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Abstract

This thesis aims at providing methods for finding contours in images and is composed by
two parts: A first one dealing with geodesic distance and curves computations using heat
diffusions and a second one presenting a boundary-tracking method named PointFlow.

In the first part of this thesis, we study different methods to obtain geodesic distance and
geodesic lines on Riemannian manifolds. On a Riemannian manifold, we can define a local
metric (a scalar field or a symmetric positive tensor field) that involves the information about
the problem we want to solve, i.e. to track the centerline of a tubular structure or to extract
the edges in images or on surfaces. The geodesic distance and geodesic lines on images and
surfaces play significant roles in computer vision and graphics. They can be applied to vessel
segmentation, road extraction, surface remeshing, and so on. Generally, the geodesic distance
could be acquired via Dijkstra’s method or solving the Eikonal partial differential equation. In
this thesis, different kinds of heat equations are applied to approximate the geodesic distance
with different metrics. The designed geodesic metrics basically take advantages of the image
gray-level, the geodesic anisotropy and so on. Additionally, we come up with two automatic
algorithms for extracting the geodesic lines. At last, an approach for the segmentation of
tubular structure is proposed. The experimental results testify the robustness and effectiveness
of our heat-based method.

For the second part of this thesis, we are interested in one of the most fundamental
problems in computer vision: edge detection. Edge detection, a low-level preprocessing step,
always remains a hot issue since the 1970’s. It is regarded as the basis in tasks such as image
segmentation and object detection/recognition. Over the past decades, numerous approaches
are proposed to detect edges. At the very beginning, researchers are dedicated to detect the
sharp changes of image intensity. As the natural images become more and more complex,
only by using the image gradient does not guarantee the quality of edges and contours. Then
features such as textures, brightness, colors and similarities are also taken into consideration.
By using such features, the performance of edge detectors are improved a lot. More recently,
edge detection via machine learning especially deep learning has been highlighted because
of its excellent performance. In this thesis, we propose a model called PointFlow which
can simulate the process of tracking object boundaries automatically. On the way of finding



vi

contours, we do not only consider the gray-level information, but also combine different
features to detect the edges and contours. Moreover, this model can be also used to infer the
illusory contours. We test our edge detection method on a well known dataset and the result
is comparable to the other classical edge detectors.

Keywords: Minimal Paths, Geodesic, Eikonal Partial Differential Equation, Image Seg-
mentation, Heat Diffusion, Isotropic, Anisotropic, Tubular Structure, Ordinary Differential
Equation, Edge Detection, Point Flow Method, Inference of Illusory Contours, Machine
Learning, Deep Learning
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Notations

d dimension, d = 2 or d = 3

Ω image domain, an open subset of Rd, Ω ⊂ Rd

I a gray-level image, an integrable function I :Ω→ R

p a pixel in the image domain, p ∈Ω

u heat distribution on an image domain, u :Ω→ R

P a scalar potential metric

T a tensor metric

D diffusion tensor

∇ gradient operator

∇· or div divergence operator

∆ Laplacican operator

∂ partial differential operator

Gσ a Gaussian filter with variance σ

V a vector field

γ a curve

A a set of curves

φ a distance map, φ :Ω→ R

∆t time step

∆x or ∆y space step on x coordinate or y coordinate





Introduction Abrégée

Contexte de cette these

La segmentation des images joue un rôle important dans les traitements des images. C’est
vraiment utile pour beaucoup d’applications dans le domaine de computer vision, i.e, détéction
d’objets, reconnaissance, système de contrôle de circulation, l’imagerie médicale. Pendant
decennies, chercheurs ont proposé beaucoup de méthodes sur la segmentation des images, i.e,
méthodes de seuillage, méthodes variationnelles, méthodes basée sur l’équation différentiel
partiel (EDP).

Dans cette thèse, on est interresé par les méthodes basée sur EDPs. Le modèle qu’on
utilise dans cette thèse est l’équation de chaleur. En gros, l’idée est d’appliquer le noyau de
chaleur à la formule de Varadhan pour obtenir la distance géodésique de chaque point dans le
domaine de l’image aux points source. Les chemins minimaux ou les courbes géodésiques
pourraient être reculés en resolvant une équation differentielle ordinaire (ODE).

Une géodésique est une courbe qui minimise la distance entre deux noeuds terminaux
sur manifold. Une façon générale d’obtenir une courbe géodésique consiste à calculer la
distance géodésique en premier. La distance géodésique peut être obtenue par l’alogrithm
Dijsktra ou résoudre une équation Eikonal. Elle peut également être approximée par le noyau
de chaleur. Les avantages d’utiliser le noyau de chaleur pour prendre l’approximation la
distance géodésique sont: il est rapide et facile à mettre en oeuvre, de plus, le noyau de
chaleur est moins sensible au bruit que les autres méthodes. C’est pourquoi on est interessé
pour dévélopper les méthodes géodésique realisé par chaleur.

A l’exception de la segmentation par les méthodes géodésiques, nous nous interessons
également à la détéction des contours et bords. Contours et bords sont les caracristiques le
plus fondamentales d’images. La détéction de contour est l’un des problème le plus classique
dans le traitement d’image. C’est une étape fondamentale et importante pour l’analysis et
la comprehension d’image. Elle connect le traitement de bas niveau tel que le debruitage
d’image, l’amélioration d’image avec le traitement de haut niveau tel que la reconnaissance
d’objet ou la navigation. Au cours des dernières decennies, de nombreux détécteurs de bord
ont été etudiés et proposés. Une façon naturelle de détécter les bords est de trouver ou se
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trouvent les gradients les plus élevés. Beaucoup de détécteur basée sur cette idée ont été
proposé, e.g. le détécteur Robert, le opérateur Sobel, le détécteur Canny. Pour détécter les
contours dans l’images compliquées, c’est pas vraiment efficace de choisir les endroits ou les
gradient des caractéristique au niveau bas sont les plus élevés. Donc, les caractéristiques au
niveau plus haut ont été proposé pour détécter contours.

Buts et contributions de cette thèse

Dans la partie I, notre but est d’exploiter l’équation de chaleur pour extraire les courbes
géodésique et segmenter les structures tubulaire dans l’images. On se concentres sur la disponi-
bilité de la diffusion de chaleur pour prendre l’approximation la distance géodésique sous
différent métriques. De plus, deux méthodes automatiques (une s’appelle ’voting’ et l’autre
s’appelle ’keypoint’) ont été proposé pour facilier les éxtractions de courbes géodésiques par
la méthode de chaleur. Au final, on propose une méthode pour la segmentation de structure
tubulaire.

Les contributions sont:

1. on a introduit des diffusions différentes pour calculer la distance géodésique et trouver
les courbes géodésiques. Cette méthode d’utiliser le noyau de chaleur est facile à
implementer. Sur le plan de la précision et rappel, les résultats de la méthode de
chaleur est comparables a Fast Marching Method. En plus, grâce à la nature de
diffusion qui cause le lissage des instantanés, la méthode de chaleur est moins influenceé
par les bruits. De plus, selon [95, 96], le temps pour résoudre le système sparse
d’EDP s’approche le temps linéaire. C’est-a-dire quand on utilise un schema dernier
et decompose l’opérateur Laplacian dans un matrice sparse, la méthode de chaleur
peut être extrêmement. Grâce à l’évolution et au development de la résolution de
matrice sparse, comme SuiteSparse[24], ca devient plus facile et rapide de résoudre les
problèmes d’inversion de matrice sparse et grande.

2. Deux méthodes pour trouver les courbes géodésique automatiquement sont proposées.
Ils peuvent réduire beaucoup de main d’oeuvre car ils ont pas besoin de positions
d’endpoints. En même temps, la qualité est aussi garantie. Une troisieme dimension qui
décrit le largeur des structures tubulaires a été ajoutée a l’équation de chaleur de 2D.

3. À notre connaissance, c’est la premiere fois que la diffusion de chaleur est appliquée au
segmentation de la structure tubulaire. La méthode proposée est efficace et rapide, en
outre, il n’est pas sensible au bruit.

Dans la partie II, on est inspiré par le processus de diffusion, notre but est désigner un
modèle de flux qui pousse les points dans l’image a les bords d’objets. On est aussi interessé
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que pour un dététeur entrainé par deep learning, combien d’examples sont nécéssaire à
entrainer qu’il peut générer des résultats comparables a notre modele.

Les contributions de cette partie sont:

1. On propose un modèle qui s’appelle PointFlow. Il dépasse l’autres détécteurs tradition-
nels. Ce modèle peut détécteur les bords, il peut aussi détuire le contours illusoire dans
certains cas.

2. En plus, pour évaluer la performance de détécteur précisément, on construit un nouveau
dataset composé par images synthétiques.

Organization de cette thèse

La partie I est surtour sur la méthode de chaleur et composée de quatre chapitres: chapitre 1
est un contexte de méthodes géodésiques, chapitre 2 qui décrit l’applicabilité de la méthode
de chaleur, chapitre 3 et 4 sont deux extensions d’application de la méthode de chaleur. Cette
partie est organisée comme suit:

• Chapitre 2 introduit les méthodes de contours actives d’état de l’art et les méthodes
géodésiques. La distance géodésique peut être obtenue par façons différentes, la
façon plus populaire est de résoudre une equation différentielle Eikonal. Les courbes
géodésiques peut être obtenues par appliquer une équation différentielle ordinaire sur
le plan de distance géodésique. Dans cette chapitre, on a introduit la distance et les
courbes géodésiques, le modèle de chemin minimal et son extension, le fast marching
méthode, et la méthode de chaleur.

• Chapitre 3 introduit une méthode pour extraire la distance et les courbes géodésiques
basée sur la diffusion de chaleur. Dans cette chapitre, on utilise le formule de Varadhan
pour prendre une approximation de distance géodésique numériquement basée sur
différents flux de chaleur. On peut considérer l’image ou surface comme un médium
pour diffusion. Et puis on choisi au moins d’un point dans ce domaine comme la source
de chaleur. Toutes les deux diffusions isotropique et anisotropique sont considérés pour
obtenir la distance géodésique selon métriques différents. Nos algorithms sont testés
sur les images synthétiques et réeles. Les résultas sont encourageants et démontrent le
robustesse de ces algorithms.

• Chapitre 4 présente deux façons pour segmenter automatiquement par la diffusion de
chaleur. Comme nous le savons, trop d’interactions d’humaines influencent l’efficacité
d’un algorithm et perdent beaucoup d’energie d’humain. Donc c’est important de
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réduire l’intervention efficacement. Dans cette chapitre, on a proposé deux méthodes
automatiques, qui s’appellent la méthode de voter et le keypoint. Ceux que les u-
tilisateurs doivent offir sont les points de source, les positions d’endpoints sont plus
nécéssaires. Pour la méthode de voter, on a désigné trois façon pour accumuler les
points nouveaux et importants. Ces trois façon peut être valable pour cas différents.
En termes de la méthode keypoint, the but est pour trouver les points sur les courbes
géodésiques. Pour les méthodes automatiques, quand s’arreter est de haute importance.
On a désigné des stopping critéres appropriées pour les deux méthodes.

• Dans Chapitre 5, on a introduit une méthode interactive pour segmenter les structures
tubulaires dans 2D images. Dans les chapitres précédents, les méthodes peuvent détécter
que les axes des structures tubulaires, mais il est aussi important de savoir les positions
des frontiéres. Dans ce chapitre, on prend l’avantage d’une troisieme dimension, qui
est utilisé pour décrire le largeur des structures tubulaires. Donc on peut extraire les
frontiéres et les axes en même temps. La méthode est basée sur le chemin minimal
obtenu de la distance géodésique de 3D equation de chaleur. Comme ce qu’on a fait
dans les chapitres précédents, pour répondre à des besoins différents, on applique des
métrique a l’équation de chaleur. On peut obtenir la distance à la demande par résoudre
les equations de chaleur correspondants. On a testé notre méthode sur les images
synthétiques et réeles. Comparé à la méthode d’état de l’art, notre méthode est robust
et efficace.

Partie II est sur la détéction des bords dans l’images. Cette partie est composé par trois
chapitres. Premièrement, on a introduit les détécteurs existants qui sont les représentants
d’époques différentes. Et puis, on a proposé un modèle qui s’appelle PointFlow pour la
détéction de contours et bords. Ce modèle peut aussi détuire les contours illusoires. Enfin, on
compare notre modèle avec une méthode entrainé par deep learning, et on fait un dataset pour
tester les résultats. Cette partie est organisé comme suit:

• Dans Chapitre 6, on a introduit la contexte scientifique de détéction de contours.
Premièrement, il donne une description de détécteur typical et represent d’époques
différentes. Par exemple, les détécteur le plus tradionnel, i.e., le Robert cross détécteur,
le Marr-Hildreth détécteur; les détécteurs moderns, i.e., le pb (probability of boundary)
et le pb globale, le sketch tokens; et les détécteurs entrainés par techniques de deep
learning, i.e. DeepEdges et DeepContours.

• Chapitre 7 a introduit un modèle qui peut tracer les contours d’objets. Ce modèle
compose de deux étages, au premier, une équation différentielle ordinaire qui décrit la
motion d’un point sous l’effet d’un champ vectoriel dans une période de temps. C’est
la raison que cette modèle s’appelle "PointFlow". L’étape seconde est d’intégrer les
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trajectoires. Dans ce chapitre, on a d’abord décrit comment le PointFlow fonctionne.
Puis basé sur le modèle PointFlow, on a présenté une méthode pour détuire les contours
illusoires. Afin de regrouper les parties qui devraient être mais pas connectées, une
concept "inertie" est proposée. Dans ce chapitre, on a d’abord appliqué la méthode
PointFlow pour détécter les points de coins dans les images. Quand un point s’approche
tout prés un point de coin, la force "d’inertie" commence fonctionner. Cette force fait
le point bouger comme une circle, dont le rayon peut être obtenu par l’étape précédente.
Si le trajectoire qui a été généré par ’l’inertie’ suffit certaines conditions, le contour
illusoire peut être détuit paifaitment.

• Dans la Chapitre 8, on a comparé notre modèle PointFlow à un détécteur entrainé
par deep learning. Le but est de prouver que, par comparaison avec la méthode de
deep learning, les méthodes basés sur modèle sont toujours utiles et efficaces. Même
que le deep learning vient avec une tendance irrésistible et il est vraiment utile pour
des applications différentes, l’existence de méthodes basés sur modele est toujour
nécéssaire.

Dans Chapitre 9, nous terminons cette thèse de doctorat et présentons une perspective pour
les travaux futurs.





Chapter 1

Introduction

1.1 Context of this thesis

Image segmentation plays an important role in image processing. It is useful for a lot of
applications in computer vision field, such as object detection, recognition tasks, traffic control
systems, medical imaging and so on. During decades, a lot of methods on image segmentation
have been proposed, such as the thresholding methods, clustering methods, region-growing
methods, variational methods, Partial Differential Equation (PDE) based methods and so on.

In this thesis, we are interested in the PDE based methods for image segmentation. The
PDE model used in this thesis is the heat equation. Basically, the idea is to apply the heat
kernel to the Varadhan’s formula to obtain the geodesic distance from each point in the image
domain to the source points. The minimal paths or geodesic curves could be backtracked by
solving an ordinary differential equation (ODE).

A geodesic is a curve that minimizes the distance of two terminal nodes on a manifold. A
general way to obtain a geodesic curve is to compute the corresponding geodesic distance first.
The geodesic distance can be computed by using the Dijsktra algorithm or solving an Eikonal
equation via fast marching method or fast sweeping method. It can also be approximated by
using the heat kernel. The advantage of using the heat kernel to approximate the geodesic
distance lies in that it is fast and easy to implement, moreover, the heat kernel is less sensitive
to noise than the other methods. This is the reason why we are interested in developing the
geodesic methods in heat.

Besides segmentation using geodesic methods, we are also interested in edge detection in
computer vision. Edges are the most fundamental features of an image. Edge detection is
one of the most classical problem in image processing and computer vision. It is a basic and
important image processing step for image analysis and understanding. It bridges the low-
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level processing such as image denoising, image enhancement with the high-level processing
such as object recognition or navigation.

In the past decades, numerous edge detectors have been studied and proposed. Natural
way to detect edges is to find out where the highest gradients are. A lot of detectors based on
this idea were proposed, e.g. the Robert cross detector, the Sobel operator, the Canny detector.
Then researchers found that only by detecting the highest gradient of the low level feature such
as the graylevel, color, or brightness could not guarantee the quality of detection in natural
images. Hence, people propose higher level features to detect edges in more complicated
scenes. In these researches, the features are no longer obtained directly from the images, but
are learned by some machine learning techniques such as K-means, or decision trees. Besides,
on the way to detect edges, the deep learning technique should never be underestimated. It
helps the edge detection work to reach a new height.

1.2 Purposes and contributions of this thesis

In part I, our main objective is to exploit the heat diffusion to extract geodesic curves or
segment tubular structures in images. In this work, we focus on the availability of the heat
diffusion on approximating the geodesic distance under different metrics. In addition, two
automatic methods (a voting method and a keypoint method) have been proposed to facilitate
the extraction of geodesic curves by using the heat method. Last but not least, we propose a
tubular structure segmentation method in order to obtain the centerlines and the contours of
the tubular structures at the same time.

The contributions lie in that:

1. we introduce different heat flows to compute the geodesic distance and find geodesic
lines. The advantage of using heat kernel to approximate the geodesic distance is that
this algorithm is easy to implement. In terms of the precision and recall, the heat
method yields comparable results to the state-of-the-art method (the Fast Marching
Method). In addition, because the nature of heat diffusion causes instant smoothing, the
heat method is less influenced by noise compared with the other methods. Moreover,
it is proved that the sparse systems arising from the elliptic PDEs can be solved in
very close to linear time [95, 96]. It means that when we are using a backward scheme
and discretizing the Laplacian operator into a sparse matrix, our heat method can be
extremely fast. And thanks to the evolution and development of fast sparse matrix
solver, such as SuiteSparse[24], to solve the inversion problems of large sparse matrix
becomes easier and faster than ever.
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2. two automatic methods that are designed for the heat method were proposed, which
save a lot of human labor for selecting endpoints and the quality can be also guaranteed.

3. a third dimension which describes the width of the tubular structure has been added
to the 2D heat equation. To the best of our knowledge, it is the first time that the heat
diffusion is applied to segment the tubular structure. The proposed method is efficient
and fast, moreover, it is insensitive to noise.

In part II, we are inspired by the process of diffusion and we aim at designing a flow
model that drives the points on the image plane to flow on the object boundaries. And we are
also interested in figuring out that how many examples of images are necessary for a deep
learning edge detector that it can give comparable results as our model can.

The contributions of this part are:

1. we propose a PointFlow model which outperforms the other traditional edge detectors.
This model can not only detect edges, but also has an ability to infer illusory contours
for specific cases.

2. In addition, in order to evaluate the performance of edge detectors precisely, we build a
new dataset that is made up of synthetic images.

1.3 Organization of this thesis

Part I is mainly concerned about the heat method and composed by four chapters: a back-
ground of the geodesic methods, a theoretical chapter which describes the applicability of the
heat method and two extended applications of this method. This part is organized as follows:

• Chapter 2 gives a general introduction to the state-of-the-art active contours methods
and the geodesic methods. The geodesic distance can be obtained from different ways,
the most popular way is to solve the corresponding eikonal differential equation. The
geodesic curves can be achieved by applying an ordinary differential equation on the
geodesic distance map. In this chapter, we introduce geodesic distance and curves, the
minimal path model and its extensions, the fast marching methods and the geodesic in
heat method.

• Chapter 3 introduces a method to extract geodesic distance and geodesic curves based
heat diffusion. In this chapter, we apply Varadhan’s formula to obtain a numerical
approximation of geodesic distance according to metrics based on different heat flows.
The heat equation can be utilized by regarding an image or a surface as a medium for
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heat diffusion and letting the user set at least one source point in the domain. Both
isotropic and anisotropic diffusions are considered here to obtain geodesics according
to their respective metrics. Our algorithms are tested on synthetic and real images as
well as on a mesh. The experimental results are very promising and demonstrate the
robustness of the algorithms.

• Chapter 4 presents two ways for automatic segmentation based on heat diffusion. As
we know, too much human interaction will affect the effectiveness of an algorithm and
waste a lot of human energy. So it is significant to reduce human intervention effectively.
In this chapter, we propose two automatic methods, which are called the voting method
and the keypoint method. What the users have to supply are the source points, and
the end points are no longer necessary. For the voting method, we design three ways
for accumulating the newly obtained important points. These three ways can be fit for
different situations. In terms of the keypoint method, as the name implies, the aim is to
search for the points on the curves. For the automatic segmentation methods, when to
stop is of high importance. We design proper stopping criteria for both methods.

• Chapter 5 introduces an interactive method for tubular structure segmentation in 2D
images. In the previous chapters, the methods can only detect the centerline of tubular
structures, while it is important to get the boundaries or contours of these structures. In
this chapter, we take the advantage of an additional third dimension, which is used for
describing the width of the tubular structure. In this way, the boundaries and centerlines
of the tubular structure can be extracted simultaneously. The method is based on the
minimal paths obtained from the geodesic distance solved by 3D heat equation. Like
what we have done in the previous chapters, to meet different needs, we apply different
metrics to the heat equation. By solving the corresponding heat equations, we obtain the
distances desired. We test our method on both synthetic and real images, and compare
it with the state-of-the-art method, the promising results demonstrate the robustness
and effectiveness of the algorithm.

Part II is mainly about edge detection. It is composed by three chapters. First, we briefly
introduce the existing edge detectors which are representatives of different eras and the
evaluation methods. Then we propose a model called PointFlow for edge detection. This
model can also be applied to infer the illusory contours. Finally, we make comparisons
between our model and a deep learning method, testing on a dataset built on our own. This
part is organized as follows:

• Chapter 6 introduces the scientific background of the edge detection. Firstly, it gives a
brief description of typical and representative edge detectors of different times, including
the very traditional edge detectors such as the Robert cross detector, the Marr-Hildreth
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detector; the modern detectors such as the pb (probability of boundary) and global
pb detector or the sketch tokens; and the edge detectors generated by deep learning
techniques including DeepEdges and DeepContours etc.

• Chapter 7 introduces a model which can be used to trace the object contours in
images. This model is an ordinary differential equation which simulates the motion of
a moving point under the effect of a vector field within a period of time, so we call it
the "PointFlow" method. In this chapter, we first describe how the PointFlow method
works. Then based on the PointFlow model, we present a method for the inference of
illusory contours. In order to group those parts which should be but not connected, an
"inertia-like" concept is proposed. In this chapter, we first apply the point flow method
to detect the corner points in images. When a point approaches a nearby corner point,
the "inertia force" begins to work. This force drives the point to move as a circle, of
which the radius can be obtained from the previous step. If the trajectory generated by
the inertia is in accordance with the standard that we set, the illusory contours could be
perfectly inferred.

• Chapter 8 compares our model with a deep learning method. The aim is to prove
that, compared with the deep learning method, by using the model-based edge detec-
tion method is still useful and effective in small dataset. Though that deep learning
comes with an overwhelming tendency and does a very good job in different kind of
applications in computer vision, the existence of model-based is still necessary.

In the end of this thesis Chapter 9, we conclude this PhD thesis and presents an outlook for
the future work.
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1.4 Publications Related to this Thesis

The works in this manuscript have led to the following publications:

• The results in Chapter 3 and Chapter 4 have been published in the Journal of Mathe-
matical Imaging Vision (JMIV) [123]:

(1) Fang Yang, Laurent D.Cohen, Geodesic Distance and Curves Through Isotropic
and Anisotropic Heat Equations on Images and Surfaces. Journal of Mathematical
Imaging and Vision, 55(2), 210-228, 2016

• The result in Chapter 5 has been presented on the Conference on Scale Space and
Variational Methods in Computer Vision (SSVM2017) and published on the proceeding
[124]:

(2) Fang Yang, Laurent D.Cohen, Tubular Structure Segmentation Based on Heat
Diffusion. In International Conference on Scale Space and Variational Methods in
Computer Vision (pp. 54-65). Springer, Cham, 2017

• Part of the work of Chapter 7 is soon to be presented on the International Conference
on Image Processing (ICIP2017) [122]:

(3) Fang Yang, Alfred M.Bruckstein, Laurent D.Cohen, A Model for Automatically
Tracing Object Boundaries, International Conference on Image Processing (ICIP2017),
Beijing, China.

• The work of Chapter 7 has been presented on the conference of Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMMCVPR2017):

(4) Fang Yang, Alfred M.Bruckstein, Laurent D.Cohen, PointFlow: A Model for Auto-
matically Tracing Object Boundaries and Inferring Illusory Contours (EMMCVPR),
Venice, Italy, 2017

• The work of Chapter 8 in under preparation for an image analysis journal:

(5) Fang Yang, Alfred M.Bruckstein, Laurent D.Cohen, A model is worth hundreds of
examples, under preparation
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Geodesic in Heat





Chapter 2

Active Contours and Geodesic Methods

Abstract

The first part of this thesis is focused on the extraction and segmentation of tubular structure
by using geodesic methods. A geodesic is a curve minimizing the distance between two points.
It is also considered as the shortest path. In this thesis, we are dedicating to computing the
geodesic distance on Riemannian metrics and the notion of geodesics also refers to minimal
paths. In this chapter, we introduce the background of the geodesic methods, as well as the
well known active contour models, the gradient vector flow, the minimal paths models based
on PDEs, the Fast Marching Method and the Heat Method.

2.1 Geodesic Distance and Geodesic Curves

Geodesic distance and geodesic curves play an important role in image processing and
computer vision. They can be applied to tubular structure segmentation in images, such
as vessel segmentation in medical images and road extraction in satellite images. These
applications are of high importance for human development. For example, the automatic
vessel segmentation can facilitate the process of segmentation by doctors themselves, and the
road extraction helps the urban or rural road network planning.

2.1.1 Geodesic Distance and Geodesic Distance Map

In this section, the image domain is defined as Ω, where Ω ⊂ Rd and d is the dimension. The
geodesic distance d(ps, pe) on a domain Ω between two points ps, pe is defined as follows:

d(ps, pe) = inf
γ∈Aps,pe

L(γ) = L(γ⋆) (2.1)
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whereAps,pe is the set of curves between these two points, γ⋆ is a geodesic curve and L(γ)
stands for the length of a Lipschitz curve according to a certain metric.

In the isotropic case, the length of a Lipschitz continuous curve γ : [0,1]→Ω is defined
as a weighted length:

L(γ) =
∫ 1

0
(P(γ(t)))∥γ′(t)∥dt (2.2)

where P is a potential function defined from the image, γ′(t) is the derivative of γ(t), ∥ · ∥
denotes the Euclidean norm on Rd.

In the anisotropic case, the length of a Lipschitz continuous curve γ : [0,1] → Ω is
computed as:

L(γ) =
∫ 1

0
∥γ′(t)∥T−1(γ(t))dt (2.3)

where T (γ(t)) is a metric tensor. Let us denote S +d the set of positive symmetric definitive
matrices, d is the dimension of the domain, T : Ω→ S +d , T (γ(t)) ∈ S +d . In addition, given a
vector u ∈ Rd and a matrix M ∈ S +d , the norm ∥u∥M =

√
⟨u,Mu⟩, so the norm ∥γ′(t)∥T (γ(t)) =√

⟨γ′(t),T (γ(t))γ′(t)⟩ in Eq. (2.3), and the length can be rewritten as:

L(γ) =
∫ 1

0

√
⟨γ′(t),T (γ(t))γ′(t)⟩dt (2.4)

In the isotropic case, the weighted metric P depends only on the location of the curve,
while in the anisotropic case, the metric depends both on the location and the orientation of
the curve.

The geodesic distance defined in Eq. (2.1) can be generalized to the distance from any p
to a set of points S ⊂Ω. This defines the distance map:

φS (p) =min
s∈S

d(p, s) (2.5)

2.1.2 Eikonal Equation

The geodesic distance map φ satisfies the following non-linear Eikonal partial differential
equation.

In 2D anisotropic case, Ω ⊂ R2, the anisotropic Eikonal equation is as follows:∀p ∈Ω \S , ∥∇φS (p)∥T (x)−1 = 1

∀p ∈ S , φS (p) = 0
(2.6)
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T (x) can be decomposed as:

T (x) = λ1(x)e1(x)e1(x)T +λ2(x)e2(x)e2(x)T (2.7)

where λ1(x) and λ2(x) are the eigenvalues of T (x), and e1(x) and e2(x) are their corresponding
eigenvectors.

In the isotropic case, T (x) = P2Id, where P is a scalar function that stands for the potential
and Id is the identity matrix. The classical isotropic Eikonal equation is recovered:∀p ∈Ω \S , ∥∇φS ∥ = P

∀p ∈ S , ∥∇φS ∥ = 0
(2.8)

For the Euclidean case, P = 1 and we have:

∥∇φS ∥ = 1 (2.9)

and the solution becomes φps(p) = ∥p− ps∥.

The Eikonal equation presents the solution to the geodesic distance map Eq. (2.5), its
numerical solution will be presented in Section 2.3.

2.1.3 Geodesic Curves

After obtaining the geodesic distance φ, a geodesic curve γ⋆ can be acquired by tracing back
to the source point ps from an endpoint pe. The process of tracing is described by an ordinary
differential equation (ODE) as follows:∀t > 0, dγ

⋆(t)
dt = −ηtv(γ⋆(t))

γ⋆(0) = pe
(2.10)

where v is the gradient of the distance, twisted by T (x)−1

v(x) = T (x)−1∇φS (x) (2.11)

and ηt > 0 is a scalar function that controls the speed of the geodesic parameterization.

To obtain a unit speed parameterization, one should normalize v, so ηt should be:

ηt = ∥v(γ⋆(t))∥−1 (2.12)
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When we are using an isotropic metric, T (x) = P2Id, the ODE for tracing the geodesic
curve becomes:

∀t > 0,
dγ⋆

dt
= −ηt∇φS (γ⋆(t)) (2.13)

Figure.2.1 shows the isotropic and anisotropic metrics on a 2D domain respectively, where
λ1,2 and e1,2 are the eigenvalues and eigenvectors of T (x).

The anisotropy µ is defined as:

µ =
λ2(x)−λ1(x)
λ2(x)+λ1(x)

∈ [0,1] (2.14)

In the isotropic case, λ1 = λ2, and the anisotropy µ = 0.

Isotropic metric Anisotropic metric

Fig. 2.1 Different metrics [82]
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2.2 Active Contours and Minimal Paths

2.2.1 Active Contour Model

Classical Snake Model

The original and pioneering work of active contours is the snake model [50], which was
proposed by Kass et al. in 1988. The snake model and its extensions are widely used for
detecting and integrating boundaries in images. The idea of snake model is to drive a given
contour to converge to the interesting edges. The original snake model is to minimize the
following energy functional:

Esnake(C) =
∫ 1

0
(ω1∥C

′(t)∥2+ω2∥C
′′∥2+P(C(t)))dt (2.15)

where C(t) = (x(t),y(t)) is the mapping of the active contour. t is the parameter, ranging from
0 to 1. C′ and C” are the first and second order derivatives of the curve C. ω1 and ω2 are
two positive constants, weighting the internal forces of the snake model and controlling the
elasticity and rigidity of the contour C. In addition, P(C) is the potential related to the external
force, generally, P has a formula:

P = g(∥∇I∥) (2.16)

where I here represents the image, and g(·) is a non-negative decreasing function:

g(a) = η0+
1
η1+a

, or g(a) = η0+ exp(−η1a) (2.17)

where η0 and η1 are two positive constants which prevent g(a) from being zero or invalid.

To find a curve C which minimizes the energy of the snake model Eq. (2.15), the Euler-
Lagrange equation should be satisfied:

−ω1C
′′(t)+ω2C

′′′′(t)+∇P(C(t)) = 0, ∀t ∈ [0,1] (2.18)

The disadvantages of snake model are that: firstly, the users have to provide an initial
curve which is close to the desired feature; secondly, the curves are the local minima, which
are sensitive to noise and sharp corners.

Balloon Snakes

In [17], Cohen introduced a new model for active contours by proposing an addtional external
force to the original snake model, which improves closed contour detection significantly. The
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new active contour model was defined by adding an inflation force which makes the curve
behave well in these cases. This inflation force is also called the "balloon force", because the
curve (or surface) behaves like a balloon which is inflated. It is expressed as minimizing the
following energy:

Eballoon(C) = −k1

∫
C

dA (2.19)

When it passes by edges, it is stopped if the edge is strong, or passes through if the edge is
too weak with respect to the inflation force. This avoids the curve being trapped by spurious
isolated edge points, and makes the result less sensitive to the initial conditions. In the 2D
case, the energy modeling the balloon force is proportional to the inner area of the curve, and
it derives a balloon inflation force:

Fballoon = k1n (2.20)

where n is the outward normal to the contour (or surface) model. Nevertheless, the balloon
model should be used carefully since the initial model has to be completely inside or outside
(depending on the sign of k1) the desired contour.

The new external force was presented:

Fext = Fballoon− k2
∇P
∥∇P∥

(2.21)

where k2 is a constant which is a little larger than k1. The evolution of the curve will stop
under the control of Eq. (2.21). The balloon force could avoid the spurious edges and is not
sensitive to the initialization of curves. Figure.2.2 gives an example of the balloon method on
an MRI image.

Distance Potentials

Cohen and Cohen [18] incorporated the use of edge points extracted by a local edge detector
to reduce the problem of sensitivity to the noise of the potential in the original snake model.
This allows to combine the qualities of a good local edge detector, for example a Canny
Deriche edge detector [14, 26], with a global active model. The introduced energy, for a
contour C is:

Eedges(C)) =
∫

f (D(C(s)))ds (2.22)

where D is the Euclidean distance map and for each point p ∈ Ω, D(x) denotes the Euclidean
distance from p to the nearest edge points.
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Fig. 2.2 Evolution of the balloon curve to detect the left ventricle on a Magnetic Resonance
Image (MRI) [17].

The external force of the distance vector field is expressed as:

Fedges = − f ′(D)∇D (2.23)

∇D is the gradient vector of D and it points to the edges. It helps the curve move to its nearest
edge points. The attraction forces derived from the edge detector may be used either as the
only image forces, or may be combined with an intensity-gradient image to enhance the
detected edges.

Gradient Vector Flow

Xu and Prince [121] proposed a new idea for active contours evolution based on the diffused
gradient field. It is called the gradient vector flow (GVF). The GVF snake is an extension of
the snake model and compared to the classical snake model [50], the GVF snake model is
less sensitive to the initialization.

The original snake is a 2D dynamic contour that minimizes the energy function Eq. (2.15).
The GVF uses a gradient vector field as a constraint energy on Eq. (2.15). The basic idea of
the gradient vector field construction is to diffuse the image gradient information to the whole
image domain Ω. Compared to the classical snake model, the GVF is insensitive to the initial
curve.
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The gradient vector flow field V(x,y) = [u(x,y),v(x,y)] is defined as a vector field that
minimize the energy functional:

EGVF =

∫ ∫
Ω

µ(∥∇u∥2+ ∥∇v∥2)dxdy+
∫ ∫

Ω

∥∇ f ∥2∥V−∇ f ∥2dxdy (2.24)

where µ is a positive constant which is used to balance the two terms and f is an edge map
which can be obtained from the image:

f (x,y) = |∇I(x,y)|2 or f (x,y) = |∇[Gσ(x,y)∗ I(x,y)]|2 (2.25)

where Gσ(x,y) is a 2D Gaussian function.

The GVF field V in Eq. 2.24 can be found by solving the Euler-Lagrange equation:

∂V
∂t
= µ∆V− (V−∇ f )∥∇ f ∥2 (2.26)

V obtained by minimizing EGVF is used an external force of the classical snake model,
leading to the follow evolution equation:

∂C
∂t
= ω1

∂2C
∂s2 −ω2

∂4C
∂s4 +V (2.27)

Figure.2.3 is an example of the GVF model.

Note that for a homogenous region where the f is a constant, the second term of the r.h.s
in Eq. (2.26) equals to zero. In such cases, the vector field is determined by the heat equation
which enhances the smoothness of the vector field. For the places which are close to the
boundary, V = ∇ f , in this case, if we use the normalized vector field of V, the initial curve
can be far away from the object boundaries.

2.2.2 Minimal Path Model

The curve optimization process of the snake energy is usually blocked at unexpected local
minima of the functional Eq. (2.15). So the result is highly dependent on the initialization of
the curve, and is sensitive to noise. Figure.2.4 shows an example that snake model is not able
to detect the spurious edges in images.

To improve the performance of the snake model, in 1997, Cohen et al. proposed a global
minimal path model [19]. Given an image I :Ω→R and two points ps0 and px, the geodesic γ
is a curve connecting these two points that globally minimizes the following energy functional
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(a)original image (b) potential

(c)gradient vector (d)result

Fig. 2.3 The GVF method

(a)original image with the initial curve (b) result by snake model

Fig. 2.4 The snake stops at spurious edges.
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E :Aps0 ,px → R
+:

E(γ) =
∫ L

0
(P(γ)+w)ds, γ ∈ Ap0,px (2.28)

where P is a potential cost function computed from I, w is a positive constant that imposes
regularity on the curve. Aps0 ,px(s) is the set of all the curves linking ps0 and px, s is the
arclength. Let us denote P = P+w so that E(γ) =

∫
P(γ(s))ds.

The minimal action map (geodesic distance map) φ is defined in Eq.(2.1). In fact, the
geodesic distance map φ defines a level set function which describes the arrival time from the
source point ps0 . The level set line Γ is:

Γ := {p ∈Ω;φ(p) = t} (2.29)

where t means the arrival time.

The level set evolution equation is:

∂Γ

∂t
=

1
P

n (2.30)

where n is the unit normal vector of Γ.

According to [12], Eq.(2.30) is in fact a front propagation equation with the speed 1
P

. It
propagates geodesic distance to the whole image domain.

To associate the minimal action map with the Eikonal equation Eq.(5.5), let us consider
that, according to Eq.(2.29), we can obtain that:

∂φ

∂t
=

〈
∇φ,
∂Γ

∂t

〉
= 1 (2.31)

By associating Eq.(2.31) with Eq.(2.30), we have:〈
∇φ,
∂Γ

∂t

〉
=

1
P

〈
∇φ,

∇φ

∥∇φ∥

〉
= 1

which yields
∥∇φ(x)∥ = P(x) (2.32)

Thus the geodesic distance map is associated with the Eikonal equation Eq.(2.6), where the
metric is isotropic.

To obtain the geodesic distance φ, we are indicated to solve the non-linear Eikonal equation
Eq.(2.32). It is suggested in [19] that the fast marching method can be a very efficient solver.
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For an image, once the source point ps0 and the geodesic distance map φ is fixed, the users
can obtain the multiple geodesic curves which connect a set of end points p ∈Ω and ps0 by
using the ODE in Eq.(2.10), shown in Figure.2.5.

geodesic distance geodesic curves

Fig. 2.5 an example of geodesic distance and geodesic curves
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2.3 Eikonal Equation and Fast Marching Method

To solve this minimization problem, Cohen and Kimmel [19] proposed a Hamiltonian ap-
proach: Find the minimal action map φ :Ω→ R that solves the isotropic Eikonal equation:

∥∇φ∥ = P+w (2.33)

with the boundary condition φ(ps0) = 0. Minimal paths techniques are then widely used for
centerlines extraction of tubular structures.

In [46], the authors summarize popular numerical solutions to the Eikonal equation on
Cartesian grids. The most common algorithms such as the Fast Marching [97, 19] and Fast
Sweeping [108, 109, 125] are quite often used.

By comparing the errors, speed, accuracy and robustness of different algorithms, the
authors concluded in [46] that the Fast Marching Method outperforms the other methods.

The Fast Marching Method was proposed independently by Sethian [97, 98] and Tsitsiklis
[110] for an isotropic metric on a regular grid. It is an extremely fast scheme to approximate
the solution to nonlinear Eikonal differential equation Eq.(5.5), and the time complexity is
O(N log(N)), where N is the total number of the grid points.

The Fast Marching Method is based on an optimal ordering of the grid points. Each grid
point is visited only once during the process of propagation, and the exact solution is obtained
by the visit.

During the process of marching, each grid point could be tagged as three states: Accepted,
Candidate and Far. The set of Candidate points forms an interface between the Accepted
points and the Far points. The Accepted points are the points of which the geodesic distance
is fixed and could not be changed. The Candidate points are the points for which the geodesic
distance has been computed at least once but not fixed. The distance value can be changed.
The Far points are the points for which the geodesic distance has not been computed yet.

Figure.2.6 illustrates the fast marching front: the blue points are the candidate points and
form the front which is expanding from the Accepted points to the Far points.

At the beginning, the source point ps0 is tagged as Candidate, and the rest grid points are
labeled as Far points. At each update, we choose one point with the smallest φ value from the
Candidates, denote this point by xmin and label it as Accepted. The distance value φ is then
updated for each neighbors NM(xmin) (could be Candidate or Far) of xmin. NM(xmin) is the
neighborhood points of xmin, and for a 2D domain, M = 4 or M = 8. Figure.2.7 shows the
4-connectivity and 8-connectivity stencils on 2D Cartesian grid. In 2D, the local update for
the isotropic Fast Marching is usually done using the 4-connectivity neighbors while for the
anisotropic Fast Marching the 8-connectivity.
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Fig. 2.6 FMM-diagram, the solid black spots are the Accepted points, the blue spots are the
Candidates and the hollow spots are the Far points. The expanding front is formed by the
blue points.

(a) 4-connectivity (b) 8-connectivity

Fig. 2.7 The center yellow points are the Accepted points, and the red points around are the
neighborhood points.
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Algorithm.1 describes the general fast marching algorithm. For simplicity, we illustrate
the isotropic and anisotropic Fast Marching Method on 2D manifold, but it can be applied to
arbitrary dimension.

Algorithm 1 Fast Marching Method
Notation:
NM(p): the set of M neighbors of a grid point p, M = 4 or M = 8 in 2D.
L: the label of the points, L can be accepted, candidate, or far
Input:

metric: P
the set of source point: S

Output:
geodesic distance map: φ

Initialization:
∀pi ∈ S, φi← 0,Li← candidate
∀pi < S, φi←∞,Li← f ar

Marching Loop:
While the candidate point set is non-empty, do

Find pmin, the candidate point which minimizes φ
L(pmin)← accepted
for pk ∈ NM(pmin) and L(NM(pmin)) , accepted, do

Compute φnew(pk) by local geodesic distance update scheme (see text).
if L(pk) = f ar

L(pk)← candidate
end if
if L(pk) = candidate and φnew(pk) < φ(pk)
φ(pk) = φnew(pk)

end if
end for

2.3.1 Isotropic Fast Marching Method

In their original minimal path model [19], Cohen and Kimmel used Sethian’s isotropic Fast
Marching Method to solve the Eikonal equation Eq.(5.5).

∥∇φ∥ = P̃φ(x0,y0) = 0
(2.34)

where P̃ = P+w in Eq.(5.5).
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To solve the Eikonal equation in Eq.(2.34) numerically, we need to discretize Eq.(2.34)
first, and this is done by using the upwind scheme:

(
max{(φi, j−φi−1, j), (φi, j−φi+1, j),0}

hx

2

)+ (
max{(φi, j−φi, j−1), (φi, j−φi, j+1),0}

hy

2

) = P̃2 (2.35)

where φi, j is the distance of the Candidate (i, j) to be computed.

Let us consider the triangle formed by these three points: {(i−1, j), (i, j), (i, j−1)}. Four
kinds of situations may happen:

1. both (i−1, j) and (i, j−1) are Accepted, φi, j is the largest real solution of

(
φi, j−φi−1, j

hx

)2

+

(
φi, j−φi, j−1

hy

)
= P̃i, j

2

2. neither (i−1, j) nor (i, j−1) are Accepted, φi, j = +∞

3. (i−1, j) is Accepted, but not (i−1, j),

φi, j = φi−1, j+hxP̃i, j

4. (i, j) is Accepted, but not (i, j−1),

φi, j = φi, j−1+hyP̃i, j

For the point (i, j), there are four triangles, and from each triangle, a value φi, j will be
obtained. We retain the smallest φi, j as the geodesic distance of the point (i, j). The geodesic
distance map φ can be obtained with a computation complexity of O(N(log N)).

An example of the isotropic progressive Fast Marching propagation on a synthetic image
is shown in Figure.2.8.

2.3.2 Anisotropic Fast Marching Method

The fast marching methods proposed by Sethian [97] and Tsitsiklis [110] making use of the
square formed stencil Figure.2.7 (a) could not be applied to compute the anisotropic metrics
based minimal action maps Eq.(2.37).

∥∇φ∥T−1 = 1

φps0
= 0

(2.36)
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Fig. 2.8 Isotropic progressive front propagation

where T is the anisotropic metric and it is symmetric definite positive. It can be decomposed
as follows:

T (·) =
n∑

i=1

λi·ei(·)eT
i (·) (2.37)

where n is the dimension of the domain, 0 < λ1 < · · · < λn are the eigenvalues and ei are
the eigenvectors. And the velocity of the front along ei is equal to 1/

√
λi. The maximal

anisotropy ration is defined as:

k =
max

√
λn(·)

min
√
λ1(·)

(2.38)

To handle with anisotropy, the authors in [100] proposed a single pass method which is
based on an optimal trajectory problem rooted in control theory. The idea is still to update the
grid points in a monotonic sequence by following the minimal path direction. The stencils
shown in Figure.2.7 play an important role in the computation of the minimal action map
φ by fast marching method. For the isotropic case, only Accepted neighboring points are
considered for the update procedure. 4-connectivity stencil can give an accurate distance
map. While the minimal path direction and the gradient direction of the minimal action map
φ do not coincide in the anisotropic situation, a larger neighborhood is needed in the updating
procedure to include the minimal path directions, shown as the figure in the r.h.s of Figure.2.7.
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In order to solve the anisotropic Eikonal equation that is associated with an arbitrary
continuous Riemannian metric and improve the stability and accuracy of the computation
of the minimal action map with respect to a high anisotropic geodesic metric, Mirebeau
[72] introduced an algorithm with a complexity of O(N ln N +N lnk(M)), where k(M) is the
anisotropy of the Riemannian metric M.
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2.4 Heat Equation

In [23], Crane et al. proposed a different method for computing the geodesic distance on
a Riemannian manifold. It is called the heat method and the detailed introduction will be
presented in the next section. In this section, we would like first to discuss about the heat
equation. In the following content, we will take the 1D heat equation as an example if there is
no special instructions.

The heat equation is a partial differential equation (PDE) that describes the evolution of
the distribution of heat on a domain Ω within time T . It has a general form:

∂u
∂t
= α
∂2u
∂x2 (2.39)

where u stands for the heat, ∂u∂t means the derivative of u, and α, a positive constant, represents
the thermal conductivity, ∂

2u
∂x2 denotes the second partial derivative of u in x.

The heat equation in n dimension is defined as follows:

∂u
∂t
= α

n∑
i=1

∂2u
∂x2

i

or
∂u
∂t
= α∆u (2.40)

where ∆ is the Laplace operator (or the Laplacian). The Laplace operator is a differential
operator defined as the divergence of the gradient in Euclidean space, it is usually denoted by
the symbols ∇·∇, ∇2 or ∆. In differential geometry, the Laplace operator can be generalized to
operate on Riemannian manifolds, and the more general operator is called Laplace-Beltrami
operator.

2.4.1 Fundamental Solution

With respect to the initial condition up0(0) = δp0 , the solution to the heat equation is called
the fundamental solution, or heat kernel. When the heat diffusion is used to approximate
the geodesic distance, the desired heat distribution is in fact the fundamental solution of the
corresponding heat equation, shown in Eq.(2.41).


∂u
∂t = α∆u, in (0,∞)×RN

u(x,y,0) = δ(x,y)
(2.41)

Let us denote the fundamental solution Φ. In one dimension N = 1, the Green’s function
is a solution of the initial value problem:
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Φ(x, t) =
1
√

4πkt
exp(−

x2

4kt
) (2.42)

In several spatial variables, the n−variable fundamental solution is the product of the
fundamental solutions in each variable:

Φ(x, t) = Φ(x1, t)Φ(x2, t)...Φ(xn, t) =
1

√
(4πkt)n

exp(−
x ·x
4kt

) (2.43)

2.4.2 Numerical Schemes

Generally, the numerical solution to the heat equation is obtained using finite difference
methods (FDMs), including a forward scheme or a backward scheme [87]. The FDMs
solve heat equations by approximating them with difference equations, and finite differences
approximate the derivatives.

Discretization of the heat equation

The continuous system of coordinates (t, x) can be replaced by a discrete grid (n,m) =
(n∆t,m∆x) (note that ∆ here is not the Laplacian, but a small step or gap of time or location).
The continuous function u(t, x) under the discrete version can be rewritten as:

un
m = u(n∆t,m∆x) (2.44)

Fig. 2.9 The discretization of 1D heat equation

For a function f (x), of which the derivatives to be approximated is properly-behaved, it
can be expanded according to a Taylor Series expansion:
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f (x0+h) = f (x0)+
f ′(x0)

1!
h+

f (2)(x0)
2!

h2+ ...+
f (n)(x0)

n!
hn+Rn(x) (2.45)

By truncating the Taylor polynomial, the first derivative of f (x0) can be approximated:

f (x0+h) = f (x0)+ f ′(x0)h+R1(x) (2.46)

Assuming that R1(x) is small enough, the approximation of f ′(x0) is:

f ′(x0) ≈
f (x0+h)− f (x0)

h
(2.47)

The first-order time derivative ∂u/∂t can be replaced by a forward finite difference in time:

D+t un
m =

un+1
m −un

m

∆t
≈ ut(t) (2.48)

The second-order space derivative uxx(t, x) can be replaced by a central difference in
space:

D0
xxun

m =
um+1−2un

m+un
m−1

(∆x)2 ≈ uxx(x) (2.49)

Explicit Finite Differences

The explicit finite differences or forward scheme solves the differential equation in an iterative
way. The forward difference is shown as follows:

D+t un
m =

un+1
m −un

m

∆t
≈ ut(t)+O(∆t) (2.50)

For simplicity, we assume that the heat conductivity α = 1, then the continuous heat
equation ∂u/∂t = α∆u can be discretized into:

un+1
m −un

m

∆t
=

un
m+1+un

m−1−2un
m

(∆x)2 (2.51)

or
un+1

m = un
m+

∆t
(∆x)2 (un

m+1+un
m−1−2un

m)

Let r = ∆t
∆x2 , the above equation can be rearranged slightly as:
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un+1
m = run

m+1+ (1−2r)un
m+ run

m−1

In the process of implementation, the time step ∆t and the grid step ∆x are set by users. The
forward scheme is easy to implement because the values of ut+1 can be updated independently
of each other. The solution could be obtained by two loops. The first one is an outer loop over
time steps, and the other one is the inner loop over the space grid steps.

According to the Courant Friedrichs Lewy (CLF) condition [22], it is known that the
explicit difference is numerically stable and convergent when the following inequality holds:

∆t
∆x2 6

1
2

(2.52)

In addition, the numerical errors ∆u are proportional to the time step and the square of the
space step:

∆u ∝ O(∆t)+O(∆x2) (2.53)

Implicit Finite Difference

The implicit finite difference or the backward finite difference can be defined in the same
manner as the forward scheme:

D−t un
m =

un
m−un−1

m

∆t
≈ ut(t)+O(∆t) (2.54)

This continuous heat equation discretized using the backward scheme is shown as follows:

un+1
m −un

m

∆t
=

un+1
m+1+un+1

m−1−2un+1
m

(∆x)2 (2.55)

Let us rearrange Eq.(2.58) as follows:

−
α

∆x2 un
m−1+ (

1
∆t
+

2α
∆x2 )un

m−
α

∆x2 un
m+1 =

1
∆t

un−1
m (2.56)
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Eq.(2.56) can be represented as:

b1 c1 0 0 0 0
a2 b2 c2 0 0 0
0 a3 b3 c3 0 0
0 0 ... ... ... 0
0 0 0 aN−1 bN−1 cN−1

0 0 0 0 aN bN





u1

u2

u3

...

uN−1

uN


=



d1

d2

d3

...

dN−1

dN


(2.57)

where the coefficients in the matrix are:

ai = −
α
∆x2 i = 2,3, ...,N −1

bi = ( 1
∆t )+ ( 2α

∆x2 )
ci = −

α
∆x2

di = ( 1
∆t )u

n−1
i

Eq.(2.57) can also be simplified to:

(Id−∆tA)un+1 = un

Using the backward scheme to numerically solve the heat equation requires solving a
system of equations at each time step. The matrix Id−∆tA is a tridiagonal matrix, and
this equation can be solved by using the tridiagonal matrix algorithm (also called Thomas
algorithm), and the solutions could be obtained in O(n) rather than O(n3) required by Gaussian
elimination. Compared with the forward scheme, the backward scheme has almost the same
accuracy, the numerical error is also the same as the forward scheme Eq.(2.59). Furthermore,
the main advantage of the backward scheme is that it is unconditionally stable for all time
steps.

Crank Nicolson scheme

The Crank Nicolson scheme is implicit as the backward scheme. In the forward and backward
scheme, we use the central difference at time t = n. If we use the central difference at
t = n+1/2, the heat equation is as follows:

un+1
m −un

m

∆t
=

1
2

[
un+1

m+1+un+1
m−1−2un+1

m

(∆x)2 +
un

m+1+un
m−1−2un

m

(∆x)2 ] (2.58)

The system of the Crank Nicolson scheme is the same as the backward scheme Eq.(2.57),
but with different coefficients:
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ai = −
α

2∆x2 i = 2,3, ...,N −1
bi = ( 1

∆t )+ ( α
∆x2 )

ci = −
α

2∆x2

di = ( 1
∆t )u

n−1
i −aiun−1

m−1+ (ai+ ci)uin−1− ciu(m+1)n−1

The numerical errors ∆u of the Crank Nicolson scheme are:

∆u ∝ O(∆t2)+O(∆x2) (2.59)

The computational model of these three schemes are displayed in Figure.2.10.

Fig. 2.10 The minimum calculation unit of different finite differences

2D Heat Equation

For the 2D heat equation ut = α(uxx+uyy), the forward scheme is:

un+1
m,p = un

m,p

∆t
+α(

∆t
∆x2 (un

m+1,p−2un
m,p+un

m−1,p)+
∆t
∆y2 (un

m,p+1−2un
m,p+un

m,p−1)) (2.60)

The corresponding CFL condition is:

α(
∆t
∆x2 +

∆t
∆y2 ) 6

1
2

(2.61)

Assume that ∆x = ∆y, then the CFL condition is:

α(
∆t
∆x2 ) 6

1
4

(2.62)

In this thesis, we use a grid step ∆x = 1 and the heat conductivity α is a scalar function,
with 0 6 α 6 1. So when we use the forward scheme, the time step ∆t 6 1/4.
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2.4.3 Maximum Principle

In mathematics, the maximum principle is a property of solutions to certain partial differential
equations, of the elliptic and parabolic types. The maximum principle applies to the heat
equation in domains bounded in space and time. Roughly speaking, it says that the maximum
of any solution to the heat equation occurs either initially (t = 0), or on the boundary of that
domain.

Specifically, the strong maximum principle says that if u(x, t) achieves its maximum in the
interior of the domain Ω× [0,T ], then u must be uniformly a constant. The weak maximum
principle says that the maximum of the heat equation is to be found on the boundary, but may
re-occur in the interior as well.

In this thesis, for Chapter.2 and Chapter.3, we use a forward scheme to solve the 2D heat
equation; for Chapter.4, we use a new backward scheme proposed by Mirebeau et al. [35]
to solve the 3D heat equation. Thanks to the development of CPUs and the algorithms for
solving the inversion of large sparse matrix [76, 24, 16, 25], the sparse systems arising from
elliptic PDEs can be solved in very close to linear time.

2.5 Heat Method

2.5.1 Heat Equation and Varadhan’s Formula

In 1967, Varadhan [104] proposed a formula to approximate the geodesic distance φ(p0, px)
between two points p0 and px on a Riemannian manifold:

φ(p0, px) = lim
t→0

√
−4t logup0(px, t) (2.63)

where up0 the solution of Eq.(2.39) under the initial condition that up0(0) = δp0 within a small
time t→ 0.

2.5.2 Crane’s Heat Method

We thus see that the heat equation can be related to the geodesic distance. Recently, Crane et
al. proposed a heat method to compute the geodesic distance on the given domain [23]. In
spite of using the Varadhan’s formula directly, the heat method proposed in [23] is based on
solving a pair of standard linear elliptic problems. By comparing the heat method with the
state-of-the-art Fast Marching Method [97], Crane et al. found that, using the heat method
to obtain the geodesic distance is faster than the state-of-the-art Fast Marching Method. In



2.5 Heat Method 39

[95, 96], the authors prove that the sparse systems arising from the elliptic PDEs can be solved
in very close to linear time.

The computation of geodesic distance φ based on the heat method can be divided into
three steps:

1. Integrate the heat flow ut = ∆u for a period of time t,

2. Compute the vector field X = −∆u/|∆u|,

3. Solve the Poisson equation ∆φ = ∇ ·X

Figure.2.11 shows the outline of the heat method:

Fig. 2.11 The process of the heat method on a square domain, from left to right are: the heat
value u after a period of time diffusion from the center point (source point), the gradient ∇u,
the normalized gradient − ∇u

|∇u| , the geodesic distance (in this case also the Euclidean distance)
from every point on the domain to the center point, [23].

Compared with using Varadhan’s formula directly, the heat method has several advantages:
the Varadhan’s formula is highly sensitive to the time for diffusion, a slight difference in time
would result in quite different distance result. While the heat method avoids this by using the
gradient of the heat instead of the heat itself. The gradient of heat points in the same direction
as the heat flows, and the magnitude can be ignored here.

The discretization of the heat equation in [23] is a single backward Euler step.

The advantage of using the heat method is that the Laplace-Beltrami operator could be
precomputed, so that the fundamental solution of the heat equation can be acquired in a
single step no matter where the initial point ps0 is, thus it saves a lot of time. While the
Fast Marching Method does not reuse information: once the geodesic distance φs0 from the
initial source point ps0 is obtained, the distance from another source point ps1 needs to be
recomputed from scratch.
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The key advantage of the heat method is that the linear systems in steps 1 and 3 can be
precomputed. During their process of implementation, they use sparse Cholesky factorization.
In addition, evidences show that the sparse systems from elliptic PDEs can be solved in a very
short time that is close to linear time.

Compared with the fast marching method, the heat method provides results as good as by
using the fast marching method. Moreover, the heat method is faster than the fast marching
method.

In this way, the approximation of φ can be obtained once the heat equation is solved.
Then the geodesic γ could be obtained by solving the ODE Eq.(2.10) depending on the heat
diffusion being isotropic or anisotropic.

Fig. 2.12 Experiment on a mesh by the heat method, from left to right are the levelset of exact
geodesic distance, the heat method distance and the fast marching distance [23].

2.6 Conclusions

In this chapter, we introduced the geodesic method in computer vision. We also introduced
several state-of-the-art methods for segmentation in images, such as the active contour model,
the minimal path model, the fast marching method and the heat method. In this thesis, we are
interested in the heat method due to its advantages: effective, robust and time-saving.



Chapter 3

Geodesic Distance and Curves through
Isotropic and Anisotropic Heat
Equations on Images and Surfaces

Abstract

This chapter proposes a method to extract geodesic distance and geodesic curves using heat
diffusion. The method is based on Varadhan’s formula that helps to obtain a numerical
approximation of geodesic distance according to metrics based on different heat flows. The
heat equation can be utilized by regarding an image or a surface as a medium for heat diffusion
and letting the user set at least one source point in the domain. Both isotropic and anisotropic
diffusions are considered here to obtain geodesics according to their respective metrics. Our
algorithms are tested on synthetic and real images as well as on a mesh. The results are very
promising and demonstrate the robustness of the algorithms.

3.1 Introduction

As introduced in Chapter. 1, the heat equation is a partial differential equation that describes
the evolution of the distribution of heat (or variation in temperature) in a given region over a
certain period of time T . Generally, the form of the heat equation is as follows:

∂u
∂t
−α∆u = 0 (3.1)

where α, a positive constant, stands for the thermal diffusivity and ∆ represents the Laplace
operator. In the physical problem of temperature variation, u(x, t) represents the temperature.
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More generally, u(x, t) may represent the concentration of a certain substance, like water,
whose quantity may vary with time t [78]. Eq.(3.2) gives a more general form of the heat
equation.

∂tu(x, t) = k(x)div(D · ∇u) (3.2)

The coefficient k(x) is the inverse of the specific heat of the substance multiplied by
the density of the substance at that location [112]. In the case of a homogeneous isotropic
medium, the matrix D has the form of a constant scalar times Id, where the scalar represents
the conductivity and where Id is the identity matrix. If this scalar value is varying on the
domain, we have a general medium. This case is called the isotropic case. In the anisotropic
case, the coefficient matrix D has different eigenvalues. This means conductivity is not the
same in different orientations.

The heat equation is widely used in many fields. For example, the HKS (Heat Kernel
Signature), which is obtained by restricting the heat kernel to the temporal domain, is based
on the properties of the heat diffusion process on a shape [48]. In [86], Raviv et al used the
heat kernel to compute the diffusion distance for shape matching. As introduced in [118]
a long time ago, the notion of Scale-Space is based on the Heat Equation. The non-linear
heat diffusion can be also used for filtering problem. For example, in [81], Perona and
Malik introduced an anisotropic diffusion approach to reduce image noise without removing
prominent parts of the image content, and their non-linear diffusion filter only involves
scalar diffusion coefficients. In [35, 73], Fehrenbach and Mirebeau proposed a non-negative
numerical scheme called anisotropic diffusion using lattice basis reduction for image filtering
and enhancing. It involves constructing the stencils whose geometry is tailored after the local
diffusion tensor.

In this chapter, we are interested in the consequences of the work of Varadhan [104],
where the author has proposed to approximate the geodesic distance φ(p0, px) between two
points p0 and px on a Riemannian manifold by solving the following equation numerically:

φ(p0, px) = lim
t→0

√
−4t logup0(px, t) (3.3)

where up0 is the heat kernel of Eq.(3.1), that is, up0 is a solution with initial value up0(0) = δp0 .
This was used recently in [23] to derive a numerical approximation of the geodesic distance,
by solving the heat equation numerically with a small time step t. Diffusion is a process of
motion of molecules (mass) moving from a place of high density to a place of low density.
Based on this, Crane et al [23] proposed a method to extract geodesics on surfaces. Intuitively,
one may regard the heat diffusion process as a large collection of hot particles moving
from the source point p0 and to the end points px, under the assumption that the domain
is homogeneous with unit diffusivity α = 1. The heat equation is solved based on standard
differential operators. Compared with the state-of-the-art fast marching methods [97], using
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heat diffusion to approximate the geodesic distance is computationally more efficient and has
comparable accuracy and robustness [23] .

The geodesic distance and geodesic lines on images and surfaces play an important role
in computer vision and graphics. They can be applied to vessel segmentation, road extraction,
surface remeshing and so on [82]. Generally, the geodesic distance φ can be obtained by
solving the Eikonal equation numerically using Dijkstra’s method [27] or the Fast Marching
Method [97, 19]. Once we get an approximation of the geodesic distance φ, the geodesic lines
γ∗ between source point p0 and other points px on the domain are extracted by integrating an
ordinary differential equation numerically [19, 82]:

∀s > 0,
dγ⋆

ds
= −D−1∇φ,γ⋆(0) = px (3.4)

where D is the metric tensor in the anisotropic case. For the isotropic case, D = α2Id, and
Eq.(3.4) becomes dγ⋆

ds = −∇φ.

The metrics used in this chapter can also be computed by other distance computation
techniques such as the Fast Marching Method [97, 99, 72].

Using a heat method to approximate the geodesic distance has several advantages. The
heat method is very fast [23] and also easy to implement. Furthermore, we show that different
kinds of features can be extracted by using different diffusion models. Another advantage
of this method is that it is not highly sensitive to noise. On the other hand, there are some
disadvantages. The heat method is useful within a limited time period. After a long period of
time, too much diffusion over the domain will cause blurring and make it hard to sort out the
features of interest from all available features.

In this chapter, we go beyond the work of Crane et al [23] and introduce different heat
flows to find the geodesic distance and lines. These flows can be either isotropic or anisotropic,
depending on the needs. Note that all the diffusion models used in this chapter are linear. In
order to extract the geodesic lines automatically, we introduce two new approaches based
on geodesic voting and key point detection, which are inspired by [91–93] and [4, 45] but
adapted to heat diffusion rather than Fast Marching.

This chapter is organized as follows: Section 3.2 presents isotropic and anisotropic heat
diffusion models using different potentials and tensors including functions of the image gray
values for conductivity, the Perona-Malik (P-M) model, and functions of the image Hessian
for the diffusion tensor. We also explain the validity of Varadhan’s formula in the cases we
consider. Section 3.3 demonstrates the results of using different diffusion models to acquire
geodesic distances and paths.
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3.2 Varadhan’s Formula and Heat Diffusion by Different
Potentials and Tensors

Heat diffusion comprises 2 types: isotropic and anisotropic. The distinction is made by
determining whether the diffusivity is a scalar or a matrix. When we consider heat diffusing
on a N ×N image, the initial condition would be: ut −α∆u = 0, (x,y) ∈ [0,N]× [0,N], t ∈ [0,R+]

u(x,y, t = 0) = δ(x0,y0)
(3.5)

where α is a constant in the homogeneous domain and δx0,y0 is the dirac distribution cen-
tered at p0 = (x0,y0). It should be noted that several source points can be used to diffuse
simultaneously.

As described in Chapter 2, in Crane et al’s method [23], there are three steps to get the
geodesic distance φ on a surface: 1) compute the heat density: ∂tu = α△u, α is a constant
on the whole domain; 2) normalize the gradient: X = ∇u

|∇u| ; 3) solve the Poisson equation:
△φ = div(X) to get the distance φ. Crane et al’s method shows the correlation between the
heat density u and the geodesic distance map φ. In this chapter, we solve the isotropic (or
anisotropic) heat equation to get the heat distribution on images where the heat will flow along
the direction of a geodesic. Then we apply Eq. (3.3) directly to get the geodesic distance φ.

Next, a geodesic curve γ⋆ between the source point p0 and another point px in the domain
can be computed by gradient descent [19, 5], by using dγ⋆

ds = −∇φ. This backtracking becomes
Eq. (3.4) in the general anisotropic case.

3.2.1 Isotropic Diffusion

Four situations of isotropic heat diffusion are discussed here: 1) conductivity based on a
function of the gray level, 2) P-M model [81] (although Perona and Malik claimed that their
model is anisotropic, we still consider it isotropic following [49], since they use a scalar
diffusivity and not a tensor), 3) the combination of conductivity and the P-M model, 4) a P-M
model using the norm of gradient of the image as the feature.

Conductivity

In Eq.(3.1), α represents thermal diffusivity. In the homogeneous case, α is a constant. Putting
the source point in the center of the image, heat will diffuse across concentric circles and
geodesics will be straight lines orthogonal to these circles. We are motivated by finding
geodesic paths that follow related gray-level values, and therefore use a conductivity which is
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(a) (b)

(c) (d)

Fig. 3.1 The example of how heat propagates on a synthetic image and the effect of the
power n in Eq. (3.6), (a) is the original 300×300 image composed of several parts including
a wide black curve in the middle and its surroundings, the red point which is the source-
point (187,36)manually set on top of the curve from which heat can diffuse, (b) is the heat
distribution for n = 1 in Eq. (3.6), (c) is the result for n = 2 in (3.6), and (d) is the result for
n = 3 in Eq. (3.6). These results are generated in the same period of time T .

a function of the gray-level at each pixel. Given a source point p0 on an image I, which takes
values between 0 and 1, the conductivity of p0 equals to 1. Point px has a higher conductivity
α when the gray-value difference between p0 and px is small as shown in Eq. (3.6).

αpx = |(1− |I(p0)− I(px)|)|n+ε (3.6)

n = 1,2,3..., ε is a small positive constant that prevents α from vanishing. The value of
n depends on the contrast between the interesting features in the image and the image
background. In other words, if there exist fewer differences between the interesting features
and their background, we can set a higher n. From Fig.3.1, it can be clearly seen that the
black wide curve (the part to be enhanced) is the most visible in (d), compared with the other
two results (b) and (c).
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Perona-Malik (P-M) model

As stated above, the P-M model [81] is not a real anisotropic model because D used in (3.7)
is a scalar and not a tensor.  ∂u

∂t = div(D∇u)
u(x,y, t = 0) = δ(x0,y0)

(3.7)

There are two forms of D usually used, both being positive decreasing functions of the
gradient, which are given by

D = e−(∥∇I∥/K)2
or D =

1
1+ (∥∇I∥/K)2 (3.8)

where K is the contrast parameter and ∥∇I∥ is the norm of the gradient of the image. Diffusion
processes in Sect.3.2.1 tend to equilibrate the concentration differences in the materials, while
the feature (Eq.(3.8)) used in the P-M model can constrain the diffusion process inside the
homogeneous regions. From Eq.(3.8) we can see that wherever there is higher gradient there
is lower diffusivity, which indicates that P-M model inhibits heat from leaking outside a
homogeneous region. Note that since the goal here is different from the usual P-M equation
where the heat density is the image I itself, the initial value of u here is different from the
usual case. We use a Dirac distribution as the initial density. Eq.(3.7) can be also written as
Eq.(3.9)

∂u
∂t
= D∆u+∇D · ∇u (3.9)

Compared with Eq. (3.1), there exists an additional first derivative term in Eq. (3.9):
∇D · ∇u. Fig.3.2 shows the experimental result on a synthetic image. From this result, it can
be seen that there is a difference between (a), the form the result takes without adding the
item, and (b), the result with the item considered. Compared to (b), we can see that (a) has
more heat around the edges, which shows that adding this item ∇D · ∇u helps to restrain the
heat from leaking out of a region slightly.

Combination of Conductivity and P-M Model

As we can see above, both methods have their own advantages. Using conductivity is direct
and useful in simple scenes, but it becomes insufficient when dealing with more complicated
scenes. The P-M method helps to weaken heat diffusion on the edges and boundaries. Thus
it can be used as an auxiliary factor. This is the reason why we combine the two methods
together:

∂u
∂t
= α ·div(D∇u) (3.10)
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(a) (b)

Fig. 3.2 Example for showing effect of the item ∇D ·∇u, (a) is the result without the item, and
(b) is the result with the item.

(a) (b) (c)

Fig. 3.3 Example on the same synthetic image showing the combination of conductivity and
P-M diffusivity. A source point settles on top of the curve. After the same period of time, (a)
is the result of using the cubic form of Eq. (3.6), (b) corresponds to the PM model Eq. (3.8),
(c) is the result of using the combination of conductivity and P-M model Eq. (3.10).

Here, α is defined by Eq. (3.6). Thus diffusion depends on both region and edge based
features. The advantage can be seen in Fig.3.3 where the heat becomes more concentrated
along the central curve as a result of this combination.

Another advantage of using this combination is that it can get the centerline automatically.
According to Eq. (3.3), it is indicated that wherever there is a larger heat density there is
a smaller distance between the points on the image and the source point p0. By using Eq.
(3.10), heat will be mostly concentrated in the center of the region containing the source point.
Fig.3.8 gives an example of centerline extraction in a vessel image.

A P-M Model that Follows the Edges

In fact, besides the features in Eq. (3.8), there are other features that can also be used in
the P-M model. Contrary to the features in Eq. (3.8) that keep the heat inside a region, we
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propose to define features that help heat focus on the edges or boundaries by enhancing the
potential on the edges:

 ∂tu = div(D∇u)
D = ∥∇I∥2+ε

(3.11)

In this model, heat diffuses faster wherever the gradient gets higher such as on an edge or
across thin structures. In order to keep the diffusion coefficient strictly positive, we add a
small positive constant ε to ∥∇I∥. Examples are shown in Fig.3.4. In the row above, without
enhancing ∥∇I∥, the very thin line can hardly be taken into account, as shown in (b), while in
(c), the heat travels mostly along the thin curve in the middle, using Eq. (3.11). In addition, a
much wider line of interest and its background with several polygons is shown in (d). Both
(e) and (f) are the results of diffusion using Eq. (3.11) in P-M model where the diffusion starts
from two different positions of the source point. When the heat starts diffusing from the red
point, it almost goes along the boundary of the hexagon and then heat diffuses to the curve.
The heat also concentrates on the boundary of the curve. The same phenomenon can be seen
in (f) where heat starts diffusing in the center of the curve and then goes along the double
edge. Thus Eq. (3.11) is good at extracting features such as edges and boundaries.

3.2.2 Anisotropic Diffusion

Anisotropic diffusion has a form as follows:

ut = div(D∇u) (3.12)

where D is a diffusion tensor rather than a scalar. It is a tensor field of symmetric positive
matrices that encodes the local orientation and anisotropy of an image. This anisotropic
diffusion makes heat propagate in the direction that we design [5, 47] by defining the relevant
tensor D. Weickert [115] proposed a coherence enhancing diffusion method, using a nonlinear
anisotropic diffusion equation for filtering problems. A symmetric and positive definite
diffusion tensor is used in this method. It is obtained by the tensor product of ∇I: Jρ(∇Iσ) :=
Kρ ∗ (∇Iσ⊗∇Iσ), where Kρ is a Gaussian kernel. In [115], the eigenvectors are the same as in
Jρ(∇Iσ) and the eigenvalues are chosen to make diffusion act mainly along the direction with
the highest coherence. An improved structure tensor is proposed in [56] to get an integrated
edge and junction detection method. The structure tensor is calculated by means of Gaussian
derivative filters of the image I. The authors proposed multiple ways to improve the structure
tensor including using a higher sampling rate, improving corner localization etc. Generally,
the gradient ∇I of the image is usually taken into account to measure the local direction of
edges or texture [82]. In [5], the authors proposed an interactive vessel segmentation method
to extract the centerlines as well as the boundaries of the vessels. In this method, they defined
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(a) (b) (c)

(d) (e) (f)

Fig. 3.4 Example on a synthetic image to illustrate how Eq. (3.11) works. The source point is
placed on the very thin line in (a) and a wider curve in (d), the red point in (a) is the source
point for (b) and (c). (b) is the result of diffusing on (a) by a method discussed in (3.6), (c)
is the diffusion result of (a) using (3.11). The red point on (d) indicates the position of the
source point for (e) and the yellow point indicates the position of the source point for (f). Both
(e) and (f) are the diffusion results of (d) generated by using |∇I|2 as the feature in the P-M
model.

the metric using the eigenvectors and eigenvalues obtained from OOF (optimally oriented
flux) [58]. This metric is oriented along the estimated direction of the vessel, allowing a
higher velocity on the centerline and with an estimate of the vessel local radius. Since we do
not segment the boundaries in this chapter, we just use the Hessian matrix to construct the
metric.

Eigenvalues and Eigenvectors

The tensor field can be diagonalized as in [82]:

D(x) = λ1(x)e1(x)e1(x)T +λ2(x)e2(x)e2(x)T (3.13)

The normalized vector fields ei(x) are orthogonal eigenvectors of the symmetric matrix
D(x), and the λi(x) are the corresponding eigenvalues, with 0 < λ1(x) ≤ λ2(x). Following [82],
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(a) (b) (c)

(d) (e) (f)

Fig. 3.5 (a) a Gaussian image, (b) tensor field by gradient, (c) to (f) are the shortest paths
between the two user-chosen points, the corresponding anisotropies are 0, 0.5, 0.8 and 0.99

the anisotropy µ(x) is defined as:

µ(x) =
λ2(x)−λ1(x)
λ2(x)+λ1(x)

(3.14)

When λ1(x) = λ2(x), the anisotropy µ(x) is 0, and the tensor is in fact a scalar metric which
makes geodesics the shortest paths according to the isotropically weighted distance.

Anisotropic Diffusion Tensor

When λ1 , λ2, it is anisotropic. As mentioned before, λ2 ≥ λ1, λ2 controls the direction of
the heat flow. When λ2 is far larger than λ1, the heat flows in the direction of e2 while only a
little goes into the orthogonal direction. Fig.3.5 depicts the effect of the change of anisotropy
in detecting a shortest path. We define the gradient direction of the image as e1, which is the
radial direction, and its orthogonal direction as e2 (in fact, the eigenvectors are the same as
those used in [115]). When λ1 = λ2, the heat diffusion begets the Euclidean distance map, and
the shortest path is a straight line. As the anisotropy grows, the direction of heat flow travels
more along the tangent direction and the geodesic lines get closer and closer to a half circle.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.6 Experiment on a U-tube structure: (a) original image, (d) tensor field, (b) and (c) are
the distance maps obtained by isotropic and anisotropic diffusions respectively, (e) and (f) are
the corresponding geodesic lines.

In [38], the authors introduced a multi-scale vessel enhancement method by interpreting
geometrically the eigenvalues of the Hessian matrix. Using the Hessian eigenvectors, the
local orientation of the image can be estimated, allowing to find out where there are tubular
structures like vessels. Here we use a fixed Gaussian kernel and compute the 2D Hessian
matrix, then compute the eigenvalues and eigenvectors. We use the eigenvectors as a tensor
field and control the anisotropy.

Fig.5.3 shows the isotropic and anisotropic heat diffusions respectively on a U-tube image.
The U-tube image is given by (a). (b) is the distance map obtained by using conductivity Eq.
(3.6), n = 3. (c) is the distance map obtained by using anisotropic diffusion. (d) shows the
tensor field that is used in the anisotropic diffusion, and it is obtained by Hessian matrix. (e)
is the geodesic line obtained by backtracking in (b), we can see that the geodesic line takes a
shortcut. When the heat diffuses by taking the local orientation into account, this shortcut
is avoided. (f) shows geodesic line by backtracking in (c). As seen, the heat travels along
the tensor field, and by backtracking, the line is exactly located on the tube in the correct
direction.

3.2.3 Heat Diffusion on Meshes

The heat equation on meshes is similar to the one on images though the heat is transferred
from one vertex to another, not from pixel to pixel. We introduce a numerical method to solve
the heat equation on triangle meshes. The mesh is composed of faces { fm}1≤m≤M and vertices
{vn}1≤n≤N where M and N are the numbers of faces and vertices respectively.
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First, we need to compute the cotangent Laplacian W of the mesh. It can be obtained by
using Eq. (3.15) [83, 89]:

Wi, j = cot(αi, j)+ cot(βi, j) (3.15)

where αi, j and βi, j are the two angles opposite to the edge (vi,v j), which connect two
vertices. Next, we need to compute the symmetric Laplacian matrix L = D−W, where
D = diagi(

∑
j Wi, j). At last, we get the normalized operators W̃ = D−1W and the Laplace

operator is L̃ = D−1L.

The heat diffusion on a mesh solves: ut = −L̃u. Here the conductivity of the domain
is assumed constant. When it comes to enhancing other special features, for example, the
curvature in order to extract the edges on mesh, or the texture on the surface in order to find
characteristic lines on the surface, we incorporate these features into the heat equation. It
yields:

∂u
∂t
= −L̃(u∗P) (3.16)

where P plays a role similar to heat conductivity α in (3.6) and determines the evolution and
distribution of heat on the surface.

3.2.4 The Applicability of Varadhan’s Formula

As explained in the introduction, the main relation between heat diffusion and distance maps
comes from the Varadhan’s formula. In this section, we give a closer look to this formula and
its extensions.

In [21], the authors introduced approximate solutions for the Green function of uniformly
parabolic second-order operators with variables, by using expansions. Let L be the general
Laplacian operator which comprises the second and first order terms:

Lu :=
n∑
i, j

ai, j(x)
∂2u
∂xi∂x j

+

n∑
j

b j(x)
∂u
∂x j
+ c(x)u (3.17)

Our heat equation with the boundary condition becomes:

∂tu−Lu = 0, in(0,∞)×RN

u(x,0) = δx0 , onRN
(3.18)

According to [106, 113, 21], the operator L can be interpreted as a Laplace-Beltrami
operator on a manifold with lower order terms, thus, we can obtain the Green function
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(or fundamental solution, heat kernel) Gt(x,y) of Eq. (3.18) represented by an asymptotic
expansion of the form:

G(x,y, t) =
e−
φ(x,y)2

4t

(4πt)N/2 (
∞∑

k=0

G(k)(x,y)) (3.19)

as t→ 0+, where φ(x,y) is the geodesic distance induced by a Riemannian metric derived
from the coefficients {ai, j} between points x and y, G(k)(x,y) are smooth functions.

The fundamental solution of Eq. (3.19) satisfies the formula introduced by Varadhan
[104]:

lim
t→0

[−4t logux(y, t)] = φ2(x,y) (3.20)

where here ux(y, t) = G(x,y, t). For example, this formula is well understood in the case of the
homogeneous heat equation posed on the whole domain R2. Then, the Green function is in
fact a Gaussian function and the explicit solution is

ux(y, t) = (2πt)−k/2 exp{−
1
4t
∥x− y∥2} (3.21)

It can be easily seen that this function satisfies formula Eq. (3.20).

In this chapter, we introduce three kinds of heat flows.

1. The heat equation for the conductivity case is obtained from Eq. (3.18),

taking ai, j(x) = αpxδi, j, where αpx is defined in Eq. (3.6) and δi, j is the kronecker
symbol, equal to 1 or 0 depending on i equal to or different from j. And we have
b j(x) ≡ 0, c(x) ≡ 0. Therefore, the distance φ is a weighted distance. The geodesic paths
correspond to minimal paths relative to isotropic potential equal to the conductivity αpx .

2. For the P-M case, of section 3.2.1, we have ai, j(x) = D(x)δi, j and (b j(x)) j = ∇D, c ≡ 0
in Eq. (3.18).

3. For the anisotropic case, of section 3.2.2, we can take, by developping div(D∇u) from
Eq. 3.12, ai, j(x) = Di, j(x), b j(x) = div((Di, j(x))i) and c(x) ≡ 0. Since for the general
anisotropic case the distance φ derives from a Riemanian metric, the orientation of the
geodesic lines have to agree as much as possible with the eigenvectors of the metric.

In all cases above, Varadhan’s formula means that the corresponding heat flow allows to
find an estimate for the distance map according to the Riemannian metric derived from the
coefficients {ai, j}.
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3.3 Experiments and Analysis of Different Heat Flows

3.3.1 Experiments Data and Settings

We test the different heat diffusion models on several datasets:

Isotropic diffusion on real images. In the experiment of road extraction (Fig.3.7), the data
is an optical remote sensing image and is resized to 300×300. In the experiment of vessel
extraction (Fig.3.8), the image size is 512×512. The conductivity is given by Eq. (3.6), and
n = 3, the coefficient K in Eq. (3.8) is 0.03.

Isotropic diffusion on a noisy image. Fig.3.9 is an example on a noisy image (a), with a
given percentage of corrupted pixels, ξ equals to 0.133.

Anisotropic diffusion on a synthetic images. In the spiral experiment in Fig.3.10, we use
the Hessian matrix to define the diffusion tensor and the anisotropy is set to 0.9.

Isotropic diffusion on a mesh. The block of fig.3.11 has 57184 faces and 25894 vertices.
Curvature in the mesh was computed following the method in [20] and [2].

In addition, it should be guaranteed that the heat has spread all over the domain (i.e. the
image), where the structures to be extracted are all included. On the other hand, the heat
is not supposed to propagate for a long time because the image will eventually get blurred.
In order to achieve that, we must manage to set an iteration number in accordance with the
problem data (size of the image, position of the source point) while managing control of the
heat flows. Therefore, the diffusion has to take place during a limited and short period of time.
In addition, to make sure that the values are computed within a reasonable number of time
iterations, the time step of each iteration τ in ∂u∂t −τ ·α∆u = 0 is set to τ = 0.2, which satisfies
the CFL condition [22].

3.3.2 Results and Analysis

To evaluate the performance of the centerline extracted by different methods, we compute the
precision and recall criteria given by the following formula:

 recall = T P
T P+FN

precision = T P
T P+FP

(3.22)

where T P is the length of extracted centerline that matches the manually labeled ground
truth, FP represents the length of extracted centerline which are not on the ground truth, and
FN is the length of the ground truth but that is not extracted.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.7 Experiment on the image of a road: the top row from left to right displays the
corresponding path extracted by using Fast Marching, the heat method by using respectively
Eq. (3.6) as conductivity, n = 2 and ϵ = 0 Eq. (3.11) and Eq. (3.8) in the P-M model, the
bottom row displays the distance maps by using these methods respectively.

Isotropic diffusion on real images.

In Fig.3.7, the source point is set on the top of the very thin white line (which is a
road)with the endpoint at the bottom. The blue curves in (a) to (d) are the paths extracted by
backtracking from the end point to the source point. It is based on the distance maps obtained
respectively by using isotropic Fast Marching, by using the heat method with conductivity
Eq. (3.1), by using P-M diffusion model with Eq. (3.11) and by using P-M model using Eq.
(3.8) as shown from (e) to (h). In (a) and (b), we use the same metric for the Fast Marching
Method and heat diffusion.

From Table 5.1, the road extracted in (a) and (b) has a similar recall and precision. But
the road extracted in (b) is much smoother than the one from Fast Marching (a). In addition,
the P-M model based on Eq. (3.11) is good at extracting thin structures, see (c). Further,
in (d), by using Eq. (3.8) in the P-M diffusion model, the more homogeneous parts can be
easily distinguished. This indicates that the heat diffusion by the use of Eq. (3.8) in the P-M
model is likely to present good results when there is a relatively larger part to be extracted.
Moreover, heat in such a case is easily diffused in places where a few changes exist.

The experiment of vessels is shown in Fig.3.8, in which the source point (marked as
red cross) and end points (marked as black) are given by the user. By using isotropic Fast
Marching (a), the extracted lines do not exactly follow the centerline, especially in the center.
By using the isotropic linear heat diffusion Eq. (3.1) with Eq. (3.6) as the conductivity, due
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to directionally independent heat scattering, the centerline of the vessels is not completely
right. (c) is the result that combines the P-M model with the conductivity Eq. (3.10), using Eq.
(3.8) in P-M model, the heat is more concentrated in a homogeneous area where the source
point stays. From (d), we can see that the centerlines are well extracted despite the position of
the manually set source point, which means that the point of most concentrated heat moves
to the centerline in the process of diffusion. In this test, compared to the center line ground
truth, it can be seen in Table.5.1 that Eq. (3.10) is effective in extracting the center line of the
vascular-like structure.

Table 3.1 (the indexes of evaluation%).

data method recall precision

Road Fast Marching 79.59 72.87
Fig.3.7 Heat Diffusion(3.6) 76.32 71.00

Heat Diffusion(3.11) 98.11 91.00
Vessels Fast Marching 84.73 63.68
Fig.3.8 Heat Diffusion(3.6) 91.78 67.01

Heat Diffusion(3.10) 92.26 70.09

Isotropic diffusion on a noisy image

The diffusive nature of the heat equation causes instant smoothing. Even if there is a
temperature discontinuity at initial time t = t0, the temperature becomes smooth as soon as
t > t0. Solutions of the heat equation are characterized by a gradual smoothing process from
the initial temperature distribution by the flow of heat from warmer to colder areas of an
object, and this can be considered as a blurring process. This is why the heat equation is used
for filtering problems. And also in our case, the geodesic curves that are extracted are not
so affected by noise. Fig.3.9 is an example on a noisy image (a), with a percentage 0.133 of
corrupted pixels. Given a source point and an end point on both ends of the black curve, the
red lines on (b) and (c) are obtained by the isotropic Fast Marching Method and heat method
using P-M model respectively. The potential used in Fast Marching and the scalar used in
P-M model are the same. Both are the norm of gradient of the image. From the result we can
see that the heat method gives a better result than Fast Marching despite the noise, which
indicates that the heat method is less sensitive to noise.

Anisotropic diffusion on a synthetic images

Fig.3.10 illustrates an experiment using anisotropic heat diffusion. The results are as
follows: (a) is the original spiral image, (d) is its corresponding tensor field by using the
Hessian matrix. (b) is the distance map obtained via the isotropic heat diffusion (Eq. (3.1) as
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(a) (b)

(c) (d)

Fig. 3.8 Experiment on real vessel image: the red cross is the manually set source point, the
black spots are the end points provided by the user, and the blue curves are the extracted
geodesics (a) is the result by isotropic Fast Marching (b) is the result by only using the
conductivity (Eq. 3.6), (c) and (d) are the results by using the combination (Eq. 3.10), but
with different source points.

the diffusion model, and Eq. (3.6) as the conductivity with n = 3) and (c) is the distance map
obtained via the anisotropic heat diffusion, (e) and (f) are the extracted lines. From the results,
we can see that in (b) and (e), using isotropic diffusion, the temperature blurs in the process
of diffusion, and the path extracted takes the shortcut from the end point to the source point,
while in (c) and (f), using anisotropic diffusion, the path backtracks along the spiral line, and
the heat diffuses predominantly along the spiral apparently.

Isotropic diffusion on a mesh

To illustrate the method of section 3.2.3, Fig.3.11 uses the curvature of the block as
diffusivity. Furthermore, the higher the curvature at a point, the higher the probability that
at this point the amount of heat received is larger than at the neighboring points: (a) is the
original block structure; (b) is the distance map, as shown in (b), the distances on the edges
are smaller than the flat surfaces, which means heat is more concentrated on the edges of the
block, in comparison with the smooth and flat parts. (c) shows the result of the minimal paths
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(a) (b) (c)

Fig. 3.9 Experiment on a noisy image (a), the red line on (b) is obtained by Fast Marching
Method, the red line on (c) is the result of P-M heat method (3.11).

between the ten end points and three source points. It is very conspicuous that that all paths
go along the edges.

As is introduced above, the heat flows are not strongly affected by noise. For the different
heat flows, there are other advantages and disadvantages which we list in Table.3.2, where
IHF and AHF are abbreviations for the isotropic heat flow and anisotropic heat flow.

Table 3.2 (Comparison of different flows).

Metrics Advantages Disadvantages

Conductivity
√

Convenient Intuitive × Complicated scenes
IHF P-M Eq.(3.8)

√
Homogeneous regions × For edges

P-M Eq.(3.11)
√

Edges Boundaries × For regions

AHF
√

Specified directions × Time Consumption
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(a) (b) (c)

(d) (e) (f)

Fig. 3.10 Experiment on a spiral: (a) original spiral image; (d) tensor field; (b) distance map
by isotropic heat diffusion; (e) geodesic line extracted corresponding to (b); (c) distance map
by anisotropic heat diffusion; (f) geodesic line extracted corresponding to (c).

3.4 Conclusion and Future work

In this chapter, we proposed new methods using the isotropic and anisotropic heat diffusions
to get the geodesic distance and geodesic lines for image segmentation purposes. Using
different kinds of diffusivity, models and tensors, the methods work well for different types of
images and features of interest. For example, the P-M model can either try to hold the heat
within the boundary of a region or make the heat flow along the edges. By using different
diffusion tensors, the anisotropic heat diffusion will flow along the direction that we design.
The biggest advantage of using heat flow is that it is very fast and robust as well, and also
easy to implement. Furthermore, heat diffusion is not very sensitive to noise, a little noise
will not affect its performance.
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(a) (b) (c)

Fig. 3.11 Experiment on the wedge-like block, three points on the edges are chosen to be the
source points, and 10 points are randomly chosen as the end point. (a) is the data, (b) the
distance map, (c) the paths extracted along the edges of the block.



Chapter 4

Automatic Segmentation Based on Heat
Diffusion

Abstract

In the previous chapter, we introduced how to obtain the geodesic distance and curves by
using different heat diffusion equations. However, in all of these methods, the user has to
provide at least one source point and several end points to extract the curves. This extensive
manual intervention makes it very tedious to extract complex curves. To address this issue,
we propose two algorithms for extracting the geodesic lines automatically without having to
provide the end points.

4.1 Introduction

The first algorithm is realized by the extension of the method of geodesic voting, which was
proposed in [92]. The authors first use the Fast Marching Method to get the distance map,
and subsequently use the boundary of the image domain, or randomly selected points, as the
end points. Backtracking from these end points to the source point, there will be numerous
paths. At each point of the image domain, the geodesic density is defined as the number of
paths that go through that point. By thresholding the density, an automatic segmentation of
the desired structures can be obtained. The general idea of our voting method is that we set
some time ∆T > 0 for the diffusion, which depends on the size of the image. After time ∆T ,
heat can pervade a certain region surrounding the source point p0. The pixels on the front
(boundary) of this region are then used as the end points for backtracking to p0. Then, setting
a cutoff-threshold ϵ on the geodesic density, we retain only those pixels, which have geodesic
densities above this threshold.
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The second method is inspired by the key point method described in [4]. In this method,
a set of contour curves or thin structures are obtained as a set of minimal geodesic paths
connecting successive keypoints. These keypoints are defined in an iterative way by selecting
the first point on the Fast Marching front for which the minimal path reaches a given curve
length. We refer to [4] for the rationale and details on the method. Here, in our own method,
we first let the heat diffuse for some time ∆T1 and use the current source point as the center and
r as radius to form a circle. We identify the points on the circle with the largest temperature
values (note that there might be more than one large value, and we are looking for the peaks
of the heat density larger than a prescribed threshold). The new source points are located at
these peak points. After obtaining the new source points from the peak points, we let them
begin to diffuse one after the other until a stopping criterion is met. This is a particular topic
of discussion in the keypoint section of the chapter.

Section 4.2 details how the voting method is adapted to the heat method; Section 4.3
displays the keypoint method; Section Section 4.4 shows experimental results for these
automatic methods on images. Section 4.5 provides some concluding remarks.

4.2 Voting Method

In [92], the authors present a novel method for automatic segmentation of tree structures,
named geodesic voting. First, the authors obtained the distance map by using the Fast
Marching Method, then they use some endpoints chosen automatically to backtrack to the
source point. Thus there will be a series of paths extracted. The points located on these paths
can be used to define the geodesic density:

µ(p) =
N∑

n=1

δp(ln) (4.1)

where δp(l) = 1 if pixel p is crossed by path l, N being the number of paths. A threshold-cutoff
for the geodesic density is also set. We retain only the pixels with a number of paths above
the prescribed threshold in the final result.

In this section, we introduce three voting methods. They will be detailed in the ensuing
subsections. One method is to vote from the front of heat distribution directly. As stated
above, the paths are extracted from the boundary of the heat distribution after time ∆T . They
consist in joining each end point to the source point by backtracking. Fig.4.1 shows how the
time ∆T affects the results. In the first row, we choose a smaller time ∆T ′, which is half of
the ∆T in the second row. (a) and (d) show the heat distribution after ∆T ′ and ∆T and the
blue curve surrounding the regions are the fronts which are considered as the end points. (b)
and (e) are the paths obtained by backtracking from the front points to the source point. (c)
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1 Experiment on a tree structure by voting from front, from left to right: the first column
shows the distance maps, the second one shows the paths obtained by backtracking from the
heat front to the source point, and the third one presents the result by voting.

and (f) give the structure extracted by voting. Clearly we can see that in Row2, the method
gives a more thorough result compared to Row1, which emphasizes the importance of how
we choose ∆T .

Another voting method is to add new voting points within a smaller period time ∆T1. We
then track back from the front to the source point and vote for the first result. Next, we let the
heat continue to diffuse for another time ∆T1 to track back and vote again, adding the new
result to the first result. This process of letting the heat diffuse within a period of time ∆T1 is
reiterated as many times as need be until the stopping criterion is fulfilled.

The third voting method is realized by resetting the source point. After time ∆T1, the first
result can still be obtained by voting. Then, we use these points as the new source points,
and let the heat diffuse for another ∆T1. The new results then add-up as the collection of
source points for the following diffusion. This process is repeated until the stopping criterion
is met. Experiments of these three voting methods are compared in the following section 4.4
dedicated to the experiments.
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4.2.1 Voting from the Front

First of all, we set a source point p0 at the location of interest. After ∆T > 0, the distance map
φ is obtained by Eq.(3.3). The positions on the boundary of the region covered by heat are
considered as end points. By backtracking from these end points back to the source point,
we get many geodesic lines. Setting up an appropriate threshold ϵ for the geodesic density
β can be useful for getting the right path. Generally, we choose ϵ =max(β)/M, where M is
a constant. For example, in Fig.4.1(f), M equals 30 in this case, but M can be different in
different cases.

Voting directly from the heat front is easy to implement. When we compare the use of heat
front to get end points with the use of boundary points of the image or randomly chosen end
points as the end points, we find that the heat front is more suited to get the centerline. This is
because the way heat diffuses depends a lot on the geometry of the shapes of the structure.
Yet, as heat propagates, the heat front does not provide the exact shape of the structure to be
extracted. This makes it easy to mix-up two paths that make a small angle between each other
like in the case of tree structures, making it more difficult to recover all the paths. As shown
in Fig.4.1(f), there are two segments inside the tree structure that are missing, whereas in (c),
these same segments are extracted. For this reason, we propose two other methods for more
complicated scenes.

4.2.2 Multiple Voting Method

As mentioned above, given a more complicated scene, such as a tree structure, there will be
branches missing even if we use the boundary of the region of heat diffusion. Besides, the
diffusion time ∆T should be re-selected when the image size is different. For these reasons
we propose the idea of the multi-voting method.

First, a source point p0 is given. Within a smaller period of time ∆T1, we see a reduction in
the magnitude of the region pervaded by the heat as shown in Fig.4.2(a). Using the boundary
of this region as the end points and backtracking to p0, as shown in (b), we vote and set a
threshold ϵ of the voting score Eq.(7.6). Here we choose ϵ =max(β)/7 in the experiments.
Note that we use 7 rather than 30 here because it is different from voting directly: there are
fewer paths extracted at each iteration. The points {ps1} with a higher density value than ϵ
are retained, as shown in (c). Then, we let the heat continue to diffuse for the same period
of time ∆T1 and get the distance map (d). We vote again from the points on the new front
of the region of heat and the newly obtained points {ps2} are saved again as shown in (f).
Heat diffuses in this way and we keep all the points {ps1} to {psn} together until the stopping
criterion is met (see section 4.2.4). We show the two first steps here and the final result is
shown in the experiment section.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.2 Experiment on the tree structure by multiple voting method, the top row is obtained
by the first step of Sect.4.2.2, the bottom row is the second step, from left to right are the
distance map, the paths obtained by backtracking from the front to the source points and the
result after voting.



66 Automatic Segmentation Based on Heat Diffusion

4.2.3 Accumulation of Source Points

Resetting source points method is based on a procedure similar to that of adding voting points
of the previous subsection. Both of them need a multi-voting process. The resetting source
points method takes advantage of diffusion and makes the process more exact because each
time there will be more source points that cover the structure.

The first step of voting is the same as the one in Sect.4.2.2. After time ∆T1 of diffusion
from source point p0, we get the points {pv1} by thresholding the geodesic density with ϵ and
save the points {pv1}. We then reset the temperature to zero everywhere on the image and
set all points of pv1 as the source points that have the same temperature. Next, we let these
source points diffuse for the same time ∆T1 and we vote again and get points {pv2}. Add {pv2}

to {pv1} and repeat resetting the temperature to zero on the whole domain and adding new
points to {pv1} as the source points, until the stopping criterion is met. The stopping criterion
here is the same as in 4.2.2 and will be detailed in sect.4.2.4.

Resetting source points method is different from Sect.4.2.2 because the source points keep
changing every time there is a vote. It is better at controlling the direction of the heat flow
because increasing the number of source points leads to higher accuracy. As is shown in
Fig.4.3, these are two first intermediate steps of this algorithm. After time ∆T1, the distance
map (a) is obtained, by voting we can get (c). In the second step, we use the points in (c) as
the source points, and let the heat diffuse from scratch. After the same time ∆T1, we get the
result in (f). In the next steps, we use the points obtained from its previous step as new source
points until the stopping criterion is met. Compared to Fig.4.1, by using resetting the source
points method, the segments on the tree structure are almost all extracted, and heat is more
concentrated on the boundary of the region that it covers. The final result is shown in the
experiment part.

4.2.4 Stopping Criterion

We define two criteria for the heat to stop diffusing. Once at least one of them is satisfied, the
heat diffusion stops, see Algorithm 2. Take Fig.4.3 as an example.

1. At the beginning, one point p0 is chosen as the source point in an image (with a size
M×N). Save p0 into a list L, which is initialized as empty. After one step of voting, we get
the points {pv1}, as shown in Fig.4.3 (c), save them into L. Denote the number of pixels in L
by NL. If NL/(M×N) > η, the heat diffusion is terminated. Otherwise, it continues to diffuse.
In our experiments, according to our experience, there is a rule of thumb and this magnitude η
is set to 1/30.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3 Experiment on the tree structure by accumulation of source points, the above row is
obtained by the first step of Sect.4.2.3, the below row is the second step, from left to right are
the distance map, the paths obtained by backtracking from the front to the source points and
the result after voting.

2. After the ith step of diffusion, new points {pvi} should be added into list L, if NL/(NL+

N{pvi}) > 95%, where N{pvi} is the number of the set {pvi}, the heat diffusion can also be
stopped.

Algorithm 2 Stopping Criteria
Initialization: p0 chosen as the source point, L← p0
repeat

L← pvn , pvn: the n-th voting;
until NL/(M×N) > η or NL/(NL+N{pvi }

) > 95%

4.3 Key Points from Heat

In [4], the authors introduced a method for segmentation using Fast Marching Method by
growing minimal path and detecting key points on the curves of interest recursively. First,
the user provides an initial point on the desired object. Then, starting from the initial point, a
front is propagated and the key points are detected iteratively. These key points are almost
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equi-distributed along the curve of interest, and thus are detected based on the Euclidean
lengths of the minimal paths. The whole process can be described as follows. First, start from
at least one single point p0 to initiate the Fast Marching Method. Every time we compute the
geodesic distance Up0(px) from a point p0 to px on the image, we also need to compute the
Euclidean length Lp0(px) of the geodesic path from p0 to px. When a point p1 satisfies that
Lp1 ≥ γ, where γ is a threshold given by the user, p1 is considered as the first so-called key
point. As soon as p1 is detected, it is considered as a new source of propagation. The same
process is used to define the successive key points {pk}. Front propagation is let to continue
until a stopping criterion is met. Refer [4] for details.

Since the key point method is efficient and robust in [4], we adapt it to heat diffusion.
However, using the heat diffusion, it is not as easy to compute the Euclidean distance together
with geodesic distance as it is in the case of Fast Marching in [4, 51]. This is because when
using Fast Marching, the geodesic and Euclidean distances are updated simultaneously at
every iteration when the status of a pixel is updated, by propagation, while in heat diffusion,
we do not compute the distances by the same kind of front propagation. Therefore, we propose
a new method to detect key points using heat diffusion without computing the Euclidean
length of each minimal path during every detection.

First, we set a source point p0 on the curve of interest, and p0 can be considered as the
first key point. For every key point, there are two states, s(px) = 0 and s(px) = 1, where s(·) is
the state function. As will be made clear below, points with state 0 are used to compute the
geodesic distance and lines, as well as finding the next key point, while points with state 1
are points that have already been used for computing its neighbor key points. Now let the
heat diffuse from p0, where s(p0) = 0. We stop the heat from diffusing after a certain time
∆t. The distance map dp0 can be obtained by Eq.(3.3). In the region Rp0 of heat diffusion,
we make a circle Cp0 where p0 is the center and r is the radius. It should be guaranteed that
the circle is located within this region Rp0 . Then we find the peaks among heat density uCp0

on the circle Cp0 and set a threshold ϵ1, save the positions {ps1} of the peaks whose values
are larger than ϵ1, and define {ps1} as the new source points. Fig.4.4 depicts the flowchart of
choosing the new source point in the first ∆t. We try to find the position of the peaks of the
heat density. Two points p1 and p2 are found here, {ps1} = {p1, p2}, and they are considered
as the key points which are found at the first diffusion.

After the first time of diffusion ∆t, we get {ps1} which denotes the new collection of
source points. Since p0 has been already computed for finding its neighbor key points, its
state is changed to 1, and we use a list L to save p0. Now it is turn for p1 to diffuse and get
its neighboring key points. We empty the heat density everywhere on the image and let heat
diffuse from p1, and use the same technique as shown in Fig.4.4. We get a distance map dp2 .
Yet, note that here we only use the subpart where Cp1 ⊂ Rp1\Rp0 . After finding its neighboring
key point p3, the state of p1 is changed to 1, and p1 is saved in the collection L. Point p2 goes
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(a) (b) (c) (d)

Fig. 4.4 Flowchart of how to choose the new source points in the first ∆t. From left to right,
(a) is the original image with a source point p0, (b) is the distance map D1 of the dashed box
in (a) after time t, the red circle is Cp0 , (c) plots the heat density on the points of Cp0 and there
are two peaks which represent the new source points p1 and p2 in (d).

the same way until we get to pn, where the maximal value of heat of Cpn ⊂ Rpn\{Rp0 , ...,Rpn−1}

is less than the threshold ε1 we set. Algorithm.3 is the key point algorithm using the isotropic
heat diffusion, where ϵ1, ϵ2 and ε1 are three parameters. Once we stop the process, we have a
set of key points and we obtain a set of paths, where each keypoint is linked by a geodesic
path to a previously obtained key point. This is made by backtracking from a keypoint to the
previous key point from which it takes its origin. Each path is obtained in the algorithm at the
time the key point is added in the list.

Algorithm 3 Keypoint Algorithm
Initialization:
s(p0) = 0,L← p0, u = 0, φ = 0, Γ = {0}; % Γ saves the geodesic paths
repeat:

pcurr = S earchS tate(L), % find the first point whose state is 0;
u(pcurr) = 1; % initialize the heat of current point
[u,φ] = HeatDi f f (u);
{pm} =GetPeaks(Cpcurr(r)); % Cpcurr ⊂ Rpcurr ,
s(pcurr) = 1;
if max{l(pm)} < ϵ1

break;
end if
for i = 1:m; % m is number of peak points;

if α(pi) > ϵ2; % α is the conductivity in Eq.(3.6).
L(end+1) = pi;
Γ(end+1) = γ(pi, pcurr);
s(L(end)) = 0;

end if
end for

until: max(Cpn ⊂ Rpn\{Rp0 , ...,Rpn−1}) < ε1
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4.4 Experiments and Analysis on Automatic Segmentation
of Geodesic Curves

4.4.1 Experiment Data and Settings

We test on three images: 1) a synthetic tree structure image in Fig.4.5 and Fig.4.9; 2) a real
vessel image with many branches in Fig.4.6, it is obtained by maximum intensity projection
of a real 3D vessel data and 3) a real medical image with a catheter which is highly curved
in Fig.4.8 (a), the size of all three images is 300× 300. In Fig.4.5(b), (c), (d), we use
isotropic heat equation Eq.(3.1) with the conductivity in all the three methods, Eq.(3.6), n = 3
here. In Fig.4.6 , Fig.4.7 and Fig.4.8, we use Eq.(3.10), the combination of P-M model and
conductivity for the heat diffusion. In the process of voting directly from the front, the time
∆T is controlled by the iteration times of heat diffusion, we set the iteration times to 2N,
where N is the length of image, here N = 300. In the process of multiple voting methods,
including Sect.4.2.2 and Sect.4.2.3, the smaller time ∆T1 is controlled by the iteration time of
each step, which is set to 100 here. In detecting key points, for each step, the iteration time is
50, and the radius r is 30, the threshold ϵ1 we set here is 80% of the highest heat density on
Cp0 during the first iteration.

4.4.2 Results and Analysis

Here we extract the centerlines by voting method or using the key point method.

In Fig.4.5, (e) is the result obtained by [92] and 500 end points are randomly chosen on
the image. (b), (c) and (d) are the voting maps obtained by using directly voting from the
front, multi-voting by adding voting points and multi-voting by accumulating of source points.
(f), (g) and (h) show the corresponding structures that are extracted by different methods, and
the black part are mis-extracted part. In (e), there are some parts missing in the terminals
in the tree branches, the same phenomenon takes place in (f) and (g). (h) has the best result
because all branches and details, as well, are extracted.

Fig.4.6 shows the results of Fast Marching (a) and the three automatic voting methods (b)
(c) (d) with heat on real medical images. From the results, we can see that the blue lines in (b)
(c) (d) go along the centerline of the vessels, but (a) fails to follow the centerline. And for
all of (a), (b) and (c), there are segments missing. However, by using resetting source point
method nearly all vessels are extracted in (d).

In Fig.4.7, the terminals of the catheter are hard to extract. Results are shown superimposed
on the potential image built from the Laplacian. Fig.4.7(a) is the result by [92] and the end
points are randomly selected, and from (b) through (d) are the results from using directly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.5 Voting experiment on the tree structure, (a) is the original image, (e) is the result by
[92] by using randomly chosen end points, from the second column to the fourth, the above
row shows the voting map by using respectively voting from the front, multi-voting by adding
voting points and multi-voting by accumulating of source points. And on the bottom row are
the corresponding results extracted by the three automatic methods.

voting from the front, multi-voting by adding voting points, and multi-voting by accumulation
of source points. All of the four results give the contour of the curve-of-interest.

The automatic method in Sect.4.3 is tested in Fig.4.8 and Fig.4.9. Fig.4.8(a) is the original
medical image, where there is a curve with some high curvature; (b) is the potential built
according to the Laplacian; (c) is the first step through detecting key points, and we can see
that there are two points (yellow) that are detected; (d) is the step following (c), and it can be
found that there is another key point detected; (e) is the next step and it is also the third step
in the whole process of detection; (f) is the result after several steps and (g) is the final result
in the case where the blue paths that are extracted by backtracking from each key point one
after the other, and they cover exactly the curve; (h) is the traveling map of the key points,
which means the geodesic distance map to each key point in its neighbourhood during the
whole process of heat diffusion.

The key point from heat method does better than voting methods for this example. Com-
putationally, comparing the heat density becomes much easier and less time-consuming than
computing the Euclidean length of the geodesic curves each time in [4]. Furthermore, it also
provides satisfactory results.

Another important issue in using key points from heat is how to choose an appropriate
radius r for defining the circles every time. Fig.4.9 are experiments on the tree structure using
the key points from heat. From (a) through (d), the radius are 45, 30, 15, 10 respectively. And
from the extracted paths, we can see that (d) gives the most complete structure among the
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(a) (b)

(c) (d)

Fig. 4.6 Voting experiment on the real vessel image, (a) is the original image with classical
voting from Fast Marching, (b) (c) (d) are the results by using directly voting from the front,
multi-voting by adding voting points and multi-voting by accumulating of source points.

four results. In this case, it can be seen that when a smaller radius r is used, the result is better.
But this does not prove that it is better using a smaller r in every situation. In fact, how to
choose an appropriate radius depends on the size of the feature that we want to extract. Here
in the tree structure, the width of the branches of the tree have no more than 10 pixels, so a
smaller radius is more effective in key points detection in this particular case. However, as in
the classical key point method [4], using a larger radius makes the method less sensitive to
noise, and this is why the radius should not be chosen too small.

4.5 Conclusion

In this section, we apply two automatic ways to heat method to extract geodesic curves: one
is based on voting and the other is based on finding keypoints. Experiments show that using
the proposed automatic methods, the results are satisfactory and robust as well as time-saving
and these two methods help to reduce human intervention effectively.
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(a) (b)

(c) (d)

Fig. 4.7 Voting experiment on the real medical image with catheter, from left to right: the
results of [92] are displayed by using randomly chosen end points; using directly voting from
the front; multi-voting by adding voting points and multi-voting by accumulating of source
points.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.8 Keypoint experiment: (a) is the original image; (b) is the Laplacian of the original
image; (c) the red point is the source point given by user, and the two yellow points are the
first key points detected; (d) is the second step of detecting key point from heat; (e) is the next
step, and (f) the result after several steps in search for key points; (g) shows the final result of
all the key points and paths detected and (h) is the traveling map of key points.



4.5 Conclusion 75

(a) (b)

(c) (d)

Fig. 4.9 Keypoint experiment on a tree structure by using key point method from heat, the red
point is the source point given by the user, and the yellow points are the key points detected.
From left to right are displayed the results when using different radii r in defining the circles,
they are 45, 30, 15 and 10 pixels respectively from (a) to (d).





Chapter 5

Tubular Structure Segmentation based
on Heat Diffusion

Abstract

As shown in Chapter 3 and Chapter 4, we applied the different heat equations to extract the
centerlines of tubular structures. In this chapter, an interactive method for tubular structure
segmentation is proposed. The method is based on the minimal paths obtained from the
geodesic distance solved by the heat equation. This distance can be based both on isotropic
or anisotropic metric by solving the corresponding heat equation. Thanks to the additional
dimension added for the local radius around the centerline, our method can not only detect the
centerline of the structure, but also extracts the boundaries of the structures. Our algorithm is
tested on both synthetic and real images. The promising results demonstrate the robustness
and effectiveness of the algorithm.

5.1 Introduction

As introduced in Chapter 2, generally, the geodesic distance φ could be acquired via Dijkstra’s
method [27] or solving the Eikonal equation ∥∇φ∥T−1 = 1, where T is a tensor metric computed
from the image I in anisotropic cases. When in isotropic cases, T =P2Id, the Eikonal equation
becomes: ∥∇φ∥ = P. Please refer Chapter 2.1 for details. The Fast Sweeping Method [125]
and the Fast Marching Method [97, 19] are quite often used to solve the Eikonal equation.
For the extraction of the geodesic lines γ⋆ between the initial point ps0 and the endpoint px,
it can be achieved by solving an ordinary differential equation after the computation of φ.

∀s > 0,
dγ⋆

ds
= −

T−1∇φ

∥T−1∇φ∥
,γ⋆(0) = px (5.1)
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Let us recall the heat equation: the heat equation is a partial differential equation (PDE)
that describes the evolution of the distribution of heat on a domain within time T . The general
form is:

∂u
∂t
= α∆u (5.2)

where u stands for the heat, and α, a positive constant, represents the thermal conductivity, ∆
is the Laplace operator.

Let us also recall the Varadhan’s formula: in 1967, Varadhan [104] proposed to ap-
proximate the geodesic distance φ(p0, px) between two points p0 and px on a Riemannian
manifold:

φ(p0, px) = lim
t→0

√
−4t logup0(px, t) (5.3)

where up0 the solution of Eq.(5.2) under the initial condition that up0(0) = δp0 within a small
time t→ 0. In Chapter. 3, we have proved that the Varadhan’s formula can be applied to either
the isotropic heat diffusion or the anisotropic heat diffusion.

Recently, Crane et al. [23] proposed a heat method to estimate the geodesic distance.
Their heat method is extremely fast because some crucial steps can be precomputed. It is also
proved that the sparse systems arising from the elliptic PDEs can be solved in very close to
linear time [95, 96]. Details can be found in the original paper [23] or Chapter. 2.

In Chapter 3, we have extended and gone beyond the work of Crane et al. . We introduced
isotropic and anisotropic heat flows to approximate the geodesic distance by using Varadhan’s
formula Eq.(5.3). It is shown in Chapter 3 and 4 that using the heat method to approximate
the geodesic distance is not only fast and efficient, but also less sensitive to noise. Despite
the efficiency and robustness of the heat method, according to previous work, it could only
provide the centerline for the tubular structure. We would like to integrate the segmentation
methods to the heat equation and make it extract the centerline and segment the tubular
structure simultaneously.

In the past few decades, numerous segmentation methods based on minimal paths have
been proposed, such as [19, 60, 7, 6, 123]. In [60], Li and Yezzi have incorporated an
additional non-spatial dimension to the traditional minimal path technique [19](where there
are only spatial information). This method can measure the thickness (radius) of the structures
in space. In other words, this additional dimension can help to extract the boundaries and
surfaces of the structures in 2D and 3D spaces. And in the meantime, their method can also
detect a precise centerline of the structures. But the potential P that is used in [60] is isotropic
and depends on the positions. The orientations of the tubular structures are ignored. Later on,
Benmansour et al. [7] have proposed an anisotropic minimal path model which also takes
the additional dimension into account, so the potential depends both on the positions and the
tangent directions. The way they built the metric was based on the anisotropic Optimally
Oriented Flux (OOF) descriptor proposed by Law and Chung [58]. The OOF descriptor
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makes the propagation faster along the tubular structures. The advantage of the anisotropic
model is its ability to avoid the shortcut issues effectively. Then Benmansour and Cohen have
extended their method into 3D vessel extraction [6].

In [60, 6], the authors use the Fast Marching Method to get the numerical solution of
the Eikonal equation, while in this chapter, we are interested in the segmentation of tubular
structures by using the heat method. Here, we use the same way to construct the metric tensor
as the authors do in [7, 6]. This is called 2D + Radius model in heat.

The contribution of this work is that we add a non-spatial third dimension in both isotropic
and anisotropic heat diffusion to segment tubular structures. We use the OOF descriptor [58]
to build the metric. Therefore, the heat method can be used to detect the centerlines and
boundaries simultaneously. Besides, we use the scheme proposed in [35] to discretize the heat
equation, for each image, the Laplacian operator can be precomputed. Additionally, under the
same conditions, compared with the Fast Marching Method, the heat method presents good
results within less time.

This chapter is organized as follows: in Section 5.2, we give some background on the
minimal path, the heat diffusion, and the OOF descriptor; in Section 5.3, how to construct
the metric and the way to solve the heat equation are presented; in Section 7.4, we test our
method on some synthetic and real data. Section 5.5 provides some concluding remarks and
possible directions for future work.

5.2 Background

5.2.1 Minimal Paths

Let us recall the minimal path model introduced in Chapter 2, given an image I : Ω→ R and
two points ps0 and px, the geodesic γ is a curve connecting these two points that globally
minimizes the following energy functional E :Aps0 ,px → R

+:

E(γ(s)) =
∫
Ω

{P(γ(s))}ds, γ(s) ∈ Ap0, px (5.4)

where P is a potential cost function computed from I. Aps0 ,px(s) is the set of all the curves
linking ps0 and px, s is the arclength.

This is the isotropic case. To solve this minimalization problem, Cohen and Kimmel [19]
proposed a Hamiltonian approach: Find the minimal action map φ : Ω→ R that solves the
Eikonal equation with an isotropic metric:

∥∇φ∥ = P (5.5)
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with the boundary condition φ(ps0) = 0. Popular ways to solve the Eikonal equation such as
the Fast Marching [97, 19] and Fast Sweeping [125] are quite often used. But these methods
do not reuse information [23]: once the geodesic distance φs0 from the initial source point ps0

is obtained, the distance from another source point ps1 needs to be recomputed from scratch.
According to Eq.(5.3), φ can be also approximated by the heat kernel. The advantage of using
the heat kernel is that the Laplace operator could be precomputed, so that the fundamental
solution of the heat equation can be acquired in a single step no matter where the initial point
ps0 is. In this way, the approximation of φ can be obtained once the heat equation is solved.
Then the geodesic γ could be obtained by solving Eq.(2.13) or Eq.(2.10) depending on the
heat diffusion being isotropic or anisotropic.

5.2.2 Isotropic and Anisotropic Heat Diffusion

Eq.(5.2) presents a homogeneous form of heat equation. When it comes to isotropic and
anisotropic heat diffusion, the heat equation could be written as:

∂u
∂t
= kdiv · (D∇u) (5.6)

where k is the diffusivity, it can be a constant (as α in Eq.(5.2)) or a scalar function, and D can
be a scalar function or a diffusion tensor. According to [49], when D is a scalar function, the
heat diffusion is isotropic. And when D is a diffusion tensor, it is a tensor field of symmetric
positive matrices that can encode the local orientation and anisotropy of an image [123]. Then
the heat diffusion becomes anisotropic. For the 2D heat diffusion, the tensor field D can be
decomposed as shown in Eq.(5.7):

D = λ1e1eT
1 +λ2e2eT

2 (5.7)

λ1 and λ2 are the eigenvalues, λ2 ≥ λ1 > 0, e1 and e2 are the the corresponding orthogonal
eigenvectors. A measure of the local anisotropy can be defined as µ = (λ2 −λ1)/(λ2 +λ1).
When λ1 = λ2, the heat diffusion becomes isotropic.

The main difference between isotropic and anisotropic diffusion lies in the fact that
isotropic diffusion does not include the local orientation, by using the anisotropic diffusion,
heat could be more concentrated on the directions that the users design.

5.2.3 Optimally Oriented Flux

In order to use the relevant anisotropic heat equation, we need to find some estimates for
the local orientation and scale to describe the tube-like structures. In fact, many classical
enhancers like the Hessian-based vesselness mesures have been proposed [38, 62]. The
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Hessian-based enhancers include adjacent features, while the OOF descriptor [58] avoids this
problem.

Given an image I :Ω→R2, the oriented flux is the amount of the image gradient projected
along the axis p flowing out from a 2D circle Sr at point x with radius r:

f (x;r,p) =
∫
∂Sr

(∇(Gσ ∗ I)(x+ rn) ·p)(p ·n)ds (5.8)

where Gσ is a Gaussian with some variance σ, and empirically σ is set to 1. n is the outward
unit normal of ∂Sr. ds is the infinitesimal length on ∂Sr. Based on the divergence theorem,
the oriented flux can be written as:

f (x,r;p) = pT Qr,xp (5.9)

where Qr,x is a symmetric matrix and we have:

Qr,x =

∂xxGσ ∂xyGσ
∂yxGσ ∂yyGσ

∗1r ∗ I(x) (5.10)

where 1 is an indicator function, which means that inside the circle, it equals to 1 and outside
the circle it equals to 0. We denote the eigenvectors and eigenvalues of Qr,x by vi and λi,
i ∈ {1,2}. The entry at ith row and jth column of Qr,x is:

qi, j
r,x =

∫
Ω

br(y)(gâiâ j,σ ∗ I)(x+ y))dS = ((br ∗gâiâ j,σ(x)∗ I(x)) (5.11)

where br(x) is a step function and we have br(x) =

1, ∥x∥ ≤ r
0, otherwise

, and gâiâ j,σ is the second

derivative of Gaussian along âi and â j.

To acquire each entry of Qr,x, a Fourier transform on Eq.(5.11) is used. To deal with the
tube-like shapes with different radii r, a multi-scale method is applied with the OOF, i.e.,
different r is used as the scale for different width of the shapes.

In [58], the authors used only the eigenvalues λi of Qx,r for the vessel enhancement. In
this chapter, we use both the eigenvalues λi and the eigenvectors ei to form the diffusion
tensor, thus the heat could be more concentrated on the tube-like structures.
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5.3 Construction of the Metric and Numerical Solutions of
the Heat Equation

5.3.1 Construction of the Metric

Now we are considering building a (d+1)D metric, d is the dimension of the image, in our
case, d = 2, and the 3rd dimension is not spatial but a radius dimension. We use the same
way as described in [6] to construct the metric.

D(x,r) =

D̂(x,r) 0
0 Pr(x,r)

 (5.12)

where D̂(x,r) is a 2×2 symmetric matrix, this entry is used to describe the spatial anisotropy.
In addition, Pr(x,r) is the isotropic radius potential entry. For a certain scale r, the anisotropic
entry D̂ can be constructed by the eigenvalues λi (i ∈ 1,2) (λ2 > λ1) and the eigenvectors vi of
the OOF descriptor:

D̂(x,r) = η1(exp(β ·λ1(x))v1(x)v1(x)T + exp(β ·λ2(x))v2(x)v2(x)T ) (5.13)

The radius potential entry can be described by the eigenvalues of the OOF descriptor.

Pr(x) = η2 exp(β
λ1(x)+λ2(x)

2
) (5.14)

Here β is a constant that is controlled by the maximal spatial anisotropic ratio µ, which is
defined as:

µ =max
x,r

√
exp(β · (λ2(x,r)−λ1(x,r))) (5.15)

By choosing the maximal spatial anisotropy ratio µ, β is then fixed. 0 ≤ η1,η2 ≤ 1 are two
constants that control the space and radius speed. If we would like the heat to propagate faster
on the radius dimension, we could choose a bigger η2 > η1. Empirically, in this chapter, η1

and η2 are always set to be 1. Using Eq.(5.12) as the diffusion tensor in Eq.(5.6), the heat
equation can be written as:

∂u(x,r, t)
∂t

= div · (D(x,r)∇u(x,r, t)) (5.16)

For the isotropic diffusion, the metric D becomes:

D(x,r) = Pr(x,r)Id (5.17)

Id is an 3×3 identity matrix.
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5.3.2 Solving the Heat Equation

After the construction of the metric, we now solve the heat equation. Generally, the numerical
approximation to the solution of the discrete heat equation could be achieved by different
schemes [79, 31, 116, 35].

Given the image I :Ω→ R, suppose that the domain is discretized into M×N grids and
the scale of the third dimension r ∈ [Rmin,Rmax] is K. Then the initial condition becomes:
u0

i, j,k = 1, u0
i′, j′,k′ = 0, (i′, j′,k′) , (i, j,k), and (i, j,k) is the initial point given by the users.

Numerical Solution of Isotropic Diffusion

For the isotropic diffusion, we use a backward finite differences scheme, which is also called
implicit finite differences scheme. Taking the 3D heat equation Eq.(5.2) into consideration,
the backward finite difference scheme would be:

(Id−τα∆)ut = u0 (5.18)

Id is the identity matrix, τ is the diffusion time, ut is the heat value after time τ. The Laplace
operator ∆ can be easily discretized as an (N ×M×K)2 block penta-diagonal sparse matrix.
After the discretization of the Laplace operator ∆, the heat distribution ut can be acquired by
setting an appropriate time step τ.

Numerical Solution of Anisotropic Diffusion

For the anisotropic diffusion, we use a backward discretization scheme designed by Fehren-
bach and Mirebeau [35]. The scheme is called Anisotropic Diffusion using Lattice Basis
Reduction (AD-LBR). The advantages of this scheme are its non-negativity and sparsity, thus
making the solution robust and fast.

For Eq.(5.16), the backward scheme is:

ut −u0

τ
= div · (D∇ut) (5.19)

To acquire the fundamental solution of Eq.(5.19) within a small time τ, we have:

(Id−τdiv · (D∇))ut = u0 (5.20)
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The symmetric operator A = div · (D∇), with Neumann boundary conditions, can also be
defined through the identity∫

Ω

u(x) Au(x)dx =
∫
Ω

∇u(x)TD(x)∇u(x)dx, (5.21)

for all u ∈ H1(Ω). In order to discretize A, the AD-LBR approximates the contribution of each
grid point x ∈Ω to the r.h.s. of (5.21) using a sum of squared finite differences

∇u(x)TD(x)∇u(x) ≈
∑

v∈V(x)

ωx(v)
(
u(x+hv)−u(x)

h

)2

, (5.22)

where h> 0 is the grid scale, V(x) is a set of vectors referred to as the stencil of the point x, and
ωx(v) is the weight of the vector v at x. From these stencils and weights, the sparse symmetric
matrix of A is then easily assembled. The specificity of the AD-LBR numerical scheme is
that the stencils are sparse, with at most 12 elements in 3D, which limits the numerical cost
of the method, and that the weights are non-negative, which guarantees discrete maximum
principle as well as the robustness of the method.

Their computation involves the construction at each grid point x ∈Ω of an obtuse superbase
with respect to the matrix D(x), which is a family (ei)d

i=0 of vectors with integer coordinates
such that |det(e1, · · · ,ed)| = 1 and eT

i D(x)e j ≤ 0 for all 0 ≤ i < j ≤ d. The stencil is then
V(x)= {ei×e j; i, j} and the corresponding non-negative weights are ωx(ei×e j)=−1

2eT
k D(x)el

whenever (i, j,k, l) are pairwise distinct, i, j,k, l ∈ {0,1,2,3}. The stencil construction is cheap
and efficient thanks to arithmetic techniques, thus computation time is dominated by solving
the linear systems. See [35] for details.

5.4 Experiments and Results

5.4.1 Experiment Data and Settings

We have tested our method both on synthetic and real images:

Figure.5.1 is an example of a noisy synthetic image (a) of size 100×100. This image is
obtained by corrupting the original image with 35% pepper & salt noise. The ground truth
in (d) is the original image without adding the noise. Figure.7.12(a) is a 300× 300 vessel
image and Figure.7.12(e) is a 200×160 road image. The ground truth Figure.7.12(d) and
Figure.7.12(h) are labelled manually.

In Figure.5.3, to illustrate the advantage of anisotropic diffusion, we use a 100×100 image
with a tube-like structure which has sharp corners.
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Figure.7.11a demonstrates a medical image with a catheter. And before diffusion, to
preprocess the image I, we first build a potential P based on the image Laplacian, then we
use a sigmoid function Eq.(5.23) on P.

Im(x) = 1−
1

1+ eλ(P(x)−k)
(5.23)

Im is the result after preprocessing. Here we set λ = 10 and k = 0.5.

For all the experiment results, the red points and blue points represent the initial points
and endpoints respectively. We use the closed red curves to segment the structures boundary.
And the blue curves stand for the centerlines. Moreover, the green blocks on some images are
used to mark the difference between our method and the Fast Marching Method. In addition,
the radius setting for Figure.5.1, Figure.7.12(a) and Figure.7.11 ranges from 0.5 pixel to 5
pixels, and the interval is 0.5 pixel. For Figure.7.12(e) and Figure.5.3, the radius setting is
from 1 pixel to 10, with 1 pixel interval. For the first three experiments, the same diffusion
time τ = 0.01 is employed.

The time consumption of the heat method is composed by two terms: the time of factoriza-
tion (the disretization of the Laplacian operator) and the time of solving the heat equation. The
factorization process was implemented in C++. Then we solve the heat equation under the
scheme of Crane’s [23]. We compare our approach with the Fast Marching implementation of
Peyré et al. [82]. Performance was measured based on a quad core of a 2.8 GHz Intel Core i7
(Table I).

To evaluate the performance of our method, we compute precision and recall:recall = T P
T P+FN

precision = T P
T P+FP

(5.24)

Here T P represents the segmentation part which matches the ground truth (GT), FP is the
part that do not coincide with the GT, FN stands for the part that is not extracted, i.e. falsely
labelled as negative.

5.4.2 Results and Analysis

Isotropic Diffusion on a Noisy Synthetic Image

Figure.5.1 is an example of a noisy synthetic image (a), with a percentage 0.35 of corrupted
pixels. (d) is the ground-truth obtained by using the Fast Marching Method on the image
without adding noise. From the two results (e) and (f), compared with the ground-truth (d),
we can see that the heat method outperforms the Fast Marching Method, because not only
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Table 5.1 time consumption and indexes of evaluation (precision & recall)%.

data heat method fast marching method
factor solve precision recall time precision recall

noisy curve 0.06s 0.06s 94.24 97.58 0.16s 92.97 93.54
vessel 0.48s 0.73s 89.54 90.31 1.18s 91.26 88.62
road 0.2s 0.42s 93.40 99.82 0.69s 92.51 97.91

the centerline but also the boundaries extracted by heat method are smoother than the ones
extracted by the Fast Marching Method. Table.5.1 presents the precision and recall and the
corresponding time consumption of these two methods. The total time of heat method is less
than the Fast Marching. And the precision and recall index of heat method in higher than
the Fast Marching. Additionally, the distance map obtained by Fast Marching (b) is more
noisy then the one by heat diffusion (c). The distance maps (b) and (c) illustrate that the heat
method is robust in noisy circumstances. This is due to the fact that the heat equation can get
fast smoothing by nature. With the initial condition u(x0,y0, t0) = δx0,y0(t0), the heat becomes
smooth as soon as t > t0. Additionally, in the sense of mathematics, the solutions of the heat
equation are characterized by a Gaussian kernel, this can be regarded as a blurring process.
This is also the reason why the heat method can be used for filtering issues.

Isotropic Diffusion on a Vessel Image and a Road Image

Figure.7.12 demonstrates the experiments on a vessel image and a road image 1. We are using
the same isotropic metric for the Fast Marching Method and the heat method. For the vessel
image (a), one initial point and several endpoints are selected manually. From Table.5.1, we
can see the result by the heat method is comparable with the Fast Marching Method. First,
the time consumed by both methods remains almost the same. But when we choose other
source point, for heat method, there is no need to recompute the factor again because that the
factorization is already pre-computed, which saves some time for the heat method, while for
the Fast Marching, all data should be recomputed. For the road image (e), there are many
abandoned cars on both sides of the road, which may cause much influence in boundary
detection. From the results (f) and (g), we can see that the boundaries (highlighted in the
green rectangles) that extracted by our method is with higher precision and recall. In other
words, our result is less influenced by the cars than Fast Marching. In addition, our method
gives a smoother result than Fast Marching.

1This image is obtained from the website of GettyImages, it is a DigitalGlobe Worldview-1 satellite image,
showing abandoned cars on the road that leads to the top of the Sinjar Mountain Range.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.1 Experiment on a noisy image: (a) original noisy image; (b) and (c) are the distance
maps φ and the 3D minimal path between the seed point and endpoint (transparent visual-
ization) by using the isotropic Fast Marching Method and isotropic Heat Method. (d) is the
ground-truth; (e) and (g) are the results by the Fast Marching Method and Heat Method. (f)
and (h) are the zoom-in results of the corresponding green boxes in (e) and (g).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.2 Example on a medical image with several endpoints (row above) and on a road image
(row below), from left to right, they are the original images, the result by the Fast Marching
Method and the result by the heat method. The green rectangles illustrate the places that the
heat method surpasses the Fast Marching Method.
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Isotropic and Anisotropic Diffusion on a Tube-like Structure

In Figure.5.3, there is a tube-like structure with several sharp corners. Here we test the
difference between isotropic and anisotropic methods. From (b), it is obvious that there is a
short-cut on the way back to the initial points, in (c), the backtracking process is totally along
the structure without any short-cut. This indicates that by using the anisotropic heat diffusion,
the heat can be more concentrated on the direction that the users design.

(a) (b) (c)

Fig. 5.3 Example on a tube-like structure image, (a) the original image, (b) the result by the
isotropic heat method, (c) the result by the anisotropic heat method. There is a short-cut in (b).
The radius becomes zero and the centerline in blue is partly superimposed on the boundary
in red. In (c), the detection result of centerline and boundary is along the structure without
short-cut.

Diffusion on a Medical Image within different time step

The time step τ is an important factor for the heat method. It decides the time for diffusion.
According to Eq.(5.3), the distance map φ could be approximated only when the diffusion
time t is as small as possible. Fig.5.4 demonstrates the effect of diffusion time τ. Different τ
are applied. From (b) to (d), τ equals to 0.1,0.01 and 0.001 respectively. From the results,
it can be seen clearly that the longer the diffusion time is, the more the distance map gets
blurred, thus leading to the shortcut on the way when backtracking to the initial point.

5.5 Conclusion

We have proposed a 2D + Radius model in heat diffusion to extract the centerlines as well
as the boundaries of the tubular structures in 2D images. This model integrate the OOF
descriptor and diffusion tensor. From the results, we can see that the 2D + Radius model in
heat is very robust and efficient. Besides, our model is less influenced by noise compared with
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(a) (b)

(c) (d)

Fig. 5.4 Experiment on a real medical image: (a) original image; (b) (c) (d) are the results
generated by isotropic heat diffusion with different time step τ.

the Fast Marching Method. In addition, the anisotropic diffusion does better in controlling the
direction than isotropic diffusion. It is fit for detecting the very curved lines and structures.
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Chapter 6

A Review of Edge Detection

In the field of image processing and computer vision, edge detection remains a fundamental
task which can date back to the 60’s. In the views of image processing, an edge is the place
where there is a sharp change or discontinuity of intensity or brightness. A discontinuity in
image brightness can be assumed to correspond to a discontinuity in either depth, surface
orientation, reflectance or illumination [62]. A higher level understanding of edge is defined as
a contour that represents a change in pixel ownership from one object to another [71]. Edges
play essential roles and act as the basis of a number of tasks such as image segmentation
and object recognition [111, 36, 129]. Generally, edge detection focuses on finding the sharp
discontinuities and aims at capturing places where important changes occur in images. These
discontinuities and changes do not necessarily occur at places where there exists sudden
changes in intensity, so it is not sufficient to detect edges and contours by simply using the
gradient of image intensity.

Over the past decades, a large number of methods were proposed to detect edges. Chrono-
logically, these methods can be basically sorted into three classes: early and traditional
methods, recent approaches, learning-based methods. The early approaches to edge detection
aim at identifying points where the image brightness changes sharply. In [11], the authors
evaluated a number of low-level edge detectors. In [128], the authors presented an overview
of these methods. However, many visually salient edges or contours do not simply correspond
to gradients, but also to the texture edges or illusory contours. These complex situations
disable the above methods to detect boundaries under more challenging conditions such as
textured regions. Therefore, researchers try to apply multiple features such as brightness, col-
or, texture and so on to their edge detectors [94, 117, 71, 3]. By combining these features, the
performance of recent edge detectors is significantly improved. Besides, since its occurrence,
deep learning has been the hottest topic in computer science. Around the 2010’s, with the
rapid increase of computer performance and the emergence of big data, the learning-based,
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especially deep learning methods have achieved great success for numerous applications in
computer vision systems, and edge detection is no exception [28, 30, 8].

In this chapter, we discuss the existing well-known edge/boundary/countour detectors
from early stage to recent works. In addition, we also describe the methods for evaluation of
the different methods in brief.

6.1 Different Edge Detectors

In this section, we discuss the well-known edge detectors chronologically. Early stage
dates back from the 60’s to the 90’s, a large number of works have been done during this
time: [90, 84, 33, 37, 68, 14, 26, 81, 39]. These works are generally based on computing
the intensity of the images and they can only find the edges where there is high gradient.
Generally, they can be divided into two classes: the gradient-based and Laplacian-based.
The gradient-based methods focus on detecting edges via finding the extremal, positive and
negative values of the first derivative. The Laplacian-based methods are based on the zero
crossings in the second derivative. The methods of early stage are easy to implement but
could not satisfy the needs for detecting edges in complex images. Then people are interested
in detecting and finding the contours that separate two or more objects which are next to
each other or overlapped partially by one or more objects [71, 28, 64, 55, 3, 59, 126, 119, 61].
Among these approaches, some machine learning techniques, such as the clustering methods,
are used to define features. The performance of these methods are much better than the
classical edge detectors. Nearly at the same time, the neural networks re-rise in the name of
deep learning. Almost all of the computer vision tasks can be done by deep learning. The edge
detection is no exception [54, 40, 30, 102, 8, 120]. And the edge detection results generated
by the deep learning methods achieve the best among all the edge detectors.

6.2 Traditional Edge Detectors

6.2.1 Robert cross operator

Speaking of traditional edge detectors, the first one should be the Roberts cross operator,
which was proposed by Lawrence Roberts in his thesis in 1963 [90].

Theoretically, the Robert cross operator consists of a pair of 2×2 convolutional kernels,
shown in Figure.6.1. These two kernels are designed to maximize the response to an edge at
45◦ to the pixel grid, and the two kernels are perpendicular to each other. To detect edges in
images, these two kernels should be convolved separately with the input image, thus producing
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the gradient in each orientation (Gx(x,y) and Gy(x,y)). The magnitude of the gradient at
each point can be also obtained. This idea of Robert cross detector is to approximate the
image gradient by calculating the sum of the squares of the differences between the diagonally
adjacent pixels. The small kernel size makes the Robert cross detector very sensitive to noise.

(a) Gx (b) Gy

Fig. 6.1 The two kernels of Robert cross detector

6.2.2 Prewitt edge detector

Similar to the Robert cross detector, the Prewitt edge detector, proposed and developed by
Judith M.S.Prewitt [84] is also a detector based on convolving the original image with a pair
of filter both in horizontal and vertical direction. Generally, two perpendicular 3×3 kernels,
shown in Figure.6.3, are convolved with the source image to approximate the derivatives in
different directions, thus obtaining the gradient of each pixel and its corresponding magnitude.

(a) Gx (b) Gy

Fig. 6.2 The two kernels of Prewitt operator

The Robert cross detector, Prewitt detector or the Sobel detector etc. are based on the first
derivative of the images by convolving the original images with different simple masks. They
do not consider the nature of edges, and their approximation of the image gradient is rather
unrefined. Then methods that are based on the second derivative of the image are proposed,
as well as a pre-processing to reduce noise.

6.2.3 Marr-Hildreth operator

The Marr-Hildreth algorithm [68] is based on searching for the zero crossings of the second
order derivative of an image. It is realized by convolving the image I(x,y) with the Laplacian
of the Gaussian (LoG) function (or kernel) shown as in Eq.(6.1). After getting the filter result,
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g(x,y), one can obtain the edges by detecting the zero crossings.

g(x,y) = [∇2G(x,y)]∗ I(x,y) (6.1)

The Marr-Hildreth algorithm do not behave well at the places where the intensity varies.
And it generates localization errors, which are problems that users want to avoid.

6.2.4 Haralick Algorithm

The main idea of the Haralick’s algorithm [42] is similar to the Harr-Hildreth: both of these
algorithms aim to find zero crossings of the second order derivatives. The difference is that the
former one smooth the input image by a local bi-cubic polynomial fitting. The advantage of
using this technique lies in that it is possible to find an equivalent expression as a function of
its parameters during the process of computing the second order derivative of the polynomial.

In 2003, Kimmel and Bruckstein [52] proved that finding the zero crossings of the second
derivative along the gradient direction, is in fact the result of minimizing a Kronrod−Minkowski
functional while maximizing the integral over the alignment of the edge with the gradient
field.

6.2.5 Canny detector

When John Canny proposed the Canny detector in 1986 [14], this edge detector has quickly
become the most popular way to detect edges till today. It uses a multi-stage algorithm to
detect a wide range of edges in images. Canny detector aims at finding an optimal edge
detection algorithm, which means that the algorithm 1) could label as many real edges as
possible in images; 2) could localize the edges accurately on the edge; 3) should mark no
more than once for an edge and should not mark the possible noise as the edges. No doubt
that even today, these properties of optimal edge detectors are still considered as the standard
for defining a good detector.

The process of Canny edge detection algorithm contains the following steps:

1. Reduce the image noise. Nearly none of the edge detection algorithm can achieve good
result without a filtering pre-process. This process convolves the original data with a
Gaussian smooth kernel, and the obtained image is slightly blurred compared to the
original data. In this way, single pixel noise would not affect the detection result.

2. Find the intensity gradient of the images. The edges in images are with different
directions, so the Canny algorithm uses 4 masks to detect the horizonal, vertical and
the two diagonal edges.
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3. Apply non-maximum suppression to eliminate the spurious response to edge detection.
For each pixel, We retain the highest response and the corresponding direction, thus we
obtain the gradient magnitude map, as well as the direction.

4. Track the edges in images. The places where there are high intensity of gradient
magnitude are likely to be edges, however, no exact threshold can be applied to threshold
the gradient magnitude, so Canny uses hysteresis threshold. There are two threshold for
the hysteresis threshold: a high and a low threshold. Suppose that the important edges
in images are continuous curves, by using an hysteresis threshold, the Canny detector
can track the fuzzy part in these important edges. Starting from the high threshold, the
real edges can be labeled. By using the direction information from the above step, we
can track all the edges in the whole image. During the process of tracking, the lower
threshold is used to track the fuzzy edges.

6.2.6 Canny-Deriche detector

The Deriche algorithm [26] was proposed and developed by R.Deriche in 1987. It is often
referred to as the Canny-Deriche edge detector because this algorithm considered the definition
of optimal edge detection proposed by J.Canny and was based on the work [14] related to
the edge detection. Generally, there are four steps which are similar to the steps in the Canny
algorithm. The main differences between the original Canny detector and the Canny-Deriche
detector lie at the noise-reducing step. In the first step, the Canny detector utilizes a Gaussian
filter to smooth the image but the Canny-Deriche detector uses the IIR filter. The advantage
by using this filter is that it is adapted to the characteristics of the image by using only one
parameter.

Despite the fact that the above edge detectors are easy to implement, most of their
approximation of the image gradient is rather unrefined, especially for the high-frequency
places in the images. So nowadays, most of these methods are not being used. But these early
approaches have opened up the land for edge detections in image processing.

Next we are going to introduce some recent and modern edge detectors, which behave
better than the traditional methods on finding object boundaries of natural images.

6.3 Modern detectors

The incapability (on detecting boundaries of objects in natural images) of the above bright-
ness/intensity/gray level edge models has driven researchers to design detectors which are
able to detect the boundaries between textured regions [94].
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.3 From (a) to (f) are the original Lena image, the result of Robert cross operator, the
result of Sobel operator, the result of Prewitt operator, the result of Marr-Hildreth operator,
the result of Canny detector.
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To evaluate the performance of the existing methods, in 2001, Martin et al. [69] has
built a database, containing 200 training images and 100 test images. Later on, this database
was updated and extended, and 200 new test images are provided. This is one of the most
widely used database for edge detection and image segmentation. In this thesis, we have also
experimented and tested our method on the same database. In addition, most of the modern
detectors have more or less related to machine learning methods, such as the Pb detector [71],
the gPb detector [3] and so on. So it is necessary to provide data with the corresponding well
labeled ground-truth.

Among all the modern methods, several contour detectors stand out and become popular
because of their applicability and good performance. We will introduce four representative
contour detectors in below.

6.3.1 Probability of Boundary contour detector

In [71], the authors differentiate the problem of boundary detection from the edge detection.
In their opinion, a boundary is a contour which distinguish two object, while an edge is usually
described as an abrupt change in some low-level feature such as gray level or color level. To
detect image boundary, the authors propose an approach which combines different image
features. This approach aims at looking for local discontinuities in several feature channels,
with a series of orientations and scales, including two intensity features: oriented energy and
brightness gradient; one color feature: color gradient; one texture feature: texture gradient.
This detector is known as the Probability of Boundary (Pb) contour detector.

Speaking of the Pb detector, the way to obtain different features should be discussed. First
we talk about the oriented energy. The oriented energy was proposed in [74] and extended to
detect edges [80]. It is defined as:

OEθ,σ = (I ∗ f e
θ,σ)2+ (I ∗ f o

θ,σ)2 (6.2)

where f e
θ,σ and f o

θ,σ are two filters at orientation θ and scale σ. This pair of filters are
called even and odd symmetric filters. The even filter is actually a Gaussian second-derivative
and the odd one is the Hilbert transform of the even one.

Next comes the multiple gradient features. For the Pb detector, in [71], the authors
introduced a way to compute gradient by setting discs on each pixel (x,y) and comparing the
histogram difference of each half-disc g and h using different orientations θ.

χ2 =
1
2

∑
i

(g(i)−h(i))2

g(i)+h(i)
(6.3)

To compute the texture gradient of a image, the corresponding texton map is necessary. To
obtain the texton map, each pixel should be assigned a texton id. In their paper, to obtain the



100 A Review of Edge Detection

Fig. 6.4 Oriented gradient example [71]

texton id, Martin et al. utilized a set of 13 filters to convolve with the training images. This
set of filters contains six pairs of elongated, oriented, odd/even filters and an additional center-
oriented (difference of Gaussian) filter, shown in Figure.6.5. The even filters are generated by
using the Gaussian second derivative and the odd ones are generated by the Hilbert transform
of the even ones. For each pixel, they are associated with a 13-dimensional (13D) vector of
response, of which each dimension stands for the response of its corresponding filter. After
obtaining all the responses of the training images, the authors cluster the set of 13D vectors
by using K-means, where K = 64 here. The cluster centers define the texton id, which ranges
from 1 to K.

Fig. 6.5 13 filter patterns for creating textons [71]

After obtaining the four feature cues, the authors optimized each cue by using coordinate
ascent. Then the optimized cues are combined by using a classifier for modeling the posterior
probability of a boundary.

The Pb detector does not include the scale information, which is a concern of the edge
detectors. Later on, Ren [88] integrates the information from both large-scale detection and
small-scale detection on the Pb detector, also called mPb. This is realized by using multiple
disk sizes. The authors in [88] explored a number of multi-scale cues, such as the boundary
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contrast, localization and so on. The experimental results on the BSDS500 show that the
multi-scale processing improves the performance.

The boundary detection results obtained by [71] and [88] are probability of maps of
edges but not real boundaries. In [127], the Zhu et al. proposed a grouping method called
untangling cycles by introducing a topological formulation. The idea is to exploit the 1D
topological structure of salient contours from the 2D image clutter, which in this paper is
obtained by thresholding the result of pb detector. Though that the method does not improve
the precision-recall performance on the BSDS500 dataset much, but it gives much cleaner
detection results.

6.3.2 Globalized Probability of Boundary contour detector

To achieve better performance, the same group as in [71] proposes to combine the multiple
local cues into a globalization framework based on spectral clustering [65, 3], called globalized
probability of boundary (gPb).

Firstly, an oriented gradient signal G(x,y, θ)) from an image I is obtained by using the Pb
contour detector. Then a multi-scale extension of the Pb detector is introduced. The authors
compute the gradient for brightness, color and texture at three scales (the radius of the disc for
computing the histogram difference): [σ2 ,σ,2σ]. Then these multi-scale signals are combined
linearly as follows:

mPb(x,y, θ) =
∑

s

∑
i

αi,sGi,σ(x,y, θ) (6.4)

where αi,s are the weights at different scale s and different feature channel i, and it is learned
by gradient ascent on the F-measure on the BSDS500.

In [3], the authors use eight orientations of θ range from 0 to π. The maximum response
among the eight orientations could be regarded as the probability of boundary:

mPb(x,y) =max
θ
{mPb(x,y, θ)}

After combining the multi-scale cues, a spectral clustering technique is used to obtain the
signals of the most salient curves. Here the spectral clustering works as the most important
step for globalization. A sparse symmetric matrix which describes the affinity of two pixels
of which the distance is within a fixed radius r was designed as follows:

Wi, j = exp(−max
p∈ī j
{mPb(p)}/ρ) (6.5)
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ī j is the line segment connecting i and j and ρ is a constant.

Let Dii =
∑

j Wi j and solve the system (D−W)v = λDv. The generalized eigenvectors
carry the contour information and each eigenvector vk can be regarded as an image. Convolve
vk with a series of Gaussian filters at different orientations θ and the signals are {∇θvk(x,y)}.
These signals are then combined to offer the spectral boundary detector:

sPb(x,y, θ) =
n∑

k=1

1
√
λk
· ∇θvk(x,y) (6.6)

Fig. 6.6 Top row from Column.2 to Column.5 are the first four generalized eigenvectors
that are used in Eq.(6.6), bottom row from Column.2 to Column.5 are their corresponding
maximum gradient response. Left-bottom shows the maximum response of sPb over all
orientations [3].

The signal mPb contains edge information on the whole domain, and sPb conveys different
information. The signal sPb only cares about the most salient curves. A simple combination
is sufficient to benefit from both signals. And the final globalized probability of boundary is
as follows:

gPb(x,y, θ) =
∑

s

∑
i

ρi,sGi,σ(i,s)(x,y, θ)+γ · sPb(x,y, θ) (6.7)

6.3.3 Sketch Tokens

Sketch tokens [61] are a series of learned features using supervised mid-level information.
The idea is interesting: 1. it converts the contour detection (binary classification) into a
multi-classification problem, which reduces the difficulties for classifiers. 2. it transfers the
large number of types of contours into a limited number of labels. The tokens are in fact a
set of representative features describing the distribution of edges in a M×M region, where
in the original paper, M = 35. The method contains two steps: 1. defining sketch tokens; 2.
detecting contours by using sketch tokens.
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Defining Sketch Tokens

Given a set of images I and their corresponding well labeled GroundTruth images GT, to
define the sketch token classes, one should first divide each GT image into M×M pieces (or
patches). Only those patches whose center pixel is covered by an edge could be taken into
account. To avoid deviations caused by slight shift in edge placement, the authors use the
Daisy descriptors [107] to compute the features of each pixel. Then they cluster the features
by using the K-means algorithm, where K = 150. These classes identify the different shapes
or distributions of sketches in the patches.

Fig. 6.7 Sketch Tokens examples [61]

Detecting Sketch Tokens

After defining and obtaining the sketch token classes, one wants to detect the frequency of
occurrence of the sketch tokens in images. The detecting process can be done by two steps:
feature extraction and classification.

For feature extraction, the authors use two types of features, one is channel features and
the other is self-similarity features. The authors use a set of feature channels in each patch xi,
including color, gradient, as well as the oriented gradient. To compute the three color channels,
they use the CIE-LUV color space. And three normalized gradient with different scales and
orientations are also utilized. All the channels are post-blurred with a σ = 1 Gaussian kernel.

Since the edges do not only occur at places where there are changes in intensity, but
also occur at the boundary of textured regions, the texture information should be taken into
consideration. This feature is realized based on self-similarity proposed in [101]. For a 35×35
patch xi, the texture information is computed on a m×m grid cell, m = 5. Therefore, there are
7×7 grid cells for a patch xi. The self-similarity feature is defined as:

fi, j,k = s j,k − si,k (6.8)
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where i and j are grid cells and si,k is the sum of the grid i of the kth channel. The last step for
feature extraction is to combine the channel features and similarity features for every image
patch.

Then a random forest is used as classifier. The aim is to compute the probability of a patch
of image belonging to each tokens.

The probability of the center pixel of a patch xi belonging to an edge is computed as:

ei =
∑

j

ti j = 1− ti0 (6.9)

where ti j means the probability of xi belonging to label (token) j, ti,0 means that xi belongs to
no token.

Finally, a non-maximal suppression is used to find the contours with maximal response.

6.3.4 Structured Forest

In [29, 30], the authors proposed a generalized structured learning method for edge detection
and the structure information is obtained by a random forest framework. The structured labels
which are learned by decision trees are used to determine the split function. The final edge
map is computed by predicting a patch of edge pixel labels which converges on the image
domain.

Similar to the sketch token work of Lim et al. [61], this work also converts the binary
classification work into a multi-classification task. The difference is that they are predicting
the local structure of image patches directly.

Before introducing the structured forest, we would like to briefly review the decision tree
and random forest.

Decision Trees

A decision tree works as a classifier. Generally, a decision tree contains one root node, several
inner nodes and leaf nodes. The leaf nodes determine the detection result and the other nodes
correspond to different tests of attributes. Apparently, the generation of a decision tree is
recursive.

For a sample x ∈ X, a decision tree ft(x) classifies it by branching down until getting to a
leaf node. Each inner node in the tree has a split function:

h(x, θ j) ∈ 0,1 (6.10)
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h(x, θ j) = 0 means that on the node j, the sample x should be sent to the left, otherwise, it
should be sent to the right.

Random Forest

A random forests is an ensemble of a number of independent decision trees. The predictions
from each decision tree is combined by using an ensemble model into a single output.

Decision Tree Training

The aim of training a decision tree is to obtain the parameters θ j of the split function in
Eq.(6.10). The information gain criterion is defined as follows:

I j = I(S j,S
L
j ,S

R
j ) (6.11)

where SL
j = {(x,y) ∈ S j|h(x, θ j) = 0}, SR

j = S j \S
L
j . The parameters θ j are trained to maximize

the information gain I j. The training process ends when a maximum depth is reached.

The information gain of multi-class classification problem is defined as:

I j = H(S j)−
∑

k∈{L,R}

|S k
j |

|S j|
H(S k

j) (6.12)

where H(S) = −
∑

y py log(py) is the Shannon entropy and py is the frequency of S of label y.

Figure.6.8 illustrates the decision tree splits, where a set of structured labels are classified
into two labels.

Fig. 6.8 Decision tree node splits according to structures [29]

The goal of structured forest is to label each pixel a signal and see if it is belongs to an
edge or not. It is realized by using the structured forest to predict the local segmentation
masks for given image patches.

Testing on the BSDS dataset, it can be concluded that the feature-based methods have
some limitations: they do not include object-level (higher-level) information, thus result in a
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lot of false detection. This is the main reason that researchers try to use the Convolutional
Neural Networks (CNN) to search for high-level, object-level and multi-scale information.

6.4 Edge Detectors by Deep Learning

As we mentioned before, motivated by the overwhelming trend of deep neutral networks,
many researchers begin to use the deep features to do image processing and computer vision
tasks, such as image classification [57], object detection [41] and so on.

Recently, there are also a lot of CNN-based edge detectors, such as the N4-Fields [40],
DeepEdge [8], DeepContour [102], HFL [9], HED [120] and so on.

Before getting into the edge detectors trained by deep learning models, let us give a
brief introduction of the convolutional neural networks (CNNs). The CNN is a kind of feed-
forward artificial neural network, it is highly favored because of its excellent performance on
processing large number of images.

CNN is a multi-layer neural network, every layer has multiple 2D surfaces which are com-
posed by independent neurons. Generally, CNN has two main types of layers: convolutional
layer and pooling layer.

The convolutional layer is composed by several convolutional units. The parameter of
every convolutional unit is obtained by backward propagation optimization. The use of
convolutional layer is that it can be used to extract different features of images, multiple
convolutional layers can extract more complicated features from lower features.

The pooling layer is a kind of downsampling process and is used to reduce the data space
thus reduce the parameters and computation, in the meanwhile, it controls the overfitting
to some certain extent. In general, there are two ways of pooling: max-pooling and mean-
pooling. Max-pooling uses the biggest value of the pooling window as the sample value and
mean-pooling takes the average value of the pooling window as the sample value.

6.4.1 Neural Network Nearest Neighbor Fields (N4-Fields)

It is intuitive to think of using the local gradient, texture changes to find edges in images. The
idea of N4-field is also intuitive [40]: there are numerous patches in images, the features of
each patches can be obtained by using the CNN; then by looking up to the dictionary and
searching for the similar edge patches and ensembling the similar edge information, the final
result is formed. Figure.6.9 shows the flowchart of N4 field. Because of the stronger features,
the performance is improved.
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Fig. 6.9 CNN architecture of DeepEdges [40]

6.4.2 DeepEdge

The DeepEdge [8] extended the N4 fields. First, the candidate contours are obtained by Canny
edge detector. Then multi-scale (4-scales) patched are built on these candidates. Take these
patches as input and run through the 2-branch CNN: one branch is for classification and the
other is used for regression. Finally, each candidate will get a probability of being on the
true edges. The model for training the dataset used in consists of five convolutional layers
and a bifurcated fully-connected sub-network. Figure.6.10 shows the multi-scale DeepEdge
network architecture.

Fig. 6.10 Architecture of DeepEdge [8]

6.4.3 DeepContour

The work of DeepContour [102] is also based on image patches. It is worth mentioning
that the authors utilized the sketch tokens [61] to obtain the structure of contours and use
these tokens to classify image patches. The CNN architecture is composed by six layers: the
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first four are convolutional and the rest two are fully-connected. Figure.6.11 displays the
architecture of DeepContour.

Fig. 6.11 CNN architecture of DeepContour [102]

6.4.4 High-For-Low (HFL)

The work of [9] high-for-low (HFL) also use CNN to differentiate the possible edge candidate
points. The authors use VGGNet model (a deep CNN model proposed by the visual geometry
group of Oxford) which is trained by high-level semantic information. It improves the quality
of edge detection. Figure.6.12 shows the architecture of HFL.

Fig. 6.12 CNN architecture of HFL [9]
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The experiments on the BSDS dataset shows that the above CNN-based edge detectors
make some progresses, but they do not really achieve the human behaviors. The above
methods are based on local strategy and aim at one patch, they do not necessarily take full
advantage of higher-level information. In addition, this kind of pixel-level image patch
classification methods is very time-consuming. Limited by the image patches, they do no
model large context, thus affect the performance of algorithms.

6.4.5 Holistically-Nested Edge Detection (HED)

Instead of using local patches-based method as the above methods, the holistically-nested
edge detection (HED) [120] utilize a global image-to-image fashion to detect edges. In other
words, this method no longer operates on patches but on the whole images, thus facilitate to
acquire high-level information.

Meanwhile, the HED utilizes a deep supervision process which is realized by inserting
a side output layer at the side of the convolutional layer. The side output layer is obtained
by upsampling the output of convolutional layer to get a map which is the same size as the
original image, shown in Figure.6.13. Then the obtained maps are used to compute the cost
with the groundtruth. The loss of multiple side output are reconverted to their corresponding
convolutional layer thus avoid the loss of gradient.

So far, the HED outperforms all the other edge detectors on the BSDS Dataset.

6.5 Evaluation Methodology

After obtaining the edges, how to evaluate the performance of the edge detectors becomes a
problem. Some people compare the detection result in a subjective way: the edges look better
or worse than the other ones, but this is not convincing. So it is very necessary to propose
some evaluation methods that compare the quality of different edge detectors. During decades,
a lot of researches on the evaluation of edge detectors have been done.

One of the earliest evaluation of edge detector was done by Fram and Deutsch [37]. In
their paper, Fram and Deutsch proposed several characteristics for the quantitative evaluation
of edge detection algorithms, such as the edge orientation biases, the edge detection under
noise, the ability to detect blurred edges and curved edges, and the complexity of the algorithm.
In their opinion, the principle feature for edge detection evaluation is that the comparative
results must be quantitative. To evaluate quantitatively, they proposed a measure that:

F =

∑IA
i=1

1
1+α(d(i))2

max{IA, II}
(6.13)



110 A Review of Edge Detection

Fig. 6.13 CNN architecture of HED [120]
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where IA is the edge pixels that are detected, and II are edge pixels of the groundtruth.

Abdou and Pratt [1] proposed Pratt’s figure of Merit criterion for either synthetic or real
images evaluation. Their proposed technique can be used optimally to design a variety of
small and large mask edge detectors. In [53], Kitchen and Rosenfeld evaluated the edge
detectors by using a criterion based on edge coherence. There is no need of the ideal edge
position. Ramesh and Haralick [85]’s evaluation method is based on the probabilities of
mis-detection and false alarm.

The evaluation method proposed by Heath et al. [44] was motivated by: 1 the experiments
should be done on real images, 2. the evaluation results should also comply with our subjective
cognition.

The precision and recall are general indexed for edge detection. Normally, it is pixel-level
evaluation: precision = Icorrect/Idetect

recall = Icorrect/GT
(6.14)

where Icorrect represents the sum of the pixels that are correctly detected by the detector, Idetect

stands for the total number of pixels that are detected, and GT means the groundtruth. The
F-measure is also widely used for edge detection.

F = PR/(αR+ (1−α)P) (6.15)

where P stands for precision and R represents recall, α is set to be 0.5 generally.

The evaluation methods above are reasonable in certain cases, so far there is not a rigorous
theory for the evaluation method. In Chapter. 8 of this thesis, we also proposed our own
evaluation method that is suitable for the dataset that we build.





Chapter 7

A Model for Automatically Tracing
Object Boundaries

In this chapter, we propose a novel method for tracing object boundaries automatically based
on a process called "PointFlow" in image induced vector fields. An ordinary differential
equation describes the movement of points under the action of an image-induced vector field
and generates induced trajectories. The trajectories of the flows detect and integrate edges
and determine object boundaries. In addition, the PointFlow process can be applied to infer
certain illusory contours.

We tested our method on a real image dataset and synthetic images. Results show that the
PointFlow method is not only good at providing precise and continuous curves, but also has
an ability to infer illusory contours. The experimental results clearly exhibit the robustness
and effectiveness of the proposed method.

7.1 Introduction

We have introduced in Chapter 6 that edge detection focuses on finding the sharp disconti-
nuities and aims at capturing places where important changes occur in images. It plays an
important role in image processing and computer vision. Over the past few decades, numerous
methods were proposed to detect edges, such as Sobel operator, Prewitt operator, Canny and
the Haralick edge detector, and so on [128]. After edge detection, an edge integration process
is needed in order to find object boundaries for segmentation and analysis.

In [34], a semi-automatic method to detect boundaries of objects is proposed by using
simulation of particle motion in an image induced vector field. Users of the method were
required to provide the location of starting points and the number of time steps to be carried
out. In addition, users needed to adjust some parameters to achieve good results. In [66],
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a similar method is used to track and detect the most important edges, in order to produce
artistic one-liner renderings of objects appearing in images. In [63] a c-evolute model is
presented for the particle motion in [34] to approximate the edge curves. More recently,
Kimmel and Bruckstein [52] proposed to incorporate the Haralick/Canny edge detector into a
variational edge integration process.

In this chapter, we are interested in providing a process of tracking object boundaries
automatically. Imagine that a magnetic vector field is induced by the image. As the input,
a number of points which are placed randomly in the image and are considered as tiny
magnetized iron pieces. The iron pieces move following the direction of the magnetic field.
We record the trajectories of these points and use them to obtain the edges on the images. The
movement of the points can be described by an ordinary differential equation, which describes
the "point flow".

After suitably designing the vector field, we initiate the flow from a number of random
points in the image plane. Guided by the vector field, the trajectories of these points are
attracted towards and along the significant edges in the image. Note that the flow process will
not end unless a stopping criterion is met. An iterative process allows to refine the trajectories
and make the result more robust.

Additionally, the PointFlow process can be extended to infer illusory contours under the
assumption that the illusory contours are simply missing parts of the borders of regular shapes
and it can be approximated by arcs of certain adapted curvatures.

The contribution of this paper is a new way based on point flow for automatical edge
detection and integration. The edges that are extracted are continuous and precise. Moreover,
the PointFlow process can also be applied to the inference of illusory contours.

The chapter is organised as follows: Section. 7.2 introduces the core algorithm of the
point flow method, including the construction of the vector field, the edge detection and
integration modules. Section. 7.4 presents some experiments results on BSD500 dataset
[70] and compares with classical edge detection methods. Section. 7.5 describes how the
PointFlow model can be used to infer the illusory contours. Section. 7.6 displays some
illusory contour inference results by using the point flow method.

7.2 Point Flow Method

The PointFlow process is based on an ordinary differential equation (ODE) which describes
the trajectory of a moving point driven by a velocity vector field V. In a 2− dimensional



7.2 Point Flow Method 115

domain, the PointFlow process is defined as follows:

d(P(t))
dt

= V(P(t)) (7.1)

where P(t) = (x(t),y(t)) is a curve which describes the location of a moving point at time t
and starting from a given point p0 at time t = 0. Within a certain time ∆T , the trajectory of
P driven by the vector field V will be recorded. Here V is the vector field that controls the
speed and direction of the points.

In order to use the PointFlow to trace the object boundaries, the vector field V is induced by
a given input image and its design is crucial factor for the correct tracing of object boundaries.
The details of designing the vector field are given in the following section. The processing
chain of PointFlow method as applied to a very simple input image is shown in Fig.7.6.

Fig. 7.1 The flowchart of the PointFlow. The left column presents a 2D Gaussian image and
the magnitude of its gradient. A linear combination of the gradients of both these images are
used to design the vector field V. In the example above, 10 random points are used as the
starting points, moving under the effect of the vector field. The top-right dashed-box shows
the movement of a single point, the blue curve is the trajectory and the red point is the end
point. The flow terminates a point hits its own trajectory. Then, we re-initiate the flow from
the end (red) point to obtain a complete and precise contour of the Gaussian image. All other
points move in the same way. Right below shows the result.
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7.2.1 The Design of the Vector Field

Given an image I : Ω→ R, based on Eq.(7.1) and a starting point p0 = P(t0), under the
action of the vector field V, we wish to have a trajectory lp0 . To draw lp0 towards and on
the object boundaries or edges, we need to construct a vector field which not only directs
the flow towards the image edge, but also keeps the flow on the edges. Hence we design
two components V1 and V2 to form the vector field: V1 must push the points towards high
gradient places, and once near an edge, V2 should cause the points to move along the edge.
The resulting vector field will combine the two vector fields V1 and V2: V = ζ ·V1+ ξ ·V2.

Since the gradient vector is always orthogonal to the edge orientation, V2 can be defined
as a vector orthogonal to the gradient of the image I, because it is directed along edges, so we
take V2 = ∇I⊥. For V1, a second-order derivative of I will be used, namely the gradient of
the gradient of the image V1 = ∇(∥∇I∥). The advantage of the second-order derivative lies in
that it generates a field that drives points towards the maxima of the gradient from both sides
of the edge. Lower-order derivatives clearly can not provide such information. This term is
similar to one of the terms in the snake model evolution equation [50]. In the snake model
this term is called "image force" that pushes the given curve towards the significant edges,
which correspond to the desired features. The combination of these two terms is the vector
field desired. Hence V can be written as follows:

V = ζ · ∇∥∇I∥± ξ · ∇I⊥ (7.2)

where ζ and ξ are two constants: 0 ≤ (ζ,ξ) ≤ 1.

To be specific, we can write V explicitly as follows:

V = ζ ·
1√

Ix
2+ Iy

2

[
Ix Iy

] Ixx Ixy

Iyx Iyy

± ξ · [Ix Iy
]  0 1
−1 0

 (7.3)

The constants ζ and ξ control the relative strengths of the two terms V1 and V2, and can be
used to balance these two components to make V appropriate and suitable for detecting edges.
Empirically we took ζ = ξ = 0.5, which fit for most of the cases. V = 1

2(V1±V2). The signs
± can be used to change the direction of V by 180◦, which turns out to be an important step
for edge integration. We shall use V to represent 1

2(V1+V2) and V′ to represent 1
2 (V1−V2).

Hence:
V =

1
2

(V1+V2) (7.4)

V′ =
1
2

(V1−V2) (7.5)
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7.2.2 Edge Integration by Voting

After building the vector field, we choose N random points from the image as starting points
and let them move according to Eq.(7.1) for a same period of time ∆T . After ∆T , we get
N trajectories: {ln}{1≤n≤N}, each ln represents one trajectory. Then a voting process can be
employed to extract the edges.

In terms of the voting process, we are inspired by [92], where the essence of the voting
process is to extract geodesic paths from the end points chosen automatically to the source
point provided manually by the user. The points located on these paths can be used to define
the density:

µ(p) =
N∑

n=1

δp(ln) (7.6)

where δp(l) = 1 if pixel p is crossed by path l, or δp(l) = 0, N being the number of paths.
Pixels which have higher densities are more likely located on the edges.

µ(p) determines the importance of each pixel on the trajectories. A threshold β for µ(p)
is also set. We retain only as elements in the final result the pixels with a number of paths
above the prescribed threshold β, where β ∈ [0,maxµ(p)]. The pixels with higher densities
{pi}0≤i≤M have more possibilities lying on the edges, and they are called the important pixels,
M is the number of these pixels.

After acquiring the most important pixels, we need to integrate them to form the complete
edges. It can be realized by cutting off the extra edges from the result of {ln}{1≤n≤N}. This
process is called "Prune". Let us take a single trajectory ln as an example. The part before it
goes into and merge with the correct ones (the important pixels) can be cut under the premise
that once upon a trajectory finds the edge, it will not deviate from the edge. The integrity of
the final result depends heavily on how complete the N trajectories are. The flowchart of edge
detection and integration by voting is shown in Figure..7.2.

7.2.3 Edge Integration by Reflowing

The result by the integration method by voting then pruning the trajectories is full of redundant
edge segments, then we put up with another method by reflowing.

As stated above, after the construction of the vector field, a set of random points are
chosen to flow as the starting points in the image plane. At the beginning, all starting points
move in accordance with V. The trajectories of the movement of these point are recorded in
P(·). And they will stop moving until a stopping criteria is met.

Here we define three stopping criterions for the flow:
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Fig. 7.2 The flowchart of using vector field to track trajectories from random starting points.
The left column present a Gaussian image and the magnitude of its gradient. They form the
vector field V together. Starting from 100 random points(labelled as red), under the action of
vector field V, 100 trajectories are recorded correspondingly, shown in the third column. A
voting process is used to determine the importance of the points on these trajectories. The
points with higher importance are left to depict the highest gradient magnitude, shown as
the circle in the column right above. Finally, we use an integration method to integrate these
points and obtain the complete edges, the result is shown in the column right below.

1. When the flow hits itself. This kind of end points is the first type of end points, labelled
as "E1".

2. When the flow hits the boundary of the image. This kind of end points is the second
type of end points, labelled as "E2".

3. When the flow hits a pixel where the gradient is zero. If it is at the source point where
the gradient is zero, we will remove this source point. For the other cases, we will not
consider the flow unless it merges with other flows. This case is detailed in the next
section.

Endpoints labelled as "E1"

For a trajectory lps , it starts from ps and ends at pe. If pe is labelled as "E1", we re-initiate the
movement from pe1 in the same vector field V. In this situation, lpe will surely hit itself and
according to the stopping criteria 1, it will stop and form a closed curve. This closed curve is
the boundary of a shape. Figure.7.3 illustrates the integration process of the first kind of end
points.
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(a) (b) (c) (d)

Fig. 7.3 From left to right are: the original image; the vector field V; a trajectory from the
green point to the red point; the final result.

Endpoints labelled as "E2"

Suppose the boundary of the objective image ∂I, when a trajectory lps moves to a point pe

and pe ∈ ∂I, the motion stops. In order to extract a complete edge, it should reflow from pe,
while in an opposite direction, namely, V′.

Let us take Figure.7.4 as an example. We initiate the point flow from 50 random points
under the vector field Figure.7.4(c), shown in Figure.7.4(e), many points end at the time when
they start to move, because they satisfy the third stopping criteria. These points are removed
in Figure.7.4(f) and they will no longer play an role in the next steps.

For the two numbers (or shapes) "1" and "2" in the image, obviously, the boundaries are
closed curves. The way to detect and integrate the edges on these two shapes are in the same
situation as "E1".

For the slash which separates the black and white region, the two terminals of this slash
lie at the top and bottom boundary of the image, we call this slash the "split line". From
Figure.7.4(f) we can see that there is a short curve starting from the nearby of the "split line"
and ends at the top boundary of the image. To extract the whole edge, the flow restarts from
this end point under V′ (Figure.7.4) until it meets the bottom boundary of the image, the
endpoint pe′ ∈ ∂I. Thus, all the edges on the image are extracted.

Junction Points

This part is designed for the situation when two or more different streams converge and flow
to the same endpoint pe. Obviously, for close curves, this case can be excluded.

Figure.7.5 serves as an example for this case. For the starting (green) points in Figure.7.5(e),
they flow under the action of V (Figure.7.5(c)). After removing the third type of endpoints
(which the source and end points are at the same location), all flows merge into one stream
and come to the same end point pe, shown in Figure.7.5(f). According to the integration
method mentioned in the part above, we need to re-initiate the flow from the endpoint on the
vector field V′ (Figure.7.5(d)). On its way back, it will meet the intersection, and here comes
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 7.4 from left to right, above to below, these figures are: (a) the original image; (b) image
filtered by a 2D Gaussian; (c) vector field V; (d) vector field V′; (e) primary flow result from
50 random points (green points are the starting points and red ones the end points); (f) result
after removing the non-edge points; (g) final result. (the black arrows on (c) and (d) illustrate
the direction of the vector field of the corresponding boundary)

the dilemma – which way should it choose. Normally, the flow lpe goes into the part where
there is stronger vector field, as shown in Figure.7.5(g). However, this will lead to a loss of
important information. Therefore, we propose a way to complete the detection result.

For Figure.7.5(f), there are five starting points, which generate five trajectories. When
any two trajectories intersect, we record the first point where they meet, as the cyan points
in Figure.7.5(f). These points are recorded in {pci, j}, where i and j stand for the ith or jth
trajectory, (i, j) ∈ {1, ...,N} and i , j (N = 5 in this case). If a point pci, j is on or very close
to lpe , we will not consider it. Only those points which are far away from lpe will be taken
into account. So the intersection points that on or close to the trajectory on Figure.7.5(g) will
be removed. The two points on the lower edge are regarded as two new starting points for
another flow process. This time, it will flow on both vector field V and V′ until a stopping
criteria is met. In addition, in order to avoid repetition, if one new starting point is covered by
the trajectories of the previous ones, it will be removed from the set of new starting points,
and so forth. Figure.7.5(h) shows the final complete integration result.

Algorithm.4 describes the whole process of the algorithm of the point flow model.

The processing chain of point flow method is shown in Fig.7.6.
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Algorithm 4 Point Flow Algorithm
Initialization:
psi , i ∈ {1, ...,N}, % N starting points;
V, V′, %vector fields;
k = 1, % counter of the number of end points;
new = 1; % counter of the number of new starting points;

for i = 1:N
if ∥V(psi)∥ , 0

psi+d−psi
d = V(psi) % d is the space step

if psi+d ∈ lpsi
pe j = psi+d; pek . f lag = E1; k++;

else if psi+d = m or n; % meet the boundary of the image
pe j = psi+d; pek . f lag = E2; k++;

end if
end if

end for

for i = 1:k
if pek . f lag = E1

pei+d−pei
d = V(pei); % to get a closed curve

else if pek . f lag = E2
pei+d−pei

d = V′(pei);
end if

end for

for i = 1:k-1
for j = i+1:k

if IsIntersect(lpei
, lpe j

) % when two flow merge
pci, j = (lpei

&lpe j
). f irst % the first location that they meet

if pci, j ∈ {lpe}

continue;
else

pnew = pci, j; % new starting points
end if

end if
end for

end for

for i = 1:k-1
if psi+d , psi

p′si
= psi

psi+d−psi
d = V(psi);

p′si+d−p′si
d = V′(p′si

);
end if

end for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.5 from left to right, above to below, these figures are: (a) the original image; (b) image
filtered by a 2D Gaussian; (c) vector field V; (d) vector field V′; (e) primary flow result from
50 random points (green points are the starting points and red ones the end points); (f) result
after removing the non-edge points; the cyan points are the intersections between any two
flows; (g) result by simply flowing back from a "E2" endpoint; (h) final result. (the black
arrows on (c) and (d) illustrate the direction of the vector field of the corresponding boundary)

7.3 Combination of Multiple Features

7.3.1 Construction of vector Field

As described above, in natural images, it is not always sufficient by only using the gradient of
the grayvalue to form the vector field. It is necessary to combine some other features to form
the vector field. The high-level feature are always extracted by machine learning techniques,
so a dataset containing the original images and their corresponding groundtruth is necessary.
In this section, the BSDS500 dataset [69] is used for extracting the high level feature such as
the texture and spectral features.

In [71], the authors proposed a Pb (probability of boundary) edge detector where they
introduced several features, i.e. color, texture to detect the contours. In [3], the authors not
only use the features in [71] but also introduced a spectral feature and combine them into a
global feature to detect the contours, the detector is known as the gPb (global probability of
boundary) contour detector. To compute the gradient on each pixel of each feature channel,
it is realized by setting discs on each pixel (x,y) of each feature channel and comparing the
histogram difference of each half-disc g and h using different orientations.

χ2 =
1
2

∑
i

(g(i)−h(i))2

g(i)+h(i)
(7.7)
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Fig. 7.6 The flowchart of the point flow algorithm. The left column presents a 2D Gaussian
image and the magnitude of its gradient. A linear combination of their gradients are used to
form the vector field V. 10 random points are used as the starting points, moving under the
effect of the vector field. The top-right dashed-box shows the movement of a single point, the
blue curve is the trajectory and the red point is the end point. The flow terminates when it hit
its own trajectory. Then, we re-initiate the flow from the end (red) point to obtain a complete
and precise contour of the Gaussian image. The other points move in the same way. Right
below shows the result.
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Fig. 7.7 17 filters for computing the texture [3]

Normally, eight orientations are used to describe the directions of the gradient, where the
orientation θ = [0,π/8,π/4,3π/8,π/2,5π/8,3π/4,7π/8].

To improve the performance of PointFlow in complicated scenes, we use the same feature
in [3]. The color channels contain three channels which correspond to the CIE Lab colorspace
including the brightness, color a and color b channels. The fourth channel is the texture
channel, to obtain the texture feature, the primary thing is to compute the texton map. The
texton map defines the texton label on each pixel of the image. Firstly, each input training
image from the BSDS dataset is convolved with a set of 17 Gaussian derivative, shown in
Figure.7.7.

Then each pixel is associated with a 17-dimensional vector of responses. A K-means
cluster is then used to define the clustering center, with K = 64. For the test image, we
convolve them with the set of 17 Gaussian derivatives, too. The pixel which is nearest to one
of the 64 cluster center will be given the corresponding texton label.

Let us denote the gradient signal Gi(x,y, θ), where i represents the feature channel and θ is
the orientation. We also use the multi-scale and spectral features that were described in [3].

For the multi-scale features, each channel gradient Gi is computed at three scales s =
[σ2 ,σ,2σ], where s controls the radius of the disc for computing the histogram difference
in Eq. (7.7). σ = 5 pixels for brightness channel and σ = 10 pixels for color a, color b and
texture channel. The multi-scale gradient signals at each orientation can be combined linearly
as follows:

mG(x,y, θ) =
∑

s

∑
i

αi,sGi,s(x,y, θ) (7.8)

where αi,s are the weights at different scale s and different feature channel i and it is learned
by gradient ascent on the F-measure on the BSDS500 dataset.

The spectral features are used to obtain the most salient curves and it is obtained by a
spectral clustering technique. A sparse symmetric matrix W which describes the affinity of
two pixels of which the distance is within a fixed radius r is provided according to mG. The
spectral signals sG then are obtained by solving a Laplacian system of W, details can be
found in [3].

By combining the multi-scale and spectral features, we can get the global signal at each
orientation gG(x,y, θ).

Figure.7.8 shows the feature map gG of eight orientations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.8 Gradient magnitude of eight orientations, from (a) to (h), the orientation θ =
[0,π/8,π/4,3π/8,π/2,5π/8,3π/4,7π/8]

After computing the multiple features at each orientation, we can construct the vector
field based on these features. For each single pixel, we will retain the largest value among
the eight values as the gradient magnitude, and the corresponding orientation denotes the
direction of the gradient:

v(x,y) = gGmax(x,y, θ)∗ (cos(θ),sin(θ)) (7.9)

so that: V2 = v⊥. To compute the second-order derivative, we use the gradient of gGmax(x,y),
that is: V1 = ∇(gGmax).

Figure.7.8 shows an example of using multiple features to construct the vector field and
its corresponding contour detection result. Compared with Figure.7.13 (d), the result in
Figure.7.9 (c) is more clean and complete.

(a) (b) (c)

Fig. 7.9 Experiment on a real color image. From left to right are the original color image, the
trajectories generated from 2000 random points and the result of detection of contours.

7.4 Experiment Result and Analysis on PointFlow

7.4.1 Experiment Result and Analysis by Voting

Figure.7.10, Figure.7.11 and Figure.7.12 are results synthetic and real medical images respec-
tively by using the voting method to integrate the edges.
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Fig.7.10 display the results of the above four synthetic images adding noise. From the top
to bottom, they are: the original noisy image (after preprocessing by a Gaussian filter); the
vector field; the trajectories from N starting points; the results after voting; and the results
after Pruning. From these results, we can see that under a noisy circumstance, the PointFlow
is still robust and effective.

We test our method on a real medical image with catheter, shown in Fig.7.11. In
Fig.7.11(d), a lot of curves have been detected. As we introduced above, the points on
the main catheter have higher importance than points in other parts, so in the final result, the
main catheter is extracted while the paths left are filtered.

Here we show another example on a real vessel image, see Fig.7.12. Since the original
vessel image has complicated background, we filter it using a sigmoid function, Fig.7.11(b).
From the results, we can see that nearly all the boundaries of the vessel are detected and only
a few are missed.

Despite the advantage of using voting method to integrate the edge segment, the results
are full of redundancy. In addition, in order to achieve good performance, a large number of
initial points are needed, which leads to more computations.

7.4.2 Experiment Result and Analysis by Reflowing

Here we have tested our point flow method by using reflowing to integrate the edges on the
images from the famous Berkeley Segmentation Dataset[69], and we have also evaluated our
method by using the 100 validation images from the same dataset. The number of random
source points is set to be N = 2000 for each image. For most of the images, we use the
grayscale to compute the vector field.

For color images, we use the highest gradient at each pixel from the three channels RGB
as the gradient of that pixel. For certain images, we use the HSV color space to compute
the vector field. Before flowing, we use a Gaussian filter to smooth the images, the standard
deviation of the filter is σ = 2, and the size is 4×4.

In addition, there are numerous ways to approximate numerically the solution to the
first-order ODE Eq.(7.1), such as the Euler method, backward Euler method, first-order
exponential integrator method and so on [13]. To make the solutions smoother and with less
oscillations, we used the Runge-Kutta algorithm, also known as RK4, to solve Eq.(7.1).

Our detection provides a "hard" boundary result, not a probability map. So on the
precision-recall curve map, what we present is a single point. We compare our method with
the classical canny detector [14], the state-of-the-art probability of boundary (pb) detector
[71], and the graph-based segmentation method untangling cycle [127].
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(a) (b) (c) (d)

Fig. 7.10 From the above to below, the first row are four noisy synthetic images after filtering,
the second shows the vector field obtained from Eq.(7.3), the third row displays the trajectories
by using point flow, the number of starting points are 500, 300, 1000 and 500, the forth
represent the results by setting a threshold β, which equals to 3, 5, 3, 2 respectively. The five
shows the integration results by voting.
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(a) (b) (c)

(d) (e) (f)

Fig. 7.11 Experiment on a real medical image with catheter, the above from left to right: the
original image, the Laplacien of the original image, the vector field of the image; the below
from left to right, the trajectories starting from 50 points, the trajectories after pruning, the
result after integration.

(a) (b) (c)

(d) (e) (f)

Fig. 7.12 Experiment on a real vessel image, the above from left to right: the original vessel
image, the preprocessing of the original image by Eq.(5.23), the vector field of the image;
the below from left to right, the trajectories starting from 150 points, the trajectories after
pruning, the result after integration.
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Last but not least, we note that our method presents a sub-pixel level detection result.
During the evaluation process, we must assign each point on the trajectory a precise pixel
location. This clearly will lead to a loss of available sub-pixel information.

(a) (b) (c) (d)

Fig. 7.13 Experiment on some gray images, the row above display the original images and the
row below show the edge detection results.

We have tested our method on the widely known BSD dataset. Figure.7.13 and Figure.7.14
show some detection results using our proposed method, and the results are very encouraging.
In terms of the evaluation, shown in Figure.7.15, our method nearly performs as the best results
obtained with non-learning based methods. Note that we are only use the color or graylevel
information to construct the vector field. Clearly, the BSD dataset are images selected from a
wide range of images, they do not usually comply with our model. Additionally, note that our
method provides precise sub-pixel level result, however, this advantage could not be reflected
by the metric in the Berkeley benchmark.

7.4.3 Experiment by Reflowing Using Multiple Features

Figure.7.16 shows some results obtained by using different vector fields. The left column
displays the results by only using color feature to construct the vector field and the right
column shows the results by using multiple features to construct the vector field. From
Figure.7.16, we can see that by using the multiple features (obtained from the gPb detector),
we can get more complete and clean results, while by using the single feature (graylevel or
color), we are able to obtain more details.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7.14 some results on the BSD Dataset. (a), (c) and (e) are tests on gray images; (b), (d)
and (f) are tests on color images; (g) and (h) are tests on the first and second channel of HSV
space seperately.



7.5 Inference of Illusory Contours 131

Fig. 7.15 Precision recall curve on the Berkeley benchmark, compared to Pb detector, untan-
gling cycles and Canny detector.

7.5 Inference of Illusory Contours

The illusory contours (or subjective contours) are visual illusions that evoke the perception of
an edge without brightness or color changes on that edge. Speaking of the illusory contours,
the first image comes into our mind would be the Kanizsa’s Triangle, shown in Figure.7.17.
We can perceive from the spatially separated fragments in Figure.7.17, that there are hidden
triangles and circles, but in the view of images, there are no complete triangles or circles.
Then we can not help to ask that why we can perceive these unreal outline, can we make
the computers sense these phenomena. According to [114], it is believed that for us human
beings, the early visual cortical regions such as the primary visual cortex (V1) and secondary
visual cortex (V2) are responsible for forming illusory contours.

For the computers, how can they perceive the illusory contours like humans remains
our problem. By observing the illusory contours shown in Figure.7.17, we can find that the
illusory contours are usually an unseen curve that connects two corner points. Here comes the
question: is it possible for a point to flow on the illusory contour rather than on the boundary
of an object when it meets a corner point? The answer is yes.

7.5.1 Inertia-Driven PointFlow and Hough Transform

In our opinion, the illusory contours are always small missing parts of regular and predictable
shapes. For these kind of illusory contours, it can be completed by an arc with a specific
radian. Even for a straight line, it can be described as an arc of a circle of which the radius is
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(a) (b)

(c) (d)

(e) (f)

Fig. 7.16 some comparisons between using single feature (color) and multiple features . Top
row displays the results by only using color feature to construct the vector field; bottom row
shows the results by using multiple features to construct the vector field.

Fig. 7.17 Some examples of the Kanizsa’s Triangle
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infinite. So the main task of inferring the illusory contours is to find the two terminals of an
appropriate arc.

In this paper, we assume that the terminals of an illusory contour are always caused by
abrupt changes in curvature of a closed curve. These terminals are also called the corner
points.

After obtaining the corner points, we make the point flow at the same velocity (angular
velocity) v as it did before it hits the corner point, instead of flowing on the image induced
vector field.

Due to the fact that the point flow on a field without any forces after hitting the corner
point, the behavior of the point is like inertia-driven, so we call this process "Flow with
inertia".

The idea that a missing curve in illusory contour images can be completed by an arc
reminds us of the Hough Transform (HT) and Circle Hough Transform (CHT)[32].

Hough Transform

The classical Hough Transform is used to detect straight line in images. In the parameter
space, a straight line can be represented as a point (θ,r):

r = xcosθ+ ysinθ (7.10)

where r is the distance from the origin to the line and θ is the angle between x axis and the
line. For a single line, the parameter θ,r is fixed. The Hough Transform takes advantage of
this characteristic to detect straight lines in images. The idea is to project the input image into
a parameter space and find the corresponding coordinates with highest values. Figure.7.18
shows an example of line detection by the classical Hough Transform.

(a)the original image (b)the projection on (θ,r) space (c) Line detection result

Fig. 7.18 Detection of straight lines by Hough Transform
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Circle Hough Transform

The Circle Hough Transform (CHT) is a technique for detecting circular objects in images.
The idea is similar to the classical Hough Transform. In a 2D space, a circle of which the
center locates at (a,b) with a radius r can be described by:

(x−a)2+ (y−b)2 = r2 (7.11)

The parameter space is 3D, (a,b,r). And the corresponding circle parameters can be identified
by the intersection of a number of conic surfaces which are caused by the circle on the image.

(a) (b) (c)

Fig. 7.19 Detection of circles by CHT, from left to right, (a) the original image; (b) projection
on (a,b,r) space (r = 95); (c) circle detection result, shown in red.

From the example Figure.7.19, we can see that the CHT has the ability to infer obvious
circles. But the users have to provide the range of radii, and a large radius will result in a
bad detection. We will compare the circle detection results by our inertia-driven flow and the
circle hough transform in the experiment subsection.

7.5.2 Finding Corner Points

To infer the illusory contours using point flow with inertia, the detection of the corner points
should be the primary task. Due to that there are two ways of integrating the edges: voting
and reflowing, there are corresponding two ways to obtain the corner points.

Corner Points via Voting

To obtain the corner point, we need first use the PointFlow model to detect the boundaries in
the images. The input of this process are the important points (points on the boundaries or
edges) obtained from voting method in Section.7.2.2, denoted as {pi}0≤i≤M, M is the number
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of these points. Then we start the point flow from every pi on the same vector field V in
Eq.(7.3). To make the results more complete, we initiate the point flow using both sign in the
first term of V.

For a single point pi, after flowing for time ∆T2, a trajectory li is obtained. For li, the
starting point is pi, and the end point is pei . Then the middle point pmi on li should be the
point at time ∆T2/2.

Once the three points pi, pmi and pei are obtained, we need to compute the angle θi between
−−−−→pi pmi and −−−−−→pmi pei and decide whether pmi is a corner point or not.

θi = acos(
⟨
−−−−→pi pmi ,

−−−−−→pmi pei⟩

∥
−−−−→pi pmi∥∥

−−−−−→pmi pei∥
) (7.12)

Here we set a threshold θthr, if θi > θthr, then pmi is considered as a corner point.

After the search for all the M points, we get J middle points Pm j , j ∈ [0, J]. The corre-
sponding J trajectories {L j} are also saved.

Fig.7.20 presents the flowchart of the inference of illusory contours via the voting method
to obtain the corners and .

Fig. 7.20 Flowchart of the inference algorithm, from left to right, the original image with
the detected edge points (labelled as green), the corner points (labelled as red stars), the
trajectories generated by inertia, the inferred trajectories, the result obtained by combining
the inferred trajectories.

Corner Points via Flowing

As stated above, the PointFlow model is a dynamic model, the points driven by this model
on the image tend to trace the edges and object boundaries on the images. The trajectories
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formed by the motion of these points are continuous, thus we can detect the corner points
by taking the change of curvature into consideration. That is to say, where there is a high
change of curvature of a trajectory, there is a potential corner point. We can determine that
whether the potential corner point is a true corner point or not by setting a threshold for the
curvature. we will make the point move at the same velocity v as it did before it hits the true
corner point. Figure.7.21 demonstrates the process of finding corners by taking the curvature
into consideration.

(a) (b)

(c) (d)

Fig. 7.21 An example for detecting the corner points. (a) the original image; (b) the cyan
curve is the detection result by using PointFlow model; (c) the plot of curvature of the detected
curve; (d) the corresponding corner points.

7.5.3 Flow with inertia

After finding the corner points, we can infer the illusory contours by deciding that whether
two corner points can be connected by an arc. As mentioned above, each movement of a
single point p takes a unit time, then after ∆T , there should be ∆T +1 points on the trajectory.
In addition, we are introducing a kind of "inertia" here, which means that when a point flows
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to a corner point, it will no longer move according to the vector field, but continues to flow
according to the trajectory it just passed through.

The following three steps describe how to infer the illusory contours by PointFlow in
detail.

1. Compute the angular velocity. For a trajectory L j which passes through two corner
points pcor1 and pcor2 successively, in order to guarantee the accuracy and robustness,
N points {pn},n = [1, ...,N] are chosen on L j to compute the angular velocity. First, the
angular displacement from these N points to corner point pcor2 is computed.

φ(ln) = acos

 ⟨→a ,
→

b ⟩

∥
→
a∥∥
→

b∥

 .
where ln is a piece of L j from pn to pcor2 ,

→
a stands for the tangent vector of the curve

at the corner point pcor2 and
→

b represents the tangent vector at nth point. A toy model
can be found in Figure.7.22 (a). So the angular velocity for ln is:

ω(ln) =
φ(ln)

length(pcor2 , pn)
(7.13)

2. Flow with inertia. Based on the assumption that the missing part of the illusory contours
can be simulated by an arc, we propose a kind of "inertia" which contains an angular
velocity ω(ln) and the initial speed v0 =V(pcor2). Now pcor2 is considered as the starting
point of the trajectory generated by the inertia. With the inertia, the velocity v of the
point can be obtained by a rotation matrix:

vt = v0

 cos(ω(ln)) sin(ω(ln))
−sin(ω(ln)) cos(ω(ln))

t

(7.14)

where t is the time of flowing, and it also represents the number of flowing steps.
When ω(ln) = 0, the inertia will generate a straight line, when ω(ln) , 0, the inertia will
generate an arc with corresponding radian.

3. Let us denote the trajectory generated by inertia line, and the starting point of line is the
corner point pcor2 . After time ∆T1, which is a time limit provided by the users, if line is
still not connected to any corner point, line will be ignored. If it is connected to some
corner point according to the three conditions below, it is an illusory contour. Decisions
will be made at each move of line, and the end point of line at each step is labeled as pcur.
To decide whether line can be an illusory contour or not, there are three conditions:
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• The length of line is larger than a threshold that we set:

len(line) > β

• The distance between pcur and a corner point pcor should be small enough:

len(pcur, pcor) < ϵ

• line can be connected to pcor in a smooth enough way. Let us take Figure.7.22

(b) as an example. Let
→
c be the tangent vector of line at pcur (the blue arrow),

→

d

the tangent vector at pcor2 (the red arrow). The angle ϕ between
→
c and

→

d can be

represented by the cosine value: ϕ = ( ⟨
→
c ,
→

d ⟩

∥
→
c ∥∥
→

d ∥
). If ∥ϕ∥ > δ, δ = 0.9 empirically, then

the direction of the flow line is in accordance with L j.

If the above three conditions are satisfied, line can be considered as the arc which fill in
the missing part of the illusory contours.

(a) (b)

Fig. 7.22 An example for the flow driven by inertia, (a) describes how the angular displacement
is obtained in Step.1; (b) shows how line can be an illusory contour.

7.6 Experiment on the Inference of Illusory Contours

7.6.1 Data Settings

We test our method for inferring the illusory contours on three illusory images.

The first image is shown in Figure.7.23(a), the size is 400×400. We can perceive that
there are 4 circles in this image: a big black one and three small white ones. For inferring the
circles, we use twice the Circle Hough Transform (of which the radius ranges from 30 to 100
pixels and 50 to 120 pixels) and our inference method respectively.
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The other two images are shown in Figure.7.24 (a) and (d), the size of both images is
400×400. It can be perceived by users that in Figure.7.24 (a) there exist a hidden triangle
and three small circles and in Figure.7.24 (d) there are four circles as well as a square.

7.6.2 Experiment Result and Analysis

Figure.7.23 (b) and (c) display the circle detection result by using the CHT and PointFlow
respectively. From the result (b), we can see that the CHT detect only the small circles. Due
to that the big black circle has a lot of missing parts, no matter what radius we use, it cannot
be detected. While in (c), our method has inferred and completed all the four circles. By
using the CHT to detect circles, users have to provide a range of radii and a very large radius
may result in bad results. While inference by PointFlow is automatical and effective.

(a) (b) (c)

Fig. 7.23 Experiment on a synthetic image, from left to right, (a) the original image (b) the
circle detection result by using CHT (c) the inference result by using our method.

From Figure.7.24(c) and (f), it can be seen that all the illusory parts (either the straight
lines of the triangle and the square or the curved arcs of the circles) are inferred by using our
inertia-driven PointFlow method.

The results in Figure.7.23 and Figure.7.24 demonstrate that our inference algorithm is
efficient at inferring the straight and smooth arcs. The disadvantage of this method lies in that
it will fail when there is an obstacle on an illusory contours, or the illusory contours could no
longer be represented by an arc.

7.7 Conclusion

This chapter proposes a PointFlow method for automatically modeling the process of tracking
object boundaries in images. In this chapter, on the stage of using the color (or graylevel)
feature to construct the vector field, our method is comparable among the numerous edge
detection methods. In addition, the PointFlow method can be extended to infer illusory
contours, and it is robust and efficient finding the arcs or straight lines.
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(a) (b) (c)

(d) (e) (f)

Fig. 7.24 Experiment on synthetic images, from left to right: (a) and (d) are the original
image, (b) and (e) are the corresponding detected corner points, (c) and (f) the inferred illusory
contours.



Chapter 8

A Model is Worth Hundreds of Examples

Abstract

Nowadays, in the field of computer vision, Deep Learning have become the hottest issue
in both the academia and industry with the development of science and technology. For
applications such as image segmentation, image classification, deep learning has done an
excellent job. In terms of the performance, deep learning methods exceeds the other methods.
Take the boundary detection methods on the famous Berkeley BSDS500 dataset as an example,
so far the best detection results are generated by using deep learning methods. In this chapter,
we build a dataset which contains 100 synthetic images in total. We use 50 images as
validation data, and the rest as training data. We aim at figuring out that for an edge detector
trained by deep learning, how many training images should be used that it can achieve a
comparable validation result with an edge detection model proposed by an expert.

8.1 Introduction

As described in Chapter. 6, edge detection is the most fundamental task in computer vision
and it is a significant preprocessing step for numerous applications, such as object recognition,
segmentation and so on [103, 77, 36, 10]. According to Chapter. 6, edge detectors can be
divided into three types chronologically, they are: 1. Traditional edge detectors such as
the Robert cross detector [90], Sobel detector or Canny detector [14] aim at finding abrupt
changes in image intensity [71]. But for real images, many salient edges do not necessarily
correspond to changes in low-level features like color or brightness. 2. Modern edge detectors
no longer only focus on the intensity changes, but take the changes between textured regions
into consideration [67], such as the pb detector [71] and gpb (global pb) detector [3] and
so on. Compared with the traditional operators, these kind of modern detectors care more
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about the completeness of contours of objects. 3. The third kind of edge detector are trained
by using deep learning techniques [102, 8]. Thanks to the huge database of images and
their corresponding groundtruth, these detectors nearly perform best among the current edge
detectors.

It is widely known that the major difference between the deep learning technology and
traditional methods lies in that whether it uses expert experience. Besides, the deep learning
methods utilize a lot of training images to achieve a satisfactory result. It is a very inter-
esting question in our opinion that how many examples of images generated according to
a given model are necessary for the learning process to achieve performance equivalent to
segmentation process designed specifically for the given model.

In the past three decades, a lot of model based edge detectors have been proposed. For
example, the active contour models [50, 19], where the authors use an energy-minimizing
method to find the image edges. In [62], Lindeberg presented a mechanism for automatic
selection of scale levels when detecting edges. In [52], Kimmel and Bruckstein proposed an
optimal edge integrator by taking the edge integration problem for object segmentation as a
geometric variational framework. The advantage of using the model base edge detectors is
that theese techniques could be well described by reasonable mathematical methods and they
give very intuitive detection process. More importantly, they give optimal detection results
under certain conditions.

In this chapter, we compare two methods, one is the PointFlow which is proposed by
ourselves and the other one is the DeepContour which is proposed in [102]. According to
the experiments on synthetic and real data, the PointFlow can achieve a better performance
than the traditional edge detectors. And it is also possible to combine the other features such
as texture feature with the PointFlow. The DeepContour detector achieve nearly the best
on the BSDS dataset [69]. To the best of our knowledge, the existing edge detectors aim at
comparing the performance and no other research has been done on this work.

The current existing dataset are mostly composed by real images and the groundtruth are
always labeled by humans, which remains subjective. This is because that the edges in real
images are hard to be precisely localized by humans. The groundtruth labeled by humans
may be close and similar but not exactly and necessarily identical. In those dataset, even
there exist differences, all of the hand labeled results are considered as groundtruth. Hence,
the evaluation processes tolerate a lot of deviations sometimes. In this chapter, to achieve
our goal, it is expected to generate a dataset which contains a large set of synthetic images.
For these images, the edges and contours can be precisely obtained by simply calculating
the gradient or using a threshold. By doing so, there will be no ambiguous results in the
groundtruth. For evaluation, we will set up a range of tolerance from 0 to 2 pixels and observe
the performance of each method.
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The contribution of this chapter is that, 1) we build a database which contains 300 artificial
original images and their corresponding groundtruth; 2) we quantitatively analyze how many
training images are necessary for the DeepContour detector to achieve a good or even better
result compared with the PointFlow model.

The chapter is organized as follows: Sect.8.2 introduces the two methods: DeepContour
and PointFlow; Sect.8.3 details the data preparation work; Sect.8.4 illustrates how we evaluate
the performance of the two methods and Sect.8.5 shows the comparison results. Sect.8.6
concludes the chapter.

8.2 Related Work

To answer the question above, we shall choose at least two edge detectors separately from
traditional detectors and deep learning detectors. In this chapter, we use the PointFlow
model as the representative of traditional edge detector and the DeepContour detector as the
representative of the deep learning ones. According to the experiments on both artificial and
real data, the PointFlow model outperforms the other traditional detectors.

8.2.1 PointFlow Model

The PointFlow model is presented is Chapter. 7. For the purpose of detecting edges on images,
the designed field is a field oriented around the edges. In this chapter, it is simply obtained by
combining the first- and second- order derivatives of the image. It can be described by the
following Ordinary Differential Equation:

P′(t) = V(P(t)) (8.1)

where P(t) is a point function which represents the position at time t, and V(·) is the vector
field generated from the image I ∈ R:

V = ζ · ∇∥∇I∥± ξ · ∇I⊥ (8.2)

where we use ζ = ξ = 0.5.

The PointFlow model is an effective and robust edge detector. The edge detection result by
this model is continuous and sub-pixel level, which means that the detection result is precise.
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8.2.2 DeepContour

The DeepContour method is also introduced in Chapter .7 and it is achieved by using a
multi-scale deep network which is made up of five convolutional layers and a bifurcated
fully-connected sub-network [8]. The architecture of the CNNs of DeepContour can be found
in Chapter 6. For training, we are using the same parameters as the original paper did on the
BSDS500 dataset.

8.3 Preparation of Dataset

In [43], the authors propose that the edge characterization should rely on the the goal of
what we want to do with the edges, such as object recognition or image segmentation.
Current dataset for image segmentation, classification or edge detection such as the BSDS
segmentation dataset [69], the drive database for vessel segmentation[105] and the NYU
depth dataset [75] are composed by real images, such as natural images, medical images, or
satellite images, and so on. The groundtruth of these images are labeled manually, which
more or less remains subjective and may result in false for validations. Hence, these dataset
do not conform with our goal: we want to compare the detection results exactly and precisely.

To achieve our goal, we are urged to build a dataset which is made up of artificial and
simple image examples so that the edges are obvious and unique. To meet our needs, we
determine to generate circles images, because circles are smooth to trace, and their groundtruth
is very easy to obtain. More importantly, we can get as many examples as we want.

The groundtruth of this dataset is precise because we know exactly the center and radius of
each circle when we generate the circles. But we will have to round up and down the position
of the boundaries. Figure.8.1 gives us some examples of the dataset and the corresponding
groundtruth.

8.4 Evaluation With Tolerance

The evaluation method in this paper is pixel level. We use recall and precision as evaluation
metrics. The accuracy of edge location will affect the evaluation results, so a small tolerance
of deviation is possible. Basically, the tolerance permits a displacement ∆d between the
groundtruth edge and the detected edge.

Take Figure.8.2 as an example. The blue segment is the groundtruth, and the purple ones
are the detected edges. If ∆d = 0, the purple edges do not coincide with the groundtruth, so
it will be regarded as a false detection. When tolerance ∆d = 1, which is illustrated by the
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Fig. 8.1 Some examples of the dataset and their groundtruth

Fig. 8.2 The sketch map of using a tolerance = 1.
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region limited by the two yellow line, any detected edges (purple segments) located in this
region are considered as the corrected detection results. In this paper, the tolerance ranges
from 0 to 1 pixel, ∆d = {0,1}. The precision and recall can be obtained by using Eq.(8.3).

precision =
∑
1([PGT ∗T∆d]∩Pdetect)∑

PGT

recall =
∑
1([PGT ∗T∆d]∩Pdetect)∑

Pdetect

(8.3)

where PGT and Pdetect respectively denote the pixels of the groundtruth and the detected edge.
1 is an indicator function, when its input is null, 1(·) = 0, otherwise, 1(·) = 1. In addition, T∆d

is a template, when T∆d > 0, it is a matrix of size (2∆d)× (2∆d). When ∆d = 0, T∆d = 1.

8.5 Comparison

In this part, we test the above two methods on our dataset. We do not only compare the results
on the original data, we also test the two methods by adding noise to the data increasingly.

8.5.1 Data settings

For the original data, on each image plane, there are n discs with different centers, different
radius. n is the number of circles and it can be arbitrary. In our cases, we set n = {1,2,3,4,5}.
The size of the image is also different, ranging from 50×50 to 100×100. For the noisy data,
we use two kinds of noise on the original data, the pepper & salt noise and the Gaussian noise.
For the former one, 10% and 20% noise are used respectively. For the latter one, the variances
are 0.1 and 0.2.

The mean of the Gaussian filter for the original circle data is 4 and the variance is 2 when
the size is smaller than 80×80, otherwise it is 5 and 3 respectively.

We use the same parameter setting as the DeepContour is trained in [102]. For the
PointFlow method, 200 random source points are selected. Due to that the results by PointFlow
is "hard" boundary, the precision and recall will be a single point on the figure.

In addition, we generate 100 circle images for testing.

8.5.2 Result and analysis

Figure.8.3 shows the precision and recall curve of the original data. It clearly indicates that
with the increase of the training images, the performance of DeepContour is also increasing.
When the training examples N ≈ 300, the detection result of DeepContour is competitive
against the PointFlow model with a tolerance.
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(a) No tolerance ∆d = 0 (b) ∆d = 1

Fig. 8.3 The precision-recall curve of different deviation tolerance by using DeepContour and
PointFlow.

When the original data is damaged by 10% of pepper & salt noise, the precision & recall
is shown in the above row of Figure.8.4. We can see clearly that more than 500 training
examples should be used for the DeepContour that it can exceed the PointFlow method. But
when we increase the percentage of the noise (20%), the PointFlow method will be more
influenced by the noise, the DeepContour will give a comparable result when the number of
training images N > 300, see the bottom row of Figure.8.4.

Figure.8.5 shows the results on Gaussian noise images. It further proves the previous
opinions: with the increase of training images, the DeepContour behaves better. As for
the noise, the PointFlow method is more affected by the noise than the DeepContour. But
hundreds of examples are still needed for the DeepContour to achieve a satisfying result
(result obtained by PointFlow method).

8.6 Conclusion

Nowadays the deep learning techniques have influenced the computer vision field tremendous-
ly. Thanks to these techniques, the performance for different applications has been improved
a lot.

In this paper, we compare two edge detectors, one is PointFlow which is designed based
on human experience, the other one is DeepContour which is trained by deep learning. We
want to find out that for a deep learning edge detector, how many training images are needed
to achieve a desired result. In order to achieve this purpose, we build a dataset composed of
thousands of artificial images in this paper and we qualitatively analyze the detection result
on this dataset.
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(a) No tolerance ∆d = 0 (b) ∆d = 1

Fig. 8.4 The precision-recall curve of different deviation tolerance by using DeepContour
and PointFlow on noisy (pepper & salt) images, 10% and 20% damaged above and below
respectively
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(a) No tolerance ∆d = 0 (b) ∆d = 1

Fig. 8.5 The precision-recall curve of different deviation tolerance by using DeepContour and
PointFlow on noisy (Gaussian noise) images, and damaged above and below respectively
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From the experiment result based on the dataset that we build, we can see that at least 300
examples should be used for training the DeepContour model to let it behave as good as the
PointFlow model. It can be deduced that for the real images, more training images are needed
to generate a rather good result by using the deep learning method. In addition, the training
and testing process of the DeepContour model takes really long time. Our key point is that on
the process of chasing for good result, we should also pay attention to the traditional methods.
After all, a model is worth more than hundreds of examples.



Chapter 9

Conclusion

This chapter concludes this thesis by summarizing and discussing the results obtained in the
development of the different research topics. At the end, it gives an outlook for the future
work.

9.1 Summary

This thesis mainly focuses on two works: 1). applying the heat method to image segmentation;
2). detecting and tracing edges by using the PointFlow model.

• Image segmentation by heat method

Heat diffusion can be used to approximate the process of computing geodesic distance
on Riemannian manifolds by applying Varadhan’s formula proposed in 1967. With
the geodesic distance, the users can obtain the geodesic curves easily by applying
an ordinary differential equation. In this thesis, we firstly testify the availability of
Varadhan’s formula for both isotropic and anisotropic heat equation. Then we apply
different metrics (isotropic of anisotropic) to the heat equation to obtain the desired
geodesic distance and curves on images or surfaces. For the purpose of reducing the
manual intervention, we propose two automatic methods that are specially designed for
the segmentation by heat method: the first one is a voting method and the second one
is a keypoint method. Users will no longer have to provide the endpoints. Finally, we
extend the heat method on a 2D image plane to 3D, where the 3rd dimension in fact
describes the width of the tubular structures to be extracted. The experimental results
show that the segmentation by using heat method is not only fast and effective, but also
remains very robust.

• Edge detection by PointFlow model
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The edge detection remains the most fundamental problem in computer vision. It
is a very important preprocessing step for higher-level applications such as image
segmentation or object recognition. In this thesis, we classify the edge detectors
into three types. We first introduce some representative edge detectors for each type.
Then we propose our own model: the PointFlow model. This model is designed
by considering the image plane a vector field (based on the first- and second- order
derivative of the image) and the pixels are particles which can move according to the
vector field. This model can trace the boundaries of objects on image planes. It can
also combine the low level feature, such as the brightness or color with high-level
feature such as the texture, spectral features to achieve a better result. Except for
detecting edges, we also extend the PointFlow model to infer illusory contours. Finally,
we compare the PointFlow model with the DeepEdge detector by testing on our own
dataset and figure out how many examples of images should be used that a deep learning
edge detector can have an equivalent results as the PointFlow model.

9.2 Perspective

• Heat Diffusion for Automatic 3D Medical Image Vessel Segmentation

The vessel segmentation methods proposed in this thesis focus on detecting and segment-
ing the tubular structures in 2D images. With the development of imaging technology,
such as the MRA (Magnetic resonance angiography) based on the MRI (Magnetic
Resonance Imaging) and the CTA (Computed tomography angiography) based on the
CT (X-Ray Computed Tomography), 3D medical images can be obtained and help to
diagnose the diseases. So the segmentation of vessels in 3D images are really important.
In fact, there are a lot of researches on the 3D vessel segmentation, but to the best of
our knowledge, no one has applied the heat method to do it. Due to the advantages of
the heat method on 2D images, it is interesting to see how it will perform on the 3D
images.

• Heat Diffusion on Asymmetric Manifold

Inspired by the work of [15], we are interested in applying the asymmetric metric to the
heat method.

• PointFlow Model to Infer High Level Information

The edges and boundaries detected by the PointFlow model can be exploited to do high
level tasks, such as the inference of elevation information. Take a 2D satellite road
network image as an example, the road network can be detected by using the PointFlow
model. When there is a overcross on the road image, we may find out it is a junction or
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an overpass. In addition, we are also interested in distinguishing the arteries from the
veins in retinal images.
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