reading or listening.

Building on this foundation, the recent advancements in neuroimaging technologies have
enhanced our ability to closely approximate how the brain responds to different types of
stimuli, thereby deepening our understanding of the brain’s information processing mech-
anisms. Concurrently, advancements in deep neural network (DNN) models have led to
the development of highly efficient models across different modalities, including language,
vision, speech, and multimodal interactions. These models have set new benchmarks in
performance for a wide range of applications. Leveraging cutting-edge neuroimaging tech-
niques and DNN models, this section offers a comprehensive review of the task settings
for brain encoding, latest achievements in understanding language processing, visual object
recognition, auditory perception, and multimodal processing in the brain.

In the discussion on encoding task settings, we present stimulus downsampling, TR align-
ment and voxelwise encoding models. In linguistic brain encoding, we explore recent break-
throughs in applied Natural Language Processing (NLP) that facilitate the reverse engineer-
ing of the language function of the brain. In the realm of vision brain encoding, pioneering
results have been achieved in reverse engineering the function of the ventral visual stream
for object recognition, thanks to the advancements and impressive successes of deep Con-
volutional Neural Networks (CNNs) and Vision Transformers. Additionally, we present
the latest insights into auditory and multimodal brain encoding. This systematic approach
informs the organization of this section. Overall, Figure 3.9 classifies the encoding litera-
ture along various stimulus domains such as vision, auditory, multimodal, and language and
the corresponding tasks in each domain. Finally, Table 3.3 summarizes various encoding
models proposed in the literature related to textual, audio, visual, and multimodal stimuli.
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Figure 3.8: Scheme for Brain Encoding (top): this approach learns a function to predict the fMRI
recordings at every voxel of each participant using the model representations that corre-
spond to the same text read or listened by the participant. Ridge regression vs. Banded
ridge regression (bottom), adapted from la Tour et al. [2022]. Each color (or band) rep-
resents a different feature space.

3.5.1 ENCODING TASK SETTINGS

STIMULUS DOWNSAMPLING

In the context of narrative story reading or listening, the rate of fMRI data acquisition was
lower than the rate at which the text stimulus was presented to the subjects, several words
fall under the same TR in a single acquisition. Hence, previous studies match the stimu-
lus acquisition rate to fMRI data recording by downsampling the stimulus features using a
3-lobed Lanczos filter [Huth et al., 2016, Jain and Huth, 2018, Toneva and Wehbe, 2019,
Antonello et al., 2021, Oota et al., 2023c]. After downsampling, word-embeddings corre-
sponding to each TR are obtained. For the naturalistic audio, Vaidya et al. [2022], Antonello
et al. [2024] windowed the stimulus waveform with a sliding window of size 16 s and stride
100ms before feeding it into model. Further, the features are downsampled as previously
described, using Lanczos interpolation, to match with sampling rate of fMRI recordings.
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Figure 3.9: Categorization of Brain Encoding Studies

Similarly for the naturalistic videos, the rate of fMRI data acquisition (TR = 2 seconds)
in the shortclips dataset [Huth et al., 2022] is lower than the rate at which the stimulus was
presented to the subjects (15 frames per second), 30 frames of a video were viewed under the
same TR for a single fMRI acquisition [Popham et al., 2021]. This helps synchronization
between the stimulus presentation rate and fMRI data recording, which we then leverage to
train our encoding models.

FMRI TIME REPETITION (TR) ALIGNMENT

To account for the slowness of the hemodynamic response, in general, previous studies
model the HRF using a finite response filter (FIR) per voxel and for each subject sepa-
rately with delay of 8 to 12 secs [Jain and Huth, 2018, Toneva and Wehbe, 2019, Popham
et al., 2021, Oota et al., 2023c, Antonello et al., 2024]. Table 3.2 summarizes current brain
encoding studies with a fixed HRF delay.
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StimuliAuthors Dataset
Type

Lang. Stimulus Representations |S| Dataset
Te

xt

Jain and Huth [2018] fMRI English LSTM 6 Subset Moth Radio Hour
Toneva and Wehbe
[2019]

fMRI/
MEG

English ELMo, BERT, Transformer-XL 9 Story understanding

Toneva et al. [2020] MEG English BERT 9 Question-Answering
Schrimpf et al. [2021b] fMRI/ECoG English 43 language models (e.g. GloVe, ELMo,

BERT, GPT-2, XLNET)
20 Neural architecture of language

Gauthier and Levy
[2019]

fMRI English BERT, finetuned NLP tasks (Sentiment, Nat-
ural language inference), Scrambling lan-
guage model

7 Imagine a situation with the
noun

Deniz et al. [2019] fMRI English GloVe 9 Subset Moth Radio Hour
Jain et al. [2020] fMRI English LSTM 6 Subset Moth Radio Hour

Caucheteux et al.
[2021a]

fMRI English GPT-2, Basic syntax features 345 Narratives

Antonello et al. [2021] fMRI English GloVe, BERT, GPT-2, Machine Translation,
POS tasks

6 Moth Radio Hour

Reddy and Wehbe
[2021]

fMRI English Constituency, Basic syntax features and
BERT

8 Harry Potter

Goldstein et al. [2022] fMRI English GloVe, GPT-2 next word, pre-onset, post-
onset word surprise

8 ECoG

Oota et al. [2022c] fMRI English BERT and GLUE tasks 82 Pereira & Narratives
Oota et al. [2022b] fMRI English ESN, LSTM, ELMo, Longformer 82 Narratives

Merlin and Toneva
[2022]

fMRI English BERT, Next word prediction, multi-word se-
mantics, scrambling model

8 Harry Potter

Toneva et al. [2022] fMRI /
MEG

English ELMo, BERT, Context Residuals 8 Harry Potter

Aw and Toneva [2023] fMRI English BART, Longformer, Long-T5, BigBird, and
corresponding Booksum models as well

8 Passive reading

Zhang et al. [2022b] fMRI English,
Chi-
nese

Node Count 19, 12 Zhang

Oota et al. [2023d] fMRI English Constituency, Dependency trees, Basic syn-
tax features and BERT

82 Narratives

Oota et al. [2023e] MEG English Basic syntax features, GloVe and BERT 8 MEG-MASC
Tuckute et al. [2024] fMRI English BERT-Large, GPT-2 XL 12 Reading Sentences
Kauf et al. [2024] fMRI English BERT-Large, GPT-2 XL 12 Pereira
Singh et al. [2023] fMRI English BERT-Large, GPT-2 XL, Text Perturbations 5 Pereira

V
is

ua
l

Wang et al. [2019] fMRI - 21 downstream vision tasks 4 BOLD 5000
Kubilius et al. [2019] fMRI - CNN models AlexNet, ResNet, DenseNet 7 Algonauts
Dwivedi et al. [2021] fMRI - 21 downstream vision tasks 4 BOLD 5000
Khosla and Wehbe
[2022]

fMRI - CNN models AlexNet 4 BOLD 5000

Conwell et al. [2023] fMRI - CNN models AlexNet 4 BOLD 5000

A
ud

io

Millet et al. [2022] fMRI English Wav2Vec2.0 345 Narratives
Vaidya et al. [2022] fMRI English APC, AST, Wav2Vec2.0, and HuBERT 7 Moth Radio Hour
Tuckute et al. [2023] fMRI English 19 Speech Models (e.g. DeepSpeech,

Wav2Vec2.0, VQ-VAE)
19 Passive listening

Oota et al. [2023f] fMRI English 5 basic and 25 deep learning based speech
models (Tera, CPC, APC, Wav2Vec2.0, Hu-
BERT, DistilHuBERT, Data2Vec

6 Moth Radio Hour

Oota et al. [2023g] fMRI English Wav2Vec2.0 and SUPERB tasks 82 Narratives

M
ul

ti
M

od
al

Dong and Toneva [2023] fMRI English Merlo Reseve 5 Neuromod
Popham et al. [2021] fMRI English 985D Semantic Vector 5 Moth Radio Hour & Short

Movie Clips
Oota et al. [2022f] fMRI English CLIP, VisualBERT, LXMERT, CNNs and

BERT
5, 82 Periera & Narratives

Lu et al. [2022] fMRI English BriVL 5 Pereira & Short Movie Clips
Tang et al. [2024] fMRI English BridgeTower 5 Moth Radio Hour & Short

Movie Clips

Table 3.3: Summary of Representative Brain Encoding Studies.

3.5.2 MEG PREPROCESSING AND ALIGNMENT

The minimal processing steps described in Gwilliams et al. [2023a] are as follows. On
raw MEG data and for each subject separately, using MNE-Python defaults parameters, the
following steps should be executed:
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• bandpass filtered the MEG data between 0.5 and 30.0 Hz,

• temporally-decimated the data 10x

• segmented these continuous signals between -200 ms and 600 ms after word onset
(note: this continuous signals varies for phoneme onset)

• applied a baseline correction between -200 ms and 0 ms, and

• clipped the MEG data between fifth and ninety-fifth percentile of the data across
channels.

In contrast to the fMRI recordings, MEG recordings have much higher time resolution.
Epoching and downsampling MEG data can result in aligned word-level or phoneme-level
brain data [Gwilliams et al., 2023a, Toneva et al., 2020, Oota et al., 2023e].

3.5.3 VOXEL-WISE ENCODING MODEL

The main goal of voxel-wise encoding model is to predict brain responses associated with
each brain voxel given a stimulus. To estimate the brain alignment of a DNN model of
a stimulus representations via training standard voxel-wise encoding models [Deniz et al.,
2019, Toneva and Wehbe, 2019]. Specifically, for each voxel and participant, prior stud-
ies train fMRI encoding model using ridge regression to predict the fMRI recording as-
sociated with this voxel as a function of the stimulus representations obtained from DNN
models [Mitchell et al., 2008, Wehbe et al., 2014, Huth et al., 2016]. To simultaneously
accommodate different feature spaces, which may necessitate varying levels of regular-
ization, Nunez-Elizalde et al. [2019] proposed voxel-wise encoding model that utilize an
advanced form of ridge regression. This method, known as banded ridge regression, in-
troduces individual regularization parameters for each feature space, as illustrated in Fig-
ure 3.8. Before doing the ridge regression or banded ridge regression, each feature channel
was first z-scored separately for both training and testing. This was done to match the fea-
tures to the fMRI responses, which were also z-scored for training and testing. Formally, at
the time step (t), stimuli are encoded as Xt ∈ RN×D and brain region voxels Yt ∈ RN×V ,
where N is the number of training examples, D denotes the dimension of the concatenation
of delayed TRs, and V denotes the number of voxels. To find the optimal regularization
parameter for each feature space, a range of regularization parameters that is explored using
cross-validation.

3.5.4 LINGUISTIC ENCODING

ALIGNMENT BETWEEN PRETRAINED LANGUAGE MODELS (LMS) AND BRAIN

Previous works have investigated the alignment between pretrained language models and
brain recordings of people comprehending language. Huth et al. [2016] have identified
brain ROIs (Regions of Interest) that respond to words with a similar meaning and have
thus built a “semantic atlas” of how the human brain organizes language. Many studies

44



3.5 Brain Encoding

(a) (b)

Figure 3.10: (a) Alignment of representations between deep learning systems and human
brains [Toneva and Wehbe, 2019]. (b) For instance, a narrative story provided to both
the Language model as well as human participants. For the Language model, we ex-
tract its representations for every word in the text. For the human participants, we
record their brain activity using fMRI. Next, we train a linear function that uses the
extracted Language model representations to predict human brain activity. Finally, we
test this function on unseen data, and evaluate its accuracy as the amount of “brain
alignment” [Toneva and Wehbe, 2019]. These two images are sourced from Cogsci-22
tutorial slides Oota et al. [2022e].

have shown accurate results in mapping brain activity using neural distributed word embed-
dings for linguistic stimuli [Anderson et al., 2017a, Pereira et al., 2018, Oota et al., 2018,
Nishida and Nishimoto, 2018, Sun et al., 2019]. Unlike earlier models, where each word is
represented as an an independent vector in an embedding space, Jain and Huth [2018] built
encoding models using rich contextual representations derived from an LSTM language
model in a story listening task. These contextual representations demonstrated dissociation
in brain activation – auditory cortex (AC) and Broca’s area in a shorter context, whereas
left Temporo-Parietal Junction (TPJ) in a longer context. Hollenstein et al. [2019] presents
the first multimodal framework for evaluating six types of word embeddings (Word2Vec,
WordNet2Vec [Bartusiak et al., 2019], GloVe, fastText, ELMo, and BERT) on 15 datasets,
including eye-tracking, EEG and fMRI signals recorded during language processing. With
the recent advances in contextual representations in NLP, few studies incorporated them in
relating sentence embeddings with brain activity patterns [Sun et al., 2020, Gauthier and
Levy, 2019, Jat et al., 2020].

More recently, researchers have begun to study the alignment of language regions of
the brain with the layers of language models (broadly following the method described in
Figure 3.10) and found that the best alignment was achieved in the middle layers of these
models [Jain and Huth, 2018, Toneva and Wehbe, 2019, Caucheteux and King, 2020], as
shown in Figure 3.11. Toneva and Wehbe [2019] study how representations of various
Transformer models differ across layer depth, context length, and attention type. The re-
sults demonstrated that across several larger NLP models, the middle layers of language
models are well aligned with brain language regions. Schrimpf et al. [2021b] examined
the relationship between 43 diverse state-of-the-art language models. They also studied
the behavioral signatures of human language processing in self-paced reading times and
a range of linguistic functions assessed via standard engineering tasks from NLP. They
found that Transformer-based models perform better than RNNs or word-level embedding
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Figure 3.11: The strongest alignment with high-level language brain regions has consistently been
observed in the middle layers. Left: Performance of BERT encoding model for all
hidden layers as the amount of context provided to the network is increased [Toneva
and Wehbe, 2019]. Right: fMRI encoding score (averaged across time and channels)
of 6 representative transformers varying in tasks (CLM vs MLM) and depth (4-12 lay-
ers) [Caucheteux and King, 2020]. The left Figure is adapted from Toneva and Wehbe
[2019] and the right Figure is adapted from Caucheteux and King [2020].

models. Larger-capacity models perform better than smaller models. Models initialized
with random weights (prior to training) perform surprisingly similarly in neural predictivity
compared to final trained models, suggesting that network architecture contributes as much
or more than experience dependent learning to a model’s match to the brain. Antonello
et al. [2021] proposed a “language representation embedding space” and demonstrated the
effectiveness of the features from this embedding in predicting fMRI responses to linguis-
tic stimuli. Very recent work by Antonello et al. [2024] tested whether larger open-source
models, such as those from the text-based model (OPT and LLaMA) families, are better at
predicting brain responses recorded using fMRI. The results demonstrate that encoding per-
formance improvements scale well with both model size and dataset size, and large datasets
will no doubt be necessary in producing applicable encoding models.

DISENTANGLING THE SYNTAX AND SEMANTICS

The representations of transformer models like BERT and GPT-2 have been shown to map
onto brain activity during language comprehension linearly. Several studies have attempted
to disentangle the contributions of different types of information from word representations
to the alignment between brain recordings and language models [Lopopolo et al., 2017,
Wang et al., 2020b, Caucheteux et al., 2021a, Reddy and Wehbe, 2021, Zhang et al., 2022a,
Toneva et al., 2022, Oota et al., 2023d]. Wang et al. [2020b] proposed a two-channel
variational autoencoder model to dissociate sentences into semantic and syntactic repre-
sentations and separately associate them with brain imaging data to find feature-correlated
brain regions. Similarly, Zhang et al. [2022a] separated different syntactic features from
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Figure 1: Four steps of our proposed approach: (1) fMRI acquisition, (2) Syntactic parsing, (3) Regression model
training, and (4) Predictive power analysis of the three embeddings methods.

guistic information the three parsers capture, Ram-084

bow (2010) states from a theoretical linguistic point085

of view that they describe distinct syntactic entities,086

and thus are not strictly equivalent. Dependencies087

capture direct relations between words, identical088

to thematic functions such as subject, object, mod-089

ifier, etc. Constituent syntactic structure, on the090

other hand, is not so much about functional rela-091

tions between words, but about the recursive group-092

ing of sentence constituents (words and phrases),093

such that at each level, each grouping acts as a syn-094

tactic unit (Schneider, 1998). Moreover, accord-095

ing to Jung (1995) only dependencies can express096

the syntactic word-to-word relations of a sentence,097

whereas constituency expresses the linear order of a098

sentence. On the other hand, incremental top-down099

parser processes input words from left to right, pro-100

ducing the possible parses in a top-down manner101

as future words are read. Therefore, Jung (1995)102

sees the two grammars as complementary but not103

equivalent. Following these last observations, we104

consider dependency and constituent structures as105

distinct and the type of information that they cap-106

ture as nonequivalent. The question we address107

in this study is whether different brain regions are108

associated with building different kinds of syntac-109

tic structure. We compare the predictive power of110

syntactic structural measures derived from these111

parsers with regard to modeling the brain activ-112

ity in language processing areas recorded during113

naturalistic story listening.114

Stimulus types for studying syntactic processing:115

Earlier psycholinguistic studies explored syntactic116

processing while subjects were involved in activi-117

ties that required less versus more syntactic compre- 118

hension effort (Friederici, 2011) using carefully de- 119

signed sentence/phrase stimuli. In the past decade, 120

the study of syntactic processing has been extended 121

to naturalistic settings that use narratives, such as 122

reading (Reddy and Wehbe, 2021) or listening to 123

stories (Bhattasali et al., 2018; Zhang et al., 2022) 124

generally in a task-free setting. Due to the com- 125

plexity of extracting syntactic word embeddings 126

from sentence parsers, investigation of the predic- 127

tive power of sentence parsers for brain encoding, 128

especially for the neuroimaging data from natural- 129

istic listening paradigms is still under-explored. 130

Brain Regions of Interest (ROIs) for syntactic 131

processing: Several classical studies report the 132

involvement of a language network of mostly left- 133

lateralised cortical regions including the left in- 134

ferior frontal gyrus (IFG) with sub regions (BA 135

44 and BA 45), the left posterior superior tempo- 136

ral gyrus (pSTG), and the left anterior temporal 137

pole (ATP) (Caramazza and Zurif, 1976; Friederici 138

et al., 2006; Friederici, 2011; Pallier et al., 2011; 139

Zaccarella and Friederici, 2015). However, sev- 140

eral other studies do not report activity in left IFG 141

and left pSTG (Humphries et al., 2006; Rogalsky 142

and Hickok, 2009; Bemis and Pylkkänen, 2011), 143

despite using paradigms similar to the above men- 144

tioned studies. A series of recent studies have used 145

functional magnetic resonance imaging (fMRI) 146

brain activity to find that those brain regions span- 147

ning both the left and right hemispheres are in- 148

volved in language processing (Fedorenko and 149

Thompson-Schill, 2014; Caucheteux et al., 2021a; 150

Reddy and Wehbe, 2021; Zhang et al., 2022; Oota 151

2

Figure 3.12: Four steps proposed in Oota et al. [2023d]: (1) fMRI acquisition, (2) Syntactic parsing,
(3) Regression model training, and (4) Predictive power analysis of the three embed-
dings methods. This Figure is adapted from Oota et al. [2023d].

pretrained BERT representations, to explore the potential for distinct syntactic and seman-
tic processing language regions in the brain. Compared to lexical word representations,
word syntactic features (parts-of-speech, named entities) and word-relation features (se-
mantic roles, dependencies) are distributed across brain networks instead of a local brain
region. The previous two studies could not conclude whether all or any of these repre-
sentations effectively drive the linear mapping between language models (LMs) and the
brain. Toneva et al. [2022] presented an approach to disentangle supra-word meaning from
lexical meaning in language models and showed that supra-word meaning is predictive of
fMRI recordings in two language regions (anterior and posterior temporal lobes). Similar
to the approach presented in Toneva et al. [2022], Oota et al. [2023e] disentangle both past
and future context meaning from word meaning in language models and showed that past
context is crucial in obtaining significant results while predicting MEG brain recordings.
Caucheteux et al. [2021a] proposed a taxonomy to factorize the high-dimensional activa-
tions of language models into four combinatorial classes: lexical, compositional, syntactic,
and semantic representations. They found that (1) Compositional representations recruit a
more widespread cortical network than lexical ones and encompass the bilateral temporal,
parietal, and prefrontal cortices. (2) Contrary to previous claims, syntax, and semantics are
not associated with separated modules but appear to share a common and distributed neural
substrate.

While previous works studied syntactic processing as captured through complexity mea-
sures (syntactic surprisal, node count, word length, and word frequency) [Zhang et al.,
2020a, 2022a], very few have studied the syntactic representations [Caucheteux et al.,
2021a, Reddy and Wehbe, 2021, Oota et al., 2023d]. Studying syntactic representations
using fMRI is difficult because: (1) representing syntactic structure in an embedding space
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is a non-trivial computational problem, and (2) the fMRI signal is noisy. To overcome
these limitations, Reddy and Wehbe [2021] proposed syntactic structure embeddings that
encode the syntactic information inherent in the natural text that subjects read in the scan-
ner. The results reveal that syntactic structure-based features explain additional variance in
the brain activity of various parts of the language system, even after controlling for com-
plexity metrics that capture the processing load. While Reddy and Wehbe [2021] focused on
constituency parsing, mainly including incremental top-down parsing, Oota et al. [2023d]
leverage dependency information more systematically by learning the dependency repre-
sentations using graph convolutional networks, using the four-step recipe as illustrated in
Figure 3.12. The results reveal that constituency tree structure is better encoded in language
regions such as bilateral temporal cortex (ATL and PTL) and MFG, while dependency struc-
ture is better encoded in AG and PCC language regions.

While previous studies focused on narrative English language stories and have shown
that several brain regions are involved in building the hierarchical syntactic structure, a
recent study in Zhang et al. [2022b] analyzes the neural basis of such structures between
two diverse languages: Chinese and English. The results demonstrate that the brain may use
different parsing strategies for different language structures to reduce the cognitive load.

NLP TASKS AND LINGUISTIC PROPERTIES IN LMS AND BRAINS

Understanding the reasons behind the observed similarities between language comprehen-
sion in language models and brains can lead to more insights into both systems. Further, the
type of information in the finetuned language models that leads to high encoding accuracy
needs to be clarified. It is unclear whether and how the two systems align in their infor-
mation processing pipeline. Recent work Schwartz et al. [2019], Schrimpf et al. [2021b],
Kumar et al. [2022], Goldstein et al. [2022], Aw and Toneva [2023], Merlin and Toneva
[2022], Oota et al. [2022c, 2023c], Sun and Moens [2023], Sun et al. [2023], Loong Aw
et al. [2023] addressed this question either by tuning the pretrained language model on
downstream NLP tasks or inducing the brain relevant information into the language model.
Several researchers have suggested that one contributor to the alignment is the LM’s ability
to predict the next word, with a positive relationship between next-word prediction ability
and brain alignment across LMs [Schrimpf et al., 2021b, Goldstein et al., 2022]. How-
ever, more recent work shows no simple relationship exists, and language modeling loss is
not a perfect predictor of brain alignment [Pasquiou et al., 2022, Antonello et al., 2021].
Schwartz et al. [2019] finetuned pretrained BERT model to predict brain activity and found
that finetuned BERT has modified language representations to encode better the informa-
tion relevant for predicting brain activity. Rather than finetuning the BERT model on brain
data, Oota et al. [2022c] finetuned the BERT model on 10 GLUE (General Language Un-
derstanding Evaluation) [Wang et al., 2018] tasks to check whether task supervision leads
to better encoding models to account for the brain’s language representation. Oota et al.
[2022c] found that using a finetuned BERT on downstream NLP tasks improved brain pre-
dictions. The results reveal that reading fMRI was best explained by Co-reference Reso-
lution, NER (Named Entity Recognition), and shallow syntax parsing, and listening fMRI
was best explained by paraphrasing, summarization, and NLI. Since full finetuning gen-
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Figure 3.13: Comparison of brain recordings with language models trained on web corpora (Left)
and language models trained on book stories (Right) [Aw and Toneva, 2023]. This Fig-
ure is redrawn from Aw and Toneva [2023].

erally updates the entire parameter space of the model, which has been proven to distort
the pre trained features [Kumar et al., 2022], Sun and Moens [2023] explore prompt-tuning
that generates representations that better account for the brain’s language representations
than finetuning. They find that prompt-tuning on tasks dealing with fine-grained concept
meaning, including Word Sense Disambiguation and Co-reference Resolution, yields rep-
resentations that are better at neural decoding than tuning on other tasks with both finetuning
and prompt-tuning. Further, Sun et al. [2023] extended similar prompt-tuning to bridge the
gap between the human brain and supervised DNN representations of the Chinese language.
With the recent success of instruction-tuned large language models, Loong Aw et al. [2023]
investigated the effect of instruction-tuning on large language models and alignment with
the human brain’s language representations. The results demonstrate that instruction-tuning
large language models (LLMs) improves world knowledge representations and brain align-
ment. This suggests that mechanisms that encode world knowledge in LLMs also improve
representational alignment to the human brain.

To investigate whether large language models with longer context are learning a deeper
understanding of the text, Aw and Toneva [2023] used four pretrained large language mod-
els (BART, Longformer Encoder Decoder, BigBird, and LongT5) and also trained them
to improve their narrative understanding, using the method detailed in Figure 3.13. They
find that the improvements in brain alignment are larger for character names than for other
discourse features, which indicates that these models are learning important narrative ele-
ments. However, it is not understood whether language models with the prediction of the
next word are necessary for the observed brain alignment or simply sufficient, and whether
there are other shared mechanisms or information that is similarly important. Merlin and
Toneva [2022] proposed two perturbations to pretrained language models that, when used
together, can control for the effects of next word prediction and word-level semantics on
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the alignment with brain recordings. Specifically, they found improvements in alignment
with brain recordings in two language processing regions–Inferior. Frontal Gyrus (IFG) and
Angular Gyrus (AG)–are due to next-word prediction and word-level semantics. However,
what linguistic information underlies the observed alignment between brains and language
models was unclear. Recently, Oota et al. [2023c] tested the effect of a range of linguis-
tic properties (surface, syntactic, and semantic) and found that eliminating each linguistic
property significantly decreases brain alignment across all layers of BERT. Further, syn-
tactic properties are more responsible and have the most significant effect on the trend of
brain alignment across model layers. To further understand what aspects of linguistic stim-
uli contribute to ANN-to-brain similarity, Kauf et al. [2024] systematically manipulated the
stimuli (i.e., perturbed sentences’ word order, removed different subsets of words, or re-
placed sentences with other sentences of varying semantic similarity) and found that lexical
semantic content rather than the sentence’s syntactic form is primarily responsible for the
DNN-to-brain similarity.

3.5.5 AUDITORY ENCODING

To study auditory processing in the human brain, earlier studies focused on using hand-
constructed features such as number of phonemes, MFCC (Mel Frequency Cepstral Coef-
ficients), spectrotemporal modulations for auditory brain encoding [de Heer et al., 2017].
These basic acoustic features are part of a standard model of primary auditory cortex re-
sponses to sound encoding [Norman-Haignere and McDermott, 2018, Venezia et al., 2019,
Mesgarani et al., 2014]. In several other studies, speech stimuli have predominantly been
represented as text transcriptions [Huth et al., 2016], or basic features like phoneme rate
and the sum of squared FFT (Fast Fourier Transform) coefficients have been employed
when constructing encoding models [Pandey et al., 2022]. However, text transcription-
based methods ignore the raw audio-sensory information completely. The basic speech fea-
ture engineering method misses the benefits of transfer learning from rigorously pretrained
speech deep learning (DL) models. The benefits of using pretrained speech models include:
(i) efficient contextual speech representations, (ii) enhanced accuracy and (iii) flexibility in
fine-tuning.

ALIGNMENT BETWEEN PRETRAINED SPEECH MODELS AND BRAIN

Recently, several researchers have used popular deep learning models such as APC [Chung
et al., 2020], Wav2Vec2.0 [Baevski et al., 2020], HuBERT [Hsu et al., 2021], and Data2Vec [Baevski
et al., 2022] for encoding speech stimuli. Millet et al. [2022] used a self-supervised learning
model, Wav2Vec2.0, to learn latent representations of the speech waveform similar to those
of the human brain. They find that the functional hierarchy of its transformer layers aligns
with the cortical hierarchy of speech in the brain, and reveals the whole-brain organisation of
speech processing with an unprecedented clarity. This means that the first transformer lay-
ers map onto the low-level auditory cortices (A1 and A2), the deeper layers map onto brain
regions associated with higher-level processes (e.g. STS and IFG). Vaidya et al. [2022]
present the first systematic study to bridge the gap between recent four self-supervised
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Figure 3.14: Brain prediction using self-supervised speech model: Data2Vec. The plot shows that
speech-based models better predict early auditory cortex [Oota et al., 2023f].

speech representation methods (APC, Wav2Vec, Wav2Vec2.0, and HuBERT) and compu-
tational models of the human auditory system. Similar to Millet et al. [2022], they find
that self-supervised speech models are the best models of auditory areas. Lower layers best
modeled low-level areas, and upper-middle layers were most predictive of phonetic and
semantic areas, while layer representations follow the accepted hierarchy of speech pro-
cessing. Tuckute et al. [2023] analyzed 19 different speech models and find that some audio
models derived in engineering contexts (model applications ranged from speech recogni-
tion and speech enhancement to audio captioning and audio source separation) produce
poor predictions of auditory cortical responses, many task-optimized audio speech deep
learning models outpredict a standard spectrotemporal model of the auditory cortex and
exhibit hierarchical layer-region correspondence with auditory cortex. Further, Oota et al.
[2023f] extended this analysis to more such deep learning based speech models (30 self-
supervised speech models). They found that both language as well as auditory brain areas,
are best aligned with intermediate layers in deep learning models. As shown in Figure 3.14,
they also found that speech models better predict early auditory cortex than late language
regions. Although pretrained speech models can understand broad aspects of speech in gen-
eral, the implications of finetuning speech pretrained models for various speech-processing
tasks for speech encoding in the brain, remains underexplored.

UNDERLYING SPEECH PROPERTIES IN SPEECH MODELS AND BRAINS

Understanding the reasons behind the observed similarities between speech processing in
speech models and brains can lead to more insights into both systems. Recent work Oota
et al. [2023g] has found that using a finetuned Wav2Vec2.0 leads to improved brain pre-
dictions. In particular, as shown in Figure 3.15, Oota et al. [2023g] build neural speech
taskonomy models for brain encoding and aim to find speech-processing tasks that have
the most explanatory capability of brain activation during naturalistic story listening exper-
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Figure 3.15: The pretrained Wav2Vec2.0 model and finetuned to eight different downstream speech
tasks and their brain alignment [Oota et al., 2023g].

iments. They find that task-specific (Automated Speech Recognition (ASR), Entity Recog-
nition (ER), Speaker Identification (SID) and Intent Classification (IC)) speech represen-
tations lead to a significant improvement in brain alignment compared to the pretrained
Wav2Vec2.0 model for specific brain regions. Finetuning on ER, SID and IC leads to the
best alignment for the early auditory cortex; finetuning on ASR provides the best encoding
for the auditory associative cortex and language regions. Further, the layer-wise analysis
of the effect of each speech task on the alignment with whole brain activity shows that the
ASR task is better aligned in middle layers. A very recent study Oota et al. [2023a] reveals
that in the context of brain listening, speech-based models outperform text-based language
models in the auditory cortex. However, the alignment with the late language regions is
significantly better for text-based than speech-based models in both during reading and lis-
tening. Specifically, low-level speech features such as phonological features explain the
most variance for speech-based models in late language regions.

3.5.6 VISUAL ENCODING

Similarly to language, in vision, early models focused on independent models of visual pro-
cessing (object classification) using CNNs [Yamins et al., 2014]. Eickenberg et al. [2017]
use CNNs as candidate models to model human brain activity during the viewing of nat-
ural images by constructing predictive models based on their different CNN layers and
BOLD fMRI activations. They find that there are similarities between the computations of
convolutional networks and cognitive vision at the beginning and at the end of the ventral
stream object-recognition process. Cichy et al. [2016] further investigates the stages of hu-
man visual processing in both time (MEG recordings) and space (fMRI recordings). By
comparing these findings with representations derived from deep neural networks (DNNs),
the authors demonstrate that DNNs effectively encapsulate the sequential stages of human
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visual processing. This encompasses the progression from early visual areas towards the
specialized pathways of the dorsal and ventral streams, highlighting the DNN’s capacity
to mirror complex neural processes in both time and space. Despite the effectiveness of
CNNs, it is difficult to draw specific inferences about neural information processing using
CNN- derived representations from a generic object-classification CNN. Hence, Wang et al.
[2019] built encoding models with individual feature spaces obtained from 21 computer vi-
sion tasks. One of the main findings is that features from 3D tasks, compared to those from
2D tasks, predict a distinct part of visual cortex. Recent efforts in visual encoding models,
particularly self-supervised models (instance-prototype contrastive learning), operates by
taking multiple samples over an image and projecting these through a deep convolutional
neural network into a low-dimensional embeddings space [Konkle and Alvarez, 2022]. The
results show that these self-supervised models achieve parity with the category-supervised
models in accounting for the structure of brain responses. In a recent study by Matsuyama
et al. [2023] on enhancing the precision of models for visual brain encoding, the research
focused on two primary questions: (1) How does changing the size of the fMRI training
dataset affect prediction accuracy? (2) How does the prediction accuracy across the visual
cortex change with the size of the parameters in the vision models? The findings indicate
that prediction accuracy improves with an increase in the training sample size, adhering to
a scaling law. Similarly, an increase in the parameter size of the vision models also leads to
improved prediction accuracy, following the same scaling law.

How can we push deeper CNN models to capture brain processing even more strin-
gently? Continued architectural optimization on ImageNet alone no longer seems like a
viable option. Instead of feed-forward deep CNN models, using shallow recurrence en-
abled better capture of temporal dynamics in the visual encoding models [Kubilius et al.,
2019, Schrimpf et al., 2020]. Kubilius et al. [2019] proposed a shallow recurrent anatom-
ical network, CORnet, that follows neuro-anatomy more closely than standard CNNs, and
achieved the state-of-the-art results on the Brain-score benchmark [Schrimpf et al., 2020].
It has four computational areas, conceptualized as analogous to the ventral visual areas V1,
V2, V4, and IT, and a linear category decoder that maps from the population of neurons in
the model’s last visual area to its behavioral choices.

3.5.7 MULTIMODAL BRAIN ENCODING

Recently Transformer-based multimodal models, which combine pairs of modalities such
as language-vision, language-audio, and language-audio-vision, have emerged, offering rich
aligned representations compared to single-modality models (i.e. text-only, audio-only or
vision-only). Specifically, multimodal Transformers such as CLIP, LXMERT, VisaulBERT
take both image and text stimuli as input and output a joint visio-linguistic representation.
Since human brain perceives the environment using information from multiple modalities,
examining the alignment between language and visual representations in the brain by train-
ing encoding models on fMRI responses, while extracting joint representations from mul-
timodal models, can offer insights into the relationship between the two modalities. Oota
et al. [2022f] experimented with multimodal models like CLIP, LXMERT, and VisualBERT
and found VisualBERT better predict neural responses than vision-only models such as
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CNNs and Image Transformers. Similarly, Wang et al. [2022] find that multimodal models
like CLIP better predict neural responses in visual cortex as compared to previous vision-
only models like CNNs. This is attributed to the fact that high-level human visual represen-
tations encompass semantics and the relational structure of the visual world, beyond object
identity [Gauthier et al., 2003]. Dong and Toneva [2023] present a systematic approach
to probe multi-modal video Transformer model by leveraging neuro-scientific evidence of
multimodal information processing in the brain. The authors find that intermediate layers of
a multimodal video transformer are better at predicting multimodal brain activity than other
layers, indicating that the intermediate layers encode the most brain-related properties of
the video stimuli. Recently, Tang et al. [2024] investigated a multimodal Transformer as the
encoder architecture to extract the aligned concept representations for narrative stories and
movies to model fMRI responses to naturalistic stories and movies, respectively. Since lan-
guage and vision rely on similar concept representations, the authors perform a cross-modal
experiment in which how well the language encoding models can predict movie-fMRI re-
sponses from narrative story features (story → movie) and how well the vision encoding
models can predict narrative story-fMRI responses from movie features (movie → story).
Overall, the authors find that cross-modality performance was higher for features extracted
from multimodal transformers than for linearly aligned features extracted from unimodal
transformers. A recent study by Nakagi et al. [2024], which used fMRI during the viewing
of 8.3 hours of video content, and discovered distinct brain regions associated with differ-
ent semantic levels, highlighting the significance of modeling various levels of semantic
content simultaneously. The video material was meticulously annotated in five distinct se-
mantic categories—speech, object, story, summary, and time/place—employing advanced
large language models to derive latent representations. These representations were then
used to predict fMRI brain activity across the various semantic categories. The authors dis-
covered that the lack of unique variance for Summary and TimePlace is a notable insight,
suggesting that merely incorporating these types of information into encoding analyses may
not adequately capture higher-level semantic representations in the brain.

3.5.8 KEY TAKEAWAYS

• Alignment with Language Models: Across several language models (like LSTMs
and Transformers), middle layers of language models align well with brain language
regions.

• Semantic and Syntactic Processing: Brain regions like the auditory cortex and
Broca’s area are involved in processing shorter contexts, while regions like the left
temporo-parietal junction handle longer contexts.

• Contextual Representations: Contextual representations from language models im-
prove the prediction of brain activity compared to traditional word embeddings.

• Multimodal Integration: Incorporating linguistic information with other modali-
ties (like vision and auditory) can enhance understanding of how the brain processes
complex stimuli.
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Figure 3.16: Scheme for Brain Decoding. Left: Image decoder [Smith, 2013], Right: Language
Decoder [Wang et al., 2019]. The left Figure is adapted from Smith [2013] and the
right Figure is adapted from Wang et al. [2019].

3.6 BRAIN DECODING

Decoding is the learning of the mapping from neural activations back to the stimulus do-
main. Figure 3.16 depicts the typical workflow for building an image/language decoder.
Due to the inherent noise in brain recordings, obtaining reliable and robust representations
or reconstructions of stimuli from these recordings continues to pose a significant challenge.
Moreover, the recorded brain signals encompass not only the specific responses elicited by
naturalistic stimuli but also include additional sources of noise arising from various cogni-
tive, physiological processes, and scanner operations.
Decoder Architectures: In early decoding studies, the stimulus representation is decoded
using typical ridge regression models trained on using the most informative voxels [Pereira
et al., 2018, Sun et al., 2019, Oota et al., 2022d] or cortex specific voxels. In some cases,
a fully connected layer [Beliy et al., 2019] or a multi-layered perceptron [Sun et al., 2019]
has been used. In some studies, when decoding is modeled as multi-class classification,
Gaussian Naïve Bayes [Singh et al., 2007, Just et al., 2010] and SVMs [Thirion et al.,
2006] have also been used for decoding. However, these oversimplified methods often fall
short of capturing the non-linear relationship between the stimulus and the neural responses.
With the advent of recent generative AI models such as, large language models, multimodal
models (CLIP), diffusion models (i.e. text-to-image, image-to-text, text-to-music, text-to-
video, video-to-text), conditional generation of high-fidelity images, music and videos have
become feasible. This exciting development leads to feasibility of reconstructing images,
videos, speech, music and continuous language from brain activity. Figure 3.17 summa-
rizes the literature related to various decoding solutions proposed in vision, auditory, and
language domains. Table 3.4 aggregates the brain decoding literature along different stim-
ulus domains such as textual, visual, and audio. The most common setting is to perform
decoding to a vector representation using a stimuli of a single mode (visual, text or audio).

3.6.1 LINGUISTIC DECODING

Initial brain decoding experiments studied the recovery of simple concrete nouns and verbs
from fMRI brain activity [Nishimoto et al., 2011] where the subject watches either a picture
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Figure 3.17: Categorization of Brain Decoding Studies.

StimuliAuthors Dataset
Type

Lang. Stimulus Representations |S| Dataset

Te
xt

Pereira et al. [2018] fMRI English Word2Vec, GloVe, BERT 17 Pereira
Wang et al. [2020b] fMRI English BERT, RoBERTa 6 Pereira
Oota et al. [2022d] fMRI English GloVe, BERT, RoBERTa 17 Pereira
Tang et al. [2023] fMRI English GPT, finetuned GPT on Reddit comments and

autobiographical stories
7 Moth Radio Hour

V
is

ua
l

Beliy et al. [2019] fMRI End-to-End Encoder-Decoder, Decoder-
Encoder, AlexNet

5 Generic Object Decoding,
ViM-1

Takagi and Nishimoto
[2023a]

fMRI Latent Diffusion Model, CLIP 4 NSD

Ozcelik and VanRullen
[2023]

fMRI VDVAE, Latent Diffusion Model 7 NSD

Chen et al. [2024] fMRI Latent Diffusion Model, CLIP 3 HCP fMRI-Video-Dataset

A
ud

io Défossez et al. [2023] MEG,EEGEnglish MEL Spectrogram, Wav2Vec2.0 169 MEG-MASC
Gwilliams et al. [2023a] MEG English Phonemes 7 MEG-MASC
Denk et al. [2023] fMRI English Music 5 MEG-MASC

Table 3.4: Summary of Representative Brain Decoding Studies.

or a word. Sun et al. [2019] used several sentence representation models to associate brain
activities with sentence stimulus, and found InferSent to perform the best. More work has
focused on decoding the text passages instead of individual words [Wehbe et al., 2014].
Some studies have focused on multimodal stimuli based decoding where the goal is still
to decode the text representation vector. For example, Pereira et al. [2018] trained the
decoder on imaging data of individual concepts, and showed that it can decode semantic
vector representations from imaging data of sentences about a wide variety of both concrete
and abstract topics from two separate datasets. Further, Oota et al. [2022d] propose two
novel brain decoding setups: (1) multi-view decoding (MVD) and (2) cross-view decoding
(CVD). In MVD, the goal is to build an MV decoder that can take brain recordings for any
view (picture, sentence, or word cloud) as input and predict the concept. In CVD, the goal is
to train a model which takes brain recordings for one view as input and decodes a semantic
vector representation of another view. Specifically, they study practically useful CVD tasks
like image captioning, image tagging, keyword extraction, and sentence formation.

56



3.6 Brain Decoding

Figure 3.18: CLIP-MEG pipeline to align MEG activity onto pretrained speech embeddings [Défos-
sez et al., 2023]. The Figure is adapted from Défossez et al. [2023].

Figure 3.19: Brain2Music decoding pipeline [Denk et al., 2023]. The Figure is adapted from Denk
et al. [2023].

To understand application of Transformer models for decoding better, Gauthier and Levy
[2019] finetuned a pretrained BERT on a variety of Natural Language Understanding (NLU)
tasks to find tasks that lead to improvements in brain-decoding performance. They find
that tasks which produce syntax-light representations (representations extracted from a lan-
guage model trained on randomly shuffled words from corpus samples, thereby eliminating
all first-order cues to syntactic structure) yield significant improvements in brain decoding
performance. This primary occurs because a significant portion (but not all) of the syn-
tactic information initially represented in the baseline BERT model gets eliminated during
training on the scrambled language modeling tasks.

With the recent development of large language models, rather than decoding stimuli vec-
tor representations, some studies have attempted to reconstruct words [Affolter et al., 2020],
and continuous language [Tang et al., 2023] from fMRI brain activity.

3.6.2 AUDITORY DECODING

With the recent advancements of self-supervised speech models and generative AI models,
recent studies have largely targeted reconstructing speech/music from brain recordings [Dé-
fossez et al., 2023, Denk et al., 2023, Senda et al., 2024]. As shown in Figure 3.18, [Dé-
fossez et al., 2023] proposed a CLIP-MEG pipeline to align MEG activity onto pretrained
speech embeddings and generate speech from a stream of MEG signals. Unlike other meth-
ods which are experimented with on narrative speech, Denk et al. [2023] introduce a method
for reconstructing music from fMRI brain activity, as shown in Figure 3.19.

3.6.3 VISUAL DECODING

A number of methods have been proposed for reconstructing a visual stimulus from brain
recordings. Here, we initially address image reconstruction from brain recordings, followed
by a discussion on video reconstruction.
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IMAGE RECONSTRUCTION

Before the success of recent generative AI models, researchers have used deep-learning
models and algorithms, including generative adversarial networks (GANs) and self-supervised
learning models trained on a large number of naturalistic images [Du et al., 2020, Beliy
et al., 2019, Fang et al., 2020, Gaziv et al., 2022, Lin et al., 2022]. For instance, Be-
liy et al. [2019] designed a separable autoencoder that enables self-supervised learning
in fMRI and images to increase training data. Mind Reader [Lin et al., 2022] encoded
fMRI signals into a pre-aligned vision-language latent space and used StyleGAN2 [Karras
et al., 2020] for image generation. These methods generate more plausible and semanti-
cally meaningful images. Several other studies focused on reconstructing personal imag-
ined experiences [Berezutskaya et al., 2020] or application-based decoding like using brain
activity scanned during a picture-based mechanical engineering task to predict individu-
als’ physics/engineering exam results [Cetron et al., 2019] and reflecting whether current
thoughts are detailed, correspond to the past or future, are verbal or in images [Smallwood
and Schooler, 2015].

With the recent success of CLIP and Diffusion models, deep generative models have
been gaining attention to generate high-resolution images with high semantic fidelity [Tak-
agi and Nishimoto, 2023b, Chen et al., 2023, Scotti et al., 2023, Benchetrit et al., 2023, Song
et al., 2023]. Takagi and Nishimoto [2023b] proposed a method for image reconstruction
from fMRI using Stable Diffusion [Rombach et al., 2022], as shown in Figure 3.20 (left).
Their approach involves decoding brain activities to text descriptions and converting them
to natural images using Stable Diffusion. Based on a similar philosophy, using a Stable
Diffusion model as a generative prior and the pretrained fMRI features as conditions, Chen
et al. [2023] reconstructed high-fidelity images with high semantic correspondence to the
groundtruth stimuli, as shown in Figure 3.20 (right). Scotti et al. [2023] proposed a Mind-
Eye that can map fMRI brain activity to any high dimensional multimodal latent space, like
CLIP image space, enabling image reconstruction using generative models that accept em-
beddings from this latent space. Different from previous studies, BrainCLIP framework was
introduced by Liu et al. [2023] to align fMRI patterns with different modalities (especially
from visual and textual modalities) through cross-modal contrastive loss. All these studies
have been limited to 2D visual representations. A recent work Gao et al. [2023] aims to
extend the scope of fMRI decoding to 3D representations. Specifically, Gao et al. [2023]
introduce Recon3DMind, a groundbreaking task focused on reconstructing 3D visuals from
fMRI signals.

Lastly, recent image reconstruction studies have focused on other non-invasive brain
recordings such as MEG and EEG rather than fMRI signals. Benchetrit et al. [2023] pro-
posed a CLIP-MEG pipeline to align MEG activity onto pretrained visual embeddings and
generate images from a stream of MEG signals. Similarly, Song et al. [2023] proposed
a CLIP-EEG pipeline to align these two modalities (image and EEG encoders to extract
features from paired image stimuli and EEG responses) by constraining their similarity.
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Figure 3.20: Image reconstruction from fMRI using Stable Diffusion. The Left Figure is adapted
from Takagi and Nishimoto [2023b] and the Right Figure is adapted from Chen et al.
[2024].

VIDEO RECONSTRUCTION

Unlike static natural images, human visual cortex can process a continuous, diverse flow
of scenes, motions, and objects. To recover dynamic visual experience, the challenge lies
in the nature of fMRI, which measures blood oxygenation level dependent (BOLD) signals
and captures snapshots of brain activity every few seconds. Similar to image reconstruction
works, Chen et al. [2024] present MinD-Video, a two-module pipeline (i.e. CLIP module
followed by latent stable diffusion) designed to bridge the gap between image and video
brain decoding.

3.7 CONCLUSION, LIMITATIONS, AND FUTURE TRENDS

In this paper, we surveyed important naturalistic brain datasets, stimulus representations,
brain encoding and brain decoding methods across different modalities. A glimpse of how
deep learning solutions throw light on putative brain computations is given. We hope that
this systematic organization of recent ideas proposed in the field of cognitive computational
neuroscience provides a comprehensive summary to the readers.

The insights from recent studies in brain encoding and decoding have far-reaching im-
plications for the fields of AI engineering, neuroscience, and the interpretability of mod-
els—some with immediate effects, others with long-term impact.
AI engineering: The recent brain encoding studies most immediately fits in with the neuro-
AI research direction that specifically investigates the relationship between representations
in the brain and representations learned by powerful neural network models. This direction
has gained recent traction, especially in the domain of language, vision, speech processing,
thanks to advancements in language models [Schrimpf et al., 2021b, Goldstein et al., 2022],
vision models [Schrimpf et al., 2020] and speech models [Tuckute et al., 2023, Oota et al.,
2023f]. Furthermore, several recent works most immediately contributes to this line of
research by understanding the reasons for the observed similarity in more depth [Merlin and
Toneva, 2022, Oota et al., 2023c, Kauf et al., 2024, Sarch et al., 2024, Oota et al., 2023a].
Overall, these studies provide valuable insights for selecting features, enhancing transfer
learning, and aiding in the creation of AI architectures that are cognitively plausible.
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Computational Modeling in Neuroscience: Researchers have started viewing language
models as useful model organisms for human language processing [Toneva, 2021] since
they implement a language system in a way that may be very different from the human brain,
but may nonetheless offer insights into the linguistic tasks and computational processes that
are sufficient or insufficient to solve them [McCloskey, 1991, Baroni, 2020]. These brain
encoding studies enables cognitive neuroscientists to have more control over using language
models as model organisms of language processing. This approach can also be extended to
visual and speech processing, where models in these domains serve as analogous organisms
for investigation.

Model Interpretability: In the long-term, we aspire for these studies on brain encoding
and decoding to enhance another research direction that utilizes brain signals to interpret
the information processed by neural network models [Toneva and Wehbe, 2019, Aw and
Toneva, 2023, Wang et al., 2019, Sarch et al., 2024]. Ultimately, our goal is to comprehend
the essential and adequate underlying characteristics that result in a meaningful correlation
between brain recordings and deep neural network models.

3.7.1 FUTURE TRENDS

Some of the future areas of work in this field are as follows.
Bridging the Gap: Enhancing Deep Neural Network Models for Deeper Insights into
Auditory, Language and Visual Processing While significant progress has been made in
understanding text-based models, understanding the similarity in information processing
between visual, speech and multimodal models versus natural brain systems remains an
open area. For instance, Oota et al. [2023a] demonstrates that speech-based language mod-
els lack brain relevant semantics in language regions. Therefore, enhancing speech-based
language models to align more closely with text-based models could provide valuable in-
sights into language and auditory processing, given that speech is the most ancient form of
human language. This suggests a promising direction for future research, aiming to bridge
the gap between artificial intelligence models and the complex, multifaceted processes of
human cognition.
Advancing Multimodal Decoding: The Next Leap in Deep Learning Accuracy Decod-
ing actual multimodal stimuli has become increasingly feasible due to recent advancements
in deep learning models dedicated to generation tasks. However, there is still a significant
need for further research to enhance the accuracy of these models. This involves not only
refining the algorithms and architectures used but also improving the quality and diversity
of the datasets on which these models are trained. Advancements in computational power,
algorithmic efficiency, and innovative training methodologies are critical for pushing the
boundaries of what is possible in multimodal decoding, aiming to achieve more precise,
reliable, and nuanced interpretations of complex stimuli.
Mapping the Mind: The Effects of Brain Damage on Cognitive Capabilities We need
deeper understanding of the degree to which damage to different regions of the human brain
could lead to the degradation of cognitive skills. This exploration requires detailed mapping
of cognitive functions to specific brain areas, taking into account the brain’s complex net-
work of connections. Studies should investigate not only the immediate effects of brain
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damage on cognitive skills but also the brain’s capacity for reorganization and compen-
sation over time. Ultimately, the goal is to translate these research findings into practical
applications, such as more effective cognitive rehabilitation techniques and assistive tech-
nologies that can improve the quality of life for individuals with brain injuries.
Towards Human-Like Understanding in ANNs: Integrating Self-Supervised Learning
and Brain-Inspired Architectures How can we train artificial neural networks in novel
self-supervised ways such that they compose word meanings or comprehend images and
speech like a human brain? Can we model the hierarchical and modular organization of
the brain in neural network architectures?. This involves creating networks that reflect the
brain’s organization, from low-level feature detection to high-level semantic processing, al-
lowing for the integration of information across different modalities. Moreover, how might
we integrate dynamic learning strategies, such as curriculum learning, which progressively
introduces more intricate tasks to the model? This method emulates the way humans natu-
rally progress from understanding straightforward to more complex ideas over time.
Bridging the Language Gap in Brain-NLP Research: The Need for Multilingual Ex-
ploration Current brain-NLP research relies on brain recordings collected from individuals
who speak English as their primary language. Additionally, these studies utilize experi-
mental stimuli that are presented in the English language. As a result, all current neuro-AI
studies predominantly leverages language models and neural models that have been trained
extensively on English text data and brain responses elicited by text or speech in English.
However, it is essential to acknowledge the potential variability in our study outcomes when
extrapolated to languages other than English. The intricate interplay between language-
specific nuances and neural responses may introduce distinctions in the results. Therefore,
it becomes imperative for future research endeavors to delve into this aspect further and
investigate how these factors might influence the generalizability of our findings across di-
verse linguistic contexts.

In addition to the current advancements, there are several potential avenues for future
exploration in the intersection of neuroscience and artificial intelligence. One such direction
involves leveraging enhanced understanding of neuroscience to propose modifications to
existing artificial neural network architectures, with the aim of enhancing their robustness
and accuracy. Furthermore, an intriguing area for further investigation lies in understanding
the brain activity of multilingual, multi-scriptal individuals when processing stimuli in their
second language (L2) or script. It remains unclear whether observed brain activity reflects
the processing of L2 or the active suppression of their first language (L1) while focusing on
L2. This ambiguity underscores the need for further research, particularly in the realm of
multilingual multimodal stimuli, to elucidate the underlying mechanisms at play.

We hope that this survey motivates research along the above directions.
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4 LONG SHORT-TERM MEMORY OF

LANGUAGE MODELS FOR PREDICTING

BRAIN ACTIVATION DURING

LISTENING TO STORIES

Several popular sequence-based and pre-trained language models are successful for text-
driven prediction of brain activations. However, these models still lack long-term memory
plausibility (i.e., how they deal with long-term dependencies and contextual information)
as well as insights into the underlying neural substrate mechanisms. This paper studies
the influence of context representations of different language models, such as sequence-
based models: Long Short-Term Memory Networks (LSTMs) and ELMo, and a pre-trained
Transformer language model (Longformer). In particular, we study how the internal hidden
representations align with the brain activity observed via fMRI when the subjects listen to
several narrative stories. We use brain imaging recordings of subjects listening to narrative
stories to interpret word and sequence embeddings. We further investigate how the repre-
sentations of language model layers reveal better semantic context during listening. Exper-
iments across all language model representations provide the following cognitive insights:
(i) the representations of LSTM cell states are better aligned with brain recordings than
LSTM hidden states, the cell state activity can represent more long-term information, (ii)
the representations of ELMo and Longformer display an excellent predictive performance
across brain regions for listening stimuli; (iii) Posterior Medial Cortex (PMC), Temporo-
Parieto-Occipital junction (TPOJ), and Dorsal Frontal Lobe (DFL) have higher correlation
versus Early Auditory (EAC) and Auditory Association Cortex (AAC).

This chapter has been finalized based on our previously published paper at 44th Annual
Meeting of the Cognitive Science Society conference (July 2022, Toronto, Canada). [Oota
et al., 2022b].
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4.1 INTRODUCTION

In the past decade, artificial neural networks have witnessed remarkable insights in the com-
putational neuroscience community in understanding how the brain performs stimulus per-
ception (1) given various forms of sensory inputs like visual processing in object recognition
tasks [Yamins et al., 2014, Cadieu et al., 2014, Eickenberg et al., 2017], or (ii) by studying
higher-level cognition like language processing [Gauthier and Levy, 2019, Schrimpf et al.,
2021b, Schwartz et al., 2019]. This line of work, namely brain encoding, aims to construct
neural brain activity given an input stimulus.

Sentence comprehension has been studied using fMRI for a while Constable et al. [2004].
Some studies have looked into the modeling of language comprehension, e.g., how sequence-
based language models such as echo-state networks (ESN) [Hinaut and Dominey, 2013] or
long short-term memory networks (LSTM) [Jain and Huth, 2018, Variengien and Hinaut,
2020] encode syntactic structures and contextual information. Moreover, Jain and Huth
[2018] used LSTMs to get the context representation of sentences (with a next word predic-
tion task) and then used this representation to predict fMRI data.

Some works studied the LSTM capacity of representing long-term information [Karpathy
et al., 2015] and its ability to model working memory [O’Reilly and Frank, 2006]. However,
there still needs to be more investigation of the long-term memory cognitive plausibility of
LSTM and its link to fMRI data. In this paper, we open the black box of LSTM to look at
particular LSTM activations: the cell and hidden states. This can give more insights into
longer-term and shorter-term information. Indeed, the cell state mechanism has been intro-
duced in the original LSTM paper [Hochreiter and Schmidhuber, 1997] to keep the error
gradient of backpropagation constant over long-time scales. Thus, its activity can represent
more long-term information than the hidden state of the LSTM. We also investigate how the
pretrained bi-directional sequence embedding language model ELMo [Peters et al., 2018]
handles the longer context and interprets the LSTM layers representations that better predict
brain activity.

Recently, the researchers studied how the representations from Transformer [Vaswani
et al., 2017] based language models such as BERT [Devlin et al., 2019] and RoBERTa [Liu
et al., 2019] could directly predict fMRI data. Interestingly, such Transformer-based neural
representations are very effective for brain encoding as well [Schrimpf et al., 2021b]. On
the other hand, Gauthier and Levy [2019] fine-tune a pretrained BERT model on multiple
natural language processing tasks to find tasks best correlated with high decoding perfor-
mance. In recent works, Caucheteux et al. [2021a], Antonello et al. [2021] interpret the
representations of the Transformer model (GPT-2 [Radford et al., 2019]) by disentangling
the high-dimensional Transformer representations of language models into four combinato-
rial classes: lexical, compositional, syntactic, and semantic representations to explore which
class is highly associated with language cortical ROIs. However, due to their self-attention
operation, these models cannot handle the long-term dependencies (sequence length is fixed
to 512 words). To overcome this limitation, recently, Beltagy et al. [2020] introduced Long-
former, making it easy to process documents of thousands of tokens or longer and combin-
ing local windowed attention with global attention.
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4.2 Methodology

This paper reveals insights about the association between fMRI voxel activations and
representations of diverse language models: LSTM, ELMo, and Longformer. The predictive
power of language model specific representations with brain activation is ascertained by (1)
using ridge regression on such representations and predicting activations and (2) computing
famous metrics like 2V2 accuracy and Pearson correlation between actual and predicted
activations.

Specifically, we make the following contributions in this paper. (1) Given a language
model pretrained on corpora by handling long-term dependencies, we propose the prob-
lem of finding which of these are the most predictive of fMRI brain activity for listening
tasks. (2) The investigation of the long-term context of language model results reveals that
ELMo and Longformer representations display better correlation during narrative story lis-
tening. (3) We also investigate the internal memory representations of LSTM (cell state and
hidden state) and derive interesting insights that the cell state representations yield better
performance than hidden state representations.

4.2 METHODOLOGY

4.2.1 BRAIN IMAGING DATASET

Narratives-Pieman (Listening to Stories) The “Narratives” collection aggregates a variety
of fMRI datasets collected while human subjects listened to naturalistic spoken stories. The
Narratives dataset that includes 345 subjects, 891 functional scans, and 27 diverse stories
of varying duration totaling ∼4.6 hours of unique stimuli (∼43,000 words) was proposed
in Nastase et al. [2020b]. Similar to earlier works Caucheteux et al. [2021b], we analyze
data from 82 subjects listening to the story titled ‘PieMan’ with 259 TRs (repetition time)1.
A TR is the length of time between corresponding consecutive points in fMRI: here it is 1.5
sec. We list number of voxels per ROI (Region of Interest) in this dataset in Table 4.1. We
use the multi-modal parcellation of the human cerebral cortex (Glasser Atlas: consists of
180 ROIs in each hemisphere) to display the brain maps [Glasser et al., 2016], since the Nar-
ratives dataset contains annotations tied to this atlas. The data covers ten brain ROIs, i.e.,
Left hemisphere (L), and Right hemisphere (R) for each of the following: (i) early auditory
cortex (EAC: A1, LBelt, MBelt, PBelt, and R1) which plays a key role for sound percep-
tion since it represents one of the first cortical processing stations for sounds; (ii) auditory
association cortex (AAC: A4, A5, STSdp, STSda, STSvp, STSva, STGa, and TA2) which
is concerned with the memory and classification of sounds; (iii) posterior medial cortex
(PMC: POS1, POS2, v23ab, d23ab, 31pv, 31pd, 7m) which has been implicated in tasks as
diverse as attention, memory, spatial navigation, emotion, self-relevance detection, and re-
ward evaluation; (iv) the temporo parieto occipital junction (TPOJ: TPOJ1, TPOJ2, TPOJ3,
STV, PSL) which is a complex brain territory heavily involved in several high-level neu-
rological functions, such as language, visuo-spatial recognition, writing, reading, symbol
processing, calculation, self-processing, working memory, musical memory, and face and
object recognition; and (v) the dorsal frontal lobe (DFL: L_55b, SFL, L_44, L_45, IFJA,

1282 TRs (before preprocessing) and 259 TRs (after preprocessing).
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IFSP) which covers the aspects of pragmatic processing such as discourse management,
integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity
resolution, and error repair. These five brain ROIs (EAC, AAC, TPOJ, DFL, and PMC)
span a cortical hierarchy supporting language and narrative comprehension [Huth et al.,
2016, Baldassano et al., 2017].

ROIs→ EAC AAC PMC TPOJ DFL
LH RH LH RH LH RH LH RH LH RH

# Voxels 808 638 1420 1493 1198 1204 847 1188 1061 875

Table 4.1: # Voxels in each ROI in the Narratives Dataset. LH - Left Hemisphere. RH - Right
Hemisphere. Pieman has 82 subjects.

4.3 LANGUAGE MODELS

To explore how and where contextual word features are represented in the brain when lis-
tening to stories, we extract internal hidden representations from four language models:
GloVe, Random LSTM & LSTM, ELMo (obtaining context-dependent word embeddings),
and popular pretrained Transformer-based language model (Longformer). This approach
aims to better understand the contribution of different stimulus features to the brain align-
ment with language models. Our main objective is to compare the correlation between
each model dense hidden representations and human cognitive process. In this paper, we
train fMRI encoding models using Ridge regression on stimuli representations obtained
using these four language models. The main goal of each fMRI encoder model is to pre-
dict brain responses associated with each brain region given stimuli. In all cases, we train
a ridge regression model per subject separately. Following the literature on brain encod-
ing [Caucheteux et al., 2021b, Toneva et al., 2020], we choose to use a simple ridge regres-
sion model instead of more popular regression models like Bootstrap [Tikhonov et al., 1977]
or Banded models [la Tour et al., 2022]. For instance, Deniz et al. [2019] used a banded
ridge regression-based model that combines all feature groups into one encoding model to
map brain activity. We plan to explore more such models as part of future work in brain
encoding. Here, our main is objective to investigate the influence of context representations
of different language models and their alignment with language regions of the brain.

4.3.1 LSTM

First, we train an LSTM [Hochreiter and Schmidhuber, 1997] network to predict the proba-
bility of the next word as a function of the history of previous words. The weights of LSTMs
are learned using the error back-propagation through time (BPTT). To make the association
between encoded stimuli from LSTM’s internal components and fMRI brain activity, we do
the folllowing: (i) At the time step t, we use vector at to represent the internal neurons of
encoded stimuli in LSTM. In this paper, at may be hidden state vector (ht) and cell state
vector (ct). (ii) In order to map the stimuli encoded vector at of LSTM and brain activity
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at the t-th time step (Yt), we define a simple linear model, ridge regression, to predict the
brain activity (Ŷt) from at, as discussed in the ridge regression section.

4.3.2 PRETRAINED TEXT TRANSFORMER: LONGFORMER

Longformer [Beltagy et al., 2020] builds on BERT’s language masking strategy and sup-
ports long document generative sequence-to-sequence tasks. We use the pretrained Long-
former model with a local attention mechanism, where the default window size is set to
5. To obtain the stimuli representation, we follow previous work to extract the hidden-
state representations from each layer of these language models, given a fixed-length input
length [Toneva and Wehbe, 2019]. To extract the stimulus features from these pretrained
models, we constrained the tokenizer to use a maximum context of 5 words. Given the
constrained context length, each word is successively input to the network with at most C
previous tokens. For instance, given a story of M words and considering the context length
of 5, while the third word’s vector is computed by presenting (w1, w2, w3) as input to the
network, the last word’s vector wM is computed by presenting the network with (wM−20,
. . . , wM ). The pretrained Transformer model outputs token representations at different lay-
ers. We use the #tokens × 768 dimension vector obtained from each hidden layer to obtain
word-level representations from each pretrained Transformer language model.

Additionally, we varied the context lengths (10, 20, 50, 100, 500, and 1000) and measured
their brain alignment. This approach reveals how brain alignment improves when longer
input contexts are provided.

4.3.3 LINEAR PROBING OF LANGUAGE MODELS

Here, we direct extract representations Random LSTM, LSTM, ELMo, and Longformer
networks (i.e. no finetuning) to directly predict brain activities, for two reasons. First, the
dimension of the fMRI voxels varies among different subjects and across different ROIs.
Therefore, it is not convenient to design a universal neural network architecture for generat-
ing outputs of different dimensions. Second, the goal of this research is not to improve the
performance of language models in predicting fMRI. We want to explore linear mappings
between particular features of language models states and neural activities in the auditory
and language brain ROIs. Namely, we look at (i) the characteristics of hidden state vectors
(ht) and artificial memory vectors (ct) in both LSTMs and Random LSTMs, and (ii) local
context vectors obtained from performance-optimized deep neural network models (ELMo
and Longformer). Therefore, we avoid any possible supervision from the fMRI data when
training LSTM and Random LSTM language models.

4.3.4 COMPARISON TO OTHER LANGUAGE MODELS

We compare the LSTM model with the Longformer and several other pretrained language
models: Random LSTM, ELMo, and GloVe. To enable a fair comparison of encoding
model performance, we use the same context length for extracting word representations
from these language models.
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LSTM Training: We experimented with one layer of LSTM to perform the next word
prediction. In our next word prediction, we first split each story in half (of 27 stories); we
designate the first half as the training set and the second half as the test set. The model is
implemented in Keras with TensorFlow backend [Abadi et al., 2016] with cross-entropy as
loss, Adam optimizer [Kingma, 2014], the number epochs set to 100, the batch size is of 64,
applied dropout with a keep-probability of 0.2, and tried LSTM with hidden state size is set
to 100, the dimensionality of word embeddings is set to 100. The other hyper-parameters
are learning rate (0.01), and maximum sequence length is set to 5.
Random LSTM: We use a random LSTM model where the LSTM weights are randomly
initialized and kept frozen. We use the output and cell state vectors at each time step to
perform fMRI encoding. The configuration details of Random LSTM are the same as that
original LSTM model.
ELMo: ELMo (Embeddings from Language Models) is a successful NLP framework de-
veloped by the AllenNLP [Peters et al., 2018] group. Unlike earlier embeddings, ELMo
embeddings represent words in a contextual fashion using a bidirectional LSTM model. We
perform the downsampling of word embeddings (see Section 4.3.5) to obtain the TR-level
representations.
GloVe: based word vectors (each word is a 300-dimension vector) [Pennington et al., 2014],
and the downsample of word embeddings (see Section 4.3.5) results in context vector in
each time step.

4.3.5 DOWNSAMPLING

Since the rate of fMRI data acquisition (TR = 1.5sec) was lower than the rate at which
the text stimulus was presented to the subjects, several words fall under the same TR in a
single acquisition. Hence, we match the stimulus acquisition rate to fMRI data recording by
downsampling the stimulus features using a 3-lobed Lanczos filter. After downsampling,
we obtain word-embeddings corresponding to each TR.

4.3.6 TR ALIGNMENT

To account for the slowness of the hemodynamic response, we model the HRF using a finite
response filter (FIR) per voxel and for each subject separately with various temporal delays.
For instance, in Narratives listening, a temporal delay of 1 TR corresponds to 1.5 secs ,
and 5 TRs translate to a delay of 7.5 secs. Overall, the FIR filters were implemented by
concatenating feature vectors that had been delayed by various delays.

4.4 EXPERIMENTAL SETUP

4.4.1 VOXELWISE ENCODING MODEL

We trained a ridge regression based encoding model to predict the fMRI brain activity as-
sociated with the semantic vector representation obtained from each language model: ran-
dLSTM (hidden state, cell state), LSTM (hidden state, cell state), GloVe, ELMo, and Long-
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former. Each voxel value is predicted using a separate ridge regression model. Formally, at
the time step (t), we encode the stimuli as Xt ∈ RN×D and brain region voxels Yt ∈ RN×V ,
where N denotes the number of training examples, D denotes the dimension of input stim-
uli representation after TR alignment, and V denotes the number of voxels in a particular
region.
Hyper-parameter Setting: We used sklearn’s ridge-regression with default parameters,
5-fold cross-validation, Stochastic-Average-Gradient Descent Optimizer, Huggingface for
Longformer, MSE loss function, and L2-decay (λ):1.0. We used Word-Piece tokenizer for
the Longformer model and Spacy-tokenizer for the GloVe and ELMo models.

4.4.2 MODEL PREDICTION ACROSS WHOLE BRAIN

To determine the significant voxel predictions across the whole-brain, we ran the permuta-
tion tests where we shuffled the true responses 5000 times, computed the Pearson correlation
scores, and finally obtained the FDR corrected p-values for the whole brain results using
both Longformer and ELMo. We set the correlation score of voxels to zero if the p-value of
the correlation obtained from the permutation test is above the significance threshold (p>
0.05, FDR corrected).

4.4.3 EVALUATION METRICS

We evaluate our models using popular brain encoding evaluation metrics described in the
following. Given a subject and a brain region, let N be the number of samples. Let {Yi}Ni=1

and {Ŷi}Ni=1 denote the actual and predicted voxel value vectors for the ith sample. Thus,
Y ∈ RN×V and Ŷ ∈ RN×V where V is the number of voxels in that region.
2V2 Accuracy is computed as follows.

2V2Acc =

1

NC2

N−1∑
i=1

N∑
j=i+1

I[{cosD(Yi, Ŷi) + cosD(Yj , Ŷj)}

< {cosD(Yi, Ŷj) + cosD(Yj , Ŷi)}]

where cosD is the cosine distance function. I[c] is an indicator function such that I[c] = 1
if c is true, else it is 0. The higher the 2V2 accuracy, the better.
Pearson Correlation (PC) is computed as PC= 1

N

∑n
i=1 corr[Yi, Ŷi] where corr is the cor-

relation function.

4.5 RESULTS

In order to assess the performance of the fMRI encoder models learned using the repre-
sentations from a variety of language models, we computed the 2V2 accuracy and Pearson
correlation coefficient between the predicted and true responses across various ROIs for the
listening (Narratives-Pieman) dataset (Fig. 4.1).

69



4 Long Short-Term Memory of Language Models for Predicting Brain Activation During
Listening to Stories

EAC_L EAC_R AAC_L AAC_R PMC_L PMC_R TPOJ_L TPOJ_R DFL_L DFL_R

0

0.1

0.2

Rand Noise GloVe RandLSTM (hidden state) RandLSTM (cell state)
LSTM (hidden state) LSTM (cell state) ELMo Longformer

Average of Subjects
Pe

ar
so

n 
C
or

re
la

tio
n

EAC_L EAC_R AAC_L AAC_R PMC_L PMC_R TPOJ_L TPOJ_R DFL_L DFL_R

0.5

0.7

Average of Subjects

2V
2 

A
cc

ur
ac

y

Figure 4.1: Pearson correlation coefficient (top figure) and 2V2 Accuracy (bottom figure) between
predicted and true responses across different brain regions using a variety of language
models (for Narratives-Pieman dataset). Results are averaged across all participants.
ELMo and Longformer are the best. Rand Noise stands for a “Random noise vector”.
(hidden state) stands for the “short-term memory of internal state of the LSTM”.

4.5.1 ENCODING PERFORMANCE OF LANGUAGE MODELS

From Fig. 4.1, we observe that the profiles of performance show low scores in the early audi-
tory cortex (EAC) and auditory association cortex (AAC); average scores in TPOJ and DFL;
and superior scores in PMC. This aligns with the known language hierarchy for spoken lan-
guage understanding [Huth et al., 2016, Baldassano et al., 2017, Nastase et al., 2020a].
Language models ELMo, and Longformer yield better performance in predicting the brain
responses than the LSTM model across all the ROIs. These Pearson correlation (ρ) results
are comparatively better to those obtained using the pretrained GPT2 model in Caucheteux
et al. [2021a] (ρ ranging from 0.02− 0.06). As shown in Fig. 4.1, our method obtains more
than 3 times higher correlations (ρ ranging from 0.02− 0.19)2. The main reason is that the
Longformer is designed to process documents of thousands of tokens or longer sequences
while GPT-2 models are unable to handle the long-term dependencies (sequence length is
fixed to 512 words). Also, the narrative dataset consists of longer documents (more than

2we do not apply on the same number of subjects and/or same amount of stories than in Caucheteux et al.
[2021a]. However, we tested with few other stories such as Lucy and Slumlord, and our results (higher
correlations) show similar trends.
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Models compared EAC AAC PMC TPOJ DFL

Longformer vs ELMo 0.521 0.271 0.168 0.054 0.356
LSTM (Cell state vs
hidden state)

0.991 0.177 0.0357* 0.0038* 0.158

Longformer vs LSTM
(cell state)

0.048* 0.0008* 0.00002* 0.00003* 0.0015*

ELMo vs LSTM (cell
state)

0.372 0.003* 0.00004* 0.00006* 0.0049*

Table 4.2: p-values obtained using post hoc pairwise comparisons for the three best models (+ LSTM
hidden state).

2000 words in one story); the traditional transformer models consider the context up to 512
words, whereas Longformer handles even longer documents.

Further, from Fig. 4.1, we see that the bilateral posterior medial cortex (PMC) associated
with higher language function exhibits a higher correlation among all the brain ROIs. ROIs,
including bilateral TPOJ and bilateral DFL, yield higher correlations with the ELMo and
Longformer, which is in line with the language processing hierarchy in the human brain.
Finally, across all regions, Rand Noise vector and Rand LSTM models have worse corre-
lation compared to LSTM and other language models. In summary, different and distinct
language model features seem to be related to the encoding performance in listening tasks.

In order to estimate the statistical significance of the performance differences, we per-
formed one-way ANOVA on the mean correlation values for the subjects across the lan-
guage models (GloVe, LSTM (cell state), LSTM (hidden state), ELMo, and Longformer)
for the five brain ROIs. The main effect of the ANOVA test was significant for all the
ROIs with p≤ 10−2 with confidence 95%. Further, post hoc pairwise comparisons [Ruxton
and Beauchamp, 2008] confirmed the visual observations that on both 2V2 accuracy and
Pearson correlation measures, tasks such as ELMo and Longformer performed significantly
better compared to other models, as shown in Table 4.2.

4.5.2 LSTM: EFFECTS OF HIDDEN STATE VS CELL STATE VECTORS

In order to explore how LSTM hidden units learn to encode the long-term and short-term
memory information and the interaction between the two types of working memories, we
compare the encoding performance between representations of hidden state and cell state
vectors. Fig. 4.1 showcases the fMRI encoding performance of both RandLSTM and LSTM
models where the cell state representations (long term-memory vector) yield better perfor-
mance than hidden state representations (short-term memory). This supports the cognitive
plausibility of the LSTM cell architecture. Besides, the performance of GloVe and Ran-
dLSTM models have significantly equal performance, indicating that semantic context is
missing in these models.

4.5.3 WHICH ELMO LAYERS PERFORM BETTER ENCODING?

We investigate how the performance of ELMo changes at different layers (Embedding layer,
LSTM layer-1, and LSTM layer-2), as they are provided in different contexts. The results
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Figure 4.2: ELMo layers: Pearson correlation coefficient (top) and 2V2 Accuracy (bottom) between
predicted and true responses across different brain regions using layers of ELMo model.
Results are averaged across all participants.

are shown in Fig. 4.2. From Fig. 4.2, we observe that layer-2 displays better 2v2 accuracy
and Pearson correlation score compared to other layers. We further observe that the layer
1 show a sharp increase in performance compared to embedding layer in the context of
narrative story listening.

4.5.4 WHICH LONGFORMER LAYERS PERFORM BETTER ENCODING?

Given the hierarchical processing of language information across the Transformer layers,
we further examine how these Transformer layers encode fMRI brain activity using encoder
layers of Longformer. We present the layer-wise encoding performance results across brain
ROIs in Fig. 4.3. We observe that in all the layers, intermediate layers (6 to 8) perform
the best for narrative listening, followed by a decrease in performance. Overall, for the
Longformer model, the best alignment with fMRI is observed in the middle layers, as noted
in prior studies. [Jain and Huth, 2018, Toneva and Wehbe, 2019].

4.5.5 COGNITIVE INSIGHTS

We further analyse in more detail the prediction performance of the encoder model trained
on sub ROIs for the ELMo and Longformer in Fig. 4.4. In the EAC, the sub ROI pbelt
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Figure 4.3: Longformer layers: Pearson correlation coefficient between predicted and true responses
across different brain regions (different color lines) using Longformer. Results are aver-
aged across all participants. Middle layers (6 and 8) show best correlation.

(parabelt) display higher Pearson correlation among other sub ROIs, and it is adjacent to
the lateral belt on the exposed surface of the superior temporal gyrus (STG). Also, the
pbelt area represent the next level in the auditory hierarchy and mainly concerned with
memory or decision-making. Similarly in the AAC, the sub ROIs such as A4, A5, stsvp,
and stsda yield better correlation, and these ROIs shares the primary medial and posterior
borders with TPOJ [Trumpp et al., 2013]. Further, there is evidence that these sub ROIs
of the AAC process perceptual and conceptual acoustic sounds during auditory stories and
social interaction tasks [Glasser et al., 2016]. It can be observed that sub ROIs such as
Pos1 and Pos2 have a higher Pearson correlation than other sub ROIs of the PMC region.
Both sfl and l55b display a higher correlation among all the sub ROIs for the DFL ROI.
However, all the sub ROIs in the TPOJ yield higher correlation, as shown in Fig. 4.4. The
control and attention ROIs in the posterior cingulate cortex (for ex., POS1 in PMC), together
with the superior frontal language region (sfl in DFL) and TPOJ, are part of the language
network associated with narrative comprehension [Nastase et al., 2020a]: it is encouraging
to see that both ELMo and Longformer also relate to semantic analysis of the ongoing
narrative because they obtain best performance, showing that capturing longer-term context
is important.
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Figure 4.4: Pearson correlation coefficient between predicted and true responses across different sub
ROIs of the Language Network using ELMo and Longformer. Results are averaged
across all participants.

4.5.6 LONGFORMER: EFFECT OF CONTEXT LENGTHS

Fig. 4.5 displays the average Pearson correlation across several language ROIs by varying
the context lengths from 5 to 1000 and observing their brain alignment. We make the
following observations from Fig. 4.5: (i) Brain alignment improves with the increase in
context lengths, specifically, we observe higher correlation when we provide longer input
contexts (50-100). (ii) There is a decrease in brain alignment for the higher context length
of 1000. This implies that the brain processes longer context information effectively up to
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Figure 4.5: Average Pearson correlation across several language regions of interest (ROIs) for vary-
ing context lengths (5 to 1000) using the Longformer model.

context lengths of 100 but cannot process longer semantic information efficiently beyond
that.

4.5.7 BRAIN MAPS FOR WHOLE BRAIN PREDICTIONS

The whole-brain prediction Pearson correlation for all the voxels using ELMo, Longformer
and LSTM representations is shown in Fig. 4.6. In the listening task, we observe from
Fig. 4.6 that Longformer displays higher correlation values for many voxels than ELMo.
From Fig. 4.6, we see that ROIs such as EAC and AAC have a lower percentage of voxels
with a higher correlation compared to PMC and TPOJ brain ROIs (higher percentage of
voxels with higher correlation).

4.6 DISCUSSION & CONCLUSION

This paper studied the long-term memory plausibility of language models for brain en-
coding. We observe that building individual encoding models and interpreting the internal
representations among models can provide a more in-depth understanding of the neural
representation of language information. Our experiments on the Narrative listening stories
dataset lead to several interesting findings.

(1) Pretrained language models, where the contextual word representations (such as in
ELMo and Longformer) are used, are better predictors of voxel activations across language
regions than static or sequential models. (2) In LSTM, the cell state representations (long
term memory vector) yield better encoding performance than hidden state representations;
thus, internal dynamics of LSTMs seem to have more cognitively plausible activations than
classically studied LSTM activations. (3) We used different layers of ELMo and Long-
former, where higher layers display better correlation for ELMo while intermediate layers
show superior performance for Longformer. (4) The control and attention ROIs in the pos-
terior cingulate cortex, together with the superior frontal language region (sfl in DFL) and
TPOJ, are part of the language network associated with narrative comprehension. (5) Al-
though text-based language models are pretrained on text data, the representations of these
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Figure 4.6: BrainMaps: Whole-brain prediction correlation using representations of ELMo, Long-
former, and LSTM models, averaged across participants of Narratives-Pieman dataset.

models result in higher degree of correlation in the early auditory and auditory association
cortex.

Our study resulted in three main conclusions: (1) we use human brain recordings to
evaluate how well representations from language models (static vs. recurrent vs. pretrained)
can predict representations of the human brain during language comprehension. (2) Richer
representations learned from language models, designed to integrate longer contexts, have
improved alignment with human brain activity. (3) Pretrained language models significantly
predict brain language regions that are thought to underlie language comprehension.

Overall, advancements in language models, particularly in handling longer-context lengths,
are crucial for better prediction of brain activation patterns and narrative memory retention.

4.6.1 LIMITATIONS

We believe that using popular regression models like Bootstrap [Tikhonov et al., 1977]
or Banded models [la Tour et al., 2022] instead of simple ridge regression could lead to
further exciting insights, such as linking internal model mechanisms more directly to brain
activations. However, achieving this would require more computing resources, as these
models combine all features to build a single encoding model.

In this paper, we only tested the contextual representations extracted from one longer-
context model, Longformer. More popular models such as Long-T5, LED, BART, and
Memory Transformer could be useful for a deeper understanding of their brain alignment.
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Additionally, the importance of word order in longer models is underexplored. Hence,
conducting perturbations on input stimuli and verifying whether longer models still capture
efficient representations and their brain alignment across language regions is necessary.
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5 OPTIMAL HEMODYNAMIC RESPONSE

FUNCTION DELAYS ARE DIFFERENT

FOR SYNTAX AND SEMANTICS: A

LANGUAGE MODEL STUDY OF

NATURALISTIC STORY LISTENING

Recent brain encoding studies highlight the potential for natural language processing mod-
els to improve our understanding of language processing in the brain. Simultaneously, natu-
ralistic fMRI datasets are becoming increasingly available and present even further avenues
for understanding the alignment between brains and language models. However, current
brain encoding studies on language use constant hemodynamic response function (HRF)
delay, literature studies on schizophrenia disorders report that it was worth to look at dif-
ferent HRF delays. This poses a question of how different language regions truly process
syntax and semantics. Hence, for a deeper understanding of this brain alignment, it is impor-
tant to understand the correspondence between the detailed processing of different language
regions at different HRF delays in both the human brain and language models. In this work,
we present a systematic study of the brain alignment across 8 HRF delays (ranging from 1.5
secs to 12 secs) related to the language model representations and observe how these de-
lays affects the alignment with fMRI brain recordings obtained while participants listened
to or read a story. In particular, we explore the relative importance of syntactic information
(i.e. syntactic embeddings based on constituency trees) versus semantic information, using
open-source, text-based language models such as BERT, GPT-2 and Llama-2, along with the
speech-based language model Wav2vec2.0. Using different HRF delays, we find that early
processing of syntactic information in frontal and temporal lobes, while semantic processing
occurs in later delays in the angular gyrus. We further investigate different context lengths
and find that longer context may play a significant role in higher HRF delays. Text-based
models align strongly with language regions, whereas speech-based models align with early
auditory cortex. These findings suggest that the decomposition of representations into dif-
ferent linguistic features enables a fine-grained understanding of brain language processing
across various delays, cautioning against solely relying on speech-based models for late
processing regions, paving the way for more personalized and effective approaches in both
linguistic and clinical applications.

This chapter has been finalized based on our ongoing work, which we plan to submit to
a journal.
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5 Optimal Hemodynamic Response Function delays are different for syntax and
semantics: a language model study of naturalistic story listening

5.1 INTRODUCTION

The increasing availability of naturalistic fMRI datasets and large-scale neural models can
enable a better understanding of the brain’s response to natural stimuli. Just in the last
few years, researchers have shown that brain responses of people comprehending language
can be predicted well by text-based language models [Wehbe et al., 2014, Jain and Huth,
2018, Toneva and Wehbe, 2019, Deniz et al., 2019, Caucheteux and King, 2020, Schrimpf
et al., 2021b, Caucheteux et al., 2021a, Toneva et al., 2022, Oota et al., 2022c, Antonello
et al., 2021, Aw and Toneva, 2023, Merlin and Toneva, 2022] and speech-based language
models [Millet et al., 2022, Vaidya et al., 2022, Oota et al., 2023f,a]. Understanding the
reasons behind the observed similarities between language comprehension in machines and
brains can lead to more insight into both systems.

In the context of non-invasive fMRI (functional Magnetic Resonance Imaging) brain
recordings, language processing within the brain is impacted by delays in the Hemodynamic
Response Function (HRF). This refers to the time lag between the neural fMRI brain ac-
tivity associated with language comprehension and the subsequent hemodynamic response,
which is the blood flow change accompanying neural activity. The exact timing of this
response can vary across individuals and brain regions.

While existing studies on the alignment between language comprehension and the brain
have been observed at constant hemodynamic response function (HRF) delay (around 7.5
to 8 seconds), there is still ongoing exploration into how language and the brain’s process-
ing mechanisms synchronize when faced with different HRF delays [Jain and Huth, 2018,
Jain et al., 2020, Toneva and Wehbe, 2019, Deniz et al., 2019, Toneva et al., 2022, Aw
and Toneva, 2023, Oota et al., 2022c, 2023c]. Further, the existing studies have mainly
built brain encoding models by considering a fixed HRF delay and analyzing how different
regions of interest (ROIs) involved in language processing influence the semantic and syn-
tactic aspects of information processing in the brain [Jain and Huth, 2018, Jain et al., 2020,
Toneva and Wehbe, 2019, Caucheteux et al., 2021a, Toneva et al., 2022, Merlin and Toneva,
2022, Aw and Toneva, 2023, Oota et al., 2022c, 2023c]. Table 5.1 summarizes current brain
encoding studies with a fixed HRF delay. Therefore, the interplay between HRF delays and
language processing is an area of investigation, aiming to comprehend how neural activity
related to language tasks aligns with the subsequent hemodynamic response and how this
alignment may differ under varying conditions of HRF delays.

More recently, researchers have begun to study the alignment of these brain language
regions with the language models, using a multi-timescale modeling approach employing
LSTM to study how the human brain process neural language contains information at multi-
ple timescales, ranging from phonemes to narratives [Jain et al., 2020]. In particular, the au-
thors learn language model-derived representations at different timescales to perform brain
encoding. However, the conclusions drawn in the Jain et al. [2020] study are constrained by
the existence of much more effective language representations than those offered by LSTM
networks. Also, efforts have been made towards ascertaining the language structures em-
bedded exclusively within widely used Transformer-based language models, namely BERT
and GPT-2 [Conneau et al., 2018, Rogers et al., 2020, Jawahar et al., 2019, Mohebbi et al.,
2021]. This exploration indicates that Transformer-based language models learn effective
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5.1 Introduction

Figure 5.1: Brain Encoding Schema: Methodology for studying the alignment of neural language
models with fMRI brain activity. In this study, we test the effect of basic syntax features,
syntactic embeddings from constituent parse trees and contextual representations from
pretrained language models on the alignment between these features and brain recordings
across different HRF delays.

representations. Taken together, these findings open up the question of how the effective-
ness of contextual representations influences the observed convergence between brains and
language models across distinct HRF delays.

Prior brain encoding studies have revealed differences in how the brain processes lan-
guage comprehension during reading and listening to a naturalistic stimulus [Jain and Huth,
2018, Toneva and Wehbe, 2019]. Particularly, these studies have focused on interpreting
various contextual word representations from neural networks using brain recordings. These
findings demonstrated that specific language regions in the medial parietal cortex, prefrontal
cortex, and inferior temporal cortex are biased toward encoding contextualized representa-
tions. In contrast, certain areas in the superior temporal cortex and the temporoparietal
junction do not prefer contextualized information. However, it remains unclear to what
extent brain language regions, with various contextual word representations, contribute to
encoding language structure across distinct HRF delays.

In the realm of syntactic processing, Matchin and Hickok [2020] illustrate the phono-
logical and semantic networks that interact with syntactic systems, including word-level
syntactic relationships, hierarchical parse trees, and complex syntax. They demonstrate
the transformation of sequences of auditory phonological representations into hierarchi-
cal structures, encompassing both entity knowledge and event knowledge associated with
different language regions. Recent research has explored how brain process syntax struc-
ture for linguistic stimuli by generating pure syntactic embeddings from parse trees (con-
stituent and dependency parsers) [Reddy and Wehbe, 2021, Oota et al., 2023d, Zhang et al.,
2022a], or disentangle the language model representations by controlling the syntactic in-
formation [Caucheteux et al., 2021a]. These findings reveal that both syntax and semantic
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StimuliAuthors Type Lang. Stimulus Representa-
tions

|S| Dataset Delays

Te
xt

Jain et al. [2020] fMRIEnglishLSTM 6 Moth-Radio-Hour 8secs (4 TRs)
Jain and Huth [2018] fMRIEnglishLSTM 6 Moth-Radio-Hour 8secs (4 TRs)
Caucheteux et al.
[2021a]

fMRIEnglishGPT-2 345 Narratives 7.5secs (5
TRs)

Reddy and Wehbe
[2021]

fMRIEnglishSyntax Parsers, BERT 8 Harry-Potter 8secs (4 TRs)

Merlin and Toneva
[2022]

fMRIEnglishGPT2 8 Harry-Potter 8secs (4 TRs)

Aw and Toneva [2023] fMRIEnglishBART, LongT5, LED 8 Harry-Potter 8secs (4TRs)
Antonello et al. [2021] fMRIEnglish100 Language Models 7 Moth-Radio-Hor 8secs (4 TRs)
Oota et al. [2023c] fMRIEnglishBERT and Probing Tasks 18 Narratives 21st-Year 9secs (6 TRs)
Oota et al. [2023a] fMRIEnglishBERT, GPT-2,

Wav2Vec2.0
6 Moth-radio-hour 12secs (6

TRs)

Table 5.1: Summary of Brain Encoding Studies with constant HRF delays. Here, |S| denotes number
of participants.

information are distributed across the brain language regions. However, all these studies
perform their analysis at fixed delay. Hence, the study of joint syntactic processing between
the brains and the language models, check for ways to improve across delays and further
explain brain language processing.

Our work aims to examine how the intricate processing of diverse language regions at
varying HRF delays in the human brain corresponds with Transformer based language mod-
els. For various HRF delays and context lengths, we analyze the impact on the alignment
between brain recordings and language model representations (see Fig. 5.1 for a schematic).
This analysis sheds light on how this alignment is influenced and how it relates to specific
language regions. For this work, we focus on three popular language models–BERT [De-
vlin et al., 2019], GPT-2 [Radford et al., 2019] and Llama-2 [Touvron et al., 2023], and one
speech-based language model Wav2vec2.0 [Baevski et al., 2020]–which have been studied
extensively in natural language processing (NLP) and has been previously shown to signif-
icantly predict fMRI recordings of people processing language [Toneva and Wehbe, 2019,
Schrimpf et al., 2021b, Antonello et al., 2021, Oota et al., 2022c, 2023c]. We use a popu-
lar dataset of fMRI recordings that are openly available such as Narratives [Nastase et al.,
2020b] correspond to 22 subjects listening to a natural story.

Overall, our main contributions are as follows: (i) We perform an extensive study on
evaluating linguistic brain encoding, examining various hemodynamic response function
(HRF) delays. We specifically focus on both basic word-level syntactic, basic speech fea-
tures, syntactic embeddings from constituent parsers and contextual representations derived
from pretrained language models, considering different context lengths in the process. (ii)
We show that syntactic information is early encoded in the brain, followed by semantic
information, as the HRF delay increases. (iii) Detailed region and sub-region analysis re-
veal that longer context may impact the observed neural activity at different brain language
regions, specifically at higher HRF delays. For instance, BERT with a context length of
20 has higher brain predictivity within language regions such as AG, IFG, ATL, and PTL,
specifically for higher delays ranging from 9 to 12 seconds.

We will make all code available upon publication.
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5.2 DATASET CURATION

Brain Imaging Dataset We analyzed a publicly available Brain Imaging dataset, Narratives-
Tunneling [Nastase et al., 2020b]. The fMRI data in these datasets were acquired from hu-
man participants actively engaged in listening to the Tunnel Under the World naturalistic
story (in the Narratives-Tunneling dataset). In the Narratives tunneling, the dataset includes
22 subjects, and each functional scan was obtained at a time repetition of 1.5 secs (TR=1.5
sec), amounting to 1023 TRs. We use the multi-modal parcellation of the human cere-
bral cortex (Glasser Atlas: consists of 180 ROIs in each hemisphere) to display the brain
maps [Glasser et al., 2016], since the Narratives dataset contains annotations tied to this
atlas. The dataset is made available freely without restrictions by Nastase et al. [2020b].
The data covers six language brain regions of interest (ROIs) of the left hemisphere with
the following subdivisions: (i) angular gyrus (AG: PFm, PGs, PGi, TPOJ2, and TPOJ3);
(ii) anterior temporal lobe (ATL: STSda, STSva, STGa, TE1a, TE2a, TGv, and TGd); (iii)
posterior temporal lobe (PTL: A4, A5, STSdp, STSvp, PSL, STV, TPOJ1); (iv) inferior
frontal gyrus (IFG: 44, 45, IFJa, IFSp); (v) middle frontal gyrus (MFG: 55b); (vi) inferior
frontal gyrus orbital (IFGOrb: a47r, p47r, a9-46v) [Baker et al., 2018, Milton et al., 2021,
Desai et al., 2022].
Estimating Participant Noise Ceiling To account for the intrinsic noise in biological mea-
surements and obtain a more accurate estimate of the model’s performance, we estimate the
noise ceiling approach proposed by Schrimpf et al. [2021b]. This is achieved by estimating
the amount of brain response in one subject that can be predicted using only the data from
a combination of other subjects, using an encoding model. We choose to use a kernel ridge
regression model 1 as the encoding model. We first subsampled-the data with n partici-
pants into all possible combinations of s participants for all s ∈ [2, n] (e.g. 2, 3, 4, ..., 22
for n=22). For each subsample, we then designated a random participant as the target that
we attempt to predict from the remaining s − 1 participants (e.g., predict 1 subject from 1
(other) subject, 1 from 2 subjects, ..., 1 from 22, to obtain a mean score for each sensor in
that subsample. As suggested in Schrimpf et al. [2021b], we extrapolate to infinitely many
humans and thus to obtain the highest possible (most conservative) estimate.

Note that the estimated participant noise ceiling estimate is based on the assumption of a
perfect model, which may not always be the case in real-world scenarios. Nonetheless, this
approach can put the model’s performance in a useful perspective. We report the estimated
noise ceiling performance for each participant in the supplementary Figure 5.11.

5.2.1 FEATURE REPRESENTATIONS

To simultaneously test both syntax and semantic representations and their alignment with
brain recordings, we extract both word-level and auditory representations as follows: (i) Ba-
sic word-level syntax features (Part-of-Speech Tags (POS Tag) and Dependency Tags (DEP
Tag)), (ii) Basic speech features (Phonological, MFCC, Mel and FBANK), (ii) Syntactic
embeddings based on constituency parse trees, (iii) open-source language models such as

1https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.
KernelRidge.html
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BERT, GPT2 and Llama-2, and (iv) speech-based language model: Wav2vec2.0. We aim
to understand the relative importance of these syntactic and language model representations
while considering various HRF delays.
Part-of-speech and dependency tags: We use Spacy English dependency parser [Hon-
nibal and Montani, 2017] to extract the POS and DEP tags. For each word, we generate
a one-hot vector in which the corresponding POS tag location is 1 and the remaining tag
values are 0. Similarly, we create a one-hot vector for dependency tags (DEP).
Constituency Tree-based Embeddings: Similar to [Reddy and Wehbe, 2021, Oota et al.,
2023d], we build two types of constituency tree-based graph embeddings (ConTreGE): (i)
ConTreGE Complete vectors (CC), and (ii) ConTreGE Incomplete vectors (CI) A CC vector
is generated for every word using the largest subtree completed by that word. A subtree is
considered complete when all of its leaves are terminals. The largest subtree a given word
completes refers to the subtree with the most significant height. A CI vector is generated for
every word using the incomplete subtree that contains all of the Phrase Structure Grammar
productions needed to derive the words seen till then, starting from the root of the sentence’s
tree. Some examples for CC and CI are added in the Appendix (Figs. 5.20 and 5.21).
Like Reddy and Wehbe [2021], we use Berkeley Neural Parser2 for constituency parsing
(i.e., for both CI and CC).

In the ConTreGE Complete tree (CC), the largest subtree completed by a given word
refers to the subtree with the most significant height that also satisfies the following con-
ditions - the given word must be one of its leaves, and all of its leaves must only contain
words that have been seen till then.

In the ConTreGE Incomplete tree (CI), the embeddings are constructed using incomplete
subtrees that are constructed by retaining all the phrase structure grammar productions re-
quired to derive the words seen till then, starting from the root of the sentence’s tree. If
incomplete subtrees are more representative of the brain’s processes, it would mean that the
brain correctly predicts specific phrase structures even before the entire phrase or sentence
is read.
BERT (encoder model): Devlin et al. [2019] uses only encoder blocks of standard Transformer-
based architecture with 12 layers and 768-dimensional representations. In order to extract
BERT representations, we use BERT-base-uncased model from Huggingface 3. We follow
previous work to extract the hidden-state representations from each layer of these language
models, given a fixed input length [Toneva and Wehbe, 2019].
Varying the Context Length of BERT: We constrained the model with maximum C words
as context length to extract the stimulus features at different context lengths (C = 1, 5, and
20). Since the BERT model processes whole sentences, we input all the C context-length
words into the BERT model and use the representation of the last word for the past context,
similar to casual language model word representations GPT-2 [Radford et al., 2019]. For
instance, given a story of M words and considering the context length of 5, while the third
word’s vector is computed by inputting the network with (w1, w2, w3), the last word’s
vectors wM is computed by inputting the network with (wM−5, · · · , wM ). The pretrained

2https://spacy.io/universe/project/self-attentive-parser
3https://huggingface.co/bert-base-uncased
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5.3 Methodology

BERT model outputs word representations at different layers. We use the #words × 768
vector obtained from each hidden layer to obtain word-level representations.
Speech-based language model: Similar to text-based language models, we use popu-
lar pretrained Transformer speech-based model from Huggingface: Wav2Vec2.0 [Baevski
et al., 2020]. Wav2Vec2.0 (encoder model) uses only encoder blocks of standard Transformer-
based architecture with 12 layers and 768-dimensional representations. Here, the Trans-
former model was pretrained with contrastive loss as the objective function. To explore
whether speech models incorporate linguistic information, we extract representations us-
ing context window of 16 secs with stride of 100 msecs and considered the last token as
representation in each context window.
Basic speech features: We extract low-level speech features like filter banks (FBank), Mel
Spectrogram, and MFCC from audio files using S3PRL toolkit 4, and phonological features
using the DisVoice library 5. (1) FBank divide the raw audio signal into multiple compo-
nents (each one carrying a single frequency sub-band of the original signal) using a bandpass
filter, results in a 26-dimensional vector. (2) Mel Spectrogram features are computed by ap-
plying a Fourier transform on the raw audio signal to analyze a signal’s frequency content
and converting it to the mel-scale, yielding an 80-dimensional vector. (3) MFCC features
are Mel-frequency spectral coefficients obtained by taking the Discrete Cosine Transform
(DCT) of the spectral envelope obtained from the logarithmic filter bank outputs. (4) Phono-
logical features identify 108 phonological aspects (18 descriptors like vocalic, consonantal,
back) across 6 statistical functions (mean, std, skewness, kurtosis, max, min). We employ
the concatenation of all these basic speech features to model fMRI brain activity across
hemodynamic response function (HRF) delays.
Downsampling: Since the rate of fMRI data acquisition (TR = 1.5sec for Narratives) was
lower than the rate at which the text stimulus was presented to the subjects, several words
fall under the same TR in a single acquisition. Hence, we match the stimulus acquisition rate
to fMRI data recording by downsampling the stimulus features using a 3-lobed Lanczos fil-
ter. After downsampling, we obtain word embeddings corresponding to each TR. Similarly,
for speech-based model, we perform this downsampling to obtain the chunk embedding
corresponding to each TR.
TR Alignment: To account for the slowness of the hemodynamic response, we model
the HRF using a finite response filter (FIR) per voxel and for each subject separately with
various temporal delays. For instance, in Narratives listening, a temporal delay of 1 TR
corresponds to 1.5 secs, and 5 TRs translates to a delay of 7.5 secs. Overall, the FIR filters
were implemented by concatenating feature vectors that various delays had delayed.

5.3 METHODOLOGY

Voxelwise Encoding Model: We trained a bootstrapped ridge regression based encoding
model [Tikhonov et al., 1977] to predict the fMRI brain activity associated with the stimulus
representation obtained from syntax features and pretrained BERT. Before doing regression,

4https://github.com/s3prl/s3prl
5https://github.com/jcvasquezc/DisVoice
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we first z-scored each feature channel separately for training and testing. This matched the
features of the fMRI responses, which were also z-scored for training and testing. Each
voxel value is predicted using a separate ridge regression model. Formally, at the time step
(t), we encode the stimuli as Xt ∈ RN×D and brain voxels Yt ∈ RN×V , where N denotes
the number of training examples, D denotes the dimension of concatenation of delayed
TRs, and V denotes the number of voxels. To find the optimal regularization parameter
for each feature space, we use a range of regularization parameters that are explored using
cross-validation. The main goal of each fMRI encoding model is to predict brain responses
associated with each brain voxel given a stimulus.
Cross-Validation: We follow k-fold (k=4) cross-validation where k-1 folds were used for
training and the remaining fold was held-out for testing.
Evaluation Metrics: We evaluate our models using the popular brain encoding evaluation
metric described in the following. We compute the Pearson correlation coefficient (PCC)
[Toneva and Wehbe, 2019, Caucheteux and King, 2020] between real and predicted fMRI
brain activity to measure prediction performance for each voxel. PCC scores were then
averaged over all voxels and across all folds. Finally, they are averaged across all subjects
to obtain the final PCC score. PCC is computed as PCC= 1

N

∑n
i=1 corr[Yi, Ŷi], where corr

is the correlation function.
Normalized Predictivity: The neural model predictivity values were normalized by their
respective subject ceiling values. The final measure of a model’s performance (‘normalized
predictivity’ or ‘score’) on a dataset is thus Pearson’s correlation between model predic-
tions and neural recordings divided by the estimated ceiling and averaged across voxels and
participants.
Hyper-parameter Settings: We used banded ridge-regression with following parameters:
MSE loss function, and L2-decay (λ) varied from 101 to 103. All experiments were con-
ducted on a machine with 1 NVIDIA GEFORCE-GTX GPU with 16GB GPU RAM.
Statistical Significance: To estimate the statistical significance of the performance differ-
ences (across delays), we performed two-tailed paired-sample t-tests on the mean normal-
ized predictivity scores for the subjects. Further, the Benjamni-Hochberg False Discovery
Rate (FDR) correction Benjamini and Hochberg [1995] is used for all tests (appropriate be-
cause fMRI data is considered to have positive dependence [Genovese, 2000]). In all cases,
we report significant p-values by representing the symbol as * (i.e., p≤ 0.05).

5.4 EXPERIMENTAL RESULTS

Here, we compare how the alignment with fMRI responses differs across a range of HRF
delays for basic speech features, basic word-level syntactic features, syntactic embeddings,
representations from pretrained language models considering different context lengths, and
representations from pretrained speech-based language model, during listening across the
brain. We then present the results of these analysis to shed light on the specific features that
lead to this alignment at the whole brain, language regions and sub-regions. We calculate
normalized brain predictivity independently for each types of model, averaging the results
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↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 15.58* 28.23* 40.06* 45.46* 47.86 47.57 46.36 45.58
BERT Context5 17.14* 28.75* 41.41* 47.44 49.88 49.1 50.85 50.69
BERT Context20 22.83* 34.05* 44.67* 46.0* 53.62 53.0 53.81 53.42
Wav2vec2.0 25.2* 34.22* 41.45* 44.57* 47.12 45.94 46.24 46.14
POS Tag 5.82* 11.2* 16.35 18.55 17.77 19.14 18.5 16.44
DEP Tag 17.31* 31.8* 42.98* 50.53 50.02 50.35 46.76 45.37*
CC 15.24* 30.45* 43.66* 47.91 48.08 47.55 45.88 44.18*
CI 16.08* 29.57* 41.81* 48.18 48.30 47.8 46.66 46.19
Basic Speech 17.86* 21.49* 24.98* 27.6* 29.53 29.62 28.93 29.34

Table 5.2: Whole Brain analysis across delays by fixing the delay5 as reference. Here, all the
columns display average normalized brain predictivity across different feature represen-
tations. Underlined values show the best performance for given line. Starred values*
denotes a statistically significant in brain predictivity relative to delay 5. Highlighted in
Red color denotes highest normalized predictivity across delays and models. Here, the
delays are as follows: D1 (1.5 sec), D2 (3 sec), D3 (4.5 sec), D4 (6 sec), D5 (7.5 sec), D6
(9 sec), D7 (10.5 sec) and D8 (12 sec).

across participants within each model separately. We present the GPT-2 and Llama-2 results
for Narratives tunneling dataset in the Appendix (see Figs. 5.16).

For assessing delay-wise performance of different stimuli representations, we utilize a
standard HRF delay as a benchmark, reflecting the constant HRF delay referenced in prior
studies. In all our findings, the set reference delay is 5 TRs (7.5 seconds) for the narratives
tunneling dataset.

5.4.1 WHOLE BRAIN ANALYSIS

We assess the degree to which each type of model aligns with different HRF delays across
the whole brain. Here, we present the pretrained BERT model result for different context
lengths during listening.

We show the normalized predictivity of each model obtained for a range of HRF delays
in Fig. 5.2. Table 5.2 illustrates the variance analysis for Narratives listening.
Narratives Listening Using delay 5 (D5) as a reference, from Fig.5.2 (a) and Table 5.2,
we make the following observations: (i) syntactic embeddings, including CC and CI, show
higher normalized brain predictivity in the early delays, particularly D4, with a decrease in
activity at later delays. (ii) The encoding of POS tag features within the brain starts from
D3, which is not significant with higher delays (4-8). (iii) We also observe that DEP tags are
early encoded in the brain at a delay of 6 secs (equivalent to 4 TRs). (ii) In contrast to syn-
tactic embeddings, the normalized predictivity for BERT with different context lengths is
significant for lower delays (1 to 4) and not significant for higher delays (6 to 8). This pattern
suggests that the brain initially processes syntactic structures before moving on to sentence
meaning. Semantic processing starting from the 5 delays (7.5 secs) and maintains this con-
sistent processing up to the 8 delays (12 secs). For the BERT with different context lengths,
we observe that the context 20 performs the best, implying that brain predictivity improves
with increasing context length. Overall, the whole brain results indicate that syntactic infor-
mation is processed during earlier delays, while semantic information is processed during
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longer delays. When contrasting the speech-based language model Wav2vec2.0 with BERT,
it was noted that the predictive capability of the speech-based model falls behind BERT af-
ter D3. However, it remains unclear what specific information speech models encode during
early delays compared to text models.

When considering context lengths 5 and 20, there exists a slight enhancement in brain
predictivity performance for delays 7 and 8. (ii) Likewise, for POS and DEP features,
the performance of brain predictivity demonstrates improvement at higher delays. These
findings collectively indicate that the brain engages in linguistic processing even during
extended HRF delays, with context length notably influencing this connection with delayed
responses.

Overall, the results show how the human brain may engage differently with language
depending on whether it is being listened to or read. Listening might involve more dynamic
and time-sensitive processing in the brain, especially in the early stages. In contrast, BERT
processes written language with a more uniform level of predictivity over time, possibly
because it does not replicate the time-sensitive aspects of human auditory processing.

5.4.2 LANGUAGE ROIS ANALYSIS

Fig. 5.3 displays the normalized predictivity scores that are examined within six language
regions of interest (ROIs): AG, ATL, PTL, IFG, IFGOrb, and MFG. About D5 as the ref-
erence point, the subsequent insights are evident: (i) For the bilateral temporal lobes (ATL
and PTL), syntactic embeddings, including CC and CI, as well as DEP tags, demonstrate
increased normalized predictivity starting from the earlier delays (D4), implies that these
regions encode word-level, parsing hierarchical structure and complex syntactic informa-
tion. Conversely, BERT representations with contexts 5 and 20 exhibit higher predictivity
in the later delays, specifically for the PTL, whereas the ATL maintains a consistent level of
predictivity across all stimuli representations. These observations very loosely support the
theory by Matchin and Hickok [Matchin and Hickok, 2020], which stipulates that parts of
the PTL are The ATL is a knowledge store of entities in the later delays and is involved in hi-
erarchical lexical-syntactic structure building (D1-D2: lexical, D3-D5 syntactic, and D6-D8
semantic). (ii) For the AG region, which processes high-level semantic information, BERT
with context-20 showcases higher predictivity across delays and is significant with lower
delays (1-4). This finding strongly suggests that the AG region is actively processing high-
level semantic information. (iii) For the IFG region, the normalized predictivity for both
BERT representations and DEP features is initially similar for delays up to 4. However, as
the delays progress, BERT representations with longer contextual information outperform
short contexts and DEP features regarding predictivity. This suggests that incorporating
broader context information through BERT representations becomes more advantageous
for predicting brain activity in the IFG region as the delay increases.

5.4.3 SUB-ROI-LEVEL ANALYSIS

Each language brain region is not necessarily homogeneous in function across all voxels it
contains. Therefore, an aggregate analysis across an entire language region may mask some
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nuanced effects. Thus, we further analyze several important language sub-regions that ex-
emplify the variety of functionality across some of the broader language regions. Fig. 5.10
(see in the Appendix) illustrates the normalized predictivity scores for several important
language sub-ROIs: IFG sub-regions (44, 45, IFJa), ATL (STGa, STSda), PTL (A5, PSL,
STV). Using the delay-5 as a reference, we make the following observations: (i) Although
syntactic embedding CI is not significant at early delay D4 in the IFG region, it is signifi-
cant for 45 sub-ROI, hinting that these areas encode complex syntactic information [Reddy
and Wehbe, 2021]. Further, DEP tags are good at encoding local-word information and are
significant at D4. This implies that 45 sub-ROI encode both local-word complex syntactic
information. On the other hand, for the sub-ROI 44, BERT with context 20 is only sig-
nificant in the later delays D6-D8, which implies that this region encodes word-level and
hierarchical syntax structure in early delays and processes semantic information in later de-
lays. Another interesting observation is that syntactic embeddings, including CC and CI, are
significant at an early delay D4 for the sub-ROIs PSL and STV in the PTL region, as these
sub-ROIs are involved in many cognitive processes, including grammatical and syntactic
processing. Furthermore, we note that BERT with context 20 exhibits superior normalized
predictivity in the IFSp region compared to other stimuli representations. It is plausible that
the IFSp region plays a role in retrieving auditory memories and creating short memories
from verbal instructions. In the case of sub-ROIs PGp and PGs within the AG region, the
normalized predictivity remains higher for BERT representations across delays. This ob-
servation suggests that these sub-ROIs primarily process high-level semantic information.
Tables. 5.4 and 5.5 report the variance analysis across delays for each language sub-ROI
(please see in the Appendix).
Qualitative Analysis To present the normalized predictivity above at an even finer grain, we
show them now at the voxel-wise level across different feature representations, including,
basic speech, hierarchical syntax features (CC), complex syntax features (CI), BERT with
context length 20, Wav2vec2.0 in Figures 5.4, 5.5, 5.7, 5.8, and 5.9, respectively. (1) Basic
speech features exhibit higher normalized brain predictivity in the early auditory area, start-
ing from D1, and demonstrate increased predictivity in later delays. This suggests that low-
level auditory information, such as phonological features and other basic speech features,
is encoded at the initial stage of information processing. We also observe similar findings
from the speech-based model Wav2vec2.0, where early delays show greater predictivity in
the early auditory cortex. (2) In contrast to basic speech features and Wav2vec2.0, syntactic
information such as basic word-level and syntactic embeddings are processed early in the
bilateral temporal lobes (ATL & PTL), starting from delay 2. An intriguing discovery is
that even syntactic embeddings such as CC and CI exhibit some predictivity in the audi-
tory area where phonological features are processed. We empirically verified that syntactic
embeddings share some phonological information, which accounts for their predictivity in
that region. (3) The effect of high-level semantic regions (i.e. both Frontal and Parietal
regions) are highly predictive from delay4. (4) The linguistic information is highly effec-
tive in the posterior cingulate cortex (PCC) from delay5. Surprisingly, neither basic speech
nor Wav2vec2.0 embeddings demonstrate any predictivity in the PCC or dmPFC regions.
These regions are recognized for processing semantic properties such as tense, subject num-
ber, and object number [Oota et al., 2023c].
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5.4.4 ABLATION STUDIES

BERT vs. GPT2 vs. Llama-2 We extended our analysis to GPT2 and Llama-2 models,
extracting representations at different context lengths (1, 5, and 20). We observe that both
GPT2 and Llama-2 demonstrate similar pattern of normalized predictivity across context
lengths as BERT model. Comprehensive results for the GPT2 and Llama-2 models can
be found in the Appendix. To determine whether representations of these language models
share information across layers and different context lengths, we first encoded model rep-
resentations using other model presentations and then computed the R2-score, as shown in
Figure 5.12.
Do syntactic embeddings share basic phonological information? Figures 5.4 and 5.5
display brain maps for basic speech features and hierarchical syntactic embeddings (CC) re-
spectively. Observations from the Figure 5.5 dedicated to hierarchical syntactic embeddings
reveal that even syntactic embeddings possess predictive power in early auditory areas. To
determine if these syntactic embeddings share information with basic speech features, we
first encoded model representations using other feature presentations and then computed the
R2-score, as shown in Figure 5.14.

5.5 DISCUSSION AND CONCLUSION

We examine how the intricate processing of diverse language regions at varying HRF delays
in the human brain corresponds with word-level syntactic features, syntactic embeddings
obtained from constituent parsers, and Transformer-based language model representations.
To do this, we build encoding models for various HRF delays. These models enable us to
analyze the impact of the alignment with fMRI brain recordings acquired while participants
listened to or read naturalistic stories. We show that word-level syntactic information, par-
ticularly DEP Tags, is significantly encoded at early delays (D4) in specific language regions
IFG and IFGOrb; these regions are known to process syntactic information [Friederici et al.,
2003, Friederici, 2012]. Using constituent syntactic embeddings, we find that hierarchical
syntax information is significantly encoded in the MFG region at early delays D4. This
region is implicated in higher-level cognitive functions, including processing complex and
hierarchical structures, which aligns with the nature of hierarchical syntax parsing [Scholz
et al., 2022]. Additionally, we find that complex syntax information, represented by (CI), is
encoded in the IFGOrb region. We also find that these embeddings have improved normal-
ized brain activity at early delays across whole brain and language ROIs [Friederici et al.,
2003, Friederici, 2012]. Using pretrained language model representations, the detailed re-
gion and sub-region analysis reveals that longer context may impact the observed neural
activity at different brain language regions, specifically at higher HRF delays. For instance,
BERT with a context length of 20 has higher brain predictivity within language regions such
as AG, IFG, ATL, and PTL, specifically for higher delays ranging from 9 to 12 seconds.
Implications of our findings The insights gained from our work could have implications
for AI engineering, neuroscience, and the interpretability of models. Neuro-AI engineer-
ing: Our work immediately fits in with the neuro-AI research direction that specifically in-
vestigates the relationship between representations in the brain and representations learned
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by powerful LMs. This direction has gained recent traction, especially in the domain of
language, thanks to advancements in language models [Toneva and Wehbe, 2019, Schrimpf
et al., 2021b, Goldstein et al., 2022, Aw and Toneva, 2023, Oota et al., 2023c]. Model
Explainability: The recent studies explored syntactic and semantic differences in brain
language processing by generating pure syntactic embeddings from parse trees (constituent
and dependency parsers) [Reddy and Wehbe, 2021, Oota et al., 2023d, Zhang et al., 2022a],
or disentangle the language model representations by controlling the syntactic informa-
tion [Caucheteux et al., 2021a]. However, all these studies perform their analysis at a fixed
delay. In the longer term, our method of varying across delays aims to enhance more de-
tailed language processing by disentangling the LM representations into distinct compo-
nents: syntactic (constituents & dependencies) and semantic aspects (discourse, emotion,
etc,.). These variations across LM layers can further increase the model interpretability and
brain insights this line of work enables.

5.6 LIMITATIONS

One limitation of our approach is the interpretation of the syntactic vs. semantic differences
by disentangling the pretrained language models representations like BERT, GPT-2, and
Llama-2 to observe the brain alignment across delays. However, we tested word-level syn-
tactic and constituent syntactic embeddings and compared them with BERT embeddings.
However, BERT encodes a hierarchy of linguistic properties ranging from surface-syntactic
to semantic across layers. Hence, it is worth disentangling these representations to under-
stand detailed language processing across delays further. Another limitation is that some of
the differences in brain alignment we observe are due to confounding differences between
model types (BERT vs. GPT-2), and there is value in investigating these questions in the
future with models that are controlled for architecture, objective, and training data amounts.

Appendix for: Interpretaion of HRF delays

5.7 NARRATIVES TUNNELING

5.7.1 LANGUAGE ROIS RESULTS

Using delay 5 (D5) as a reference, Table. 5.3 reports the variance analysis across delays for
each language ROI. We make the following observations: (i) BERT with a context length of
20 consistently displays higher normalized predictivity at delay5 across ROIs and is always
significant only for higher delays. For shorter context lengths of 1 and 5, several language
ROIs like AG, ATL, and PTL exhibit the highest normalized brain predictivity at delay5.
On the other hand, the other language ROIs reach their highest normalized predictivity at
delay 4. This implies that the variance tends to be more pronounced for shorter contexts as
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the delay increases. The predictive power of BERT representations with longer contexts re-
mains relatively stable after five delays. We observe similar findings for pretrained language
models like GPT-2 and Llama-2.

5.7.2 LANGUAGE SUB-ROIS RESULTS

Each language brain region is not necessarily homogeneous in function across all voxels it
contains. Therefore, an aggregate analysis across an entire language region may mask some
nuanced effects. Thus, we further analyze several important language sub-regions that are
thought to exemplify the variety of functionality across some of the broader language re-
gions. Fig. 5.10 illustrates the normalized predictivity scores for several important language
sub-ROIs: IFG sub-regions (44, 45, IFJa), ATL (STGa, STSda), PTL (A5, PSL, STV). Us-
ing the delay-5 as a reference, we make the following observations: (i) Although syntactic
embedding CI is not significant at early delay D4 in the IFG region, it is significant for 45
sub-ROI, hinting that these areas encode complex syntactic information [Reddy and Wehbe,
2021]. Further, DEP tags are good at encoding local-word information and are significant
at D4. This implies that 45 sub-ROI encode both local-word complex syntactic informa-
tion. On the other hand, for the sub-ROI 44, BERT with context 20 is only significant in
the later delays D6-D8, which implies that this region encodes word-level and hierarchical
syntax structure in early delays and processes semantic information in later delays. Another
potentially interesting observation is that syntactic embeddings, including CC and CI, are
significant at an early delay D4 for the sub-ROIs PSL and STV in the PTL region, as these
sub-ROIs are involved in many cognitive processes, including grammatical and syntactic
processing. Furthermore, we note that BERT with context 20 exhibits superior normalized
predictivity in the IFSp region compared to other stimuli representations. It is plausible that
the IFSp region plays a role in retrieving auditory memories and creating short memories
from verbal instructions. In the case of sub-ROIs PGp and PGs within the AG region, the
normalized predictivity remains higher for BERT representations across delays. This obser-
vation suggests that these sub-ROIs primarily process high-level semantic information.

Tables. 5.4 and 5.5 report the percentage change across delays for each language sub-ROI.
We make the following observations: (i) BERT with a context length of 20 consistently dis-
plays higher normalized predictivity at delay5 across sub-ROIs. (ii)For language sub-ROIs,
we observe that the percentage change tends to be more pronounced for shorter contexts
and basic syntactic features, similar to language ROIs.

5.8 GPT2: WHOLE BRAIN ANALYSIS

Fig. 5.15 displays the whole brain analysis across various delays across different context
lengths. By considering delay 5 as a reference, we observe that the normalized predictivity
for GPT2 with different context lengths is significant for lower delays (1 to 4) and not
significant for higher delays (6 to 8). This clearly shows that the brain processes linguistic
information starting from the 5 delays (7.5 secs) and maintains this consistent processing
up to the 8 delays (12 secs). In contrast to BERT, for the GPT2 with different context
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lengths, we observe that (i) Context 1 and 5 perform the best, implying that brain predictivity
improves with shorter context length.

5.9 GPT2: LANGUAGE SUB-ROI ANALYSIS

Fig 5.16 illustrates the normalized predictivity scores for several important language sub-
ROIs: IFG sub-regions (44, 45, IFJa, IFSp), ATL (STGa, STSda, STSva), PTL (A5, STSdp,
STSvp), AG (PGi, PGs, PGp, PFm). Considering the delay-5 as a reference, We make the
following observations: (i) GPT-2 with context 1 shows higher predictivity in all sub ROIs
(44, 45, IFJa, IFSp) of IFG region, it is noteworthy that these language sub ROIs are mainly
involved in processing lexical information, syntax processing . (ii) Furthermore, we note
that AG sub ROIs exhibit superior normalized predictivity for GPT2 with context 5 com-
pared to other context lengths. It’s plausible that the AG region plays a role in processing
semantic comprehension and transitions to handling semantic roles between tokens.

5.10 NARRATIVES TUNNELING: LLAMA RESULTS
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Figure 5.2: Whole Brain Normalized Predictivity: This plot provides a comparison of delay-wise
performance for various stimuli representations, averaged across participants and layers.
The vertical grey line serves as a reference point, representing the constant HRF delay
used in previous studies. In this context, the reference delay is 5 TRs (7.5 seconds). Error
bars denote standard error across participants.
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Figure 5.3: Language ROIs-based normalized brain predictivity was computed by averaging across
participants, layers, and voxels. Dotted lines patterned for BERT representations and
solid lines report basic syntax and constituent syntax embeddings.
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Figure 5.4: Basic Speech features: Brain Maps: Voxelwise normalized brain predictivity average
across layers and subjects for different HRF delays.

Figure 5.5: Hierarchical syntax features (CC): Brain Maps: Voxelwise normalized brain predictivity
average across layers and subjects for different HRF delays.

Figure 5.6: Residual brainmaps after removal of phonological features from CC: Voxelwise normal-
ized brain predictivity average across layers and subjects for different HRF delays.
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Figure 5.7: Complex syntax features (CI): Brain Maps: Voxelwise normalized brain predictivity av-
erage across layers and subjects for different HRF delays.

Figure 5.8: BERT Context20 Brain Maps: Voxelwise normalized brain predictivity average across
layers and subjects for different HRF delays.

Figure 5.9: Wav2vec2.0 Brain Maps: Voxelwise normalized brain predictivity average across layers
and subjects for different HRF delays.
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↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 9.79* 19.17* 30.33* 36.52 38.51 37.97 35.0 35.0
BERT Context5 9.63* 19.29* 31.29* 38.29 39.65 38.78 38.73 39.29
BERT Context20 17.54* 25.01* 34.25* 36.97* 41.63 40.99 40.78 40.56
Wav2vec2.0 8.72* 11.99* 16.04* 18.46 19.8 19.95 20.34 19.44
POS Tag 2.27 3.45* 8.24 10.00 8.1 9.71 9.22 6.57
DEP Tag 9.99* 17.62* 26.48* 33.92 33.98 35.32 32.04 31.07
CC 6.55* 16.09* 26.95* 33.75 34.03 33.95 31.68 31.24
CI 8.88* 18.9* 28.64* 34.29 36.1 35.86 35.05 35.34
Basic Speech 3.33* 8.33* 12.08 14.0 14.72 15.8 16.42 15.12

(a) AG
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 23.96*44.66*62.61* 67.98 68.40 65.9564.42*64.24*
BERT Context5 23.94*43.22*59.42* 65.61 65.46 63.48 65.45 65.06
BERT Context20 28.89*46.88*62.12*62.48* 69.53 67.94 69.08 68.68
Wav2vec2.0 32.31*43.84*53.04*56.28* 58.10 56.6 55.83 56.55
POS Tag 12.13*25.22* 35.01 37.33 35.08 36.45 34.33 34.55
DEP Tag 25.37*48.71* 64.61 70.69 68.73 67.39 63.2 62.63*
CC 28.81*53.79*73.82* 79.24 77.73 74.9270.34*69.46*
CI 29.57*51.55* 68.64 73.78 69.39 69.04 68.48 65.91
Basic Speech 24.39*30.93*34.64* 37.9* 40.37 40.36 39.75 39.73

(b) ATL
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 29.84*51.79*72.67* 79.9 81.61 79.7477.87*77.33*
BERT Context5 29.67*51.24*72.42* 80.42 82.66 81.02 82.13 81.81
BERT Context20 39.08*58.38*75.44*76.32* 87.93 85.27 86.18 85.38
Wav2vec2.0 39.43*50.73*61.05*65.44* 67.93 66.67 66.64 67.05
POS Tag 11.29*23.84* 35.0 37.92 35.49 38.92 36.58 36.84
DEP Tag 30.08*55.76* 74.6 83.42 81.37 79.5273.74*71.31*
CC 32.69* 60.0* 82.3 88.45 86.72 83.8679.03*76.19*
CI 31.07*57.37* 78.22 85.41 81.27 80.16 79.05 77.82
Basic Speech 27.29*33.32*38.84* 42.69 45.11 44.46 43.67 43.35

(c) PTL
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 18.01*32.63* 43.34 47.00 46.92 45.2143.94*42.99*
BERT Context5 18.11*33.94*44.63* 49.69 49.12 48.15 47.86 46.6
BERT Context20 23.23*36.91*47.61* 48.44* 53.49 52.11 51.55 50.16*
Wav2vec2.0 18.2* 27.31* 31.48 33.08 33.27 33.12 33.01 33.38
POS Tag 9.83 12.75 19.66 19.34 18.6 21.44 19.45 18.47
DEP Tag 16.72*35.27* 46.99 50.94* 47.14 45.98 41.03 40.11*
CC 18.17*38.26* 49.77 51.40 49.32 46.4443.47*42.69*
CI 17.39*37.44* 47.03 52.21 50.48 49.17 47.51 46.06*
Basic Speech 11.25*13.38*16.47* 20.72 21.48 20.23 19.13 19.72

(d) IFG
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 18.66* 32.11*40.63 41.31 40.57 38.0937.31*36.84*
BERT Context5 20.88* 32.71*40.86 43.02 42.82 41.78 42.37 41.71
BERT Context20 23.53* 34.65*41.47 40.38 43.89 42.35 42.53 42.42
Wav2vec2.0 17.49* 23.92*28.26 28.58 30.00 28.5 28.16 27.74
POS Tag 4.8* 9.55 15.68 16.32 13.79 15.8 13.43 12.02
DEP Tag 18.12* 31.13*39.4544.32* 38.51 37.04 34.57 33.57*
CC 13.2* 32.6* 43.56 45.91 43.39 40.35 38.44 36.14*
CI 18.74* 37.39 46.3348.52* 43.13 41.37 41.03 40.31
Basic Speech 12.99* 13.86*17.31 19.35 21.10 21.05 21.0 20.51

(e) IFGOrb
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 23.5* 39.9* 48.38 48.95* 47.72 45.6 43.23*42.63*
BERT Context5 21.19*37.92* 46.87 49.07 47.73 44.49* 45.32 45.56
BERT Context20 24.15*39.37* 47.57 46.32 49.63 47.59 46.95 46.75
Wav2vec2.0 28.95* 37.86 40.82 40.94 41.03 40.13 39.76 39.47
POS Tag 13.46* 18.39 21.06 22.64 22.3 23.45 21.22 19.77
DEP Tag 22.0* 40.03 46.16 47.49 44.26 43.24 38.57*37.37*
CC 23.61*43.37* 53.51*53.03* 49.88 46.31 42.66*42.51*
CI 20.35*37.38* 47.81 48.74 45.05 43.57 43.84 42.19
Basic Speech 18.51*20.91* 24.3 24.87 26.55 26.03 23.43 22.44

(f) MFG

Table 5.3: Language ROIs analysis of BERT and syntactic features: variance analysis across delays
by fixing the delay5 as constant.
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5.10 Narratives Tunneling: Llama Results

↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 18.1* 32.22* 41.46 44.42 43.96 41.75 40.44 38.72*
BERT Context5 20.02* 33.8* 41.33* 45.74 45.58 43.47 43.45 41.99
BERT Context20 23.23* 34.77* 43.29* 43.75* 47.59 45.53 45.46 44.01
Wav2vec2.0 19.9* 26.85* 29.84 31.32 31.41 29.79 29.41 29.78
POS Tag 7.7 11.08 14.54 15.97 12.42 15.04 12.95 12.67
DEP Tag 13.75* 29.28* 41.16 46.52 42.71 42.1 38.24 37.17*
CC 18.5* 39.17* 48.62 51.10 49.04 45.65 42.47* 40.83*
CI 21.22* 36.65* 44.66 50.82 46.90 45.25 43.76 41.36*
Basic Speech 10.5* 10.66* 12.97* 15.64 18.13 17.35 16.5 17.34

(a) 44
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 21.28*37.45* 47.8 48.57 46.77 44.13 42.82* 42.33*
BERT Context5 22.88*36.72*46.88 49.97 49.47 48.03 47.71 46.52
BERT Context20 25.2* 38.92*46.95 45.99 49.79 47.76 47.72 47.31
Wav2vec2.0 22.11*30.51*35.29 36.37 37.65 35.34* 34.91 34.19
POS Tag 3.96* 10.88 18.67 19.35 16.13 18.46 16.06 13.78
DEP Tag 19.97*35.32*44.4549.49* 43.93 41.59 39.54 37.77*
CC 16.35*38.56*52.04 54.30 51.50 47.93 45.88* 42.58*
CI 18.88*39.12*51.4253.51* 47.02 45.17 44.2 44.15
Basic Speech 17.33*18.69*21.78 23.78 25.76 24.64 23.99 22.97

(b) 45
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 14.24* 29.6* 41.52 43.31 43.84 41.72 40.11 39.86
BERT Context5 14.25*32.86* 43.36 47.52 47.21 46.92 46.53 45.82
BERT Context20 19.76*36.48*46.69* 46.48 52.67 51.3 50.44 48.86*
Wav2vec2.0 18.27* 29.87 33.86 34.54 34.59 36.22 36.24 35.84
POS Tag 8.68* 11.3* 20.72 19.97 20.88 26.27 25.6 23.33
DEP Tag 18.85*38.47* 50.09 52.21 50.68 48.35 42.4 41.88
CC 18.83*36.44* 48.10 47.61 46.26 43.78 40.55 39.17*
CI 19.28*41.95* 50.45 51.29 51.50 49.43 46.54 44.95*
Basic Speech 12.9* 16.3 18.73 23.48 22.31 21.09 20.08 20.69

(c) IFJa
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 21.93*36.46*47.79* 54.39 54.14 53.54 52.68 52.02
BERT Context5 19.73*35.28*50.35* 57.27 55.86 55.67 55.15 53.55
BERT Context20 26.98* 40.2* 54.31* 56.75 62.19 61.69 60.8 59.68
Wav2vec2.0 15.87* 25.15 31.11 33.85 34.32 34.18 34.29 35.49
POS Tag 13.88 16.51 25.29 23.11 24.34 24.71 21.44 20.92
DEP Tag 18.34* 39.76 51.38 55.44* 49.19 48.56 43.25 42.09
CC 17.02*39.01* 53.1 55.89 52.99 50.35 47.95 48.93
CI 10.27*33.64*46.48* 55.04 54.11 54.05 53.51 53.47
Basic Speech 10.45 13.84* 18.67* 24.46 25.01 23.13 21.57 21.8

(d) IFSp

Table 5.4: Language sub-ROIs analysis of BERT and syntactic features: variance analysis across
delays by fixing the delay5 as constant.
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5 Optimal Hemodynamic Response Function delays are different for syntax and
semantics: a language model study of naturalistic story listening

↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 14.2* 30.15* 43.52 47.84 47.7 45.52 45.61 45.38
BERT Context5 18.16*32.06* 42.91 47.00 46.34 44.28 46.17 44.08
BERT Context20 22.76*36.12* 45.35* 46.53 50.11 48.13 49.7 48.61
Wav2vec2.0 12.78*20.95* 27.27 28.74 29.53 29.1 28.26 28.33
POS Tag 7.28* 13.49* 22.09 24.08 22.16 23.66 20.04 19.46
DEP Tag 16.31*34.62* 45.7 51.46 49.3 45.7542.43*42.97*
CC 18.43*34.79* 49.52 55.43 54.97 51.71 49.79 49.47
CI 18.15*32.89* 43.24 47.43 45.14 47.1 46.29 46.11
Basic Speech 13.39* 19.57 19.49 20.52 22.59 22.17 21.87 22.77

(e) STGa
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 15.34*28.65* 38.26 39.79 39.89 38.4 37.59 38.19
BERT Context5 14.69*25.63* 35.0 36.3 35.08 32.97 33.82 33.52
BERT Context20 17.79*27.57* 35.91 35.53 38.48 37.03 38.16 37.81
Wav2vec2.0 26.95*34.57* 41.19* 43.09 43.97 42.52 41.5 41.73
POS Tag 4.73* 12.23 15.17 16.28 18.34 17.16 17.11 16.8
DEP Tag 21.99*32.02* 38.97 39.81 38.77 38.3933.86*34.17*
CC 20.27*36.54* 45.75 48.24 47.32 44.82 43.05 40.83*
CI 20.28*33.71* 41.56 41.26 39.9 40.19 39.07 38.64
Basic Speech 31.72 32.6 31.59 32.38 33.36 32.87 33.53 32.35

(f) TA2
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 26.24*46.97* 63.33 66.13 64.35 63.82 62.18 62.47
BERT Context5 27.09*46.48*61.34* 66.29 66.54 65.48 67.32 66.52
BERT Context20 33.15*51.68*63.61*63.62* 70.97 68.78 69.51 68.86
Wav2vec2.0 39.74*54.86* 64.03 66.59 67.66 65.25 65.16 66.53
POS Tag 10.68* 19.61 23.08 27.58 24.73 27.15 27.33 26.45
DEP Tag 30.78*53.71* 65.38 69.4 65.36 64.09 58.05*55.55*
CC 28.42*55.03* 72.11 73.62* 69.22 66.29 61.13*62.52*
CI 28.18*54.47* 69.07 71.17* 64.0 61.06* 59.85 59.97
Basic Speech 42.2* 45.39* 49.98 50.27 51.83 50.04 49.42 47.68

(g) PSL
↓Models / Delays→ D1 D2 D3 D4 D5 D6 D7 D8
BERT Context1 46.66*78.41*109.12* 117.13 118.19 113.68* 110.35*109.24*
BERT Context5 48.93*80.99*111.55* 121.2 122.06 119.55 119.35 119.67
BERT Context20 61.55*89.85*117.73*115.24* 129.71 124.47 125.61 124.45
Wav2vec2.0 62.97*85.42* 104.4* 109.98* 113.48 111.84 109.95* 110.96
POS Tag 14.45*36.57* 51.55 51.38 52.8 51.32 52.29 56.04
DEP Tag 55.95*96.44* 127.4 136.18 130.21 124.67* 114.72*110.14*
CC 53.21*96.47* 128.39 135.94* 130.77 123.86 114.93* 112.22*
CI 51.52*95.91* 126.72 131.55* 123.51 122.23 120.12 116.87
Basic Speech 53.61*62.07* 73.73* 81.14 83.07 80.48* 77.31* 75.17*

(h) STV

Table 5.5: Language sub-ROIs analysis of BERT and syntactic features: variance analysis across
delays by fixing the delay5 as constant.
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5.10 Narratives Tunneling: Llama Results
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Figure 5.10: Narratives Tunneling: Language sub-ROIs-based normalized brain predictivity was
computed by averaging across participants, layers, and voxels. Dottled lines patterned
for BERT representations and solid lines report basic syntax and constituent syntax em-
beddings.
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Figure 5.11: Estimated Noise Ceiling: Average Pearson Correlation across voxels for each subject.
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Figure 5.12: BERT vs. GPT2 vs. Llama2 - Average R2-score was calculated by encoding the repre-
sentations of one model with those of another model.
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Figure 5.13: BERT vs. GPT2 - Task Similarity (Pearson Correlation Coefficient) constructed from
the model-wise brain predictions averaged across various delays. We observe a high
correlation only between BERT Context 5 vs. BERT Context 20, GPT2 context 1 vs.
BERT Context 5.
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Figure 5.15: GPT2 Whole Brain Normalized Predictivity: The plot provides a comparison of delay-
wise performance for various stimuli representations, averaged across subjects and lay-
ers. The vertical grey line serves as a reference point, indicating delay5 (7.5 seconds).
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Figure 5.16: Language ROIs Normalized Predictivity.
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Figure 5.17: Language sub ROIs Normalized Predictivity.
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Delay5 Delay6 Delay7 Delay8

Figure 5.18: BERT Context20: Brain Maps: Voxelwise normalized brain predictivity average across
layers and subjects for different HRF delays.
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Figure 5.19: Brain Maps for GPT2 Context5: Voxelwise normalized brain predictivity average
across layers and subjects for different HRF delays.
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5.10 Narratives Tunneling: Llama Results

Normalized Predictivity D1 D2 D3 D4 D5 D6 D7 D8
Llama Context1 -20.2* -9.93* -0.46 +2.14 38.32 -0.91 -0.9 -2.59
Llama Context5 -22.15* -11.87* -1.14 +2.13 42.01 -2.55* -1.88 -2.12
Llama Context20 -20.04* -10.98* -0.54 +3.24 40.6 -2.23 -1.51 -1.89

(a) IFGOrb
Normalized Predictivity D1 D2 D3 D4 D5 D6 D7 D8
Llama Context1 -32.38* -16.58* -6.24* -0.13 47.93 +0.94 +0.73 -0.5
Llama Context5 -35.8* -18.78* -4.81 +1.33 57.39 -2.56 -2.42 -2.48
Llama Context20 -34.24* -18.25* -6.55* +0.73 58.11 -3.0 -3.01 -2.9

(b) IFG
Normalized Predictivity D1 D2 D3 D4 D5 D6 D7 D8
Llama Context1 -30.93* -13.22* -2.33 +1.94 48.99 -1.21 -0.68 -2.26
Llama Context5 -29.75* -13.47* +0.52 +3.72 51.59 -3.9* -2.45 -3.15
Llama Context20 -29.87* -14.69* -0.91 +3.61* 52.07 -4.92* -2.98 -4.35*

(c) MFG
Normalized Predictivity D1 D2 D3 D4 D5 D6 D7 D8
Llama Context1 -45.33* -24.32* -6.39* +1.18 65.51 -2.07 -1.17 -0.63
Llama Context5 -45.21* -25.54* -6.74* +1.23 67.3 -1.75 +0.22 1.17
Llama Context20 -43.71* -26.26* -9.7* -0.09 68.41 -1.58 -0.67 0.17

(d) ATL
Normalized Predictivity D1 D2 D3 D4 D5 D6 D7 D8
Llama Context1 -53.97* -33.22* -11.72* 0.0 81.85 -1.37 -1.56 -2.53
Llama Context5 -54.39* -33.09* -11.85* +0.13 87.74 -2.43 -0.51 -0.99
Llama Context20 -50.52* -32.2* -13.94* -1.19 88.53 -2.6 -1.3 -1.15

(e) PTL
Normalized Predictivity D1 D2 D3 D4 D5 D6 D7 D8
Llama Context1 -25.59* -14.56* -5.76* +0.69 34.4 -0.65 -1.05 -2.17
Llama Context5 -25.83* -14.7* -4.93 +1.5 39.08 -1.28 -0.71 -3.34
Llama Context20 -24.61* -15.03* -7.28* +0.52 42.27 -3.48 -1.98 -2.42

(f) AG

Table 5.6: Llama results: Variance analysis across delays by fixing the delay5 as constant for differ-
ent language ROIs.
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(a) I (b) began

(c) Bronx

Figure 5.20: Complete trees for the words: I, began, and Bronx, for the sentence “I began my il-
lustrious career as a hard-boiled reporter in the Bronx where I toiled for the Ram, uh,
Fordham University’s student newspaper.”

Figure 5.21: Incomplete trees for the word: I, for the sentence “I began my illustrious career as a
hard-boiled reporter in the Bronx where I toiled for the Ram, uh, Fordham University’s
student newspaper.”
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6 MEG ENCODING USING WORD

CONTEXT SEMANTICS IN LISTENING

STORIES

Brain encoding is the process of mapping stimuli to brain activity. There is a vast literature
on linguistic brain encoding for functional MRI (fMRI) related to syntactic and semantic
representations. Magnetoencephalography (MEG), with higher temporal resolution than
fMRI, enables us to look more precisely at the timing of linguistic feature processing. Un-
like MEG decoding, few studies on MEG encoding using natural stimuli exist. Existing
ones on story listening focus on phoneme and simple word-based features, ignoring more
abstract features such as context, syntactic, and semantic aspects. Inspired by previous
fMRI studies, we study MEG brain encoding using basic syntactic and semantic features,
with various context lengths and directions (past vs. future), for a dataset of 8 subjects
listening to stories. We find that BERT representations predict MEG significantly but not
other syntactic features or word embeddings (e.g., GloVe), allowing us to encode MEG in a
distributed way across auditory and language regions in time. In particular, past context is
crucial in obtaining significant results.

This chapter has been finalized based on our previously published paper at 24th INTER-
SPEECH conference (August 2023, Dublin, Ireland) [Oota et al., 2023e].
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6 MEG Encoding using Word Context Semantics in Listening Stories

6.1 INTRODUCTION

Over the past decade, Brain-Computer Interface (BCI) helped to make significant progress
in understanding language processing in the brain using a popular computational paradigm:
Brain encoding, the process aiming to map stimuli features to brain activity. The central
aim of brain encoding for language processing analysis is to unravel how the brain repre-
sents linguistic knowledge (i.e., semantic and syntactic properties) and carries out sentence-
processing information [Wehbe et al., 2014, Huth et al., 2016, Caucheteux et al., 2021b,
Reddy and Wehbe, 2021, Zhang et al., 2022a] by modeling the effect of such information on
brain recordings. For instance, using functional Magnetic Resonance Imaging (fMRI) brain
recordings, several previous studies have investigated the alignment between text stimuli
representations extracted from language models (e.g., Bi-directional Encoder Representa-
tion Transformer (BERT) [Devlin et al., 2019]) and brain recordings of people compre-
hending language [Toneva and Wehbe, 2019, Schrimpf et al., 2021b, Oota et al., 2022c,b,
2023c].

While a large part of brain encoding literature uses fMRI brain recordings to study lin-
guistic contrasts involved in language processing, the low temporal resolution of fMRI
makes it challenging to link brain activation to specific linguistic processes. Conversely,
MEG recordings have a better temporal resolution (generally understood as the smallest
period of brain activation that can be distinguished) and allow us to understand better the
neural dynamics of the underlying language processing network. However, few studies use
MEG to study how word embeddings such as BERT can be related to the brain activity of
subjects reading one word at a time from a story [Toneva and Wehbe, 2019]. We propose to
uncover insights into human sentence processing during a naturalistic story-listening task.

Studies using word embedding representations and fMRI have revealed that syntactic fea-
tures are distributively represented across brain language networks and overlapped mainly
with semantic networks [Reddy and Wehbe, 2021, Zhang et al., 2022a]. Despite the great
strides in learning sentence comprehension at a functional level, many problems could ben-
efit from further improvements in understanding sentence structure and meaning at the tem-
poral level. Therefore, investigating how the brain encodes semantic and fine-grained syn-
tactic features of words using MEG recordings seems crucial to understanding the timing
of language comprehension mechanisms. Some critical questions remain to be explored:
(1) How much context is maintained through time to process words? (2) Is the direction of
context important (past context vs. future context)? The main objective of this work is to
address these questions using MEG activity, in time at different sensor locations, for both
syntactic and semantic representations during naturalistic story listening.
Brain Regions of Interest (ROIs) for sentence processing: Several MEG studies report
evidence from well-formed natural language expressions for the role of the left posterior
temporal lobe (PTL) in incremental syntactic processing. Similarly, post-nominal adjec-
tives were relayed to the inferior frontal gyrus (IFG) and influence of semantic type in the
left anterior temporal lobe (ATL) [Flick and Pylkkänen, 2020, Kochari et al., 2021, Law
and Pylkkänen, 2021]. Further, Toneva et al. [2020] conclude that the involvement of a lan-
guage network with task-specific settings (e.g., question-answering task) is localized to the
frontal and the left temporal lobes. These findings correspond to many fMRI studies [Cara-
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Figure 6.1: Global schema of the study. Each circle is a vector embedding for a particular word.
Here, “regarding” is the current word wt encoded. (a) BERT representations are com-
puted with varying context lengths and directions (past vs. future). “Past (future) context
of length n” means that word wt is encoded with its n preceding (following) words
wt−1, . . . wt−n−1 (wt+1, . . . wt+n−1). (Red) Past contexts (lengths 5 and 2). (Blue)
Future context 5. (Yellow) Absence of context (context 1: static representation of the
word). (b) For a given past (future) context around a word wt, we name “residuals n”
the results of filtering information of the n nearest words from the representation of cur-
rent word wt (e.g. past residuals 2 are the result of removing information of past context
2 w2

t = [wt, wt−1] from past context 5 w5
t ). Filtering is performed by first fitting a length

n sub-context wn
t to the 5 context w5

t , and then computing residuals between estimated
and real 5 context. (c) For a given past (future) context around a word wt, we name “lag
l” the representation of the word wt−l (wt+l). (d) For each word, all of these representa-
tions are used to predict the subject’s MEG activity at word onset in the story using ridge
regression.

mazza and Zurif, 1976, Friederici et al., 2006, Friederici, 2011, Zaccarella and Friederici,
2015, Humphries et al., 2006, Rogalsky and Hickok, 2009, Bemis and Pylkkänen, 2011].
However, the time at which different brain regions are sensitive to distinct syntactic and
semantic properties remains unclear.

Word stimulus representations for brain encoding: Several studies have used basic syn-
tactic features such as part-of-speech (POS), dependency relations (DEP), complexity met-
rics [Caucheteux et al., 2021a, Reddy and Wehbe, 2021, Oota et al., 2023d], and semantic
word embeddings [Oota et al., 2018, Jain and Huth, 2018, Hollenstein et al., 2019, Toneva
and Wehbe, 2019, Vaidya et al., 2022, Oota et al., 2022b] to represent words for fMRI
brain encoding with text stimulus. However, modeling these basic syntactic and semantic
features for MEG recordings still needs to be explored. In this paper, to understand when
the brain processes linguistic structure in sentences, we leverage text representations using
basic syntactic features and semantic features with various context lengths, directions (past
vs. future), and within-context relative importance.

Overall, our main contributions are as follows. (1) We explore: (a) basic syntactic fea-
tures, (b) GloVe embeddings, and (c) semantic BERT embeddings for MEG brain encoding.
We found that only BERT embeddings were predictive of MEG activity. (2) We find that
prediction of the MEG activity using BERT is in regions such as the bilateral temporal
lobes, frontal lobe and parietal lobe between 250ms to 750 ms (word onset is at 200ms). (3)
We report that past context has greater predictive power than future context. When dealing
with past context, R2scores are proportional to context length.
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6.2 FEATURE REPRESENTATIONS

We used different features computed per word to simultaneously test different syntactic and
semantic representations.
(1) Basic Syntactic Features: Similar to prior studies in Wang et al. [2020a], Reddy and
Wehbe [2021], Zhang et al. [2022a], we use various multi-dimensional syntactic features
such as Complexity Metrics (Node Count (NC), Word Length (WL), Word Frequency
(WF)), Part-of-speech (POS) and Dependency tags (DEP), described briefly below. Node
Count (NC) The node count for each word is the number of subtrees completed by incor-
porating each word into its sentence. Word Length (WL) Word length is the number of
characters present in the word. Word Frequency (WF) Word frequency reports log base-10
of the number of occurrences per billion of a given word in a large text corpus. Syntactic
Surprisal (SS) Syntactic surprisal is computed using incremental top-down parser [Roark,
2001]. It measures how unexpected it is to read a given word in the current syntactic context.
Both of these metrics aim to measure the amount of effort that is required to integrate a word
into the syntactic structure of its sentence. Part-of-speech (POS) We use the Spacy English
dependency parser [Honnibal and Montani, 2017] to extract the Part-of-speech (POS). We
generate a one-hot vector for each word in which the corresponding POS tag location is 1
and the remaining tag values are 0. Dependency tags (DEP) We use the Spacy English
dependency parser [Honnibal and Montani, 2017] to extract the dependency tags. In DEP,
we generate a one-hot vector for each word and dependency tag in which the correspond-
ing dep tag location is 1, and the remaining tag values are 0. (2) Semantic Features We
use two semantic representations: (1) GloVe (distributed word representations) [Pennington
et al., 2014] and (2) BERT (contextualized representations) [Devlin et al., 2019], described
briefly below. GloVe: word vectors (each word is a 300-dimension vector) [Pennington
et al., 2014], and the model always represents unique embedding irrespective of the word
appearing in different contexts.
BERT: Given an input sentence, the pretrained BERT [Devlin et al., 2019] outputs word
representations at each layer. In this paper, we have used the pretrained BERT-base model.
We have not performed any fine-tuning here. Since BERT embeds a rich hierarchy of lin-
guistic signals: surface information at the bottom, syntactic information in the middle, se-
mantic information at the middle to higher layers [Jawahar et al., 2019]; hence, we use the
#words × 768D vector from the intermediate layer (layer-7) to obtain the embeddings.
(3) Varying the Context Length of BERT To extract the stimulus features at different
context lengths (C = 1, 2, 3, 4, 5, 20), we constrained the model with maximum C words as
context length (Fig. 6.1 (a)). Since the BERT model processes whole sentences, we input all
the C context-length words to the BERT model and use the representation of the last word
for the past context and the first word for the future context. For instance, given a story of
M words and considering the context length of 5, while the third word’s vector is computed
by inputting the network with (w1, w2, w3), the last word’s vectors wM is computed by
inputting the network with (wM−5, · · · , wM ). Here, we extracted representations for both
past and future contexts.
(4) Residuals To compute residuals from pretrained BERT representations at different con-
text lengths, we use a ridge regression method in which the context wM (M=1,2,3) as input
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6.3 Dataset and Experiments

and the context w5 is the target vector (Fig. 6.1(b)). We compute the residuals by subtracting
the predicted context from the actual context, resulting in the (linear) removal of a particular
context from context w5 (see Fig. 6.1 for a schematic). Because the MEG brain prediction
method is also a linear function (see Section 6.4), this linear removal limits the contribution
of the word importance to the eventual brain prediction performance.
(5) Lags To extract lag l representations, we take as an embedding vector, for a given
context length t, the vector of the word wt−l for past context (or wt+l for future context)
(Fig. 6.1(c)). Contrary to residuals, these lag representations still contain information from
the current word wt. Encoding MEG using lag representations assesses how lag word in-
formation is correlated to current word MEG activity.

6.3 DATASET AND EXPERIMENTS

We used data from 8 subjects of the MEG-MASC dataset [Gwilliams et al., 2023a]. The
activity from 208 MEG sensors was recorded. At the same time, each subject listened to
naturalistic spoken stories selected from the Open American National Corpus (“Cable spool
boy”, “LW1”, “Black willow” and “Easy money”).
MEG preprocessing We performed the minimal processing steps described in Gwilliams
et al. [2023a]. On raw MEG data and for each subject separately, using MNE-Python de-
faults parameters, we (i) bandpass filtered the MEG data between 0.5 and 30.0 Hz, (ii)
temporally-decimated the data 10x, (iii) segmented these continuous signals between -200
ms and 600 ms after word onset, (iv) applied a baseline correction between -200 ms and 0
ms, and (v) clipped the MEG data between the fifth and ninety-fifth percentile of the data
across channels.
Word Processing Since MEG data is sampled at a higher rate (1000Hz) than word pre-
sentation, epoching and downsampling yields, for each word, 81 times points recorded at
208 sensors. There are total of 8567 words across four stories. In our experiments, for each
word, the model makes a prediction of MEG activity for all of these 16848 = 208 × 81
values. Here, each word is transformed into one of the feature representations described in
section 6.2.

6.4 MODELS AND EVALUATIONS

6.4.1 ENCODING MODEL

We extracted different features describing each stimulus word to explore how and when syn-
tactic and semantic specific features are represented in the brain when listening to stories.
We used them in an encoding model to predict brain responses (Fig. 6.1(d)). MEG en-
coder models attempt to predict brain responses associated with each MEG sensor and each
time point when given audio stimuli (spoken words in our case). We trained a model per
subject separately. Following the literature on brain encoding [Wehbe et al., 2014, Toneva
et al., 2020, Caucheteux et al., 2021b, Reddy and Wehbe, 2021], we used a ridge regression
as an encoding model. The ridge regression objective function for the stimulus features is

113
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Figure 6.2: Only BERT representations significantly encode MEG activity. Plain lines represent
mean significant R2 score (permutation test, p < 0.05, FDR correction) between pre-
dicted and real MEG activity, across sensors and subjects. Areas around lines represent
standard error across subjects. Dots above the figure represent significant difference with
0, for all timestep (one-sample t-test, p < 0.05, FDR correction) (color is matching the
legend). Word onset is at 200ms.

f(Xs) = min
Ws

∥Yb−XsWs∥2F +λ∥Ws∥2F . Here, Xs denotes the input stimuli representation,

Ws ∈ RFs×LT are the learnable weight parameters, Fs denotes the number of features in
stimuli representation (768), L corresponds to number of MEG sensors (208), T represents
the time dimension of the brain activity (81), s denotes the sample stimulus s ∈ RFs , ∥.∥F
denotes the Frobenius norm, and λ > 0 is a tunable hyper-parameter representing the regu-
larization weight. λ was tuned on a small disjoint validation set obtained from the training
set.

6.4.2 CROSS-VALIDATION

We follow 4-fold (K=4) cross-validation. All the data samples from K-1 folds (3 stories
data) were used for training, and the model was tested on samples of the left-out fold (1
story data).

6.4.3 EVALUATION METRICS

We compute the coefficient of determination R2 score [Pedregosa et al., 2011] between
real and predicted MEG activity to measure prediction performance for each sensor loca-
tion and each timepoint within epochs. R2 scores were then averaged over all epochs and
across all folds. Along with R2 score, we also use Root-Mean-Square (RMS) to measure
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6.5 Results

Figure 6.3: R2-score performance of encoding for different lag and residuals of BERT representa-
tions. Plots wt−n report, for n ∈ [3, 1], the performance of lag n and residuals n when
encoding MEG activity at word wt using its past context. Similarly, plots wt+n reports
performance of lag and residuals n using future context. Plot wt displays performance
of context 5. Lines, areas and dots figures same metrics as Fig. 6.2. Word onset is at
200ms.

the predicted evoked response, averaged across all MEG sensors, tasks and subjects. RMS
scores are reported in supplementary materials. Statistical Significance We check R2

scores statistical significance using a permutation test. We permute blocks of MEG pre-
dictions and compute R2 scores between permuted predictions and real data 5000 times
to estimate an empirical distribution of chance performance and corresponding p-values.
Finally, the Benjamini-Hochberg False Discovery Rate (FDR) correction [Benjamini and
Hochberg, 1995] is applied on all tests to control the type I error rate. Implementation De-
tails for Reproducibility All experiments were conducted on a machine with 1 NVIDIA
GEFORCE-GTX GPU with 4GB GPU RAM. We used ridge-regression with the following
parameters: MSE loss function, and L2-decay (λ) varied from 101 to 103.

6.5 RESULTS

In order to assess the performance of MEG encoder models learned using syntactic and
semantic representations, we computed the R2-score between predicted MEG and ground-
truth recordings of the evoked response at word onset, across all sensors, folds and subjects.
Each figure reports the average R2-scores of the different features, where all values are
first filtered by significance for each time point (i.e. we set to 0 the score values for sen-
sors where p < 0.05 after the permutation test and FDR correction procedure described in
section 6.4.3).

6.5.1 ENCODING PERFORMANCE OF SYNTACTIC AND SEMANTIC METHODS

From Fig. 6.2, we make the following observations: (i) Only BERT-based feature repre-
sentations significantly correlate to MEG activity, starting around 0.25s (0.05s after word
onset). (ii) Basic syntactic (CM, POS and DEP), and non-contextual semantic features
(GloVe) are, on average, not correlated with the considered window of MEG activity. These
features poor performance may be explained by their overly simple nature or their limited
contextual information. To better visualize the predicted MEG performance using these
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Figure 6.4: Long past contexts enable better encoding than future or short-scale present contexts.
(left) R2 given BERT representation context length, from 1 (no context) to 20. (right)
R2 given BERT representation context direction (past vs. future) and length (5 vs. 20).
Lines, areas and dots figures same metrics as Fig. 2. Word onset is at 200ms.

simple features, we report the RMS plot in supplementary. It is observed that the RMS plot
for these methods is not closer to the original MEG in comparison to BERT.

6.5.2 CONTEXTUAL BERT EMBEDDINGS: EFFECT OF LENGTH

To assess whether the direction and length of context are important for predicting MEG ac-
tivity during story listening, we report the R2-score performance from both past and future
BERT contextual representations in Fig. 6.4. From Fig. 6.4 (left), we observe that context
length plays a crucial role in predicting MEG activity. The performance of this prediction
is proportional to the length of the context. However, above a context length of 5, no signif-
icant improvement in MEG predictivity is noticeable. Moreover, the context performance
difference is mainly observed between 300ms and 425ms (100–325ms from word onset).
This suggests that MEG activity results from integrating past auditory information on a
short time horizon.

6.5.3 CONTEXTUAL BERT EMBEDDINGS: EFFECT OF DIRECTION

From Fig. 6.4 (right), we observe a significant effect on the direction of context. All fea-
tures created from future context display a low correlation with features created using past
context. Interestingly, this effect is inversely proportional to context length for future con-
text, where BERT features extracted from a future context of length 5 achieve better R2

scores than the same features created from a future context of length 20. This suggests that
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Figure 6.5: Significantly predicted MEG activity for each timepoint and each sensor position (per-
mutation test, p < 0.05, FDR correction) using BERT past context 5 word embeddings.
Color denotes, for each sensor and timepoint, the number of subjects whose MEG activ-
ity was significantly predicted. Word onset is at 200ms.

the MEG brain activity mostly correlates to past and current contexts. Inference of future
context could not be detected, and if present, only on a short time horizon. Since length five
context contains the current word, the relative importance of the current word could account
for its relatively correct performance in its 5-word context, which is diluted in a 20-word
context.

6.5.4 CONTEXTUAL BERT EMBEDDINGS (RESIDUALS VS. LAG)

To investigate whether the removal of word-level information (current word, two nearest
words, three nearest) from context has any effect in predicting MEG activity, we report the
R2-score performance of residuals in both past and future contexts, as shown in Fig. 6.3.
We also report the lag representations performance, which represents the performance of
the previous word representations in predicting the current word MEG. From Fig. 6.3, we
make the following observations: (i) Complete removal of current word information from
past context through residual representations (i.e., wt−n) has a significant drop in R2-score.
(ii) Similarly, in the future context, the R2-score performance of residuals is always zero
or significantly below chance. (iii) Unlike residuals, lag representations display signifi-
cant performance for lag 1, 2 and 3 in the past context, with lag 1 demonstrating the most
notable performance equal to current word prediction performance of MEG activity. (iv)
Similar to future context residuals, future context lag representations yield below-chance
performance. From these results, we hypothesize that the current word MEG activity is the
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product of short-term past context and current word information. Both pieces of informa-
tion are required to render MEG activity at a given word onset accurately. Future context
information is not detectable in MEG activity.

6.5.5 COGNITIVE INSIGHTS

Fig. 6.5 reports MEG sensor locations which are significantly predicted across subjects by
5-context BERT representations (permutation tests, p < 0.05, FDR correction). Best brain
MEG alignments are in the bilateral temporal and frontal regions between 250ms to 750ms
(word onset is at 200ms).

6.6 DISCUSSION & CONCLUSION

In this paper, we evaluated the alignment of basic syntactic, distributed word embeddings,
and contextualized word representations (varying different context lengths, past vs. future
context, residuals, and lags) with MEG brain responses in time. We showed that BERT
representations, contrary to other features or GloVe, lead to a significant prediction in brain
alignment across auditory and language regions between 50-550ms (250ms to 750ms with
word onset at 200ms). Noteworthy, this prediction performance is a function of the amount
of available past context, and only past context future or current word.

It is surprising that BERT current word representation alone w1
t (BERT-1) allows so weak

predictions compared to wpast≥3
t (BERT with contexts higher than 3) (Fig. 6.4). Moreover,

lag results of Fig. 6.3 shows that the previous BERT-5 word wpast3&future1
t−1 allows higher

R2 score than current word with low context wpast≤5
t . Additionally, it is surprising that near

future context wfuture5
t which includes the current word is not relevant for MEG prediction,

as if the brain was making no or very few predictions of future incoming words.
This suggests that the “word encoding center of mass” is few words behind the current

word, as if the brain would wait for more future context before encoding “fully” the word,
or similarly that the current representation of the incoming word is encoded in a transient
representation that is changing until the next words come in. This is coherent with previous
studies Gwilliams et al. [2022] from that showed that the several past phonemes information
(with position and order in sequence) are kept in memory, and that current incoming word
lexical information is retrieved in a context-sensitive manner (rather than using the most
probable lexical category of the word) [Gwilliams et al., 2023b].

We hypothesise that such “encoding center of mass” lying in the past is also what is hap-
pening in the speaker’s brain. Songbirds such as canaries need to keep track of long-time
dependencies in the sequences of phrases performed in order to produce the next syllables
at syntax branching points correctly [Cohen et al., 2020]: the brain area managing these
dependencies preferentially encodes past actions rather than future actions. Specific neuron
populations preferentially encoding past actions were actually more active during the rare
phrases that involve history-dependent transitions in song [Cohen et al., 2020]. This is also
coherent with the results of Gwilliams et al. [2022] where phoneme representations are sus-
tained longer when linguistic identity is uncertain. Overall, it seems that the representations
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of past events or actions are kept in memory until they have been used to disambiguate
future events/actions.

Appendix for: MEG ENCODING USING WORD
CONTEXT SEMANTICS IN LISTENING STORIES

RMS Plots In order to assess the performance of the MEG encoder models learned using
the representations from a syntactic and semantic methods, we computed the Root-mean-
square (RMS) of the evoked response at word onset, time averaged across all sensors, folds
and subjects, for both ground-truth and predicted MEG recordings using different feature
sets, as shown in Fig. 6.6.
FDR Correction: P-values We report the number of subjects for which predictions resulted
in higher than chance average R2 score (p < 0.05, FDR correction), for every MEG sensor
and times around word onset, in the Fig. 6.7. Prediction performance was measured for each
subject and feature representation, using R2 score, averaged over all epochs and all folds.
R2 scores were controlled for significance using the permutation test procedure described
in main paper Section 4. From this figure, we observe that BERT contextual representations
are significantly correlated with the MEG signal for most of the subjects, between word
onset (200ms) and end of epoch (around 700ms and onward). Other representations predict
the MEG signal with very local significance in space and time, and for subsets of subjects
only.
Topomaps for All Feature Representations To further investigate which brain activities
are predicted by each feature representation, we reported in Figs. 6.8 and 6.10, the count of
subject whose MEG signal was significantly predicted on topomaps, using the mne pack-
age [Gramfort et al., 2013]. Fig. 6.10 presents the same results as Fig. 6.7, for BERT pre-
dictions only, where subject count with significantly correlated predictions is displayed for
each sensor location on the scalp at a 50ms time intervals during epoch (word onset at 0.2s).
We observe the following insights: (1) the effect of contextual word representations begins
at 250ms to 300ms (word onset at 200ms), distributed in the left and right temporal lobes.
(2) Further, the effect extends until the end of the considered time, with major contribution
in the left-right temporal lobes, left-right frontal lobes and left parietal lobe between 350 -
750ms. BERT representations learn linguistic structure from full sentence [Jawahar et al.,
2019]; hence these representations involve different linguistic properties. To differentiate
the syntax and semantic effects, we further report the topomaps for CM, POS tags, DEP
tags and GloVe in Fig. 6.8.
Syntactic Effects From Fig. 6.8, it can be seen that the syntax information provided by the
CM, POS tags and DEP tags have no clear effect at all, but without correction there is a low
effect (that might not be significant).
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Figure 6.6: Predicted MEG Root-Mean-Square (RMS) activity following word onset, (a) encoded
from different feature representations, (b) encoded from different POS tags, (c) encoded
from different DEP tags. Activity is averaged over subjects and stories. Dashed gray
(MEG): Ground truth RMS. The legend displays colors corresponding to each feature
representation in fig (a), POS tags (Noun, Verb, Adjectives) in the fig (b) and DEP tags
(Subject and Object) in the fig (c).
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Figure 6.7: Number of subjects where encoding models display significant average R2 on all folds
(p < 0.05 with 5000 permutations and FDR correction), for each sensor and each time
point.
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Figure 6.8: The significantly predicted MEG recordings (p-values corrected using FDR correction)
for BERT word embeddings: 5 words context left and right.
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Figure 6.9: The significantly predicted MEG recordings (p-values corrected using FDR correction)
for BERT word embeddings: context lengths (4-past, 5-future, 20-past, 20-future).
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Figure 6.10: Average R2-score across all the subjects for significant sensors for BERT word embed-
dings: context lengths (5-past, 5-future, 20-past, 20-future).
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7 CROSS-SITUATIONAL LEARNING

TOWARDS LANGUAGE GROUNDING

How do children acquire language through unsupervised or noisy supervision? How does
their brain process language? We take this perspective to machine learning and robotics,
where part of the problem is understanding how language models can perform grounded
language acquisition through noisy supervision. This would also help us understand how
language models account for brain learning dynamics. Most prior works primarily focused
on tracking the co-occurrence between individual words and referents to model how infants
learn word-referent mappings. This paper studies cross-situational learning (CSL) with
complete sentences, aiming to understand the brain mechanisms enabling children to learn
mappings between words and their meanings from complete sentences in early language
learning. We investigate CSL on a few training examples with two sequence-based models:
reservoir computing (RC) and long-short term memory networks (LSTMs). Importantly, we
study how robust these models are when dealing with several word embeddings, including
One-Hot, GloVe, pre-trained BERT, and fine-tuned BERT representations. We apply our
approach to three datasets with varying complexities. We observe that (1) One-Hot, GloVe,
and pre-trained BERT representations are less efficient when compared to representations
obtained from fine-tuned BERT. (2) ESN online with final learning (FL) yields superior per-
formance over ESN online continual learning (CL), offline learning, and LSTMs, indicat-
ing the more biological plausibility of ESNs and the cognitive process of sentence reading.
(3) LSTMs with fewer hidden units exhibit higher performance for small datasets, while
LSTMs with more hidden units are needed to perform reasonably well on larger corpora.
(4) ESNs demonstrate better generalization than LSTM models, especially with increas-
ingly large vocabularies. These models can learn from scratch to link complex relations
between words and their corresponding meaning concepts, handling polysemous and syn-
onymous words. Moreover, we argue that such models can extend to help current human-
robot interaction studies, particularly in language grounding, and better understand chil-
dren’s developmental language acquisition. We make the code publicly available https:
//github.com/subbareddy248/cross_situational_learning.

This chapter has been finalized based on an initial report presented at the Splu-RoboNLP
workshop at ACL in July 2021, which was later extended into a journal article. It is currently
undergoing minor revisions for publication in the journal Nature Scientific Reports [Oota
et al., 2022a].
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7 Cross-Situational Learning Towards Language Grounding

INTRODUCTION

Experimental and modeling studies of language acquisition [Dominey and Boucher, 2005,
Chen and Mooney, 2008, Tomasello, 2009, Thomason et al., 2018, Vanzo et al., 2020,
Roembke et al., 2023] try to understand how infants can learn language by observing their
environments and interacting with others. Before one year of age, children can segment
words from speech based on statistical learning mechanisms [Saffran et al., 1996, Yu and
Smith, 2007]. Moreover, what children observe when hearing "the blue glass is on the left"
and how they map these sounds with visual concepts is crucial, particularly when distin-
guishing between a blue glass and a green one. To navigate this, children have to learn from
several presentations of the same word in various contexts, a phenomenon often referred to
as cross-situational learning (CSL) [Taniguchi et al., 2017, Juven and Hinaut, 2020, Warren
et al., 2020, Dinh and Hinaut, 2020, Variengien and Hinaut, 2020, Roembke et al., 2023].
For instance, in Fig. 7.1(a), the CSL paradigm is illustrated. In this scenario, the early
language learners (infants) are presented with multiple referents and multiple words in one
naming moment, they are unable to decide which word maps onto which object.
Traditional approaches to language grounding mainly focus on mapping natural language
commands and task representations, essentially sequences of primitive robot actions [Chen
and Mooney, 2011, Matuszek et al., 2013, Tellex et al., 2011]. In recent years, a large
amount of research has been focused on grounded language learning, exploring how robots
can learn to correlate natural language with the physical world, recognizing objects by their
names and attributes, using either multimodal or natural language data [Thomason et al.,
2016, Beinborn et al., 2018]. Further, several studies have performed computational exper-
iments on CSL by tracking the co-occurrence between word forms and referents (objects)
to model how infants could do it [Romberg and Yu, 2013]. In this paradigm, initially,
the word-referent mappings appear entirely random. With repeated trials, the robot must
learn to identify the appropriate object properties and representations of the meaning of
individual words. However, existing robotic frameworks [Taniguchi et al., 2017, Roesler
et al., 2018] do not adequately model how children learn to understand directly from full
sentences through cross-situational learning without providing specific cues including: (i)
social cues from speakers, such as gaze direction, head orientation, body movements, ges-
tures, speech intonation, and facial expressions [Yu and Ballard, 2007, MacDonald et al.,
2017]; (ii) visual cues from objects held by the teacher, including gestures like pointing at,
hovering over, or displaying an object, as well as the movement of the object [Roy, 2002,
Krenn et al., 2017]; and (iii) auditory cues, such as requests for action and the naming of
objects [Räsänen and Rasilo, 2015, Krenn et al., 2017, Escudero et al., 2023], etc,.

Recently, the Transformer-based pretrained language model, specifically bidirectional
encoder representation transformer (BERT) [Devlin et al., 2019], has brought large im-
provements in the field of natural language processing (NLP) on a wide variety of tasks,
including machine translation [Devlin et al., 2019], sentence representation [Devlin et al.,
2019], and semantic role labeling [Shi and Lin, 2019, Zhang et al., 2020b]. These mod-
els are potentially appealing as cognitive models because they can learn from raw linguistic
stimuli, something previous cognitive models have not addressed. Furthermore, it is unclear
how these Transformer-based representations would compare as accounts of models able to
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Figure 7.1: (a) At start, children don’t know how to map words from an utterance to features of
a scene they observe. This concerns content words (e.g. “car”, “red”) that should be
mapped to observed features, but also functions words (e.g. “on”, “the”) that should not
be mapped. They have to learn this mapping while perceiving sequence of words; words
are rarely spoken in isolation. (b) The Cross-Situational Learning (CSL) task (on simple
Juven’s dataset) tested with Recurrent Neural Networks (ESNs and LSTMs). The model
has to reconstruct an imagined scene from the sentence given word by word. This image
is sourced from Juven and Hinaut [2020].

capture a wide range of key phenomena in cross-situational learning. Given that pretrained
language models are trained in the self-supervised setting, and these language models ex-
hibit slower learning of words in longer utterances in a similar way as children acquire
language [Chang and Bergen, 2022], it poses a challenge for researchers to investigate the
use of transformer models in robotics. Inspired by their success of pretrained Transformer
models (BERT [Devlin et al., 2019], T5 [Raffel et al., 2020], and GPT-2 [Radford et al.,
2019]) when applied to robotics and reinforcement learning tasks [Hill et al., 2020, Marzoev
et al., 2020], we leverage BERT model to encode the sentences.

Usually, robotic implementations or models emphasizing grounding tend to focus on
single words “Run!, Stop!” or simple sentences like “Put yellow cube right”, which are
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more like a predefined sequence of words than natural sentence processing [Taniguchi et al.,
2017]. Some recent works utilizing Transformers are able to parse more complex sentences.
However, such sophisticated deep learning architectures need a huge dataset (or pretrained
models) to learn such relations. Moreover, they lack insights into how children’s brains
perform such tasks because they are not biologically plausible in the training schema nor
in how biological neural networks process utterances, usually taking input sentences as a
whole. At the same time, humans have to process word by word the incoming flow of
speech. Furthermore, in the study of Pedrelli and Hinaut [2021], a model using a hierarchy
of reservoirs could convert raw speech into semantic role labels by recognizing intermediate
representations like phonemes and words. This raises the question of how reservoirs handle
input sentences (word by word) in a manner analogous to human sentence processing.
The motivation to perform the CSL task is interesting, as it involves employing simple
neural architectures to generalize efficiently with few noisy trials, mimicking the learning
conditions experienced by children. In this task, some words may appear only a few times
in the training set. Similarly to children who do not have an oracle that gives the correct
labels for each word, the models do not have access to true teacher output but to a noisy ver-
sion of it, based on the concepts a child could extract from visual information. This implies
that visual scenes often contain more objects and features than what a given sentence will
explicitly describe. The core principle of CSL—deriving associations between symbols and
their referents by observing their co-occurrences—acts as a stand-in for the intricate, real-
world process of language learning in infants. Nonetheless, our methodology incorporates
three language grounding datasets, specially curated for this study and varying in complex-
ity to emulate learning environments ranging from simpler to more intricate, similar to those
encountered by robots. Each dataset contains 1000 training examples, meticulously chosen
to test and assess the capability of Echo State Networks (ESNs) [Jaeger, 2001, 2002, 2007]
and Long-Short Term Memory networks (LSTMs) [Hochreiter and Schmidhuber, 1997]
to learn from limited and subtle data. While our study does not employ datasets directly
sourced from infant learning experiments, we have selected a psycholinguistic task known
as CSL due to its conceptual resemblance to the manner in which infants acquire language.
Originating from developmental psychology, this task seeks to emulate how infants learn to
link words with their meanings within contexts that are naturally ambiguous. Overall, our
study aims to establish foundational insights through initial experiments in the area of lan-
guage grounding, prior to advancing towards practical applications involving robots, which
necessitate a considerably longer experimental duration.
Importantly, we do not want to focus on engineered neural architectures for biologically
plausible purposes. Instead, we are keen on exploring how relatively simple recurrent
neural networks could generalize in such conditions while using incremental learning. In
particular, one of the models we use, Echo State Networks (ESN) and, more generally,
the Reservoir Computing paradigm, have already been used in several neuroscience mod-
els [Buonomano and Merzenich, 1995, Maass et al., 2002, Hinaut and Dominey, 2013] and
are often referred to as a plausible computational principle for electrophysiological results
[Machens et al., 2010, Rigotti et al., 2013, Enel et al., 2016]. Moreover, ESNs are more
biologically plausible than LSTMs because they do not need to rely on back-propagation
through time, which involves virtualizing time for several time steps, which is not biolog-
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ically relevant. Also, ESNs can learn incrementally by seeing each utterance only once
(which is thus closer to what children experience), contrary to LSTMs, which needs to pro-
cess the data for several epochs. The CSL procedure for the ESN architecture is shown in
Fig. 7.1(b).
This study also investigates how well the one-hot, GloVe [Pennington et al., 2014], and
transformer-based representations perform in the cross-situational learning task, using the
biologically plausible ESN model [Jaeger, 2001] and non-plausible1 LSTMs [Gers et al.,
1999]. Figs. 7.2 (a) and 7.2 (b) depict the workflow of our CSL task. The proposed frame-
work, incorporating input featurization, dynamic memory, and learning modules, offers
a flexible and biologically plausible architecture for investigating CSL tasks on diverse
datasets. Our experimental results demonstrate that fine-tuned BERT representations are
more efficient and better at capturing the complex relations between words than other word
representations. For sentences with a smaller number of objects, LSTMs outperform the
ESNs across two datasets. On the other hand, for the increasingly larger number of objects,
ESNs display better performance than both LSTM and RandLSTM. These results demon-
strate the biological plausibility of ESNs, as the internal weights of the underlying reservoir
network remain unchanged during learning. In contrast, LSTMs require training of both
internal weights and reservoir-to-output connections." Finally, we try to interpret the inner
working details of two models and plot the evolution of the output activation during the
processing of a sentence.

7.1 RELATED WORK

CROSS SITUATIONAL LEARNING MODELS

Human infants learn word meanings from several presentations of the same word in differ-
ent contexts, including uncertainty and ambiguity in the language environment; this is often
referred to as cross-situational learning [Yu and Smith, 2007, Taniguchi et al., 2017, Juven
and Hinaut, 2020, Warren et al., 2020]. Traditional approaches to cross-situational learning
use three types of models: computational [Kachergis et al., 2012, McMurray et al., 2012],
statistical [Trueswell et al., 2013, Stevens et al., 2017], and Bayesian models [Frank et al.,
2009, Yurovsky and Frank, 2015], aiming to examine the plausibility of language models for
language learning. In particular, a body of research has demonstrated that both adults and
infants can effectively exploit cross-situational learning information when learning a small
number of words, using both naturalistic and more controlled stimuli [Akhtar and Mon-
tague, 1999, Yu and Smith, 2007, Medina et al., 2011, Trueswell et al., 2013]. Additionally,
several studies have performed computational experiments on cross-situational learning by
tracking the co-occurrence between word forms and referents (objects) to model how infants
could do it [Smith and Yu, 2008]. However, existing robotic frameworks only model how
children learn to understand directly from full sentences through cross-situational learning,

1LSTMs are not biologically plausible because they use an engineered mechanism to perform back-
propagation on time-unfolded representations.

129



7 Cross-Situational Learning Towards Language Grounding

One-Hot/GloVe/ 
BERT/BERT-fine-

tuned
Sentence

w1 w2 w3 wnwn-1

C1 C2 C3 CnCn-1

CSL Task
Output

LSTM/ESN

(a) Workflow our CSL

w1 w2 w3 wnwn-1

BERT Encoder (No further fine-tuning
/ fine-tuning)

E
nc

od
er

L
ay

er
  

N
 x

C1 C2 C3 CnCn-1

CSL Task
Output

LSTM/ESN

Sentence

(b) Workflow of our CSL with BERT model

Figure 7.2: (a) The sentences are passed as input to One-Hot/GloVe/BERT/fine-tuned BERT for ex-
tracting the word embeddings. (b) The sentence are passed as input to BERT encoder for
extracting the token embeddings from the last output layer in two setups: (i) no further
fine-tuning of encoder weights, (ii) fine-tuning of encoder weights. These token em-
beddings are passed as input to the LSTM/ESN models for the final prediction of CSL
task outputs. It’s important to note that the language grounding datasets employed in
our study are composed of textual representations designed to simulate the process of
language acquisition and grounding in a controlled and measurable way.

providing specific cues such as visual cues [Roy, 2002], social cues [MacDonald et al.,
2017], and auditory cues [Räsänen and Rasilo, 2015, Escudero et al., 2023], etc,.

BIO-INSPIRED LANGUAGE MODELS

Deep neural architectures such as ESN and LSTM are shown to be successful in handling
sequential tasks. Recently, ESNs have been successfully applied to understand how infants
learn the meaning of words in a fuzzy context. ESNs need to make associations between
symbols and referents [Juven and Hinaut, 2020], building upon previous studies using su-
pervision to model human sentence parsing [Dominey et al., 2006, Hinaut and Dominey,
2013] and multilingual processing [Hinaut et al., 2015, Hinaut and Twiefel, 2019], adapt-

130



7.2 Methodology

ing it for human-robot interactions [Hinaut et al., 2014, Twiefel et al., 2016, Hinaut, 2018].
Similarly, several authors have explored language acquisition tasks with LSTMs [Zhong
et al., 2017] and GRUs [Ororbia et al., 2020], engaging in learning robotic multi-modal
tasks when provided with sentences. To this extent, ESNs and LSTMs, coupled with the
cross-situational task, offer a more plausible learning perspective from a human brain than
a purely supervised task. Moreover, this type of task is also interesting for practical appli-
cations where exact target outputs are not always available.

GROUNDED LANGUAGE MODELS AND HUMAN-ROBOT INTERACTION

Human-robot interaction using natural language often requires language to be grounded
to the agent’s perceptions of the physical world and its interactions with others. Specifi-
cally, cross-situational learning in human-robot interaction involves statistical mechanisms
whereby robots learn to associate words with sensory experiences, drawing heavily on re-
peated exposure to varied contexts [Yu and Smith, 2007]. Prior studies of language acquisi-
tion involves the teaching strategies employed by humans, such as providing feedback and
guidance, play a crucial role in optimizing the robot’s learning trajectory [Thomaz et al.,
2006]. However, the challenge of disambiguating words that appear in multiple contexts re-
mains a significant hurdle, requiring sophisticated algorithms that allow robots to interpret
commands correctly based on contextual information [Kollar et al., 2014]. More recently,
joint attention mechanisms have been introduced in Matuszek et al. [2013], which allow
robots to focus on the same objects or actions as humans during teaching phases, signif-
icantly improving the efficiency of language acquisition. Overall, this body of research
not only advances our understanding of how robots can effectively learn language but also
underscores the complex interplay of human input and algorithmic processing in creating
more adaptable and intuitive robotic systems.

7.2 METHODOLOGY

In this section, we propose to employ a CSL task using two sequence-based models, includ-
ing ESN (i.e. Reservoir Computing) and LSTM, to build the grounded language acquisition
models. Here, we recall the definitions of reservoir computing and random features in ESN,
and LSTM, and introduce the details of the model architecture.

ECHO STATE NETWORKS (ESN)

Reservoir Computing [Lukoševičius and Jaeger, 2009] is an effective paradigm as Recurrent
Neural Network (RNNs) receives the sequential input xt ∈ Rd and producing the output yt,
where internal weights are fixed randomly and only the output layer (called the "read-out")
is trained [Jaeger, 2001].Let N be the number of neurons in the reservoir, the reservoir state
rt is updated by using the following recurrent equation:

rt ← (1− α)rt−1 + α tanh(Wrecrt−1 + Winxt) (7.1)
where Wrec ∈ RNXN and Win ∈ RNXd are respectively the reservoir and input weight
matrices, and the parameter α denotes the leak rate.
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Offline Learning vs. Online Learning Offline learning refers to a training process in
which the model is trained on a complete dataset at once. The entire training dataset is
available from the start, and the training involves adjusting the network’s output weights to
minimize error across all the training data. The internal state and recurrent weights of the
ESN typically remain unchanged; only the readout weights are optimized during the training
phase. This approach is ideal when you have a complete dataset and the task doesn’t require
the model to adapt to new data over time. Online Learning with ESNs involves updating the
model’s weights incrementally as new data becomes available, without the need to retrain
the model from scratch with the entire dataset [Hinaut and Dominey, 2012]. This method
is particularly useful for tasks where data arrives in a stream or when the system needs to
adapt to changes in the data distribution over time.

During the testing phase, particularly with Echo State Networks (ESN) and the distinc-
tions between offline and online learning, the parameters of the model—primarily those
in the readout layer (given that the reservoir of an ESN typically remains unchanged)—are
"frozen." This means that the parameters are not updated any further once the training phase
is completed. Freezing the parameters during testing facilitates a fair evaluation of the
model’s performance.

ESN OFFLINE LEARNING

To refine the control of the reservoir dynamics, we add a constant bias to the reservoir state
st ∈ RN and then multiply this reservoir state st by the output matrix Wout to get the output
vector yt as described in the Equation 7.2. The output predicted by the network yt closer
to the teacher vector is obtained by optimizing the output weight matrix Wout after a final
layer.

st =

(
1
rt

)
yt = Woutst (7.2)

Since only the output weights Wout are trained, the optimization problem boils down to
simple linear regression, called an offline learning method.

ESN WITH FORCE/ONLINE LEARNING

In the context of online learning models such as ESN with Final Learning (FL) or Continual
Learning (CL), the model’s parameters, particularly those of the readout layer, are updated
after each training example. Final Learning (FL) involves applying the FORCE algorithm
to the reservoir’s state after processing the entire sentence [Sussillo and Abbott, 2009]. This
means that the model waits until the last word of the sentence before updating its parame-
ters. Continual Learning (CL), on the other hand, employs the FORCE algorithm after each
word within a sentence. This method requires the ESN to update its parameters and poten-
tially alter its output predictions as each word is processed. This distinction highlights the
trade-offs between the two approaches: FL focuses on accuracy by utilizing complete sen-
tence contexts for updates, while CL emphasizes adaptability and interpretability, accepting
potentially lower performance for insights into the model’s processing of sequential data.
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To update the output weights Wout for each learning example, the online FORCE learning
algorithm [Sussillo and Abbott, 2009] that is a more biologically plausible model to train the
network than usual ESN offline learning. This method does not unfold time while training
the network like back-propagation through time. The matrix P “acts as a set of learning
rates for the RLS (Recursive Least Squares) algorithm” [Sussillo and Abbott, 2009]. Let et
be the error between the prediction of the network and the ground truth at time t, and the
output weights are updated as follows:

Wout(t) = Wout(t− 1)− etP(t)rt (7.3)

P(0) =
I

∈
(7.4)

P(t) = P(t− 1)− P(t− 1)rtr
T
t P(t− 1)

1 + rTt P(t− 1)rt
(7.5)

where I is an identity matrix and ϵ is a regularisation term.
ESN with Final Learning (ESN FL) For the final learning method, the FORCE algorithm
is applied to the reservoir state after the last word of the sentence.
ESN with Continual Learning (ESN CL) Unlike ESN FL, the reservoir states are updated
after each word of a sentence using the FORCE learning method; an equivalent method with
offline learning was used in Hinaut and Dominey [2013].

LSTM

An LSTM [Gers et al., 1999] network with sequential time steps that computes an output
yt as a function of the input vector xt, and weights of hidden state obtained using three
gates (forget gate, input gate, output gate). The weights of LSTMs are learned using the
error back-propagation through time, BPTT, an algorithm to maximize the log-likelihood
of the training data given the parameters. In order to compare the performance of ESNs
with LSTMs, we employ unidirectional LSTMs in our CSL tasks.

RANDLSTM

In RandLSTM model [Bai et al., 2018], the LSTM weight matrices and their corresponding
biases are initialized uniformly at random and kept frozen (i.e both Input and LSTM con-
nection weights are random) [Wieting and Kiela, 2018]. Hence, the output layer parameters
are only trainable and the remaining parameters are frozen in RandLSTM model [Bai et al.,
2018].

7.2.1 AVAILABILITY OF DATA AND MATERIALS

Here, we describe the three diverse datasets: Juven’s (simple sentences) [Juven and Hin-
aut, 2020], GoLD (consists of simple to very complex sentences) [Jenkins et al., 2020],
and Knowledge Technology Train Robots (KTTR) (sentences that describe complex robot
actions) [Twiefel, 2020] – which we will call Robot Data for simplicity in the paper. We
reused these three publicly available datasets for this work, we did not collect any new
dataset.
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The red cup is on the right This a hammer with a pink handle 
Move the yellow block on top of the
red block and place it on top of the
red tower in the back corner

(a) Juven's (b) GoLD (c) Robot Data 

Figure 7.3: Example sentences with concepts from three datasets: Juven’s, GoLD, and Robot data.
Here, the image from the GoLD dataset is sourced from Jenkins et al. [2020], and the
image from the Robot dataset is sourced from Twiefel [2020].

• Juven’s dataset can be downloaded from this link 2. Please read their terms of use for
more details.

• GoLD dataset can be downloaded from this link 3. Please read their terms of use for
more details.

• Robot dataset can be downloaded from this link 4. Please read their terms of use for
more details.

Fig. 7.3 showcases the example of sentences corresponding to each dataset, and we
present the detailed statistics of each dataset in Table 7.3 (refer in supplementary).
Juven’s CSL: Juven’s CSL dataset [Juven and Hinaut, 2020] comprises approximately
70,000 sentences, of which we randomly sampled 1000 training sentences and 1000 testing
sentences, where each sentence describes one or two objects. The sampled dataset has 700
sentences with two objects and 300 with one object in training and testing. We validated
our models on Juven’s dataset by varying the number of object classes from 4 to 50, three
actions, and four colors. These objects were chosen to reflect and provide data for three
different domains: home, kitchen, and tools, in which the model learns to ground a com-
plex sentence, describing a scene involving different objects into a perceptual representation
space.
GoLD: Grounded language dataset (GoLD) [Jenkins et al., 2020] is a collection of visual,
speech, and language data in five different domains: food, home, medical, office, and tools.
There are 8250 textual descriptions consisting of 47 object classes spread across five differ-
ent groups, seven actions, and eight colors.
Robot Grounding Dataset: Robot dataset [Twiefel, 2020] is a collection of visual, speech,
and language data that focuses on contextual semantic parsing of robotic spatial commands.
There are 2500 textual descriptions in the training set, of which we randomly sampled 1000

2https://github.com/aJuvenn/JuvenHinaut2020_IJCNN
3https://github.com/iral-lab/gold
4https://alt.qcri.org/semeval2014/task6/index.php?id=data-and-tools
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7.2 Methodology

sentences for training. The test consists of 909 textual descriptions (different from 2500
sentences from the training set). Overall, the dataset consists of 11 object classes, three
actions, eight colors, nine directions, and nine positions. Unlike Juven’s data, both GoLD
and Robot datasets consist of simple to very complex sentences.

CSL TASK: INPUT AND OUTPUT

In our experiments, as illustrated in Figure 7.2, we exclusively utilized text-based data for
our analysis. The language grounding datasets employed in our study are composed of tex-
tual representations designed to simulate the process of language acquisition and grounding
in a controlled and measurable way. This approach allowed us to focus on the computational
models’ ability to learn associations between words and their meanings within various con-
texts, a core aspect of the Cross-Situational Learning (CSL) task that our study aims to
explore.

For each sequence-based model, we give the input and output as follows: (i) The input
is a sequence of words (i.e. a sentence) with one-hot, GloVe, or word representation from
pretrained/fine-tuned BERT. (ii) The target output is a constant vector corresponding to
concepts units (i.e. objects, colors, positions). (iii) Since the CSL task is defined in noisy
supervision, the target may include additional concepts outputs that are not in the input
sentence. Fig. 7.9 displays the target vectors corresponding to input sentences for Juven’s
and GoLD datasets. The semantic output structure and the binary encoding of semantic
structure for the Robot dataset are shown in Figs. 7.8 (a) and 7.8 (b), respectively.

Figure 7.4: (left) Example sentences with concepts from three datasets: Juven’s, GoLD, and Robot
data. (right) Evaluations of different imagined scenes. (a) It is not valid or exact because
the cup is not on the right. (b) It is not exact because the sentence does not mention the
cup color. (c) It is both valid and exact because the imagined scene is same as a textual
description. This Figure (right) is source from Juven and Hinaut [2020].

EVALUATION METHODOLOGY

During model training, we use cross-entropy as the loss between prediction and ground
truth. To evaluate the performance of two models on prediction of test sentences, we use
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the two error metrics: Valid and Exact [Juven and Hinaut, 2020] for Juven’s and GoLD,
as shown in Fig. 7.4 (right). In the Robot dataset, we use only the exact error because
the model predictions for a sentence are classified correctly (actions, relations, objects, and
attributes), and the output is considered correct. Partly incorrect outputs are considered
incorrect, making it a strict metric [Twiefel, 2020]. Since the visual representation can
contain more information about the scene than what is described in the sentence in a cross-
situational learning task, we cannot simply quantify the performances of a model with the
distance to the desired teacher vector. The percentage of sentences from the testing set
considered invalid or not exact is then used as a quantitative error measurement. The error
metrics are defined as follows:

Valid Error = 1− #Valid Representations
#Instances

(7.6)

Exact Error = 1− #Exact Representations
#Instances

(7.7)

where #Instances denote the number of test instances, Valid Representation=1 if every
concept mentioned in the sentence is present, else 0. Similarly, Exact Representation=1 if
the representation contains all the sentence information and nothing more, else 0.

To enable a fair comparison between the two models (ESN and LSTM), we set the thresh-
old is fixed to 1.3/Kc throughout the paper. In the CSL task settings, Kc represents the
number of possible values for each concept c. Each concept c (e.g., color, position, object
category) in the model can take on a specific number of values. For instance, if the concept
is "position," the possible values might be "right," "middle," and "left," making Kc=3 for
this concept. Similarly, for the concept "color", the possible values might be "red", "blue",
"green" and "orange", making Kc=4 for this concept. Essentially, Kc quantifies the diversity
or the range of values that a particular concept c can assume in the model. Table 7.3 reports
the number of concepts and possible values associated with each concept for 3 datasets.

We selected the threshold factor (1.3) based on the study by Variengien and Hinaut
[2020], which utilized the Juven’s dataset. The choice of threshold factor (1.3) impacts
the performance of the models. As the threshold factor increases, the exact error decreases
while the valid error increases. Essentially, the exact error functions similarly to a false
positive rate, and the valid error corresponds to a false negative rate. With a threshold of
1.3, we achieve the lowest error rates for both LSTM and ESN models without favoring
one over the other. Therefore, we applied the threshold factor of 1.3 across all datasets. In
summary, 1.3/Kc serves as a customized threshold to assess the significance of a model’s
prediction for each concept c, where Kc is the diversity of the concept, and 1.3 amplifies the
minimum probability required to accept a prediction as significant.

CROSS-VALIDATION

In the cross-validation setup, the training set was indeed fixed across all models for the pur-
pose of ensuring a fair comparison. By randomly sampling the training instances in each
run and then running each model (ESN-Offline, ESN-Online FL, ESN-Online CL, RandL-
STM, and LSTM) through this process, repeated across five iterations. This we ensured that
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each model was trained and evaluated on an identical dataset in each run. Averaging the re-
sults across these five runs for each model helps to mitigate the effects of simple to complex
sentences on model performance, providing a more reliable measure of each model’s capa-
bility to learn from the dataset. This approach aligns with best practices in machine learning
research, where controlling for variables such as the training data is crucial for accurately
assessing and comparing the performance of different models. In our model training, we use
a small data set (1000 sentences) to see what the model can learn with few-shot learning;
some words may appear only a few times in the training set.

7.3 EXPERIMENTAL SETUP

We evaluated our cross-situational learning task on three datasets across twenty different
settings: 5 architectures x 4 feature representations. The five architectures are: (i) ESN-
Offline, (ii) ESN-Online FL, (iii) ESN-Online CL, (iv) RandLSTM, and (v) LSTM.

FEATURE REPRESENTATIONS

We use the feature representations such as one-hot encoding, GloVe, pretrained BERT, and
fine-tuned BERT as input for the models ESN and LSTM.
One-Hot Encoding: In one-hot encoding, each word is represented as a binary vector that
is all zero values except the index of the word from the unique vocabulary, which is marked
with a 1. Thus, the dimension of the input vector will be equal to the vocabulary size (see
Table 7.10 in sup. mat.).
GloVe: We use the existing pretrained word embeddings, GloVe based word vectors (each
word is a 300-dimension vector) [Pennington et al., 2014] to perform the CSL task.
BERT: Pretrained BERT model [Devlin et al., 2019] provides word contextual information
by looking at previous and next words, which is one of the main limitations in earlier lan-
guage models. For every sentence, BERT yields 1 × #tokens × 768 dimensions, where
#tokens denote the number of tokens (i.e. each token will be represented as 768 vectors).
Fine-tuned BERT: Here, we use the BERT-base-cased model and fine-tuned on the last
layer of BERT model for each dataset. Like BERT, we obtained 1 × #tokens × 768 dimen-
sions for every sentence from fine-tuned BERT.

MODEL TRAINING

ESN Training: We use the ReservoirPy library [Hinaut and Trouvain, 2021]5 to build the
ESN model, where the model is trained on 1000 sentences and tested on 1000 sentences.
When tuning hyperparameters for an ESN using the ReservoirPy library, the approach in-
volves a systematic exploration of the hyperparameter space to identify the combination
that yields the best performance. This process is crucial because the choice of hyperpa-
rameters can significantly affect the model’s ability to learn and generalize from the data.
We chose four hyper-parameters to explore: spectral radius (SR), leak rate (LR), sparsity,

5https://github.com/reservoirpy/reservoirpy
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and ridge regularization parameter. We also chose to fix at least one of the more important
hyper-parameter, to reduce the complexity of the search: input scaling (IS) will be kept
constant and equal to 1 during this first step. Unlike grid search, which exhaustively tests
all possible combinations of hyperparameters, random search samples a subset of combi-
nations from the defined hyperparameter space. In our random search, we performed 100
evaluations is sufficient enough to to explore the space and identify a well-performing set
of hyperparameters. Figs. 7.15, 7.16 and 7.17 (please refer the supplementary) display
the cross-entropy loss along with both exact and valid error performance with exploration
of four hyper-parameters. Similarly, we report the hyperopt plots for GoLD and Robotic
datasets in the supplementary (please refer the Figs. 7.18, 7.19, 7.20, 7.21 and 7.22). We
obtain the following parameters by performing the random hyper-parameter using hyper-
opt6 for each dataset as follows: For Juven’s dataset: {Spectral Radius = 0.025, Leak Rate
= 0.0097, Sparsity (on Reservoir Weight Matrix - Wrec) = 0.5, Regularization coefficient
= 1.3e−10, Input Scaling = 1.0}. For Robot dataset: {Spectral Radius = 0.839, Leak Rate
= 0.0735, Sparsity (on Reservoir Weight Matrix - Wrec) = 0.5, Regularization coefficient
= 3.91e−5, Input Scaling = 1.0}. For GoLD dataset: {Spectral Radius = 2.29, Leak Rate
= 0.003, Sparsity (on Reservoir Weight Matrix - Wrec) = 0.2, Regularization coefficient =
0.01, Input Scaling = 1.0}.
LSTM Training: Our parameter selection for the LSTM model is guided by the use of
Keras Tuner for hyperparameter tuning [O’Malley et al., 2019]. Through Keras Tuner, we
configured the Dropout_rate to vary between a minimum of 0 and a maximum of 0.5, with
increments of 0.1. We also explored learning_rate values within the range of [1e-2, 1e-3,
1e-4], opting for the mean squared error as the loss function and Adam as the optimizer. Em-
ploying RandomSearch from Keras Tuner enabled us to methodically test a broad spectrum
of hyperparameters, including the number of LSTM units from 10 to 160, learning rate, and
batch sizes of 8, 16, and 32. By defining this search space, RandomSearch could randomly
evaluate numerous configurations, optimizing for the best performance based on predefined
criteria such as minimizing loss. In summary, for the ESN model, hyperparameter tuning
is conducted solely on the reduced corpora, and the derived parameters were subsequently
applied to the complex corpora. To ensure a fair comparison of model performance, we
adopted a similar approach for the LSTM model by performing hyperparameter tuning on
the reduced corpora and applying the identified parameters to the complex corpora.

Following the determination of the hyperparameters, we experimented with one layer
of LSTM to capture the meaning of the concepts. The model is implemented in Keras
with TensorFlow backend [Abadi et al., 2016] with meas squared error as loss, Adam opti-
mizer [Kingma, 2014], the number epochs set to 70, the batch size is of 8, and tried LSTM
with different hidden units (20, 40, 80). Since the number of trainable parameters in 20-unit
LSTM is equivalent to the ESN model with 1000 reservoir units, we use these two settings
for baseline comparison. We used the early-stopping method to stop model training when
the loss started to plateau with patience of 5.

Our decision to set the early stopping patience at 5 is driven by a balance between model
performance and computational efficiency. LSTM models, being a form of recurrent neural

6http://hyperopt.github.io/hyperopt/
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network (RNN), are particularly sensitive to the risk of overfitting due to their capacity to
model complex, long-term dependencies in sequential data. A lower patience value, like
5, helps in avoiding overfitting by stopping the training when the model’s performance on
the validation set does not improve for a consecutive number of epochs. This approach also
conserves computational resources by preventing unnecessary training iterations. Further-
more, given our dataset contains only 1,000 sentences, opting for an early stopping patience
of 5 is a wise choice. It allows us to maintain an effective learning process while preventing
overfitting, a crucial consideration given the limitations in both computational resources and
dataset size.

Choosing a higher patience value, such as 10 or 20, could potentially allow for more
subtle improvements in model performance over a longer period. However, it also increases
the risk of overfitting and requires more computational time and resources. By evaluating
the model’s learning dynamics and considering the trade-off between performance gains
and computational cost, we determined that a patience of 5 yield an optimal balance for our
specific scenario.

7.4 RESULTS

7.4.1 CSL TASK PERFORMANCE OF SEQUENCE-BASED MODELS

In this section, we report our two sequence-based model results on the CSL task using three
datasets viz. Juven’s, GoLD, and Robot. We used the four different word representations
such as one-hot encoding, GloVe, BERT (bert-base-case)7, and fine-tuned BERT to extract
the features for every sentence, and the error metrics are computed from the two sequence-
based models. To compare the effectiveness of the models with an approximately equal
number of parameters (ESN with 1000 units, RandLSTM with 1000 units and a 20-unit
LSTM) using different token representations as input feature vectors, we report the Valid
and Exact errors for the Juven’s and GoLD, and Exact error for Robot datasets, respectively,
described in Tables 7.1 (a) and 7.1 (b). To verify statistical difference between pairs of these
sequence-based models, we have employed the two-sample paired t-test to rigorously as-
sess the differences in performance metrics (‘Valid’ and ‘Exact’ errors) observed between
our ESN models and LSTM models across multiple runs within our cross-validation frame-
work. This statistical test is particularly suited for our analysis as it compares the means
of two independent samples, aligning perfectly with our objective to evaluate performance
distinctions across distinct model architectures.
Reduced-size Corpora Results: In Table 7.1(a), we evaluate the performances on a smaller
number of objects datasets, we chose 4-objects for Juven’s and 10 objects for GoLD data.
From Table 7.1 (a), we found that both models are able to learn the CSL task with low error
successfully and outperform the one-hot, GloVe, and pretrained BERT results; we make
the following observations. (i) We observe that the LSTM outperforms the ESN on both
Valid and Exact errors on Juven’s and GoLD datasets. (ii) On the other hand, ESN displays
better performance than RandLSTM while considering the same number of neurons in both

7https://huggingface.co/bert-base-cased
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Juven’s CSL Data GoLD Data
Model Valid Exact Valid Exact
ESN-offline + One-Hot 33.10±0.1643.90±0.2117.46±0.2425.39±0.58
ESN-offline + GloVe 16.70±0.1125.00±0.1325.88±2.7030.19±4.40
ESN-offline + fine-tuned BERT 2.20±0.02 10.90±0.0521.43±0.1425.51±0.47
ESN-offline + BERT 2.30±0.02 12.20±0.0724.47±0.2143.45±0.40
ESN-online FL + One-Hot 0.28±0.01 05.64±0.0312.29±0.2420.89±0.28
ESN-online FL + GloVe 0.10±0.01 12.20±0.0912.69±0.4625.15±0.60
ESN-online FL + fine-tuned BERT 0.00±0.00 06.28±0.0112.11±0.1322.22±0.21
ESN-online FL + BERT 0.20±0.00 07.72±0.0720.62±0.1642.22±0.21
ESN-online CL + One-Hot 2.32±0.01 12.10±0.0914.82±1.9626.58±2.37
ESN-online CL + GloVe 7.80±0.08 25.50±0.1415.38±2.4028.93±3.40
ESN-online CL + fine-tuned BERT 2.41±0.01 13.70±0.1013.83±0.7627.79±0.88
ESN-online CL + BERT 2.78±0.01 14.60±0.1120.13±0.7838.08±0.87
RandLSTM + One-Hot 7.30±0.10 10.00±0.1421.91±0.4324.64±0.34
RandLSTM + GloVe 23.80±0.7848.70±1.0249.93±1.0151.66±1.40
RandLSTM + fine-tuned BERT 4.30±0.04 7.40±0.09 17.19±0.2318.33±0.21
RandLSTM + BERT 8.00±0.06 35.00±0.8920.23±0.2423.37±0.28
LSTM + One-Hot 0.10±0.00 03.50±0.0116.40±0.1322.85±0.18
LSTM + GloVe 2.90±0.01 17.50±0.1041.11±0.1848.88±0.09
LSTM + fine-tuned BERT 0.20±0.01 01.30±0.0210.35±0.0914.66±0.01
LSTM + BERT 0.00±0.0 04.56±0.0212.33±0.1221.72±0.14

(a) Reduced-size corpora

Juven’s CSL Data GoLD Data Robot Data
Model Valid Exact Valid Exact Exact
ESN-offline + One-Hot 46.60±0.2763.30±0.3529.49±0.2530.38±0.45 42.30±0.14
ESN-offline + GloVe 44.40±0.3161.00±0.3748.93±0.2853.90±0.24 57.42±0.23
ESN-offline + fine-tuned BERT 20.70±0.1640.20±0.1844.57±0.2647.48±0.41 43.00±0.11
ESN-offline + BERT 24.50±0.2043.60±0.2452.20±0.2454.78±0.35 45.50±0.14
ESN-online FL + One-Hot 02.90±0.0129.40±0.2419.23±0.2226.92±0.29 37.12±0.06
ESN-online FL + GloVe 06.00±0.0740.20±0.3120.27±0.2632.56±0.24 38.09±0.14
ESN-online FL + fine-tuned BERT 02.52±0.0126.00±0.1817.45±0.1128.89±0.19 34.20±0.06
ESN-online FL + BERT 02.72±0.0128.50±0.2027.24±0.1254.40±0.21 35.34±0.10
ESN-online CL + One-Hot 18.64±0.1339.52±0.3121.69±0.4632.48±0.48 57.10±0.55
ESN-online CL + GloVe 42.60±0.5672.90±1.0122.14±0.6436.42±0.76 59.96±0.64
ESN-online CL + fine-tuned BERT27.28±0.1954.00±0.3418.37±0.4034.04±0.28 58.86±0.20
ESN-online CL + BERT 32.86±0.2060.88±0.4122.30±0.4652.49±0.44 60.17±0.33
RandLSTM + One-Hot 100.0±0.0 100.0±0.0 71.11±1.6175.34±1.82 79.53±1.51
RandLSTM + GloVe 100.0±0.0 100.0±0.0 84.48±2.3284.83±2.10 88.88±1.04
RandLSTM + fine-tuned BERT 100.0±0.0 100.0±0.0 72.02±1.6472.02±2.03 87.34±0.89
RandLSTM + BERT 100.0±0.0 100.0±0.0 76.31±1.4580.17±1.67 87.91±1.21
LSTM + One-Hot 99.64±0.0199.82±0.0142.89±0.5648.14±0.65 75.67±0.54
LSTM + GloVe 99.20±0.0199.99±0.0065.18±0.8470.89±0.91 86.57±0.87
LSTM + fine-tuned BERT 97.84±0.0198.90±0.0144.18±0.4647.26±0.68 72.47±0.41
LSTM + BERT 98.10±0.0199.99±0.0148.28±0.4452.40±0.66 78.60±0.45

(b) Complex corpora

Table 7.1: Results for reduced-size corpora datasets (left) and complex corpora datasets (right) for
4 input representations (BERT, One-Hot, GloVe, fine-tuned BERT) using the 5 model
settings (ESN-offline, ESN-online FL, ESN-online CL, 1000-unit RandLSTM, 20-unit
LSTM). Object vocabulary sizes: reduced-size corpora datasets (4 for Juven’s; 10 for
GoLD), complex corpora datasets (50 for Juven’s; 47 for GoLD, 11 for Robot Data).
(bold) Best result for each column, and (underlined) 2nd and 3rd results for each column.
ESNs outperform LSTMs for all complex datasets.

models; these results demonstrate the biological plausibility of ESNs than RandLSTM. (iii)
ESN-online FL performed significantly better than ESN-online CL and offline methods.

Complex Corpora Results: To evaluate the performances of two models on complex
datasets, we chose the larger number of objects from three datasets: 50 for Juven’s, 47
for GoLD, and 11 for Robot, as shown in Table 7.1. Considering complementary results to
Table 7.1 : (i) For three datasets with more objects, ESN showcases a better Valid and Exact
error performance than LSTM. Thus, in the general case, the ESN outperforms the LSTM.

ESN: EFFECTS OF OFFLINE VS ONLINE LEARNING:

To explore the biological plausibility of ESN, we compare the CSL task performance on
three datasets between offline and online (FL and CL) learning methods. Tables. 7.1 (a).
and 7.1 (b) report the CSL task performance of ESNs where the online learning method
using FL yields better performance than online CL and offline learning, indicating the more
biological plausibility of ESNs during online FL and the cognitive process of sentence com-
prehension. To investigate the internal states of ESN during online learning, we report the
absolute variation of the activation of reservoir neurons during the processing of the sen-
tence in Fig. 7.6 (a). Since we do not use any feedback in our reservoir, the states of the
reservoir are fully determined by its initial random weights and the inputs received. In fact,
the learning process happens by combining the useful activities given the random projec-
tions of the inputs done in the reservoir.
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STATISTICAL SIGNIFICANCE BETWEEN ESN AND LSTM:

For the ‘Valid’ error, our findings indicate a statistically significant difference between
the ESN and LSTM models on the complex corpora dataset, with p-values reaching as
1.62x10−9 (< 0.05) for Juven’s CSL Data and 3.96x10−5 (< 0.05) for the GoLD Data.
These results are reinforced by similar significant outcomes when comparing ‘Exact’ errors,
where, for instance, the comparison on the Juven’s dataset yielded a p-value of 1.79x10−11

(< 0.05), p-value of 0.0056 (< 0.05) for GoLD dataset and p-value of 7.02x10−8 (< 0.05)
for Robot dataset, showcasing the ESN model’s enhanced performance.

Moreover, our analysis extends to the exploration of FL within ESN models, where the
statistical tests consistently underscore significant performance improvements over LSTM
models across various datasets, as evidenced by p-values such as 4.75x10−4 (< 0.05)(GoLD
Data for ’Valid’ error) and 7.02x10−8 (< 0.05) (Robot Data for ’Exact’ error). These sta-
tistically significant results, derived from careful application of the two-sample t-test, not
only validate the performance differences highlighted in our study but also underline the
robustness and reliability of ESN models in handling complex datasets.

For the reduced corpora, no statistically significant differences were observed between
the ESN models employing FL or CL and the LSTM models, in terms of both ‘Valid’ and
‘Exact’ scores, across the reduced corpora from Juven’s CSL and GoLD datasets. The
relatively high p-values in all tests (all p-values > 0.05) suggest the null hypothesis of equal
means between the compared groups cannot be rejected. This indicates that both ESN and
LSTM models exhibit comparable performance on reduced corpora.

Conversely, the comparison between ESN models utilizing FL and those utilizing CL
on the Juven’s CSL Data demonstrated statistically significant differences in both ‘Valid’
and ‘Exact’ scores, with p-values of 0.032 and 0.046, respectively. This signifies notable
performance disparities between ESN models using FL and CL approaches. However, for
the GoLD data, the p-values exceeded 0.05, revealing no statistically significant differences
between the FL and CL models in terms of both ‘Valid’ and ‘Exact’ scores. This analysis
sheds light on the impact of different learning strategies (FL vs. CL) on ESN model perfor-
mance and their comparative effectiveness to LSTM models in scenarios involving reduced
corpora.

ESN ONLINE LEARNING VS RANDOM LSTM:

In order to explore how RandLSTM learns to perform the CSL task, we compare the perfor-
mance of RandLSTM with ESN Online models. Tables. 7.1 (a) and 7.1 (b) report the CSL
task performance of RandLSTM where both input and LSTM layers are kept frozen, and
training happens at the output layer similar to ESN models. From Tables. 7.1 (a) and 7.1
(b), we observe that the ESN online learning methods display supremacy over RandLSTM
indicating that the more biological plausibility of ESNs compared to RandLSTMs. Further,
we compare the computational complexity of ESNs with RandLSTM on complex corpora
across three datasets. We observed the following insights from Table 7.2: (i) From a compu-
tational efficiency perspective, one of the major limitations of the RandLSTM model is that
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7 Cross-Situational Learning Towards Language Grounding

Latency (sec.), One-hot/GloVe/BERT
Model Juven’s (114K) GoLD (124K) Robotic (591K)
ESN Offline 13.9 / 28.3 / 61 19.5 / 11.39 / 9.76 98 / 21 / 31
ESN Online FL 423 / 480 / 578 25 / 235 / 69 1,448 / 1,133 / 1,178
ESN Online CL 1,924 / 2,181 / 2,216 431 / 1,895 / 357 6,900 / 6,128 / 5,683
RandLSTM 3,025 / 4,211 / 1,541 19,602 / 11,324 / 18,304 12,261 / 11,974 / 16,092

Table 7.2: Training latency comparison for ESNs and Random-LSTMs. Each model has 1000 hidden
recurrent units. Total number of trained parameters is provided for each dataset. Fine-
tuned BERT has the same latency as BERT because dimensions are identical.

training time is computationally expensive, (ii) In contrast, ESN models are more efficient
and require lower training time.

MODEL SIZE, LATENCY AND ERROR TRADE-OFF:

Our main goal is to build models that are efficient for human-robot interactions. Therefore,
it is crucial to explore trade-offs between model size, latency, and error. For complex cor-
pora datasets (Juven with 50 objects on valid error, GoLD with 47 objects on valid error,
and Robot data with 25 objects on exact error), we analyze the model size, latency, and error
score trade-off in Figs. 7.5 (a), 7.5 (b) and 7.5 (c) across two models: ESNs (offline, online
+ FL, online + CL) and LSTMs (20, 40, and 80 hidden units). Typically, ESN models have
fewer parameters, where the number of parameters depends on the target vector dimension.
Juven’s Data: From Fig. 7.5 (a), we observe that the ESN-online FL model showcases
lower valid error using 114K parameters with a model training latency of 500 seconds com-
pared to Offline, ESN-online CL, and LSTM with 20 and 40 hidden units (higher latency
time for model training). It is clearly observed that the ESN models have better computa-
tional complexity in terms of latency and model size and report better performance.
GoLD Data: From Fig. 7.5 (b), we observe that the ESN-online FL model showcases lower
valid error using 124K parameters with a model training latency of 64 seconds compared
to Offline, ESN-online CL, and LSTM with 20 and 40 hidden units (higher latency time
for model training). It is clearly observed that the ESN model has better computational
complexity in terms of latency and model size.
Robot Data: Fig. 7.5 (c) shows the model size, latency and error trade-off on the Robot
dataset. From the Fig. 7.5 (c), we observe that LSTM with 80 hidden units (115K parame-
ters for one-hot and 319K parameters for GoLD) model showcases lower exact error com-
pared to ESN with 591K parameters. Although the parameters of ESNs are much higher
than LSTMs, the training of ESNs displays lower latency than LSTMs (higher latency time
for model training). Since Robot data have a higher target dimension (591 binary vector),
the ESN model parameters are much higher than LSTM. However, it does not affect the
relative latency or error performance of ESNs much compared to LSTMs.
Insights: Hence, it is clearly observed from the Figs. 7.5 (a), 7.5 (b) and 7.5 (c) that ESNs
display better generalizations than LSTMs for increasing the larger vocabularies. Although
we compare the number of trained parameters for ESNs and LSTMS, they are not directly
comparable given that they do not use the same theoretical computing principles (ESNs rely
on the VC-dimension [Vapnik et al., 1994] like in Support Vector Machines).
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Figure 7.5: Parameters vs. Valid Error vs. Training Latency on complex corpora datasets: (a) Juven,
(b) GoLD and (c) Robot. Here, the size of the bubble denotes the number of parameters.

QUALITATIVE ANALYSIS

The challenge in applying simple neural network models to human-robot interaction re-
search lies in the black-box nature of the process, where it is hard to decipher what the
network learns while processing full sentences. Here, we discuss the inner working details
of all the models and report the output activations of each model.
Qualitative analysis of output units activation: In order to understand the inner working
details of both models, we plot the evolution of the output activation during the processing
of a sentence across all the models (ESN Online CL, LSTM, ESN Offline, and ESN Online
FL), as shown in Figs. 7.6, 7.7, 7.23, and 7.24. Observations from Figs. 7.6, 7.7, 7.23,
and 7.24 that the intermediate output activations are much more meaningful and inter-
pretable with the ESN-online CL and LSTM. However, for the ESN-online FL, the interme-
diate output activation cannot be interpreted with the default Final Learning (FL). As we can
see in Fig. 7.24, the fluctuations seem unpredictable until the last word “END” is seen. For
a correctly predicted output, the activation often “jumps” to the correct value when the last
item “END” is inputted. This is due to the fact that we only apply the learning procedure at
the final state, so there is no constraint on intermediate outputs. Similarly, the observations
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Figure 7.6: Juven’s Data: Output activation of the ESN CL + fine-tuned BERT. After each word the
model tries to predict the correct output. That’s why we can see a jump in the correct
characteristic after the related keyword is seen.

from Fig. 7.23 that the intermediate activations of the ESN-offline model cannot be inter-
preted due to its constant activation from the word “BEGIN” until the last word “END” is
seen. Interestingly, when training the network ESN-online CL with both usual (whole sen-
tence) and single-word sentences, the network outputs provide consistent predictions during
the whole presentation of sentences, as shown in Fig. 7.6. This is because the final answer
from the network can be predicted before the sentence is over, given its ongoing activations,
i.e the output activity of a concept is activated once a word is pronounced.

Similar to ESN-online CL, during the training procedure of LSTM, the target outputs
are given as a "whole" during all the timesteps (no particular label is given at a precise
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Figure 7.7: Juven’s Data: Output activation of the LSTM + fine-tuned BERT. Even if the learning
procedure is only applied at the end, because of its learning algorithm, intermediate states
are also optimized. This is why we can also interpret these transitional steps: they behave
similarly to the ESN online trained with CL.

time corresponding to a precise word). However, we can observe a spike in the activity
of the concept as the model sees the corresponding keyword, as depicted in Fig. 7.7. For
instance, we can observe a spike in the activity of the concept <Orange_obj> (i.e. the
concept activated when the object 1 is Orange), and the spike is quickly inhibited when the
following word “cup” is received <Cup_obj> (i.e. the concept activated when the object 2
is Cup) is seen. This phenomenon gives us a first hint on how both models are able to deal
with polysemous meaning. Further, observations from Fig. 7.7 that the word “END” does
not seem to affect the output of the network significantly.
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7 Cross-Situational Learning Towards Language Grounding

For example, consider the sentence "BEGIN this orange is orange and on the middle
there is the green cup END", activations are shown for the two models in the Fig. 7.7. In-
terestingly, the position is not mentioned for the first object <Orange_obj> in the sentence,
and the position for the first object does not have any reference to the second object. Here,
we can see that when the word "orange" appears twice in the first part of the sentence, the
model has not yet the information that the word will be used as an adjective or noun. So,
when this happens, for the LSTM, we can see a rise (i.e. a spike) in the activation of the
<orange_object1> concept (i.e. the output neuron that should be activated when the first
object is an orange). It is also clear that "orange" was an adjective and not a noun when
it appeared a second time in the sentence. This gives a qualitative insight that fine-tuned
BERT representations establish the reference from a word to an object when a full context
is not provided.

7.5 DISCUSSION

Grounded language acquisition is the process of learning a language - how infants can learn
language by observing their environments, interacting with others, and understanding the
concepts of a language as it relates to the world [Chen and Mooney, 2008, Thomason et al.,
2018, Juven and Hinaut, 2020, Vanzo et al., 2020]. However, language acquisition becomes
challenging when there are numerous possible meanings for a word in an utterance, intro-
ducing a high level of uncertainty. Traditional approaches for language grounding mainly
focus on mapping natural language commands and task representations that are essentially
sequences of primitive robot actions [Chen and Mooney, 2011, Matuszek et al., 2013, Tellex
et al., 2011]. Moreover, existing robotic frameworks [Taniguchi et al., 2017, Roesler et al.,
2018] do not model how children learn to understand directly from full sentences through
cross-situational learning without providing specific cues such as visual cues [Roy, 2002],
social cues [MacDonald et al., 2017], and auditory cues [Räsänen and Rasilo, 2015, Es-
cudero et al., 2023], etc,. Overall, we take the language acquisition perspective to machine
learning and robotics, where part of the problem is understanding how language models can
perform grounded language acquisition through noisy supervision and discussing how they
can account for brain learning dynamics. Our proposed framework, combining input fea-
turization, dynamic memory, and learning modules, offers a flexible, biologically plausible
architecture for investigating CSL tasks on diverse datasets.

In this paper, we investigate the ability of two sequence-based models, ESNs and LSTMs,
to learn to parse sentences via noisy supervision (CSL) and compare different word repre-
sentations (one-hot, GloVe, pretrained, and fine-tuned BERT). We evaluated our CSL task
on three different datasets in five different settings: (i) ESN-Offline, (ii) ESN-Online FL,
(iii) ESN-Online CL, (iv) RandLSTM, and (v) LSTM. These experiments yield the fol-
lowing insights: (1) fine-tuned BERT representation is the best representation among most
models; (2) In general, ESNs display better prediction than LSTMs as the vocabulary size
increases; (3a) For instance, in Juven’s data, the trend of ESNs outperforming LSTMs in
terms of generalization persists regardless of the sizes of LSTMs; (3b) The size of LSTMs
needs to be increased to surpass the 1000-unit ESN that we took as a reference. LSTM with
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20 units showcase higher performance for small datasets, but LSTM with more hidden units
needs to perform reasonably well on larger corpora. (4) ESNs with online learning models
are making better predictions during the processing of a sentence compared to other models.
(5) The qualitative analysis reveals that both ESNs and LSTMs demonstrate better concept
activation in the output during processing of a sentence. (6) ESNs have a better trade-off on
all three datasets with better prediction error along with low latency.

Overall, our above proposed framework exhibits three key properties: interpretability,
generalizability, and computational efficiency in the two sequence-based models. We dis-
cuss the details of these three properties below.
Interpretability & Generalisability: The challenge in applying simple neural network
models to human-robot interaction research lies in the black-box nature of the process,
where it is hard to decipher what the network learns while processing full sentences. In
order to address this and to understand the model mechanisms, we devised the following:
(i) visualising the output activations of all the models during the processing of full sentences
and (ii) displaying the output value matrix of target concepts, as shown in Figs. 7.25, and
7.26 (please refer the supplementary). From Fig. 7.25, we observe that the ESN model
captures the polysemous words. For instance, “the orange on the right is green and there
is a orange cup on the middle”, the associated concepts are orange, right, green for the
first object, and cup, middle, orange for the second object. The model learns the meaning
of word “orange” as a Noun for the first object and as a color for the second object “cup”,
showcasing its ability to discern different meanings in context. Similarly, Fig. 7.26 captures
the two colors “red” and “black” for the object “pliers”. Since there is only one object
present in the sentence, we do not see any activations for the second object.

From Tables. 7.1 (a) and (b), it is evident that LSTMs showcase higher performance than
ESNs on both Valid and Exact errors on reduced corpora, such as Juven’s (4 objects) and
GoLD (10 objects) datasets. However, as the vocabulary size increases, ESNs demonstrate
superior Valid and Exact error performance, suggesting that, in general, ESNs outperform
LSTMs. Moreover, ESN displays better performance than RandLSTM while considering
the same number of neurons in both models; these results demonstrate the biological plausi-
bility of ESN compared to RandLSTM. Additionally, LSTMs perform worse for the Juven’s
dataset compared to other complex datasets, while the reverse is true for ESNs—they per-
form better on Juven’s compared to more complex datasets with longer sentences..
Computational Efficiency: From a computational efficiency perspective, one of the major
limitations of the LSTM model is that it uses BPTT to optimize the weights, which requires
more training time and is computationally expensive. In contrast, ESN models have fewer
parameters, and the number of parameters depends on the target vector dimension. More-
over, their computational complexity is more efficient as they employ ridge regression at
the readout layer to learn the weights and require no training in the initial and reservoir lay-
ers. Although we compare the number of trained parameters for ESNs and LSTMs, they are
not directly comparable given that they do not use the same theoretical computing principles
(ESNs rely on the VC-dimension [Vapnik et al., 1994] like in Support Vector Machines). To
overcome the above limitation, we compare the RandLSTM and ESNs with the same num-
ber of hidden units in both models. Observations from Table 7.2 indicate that ESN models
are more efficient and require lower training time than RandLSTMs (about three orders of
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7 Cross-Situational Learning Towards Language Grounding

magnitude in training CPU time). Moreover, we choose arbitrarily to have 1000 units in
ESNs as it is a common number; this parameter can be increased to enhance performance.
Limitations & Future work: The performances on the GoLD and Robot data set could
seem low compared to Juven’s; however, it is crucial to consider that these datasets involve
highly complex sentences that may contain unseen words. For example, the GoLD dataset
includes sentences with many unseen words while describing a few concepts, as seen in
the sentence: “A single small red skinned potato is laying on its side with the pointier end
pointing left and two dimpled eye facing me.”, the associated concepts are: red, potato,
small, left for the first object, and eye for the second object). Similarly, the Robot dataset
contains complex robotic commands with more actions and relations are described for few
concepts, as illustrated in the sentence: e.g. “pick up the gray block located on top of the
blue tower near the left edge and place it on top of the red and green tower that is nearest to
you”, the associated concepts are: pick, gray, top, blue, block, tower, near, left edge, place,
red, green, nearest.

It’s important to note that our experimental setup did not incorporate speech or image
data. By limiting our analysis to text data, we aimed to isolate and examine the nuances
of language grounding and incremental learning processes as they pertain to textual input,
without the additional complexities that speech or image data might introduce. However,
future research that might include speech, images, or other types of data to create a more
holistic understanding of language acquisition and processing.

The major limitation of existing grounded language methods consider language that de-
scribes immediate and instantaneous actions (i.e. grasping language expressing concepts at
a spatial level), primarily contributing to task learning. Recently, Karch et al. [2021] pro-
posed a grounded language model that grasps concepts at both spatial and temporal level
to learn the meaning of Spatio-temporal descriptions of behavioral traces of an embodied
agent. In the future, we aim to train robots on more comprehensive grounding and diverse
datasets, encompassing speech and multi-modal grounded language datasets while model-
ing infants’ language acquisition. - In future work, we plan to bridge the gap by attempting
to process sentences starting from speech (we have preliminary work showing that this is
possible). Moreover, we aspire to make the architecture more grounded by using the im-
ages of datasets. The MSCoCo [Lin et al., 2014] is a good candidate dataset as it includes
both segmented images and speech. ESNs show very good performance given the “light”
training they use. Theoretically, longer sentences could become difficult for a limited-size
ESN, while LSTMs should be better. In future work, we will look at how attention-like
mechanisms could be integrated into these simple models, enhancing their ability to gate
information [Strock et al., 2020].

Appendix for: CROSS-SITUATIONAL LEARNING
TOWARDS LANGUAGE GROUNDING
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7.6 Word Seen during Model Training

(a) The template for an example command in the Robot dataset.

(b) The SemaPred representation of binary encoding.

Figure 7.8: (a) The template for an example command in the Robot dataset. The missing predicates
and slots have to be filled with empty tokens (EEE). Relation predicates always start with
the word is. Here, template image is sourced from Twiefel [2020]. (b) The SemaPred
representation of binary encoding: (i) To produce the whole output vector, all vectors are
concatenated. (ii) It consists of 2 action vectors, 2 relation vectors and 5 attribute vectors
in this. (iii) The output vector size is 2 * (4 + 6 + 10 + 6) + 2 * (6 + 10 + 6) + 5 * (22
+ 22 + 22 + 22 + 11) = 591 for the given data set. Note: Unlike for Action and Relation
SemaPreds, Attribute SemaPred does not encode the index of the entity but the entity
itself.

7.6 WORD SEEN DURING MODEL TRAINING

Fig. 7.10 displays the average number of times a word is seen during model training on
three datasets. From Fig. 7.10, we can see that GoLD data contains more vocabulary (2417)
words for 47 objects data), and the number of times a word is seen in model training is low
compared to Juven’s dataset. If an unseen word appears the corresponding concept outputs
will be at 0, because corresponding weights would never be trained, i.e. all corresponding
weights will be at 0. This makes the CSL task more difficult for big vocabularies.
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Figure 7.9: CSL Task Noisy Supervision Output: The target is a noisy supervision vector that con-
tains additional concepts (<orange_obj>, <red_col>) that are not present in the input
sentence.

Figure 7.10: Corpus statistics for Juven’s, GoLD and Robot datasets, including the average number
of times a word is seen (Avg. seen word) during model training and testing.

↓Dataset #Objects #Colors #Positions #Objects Described #Actions #Relations
Juven’s 50 3 2 2 NA NA
GoLD 47 7 6 2 NA NA
Robot 11 8 9 5 4 3

Table 7.3: Dataset Statistics.

7.7 QUANTITATIVE ANALYSIS: VARYING THE OBJECTS IN THE

VOCABULARY

We compare the performance of our models with fine-tuned BERT while varying the num-
ber of objects from 4 to 50 for Juven’s and 10 to 47 for GoLD datasets. The qualitative
analysis for one-hot representations for two datasets is reported in the Appendix.
Juven’s CSL Results: The results of the fine-tuned BERT feature representation is shown
in Fig. 7.11. Observations from Fig. 7.11 that the 20-unit LSTM + fine-tuned BERT show-
case an optimized performance compared to ESN in the 4-object dataset. However, we
can see that the error explodes as soon as we increase the vocabulary size (i.e. number of
objects) compared to the 4-object dataset for which it was designed. We then conducted
another experiment with a 40-unit LSTM + fine-tuned BERT, applied dropout with a keep-
probability of 0.2, and trained the model for a maximum of 70 epochs. It can be seen
that the [Valid, Exact] errors for fine-tuned BERT [0.5, 6.58] perform better than One-Hot
[3.94, 8.62], and BERT [0.1, 16.2] (Figs. 7.12 (a), and 7.12 (b)). To overcome the over-
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fitting problem, we stop training if the validation loss does not decrease for five consecutive
epochs. We found that this bigger model was able to outperform the ESN on exact error until
the 12-objects dataset. After 12-objects, both Valid and Exact error began to rise higher than
the ESN-FL model. Another LSTM + fine-tuned BERT model with 80 units was tested. We
found that this model globally keeps the error lower than the two other LSTMs, especially
for a high number of objects. Nonetheless, the ESN + fine-tuned BERT also outperformed
it for all the range tested. In the end, Fig. 7.11 describe that the ESN with fine-tuned BER
is able to keep the error low on challenging datasets despite having hyper-parameters opti-
mized to perform well on a 4-object dataset. Whereas for the LSTMs, they can successfully
learn these more featured datasets.
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Figure 7.11: Juven’s data: comparison of errors for ESN / LSTM with Fine-tuned BERT CSL. Full
lines: Exact Errors. Dotted lines: Valid Errors.

GoLD Results: GoLD dataset was developed to reflect and provide data for domains in
which dynamic human-robot teaming is a near-term interest area [Jenkins et al., 2020].
Compared to Juven’s data, GoLD data provides grounded language learning in a human-
centric environment: a robot talking to a person may have a partial view or understanding
of an object, or vice versa.

Similar to Juven’s data, we performed the experiments by varying the objects from 10 to
47 on GoLD data using fine-tuned BERT, as shown in Fig. 7.13. The results of the experi-
ment for one-hot and pretrained BERT are shown in the Appendix (please refer Figs. 7.14
(a) and 7.14 (b). We make the following observations: (i) ESN + FL using fine-tuned BERT
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(a) One-Hot Representations.

(b) pretrained BERT Representations.

Figure 7.12: Juven’s data: comparison of errors for ESN / LSTM with (a) One-Hot and (b) pretrained
BERT CSL representations. Full lines: Exact Errors. Dotted lines: Valid Errors.

CSL, we can see that the Exact error is better, but the Valid error explodes as soon as we in-
crease the number of objects) compared to the 10-object dataset, as depicted in Fig. 7.13. (ii)
With the model ESN + FL using fine-tuned BERT outperform the Valid and Exact errors
while varying from 10 to 47-objects dataset than one-hot encoding and pretrained BERT
representations as input. We then conducted two other experiments with LSTM by varying
the hidden units from 20, 40, and 80, trained with a dropout of 0.2 on 70 epochs. By com-
parison on a test set, we found that LSTM + fine-tuned BERT model was able to outperform
the ESN until 20-objects datasets. After that, valid error began to rise higher than the ESN
model.
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Figure 7.13: GoLD data: comparison of erros for ESN / LSTM with fine-tuned BERT CSL. Full
lines: Exact Errors. Dotted lines: Valid Errors.

153



7 Cross-Situational Learning Towards Language Grounding

(a) One-Hot Representations.

(b) pretrained BERT Representations.

Figure 7.14: GoLD data: comparison of erros for ESN / LSTM with fine-tuned BERT CSL repre-
sentations. Full lines: Exact Errors. Dotted lines: Valid Errors.
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Figure 7.15: Hyper-parameter search dependence plot with Cross-Entropy loss, for ESN-Online FL
with Juven’s data.
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Figure 7.16: Hyper-parameter search dependence plot with Valid Error, for ESN-Online FL with
Juven’s data.
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Figure 7.17: Hyper-parameter search dependence plot with Exact Errorr, for ESN-Online FL with
Juven’s data.
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Figure 7.18: GoLD dataset Cross-entropy loss: Hyper-parameter search dependence plot for CSL
task.
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Figure 7.19: GoLD dataset Valid Error: Hyper-parameter search dependence plot for CSL task.
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Figure 7.20: GoLD dataset Exact Error: Hyper-parameter search dependence plot for CSL task.
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Figure 7.21: Robot dataset Cross-entropy loss: Hyper-parameter search dependence plot for CSL
task.
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Figure 7.22: Robot dataset Exact Error: Hyper-parameter search dependence plot for CSL task.
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Figure 7.23: Juven’s Data: Output activation of the ESN Offline + fine-tuned BERT. The activation
are here shown after being transformed by the Sigmoid function.
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Figure 7.24: Juven’s Data: Output activation of the ESN FL + fine-tuned BERT. The activation are
here shown after being transformed by the Sigmoid function.
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Figure 7.25: Capturing of polysemous words in Juven’s Data: Output activation of the ESN CL +
fine-tuned BERT. After each word the model tries to predict the correct output. That’s
why we can see a jump in the correct characteristic after the related keyword is seen.
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Figure 7.26: GoLD Data: Output activation of the ESN CL + fine-tuned BERT. After each word the
model tries to predict the correct output. That’s why we can see a jump in the correct
characteristic after the related keyword is seen. The top image is source from GoLD
dataset Jenkins et al. [2020].
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8 CONCLUSION

This thesis introduces a data-driven framework bridging the gap between neurolinguistic
processing observed in the human brain and the computational mechanisms of natural lan-
guage processing (NLP) systems. By establishing a direct link between advanced imaging
techniques and NLP processes, it conceptualizes brain information processing as a dynamic
interplay of three critical components: "what," "where," and "when", offering insights into
how the brain interprets language during engagement with naturalistic narratives. This study
provides compelling evidence that enhancing the alignment between brain activity and NLP
systems offers mutual benefits to the fields of neurolinguistics and NLP. The research show-
cases how these computational models can emulate the brain’s natural language processing
capabilities by harnessing cutting-edge neural network technologies across various modal-
ities—language, vision, and speech. Specifically, the thesis highlights how modern pre-
trained language models achieve closer brain alignment during narrative comprehension.
It investigates the differential processing of language across brain regions, the timing of
responses (HRF delays), and the balance between syntactic and semantic information pro-
cessing. Further, the exploration of how different linguistic features align with MEG brain
responses over time and find that the alignment depends on the amount of past context, in-
dicating that the brain encodes words slightly behind the current one, awaiting more future
context. Furthermore, it highlights grounded language acquisition through noisy supervi-
sion and offers a biologically plausible architecture for investigating cross-situational learn-
ing, providing interpretability, generalizability, and computational efficiency in sequence-
based models. Ultimately, this research contributes valuable insights into neurolinguistics,
cognitive neuroscience, and NLP.
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8 Conclusion

8.1 SUMMARY OF CONTRIBUTIONS

ENHANCING SCIENTIFIC INFERENCE FOR ENCODING MODELS BY UTILIZING
EXTENSIVE NATURALISTIC BRAIN DATASETS AND PROGRESS IN
GENERATIVE AI

The central aim of neuroscience is to unravel how the brain represents information and pro-
cesses it to carry out various tasks (visual, linguistic, auditory, etc.). Deep neural networks
(DNN) offer a computational medium to capture brain activity’s unprecedented complexity
and richness. Encoding and decoding stated as computational problems succinctly encap-
sulate this puzzle. The field is growing rapidly with the availability of large neuroimaging
datasets when participants are processing stimuli in naturalistic settings. At the same time,
there is tremendous progress in deep neural networks (DNNs) that process multimodal data
robustly and efficiently. Drawing inspiration from the effectiveness of recent generative AI
models for natural language processing, computer vision, and speech, we review popular
deep learning based encoding and decoding architectures and note their benefits and lim-
itations in the context of brain alignment. In Chapter 3, we summarize various encoding
models in the form of a taxonomic survey tree. These models cater to vision, auditory, lan-
guage, and multimodal domains. Given the abundance of recent publications in this area,
Chapter 3 aims to facilitate contributions from the computational cognitive neuroscience
community, thereby advancing the field of brain encoding and decoding.

UNVEILING THE NEURAL SUBSTRATE: LANGUAGE MODELS AND
LONG-TERM DEPENDENCIES IN BRAIN ACTIVATION PREDICTION

Several popular sequence-based and pretrained language models have been found to be
successful for text-driven prediction of brain activations [Jain and Huth, 2018, Toneva and
Wehbe, 2019]. However, these models still lack long-term memory plausibility (i.e., how
they deal with long-term dependencies and contextual information) and insights into the un-
derlying neural substrate mechanisms. Also, the recent pretrained Transformer models like
BERT and GPT-2 cannot handle the long-term dependencies (sequence length is fixed to
512 words) due to their self-attention operation. To overcome this limitation, recently, Belt-
agy et al. [2020] introduced Longformer, making it easy to process documents of thousands
of tokens or longer and combining local windowed attention with global attention. Con-
sidering these challenges, Chapter 4 of this thesis aims to shed light on the relationship
between fMRI voxel activations and representations generated by various language models.
Our findings suggest that developing language models capable of handling more extensive
contextual information and interpreting internal representations within these models can
lead to a deeper understanding of how neural structures represent language information and
maintain longer narrative memory.
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8.1 Summary of Contributions

UNRAVELING THE INTERPLAY OF HEMODYNAMIC RESPONSE DELAYS AND
LANGUAGE PROCESSING IN THE BRAIN

The increasing availability of naturalistic fMRI datasets and large-scale neural models can
enable a better understanding of the brain’s response to natural stimuli. Just in the last few
years, researchers have shown that brain responses of people comprehending language can
be predicted well by text-based language models [Wehbe et al., 2014, Jain and Huth, 2018,
Toneva and Wehbe, 2019, Deniz et al., 2019, Caucheteux and King, 2020, Schrimpf et al.,
2021b, Caucheteux et al., 2021a, Toneva et al., 2022, Oota et al., 2022c, Antonello et al.,
2021, Aw and Toneva, 2023, Merlin and Toneva, 2022]. However, existing studies on the
alignment between language comprehension and the brain have been observed at constant
hemodynamic response function (HRF) delay (around 7.5 to 8 seconds), there is still ongo-
ing exploration into how language and the brain’s processing mechanisms synchronize when
faced with different HRF delays [Jain and Huth, 2018, Jain et al., 2020, Toneva and Wehbe,
2019, Deniz et al., 2019, Toneva et al., 2022, Aw and Toneva, 2023, Oota et al., 2022c,
2023c]. Further, the existing studies have mainly built brain encoding models by consider-
ing a fixed HRF delay and analyzing how different regions of interest (ROIs) involved in
language processing influence the semantic and syntactic aspects of information processing
in the brain [Jain and Huth, 2018, Jain et al., 2020, Toneva and Wehbe, 2019, Caucheteux
et al., 2021a, Toneva et al., 2022, Merlin and Toneva, 2022, Aw and Toneva, 2023, Oota
et al., 2022c, 2023c]. In this thesis, we systematically interplay between HRF delays and
language processing is an area of investigation, aiming to comprehend how neural activity
related to language tasks aligns with the subsequent hemodynamic response, and how this
alignment may differ under varying conditions of HRF delays. Our findings suggest that
the decomposition of representations into different linguistic features enables a fine-grained
understanding of brain language processing across various delays, paving the way for more
personalized and effective approaches in both linguistic and clinical applications.

EXPLORING THE TIMING OF LINGUISTIC FEATURE PROCESSING IN THE
BRAIN WITH MEG

Over the past decade, Brain-Computer Interface (BCI) helped to make significant progress
in understanding language processing in the brain using a popular computational paradigm:
Brain encoding, the process aiming to map stimuli features to brain activity. There is a
vast literature on linguistic brain encoding for functional MRI (fMRI) related to syntac-
tic and semantic representations. Magnetoencephalography (MEG), with higher temporal
resolution than fMRI, enables us to look more precisely at the timing of linguistic feature
processing. Unlike MEG decoding, few studies on MEG encoding using natural stimuli
exist. Existing ones on story listening focus on phoneme and simple word-based features,
ignoring more abstract features such as context, syntactic, and semantic aspects. To un-
derstand when the brain processes linguistic structure in sentences, in this thesis, Chapter
5 leverages text representations using basic syntactic features and semantic features, with
various context lengths, directions (past vs. future), and within-context relative importance.
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8 Conclusion

NOISY SUPERVISION IN GROUNDED LANGUAGE ACQUISITION: A LANGUAGE
MODEL PERSPECTIVE

Grounded language acquisition encompasses the process of acquiring a language, wherein
infants learn by observing their surroundings, engaging in interactions with others, and
grasping the concepts of a language within the context of the real world [Yu and Ballard,
2004a,b, 2007, Chen and Mooney, 2008, Thomason et al., 2018, Juven and Hinaut, 2020,
Vanzo et al., 2020]. However, language acquisition becomes challenging. A single word
in an utterance may carry multiple potential meanings, introducing high uncertainty. Tra-
ditional approaches to language grounding primarily center around mapping natural lan-
guage commands to representations, often involving sequences of fundamental robotic ac-
tions [Chen and Mooney, 2011, Matuszek et al., 2013, Tellex et al., 2011]. Additionally,
current robotic frameworks [Taniguchi et al., 2017, Roesler et al., 2018] do not address
how children naturally learn to comprehend complete sentences through cross-situational
learning without specific cues. Given these challenges, Chapter 7 of this thesis delves into
an investigation of how language models can undertake grounded language acquisition un-
der conditions of noisy supervision. It also explores how these models can account for the
dynamics of learning in the brain.

8.1.1 NLP→NEUROLINGUISTICS

The Role of Long-Term Context in Brain Encoding: Insights from Language Mod-
els In Chapter 4 of our research, we explore long-term contextual information in language
models concerning brain encoding. Using fMRI recordings, we unveil that pretrained mod-
els, which incorporate more extensive contextual information, exhibit higher correlation
during narrative story listening tasks. Our investigation examines the performance of en-
coding across different layers within regions of interest (ROIs) associated with language
processing in the brain. Our findings indicate that intermediate layers align better with
brain activity patterns, highlighting their importance in understanding language compre-
hension. In LSTM, we observe that cell state representations, responsible for long-term
memory, outperform hidden state representations associated with short-term memory. This
insight suggests that the internal dynamics of LSTMs may yield more cognitively plausi-
ble activations than traditional LSTM activations. This comprehensive investigation was
greatly facilitated by leveraging NLP models as model organisms for language comprehen-
sion. This approach enabled us to generate contextual numerical representations that offer
deeper insights into brain encoding processes.
Language Model Behavior Across HRF Delays: A Comprehensive Brain Encoding
Study In Chapter 5 of our research, we explored how various language regions in the human
brain process word-level syntactic features at different HRF delays. Using fMRI recordings,
we observed that word-level syntactic information, including dependency tags (DEP Tags),
is notably encoded at early delays (6 secs) in specific regions like IFG and IFGOrb, known
for syntactic processing. We also investigated constituent syntactic embeddings, revealing
significant encoding of hierarchical syntax information in the MFG region at early delays.
Moreover, complex syntax information was found to be encoded in the IFGOrb region.
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Additionally, when we examined pretrained language model representations, we discovered
that longer context significantly increased HRF delays. For instance, BERT with a context
length 20 exhibited higher predictivity within language regions like AG, IFG, ATL, and
PTL, particularly for delays ranging from 9 to 12 seconds. These findings suggest that
syntax and semantics are distributed across language ROIs.
Temporal Dynamics of Linguistic Features and Brain Responses: Insights from MEG
Chapter 6 of our research investigated how different linguistic features align with MEG
brain responses over time. Pretrained language models outperformed other features in pre-
dicting brain alignment, particularly between 50-550ms (or 250ms to 750ms with word
onset at 200ms). This alignment depends on the amount of past context, indicating that
the brain encodes words slightly before the current one, awaiting more future context. We
hypothesize that such “word encoding center of mass” (is a few words before the current
word) lying in the past is also what is happening in the speaker’s brain, suggesting that past
events are retained in memory to disambiguate future events.
Comparing ESNs and LSTMs: A Study in Computational Efficiency and Performance
Chapter 7 compares the performance of two sequence-based models, ESNs and LSTMs, in
learning to parse sentences with noisy supervision (CSL) while examining different word
representations. Our findings show that ESNs outperform LSTMs on all three datasets,
including one simple and two complex datasets, achieving better prediction accuracy and
lower latency. Notably, ESNs demonstrate better generalization than LSTM models, espe-
cially when dealing with increasingly large vocabularies, and are more efficient with about a
three orders of magnitude reduction in training CPU time. Even when considering the same
number of neurons in both models, ESNs outshine RandLSTMs in terms of performance,
highlighting the biological plausibility of learning the reservoir states in ESNs. Our study
offers three key advantages: interpretability, generalizability, and computational efficiency
in sequence-based models.

8.1.2 NEUROLINGUISTICS→NLP

Neurocomputational Perspectives in NLP: Hierarchies, Timing, and Context In the
realm of NLP, Chapter 5 insights suggest a multifaceted research agenda focusing on the
nuanced encoding of linguistic information by the brain. Key areas include the exploration
of how timing (via variable HRF delays) impacts language processing, the hierarchical na-
ture of linguistic encoding from syntactic to semantic layers in neural models like BERT,
and the dynamics of how different types of linguistic information are encoded at various
stages. Additionally, the role of context length in language comprehension and its align-
ment with brain activity presents a promising avenue, particularly in models that leverage
both recurrence and self-attention mechanisms.
Enhancing NLP with Cross-Situational Learning: Insights from Grounded Language
Datasets The cross-situational learning (CSL) paradigm applied to various grounded lan-
guage datasets shows that fine-tuned BERT representations capture complex word relation-
ships more effectively than other word representations. This strongly indicates that current
pretrained language models acquire conceptual meanings through unsupervised or semi-
supervised methods. Given the advancements in grounded language models that understand
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concepts across both spatial and temporal dimensions, thereby learning the spatio-temporal
descriptions of an embodied agent’s behavior [Karch et al., 2021], we anticipate the devel-
opment of more cognitively plausible NLP systems. These systems are expected to benefit
significantly from insights into human language processing.

8.2 FUTURE RESEARCH DIRECTIONS

These contributions serve as a source of inspiration for various avenues of research, which
we anticipate will have a future impact on both neurolinguistics and natural language pro-
cessing. The following is a summary of the directions that hold a specific interest for the
author.
Exploring the Future of Brain Language Processing with Time-Based Disentangle-
ment for a Deeper Understanding Recent studies have focused on understanding the
complexities of brain language processing, employing techniques to isolate syntactic el-
ements from language models and analyze semantic differences [Reddy and Wehbe, 2021,
Caucheteux et al., 2021a, Oota et al., 2023d]. While current research maintains a uniform
delay in analysis, future efforts aim to adopt variable delays to enhance comprehension
of language processing. This approach intends to dissect language model representations
into distinct syntactic and semantic components, such as discourse and emotion, to improve
the interpretability of models and provide deeper insights into brain function, suggesting a
promising avenue for upcoming research endeavors.
Comparing Reading and Listening: How Future Words Impact Language Models
and Brain Activity Recent research has indicated an augmented correlation between lan-
guage model representations and brain activity when exposed to both current and future
words, underscoring a connection between brain function and the anticipation of forthcom-
ing words [Caucheteux and King, 2020]. Furthermore, our findings in Chapter 6 emphasize
that, in the realm of narrative story listening, the predictive efficacy of past context surpasses
that of future context. This raises the question: are there disparities in how the brain pro-
cesses information during reading compared to listening? Exploring potential distinctions
between these two modalities of language comprehension could deepen our understanding
of how the human brain adapts its processing strategies based on the mode of information
intake, whether through written text or spoken discourse. Such insights have the poten-
tial to advance our knowledge in both neurocognitive research and practical applications,
including natural language processing and storytelling platforms for enhanced engagement.
Long Contexts and Language Models: Towards Enhanced fMRI Response Predic-
tions The performance of language models trained on text, particularly in predicting fMRI
responses during reading and listening, has demonstrated its impressiveness, as elaborated
in Chapter 4. However, the current level of brain alignment between these models and the
human brain does not reach the estimated noise ceiling. Inducing brain-relevant bias can be
one way to enhance the alignment of these models with the human brain [Schwartz et al.,
2019]. For the advancement of text-based language models, an intriguing question that
arises is whether we can elevate the performance of these models by incorporating them
with the capability to retain and utilize information from longer contexts.

172



8.2 Future Research Directions

Cross-Linguistic Brain Research: Unveiling Language-Dependent Insights In the scope
of this thesis, our research relies on brain recordings collected from individuals who speak
English as their primary language. Additionally, we utilize experimental stimuli that are
presented in the English language. As a result, our approach predominantly leverages lan-
guage models and neural models that have been trained extensively on English text data
and brain responses elicited by text or speech in English. However, it is essential to ac-
knowledge the potential variability in our study outcomes when extrapolated to languages
other than English. The intricate interplay between language-specific nuances and neural
responses may introduce distinctions in the results. Therefore, it becomes imperative for
future research endeavors to delve into this aspect further and investigate how these factors
might influence the generalizability of our findings across diverse linguistic contexts.
Integrating Information from Multiple Modalities in the Brain The human brain seam-
lessly integrates data from various sensory modalities, utilizing its internal memory to in-
fluence behavior. Conversely, machine learning models often struggle to create represen-
tations that can be applied universally within the same modality, let alone across different
modalities. One promising avenue for in-depth brain research involves the investigation of
memory mechanisms, specifically understanding how the brain encodes memory represen-
tations capable of generalization and retrieves them based on the current sensory context.
This represents a long-term research direction with the potential to shed light on fundamen-
tal computational processes underlying memory formation and utilization in the brain. On a
more immediate note, there is a compelling short-term research opportunity to capitalize on
multi-modal brain recording experiments, such as the Courtois NeuroMod dataset [Boyle
et al., 2020], where participants watch movies. Instead of analyzing individual modalities
separately, this approach advocates modeling all aspects concurrently, including language,
non-language auditory cues, and visual stimuli. This shift in focus can offer valuable in-
sights into the holistic functioning of the brain across multiple sensory domains.
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