
HAL Id: tel-04635844
https://theses.hal.science/tel-04635844v1

Submitted on 4 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subshifts of Finite Type on Groups : Emptiness and
Aperiodicity

Nicolás Bitar

To cite this version:
Nicolás Bitar. Subshifts of Finite Type on Groups : Emptiness and Aperiodicity. Dynamical Systems
[math.DS]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG034�. �tel-04635844�

https://theses.hal.science/tel-04635844v1
https://hal.archives-ouvertes.fr


T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N

T
:2

02
4U

PA
SG

03
4

Subshifts of Finite Type on Groups:
Emptiness and Aperiodicity

Sous-décalages de type fini sur des groupes :
problèmes du vide et d’apériodicité

Thèse de doctorat de l’université Paris-Saclay

École doctorale n°580 :
Sciences et technologies de l’information et de la communication (STIC)

Spécialité de doctorat : Informatique mathématique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche Laboratoire interdisciplinaire des sciences du numérique
(CNRS, Université Paris-Saclay), sous la direction de

Nathalie AUBRUN, Chargée de Recherche CNRS

Thèse soutenue à Paris-Saclay, le 28 juin 2024, par

Nicolás BITAR

Composition du jury
Membres du jury avec voix délibérative

Emmanuel JEANDEL Président
Professeur, Université de Lorraine (LORIA)
Laurent BARTHOLDI Rapporteur & Examinateur
Professeur, Universität des Saarlandes (Allemagne)
Jarkko KARI Rapporteur & Examinateur
Professeur, Turun Yliopisto (Finlande)
Irène MARCOVICI Examinatrice
Professeure, Université de Rouen Normandie (LMRS)
Samuel PETITE Examinateur
Professeur, Université de Picardie Jules Verne (LAMFA)
Matthieu PICANTIN Examinateur
Maître de Conférences, Université Paris-Cité (IRIF)
Guillaume THEYSSIER Examinateur
Chargé de Recherche, CNRS, Université d’Aix-Marseille (I2M)



Titre: Sous-décalage de type fini sur des groupes : problèmes du vide et d’apériodicité
Mots clés: pavages, sous-décalages de type fini, groupes de type fini, apériodicité, substitutions, calcula-
bilité.
Résumé: Un sous-décalage de type fini est un en-
semble de pavages d’un groupe sujet à un nombre fini
de contraintes locales, où le groupe agit par trans-
lation. Ces dernières années, de nombreux progrès
ont été réalisés dans la compréhension de leurs pro-
priétés dynamiques et calculatoires. Le but de cette
thèse est de poursuivre cette étude sur la manière
dont les propriétés algébriques et géométriques du
groupe sous-jacent influencent les propriétés des
sous-décalages de type fini définis sur le groupe. Les
résultats sont regroupés en trois grandes catégories :
décidabilité, apériodicité et substitutions.

Dans la première partie, nous étudions le prob-
lème du domino, ses variantes, et les conséquences de
son indécidabilité sur de nombreux groupes de type
fini. Nous classifions la calculabilité du Problème
du Domino à Première Tuile Fixée, du Problème
du Domino Récurrent, du Problème k-SAT, et des
Problèmes du Domino Serpent pour de nombreuses
classes de groupes bien connues. En particulier, ils
sont tous décidables pour des groupes virtuellement
libres. Cette classification est obtenue par des ré-
ductions utilisant des constructions SFT, la théorie
des automates, et la logique monadique du second
ordre. A la fin de la première partie, nous prenons
une tangente pour étudier l’ensemble des marches
auto-évitantes bi-infinies sur les graphes de Cayley.
Cet ensemble apparaît naturellement dans l’étude du
problème du serpent infini et est un sous-décalage de
Z. Nous classifions les groupes pour lesquels ce sous-
décalage est apériodique, de type fini, et sofique.
Nous étudions également son entropie et sa relation
avec la constante connective du graphe de Cayley.

La deuxième partie traite de l’existence de sous-
décalages de type fini fortement et faiblement apéri-
odiques. Nous commençons par une étude de l’état
de l’art de ces problèmes et explorons les parallèles
avec des problèmes de probabilité et de combina-

toire. Nous examinons ensuite quels sous-groupes
d’un groupe peuvent être réalisés en tant que sta-
bilisateurs de sous-décalages de type fini, en étab-
lissant des conditions algébriques et calculatoires
pour que cela se produise. Dans ce même cadre,
nous introduisons la classe des groupes périodique-
ment rigides, c’est-à-dire des groupes où chaque
sous-décalage de type fini faiblement apériodique est
fortement apériodique. Nous terminons cette partie
en construisant, à partir des travaux d’Aubrun et
de Kari, les premiers exemples de sous-décalages de
type fini fortement apériodiques sur des groupes de
Baumslag-Solitar non résolubles et sur Fn × Z. Par
des théorèmes de Whyte et Cohen, nous obtenons
l’existence de tels sous-décalages pour les groupes
de Baumslag-Solitar généralisés non cycliques.

La dernière partie de cette thèse introduit de
nouvelles notions de substitutions, de systèmes S-
adiques, et leurs sous-décalages correspondants pour
les groupes dénombrables. Nous identifions trois
classes de groupes. Premièrement, nous définissons
les groupes S-décomposables. Ces groupes ont la
structure hiérarchique appropriée pour définir des
systèmes S-adiques généraux. Deuxièmement, nous
étudions les groupes ccc introduits par Gao, Jackson
et Seward, car ils permettent de définir des systèmes
S-adiques à forme constante. Troisièmement, nous
introduisons les groupes monoformes. Ces groupes
permettent de définir des substitutions à forme con-
stante. Nous fournissons des exemples pour les
trois classes et des exemples pour leurs systèmes S-
adiques correspondants. Nous terminons par l’étude
des propriétés dynamiques des sous-décalages définis
par ces systèmes. Nous montrons qu’en général, ils
sont minimaux sous des conditions de primitivité, et
que pour certains groupes ccc moyennables, ils ont
une entropie nulle et sont uniquement ergodiques.



Title: Subshifts of Finite Type on Groups: Emptiness and Aperiodicity
Keywords: tilings, subshift of finite type, finitely generated groups, aperiodicity, substitutions, computability.
Abstract: A subshift of finite type is a set of tilings of
a group subject to a finite number of local constraints,
where the group acts by translation. In recent years,
much progress has been made in understanding their dy-
namical and computational properties. The goal of this
thesis is to continue the study of how the algebraic and
geometric properties of the underlying group influence
the properties of subshifts of finite type defined on the
group. The results are divided into three broad cate-
gories: decidability, aperiodicity, and substitutions.

For the first part, we study the Domino Problem, its
variants, and the consequences of its undecidability on
many finitely generated groups. We classify the com-
putability of the Seeded Domino Problem, the Recur-
ring Domino Problem, the k-SAT Problem, and Domino
Snake Problems for many well-known classes of groups.
In particular, they are all decidable for virtually free
groups. This classification is obtained through reduc-
tions involving SFT constructions, automata theory, and
Monadic Second Order Logic. At the end of the first
part, we go on a tangent to study the set of bi-infinite
self-avoiding walks on Cayley graphs. This set appears
naturally in the study of the Infinite Snake Problem and
is a Z-subshift. We classify for which groups this sub-
shift is aperiodic, of finite type, and sofic. We also study
its entropy and its relation to the connective constant of
the Cayley graph.

The second part tackles the existence of strongly and
weakly aperiodic subshifts of finite type. We begin with
a survey on the state of the art of these problems and ex-
plore parallels with problems from probability and com-

binatorics. We then look at which subgroups of a group
can be realized as the stabilizers of subshifts of finite
type, establishing both algebraic and computational con-
ditions for this to happen. Within this same framework,
we introduce the class of periodically rigid groups, i.e.
groups where every weakly aperiodic subshift of finite
type is strongly aperiodic. We end this part by building
upon the work of Aubrun and Kari to construct the first
examples of strongly aperiodic subshifts of finite type on
non-solvable Baumslag-Solitar groups and on Fn ×Z. By
theorems of Whyte and Cohen, we obtain the existence
of such subshifts for non-cyclic generalized Baumslag-
Solitar groups.

The final part of the thesis introduces new notions
of substitutions, S-adic systems, and their correspond-
ing subshifts for countable groups. We identify three
classes groups. First, we define S-decomposable groups.
These groups have the appropriate hierarchical structure
for defining general S-adic systems. Second, we study
ccc groups introduced by Gao, Jackson, and Seward, as
they allow the definition of constant-shape S-adic sys-
tems. Third, we introduce monoform groups. These
groups allow for the definition of constant-shape substi-
tutions. We provide examples for all three classes and
examples for their corresponding S-adic systems. We
finish studying the dynamical properties of the subshifts
defined by these systems. We show that, in general, they
are minimal under primitivity conditions, and that for
some amenable ccc groups, they have zero entropy and
are uniquely ergodic.
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Introduction

"Karpal wore a secretive smile.
Paolo said, ‘What?’
‘Wang tiles. The carpets are made out of Wang tiles.’"

– Greg Egan, Diaspora.

Imagine you are handed a box with infinite puzzle pieces of finite different types. Is it possible to determine
if the pieces allow you to complete a puzzle that fills the infinite plane? This seemingly innocuous question,
known as the Domino Problem, hides a deep theory behind it that has developed over the last 63 years and has
impacted several branches of computer science and mathematics.

The Domino Problem was introduced by Hao Wang in 1961 to study the decidability of the ∀∃∀ fraction of
first-order logic [Wan61]. Wang used an abstract version of puzzle pieces, now known as Wang tiles. A Wang
tile is a unit square with a color on each of each edge. Two tiles can be placed side by side if their touching
edge has the same color. The question is, given a finite set of Wang tiles, is it possible to determine if they tile
the plane while respecting the adjacency rules? Wang conjectured that if a set of tiles can tile the plane, then
they must be able to tile periodically, making the problem decidable. However, in 1966 Wang’s PhD student
Robert Berger proved the undecidability of the Domino Problem [Ber66] and constructed the first example of
an aperiodic tileset made up of over twenty thousand tiles.

Berger’s landmark result spawned two research directions. First, the Domino Problem’s undecidability has
been used to prove the undecidability of many problems, ranging from problems in cellular automata [Kar90;
Kar92; Kar94] to the spectral gap of many-body quantum systems [CPW22]. Second, the existence of aperiodic
tilings on the plane has launched the study of quasi-crystals [BG13] and the study of aperiodicity on different
surfaces and spaces [Moz97].

In this thesis, we continue both these threads by exploring the undecidability of the Domino Problem and the
existence of aperiodic tilings for finitely generated groups. As has been done for the last 30 years, we understand
both of these problems through the lens of symbolic dynamics. Specifically, we see them as questions on the
class of subshifts of finite type. The goal of this thesis is taking steps to understand the following general
question.

Question. How do the algebraic and geometric properties of the underlying group affect the dynamical and
computational properties of its subshifts on finite type?

Symbolic Dynamics
The general setting for the thesis is the area of symbolic dynamics. Although it was originally conceived for the
study of general dynamical systems, it has become a rich area of study in itself, with many applications both
in pure and applied mathematics and computer science.

In its early days, the objective of symbolic dynamics was to study discretizations of continuous dynamical
systems. The main idea was to partition the space of possible states into finite pieces, each of which is assigned
a symbol. Then, the system is coded by infinite strings of symbols representing the trajectories of points in the

i



Introduction

space. The idea was to study this new symbolic system to understand the dynamics of the original system. For
instance, consider a dynamical system (X,T ), where X is a compact space and T a homeomorphism. We can
partition the space into open subsets X , X , X , and define a function γ : X → { , , } sending points in
the space to the symbol of its corresponding partition. We then define a function φ : X → { , , }Z that
allows us to code an orbit of a point p ∈ X by a sequence φ(p) ∈ { , , }Z defined by φ(p)(k) = γ(T k(p)). An
example of this process is shown in Figure 1. The space of all symbolic sequence obtained by this process, φ(X),

T−2(p)

T−3(p)

T (p) T 2(p)

T 3(p)

p

T−1(p)

0 1 2 3−1−2−3

φ(p) =

Figure 1: An example of the discretization of the dynamical system (X,T ). The orbit of a point p ∈ X
is depicted over a partition of the space X, along with the corresponding bi-infinite sequence of symbols it
generates. This figure is an essential part of any introduction to a thesis or HDR on symbolic dynamics.

is compact in the product topology and is acted upon by the shift action, σ(x)(k) = x(k − 1) for all x ∈ φ(X)
and k ∈ Z, making (φ(X), σ) a dynamical system. Under certain conditions the space of all symbolic sequences
completely describe the original system. Early versions of this approach can be traced back to the study of
geodesic flows on surfaces of negative curvature by Hadamard [Had98]. The study of these symbolic spaces
began in earnest with the works of Morse and Hedlund [MH38; MH40]. They called these spaces subshifts
and studied their properties of recurrence and minimality. An account on the history of the origins of symbolic
dynamics can be found in [CN08].

Nowadays, subshifts are understood as sets of colorings of a group G by a finite alphabet A that are closed
for the product topology and invariant under the action of the group by translations. Surprisingly, these systems
also have a combinatorial description. A subshift can be equivalently defined as the set of colorings of G that
avoid a certain set of forbidden patterns. It is with this alternative definition that the main object of this thesis
appears: subshifts of finite type (SFT). An SFT is a subshift defined by a finite set of forbidden patterns.
Their study began with Parry [Par64], but their name comes from Smale, who used them to understand the
dynamics of smooth mappings [Sma67].

Subshifts of finite type on Z are well understood and have been developed into a robust theory which can
be found in Lind and Marcus’ classic book [LM21]. It is then natural to wonder what aspects of this theory
can be generalized to subshifts on Z2 and beyond. It is here where the Domino Problem comes in. The set of
tilings generated by a finite set of Wang tiles is a subshift of finite type: the alphabet is the set of tiles and the
forbidden patterns are given by violations of the Wang tile rule. It turns out, every SFT on Z2 is dynamically
equivalent to a subshift defined from Wang tiles.

ii
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The Swamp of Undecidability and the Forest of Decidability
As the study of symbolic dynamics began moving into the realm of Z2-actions, it was soon clear that the behavior
of two dimensional subshifts of finite type was widely different from its one dimensional counterpart. Specifically,
as evidenced by the undecidability of the Domino Problem and the existence of aperiodic SFTs, answering basic
questions about these systems is undecidable. This fact prompted Lind to call multidimensional subshifts of
finite type the Swamp of Undecidability [Lin04]. The existence of this swamp is further evidenced by Hanf
and Myer’s result on the existence of Z2-SFTs where no tiling is computable [Han74; Mye74], and Hochman and
Meyerovitch’s result on the existence of Z2-SFTs with uncomputable entropy [HM10]. Although these results
limit our computational understanding of these systems – with Lind going as far as to say that the swamp "[is]
a place you don’t want to go"– some researchers1 suggest the alternative name Garden of Undecidability, as
these undecidability results have provided a rich theory on the computational aspects of symbolic systems.

The reach of this Garden is vast. As a consequence of the Domino Problem’s undecidability many other
problems have been shown to be undecidable in Z2. Among these are the Seeded Domino Problem [KMW62;
Büc62], the Recurring Domino Problem [Har85], the Periodic Domino Problem [Jea10], the Aperiodic Domino
Problem [GHV18], the k-SAT problem for Z2 [Fre99], the Infinite Snake Problem [Adl+09] and the Ouroboros
Problem [Ebb82; Kar02], to mention a few.

To better understand which properties of Z2 account for the existence of the Garden, researchers have looked
at the Domino Problem on other finitely generated groups. A reference for the progress on this project can be
found in [ABJ18]. Notably, this study has found the other end of the computational spectrum in the class of
virtually free groups. For these groups, the Domino Problem and some of its variants have been shown to
be decidable [BS18; Pia08]. In fact, these groups are conjectured to be the only ones where this is the case.

Conjecture. A finitely generated group has decidable Domino Problem if and only if it is virtually free.

The crucial characteristic of virtually free groups is that their Cayley graphs have finite tree width [MS85],
and thus decidable Monadic Second Order logic [KL05]. Due to this fact, we propose the name Forest of
Decidability for subshifts of finite type over virtually free groups.

In this thesis, we study the variants and consequences of the Domino Problem on finitely generated groups:
the Seeded Domino Problem, the Recurring Domino Problem, the k-SAT problem, the Infinite Snake Problem
and the Ouroboros Problem. We show that the Forest of Decidability remains true to its name for all of them.

Aperiodicity
Recall that the second key aspect of Berger’s result was the existence of aperiodic subshifts of finite type. Since
this construction was published, many more aperiodic tilings of the plane [Rob71; Kar96; JR21], as well as
other Riemannian surfaces have been constructed [Pen79; BW92; Moz97; MN14]. The current project is to
understand which groups admit aperiodic subshifts of finite type. When working beyond Z2, Mozes observed
that there is no longer a unique notion of aperiodicity for tilings [Moz97], but rather two. He coined the names
weakly aperiodic, for SFTs where the orbit of each tiling is infinite, and strongly aperiodic, for SFTs where
the stabilizer of every tiling is trivial. A lot of progress has been achieved in establishing the existence of both
types of aperiodic SFTs for many classes of groups. For a recent survey see [Rie22].

Through the works of Jeandel [Jea15a] and Cohen [Coh17], we know the existence of strongly aperiodic
SFTs is influenced by the number of ends and the co-totality of the word problem of the underlying group. Not
many other obstructions are known for their construction. A the time writing, many classes of groups have
been shown to verify the following conjecture obtained by combining Jeandel and Cohen’s results.

Conjecture. A finitely generated group admits a strongly aperiodic SFT if and only if it is one-ended and has
decidable word problem.

1Guillaume Theyssier, personal communication
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In contrast, for weakly aperiodic SFTs we have more tools: they behave well with subgroups, quotients
and translation-like actions, to name a few [Jea15c]. When studying the invariance under commensurability of
both types of aperiodicity, Carroll and Penland proposed the following conjecture on the existence of weakly
aperiodic tilings.

Conjecture. A finitely generated group admits a weakly aperiodic SFT if and only if it is not virtually Z.

In this thesis, we look at the state of the art of both conjectures and show the conjectures are satisfied for
the class of generalized Baumslag-Solitar groups. We also explore a new aspect of aperiodicity, namely, which
families of subgroups can be obtained as stabilizers of subshifts of finite type.

The Tools of The Trade
When studying subshifts on Z a frequently used tool for the construction of examples of subshifts with sought
after properties are S-adic systems. These systems were introduced in the works of Ferenczi [Fer96], Livschits
and Vershik [LV92]. An S-adic system is a sequence of morphisms (τn)n∈N that generate infinite words by
sequentially applying the morphisms on letters. They are a generalization of classical substitutive systems,
describe large classes of subshifts [Esp23b], and have been extensively studied for all their dynamical proper-
ties [Don+21; Ber+21].

Considering the effectiveness the S-adic formalism has had over the last decades, researchers have begun to
study these systems in the multidimensional setting. In Z2, S-adic subshifts, especially substitutive ones, have
been a powerful tool to find new proofs of the undecidability of the Domino Problem [DRS12; JV20] and find
aperiodic subshifts [Cab23; Lab23; Lab21a]. This is done through simulation theorems, most notably Mozes’
theorem [Moz89] and its generalization by Aubrun and Sablik [AS14]. Nevertheless, these systems are also within
the reach of the Garden of Undecidability. Jolivet and Kari have shown that given a list of concatenation rules for
a Z2-substitution, determining if the image of the substitution is consistent or overlap-free is undecidable [JK12].

In [Cab23], Cabezas formalized the notion of constant-shape substitutions of Zd, providing a robust
theory to study substitutive systems away from the reach of undecidability. His work with Petite and Leroy
has also provided many examples of subshifts with interesting dynamical and computational properties [CP23;
CL24].

There have also been recent attempts to generalize substitutions to other groups. This has been done for
lattices on many non-abelian nilpotent Lie groups [BHP21], the free semigroup on two generators [BL21], and
certain locally finite groups [BS24]. In this thesis we generalize S-adic systems to general groups with a different
approach. Instead of looking at specific classes of groups, we define classes which contain groups that have the
appropriate structure to allow for S-adic sequences of varying degrees of rigidity. The long term objective is to
use these systems to establish new undecidability and aperiodicity results.

Contributions
The contributions of this thesis are attempts at answering the question at the beginning of this introduction:
how do the properties of the underlying group influence the properties of its subshifts of finite type, and vice
versa. The contributions in this thesis are contained, but are not exclusively from, the following articles:

• Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability.

In this article we study the Seeded Domino Problem, the Recurring Domino Problem and the k-SAT prob-
lem on finitely generated groups. We show invariance properties for the Seeded and Recurring Domino
Problems, and that the Recurring Domino Problem is decidable for free groups. We conjecture that the
only groups in which the Seeded and Recurring Domino Problems are decidable are virtually free groups.
For the k-SAT problem, we show that the subgroup membership problem many-one reduces to the k-SAT
problem, that in certain cases the k-SAT problem many one reduces to the Domino Problem, and finally
that the Domino Problem reduces to the k-SAT problem for certain groups. This work was presented at

iv



Introduction

STACS 2024 [Bit24a].

• Domino Snake Problems with Nathalie Aubrun.

In this article we study the computability of Domino Snake Problems on finitely generated groups. We
introduce the skeleton subshift that allows us to solve many variations of the Infinite Snake Problem
including the Geodesic Snake Problem. We also show that the Infinite Snake and Ouroboros Problems
on nilpotent groups are undecidable for any generating set, given that we add a well-chosen element.
Finally, we make use of Monadic Second Order logic to prove that Domino Snake Problems are decidable
on virtually free groups for all generating sets. This work was presented at FCT 2023 [AB23], and also
has a journal version that has been submitted [AB24a].

• Self-Avoiding Walks on Cayley Graphs through the Lens of Symbolic Dynamics with Nathalie Aubrun.

In this article study dynamical and computational properties of the set of bi-infinite self-avoiding walks
on Cayley graphs, as well as ways to compute, approximate and bound their connective constant. This
is done through the skeleton, G,S , of a finitely generated group G relative to a generating set S. We
provide a characterization of groups which have SFT skeletons and sofic skeletons. We also characterize
finitely generated torsion groups as groups whose skeletons are aperiodic. For connective constants, we
show that Cayley graphs of finitely generated torsion groups do not admit graph height functions, that for
groups that admit transitive graph height functions the connective constant is equal to the growth rate of
periodic points of the skeleton, and using a counting argument due to Rosenfeld, we give bounds on the
connective constant of infinite free Burnside groups. Finally, we look at the set of bi-infinite geodesics and
introduce an analog of the connective constant for the geodesic growth. This work has been submitted to
a journal [AB24b].

• Realizability of Subgroups by Subshifts of Finite Type.

In this article we study the problem of realizing families of subgroups as the set of stabilizers of config-
urations from a subshift of finite type. We show that a normal subgroup is realizable if and only if the
quotient by the subgroup admits a strongly aperiodic SFT. We also show that if a subgroup is realizable,
its subgroup membership problem must be decidable. The article also contains the introduction of peri-
odically rigid groups, which are groups for which every weakly aperiodic subshift of finite type is strongly
aperiodic. We introduce a new conjecture stating that the only periodically rigid groups are virtually Z
groups and torsion-free virtually Z2 groups. Finally, we show virtually nilpotent and polycyclic groups
satisfy the conjecture. This work is a pre-print [Bit24b].

• Strongly Aperiodic SFTs on Generalized Baumslag-Solitar Groups with Nathalie Aubrun and Sacha Huriot-
Tattegrain

In this article we look at constructions of aperiodic SFTs on fundamental groups of graph of groups. In
particular, we prove that all non-Z generalized Baumslag-Solitar groups admit a strongly aperiodic SFT.
The constructions rely on a path-folding technique that lifts an SFT on Z2 inside an SFT on Fn×Z, or an
SFT on the hyperbolic plane inside an SFT on BS(m,n). In the case of Fn×Z the path folding technique
also preserves minimality. This work was published in Ergodic Theory and Dynamical Systems [ABH24].

• Substitutions and Hierarchical Structures with Christopher Cabezas and Pierre Guillon.

In this article we introduce new notions of substitutions, S-adic systems, and their corresponding subshifts
for countable groups. We identify three classes groups: S-decomposable groups, ccc groups, and monoform
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group. Each of these groups allows for the definition of increasingly rigid S-adic systems. We finish
studying the dynamical properties of the subshifts defined by these systems. We show that, in general,
they are minimal under primitivity conditions, and that for some amenable ccc groups, they have zero
entropy and are uniquely ergodic. This work is in preparation.

Organization of the Manuscript
The thesis is divided into four parts. Part I serves as an introduction to the many concepts from symbolic
dynamics, computability theory and group theory that are necessary for the rest of the manuscript. Part II is
concerned with the Domino Problem, its variants, and its consequences. Chapter 2 deals with the state of the
art on the Domino Problem and its variants, Chapter 3 deals with Domino Snake Problems, and Chapter 4
with bi-infinite self-avoiding walks through the lens of symbolic dynamics. Part III deals with aperiodicity.
Within this part, Chapter 5 explores the state of the art of strongly and weakly aperiodic SFTs, as well as new
problems and conjectures around aperiodicity. Chapter 6 contains the construction of strongly aperiodic SFTs
on the class of generalized Baumslag-Solitar groups. Finally, in Part IV we present a generalization of S-adic
systems to general countable groups and explore its dynamical properties. The main dependencies between the
chapters are illustrated in Figure 2.

Chapter 1

Chapter 2 Chapter 3 Chapter 5 Chapter 7

Chapter 4 Chapter 6

Part II Part III Part IV

Part I

Figure 2: Thesis outline and dependencies.

We have tried to make this thesis as self-contained as possible, and give references to allow the reader to
go deeper on their subjects of interest. We have also provided an Index containing key words, and the places
where they feature prominently. We have done our best to keep Titivillus2 at bay.

Part I: Background and Definitions

Subshifts, Computability and Groups The first part and first chapter of the thesis is devoted to the
introduction of the necessary background and context of the rest of the manuscript. We begin in Section 1.1
by introducing subshifts and the notions of morphisms, conjugacy, aperiodicity and minimality. We also define
the class of subshifts of finite type, and the class of sofic subshifts. Section 1.2 is devoted to the introduction of
the notions of decidability, enumerability, the arithmetical hierarchy and reductions from computability theory.

2Titivillus or Tutivillus is the name given to the "patron demon of scribes". It is said that in the Middle Ages he entered
monasteries where scribes worked and added errors and typos into their work when they got distracted [Jen77].
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These will be necessary to tackle the different decision problems present in the text. Similarly, Section 1.3
introduces notions from both combinatorial and geometric group theory, including the word problem, quasi-
isometries, translation-like actions, and more. With the background provided by these three sections, we are
able to define both effectively closed subshifts and entropy in Section 1.4.1 and Section 4.2.2 respectively.

Section 1.5 is devoted to what we call canonical constructions. These are constructions that appear often
in the literature, and allow to transform a subshift on a given group, to a subshift on an overgroup, a subgroup
of finite index, a quotient, or from a quotient. These constructions will appear recurringly in the manuscript.

The final section of the chapter, Section 1.6, explores the analogies between finitely generated groups as
originally obeserved by Jeandel and Vanier [JV19]. We finish the section by introducing residually periodic
subshifts as a proposed analog to residually finite groups.

Part II: Emptiness

The Domino Problem The second part of the manuscript begins with Chapter 2 about the Domino Problem
and some of its variants. The chapter starts with a short historical account of the problem, its definition, its
properties, and the current state of the art around the Domino Conjecture. The chapter continues with
Section 2.1 on the current state of the Seeded Domino Problem and the Recurring Domino Problem. This is
followed by Section 2.2 where we prove properties for both of these problems as well as Theorem 2.2.5 stating
that the Recurring Domino Problem is decidable for free groups. The section ends with Corollary 2.2.11 that
shows that the Domino Conjecture implies that the Domino Problem, the Seeded Domino Problem and the
Recurring Domino Problem are decidable only on virtually free groups.

Next, Section 2.3 tackles the Periodic Domino Problem and the Aperiodic Domino Problem. For the former,
we show that it is co-recursively enumerable for groups with ReFQ, as defined by Rauzy [Rau22] (Proposi-
tion 2.3.4). For the latter, we study its connection with an analog of the Adyan-Rabin theorem for subshifts
due to Carrasco-Vargas [Car24].

Finally, in Section 2.4 we look at the k-SAT problem for finitely generated groups. We introduce a definition
of the problem that differs from the original due to Freedman [Fre99], to make it compatible with finite generated
groups. We prove that the subgroup membership problem (SMP) of the underlying group many-one reduces
to 2-SAT (Lemma 2.4.3) and that for groups with decidable SMP k-SAT reduces to the Domino Problem
(Lemma 2.4.4). This last result implies that virtually free groups have decidable k-SAT problem. In addition,
we show that if a group contains a proper finite index subgroup isomorphic to the group, then the Domino
Problem reduces to 3-SAT (Theorem 2.4.7). This implies that for many of such groups, 3-SAT is undecidable,
as they have undecidable Domino Problem (Corollary 2.4.10).

Domino Snake Problems Chapter 3 studies a remarkable species from the Swamp of Undecidability known
as Domino Snake Problems. The objective of the chapter is to study of the generalization of these problems to
general finitely generated groups. Section 3.1 introduces and proves properties of the three main problems: the
Reachability Problem, the Infinite Snake Problem, and the Ouroboros Problem.

Section 3.2 introduces the skeleton associated to a group and a generating set. We prove some preliminary
properties of the skeleton and its geodesic version, and show that the dynamical properties of the skeleton
impact the decidability of the Infinite Snake Problem (Proposition 3.2.4).

In Section 3.3 we introduce a notion of embedding, which we call snake embedding, that allows us to
reduce the decidability of snake problems from one group to another. This notion enables us to establish
the undecidability of the Infinite Snake and Ouroboros Problems on a large class of groups, which include
nilpotent groups, for any generating set provided that we add a torsion-free element from the center of the
group (Theorem 3.4.4).

Lastly, Section 3.5 tackles Domino Snake Problems on virtually free groups by expressing them Monadic
Second Order logic. We show that the three problems, along with their seeded and strong variants, are decidable
on virtually free groups (Theorem 3.5.3 and Corollary 3.5.4).
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Self-Avoiding Walks It turns out that the skeleton subshift we define in Chapter 3 is also the set of labels
of bi-infinite self-avoiding walks on the Cayley graph. Thus, Chapter 4 is devoted to the study of such walks
through the skeleton. Sections 4.1 and 4.2 are devoted to the definition of self-avoiding walks as well as their
general properties. In particular, we show Lemma 4.2.4 stating that the entropy of the skeleton is equal to the
connective constant of the Cayley graph.

In Section 4.3 we study the different computational and dynamical properties of skeletons. We prove that a
group is plain if and only if it admits an SFT skeleton (Theorem 4.3.6), and that a group is a torsion group if and
only if every skeleton is aperiodic (Theorem 4.3.17). Similarly, Section 4.4 contains the study of which groups
admit sofic skeletons. By using techniques developed by Lindorfer and Woess for thin and thick ends [LW20],
we show that a group admits a sofic skeleton if and only if it is plain, Z×Z/2Z or the direct product of infinite
dihedral group with Z/2Z (Theorem 4.4.9).

We tackle connective constants in Section 4.5. First, we use graph height functions to show that the skeleton
of Cayley graphs with such functions contain periodic points (Lemma 4.5.3). With this, we show Theorem 4.5.4
stating that Cayley graphs of torsion groups do not admit graph height functions, and Theorem 4.5.6 that
tells us that the entropy of the skeleton can be approximated by periodic points in Cayley graphs that admit
transitive graph height functions. We then proceed to use Rosenfeld’s counting method [Ros22] to find lower
bounds on the connective constant of free Burnside groups (Corollary 4.5.10).

We finish the chapter by looking at the geodesic skeleton. We explore when this skeleton defines an
SFT, a sofic subshift, an effectively closed subshift and more. Furthermore, we introduce the geodesic con-
nective constant as a geodesic analog of the traditional constant, and find its value for well known lattices
(Proposition 4.6.8).

Part III: Aperiodicity

Strong Aperiodicity, Weak Aperiodicity and Everything In Between The fifth chapter of this
manuscript is about aperiodicity in all of its forms. We start with Section 5.1, where we give a state of
the art of the problem of the existence of strongly aperiodic SFTs. Next, we move to Section 5.2 on weakly ape-
riodic SFTs. This time, we not only study the state of the art of the problem, but give results on its connection
with computability (Section 5.2.1) and its analogies with other problems (Section 5.2.2). Among the analogous
problems is the Angel Game, for which we prove some results.

Next, Section 5.3 tackles the realizability of families of subgroups as stabilizers of subshifts of finite type.
This problem generalizes the existence of both strongly aperiodic and weakly aperiodic subshifts of finite type.
We study how the algebraic, geometric and computational properties of the underlying group determine which
families are realizable. For instance, we show that a normal subgroup is realizable if and only if the quotient by
the subgroup admits a strongly aperiodic SFT (Theorem 5.3.11), and that if a subgroup of a recursively presented
group is realizable, its subgroup membership problem must be decidable (Theorem 5.3.17). In Section 5.4, we
study families of subgroup that contain exclusively non-trivial infinite index subgroups. These families are
interesting as any SFTs that realizes them is a weakly aperiodic subshift that is not strongly aperiodic. The
first explicit search for such a subshift is due to Esnay and Moutot for Baumslag-Solitar groups [EM22a].
We introduce periodically rigid groups which are groups where every weakly aperiodic SFT is strongly
aperiodic. This generalizes the behavior observed in Z2. We prove many invariance and inheritance properties
for periodically rigid groups. We also state Conjecture 5.4.6: a group is periodically rigid if and only if it
is virtually Z or torsion-free virtually Z2 (Lemma 5.4.1). In Section 5.4.1, we prove this conjecture holds for
virtually nilpotent groups and polycyclic groups (Theorems 5.4.13 and 5.4.15).

We end the chapter with Section 5.5, where we give a summary of the relations between strongly aperiodic
SFTs, weakly aperiodic SFTs, periodic rigidity, the Domino Problem, and the word problem (Table 5.1).

Aperiodic SFTs on Generalized Baumslag-Solitar Groups In Chapter 6, we construct strongly ape-
riodic SFTs for all non-Z generalized Baumslag-Solitar groups (GBS). To achieve this, we start at Section 6.1
with a definition GBS groups through the notion of a graph of groups. Next, in Section 6.2 we take a brief
pause from our strongly aperiodic ambitions to study weakly aperiodic SFTs and the Domino Problem for GBS

viii



Introduction

groups and Artin groups (Propositions 6.2.2 and 6.2.3).
The construction of the strongly aperiodic SFTs is structured as follows. First, Section 6.3 contains an

explanation of the method by Carroll and Penland to lift a strongly aperiodic subshift to a group from a
finite index subgroup [CP15]. This section also contains an Erratum to a proof from the original presentation
of these results in [ABH24] (Section 6.3.1). Second, Section 6.4 shows the roadmap to our goal provided by
Whyte’s theorem on the quasi-isometry classification of GBS groups [Why01]. Third, in Section 6.5 we give
the description of a minimal, strongly aperiodic, horizontally expansive Z2-SFT that is based on the works of
Labbé [Lab21a; Lab21b; Lab21c] and Labbé, Mann, and McLoud-Mann [LMM23] on the minimal subsystem
of the Jeandel-Rao Wang tile shift. Fourth, in Section 6.6 we construct a minimal strongly aperiodic SFT on
Fn×Z (Theorem 6.6.6) by introducing the path-folding technique. Lastly, Section 6.7 tackles the adaptation
of the path-folding technique to the non-solvable Baumslag-Solitar group BS(2, 3). By building upon the work
of Aubrun and Kari [AK13], we construct a strongly aperiodic SFT on this group (Theorem 6.7.10). The result
of the preceding sections are Corollary 6.7.11 that states that all non-Z GBS groups admit strongly aperiodic
SFTs, and Corollary 6.8.2 which is a small generalization for virtually GBS groups.

Part IV: Substitutive Tools

Substitutions and Hierarchical Structures The final part and final chapter of this thesis is about sub-
stitutive and S-adic systems on groups, and the structural properties that allow for their definition. Taking
an abstract-to-concrete approach, Section 7.1 contains the definition of the most general of the three classes
of groups we define: S-decomposable groups. These groups allow for the definition of general S-adic se-
quences and their subshifts. We provide plenty of examples to illustrate the mechanics of the definition. The
next section, Section 7.2, studies the class of ccc groups, introduced by Gao, Jackson and Seward for the
study of hyperfinite relations [GJS16], as they allow for the definition of constant-shape S-adic sequences. We
also link ccc groups to congruent monotileable groups from the theory of G-Toeplitz subshifts [CP08; CC19].
In Section 7.3, we introduce the class of monoform groups that allow for the definition of constant shape
substitutions.

Section 7.4 is devoted to the proof of dynamical properties of S-adic subshifts. First, we prove that weakly
primitive S-adic sequences define minimal subshifts (Proposition 7.4.2). Second, for congruent monotileable
groups we prove a bound on the entropy of S-adic subshifts (Proposition 7.4.3). In paticular, if the alphabets of
the S-adic sequence are bounded, the subshift has zero entropy. Finally, we prove that for congruent monotileable
groups whose tiling sequence is uniformaly bounded, and weakly primitive S-adic sequences with uniformly
bounded alphabet, the corresponding subshift is uniquely ergodic (Theorem 7.4.8).

We end the chapter with Section 7.5 where we look at ways in which we can obtain new results of undecid-
ability for the Domino Problem and strongly aperiodic SFTs through recognizability and SFT covers of S-adic
subshifts.

Conventions and Notation
The following are conventions and notations we will use throughout the manuscript.

Given an alphabet A, we denote by An the set of words on A of length n, A≤n the set of words of length
at most n, and A∗ the set of all finite length words including the empty word ε. Furthermore, we denote by
A+ = A∗ \ {ε} the set of non-empty finite words over A. A factor v of a word w is a contiguous subword of w;
we denote this by v ⊑ w. For a word w ∈ A∗, given i, j ∈ Z, w[i,j] denotes the factor wiwi+1 ... wj .

The free group defined by the free generating set of size n is denoted by Fn, and the free group generated
by S, FS . The commutator of two group elements g, h is denoted by [g, h] = ghg−1h−1. We denote the identity
element of a group G by 1G.

A finite subset F of a set E is denoted by F ⋐ E. Given a group G, two subsets F,E ⊆ G and a group
element g ∈ G, we denote by FE the set obtained by multiplying every element of F with and element of E,
by F−1 the set of all inverses of elements from F , and by gF the set otained by multiplying g to every element
of F . If F is partitioned by sets {Ai}i∈I , the disjoint union is denoted as F =

∐
i∈I Ai.
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Unless otherwise stated the groups considered are infinite and every generating set is finite, symmetric and
does not contain the identity.
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"Karpal wore a secretive smile.
Paolo said, ‘What?’
‘Wang tiles. The carpets are made out of Wang tiles.’"

– Greg Egan, Diaspora.

Imaginez que l’on vous remette une boîte contenant une infinité de pièces de puzzle avec un nombre fini de
types de pièces différents. Est-il possible de déterminer si les pièces vous permettent de compléter un puzzle qui
remplit le plan infini ? Cette question apparemment anodine, connue sous le nom de « Problème du Domino
», cache une théorie profonde qui s’est développée au cours des soixante dernières années et qui a eu un impact
sur plusieurs branches de l’informatique théorique et des mathématiques.

Le Problème du Domino a été introduit par Hao Wang en 1961 pour étudier la décidabilité du fragment
∀∃∀ de la logique du premier ordre [Wan61]. Wang a utilisé une version abstraite de pièces de puzzle, connues
aujourd’hui sous le nom de tuiles de Wang. Une tuile de Wang est un carré unitaire dont chaque bord est
coloré. Deux tuiles peuvent être placées côte à côte si leur arête commune est de la même couleur. Le problème
est le suivant : étant donné un ensemble fini de tuiles de Wang, est-il possible de déterminer si elles pavent le
plan tout en respectant les règles d’adjacence ? Wang a conjecturé que si un ensemble de tuiles peut paver le
plan, il doit également pouvoir le faire périodiquement, ce qui rend le problème décidable. Cependant, en 1966,
Robert Berger, un doctorant de Wang, a prouvé l’indécidabilité du problème du domino [Ber66] et a construit
le premier exemple d’un jeu de tuiles apériodique, composé de plus de vingt mille tuiles.

Le célèbre résultat de Berger a fait émerger deux axes de recherche. Premièrement, l’indécidabilité du
problème du domino a été utilisée pour prouver l’indécidabilité de nombreux autres problèmes, allant de prob-
lèmes sur les automates cellulaires [Kar90; Kar92; Kar94] jusqu’au saut spectral des systèmes quantiques à
plusieurs corps [CPW22]. Deuxièmement, l’existence de pavages apériodiques du plan a lancé l’étude des quasi-
cristaux [BG13] et l’étude de l’apériodicité sur différentes surfaces et espaces [Moz97].

Dans cette thèse, nous poursuivons ces deux voies en explorant l’indécidabilité du problème du domino et
l’existence de tuiles apériodiques pour les groupes finiment engendrés. Comme cela a été fait au cours des trente
dernières années, nous appréhendons ces deux problèmes à travers le prisme de la dynamique symbolique. Plus
précisément, nous les voyons comme des questions sur la classe des sous-décalages de type fini. Le but de cette
thèse est de progresser dans la compréhension de la question générale suivante.

Question. Comment les propriétés algébriques et géométriques du groupe sous-jacent affectent-elles les pro-
priétés dynamiques et de calculabilité de ses sous-décalages de type fini ?

Dynamique symbolique
Le cadre général de la thèse est celui de la dynamique symbolique. Bien qu’elle ait été conçue à l’origine pour
l’étude de systèmes dynamiques généraux, elle est devenue un domaine d’étude riche en soi, avec de nombreuses
applications à la fois en mathématiques pures et appliquées et en informatique théorique.
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À son origine, l’objectif de la dynamique symbolique était d’étudier les discrétisations de systèmes dy-
namiques continus. L’idée principale était de partitionner l’espace des états possibles en un nombre fini de
morceaux, chacun d’entre eux étant associé à un symbole. Ensuite, le système est codé par des suites infinies
de symboles représentant les trajectoires des points dans l’espace. L’idée est d’étudier ce nouveau système sym-
bolique pour comprendre la dynamique du système original. Par exemple, considérons un système dynamique
(X,T ), où X est un espace compact et T un homéomorphisme. Nous pouvons partitionner l’espace en sous-
ensembles ouverts X , X , X , et définir une fonction γ : X → { , , } envoyant des points de l’espace sur
le symbole de la partition correspondante. Nous définissons ensuite une fonction φ : X → { , , }Z qui nous
permet de coder une orbite d’un point p ∈ X par une suite φ(p) ∈ { , , }Z définie par φ(p)(k) = γ(T k(p)).
Un exemple de ce procédé est présenté dans la Figure 3.

T−2(p)

T−3(p)

T (p) T 2(p)

T 3(p)

p

T−1(p)

0 1 2 3−1−2−3

φ(p) =

Figure 3: Exemple de discrétisation du système dynamique (X,T ). L’orbite d’un point p ∈ X est représentée
sur une partition de l’espace X, ainsi que la suite bi-infinie correspondante de symboles qu’elle génère. Cette
figure est une partie essentielle de toute introduction à une thèse ou à une HDR sur la dynamique symbolique.

L’ensemble de toutes les suites de symboles obtenues par ce procédé, φ(X), est compact pour la topologie
produit et subit l’action du décalage, σ(x)(k) = x(k − 1) pour tout x ∈ φ(X) et k ∈ Z, ce qui fait de φ(X), σ)
un système dynamique. Sous certaines conditions, l’espace de toutes les suites de symboles décrit complètement
le système original. Les premières versions de cette approche remontent à l’étude des flux géodésiques sur
les surfaces de courbure négative par Hadamard [Had98]. L’étude de ces espaces symboliques a commencé
sérieusement avec les travaux de Morse et Hedlund [MH38; MH40]. Ils ont appelé ces espaces sous-décalages
et ont étudié leurs propriétés de récurrence et de minimalité. Une synthèse de l’histoire des origines de la
dynamique symbolique est disponible dans [CN08].

Avec l’approche moderne, les sous-décalages sont vus comme des ensembles de colorations d’un groupe G
par un alphabet fini A qui sont fermés pour la topologie produit et invariants sous l’action du groupe par
des translations. De manière surprenante, ces systèmes ont également une description combinatoire. Un sous-
décalage peut être défini de manière équivalente comme l’ensemble des colorations de G qui évitent un certain
ensemble de motifs interdits. C’est avec cette définition alternative que l’objet principal de cette thèse apparaît
: les sous-décalages de type fini (SFT). Un SFT est un sous-décalage défini par un ensemble fini de motifs
interdits. Leur étude a commencé avec Parry [Par64], mais leur nom vient de Smale, qui les a utilisés pour
comprendre la dynamique des mappings lisses [Sma67].

Les sous-décalages de type fini sur Z sont bien compris et toute une théorie solide a été développée, notam-
ment dans le livre classique de Lind et Marcus [LM21]. Il est alors naturel de se demander quels aspects de
cette théorie peuvent être généralisés aux sous-décalages sur Z2 et au-delà. C’est ici qu’intervient le Problème
du Domino. L’ensemble des pavages générés par un ensemble fini de tuiles de Wang est un sous-décalage de
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type fini : l’alphabet est l’ensemble des tuiles et les motifs interdits sont donnés par des violations de la règle
des tuiles de Wang. Il s’avère que chaque SFT sur Z2 est dynamiquement équivalent à un sous-décalage défini
à partir des tuiles de Wang.

Le marécage de l’indécidabilité et la forêt de la décidabilité
Lorsque la dynamique symbolique a commencé à se interagir avec le domaine des actions de Z2, il est rapidement
devenu clair que le comportement des sous-décalages de type fini de deux dimensions était très différent de leurs
homologues unidimensionnels. En particulier, comme le montrent l’indécidabilité du Problème du Domino
et l’existence de SFT apériodiques, la réponse aux questions fondamentales sur ces systèmes est indécidable.
Cette observation a conduit Lind à parler de Marécage d’indécidabilité à propos des sous-décalages de type
fini multidimensionnels [Lin04]. L’existence de ce marécage est également attestée par le résultat de Hanf et
Myer sur l’existence de Z2-SFTs où aucun pavage n’est calculable [Han74; Mye74], et le résultat de Hochman
et Meyerovitch sur l’existence de Z2-SFTs avec une entropie non calculable [HM10]. Malgré le fait que ces
résultats limitent notre compréhension informatique de ces systèmes - Lind allant jusqu’à dire que le marécage
« [est] un endroit où vous ne voulez pas aller » - certains chercheurs3 suggèrent le nom alternatif Jardin de
l’indécidabilité, car ces résultats d’indécidabilité ont fourni une théorie riche sur les aspects informatiques des
systèmes symboliques.

Ce jardin est vaste. En conséquence de l’indécidabilité du Problème du Domino, de nombreux autres
problèmes ont été montrés comme étant indécidables dans Z2. Parmi eux, on peut citer le Problème du
Domino à Origine Fixée [KMW62; Büc62], le Problème du Domino Récurrent [Har85], le Problème du Domino
Périodique [Jea10], le Problème du Domino Apériodique [GHV18], le problème k-SAT pour Z2 [Fre99], le
Problème du Serpent Infini [Adl+09] et le Problème de l’Ouroboros [Ebb82; Kar02], pour en citer quelques-uns.

Pour mieux comprendre quelles propriétés de Z2 expliquent l’existence du Jardin, les chercheurs se sont
tournés vers le Problème du Domino sur d’autres groupes finiment engendrés. Une référence sur l’avancement
de ce projet se trouve dans [ABJ18]. En particulier, cette synthèse met en évidence l’autre extrémité du spectre
d’un point de vue calculatoire : la classe des groupes virtuellement libres. Pour ces groupes, il a été
démontré que le Problème du Domino et certaines de ses variantes sont décidables [BS18; Pia08]. En fait, on
conjecture que ces groupes sont les seuls où c’est le cas.

Conjecture. Un groupe finiment engendrés a Problème du Domino décidable si et seulement s’il est virtuelle-
ment libre.

La caractéristique cruciale des groupes virtuellement libres est que leurs graphes de Cayley ont une largeur
arborescente finie [MS85], et donc une logique monadique du second ordre décidable [KL05]. En fonction de
ce fait, nous proposons le nom de forêt de décidabilité pour les sous-décalages de type fini sur les groupes
virtuellement libres.

Dans cette thèse, nous étudions les variantes et les conséquences du Problème du Domino sur les groupes
finiment engendrés : le Problème du Domino à Origine Fixée, le Problème du Domino Récurrent, le problème k-
SAT, le Problème du Serpent Infini et le Problème de l’Ouroboros. Nous montrons que la Forêt de la Décidabilité
reste fidèle à son nom pour tous ces problèmes.

Aperiodicité
Rappelez-vous que le deuxième aspect clé du résultat de Berger était l’existence de sous-décalages de type
fini apériodiques. Depuis la publication de cette construction, de nombreux autres pavages apériodiques du
plan [Rob71; Kar96; JR21], ainsi que d’autres surfaces riemanniennes ont été construits [Pen79; BW92; Moz97;
MN14]. Le projet actuel est de comprendre quels groupes admettent des sous-décalages de type fini apériodiques.

3Guillaume Theyssier, communication personnelle
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En travaillant au-delà de Z2, Mozes a observé qu’il n’y avait plus une seule notion d’apériodicité pour les sous-
décalages [Moz97], mais plutôt deux. Il a introduit les noms faiblement apériodique, pour les SFT où l’orbite
de chaque pavage est infinie, et fortement apériodique, pour les SFT où le stabilisateur de chaque pavage
est trivial. De nombreux progrès ont été réalisés dans l’établissement de l’existence des deux types de SFT
apériodiques pour de nombreuses classes de groupes. Pour une étude récente, voir [Rie22].

Grâce aux travaux de Jeandel [Jea15a] et Cohen [Coh17], nous savons que l’existence de SFTs fortement
apériodiques est influencée par le nombre de bouts et la cototalité du problème des mots du groupe sous-jacent.
Il n’y a pas beaucoup d’autres obstructions connues pour leur construction. À présent, il a été démontré que de
nombreuses classes de groupes vérifient la conjecture suivante, obtenue en combinant les résultats de Jeandel et
de Cohen.

Conjecture. Un groupe finiment engendré admet un SFT fortement apériodique si et seulement s’il a un bout
et un probleme de mot décidable.

En revanche, pour les SFT faiblement apériodiques, nous disposons de plus d’outils : ils se comportent bien
avec les sous-groupes, les quotients et les actions de type translation, pour n’en citer que quelques-uns [Jea15c].
En étudiant l’invariance par commensurabilité des deux types d’apériodicité, Carroll et Penland ont proposé la
conjecture suivante sur l’existence de pavages faiblement apériodiques.

Conjecture. Un groupe finiment engendré admet un SFT faiblement apériodique si et seulement s’il n’est pas
virtuellement Z.

Dans cette thèse, nous examinons l’état de l’art des deux conjectures et montrons que les conjectures sont
satisfaites pour la classe des groupes de Baumslag-Solitar généralisés. Nous explorons également un nouvel
aspect de l’apériodicité, à savoir quelles familles de sous-groupes peuvent être obtenues comme stabilisateurs de
sous-décalages de type fini.

Les outils du métier
Lors de l’étude des sous-décalages sur Z, une classe fréquemment utilisée pour la construction d’exemples
de sous-décalages ayant les propriétés recherchées est celle des systèmes S-adiques. Ces systèmes ont été
introduits dans les travaux de Ferenczi [Fer96], Livschits et Vershik [LV92]. Un système S-adique est une suite
de morphismes (τn)n∈N qui engendre des mots infinis en appliquant séquentiellement les morphismes sur les
lettres. Ils sont une généralisation des systèmes substitutifs classiques, décrivent de grandes classes de sous-
décalages [Esp23b], et ont été largement étudiés pour toutes leurs propriétés dynamiques [Don+21; Ber+21].

Considérant l’efficacité du formalisme S-adique au cours des dernières décennies, les chercheurs ont commencé
à étudier ces systèmes dans un cadre multidimensionnel. Dans Z2, les sous-décalages S-adiques, en particulier
les substitutifs, ont été un outil puissant pour trouver de nouvelles preuves de l’indécidabilité du Problème du
Domino [DRS12; JV20] et trouver des sous-décalages apériodiques [Cab23; Lab23; Lab21a]. Cela est possible
grâce à des théorèmes de simulation, notamment le théorème de Mozes [Moz89] et sa généralisation par Aubrun
et Sablik [AS14]. Néanmoins, ces systèmes fréquentent également le Jardin d’indécidabilité. Jolivet et Kari ont
montré qu’étant donnée une liste de règles de concaténation pour une substitution Z2, déterminer si l’image de
la substitution est cohérente ou sans chevauchement est indécidable [JK12].

Dans [Cab23], Cabezas a formalisé la notion de substitutions de forme constante de Zd, apportant
une théorie robuste pour étudier les systèmes substitutifs loin de la portée de l’indécidabilité. Son travail avec
Petite et Leroy a également fourni de nombreux exemples de sous-décalages avec des propriétés dynamiques et
computationnelles intéressantes [CP23; CL24].

Il y a également eu des tentatives récentes pour généraliser les substitutions à d’autres groupes. Cela a
été fait pour les treillis sur de nombreux groupes de Lie nilpotents non abéliens [BHP21], le semigroupe libre
sur deux générateurs [BL21], et certains groupes localement finis [BS24]. Dans cette thèse, nous généralisons
les systèmes S-adiques aux groupes généraux avec une approche différente. Au lieu de considérer des classes
spécifiques de groupes, nous définissons des classes qui contiennent des groupes ayant la structure appropriée
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pour permettre des séquences S-adiques de divers degrés de rigidité. L’objectif à long terme est d’utiliser ces
systèmes pour établir de nouveaux résultats d’indécidabilité et d’apériodicité.

Contributions

Les contributions de cette thèse sont des tentatives de réponse à la question posée au début de cette introduction
: comment les propriétés du groupe sous-jacent influencent-elles les propriétés de ses sous-décalages de type
fini, et vice versa. Les contributions de cette thèse sont contenues, mais ne sont pas exclusivement issues des
articles suivants :

• Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability.

Dans cet article, nous étudions le Problème du Domino à Origine Fixée, le Problème du Domino Récur-
rent et le problème k-SAT sur les groupes finiment engendrés. Nous montrons des propriétés d’invariance
pour les Problèmes du Domino à Origine Fixée et du Domino Récurrent, et que le Problème du Domino
Récurrent est décidable pour les groupes libres. Nous conjecturons que les seuls groupes dans lesquels
les Problèmes du Domino à Origine Fixée et Récurrent sont décidables sont des groupes virtuellement li-
bres. Pour le problème k-SAT, nous montrons que le problème d’appartenance à un sous-groupe se réduit
many-one au problème k-SAT, que dans certains cas le problème k-SAT se réduit many one au Problème
du Domino, et enfin que le Problème du Domino se réduit au problème k-SAT pour certains groupes. Ce
travail a été présenté à STACS 2024 [Bit24a].

• Domino Snake Problems avec Nathalie Aubrun.

Dans cet article, nous étudions la calculabilité des problèmes de Domino Serpent sur les groupes fini-
ment engendrés. Nous introduisons le sous-décalage squelette qui nous permet de résoudre de nombreuses
variantes du Problème du Serpent Infini, y compris le Problème du Serpent Géodésique. Nous montrons
également que les problèmes du Serpent Infini et de l’Ouroboros sur les groupes nilpotents sont indécid-
ables pour tout ensemble générateur, à condition d’ajouter un élément bien choisi. Enfin, nous utilisons
la logique monadique du second ordre pour prouver que les problèmes du Domino Serpent sont décidables
sur les groupes virtuellement libres pour tous les ensembles générateurs. Ce travail a été présenté à FCT
2023 [AB23], et a également une version journal qui a été soumise [AB24a].

• Self-Avoiding Walks on Cayley Graphs through the Lens of Symbolic Dynamics avec Nathalie Aubrun.

Dans cet article, nous étudions les propriétés dynamiques et computationnelles de l’ensemble des marches
auto-évitantes bi-infinies sur les graphes de Cayley, ainsi que les moyens de calculer, d’approximer et de
borner leur constante de connectivité. Pour cela, on utilise le squelette, G,S , d’un groupe finiment en-
gendré G par rapport à un ensemble générateur S. Nous fournissons une caractérisation des groupes qui
ont des squelettes SFT et des squelettes sofiques. Nous caractérisons aussi les groupes de torsion finiment
engendrés comme des groupes dont les squelettes sont apériodiques. Pour les constantes de connectivité,
nous montrons que les graphes de Cayley des groupes de torsion finiment générés n’admettent pas de
fonctions de hauteur de graphe, que pour les groupes qui admettent des fonctions de hauteur de graphe
transitives, la constante de connectivité est égale au taux de croissance des points périodiques du squelette,
et en utilisant un argument de comptage dû à Rosenfeld, nous donnons des bornes sur la constante de
connectivité des groupes de Burnside libres infinis. Enfin, nous examinons l’ensemble des géodésiques
bi-infinies et introduisons un analogue de la constante de connectivité pour la croissance des géodésiques.
Ce travail a été soumis à un journal [AB24b].

xv



Introduction

• Realizability of Subgroups by Subshifts of Finite Type.

Dans cet article, nous étudions le problème de la réalisation de familles de sous-groupes en tant qu’ensemble
de stabilisateurs de configurations d’un sous-décalage de type fini. Nous montrons qu’un sous-groupe nor-
mal est réalisable si et seulement si le quotient par le sous-groupe admet un SFT fortement apériodique.
Nous montrons également que si un sous-groupe est réalisable, son problème d’appartenance à un sous-
groupe doit être décidable. L’article contient également l’introduction des groupes périodiquement rigides,
qui sont des groupes pour lesquels tout sous-décalage faiblement apériodique de type fini est fortement
apériodique. Nous introduisons une nouvelle conjecture affirmant que les seuls groupes périodiquement
rigides sont les groupes virtuellement Z et les groupes virtuellement Z2 sans torsion. Enfin, nous mon-
trons que les groupes virtuellement nilpotents et polycycliques satisfont la conjecture. Ce travail est une
prépublication [Bit24b].

• Strongly Aperiodic SFTs on Generalized Baumslag-Solitar Groups avec Nathalie Aubrun et Sacha Huriot-
Tattegrain

Dans cet article, nous étudions des constructions de SFT apériodiques sur des groupes fondamentaux de
graphes de groupes. En particulier, nous prouvons que tous les groupes de Baumslag-Solitar général-
isés non Z admettent un SFT fortement apériodique. Les constructions s’appuient sur une technique de
path-folding qui permet de relever un SFT sur Z2 en un SFT sur Fn × Z, ou encore un SFT sur le plan
hyperbolique en un SFT sur BS(m,n). Dans le cas de Fn × Z, la technique de path-folding préserve
également la minimalité. Ce travail a été publié dans Ergodic Theory and Dynamical Systems [ABH24].

• Substitutions and Hierarchical Structures avec Christopher Cabezas et Pierre Guillon.

Dans cet article, nous introduisons de nouvelles notions de substitutions, de systèmes S-adiques, et leurs
sous-décalages correspondants pour les groupes dénombrables. Nous identifions trois classes de groupes :
les groupes S-décomposables, les groupes ccc et les groupes monoformes. Chacun de ces groupes permet
de définir des systèmes S-adiques de plus en plus rigides. Nous terminons par l’étude des propriétés
dynamiques des sous-décalages définis par ces systèmes. Nous montrons que, en général, ils sont minimaux
sous des conditions de primitivité, et que pour certains groupes ccc moyennables, ils ont une entropie nulle
et sont uniquement ergodiques. Ce travail est en préparation.

Organisation du manuscrit
La thèse est divisée en quatre parties. La partie I sert d’introduction aux nombreux concepts de la dynamique
symbolique, de la théorie de la calculabilité et de la théorie des groupes qui sont nécessaires pour le reste
du manuscrit. La partie II est consacrée au Problème du Domino, à ses variantes et à ses conséquences. Le
chapitre 2 traite de l’état de l’art sur le Problème du Domino et ses variantes, le chapitre 3 traite du Problème
du Domino Serpent, et le chapitre 4 des marches auto-évitantes bi-infinies à travers le prisme de la dynamique
symbolique. La partie III traite de l’apériodicité. Dans cette partie, le chapitre ?? explore l’état de l’art des SFTs
fortement et faiblement apériodiques, ainsi que les nouveaux problèmes et conjectures autour de l’apériodicité.
Le chapitre 6 contient la construction de SFTs fortement apériodiques sur la classe des groupes de Baumslag-
Solitar généralisés. Enfin, dans la partie IV, nous présentons une généralisation des systèmes S-adiques aux
groupes généraux dénombrables et explorons ses propriétés dynamiques. Les principales dépendances entre les
chapitres sont illustrées dans la Figure 4. Nous avons essayé de rendre cette thèse aussi autonome que possible
et de donner des références pour permettre au lecteur d’approfondir les sujets qui l’intéressent. Nous fournissons
également un index contenant des mots clés et les endroits où ils figurent de façon importante. Nous avons fait
de notre mieux pour tenir le Titivillus4 éloigné.

4Titivillus ou Tutivillus est le nom donné au « démon patron des scribes ». On raconte qu’au Moyen Âge, il entrait dans les
monastères où travaillaient les scribes et ajoutait des erreurs et des coquilles à leur travail lorsqu’ils étaient distraits [Jen77].
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Chapitre 1

Chapitre 2 Chapitre 3 Chapitre 5 Chapitre 7

Chapitre 4 Chapitre 6

Partie II Partie III Partie IV

Partie I

Figure 4: Plan de la thèse et dépendances.

Partie I : Contexte et définitions

Sous-décalages, calculabilité et groupes La première partie et le premier chapitre de la thèse sont con-
sacrés à l’introduction du contexte nécessaire pour le reste du manuscrit. Nous commençons dans la Section 1.1
par introduire les sous-décalages et les notions de morphismes, de conjugaison, d’apériodicité et de minimalité.
Nous définissons également la classe des sous-décalages de type fini et la classe des sous-décalages sofiques. La
section 1.2 est consacrée à l’introduction des notions de décidabilité, d’énumérabilité, de hiérarchie arithmétique
et de réductions issues de la théorie de la calculabilité. Ces notions seront nécessaires pour traiter les différents
problèmes de décision présentés dans le texte. De même, la section 1.3 introduit des notions issues de la théorie
combinatoire et géométrique des groupes, notamment le problème du mot, les quasi-isométries, les actions de
type translation, etc. Grâce au contexte fourni par ces trois sections, nous sommes en mesure de définir à la
fois les sous-décalages effectivement fermés et l’entropie dans la Section 1.4.1 et la Section 4.2.2 respectivement.

La section 1.5 est consacrée à ce que nous appelons des constructions canoniques. Ce sont des construc-
tions qui apparaissent souvent dans la littérature, et qui permettent de transformer un sous-décalage sur un
groupe donné, en un sous-décalage sur un surgroupe, un sous-groupe d’indice fini, un quotient, ou à partir d’un
quotient. Ces constructions apparaîtront de façon récurrente dans le manuscrit.

La dernière section du chapitre, Section 1.6, explore les analogies entre les groupes finiment engendrés telles
qu’elles ont été observées à l’origine par Jeandel et Vanier [JV19]. Nous terminons la section en introduisant les
sous-décalages résiduellement périodiques en tant qu’analogues proposés aux groupes résiduellement finis.

Partie II : Le vide

Le Problème du Domino La deuxième partie du manuscrit commence par un chapitre 2 consacré au
Problème du Domino et à certaines de ses variantes. Le chapitre commence par un bref historique du problème,
sa définition, ses propriétés, et l’état actuel de l’art autour de la Conjecture du Domino. Le chapitre se
poursuit avec la Section 2.1 sur l’état actuel du Problème du Domino à Origine Fixée et du Problème du Domino
Récurrent. Elle est suivie par la Section 2.2 où nous prouvons des propriétés pour ces deux problèmes ainsi que
le Théorème 2.2.5 affirmant que le Problème du Domino Récurrent est décidable pour les groupes libres. La
section se termine par le Corollaire 2.2.11 qui montre que la Conjecture du Domino implique que le Problème
du Domino, le Problème du Domino à Origine Fixée et le Problème du Domino Récurrent ne sont décidables
que sur des groupes virtuellement libres.

Ensuite, la section 2.3 aborde le Problème du Domino Périodique et le Problème du Domino Apériodique.
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Pour le premier, nous montrons qu’il est co-récursivement énumérable pour les groupes avec ReFQ, tels que
définis par Rauzy [Rau22] (Proposition 2.3.4). Pour le deuxième, nous étudions son lien avec un analogue du
théorème d’Adyan-Rabin pour les sous-décalages dû à Carrasco-Vargas [Car24].

Enfin, dans la section 2.4, nous examinons le problème k-SAT pour les groupes finiment engendrés. Nous
introduisons une définition du problème qui diffère de la définition originale de Freedman [Fre99], afin de la
rendre compatible avec les groupes finiment engendrés. Nous prouvons que le problème de l’appartenance à un
sous-groupe (SMP) du groupe sous-jacent se réduit many-one à 2-SAT (Lemma 2.4.3) et que pour les groupes
avec SMP décidable k-SAT se réduit au Problème du Domino (Lemma 2.4.4). Ce dernier résultat implique que
les groupes virtuellement libres ont un problème k-SAT décidable. De plus, nous montrons que si un groupe
contient un sous-groupe propre d’indice fini isomorphe au groupe, alors le Problème du Domino se réduit à
3-SAT (Théorème 2.4.7). Cela implique que pour beaucoup de ces groupes, 3-SAT est indécidable, car ils ont
un Problème du Domino indécidable (Corollaire 2.4.10).

Problèmes du Domino Serpents Le chapitre 3 étudie une espèce remarquable du marais de l’indécidabilité
connue sous le nom de problèmes du Domino Serpent. L’objectif du chapitre est d’étudier la généralisation de
ces problèmes aux groupes généraux finiment engendrés. Section 3.1 introduit et prouve les propriétés des
trois problèmes principaux : le problème de l’accessibilité, le problème du Serpent Infini, et le problème de
l’Ouroboros.

La section 3.2 introduit le squelette associé à un groupe et à un ensemble générateur. Nous prouvons
quelques propriétés préliminaires du squelette et de sa version géodésique, et montrons que les propriétés
dynamiques du squelette ont un impact sur la décidabilité du problème du serpent infini (Proposition 3.2.4).

Dans la section 3.3, nous introduisons une notion de plongement, que nous appelons plongement serpent,
qui nous permet de réduire la décidabilité des problèmes du serpent d’un groupe à un autre. Cette notion nous
permet d’établir l’indécidabilité des problèmes du Serpent Infini et de l’Ouroboros sur une grande classe de
groupes, qui incluent les groupes nilpotents, pour tout ensemble générateur à condition d’ajouter un élément
sans torsion du centre du groupe (Théorème 3.4.4).

Enfin, la section 3.5 aborde les problèmes de problème du Domino Serpent sur les groupes virtuellement
libres en les exprimant dans la logique monadique du second ordre. Nous montrons que les trois problèmes, ainsi
que leurs variantes à Origine Fixée et forte, sont décidables sur des groupes virtuellement libres (Théorème 3.5.3
et Corollaire 3.5.4).

Marches auto-évitantes Il s’avère que le sous-décalage squelette que nous définissons dans le chapitre 3 est
également l’ensemble des étiquettes des marches auto-évitantes bi-infinies sur le graphe de Cayley. Le chapitre 4
est donc consacré à l’étude de ces marches à travers du squelette. Les sections 4.1 et 4.2 sont consacrées à la
définition des marches auto-évitantes ainsi qu’à leurs propriétés générales. En particulier, nous démontrons le
Lemme 4.2.4 selon lequel l’entropie du squelette est égale à la constante de connectivité du graphe de Cayley.

Dans la section 4.3, nous étudions les différentes propriétés computationnelles et dynamiques des squelettes.
Nous prouvons qu’un groupe est nature si et seulement s’il admet un squelette SFT (Théorème 4.3.6), et qu’un
groupe est un groupe de torsion si et seulement si chaque squelette est apériodique (Théorème ??). De même,
la section 4.4 contient l’étude des groupes qui admettent des squelettes sofiques. En utilisant les techniques
développées par Lindorfer et Woess pour les bouts fins et épais [LW20], nous montrons qu’un groupe admet un
squelette sofic si et seulement s’il est nature, Z×Z/2Z ou le produit direct d’un groupe diédral infini avec Z/2Z
(Théorème 4.4.9).

Nous abordons les constantes de connectivité dans la section 4.5. Tout d’abord, nous utilisons les fonctions
de hauteur des graphes pour montrer que le squelette des graphes de Cayley ayant ce type de fonctions contient
des points périodiques (Lemma 4.5.3). Nous montrons ensuite le Théorème 4.5.4 indiquant que les graphes de
Cayley des groupes de torsion n’admettent pas de fonctions de hauteur de graphe, et le Théorème 4.5.6 qui nous
indique que l’entropie du squelette peut être approximée par les points périodiques dans les graphes de Cayley
qui admettent des fonctions de hauteur de graphe transitives. Nous utilisons ensuite la méthode de comptage
de Rosenfeld [Ros22] pour trouver des bornes inférieures sur la constante connective des groupes de Burnside
libres (Corollaire 4.5.10).
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Nous terminons le chapitre en examinant le squelette géodésique. Nous explorons quand ce squelette
définit un SFT, un sous-décalage sofique, un sous-décalage effectivement fermé et plus encore. De plus, nous
introduisons la constante de connectivité géodésique comme analogue géodésique de la constante tradi-
tionnelle, et nous trouvons sa valeur pour des treillis bien connus (Proposition 4.6.8).

Partie III : Apériodicité

L’apériodicité forte, l’apériodicité faible et tout ce qui se passe au milieu Le cinquième chapitre
de ce manuscrit traite de l’apériodicité sous toutes ses formes. Nous commençons par la Section 5.1, où nous
donnons un état de l’art du problème de l’existence de SFTs fortement apériodiques. Ensuite, nous passons à
la Section 5.2 sur les SFTs faiblement apériodiques. Cette fois, nous n’étudions pas seulement l’état de l’art du
problème, mais nous donnons des résultats sur sa connexion avec la calculabilité (Section 5.2.1) et ses analogies
avec d’autres problèmes (Section 5.2.2). Parmi les problèmes analogues se trouve le jeu de l’ange, pour lequel
nous prouvons quelques résultats.

Ensuite, la section 5.3 aborde la réalisabilité des familles de sous-groupes en tant que stabilisateurs de
sous-décalages de type fini. Ce problème généralise l’existence de sous-décalages fortement apériodiques et
faiblement apériodiques de type fini. Nous étudions comment les propriétés algébriques, géométriques et com-
putationnelles du groupe sous-jacent déterminent quelles familles sont réalisables. Par exemple, nous montrons
qu’un sous-groupe normal est réalisable si et seulement si le quotient du sous-groupe admet une SFT fortement
apériodique (Théorème 5.3.11), et que si un sous-groupe d’un groupe recursivement présenté est réalisable, son
problème d’appartenance doit être décidable (Théorème 5.3.17). Dans la section 5.4, nous étudions les familles
de sous-groupes qui contiennent exclusivement des sous-groupes non triviaux d’indice infini. Ces familles sont
intéressantes car tout SFT qui les réalise est un sous-décalage faiblement apériodique qui n’est pas fortement
apériodique. La première recherche explicite d’un tel sous-décalage est due à Esnay et Moutot pour les groupes
de Baumslag-Solitar [EM22a]. Nous introduisons les groupes periodically rigid qui sont des groupes où chaque
SFT faiblement apériodique est fortement apériodique. Ceci généralise le comportement observé dans Z2. Nous
prouvons de nombreuses propriétés d’invariance et d’héritage pour les groupes périodiquement rigides. Nous
énonçons également la conjecture 5.4.6 : un groupe est périodiquement rigide si et seulement s’il est virtuellement
Z ou virtuellement Z2 sans torsion (Lemma 5.4.1). Dans la section 5.4.1, nous prouvons que cette conjecture
est valable pour les groupes virtuellement nilpotents et les groupes polycycliques (Théorèmes 5.4.13 et 5.4.15).

Nous terminons le chapitre par la Section 5.5, où nous donnons un résumé des relations entre les SFTs
fortement apériodiques, les SFTs faiblement apériodiques, la rigidité périodique, le Problème du Domino, et le
problème du mot (Tableau 5.1).

SFTs apériodiques sur les groupes de Baumslag-Solitar généralisés Dans le chapitre 6, nous con-
struisons des SFTs fortement apériodiques pour tous les groupes de Baumslag-Solitar généralisés (GBS) non-Z.
Pour ce faire, nous commençons à la Section 6.1 par une définition des groupes GBS à travers la notion de
graphes de groupes. Ensuite, dans la Section 6.2 nous faisons une brève pause dans nos ambitions fortement
apériodiques pour étudier les SFTs faiblement apériodiques et le Problème du Domino pour les groupes GBS
et les groupes d’Artin (Propositions 6.2.2 et 6.2.3).

La construction des SFT fortement apériodiques est détaillée comme suit. Tout d’abord, la section 6.3
contient une explication de la méthode de Carroll et Penland pour relever un sous-décalage fortement apériodique
vers un groupe à partir d’un sous-groupe d’indice fini [CP15]. Cette section contient également un Erratum
à une preuve de la présentation originale de ces résultats dans [ABH24] (Section 6.3.1). Deuxièmement, la
section 6.4 montre le chemin vers notre objectif fourni par le théorème de Whyte sur la classification quasi-
isométrique des groupes GBS [Why01]. Troisièmement, dans la Section 6.5 nous donnons la description d’un
Z2-SFT minimal, fortement apériodique, horizontalement expansif qui est basé sur les travaux de Labbé [Lab21a;
Lab21b; Lab21c] et Labbé, Mann, et McLoud-Mann [LMM23] sur le sous-système minimal du pavage par tuiles
de Wang de Jeandel-Rao. Quatrièmement, dans la Section 6.6, nous construisons un SFT minimal fortement
apériodique sur Fn×Z (Théorème 6.6.6) en introduisant la technique du path-folding. Enfin, la section 6.7
aborde l’adaptation de la technique du path-folding au groupe de Baumslag-Solitar non résoluble BS(2, 3). En
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s’appuyant sur les travaux d’Aubrun et Kari [AK13], nous construisons un SFT fortement apériodique sur ce
groupe (Théorème 6.7.10). Les résultats des sections précédentes sont le Corollaire 6.7.11 qui établit que tous
les groupes GBS non-Z admettent des SFTs fortement apériodiques, et le Corollaire 6.8.2 qui est une petite
généralisation pour les groupes virtuellement GBS.

Partie IV : Outils substitutifs

Substitutions et structures hiérarchiques La dernière partie et le dernier chapitre de cette thèse concer-
nent les systèmes substitutifs et S-adiques sur les groupes, et les propriétés structurelles qui permettent de les
définir. En adoptant une approche allant de l’abstrait au concret, la section 7.1 contient la définition de la plus
générale des trois classes de groupes que nous définissons : groupes S-décomposables. Ces groupes permet-
tent de définir des suites S-adiques générales et leurs sous-décalages. Nous fournissons de nombreux exemples
pour illustrer la mécanique de la définition. La section suivante, Section 7.2, étudie la classe des groupes
ccc, introduite par Gao, Jackson et Seward pour l’étude des relations hyperfinies [GJS16], car ils permettent
de définir des suites S-adiques de forme constante. Nous établissons également un lien entre les groupes ccc
et les groupes monotiléables congruents de la théorie des sous-décalages G-Toeplitz [CP08; CC19]. Dans la
section 7.3, nous introduisons la classe des groupes monoformes qui permettent de définir des substitutions
de formes constantes.

La section 7.4 est consacrée à la preuve des propriétés dynamiques des sous-décalages S-adiques. Tout
d’abord, nous prouvons que les séquences S-adiques faiblement primitives définissent des sous-décalages min-
imaux (Proposition 7.4.2). Deuxièmement, pour les groupes monotiléables congruents, nous prouvons une
limite sur l’entropie des sous-décalages S-adiques (Proposition 7.4.3). En particulier, si les alphabets de la
séquence S-adique sont bornés, le sous-décalage a une entropie nulle. Enfin, nous prouvons que pour les
groupes monotiléables congruents dont la séquence de tuiles est uniformément bornée, et les séquences S-
adiques faiblement primitives à alphabet uniformément borné, le sous-décalage correspondant est uniquement
ergodique (Théorème 7.4.8).

Nous terminons le chapitre par la Section 7.5 où nous examinons comment nous pouvons obtenir de nou-
veaux résultats d’indécidabilité pour le Problème du Domino et les SFTs fortement apériodiques à travers la
reconnaissabilité et les recouvrements SFT des sous-décalages S-adiques.

Conventions et notations
Etant donné un alphabet A, nous désignons par An l’ensemble des mots sur A de longueur n, A≤n l’ensemble
des mots de longueur au plus n, et A∗ l’ensemble de tous les mots de longueur finie, y compris le mot vide ε.
De plus, on désigne par A+ = A∗ \ {ε} l’ensemble des mots finis non vides sur A. Un facteur v d’un mot w
est un sous-mot contigu de w ; on le désigne par v ⊑ w. Pour un mot w dansA∗, étant donné i, j ∈ Z, w[i,j]
désigne le facteur wiwi+1 ... wj .

Le groupe libre défini par l’ensemble générateur libre de taille n est noté Fn, et le groupe libre généré par S,
FS . Le commutateur de deux éléments de groupe g, h est noté [g, h] = ghg−1h−1. On note 1G l’élément identité
d’un groupe G.

Un sous-ensemble fini F d’un ensemble E est noté F ⋐ E. Etant donné un groupe G, deux sous-ensembles
F,E ⊆ G et un élément du groupe g ∈ G, on désigne par FE l’ensemble obtenu en multipliant chaque élément
de F par un élément de E, par F−1 l’ensemble de tous les inverses d’éléments de F , et par gF l’ensemble
obtenu en multipliant g à chaque élément de F . Si F est divisé en ensembles {Ai}i∈I , l’union disjointe est notée
F =

∐
i∈I Ai.

Sauf indication contraire, les groupes considérés sont infinis et chaque ensemble générateur est fini, symétrique
et ne contient pas l’identité.

xx



Part I

Background and Definitions

1





Chapter 1
Subshifts, Computability, and Groups

The goal of this chapter is to introduce the definitions and concepts that will be needed for the rest of the
manuscript. The structure of the exposition is the following. We begin by introducing subshifts, their notion
of morphisms and dynamical properties. Next, we introduce two important classes: subshifts of finite type and
sofic subshifts. We then jump to computability, where we define the notions of decidability, enumerability and
reductions. We make another jump to introduce the necessary notions from the theories of combinatorial and
geometric group theory. We briefly look at group growth, the word problem, nilpotent groups, polycyclic groups,
amenable groups, amalgams, extensions, Cayley graphs, ends, quasi-isometries, and translation-like actions. We
proceed by combining the three preceding areas to talk about the class of effectively closed subshifts and entropy.

Section 1.5 introduces constructions that allow us to move subshifts between groups, subgroups and quo-
tients. These constructions are the free extension, the higher block and higher power subshifts, the pull-back,
and the push-forward. We finish the chapter with an exploration between the analogies between subshifts and
groups.

1.1 Symbolic dynamics

1.1.1 Definitions
Let G be a finitely generated group, and A a non-empty finite set which we call the alphabet. Elements of A
are referred to as letters, symbols or tiles depending of the context. The space of configurations or tilings
with alphabet A over G is the set AG = {x : G→ A}. This space is endowed with a left group action G↷ AG

given by
(g · x)(h) = x(g−1h),

for all x ∈ AG and h ∈ G. This action is referred to as the shift. The dynamical system (AG, G) is called the
full G-shift over A. Given a configuration x ∈ X, we define its orbit as the set orb(x) = {g · x | g ∈ G}.

The space of configurations AG is endowed with the prodiscrete topology. By Tychonoff’s Theorem, this
space is compact. Furthermore, with this topology the shift action of G on AG is by homeomorphisms.

A pattern is a map p ∈ AF , where F is a finite subset of G called the support of p. We denote this by
supp(p) = F . We denote the set of all patterns by A∗G. We say a pattern p appears in a configuration
x ∈ AG, denoted p ⊑ x, if there exists g ∈ G such that p(h) = x(gh) for all h ∈ supp(p). The cylinder defined
by a pattern p ∈ AF at g ∈ G is the subset of configurations given by

[p]g = {x ∈ AG | ∀h ∈ F, x(gh) = p(h)}.

When the cylinder is centered at the identity we simply write [p] = [p]1G . The set of all cylinders defines a
clopen base for the topology on AG. Furthermore, when the underlying group is countable this topology is
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(3, 1) · x

Figure 1.1: A configuration x from the full-shift over the alphabet A = { , , , } and group G = Z×Z/2Z,
as well as its shift by g = (3, 1). The configuration is inspired by the frieze patterns at the Alhambra [Bod07].

metrizable. Given an enumeration of G, {gi}i∈N with g0 = 1G, the product topology is generated by the metric
d : AG ×AG → R defined by

d(x, y) = 2− inf{n∈N | x(gn )̸=y(gn)},

for x, y ∈ AG.

Definition 1.1.1. A G-subshift is a subset X ⊆ AG that is closed and G-invariant, i.e. g ·X ⊆ X.

Remark 1.1.2. When the group G is clear for context, we will simply talk about subshifts. Furthermore, to be
fully formal we should say the dynamical system (X,G) is a G-subshift. We will not use this naming convention
for the sake of clarity.

Subshifts also have a combinatorial description. Given a set of patterns F ⊆ A∗G, we define the the set of
configurations, XF , generated by the set of forbidden patterns F as

XF = {x ∈ AG | ∀p ∈ F , p does not appear in x}.

Proposition 1.1.3. A subset X ⊆ AG is a subshift if and only if there exists a set of patterns F ⊆ A∗G such
that X = XF .

Proof. Consider a set of forbidden patterns F ⊆ A∗G. The set X = XF can be expressed as

X = AG \
⋃

g∈G,p∈F
[p]g.

Because cylinders are open, X is closed. A simple calculation shows X is shift invariant, making it a subshift.
Conversely suppose X is a subshift. Because X is closed, and cylinders form a base of the topology, there

exists a set of patterns {pi}i∈I ⊆ A∗G and elements {gi}i∈I ⊆ G such that

X = AG \
⋃
i∈I

[pi]gi .

Furthermore, as X is G-invariant, the expresion for X can be re-written as

X = AG \
⋃

i∈I,g∈G
[pi]g.

Taking F = {pi}i∈I we obtain X = XF .
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1.1. Symbolic dynamics

Example 1.1.4. • Consider G = Z, the alphabet { , }, and the set of forbidden patterns

F =
{

...︸ ︷︷ ︸
n

| ∃m ∈ Z : n = 2m+ 1
}
.

The subshift XF consists in configurations where the number of tiles between tiles is even, as well
as a configuration containing exclusively blue tiles.

• For G = Z2 consider the alphabet { , } and the set of forbidden patterns

F =
{

, , ,
}

The subshift defined by F only contains two configurations given by infinite checkerboard patterns, one
with at the origin, the other with .

Example 1.1.5. A rich family of examples of subshifts in Z comes from the theory of substitutions. A
substitution is a word-morphism σ : A → A∗, that is, σ(ab) = σ(a)σ(b) for all a, b ∈ A. For example, take
σT : {a, b, c} → {a, b, c}∗ defined1 as

σT :


a 7→ ab

b 7→ ac

c 7→ a

.

We can then iterate σT on a letter:

σ4
T (a) = σ3

T (ab) = σ2
T (abac) = σT (abacaba) = abacabaabacab.

The subshift associated to a substitution σ is

Xσ = {x ∈ AZ | ∀w ⊑ x, w ⊑ σn(a) for some n ∈ N, a ∈ A}.

This subshift is obtained by the set of forbidden patterns F = A∗ \ {σn(a) | n ∈ N, a ∈ A}. We study
substitutions and their subshifts for groups other than Z in Chapter 7. For a reference on substitutions on Z
see [Fog02].

The language of a subshift X ⊆ AG, denoted L(X), is the set of all patterns that appear within a
configuration from X. In other words, p ∈ L(X) if there exists x ∈ X such that p ⊑ x. Given a finite support
F ⋐ G the language of support F is given by LF (X) = L(X) ∩AF .

Remark 1.1.6. When working with Z, we also refer to patterns as words. In addition, the language of a
subshift X of patterns of support [0, n−1] is denoted by Ln(X). We also use subscript notation, i.e. for a word
w we write wi to mean w(i).

1.1.2 Morphisms
We want to identify when the dynamics of two subshifts are equivalent. The is captured by the notion of
isomorphism in the category of subshifts known as conjugacy.

Definition 1.1.7. Let X ⊆ AG and Y ⊆ BG be two subshifts. A map ϕ : X → Y is said to be a morphism
if it continuous and ϕ(g · x) = g · ϕ(x) for every x ∈ X and g ∈ G.

Similarly to subshifts, morphisms have a combinatorial description. Take two alphabet A and B. A map
ϕ : AG → BG is called a sliding-block code if there exists F ⋐ G, called the memory set, and a local map
Φ : AF → B such that

ϕ(x)(g) = Φ((g−1 · x)|F ).

1σT is known as the Tribonacci substitution.
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Example 1.1.8. • The majority rule map ϕ : { , }Z → { , }Z is the sliding-block code defined by
the memory set F = {−1, 0, 1} and the local rule Φ : { , }F → { , } that outputs the tile that is
most present on the support. See Figure 1.2 for an application of the map on a configuration.

ϕ

Figure 1.2: An application of the majority rule map to a configuration from the full-shift.

Mayority rule maps can be defined on any finitely generated group where the local map outputs the letter
with greatest number of occurrences in the support.

• Take any Zd-subshift X. Every shift defines a sliding-block code from X to itself. For example, if we
take the full-Z2-shift { , }Z2 , the shift defined by v = (−4,−4) is the sliding-block code given by the
memory set {(4, 4), (0, 0)} and the local function that outputs the letter at (4, 4). An example of the
application of this function is given in Figure 1.3. In general, not every group element’s action defines a

(−4,−4)

Figure 1.3: An application of the shift map defined by the element (−4,−4) to a configuration from the full-shift.
The support of the map and its image are highlighted in red.

sliding-block code. This will be made clear in the next theorem.

The following result is known as the Curtis-Hedlund-Lyndon Theorem for groups.

Theorem 1.1.9. Let X ⊆ AG and Y ⊆ BG be two subshifts along with a map ϕ : X → Y . Then, ϕ is a
morphism if and only if ϕ is a sliding-block code.

The original proof of this result in the case of G = Z comes from Hedlund [Hed69]. A proof of the group
version can be found in [CC10, Theorem 1.8.1].

Remark 1.1.10. A morphism from the full-shift AG to itself is also known as a G-cellular automaton
(G-CA), or simply cellular automaton when the group is clear from context.

Definition 1.1.11. Let A and B be alphabets along with two G-subshifts X ⊆ AG and Y ⊆ BG. We say a
morphism ϕ : X → Y is,

• a factor map if it is surjective. In this case, we say that Y is factor of X, and X is an extension of Y .

• a conjugacy if it is bijective. In this case we say X and Y are conjugate.
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1.1. Symbolic dynamics

Example 1.1.12. Let X ⊂ AZ be a Z-subshift. The N-higher block of X is the Z-subshift X(N) over the
alphabet B = LN (X) ⊆ AN of words of length N in X, where the pattern (w,w′) ∈ B2 is allowed if and only
if w[1,N−1] = w′

[0,N−2]. These subshifts are conjugate by the map ϕ : X(N) → X defined by the local map
Φ : B → A of support {0} such that Φ(w) = w1. We look at a generalization of the higher block subshift to
other groups in Section 1.5.2.

Many properties are invariant under conjugation. Such properties are called dynamical properties. Ex-
amples include, entropy, periodic points, aperiodicity, being a subshift of finite type, being sofic, being minimal
or strongly irreducible among many others. In the coming sections we will define and look at these examples.

1.1.3 Dynamics
Let us briefly explore important dynamical properties of subshifts. We begin by looking at periodicity. The
stabilizer of a configuration x ∈ AG is the set

stab(x) = {g ∈ G | g · x = x}.

In words, the stabilizer of a configuration x is the set of elements whose action on x leave x unchanged. Notice
that the stabilizer is a subgroup of G. Elements of the stabilizer are called periods of the configuration.

Definition 1.1.13. A configuration x ∈ AG is said to be,

• periodic if stab(x) is a finite index subgroup,

• aperiodic if stab(x) = {1G}.

Figure 1.4: Examples of aperiodic (left) and periodic (right) configurations on Z2.

Remark 1.1.14. In the literature periodic configurations are sometimes called strongly periodic, and configu-
rations with non-trivial stabilizers are called weakly periodic. We do not use this terminology.

Definition 1.1.15. We say a subshift X ⊆ AG is

• weakly aperiodic if every configuration has an infinite orbit. Equivalently, if X contains no periodic
points.

• strongly aperiodic if the stabilizer of every configuration is trivial.

Strongly aperiodic and weakly aperiodic subshifts play a mayor role in this work. We study their properties
in detail in Chapter 5.

Remark 1.1.16. Although the empty set is both a strongly and weakly aperiodic subshift, for the purposes of
this work we do not consider the empty subshift when talking about aperiodicity, unless explicitly stated.
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We now move to another couple of fundamental notions from dynamical systems.

Definition 1.1.17. We say a subshift X ⊆ AF is

• minimal if it does not contain a non-empty closed G-invariant subsets other than itself. Equivalently, for
every x ∈ X, orb(x) = X.

• strongly irreducible if there exists a finite subset F ⋐ G such that for every pair of patterns p, q ∈ L(X)
satisfying supp(p) ∩ supp(q)F = ∅ there exists a configuration x ∈ X such that x ∈ [p] ∩ [q].2

For minimal subshifts we have a characterization involving the rate at which patterns appear on configu-
rations. We say a pattern p ∈ L(X) is uniformly recurrent if there exists a finite subset F ⋐ G such that
p ⊑ x|gF for all g ∈ G and x ∈ X.

Lemma 1.1.18. Let G be a countable group. A G-subshift X is minimal if and only if every p ∈ L(X) is
uniformly recurrent.

Proof. Suppose X is minimal and take a pattern p ∈ L(X) with support F . Consider the set

K =
⋃
g∈G

g · [p].

This set is non-empty as p belongs to the language of X. Then, X ⊆ K is a closed G-invariant subset of X. By
minimality, K = X. Furthermore, because X is compact, there exist {gi}ni=1 ⊆ G such that

X =
n⋃
i=1

gi · [p].

Now, define F ′ =
⋃n
i=1 g

−1
i F . Then, for any configuration x ∈ X and g ∈ G there exists i ∈ {1, ..., n} such that

g−1 · x ∈ gi · [p]. Therefore, p ⊑ x|gF ′ .
Now, suppose every pattern in the language is uniformly recurrent. Take x ∈ X and an enumeration of

G = {g0, g1, ...} with g0 = 1G. Consider another configuration x′ ∈ X and the patterns pn = x′|Bn ∈ L(X)
where Bn is the set of the first n elements of the enumeration of G. By uniform recurrence, for each n ∈ N there
exists a subset Fn ⋐ G and gn ∈ G such that pn ⊑ x|gnFn . By the definition of the metric on X, this implies

d(x′, g−1
n · x) ≤ 2−n.

Thus, the orbit of x is dense in X.

Example 1.1.19. Let σ : A → A∗ be a substitution. We say σ is primitive if for every there exists n ∈ N
such that for all a, b ∈ A we have a ⊑ σn(b). A classic result from the theory of substitutions states that if σ is
primitive, then Xσ is minimal. For instance, XσT as defined in Example 1.1.5 is a minimal Z-subshift.

1.1.4 Subshifts of finite type
The central object of this thesis is the following class of subshifts.

Definition 1.1.20. A subshift X ⊆ AG is a subshift of finite type (SFT) if there exists a finite set of
forbidden patterns F ⊆ A∗G such that X = XF .

Example 1.1.21. Take G = Z2, the alphabet A = { , }. Consider the set of forbidden patterns

F =
{

,
}
.

The SFT XF is known as the hard-square model or golden mean shift. For more information on this
subshift see [Pav12] and its references. Configurations from XF consist on isolated tiles surrounded by

8



1.1. Symbolic dynamics

Figure 1.5: A portion of a configuration of the hard-square model on F2.

tiles, except for the all white configuration. We can also define the hard-square model for other groups. A
configuration of this subshift on F2 is represented in Figure 1.5. This F2-subshift was studied by Piantadosi
in [Pia08].

Subshifts of finite type are an important dynamical notion as they are stable under conjugations.

Proposition 1.1.22. Consider two subshifts X ⊆ AG and Y ⊆ BG. If X and Y are conjugate and X is an
SFT, then Y is an SFT.

Proof. Let ϕ : X → Y be a conjugation, and F a finite set of forbidden patterns for X. Without loss of
generality we can assume that all pattern from F have the same support. By Theorem 1.1.9, there exists a
support F ⋐ G and local map Φ : AF → B that locally defining ϕ. We create a new set of forbidden patterns
F ′ for X by taking all completions of patterns p from F to the support supp(p)F . Then, the application of ϕ
to p ∈ F ′, denoted ϕ(p), is defined by ϕ(p)(g) = Φ(p|gF ) for all g ∈ supp(F ). The set of forbidden patterns
G = {ϕ(p) | p ∈ F ′} ⊆ B∗G is finite and defines the subshift Y , making it an SFT.

Let S be a finite generating set for G. We say a pattern p is nearest neighbor if its support is given by
{1G, s} for some s ∈ S. We denote nearest neighbor patterns through tuples (a, b, s) representing p(1G) = a and
p(s) = b. A subshift defined by a set of nearest neighbor forbidden patterns is known as a nearest neighbor
subshift. These subshifts are necessarily SFTs, as the maximal number of such patterns is bounded by |A|2 ·|S|.

Given a set of nearest neighbor patterns F , we define its corresponding tileset graph, ΓF , by the set of
vertices A, and edges given by (a, b, s) ∈ A2 × S such that (a, b, s) ̸∈ F , where a is its initial vertex, b its final
vertex and s its label.

Example 1.1.23 (Wang Tiles). The quintessential examples of a nearest neighbor SFTs in Z2, with respect to
its standard generating set, are those generated by Wang tiles. Let C be a finite set. A Wang tile with colors
in C is a 4-tuple c = (cN , cE , cS , cW ) ∈ C4. This 4-tuple is represented as a unit square which is subdivided
and colored according to C, as shown in Figure 1.6.

2In the theory of topological dynamical systems strong irreducibility is equivalent to topological mixing.

9
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Figure 1.6: A Wang tile.

Given a set of Wang tiles T , a tiling x : Z2 → T must satisfy the adjacency rules:

x(i, j)E = x(i+ 1, j)W , x(i, j)N = x(i, j + 1)S ,

for all (i, j) ∈ Z2. A configuration obtained from Wang tiles is shown in Figure 1.7. The subshift XT of tilings

Figure 1.7: An example of a tiling by Wang tiles. This particular tiling will reappear in Chapter 5.

by T is therefore a nearest neighbor Z2 SFT. It is easy to construct the tileset graph corresponding to a set of
Wang tiles, as shown in Figure 1.8.

t1 =

t2 =
t1 t2

(1, 0)

(0, 1)

Figure 1.8: An example of the tileset graph obtained from two Wang tiles t1 and t2. Inverses of the generators
for Z2 are omitted for simplicity

Nearest neighbor SFTs play a crucial role in the theory of SFTs. The following statement tells us that to
study dynamical properties of SFTs, it suffices to focus our attention on the case of nearest neighbor SFTs.
Lemma 1.1.24. For G a finitely generated group with finite generating set S, every SFT is conjugate to a
nearest neighbor SFT with respect to S.

We prove this lemma in Section 1.5.2.

For G = Z, subshifts of finite type have a very rigid structure. Through the tileset graph we see that every
Z-SFT is conjugate to a vertex shift. Such a subshift is defined from a finite directed graph Γ = (V,E) and
is given by

XΓ = {x ∈ V Z | (x(k), x(k + 1)) ∈ E}.

10



1.1. Symbolic dynamics

This rigid structure has allowed for a great understanding of the dynamics of Z-SFTs. For a complete and
comprehensive introduction of this theory see [LM21].

1.1.5 Sofic subshifts
Definition 1.1.25. A subshift Y ⊆ AG is said to be sofic if there exists an SFT X ⊆ BG and a factor map
π : X → Y .

Sofic subshifts were introduced by Weiss in [Wei73] who was studying the smallest class of subshifts that is
closed under factor maps and contains subshifts of finite type. A direct consequence of the definition is that
the class of sofic subshifts is closed under conjugacies.

Example 1.1.26. Consider a binary alphabet A = { , }. The sunny-side up G-subshift, X≤1 ⊆ AG, is
defined as the set of all configurations containing at most one tile. Formally,

X≤1 = {x ∈ AG | ∀g, h ∈ G : x(g) = x(h) = =⇒ g = h}.

For infinite groups, this subshift is never an SFT [ABJ18, Proposition 9.4.18]. However it is sofic for many
groups. For instance, take G = F2 and the set of tiles

⋆

These tiles define a F2-SFT where tiles are placed next to each other if the puzzle pieces fit correctly. Then,
the factor map from this SFT to the sunny-side up subshift is defined by mapping arrow tiles to , and the
star tile to , as seen in Figure 1.9. An analogous construction works for all free groups, and can be adapted
to work in Zd.

⋆

Figure 1.9: A portion of a configuration of the SFT cover of X≤1 on the free group (left) and its corresponding
image under the factor map (left).

By their definition, every SFT is sofic. The natural question that follows is, are this classes distinct? This
question has been answered by Raymond who characterized the groups where this happens.

Theorem 1.1.27 (Raymond [Ray23]). Let G be a countable group. Then, every sofic G-subshift is an SFT if
and only if G is locally finite.

11
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Locally finite groups are groups where the subgroup generated by any finite set of elements is finite. In
particular, this theorem tells us that for finitely generated groups there exist sofic subshifts that are not SFTs.

Finally, we would like to mention that the structure of Z-sofic shifts is very well-understood. For a vertex
labeled directed graph Γ = (V,E, λ) where λ : E → A, we define its edge-label subshift by

XΓ = {x ∈ AZ | ∃e ∈ EZ,∀k ∈ Z : t(e(k)) = i(x(k + 1)), x(k) = λ(e(k))},

where i(e) and t(e) are the initial and final vertex of e respectively. Every sofic Z-subshift is an edge-label
subshift. A consequence of this fact is the following.

Proposition 1.1.28. For a subshift X ⊆ AZ the following are equivalent:

• X is sofic,

• L(X) is a regular language,

• there exists a regular set of forbidden patterns F ⊆ A∗ such that X = XF .

For in depth discussion and proofs on sofic Z-subshifts see [LM21].

1.2 Computability
In this section we introduce notions from the theory of computability that will be needed throughout the
manuscript. The notation and the definitions differ slightly from the traditional introduction of these concepts,
but ultimately define the same objects. Much of this section is inspired by [Bar17]. For standard references on
computability we refer the reader to [Sip96; Soa16].

We begin by defining computability through Turing Machines, as introduced by Alan Turing [Tur36].

Definition 1.2.1. A Turing machine is a 6-tuple (Q, q0, QH , A,⊔, δ) where

• Q is a finite set of states, where q0 ∈ Q is the initial state, and QH ⊆ Q is the set of halting states,

• A is a finite tape alphabet containing the blank space symbol ⊔ ∈ A,

• δ : Q×A→ Q×A× {−1, 0, 1} is the transition function.

A Turing machine is provided with a bi-infinite tape. This tape is understood as a tuple (x, p, q) ∈ AZ×Z×Q
where x is a configuration with the contents of the tape, p denotes the position of the head of the machine,
and q its state. The result of Turing machine M operating on a given tape (x, p, q) ∈ AZ × Z × Q, denoted
M(x, p, q), is given by (x′, p′, q′) where q′ = δ(q, x(p))1, p′ = p+ δ(q, x(p))3, and

x′(k) =
{
δ(q, x(p))2, if k = p,

x(k), otherwise.

See Figure 1.10 for a depiction of the application of a machine.
A word on the alphabet w ∈ A∗ that does not contain the blank space symbol is called an input. We say a

Turing machine M halts on an input w if there exists n ∈ N such that Mn(xw, 0, q0) ∈ AZ × Z ×QH , where
xw is the configuration containing w starting at the origin and blank space symbols everywhere else.

Remark 1.2.2. Throughout the manuscript we use the words Turing machine, algorithm or procedure inter-
changeably.

Definition 1.2.3. We say a language L ⊆ (A \ ⊔)∗ is

12
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1 001 0 01 1 0000

q

1 001 0 01 0000

q′

0

δ(q, 1) = (q′, 0, 1)

Figure 1.10: Applying a transition to a configuration from {0, 1,⊔}Z.

• recursively enumerable if there exists a Turing machine that halts on an input w if and only if w ∈ L,

• co-recursively enumerable if there exists a Turing machine that halts on an input w if and only if
w /∈ L,

• decidable if it is both recursively and co-recursively enumerable,

• undeciable if it is not decidable.
When a language L is decidable, we can create a single machineM that runs the machine from the recursive

enumerability and the co-recursive enumerability in parallel. This machine halts on all inputs. We can therefore
partition the set of halting states into the set of accepting states QA and rejecting states QR, depending on
which machine halts. This way, M halts on an input w by arriving at a state from QA if and only if w ∈ L.
When this happens we say M accepts w. Consequently, M halts on w by arriving at a state from QR if and
only if w /∈ L. In this case we say M rejects w.
Remark 1.2.4. Decidable languages are also known as recursive or computable languages. Similarly, re-
cursively enumerable (resp. co-recursively enumerable) languages are also called semidecidable (resp. co-
semidecidable), and their Turing machines semi-algorithms (resp. co-semi-algorithms).
Definition 1.2.5. We denote the set of all recursively enumerable languages (resp. co-recursively enumerable)
by Σ0

1 (resp. Π0
1).

With this definition, a language L is decidable if L ∈ Σ0
1 ∩Π0

1.
Definition 1.2.6. A function f : A∗ → B∗ is computable if there exists a Turing machine such that halts on
all inputs w ∈ A∗, leaving f(w) in its tape.

To work with functions on objects that are not necessarily languages, we must use encodings. For instance,
we can encode the natural numbers through their binary representations [n]2 ∈ {0, 1}∗. Thus, a function
f : N → N is interpreted as being a function f ′ : [N]2 ⊆ {0, 1}∗ → {0, 1}∗. We will talk more about encodings
in the next section.

Computable functions give us characterizations of our previously defined classes of languages, as shown in
the next two lemmas.
Lemma 1.2.7. A language L ⊆ A∗ is decidable if and only if there exists a computable function f : A∗ → {0, 1}
such that f(w) = 1 if and only if w ∈ L.

Lemma 1.2.8. A set is recursively enumerable if there exists a computable surjective function f : N→ L.

This last lemma explains the name recursively enumerable, as it implies that for a recursively enumerable
language L we can define a Turing machine that will successively enumerates elements of L on its tape.

13
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1.2.1 Decision problems
To tackle the computability of problems from different areas, we must first encode them in the formalism of
Turing machines.

Example 1.2.9. Suppose we want to study a class of nearest neighbor SFTs C. We want to know if a given
alphabet A and set of nearest neighbor forbidden patterns F ⊆ A2 × S define an SFT belonging to C. This is
done by encoding an input (A,F) as words over the alphabet {0, 1,#}. The generators and the alphabet are
represented as the sets {0, ..., |A| − 1} and {0, ..., |S| − 1} respectively. Then, every pattern p = (a, b, s) ∈ F
is encoded as [p] = [na]2#[nb]2#[ns]2, where na, nb and ns are the numbers corresponding to a, b and s
respectively. Thus, the encoding of the whole input is given by

[(A,F)] = [|A|]2#[p1]#[p2]#...#[pm] ∈ {0, 1,#}∗,

where F = {p1, ..., pm}. If we use a unique unambiguous code for the separation symbol #, we can encode the
inputs as words on {0, 1}. Now, the problem of determining if XF ⊆ AG belongs to C becomes the problem of
determining if the word [(A,F)] belongs to the language {[(A,F)] | XF ∈ C} ⊆ {0, 1}∗.

Formally, a decision problem is a language D ⊆ {0, 1}∗. In this thesis, D will usually be the language
obtained by encoding inputs that satisfy a given property, as in the previous example. Informally, we also
understand a decision problem D as the problem of determining whether a given input w ∈ {0, 1}∗ belongs
to D.

Example 1.2.10. The Halting Problem is the decision problem

HALT = {[(M, w)] | M halts on w},

for an encoding [·] of pairs of Turing Machines and input words. Equivalently, the Halting Problem is the
problem of determining if a given Turing machine M halts on a given input w.

Famously, this problem is the first example of an undecidable language.

Theorem 1.2.11 (Turing [Tur36]). HALT is undecidable.

When a decision problem D is defined by a set of encodings of objects satisfying a property, coD will refer
to the language of well-encoded words that are in the complement of D.

1.2.2 The arithmetical hierarchy and beyond
We already saw the classes Σ0

1 and Π0
1 of recursively enumerable and co-recursively enumerable problems re-

spectively. Nevertheless, languages and decision problems can be computationally harder. To quantify this we
look at the arithmetical hierarchy.

Definition 1.2.12. Let L ⊆ A∗ be a language, and m ∈ N. Then,

• L belongs to Σ0
m if there exists a computable relation R : A∗ × Nm → {0, 1} such that

w ∈ L ⇐⇒ ∃n1,∀n2,∃n3, ..., Qnm R(w, n1, n2, n3, ..., nm),

where Q is ∀ if m is even and ∃ if not.

• L belongs to Π0
m if there exists a computable relation R : A∗ × Nm → {0, 1} such that

w ∈ L ⇐⇒ ∀n1,∃n2,∀n3, ..., Qnm R(w, n1, n2, n3, ..., nm),

where Q is ∃ if m is even and ∀ if not.

14



1.2. Computability

• L belongs to ∆0
m if it belongs to both Σ0

m and Π0
m.

• We say a L is arithmetical if L ∈
⋃
n∈N(Σ0

n ∪Π0
n).

We say a function f : A∗ → {0, 1} belongs to one of the previous classes if the language f−1(1) ⊆ A∗ does.

Each level of the hierarchy is contained in the next, and the inclusion is strict, i.e. Σ0
n ∪Π0

n ⊊ ∆0
n+1.

Lemma 1.2.13. L ∈ Σ0
n if and only if coL ∈ Π0

n.

Although this hierarchy captures decision problems of increasing difficulty, there are problems that are
beyond.

Definition 1.2.14. A D language belongs to Σ1
1 if there exists an arithmetical relation R such that

w ∈ D ⇐⇒ ∃f ∈ 2N, Rf (w),

where Rf represents the relation with an oracle on f .

The class Σ1
1 is at the first level of the analytical hierarchy. A problem belonging to this class is the

recurrence problem for non-deterministic Turing machines (see [Har85]).

1.2.3 Reductions and oracles
To compare the computational difficulty of different languages and problems, we use reductions.

Definition 1.2.15. Let L ⊆ A∗ and L′ ⊆ B∗ be two languages. We say,

• L Turing reduces to L′, denoted L ≤T L′, if L is decidable with an oracle for L′.

• L enumeration reduces to L′, denoted L ≤e L′, if for any w and i ∈ N one can compute a finite set
Fi(w) such that such that w ∈ L if and only if there exists i ∈ N such that Fi(x) ⊆ L′.

• L positive-reduces to L′, denoted L ≤p L′ if for any w one can compute finitely many finite sets
F1(w), ..., Fn(w) such that w ∈ L if and only if there exists i ∈ {1, ..., n} such that Fi(w) ⊆ L′.

• L many-one reduces to L′, denoted L ≤m L′, if there exists a computable function f : A∗ → B∗ such
that w ∈ L if and only if f(w) ∈ L′ for every w.

For the three notions of reducibility, the induced notion of equivalence will be denoted by L ≡∗ L
′, meaning

L ≤∗ L
′ and L′ ≤∗ L. Notice that many-one reducibility implies positive-reducibility, which in turn implies

enumeration reducibility and Turing reducibility.

Remark 1.2.16. If A enumeration reduces to B, then there is an algorithm that from an enumeration of B
produces an enumeration of A. Therefore, a language A is recursively enumerable if and only if A ≤e ∅. We
also say a language A is co-total if A ≤e coA.

We implicitly use the following result throughout the text.

Theorem 1.2.17 (Theorem 4.1.4 [Soa16]). Let L and L′ be two languages such that L′ ≤m L and L ∈ Σ0
1.

Then, L′ ∈ Σ0
1.

An additional concept we need is completeness. Informally, a problem is complete for a class C if it belongs
to the class, and every other problem in C reduces to the problem.

Definition 1.2.18. A language L is Σ0
m-complete (resp. Π0

m-complete) if L ∈ Σ0
m (resp. Π0

m) and L′ ≤m L
for all L′ ∈ Σ0

m (resp. Π0
m).

The Halting Problem is an example of a Σ0
1-complete problem.
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1.3 Some notions from group theory
Let G be a finitely generated group and S a finite generating set. In this manuscript we will only consider
finite symmetric generating sets, that is, generating sets that verify S = S−1, that never contain the identity.
Elements in the group are represented as words on the alphabet S through the evaluation function w 7→ w.
Two words w and v represent the same element in G when w = v, and we denote this by w =G v. We say a
word is reduced if it contains no factor of the form ss−1 or s−1s with s ∈ S.
Definition 1.3.1. Let G be a group. We say (S,R) is a presentation of G, denoted G = ⟨S | R⟩, if the group
is isomorphic to ⟨S | R⟩ = FS/⟨⟨R⟩⟩, where ⟨⟨R⟩⟩ is the normal closure of R, i.e. the smallest normal subgroup
of FS containing R.

We say G is finitely presented if it has a presentation (S,R) where S and R are finite, and recursively
presented if there exists a presentation (S,R) such that S is recursive and R is recursively enumerable.
Example 1.3.2. The Lamplighter group L = Z/2Z ≀ Z is given by the presentation

L = ⟨a, t | t2, [t, anta−n], ∀n ∈ N⟩.

This group is finitely generated and recursively presented, but not finitely presented.
Example 1.3.3. Recursively presented groups are not necessarily finitely generated. The additive group of
rational numbers (Q,+) admits the recursive presentation

⟨{sn}n∈N | (sn)ns−1
n−1, ∀n ∈ N⟩.

The isomorphism from the presentation to Q is given by f(sn) = (n!)−1.
Lemma 1.3.4. For any recursively presented group G there exists a decidable set of relations R and generating
set S such that (S,R) is a presentation for G.
Proof. Let (S′, R′) be a recursive presentation for G and t /∈ S. Because R is recursively enumerable, there
exists an algorithm, A, that halts on w ∈ S′∗ if and only if w ∈ R. For each w ∈ R we can define n(w) as the
number of steps it takes A to accept w. We define the generating set S = S′ ∪ {t}, and relations

R = {tn(r)r | r ∈ R} ∪ {t}.

It is direct that G ≃ ⟨S | R⟩. In addition, the new set of relations R is decidable. Indeed, given a word w ∈ S∗

we first check if it is of the form tkv for some word v ∈ S′∗ and k ∈ N. If it does not, we reject. Next, if
w = t, we accept. Finally, for w = tkv, we run algorithm A on v for k steps. We accept if A accepts, and reject
otherwise.

Remark 1.3.5. The proof of the previous lemma is known as Craig’s trick. In its full generality, Craig’s
trick states that any recursively axiomatizable theories can be recursively presented [Cra53]. This result has
been applied in many contexts (see [Jea17]), one of which we tackle in Section 1.4.1.

The following celebrated theorem by Higman relates recursively presented groups and finitely presented
groups.
Theorem 1.3.6 (Higman Embedding [Hig61]). A finitely generated group is recursively presented if and only
if it is a subgroup of a finitely presented group.

For a group G and a generating set S, we define:

WP(G,S) = {w ∈ S∗ | w =G ε}.

We say a word w ∈ S+ is G-reduced if w contains no factor from WP(G,S). We say a word w ∈ S∗ is a
geodesic if for all words v ∈ S∗ such that w = v we have |w| ≤ |v|. For a given group G and generating set
S, we denote its language of geodesics by Geo(G,S). The length of an element g ∈ G with respect to S is
defined as ∥g∥S = |w| where w is any geodesic representing g. This length also defines a left G-invariant metric
dS : G×G→ N given by dS(g, h) = ∥g−1h∥S .
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Definition 1.3.7. Let G be a finitely generated group, with generating set S. The growth function of G
with respect to S, γG,S : N → N, is defined for each n ∈ N as the amount of elements of length at most n. In
other words, γG,S(n) = |{g ∈ G | ∥g∥S ≤ n}|.

We understand the growth of a group through its growth type. For this, we need the following definition.

Definition 1.3.8. A non-decreasing function γ : N → R+ is called a growth function. For two growth
functions γ and γ′, we say γ dominates γ′, denoted γ′ ⪯ γ, if there exists a constant C ≥ 1 such that
γ′(n) ≤ Cγ(Cn) for all n ≥ 1. We say γ and γ′ are equivalent, denoted γ ∼ γ′, if γ dominates γ′ and γ′

dominates γ.

A straightforward computation shows ∼ is an equivalence relation. We denote by [γ] the equivalence class
of γ by ∼.

Proposition 1.3.9 (Corollary 6.4.5 [CC10]). Let G be a finitely generated group along with S and S′ two
generating sets. Then, γG,S ∼ γG,S′ .

We define the growth type of G as the equivalence class [γG,S ] for any generating set S, and denote it
gr(G).

Definition 1.3.10. We say a finitely generated group G has

• exponential growth if gr(G) ∼ [en],

• polynomial growth if gr(G) ∼ [nd] for some d ≥ 0.

We say an element g ∈ G has torsion if there exists n ≥ 1 such that gn = 1G. If there is no such n, we say
g is torsion-free. Analogously, we say G is a torsion group if all of its elements have torsion. Otherwise, if
the only torsion element is the identity, we say the group is torsion-free.

Finally, let P be a class of groups. We say a group G is virtually P, if there exists a finite index subgroup
H ≤ G that is in P.

Example 1.3.11. Consider the class F of free groups. A virtually F group is known as a virtually free
group. These groups are of fundamental importance to this manuscript. They enjoy many useful structural
and algorithmic properties and play a central role in many areas of group theory. For a comprehensive list of
characterizations of virtually free groups, see [Ant11].

1.3.1 The word problem
When working with groups such as Zd, each element has a normal form that allows us to ask computational
problems about and around them. Nevertheless, from a generating set or presentation we do not have an a
priori way of understanding the corresponding groups structure. In 1911, Dehn proposed the following problem
to understand this regard [Deh11]3.

Definition 1.3.12. The word problem of a group G with respect to a set of generators S is the following
decision problem: given a word w ∈ S∗, determine whether w ∈WP(G,S).

Remark 1.3.13. A simple computation shows that for two different generating sets of G, S1 and S2, the word
problem with respect to S1 is many-one equivalent to the word problem with respect to S2. We can therefore
talk about the word problem of the group, which we denote by WP(G).

3Dehn also introduced the conjugacy problem and the isomorphism problem. Notice that this is 25 years before the
introduction of Turing machines!
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Since the its introduction, many groups have been shown to have decidable word problem. The first examples
of groups with undecidable word problem were found independently by Novikov and Boone in the fifties.

Theorem 1.3.14 (Novikov [Nov58], Boone [Boo59]). There exists a finitely presented group G with undecidable
word problem.

The computational difficulty of the word problem can be made arbitrarily high. For instance, in [Gui+19]
Guillon, Jeandel, Kari and Vanier showed that for any Turing degree there exists a subgroup of an automor-
phism group of a Z2-subshift whose word problem has the degree. There are also examples of finitely presented
groups with as little as 10 generators and 30 relations due to Collins [Coh17], and finitely presented solvable
groups with undecidable word problem due to Kharlampovic [Kha81]. For exhaustive surveys on the different
aspects of the word problem see [AD00; Loh14; Shp24].

Even though the word problem might be undecidable for recursively presented group, there is an upper
bound to its difficulty.

Proposition 1.3.15. Let G be a finitely generated group. G is recursively presented if and only if WP(G) is
in Σ0

1.

Proof. If WP(G) is recursively enumerable, then (S,WP(G)) is a recursive presentation of G. Conversely,
consider a recursive presentation (S,R) of G. By definition, G ≃ FS/⟨⟨R⟩⟩. Therefore, a reduced word w
belongs to WP(G,S) if and only if w ∈ ⟨⟨R⟩⟩. Let us see that ⟨⟨R⟩⟩ can be enumerated. For every n ∈ N,
run the semi-algorithm for R for n steps on words of S∗ of length at most n. If a word is accepted it is added
to the set Wn. Next, compute the sets Cn = {uwu−1 | w ∈ Wn, u ∈ S≤n} of conjugates, and the set of their
combinations Nn = {v ∈ (Cn)∗ | |v| ≤ n}. Notice that the normal closure of R is given by

⟨⟨R⟩⟩ = {g1r1g
−1
1 · ... · gmrmg−1

m | m ∈ N, ri ∈ R, gi ∈ FS}.

Thus, every word from ⟨⟨R⟩⟩ eventually appears in Nn for some n ∈ N.

Is there an algebraic characterization of the decidability of the word problem? Kuznetsov showed in 1958
that finitely presented simple groups have decidable word problem [Kuz58]. Inspired by this result, Boone and
Higman proposed the following conjecture.

Conjecture 1.3.16 (Boone-Higman Conjecture). A finitely generated group G has decidable word problem if
and only if it is a subgroup of a finitely presented simple group.

Although they did not manage to prove this conjecture – which remains open – they did show that a group
has solvable word problem if and only if it embeds into a recursively presented simple group [BH74]. This was
later improved upon by Thompson [Tho80] to obtain the following.

Theorem 1.3.17 (Boone-Higman-Thompson Theorem). A finitely generated group G has decidable word prob-
lem if and only if it is a subgroup of a finitely generated recursively presented simple group.

For a recent survey on the history and state of the art of the conjecture see [Bel+23].

1.3.2 Nilpotent and polycyclic groups
A class of groups that will recurrently appear is the class of nilpotent groups. These groups will act as the
natural theatre for generalizations of results on Zd.

Let G be a group. For each i ∈ N inductively define Zi(G) as

Zi+1(G) = {g ∈ G | [g, h] ∈ Zi(G),∀h ∈ G},

18



1.3. Some notions from group theory

where Z0(G) = {1G}. The set Z(G) = Z1(G) is called the center of G and, by definition, is the set of elements
that commute with every element in G. We say a group is nilpotent if there exists n ≥ 0 such that Zn(G) = G.
In this case we also say G has an upper central series defined by the sequence of normal subgroups,

{1G} ⊴ Z(G) ⊴ Z2(G) ⊴ ... ⊴ Zn(G) = G,

where Zi+1/Zi = Z(G/Zi).

Example 1.3.18. The following are examples of nilpotent groups.

• Every abelian group is nilpotent, as they satisfy Z(G) = G.

• The discrete Heisenberg group, H3, of upper triangular 3× 3 integer matrices given by the presentation,

H3 = ⟨x, y, z | [x, z], [y, z], [x, y]z−1⟩,

is nilpotent. This is because Z(H3) = ⟨z⟩, and Z2(H3) = H3.

When working with nilpotent groups, we exploit the fact that subgroups and quotients of nilpotent groups
are nilpotent, and that every nilpotent group contains a finite index torsion-free nilpotent subgroup.

An important result in the theory of finitely generated (virtually) nilpotent group is their characterization
through their growth.

Theorem 1.3.19. A finitely generated group is virtually nilpotent if and only if it has polynomial growth.

The only if direction is due to Bass [Bas72] and Guivarc’h [Gui70] who provided an explicit formula for the
degree of the polynomial growth. The if direction is due to Gromov [Gro81]. For this reason, this result is
sometimes called Gromov’s Theorem.

A similarly defined family of groups is the family of polycyclic groups. A group G is polycyclic if it admits
a series

{1G} = G0 ⊴ G1 ⊴ ... ⊴ Gn = G,

for some n ≥ 1, such that the quotient Gi+1/Gi is a cyclic group (finite or infinite).

Example 1.3.20. All nilpotent groups are polycyclic, but the converse is not true. The group Z2 ⋊M Z with

M =
[
2 1
1 1

]
is polycyclic but not nilpotent. Its center is trivial as the matrix has no non-trivial fixed points.

Other examples of polycyclic groups can be obtained from the following.

Theorem 1.3.21 (Auslander-Swan Theorem). A group G is polycyclic if and only if it is isomorphic to a
solvable subgroup of GL(n,Z).

The necessary condition of this theorem was proven by Mal’cev [Mal56], and the sufficient one by Auslander
and Swan [Aus67; Swa67]. A proof can be found in [Seg83].

Polycyclic satisfy properties similar to the one satisfied by nilpotent groups. Subgroups and quotients of
polycyclic groups are polycyclic, and every polycylic group contains a finite index torsion-free polycylic subgroup.
Furthermore, subgroups of polycyclic groups are always finitely generated. This last property is crucial when
we want to define SFTs from SFTs on quotients (see Lemma 1.5.16).

The key tool when working with polycyclic groups is their Hirsch length. For a polycyclic group G, this
length, denoted h(G), is equal to the number of infinite cyclic quotients in its groups series. We make proofs
by induction over the Hirsch length by using the following properties.
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Proposition 1.3.22. Let G be a polycyclic group. The following hold,

• for a subgroup H ≤ G, h(H) ≤ h(G),

• for a normal subgroup N ⊴ G, h(G) = h(N) + h(G/N),

• h(G) = 0 if and only if G is finite,

• h(G) = 1 if and only if G is virtually Z,

• h(G) = 2 if and only if G is virtually Z2,

• h(Zd) = d.

For a proof of this proposition and further properties of polycyclic groups see [Seg83].

1.3.3 Amenable groups
An important class of groups from the point of view of dynamics is the class of amenable groups. They were
conceived as a way to generalize finite groups, as they can be approximated by a family of almost left invariant
finite sets.
Definition 1.3.23. A countable group G is said to be amenable if it satisfies one of the following equivalent
conditions,

• G admits a finitely additive left-invariant probability measure µ : 2G → [0, 1],

• G admits a (right) Følner sequence, that is, a sequence of finite sets (Fn)n∈N such that for all g ∈ G

lim
n→∞

|Fn \ Fng|
|Fn|

= 0.

The class of amenable groups includes finite, abelian, nilpotent and solvable groups. It also has several
inheritance properties.
Proposition 1.3.24. Let G be an amenable group. The following properties are satisfied:

• If H ≤ G, then H is amenable.

• If N ⊴ G, then G/N is amenable. Furthermore if N and G/N are amenable, G is amenable.

• If H is amenable, then G×H is amenable.

Proofs of these facts can be found in [CC10, Chapter 2]. There are many additional properties and charac-
terizations of amenable groups. For a recent survey on amenability see [Bar18].
Example 1.3.25. The simplest non-amenable group is the free group F2. We can show this fact by contradic-
tion. Suppose F2, with presentation ⟨a, b |⟩, admits a finitely additive left invariant probability measure µ. If
we define the set Fb as all elements of F2 represented by a reduced word beginning with b or b−1, we have that
F2 = Fb ∪ b−1Fb. Then,

1 = µ(F2) = µ(Fb ∪ b−1Fb) ≤ 2µ(Fb).
This implies µ(Fb) ≥ 1/2. On the other hand, the sets Fb, aFb and a2Fb are disjoint, implying

1 ≥ µ(Fb ∪ aFb ∪ a2Fb) = 3µ(Fb).

Therefore, µ(Fb) ≤ 1/3, which is a contradiction.
It was believed that F2 was the source of non-amenability, that is, a group is non-amenable if and only if it

contains F2 a subgroup. This statement, known as the von Neumann conjecture or von Neumann-Day Problem,
was shown to be false by Ol’shanskii in 1980 who proved the existence non-amenable torsion groups [OlS80b;
OlS80a].
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1.3.4 Combining groups
The free product of two groups G and H given by presentations ⟨SG | RG⟩ and ⟨SH | RH⟩ respectively, is the
group given by the presentation

G ∗H = ⟨SG ∪ SH | RG ∪RH⟩.

The fundamental example of free products are free groups. If we denote F1 = Z, the free group of rank
n > 2 can be obtained as the free product Fn = Fn−1 ∗ Z. In Chapter 4 we look at properties of a class of
groups obtained from free products of finite groups and free groups. These groups are known as plain groups.

Let G and H be two groups given by presentations ⟨SG | RG⟩ and ⟨SH | RH⟩ respectively. Suppose they
have subgroups A ≤ G and B ≤ H that are isomorphic through ϕ : A→ B. The amalgamated free product
of G and H along A is the group given by the presentation

G ∗A H = ⟨SG ∪ SH | RG ∪RH ∪ {aϕ(a)−1 | a ∈ A}⟩.

Example 1.3.26. Let G = SL(2,Z) be the special linear group of rank 2 over Z. This group admits a finite
presentation as the amalgamated free product Z/4Z ∗Z/2Z Z/6Z, where the generators for Z/4Z and Z/6Z are
respectively given by the matrices

S =
[
0 −1
1 0

]
, T =

[
1 1
0 1

]
.

These groups are amalgamated along the subgroup Z/2Z ≃ ⟨−I, I⟩, where I is the identity matrix.

Let G be a group given by the presentation ⟨S | R⟩. Suppose G has two subgroups H,K ≤ G that are
isomorphic through ψ : H → K. The HNN-extension of G with respect to ψ is the group given by the
presentation

G∗ψ = ⟨S ∪ {t} | R ∪ {t−1htψ(h)−1 | h ∈ H}⟩,

where t /∈ S is known as the stable generator. The name comes from Higman, B.H. Neumann, and H.
Neumann who introduced these extensions [HNN49].

Example 1.3.27. Examples of HNN-extensions that recurrently appear in this text are Baumslag-Solitar
groups. The Baumslag-Solitar group BS(m,n) is given by the HNN-extension of Z where the subgroups mZ
and nZ are identified.

A useful fact about HNN-extensions is that they have normal forms.

Lemma 1.3.28. Let G be a group with two subgroups H,K ≤ G that are isomorphic through ψ : H → K.
Consider the sets of right coset representatives containing 1G, RH and RK , forH and K respectively. Then,
every element g in the HNN-extension G∗ψ can be uniquely decomposed as

g = g0t
ε1g1 ... t

εngn,

for n ∈ N, such that gi ∈ G and εi ∈ {1,−1}. In addition,

• if εi = 1, then gi ∈ H,

• if εi = −1 then gi ∈ K,

• the decomposition contains no factors of the form t±11Gt∓1.

A proof of this lemma can be found in [LS77].

We look at a generalization of these three operations, called the graph of groups, in Chapter 6.

21



Chapter 1. Subshifts, Computability, and Groups

1.3.5 Cayley graphs and ends
Let G be a finitely generated group along with a finite symmetric generating set S. The Cayley graph
of G with respect to S, denoted Γ(G,S), is defined by the set of vertices VΓ = G and the set of labeled
edges EΓ = {(g, s, gs) | g ∈ G, s ∈ S} ⊆ G × S × G. Each edge e = (g, s, h) ∈ EΓ has an initial vertex
i(e) = g, a terminal vertex t(e) = h and a label λ(e) = s. The graph is also endowed with an involution
e 7→ e−1 = (h, s−1, g) ∈ EΓ. If a generator has order 2, that is, if s ∈ S satisfies s2 = 1G, we take a unique edge
between g and gs for every g ∈ G.

Notice that every Cayley graph is |S|-regular, locally finite, transitive and deterministically labeled, that is,
for every vertex there is a unique out-going edge for each label S. The group G acts by translation on Γ(G,S)
by left multiplication. The action of g ∈ G over a vertex h ∈ VΓ is given by g · h = gh.

We also consider the undirected Cayley graph Γ̂(G,S), where we collapse each edge e and e−1 to a single
undirected edge between i(e) to t(e). In other words, Γ̂(G,S) is the graph with vertex set G such that g, h ∈ G
are adjacent if gh−1 ∈ S.
Example 1.3.29. The hexagonal grid H is a Cayley graph of the affine Coxeter group Ã2 given by the
presentation

Ã2 = ⟨a, b, c | a2, b2, c2, (ab)3, (ac)3, (bc)3⟩.
This can be seen in Figure 1.11.

Figure 1.11: A Cayley graph of the affine Coxeter group Ã2. The red edges represent a, blue edges represent b,
and green edges c.

Example 1.3.30. The ladder graph L is the Cayley graph of Z× Z/2Z for the presentation,
Z× Z/2Z = ⟨t, s | s2, tst−1s⟩.

This can be seen in Figure 1.12.

t

s

Figure 1.12: A Cayley graph of the group Z × Z/2Z. The generator t defines the horizontal right-pointing
edges, and the generator s defines the vertical undirected edges.
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This is not the only group that admits the ladder graph as a Cayley graph; this is also the case for the
groups D∞ and D∞ × Z/2Z.

A path on Γ(G,S) is a sequence of edges π = (e1, ..., en) such that for all i ∈ {1, ..., n − 1} we have
i(ei+1) = t(ei). We denote the initial vertex of the path by i(π) = i(e1) and its terminal vertex as t(π) = t(en).
The length of the path is given by ℓ(π) = n, and its label is λ(π) = λ(e1) ... λ(en) ∈ S∗. We also define the
sequence of vertices visited by π as the sequence V (π) = (g0, ..., gn) with gi = i(ei+1) for all i ∈ {0, ..., n − 1}
and gn = t(en). This formalism gives us a one-to-one correspondence between paths starting at 1G and words
in S∗. In particular, a path π satisfies i(π) = t(π) if and only if λ(π) ∈WP(G,S).

Cayley graphs define metric spaces when endowed with their combinatorial distance, that is, the distance
between two vertices g, h ∈ G is dΓ(g, h) = ℓ(π) where π is a shortest path between g and h. This metric is
the same as the word metric obtained from the generating set S. In fact for different generating set, the metric
space defined by the different metrics define equivalent geometries in the following sense.

Definition 1.3.31. Let (X, dX) and (Y, dY ) be two metric spaces. We say a function f : X → Y is bilipschitz
it is bijective and there exists a constant C ≥ 1 such that

1
C
dX(x, y) ≤ dY (f(x), f(y)) ≤ CdX(x, y),

for all x, y ∈ X. If there exists a bilipschitz function between (X, dX) and (Y, dY ), we say they are bilipschitz
equivalent.

Lemma 1.3.32. Let G be a finitely generated group, along with two generating sets S and S′. Then, the metric
spaces (G, dS) and (G, dS′) are bilipschitz equivalent through the identity map. In particular, all Cayley graphs
of a finitely generated groups are bilipschitz equivalent.

Proof. Let ws ∈ S∗ be a geodesic word representing s ∈ S′. If we denote M = maxs∈S′ |ws|, we have that

1
M
dS(g1, g2) ≤ dT (g1, g2) ≤MdS(g1, g2).

Because the identity map is bijective, we conclude it is bilipschitz.

We will frequently talk about a particular aspect of the large scale geometry of these spaces called the
number of ends of the graph.

Definition 1.3.33. The number of ends of a Cayley graph Γ = Γ(G,S), denoted e(Γ), is defined as the
quantity

e(Γ) = sup
F⋐G

|{infinite connected components of Γ[G \ F ]}|,

where Γ[F ′] is the subgraph induced by the set of vertices F ′.

For a finitely generated group, the number of ends of all its Cayley graphs are the same (see [Löh17, Propo-
sition 8.2.8]). We therefore talk about the number of ends of a group G, which we denote e(G). We look at
ends in greater detail in Section 4.4.1, where we explore properties that are not invariant under changing the
generating set.

The number of ends of a group is highly constrained, as the following theorem due to Freudenthal [Fre44]
and Hopf [Hop43] shows.

Theorem 1.3.34. For a finitely generated group G, e(G) ∈ {0, 1, 2,∞}.

We can classify groups by their number of ends even further. First, a group is finite if and only if it has
zero ends. Second, a group has two ends if and only if it is virtually Z (see [SW79]). Finally, for groups with
infinite ends we have the following decomposition due to Stallings.
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Theorem 1.3.35 (Stallings’ Decomposition Theorem [Sta68; Sta71]). Let G be a finitely generated group. Then
e(G) > 1 if and only if one of the following holds,

• G = H ∗F K, where F is a finite group different from H and K.

• G = H∗ψ where ψ is an isomorphism between two finite subgroups of H.

In particular, if e(G) =∞ and G is torsion-free, G can be written as a free product G = H ∗K.

We will use a corollary of this theorem in Chapter 6 to find weakly aperiodic SFTs on a large class of groups.

1.3.6 Quasi-isometries
To understand which properties of groups do not depend on the Cayley graph, we should use a notion of
equivalence that captures the large scale behavior of a group. This idea is formalized through the following
definition.

Definition 1.3.36. Let (X, dX) and (Y, dY ) be two metric spaces. We say a function f : X → Y is a quasi-
isometry if there exists constants D, c ≥ 0 and λ ≥ 1 such that

1. f is a quasi-isometric embedding: for all x, y ∈ X

1
λ
dX(x, y)− c ≤ dY (f(x), f(y)) ≤ λdX(x, y) + c,

2. f is relatively dense: for all z ∈ Y there exits x ∈ X such that dY (z, f(x)) ≤ D.

If there exists a quasi-isometry between (X, dX) and (Y, dY ), we say they are quasi-isometric.

Clearly bilipschitz functions are quasi-isometries. The converse is not true in general. Nevertheless, if a
quasi-isometry between finitely generated groups is bijective, it is a bilipschitz function.

Example 1.3.37. Take Zd with its word metric given by the standard generating set S, and Rd with the metric
induced by norm ∥ · ∥1. The inclusion map from Zd to Rd is a quasi-isometry. Taking v1, v2 ∈ Zd we have that

dS(v1, v2) = ∥v1 − v2∥1,

and for every r = (r1, ..., rd) ∈ Rd we can take v = (⌊r1⌋, ..., ⌊rd⌋) ∈ Zd such that

∥r − v∥1 ≤ d.

Nevertheless, the inclusion map is not bilipschitz.

Lemma 1.3.38. Let G be a finite generated group together with N ⊴ G a finite index normal subgroup. Then
G is quasi-isometric to N .

Proof. Let S be a generating set G. Because N has finite index, it is finitely generated. Let T be a generating
set for N , and wt ∈ S∗ a geodesic word representing t ∈ T within G. If we denote M = maxt∈T |wt|, we have
that

1
M
dS(h1, h2) ≤ dT (h1, h2) ≤MdS(h1, h2),

for all h1, h2 ∈ H. Now, consider R a set of right coset representatives for N . For each g ∈ G there exists a
unique h ∈ N and r ∈ R such that g = hr. Then,

d(g, h) ≤ max
r∈R
∥r∥S .

Therefore, the inclusion map is a quasi-isometry.
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With this lemma we can relate quasi-isometries with another notion of equivalence for groups.

Definition 1.3.39. We say two groups G1 and G2 are commensurable if they have finite index subgroups
H1 ≤ G1 and H2 ≤ G2 that are isomorphic.

By Lemma 1.3.38 commensurable groups are quasi-isometric. There exist many examples where the converse
does not hold. For instance, the Baumslag-Solitar groups BS(m,n) and BS(p, q) are quasi-isometric whenever
1 < n < m and 1 < p < q [Why01], but are not commensurable if (m,n) are co-prime and (p, q) are co-
prime [CKZ21].

Definition 1.3.40. A property P of finitely generated groups is called a geometric property if for every
group G that is quasi-isometric to a group that satisfies P, also satisfies P.

The following properties are geometric:

• finiteness,

• growth type, and therefore being virtually nilpotent through Gromov’s Theorem,

• number of ends [Bri93],

• hyperbolicity [Gro87; GH90],

• amenability [Føl55],

• being virtually free [Woe89],

• finite presentability [BH99, Proposition I.8.24],

• decidability of the word problem for finitely presented groups [Alo90],

among many others. For a more comprehensive list see [DK18]. Proofs of the invariance of many of these
properties can be found in [Löh17]. On the other hand, examples of properties that are not geometric are the
rank of free groups (as F2 and F3 are quasi-isometric), being abelian (Z and D∞ are quasi-isometric) and the
conjugacy growth of the group [HO13]. Throughout this manuscript we will see that many properties of groups
relating to SFTs are quasi-isometry invariants.

1.3.7 Translation-like actions
Definition 1.3.41. Let G be a group and let (X, d) be a metric space. A right action ∗ of G on X is said to
be translation-like if it satisfies the following two conditions:

• The action is free, i.e. x ∗ g = x implies g = 1G,

• For every g ∈ G, the set {d(x, x ∗ g) | x ∈ X} is bounded.

Translation-like actions were introduced by Whyte in order solve the geometric version of the von Neumann
conjecture [Why99]. These actions were conceived as a generalization of subgroups: for a finitely generated
group G with subgroup H, the right action of H on G given by g ∗ h = gh is a translation-like action.

Example 1.3.42. Let f : G→ H be a bilipschitz map. Then, H acts translation-like on G through the action
g ∗ h = f−1(f(g)h), for g ∈ G and h ∈ H.

When working with finitely generated groups, we can see each orbit of a translation-like actions of a group
G on another group H as an embedding of the Cayley graph of G into the Cayley graph of H. This is made
precise by the following result by Seward [Sew14, Corollary 5.2].
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Lemma 1.3.43. Let G and H by finitely generated groups such that H acts translation-like on G. Then, for
every generating set S for H, there exists a finite generating set SG for G and a map ϕ : G×S → SG such that
g ∗ h = gϕ(g, h).

As mentioned before, these actions were used to prove geometric versions of the von Neumann conjecture
and the Burnside problem.

Theorem 1.3.44. (Geometric Burnside problem [Sew14]) Any finitely generated infinite group admits a translation-
like action by Z.

Theorem 1.3.45. (Geometric von Neumann conjecture [Why99]) A finitely generated group G is non-amenable
if and only if G admits a translation-like action by F2.

There are also obstructions to the existence of translation-like actions. Whyte’s Theorem implies that F2
cannot act translation-like on any amenable group. Also, Lemma 1.3.43 implies that if H acts translation-like
on G, the growth of H must be smaller that the growth of G. Furthermore, Jiang showed that translation-like
actions define regular maps [Jia17], as introduced by Benjamini, Schramm and Timár [BST12]. This implies
that if H acts translation-like on G, the asymptotic dimension of H is smaller than the asymptotic dimension
of G, and that the separation profile of H is smaller than the separation profile of G. There are also further
restrictions on translation-like actions between nilpotent groups coming from their asymptotic cones [CP19].

Translation-like actions have also been shown to have connections with weakly aperiodic SFTs by Jean-
del [Jea15c]. We will explore this on Chapter 5.

1.4 Computability and entropy of subshifts

1.4.1 Pattern codings and effectively closed subshifts
An interesting class of Zd-subshifts are those defined by a recursively enumerable set of forbidden patterns.
Such subshifts are known as effectively closed subshifts. They were originally introduced by Hochman to study
projective subdynamics of sofic Z2-subshifts [Hoc09]. Enumerating patterns is clear when the underlying group
is Zd, but may not be clear in general how to specify finite supports on any finitely generated groups. This
problem was solved by Aubrun, Barbieri and Sablik through the concept of pattern codings [ABS17]. The
results that follow come originally from their article.

Definition 1.4.1. Let G be a finitely generated group, S a finite set of generators and A a finite alphabet. A
pattern coding c with respect to S is a set of tuples c = {(wi, ai)}i∈I , where I is a finite set, wi ∈ S∗ and
ai ∈ A.

Given a set of pattern codings C, we define its corresponding subshift as:

XC = AG \
⋃
g∈G
c∈C

⋂
(w,a)∈c

[a]gw.

Remark 1.4.2. Notice that a pattern coding c could be inconsistent, that is, it could contains pairs (w1, a),
(w2, b) where a ̸= b and w1 ̸= w2. In this case,

⋂
(w,a)∈c[a]w would be empty and would not contribute in

the definition of XC . Furthermore, for a finitely generated group G and an alphabet A of size at least 2 the
word problem for G is recursively enumerable if and only if the set of inconsistent patterns codings is recursively
enumerable. Indeed, if we take a word w ∈ S∗ and take two distinct letters a, b ∈ A we define the pattern coding
{(w, a), (1G, b)}. This pattern coding is inconsistent if and only if w =G ∅. Conversely, from an enumeration of
the word problem we can check in a pattern coding c if w1w

−1
2 =G ε and a ̸= b for every pair (w1, a), (w2, b) ∈ c.

If the pattern is inconsistent this procedure will eventually detect it.
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Definition 1.4.3. A subshift X ⊆ AG is effectively closed if there exists a recursively enumerable set of
pattern codings C such that X = XC .

Proposition 1.4.4. Let X ⊆ AG be an effectively closed subshift. Then, there exists a recursive set of pattern
codings C such that X = XC

Proof. Because X is effectively closed, there exists a recursively enumerable set of pattern codings C′ such that
X = XC . Take an enumeration C′ = {c0, c1, ...}. For each n ∈ N we define

Rn = max
k≤n

max
(w,a)∈ck

|w|.

Let Cn be the set of all pattern codings of support S≤Rn that are possible completions of pattern codings c ∈ C
such that max(w,a)∈ck |w| ≤ Rn. If we define C as the union of all Cn we obtain that X = XC′ = XC . Let us see
C is recursive. The procedure is the following: given a pattern coding c we first check if the pattern has support
S≤Ln for some n ∈ N. If this is not the case we reject. Next, for such n ∈ N we compute the set Cn from the
enumeration of C′. If c ∈ Cn we accept, otherwise we reject.

This proposition is another instance of Craig’s trick as mentioned in Remark 1.3.5 for group presentations.
This parallel between forbidden patterns and relations of a group presentation is further explored in Section 1.6.

The class of effectively closed subshifts always contains the class of SFTs, and contains the class of sofic
shifts when G is recursively enumerable.

Lemma 1.4.5. Every SFT is effectively closed.

Proof. Let X ⊆ AG be an SFT. Then, there exists a finite set of forbidden patterns F ⊆ A∗G such that
X = XF .Fix a generaring set S. For every p ∈ F , we define the pattern coding c(p) = {(wg, p(g)) | g ∈ supp(p)}
where wg ∈ S∗ is a word representing g. Clearly, X = XC and C is recursively enumerable as F is finite.

Proposition 1.4.6 (Proposition 2.7 [ABS17]). Let G be a recursively presented group. Then, the class of
effectively closed subshifts is closed under factors. In particular, every sofic subshift is effectively closed.

Although the class of effectively closed contains the class of sofic shifts for recursively presented groups, it
can be larger. This is the case in Zd

Example 1.4.7. Consider the mirror subshift XM ⊆ { , , }Z2 . This subshift consists of configurations
that contain a vertical lines made of tiles such that the rest of the configuration is mirrored along these lines,
and configurations made up exclusively of and tiles. See Figure 1.13 for an example. This subshift is given

Figure 1.13: An example of a configuration from the mirror subshift XM in Z2 containing a vertical line.
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by the forbidden patterns

FM =
{

, , ,
}
∪
⋃
w∈A∗

{ w , w wR , w wR },

where wR is the reversal of w. This set of forbidden patterns can be easily converted into a recursive set of
pattern codings, making XM an effectively closed subshift. However, using a counting argument on the number
of patterns, it is possible to show that XM is not sofic (see [ABJ18, Proposition 9.4.5]). Similar arguments to
prove Z2-subshifts are not sofic can be found in [DR22]. Analogous mirror subshifts can be defined for Zd with
d > 2 using a fixed hyperplane to mirror configurations.

The ideas from the previous example where generalized to find more groups where the class of effectively
closed groups is strictly larger that the class of sofic groups.

Theorem 1.4.8 ([ABS17]). Let G be a recursively presented group. If G is either amenable or has two or more
ends, then there exists an effectively closed G-subshift that is not sofic.

There are still many cases in which we do not know if the classes can be separated.

Question 1.4.9. Does there exits a recursively presented group where every effectively closed shift is sofic?

There are other notions of effectiveness that prove useful when G is not recursively presented or has unde-
cidable word problem, which we do not tackle here. These notions can be found in [ABS17].

We finish this section by looking at the sunny side-up subshift, defined in Example 1.1.26. In that example,
we saw that X≤1 is never an SFT for infinite groups, and is sofic for Zd and F2. Dahmani and Yaman also
showed that this is also the case for hyperbolic groups [DY08]. Still, it is possible give examples where this
subshift is not sofic by looking at when it is effectively closed.

Proposition 1.4.10 ([ABS17]). Let G be a recursively presented group. The sunny-side up subshift X≤1 on G
is effectively closed if and only if G has decidable word problem.

We finish with the following open question from Aubrun [Aub21].

Question 1.4.11. For which finitely generated groups is X≤1 sofic?

1.4.2 Entropy for amenable groups
A conjugacy invariant measure of the combinatorial and dynamical properties of a subshift is its topological
entropy. Although entropy is defined for more general actions of amenable groups, we restrict ourselves to the
case of subshifts.

Definition 1.4.12. Let G be an amenable group with a Følner sequence (Fn)n∈N. The complexity function
of a G-subshift X with respect to (Fn)n∈N is the function pX : N→ N defined by pX(n) = |LFn(X)|.

The topological entropy of a subshift captures the asymptotic behavior of the complexity function.

Definition 1.4.13. Let G be an amenable group with a Følner sequence (Fn)n∈N. The topological entropy
of a G-subshift X is defined as

h(X) = lim
n→∞

log(pX(n))
|Fn|

.

Entropy is well-defined and independent of the chosen Følner sequence by the Orstein-Weiss Lemma [OW80].
For proofs and more information about entropy for general actions of amenable groups see [Kri07; KL16].

Example 1.4.14. Consider the full-G-shift A. For any Følner sequence {Fn}n∈N, the complexity of the full-shift
is pAG(n) = |A||Fn|. Therefore, h(AG) = log(|A|).

28



1.4. Computability and entropy of subshifts

We also understand entropy through admissible patterns.

Definition 1.4.15. Let F ⊆ A∗G be a set of forbidden patterns. A pattern p ∈ A∗G is said to be

• locally admissible if p contains no patterns from F ,

• globally admissible if p ∈ L(XF ).

Given a subset F ⋐ G we define qF (F ) and pF (F ) as the number of locally and globally admissible pat-
terns with respect to F , respectively. Notice that pF (F ) = |LF (XF )| and pF (Fn) = pXF (n) for a Følner
sequence {Fn}n∈N. The local asymptotic growth rate and the global asymptotic growth rate are define
respectively as

α(F) = lim
n→∞

(
min

|F |=n
qF (F )

) 1
n

,

and

α∞(F) = lim
n→∞

(
min

|F |=n
pF (F )

) 1
n

.

Both quantities are well defined through Fekete’s Subadditive Lemma [Fek23]. As Downarowicz, Frej and
Romagnoli show in [DFR16], through Shearer’s inequality we obtain that h(XF ) = log(α∞(F)). In [Ros22],
Rosenfeld shows that the same holds for locally admissible patterns.

Theorem 1.4.16 ([Ros22]). Let G be a finitely generated amenable group. Then, for a set of non-empty
forbidden patterns F ⊆ A∗G, α(F) = α∞(F).

We will use this expression for entropy with locally admissible patterns in Chapter 4.
An important problem concerning entropy is the problem of determining the set of possible entropies of

subshifts for different classes.

Definition 1.4.17. Let C be a class of G-subshifts. We define the set of entropies of C in G as

E(G,C) = {h(X) | X ∈ C}.

When C is the class of G-SFTs, we simply write E(G).

We need the following notion of computability for real numbers.

Definition 1.4.18. A number r ∈ R is said to be a Perron number if it is the maximal eigenvalue of
a positive square matrix with integer coefficients.

• A number r ∈ R is said to be right computable or a Π0
1-number if there exists a computable sequence

of rational numbers {qn}n∈N such that r = infn∈N qn.

With this definitions we state the following classification of entropies for Z-subshifts.

Theorem 1.4.19. The following hold,

• E(Z) = E(Z,Sof) = {q log(r) | q ∈ Q+, r is a Perron number} [Lin84],

• E(Z,Eff) = {r | r ≥ 0 is right computable} [HS08],

where Sof and Eff are the classes of sofic and effectively closed subshifts respectively.

For Zd-subshifts with d ≥ 2, entropies become more complicated. The celebrated characterization by
Hochman and Meyerovitch goes as follows.

Theorem 1.4.20 (Hochman, Meyerovitch [HM10]). E(Zd) = {r | r ≥ 0 is right computable}, for d ≥ 2
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For general groups it is still an open problem to characterize the entropies of SFTs, sofic subshifts, and
effectively closed subshifts. However it has been characterized for SFTs on certain classes of groups:

• If Z2 acts translation-like on G, then E(G) = E(Z2) [Bar21],

• If G is a locally finite group, then

E(G) =
{

log(n)
|H|

| H ≤f G,n ∈ N
}
,

where ≤f represents being a finite subgroup [Ray23].

• If G is the Lamplighter group L, or the Baumslag-Solitar group BS(1, 2), then E(G) = E(Z2) [BS24].

Question 1.4.21. For which finitely generated amenable groups is E(G) = E(Z2)?

1.5 Canonical constructions
This section is focused on introducing constructions that allow us to go from a subshift defined over a group,
to one defined on a subgroup or quotient. These constructions appear under varied names throughout the
literature, and have been used to prove many results. In particular, they are extensively used throughout this
thesis.

To prevent confusion when working with different groups and their subgroups, for a set of forbidden patterns
F ⊆ A∗G, we denote the G-subshift generated by F as XGF .

1.5.1 Free extension
The first of the constructions we look at is the free extension. This construction is perhaps the most direct
way to define a subshift on a group starting from a subshift on one of its subgroups. It is because of this
that it appears often in the literature, though not always under the same name. Free extensions have been
used by Hochman and Meyerovitch [HM10] to characterize the entropies of Zd-SFTs, by Ballier and Stein
for the Domino Problem [BS18], by Jeandel to prove results about strongly and weakly aperiodic SFTs and
the Domino Problem [Jea15b; Jea15c], by Carrol and Penland to prove the commensurability invariance of
aperiodicity [CP15], by Barbieri to study the set of possible entropies of certain amenable groups [Bar21], and
by Barbieri, Sablik and Salo to obtain simulation theorems on direct products of groups [BSS23]. Recently
Raymond has made a careful study of the properties of free extensions in order to study SFTs on locally finite
groups [Ray23].

Definition 1.5.1. Let G be a group, H ≤ G a subgroup, X ⊆ AH an H-subshift. The free extension of X
to G, denoted X↑, is the G-subshift defined as,

X↑ = {x ∈ AG | ∀g ∈ G, x|gH ∈ X}.

Example 1.5.2. Let us take X≤1 ⊆ { , }Z, the sunny-side up subshift on Z as defined in Example 1.1.26.
Then, its free extension to Z2, X↑

≤1, is the subshift containing configurations that on each row has at most one
tile (see Figure 1.14).

Remark 1.5.3. There is an alternative way of lifting a subshift over a subgroup to the whole group, which
also appears regularly in the literature. Given an H-subshift X ⊆ AH , and a set of left coset representatives L,
the periodic (or trivial) extension of X is the set

X⇑ = {y ∈ AG | ∃x ∈ X,∀l ∈ L, y|lH = x} ⊆ X↑.
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1.5. Canonical constructions

Figure 1.14: An example of a configuration from the free extension of the sunny-side up shift X≤1 from Z to
Z2.

This set is a subshift for G = Zd, but may fail to be shift invariant in general (see Section 6.3.1). This
extension famously appears on the simulation results independently discovered by Hochman [Hoc09], Aubrun
and Sablik [AS13], and Durand, Romaschenko and Shen [DRS12]. It has also been used to prove a Higman
Embedding Theorem for subshifts [JV19], characterize extender entropies of Zd-subshifts [CSV24], and for
simulation theorems on other finitely generated groups [Bar19; BS19; BSS21].

Lemma 1.5.4. Let X ⊆ AH be an H-subshift generated by the set of forbidden patterns F , that is, X = XHF .
Then, the free extension satisfies the following

1. X↑ = XGF ,

2. X↑ is empty if and only if X is empty,

3. for every x ∈ X↑, stab(x) ∩H ⊆ stab(x|H).

Proof. 1. Take x ∈ X↑, and suppose there is g ∈ G and p ∈ F such that x|g·supp(p) = p. Then, the config-
uration y = x|gH contains the forbidden pattern p, which contradicts the fact that y ∈ X. Conversely,
take x ∈ XGF and g ∈ G. Because the supports of patterns from F are contained in H, x|gH ∈ XHF = X.
Thus, x ∈ X↑.

2. For any x ∈ X↑, we have x|H ∈ X. Take L a set of left coset representatives for H. Given a configuration
y ∈ X, we define x ∈ AG by x(lh) = y(h) for all l ∈ L and h ∈ H. Then, given g ∈ G there exists l ∈ L
and h ∈ H such that g = lh. Then, x(gh′) = x(lhh′) = y(hh′), for all h′ ∈ H. Thus, x|gH = h−1 · y ∈ X.

3. Take x ∈ X↑, h ∈ stab(x) ∩H, and y = x|H . Then,

h · y(h′) = y(h−1h′) = x(h−1h′) = x(h′) = y(h′).

Therefore, h ∈ stab(y).

A more manageable way to understand free extensions is through the cosets of the subgroup.

Lemma 1.5.5. Take L a set of left coset representatives for G/H and an H-subshift X. Then, y ∈ X↑ if and
only if there exist a collection of configurations on X, {xl}l∈L, such that y|lH = xl.

Proof. For a configuration y ∈ X↑, we define our collection of configurations as xl = y|lH ∈ X. Conversely, let
y be defined by the collection {xl}l∈L. Take g ∈ G, which is uniquely written as g = lh for some l ∈ L, h ∈ H.
Then, y(gh′) = y(lhh′) = xl(hh′) for all h′ ∈ H, implying that y|gH = h−1 · xl ∈ X. Thus, y ∈ X↑.
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There are also several other properties that are satisfied by the free extension, relating to entropy and
morphisms.

Proposition 1.5.6. Let G be a group, with H ≤ G a subgroup. Take an H-shift X. The following hold:

• For a morphism ϕ : AG → BG, we have that ϕ(X↑) = ϕH(X)↑, where ϕH is ϕ viewed as an H-invariant
morphism [Ray23].

• If G is an amenable countable group, h(X↑) = h(X) [Bar21].

Finally, we note that free extensions and finitely generated groups are some sense universal for SFTs, as the
following shows.

Lemma 1.5.7. Let X ⊆ AG be a G-SFT. Then, there exists a finitely generated subgroup H ≤ G and an SFT
Y ⊆ AH such that X = Y ↑.

Proof. Let F be a set of forbidden patterns for X and H be the subgroup generated by the union of the supports
of the patterns from F . Thus, all patterns from F are supported within H, so we can define Y = XHF . By
Lemma 1.5.4, X = Y ↑.

Using this lemma we state the following expression for the set of realizable entropies of an amenable group.

Corollary 1.5.8 (Corollary 3.15 [Ray23]). Let G be a countable amenable group. Then,

E(G) =
⋃
F⋐G

E(⟨F ⟩)

1.5.2 Higher power and higher block
Higher block and higher power subshfits are standard and useful constructions for Z-subshifts (see Exam-
ple 1.1.12). They allow both to re-scale subshifts – in order to find letter-to-letter sliding-block codes and
nearest neighbor subshifts– and to go from a group to a finite index subgroup. This construction has been used
by Carroll and Penland to prove aperiodicity is a commensurability invariant [CP15], and by Aubrun, Barbieri
and Jeandel to prove every SFT is conjugate to a nearest neighbor SFT [ABJ18].

Definition 1.5.9. Let G be a group, H ≤ G a finite index subgroup, and X ⊆ AG. Take R a set of right coset
representatives. The R-higher power of X, denoted X [R], is the H-subshift over the alphabet AR defined as,

X [R] =
{
x ∈ (AR)H | ∃y ∈ X, ∀(h, r) ∈ H ×R, x(h)(r) = y(hr)

}
.

Lemma 1.5.10. Let X ⊆ AG be a G-subshift, H ≤ G a finite index subgroup, and R a set of right coset
representatives. Then, X is non-empty if and only if X [R] is non-empty.

Proof. For a configuration y ∈ X we define x ∈ AH by x(h) = y|hR. By definition, x ∈ X [R]. Conversely, for a
configuration x′ ∈ X [R] there exists y′ ∈ X such that x(h)(r) = y(hr) for all h ∈ H and r ∈ R.

Given a set of forbidden patterns F for the base G-subshift X, we create a set of forbidden patterns, F ′, for
X [R]. Take q ∈ F with support F ⋐ G, and r ∈ R. For each f ∈ F there exists hf ∈ H ∩ RFR−1 and rf ∈ R
such that hfrf = rf . Define the set P (q, r) = {hf | f ∈ F}. Now, for each q ∈ Q and r ∈ R the set F ′ contains
all the patterns p of support P (q, r) such that p(hf )(rf ) = q(f).

Lemma 1.5.11. Let X ⊆ AG be an G-subshift given by the set of forbidden patterns F . Then X [R] = XHF ′ .
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Proof. Take x ∈ X [R]. By definition there is a configuration y ∈ X such that x(h)(r) = y(hr) for all h ∈ H
and r ∈ R. Suppose x /∈ XF ′ . Then, there exists h ∈ H, q ∈ F , r ∈ R and p ∈ F ′ of support P (q, r) such that
x|hP (q,r) = p. For each f ∈ supp(q),

y(hrf) = y(hhfrf ) = x(hhf )(rf ) = q(f).

In other words, y|hr·supp(q) = q, which is a contradiction.
Conversely, take x ∈ XF ′ and define y ∈ AG as y(hr) = x(h)(r) for all h ∈ H and r ∈ R. Suppose y /∈ X.

Then, there exists h ∈ H, r ∈ R and q ∈ F such that y|hr·supp(q) = q. Then, for all hf ∈ P (q, r)

x(hhf )(rf ) = y(hhfrf ) = y(hrf) = q(f).

This means x|hP (q,r) ∈ F ′, which is a contradiction. Therefore y ∈ X and x ∈ X [R].

A slight generalization of the R-higher power shift has also been used in the literature ([CP15] for instance).
This generalization, called the R-higher block shift, consists in taking any finite set R ⋐ G such that HR = G
that is not necessarily a set of coset representatives. The definition is the same, but we denote it by X(R). What
does change is the set of forbidden patterns that generate X(R). We must now make sure that if hR and h′R
intersect, for h, h′ ∈ H, every configuration agrees on the intersection. Let X be given by the set of forbidden
patterns F , and denote by F ′ the set of forbidden patterns from Lemma 1.5.11. A straightforward computation
shows the following.

Lemma 1.5.12. Let X ⊆ AG be an G-subshift given by the set of forbidden patterns F . Then X(R) = XHF ′′ ,
where F ′′ is the union of F ′ and the set of patterns

{p : H ∩RR−1 → AR | p(1H)(r) ̸= p(h)(h−1r) with h−1r ∈ R}

This particular shift is used to prove Lemma 1.1.24, which we re-state.

Lemma 1.5.13 (Lemma 1.1.24). For G a finitely generated group with finite generating set S, every SFT is
conjugate to a nearest neighbor SFT with respect to S.

Proof. Let X be a G-SFT defined by the set F . Take N = maxp∈F maxg∈supp(p) |g|S , and R = BS(1G, N). The
R-higher block shift, X(R) is conjugate to X, through the map Φ : X → X(R) defined by Φ(x)(g) = (g−1 · x)|R.
Let us show X(R) is a nearest neighbor SFT over the alphabet Â consisting of the patterns over AR with no
sub-pattern from F .

Take for each s ∈ S and g ∈ BS(1G, N) ∩BS(s,N) we add all the nearest neighbor patterns (p1, p2, s) such
that p1(g) ̸= p2(s−1g), to the set G. Let us show X(R) = XG . By definition G ⊆ F ′′, from Lemma 1.5.12, and
therefore X(R) ⊆ XG . Next, take x ∈ XG and define y ∈ AG by y(hr) = x(h)(r) for all h ∈ G and r ∈ BS(1G, N).
This configuration is well defined: suppose there are h1, h2 ∈ G and r1, r2 ∈ BS(1G, N) such that h1r1 = h2r2.
We can express r1 =G s1 · ... · sm and r2 =G s′

1 · ... · s′
n for m,n ≤ N and si, s′

i ∈ S. Because x avoids all patterns
from G

x(h1)(r1) = x(h1s1)(s−1
1 r1)

= x(h1s1s2)(s−1
2 s−1

1 r1)
...
= x(h1s1 · ... · sm−1)(s−1

m−1 · ... · s
−1
1 r1)

= x(h1r1)(1G)
= x(h2r2)(1G)
= x(h2s

′
1 · ... · s′

n−1)((s′
n−1)−1 · ... · (s′

1)−1r1)
...
= x(h2)(r2).
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Finally, to see y ∈ X = XF notice that if y contained a pattern from F , it would appear in some ball BS(g,N)
for some g ∈ G which would contradict the fact that y|gBS(1G,N) = x(g) ∈ Â. Therefore x ∈ X(R).

1.5.3 Pull-back
Our next construction allows us to go from a quotient to a group. We call it the pull-back shift. This
construction has been used by Ballier and Stein to show that the undecidability of the Domino Problem and
weak aperiodicity can be transported from the quotient to the group [BS18], by Jeandel to construct strongly
aperiodic SFTs on polycyclic groups [Jea15b], and by Bartholdi and Salo to obtain simulation theorems for the
Lamplighter group [BS24]. Furthermore, the last two authors argue that the simulation results mentioned in
Remark 1.5.3 are in fact results about pull-backs. This is restated by Grigorchuk and Salo in [GS24].

Definition 1.5.14. Let G be a group, N ⊴ G a normal subgroup, and X ⊆ AG/N an G/N -subshift. The
pull-back of X to G, denoted π∗(X), is the G-subshift defined as,

π∗(X) = {x ◦ π ∈ AG | x ∈ X},

where π : G→ G/N is the quotient map.

Remark 1.5.15. Notice that π∗(X) is non-empty if and only if X is non-empty.

Now, let us build a set of forbidden patterns F ′ for π∗(X) from a set of forbidden patterns F for X.
Let ρ : G/N → G be a section and T a set of generators for N . The set F ′ contains for each t ∈ T all
patterns q : {1G, t} → A such that q(1G) ̸= q(t), and for each p ∈ F a pattern q : ρ(supp(p)) → A defined by
q(ρ(g)) = p(g).

Lemma 1.5.16. Let X ⊆ AG/N be a G/N -subshift given by the set of forbidden patterns F . Then, π∗(X) =
XGF ′ . In particular, if N is finitely generated and X is an SFT, π∗(X) is an SFT.

Proof. Take y ∈ π∗(X) and x ∈ X such that y = x ◦ π. Suppose y /∈ XF ′ . If there are distinct a, b ∈ A, g ∈ G
and t ∈ T , such that y(g) = a and y(gt) = b, this means x(π(gt)) = x(π(g)) = a and x(π(g)) = b which is a
contradiction. On the other hand, if there is g ∈ G and p ∈ F such that y|g·ρ(supp(p)) = p, then x|π(g)·supp(p) = p
which is a contradiction. Therefore, y ∈ XF ′ .

Conversely, take y ∈ XF ′ and define x = y ◦ ρ ∈ AG/N . Now, for every g ∈ G there exists h ∈ N such that
ρ(π(g)) = gh. Then, (x ◦ π)(g) = y(gh) = y(g), as y is invariant on N . Finally, if x /∈ X because it has a
pattern p ∈ F , y would have the pattern p ◦ ρ ∈ F ′ which is a contradiction. Thus x ∈ X and y ∈ π∗(X).

1.5.4 Push-forward
Our final construction is the push-forward shift. So far this construction has not been present in the litera-
ture, although it does fall under the definition of pull-back shifts as defined by Bartholdi and Salo [BS24].

To transport a subshift from a group to its quotient we must ask additional properties on the subshift. To
do this we introduce the N -fixed subshift. Let A be a finite alphabet, G a finitely generated group with N a
normal subgroup. We define the subshift

FixA(N) = {x ∈ AG | n · x = x, ∀n ∈ N}.

Remark 1.5.17. For any subgroup N , FixA(N) is always a closed set of AG, but it is only shift invariant when
N is normal. In the latter case, the subshift is conjugate to AG/N .

Notice when N is finitely generated, FixA(N) is an SFT. If we take S = {s1, ..., sm} a set of symmetric
generators for N , we see that FixR(N) is the SFT by the set of forbidden rules given by

{p : {1, si} → R | si ∈ S, p(1) ̸= p(si)}.
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Definition 1.5.18. Let G be a group, N ⊴ G a finitely generated normal subgroup, X ⊆ FixA(N) a G-subshift,
and ρ : G/N → G a section. The push-forward of X to G/N , denoted ρ∗(X), is the G-subshift defined as,

ρ∗(X) = {x ◦ ρ ∈ AG/N | x ∈ X}.
As was the case with the pull-back, we have that ρ∗(X) is non-empty if and only if X is non-empty.

Lemma 1.5.19. Let X ⊆ FixA(N) be a G-subshift. Then, the push-forward is independent of the section, that
is, for any two sections ρ1, ρ2 : G/N → G, ρ∗

1(X) = ρ∗
2(X).

Proof. Take x ∈ ρ∗
1(X). By definition there is a configuration y ∈ X such that x = y ◦ ρ1. Because ρ1 and ρ2

are sections, for all g ∈ G/N there exists some h ∈ N such that ρ1(g) = hρ2(g). Given that y ∈ FixA(N), we
have that

x(g) = y(ρ1(g)) = y(hρ2(g)) = y(ρ2(g)),
for all g ∈ G/N . Thus, x = y◦ρ2 and therefore belongs in ρ∗

2(X). Because the previous argument is independent
of the section, we conclude that ρ∗

1(X) = ρ∗
2(X).

Because of this result, we talk about the push-forward of a subshift X ⊆ FixA(N).
Lemma 1.5.20. Let G and N be finitely generated, and take S and T finite generating sets for G/N and N
respectively. If X ⊆ AG is a nearest neighbor G-SFT with respect to ρ(S)∪T , then ρ∗(X) is a nearest neighbor
G/N -SFT with respect to S.
Proof. Let F be a set of nearest neighbor forbidden patterns with respect to ρ(S) ∪ T , for X. Because X ⊆
FixA(N), we suppose that F contains all patterns (a, b, t) for a, b ∈ A, a ̸= b and t ∈ T . Then, define the set of
forbidden patterns F ′ that contains (a, b, s) with a, b ∈ A and s ∈ S, for each pattern (a, b, ρ(s)) ∈ F . Let us
show that ρ∗(X) = XG/NF ′ . Take x ∈ ρ∗(X) and suppose x /∈ XF ′ . Then, there exist g ∈ G/N and s ∈ S such
that (x(g), x(gs), s) ∈ F ′. Because x belongs to the push-forward, there exists y ∈ X such that x = y ◦ρ. Then,
because y ∈ FixA(N), x(gs) = y(ρ(g)ρ(s)). Therefore, (y(ρ(g)), y(ρ(g)ρ(s)), ρ(s)) ∈ F appears in y, which is a
contradiction.

Conversely, take x ∈ XF ′ and define y = x ◦ π ∈ AG. Notice that for any g ∈ G and h ∈ N ,
(h · y)(g) = x(π(h−1g)) = x(π(g)) = y(g).

Next, if y /∈ X because there is g ∈ G and s ∈ S such that (y(g), y(gρ(s)), ρ(s)) ∈ F , then the pattern
(x(π(g)), x(π(g)s), s) ∈ F ′ appears in x, which is a contradiction. Thus, y ∈ X. Finally, for any g ∈ G/N ,
y ◦ ρ(g) = x(π(ρ(g))) = x(g). Therefore, x ∈ ρ∗(X).

As the previous proof suggests, the push-forward and pull-back are complementary constructions in the
following sense.
Lemma 1.5.21. Let X ⊆ FixA(N) be a G-subshift and Y a G/N -subshift. Then, X = π∗(ρ∗(X)) and
Y = ρ∗(π∗(Y )).
Proof. We begin with X ⊆ FixA(N). For x ∈ π∗(ρ∗(X)), there exists y ∈ X such that x = y ◦ ρ ◦ π. As
ρ(π(g)) ∈ gN for all g ∈ G, and y ∈ FixA(N), we have that x = y ∈ X. Next, take z ∈ X and define
y = z ◦ ρ ◦ π. By definition, y ∈ π∗(ρ∗(X)). As before, because ρ(π(g)) ∈ gN for all g ∈ G, and z ∈ FixA(N),
both configurations are the same, meaning z ∈ π∗(ρ∗(X)).

For the second statement, take y ∈ ρ∗(π∗(Y )). There exists x ∈ Y such that y = x ◦ ρ ◦ π. Because
ρ(π(g)) = g for all g ∈ G/N , x and y are equal. Finally, take y ∈ Y and define z = y ◦ ρ ◦π, which by definition
belongs to ρ∗(π∗(Y )). We conclude as before that y = z ∈ ρ∗(π∗(Y )).

This Lemma allows us to show that all subshifts are the pull-forward of some F -subshift, for F a free group.
Proposition 1.5.22. Let X be a G subshift. Then, there exists a free group F and a F -subshift Y such that
ρ∗(Y ) = X.
Proof. Let S be a generating set for G and F = FS the free group with S as a free generating set such that
we have a quotient map π : F → G. By Lemma 1.5.21, the push-back of X, Y = π∗(X) is a F -subshift that
verifies ρ∗(Y ) = X.
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1.6 Analogies between groups and subshifts

When working with both subshifts and group presentation, many similarities become apparent. The most
prominent of these is the role played by forbidden patterns in subshifts and relations in group presentations. If
we see the generating set of a group as an alphabet, relations can be interpreted as forbidden patterns which
we cannot see on geodesic words. This fact was observed by Jeandel, who also noticed that simple groups and
minimal subshifts play similar roles in their respective domains. Explicitly,

Theorem 1.6.1 (Theorem 5 [Jea17]). The following hold:

• For a minimal Zd-subshift, L(X) ≤e L(X)c,

• For a simple group G, coWP(G) ≤e WP(G).

Versions of this result for SFTs and finitely presented groups where originally proven in [BJ08; Hoc09]
and [BH74] respectively.

Later, Jeandel and Vanier took the analogies between multidimensional subshifts and groups even fur-
ther [JV19]. A summary of the comparisons they made is shown in Table 1.1. In this section we will explore
these analogies and propose a new one.

Group Subshift
Group with n generators Subshift on n symbols

Free group of rank n Full-shift on n symbols
Word problem WP(G) co-language L(X)c

Finitely presented group SFT
Recursively presented group Effectively closed subshift

Simple group Minimal subshift
Q is a quotient of G Y ⊆ X
H is a subgroup of G Y ⊑ X

Table 1.1: The Jeandel-Vanier dictionary between groups and subshifts as introduced in [JV19].

Their objective was to establish subshift versions of the Higman Embedding Theorem and the Boone-
Higman-Thompson Theorem (see Section 1.3.1). The notion that was missing to make this work was an analog
of subgroups.

Definition 1.6.2. Take a subshift X ⊆ AZd and a sub-alphabet B ⊆ A. A subshift Y ⊆ BZd
′

with d′ ≤ d is
said to be a full-restriction of X, denoted Y ⊑ X, if L(Y ) = L(X) ∩B∗Zd

′

.

With this definition, the subshift versions of the previously mentioned theorems are the following.

Theorem 1.6.3. (Higman Embedding for subshifts [JV19]) A Zd-subshift X over the alphabet A is effectively
closed if and only if there exists a Zd+1-SFT Y over an alphabet B such that A ⊆ B and X ⊑ Y .

The proof of this theorem comes from the simulation theorems established by Hochman [Hoc09], Aubrun
and Sablik [AS13], and Durand, Romashenko and Shen [DRS12].

Theorem 1.6.4. (Boone-Higman-Thompson for subshifts [JV19]) A Zd-subshift X over the alphabet A. Then,
L(X) is computable if and only if there exists a minimal Zd+2-SFT Y over an alphabet B such that A ⊆ B and
X ⊑ Y .

36



1.6. Analogies between groups and subshifts

In fact, this theorem is much stronger than its analog as it proves the Boone-Higman Conjecture for subshifts.

As the aforementioned results suggest, these analogies provide intuition on the sort of theorems it could be
possible to prove for subshifts that mimic the behavior of groups. In Section 2.3.2 we will see an analog for
the Adyan-Rabin Theorem, and in Chapter 4 we will look at an attempt at establishing these correspondences
directly by defining subshifts with the generators as an alphabet and WP(G) as the forbidden patterns. For
the mean time, let us propose an analog for residually finite groups.

1.6.1 An analog for residual finiteness
Definition 1.6.5. A group G is residually finite if for every g ∈ G \ {1G} there exists a finite group F and
an epimorphism ϕ : G→ F such that ϕ(g) ̸= 1F .

Examples of finitely generated residually finite groups are finite groups, abelian groups and free groups. In
addition, Malc’ev showed that every finitely generated subgroup of GLn(K), where n > 1 and K is a field, is
residually finite [Mal40]. Examples of non-residually finite groups are divisible groups such as Q. For a complete
introduction on residually finite groups see [CC10, Chapter 2].

Proposition 1.6.6. Let G be a group. The following are equivalent,

• G is residually finite,

• There exist finite groups (Fi)i∈I such that G is isomorphic to a subgroup of the direct product
∏
i∈I Fi,

• There exists a sequence of finite index subgroups {Gi}i∈N with Gi+1 ≤ Gi such that
⋂
i∈NGi = {1G}.

Proofs of these equivalences can be found in [CC10].

We are interested in the following computational property of residually finite groups.

Proposition 1.6.7. Let G be a finitely presented residually finite group. Then, the word problem for G is
decidable.

Proof. Let G be a finitely presented residually finite group with generating set S. Recall that for recursively
presented groups, the word problem is in Π0

1, that is, there is an algorithm that stops on w ∈ S∗ if and only if
w = 1G.

Next, because G is finitely presented we can determine if a finite group F is a quotient of G. It suffices to
test if there exists a generating set for F that satisfies the relations from G. Then, given a word w ∈ S∗ we
enumerate all finite groups (given by their Cayley table) and determine if a finite group is a quotient of G, and
compute the image of w in the quotient. Because G is residually finite, if w does not represent the identity,
there exists at least one finite quotient where w is represents a non-trivial element. Therefore, this process stops
if and only if w ̸= 1G. By joining both semi-algorithms, we obtain an algorithm that solves the word problem
for G.

The original proof of this proposition comes from McKinsey [McK43] who proved the result in a larger
setting. The proof for groups was first made explicit by Mal’cev [Mal58] and latter by Mostowski [Mos66], and
Dyson [Dys74].

To extend the analogies from Table 1.1, we propose the following analog of residual finiteness for multidi-
mension shifts.

Definition 1.6.8. We say a subshift X ⊆ AZd is residually periodic if for every p ∈ L(X) there exists a
periodic point x ∈ X such that p ⊑ x.

There is an equivalent definition for this notion that is well studied in the literature, as shown by the next
lemma.
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Lemma 1.6.9. A subshift X ⊆ AZd is residually periodic if and only if Per(X) is dense in X.

Proof. Suppose X is residually periodic and consider x ∈ X. Define the patterns pn = x|[−n,n]d . By definition,
for each n ∈ N there exists xn ∈ Per(X) such that pn ⊑ xn. Without loss of generality we assume that pn
appears in xn at the origin. Notice that pn ⊑ pn+1. Then, for every n ∈ N,

x|[−n,n]d = pn = xm|[−n,n]d ,

for all m ≥ n. Thus, xn → x.
Conversely, suppose Per(X) is dense. Take p ∈ L(X) and x ∈ X such that p ⊑ x at the origin. By density,

there exists a periodic configuration x′ ∈ X such that

p = x|supp(p) = x′|supp(p).

Therefore, p ⊑ x′ and X is residually periodic.

The classic examples of subshifts with dense periodic points are irreducible SFTs and irreducible sofic
subshifts on Z (see [LM21]). For Zd, it was shown by Lightwood that if a strongly irreducible Zd-SFT contains
a periodic point, its set of periodic points is dense [Lig03, Lemma 5.4]. Furthermore, he showed that for d = 2
all strongly irreducible Z2-SFTs have dense periodic points [Lig03, Lemma 9.2]. These results can be taking
beyond the realm of abelian groups: Ceccherini-Silberstein and Coornaert showed that for a residually finite
group G, every strongly irreducible G-SFT with a periodic point has dense periodic points [CC12]. In fact,
residually finite groups are closely related to the density of periodic points, as the set of periodic points in dense
in the full-shift AG if and only if G is residually finite (see [Fio09]).

We can now give an analog to Proposition 1.6.7.

Proposition 1.6.10. Let X ⊆ AZd be a residually periodic SFT. Then, L(X) is computable.

Proof. Take a pattern p ⊆ AZd , and F the finite set of forbidden patterns for X. Our algorithm to see if
it belongs to L(X) begins by checking if p contains a pattern from F . If p is valid, take N ∈ N such that
supp(p) ⊆ [−N,N ]d. For each successive n ≥ N , the algorithm tries all possible tilings of the hypercube
[−n, n]d with p at the origin. If there is no possible tiling, it rejects. If on the other hand, it finds a a tiling
that tiles periodically, it accepts.

Now, if p /∈ L(X) there will exist n ∈ N such that there is no valid tiling of [−n, n]d with p at the origin. If
p ∈ L(X), by residual periodicity, there exists a periodic configuration x where p appears. Therefore, there will
be a n ∈ N and a tilling of [−n, n]d with p at the origin that tiles periodically.

Question 1.6.11. Is there an analog of the equivalences in Proposition 1.6.6 for residually periodic subshifts?
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Emptiness
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Chapter 2
The Domino Problem

In 1961, Hao Wang introduced the Domino Problem to study the decidability of the ∀∃∀ fraction of first
order logic [Wan61]. The problem goes as follows: given a finite set of Wang tiles, that is, unit squares with
colored edges (see Figure 2.1), is it possible to tile the plane in such a way that adjacent squares have the same
color along their shared border?

Figure 2.1: A Wang tile again.

As Wang observed, if one manages to tile arbitrarily large squares, by a standard compactness argument,
there exists a tiling of the whole plane. This shows that the Domino Problem is co-recursively enumerable,
through a simple semi-algorithm. Given a set of tiles, try and tile squares of increasing size. Then, there is no
tiling of the plane if and only if this process fails for some size of square. This procedure is known as Wang’s
Algorithm. With the goal of finding a co-semi-algorithm and show the decidability of the Domino Problem,
Wang conjectured that if a set of tiles does tile the plane, then there exists a way to use them to tile the plane
periodically. If this conjecture holds, by tiling bigger and bigger squares one would either eventually find a
square that can be periodically repeated, or eventually fail to tile a square.

Nevertheless, in 1964, Wang’s PhD student Robert Berger showed not only that there exist aperiodic sets of
Wang tiles, but that the Domino Problem is undecidable [Ber66]. He used the aperiodic tileset to construct a
reduction from the Halting Problem. The reduction consists in simulating the space-time diagram of a Turing
machine’s run within spaces delimited by the aperiodic tiling. Since this proof was found, many alternative
proofs have been established. Following Jeandel and Vanier [JV20], these proofs can be divided into four classes:
the proof by Berger, later improved by Robinson who uses a much smaller aperiodic tileset [Rob71], the proof by
Aanderaa and Lewis using p-adic numbers [AL74; Lew79] (see also [JV20]), the proof by Durand, Romashenko
and Shen using self-simulating tilings and Kleene’s fixed point theorem [DRS12], and finally the proof by Kari
which symbolically encodes the immortality problem for piecewise affine maps [Kar07].

The modern study of the Domino Problem on groups through subshifts of finite type comes from the crossing
of two lines of research. On the one hand, in 1988, Kitchens and Schmidt are the first to explicitly give Wang
tiles as examples of two-dimensional subshifts of finite type, and the Domino Problem as a particular instance
of the emptiness problem of said class of subshifts [KS88]. They also make the crucial step by noting that the
equivalent problem for Z-subshifts of finite type is decidable: because these shifts are conjugate to edge shifts,
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they always contain periodic points. In other words, Wang’s algorithm works for Z. This symbolic dynamics
point of view was continued by Piantadosi [Pia08], who studied the Domino Problem on finitely generated free
groups and proved it is decidable. This marks the first explicit study of the Domino Problem on groups other
than Zd. Piantadosi also generalizes Wang tiles to nearest neighbor SFTs. The second line begins in Robinson’s
1971 article, where he conjectured that the Domino Problem for tilings of the hyperbolic plane is undecidable.
This was proven independently by Kari [Kar07] and Margenstern [Mar08]. Kari’s proof technique was con-
structed upon by Aubrun and himself to look at the problem on Baumslag-Solitar groups [AK13]. They showed
that it is undecidable. This jump towards finitely generated groups was made independently of Piantadosi.

A particularly important property enjoyed by the Domino Problem is that it can be expressed in the
Monadic Second Order (MSO) logic of the group’s Cayley graph [BJ08] (see Section 3.5). This prompted
Ballier and Stein [BS18] to make the following argument: because virtually free groups can be characterized as
having finite tree-width [MS85], and graphs with finite tree-width have decidable MSO logic [KL05], the Domino
Problem is decidable for virtually free groups (see Section 3.5 for more details on MSO logic). Furthermore, they
observed that if a group is not virtually free, any Cayley graph of the group contains an infinite hexagonal grid
as a minor, by by Halin’s Grid Theorem [Hal65]. In principle, it could be possible to code this grid symbolically,
and exploit the undecidability of the Domino Problem on Z2 to show that these groups have undecidable Domino
Problem. This reasoning prompted them to state the following conjecture.

Conjecture 2.0.1 (The Domino Conjecture). Let G be a finitely generated group. Then the Domino Problem
is decidable if and only if G is virtually free.

Although the conjecture remains unresolved at the time of writing, there has been substantial progress
towards its proof. We make a summary of the advances in the next theorem.

Theorem 2.0.2. The Domino Conjecture holds for the following classes of finitely generated groups:

• Virtually free groups,

• Polycyclic groups [Jea15b],

• Baumslag-Solitar groups [AK13],

• Surface groups [ABM19] and more generally hyperbolic groups [Bar23b],

• The Lamplighter group [BS24],

• K∞-minor free groups [EGL23].

In Chapter 6 we will add Artin groups (Proposition 6.2.3) and generalized Baumslag-Solitar groups (Propo-
sition 6.2.2) to the list.

2.0.1 Definitions and properties
The modern formulation of the Domino Problem for finitely generated groups was introduced in [ABJ18] and
is as follows.

Definition 2.0.3. Let G be a finitely generated group and S a finite generating set. The Domino Problem on
G with respect to S is the following decision problem: given an alphabet A and a finite set of nearest neighbor
forbidden patterns F , determine whether the corresponding subshift XF is non-empty. We denote this problem
DP(G,S).

To make the link with general subshifts of finite type, we use pattern codings to encode forbidden patterns
of arbitrarily shaped support.
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Definition 2.0.4. Let G be a finitely generated group and S a finite generating set. The Emptiness Problem
on G with respect to S is the following decision problem: given an alphabet A and a set of finite pattern codings
C over S, determine whether the corresponding subshift XC is non-empty. We denote this problem EP(G,S).

Notice that the decidability of the Emptiness Problem is independent of the generating set, as pattern
codings can be easily re-written in a different generating set. We use this fact often, so we present is as a
lemma.

Lemma 2.0.5. Let G be a finitely generated group with two generating sets S and S′. Then, for every pattern
coding c with respect to S there exists a pattern coding c′ with respect to S′ such that the c and c′ define the
same pattern and the function c 7→ c′ is computable

Let us show that the two problems are equivalent. We will make use of the proof ideas from [ABJ18].

Definition 2.0.6. Take G a finitely generated group along with a finite generating set S. For C, a set of pattern
codings over the alphabet A, define N = maxc∈C max(w,a)∈c |w| and an alphabet, Â, consisting of colorings of
words of length at most N that contain no pattern from C:

Â =
{
ϕ : S≤N → A | ∀c ∈ C,∃(w, a) ∈ c, ϕ(w) ̸= a

}
,

and a set, F(C), of nearest neighbor forbidden patterns over Â:

q ∈ F(C) ⇐⇒ q ∈ Â{1,s} : ∃w ∈ S≤N−1, q1(sw) ̸= qs(w).

We call XF(C) the nearest neighbor SFT associated to C.

Notice that F(C) is effectively computable from C. This subshift also resembles the higher-block construction
(Section 1.5.2), the key difference being that in this case we are taking balls in the monoid S∗ instead of the
actual group.

We now prove that the undecidability of many variants of the Domino Problem is independent of the
generating set.

Lemma 2.0.7. For any finitely generated group G along with a generating set S, DP(G,S) ≡m EP(G,S). In
particular, the decidability of DP(G,S) is independent of the generating set.

Due this invariance result, we can talk about the Domino Problem on G, denoted DP(G).

Proof. It is straightforward to re-write nearest neighbor patterns as pattern codings: each pattern (a, b, s)
becomes c = {(ε, a), (s, b)}. Thus, we have the reduction DP(G,S) ≤m EP(G,S). For the other direction, take
a pattern coding C and F(C). We claim XC is empty if and only if XF(C) is empty. If there exists a configuration
x ∈ XC , we define y ∈ XF(C) ⊆ ÂG by y(g)(w) = x(gw̄). This way, y contains no pattern from F(C), as x does
not contain a pattern coding from C. Conversely, if there is a configuration y ∈ XF(C), we construct x ∈ XC by
x(g) = y(g)(ε). From the definition of F(C), if we take g ∈ G with |g|S ≤ N and a word w ∈ S≤N such that
w̄ = g, we have that y(1G)(w) = y(g)(ε). Therefore, x is well-defined and contains no pattern codings from
C.

The problem also satisfies many inheritance properties, which we summarize in the following proposition.

Proposition 2.0.8. Let G be a finitely generated group. The following hold:

1. For any subgroup H ≤ G, DP(H) ≤m DP(G).

2. For any finitely generated normal subgroup N ⊴ G, DP(G/N) ≤m DP(G).

3. For any finite index subgroup H ≤ G, DP(H) ≡m DP(G).
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4. WP(G) ≤m coDP(G).

Item (1) is a consequence of Lemma 1.5.4, and (2) a consequence of Lemma 1.5.16. The proof of (3) is the
same as in Lemma 2.2.4. Finally, the proof of (4) can be found in [ABJ18, Theorem 9.3.28].

The problem satisfies additional properties.

• If G and H are commensurable, then DP(G) ≡m DP(H). This is due to (3) in the previous proposition.

• The decidability of the Domino Problem is a geometric property for finitely presented groups, that is, if
two finitely presented groups, G and H are quasi-isometric, then DP(G) ≡m DP(H) [Coh17].

• If H is a finitely presented group that acts translation-like on G, then DP(H) ≤m DP(G). In particular,
the direct product of two infinite groups has undecidable Domino Problem [Jea15c].

• If G admits a Cayley graph Γ(G,S) that simulates a Cayley graph of H, in the sense of Bartholdi and
Salo, then DP(H) ≤m DP(G) [BS22].

The properties and results mentioned above can be combined to tackle new classes of groups, as in the
following proposition.

Proposition 2.0.9. Free-by-cyclic groups, Fn ⋊θ Z, have undecidable Domino Problem.

Proof. By Brinkmann’s Theorem [Bri00] a free-by-cyclic group contains Z2 as a subgroup if and only if it is not
hyperbolic. Then, if it actually contains Z2, it has undecidable Domino Problem by Proposition 2.0.8. On the
other hand, if the group is hyperbolic it has undecidable Domino Problem by [Bar23b].

The Domino Conjecture has yet to be shown to hold for large classes of groups. The next frontier is the class
of solvable groups. This class contains solvable Baumslag-Solitar groups, the Lamplighter group, as well as some
groups with undecidable word problem, all for which the undecidability of the Domino Problem is already known.

2.0.2 Deciding decidability
Besides asking if the Domino Problem is decidable on each particular group, we ask if there is an algorithm
that, given a presentation of a finitely presented group, determines if the group has decidable Domino Problem.
We can answer this question independently of the Domino Conjecture through the Adyan-Rabin Theorem. To
do this, we first look at a certain class of group properties.

Definition 2.0.10. A group property P is a class of groups, such that if G1 ≃ G2 and G1 ∈ P, then G2 ∈ P.
A group property P is called a Markov property if there exists two groups G+ and G− such that

• G+ ∈ P,

• If G− embeds into a group G, then G /∈ P.

Many natural properties are Markov properties. These include being trivial, finite, abelian, virtually free,
simple, torsion-free, among many others. We present a new example through the Domino Problem.

Proposition 2.0.11. The property of having decidable Domino Problem is a Markov property.

Proof. From Lemma 2.0.7 we know that having decidable Domino Problem is a group property. Next, we
can take G+ = Z, which has decidable Domino Problem, and G− = Z2, as any group that contains it has
undecidable Domino Problem by Proposition 2.0.8.

Theorem 2.0.12 (Adyan-Rabin Theorem). Fix a Markov Property P. Then, the problem of determining if
the group defined by a given finite presentation satisfies P is undecidable.
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This theorem was proven independently by Rabin in [Rab58] and by Adyan in [Ady58]. The proof of this
theorem uses the existence of finitely presented groups with undecidable word problem, as given by the Novikov-
Boone Theorem (see Theorem 1.3.14). The original formulation of Adyan’s result [Ady57] was stated for what
are now known as pseudo-Markov properties, which are group properties such that there exist a group G+
satisfying the property, a group G− that does not satisfy the property, are inherited by subgroups, and imply
the decidability of the word problem for the group (for a detail account on the history of this result see [Nyb22]).
By Proposition 2.0.8 we can see that having decidable Domino Problem is in fact a pseudo-Markov property.

Corollary 2.0.13. There is no algorithm that, given a finite presentation, determines if the corresponding
group has decidable Domino Problem.

2.1 Variants of the Domino Problem
Variations on the Domino Problem have been studied since its conception. This is the case of the Seeded Domino
Problem, whose undecidability was established even before the Domino Problem’s [KMW62; Büc62]. In the
years since many more variations have been introduced: the Periodic Domino Problem [GK72; Jea10], Domino
Snake Problems [Mye79], the Recurring Domino Problem [Har85], and the Aperiodic Domino Problem [CH22;
GHV18].

In the following sections we explore some of these variants on finitely generated groups, with the objective of
understanding which geometric and algebraic properties of the underlying group account for the undecidability
these variants. We hope this will also help us to better understand the Domino Problem.

2.1.1 Seeded Domino Problem
Perhaps the most natural variant of the Domino Problem is its seeded version. In fact, it was introduced
simultaneously to the original problem [Wan61] and, as previously mentioned, was shown to be undecidable on
Z2 before the Domino Problem [Büc62; KMW62].

Definition 2.1.1. Let G be a finitely generated group and S a finite generating set. The Seeded Domino
Problem on G with respect to S1 is the following decision problem: given an alphabet A, a finite set of nearest
neighbor forbidden patterns F and a letter a0 ∈ A, determine whether there exists x ∈ XF such that x(1G) = a0.
We denote it by SDP(G,S).

As its definition suggests, this problem is computationally harder than the unseeded version: for a set of
nearest neighbor forbidden patterns F over the alphabet A, we create an instance of the Seeded Domino Problem
per letter.

Lemma 2.1.2. Let G be a finitely generated group and S a finite generating set. Then, DP(G,S) ≤p SDP(G,S).

Just as the Domino Problem, there is a computational jump from the one-dimensional case to the two-
dimensional case. Using the fact that nearest neighbor Z-SFTs correspond to bi-infinite walks on a finite graph,
SDP(Z, {t}) is decidable. In fact, this decidability result can be generalized. Just as the Domino Problem, the
Seeded Domino Problem can be expressed in monadic second order logic (see [Bar22]), making the problem
decidable for virtually free groups.

2.1.2 Recurring Domino Problem
The Recurring Domino Problem was originally introduced by Harel as a natural decision problem that is highly
undecidable, in order to find other highly undecidable problems [Har85]. He showed that in Z2 the problem is
not only undecidable, but it is beyond the arithmetical hierarchy: it is Σ1

1-complete [Har86]. We expand the
problem’s definition to finitely generated groups.

1This problem has also been referred to as the Origin Constrained Domino Problem (see [ABJ18]).
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Definition 2.1.3. Let G be a finitely generated group and S a finite generating set. The Recurring Domino
Problem on G with respect to S is the following decision problem: given an alphabet A, a finite set of nearest
neighbor forbidden patterns F and a letter a0 ∈ A, determine whether there exists x ∈ XF such that the set
{g ∈ G | x(g) = a0} is infinite. We denote it by RDP(G,S).

Lemma 2.1.4. Let G be a finitely generated group and S a finite generating set. Then, DP(G,S) ≤p
RDP(G,S).

Proof. Let F be a set of nearest neighbor patterns for DP(G,S). We create an instance of RDP(G,S) for F
and each of the letters of the alphabet. Because G is infinite, if the subshift defined by F is non-empty, then at
least one letter is forced to repeat itself infinitely often.

Nevertheless, the behavioral jump that occurs between Z and Z2 for the original problem is still present.

Proposition 2.1.5. RDP(Z, {t}) is decidable.

Proof. Let F be a finite set of nearest neighbor forbidden patterns and a0 ∈ A. Recall that we can define a graph
ΓF , that is effectively constructible from F , such that configurations from XF correspond exactly with bi-infinite
walks on ΓF . Therefore, to decide our problem we search for a simple cycle on ΓF that is based at a0. If there is
such a cycle, c = a0a1a2...ana0 with ai ∈ A, we define the periodic configuration x = (a0a1a2a3...an)∞ ∈ XF . If,
on the other hand, there exists a configuration y ∈ XF on which a0 appears infinitely often; take two consecutive
occurrences of a0, say y(k) = y(k′) = a0 with k < k′. Then, because configurations correspond to bi-infinite
walks, there is a cycle on ΓF given by c′ = a0y(k + 1)y(k + 2) ... y(k′ − 1)a0. As searching for simple cycles on
a finite graph is computable, our problem is decidable.

2.2 Properties for seeded and recurring variants

2.2.1 General inheritance properties
Let us try and recover some inheritance properties enjoyed by the standard Domino Problem for the two variants,
starting by the invariance under changing generating sets.

Definition 2.2.1. The seeded (resp. recurring) emptiness problem on G with respect to S asks if, given C a
set of pattern codings and a0 ∈ A, there exists x ∈ XC such that x(1G) = a0 (resp. a0 appears infinitely often
in x, that is, |{g ∈ G | x(g) = a0}| is infinite).

Let us denote these problems by SEP(G,S) and REP(G,S) respectively. We use them to prove the following
lemma.

Lemma 2.2.2. Let G be a f.g. group along with two finite generating sets S1 and S2. Then,

• SDP(G,S1) ≡p SDP(G,S2),

• RDP(G,S1) ≡p RDP(G,S2).

Notice that for these problems we use positive reductions instead of many-one reductions as in the case of
the Domino Problem (Lemma 2.0.7). The proof consists on proving the following reductions,

SDP(G,S1) ≤m SEP(G,S1) ≡m SEP(G,S2) ≤p SDP(G,S2),

and concluding the positive reduction from the symmetry between the two generating sets.

Proof. By Lemma 2.0.5, SEP(G,S) does not depend on the generating set, which implies a many-one reduction
between the emptiness problems over different generating sets. Furthermore, as we saw in Lemma 2.0.7, nearest
neighbor patterns are easily encoded in a pattern coding. This means SDP(G,S) ≤m SEP(G,S). Let us now
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focus on proving that SEP(G,S) positive-reduces to SDP(G,S). Given a set of pattern codings C compute
its corresponding set of nearest neighbor forbidden patterns F(C). We also compute the set of all functions
ϕ ∈ Â such that ϕ(ε) = a0, and denote this set by A. We create |A| sets of inputs for SDP(G,S) given by the
forbidden patterns F(C) and a target letter ϕ ∈ A.

If there exists a configuration x ∈ XC such that x(1G) = a0, we define y ∈ XF ′ ⊆ ÂG by y(g)(w) = x(gw̄).
This way, y does not contain a pattern from F(C), as x does not contain a pattern coding from C, and
y(1G)(ε) = x(1G) = a0. Conversely, if there is a function ϕ ∈ A and a configuration y ∈ XF(C) such that
y(1G) = ϕ, we construct x ∈ XC by x(g) = y(g)(ε). From the definition of F(C), if we take g ∈ G with |g|S ≤ N
and a word w ∈ S≤N such that w̄ = g, we have that y(1G)(w) = y(g)(ε). Therefore, x is well-defined and
contains no pattern codings from C. Furthermore, x(1G) = y(1G)(ε) = a0.

All the previous arguments are analogous for the case of RDP(G,S) and REP(G,S).

This Lemma allows us to talk about the Seeded Domino Problem on G, SDP(G), and the Recurring Domino
Problem on G, RDP(G).

Lemma 2.2.3. Let G be a f.g. group along with a finitely generated subgroup H. Then, SDP(H) ≤m SDP(G).
Furthermore, if H has finite index, then RDP(H) ≤m RDP(G).

Proof. Let SH and SG be finite sets of generators for H and G respectively. We begin with the seeded version.
Notice that an instance, (F , a0), of SDP(H,SH) is also an instance of SDP(G,SG ∪SH). The former defines an
H-subshift X = XHF , and the latter XGF , which by Lemma 1.5.4 is the free extension X↑ (see Definition 1.5.1).

Now, if there exists x ∈ X↑ ⊆ AG with x(1G) = a0, then the configuration y = x|H ∈ AH contains no
patterns from F and verifies y(1H) = a0. On the other hand, suppose there exists y ∈ X ⊆ AH . Let L be a
set of left representatives for G/H. We define x ∈ AG as x(lh) = y(h) for all l ∈ L and all h ∈ H. Because the
forbidden patterns are supported on SH , we have that x ∈ X↑ ⊆ AG.

For the recurring version, we use the same construction, this time with H of finite index. Let L be a finite
set of left coset representatives of H. Suppose there exists x ∈ X↑ ⊆ AG where a0 appears infinitely often. By
Lemma 1.5.5, there exist a collection of configurations on X, {yl}l∈L, such that x|lH = yl. Then, there exists
l0 ∈ L that contains infinite occurrences of a0. On the other hand, suppose there exists y ∈ X with infinite
occurrences of a0. As we did before, define x ∈ AG as x(lh) = y(h) for all l ∈ L and all h ∈ H, which will
contains a0 infinitely often.

Lemma 2.2.4. Let G be a f.g. group along with a subgroup H such that [G : H] <∞. Then

• SDP(G) ≡p SDP(H),

• RDP(G) ≡p RDP(H).

Proof. Because finite index subgroups of finitely generated groups are finitely generated, SDP(H) ≤m SDP(G)
by Lemma 2.2.3. We now prove that SDP(H) ≤p SDP(G). Without loss of generality, we may assume H ⊴ G:
every finite index subgroup H contains a normal finite index subgroup N . If we prove SDP(G) reduces to
SDP(N), we conclude it reduces to SDP(H) by Lemma 2.2.3.

Let X ⊆ AG be a subshift, and R a set of right co-set representatives for G/H, containing the identity 1G.
We use the R-higher power shift of X (see Definition 1.5.9). Let SH be a finite set of generators for H. We
define the sets D = SH ∪ (RRR−1 ∩ H) and T = RDR−1. Because 1G ∈ R and H is a normal subgroup,
H = ⟨T ⟩.

We positive-reduce SDP(G,SH ∪ R) to SDP(H,T ). Let (F , a0) be an instance of SDP(G,SH ∪ R). By
Lemma 1.5.11, there exists a set F ′ of forbidden patterns over the alphabet AR, such that XF ′ = X [R]

F .
Furthermore, as F is a set of nearest neighbor patterns with respect to SH ∪Rs, F ′ is a set of nearest neighbor
patterns with respect to T . Define the set of R-patterns containing a0:

A = {p ∈ AR | p(1G) = a0}.

47



Chapter 2. The Domino Problem

We create |A| inputs for SDP(H,T ) given by F ′ and a letter from A. Suppose there exists x ∈ XF such that
x(1G) = a0. Define y ∈ X [R]

F as y(h)(r) = x(hr) for all h ∈ H, r ∈ R, which implies y(1H) = x|R ∈ A.
Conversely, if there exists y ∈ X [R]

F such that y(1H) ∈ A, define x ∈ XF by x(hr) = y(h)(r) for all h ∈ H and
r ∈ R. Thus, x(1G) = y(1H)(1G) = a0.

Because |R| < +∞, the case for RDP is analogous.

2.2.2 Recurring Domino Problem on free groups
In this section we prove the following result:

Theorem 2.2.5. RDP(Fn) is decidable for every n ≥ 1.

Fix S a free generating set for Fn. Let A be an alphabet, F a set of nearest neighbor forbidden patterns
and a0 ∈ A our target tile. The goal is to construct an algorithm that finds a particular structure within the
tileset graph ΓF called a simple balloon. We then show that the graph contains such a structure if and only
if there is a configuration in XF where a0 occurs infinitely often.

Definition 2.2.6. A balloon B is an undirected path in ΓF , starting and ending at a0, which is specified by
a sequence of letters and generators B = a0s1a1 ... sn−1an−1sna0, with ai ∈ A, si ∈ S ∪ S−1, such that

• si = s if (ai−1, ai, s) is an edge in ΓF , and si = s−1 if (ai, ai−1, s) is an edge in ΓF ,

• its label s1 ... sn is reduced,

• if there exists k ≤ ⌈n2 ⌉ − 1 such that

s1 ... sk = (sn−k+1 ... sn)−1,

then ai = an−i for i ∈ {1, ..., k}.

We say the balloon is simple if for every i ∈ {1, ..., n− 1} the pair aisi+1 never repeats.

The last condition in the definition of a balloon asks that if the label is not cyclically reduced, w = uvu−1

for instance, then the first |u| must be the same as the last |u| tiles in reverse order (see Figure 2.2).
Given a simple balloon, we want to create a configuration by repeating the letter/generator sequence it

defines. Nevertheless, this only covers a portion of the group. To guarantee we are able to complete the
configuration we ask for each letter to have the ability to be extended to cover the whole group.

a

b

b

a

b

a
b

a

b

a
b

a

b

Figure 2.2: On the left, a balloon given by C = b a b a b−1 based at a0 = , generators
a, b ∈ S, and k = 1. On the right, a portion of a configuration from XF obtained by repeating the pattern
defined by the vertices of the balloon.
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Definition 2.2.7. A set of forbidden patterns F is complete if there exists C(A) ⊆ A maximal under inclusion
and a map f : C(A) × (S ∪ S−1) → C(A) such that for all a ∈ C(A) and s ∈ S, both (a, f(a, s), s) and
(f(a, s−1), a, s) are edges in ΓF .2

Piantadosi showed in [Pia08] that XF is non-empty if and only if F is complete. Furthermore, C(A) is
computable from A and F , and every letter in a configuration x ∈ XF is contained in C(A). The algorithm for
finding C(A) consists on iteratively eliminating tiles from ΓF that have no outgoing edge for some generator.

Lemma 2.2.8. There exists a configuration x ∈ XF containing a0 infinitely many times if and only if there
exists a simple balloon B in ΓF based at a0, whose vertices are all in C(A).

Proof. Suppose we have a simple balloon B = a0s1a1 ... sn−1an−1sna0 in ΓF based at a0 with ai ∈ C(A) and
label w = uvu−1 where u = s1 ... sk with k ≤ ⌈n2 ⌉ − 1. The condition over k implies that v ̸= ε. We define a
configuration x ∈ XF as follows: for every t ∈ N, x(wt) = a0 and x(wts1 ... si) = ai with i ∈ {1, ..., n− 1} (see
Figure 2.2). Because B is a balloon, x is well defined, as the balloon’s definition guarantees that

x(wtuvs−1
k ... s−1

i ) = an−i = ai = x(wt+1s1 ... si).

Finally, because every letter belongs to C(A), the rest of the configuration can be completed without forbidden
patterns. Therefore, x ∈ XF .

Conversely, suppose there exists x ∈ XF where a0 occurs infinitely often. Without loss of generality we
can assume x(1Fn) = a0. Recall that x(Fn) ⊆ C(A). Let us denote by O the set of elements w ∈ Fn where
x(w) = a0. Because O is infinite, there exists s0 ∈ S ∪S−1 such that infinitely many words in O begin with s0.
Furthermore, there exists s1 ∈ S ∪ S−1 with s1 ̸= s−1

0 such that infinitely many words in O begin with s0s1.
By iterating this argument, we obtain a one-way infinite sequence y ∈ (S ∪ S−1)N such that y(i) ̸= y(i + 1)−1

for all i ∈ N. Let ω(i) = y(0) ... y(i − 1) ∈ Fn. By definition, for every i ∈ N there are infinitely many words
in O that begin with ω(i). We say w ∈ O is rooted at i ∈ N if w = ω(i)v for some v ∈ (S ∪ S−1)∗, and such
that ω(i)v is reduced. Because there are infinitely many words rooted along some prefix of y, and C(A) is finite,
there exist j1 < i < j2 and w ∈ O such that x(ω(j1)) = x(ω(j2)) and w is rooted at i. Using this fact, we will
create a balloon depending on two cases.

1. If y(j1 − 1) ̸= y(j2 − 1), and calling aj = x(ω(j)), define the balloon that represents going from x(1G) to
x(ω(j2)) by the path ω(j2) and then return via the path ω(j1) (see Figure 2.3). Formally,

B = a0 y(0) a1 ... y(j1 − 1) aj1 ... y(j2 − 1) aj2 y(j1 − 1)−1 aj1−1 ... y(0)−1a0,

which is labeled by ω(j2)ω(j1)−1, a reduced word.

2. If y(j1 − 1) = y(j2 − 1), then y(j1) ̸= y(j2 − 1)−1. Let v ∈ (S ∪ S−1)k such that w = ω(i)v. Once again,
calling aj = x(ω(j)) and bj = x(wv1...vj), we define the balloon

B = a0 v
−1
k bk−1 v

−1
k−1 ... v

−1
1 ai y(i) ... y(j2 − 1) aj2 y(j1) ... y(i− 1) ai v1 b1 ... vk a0,

which is labelled by vy(i) ... y(j2 − 1)y(j1) ... y(i− 1)v−1, a reduced word (see Figure 2.4).
Finally, if B contains a repeated letter/generator pair, we cut the portion between them while preserving all
other balloon conditions. This guarantees that B will be a simple balloon in ΓF based at a0, with all its vertices
in C(A).

Proof of Theorem 2.2.5. Given a finite set of nearest neighbor forbidden patterns F and a letter a0, by Lemma
2.2.8, it suffices to search for simple balloons in ΓF whose vertices are contained in C(A). A simple balloon
passes through each vertex-label pair at most once; and there are a finite number of such paths starting and
ending in a0, so we can check whether they satisfy the simple balloon conditions. Therefore, we can effectively
decide whether the conditions of Lemma 2.2.8 are met, making the Recurring Domino Problem decidable.

2This is also known as condition (⋆) in [HM20]
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a0

y(0)

a1

a
y(j1 − 1)

a

y(j2 − 1)
=⇒

a0

a1

...

a

aj1+1

aj2−1

y(0)

y(j1 − 1) y(j1)

y(j2− 1)

Figure 2.3: On the left, the path defined by y in the configuration. This is an example of the first case, where
y(j1−1) ̸= y(j2−1) and the repeated letter is a = x(ω(j1)) = x(ω(j2)). On the right, the corresponding balloon
within the tileset graph ΓF .

a0

vk

y(j1)
a

ai

a
y(j2 − 1)

v1

b1
v2

=⇒

a0

bk−1

...

ai

ai+1

ai−1

a

v−1
k

v−1
1

y(i)

y(i−
1)

Figure 2.4: On the left, the path defined by y in the configuration as well as the path leading from the root
x(ω(i)) to w. This is an example of the second case, where y(j1 − 1) = y(j2 − 1) and the repeated letter is
a = x(ω(j1)) = x(ω(j2)). On the right, the corresponding balloon within the tileset graph ΓF .

We can also use the set C(A) to state an equivalent result for the Seeded Domino Problem.

Proposition 2.2.9. SDP(Fn) is decidable for every n ≥ 1.

Proof. As previously mentioned, starting from an alphabet A and a set of nearest neighbor forbidden patterns
F it is possible to compute C(A) such that XF is non-empty if and only if C(A) is non-empty, and every letter
from a configuration from XF appears in C(A). Therefore, to see if there is a configuration where a given a0 ∈ A
appears, it suffices to see if it is contained in C(A).

2.2.3 Consequences and conjectures
As previously stated, we are interested in understanding the class of groups that have decidable Seeded Domino
Problem, and the class of groups that have decidable Recurring Domino Problem.

Theorem 2.2.10. Let G be a virtually free group. Then, both SDP(G) and RDP(G) are decidable.

Proof. By Theorem 2.2.5 we know the Recurring Domino Problem is decidable on free groups. Adding
Lemma 2.2.4, we have that it is decidable for virtually free groups. Similarly, for the seeded version, mix-
ing Proposition 2.2.9 and Lemma 2.2.4 the problem is also decidable for virtually free groups.

50



2.3. (A)periodic Domino Problem

Are these the only groups where each individual problem is decidable? The combination of Conjecture 2.0.1
and Lemmas 2.1.2 and 2.1.4 suggest so.

Corollary 2.2.11. If the Domino Conjecture is true the following are equivalent:

• G is virtually free,

• DP(G) is decidable,

• SDP(G) is decidable,

• RDP(G) is decidable.

Nevertheless, virtually free groups being the only groups where the Seeded Domino Problem or the Recurring
Domino Problem are decidable does not directly imply Conjecture 2.0.1. However, we state a conjecture for the
Seeded Domino Problem as it can be expressed in MSO logic.

Conjecture 2.2.12. Let G be a finitely generated group. Then, SDP(G) is decidable if and only if G is
virtually free.

2.3 (A)periodic Domino Problem
The original proof of the undecidability of the Domino Problem is intimately linked to the existence of aperiodic
tilesets. One can therefore ask if the problem becomes decidable if we search for a periodic tiling or an aperiodic
tiling.

Alongside the Seeded Domino Problem, the periodic variant is one of the oldest variations of the original
problem with Wang tiles. Jeandel points out in [Jea10] that the proofs of the undecidability of the Domino
Problem on Z2 can be slightly modified to obtain the undecidability of the Periodic Domino Problem. Further
still, Gurevitch and Koryakov showed that both problems are recursively indistinguishable [GK72].

When working with Wang tiles, the Periodic Domino Problem is naturally in Σ0
1 as explained at the beginning

of the chapter. If the problem is undecidable, by the undecidability of the original Domino Problem and Wang’s
algorithm, there must exist an aperiodic tileset. In his 2010 article [Jea10], Jeandel showed the converse, namely,
if there exists an aperiodic tileset then the Periodic Domino Problem is undecidable. He asked if this also holds
for all finitely generated groups.

Question 2.3.1. Is it true that for every finitely generated group the existence of strongly aperiodic SFTs is
equivalent to the undecidability of the Periodic Domino Problem?

For non-abelian groups, the only explicitly known result is due to Piantadosi who showed that the Periodic
Domino Problem is decidable for free groups [Pia08]. This is consistent with a positive answer to the question
as free groups do not admit strongly aperiodic SFTs. In Chapter 5 we explore the links between aperiodicity
and the Periodic Domino Problem.

At the other side of periodicity, it took more time for the Aperiodic Domino Problem to appear in the lit-
erature. It was first explicitly considered by Grandjean, Hellouin de Menibus and Vanier [GHV18], where they
showed the problem is Π0

1-complete on Z2. These results where later expanded upon by Callard and Hellouin
de Menibus for tilings on Zdm where d ≥ 3 [CH22].

Let us give a formal definition of these problems for finitely generated groups.

Definition 2.3.2. Let G be a finitely generated group with generating set S. The (A)periodic Domino
Problem on G with respect to S is the following decision problem: given an alphabet A, and a set of nearest
neighbor forbidden patterns F , determine whether there exists an (a)periodic configuration x ∈ XF .
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As we showed for the previous variants, the decidability of these problems is invariant under changes in the
generating set. The proof is essentially the same as the ones for Lemma’s 2.0.7 and 2.2.2, and consist in showing
they are equivalent to their pattern coding versions. As we have done before, we refer to these problems as the
Periodic and Aperiodic Domino Problems on G, and denote them ADP(G) and PDP(G) respectively.

2.3.1 Periodic dominos
Periodic points have a close connection to finite quotients, as each periodic point x ∈ AG stabilized by N ⊴ G
of finite index defines a configuration over G/N . It stands to reason that to study the computational properties
of these points, we must understand the computability of finite quotients.

Looking at different examples is the literature on computability of finite quotients, such as McKinsey’s
Theorem [McK43] (see Proposition 1.6.7), Rauzy defined the following classes of groups [Rau22].

Definition 2.3.3. Let G be a finitely generated group, along with a finite generating set S. G is said to have
computable finite quotients (CFQ) if there exists an algorithm that given a finite group F and a function
ϕ : S → F , determines whether ϕ extends to a group morphism.

It there exists an algorithm that halts if and only if ϕ extends to a morphism, we say G has recursively
enumerable finite quotients (ReFQ).

In addition, Rauzy showed that these properties are independent of the generating set, ReFQ is inherited
by finite index subgroups, and that both CFQ and ReFQ are preserved under amalgamated free products,
HNN-extensions and direct products. Notice that all finitely presented groups have CFQ, as it is possible to
check if the generators of the finite group verify the finite relations of the base group.

Proposition 2.3.4. Let G be a finitely generated group with decidable word problem and ReFQ. Then, the
PDP(G) is in Σ0

1.

Proof. Let S be a finite generating set for G, and a set of nearest neighbor patterns F over the alphabet A. As
G has decidable word problem, given a finite subset P ⋐ S∗ we can decide if there exists a coloring p : P → A
consistent with the group (p(w) = p(w′) if w =G w′), such that no forbidden pattern appears in p. Next, as G
has ReFQ we can enumerate pairs (F, ϕ) where F is a finite group given by its Cayley table, and ϕ : S → F a
map that extends to a group morphism. Given such a pair, we can always compute a set of coset representatives
R(F, ϕ) ⊆ S∗ that includes ε by computing the images ϕ(S≤n) for increasing n. Consider the semi-algorithm
presented in Algorithm 1.

Algorithm 1: Semi-Algorithm for PDP
Input: (A,F)
for (F, ϕ) finite quotient do

Compute coset representetives R = R(F, ϕ) ;
if there exists a consistent p : R · (S ∪ {ε})→ A such that p(w) = p(w′) if ϕ(w) = ϕ(w′), without
patterns from F then

Accept
end

end

Now, suppose there exists a periodic point x ∈ XF . As stab(x) has finite index, there exists a finite index
normal subgroup N contained in stab(x). For this normal subgroup, there exists (F, ϕ) such that F ≃ G/N
and ϕ : S → F that extends to a group morphism. Let R be any set of (right) coset representatives. Because x
is N -invariant, we have x(hr) = x(r) for all h ∈ N . Therefore, there exists a partial tiling p : R · (S ∪ {ε})→ A
given by p(w) = x(w), where no pattern from F appears, and p(w) = p(w′) if ϕ(w) = ϕ(w′).

On the other hand, suppose the semi-algorithm stops because it found p : R · (S ∪{ε})→ A with the sought
after properties, for some pair (F, ϕ). We define x ∈ AG by x(hr) = p(r) for all h ∈ ker(Φ) and r ∈ R, where
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Φ is the extension of ϕ. By definition x is a periodic point stabilized by ker(Φ). Suppose that there exists a
pattern (a, b, s) ∈ F that appears in x at hr ∈ G for some h ∈ ker(Φ) and r ∈ R. Then, p(r) = x(hr) = a and
p(rs) = x(hrs) = b, which is a contradiction. Thus, x ∈ XF .

Remark 2.3.5. Any recursively presented group has co-ReFQ (that is, its finite quotients are co-recursively
enumerable) [Rau22, Proposition 16]. Thus, every group that satisfies the hypothesis of the previous proposition
(decidable word problem and ReFQ) has CFQ. The converse does not always hold: Rauzy showed that there
are groups with CFQ that have undecidable word problem [Rau22, Theorem 3].

We re-visit this result in Section 5.2.1, where we see how it connects the undecidability of the Domino
Problem to weakly aperiodic SFTs.

2.3.2 Aperiodic dominos
When tackling the Aperiodic Domino Problem, there is a straighforward way to show undecidability for groups
that admit strongly aperiodic tilesets. The lemma that follows is a direct generalization of a proof from Callard
and Hellouin de Menibus [CH22] adapted to groups.

Lemma 2.3.6. Let G be a f.g. group that admits a strongly aperiodic SFT. Then, DP(G) ≤m ADP(G).

Proof. Fix a generating set S, and let G be the set of nearest neighbor forbidden patterns with respect to S, of
a strongly aperiodic SFT Y over the alphabet B. For an input F of the aperiodic problem over the alphabet A,
we define the set of forbidden patterns F ′ consisting of patterns ((a, b), (a′, b′), s) such that (a, a′, s) ∈ F and
all b, b′ ∈ B, or (b, b′, s) ∈ G and all a, a′ ∈ A. This way, the subshift generated by F ′ over the alphabet A×B
is exactly XF × Y . As Y is strongly aperiodic, XF × Y is strongly aperiodic. Finally, XF × Y is empty if and
only if XF is empty, proving our reduction.

This argument was generalized by Carrasco-Vargas for certain properties [Car24]. A property of subshifts is
said to be a dynamical property if it is invariant under conjugacies. Examples of such properties are having
periodic points, being strongly aperiodic, minimal, having zero entropy, among others.

Definition 2.3.7. Let P be a dynamical property. We say P is a Berger property if there exist G-SFTs X+
and X− such that

• X+ satisfies P,

• Every subshift X that admits a factor map to X− does not satisfy P,

• There exists a morphism X+ → X−.

With this definition, when G admits a strongly aperiodic SFT X, having an aperiodic point becomes a co-
Berger property, that is, its complementary property (all stabilizers of the subshift are non-trivial) is a Berger
property with X+ = ∅ and X− = X. Then, the previous lemma is generalized by the following theorem.

Theorem 2.3.8 ([Car24]). Fix a Berger property P. If G has undecidable Domino Problem, the problem of
determining if a subshift defined by a given finite pattern coding satisfies P is undecidable.

Remark 2.3.9. In the context between the analogies between multidimensional shifts and groups as presented
in Section 1.6, Carrasco-Vargas’ definition of a Berger property is the analog of Markov properties for groups
(Definition 2.0.10), and the previous theorem an analog of the Adyan-Rabin Theorem (Theorem 2.0.12).

Nevertheless, the Periodic Domino Problem does not fall under the scope of this theorem: if there is a
subshift X+ that has a periodic point, then through the morphism X+ → X− the subshift X− would also have
a periodic point, not allowing it to satisfy the second condition of a Berger property. This is also the case for
both the Seeded and Recurring Domino Problems. In the next chapter we will study more of these problems
known as Domino Snake Problems.
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Chapter 2. The Domino Problem

2.4 Consequences of undecidability
The undecidability of the Domino Problem also proved to be useful in proving the undecidability of many deci-
sion problems, ranging from problems in tilings such as the infinite snake problem [Adl+09] and the injectivity
and surjectivity of two-dimensional cellular automata [Kar90; Kar94], to problems from other areas such as the
k-SAT problem on Z2 [Fre99], the spectral gap problem of quantum many-body systems [CPW22], the finiteness
and order problem of automaton semingroups [Gil14], and translation monotilings [GT23].

In this section we tackle the k-SAT problem on groups. The original version of this problem was introduced
by Freedman in [Fre99]. The idea of the generalization was to extend the difference between 2-SAT and 3-SAT,
which are in P and NP-complete respectively, to an infinite context making the former problem decidable and
the latter undecidable. This is inserted into the broader program outlined in [Fre98] that searches to separate
the complexity classes P and NP by limit processes, the idea being that limiting behaviors of polynomial time
problems should be decidable. We slightly alter the generalization proposed by Freedman to make the decision
problem compatible with finitely generated groups. Similar generalizations have been made for other classic
decision problems, such as Post’s correspondence problem [MNU14; CL21; CLL22], the Knapsack problem, and
the Subset Sum problem [MO11; KLZ16; Loh20].

2.4.1 The k-SAT problem on groups
We define a generalized version of the k-SAT problem for finitely generated groups. This version is slightly
different from the one introduced by Freedman [Fre99] in order to correctly capture the structure of finitely
generated groups.

Let G be a finitely generated group. As variables for our formulas we use elements of G. For g ∈ G, we
denote its negation by ¬g and we use the ambiguous notation g′ to refer to either g or ¬g depending on the
formula. We denote the set of formulas over G that are finite conjunctions of disjunctions of k literals as Nk,
that is, ϕ ∈ Nk if is has the form

ϕ =
m∧
i=1

(g′
i1 ∨ ... ∨ g′

ik) .

Next, for H ≤ G a finitely generated subgroup, we define HNk as the set of formulas of the form∧
h∈H

m∧
i=1

((hgi1)′ ∨ ... ∨ (hgik)′)

We use ϕ(h) to denote the formula ϕ with each variable left-multiplied by h. This way,

HNk =
{ ∧
h∈H

ϕ(h) | ϕ ∈ Nk

}
.

Definition 2.4.1. We say a formula ϕ ∈ HNk is satisfiable, if there exists an assignment of truth values
α : G→ {0, 1} such that: ∧

h∈H

m∧
i=1

(α(hgi1)′ ∨ ... ∨ α(hgik)′) = 1.

Let S be a finite generating set for G. To arrive at a valid decision problem, we will code a function by a
set of words over S that will evaluate to the literals of the function, and a list of words, also over S, that will
specify a generating set for a subgroup. Formally, an input formula is a formula of the form

ϕ =
m∧
i=1

(v′
i1 ∨ ... ∨ v′

ik),
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2.4. Consequences of undecidability

where vij ∈ S∗ for all i ∈ {1, ...,m} and j ∈ {1, ..., k}, such that its evaluated version

ϕ̄ =
m∧
i=1

(v̄′
i1 ∨ ... ∨ v̄′

ik)

belongs to Nk.

Definition 2.4.2. Let G be a finitely generated group, S a finite generating set and k > 1. The k-SAT
problem over G is the following decision problem: given an input formula ϕ and {wi}ni=1 determine whether
the formula

∧
h∈H ϕ̄(h) is satisfiable, where H = ⟨w1, ..., wn⟩.

Notice that the decidability of this problem does not depend on the chosen generating set, as we can re-write
any input into any other generating set. We therefore denote this problem by k-SAT(G).

The first observation to make is that this problem depends on the computational structure of the group.
The subgroup membership problem of a f.g. group G is the following decision problem: given words u and
{wi}ni=1 over S, determine whether ū ∈ ⟨w1, ..., wn⟩. This problem is sometimes referred to as the generalized
word problem.

Lemma 2.4.3. The subgroup membership problem of G many-one reduces to co2-SAT(G).

Proof. Let u, {wi}ni=1 ∈ S∗ be an instance of the subgroup membership problem. Fix a generator s ∈ S. We
define the formula

ψ = (¬ε ∨ s) ∧ (u ∨ s) ∧ (¬ε ∨ ¬s) ∧ (u ∨ ¬s).
Notice that ψ is equivalent to the formula ¬ε ∧ u. Let us denote H = ⟨w1, ..., wn⟩ and Ψ =

∧
h∈H ψ̄(h).

Suppose ū ∈ H. Then, we have that ψ̄(1G) ∧ ψ̄(ū) = (¬1G ∧ ū) ∧ (¬ū ∧ ū2) is never satisfiable, and thus Ψ
is not satisfiable. On the other hand, if ū ̸∈ H, we can define the assignment α : G → {0, 1} by α(h) = 0 and
α(hu) = 1 for all h ∈ H, and α(g) = 0 for all other g ∈ G \ H. This way ¬α(h) ∧ α(hu) = 1 for all h, and
therefore Ψ is satisfied.

Examples of groups with undecidable subgroup membership problems are Fn×Fn [Mih68], some hyperbolic
groups [Rip82], as well as groups with undecidable word problem (see Examples 5.3.18 and 5.3.19 for more
details).

Lemma 2.4.4. Let G be a finitely generated group with decidable subgroup membership problem. Then, for
every k ≥ 2 we have that k-SAT(G) ≤m DP(G).

Proof. Let S be a finite generating set for G, ϕ an input formula and {wi}i words over S that form an instance
of k-SAT(G) such that

ϕ =
m∧
i=1

(v′
i1 ∨ ... ∨ v′

ik),

with vij ∈ S∗. Let us once again denote H = ⟨w1, ..., wn⟩. Consider the alphabet A of 0-1 matrices of size m×k
that satisfy ϕ, that is, all matrices M ∈ {0, 1}m×k such that

m∧
i=1

((Mi1)′ ∨ ... ∨ (Mik)′) = 1.

To obtain this alphabet we solve the standard k-SAT problem, which is computable. For convenience, let us
denote the finite subset of words involved in the formula by L = {vij | 1 ≤ i ≤ m, 1 ≤ j ≤ k}. In addition, we
define the set HL as the set of all habcd ∈ H ∩ LL−1, where

habcd =
{
vabv

−1
cd if vabv

−1
cd ∈ H,

1H otherwise.
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Chapter 2. The Domino Problem

Notice that |HL| ≤ |L|2 = m2k2, and that this set is computable from L as G has decidable subgroup
membership problem. Let us proceed by specifying a set of nearest neighbor forbidden rules, F , with respect
to the generating set S ∪HL. Given a configuration x ∈ XF the idea is that, for h ∈ H, the matrix x(h) stocks
the values assigned to the elements of hL. For each habcd ∈ HL, we forbid patterns q of support {1H , habcd},
such that if q(1H) = M and q(habcd) = M̂ , Mab ̸= M̂cd.

Suppose XF contains a configuration x. We define the assignment of truth values α : G→ {0, 1} by

α(g) =
{

0 if g ̸∈ H · L,
x(h)ab if g = hv̄ab

.

It follows that α is well defined; if g = h1v̄ab = h2v̄cd, then h2 = h1habcd, and by the forbidden patterns we
know (xh1)ab = (xh2)cd. In addition, because x ∈ AG, for all h ∈ H,

m∧
i=1

(α(hv̄i1)′ ∨ ... ∨ α(hv̄ik)′) =
m∧
i=1

(x(h)′
i1 ∨ ... ∨ x(h)′

ik) = 1.

This means that the assignation α satisfies
∧
h∈H ϕ̄(h).

Finally, suppose we have an assignation of truth values β : G→ {0, 1} that satisfies
∧
h∈H ϕ̄(h). Given a set

of right coset representatives R containing 1G, we define z ∈ {0, 1}m×k by z(hr)ab = β(hgab), for all h ∈ H and
r ∈ R. Because β satisfies

∧
h∈H ϕ̄(h), for all h ∈ H

m∧
i=1

(z(h)′
i1 ∨ ... ∨ z(h)′

ik) =
m∧
i=1

(β(hv̄i1)′ ∨ ... ∨ β(hv̄ik)′) = 1.

Therefore, z ∈ AG. For habcd ∈ HL, h1 ∈ H and h2 = h1habcd we have that

z(h1)ab = β(h1v̄ab) = β(h1habcdv̄cd) = β(h2v̄cd) = z(h2)cd.

Therefore z satisfies the local rules and is thus in XF . This concludes our reduction.

Virtually free groups not only have decidable Domino Problem, as previously mentioned, but also have
decidable subgroup membership problem (see [Loh23]).

Corollary 2.4.5. For G a virtually free group, k-SAT(G) is decidable for all k > 1.

To determine when the converse reduction is true, we look at groups with subgroups satisfying a particular
property.

Definition 2.4.6. Let G be a finitely generated group. We say G is scalable if there exists a proper finite
index subgroup H ⪇ G that is isomorphic to G.

Examples of such groups are finitely generated abelian groups, the Heisenberg group, solvable Baumslag-
Solitar groupsBS(1, n), Lamplighter groups F ≀ Z with F a finite abelian group, the affine group Zd⋊GL(d,Z) for
d ≥ 2 [NP11], torus knot groups, Free-by-cyclic groups Fn ⋊θ Z, where θ has finite order in Out(Fn) [Bri+10],
among others. These groups are also known as finitely generated non finitely co-Hopfian groups [Bri+10].
Examples of non-scalable groups are finitely generated free groups.

Theorem 2.4.7. For G a scalable group, DP(G) ≤m 3-SAT(G).

Proof. Let A be a finite alphabet of size n, and F a finite set of nearest neighbor forbidden patterns for G with
generating set S. As G is scalable, there exists H a proper subgroup of finite index as well as an isomorphism
F : G → H. Let f : S → S∗ the function that is extended to the isomorphism F , that is, {f(s)}s∈S repre-
sents a generating set for H. Fix R ⊆ S∗ a set of words representing a finite set of right coset representatives
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2.4. Consequences of undecidability

for H that includes 1G. Notice that for every m ∈ N the subgroup Hm = Fm(G) is isomorphic to G with
[G : Hm] = [G : H]m ≥ m. In addition, a simple computation shows that Rm = Fm−1(R) ... F (R)R defines a
set of right coset representatives for Hm.

The idea of the reduction is to represent each letter of the alphabet by a unique code on the left coset
representatives and then create a formula that assigns a letter to each element of Hm. The index of the
subgroup, m, is chosen so there is enough room to code the alphabet and write our formula in the required
form.

First off, take as a preliminary estimate m ≥ ⌈log2(n)⌉, and denote fm = fm. For each a ∈ A, we can define
a unique code ca : Rm → {0, 1} (an example of such codes are presented in Example 2.4.8). Let {ϕa}a∈A be
the set of formulas that representing the codes ca for each letter of the alphabet A, using the words in Rm as
variables. This way, ϕa(h) ≡ 1 means we place the letter a at g = (Fm)−1(h), and the variables are contained
in hRm. Notice that because the code for each letter is unique, for any g ∈ G only one ϕa(g) can be satisfied
at the same time. Our complete formula is given by

φ =
(∨
a∈A

ϕa(1G)
)
∧

 ∧
(a,b,s)∈F

¬ϕa(1G) ∨ ¬ϕb(fm(s))

 ,

which represents the fact that we place one letter at the given point (1G in this case) and that there are no
forbidden patterns in its neighborhood. If modified to be in CNF form, φ is a conjunction of |F|+ ⌈log2(n)⌉n
clauses of ≤ n literals (the clauses coding the forbidden patterns contain 2⌈log2(n)⌉ literals). By adding
(|F| + ⌈log2(n)⌉n)n dummy variables we can transform φ into an equivalent formula φ′ whose clauses contain
exactly 3 literals.

Therefore, take m ≥ (|F| + ⌈log2(n)⌉n)n + ⌈log2(n)⌉, which gives us enough space in the set of left coset
representatives to code the elements of the alphabet and the dummy variables. Furthermore, φ′ is computable
from A and F , and Φ′ =

∧
h∈H φ̄

′(h) ∈ HmN3.
Let us prove the reduction. If there exists x ∈ XF ⊆ AG, we create an assignment such that for all g ∈ G,

the variables in Fm(g)Rm are given values so as to satisfy the code for ϕx(g)(Fm(g)) ≡ 1. Because x contains
no patterns from F ,

∧
h∈H φ̄(h) will be satisfied. We finish by filling out the rest of the variables so that Φ′ ≡ 1.

Now, if Φ′ is satisfied so is
∧
h∈H φ̄(h). Let y ∈ AG be the configuration defined by y(g) = a if ϕa(Fm(g)) ≡ 1.

Because the codes used make sure that the values in Fm(g)Rm code a unique letter, for each g ∈ G a unique
ϕa(Fm(g)) is satisfied. Thus y is well defined. Finally, y ∈ XF because if there was g ∈ G such that y(g) = a
and y(gs) = b with (a, b, s) ∈ F we would have that ϕa(Fm(g)) ∧ ϕb(Fm(g)fm(s)) is true. This completes the
reduction DP(G) ≤m 3-SAT(G).

Example 2.4.8. Let us look at an example of the previous reduction in the case of Z2 with its standard
presentation ⟨a, b | [a, b]⟩. Suppose we have the alphabet A = { , , , }, and take the subgroup Z × 2Z,
which is isomorphic to Z2, and has an index equal to 2 = ⌈log2(|A|)⌉. As mentioned in the proof, we code
our tiles using the elements of a set of right coset representatives, R = {1Z2 , b}, as shown in Figure 2.5. See
Figure 2.6 for an example of the coding of a finite pattern. The function for the generators is defined as f(a) = a
and f(b) = b2. This way, if we only forbid the pattern ( , , b), the formula coding the problem is given by,( 4∨

i=1
ϕi(1Z2)

)
∧
(
¬ϕ3(1G) ∨ ¬ϕ3(b2)

)
.

This formula is satisfiable if and only if there is a tiling of the plane by A that avoids ( , , b).

Remark 2.4.9. The reduction was possible in the previous proof because Rm was computable starting from
R. Therefore, if G had a subgroup H ⪇ G isomorphic to G, but of infinite index, we could adapt the previous
proof provided that the function that takes m ∈ N and outputs a set of m words representing distinct right
coset representatives. A similar generalization can be done for virtually scalable groups, where the set of coset
is slightly modified. In this case, if H is a scalable finite index subgroup of G, DP(H) ≤m 3-SAT(G).
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0
0

ϕ1 = ¬1Z2 ∧ ¬b,

0
1

ϕ2 = 1Z2 ∧ ¬b,

1
0

ϕ3 = ¬1Z2 ∧ b,

1
1

ϕ4 = 1Z2 ∧ b.

Figure 2.5: To reduce the k-SAT problem to the Domino Problem, we represent each letter of the alphabet by
a unique code over the right coset representatives of the chosen subgroup.

0

0
1

0

0
0
0

0
0

1

1
1

1

1

11
1 1 1

1 1

1
1

11
11

0 00

0
0

Figure 2.6: An example on how to code a tiling on the right coset representatives of a subgroup using boolean
functions.

Finally, we can prove the undecidability of 3-SAT using the undecidability of the Domino Problem on certain
classes of groups with the required properties.

Corollary 2.4.10. 3-SAT(G) is undecidable for the following finitely generated groups:

• Non virtually Z virtually abelian groups,

• The Heisenberg group,

• Solvable Baumslag-Solitar groups,

• Torus knot groups,

• Free-by-cyclic groups Fn ⋊θ Z, where θ has finite order in Out(Fn),

• Lamplighter groups,

• Affine groups.

Proof. As we mentioned before, all of these groups are (virtually) scalable and have undecidable Domino Problem
(see Theorem 2.0.2, Proposition 2.0.9 and Proposition 6.2.2).
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Chapter 3
Domino Snake Problems

Eighteen years after the introduction of Wang tiles, Myers proposed a new type of tiling problem: Domino
Snake Problems [Mye79]. These problems – also called domino thread problems – ask to determine, given a
set of Wang tiles, whether there exists a correctly tiled path in the plane subject to some fixed constraint. The
first problem he tackled is known as Reachability, and asks whether, given a set of tiles and two points in
the plane, there exists a well tiled path connecting the two points. In stark contrast to other domino variants,
Myers, Harel and Etizion showed that this problem is decidable on Z2 [EHM94]. Stranger still is the result
by Ebbinghaus, who showed that the Reachability problem on N2 is undecidable [Ebb82]. Next, there is the
Infinite Snake Problem which asks, given a set of tiles, if there exists a well-tiled bi-infinite injective path.
This problem was shown to be undecidable in its seeded version by Ebbinghaus [Ebb87], with an alternative
proof by Etizion [Etz91], and later in full generality by Adleman, J. Kari, L. Kari and Reishus [Adl+09]. They
showed a reduction from the Domino Problem through the use of tiles that recreate Hilbert’s space-filling curve
that were originally used by Kari [Kar90; Kar94] to prove the undecidability of the reversibility of Z2-CA. The
third and final problem is the Ouroboros Problem1. Originally called the cycle problem, this problem asks
to determine if there exists a non-trivial well-tiled simple cycle from a given set of tiles. It was shown to be
undecidable independently by Ebbinghaus [Ebb82] and Kari [Kar02]. The paths in these problems are now
known as snakes. These three problems have two variants: the normal version where adjacency rules are only
required to be respected along the trajectory of the snake, and the strong version where the whole portion of the
plane defined by the snake must be correctly tiled. For all of the previously mentioned results, the statements
hold for both versions.

In this chapter, we expand the scope of Domino Snake Problems to finitely generated groups, as has been done
for other Domino Problems, to understand how the underlying structure affects computability. We present three
ways in which to approach these problems. The first is the use of symbolic dynamics to understand the set of all
possible snakes. Proposition 3.2.4 states that when this set is defined through a regular language of forbidden
patterns, the Infinite Snake Problem becomes decidable. Using this approach we solve many variations of the
Infinite Snake Problem including the Geodesic Snake Problem for some classes of groups. Next, we introduce
a notion of embedding that allows us to reduce the decidability of snake problems from one group to another.
This notion enable us to establish the undecidability of the Infinite Snake and Ouroboros Problems for a large
class of groups –that most notably include nilpotent groups– for any generating set, provided that we add a
torsion-free element from the group’s center. Finally, we express the three snake problems in the language of
Monadic Second Order logic. Because for virtually free groups this fraction of logic is decidable, we show that
our three decision problems are decidable on these groups independently of the generating set.

1Ouroboros, from the greek οὐροβόρος meaning ‘tail-devouring’, is the name of the ancient symbol depicting a snake eating its
own tail, often representing renewal, cyclic time or eternity [Ree15]. The earliest known appearance of this symbol is in the tomb
of ancient egyptian pharaoh Tutankhamun, from the 14th century BCE [Pia49] (see [Ree15, Figure 34]).
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3.1 Snake behaviour

To be concise, in this chapter we denote finitely generated groups as pairs (G,S) where G is the group and S
a finite generating set. Futhermore, when talking about tileset graphs Γ = (A,B) as defined in Section 1.1.4,
we make the additional assumption that for every edge (a, a′, s) ∈ B, we also have (a′, a, s−1) ∈ B. Finally, I
denotes Z, N, or a discrete interval Jn,mK, depending on the context.

Definition 3.1.1. Let (G,S) be a finitely generated group, and Γ = (A,B) a tileset graph for the pair. A
snake or Γ-snake is a pair of functions (ω, ζ), where ω : I → G is an injective function, referred to as the
snake’s skeleton, and ζ : I → A the snake’s scales. This pair must satisfy dωi = ω(i)−1ω(i + 1) ∈ S, and
(ζ(i), ζ(i+ 1), dωi) must be an edge in Γ.

(1, 0)

(0, 1)

Figure 3.1: A tileset graph Γ that does not tile Z2 for the generating set {(1, 0), (0, 1)} (edges labeled with
generator inverses are omitted for more readability) and a Γ-snake with I = N.

a

b

a

b

a

a

b

b

F2 = ⟨a, b |⟩ Z2 = ⟨a, b | ab = ba⟩

Figure 3.2: An example of tileset graph Γ for groups with two generators a, b (inverses are omitted for simplicity).
There exists a Γ-snake for the free group F2 = ⟨a, b | ⟩ as pictured in the middle, with ω(Z) = (aba−1b−1)Z, but
not for Z2 = ⟨a, b | ab = ba⟩ since one of the finite snakes on the right must appear but cannot be extended into
an infinite one.

It may happen that for a given Γ-snake (ω, ζ) with ω : I → G, there exist two indices i, i′ ∈ I such that
ω(i)−1ω(i′) = s ∈ S but |i′ − i| ̸= 1. In this case, but we do not require (ζ(i), ζ(i′), s) to be an edge in Γ
(see Figure 3.3). A Γ-snake that fulfills this additional condition for every pair of indices i, i′ ∈ I such that
ω(i)−1ω(i′) ∈ S is called a strong Γ-snake.

60



3.1. Snake behaviour

a, b

a

a, b

a

a tileset graph Γ
for Z2 = ⟨a, b | ab = ba⟩

Γ-snake but not a strong one

✓

×

strong Γ-snake

✓

Figure 3.3: A tileset graph Γ on the left (inverses are omitted for simplicity). We consider Z2 with its standard
presentation ⟨a, b | ab = ba⟩. On the top right a Γ-snake for Z2 that is not strong. On the bottom right a strong
Γ-snake for Z2.

We say a snake (ω, ζ) connects the points p, q ∈ G if there exists a n ∈ N such that (ω, ζ) is defined over
J0, nK, ω(0) = p, and ω(n) = q. We say a snake is bi-infinite if its domain is Z. A Γ-ouroboros is a Γ-snake
defined over J0, nK, with n ≥ 2, that is injective except for ω(0) = ω(n). In other words, a Γ-ouroboros is a
well-tiled non-trivial simple cycle. We study the following three decision problems.

Definition 3.1.2. Let (G,S) be a finitely generated group. Given a tileset graph Γ for (G,S) and two points
p, q ∈ G,

• the Infinite Snake Problem asks if there exists a bi-infinite Γ-snake,

• the Ouroboros Problem asks if there exists a Γ-ouroboros,

• the Snake Reachability problem asks if there exists a Γ-snake connecting p and q.

These three problems are also defined for strong snakes. We also define the seeded variants of these
problems. In the seeded versions, we add a selected tile a0 ∈ A to our input and ask for the corresponding
snake/ouroboros to satisfy ζ(0) = a0.

All of these problems have been studied and classified for Z2 with its standard generating set {(1, 0), (0, 1)}.

Theorem 3.1.3. Let S be the standard generating set for Z2. Then,

1. The (strong) Snake Reachability Problem for (Z2, S) is PSPACE-complete [EHM94],

2. The (strong) Infinite Snake Problem for (Z2, S) is Π0
1-complete [Adl+09],

3. The (strong) Ouroboros Problem for (Z2, S) is Σ0
1-complete [Ebb82; Kar02].

In addition, the seeded variants of these problems are undecidable [Ebb82].

Our aim is to extend these results to larger classes of groups and different generating sets.
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3.1.1 General properties
Let (G,S) be a finitely generated group and Γ a tileset graph. If there exists a snake (ω, ζ), then for every
g ∈ G, the pair (g ·ω, ζ) is a snake. Indeed, if we define ω̃(i) = g ·ω(i), then dω̃ = dω, and the adjacency of ζ in
Γ remains unchanged. In particular, there exists a snake (ω′, ζ) such that ω′(0) = 1G, i.e. a snake that starts
at the identity.

The next result is a straightforward generalization of a result due to Kari [Kar02] for Z2. We provide the
proof for completion.

Proposition 3.1.4. Let Γ be a tileset graph for a finitely generated group (G,S). Then, the following are
equivalent

1. Γ admits a bi-infinite snake,

2. Γ admits a one-way infinite snake,

3. Γ admits a snake of every length.

Proof. Notice that a bi-infinite snake always contains a one-way infinite snake, and a one-way infinite snake
contains snakes of arbitrary length. Therefore, it remains to prove (3) =⇒ (1). Let (ωn, ζn)n∈N be a sequence
of snakes with ωn : J−n, nK→ G, which we can take to satisfy ωn(0) = 1G for all n ∈ N. As we have an infinite
amount of snakes, and for every m ≥ 1 the ball of radius m of the group is finite, we can extract a subsequence
φ : N → N such that ωφ(n)(J−m,mK) and ζφ(n)(J−m,mK) coincide for all n ∈ N. By iterating this process we
obtain a bi-infinite snake (ω, ζ).

This result implies that if a tileset graph admits no snakes, it will fail to tile any snake longer than a certain
length. Therefore, if we have a procedure to test snakes of increasing length, we have a semi-algorithm to test
if a tileset graph does not admit an infinite snake.

Corollary 3.1.5. If G has decidable word problem, the Infinite Snake Problem is in Π0
1.

Proof. Let Γ = (A,B) be a tileset graph for (G,S). We create a recursive process that tests larger and larger
snakes. Define F(0) = {ω0} where ω0 : {0} → {ϵ}, and let S be the set of snakes (ω0, ζ) with ζ : {0} → VΓ. Our
recursive procedure will take skeletons in F(n) and try to tile them without mismatches. All the snakes that we
obtain with this procedure define the set S(n). We proceed as follows:

• For every ω ∈ F(n), we create functions ωs,t : J−n− 1, n+ 1K→ S2n+1 for every s, t ∈ S, by

ωs,t(i) =


ω(i) if i ∈ J−n, nK
ω(−n)s if i = −n− 1
ω(n)t if i = n+ 1

.

By using the algorithm for the word problem, we select those functions such that ωs,t(±(n + 1)) do not
create new factors that evaluate to the identity, and add them to F(n+1).

• Next, for every ω ∈ F(n+1) we test all possible tilings of ω(J−n − 1, n + 1K) and add the pairs that are
correctly tiled to S(n+1).

Thus, we can algorithmically enumerate the sets of finite snakes S(n). We can conclude that the Infinite Snake
Problem is Π0

1 as Proposition 3.1.4 tells us that there is no bi-infinite Γ-snake if and only if there exists n ∈ N
such that S(n) = ∅.

Remark 3.1.6. In the case of strong snakes, the three statements in Proposition 3.1.4 are equivalent to the
existence of an infinite connected subset P of G that is correctly tiled by Γ. Then, the proof of Corollary 3.1.5
can be adapted to show that the strong Infinite Snake Problem is in Π0

1 for groups with decidable word problem.
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A similar process can be done for the Ouroboros Problem.

Proposition 3.1.7. If G has decidable word problem, the Ouroboros Problem is in Σ0
1.

Proof. Let Γ be a tileset graph for (G,S). For each n ≥ 1, we test each word of length n to see if it defines a
simple loop and if it admits a valid tiling. More precisely, for w ∈ Sn, we use the word problem algorithm to
check if w is G-reduced and evaluates to 1G. If it is reduced, we test all possible tilings by Γ of the path defined
by following the generators in w. If we find a valid tiling, we accept. If not, we keep iterating with the next
word length n and eventually with words of length n+ 1.

If there is a Γ-ouroboros, this process with halt and accept. Similarly, if the process halts we have found a
Γ-ouroboros. Finally, if there is no Γ-ouroboros the process continues indefinitely.

Lemma 3.1.8. Let (G,S) be a finitely generated group, (H,T ) a finitely generated subgroup of G and w ∈ S+.
Then,

• The Infinite Snake, Ouroboros and Reachability Problems in (H,T ) many one-reduce to their respective
analogues in (G,S ∪ T ), for both the strong and normal versions.

• The Infinite Snake, Ouroboros and Reachability Problems in (G,S) many one-reduce to their respective
analogues in (G,S ∪ {w}), for both the strong and normal versions.

Proof. Any tileset graph for (H,T ) is a tileset graph for (G,S ∪ T ), and any tileset graph for (G,S) is a tileset
graph for (G,S ∪ {w}). Finally, adjacency in the Cayley graph of (H,T ) is preserved in the Cayley graph of
(G,S ∪ T ), so strong snakes are preserved.

3.2 Ossuary
An important part of the complexity of snakes comes from the paths they trace on the underlying group. It
stands to reason that understanding the structure of all possible injective bi-infinite paths on the group can
shed light on the computability of the Infinite Snake Problem. Let G be a finitely generated group with S a
generating set. The skeleton of G with respect to S is defined as

G,S = {x ∈ SZ | ∀w ⊑ x, w ̸∈WP(G,S)}.

This subshift is the set of all possible skeletons; recall from Definition 3.1.1 that for any skeleton ω we can
define dω : Z→ S as dωi = ω(i)−1ω(i+ 1). Then, for any infinite snake (ω, ζ), dω ∈ G,S , as ω is injective,.

Example 3.2.1. Take Z2 with its standard generating set S = {a±1, b±1}. Its skeleton is given by

Z2,S = {x ∈ SZ | ∀w ⊑ x, ∥w∥a ̸= 0 ∨ ∥w∥b ̸= 0},

where ∥w∥s is the sum of exponents of the generator s.

Example 3.2.2. Let D∞ be the infinite dihedral group. The skeletons of this group can be radically different
depending on the generating set. For instance, if we take the presentation

D∞ = ⟨a, b | a2, b2⟩,

the corresponding skeleton is the finite subshift {(ab)∞, (ba)∞}. On the other hand, if we take the presentation,

D∞ = ⟨r, s | s2, srsr⟩,

the skeleton is infinite: for every n ∈ Z it contains a configuration x defined by x(n) = s and x(k) = r for all
k ̸= n.
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In the next chapter we do an in depth study of the skeleton, and explore of how the algebraic and geometric
properties of the underlying group influence the combinatorial and dynamical properties of its skeleton.

This formalism allows us to introduce variations of the Infinite Snake Problem where we ask for additional
properties on the skeleton. We say a subset Y ⊆ G,S is skeletal if it is shift-invariant. In particular, all
subshifts of G,S are skeletal.

Definition 3.2.3. Let Y be a skeletal subset. The Y -Snake Problem asks, given a tileset graph Γ, does there
exist a bi-infinite Γ-snake (ω, ζ) such that dω ∈ Y ?

3.2.1 Skeletons and decidability
A snake (ω, ζ) can be seen as two walks that follow the same labels: ω is a self-avoiding walk on the Cayley
graph of the group, and ζ a walk on the tileset graph. Therefore, if we find a bi-infinite walk, x ∈ SZ, that
avoids cycles on the Cayley graph and represents a valid walk on the tileset graph, we have found a snake.

For a finitely generated group (G,S), and a tileset graph Γ, we denote by XΓ ⊆ SZ the subshift whose con-
figurations are the labels of bi-infinite paths over Γ. This definition makes XΓ a sofic subshift (see Section 1.1.5).

Proposition 3.2.4. Let (G,S) be a finitely generated group, Γ a tileset graph, and Y a non-empty skeletal
subset. Then, the subshift X = Y ∩ XΓ is non-empty if and only if there is a bi-infinite Γ-snake (ω, ζ) with
dω ∈ Y . In addition, if Y is an effective/sofic subshift, then X is an effective/sofic subshift.

Proof. Let Γ = (A,B) be a tileset graph for G, with generating set S. Let X be the intersection Y ∩XΓ. Assume
we have a bi-infinite snake (ω, ζ) such that dω ∈ Y . As the pair is a Γ-snake, for all i ∈ Z the transition from
ζ(i) to ζ(i+ 1) is an edge on Γ labeled by dωi. Therefore dω ∈ XΓ, and as a consequence dω ∈ X. Conversely,
suppose there exists x ∈ X. Let i : Z → A be the function that gives us the initial vertex of every traversed
edge. That is, i(i) is the departure vertex for the edge traversed by xi in Γ. Then, define the snake (ωx, ζx)
with scales ζx(i) = i(i), and skeleton ωx : Z → G by ωx(i) = x[0,i] when i ≥ 0 and (x[i,0])−1 when i < 0. This
skeleton satisfies dωx(i) = xi and therefore dωx ∈ Y . Furthermore, because Y ⊆ G,S we have that wx(Z) ⊆ G
is injective. Finally, because XΓ is sofic, X will be an effective (resp. sofic) subshift when Y is an effective
(resp. sofic) subshift, as this classes are closed under intersections.

Proposition 3.2.4 reduces the problem of finding an infinite Y -snake, to the problem of emptiness of the
intersection of two one-dimensional subshifts. Determining if a subshift is empty is co-recursively enumerable
for effective subshifts, and decidable for sofics. Because in these cases X = XΓ∩Y can be effectively constructed
from the tileset graph, we can provide a semi-algorithm when the skeleton is effective. This is true for the class
of recursively presented groups. Because these groups have recursively enumerable word problem, WP(G,S)
is recursively enumerable for all finite generating sets (Proposition 1.3.15). This enumeration gives us an
enumeration of the forbidden patterns of our subshift.

Proposition 3.2.5. Let G be a recursively presented group. Then, G,S is effective for every generating set S.

This allows us to state the following proposition.

Proposition 3.2.6. Let Y be a skeletal subshift. Then, if Y is sofic (resp. effective) the Y -snake problem is
decidable (resp. in Π0

1). In particular, if G is recursively presented, the Infinite Snake Problem is in Π0
1 for any

generating set.

In Theorem 4.4.9 from Chapter 4 we will characterize which groups admit a sofic skeleton.

Remark 3.2.7. The converse of the first statement of the previous proposition does not hold in general: there
are pairs (G,S) that have decidable Infinite Snake Problem but whose skeleton is not sofic. Take Z with the
generating set {±2,±3}, where the generators are denoted s and t respectively. As we see in Proposition 4.4.4,
the skeleton of Z with respect to this generating set is not sofic. Nevertheless, we will see in Section 3.5 that
(Z, {2, 3}) has decidable Infinite Snake Problem.
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Remark 3.2.8. Proposition 3.2.6 relies on the fact that certain classes of languages are stable under intersec-
tions with a regular language. It is reasonable to ask what happens to the decidability of the problem if Y is
defined by a language in such a class. There are two ways to do this. We can either ask for Y to be defined
by a set of forbidden patterns belonging to the class, in which case Y would be a subshift, or we can ask for Y
itself to be a language (of infinite words) in the class, in which case Y may not be closed.

For instance, take the classes defined by blind multicounter automata. Blind multicounter automata are a
special case of G-automata, where the group G is Zd for some d ≥ 1. A G-automaton is a finite deterministic
automaton along with a map that associates a group element to each transition. A word is accepted by the
automaton if it arrives at an accepting state and the group element obtained by right-multiplying the elements
associated to each transition, is the identity (see [Yuy23] for more information on G-automata and [Gre78] for
blind multi-counter automata). In particular, this class of languages is closed under intersection with a regular
language.

Let us see that in the cases where Y is defined by a set of forbidden patterns accepted by a blind multicounter
automaton, the Y -snake problem may be undecidable. Notice that WP(G,S) is accepted by a G-automaton.
Because G,S = XWP(G,S), the skeleton subshift for (G,S) is defined by a set of forbidden patterns that is
accepted by a G-automaton. In particular, Z2,S is defined by a set of forbidden patterns that is accepted by a
blind 2-counter automaton and has undecidable snake problem by Theorem 3.1.3.

Nevertheless, if we ask for the configurations from Y to be accepted synchronously by blind multicounter
automata, as introduced in [FS08], the problem becomes decidable. By [FS08, Theorem 4.2] we know that
the intersection between a regular language and a language accepted synchronously by a blind multicounter
automaton is a language accepted synchronously by a blind multicounter automaton. In addition, the automaton
that accepts the intersection is constructed effectively. Thus, we can effectively obtain the blind multicounter
automata synchronously accepting the intersection of XΓ and Y . Finally, because the emptiness problem for
this class of languages is decidable [FS08, Theorem 3.3], the Y -snake problem is decidable by Proposition 3.2.4.

Theorem 3.2.9. The Infinite Snake Problem in Z2 restricted to 2 or 3 directions among a, a−1, b, b−1, where
{a, b} is the standard generating set for Z2, is decidable.

Proof. The set of skeletons of snakes restricted to 3 directions, for instance left, right and up (denoted by a−1,
a and b respectively), is the subshift Y3 ⊆ {a, a−1, b}Z where the only forbidden words are aa−1 and a−1a. As
Y3 is a skeletal SFT of Z2,{a±1,b±1}, by Proposition 3.2.6, the Y3-Snake Problem is decidable. The case of two
directions is analogous as Y2 is either the full shift on the two generators a and b or {a∞, (a−1)∞}.

A natural variation of the Infinite Snake Problem, from the point of view of group theory, is asking if there
is an infinite snake whose skeleton defines a geodesic. These skeletons are captured by the geodesic skeleton;
a subshift of G,S comprised exclusively of bi-infinite geodesic rays. Formally,

g
G,S = {x ∈ G,S | ∀w ⊑ x, w′ =G w : |w| ≤ |w′|}.

This subshift can be equivalently defined by the set of forbidden patterns given by the complement of
Geo(G,S), the set of geodesic words. As is the case for the skeleton, in the next chapter we look closer at the
geodesic skeleton to study its dynamical properties and entropy.

Proposition 3.2.10. Let (G,S) be a finitely generated group. If Geo(G,S) is regular, then g
G,S is sofic.

Because the complement of a regular language is regular, when Geo(G,S) is regular, g
G,S is defined by a

regular set of forbidden words, and is therefore sofic. We know that Geo(G,S) is regular for all generating
sets in abelian groups [NS95] and hyperbolic groups [Eps+92]. Also, there exists at least one generating set
such that Geo(G,S) is regular for virtually abelian groups [NS95], Coxeter groups [How93] and other classes
[CM04; HR12; AC16]. Proposition 3.2.4 implies that the Geodesic Infinite Snake Problem is decidable for all
such (G,S); most notably for Z2 with its standard generating set.

Theorem 3.2.11. The Geodesic Snake Problem is decidable for any finitely generated group (G,S) such that
Geo(G,S) is regular. In particular, it is decidable for abelian and hyperbolic groups for all generating sets.
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What happens with skeletal subsets that are not closed and/or not effective? Ebbinghaus showed examples
of skeletal subsests whose Y -Snake Problem is outside of the arithmetical hierarchy [Ebb87]. If we define Y to
be the skeletal subset of (Z2, {a, b}) of skeletons that are not eventually a straight line, then, Y is not closed,
and deciding if there exists a Y -skeleton snake is Σ1

1-complete. Similarly, if we take the Y to be the set of
non-computable skeletons of Z2, the Y -skeleton problem is Σ1

1-complete.

3.3 Snake embeddings
Let us introduce a suitable notion of embedding, that guarantees the reduction of snake problems. To do this, we
make use of a specific class of finite-state transducer called invertible-reversible transducer, that translates
generators from one group to another in an automatic manner.

Definition 3.3.1. An invertible-reversible transducer A is a tuple (Q,S, T, q0, δ, η) where,

• Q is a finite set of states,

• S, T are finite alphabets,

• q0 ∈ Q is an initial state,

• δ : Q× S → Q is a transition function,

• η : Q× S → T is such that η(q, ·) is an injective function for all q ∈ Q,

such that for all q ∈ Q and s ∈ S there exists a unique q′ such that δ(q′, s) = q.

We also ask for both maps, η and δ, to manage inverses of S by η(q, s−1) = η(q′, s)−1 and δ(q, s−1) = q′,
where q′ is the unique state satisfying δ(q′, s) = q. Furthermore, we denote by qw the state of A reached after
reading the word w ∈ S∗ starting from q0. We introduce the function fA : S∗ → T ∗ recursively defined as
fA(ϵ) = ϵ and fA(ws±1) = fA(w)η(qw, s±1).

Definition 3.3.2. Let (G,S) and (H,T ) be two finitely generated groups. A map ϕ : G → H is called a
snake-embedding if there exists a transducer A such that

• ϕ is injective,

• ϕ(w) = fA(w) for all w ∈ S∗.

Remark 3.3.3. A straightforward argument shows that if ϕ : (G,S) → (H,T ) is a snake-embedding, then
h ∗ g = hϕ(g) is a translation-like action (see Section 1.3.7). The converse is not true: there are translation-like
actions that are not defined by snake-embeddings. For instance, from Definition 3.3.2 we see that there is a
snake embedding from Z to a group G if and only if Z is a subgroup of G. Nevertheless, infinite torsion groups
admit translation-like actions from Z, as shown by Seward in [Sew14], but do not contain Z as a subgroup.

Proposition 3.3.4. Let (G,S) and (H,T ) be two finitely generated groups such that there exists a snake-
embedding ϕ : G→ H. Then, the Infinite Snake (resp. Ouroboros) Problem on (G,S) many-one reduces to the
Infinite Snake (resp. Ouroboros) Problem on (H,T ).

The reduction consists in taking a tileset graph for (G,S) and using the transducer to create a tileset graph
for (H,T ) that is consistent with the structure of G. Because the transducer is locally invertible, we have a
computable way to transform a bi-infinite snake from one group to the other.

Proof. Let Γ = (A,B) be a tileset graph for (G,S). We define Γ̃, a tileset graph for (H,T ) by using the
transducer A given by the snake embedding. The set of vertices is given by Ã = A × Q, and there is an
edge from (u, q1) to (v, q2) labeled by t if and only if there is an edge (u, v) in B labeled by s, in addition to
δ(q1, s) = q2 and η(q1, s) = t. Because B is finite and A is a finite automaton, the reduction is computable.
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Γ : a a′

M : q q′

⇒ Γ̃ : (a, q) (a′, q′)

s

s | t

t

Figure 3.4: Reducing snake problems using a snake-embedding.

Now, let (ω, ζ) be a Γ-snake. We define (ω̃, ζ̃) on (H,T ) by ω̃(i) = ϕ(ω(i)) and ζ̃(i) = (ζ(i), qp(i)), where
p(i) = dω0 ... dωi−1 ∈ S∗. As both ω and ϕ are injective, ω̃ is injective. Furthermore, by definition there
is an edge in Γ̃ from ζ̃(i) to ζ̃(i + 1), as there is one from ζ(i) to ζ(i + 1) in Γ, δ(qω(i), dω(i)) = qω(i+1) and
η(qω(i), dω(i)) = dω̃(i). Thus, (ω̃, ζ̃) is a Γ̃-snake.

Conversely, let (ω̃, ζ̃) be a Γ̃-snake such that ω̃(0) = 1H . Our objective is to find a Γ-snake (ω, ζ) such
that ω̃ = ϕ(ω). To do this, we introduce some notation. Let us denote ζ̃(i) = (q(i), ui). Also, for any q ∈ Q,
we denote by θq : η(q, S) → S the inverse of the function η(q, ·) : S → η(q, S), which is well-defined by the
injectivity of η(q, ·). As q(0) may not necessarily be q0, let w ∈ S∗ such that qw = q(0) and g the element w
represents in G. Without loss of generality we can change our snake (ω̃, ζ̃) so that ω̃(0) = ϕ(g). Now, define ω
recursively by ω(0) = g and ω(i+ 1) = ω(i) · θq(i+1)(dω̃(i)).

Claim: q(i) = qwdω(0)...dω(i−1) and ω̃(i) = ϕ(ω(i)).

We prove the claim by induction on i ≥ 0, as the case for i < 0 works analogously. The base case is clear
by definition, as we imposed that qw = q(0) and ϕ(ω(0)) = ω̃(0). Next, assume our hypothesis is true for all
integers up to i. Because ζ̃(i) is placed next to ζ̃(i+1) along the generator dω̃(i) ∈ T , and we defined dω(i) to be
θq(i+1)(dω̃(i)), the transition function δ sends q(i) to q(i+ 1) when reading dω(i). By the induction hypothesis,
q(i) is the state at which we arrive after reading the word wdω(0) ... dω(i − 1), and therefore q(i + 1) is the
state at which we arrive after reading wdω(0) ... dω(i− 1)dω(i). Finally, we have

ϕ(ω(i+ 1)) = ϕ(ω(i) · dω(i))
= ϕ(dω(0) · ... · dω(i− 1) · dω(i))
= fA(dω(0) · ... · dω(i− 1) · dω(i))
= ϕ(ω(i))η(q(i+ 1), dω(i))
= ω̃(i)η(q(i+ 1), dω(i)).

As we chose dω(i) = θq(i+1)(dω̃(i)), we have η(q(i+ 1), dω(i)) = dω̃(i). Thus,

ϕ(ω(i+ 1)) = ω̃(i)dω̃(i) = ω̃(i+ 1).

The Claim shows that ω is injective, as ϕ is injective. Finally, we set ζ(i) = ui, that is, the second element of
the ordered pair ζ̃(i). Consequently, (ω, ζ) is a Γ-snake. An analogous proof shows the result fot the Ouroboros
Problem.

Using snake-embeddings we prove that non-Z finitely generated free abelian groups have undecidable snake
problems.

Proposition 3.3.5. The Infinite Snake and Ouroboros Problems on Zd with d ≥ 2 are undecidable for all
generating sets.

Proof. Let S = {v1, ..., vn} be a generating set for Zd. As S generates the group, there are two generators vi1
and vi2 , such that Zvi1 ∩ Zvi2 = {1Zd}. Then, H = ⟨vi1 , vi2⟩ ≃ Z2 and there is a snake-embedding from Z2 to
H. Finally, by Lemma 3.1.8, the Infinite Snake and Ouroboros Problems are undecidable for (Zd, S).
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3.4 Virtually nilpotent groups
Through the use of snake-embeddings and skeleton subshifts, we extend undecidability results from abelian
groups to the strictly larger class of virtually nilpotent groups. The next lemma is stated for a class of groups
that contain nilpotent groups. Recall that the center of a group G, Z(G), is the set of elements that commute
with every other element of the group (see Section 1.3.2).

Lemma 3.4.1. Let (G,S) be a finitely generated group that contains a torsion-free element g in its center, such
that G/⟨g⟩ is not a torsion group. Then, there is a snake embedding from (Z2, {a, b}) into (G,S ∪ {g}), where
{a, b} is the standard generating set for Z2.

The idea of the proof is finding a distorted copy of Z2 within (G,S ∪ {g}). One of the copies of Z is given
by ⟨g⟩ ≃ Z. The other is obtained through the skeleton. Let us look at how to obtain this latter copy, before
the proof of the lemma.

Proposition 3.4.2. Let (G,S) be a finitely generated group. Then, G is a torsion group if and only if G,S is
aperiodic.

This result uses a particular case of Proposition 4.3.16, that we prove in the next chapter. Nevertheless, we
include the proof of our current proposition for completeness.

Proof. Let g ∈ G be a torsion-free element with the smallest word length. Let w be a geodesic representing g.
Notice w is cyclically reduced, if not, the cyclic reduction of w would represent a shorter torsion-free element.
Let us prove that wn is G-reduced by induction over n ≥ 2.

For the base case, suppose there exists a strict factor w′ ⊑ w2 such that w′ =G 1G. Because w is a geodesic,
it does not contain factors that evaluate to the identity. Therefore, w′ = uv with w = wuu = vwv for two
words wu, wv ∈ S∗. Suppose u and v have different lengths, for instance |v| < |u|. Because u =G v−1, we
have w =G wuv

−1 and |w| > |wuv−1|, which contradicts the fact that w is a geodesic. Thus, |u| = |v|. If their
lengths are strictly bigger than 1

2 |w|, then the word obtained by deleting w′ from w2 will represent a torsion-free
element of length strictly smaller than |w|. Therefore |u| = |v| ≤ 1

2 |w|. Then, w can be written as w = urv
for some r ∈ S∗. But, because v =G u−1 we have w =G uru−1 which is a contradiction. This means w2 is
G-reduced.

Next, assume wn is G-reduced for n > 2. Suppose there is a strict factor w′ = uwn−1v ⊑ wn+1 with
u, v ∈ S∗, such that w′ =G 1G. Because w′ is a strict factor, either |u| < |w| or |v| < |w|. Without loss of
generality we assume the former. We tackle two cases separately:

• If v = w, we have w′ = uwn. Then u =G w−n is torsion-free and |u| < |w|, which is a contradiction.

• If |v| < |w|, let us write w = wuu = vwv for two words wu, wv ∈ S+. Then, w′ can be written as
w′ = uv(wvv)n−2. Because w = vwv is torsion-free, wvv also is, and consequently uv =G (wvv)−(n−2)

is torsion-free. Notice that uv is G-reduced as it is a factor of w2. Because w is the smallest-torsion
free element, |u| + |v| = |uv| ≥ |w|. Similarly, as w′ =G 1G we know wuwv =G wn+1 is torsion-free and
G-reduced (also a factor of w2). Yet, we know |w2| = |wu|+ |u|+ |v|+ |wv| which means |wuwv| ≤ |w|. As
w is the smallest torsion-free element, |w| = |wu|+ |wv| = |u|+ |v|. By using the fact that w = wuu = vwv,
we inevitably have w = uv. This implies w′ = uwn−1v = wn, which is a contradiction.

As wn is always G-reduced, the configuration w∞ contains no factors that evaluate to the identity and is
therefore in G,S .

Suppose G is a torsion group and let x ∈ G,S be a periodic configuration that infinitely repeats the word
w. Let g = w. By definition of the skeleton subshift, gn = wn ̸= 1G for all n ∈ N. This contradicts the fact
that G is a torsion group.

We now prove Lemma 3.4.1 using g ∈ Z(G) and a periodic point from the previous proposition we construct
the snake-embedding.
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Proof of Lemma 3.4.1. Let us take G and g as in the statement, as well as Z2 = ⟨a, b | [a, b]⟩. Because
G/⟨g⟩ = ⟨S⟩ is not a torsion group, by Proposition 3.4.2 there exists w ∈ S∗ such that w∞ ∈ G/⟨g⟩,S . In other
words, no factors of the infinite configuration w∞ evaluates to gn for some n ∈ Z. We construct the snake-
embedding by defining the invertible-reversible transducer A as follows. The set of states is Q = {q0, ..., qm−1},
where m = |w|, with transition function δ such that δ(qi, a) = qi and δ(qi, b) = q(i+1 mod m). The transducer is
given by η(qi, a) = g and η(qi, b) = wi. These definitions guarantee that A is a transducer (see Figure 3.5).

q0 q1 . . . qm−1
b | w1 b | w2 b | wm−1

b | wm

a | g a | g
a | g

Figure 3.5: The transducer A that embeds Z2 into (G,S ∪{g}). The notation s | t represents η(q, s) = t for the
corresponding state.

Let f = fA be the function associated to A. Take v ∈ {a, b, a−1, b−1}∗. As Z2 is abelian, we can express v
in the normal form v =Z2 akbl with k = |v|a − |v|a−1 and l = |v|b − |v|b−1 . If we prove that fA(v) =G fA(akbl),
then the function ϕ(g) = fA(v), for any v representing g ∈ Z2, defines a snake-embedding. Indeed, because any
two words v1 and v2 are equal in Z2 if and only if they have the same normal form, if we have such identity, ϕ
will be well-defined and injective.

Let x = w∞ be the periodic configuration that specifies one of copies of Z in G. By the transducer’s
definition, fA(akbl) = gkx[0,l−1]. We will show that fA(v) =G gkx[0,l−1] through induction on the length of v.
If v = ϵ, then fA(ϵ) =G 1G. Next, suppose the equality is true for all words u such that |u| ≤ n. We arrive at
different cases:

• If v = v′a and v′ has normal form akbl, then fA(v) = fA(v′)η(ql mod m, a) = fA(v′)g. By induction, we
know fA(v′) = gkx[0,l−1] and thus fA(v) = gkx[0,l−1]g. But, as g is in the center of G, we can make it
commute with x[0,l−1] arriving at fA(v) =G gk+1x[0,l−1].

• If v = v′b and v′ has normal form akbl, then fA(v) = fA(v′)η(ql mod m, b) = fA(v′)wl mod m. By induction,
we know fA(v′) = gkx[0,l−1] and thus fA(v) = gkx[0,l−1]wl mod m. But, x[0,l] = x[0,l−1]wl mod m, and
therefore fA(v) =G gk+1x[0,l].

Proposition 3.4.3. Let (G,S) be a finitely generated group that contains a torsion-free element g in its center
and G/⟨g⟩ is not a torsion group. Then, (G,S ∪ {g}) has undecidable Infinite Snake and Ouroboros Problems.

Proof. By Lemma 3.4.1, there is a snake-embedding from Z2 to (G,S ∪ {g}). Combining Proposition 3.3.4 and
Theorem 3.1.3, we conclude that both problems are undecidable on (G,S ∪ {g}).

Theorem 3.4.4. Let (G,S) be a finitely generated non-virtually Z nilpotent group. Then there exists g such
that (G,S ∪ {g}) has undecidable Infinite Snake and Ouroboros Problems.

Proof. Let G be a finitely generated nilpotent group that is not virtually cyclic. Because G is nilpotent,
there exists a torsion-free element g ∈ Z(G). Furthermore, no quotient of G is an infinite torsion group
(see [CMZ17]). Because G is not virtually cyclic, G/⟨g⟩ is not finite. Therefore, by Proposition 3.4.3, both
problems are undecidable on (G,S ∪ {g}).
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Example 3.4.5. Let us look at the case where our group is the Heisenberg group H3 with generating set
{x±1, y±1}, for which we have the presentation

H3 = ⟨x, y | [x, [x, y]], [y, [x, y]]⟩.

In this case, its center is given by Z(H3) = ⟨[x, y]⟩. Then, if we call z = [x, y], we can take the word xy
that verifies (xy)n /∈ Z(H3) for all n ̸= 0. If we follow the proof of Lemma 3.4.1, we obtain the transducer from
Figure 3.6.

q0 q1

b | x

b | y

a | z a | z

Figure 3.6: The transducer that defines a snake embedding from (Z2, {a±1, b±1}} into (H3, {x±1, y±1, z±1}).

By the previous theorem, (H3, {x±1, y±1, z±1}) has undecidable Infinite Snake and Ouroboros Problem.

Through Lemma 3.1.8 we obtain undecidability for virtually nilpotent groups.

Corollary 3.4.6. Let G be a finitely generated non virtually Z, virtually nilpotent group. Then there exists a
finite generating set S such that (G,S) has undecidable Infinite Snake and Ouroboros Problems.

This corollary can also be obtained from Lemma 3.1.8 but using the fact that all non virtually Z virtually
nilpotent groups contain Z2 as a subgroup. This same argument proves the following.

Proposition 3.4.7. Let G be a finitely generated non virtually Z, virtually nilpotent group. Then there exists
a finite generating set S such that (G,S) has undecidable strong Infinite Snake and strong Ouroboros Problems.

3.5 Snakes and logic
We want to express snake problems as formulae that can be shown to be satisfied for a large class of Cayley
graphs. To do this we use Monadic Second-Order (MSO) logic, as has been previously been done for the Domino
Problem. Our formalism is inspired by [Bar22].

Let Λ = (V,E) be an S-labeled graph with root v0. MSO consists of variables P,Q,R, ... that represent
subsets of vertices of Λ, along with the constant set {v0}; as well as an operation for each s ∈ S, P · s,
representing all vertices reached when traversing an edge labeled by s from a vertex in P . In addition, we can
use the relation ⊆, Boolean operators ∧,∨,¬ and quantifiers ∀,∃. For instance, we can express set equality by
the formula (P = Q) ≡ (P ⊆ Q ∧Q ⊆ P ) and emptiness by (P = ∅) ≡ ∀Q(P ⊆ Q). We can also manipulate
individual vertices, as being a singleton is expressed by

(|P | = 1) ≡ P ̸= ∅ ∧ ∀Q ⊆ P (Q = ∅ ∨ P = Q).

For example, ∀v ∈ P is shorthand notation for the expression ∀Q(Q ⊆ P ∧ |Q| = 1). Notably, we can express
non-connectivity of a subset P ⊆ V by the formula nc(P ) defined as

∃Q ⊆ P, ∃v, v′ ∈ P (v ∈ Q ∧ v′ ̸∈ Q ∧ ∀u,w ∈ P (u ∈ Q ∧ edge(u,w)⇒ w ∈ Q)),

where edge(u,w) ≡
∨
s∈S u · s = w. The set of formulas without free variables obtained with these operations

is denoted by MSO(Λ). We say Λ has decidable MSO logic, if the problem of determining if given a formula
in MSO(Λ) is satisfied is decidable.
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The particular instance we are interested in is when Λ is the Cayley graph of a finitely generated group G
labeled by S a symmetric finite set of generators. In this case, the root of our graph is the identity v0 = 1G. As
mentioned in the previous chapter, a landmark result in the connection between MSO logic and tiling problems
comes from Muller and Schupp [MS83; MS85], as well as Kuskey and Lohrey [KL05], who showed that virtually
free groups have decidable MSO logic. In particular, the Domino Problem can be expressed in MSO logic.
Given a tileset graph Γ = (A,B), the formula

DP(Γ) ≡ ∃{Pa}a∈A

V =
∐
a∈A

Pa ∧
∧

(a,a′,s)̸∈B

Pa · s ∩ Pa′ = ∅

 ,

is satisfied if and only if Λ can be tiled by Γ. The sets Pa represent vertices tiled by a. The expression
V =

∐
a∈A Pa represents the fact that we tile the whole group, and the expression

∧
(a,a′,s) ̸∈B Pa · s ∩ Pa′ = ∅

that there are no forbidden patterns in the tiling. As a consequence of this formulation the Domino Problem is
decidable on virtually free groups.

To express infinite paths and loops, given a tileset graph Γ = (A,B), we partition a subset P ⊆ V into
subsets Ps,a indexed by S and A, such that Ps,a contains all vertices with the tile a that point through s to the
continuation of the snake. First, we express the property of always having a successor within P as

N(P, {Ps,a}) ≡
∧

s∈S,a∈A
(Ps,a · s ⊆ P ) .

We also want for this path to not contain any loops by asking for a unique predecessor for each vertex:

up(v) ≡ ∃!s ∈ S, a ∈ A : v ∈ Ps,a · s,

≡

∨
s∈S
a∈A

v ∈ Ps,a · s

 ∧
 ∧

(a,s),(a′,t)∈A×S
(a,s)̸=(a′,t)

¬((v ∈ Ps,a · s) ∧ (v ∈ Pt,a′ · t))

 .

Then, for a one-way infinite path

UP(P, {Ps,a}) ≡ ∀v ∈ P

(v = v0 ∧
∧

s∈S,a∈A
v ̸∈ Ps,a · s) ∨ (v ̸= v0 ∧ up(v))

 ,

Bringing the previous expressions together, the property of having an infinite path is as follows:

∞ray(P, {Ps,a}) ≡

v0 ∈ P ∧ P =
∐
s∈S
a∈A

Ps,a ∧N(P, {Ps,a}) ∧ UP (P, {Ps,a})

 .

We express the property of having a simple loop within P by slightly changing the previous expressions.
The only caveat comes when working with the symmetric finite generating set of some group, as we must avoid
trivial loops such as ss−1. The formula for this is

ℓ(P, {Ps,a}) ≡ ∀v ∈ P,up(v) ∧
∧

s∈S,a,a′∈A

(
Ps,a · s ∩ Ps−1,a′ = ∅

)
.

This way, admitting a simple loop is expressed as

loop(P, {Ps,a}) ≡

v0 ∈ P ∧ P =
∐

s∈S,a∈A
Ps,a ∧N(P, {Ps,a}) ∧ ℓ(P, {Ps,a})


∧ ∀Q ⊆ P,∀{Qs,a} (¬∞ray(Q, {Qs,a})) .
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Lemma 3.5.1. Let P ⊆ V . Then,

1. If there exists a partition {Ps,a}s∈S,a∈A such that ∞ray(P, {Ps,a}) is satisfied, P contains an infinite
injective path. Conversely, if P is the support of an injective infinite path rooted at v0, there exists a
partition {Ps,a}s∈S,a∈A such that ∞ray(P, {Ps,a}) is satisfied.

2. If there exists a partition {Ps,a}s∈S,a∈A such that loop(P, {Ps,a}) is satisfied, P contains a simple loop.
Conversely, if P is the support of a simple loop based at v0, there exists a partition {Ps,a}s∈S,a∈A such
that loop(P, {Ps,a}) is satisfied.

Proof. 1. Suppose ∞ray(P, {Ps,a}) is satisfied for some partition {Ps,a}. We recursively define an injective
1-Lipschitz function f : N → P that gives us our path. Start by setting f(0) = v0. Because the formula
is satisfied, there exists a unique s ∈ S such that v0 · s ∈ P , and we define f(1) = v0 · s. Now, suppose
we have already defined f(n). Then, there exists a unique s′ ∈ S such that f(n) · s′ ∈ P ; so we set
f(n + 1) = f(n) · s′. Thus, f is well-defined. In addition, f is injective because if there were n,m ∈ N
such that v = f(n) = f(m), v would have two distinct predecessors.
Next, if P supports an infinite injective path given by f : N → P with f(0) = v0, for all n ∈ N, there
exists sn ∈ S such that f(n + 1) = f(n) · sn. We define the sets Ps,a = {f(n) | sn = s} for a fixed
a ∈ A, which partition P . Finally, as f is injective, every v ∈ P has a unique predecessor and therefore
∞ray(P, {Ps,a}) is satisfied.

2. Suppose loop(P, {Ps,a}) is satisfied for some partition {Ps,a}. Then, as we did for the infinite path case,
we can define the function l : J0, nK→ P with l(0) = l(n) = v0, for some n ≥ 3. This is done by using the
fact that P satisfies N(P, {Ps,a}) (starting from v0 we can always find a successor), and that for every
subset Q ⊆ P the formula ∀{Qs,a}¬∞ray(Q, {Qs,a}) is satisfied (which tells us that P cannot contain
the support of an infinite ray) we know such an n must exist. As before, we know l defines a simple loop
because P satisfies ℓ(P, {Ps,a}).
Finally, suppose P supports a simple loop defined by l : J0, nK→ P with l(0) = l(n) = v0. By definition,
for every i ∈ J0, n − 1K, there exists si ∈ S such that l(i + 1) = l(i) · si. Thus, the partition defined by
the sets Ps,a = {ℓ(i) | si = s} for a fixed a ∈ A satisfies the required properties, in virtue of P being a
non-trivial simple loop.

Remark 3.5.2. Notice that when defining Ps,a in the previous proof, the set did not depend on a. This fact
will be exploited later to tackle the strong version of these problems.

To these two structure-detecting formulas, we add the constraint that P partitions in a way compatible with
the input tileset graph of the problem, in the direction of the snake. This is captured by the formula

DΓ({Ps,a}) ≡
∧

(a,a′,s)̸∈B

∧
s′∈S

Pa,s · s ∩ Pa′,s′ = ∅.

Theorem 3.5.3. Let Λ be a Cayley graph of generating set S. The Infinite Snake Problem, the Reachability
problem and the Ouroboros Problem can be expressed in MSO(Λ).

Proof. Let Γ = (A,B) be a tileset graph for Λ. By Lemma 3.5.1, it is clear that the two formulas

∞-snake(Γ) ≡ ∃P∃{Ps,a} (∞ray(P, {Ps,a}) ∧DΓ({Ps,a})) ,

ouroboros(Γ) ≡ ∃P∃{Ps,a} (loop(P, {Ps,a}) ∧DΓ({Ps,a})) ,

exactly capture the properties of admitting a one-way infinite Γ-snake and Γ-ouroboros respectively. Remember
that Proposition 3.1.4 tells us that admitting a one-way infinite snake is equivalent to admitting a bi-infinite
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snake. Finally, for Reachability, verifying the formula Reach(Γ, p, q) defined as

∃P∃{Ps,a}

p, q ∈ P ∧ ¬nc(P ) ∧ P =
∐
s∈S
a∈A

Ps,a ∧ UP (P, {Ps,a}) ∧DΓ({Ps,a})

 ,

is equivalent to P containing the support of a Γ-snake that connects p to q.

As previously mentioned, virtually free groups have decidable MSO logic for all generating sets. Thus, we
state the following corollary.

Corollary 3.5.4. Both the normal and seeded versions of the Infinite Snake, Reachability and Ouroboros Prob-
lems are decidable on virtually free groups, independently of the generating set.

Proof. Let Γ = (A,B) be a tileset graph with a0 ∈ A the targeted tile. Then adding the clause
∨
s∈S v0 ∈ Ps,a0

to the formulas of any of the problems in question, we obtain a formula that expresses its corresponding seeded
version.

For the strong versions of these problems; recall from Remark 3.5.2 that the structure detecting formulas
do not really use the fact that the partition is indexed by A. Therefore, Lemma 3.5.1 holds for the formulas
∞ray(P ) and loop(P ) that include an existential quantifier for a partition of P by subsets indexed only by
S. By modifying the Domino Problem formula, DP(Γ), to a formula DP(Γ, P ) that partitions P instead of the
whole vertex set we obtain,

strong-∞-snake(Γ) ≡ ∃P (∞ray(P ) ∧DP(Γ, P )) ,

strong-ouro(Γ) ≡ ∃P (loop(P ) ∧DP(Γ, P )) ,

strong-reach(Γ, p, q) ≡ ∃P (p, q ∈ P ∧ ¬nc(P ) ∧DP(Γ, P )) .

Corollary 3.5.5. Both the normal and seeded versions of the strong Infinite Snake, strong Reachability and
strong Ouroboros Problems are decidable on virtually free groups, independently of the generating set.

3.6 Discussion and open questions
In the presented results, the snake problems on a group are always defined with respect to a fixed generating
set. This is not usually the case for decision problems of similar nature. Both the computability of the Domino
Problem and its variants from Chapter 2 are independent of the generating set. We have seen some classes of
groups for which the snake problems have this property (Zd in Proposition 3.3.5 and virtually free groups in
Corollary 3.5.4), but it is not clear if this is always the case.

Question 3.6.1. Is the decidability of snake problems on a group independent of the generating set?

In [Kar02], the undecidability of the Infinite Snake Problem on Z2 is obtained through a reduction from
the Domino Problem. We notice that in the presented results, the status of the Infinite Snake Problem always
corresponds to that of the Domino Problem (undecidable for non-virtually Z virtually nilpotent groups and
decidable for virtually free groups). Is this always the case?

Question 3.6.2. Is there a group with undecidable Domino Problem and decidable Infinite Snake Problem?
Is there a group where the inverse holds?
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Chapter 4
Self-Avoiding Walks

Let G be a finitely generated group along with a set of generatorsS. In the previous chapter we defined the
skeleton of G with respect to S as the subshift

G,S = {x ∈ SZ | ∀w ⊑ x, w /∈WP(G,S)} = XWP(G,S),

and saw that its properties influence the decidability of the Infinite Snake Problem. It turns out, the skeleton
is an interesting object in itself, as it is the set of labels of bi-infinite self-avoiding walks on the Cayley graph
Γ(G,S). This is precisely the point of view we take in this chapter to study its properties.

A self-avoiding walk is a path on a graph that visits a vertex at most once. Figure 4.1 shows an example
of a self-avoiding walk on the hexagonal grid. These walks were originally introduced by Flory for the study
of long-chain polymers [Flo49]. Although his setting was the infinite square grid, self-avoiding walks are now
studied in the context of infinite quasi-transitive graphs, intersecting areas such as combinatorics, probability
and statistical physics. The fundamental problem in this area is the study of the asymptotic growth rate of
the number of self-avoiding walks of a given length, called the connective constant. See [GL19] for a recent
survey on this problem. Recently, there has been increasing interest in the study of the set of self-avoiding walks
on edge-labeled graphs from the point of view of formal language theory [LW20; LL23]. We take this study
further by focusing on both bi-infinite self-avoiding walks and bi-infinite geodesics on Cayley graphs of finitely
generated groups.

Figure 4.1: A self-avoiding walk, marked in red, on the hexagonal grid.

The skeleton is also present in Rufus Bowen’s notebook of problems [Bow17, Problem 108], where he asks
what can be said about G,S , what is its entropy, and if it is intrisically ergodic. In Section 4.2.2 we tackle
the question of entropy. Further still, the skeleton is inserted in the larger project started by Jeandel and
Vanier [JV19], of understanding the analogies between multidimensional subshifts and finitely generated groups,
as seen in Section 1.6. The skeleton is an attempt to establish these analogies explicitly by using the generators
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as an alphabet, and WP(G,S) as the set of forbidden patterns. Throughout the chapter, we see that some of
these analogies hold, and some do not (see Table 1.1):

• The skeleton of the free group of rank n is not the full-shift on n symbols, as it contains forbidden patterns
of the form ss−1 for each generator.

• Z2 is a finitely presented group, but its skeleton is never an SFT. In fact, groups that admit SFT skeletons
are strictly included in the class of virtually free groups (Theorem 4.3.6).

• As we saw in Proposition 3.2.5, recursively presented groups define effectively closed subshifts.

• In [BM00], Burger and Mozes give an example of a finitely presented simple torsion-free group. Nonethe-
less, none of its skeletons are minimal (Proposition 4.3.21).

• The skeleton of a quotient is a subgroup of the groups skeleton (Lemma 4.3.19).

• If H is a subgroup of G induced by a subset of a generating set for G, then the skeleton of H is the
full-restriction (see Definition 1.6.2) of the skeleton of G (Lemma 4.3.19).

The rest of chapter is organized as follows. Section 4.1 is devoted to definitions and background on self-
avoiding walks. Section 4.2 surveys general properties of the skeleton subshift, and shows how its entropy
corresponds to the logarithm of the connective constant of the corresponding Cayley graph. In Section 4.3
we investigate how dynamical and computational properties of the skeleton subshift – existence of periodic
configurations in G,S , minimality of G,S , being SFT or effective – relate to properties on the group G. Next,
in Section 4.4 we provide a characterization of groups that admit sofic skeletons. To do this we work with notions
from the study of thin ends, thick ends, and automorphisms of graphs. In Section 4.5 we use the skeleton to get
new results on entropy and connective constants. We begin by looking at graph height functions and bridges,
and their relation to periodicity in the skeleton. Then, we use Rosenfeld’s counting method to provide lower
bounds on the connective constant of infinite free Burnside groups. Finally, Section 4.6 is devoted to the study
of the geodesic skeleton and the geodesic connective constant.

Chapter specific notation Because in this chapter we are working exclusively with Z-subshifts, we use
different notation. First off, letters in a configuration will be represented by subscripts, that is, for x ∈ AZ,
xk = x(k). Instead of patterns and sub-patterns we say that a factor v of a word w is a contiguous subword of
w, which we denote by v ⊑ w. For a bi-infinite word x ∈ AZ, given i, j ∈ Z, x[i,j] denotes the word xixi+1 ... xj ,
x[j,+∞) the infinite word stating at j, and x(−∞,i] the infinite word finishing at i. For a word w ∈ A∗, the
expression w∞ denotes the infinite word obtained by repeating w.

4.1 Cayley graphs and self-avoiding walks
Let G be a finitely generated group along with a finite symmetric generating set S. Recall from Section 1.3.5
that the Cayley graph Γ(G,S) is defined by the set of vertices VΓ = G and the set of labeled edges

EΓ = {(g, s, gs) | g ∈ G, s ∈ S} ⊆ G× S ×G,

where each edge e = (g, s, h) ∈ EΓ has an initial vertex i(e) = g, a terminal vertex t(e) = h and a label λ(e) = s.
If a generator has order 2, that is, if s ∈ S satisfies s2 = 1G, we take a unique edge between g and gs for every
g ∈ G. The group G acts by translation on Γ(G,S) by left multiplication. In other words, the action of g ∈ G
over a vertex h ∈ VΓ is given by g · h = gh. Through this action, we can identify G with a subgroup of the
automorphism group of the Cayley graph.

A path π on Γ(G,S) is a self-avoiding walk (SAW) if it never visits the same vertex twice. We define the
language of self-avoiding walks over Γ(G,S) as the set

LSAW (G,S) = {λ(π) | π is a SAW with i(π) = 1G},
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where i(π) is the initial vertex of π. Remark that the language remains the same if we change the initial vertex
from the identity to any other group element due to the transitivity of the graph. Furthermore, because Cayley
graphs are deterministically labeled, no two SAWs share the same label. A bi-infinite SAW centered at g ∈ G
is a sequence of edges π = (ei)i∈Z ∈ EZ such that i(ei+1) = t(ei), and g = i(e0) such that π never visits the
same vertex twice. We can thus state the following.

Lemma 4.1.1. Let G be a group and S a generating set. Then,

G,S = {λ(π) ∈ SZ | π is a bi-infinite SAW centered at 1G},
= XLSAW (G,S)c .

Moreover, Lloc( G,S) = LSAW (G,S).

Proof. This is a direct consequence of the definitions.

Once again, as the graph is transitive, we can change the center for any other element of the group. Notice
that any finite subwalk of a bi-infinite SAW is a SAW. The converse is not always true, that is, there are SAWs
that do not appear in any bi-infinite SAW (see Figure 4.2).

Figure 4.2: On Z2 with standard generating set: a finite SAW that does not appear in a bi-infinite SAW.

Remark 4.1.2. For the undirected Cayley graph Γ̂(G,S) we can define a labelling function λ′ from the set of
self-avoiding walks over Γ̂(G,S) to S∗. Take a self-avoiding walk π that passes through the sequence of vertices
(g0, g1, ..., gn), its label λ′(π) = s0 ... sn−1 is such that si = g−1

i gi+1. This way, both LSAW(G,S) and G,S

are equal to the corresponding labels of self-avoiding walks on the undirected Cayley graph. Because of this, in
what follows we do not distinguish between the directed and undirected Cayley graphs.

4.1.1 Connective constants
Let cn be the number of self-avoiding walks of length n ∈ N in the Cayley graph Γ(G,S) starting at the identity.
This sequence is submultiplicative, i.e. cn+m ≤ cncm for all m,n ∈ N. By Fekete’s Lemma, the limit of n

√
cn

exists;
µ(G,S) = lim

n→∞
n
√
cn = inf

n∈N
n
√
cn ∈ [1,∞).

This limit is known as the connective constant of the Cayley graph. For general quasi-transitive graphs, the
limit was proven to be independent of the starting vertex by Hammersly and Morton [HM54].

In general, connective constants are hard to compute. Nevertheless, the exact value of some connective
constants is known. For instance, for the hexagonal grid (which as we saw in Example 1.3.29, is a Cayley
graph of the group Ã2) its value is

√
2 +
√

2 [DS12], for the bi-infinite ladder (as in Figure 1.12) it is the
golden mean 1

2 (1 +
√

5) [AJ90], and for some Cayley graphs of free products of finite groups it is the root of a
polynomial [GM17]. On the other hand, giving a closed form for the connective constant of Z2 with standard
generators is still an open problem. The best estimate as of writing is

µ(Z2) ≈ 2.63815853032790(3),

obtained by Jacobsen, Scullard, and Guttman [JSG16].
There are, however, bounds on the connective constant. We translate the following results from Grimmet

and Li – which were stated for larger classes of graphs – to our Cayley graph context.
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Theorem 4.1.3 ([GL14; GL15]). Let G be a finitely generated group and S a generating set.

• µ(G,S) ≥
√
|S| − 1,

• For w ̸=G 1G and N its normal closure in G, µ(G/N,S) < µ(G,S),

• For g /∈ S a non-identity element of G and S′ = S ∪ {g±}, µ(G,S) < µ(G,S′).

For more bounds and details, see [GL19].

4.2 General properties
Let us begin by establishing properties of the skeleton that are common to many groups and generating sets.

4.2.1 Bi-infinite SAWs through group elements and computability
A first observation is that G,S = ∅ if and only if G is a finite group; this is a consequence of Konig’s Lemma
(see [Wat86]). As we only consider infinite finitely generated groups, unless explicitly stated, the skeletons are
never empty. Next, if π = (ei)i∈Z is a bi-infinite SAW on the Cayley graph Γ(G,S), its inverse π−1 = (e−1

i )i∈Z
is also a bi-infinite SAW. Therefore, for each configuration x ∈ G,S , its inverse configuration x−1

k = (xk)−1

belongs to G,S .

By definition, configurations in the skeleton G,S avoid words from the word problem WP(G,S). But is
it true that a non trivial group element necessarily appears as a word on S in L( G,S)? For every finitely
generated group G and every group element g ∈ G, one can find a generating set S such that this is true.

Proposition 4.2.1. Let G be a finitely generated group. Then there exists S a generating set for G such that
for every non trivial group element g ∈ G, there exists a word w ∈ S∗ such that w = g and w ∈ L( G,S).

Proof. A theorem by Seward [Sew14, Theorem 1.8] states that for every finitely generated group G, there exists
a finite generating set S such that the Cayley graph Γ(G,S) has a regular spanning tree. In particular, this
tree has no leaves. Therefore, each path leading to a vertex can be extended (see Figure 4.3). Consider S
the generating set from the theorem, and its associated regular spanning tree for Γ(G,S). Take a non trivial
element g ∈ G and consider the path connecting the identity 1G to g in the regular spanning tree. Then, this
finite simple path can be extended to an infinite simple path inside the spanning tree, leading to an infinite
simple path going through 1G and g. Translating this path into a bi-infinite sequence of elements from S gives
a configuration of the skeleton G,S .

Figure 4.3: In blue, an example of regular spanning tree of degree 2 – thus a bi-infinite Hamiltonian path – for
Z2 with its standard presentation. In green a path from (0, 0) to (2, 2) extracted from this regular spanning
tree. Note that this path is highly non-geodesic.
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This proposition can be made stronger for one and two ended groups. Recall from Section 1.3.5 that a
Cayley graph Γ = Γ(G,S) has k ends if k is the supremum of the number of infinite connected components of
the induced subgraph Γ[VΓ \A] over every finite subset A ⊆ V .

Proposition 4.2.2. Let G be a finitely generated group with one or two ends, with S a generating set. Consider
the set S′ = {g ∈ G | ∥g∥S ≤ 3}. Then, for every non trivial group element g ∈ G, there exists a word w ∈ (S′)∗

such that w = g and w ∈ L( G,S′).

Proof. In [Car23, Theorem 1.3] Carrasco-Vargas showed that for one and two ended groups, Sewards’ Theorem
holds for S′, that is, there is a Hamiltonian path on the Cayley graph Γ(G,S′). This directly implies our
statement.

By joining Lemmas 4.4 and 3.7 from [Car23], we state a result on the decidability of the language of the
skeleton for specific generating sets.

Proposition 4.2.3. Let G be a finitely generated group with one or two ends, with S a generating set. Suppose
G has decidable word problem, and define S′ = {g ∈ G | ∥g∥S ≤ 3}. Then, L( G,S′) is computable.

For a skeleton, having a computable language means that there is an algorithm that determines if a finite
SAW is bi-infinitely extendable. A particular class of subshifts that have computable language are sofic subshifts.
In Sections 4.3 and 4.4 we explore when skeletons belong to this class.

4.2.2 Entropy
As seen in Lemma 4.1.1, the skeleton is the set of labels of bi-infinite SAWs over a Cayley graph. Consequently,
its complexity function counts the number of infinitely bi-extendable SAWs of length n, with α∞( G,S) being
their asymptotic growth rate. Furthermore, the number of locally admissible words of length n is exactly cn,
the number of finite SAWs of length n. Therefore, by Theorem 1.4.16 we obtain the following.

Lemma 4.2.4. For a finitely generated group G and a generating set S, h( G,S) = log(µ(G,S)).

This equality can also be deduced from [GHP14], where Grimmett et al. showed that the connective constant
is equal to the growth rate of infinitely bi-extendable SAWs.

Let G be a finitely generated group, along with a generating set S, and γG,S : N → N its growth function.
We define the group’s asymptotic growth rate with respect to S, as the value

HG,S = lim
n→∞

1
n

log(γG,S(n)).

As the growth function is sub-multiplicative (see [CC10]), HG,S exists by Fekete’s Lemma.

Remark 4.2.5. An alternative way to look at the growth of a group is the strict growth function σG,S ,
where σG,S(n) is the number of elements of length exactly n. As is the case for the growth function, σG,S is
sub-multiplicative. Its asymptotic growth rate is the same as that of γG,S , namely HG,S . This can be seen
through their generating functions. Take F, f : C→ C defined as

F (z) =
∑
n∈N

γG,S(n)zn, f(z) =
∑
n∈N

σG,S(n)zn.

By the Cauchy-Hadamard theorem we know that the asymptotic growth rate of γG,S (resp. σG,S) is the reciprocal
of the radius of convergence of F (resp. f). Strict growth can be expressed as σG,S(n) = γG,S(n)−γG,S(n−1),
with the convention that γG,S(−1) = 0, we get that f(x) = (1− x)F (x). As the term (1− x) does not change
the radius of convergence of the series, we have that

lim
n→∞

log(σG,S(n))
n

= HG,S .
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Proposition 4.2.6. Let G be a finitely generated group with S a generating set. Then,

HG,S ≤ h( G,S) ≤ log(|S| − 1).

Proof. Let p(n) be the complexity function for G,S and k = |S|. For the upper bound, notice that the total
number of reduced words of length n over S is exactly the number of elements of length n in free group Fm,
with m = ⌈k2 ⌉. Therefore,

p(n) ≤ γFm(n)− γFm(n− 1) = k(k − 1)n−1.

On the other hand, every element of length n has a geodesic representative of length n, which by definition
is G-reduced. In particular, this representative is a SAW of length n. Thus, σG,S(n) ≤ cn and

HG,S = lim
n→∞

log(σG,S(n))
n

≤ log(µ(G,S)).

Remark 4.2.7. The bounds from Proposition 4.2.6 are tight in general, as free groups with free generating
sets satisfy HFm,S = h( Fm,S) = log(2m− 1). Nevertheless, by Theorem 4.1.3 we know that for non-free groups
h( G,S) < log(2m− 1) for all generating sets. This same theorem also tells us that for groups with polynomial
growth the lower bound is strict, as

0 = HG,S <
1
2 log(|S| − 1) ≤ h( G,S).

Another straightforward bound we find from algebraic considerations is the following.

Proposition 4.2.8. Take G a finitely generated group and S generating set. If {s1, ..., sn} ⊆ S is a subset of
generators such that there induced semigroup ⟨s1, ..., sn⟩+ does not contain the identity, then h( G,S) ≥ log(n).

Proof. If ⟨s1, ..., sn⟩+ does not contain the identity, any combination of these generators will give a word that
does not contain factors that evaluate to the identity. In other words, the skeleton contains the full-shift
{s1, ..., sn}Z. Consequently, h( G,Sn) ≥ log(n).

Example 4.2.9. Take Z2 with its standard generating set {a±, b±}. Then, the semigroup generated by a and
b does not contain the identity. Then, h( Z2,{a±,b±}) ≥ log(2). Similarly, if we take the discrete Heisenberg
group H3 with generating set {a±, b±, c±} through the presentation,

H3 = ⟨a, b, c | [a, c], [b, c], [a, b]c−1⟩,

the semigroup given by the three generators a, b and c does not contain the identity. Then, by the previous
proposition h( H3,{a±,b±,c±}) ≥ log(3).

Remark 4.2.10. Given a group G, the entropy of its skeleton can be made arbitrarily large. This is done
be taking larger and larger generating sets and using the lower bound

√
|S| − 1 given by Theorem 4.1.3. This

can also be done in torsion-free groups by taking a torsion-free element g ∈ G, a generating set containing
{g, g2, ..., gn} and using the previous proposition.

In Section 4.5 we look at methods to approximate entropy and connective constants for different classes of
groups.
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4.3 Dynamic and computational aspects
The goal of this section is to explore the multiple dynamical and computational properties of skeletons, and
how they interact with the algebraic properties of the underlying group. We look at groups that admits SFT,
sofic, effective or minimal skeletons, as well as their periodic points.

A subshift can be defined by various different sets of forbidden patterns. We saw from its definition and
Lemma 4.1.1 that G,S is defined by at least two different sets, namely LSAW (G,S) and WP(G,S). We begin
by describing an additional set that helps us better understand the structure of forbidden patterns.

We begin by looking at the set of patterns that define simple cycles (also called embedded cycles) in the
Cayley graph. We define the set of labels of simple cycles of a group G with respect to a finite generating set
S as

OG,S = {w ∈WP(G,S) | w defines a simple cycle in Γ(G,S)}
= {w ∈WP(G,S) | ∀w′ ⊑ w, w′ /∈WP(G,S)}.

Example 4.3.1. Consider Z2 with its standard presentation ⟨a, b | [a, b]⟩. Then the word aba−3b−1abab−1 is
in WP(Z2, {a, b}) but not in OZ2,{a,b} since there are repeated vertices in the path it represents in Γ(Z2, {a, b}).

We call elements of OG,S self-avoiding polygons (SAPs) of the Cayley graph of Γ(G,S).

Remark 4.3.2. The set OG,S is the analog of the skeleton for the ouroboros problem (see Section 3.1), in the
sense that for any ouroboros, (ω, ζ), the word representing its path dω is in OG,S .

Lemma 4.3.3. Let F = OG,S ∪ {ss−1 | s ∈ S}. Then, G,S = XF .

Proof. Since OG,S ⊆WP(G,S) and {ss−1 | s ∈ S} ⊆WP(G,S), we have that F ⊆WP(G,S). So, the subshifts
defined by two sets respect the reciprocal inclusion, and we have G,S ⊆ XF .

Reciprocally, take some configuration x ∈ XF and assume it contains some pattern w ∈WP(G,S). Without
loss of generality we assume that w = s1 . . . sn for some n ∈ N, so that s1 . . . sn = 1G. Consider the group
elements gi defined by gi = s1 . . . si for i ∈ {1 . . . n} and g0 = 1G. Since x ∈ XF the pattern w does not belong
to OG,S ∪ {ss−1 | s ∈ S}. So necessarily n > 1 and there are some repetitions among the gi’s in addition to
g0 = gn. Take two indices i, j such that i < j, {i, j} ≠ {0}, {n}, {0, n} (at least one of the two indices is neither
0 nor n), gi = gj , and i, j are minimal for this property. Then the word si . . . sj defines a cycle in Γ(G,S),
which contradicts our original assumption. Finally, x ∈ G,S , which concludes the proof.

This alternative set of forbidden patterns for G,S will be particularly helpful in the proof of Theorem 4.3.6,
where we characterize groupsG which admit a generating set S such that G,S is an SFT and also in Section 4.5.2.

4.3.1 SFT skeletons
To find SFTs, we start with a warm-up lemma that contains the central idea used in our classification.

Lemma 4.3.4. Zd,S is not an SFT for d ≥ 2 and any generating set S.

Proof. Let S be a generating set for Zd and suppose F ′ is a finite set of forbidden patterns such that Zd,S = XF ′ .
Then, as S generates the group, there must exist s,s2 ∈ S such that ⟨s1⟩ ∩ ⟨s2⟩ = {1Zd}, and ⟨s1, s2⟩ ≃ Z2.
Let us denote N = maxw∈F ′ |w|. Take the SAP defined by the square of length 2N on the first two generators
w = s2N

1 s2N
2 s−2N

1 s−2N
2 . Notice that no factors of w2 of length N belong to F ′ as they are all globally admissible

in Zd,S . Let x = w∞. Clearly x /∈ Zd,S , as it contains w which satisfies w = 1G. Nevertheless, no factor of x
of length N is contained in F ′. Therefore x ∈ XF ′ , which is a contradiction.
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The main idea of this lemma is using arbitrarily large cycles that are locally self-avoiding. This way, it is not
possible to detect that the path eventually crosses itself using a finite window. Which groups admit generating
sets that define SFT skeletons then? Let us show that this is the case of a specific class of virtually free groups.

Definition 4.3.5. A group G is plain if there exist finite groups {Gi}ki=1 and m ∈ N such that G is isomorphic
to the free product, (

k∗
i=1

Gi

)
∗ Fm.

We say a generating set S for G is standard if it is the disjoint union S = S1 ∪ ... ∪ Sk ∪ Sk+1 where Si is a
generating set for Gi and Sk+1 is a free generating set for Fm.

Theorem 4.3.6. Let G be a finitely generated group. Then, there exists a finite generating set S such that
G,S is an SFT if and only if G is a plain group.

In order to prove this theorem we use a characterization of plain groups with respect to their simple cycles.
The diameter of a simple cycle is the greatest distance between to vertices in the cycle. A vertex v in Γ(G,S)
is said to be a cut vertex if Γ(G,S) \ {v} is disconnected. A graph is said to be 2-connected if it contains
no cut vertices. A maximal 2-connected subgraph is called a block.

Theorem 4.3.7 ([Har83]). Let G be a group and m ∈ N. Then, the following are equivalent

• G admits a finite generating set S such that all simple cycles in the undirected Cayley graph Γ(G,S) have
diameter at most m,

• G admits a finite generating set S such that all blocks in the undirected Cayley graph Γ(G,S) have diamater
at most m,

• G is a plain group.

Proofs of this Theorem can be found in [Har83; EP22].

Proof of Theorem 4.3.6. Let G be a plain group decomposed as
(∗ki=1 Gi

)
∗ Fm with S = S1 ∪ ... ∪ Sk+1 a

standard generating set. Due to its free product structure, any word w ∈ S∗ can be uniquely decomposed as
w = w1w2....wr where,

• wj ∈ S∗
l for some l, for all j ∈ {1, ..., r};

• wj and wj+1 are words over different alphabets for all j ∈ {1, ..., r − 1}.

If w = 1G, by our decomposition, wj = 1G for every j. This means every SAP from G must be entirely contained
in one of the finite groups Gi, as Fm has no SAPs with its free generating set. Therefore, OG,S is finite because
the number of SAPs in each finite group is finite. By Lemma 4.3.3, G,S is an SFT.

Now, let G be a finitely generated group with S such that G,S is an SFT, defined by the finite set of forbidden
patterns F . If G is not a plain group, by Theorem 4.3.7, the Cayley graph Γ(G,S) contains arbitrarily large
simple cycles, and therefore arbitrarily large SAPs. Next, we can assume without loss of generality that every
word in F has the same length, say N ≥ 1. If F ⊆ WP(G,S), take a SAP W of length greater than N + 1.
Because SAPs contain no strict factors that belong to WP(G,S) and every cyclic permutation of the word
defining a SAP is itself a SAP, the configuration x = W∞ does not contain any word from F . Therefore
x ∈ XF \ G,S , which is a contradiction. Suppose there are elements in F that are not in WP(G,S). As F
contains forbidden patterns and XF = G,S , for every word w ∈ F there exists Nw ∈ N such that either for
every v ∈ SNw the word wv contains a factor from WP(G,S), or for every v ∈ SNw the word vw contains a
factor from WP(G,S). Let M = maxw∈F Nw and take W a SAP of length M + N + 2. Once again, because
every SAP contains no strict factors that belong to WP(G,S) and every cyclic permutation of the word defining
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the SAP is itself a SAP, the configuration x = W∞ contains no factors from F . Indeed, if there is a w ∈ F
such that w ⊑ W we can take the cyclic permutation of W such that w is a prefix. Thus, w can be extended
by a word v of length M + 1 such that wv contains no factor in WP(G,S). As a consequence x ∈ XF \ G,S ,
which is a contradiction.

As plain groups admit SFT skeletons, we have an effective procedure to calculate the connective constant
of their Cayley graphs. As mentioned in Section 1.4.2, entropies of SFTs are non-negative rational multiples of
logarithms of Perron numbers (see Theorem 4.4.4 [LM21]). Thus, we can slightly improve Corollary 3.4 from
[GM17] in the case of (plain) groups.

Corollary 4.3.8. Let G be a plain group with S a standard set of generators. Then, µ(G,S) is a non-negative
rational power of a Perron number.

Let us sketch how to compute the connective constant using SFTs. Let G,S be the skeleton of the plain
group G = (∗ki=1 Gi) ∗ Fm and F be the finite set of patterns defining it. Recall from Theorem 4.3.6 that this
set corresponds to the SAPs on each individual group Gi as well as the words ss−1 for all s ∈ S. Let N be the
length of the biggest word in F . We can extend F to F ′ so that all words have length N . The Rauzy graph
RN (G,S) of order N of G,S is the finite directed graph whose vertices are labeled by the language of size N
of the skeleton LN ( G,S), and edges are labeled with LN+1( G,S). There is an edge labeled by w from u to
v if u is the prefix of length N of w and v is the suffix of length N of w. We denote the adjacency matrix of
the graph RN by MN , that is, if LN ( G,S) = {u1, . . . , uℓ}, the entry MN (i, j) represents the number of edges
in RN from ui to uj . Then the connective constant of Γ(G,S) is the logarithm of the dominant eigenvalue of
MN , which exists by Perron-Frobenius’ Theorem.

Example 4.3.9. Take S3 the symmetric group on 3 elements with generating set s1 = (1 2) and s2 = (1 3),
and the cyclic group Z/3Z = ⟨t⟩. Then, the skeleton of the plain group G = S3 ∗ Z/3Z with respect to
S = {s1, s2, t±1} is defined by the forbidden patterns,

F = {s2
1, s

2
2, (s1s2)3, t3, tt−1, t−1t}.

We obtain that the connective constant µ = µ(G, {s1, s2, t±1}) is the solution of the polynomial equation

x7 − 4x5 − 8x4 − 8x3 − 8x2 − 8x− 4 = 0,

obtained from the characteristic polynomial of the matrix described above, which is approximately µ ≈ 2.8698315.

The skeletons of plain groups with respect to their standard generating sets also have nice dynamical prop-
erties. We say a subshift X ⊆ AZ is irreducible if for every w1, w2 ∈ L(X), there exists some w ∈ L(X) such
that w1ww2 ∈ L(X).

Proposition 4.3.10. Let G be a plain group with standard generating set S. Then, G,S is irreducible.

Proof. DecomposeG as
(∗ki=1 Gi

)
∗Fm with S = S1∪...∪Sk+1 a standard generating set. Take w1, w2 ∈ L( G,S)

appearing at position 0 of the configurations x(1), x(2) ∈ G,S respectively. There is a unique decomposition for
each word: wi = wi1w

i
2....w

i
ri , where

• wij ∈ S∗
l for some l, for all j ∈ {1, ..., ri};

• wij and wij+1 are words over different alphabets for all j ∈ {1, ..., ri − 1}.

If w1
r1
, w2

1 ∈ S∗
i , take any generator s ∈ Sj for j ̸= i and define x = x

(1)
(−∞,0]w1sw2x

(2)
[|w2|,+∞). Because we chose

a generator that does not belong to Gi, and x(1) and x(2) belong to the skeleton, x must also belong to the
skeleton. This implies, w1sw2 ∈ L( G,S). If instead w1

r1
∈ S∗

i and w2
1 ∈ S∗

j for i ̸= j, take s ∈ Sj and s′ ∈ Si to
define y = x

(1)
(−∞,0]w1ss

′w2x
(2)
[|w2|,+∞). As before, y must belong to G,S . This means, w1ss

′w2 ∈ L( G,S).
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Figure 4.4: A portion of the Cayley graph of the plain group S3 ∗Z/3Z. The two generators for S3 are pictured
in red and blue; the generator for Z/3Z is pictured in green.

Corollary 4.3.11. For G a plain group with standard generating set S, the set of periodic configurations of G,S

is dense in G,S. In other words, any bi-infinitely extendable SAW on Γ(G,S) appears in a periodic bi-infinite
SAW. Furthermore,

µ(G,S) = lim
n→∞

n
√
en,

where en denotes the number of periodic points in G,S of period n ∈ N.

This corollary states a general property of irreducible subshifts of finite type, namely, its set of periodic
configurations is dense and its entropy is approximated through its periodic points [LM21]. We obtain a similar
expression for the connective constants of Cayley graphs whose skeletons is not an SFT in Section 4.5.

4.3.2 Effective skeletons
Let us briefly look at the case of effective skeletons. We know that recursively presented groups have recursively
enumerable word problem (Proposition 1.3.15). WP(G,S) is thus recursively enumerable for all finite generating
sets. This enumeration gives us an enumeration of the forbidden patterns of our skeleton.

We already saw in Proposition 3.2.5 that every skeleton of a recursively presented group is effective. A
particular consequence of this, is that for recursively presented groups µ(G,S) is a right computable real
number (Theorem 1.4.19).

In order to approach a characterization, we give a computational upper bound of the word problem of the
group in terms of the computability of finite SAWs on the Cayley graph.

Lemma 4.3.12. The word problem for G with respect to a generating set S is decidable given an algorithm for
LSAW (G,S)c.

Proof. We describe a procedure to compute the word problem of G given an algorithm that determines if a
word belongs to L = LSAW (G,S)c. We begin with an algorithm that computes all words w ∈ S≤n such that
w ∈WP(G,S) given n. This algorithm, which we call M, is shown in Algorithm 2.

Let us show the output ofM on n is WP(G,S)∩ S≤n. Let Ti be the set T in the algorithm after the first i
iterations of the for loop, for i ∈ {2, ..., n}. We claim Ti = WP(G,S) ∩ S≤i. First off, every non-self avoiding
path of length two must represent the identity. Thus, T2 = WP(G,S)∩S2. Now, suppose we have the equality
for Ti. Take w ∈WP(G,S)∩Si+1. This implies w ∈ L, and as seen in Lemma 4.3.3, it must represent a simple
cycle, contain a shorter simple cycle, or a word of the form ss−1. In the first case, w contains no factors from

84



4.3. Dynamic and computational aspects

Algorithm 2: M
Input: n ≥ 2
T ← ∅;
for w ∈ S2 do

if w ∈ L then
T ← T ∪ {w};

end
end
for i ∈ {3, ..., n} do

for w ∈ Si do
if w ∈ L then

if w contains no factors from T then
T ← T ∪ {w};

end
for v ∈ T do

Delete v from w if present, to obtain w′;
if w′ ∈ T then

T ← T ∪ {w};
end

end
end

end
end
return T ;

Ti and is therefore added to Ti+1. In the other two cases, it contains a factor from Ti that after being deleted
creates a word that belongs to WP(G,S) ∩ S≤i = Ti. Therefore, w ∈ Ti+1. Conversely, if w′ ∈ Ti+1 \ Ti we
know w ∈ L. If w was added to Ti+1 because it contains no factors from Ti, it must represent a simple loop
and is therefore in WP(G,S). On the other hand, if w was added after deleting a factor from Ti, w is made
up of a word representing the identity with a factor representing the identity inserted into it. This means,
w ∈WP(G,S) and therefore Ti+1 = WP(G,S) ∩ S≤i+1.

Finally, to determine if a given word w belongs to WP(G,S), we run M on the input |w|, and see if it is
present in T .

As a consequence, if LSAW (G,S) is co-recursively enumerable, the word problem of G must be in ∆0
2 on

the arithmetical hierarchy (see Definition 1.2.12). This is the case when G∗H,S is effective for H any finitely
generated group, and S = SG ∪ SH with SG, SH generating sets for G and H respectively.

Conjecture 4.3.13. A group is recursively presented if and only if there exists a finite generating set S such
that G,S is effective.

Even though recursively presented groups define subshifts that are effective, if the structure of the under-
lying group is computationally complex, the configurations of the skeleton may be uncomputable. We say a
configuration x ∈ SZ is computable if there is an algorithm that on input n ∈ Z computes xn ∈ S.

Definition 4.3.14. A finitely generated group G and generating set S are said to be algorithmically finite
if for every L ⊆ FS recursively enumerable set, there exist infinitely many pairs of distinct words u, v ∈ L such
that π(u) = π(v), where π : FS → G is the canonical projection. We say G is a Dehn Monster if it is infinite,
recursively presented and algorithmically finite.
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This class of groups was introduced by Myasnikov and Osin in [MO11], where they showed that Dehn
Monsters exist. Furthermore, they showed that being algorithmically finite does not depend on the generating
set.

Proposition 4.3.15. Let G be a Dehn Monster. Then G,S is effective for any finite generating set S, but no
configuration in G,S is computable.

Proof. As the properties of being infinite, recursively presented and algorithmically finite are independent of
the generating set, we take any generating set S for G. If there existed a computable configuration x ∈ G,S , we
could recursively enumerate the set of words L = {x[0,n−1] ∈ S∗ | n ≥ 1}. Then for any u, v ∈ L, π(u) ̸= π(v).
If not, we would arrive at x[0,n−1] =G x[0,m−1] for some n > m ≥ 1, which implies x[n,m−1] =G ε. Therefore,
any pair of elements in L maps to a different element through π, which contradicts the algorithmic finiteness of
G.

4.3.3 Periodic configurations
Configurations of particular importance in the study of subshifts are periodic configurations. Recall that a
configuration x ∈ G,S is periodic if there exists k ∈ Z \ {0} such that xi+k = xi for all i ∈ Z. Such a
configuration has a rigid structure, if we take w = x[0,k−1] the configuration is the bi-infinite repetition of w,
i.e. x = w∞. We will see that the existence of periodic points in the skeleton imposes strong restrictions on the
structure of the underlying group.

In Proposition 3.4.2 we showed that for any finitely generated group with a torsion-free element, the skeleton
contains a periodic point. The periodic configuration was obtained by iterating any geodesic of the torsion-free
element with the smallest length in the group. By re-interpreting the proof of [Hal73, Theorem 7] we obtain
the following generalization.

Proposition 4.3.16. Let G be a finitely generated group. Take a generating set S, a torsion-free element
g ∈ G, and k = argmin{∥gn∥S | n ≥ 1}. Then, for any geodesic w ∈ S∗ representing gk, the configuration w∞

belongs to G,S and is a bi-infinite geodesic.

Proof. Fix a generating set S and g ∈ G torsion-free. Let k ≥ 1 be as in the statement of the result, and denote
h = gk. Take a geodesic w ∈ S∗ for h and let π = (e0, ..., en−1) be the (self-avoiding) walk starting at the
identity in the Cayley graph, of label w and |w| = n. Let Π be the bi-infinite walk made by concatenating the
paths hm · π, for all m ∈ Z. Thus, λ(Π) = w∞. We claim Π is self-avoiding. Suppose it is not, and take the
smallest m ∈ N such that wm does not represent a SAW. Let πi denote the walk hi · π where i(πi) = hi and
t(πi) = hi+1. As m is minimal, we know the concatenated walks π0 ... πm−1 and π1 ... πm are self-avoiding,
and therefore the first intersection must occur between π0 and πm. Then, there exists v, u ⊑ w prefixes, and
f ∈ π0 ∩ πm such that f = v = hm−1u. Once again, because m is minimal, f ̸= h, hm−1. If we compute the
distance,

dS(f, hm−1f) = dS(u, v) ≤ |w|,
as k was chosen to minimize ∥gk∥S , the distance between f and hm−1f must be |w|. As both vertices are in πm,
this is only possible if f = hm and hm−1f = hm−1. Thus hm = 1G, which is a contradiction as h is torsion-free.
Therefore, w∞ ∈ G,S . Finally, as we chose k to minimize the distance to the identity of powers of g, wn must
be a geodesic for all n ∈ N.

We re-state and re-prove Proposition 3.4.2 for completion.

Theorem 4.3.17. Let G be a finitely generated group. Then, G is a torsion group if and only if G,S is
aperiodic for every (any) generating set.

Proof. Suppose G is a torsion group and let x ∈ G,S be a periodic configuration that infinitely repeats the
word w. Let g = w. By definition of the skeleton, gn = wn ̸= 1G for all n ∈ N. This contradicts the fact that
G is a torsion group. Conversely, if G has a torsion-element, by Proposition 4.3.16, G,S contains a periodic
point.
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Corollary 4.3.18. If G is a finitely generated torsion group, then for all generating sets G,S is not sofic.

Proof. If G is a finitely generated torsion group, Theorem 4.3.17 tells us that none of its skeletons contain
periodic configurations. Because non-empty sofic shifts always contain periodic configurations, no skeleton of
G can be sofic.

4.3.4 Minimality
Our next objective is to find sufficient and necessary properties for the skeleton to be minimal. We begin by
identifying possible subshifts of G,S .

Lemma 4.3.19. Let G be a finitely generated group. Then,

• For a symmetric subset S′ ⊆ S and H = ⟨S′⟩, H,S′ is a subshift of G,S.

• For N ⊴ G a normal subgroup, G/N,S′ is a subshift of G,S, where S′ = S \N1.

Proof. The first statement follows from the fact that any configuration from H,S′ avoids all words from
WP(G,S), as H is a subgroup of G. For the second statement, let x ∈ G/N,S and {wi}i ⊆ S∗ a set of
generators for N . Then, no factor w ⊑ x belongs to WP(G/N,S), which is obtained as concatenations of
conjugates of elements from WP(G,S) ∪ {wi}i). In particular, it does not belong to WP(G,S). Therefore,
x ∈ G,S .

Because every non-finite quotient gives us a non-empty subshift of G,S , if we want to find a minimal
skeleton, it is reasonable to look at the class of just infinite groups. A group G is said to be just infinite if it
is infinite and every proper quotient is finite.

Proposition 4.3.20. Let G be a finitely generated group with a generating set S. If G,S is minimal, then G
is a just infinite group.

Proof. If G,S is minimal, every subshift of the form G/N,S must be either empty or equal to G,S . Let N be
a proper normal subgroup, that is, non trivial and not equal to G. By Theorem 4.1.3, the connective constants
satisfy µ(G/N,S) < µ(G,S). Thus, the entropy of G/N,S is strictly less than that of G,S , so they cannot be
equal. This implies G/N,S = ∅, meaning G/N is finite. Therefore, G is just infinite.

Proposition 4.3.21. Let G be a finitely generated group with a generating set S. If G,S is minimal, for every
symmetric subset S′ ⊊ S, the subgroup ⟨S′⟩ is finite. In particular, torsion-free groups do not admit minimal
skeletons.

Proof. If G,S is minimal, every subshift of the form H,S′ , for H = ⟨S′⟩, must be either empty or equal to
G,S . If H = G, then by Theorem 4.1.3, µ(G,S′) < µ(G,S) meaning G,S′ is empty, which is a contradiction.

Therefore, H ⪇ G. Now, take s ∈ S \ H and x ∈ H,S′ . Define x′ = x(−∞,−1]sx[0,+∞) ∈ SZ. Because x is
in H’s skeleton, we know neither x(−∞,−1] nor x[0,+∞) contain subwords from WP(G,S). Next, if there exists
i, j ∈ N such that x[i,−1]sx[0,j] ∈ WP(G,S), then s =G (x[i,−1])−1(x[0,j])−1 which implies s ∈ H. This is a
contradiction. Therefore, x′ ∈ G,S \ H,S′ . As G,S is minimal, H,S′ = ∅ and thus H is finite. Finally, if a
group is torsion-free, each generator generates Z which is not possible if the skeleton is minimal.

Remark 4.3.22. Both conditions are not sufficient to characterize minimal skeletons. Take the group Ã2 with
generating set {a, b, c} as defined in Example 1.3.29. This group is just infinite [MV24], every pair of different
generators generates a subgroup isomorphic to the finite group S3, and every generator generates a copy of
Z/2Z. Nonetheless, its skeleton is not minimal. Take the periodic configuration x = (abcb)∞ which belongs to
the skeleton. Then, the closure of the orbit of x is finite and contains exactly periodic configurations defined by
cyclic permutations of abcb. But, the skeleton also contains the periodic configuration y = (bcac)∞, which is
not one of the cyclic permutations.

1Formally, the generators for G/N should be π(S) for the quotient map π : G → G/N nevertheless, as we are looking for
subshifts over the alphabet S, we identify π(S) with S \ N .
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As the remark shows, if a minimal skeleton contains periodic configurations, it must be finite. This is the
case of D∞ with generating set {a, b}, as seen on Example 3.2.2, which defines a minimal skeleton.

4.4 Sofic skeletons

Let us tackle the question of which groups admit skeletons that are sofic. Since SFTs are sofic subshifts, from
Theorem 4.3.6 we already know that plain groups admit sofic skeletons. But, are there groups that admit sofic
skeletons which are not SFTs? The first naive strategy would be to ask when the word problem of the group is
regular, as this is the set of forbidden patterns used in the definition of the skeleton. Unfortunately, Anisimov
showed in [An̄ı71] that WP(G,S) is regular if and only if G is a finite group. We must therefore find other
sets of forbidden patterns to study. Lemma 4.1.1 tells us that we can look at the classes of groups where the
language of SAWs is regular. The class of groups with such property have already been classified.

Theorem 4.4.1 ([LW20]). Let G be a f.g. group with S a finite generating set. Then, LSAW(G,S) is regular
if and only if Γ(G,S) has more than one end and all ends are thin of size 1.

As Lindorfer and Woess show, if Γ(G,S) has only thin ends of size 1 its blocks are finite [LW20, Lemma 5.3].
Combining this fact with Haring-Smith’s characterization of plain groups (Theorem 4.3.7), we see that groups
where LSAW(G,S) is regular are exactly plain groups. Nevertheless, when considering bi-infinitely extendable
SAWs, the situation is different.

Lemma 4.4.2. The group G = Z× Z/2Z given by the presentation ⟨s, t | s2, [t, s]⟩ has a sofic skeleton.

Proof. We exhibit a regular set of forbidden patterns for G,S , with S = {s±1, t±1}. Take the set of forbidden
patterns

F = {st±nst∓1 | n ∈ N} ∪ {t±1st∓ns | n ∈ N} ∪ {s2, t±1t∓1}.

It is a simple exercise to show that F is a regular language. Let us show G,S = XF . Suppose there is a
configuration x ∈ G,S \ XF . Because x is in the skeleton, we know it does not contain factors of the form s2

or t±1t∓1. Therefore it must contain a factor of the form st±nst∓1 or t±1st±ns. Suppose, x contains the word
w = stnst−1, for some n ∈ N. There is no way to extend this word to the right, as ws contains the factor tst−1s
which evaluates to the identity, extending by t−k with k ≥ n creates the factor stnst−n which evaluates to the
identity, and extending by t−ks with k ≤ n− 1 creates the factor tkst−ks which also evaluates to the identity.
This leads to a contradiction. The other cases being analogous, we have G,S ⊆ XF .

Now, suppose there is a configuration x ∈ XF \ G,S . By Lemma 4.3.3 and the definition of F , x must
contain a SAP. Nevertheless, all SAPs in G are cyclic permutations of words of the form stnst−n for some
n ∈ N. Thus, each SAP contains a factor from F , leading to a contradiction and proving XF ⊆ G,S .

The Cayley graph of Z × Z/2Z with respect to the aforementioned generating set is the bi-infinite ladder,
which is a graph with two thin ends of size 2. An analogous proof can be done of the Cayley graph of Z (which
is a plain group) with respect to the generating set {±1,±2}, which also has thin ends of size 2.

To characterize groups which admit sofic skeletons we make use of the fact that the language of a sofic
subshift is regular (Proposition 1.1.28). Our main tool in this regard will be the following version of the
Pumping Lemma.

Lemma 4.4.3 (Pumping Lemma). Let L be a regular language. Then, there exists p > 0 such that every word
w ∈ L with |w| ≥ p can be decomposed as w = w′uv with |u| > 1 and |uv| ≤ p, such that for all n ∈ N,
w′unv ∈ L.

This allows us to show that being sofic is a property of skeletons that depends on the generating set.

Proposition 4.4.4. Every group G admits a generating set S such that G,S is not sofic.
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4.4. Sofic skeletons

Proof. By Corollary 4.3.18, if G is a torsion group, no skeleton is sofic. We can therefore suppose G has a
torsion-free element. Let S′ be any generating set for G, and g a torsion-free element. We denote s = g2, t = g3,
and define S = S′ ∪ {s, t}. Suppose G,S is sofic. Then, its language L( G,S) is regular. Take p > 0 given by
the Pumping Lemma. The word w = tsp+1t−1s−p is contained in L( G,S) as it is globally admissible through
the configuration s∞tsp+1t−1s−pt−1(s−1)∞ (see Figure 4.5).

t
s

Figure 4.5: The configuration used for the Pumping Lemma (with p = 4) depicted in the Cayley graph of the
subgroup ⟨s, t⟩. The blue edges represent s and the red edges t.

Now, by the Pumping Lemma we can decompose w as w = w′uv with |uv| ≤ p. Thus, u = s−k

with k ≥ 1. Therefore, the word w′u2v = tsp+1t−1s−(p+k) belongs to L( G,S), which is a contradiction as
tsp+1t−1s−(p+1) =G ε. We conclude that G,S is not sofic.

4.4.1 Ends and automorphisms
To go towards a characterization we take a brief detour through the theory of ends and automorphisms of
infinite quasi-transitive graphs. Let us begin by taking a look at the theory of ends of connected graphs as
introduced by Halin [Hal64].

For a connected graph Γ = (VΓ, EΓ), and a subset of vertices A ⊆ VΓ we denote by Γ \A the graph obtained
by removing the vertices from A and all their incident edges. We define a ray ρ to be an infinite sequence of
distinct vertices π = (v0, v1, ...) ∈ V N

Γ such that there is an edge between vi and vi+1. Analogously, a double
ray is a bi-infinite sequence of distinct vertices π = (..., v−1, v0, v1, ...) ∈ V Z

Γ such that each successive vertex
is connected by an edge. Two rays are said to be equivalent if for any finite set A ⊆ VΓ all but finitely
many of their vertices are contained in the same connected component of Γ \A. The equivalence classes of this
relation are called the ends of the graph. The number of ends defined in Section 1.3.5 is exactly the number
of equivalence classes of rays. Given an end ω and a finite set A ⊆ VΓ, we define C(ω,A) to be the connected
component of Γ \A where all the rays defining ω eventually end up in.

A defining sequence for an end ω is a sequence of finite subsets (Ai)i∈N such thatAi∪C(ω,Ai) ⊆ C(ω,Ai−1)
for all i ≥ 1. We say that an end ω is thin if there exist m ≥ 1 and a defining sequence (Ai)i∈N such that
|Ai| = m for all i ∈ N. The smallest m verifying this condition is called the size of ω. An end is called
thick if its size is infinite. Thomassen and Woess [TW93] showed using Menger’s Theorem that an end of size
m ∈ N ∪ {∞}, seen as an equivalence class of rays, contains a maximum of m vertex disjoint rays.

Let Aut(Γ) denote the set of automorphisms of Γ, that is, bijections f : VΓ → VΓ that preserve edge
adjacency. We say a subgroup G ≤ Aut(Γ) acts quasi-transitively on Γ if the set of orbits of the action
G ↷ Γ is finite. We say G acts transitively if there is a unique orbit. In our setting, all Cayley graphs
Γ(G,S) are transitive under the action of the group G by left translations. Furthermore, this action preserves
the labeling given by the generating set. Freudenthal and Hopf independently showed [Fre44; Hop43] that a
quasi-transitive graph has either 0, 1, 2 or an infinite amount of ends.

Take Γ to be locally finite and connected. We can classify automorphisms of Γ into three classes. An
automorphism g ∈ Aut(Γ) is,

• elliptic if it fixes a finite subset of VΓ,

• parabolic if it fixes a unique end, and

• hyperbolic if it fixes a unique pair of distinct ends.
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Halin showed [Hal73] that for a non-elliptic automorphism g ∈ Aut(Γ) and vertex v ∈ V the sequence
(v, g · v, g2 · v, ...) uniquely defines and fixes an end which we call the direction of g, and denote D(g).

Theorem 4.4.5 (Halin, [Hal73] Theorem 9). Let g be a non-elliptic automorphism acting on a connected locally
finite graph Γ. Then,

• D(g) and D(g−1) have the same size m.

• D(g) ̸= D(g−1) if and only if m <∞. In this case g is hyperbolic.

• There are m disjoint double rays {πi}mi=1 that are invariant by some positive power of g.

• If g is hyperbolic, there exists a set A ⊆ VΓ of size m and k ∈ N such that (gkn ·A)n∈N and (g−kn ·A)n∈N
are defining sequences for D(g) and D(g−1) respectively, that intersect each πi in exactly one vertex.

To precisely understand thin ends, we study the following graphs.

Definition 4.4.6. A connected locally finite graph is called a strip if it is two ended and quasi-transitive.

We present general facts about strips that can be found in [LW20] and can be partly deduced from Theorem
4.4.5. For every strip Q, there exits a hyperbolic automorphism g ∈ Aut(Q) that fixes both ends ω+ and ω−.
Both ends have the same size, for instance m, which entails the existence of a finite set A of size m such that
(gn ·A) and (g−n ·A) are defining sequence for ω+ and ω− respectively. In addition, there are m disjoint double
rays intersecting every gn · A at exactly one vertex. We call such a strip a g-strip of size m. When working
with a g-strip, up to taking a power of g, we can assume that the subgraph induced by C(ω+, A) \C(ω+, g ·A),
which we call P (ω+), is connected and finite.

The following results show that quasi-transitive graphs contain strips, under conditions on their ends and
automorphisms.

Lemma 4.4.7 (Lindorfer, Woess, [LW20] Lemma 3.3). Let Γ be a connected and locally finite graph where
G ≤ Aut(Γ) acts quasi-transitively. If Γ has a thin end of size m, then it contains a g-strip of size m for some
g ∈ G.

Lemma 4.4.8 (Lindorfer, Woess, [LW20] Lemma 3.4). Let Γ be a connected and locally finite graph where
G ≤ Aut(Γ) acts quasi-transitively. If G contains a parabolic element, then for every m ≥ 1, Γ contains a
g-strip of size at least m for some g ∈ G.

4.4.2 Characterizing sofic skeletons
We provide the following characterization.

Theorem 4.4.9. Let G be a finitely generated group. There exists S such that G,S is sofic if and only if G is
a plain group, Z× Z/2Z or D∞ × Z/2Z.

The idea of the proof is as follows. First, we use the same constructions of Lindorfer and Woess [LW20] to
find ladder-like structures on strips that will allow us to use the Pumping Lemma, and then conclude that all
ends of the graph must be thin and of size at least 2. Next, by using similar ideas, we show that if the graph
has an end of size two and the skeleton is sofic, then the group must be virtually Z. Finally, we characterize
virtually Z groups with sofic skeletons, completing the proof.

Lemma 4.4.10. Let G be a finitely generated group with a generating set S, such that Γ(G,S) contains an
g-strip Q for some g ∈ G. If G,S is sofic, then Q has size at most 2.

Proof. Suppose Q is of size greater or equal than 3. Then, Q contains three disjoint double rays which we
call π1 = (vi)i∈Z, π2 = (ui)i∈Z and π3 = (v′

i)i∈Z, that are g-invariant. Recall we took our subgraph P (ω+) to
be connected and finite. Therefore, there is a path p1 that connects two of the rays. Suppose without loss of
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generality that p1 connects π1 and π2 from v0 to u0 with no other vertices from πi for i ∈ {1, 2, 3}. Analogously,
g · P (ω+) will connect π3 with another of the ways through a path p2. Up to rearranging indices, suppose p2
connects π2 to π3 starting at uk and ending at v′

k, for some k ∈ N such that there are no other vertices from πi
for i ∈ {1, 2, 3}. Because the vertex set of every element of the sequence (gn · P (ω+))n∈N is pairwise disjoint,
no walks in {g2n · p1 | n ∈ Z} ∪ {g2n · p2 | n ∈ Z} intersect. This way, the subgraph induced by the three paths
{πi}3

i=1 and all g2n · p1 and g2n · p2, Q′ ⊆ Q is a periodic subdivision of the bi-infinite 3-ladder (see Figure 4.6).

u0

v0

uk

v′
k

g · v0

g · u0

g · uk

g · v′
k

g4 · v0

g4 · u0

Figure 4.6: The periodic subdivision of the 3-ladder with the configuration x highlighted in red and blue. The
word λ3λ

3
4λ

−1
3 λ−2

1 is marked in blue, whereas the infinite prefix and suffix of x are marked in red.

Now, let us give names to the labels of the different portions of the subdivision. Denote λ1 the label from
uk to g · uk, λ2 the label from uk to g · u0, λ3 the label from u0 to v0, λ4 the label from v0 to g · v0, λ5 the label
from uk to v′

k, and finally λ6 the label from g · v′
k to v′

k. Then, for every n ≥ 1 and k < n the configuration

x = λ∞
1 λ2.λ3λ

n
4λ

−1
3 λ−k

1 λ−1
2 λ5λ

∞
6 ,

belongs to the skeleton (See Figure 4.6). Thus, λ3λ
n
4λ

−1
3 λ−k

1 ∈ L( G,S) for every n ≥ 1 and k < n. Notice that
the language L = {λ3λ

n
4λ

−1
3 λ−k

1 ∈ S∗ | k, n ∈ N} is regular. If G,S is sofic, its language L( G,S) is regular.
Then by the closure properties of regular languages

L′ = L ∩ L( G,S) = {λ3λ
n
4λ

−1
3 λ−k

1 ∈ S∗ | k < n},

is regular. By the Pumping Lemma, there exists a pumping length p > 0. Take λ3λ
p+1
4 λ−1

3 λ−p
1 ∈ L′. This word

decomposes as w̃ww′ such that |ww′| ≤ p. By the structure of our word, ww′ is a suffix of λp1. Next, w̃w2w′

belongs to L′ and therefore has the form

w̃w2w′ = λ3λ
n
4λ

−1
3 λ−k

1 = λ3λ
p+1
4 λ−1

3 w1w
2w′,

for some k, l ∈ N and w1 ∈ S∗. Because we are working over a Cayley graph, the labels of different edges
starting from u0 must be different and thus the first generators for λ4 and λ−1

3 are different. Therefore,
n = p+ 1. This means, λ−k

1 = w1w
2w′. Finally, as λ−k

1 is strictly longer than λ−p
1 , k ≥ p+ 1. But, this would

imply λ3λ
p+1
4 λ−1

3 λ−k
1 belongs to L( G,S) and is not self-avoiding, which is a contradiction.

Proposition 4.4.11. Let G be a finitely generated group. If there exists S such that G,S is sofic, then G has
more than one end, and Γ(G,S) only has thin ends of size at most 2.

Proof. Let G be a finitely generated group with generating set S such that G,S is sofic. By Theorem 4.3.17, G
is not a torsion group and therefore contains non-elliptic elements when seen as a subgroup of Aut(Γ(G,S)). If
G is one-ended, then Γ(G,S) has one end, which by Lemmas 4.4.8 and 4.4.10 is a contradiction. Thus, Γ(G,S)
has at least one thin end. By Lemma 4.4.7, every thin end of size m implies the existence of a strip of size m in
Γ(G,S). By Lemma 4.4.10, these strips – and consequently their corresponding ends – must have size at most
2. Finally, if Γ(G,S) had a thick end, from the proof of Theorem 4.1 in [LW20] we know it contains a one-ended
subgraph. As before, this contradicts Lemmas 4.4.8 and 4.4.10.
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The converse of this proposition is not true: the group F2 × Z/2Z with generating set S = {a±1, b±1, s},
given by the presentation ⟨a, b, s | s2, [a, s], [b, s]⟩, has thin ends of size two, but its skeleton is not sofic. Similar
to what we did in Proposition 4.4.4, we can use the Pumping Lemma on the words san+1sa−n, with n ∈ N,
which are in L( G,S) through the configuration b∞san+1sa−nb∞. The next Lemma captures this idea in the
general setting.

Lemma 4.4.12. Let G be a finitely generated group. If there exists S such that G,S is sofic and Γ(G,S) has
an end of size 2, then G is virtually Z.

Proof. Suppose Γ(G,S) has more than two ends, and take ω+ the end of size 2. By Lemma 4.4.7, there exists
g ∈ G and Q a g-strip of size 2. Then, there exist two g-invariant disjoint double rays π1 = (vi)i∈Z and
π2 = (ui)i∈Z. In the induced subgraph P (ω+) we can find a path p linking, without loss of generality, v0 and
u0 with no other vertices from π1 and π2. Furthermore, the walks belonging to {gn · p | n ∈ Z} do not intersect
each other. This way, the graph spanned by π1, π2 and p is a periodic subdivision of the infinite 2-ladder,
Q′ ⊆ Q. Now, take an end ω1 ̸= ω± and π3 = (v′

i)i∈N a ray defining ω1. As π3 defines an end different from
ω+ there exists a smallest N ∈ N such that v′

i /∈ Q′ for all i > N . Because Γ(G,S) is transitive, we can take
without loss of generality v′

N to be equal to some uk with k ∈ N, placed between g · u0 and g2 · u0 . This is all
represented in Figure 4.7.

u0

v0 g · v0

g · u0

uk = v′
N

g4 · v0

g4 · u0

π3

Figure 4.7: The periodic subdivision of the 2-ladder with the configuration x highlighted in red and blue. The
word λ2λ

3
3λ

−1
2 λ−2

1 is marked in blue, whereas the infinite prefix and suffix of x are marked in red.

Let us label the different sections of the bi-infinite ladder. We denote by λ1 the label of the path from u0 to
g · u0, λ2 the label from u0 to v0, λ3 the label from v0 to g · v0, λ4 the label from g2 · u0 to uk, and λ ∈ SN the
label of the ray (v′

N+i)i∈N. Then, for every n ∈ N and k < n the configuration

x = λ∞
1 .λ2λ

n
3λ

−1
2 λ−k

1 λ4λ ∈ SZ,

belongs to the skeleton. Then, λ2λ
n
3λ

−1
2 λ−k

1 ∈ L( G,S) for all k < n. Notice that the language given defined
as L = {λ2λ

n
3λ

−1
2 λ−k

1 | n, k ∈ N} is regular. Therefore, L′ = L ∩ L( G,S) is regular as we assume G,S is sofic.
Take p > 0 the pumping length of L′ given by the Pumping Lemma. If we pump the word λ2λ

p+1
3 λ−1

2 λ−p
1 is in

L′ as we did in the proof of Lemma 4.4.10, we conclude that there must exist n, k ∈ N with k ≥ n such that
λ2λ

n
3λ

−1
2 λ−k

1 ∈ L′, which is a contradiction as it is not self-avoiding.

Virtually Z groups have a very rigid structure. Epstein and Wall [Eps61; Wal67] (see [LG13] for our current
formulation) showed that a group is virtually Z if and only if it is of one of the following forms:

1. Z ⋉ϕ F , for some finite group F and ϕ ∈ Aut(F ),

2. G1 ∗F G2, for G1, G2 and F finite groups such that [G1 : F ] = [G2 : F ] = 2.

Groups of the second type, G1∗FG2, are isomorphic to D∞⋉ψF for some homomorphism ψ : D∞ → Aut(F )
(see [Gil22, Section 1.3]). Furthermore, every element g ∈ Z⋉ϕ F can be uniquely expressed as ftn with f ∈ F ,
n ∈ Z and t the free generator of Z. Similarly, every element g ∈ D∞ ⋉ϕ F can be uniquely expressed as frnsb

with f ∈ F , n ∈ Z, b ∈ {0, 1}, and r and s generators for D∞ = ⟨r, s | s2, rsrs⟩.
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Lemma 4.4.13. Let G = H ⋉ϕ F be a group such that F is a finite group, and H is either Z or D∞. Then,
for any generating set S the ends of the Cayley graph Γ(G,S) have size at least |F |.

Proof. Take G as in the hypothesis. We will tackle the case when H = Z and H = D∞ separately.

Case 1: H = Z:
Let S be a generating set for G. Then, there must exist at least one generator that does not belong to F ,

which we call s. This generator must have the form s = gtn for some g ∈ F and n ∈ Z, and is thus a torsion-free
element of the group. For each element f ∈ F we define the ray πf = (f, fs, ..., fsi, ...). These rays are all
pair-wise disjoint because s is torsion-free. Therefore, the end D(s) has size at least |F |.

Case 2: H = D∞:
Let S be a generating set for G. As before, there must exist at least one generator that does not belong to

F , which we call s. If s is of the form grn, it is a torsion free element, and by the argument for the previous
case, D(s) has size at least |F |. Suppose then that all elements S \ F are of the form grns. Because S is a
generating set, S \F must contain at least two elements which we will name s = grns and s′ = g′rms. Without
loss of generality take n > m. Then, ss′ is the torsion-free element g1rn−m for some g1 ∈ F . As before, for each
f ∈ F define the ray πf = (f, fs, fss′, ..., f(ss′)i, ...). Let us prove these rays are disjoint. If f(ss′)k = f ′(ss′)l
for f, f ′ ∈ F and k, l ∈ N, then (ss′)k−l ∈ F has torsion, which is a contradiction. On the other hand, if
f(ss′)ks = f ′(ss′)l for f, f ′ ∈ F and k, l ∈ N, then r(n−m)(k+l)+ns ∈ F , which is also a contradiction. Thus,
the rays πf are disjoint and therefore D(ss′) has size at least |F |.

Proposition 4.4.14. Let G be a virtually Z group. Then, there exists S such that G,S is sofic if and only if
G is either Z, Z× Z/2Z, D∞ × Z/2Z or D∞.

Proof. Let G be a virtually Z group. Then, G is of the form H ⋉ϕ F for H ∈ {Z,D∞} and F a finite group.
Joining Lemma 4.4.13 and Lemma 4.4.10, if G,S is sofic for some generating set S, |F | ≤ 2. If |F | = 1, then
G is either Z or D∞. If |F | = 2, then F ≃ Z/2Z and ϕ is the trivial automorphism. In this case G is either
Z× Z/2Z or D∞ × Z/2Z.

Conversely, we already know Z and D∞ admit sofic skeletons as they are plain groups. Similarly, Z× Z/2Z
admits a sofic skeleton by Lemma 4.4.2. Finally, if we take the presentation ⟨a, b, s | a2, b2, s2, (sa)2, (sb)2⟩ of
D∞×Z/2Z, the corresponding Cayley graph is the bi-infinite ladder, and therefore Lemma 4.4.2 can be adapted
to show its skeleton is sofic.

We now have all the ingredients to characterize groups that admit a sofic skeleton.

Proof of Theorem 4.4.9. Let G be a finitely generated group that admits a sofic skeleton through the generating
set S. From Lemma 4.7, Γ(G,S) has only thin ends, all of size at most 2. If all ends are of size 1, G is a plain
group. Next, if G has at least one end of size 2, it is virtually Z by Lemma 4.4.12. Then, by Proposition 4.4.14
G is either Z× Z/2Z or D∞ × Z/2Z. For the other direction, if G is a plain group by Theorem 4.3.6 it admits
a sofic skeleton (as SFTs are sofic). Finally, if G is either Z× Z/2Z or D∞ × Z/2Z, Proposition 4.4.14 tells us
G admits a sofic skeleton.

4.5 Approximating entropy and connective constants

4.5.1 Bridges and periodic points
We saw in Corollary 4.3.11 that the connective constant of SFT skeletons of plain groups can be approximated
by their periodic points. This is also the case of irreducible sofic shifts [LM21, Theorem 4.3.6.]. The natural
question that follows is if this is possible for skeletons that are not sofic. Clisby showed [Cli13] that this is
the case for Zd with standard generating set, which by Theorem 4.4.9 do not define sofic skeletons. Instead
of periodic configurations, Clisby used the term endless SAWs. By using the notion of bridges, introduced
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by Hammersley and Welsh [HW62] and latter expanded upon by Grimmett and Li [GL18], we generalize this
result to any Cayley graph admitting a particular kind of graph height function.

Definition 4.5.1. Let Γ be an infinite connected locally finite quasi-transitive graph. A graph height func-
tion (h,H) is composed of a function h : VΓ → Z and a subgroup H ≤ Aut(Γ) acting quasi-transitively on Γ
such that

• (H-difference-preserving) for all u, v ∈ VΓ and g ∈ H

h(g · v)− h(g · u) = h(v)− h(u),

• for all u ∈ VΓ, there exists v, v′ ∈ VΓ adjacent to u such that h(v) < h(u) < h(v′).

A bridge with respect to the height function (h,H) is a self-avoiding walk π = (e0, ..., en−1) that verifies

h(i(e0)) < h(t(ei)) ≤ h(t(en−1)),

for all i ∈ {0, ..., n− 1}.

Example 4.5.2. Take G = Z2 with the standard generating set {a±, b±}. If we look at the generators as
a = (1, 0) and b = (0, 1), we define the map h(g) = m for g = (m,n) ∈ Z2. This function defines a graph
height function with respect to H = Z2 acting by left-translations. Further still, any elementary amenable
group admits a graph height function [GL18].

Lemma 4.5.3. Let G be a finitely generated group with generating set S. If Γ(G,S) admits a graph height
function (h,H), then G,S contains periodic configurations. Moreover, if π is a bridge such that i(π) and t(π)
lie in the same H-orbit, then λ(π)∞ ∈ G,S.

Proof. Let π and π′ be two bridges such that t(π) = i(π′). Then, the concatenation of both paths, ππ′, is a
bridge. Furthermore, for every g ∈ H, g · π is also a bridge, as the function h is H-difference-preserving.

Now, let R be a finite right transversal for the action of H on Γ(G,S). Consider a bridge π such that
i(π), t(π) ∈ H · r with r ∈ R. If i(π) = h1 · r and t(π) = h2 · r, because h is H-difference-preserving, h2h

−1
1 · π

is a bridge starting at h2 · r. We can then concatenate π with h2h
−1
1 · π to create a bridge, which we denote by

π2, whose label is given by λ(π)2. This process can be iterated indefinitely to obtain a bi-infinite SAW whose
label is given by λ(π)∞.

Next, take a bridge π such that i(π) ∈ H · r1 and t(π) ∈ H · r2, with r1, r2 ∈ R distinct representatives.
Up to translation by an element from H, we can take any bridge starting at a vertex in H · r2, say π1 and
concatenate to π to obtain a new bridge ππ1. Such a bridge exists by the definition of a graph height function
as there must exist at least one vertex v next to r2 such that h(r2) < h(v). Similarly, we can take any bridge
in the H-orbit of t(π1), which we denote π2, and concatenate it –up to translation by H– to ππ1. Iterating this
process, for all n ∈ N we obtain a bridge ππ1 ... πn. Because there is a finite number of H-orbits, we will have
i ≤ j such that i(πi), t(πj) belong to the same H-orbit. Then, as previously stated π′ = πiπi+1 ... πj is a bridge
that can be iterated to obtain the periodic point λ(π′)∞.

We saw in Theorem 4.3.17 that torsion groups have aperiodic skeletons. By the previous lemma, graph
height functions imply the existence of periodic points. Combining these two facts we can state the following.

Theorem 4.5.4. The Cayley graphs of infinite torsion f.g. groups do not admit graph height functions.

This generalizes a result from Grimmett and Li who showed that the Grigorchuk group (which is an infinite
torsion group) does not admit a graph height function, and more generally, Cayley graphs of torsion groups
with certain conditions on the stabilizer of the identity [GL17b]. However, the converse of the previous theorem
does not hold, as they also showed that the Higman group, which is torsion-free [Hig51], does not admit graph
height functions.
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Bridges are particularly useful to compute the connective constant of graphs, and have been used to obtain
exact expressions for the constant (for instance, in [DS12]). Let us denote by bn,g the number of bridges of
length n starting at g ∈ G, and bn = ming∈G bn,g. As stated in the proof of Lemma 4.5.3, we can concatenate
bridges with corresponding endpoints. Then, bnbm ≤ bn+m and by Fekete’s Sub-additive Lemma, there exists
a constant β(Γ, h), where Γ = Γ(G,S), such that

β(Γ, h) = lim
n→∞

n
√
bn.

This process is done for a larger class of graphs [GL18], and helps us compute connective constants.

Theorem 4.5.5 (General Bridge Theorem [Lin20]). Let Γ be an infinite, connected, locally finite, quasi-
transitive graph. Then, if Γ admits a graph height function (h,H),

µ(Γ) = max{β(Γ, h), β(Γ,−h)}.

Using this result, we can find conditions under which periodic SAWs approximate the connective constant.
In other words, periodic points from G,S approximate its entropy.

Theorem 4.5.6. Let G be a finitely generated group and S a finite generating set. If Γ(G,S) admits a graph
height function (h,H) such that H acts transitively on Γ(G,S), then

µ(G,S) = lim
n→∞

n
√
en,

where en denotes the number of periodic points of period n ∈ N in G,S.

Proof. Let us denote by b̄n the minimum over all g ∈ G of the number of bridges of length n starting at g for
the graph height function (H,−h). Because H acts transitively on Γ(G,S), there is a single H-orbit. Thus, by
Lemma 4.5.3, every bridge for h or −h can be iterated to obtain a periodic point. This means,

max{bn, b̄n} ≤ en ≤ cn.

By taking the nth root and limit, Theorem 4.5.5 implies,

µ(G,S) = max{β(Γ, h), β(Γ,−h)} ≤ lim
n→∞

n
√
en ≤ µ(G,S).

Examples of Cayley graphs with a graph height function (h,H) such that H acts transitively are given by
Cayley graphs that admit strong graph height function where H = G. Strong graph height functions are graph
functions where we also ask for H to be a finite index subgroup of G, and to act by left translations [GL17b].
A class of groups that admit such functions are groups with strictly positive first Betty number [GL17a]. Other
sufficient conditions can be found in [GL20].

4.5.2 Lower bounds with self-avoiding polygons
What other methods can we use when graph height functions are not available? We make use of a counting
argument popularized by Rosenfeld [Ros20] to find lower bounds on the connective constant by studying the
sets of forbidden patterns defining the skeleton. Rosenfeld found the following criterion for subshifts.

Theorem 4.5.7 ([Ros22], Corollary 12). Let A be a finite alphabet and F ⊆ A+ a set of connected forbidden
patterns. If there exists a positive real number β > 1 such that

|A| ≥ β +
∑
n≥0

fnβ
1−n,

then α(XF ) ≥ β, where fn is the number of forbidden patterns of length n, that is, fn = |F ∩An|.
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Therefore, we can use the different forbidden patterns we have found so far for the skeleton to find lower
bounds for the connective constant. From Lemma 4.3.3, we know the set of SAPs along with words of the form
ss−1 define a set of forbidden patterns for the skeleton.

Proposition 4.5.8. Let (G,S) be a finitely generated group. If there exists a positive real number β such that

|S| − 1 ≥ β +
∑
n≥0

ρnβ
1−n,

then µ(G,S) ≥ β, where ρn the number of SAPs of length n, that is, ρn = |OG,S ∩ Sn|.

The proof of the proposition is essentially the same as the one from [Ros22], and the core ideas of the proof
are also found in the next section.

This approach is different from the usual use of self-avoiding polygons to approximate µ(G,S) in the litera-
ture. We define the asymptotic growth rate for SAPs through

µSAP = lim sup
n→∞

√
ρn.

It has been shown that µSAP = µ(G,S) for Euclidean lattices [Ham61; Kes63], but µSAP < µ(G,S) for many
non-euclidean lattices, including some Cayley graphs of surface groups [Pan19].

4.5.3 Free Burnside groups
A class of groups where we can use Rosenfeld’s method to obtain lower bounds on the connective constant are
free Burnside groups. These groups were first introduced in the context of the Burnside Problem, which asks if
there exist infinite finitely generated torsion group, where the order of every element is the same.

Given two natural numbers m,n ≥ 1, the free Burnside group B(m,n), is the group generated by m
generators S = {s±

1 , ..., s
±1
m }, and relations wn for every word w ∈ S∗. It was shown that these groups are finite

for n ∈ {1, 2, 3, 4, 6} independently of m [Bur02; San40; Hal58]. Nevertheless, Adian and Novikov showed that
B(m,n) is infinite for odd n ≥ 4381 and any m ≥ 2 [AN68]. Since then, this lower bound has been improved
multiple times [Iva94; Lys96], and is currently sitting at n ≥ 8000 for even exponents, and n ≥ 557 for odd
ones [ART23]. It is an open problem to determine the smallest n for which the group is infinite.

Theorem 4.5.9. Let B(m,n) be the free Burnside group for m,n > 1. If B(m,n) is infinite and β > 1 satisfies

β

βn−1 − 1 + β ≤ 2m− 1,

then µ(B(m,n), S) ≥ β.

Proof. Let Lk be the set of SAWs of length k ∈ N. We will prove by induction that |Lk| ≥ β|Lk−1|, for β > 1
as in the statement. Notice |L0| = 1 as it only contains the empty word, and |L1| = |S| = 2m. By hypothesis,
β ≤ 2m, and therefore |L1| ≥ β|L0|.

Suppose our statement is true up to some n > 0. In particular, for k ≤ n

|Lk−j | ≤
|Lk|
βj

.

Now, because every SAW from Lk can be extended in |S| − 1 = 2m− 1 ways, we have that

|Lk+1| = (2m− 1)|Lk| − |B|,

where B is the set of SAWs that when extended generate a path of length k+ 1 that self-intersects. Notice that
if u ∈ B, it can be written in the form u = u′vn. We define the sets Bi = {u ∈ B | u = u′vn, |v| = i} to obtain
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the upper bound |B| ≤
∑
i≥1 |Bi|. Then, every word in Bi is determined by a word from Lk+1−(n−1)i, namely

u′v. Therefore,

|Bi| ≤ |Lk+1−(n−1)i| ≤
|Lk|

β(n−1)i−1 ,

and consequently,
|B| ≤ |Lk|

∑
i≥1

β1−(n−1)i

Because β > 1, we have a geometric series:

|B| ≤ |Lk|β
βn−1 − 1 .

Finally, joining all the formulas we obtain

|Lk+1| ≥
(

2m− 1− β

βn−1 − 1

)
|Lk| ≥ β|Lk|.

Our induction proven, we can iterate the identity to obtain |Lk| ≥ βk, and thus µ(B(m,n), S) ≥ β.

Corollary 4.5.10. If B(m,n) is infinite and 0 < γ < 1 satisfies

2m− 1 ≥ (γ(1− γ) 1
n−1 )−1, (4.1)

then µ(B(m,n), S) ≥ γ(2m− 1). In particular, for n > 3 and m > 1,

µ(B(m,n), S) ≥ n− 1
n

(2m− 1) >
√

2m− 1.

Proof. Let us take 0 < γ < 1 satisfying (4.1) and denote M = 2m − 1. By rearranging terms from (4.1) we
obtain:

1 ≤ (1− γ)γn−1Mn−1.

Then, multiplying the expression by −M and rearranging terms we obtain

−M ≥ (γn − γn−1)Mn,

≥ γnMn − γn−1Mn + γM − γM,

≥ γM(γn−1Mn−1 − 1)− γn−1Mn + γM.

Next, we rearrange terms to obtain

(γn−1Mn−1 − 1)M ≥ γM(γn−1Mn−1 − 1) + γM.

Finally, as γ < 1 satisfies (4.1), we also know γn−1Mn−1 − 1 > 0. Thus,

M ≥ γM + γM

γn−1Mn−1 − 1 .

By Theorem 4.5.9, µ(B(m,n), S) ≥ γ(2m − 1). Finally, γ = n−1
n satisfies (4.1) and γ(2m − 1) >

√
2m− 1 for

n > 3 and m > 1.
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4.6 Geodesic skeletons
A geodesic is always a self-avoiding walk. It is then natural to see what changes when we restrict a group’s
skeleton to bi-infinite geodesics. Recall from Chapter 3, that the geodesic skeleton of G with respect to S is
defined by

g
G,S = {x ∈ G,S | ∀w ⊑ x,w′ =G w : |w| ≤ |w′|}.

This subshift is contained in the skeleton G,S , and the locally admissible language given by its defining
forbidden patterns is Geo(G,S). In particular, it is generated by taking Geo(G,S)c as the set of forbidden
patterns. As was the case with the skeleton, g

G,S is empty if and only if the group is finite; this is due to
Watkins who showed that every transitive infinite graph contains a bi-infinite geodesic [Wat86].

SFT geodesics We have a sufficient condition for the geodesic skeleton to be an SFT coming from a result
by Gilman, Hermiller, Holt and Rees [Gil+07] that characterizes virtually free groups. They showed that for
a finitely generated group G, there exists a finite generating set S such that Geo(G,S) is k-locally excluding,
that is, there exists a set F of words of length k such that a word w ∈ S∗ is geodesic if no factor of length k
belongs to F , if and only if G is virtually free. An immediate consequence is the following.

Proposition 4.6.1. Let G be a virtually free group. Then, there exists S such that g
G,S is a SFT.

Effective geodesics

Lemma 4.6.2. Let G be a finitely generated recursively presented group. Then, g
G,S is effective for every

generating set S.

Proof. We describe a co-semi-algorithm for Geo(G,S). By using an enumeration for the word problem, we can
test every word w′ of length |w′| < |w| to see if they define the same group element, i.e. w′w−1 =G 1G. If one
such w′w−1 appears in the enumeration, we know w is not geodesic and accept. If w is not geodesic, w′w−1 will
eventually be enumerated, for some w′ of shorter length. When w ∈ Geo(G,S) the algorithm never stops.

In other words, the effectiveness of g
G,S is a consequence of the fact that a recursively enumerable word

problem implies that the language of geodesics is co-recursively enumerable.

Sofic geodesics As we saw in Proposition 3.2.10 from the previous chapter, g
G,S is sofic when Geo(G,S) is

regular. In order to find a characterization of groups that admit a geodesic skeleton that is sofic, we must look
at geodesics that are not extendable. These elements are precisely the ones known as dead-ends. An element
g ∈ G is a dead-end with respect to the generating set S if for all s ∈ S we have d(1G, gs) ≤ d(1G, g).

Proposition 4.6.3. Let G be a finitely generated group along with a generating set S. Then, g
G,S is sofic and

the language of geodesics defining dead-ends is regular if and only if Geo(G,S) is regular.

Proof. Let us denote by D the language of geodesics defining dead-ends. The language of prefixes of a regular
language is regular and the language of inverses of a regular language is regular. Then, if D is regular, the
languages pD and pD′ denoting the set of prefixes of D and the set of inverses of prefixes of D respectively,
are regular. If Geo(G,S) is regular, then D is regular: it suffices to take the minimal deterministic finite
state automaton with a single sink state for Geo(G,S) and only keep accepting states where every outgoing
transitions goes to the sink state. Take the union L = L( g

G,S) ∪ pD ∪ pD′. This language is regular, as the
union of regular languages is regular. Let us show L = Geo(G,S). The first inclusion L ⊆ Geo(G,S) is direct
as L( g

G,S) ⊆ Geo(G,S), inverses of geodesics are geodesic and prefixes of geodesics are geodesics.
Next, take w ∈ Geo(G,S). If w is bi-infinitely extendable as a geodesic, then w ∈ L( g

G,S) ⊆ L. If w is not
bi-extendable, it can fail to be extended to the right or to the left. Suppose it is not extendable to the right.
Then there exists v ∈ S∗ such that wv ∈ Geo(G,S) and wvs /∈ Geo(G,S) for all s ∈ S. This means w is a
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prefix of the dead-end wv, and therefore w ∈ pD ⊆ L. Finally, if w is not extendable to the left, there exists
v ∈ S∗ such that vw ∈ Geo(G,S) and svw /∈ Geo(G,S) for all s ∈ S. This is the same as, w−1v−1 ∈ Geo(G,S)
and w−1v−1s /∈ Geo(G,S) for all s ∈ S. This means w is the inverse of a prefix of the dead-end represented by
w−1v−1, and thus w ∈ pD′ ⊆ L.

Corollary 4.6.4. Let G be a finitely generated group with generating set S, and Z = ⟨t⟩. Then, g
G∗Z,S∪{t±1}

is sofic if and only if Geo(G,S) is regular.

Proof. The language of dead-ends of G ∗ Z is empty as any geodesic can be extended by t±1. Furthermore,
any geodesic in G ∗ Z can be decomposed as geodesics on G separated by factors of the form t±n. Therefore,
Geo(G ∗ Z, S ∪ {t±1}) is regular if and only if Geo(G,S) is regular. By Proposition 4.6.3 this happens if and
only if g

G∗Z,S∪{t±1} is sofic.

We pose the following question for sofic geodesic skeleton.

Question 4.6.5. Is g
G,S sofic if and only if Geo(G,S) is regular?

Periodic geodesics As was the case for the skeleton (Theorem 4.3.17), the aperiodicity of the geodesic
skeleton also characterizes torsion groups.

Theorem 4.6.6. Let G be a finitely generated group. Then, G is a torsion group if and only if g
G,S is aperiodic

for every (any) generating set S.

Proof. Suppose G contains a torsion-free element g. Then, by Proposition 4.3.16 for any generating set S, there
exists k ≥ 1 and w ∈ S∗ a geodesic for gk such that w∞ ∈ g

G,S , which is a periodic configuration. Conversely,
if there exists a periodic configuration x = w∞ ∈ g

G,S for some generating set S, then g = w is a torsion-free
element.

4.6.1 Entropy and connective constant for geodesics
The objective of this section is to define an analog of the connective constant for geodesics. This relies on
finding the asymptotic growth rate of geodesics of a given length. The geodesic growth of G with respect to
S is the map ΓG,S : N→ N given by

ΓG,S(n) = |{w ∈ Geo(G,S) | |w| ≤ n}|.

The geodesic growth of groups has been extensively studied, especially in the case of virtually nilpotent
groups [Bri+12; BE22; Bis21; Bod23]. Because this function is sub-multiplicative we can define the geodesic
connective constant of the Cayley graph Γ(G,S) as

µg(G,S) = lim
n→∞

n

√
ΓG,S(n).

An argument analogous to the one in Remark 4.2.5 shows that µg(G,S) is equal to the growth rate of the
number of geodesics of length exactly n. Thus, the geodesic growth is an upper bound on the complexity of
g
G,S . Because Geo(G,S) is the set of locally admissible words for the geodesic skeleton, we use Lemma 1.4.16

to obtain an expression for the entropy.

Lemma 4.6.7. Let G be a finitely generated group along with a generating set S. Then,

h( g
G,S) = log(µg(G,S)).

In other words, the geodesic connective constant is equal to the connective constant of bi-extendable geodesics.
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Same as with the connective constant, the geodesic version is a non-negative rational power of a Perron
number when g

G,S is sofic, and a right-computable number when g
G,S is effective. It is also a lower bound

of the connective constant, that is, µg(G,S) ≤ µ(G,S). This inequality may be strict: graphs may have
geodesic connective constant equal to 1 without being finite. As shown in [Bri+12], the virtually Z2 group
H = ⟨a, t | [a, tat−1], t2⟩, has geodesic growth of order O(n3) and therefore,

µg(H, {a, t}) = 1 <
√

3 ≤ µ(H, {a, t}).

This is also the case for lattices with known (or well-approximated) connective constants.

Proposition 4.6.8. The geodesic connective constants of the square grid, ladder graph and hexagonal grid are
as follows:

• µg(Z2) = 2,

• µg(L) = 1,

• µg(H) =
√

2.

Proof. • For the square lattice, we know that ΓZ2,{a,b}(n) ≤ 2n+3 which implies h( g
Z2,{a,b}) = log(2), as

g
G,S contains the full-shift {a, b}Z.

• Recall that the ladder graph L is the Cayley graph of Z×Z/2Z with generating set {t, s}, where s2 =G ε
and t is the generator for Z. In this case, the geodesic growth is given by Γ(n) = n2 + 3n when n ≥ 2.
Thus, the geodesic connective constant is 1.

• Also recall that the hexagonal grid H is the Cayley graph of the Coxeter group Ã2 with generating set
{a, b, c} (see Example 1.3.29). From [Ava04] we know that the generating function for the geodesic growth
of Ã2 in this case is given by

f(z) = 2z3 + z2 + z + 1
(1− z)(1− 2z2) .

Thus, the geodesic connective constant is given by the reciprocal of the smallest zero of the denominator,
which is

√
2.

On the other hand, if we take the infinite dihedral group D∞ with the generating set S = {a, b} as seen in
Example 3.2.2, we have that µ(D∞, S) = µg(D∞, S) = 1.

Question 4.6.9. Under which conditions µ(G,S) = µg(G,S)? Under which conditions is the inequality strict?
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Aperiodicity
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Chapter 5
Strong Aperiodicity, Weak Aperiodicity and Everything

In Between

The theory of aperiodic tilings sprung to life following Berger’s construction of the first aperiodic tileset in
his proof of the undecidability of the Domino Problem [Ber66]. He constructed a set of 20426 Wang tiles
that define a strongly aperiodic subshift of finite type, that is, every tiling of the plane by this tileset is
aperiodic. This discovery launched a rich theory intersecting different areas such as symbolic dynamics [Rie22],
computability [Jea10], and quasi-crystals [BG13], to mention a few.

Concerning Wang tiles, Robinson found an aperiodic Wang tileset of only 56 tiles that greatly simplified
the proof of the undecidability of the Domino Problem [Rob71]. Many other aperiodic Wang tilesets where
constructed by Amman in the 70s [GS87]. In 1996, Kari and Culik constructed a set of 13 tiles by coding orbits
of piecewise linear functions [Kar96; Cul96]. This quest culminated in Jeandel and Rao’s work [JR21], who
showed that the smallest aperiodic Wang tileset is of size 11 (see Figure 5.1).

Figure 5.1: The Jeandel-Rao tileset. This tileset has the smallest possible size for an aperiodic Wang tileset.

The theory of aperiodic tilings has also grown to study aperiodic tilings on Riemannian manifolds other
than the Euclidean plane. In this context, a tiling is aperiodic if it is fixed-point free by symmetries from the
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isometry group of the manifold. When leaving the plane, there is an interesting phenomenon that occurs: there
are two non-equivalent notions of aperiodicity. This was observed by Mozes, who introduced the notions of weak
and strong aperiodicty [Moz97]. Since then, many manifolds have been shown to admit weakly and strongly
aperiodic tilsets, although most of them are of geometric nature, many of them can be seen as tilings of the
fundamental group of the space. For instance, Penrose constructed a weakly aperiodic tileset on the hyperbolic
plane [Pen79], Kari and Culik constructed weakly and strongly aperiodic tilesets on Euclidean spaces of di-
mension d > 2 [CK95], Block and Weinberg constructed weakly aperiodic tilings for many spaces, that include
non-amenable manifolds [BW92], Mozes constructed weakly and strongly aperiodic tilesets on certain classes of
Lie groups [Moz97], Goodman-Strauss constructed strongly aperiodic tilings on the hyperbolic plane [Goo05],
and Marcinkowski and Nowak constructed weakly aperiodic tilings on many manifolds and groups, including
the Grigorchuk group [MN14].

In this chapter we explore aperiodic tilings from the point of view of symbolic dynamics, viewing them as
weakly and strongly aperiodic subshifts of finite type. In this field, the study of periodicity goes back to its
origins, as it informs many properties of symbolic spaces. For instance, in their foundational article [MH38],
Morse and Hedlund showed that a Z-subshift X is periodic if and only if its complexity function satisfies
pX(n) ≤ n for some n ∈ N. The formulation of aperiodicity in terms of subshifts first appeared in [KS88],
where Kitchens and Schmidt made explicit links between Wang tilings and SFTs. They observed that, because
every non-empty Z-SFT has periodic points (see [LM21]), Z does not admit aperiodic subshifts of finite type
of any kind. This study was later expanded to other finitely generated groups by Piantadosi, who showed the
existence of a weakly aperiodic SFTs on free groups [Pia08]. The current project is to understand which ge-
ometric and algebraic conditions allow for the existence of weakly and strongly aperiodic subshifts of finite type.

The objective of this chapter is to explore the state of the art on the existence of both weakly and strongly
aperiodic SFTs. We begin by looking at the strongly aperiodic case in Section 5.1. We then move on to the
weakly aperiodic case in Section 5.2, where after revisiting the current state of the art, we prove new connections
between the Domino Problem and weakly aperiodic SFTs, as well as exploring connections with percolation
theory, the Angel Game, and the dynamics of cellular automata. Next, in Section 5.3, we take the study
of (a)periodicity of subshifts of finite type further by looking at exactly which subgroups can be obtained as
stabilizers of configurations in SFTs. In Section 5.4 we look at the class of periodically rigid groups, that is,
groups that exhibit the same aperiodicity phenomenon as Z2: every weakly aperiodic SFT must be strongly
aperiodic.

5.1 Strongly aperiodic SFTs

Recall that a subshift X ⊆ AG is said to be strongly aperiodic if it is non-empty and the shift action of the
group on X is free, i.e. stab(x) = {1G} for every x ∈ X.

There are several structural and algorithmic necessary conditions that a group must satisfy in order to allow
a strongly aperiodic SFT. The first of these is due to Jeandel, and relates aperiodicity to the word problem of
the group.

Theorem 5.1.1 (Jeandel [Jea15a]). Let G be a finitely generated group. If G admits a strongly aperiodic SFT,
then WP(G) ≤e coWP(G). In particular, if G is recursively presented it has decidable word problem.

Recall from Remark 1.2.16 that a set satisfying A ≤e coA is called co-total. Thus, Jeandel’s theorem states
that the existence of strongly aperiodic SFTs implies that the word problem of the group is co-total.

The next restriction is due to Cohen, who related the existence of strongly aperiodic SFTs to the large scale
structure of the group, specifically the amount of ends.
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Theorem 5.1.2 (Cohen [Coh17]). If G is a finitely generated group with at least two ends, then it does not
admit a strongly aperiodic SFT.

The proof of this result relies on what are known as n-axial elements of the group. The original proof of the
existence of such elements contained some mistakes that where later patched by Salo and Genevois [Sal; Gen].
For completion’s sake, let us give an alternative proof using the theory of ends by Halin, that we introduced in
Section 4.4.1.

Definition 5.1.3. Let G be a finitely generated group with generating set S.

• Take three finite subsets F0, F1 and F2 of G that induce connected subgraphs in the Cayley graph Γ(G,S).
We say F1 separates F0 from F2 if F0 and F2 lie in different connected components of Γ(G,S) \ F1.

• For n ∈ N we say g ∈ G is n-axial if for every i < j < k the set gj · BS(n) separates gi · BS(n) from
gk ·BS(n).

Lemma 5.1.4. Let G be a finitely generated group with generating set S. If G has two or more ends, there
exists NG ∈ N such that for all n ≥ NG there exists an n-axial element.

Recall from Section 4.4.1 that an end ω of Γ(G,S) is thin if there exists m ∈ N such that there are at most
m disjoint rays defining the end. The end is thick otherwise. Furthermore, any graph with more at least two
ends has a thin end (see [Hal73]).

Proof. Let G be a group as in the statement. As G has at least two ends, its Cayley graph has a thin end of
size m for some m ∈ N. Then, by Lemma 4.4.7, Γ(G,S) contains a strip of size m, defined by a torsion-free
group element g ∈ G and A ⋐ G such that (gn ·A) and (g−n ·A) are defining sequences for the ends D(g) and
D(g−1) respectively. Furthermore, A separates D(g) from D(g−1) in the sense that no connected component
from Γ(G,S) \ A contains rays defining different ends. Because Γ(G,S) is transitive, we can assume without
loss of generality that 1G ∈ A.

BS(n) gm ·BS(n)

gk+1 ·A

A gm ·AD(g−1) D(g)

Figure 5.2: An example of a g-strip of size 2 with defining set A, in red. We can separate translates of the ball
BS(n) provided we take a sufficiently large exponent for g.

Let NG be the smallest N ∈ N such that A ⊆ BS(N). Next, take n ≥ NG and let k = k(n) ∈ N be the
maximum exponent such that either gk · A ∩ BS(n) ̸= ∅ or g−k · A ∩ BS(n) ̸= ∅. Thus, for m ≥ 2(k + 1) we
have that gm · BS(n) ∩ BS(n) = ∅ and g−m · BS(n) ∩ BS(n) = ∅ as they are separated by g−(k+1) · A and
gk+1 ·A respectively (see Figure 5.2). Therefore, gm is an n-axial element.

With an axial element at hand, Cohen simulates the behavior of Z in the group, and is able to recreate the
proof of the non-existence of aperiodic SFTs on Z.

By combining Jeandel and Cohen’s results, we arrive at the following conjecture.

Conjecture 5.1.5. Let G be a finitely generated group. G admits a strongly aperiodic SFT if and only if G
is one ended and has decidable word problem.
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Notice however that Jeandel’s Theorem does not rule out the existence of groups with undecidable word
problem that satisfy WP(G) ≤e coWP(G) and admit a strongly aperiodic SFT. In fact, some researchers believe
such groups exist1. So far, the conjecture has been shown to hold for the following classes of finitely generated
groups:

• Virtually polycyclic groups [Jea15b],

• Solvable Baumslag-Solitar groups, originally obtained in [EM22a] with an alternative proof in [AS24],

• The Ivanov monster group, for which every element is cyclic and contains a finite number of conjugacy
classes, and the Osin monster groups, which contains two conjugacy classes [Jea15a],

• Surface groups [CG17], and more generally hyperbolic groups [CGR22],

• Groups of the form Z2 ⋉ϕ H where H has decidable word problem [BS19]. An indepent proof also exists
for the particular case of the Heisenberg group [ŞSU21],

• Groups of the form G × H × K where each group has decidable word problem [Bar19]. This includes
finitely generated branch groups with decidable word problem such as the Grigorchuk group,

• Self-simulable groups with decidable word problem [BSS21]. Self-simulable groups include the direct
product of any two non-amenable groups as well as Thompson’s group V , Burger-Mozes simple finitely
presented group, braid groups on more than 7 stands, some RAAGs, among others,

• Groups of the formH×N where both groups have decidable word problem andN is non-amenable [BSS23].
This includes some groups who where previously known to admit strongly aperiodic SFTs such as Z× V ,
Z× T and Z× PSL2(Z) where V and T are Thompson’s groups [Jea15a],

• the Lamplighter group [BS24].

In the next chapter we add generalized Baumslag-Solitar groups to the list, which in particular contain all
Baumslag-Solitar groups.

A particularly important property of strong aperiodicity is that it is a geometric property for finitely pre-
sented groups.

Theorem 5.1.6 (Cohen [Coh17]). Let G and H be two quasi-isometric finitely presented groups. Then, G
admits a strongly aperiodic SFT if and only if H does.

A similar invariance result for finitely generated groups has been obtained for commensurable groups.

Theorem 5.1.7 (Carroll, Penland [CP15]). Let G and H be two finitely generated groups which are commen-
surable. Then, G admits a strongly aperiodic SFT if and only if H does.

As we saw in Section 1.3.6, commensurability implies quasi-isometry, but the converse does not always hold.

To finish this section, let us comment on what happens when one alleviates the restrictions of finite type
or finite generation. Gao, Jackson and Seward showed that every countable group admits a strongly aperiodic
subshift [GJS09]. This was later improved upon by Aubrun, Barbieri and Thomassé who in addition to finding
an alternative proof for the result using the Lovász Local Lemma, showed that when the group is recursively
presented the constructed strongly aperiodic subshift is effectively closed [ABT19].

On the side of non-finitely generated groups, Barbieri characterized groups that admit strongly aperiodic
SFT in terms of their finitely generated subgroups.

1Sebastián Barbieri, personal communication.
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Theorem 5.1.8 (Barbieri [Bar23a]). A group G admits a strongly aperiodic SFT if and only if there exists a
finitely generated subgroup H ≤ G and a non-empty H-SFT X such that for every g ∈ G \ {1G} there exists
t ∈ G and n ∈ N such that tgnt−1 ∈ H \

⋃
x∈X stab(x).

The strongly aperiodic shift comes from taking the free extension of X onto G (see Definition 1.5.1). This
allowed Barbieri to show that groups such as Q2 admit strongly aperiodic SFT, and to find an alternative proof
for the existence of such SFTs on the Osin monster group.

5.2 Weakly aperiodic SFTs
Recall that a subshift X is weakly aperiodic if it is non-empty and every orbit under the group action is
infinite.

Our first observation is that for infinite groups, any strongly aperiodic SFT is weakly aperiodic, as the orbit
of any configuration is in bijection to the quotient of the group by the corresponding stabilizer. This already
gives us a number of examples of groups that admit weakly aperiodic SFTs. Nevertheless, there are groups that
admit weakly aperiodic SFTs, but not strongly aperiodic ones, such as free groups (by Theorem 5.1.2). In 2015,
Carroll and Penland showed that the only virtually nilpotent groups that do not admit weakly aperiodic SFTs
are virtually Z groups [CP15]. This motivated them to propose the following conjecture.

Conjecture 5.2.1. Let G be a finitely generated group. Then, G admits a weakly aperiodic SFT if and only
if it is not virtually Z.

At the time of writing, the following classes of finitely generated groups have been shown to satisfy this
conjecture:

• Virtually nilpotent groups [BS18; CP15], and more generally virtually polycyclic groups [Jea15b],

• Baumslag-Solitar groups [AK13],

• Hyperbolic groups [CP06; Gro87],

• Non amenable groups [Jea15c; BW92],

• Non residually finite groups [Jea15c],

• Infinite finitely generated p-groups [Jea15c; MN14],

• Groups of the form G1 × G2 where both groups are infinite [Jea15c]. This shows the Grigorchuk group
admits a weakly aperiodic SFT, which was also obtained in [MN14],

• The Lamplighter group [Coh20].

In the next chapter we show generalized Baumslag-Solitar groups and Artin Groups also satisfy the conjec-
ture.

There are also many properties satisfied by groups which do admit weakly aperiodic SFTs. We summarize
these properties in the following proposition.

Proposition 5.2.2. Let G be a finitely generated group. The following hold,

• If G is commensurable to H, and H admits a weakly aperiodic SFT, then so does G [CP15],

• If a subgroup H ≤ G admits a weakly aperiodic SFT, then so does G (see Lemma 1.5.4),

• For a finitely generated normal subgroup N ⊴ G, if G/N admits a weakly aperiodic SFT, then so does G
(see Proposition 5.3.9),
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• If a finitely presented group H acts translation-like on G, and H admits a weakly aperiodic SFT, then so
does G [Jea15c].

Furthermore, if G does not admit a weakly aperiodic SFT,

• For every n ∈ N there must exist a finite index subgroup H ≤ G such that n divides [G : H] [Jea15c,
Corollary 3.3] (see also [MN14]),

• If G is finitely presented, then it must contain a finite index subgroup H that surjects into Z [Coh20]
(groups with this property are called virtually indicable),

• If G is finitely presented and is quasi-isometric to a finite presented group H, then there must exist
G0 ≤ G and H0 ≤ H finite index subgroups such that H0 is isomorphic to a quotient of G0 by a finite
subgroup [Coh17].

In the following sections we will add properties of groups that admit weakly aperiodic SFTs related to
computability, and explore problems with similar conjectures and behavior to Carroll and Penland’s conjecture.

5.2.1 Connections with decision problems and computability
There has always been an intuitive sense that the undecidability of the Domino Problem is linked to aperiodicity.
In this section we establish a direct connection for groups where we can recursively enumerate finite quotients.
This is done through Wang’s algorithm: we test in parallel if the subshift is empty and if there is a periodic
point.

Lemma 5.2.3. If a recursively presented group G has undecidable Domino Problem, and the Periodic Domino
Problem is in Σ0

1, then it admits a weakly aperiodic SFT.

Proof. Suppose G does not admit weakly aperiodic SFTs. This means that every SFT contains a periodic point.
Let S be a finite generating set for G and F a set of nearest neighbor patterns over an alphabet A. Under these
conditions, Wang’s Algorithm provides a decision procedure for the Domino Problem on G. More precisely,
because the group is recursively presented the Domino Problem on G is in Π0

1, that is, there is a procedure that
given F accepts if and only if XF is empty. Therefore, what we do is run the Π0

1 procedure for the Domino
Problem, and the Σ0

1 procedure for the Periodic Domino Problem in parallel. This way, XF is empty if and
only if the Domino Problem procedure stop, and XF is non-empty if and only if the procedure for the Periodic
Domino Problem stops, as every non-empty SFT has a periodic point under our assumptions. This procedure
shows the Domino Problem on G is decidable, which contradicts our assumption.

This lemma allows us to connect the Domino Problem with aperiodicity for certain groups, as stated below.

Theorem 5.2.4. Let G be a finitely presented group with decidable word problem. If G has undecidable Domino
Problem, it admits a weakly aperiodic SFT.

Proof. Finitely presented groups with decidable word problem have CFQ, as explained in Section 2.3.1. By
Proposition 2.3.4, the Periodic Domino Problem for G is in Σ0

1. Finally, as G has undecidable Domino Problem,
it admits a weakly aperiodic SFT by Lemma 5.2.3.

Another aspect of subshifts linked to aperiodicity is the computability of its configurations. Let X ⊆ AG be
a subshift over a finitely generated group with generating set S. We say a configuration x ∈ X is computable
if there is an algorithm that given w ∈ S∗ outputs x(w) ∈ A. We say a subshift is uncomputable if it contains
no computable configurations. The first examples of an uncomputable SFT was given by Hanf and Myers on
Z2 [Han74; Mye74]. In the next proposition we link uncomputable SFTs to weak aperiodicity.

Proposition 5.2.5. Let G be a finitely generated group and X ⊆ AG an SFT. If X is uncomputable, then it is
weakly aperiodic.
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Proof. Fix a generating set S. Suppose X is not weakly aperiodic. Then, there exists a periodic configuration
x ∈ X, that is, a configuration such that [G : stab(x)] < +∞. Let N ⊴ G be a finite index normal subgroup
contained in stab(x), and ρ : G/N → G a section. Because x is periodic, every element coset Nρ(h) maps to the
same letter ah ∈ A, for all h ∈ G/N . Now, let π : S → G/N be the map over the generating set S that extends
to the quotient map G → G/N . The algorithm to compute x is as follows; given w ∈ S∗ compute its image
π(w) = π(w1)...π(wn) ∈ G/N , and the output the letter aπ(w). Therefore, X has a computable point.

The previous proposition also shows that every SFT on a virtually Z group contains a computable point.
Are this the only groups where this occurs?

Question 5.2.6. Which finitely generated groups admit uncomputable SFTs?

5.2.2 Analogies: percolation, angels and cellular automata
The problem of determining which groups admit weakly aperiodic SFTs resembles problems from probability
theory, combinatorics and topological dynamics. In this section, we briefly explain these problems and look at
possible strategies towards a resolution of Carroll and Penland’s conjecture.

Percolation

The first comparison we make is with the theory of percolation. From its origin in the field of statistical
physics [BH57], the theory of percolation now comprises over 60 years of research in probability theory, combi-
natorics and graph theory [Dum18]. We only touch on this topic briefly, and will not go deeper on many aspects
of the theory. For a comprehensive background on percolation see [BR06; Gri89].

Let Γ = (V,E) be an infinite connected graph. We represent subgraphs of Γ through function γ : E → {0, 1},
where γ(e) = 1 represents the fact that the edge e belongs to the subgraph. Bernoulli bond percolation is
a model for random subgraphs of Γ, where each edge belongs to a subgraph with probability p ∈ [0, 1]. That is,
(γ(e))e∈E form a family of i.i.d. Bernoulli variables of parameter p. This induces a probability measure Pp on
the subgraphs of Γ. The critical parameter of Γ is the quantity,

pc(Γ) = inf{p ∈ [0, 1] | Pp(∃ infinite connected component in Γ) > 0}.

One of the main problems in percolation theory is to determine under which conditions Γ satisfies pc(Γ) < 1.
We are interested in the particular case where Γ is the Cayley graph of a finitely generated group. Here, the
fact that the critical parameter is strictly less that 1 is independent of the generating set (it is in fact invariant
under quasi-isometries [LP16, Theorem 7.15]), so we can talk about the critical parameter of the group. In their
celebrated 1996 article, Benjamini and Schramm proposed the following conjecture for percolation on Cayley
graphs.

Conjecture 5.2.7 ([BS96]). For any finitely generated group G, pc(G) < 1 if and only if G is not virtually Z.

The conjecture was initially solved for finitely presented groups [BB99], groups with polynomial growth, and
groups with exponential growth [Lyo95]. This left the case of intermediate groups open. For such groups, it
was shown that Grigorchuk groups [MP01] and indicable groups [RY17] verify the conjecture. The conjecture
was finally proven by Duminil-Copin, Goswanmi, Raoufi, Severo and Yadin through the use of Gaussian Free
Fields [Dum+20].

The similarities between the conjecture for the critical parameter and the conjecture for weakly aperiodic
SFTs was first noted by Jeandel in [Jea15c]. He also noted that the problems have similar inheritance properties:

• If H ≤ G with pc(H) < 1, then pc(G) < 1,

• If Q is a quotient of G with pc(Q) < 1, then pc(G) < 1
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• If H acts translation-like on G and pc(H) < 1, then pc(G) < 1.

Question 5.2.8. Is there an explicit link between percolation and weakly aperiodic SFTs?

Even if there is no explicit link between the two problems, it could be fruitful to understand which structural
properties of different groups account for the results in percolation, and how they can be exploited to obtain
weakly aperiodic SFTs.

The Angel Game

The next comparison we draw is with the Angel Game. This game consists on two players, the angel and
the devil, who take turns to play on a locally finite connected infinite graph Γ = (V,E). The angel has a fixed
power p ∈ N and begins on a fixed root r ∈ V . We call such an angel a p-angel. On their turn, the angel
can jump to any vertex at distance at most p from its current position. On the devil’s turn, the devil burns
a vertex of the graph that is not the one on which the angel is currently standing on. Once a vertex has been
burned, it remains burnt and it cannot be visited by the angel. The objective of the angel is to escape, that
is, to eventually leave any ball around the root.

The current formulation of the Angel Game was introduced in [BCG82, Chapter 19], and expanded to
infinite graphs by Conway in [Con96]. The original problem was to determine if there exists a power p such
that the p-angel escapes on Z2. This question was answered positively by Kloster [Klo07], Máthé [Mát07] and
Bowditch [Bow07]. It was also answered positively by Kutz [Kut05], Bollobás and Leader [BL06] in the case of
Z3. These last works on three dimensions prompted Bowditch to generalize the problem to locally finite graphs.
He proposed the following definition.

Definition 5.2.9. A locally finite connected infinite graph Γ is said to be diabolical if the devil traps the
angel of any power, independently of the starting position. A group G is diabolical if it admits a diabolical
Cayley graph.

Bowditch sketched proofs for the fact that being diabolical is invariant under quasi-isometries and noted
that if an angel escapes on a subgraph, it must escape on the whole graph. Furthermore, he asked if the only
diabolical groups are virtually Z groups. We restate this question in the form of a conjecture.

Conjecture 5.2.10. A finitely generated group is diabolical if and only if is virtually Z.

To tackle this conjecture, let us introduce some notation. What follows is unpublished joint work with
Eduardo Silva on the Angel Game on graphs and groups.

Let Γ = (V,E) be a locally finite connected infinite graph, and let d : V × V → N denote its combinatorial
distance. We call the starting position of the angel, r ∈ V , the root of Γ, and we write BΓ(n) for the ball of
radius n ∈ N centered at r. The location of the angel at time n will be denoted by σ(n) ∈ V , the vertex the
devil burns at time n by b(n), and the set of all vertices burned at time n by ∆(n). This way, we can represent
the fact that:

• the angel starts at the root by σ(0) = r,

• the angel never visits a burnt vertex by σ(n) ̸∈ ∆(n− 1),

• the graph begins without burnt vertices by ∆(0) = ∅.

If the angel has power p, then d(σ(n), σ(n + 1)) ≤ p. Finally, because the devil burns one vertex per turn, we
have that |∆(n)| = n and ∆(n+ 1) = ∆(n) ∪ {b(n+ 1)}.

Given a graph Γ and a root r, we say the rooted graph (Γ, r) is diabolical, if the angel starting at r can’t
escape. The following proposition shows that being diabolical is independent of the root.
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Proposition 5.2.11. Let Γ = (V,E) be an infinite locally finite connected graph. The following are equivalent.

1. For some r ∈ V , the rooted graph (Γ, r) is diabolical.

2. For every r ∈ V , the rooted graph (Γ, r) is diabolical.

Proof. It is straightforward that (2) implies (1), so we only need to prove the reverse implication. Suppose that
(Γ, r) is diabolical for some r ∈ V , and looking for a contradiction suppose there exists r′ ∈ V such that (Γ, r′)
is not diabolical. That is, there exists p ≥ 1 such that an angel of power p has a winning strategy in (Γ, r′). If
we consider the angel of power p+d(r, r′) in (Γ, r), we see that they have a winning strategy: the angel wins by
moving exactly as the angel in (Γ, r′) does. This is of course a contradiction since we had supposed that (Γ, r)
was diabolical.

Let us establish some invariance and inheritance properties satisfied by diabolical graphs and groups. Notice
that if the angel can escape in a graph Γ, it can escape in any graph that contains Γ as a subgraph by simply
ignoring vertices that are not from Γ. In other words,

Lemma 5.2.12. Let Γ be a graph and Γ′ ⊆ Γ a subgraph. If Γ is diabolical, then Γ′ is diabolical.

We can do something similar for groups and their quotients.

Lemma 5.2.13. Let G be a finitely generated group and Q a quotient of G. If Q is not diabolical, then G is
not diabolical.

Proof. Let S be a generating set for G. For Q, take the generating set π(S) where π : G ↠ Q is the canonical
surjection. This way, π is a 1-Lipschitz map between the corresponding word metrics, i.e. dπ(S)(π(g1), π(g2)) ≤
dS(g1, g2). Because Q is not diabolical, there exists some power p such that the p-angel escapes in Q. We call
this angel the Q-angel, and denote its strategy by σQ.

Consider a p-angel in G. Its strategy begins by looking at the first step of the Q-angel, σQ(1) = π(s1)...π(sm)
where π(s1)...π(sm) is a geodesic path, and jumps to σ(1) = s1...sm. Now, suppose that the first n steps of
the game have already taken place. At time n + 1 the angel looks at what the Q-angel does when the Q-
devil burns π(b(n)) ∈ Q. If the Q-angel moves to a vertex linked by a geodesic path π(s1)...π(sm′), that is,
σQ(n+ 1) = σQ(n)π(s1)...π(sm′), then the angel moves to σ(n+ 1) = σ(n)s1...sm′ . This way, if the devil in G
manages to trap the angel in ball of radius ρ, it would imply that the Q-devil in manages to trap the Q-angel
within BQ(ρ). This contradict our hypothesis that Q is not diabolical.

The property of being diabolical also behaves well with quasi-isometries and translation-like actions.

Proposition 5.2.14. Being diabolical is a quasi-isometry invariant.

Proof. Let Γ1 and Γ2 be two graphs along with a (λ, c)-quasi-isometry f : Γ1 → Γ2. We proceed by contradiction.
Suppose Γ1 is not diabolical. Then, there exist p and r ∈ V1 such that the p-angel starting from r escapes on
Γ1. We call this angel the Γ1-angel, and denote its strategy by σ1. Let us show the angel starting from f(r) of
power λp + c escapes in Γ2. The first step the angel takes is given by σ(1) = f(σ1(1)). Next, if at step n ∈ N
the devil burns b(n) = f(v) ∈ f(Γ1), we move to σ(n+1) = f(σ1(n+1)), where σ1(n+1) is the vertex to which
the Γ1-angel moves when the Γ1-devil burns v ∈ Γ1. If on the other hand, the devil burns b(n) ∈ Γ2 \ f(Γ1),
the angel simply stays where it is. Because f is a quasi-isometry:

d(σ(n), σ(n+ 1)) = d(f(σ1(n)), f(σ1(n+ 1)))
≤ λd(σ1(n), σ1(n+ 1)) + c

≤ λp+ c.

Finally, if the devil manages to trap the angel on a ball BΓ1(ρ) it means that the Γ1-devil traps the Γ1-angel in
the ball BΓ2(λ(ρ+ c)), which is a contradiction.

The previous proposition gives us a simple proof of one of the directions of the conjecture.
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Proposition 5.2.15. Any virtually Z group is diabolical.

Proof. Because any virtually Z group is quasi-isometric to Z, by Proposition 5.2.14 it suffices to see that Z
is diabolical. If we have an angel of power p starting at 0, it suffices for the devil to burn the intervals
[−2p2 − p,−2p2] ∪ [2p2, 2p2 + p]. The 2p2 term ensures that the angel does not have enough time to reach the
sections being burned.

Proposition 5.2.16. Let G be a finitely generated group and Γ be a graph such that G acts translation-like on
Γ. Then, if G is not diabolical, Γ is not diabolical.

Proof. Let S be a finite set of generators for G. Let us define Ds = {d(v, v ∗ s) | v ∈ VΓ} for s ∈ S. These sets
are bounded as the action is translation-like. Let M > 0 be a uniform bound for all Ds.

Because G is not diabolical, there exists p such that the p-angel starting from 1G escapes in the Cayley graph
Γ(G,S). We call this angel the G-angel, and denote its strategy by σG. Let r ∈ VΓ be any starting point. We
show that the angel of power pM escapes in Γ. The angel’s strategy begins by moving to σ(1) = r∗σG(1). Next,
if at step n ∈ N the devil burns b(n) = r∗g ∈ r∗G, we move to σ(n+1) = σ(n)∗h, where h = σG(n)−1σG(n+1)
and σG(n+ 1) is where the G-angel moves when the G-devil burns g ∈ G. On the other hand, if the devil burns
b(n) ∈ Γ \ r ∗G, the angel stays where it is. Because G acts translation-like, we have

d(σ(n), σ(n+ 1)) = d(r ∗ σG(n), r ∗ σG(n+ 1))
= d(r ∗ σG(n), (r ∗ σG(n)) ∗ h)
≤Mp,

as h ∈ BS(p). Finally, if the devil traps the angel in BΓ(ρ), then the G-devil would trap the G-angel in the ball
BS
(
⌊ ρM ⌋

)
which is a contradiction. Therefore, the angel escapes in Γ.

With these pieces in place we can prove the following.

Proposition 5.2.17. Let Γ be a quasi-transitive graph with superlinear polynomial growth. Then, Γ is not
diabolical.

Proof. As Γ is quasi-transitive and has polynomial growth by Trofimov’s Theorem [Tro84] (see also [Woe00,
Theorem 5.11]), it is quasi-isometric to a group with polynomial growth. Then by Gromov’s Theorem (Theo-
rem 1.3.19), it is quasi-isometric to a nilpotent group G. Furthermore, as Γ has superlinear growth, G is not
virtually Z. Finally, G contains Z2 as a subgroup, which by Lemma 5.2.12 means it is not diabolical. We
conclude Γ is not diabolical by Proposition 5.2.14.

On the other side of the growth spectrum we have the free group F2. It is easy to see that on the 4-regular
tree the 1-angel escapes: at each step the angel moves to a subtree with no burnt vertices. This fact will help
us tackle the conjecture on the following class of graphs.

Definition 5.2.18. A graph Γ is non-amenable if there exists a constant C > 0 such that for all finite subsets
F ⋐ V ,

C|F | ≤ |∂F |,

where ∂F is the set of vertices spanned by edges with one vertex in F and one vertex outside.

The infimum over all constants C that verify the previous definition is known as the Cheeger constant of
the graph. Thus, a graph is non-amenable if and only if it has a strictly positive Cheeger constant. For trees
with bounded degree we can characterize non-amenability even further.

Lemma 5.2.19. Let T be an infinite tree with bounded degree. The following are equivalent:

1. T is non-amenable,

2. T has exponential growth,
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3. there is a uniform bound on the length of unbranching paths in T .

The proof of the equivalence between 1. and 2. comes from [Ger88], and the proof of the equivalence between
1. and 3. from [Ger86] (see also [MR20]).

Non-amenable locally finite graphs can also be characterized through translation-like actions.

Theorem 5.2.20 (Whyte, Theorem 6.1 [Why99]). A locally finite graph is non-amenable if and only if admits
a translation-like action from F2.

Theorem 5.2.21. Let G be a finitely generated group of exponential growth. Then, G is not diabolical.

Proof. We use an idea by Lyons [Lyo95] to find a tree of exponential growth within any Cayley graph of the
group. Let S be a generating set for G. Every group element g has a unique geodesic of minimal lexicographic
length which we denote by ℓ(g) ∈ S∗. We define the geodesic spanning tree of Γ(G,S), T , as the graph with
vertex set G, where g is adjacent to h if ∥h∥S = ∥g∥S + 1 and ℓ(h) is a prefix of ℓ(g). From [Lyo95] we know
thatthe growth rate of T is equal to the growth rate of the group. Then, as T has exponential growth rate and
bounded degree it is non-amenable by Lemma 5.2.19, and by Theorem 5.2.20, admits a translation-like action
from F2. We conclude from Proposition 5.2.16 and Lemma 5.2.12 that G is not diabolical.

The combination of Proposition 5.2.17 and Theorem 5.2.21 shows that the cases that remain in order to
prove the conjecture are groups of intermediate growth. This is a similar situation to the one Benjamini and
Schramm’s percolation conjecture found itself in before it was proven. As was done for that conjecture, we use
Proposition 5.2.16 and the fact that Z2 acts translation-like on the direct product of two infinite groups [MP01]
to state the following.

Proposition 5.2.22. Groups of the form G1×G2 where each group is infinite are not diabolical. In particular,
this implies the Grigorchuk group is not diabolical.

Once again, the properties satisfied by diabolical groups resemble the ones satisfied groups with weakly
aperiodic SFTs.

Question 5.2.23. Is there an explicit connection between the Angel Game and weakly aperiodic SFTs? Is
there one between the Angel Game and percolation?

The strategies employed in this problem could shed light on how to construct weakly aperiodic SFTs on new
classes of groups.

Sensitivity and equicontinuity of cellular automata

Our final comparison comes from the theory of cellular automata as dynamical systems.

Definition 5.2.24. Let (X, d) be a metric space along with a continuous function f : X → X. We say,

• x ∈ X is an equicontinuous point if for every ε > 0 there exists δ > 0 such that for all y ∈ X and
n ∈ N, we have that d(x, y) < δ implies d(fn(x), fn(y)) < ε.

• (X, f) is sensitive if there exists ε such that for all δ > 0 and x ∈ X there exists y ∈ X and n ∈ N such
that d(x, y) < δ and d(fn(x), fn(y)) < ε.

Given a group G, we define the class Equ of G-CA that have equicontinuous points, and the class Sens of
sensitive G-CA. By definition the two classes are disjoint. However, there may exist CA that do not belong
to any of the two. Kůrka showed that in Z, every CA is either in Equ or Sens [Kůr97]. On the other hand,
Sablik and Theyssier showed that in Zd, with d ≥ 2, this is no longer the case: there exist Zd-CA that have no
equicontinuous points and are not sensitive [ST11]. Due to this difference in behavior, they asked what happens
for other groups.

113



Chapter 5. Strong Aperiodicity, Weak Aperiodicity and Everything In Between

Conjecture 5.2.25 (G. Theyssier2). Let G be a finitely generated group. Every G-CA is either in Equ or Sens
if and only if G is virtually Z.

Question 5.2.26. Is there an explicit connection between a group admitting a weakly aperiodic SFT and it
satisfying this CA behavioral dichotomy?

It is straightforward to show that a G-shift is an SFT if and only if it is the set of fixed points of some
G-CA, and that the space-time shift of a G-CA is a (G × Z)-SFT. These two facts could provide an explicit
connection, although at the time of writing no such studies have been made.

5.3 Subgroup Realizability: How I Learned to Stop Worrying and
Love Periodicity

How much control do we have over the stabilizers of an SFT? Could we replace the trivial subgroup in strongly
aperiodic SFTs with any other subgroup? The aim of this section is to explore this question. We will see that
there are both algebraic and computational restrictions to the realizability of subgroups as stabilizers.

We denote the space of subgroups of a group G by Sub(G). Similarly, we denote the set of stabilizers of a
G-subshift as stab(X) = {stab(x) | x ∈ X} ⊆ Sub(G).

Definition 5.3.1. We say a family of subgroups G ⊆ Sub(G) is realizable if there exists a non-empty G-SFT
X such that stab(X) = G. We say H ∈ Sub(G) is realizable if the singleton {H} is realizable.

Question 5.3.2. Which subsets of Sub(G) are realizable?

First off, a simple cardinality argument shows that no group allows for all subsets of Sub(G) to be realizable:
P(Sub(G)) is uncountable while the number of SFTs is countable.

A natural starting then is the realizability of a single subgroup. This question is non-trivial as the realization
of the trivial subgroup is equivalent to finding a strongly aperiodic SFT. Even if we ask for the realization of
subgroups isomorphic to Z on Zd, the problem is non-trivial.

Lemma 5.3.3. In Z2, the subgroup pZ × {0} is not realizable. In particular, for any SFT X ⊆ AZ2 , if
pZ× {0} ∈ stab(X), then there exists 0 < q ≤ |A|p + 1 such that pZ× qZ ∈ stab(X).

Proof. Take X a nearest neighbor Z2-SFT and x ∈ X such that stab(x) = pZ×{0}. Denote wk = x|[0,p−1]×{k}.
Because of x’s periodicity, for all k ∈ Z, the restriction x|Z×{k} is the periodic configuration (wk)∞. Now, by the
pigeonhole principle, there exist k ≥ 0 and 0 < q ≤ |A|p+1 such that wk = wk+q. Let sq : [0, p−1]×[0, q−1]→ A

be the rectangular pattern defined by sq(i, j) = (wk+j)i. Define y ∈ AZ2 by y(i, j) = sq(i mod p, j mod q).
By construction, y belongs to X and its stabilizer is pZ× qZ and belongs to X.

We generalize this phenomenon to find more examples of non-realizable subgroups in the subsequent sections.

5.3.1 General properties
We saw in Section 1.5 that every SFT is conjugate to a nearest neighbor SFT. This result allows us to restrict
the scope of the SFTs we consider, as stabilizers are preserved under conjugacies.

Lemma 5.3.4. Let X be topologically conjugate to Y . Then, stab(X) = stab(Y ).

We can also quickly rule out the realizability of non-normal subgroups.

Lemma 5.3.5. Let X be a non-empty subshift and H ∈ Sub(G) a subgroup such that H ∈ stab(X). Then, for
all g ∈ G, gHg−1 ∈ stab(X). In particular, subgroups that are not normal are not realizable.

2Personal communication.
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Proof. Let x ∈ X be a configuration such that stab(x) = H. Then, for any g ∈ G,

stab(g · x) = gHg−1.

Thus, gHg−1 ∈ stab(X). If H is not normal, there exist g0 ∈ G and h ∈ H such that g0hg
−1
0 /∈ H. Suppose H

were realizable by X. Then, for any x ∈ X, stab(g0 · x) ̸= H, which is a contradiction.

Remark 5.3.6. For any group G, there is a natural action of G on its space of subgroup by conjugation, that
is, g · H = gHg−1. The previous lemma shows that stab : X → Sub(G) is a G-invariant map. Furthermore,
if we take an alphabet A of size at least 2, stab(AG) = Sub(G). Let a, b ∈ A be two distinct letters. For a
subgroup H ∈ Sub(G) we can define x ∈ X by x(h) = a if h ∈ H, and b otherwise. Then, stab(x) = H.

In contrast to non-normal subgroups, finite index normal subgroups are always realizable. A normal finite
index subgroup N is realized by its corresponding N -locked shift as shown in Lemma 6.3.2.

Lemma 5.3.7. Finite index normal subgroups are always realizable.

Through operations between subshifts we can combine realizable subsets obtain new ones. One such opera-
tion is the direct product. The direct product of two subshifts X ⊆ AG and Y ⊆ BG is the subshift

X × Y = {(x, y) | x ∈ X, y ∈ Y } ⊆ (A×B)G.

If X is defined by the set of forbidden patterns FX and Y by the set FY , the direct product is the subshift
of (A×B)G defined by the set of forbidden patterns ⋃

p∈FX

{p} ×Bsupp(p)

 ∪
 ⋃
q∈FY

Asupp(q) × {q}

 .

In particular, the direct product of two SFTs is an SFT. Finally, we define the subgroup-wise intersection of
two subsets as

G1 ⊓ G2 = {H1 ∩H2 | H1 ∈ G1, H2 ∈ G2}.

Proposition 5.3.8. Let I be a finite set of indices and (Gi)i realizable subsets. Then,

1.
⋃
i∈I Gi is realizable,

2.
d
i∈I Gi is realizable.

Proof. We will prove the case of |I| = 2, the general case follows directly. Let Xi be the SFT that realizes Gi
for i = 1, 2.

1. Assuming the alphabets of X1 and X2 are disjoint, take Y = X1∪X2. This new subshift is an SFT as the
finite union of SFTs is an SFT. Every configuration of both X1 and X2 is contained in Y , and therefore
G1 ∪ G2 ⊆ stab(Y ). It is straightforward that stab(y) ∈ G1 ∪ G2 for all y ∈ Y .

2. Define Y = X1 ×X2. Once again, Y is an SFT as the product of two SFTs in a SFT. Take a subgroup
H = H1 ∩H2 ∈ G1 ⊓ G2 and xi ∈ Xi such that stab(xi) = Hi for i ∈ {1, 2}. Take x = (x1, x2) ∈ Y and
g ∈ stab(x). By definition, g must stabilize both x1 and x2. Thus, g ∈ stab(x1) ∩ stab(x2). Conversely,
if an element g ∈ G stabilizes both x1 and x2, it stabilizes x. Therefore, stab(x) = stab(x1) ∩ stab(x2).
An analogous procedure shows that the stabilizer of any x ∈ Y is the intersection of the stabilizers of its
coordinates.

Particular instances of this lemma have already appeared in the literature with the purpose of finding
strongly aperiodic SFTs. For example in [CGR22, Proposition 3.4] and [Jea15b, Proposition 2.3].
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5.3.2 Quotients and realizability
Let N ⊴ G be a non-trivial finitely generated normal subgroup. We want to study how realizable families in
the quotient G/N influence realizable families in G, and vice-versa.

Given a section ρ : G/N → G, a set S of generators for G/N , and T a set of generators of N , the set ρ(S)∪T
is a finite generating set for G. Recall from Section 1.5 that starting from a subshift X ⊆ AG/N we can define
its pull-back π∗(X) ⊆ AG, where π : G→ G/N is the quotient map. We will use the pull-back shift to go from
realizability in the quotient to realizability in the starting group. Furthermore, when X is a nearest neighbor
SFT over S the pull-back is a nearest-neighbor SFT over ρ(S) ∪ T (see Lemma 1.5.16).

We make extensive use of the fact that for all k1, k2, k ∈ G/N we have that ρ(k1k2) = ρ(k1)ρ(k2)h and
ρ(k−1) = ρ(k)−1h′ for some h, h′ ∈ N .

Proposition 5.3.9. Let N ⊴ G be a finitely generated normal subgroup. Let X be a G/N -subshift, and π∗(X)
its pull-back. Then, stab(π∗(X)) = ρ(stab(X))N , where ρ : G/N → G is any section. In particular, if G is
realizable in G/N , then ρ(G)N = {ρ(H)N | H ∈ G} is realizable in G.

Proof. Fix a section ρ : G/N → G, take y ∈ π∗(X) and define xg = yρ(g) for g ∈ G/N . By Lemma 1.5.21,
x ∈ X. Take g ∈ stab(y), with k ∈ G/H and h ∈ N such that g = ρ(k)h. For all k′ ∈ G/N ,

x(k′) = y(ρ(k′)) = (g · y)(ρ(k′)) = y(h−1ρ(k)−1ρ(k′))
= y(h′ρ(k−1k)) for some h′ ∈ N
= y(ρ(k−1k′)) = x(k−1k′)
= (k · x)(k′).

Therefore, k ∈ stab(x) and stab(y) ⊆ ρ(stab(x))N . Conversely, if g = ρ(k)h ∈ ρ(stab(x))N , for any k′ ∈ G/N
and h′ ∈ N ,

(g · y)(ρ(k′)h′) = y(h−1ρ(k)−1ρ(k′)h′)
= y(hρ(k−1k)) for some h ∈ N
= y(ρ(k−1k′)) = x(k−1k′)
= x(k′) = y(ρ(k′))
= y(ρ(k′)h′).

Thus, stab(y) = ρ(stab(x))N . This, in turn, implies that stab(π∗(X)) ⊆ ρ(G)N . To see that they are equal,
given x ∈ X we define y(ρ(k)h) = x(k) for all k ∈ G/N and h ∈ N . Retracing the steps above we can confirm
ρ(G)N = stab(π∗(X)).

Finally, if X ⊆ AG/N is a non-empty SFT that realizes G ⊆ Sub(G/N); by Lemma 1.5.16 we know π∗(X)
is a non-empty SFT and realizes ρ(G)N .

We can also state restrictions in the other direction by making use of the push-forward subshift (see
Section 1.5.4).

Proposition 5.3.10. Let N ⊴ G be a finitely generated normal subgroup. Let X ⊆ FixA(N) be a G-SFT and
ρ∗(X) its push-forward, for any section ρ : G/N → G. Then, stab(ρ∗(X)) = stab(X)/N . In particular, if G is
realizable in G such that N ⊆

⋂
H∈G H, then G/N = {K/N | K ∈ G} is realizable in G/N .

Proof. For any configuration y ∈ ρ∗(X), there exists x ∈ X such that y = x ◦ ρ. Let us now show that
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stab(y) = stab(x)/N . Indeed, given k ∈ stab(y), for any k′ ∈ G/N and h ∈ N we have that

(ρ(k) · x)(ρ(k′)h) = x(ρ(k)−1ρ(k′)h)
= x(h′ρ(k−1k)) for some h′ ∈ N
= x(ρ(k−1k′)) = y(k−1k′)
= y(k′) = x(ρ(k′))
= x(ρ(k′)h).

In other words, ρ(k) ∈ stab(x) and consequently k ∈ stab(x)/N . Now, let k ∈ stab(x)/N (equivalently
ρ(k) ∈ stab(x)). For any k′ ∈ G/N we have

(k · y)(k′) = y(k−1k′)
= x(ρ(k−1k)) = x(h′ρ(k)−1ρ(k)) for some h′ ∈ N
= x(ρ(k)−1)ρ(k′)) = x(ρ(k′))
= y(k′).

Therefore, stab(y) = stab(x)/N . Finally, if we take x ∈ X we can define y ∈ ρ∗(X) by y(k) = x(ρ(k)), by
retracing the previous steps we obtain that stab(ρ∗(X)) = G/N .

Finally, if X ⊆ AG is a non-empty SFT that realizes G; because N ⊆ H for all H ∈ G, X ⊆ FixA(N).
Furthermore, by Lemma 5.3.4 we can take X to be a nearest neighbor SFT with respect to the generating set
ρ(S) ∪ T . By Lemma 1.5.20, ρ∗(X) is a non-empty SFT that realizes G/N .

Combining both propositions we obtain a characterization of realizable finitely generated normal subgroups.

Theorem 5.3.11. Let N ⊴ G be a non-trivial finitely generated normal subgroup. Then, N is realizable in G
if and only if G/N admits a strongly aperiodic SFT.

Proof. If N is realizable by a G-SFT X, by Proposition 5.3.10, its push-forward shift ρ∗(X) realizes {1G/N}.
Conversely, if {1G/N} is realized by a G/N -SFT Y , then by Proposition 5.3.9 its pull-back π∗(Y ) realizes N .

As a consequence, we find many examples of non-realizable subgroups.

Corollary 5.3.12. Let G be a finitely generated group, and a finitely generated normal subgroup N ⊴ G. If
G/N is virtually free, then N is not realizable in G. In particular, every torsion-free nilpotent group has normal
subgroups that are not realizable.

A particular class where this occurs is in the class of indicable groups. A group G is said to be indicable if
it admits an epimorphism G↠ Z. By the previous corollary, if G is indicable and the kernel of the epimorphism
is finitely generated, the kernel is not realizable. For example, finitely generated torsion-free nilpotent groups
are indicable [Hig40], and all of their subgroups are finitely generated. Similarly, if an indicable group does
not contain the free semi-group on two generators, the kernel of the epimorphism will be finitely generated
(see [Ben12, Lemma 3]). On the other hand, in the case of just infinite groups all non-trivial normal subgroups
are realizable, as they all have finite index.

5.3.3 No restrictions
As we have seen, being an SFT imposes heavy restrictions on realizability. But what happens if we just ask
for a subshift? By combining our previous results with the existence of strongly aperiodic subshifts on every
countable group, we can answer the question.

Proposition 5.3.13. Let G be a finitely generated group and take a subgroup H ≤ G. There exists a G-subshift
that realizes H if and only if H is normal.
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Proof. By Lemma 5.3.5, if H is not normal it is not realizable. Suppose H is a normal subgroup. By [ABT19,
Theorem 2.4], we know every countable group admits a strongly aperiodic subshift. In particular, there exists
a G/H-subshift XG/H that realizes {1G/H}. By Proposition 5.3.9 the pull-back shift, π∗(X), realizes H.

5.3.4 Computational restrictions
Recall from Theorem 5.1.1 that if a finitely generated recursively presented group G admits a strongly aperiodic
SFT, WP(G) must be decidable. We show that a similar result can be obtained for the realizability of subgroups.

Let G be a finitely generated group of rank n, and π : Fn → G the canonical epimorphism. For a G-subshift
X ⊆ AG, let π∗(X) ⊆ AFn be its pull-back, where for all y ∈ π∗(X) there exists x ∈ X such that y = x ◦ π. As
ker(π) is not necessarily finitely generated, π∗(X) may not be an SFT. Nevertheless, it is an effective subshift
when G is recursively presented.

Lemma 5.3.14 ([Jea15b] Prop. 1.3 and Prop. 1.7). Let G be a finitely generated recursively presented group.
Given an effective set of forbidden patterns F through an enumeration, there is a semi-algorithm that halts if
and only if XF = ∅.

We link the realizability of a subgroup to its subgroup membership problem.

Definition 5.3.15. Let G be a finitely generated group and S a generating set. The subgroup membership
problem of H in G asks, given a set of words u,wi ∈ S∗ for i ∈ {1, ..., k} such that H = ⟨w1, ..., wk⟩, whether
u ∈ H.

Notice that this decision problem differs form the subgroup membership problem of the group, as defined in
Definition 2.4.2. In this case, the input requires that the words wi generated a specific subgroup.

Lemma 5.3.16. Let H be a finitely generated group of a recursively presented group G. Then, there is a
semi-algorithm for the subgroup membership problem of H in G.

Proof. Because G is recursively presented we know WP(G) can be enumerated (Proposition 1.3.15). Now given
an input u,wi ∈ S∗ for the subgroup membership problem of H, we know u ∈ H if and only if there exists a
word w ∈ {w±1

1 , ..., w±1
n }∗ such that uw−1 =G ε. The semi-algorithm consists in enumerating all such words w

and seeing if uw−1 appears in the enumeration of WP(G).

Theorem 5.3.17. Let G be a finitely generated recursively presented group and H a finitely generated subgroup.
If H is realizable, then the subgroup membership problem of H in G is decidable.

Proof. Let X be a G-SFT that realizes H and Y = π∗(X) its pull-back to Fn, where n is the rank of G. From
Proposition 5.3.9 we know that for every y ∈ Y , stab(y) = π−1(H). Now, let u,wi ∈ S∗ be an input to the
subgroup membership problem for H in G. By reducing u we can suppose that u ∈ Fn. We define the Fn-SFT,

Z = {x ∈ AFn | ∀g ∈ Fn, u · x(g) = x(g)}.

This way, Y ∩ Z = ∅ if and only if u /∈ π−1(H), i.e. u does not belong to H in G. Because Y is effective
and Z is an SFT, by Lemma 5.3.14 there is a semi-algorithm to determine if Y ∩ Z is empty. Thus, there is a
semi-algorithm to determine if an element does not belong to a group. Paired with Lemma 5.3.16, this implies
the subgroup membership problem of H in G is decidable.

Example 5.3.18. Using Rip’s construction [Rip82] with a finitely presented group with undecidable word
problem, it is possible to obtain a hyperbolic group with a finitely generated normal subgroup with undecidable
subgroup membership problem. This argument is usually attributed to Sela [Gro93].
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Example 5.3.19. It is possible to find subgroup with undecidable membership problem within Fn × Fn, due
to an argument by Mihailova [Mih68]. Given a finitely generated group G of rank n, we define its Mihailova
subgroup as

M(G) = {(w1, w2) ∈ Fn × Fn | w1 =G w2}.

Notice that if G is finitely presented by a set of generators S and relations R, the set of generators including
{(s, s)}s∈S and {(1, r)}r∈R are a generating set for M(G). Then, the subgroup membership problem for M(G)
in Fn × Fn is decidable if and only if G has decidable word problem.

Restrictions on Zd

There are other types of computational restrictions on realizability that do not involve membership problems.
A particular family of these restrictions comes from the study of periodicity on Zd-SFTs.

We say two element u, v ∈ Z2 are equivalent, which we denote by v ∼ u, if there exists λ ̸= 0 such that
v = λu. We call equivalence classes under ∼, slopes, and denote them by [v]. We denote the set of all slopes
in Zd by S(Zd). Given a Zd-SFT X, we define its set of slopes as

Sl(X) = {[v] ∈ S(Zd) | ∃x ∈ X, stab(x) = vZ}.

Jeandel, Moutot and Vanier showed that the set of slopes of Z2-SFTs are exactly Σ0
1 subsets of S(Z2), and

that the set of slopes of Z3-SFTs are exactly Σ0
2 subsets of S(Z3) [JMV20]. There are further restrictions in the

case of Z2 if we encode the stabilizers differently. For X a Z2-SFT, we define,

• the set of full-periods of X as P(X) = {n ∈ Z | ∃x ∈ X, stab(x) = (nZ)2},

• the set of 1-periods of X as P1(X) = {v ∈ Z× N \ {(0, 0)} | ∃x ∈ X, stab(x) = vZ},

• the set of horizontal periods of X as Ph(X) = {n ∈ Z | ∃x ∈ X, stab(x) = kZ× {0}}.

Given sets F ⊆ N and F ′ ⊆ Z × N we define their corresponding languages as un(F ) = {an | n ∈ F} and
un(F ′) = {apbq | (p, q) ∈ F ′} ∪ {apcq | (−p, q) ∈ F ′}. Jeandel and Vanier showed that a set F ⊆ N is the set of
full-periods of an SFT if and only if un(F ) ∈ NP, that a set F ′ ⊆ Z × N is the set of 1-periods of an SFT if
and only if un(F ′) ∈ NSPACE(n), and that F ′′ ⊆ N is the set of horizontal periods of an SFT if and only if
un(F ′′) ∈ NSPACE(n) [JV15].

Do these restrictions provide a full description of realizable subsets G ⊆ Sub(Z2)? The answer is no. It
suffices to take the singleton G = {(p, 0)Z} for any non-trivial p ∈ Z, which satisfies all the previous conditions
but is not realizable by Lemma 5.3.3. In the next section we will see that this can be taken further: if G consists
exclusively of one dimensional subspaces it is not realizable.

5.4 Periodic rigidity

There is a strange phenomenon with regards to aperiodicity in Z2. As we saw in Lemma 5.3.3, if there is a
configuration with a horizontal period on a Z2-SFT, there must be a periodic configuration within the SFT.
This is part of a larger phenomenon, where no non-trivial family of subgroups where every subgroup has infinite
index is realizable.

Lemma 5.4.1. Every weakly aperiodic Z2-SFT is strongly aperiodic.

Proof. Let X ⊆ AZ2 be a weakly aperiodic nearest neighbor SFT on Z2. If X is not strongly aperiodic, there
exists a configuration x ∈ X stabilized by a non-trivial element v = (p, q) ∈ Z2. Suppose without loss of
generality that q > 0 and consider the portion of the plane P given by the strip Z × {0, ..., q − 1}. Because
x is stabilized by v we have x|P = x|v+P . Now, if we cut P into blocks of width |p|, and look at their tiling
Bi = x|{i,...,i+|p|−1}×{0,...,q−1}, there must exist i1 and i2 such that Bi1 = Bi2 as the alphabet is finite. Define
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B = x|{i1,...,i2−1}×{0,...,q−1} and the configuration y ∈ AZ2 which contains the bi-infinite repetition of B on
the strip P , and is completed by stacking strips with the appropriate shift by a multiple of p (see Figure 5.3).
Because X is a nearest neighbor SFT, y belong to X and is stabilized by the subgroup (i2 − i1)Z × pZ. This
contradicts the fact that X is weakly aperiodic.

Figure 5.3: For SFTs in Z2, having a configuration with non-trivial stabilizer (on the left) implies the existence
of a periodic configuration (on the right). This is done by finding a repeating motif on the strip defined by the
period vector, and repeating this motif in a way compatible with the forbidden patterns of the nearest neighbor
SFT.

For which other groups does this hold? Although there have been examples of groups which have weakly
aperiodic SFTs that are not strongly aperiodic in the past, for Zd with d ≥ 3 for example [CK95], the first
explicit construction is due to Moutot and Esnay for Baumslag-Solitar groups [EM22a]. In this section we study
necessary and sufficient conditions for groups to exhibit this behavior.

Definition 5.4.2. We say a group G is periodically rigid if every weakly aperiodic G-SFT is strongly
aperiodic.

This is equivalent to saying that the only non-empty SFT X such that all stabilizers have infinite index,
are those such that stab(X) = {1}. In particular, if G is periodically rigid, then no infinite index non-trivial
subgroup is realizable. By Lemma 5.4.1, Z2 is periodically rigid. In addition, by vacuity, all virtually Z groups
are periodically rigid.

Although not with our terminology, Pytheas-Fogg posed the following question.

Question 5.4.3 ([Pyt22]). Is a finitely generated group periodically rigid if and only if it is either virtually Z
or virtually Z2?

It has already been shown that some classes of groups admit weakly but not strongly aperiodic SFTs. These
are the following:

• Zd for d > 2,

• Baumslag-Solitar groups BS(m,n) with |n|, |m| ≠ 1 [EM22a],

• Free groups, [Pia08],

• Hyperbolic groups [Gro87; CP06],

• Groups with two or more ends [Coh17],

• the Lamplighter group [Coh20],
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5.4. Periodic rigidity

Let us establish some inheritance properties of periodically rigid groups.

Proposition 5.4.4. Take G a torsion-free group, and H ≤ G a finite index subgroup. If H is periodically rigid,
then G is periodically rigid.

Proof. Suppose there exists X ⊆ AG a weakly but not strongly aperiodic G-SFT. For a set of right coset
representatives R, take the R-higher power shift X [R]. By Lemma 1.5.11, X [R] is an H-SFT. Furthermore, if
we take y ∈ X [R] and its corresponding configuration x ∈ X, we have that stab(y) ⊆ stab(x).

Now, because X is not strongly aperiodic, there exists g ∈ G \ {1G} and x ∈ X such that g ∈ stab(x). As
H is of finite index, and G is torsion-free there exists n ≥ 1 such that gn ∈ H \ {1G}. Define y ∈ X [R] by
y(h)(r) = x(hr) for all h ∈ H and r ∈ R. Then,

(gn · y)(h)(r) = y(g−nh)(r) = x(g−nhr)
= x(hr) = y(h)(r),

and thus gn ∈ stab(y). Because H is periodically rigid, this means that there exists z ∈ X [R] such that stab(z)
has finite index in H. If we denote x ∈ X the configuration such that z(h)(r) = x(hr), stab(x) contains a finite
index subgroup and is therefore a finite index subgroup itself. Thus, x is a periodic configuration of X. This is
a contradiction, as X was supposed to be weakly periodic.

Example 5.4.5. The fundamental group of the Klein bottle, which is given by

π1(K) = BS(1,−1) = ⟨a, b | abab−1⟩,

is torsion-free virtually Z2 and therefore periodically rigid by the previous proposition.

This last example shows Pytheas-Fogg’s question is incomplete, and allows us to state the following conjec-
ture.

Conjecture 5.4.6. A finitely generated group is periodically rigid if and only if it is either virtually Z or
torsion-free virtually Z2.

Remark 5.4.7. Notice that the previous conjecture implies Conjecture 5.2.1 concerning weakly aperiodic
SFTs. Indeed, if there existed a non-virtually Z group that does not admit a weakly aperiodic SFT, it would
be periodically rigid.

What can we say about the periodic rigidity of a group, from the periodic rigidity of its subgroups or
quotients? To answer this question, we use of a result by Barbieri, that links stabilizing elements in the free-
extension of a shift to the stabilizing elements of the shift. Let us introduce some notation. Given an element
g ∈ G, we define its conjugacy class as

Cl(g) = {tgt−1 | t ∈ G}.

Next, we define the set of roots of a subgroup K ≤ G as

RG(K) = {g ∈ G | ∃n ∈ N, gn ∈ K}.

Finally, given a G-subshift X, we define the set of free elements of the group action as

Free(X) = G \
⋃
x∈X

stab(x) = {g ∈ G | g · x ̸= x, ∀x ∈ X}.

With all these elements at hand, we state Barbieri’s result that characterizes how the stabilizers of the free
extension of a subshift behave. It also holds for non-finitely generated groups.

Theorem 5.4.8 ([Bar23a]). Take a group G, a subgroup H ≤ G, and an H-subshift X. Then, g ∈ Free(X↑) if
and only if Cl(g) ∩RG(Free(X)) ̸= ∅.
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As a consequence of Lemma 1.5.4, the free extension of a weakly aperiodic SFT is weakly aperiodic. We will
use the previous theorem to determine when the free extension is not strongly aperiodic, to find properties of
periodically rigid groups.

Proposition 5.4.9. Let G be a finitely generated group with a torsion-free subgroup H ≤ G that admits a
weakly aperiodic SFT, and g ∈ G \H with torsion. Then, G is not periodically rigid.

Proof. As H is torsion-free we have that for all m ∈ N, gm /∈ H \{1}, as every power of an element with torsion
has torsion. Furthermore, for all t ∈ G and m ∈ N, tgmt−1 /∈ H \ {1}, as every conjugate of an element with
torsion has torsion. Because Free(X) ⊆ H \ {1}, we arrive at Cl(g) ∩ RG(Free(X)) = ∅. Then, by Theorem
5.4.8, g /∈ Free(X↑). As X being weakly aperiodic implies X↑ is weakly aperiodic, but Free(X↑) ̸= G \ {1}, G
is not periodically rigid.

Proposition 5.4.10. Let G1 be an infinite finitely generated group that admits a weakly aperiodic SFT. If G2
is another finitely generated group, then G1 ⋊G2 is not periodically rigid.

Proof. Let us denote G = G1 ⋊ G2 and H1 and H2 the subgroups of G such that Hi ≃ Gi. Let X be a
weakly aperiodic H1-SFT and Y = X↑ its free extension to G. Y is a weakly aperiodic G-SFT. As G is a
semi-direct product, H1 ∩H2 = {1}. By taking g ∈ H2 \ {1}, we know that for any t ∈ G and n ≥ 1 we have
tgnt−1 /∈ H1 \ {1}, as H1 is normal. This means Cl(g) ∩ RG(Free(X)) is empty because Free(X) ⊆ H1 \ {1}.
By Theorem 5.4.8, there exists y ∈ Y such that g ∈ stab(y). Thus, Y is not strongly aperiodic.

Lemma 5.4.11. Let N ⊴ G be a non-trivial finitely generated normal subgroup. Then, if G/N admits a weakly
aperiodic SFT, G is not periodically rigid.

Proof. Let X ⊆ AG/N be a weakly aperiodic SFT, and let π∗(X) ⊆ AG be its pull-back. From Proposition 5.3.9,
we know that stab(π∗(X)) = ρ(stab(X))N , for any section ρ : G/N → G.

Suppose there is y ∈ π∗(X) such that stab(y) has finite index. Then, x ∈ X defined as x(k) = y(ρ(k)) for
every k ∈ G/N , would have stabilizer stab(y)/N of finite index, which is a contradiction. Finally, stab(y) is
non-trivial as it contains N .

Lemma 5.4.12. Let G be a group that admits an exact sequence given by

1→ N → G→ H → 1,

where N admits a weakly aperiodic SFT and H has a torsion-free element3. Then, G is not periodically rigid.

Proof. Let X be a weakly aperiodic N -SFT and g ∈ G an element that maps to a free generator of the quotient
G/N ≃ H. Then, gk /∈ N for all k ̸= 0, and furthermore tgkt−1 /∈ N for all t ∈ G, as N is normal. This fact can
be translated to the expression Cl(g) ∩ RG(N \ {1}) = ∅, which by Theorem 5.4.8 means there exists y ∈ X↑

such that g ∈ stab(y). Therefore, X↑ is a weakly but not strongly aperiodic G-SFT.

5.4.1 Virtually nilpotent and polycylic groups
In this section we prove that all polycyclic groups and all virtually nilpotent groups verify Conjecture 5.4.6. To
do this, we make an induction over the Hirsch length of a group (see Section 1.3.2), as was done in [Jea15b] for
strongly aperiodic SFTs.

Theorem 5.4.13. Finitely generated infinite nilpotent groups are periodically rigid if and only if they are not
virtually Z, or Z2.

3That is, there exists an injective morphism ϕ : N → G and a surjective morphism π : G → H such that Im(ϕ) = ker(π).
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5.5. A graphical summary

Proof. Let G be a nilpotent group that is neither virtually Z, nor Z2. We prove the statement by induction on
its Hirsch length h(G). Starting off, suppose h(G) = 2. This means G is virtually Z2 (Proposition 1.3.22), but
not Z2 by our hypothesis. If G is torsion-free, then it is abelian, as all torsion-free virtually abelian nilpotent
groups are abelian (see [Kob10, Lemma 3.1]). Because the only torsion-free virtually Z2 abelian group is Z2,
G must not be torsion-free. Thus, G has torsion and contains a torsion-free subgroup H isomorphic to Z2. By
Proposition 5.4.9, G is not periodically rigid.

Next, let G be a nilpotent group with h(G) > 2. Being nilpotent, G contains a torsion-free finite index
nilpotent subgroup, so once again by Proposition 5.4.9 we can suppose that G is torsion-free. In addition, G
contains a normal subgroup isomorphic to Z in its center, which we call H. So, h(G/H) = h(G) − h(H) ≥ 2,
and by induction, G/H is not periodically rigid. G/H is also not virtually Z. Finally, by Lemma 5.4.11, G is
not periodically rigid.

Corollary 5.4.14. Finitely generated virtually nilpotent groups are periodically rigid if and only if they are not
virtually Z or torsion-free virtually Z2.

Proof. Let G be a periodically rigid virtually nilpotent group, and H a finite index torsion-free nilpotent group.
If G is torsion-free, by Proposition 5.4.4, H has to be periodically rigid. Then, by Theorem 5.4.13 H is virtually
Z or Z2, which means G is virtually Z or torsion-free virtually free Z2. Suppose G is not torsion-free and not
virtually Z. Then, by [Bri+12, Lemma 13], there exists an epimorphism f : H → Z2. By Proposition 5.2.2 H
admits a weakly aperiodic SFT, and thus by Lemma 5.4.11, G is not periodically rigid. This contradicts our
assumption that G was periodically rigid. Therefore G must be virtually Z.

Theorem 5.4.15. Finitely generated polycylcic groups are periodically rigid if and only if they are not virtually
Z or torsion-free virtually Z2.

Proof. Let G be a polycylcic group that is neither virtually Z nor torsion-free virtually Z2. We proceed one
again by induction on the Hirsch length of G, h(G). If h(G) = 2, then G is virtually Z2 and has torsion elements.
Thus, by Proposition 5.4.9, G is not periodically rigid.

Now, let h(G) = n > 2. As G is polycyclic, it contains a torsion-free polycylcic subgroup of finite index.
Therefore, by Proposition 5.4.9, we can assume G is torsion-free. In addition, as G is polycyclic, it contains a
normal subgroup isomorphic to N = Zk for k > 0. If k ≥ 2, take a normal subgroup H isomorphic to Z2. Then,
G satisfies the exact sequence

1→ Z2 → G→ G/H → 1,

where h(G/H) = n− 2 > 0. By Lemma 5.4.12, G is not periodically rigid because G/H contains a torsion-free
element. Finally, if k = 1, then h(G/N) = h(G) − h(N) = n − 1 ≥ 2 and G is not periodically rigid by the
induction hypothesis and Lemma 5.4.11.

5.5 A graphical summary
Throughout this chapter we have seen different concepts around the notion of aperiodicity and how they relate
to numerous decision problems. We proceed to give a brief summary of these results with Table 5.1 as a guide4.

• Within the class of groups with decidable word problem and decidable Domino Problem, virtually Z are
the only groups known not to admit weakly nor strongly aperiodic SFTs. Virtually free groups are the only
known to admit weakly aperiodic SFTs but not strongly aperiodic ones. It remains an open question if
there are groups in this category which admit strongly aperiodic SFTs. A positive answer would disprove
both Conjecture 5.1.5 and Conjecture 2.0.1.

• Among groups with decidable word problem and undecidable Domino Problem we have the Lamplighter
group, hyperbolic groups, polycyclic groups and Baumslag-Solitar groups. All of these groups verify

4Table 5.1 is an updated of version of the tables from the PhD theses of Etienne Moutot [Mou20] and Solène Esnay [Esn22].
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Chapter 5. Strong Aperiodicity, Weak Aperiodicity and Everything In Between

Conjecture 5.4.6. Also among groups with decidable word problem and undecidable Domino Problem,
torsion-free virtually Z2 groups are the only known to be periodically rigid. Any group with undecidable
Domino Problem and more than 2 ends (Z2 ∗ Z for example) admits weakly aperiodic SFTs, but not
strongly aperiodic ones. It is an open question if there are groups in this category that do not admit
weakly aperiodic SFTs. From Theorem 5.2.4, we know that no groups with ReFQ (finitely presented
groups in particular, see Definition 2.3.3) can have this property. A positive answer to this question would
disprove Conjecture 5.2.1.

• Not much is known for groups with undecidable word problem and undecidable Domino Problem. From
Theorem 5.1.1 we know that groups where WP(G) is not co-total (recursively presented groups in par-
ticular) in this category cannot admit strongly aperiodic SFTs. We also know that there are groups with
undecidable word problem and infinite ends that admit weakly aperiodic SFTs, but not strongly aperiodic
SFTs. An example of such a group is Z2 ∗ I, where I is a finitely generated group with undecidable word
problem (see Theorem 1.3.14). Finally, it is not known if there are any groups that do not admit aperiodic
SFTs in this category. As before, their existence would disprove Conjeture 5.2.1.

# of ends = 1︷ ︸︸ ︷
XXXXXXXXXXDP

Aperiodic ∃WA ⇏ ∃SA ∃WA ⇒ ∃SA ̸ ∃SA, ∃WA ̸ ∃SA, ̸ ∃WA

Decidable WP
Decidable DP ? ? virt. Fn virt. Z

Decidable WP
Undecidable DP

Hyperbolic, polycyclic,
BS(m,n), Z/2Z ≀ Z t-f virt. Z2 Z2 ∗ Z ?

Undecidable WP
Undecidable DP ? ? Z2 ∗ I ?

Table 5.1: A summary of the state of the art concerning the Domino Problem, aperiodicity and periodic rigidity.
The blue section represents the absence of recursively presented groups, and the red section the absence of groups
with ReFQ (see Definition 2.3.3). The group I is a finitely generated group with undecidable word problem as
given by the Novikov-Boone theorem (see Theorem 1.3.14)
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Chapter 6
Aperiodic SFTs on Generalized Baumslag-Solitar Groups

Baumslag-Solitar groups were introduced by Baumslag and Solitar [BS62] as examples of non-Hopfian groups1.
They are simple cases of one relator groups, HNN extensions, and have decidable word problem. They have
nonetheless provided many discriminating examples in both combinatorial and geometric group theory [BDD18,
Chapter 5]. Given m,n ∈ Z, the Baumslag-Solitar group BS(m,n) is defined by the presentation,

BS(m,n) = ⟨a, t | t−1amt = an⟩.

These groups were some of the first non-abelian groups to be studied from the point of view of the Domino
Problem and aperiodic subshifts of finite type. Aubrun and Kari showed that they have undecidable Domino
Problem and admit weakly aperiodic SFTs [AK13]. These results where improved by Esnay and Moutot who
showed that Aubrun and Kari’s construction was strongly aperiodic for BS(1, n), where n ̸= ±1, and con-
structed strongly aperiodic SFTs for BS(n, n) [EM22a]. This left the case where 1 < |m| < |n| open.

In this chapter we tackle this final case by showing that all non-Z generalized Baumslag-Solitar groups admit
strongly aperiodic SFTs. This class of groups was introduced by Kropholler as a generalization of the behavior
of both Baumslag-Solitar groups and torus knot groups [Kro90]. It is defined as the class of groups that act
on trees with infinite cyclic edge and vertex stabilizers. Equivalently, they are defined as the fundamental
group of a graph of groups where every edge and vertex group is Z. As the name suggests, this class includes
all Baumslag-Solitar groups, torus knot groups, as well as all their combinations through amalgamated free
products and HNN extensions.

The chapter is organized as follows. In Section 6.1 we present graphs of groups and generalized Baumslag-
Solitar groups, in Section 6.2 we show the existence of weakly aperiodic SFTs and the undecidability of the
Domino Problem for GBS groups and Artin groups, who are closely related. Section 6.3 is devoted to the
construction of Carroll and Penland who show how to obtain a strongly aperiodic SFT from a finite index
subgroup that admits such an SFT. This section also includes an Erratum on a previous version of these results.
Next, Section 6.5 is devoted to the construction of a minimal, strongly aperiodic and horizontally expansive
Z2-SFT, that will be used later for Fn × Z. This construction is a small adaptation of an existing construction
by Labbé [Lab21a; Lab21b; Lab21c] and Labbé, Mann, and McLoud-Mann [LMM23].

In Section 6.6 we present the key idea for our constructions: the path-folding technique in the case of
Fn × Z. The key idea is to fold a Z2-SFT along a flow on Fn to obtain an SFT on Fn × Z that shares some
dynamical properties with the original Z2-SFT. In particular, strong aperiodicity and minimality are preserved.
In Section 6.7 we explain how to adapt the path-folding method to the Baumslag-Solitar group BS(2, 3) in
order to construct a strongly aperiodic SFT in this group. Instead of lifting an aperiodic subshift from Z2, we
codify orbits of a simple dynamical system that ultimately grants the aperiodicity. Consequently, we are able
to establish that all non-solvable Baumslag-Solitar groups admit a strongly aperiodic SFT.

1Particular cases of these groups were defined some years prior by Higman [Hig51].
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6.1 Graphs of groups and GBS groups
A common strategy in the study of group theoretical properties is to decompose groups into simpler components
and looking at the properties on these simpler groups. HNN-extensions and amalgamated free products are
examples of these decompositions (see Section 1.3.4). The Dunwoody-Stallings theorem gives a powerful tool
in this regard.

Theorem 6.1.1 (Dunwoody-Stallings [Dun85]). Every finitely presented group is the fundamental group of a
graph of groups where all edge groups are finite, and vertex groups are either 0 or 1-ended.

This approach seems relevant regarding the problems of characterizing groups which admit strongly aperiodic
SFTs or which have decidable Domino Problem. Examples of this proof technique for characterization of
virtually free groups can be seen in [Gen08; Khu23].

6.1.1 Definition
For the purposes of this section, we define a graph Γ as a tuple (VΓ, EΓ), where VΓ is the set of vertices and
EΓ ⊆ V 2

Γ is a set of edges, such that the graph is locally finite. We also associate the graph with two functions
i, t : EΓ → VΓ that give the initial and terminal vertex of an edge, respectively. Given an edge e ∈ EΓ, we
denote by ē the edge pointing in the opposite direction to e, i.e. t(ē) = i(e) and i(ē) = t(e).

Definition 6.1.2. A graph of groups (Γ,G) is a connected graph Γ, along with a collection of groups and
monomorphisms, denoted G, that includes:

• a vertex group Gv for each v ∈ VΓ,

• an edge group Ge for each e ∈ EΓ, where Ge = Gē,

• a set of monomorphisms {αe : Ge → Gt(e) | e ∈ EΓ}.

The main interest of this object is its fundamental group. As its name suggests, this group is obtained
through a precise definition of paths on the graph of groups. Luckily there is an explicit expression for the
fundamental group, which allows us to skip the formal definition. A complete treatment of the concept can be
found in [Lym20; Ser03].

Theorem 6.1.3. Let T ⊆ Γ be a spanning tree. The group π1(Γ,G, T ) is isomorphic to a quotient of the free
product of the vertex groups, with the free group on the set EΓ of oriented edges. That is,(

∗
v∈VΓ

Gv ∗ FEΓ

)
/R,

where R is the normal closure of the subgroup generated by the following relations

• αē(h)e = eαe(h), where e is an oriented edge of Γ, h ∈ Ge,

• ē = e−1, where e is an oriented edge of EΓ,

• e = 1 if e is an oriented edge of T .

We omit G and T when the context allows it. Furthermore, the fundamental group does not depend on the
spanning tree, up to isomorphism.

Proposition 6.1.4 (Proposition 20, [Ser03]). The fundamental group of a graph of groups does not depend on
the spanning tree.

Let us look at how traditional operations of geometric group theory are viewed as fundamental groups of
graph of groups. The amalgamated free product G ∗K H is viewed as the fundamental group π1(Γ1):
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K

G H

Γ1

Similarly, an HNN-extension G∗ϕ can be seen as the fundamental group π1(Γ2):

G

Γ2

H

with H a subgroup of G, αe = id, and αē = ϕ : H → ϕ(H) an isomorphism. In this sense, the concept of graph
of groups can be seen as the natural generalization of these concepts.

As previously mentioned, this chapter is concerned with the particular case where every group is Z.

Definition 6.1.5. A group G is said to be a generalized Baumslag-Solitar group (GBS group) if it is the
fundamental group of a finite graph of groups where all the vertex and edge groups are Z.

For an extensive introduction to the this class of groups, we point the reader to [Lev15; Rob15] and the
references therein.

6.1.2 Torus knot groups
The (n,m)-torus knot group is given by the presentation

Λ(n,m) = ⟨a, b | anb−m⟩.

These groups are a particular case of the generalized Baumslag-Solitar groups defined by the amalgamated
free product Z ∗Z Z, along with the inclusions 1 7→ n and 1 7→ m. Their name comes from the fact that they
are the knot groups of torus knots [Rol03].

Remark that Λ(n,m) ≃ Λ(m,n), and that if n or m is equal to one, Λ(n,m) ≃ Z. This last case is the only
case where the group is amenable. This can also be seen as a consequence of the following lemma.

Lemma 6.1.6. Λ(n,m) has a finite index normal subgroup isomorphic to F(n−1)(m−1) × Z.

This fact is deduced from the short exact sequence

1→ Z→ Λ(n,m)→ Z/nZ× Z/mZ→ 1.

As we will later see, these groups are part of a larger subclass of GBS groups having this property, called
unimodular.

Proposition 6.1.7. For n,m ≥ 2, Λ(n,m) has undecidable Domino Problem.

This is a consequence of the fact that these groups contain isomorphic copies of Z2, namely ⟨an, ba⟩.
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6.1.3 Baumslag-Solitar groups
Recall that the Baumslag-Solitar group BS(m,n) is defined by the presentation:

BS(m,n) = ⟨a, t | t−1amt = an⟩.

Along with torus knot groups they are the simplest examples of GBS groups. As mentioned in Section 1.3.4,
they are HNN extensions Z∗θ for the isomorphism θ that maps m 7→ n.

Furthermore, BS(1, 1) = Z2 and BS(m,n) ≃ BS(−m,−n). Baumslag-Solitar groups may behave radically
differently: the groups BS(1, n) are solvable and amenable, while the BS(m,n) groups with m,n > 1 contain
free subgroups and are consequently non-amenable. This dichotomy is also present in the classification of
Baumslag-Solitar groups up to quasi-isometry. On the one hand groups BS(1, n) and BS(1, n′) are quasi-
isometric if and only if n and n′ are powers of a common integer [FM99] –and in this case, the two groups
are even commensurable. On the other hand groups BS(m,n) and BS(m′, n′) are quasi-isometric as soon as
2 ≤ m < n and 2 ≤ m′ < n′ [Why01].

6.2 Weak aperiodicity and the Domino Problem
Proposition 6.2.1. Let (Γ,G) be a graph of groups. If at least one vertex group admits a weakly aperiodic
SFT, then π1(G) admits a weakly aperiodic SFT.

Proof. Theorem 6.1.3 tells us that for every v ∈ VΓ, there is a natural injective homomorphism Gv ↪→ π1(G).
Because there is at least one Gv that admits a weakly aperiodic SFT, and weakly aperiodic SFTs can be lifted
from subgroups, we conclude that π1(G) admits a weakly aperiodic SFT.

One case that does not fall within the hypothesis of Proposition 6.2.1 is when all vertices of the graph have
Z as their vertex group, which is known not to admit any weakly aperiodic SFT. But a careful study shows
that in this case, weakly aperiodic SFT can nevertheless be constructed unless the group is Z itself.

Proposition 6.2.2. If G is a graph of Z’s such that π1(G) is not Z, then π1(G) has a weakly aperiodic SFT
and undecidable Domino Problem.

Proof. Let G be a GBS group with its corresponding graph of groups Γ. Because G is not Z, at least one
edge, e ∈ EΓ, satisfies αe ̸≡ ±1. If this edge is a loop, from the previous remarks we know that G contains
a non-Z Baumslag-Solitar group. These groups are known to admit weakly aperiodic SFTs [AK13], and by
Proposition 5.2.2 so does G. Similarly, if the edge is in the spanning tree T ⊆ Γ such that G = π1(Γ, T ), then
G contains a torus knot group Λ(n,m), which admits a weakly aperiodic SFT by virtue of containing Z2 as a
subgroup.

The last case is when all edges in the spanning tree satisfy αe′ ≡ ±1, and there are no loops. Let e be
an edge such that αe, αē ̸= ±1, and v, u its end points. Because T is spanning, we know that v, u ∈ VT , and
therefore if Gv = ⟨a⟩ and Gu = ⟨b⟩ we have that in G, a = b±1. Then, the relation given by the edge e is,

aαe(1)e = ebαē(1) ⇐⇒ aαe(1)e = ea±αē(1).

This meansG contains the non-Z Baumslag-Solitar group BS(αe(1),±αē(1)), which as mentioned before, admits
a weakly aperiodic SFT. In all of the previous cases, the group we found within G had undecidable Domino
Problem, so by Proposition 2.0.8 so does G.

The same proof scheme can be utilized for the class of Artin groups, which are another example of groups
generated from a graph structure.

Let Γ = (V,E, λ) be an edge labeled graph with labels λ : E → {2, 3, ...}. We define the Artin group of Γ
through the presentation:
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A(Γ) = ⟨V | abab...︸ ︷︷ ︸
λ(e)

= baba...︸ ︷︷ ︸
λ(e)

, ∀e = (a, b) ∈ E⟩.

Let us call Γn the graph of 2 vertices a and b, and an edge connecting them labeled by n. Artin groups
defined as A(Γn) are known as dihedral. Notice that A(Γ2) ≃ Z2. Furthermore, for n ≥ 3, A(Γn) is virtually
Fm × Z for some m ≥ 2 (see [Cri05]). This fact also follows from the proof of the next proposition.

Proposition 6.2.3. Let A(Γ) be an Artin group. Then,

• if A(Γ) is not free, it has undecidable Domino Problem,

• if A(Γ) is not Z, it admits weakly aperiodic SFT.

Proof. Let A(Γ) be the Artin group defined from Γ = (V,E, λ). If E is empty then A(Γ) is the free group of
rank |V | ≥ 2, which is known to admit weakly aperiodic SFTs by [Pia08].

Let e = (a, b) be an edge in E. Notice that A(Γn) ≃ ⟨a, b⟩ ≤ A(Γ). Because both weakly aperiodic SFTs and
the undecidability of the Domino Problem are inherited from subgroups, it suffices to show that A(Γn) admits
a weakly aperiodic SFT for every n ∈ N. We identify two cases:

• Case 1: n = 2k, k ≥ 1. Here, A(Γ2k) is the one-relator group

A(Γ2k) = ⟨a, b | (ab)k = (ba)k⟩ = ⟨a, b | (ab)k = b(ab)kb−1⟩.

We apply Tietze transformations to the presentation, as follows:

A(Γ2k) ≃ ⟨a, b, c | (ab)k = b(ab)kb−1, c = ab⟩
≃ ⟨b, c | b−1ckb = ck⟩
= BS(k, k)

Therefore, A(Γ2k) admits a weakly aperiodic SFT and has undecidable Domino Problem.

• Case 2: n = 2k + 1, k ≥ 1. Once again, A(Γ2k+1) is the one-relator group:

A(Γ2k+1) = ⟨a, b | (ab)ka = (ba)kb⟩ = ⟨a, b | (ab)ka = b(ab)k⟩.

By doing an analogous procedure through Tietze transformations, we arrive at A(Γ2k+1) ≃ Λ(2, 2k + 1).
Therefore, A(Γ2k+1) also admits a weakly aperiodic SFT and has undecidable Domino Problem.

6.3 Lifting strongly aperiodic subshifts
To obtain aperiodic SFTs on groups from their finite index subgroups, we will make use of a construction by
Carroll and Penland [CP15], which we explain in detail.

Definition 6.3.1. For a finite index normal subgroup N we define the N -locked subshift L as the G-subshift
FixR(N) ∩ Σ, where R is a set of right coset representatives with 1G ∈ R, and Σ is the subshift defined by the
the finite set of forbidden patterns

{p : {1G, r} → R | r ∈ R \ {1G}, p(1G) = p(r)}.

Lemma 6.3.2. The N -locked subshift L is a non-empty G-SFT. In addition, stab(x) = N for all x ∈ L.
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Proof. Notice L is an SFT, as it is the intersection of two SFTs. To see it is non-empty we define y ∈ RG by
y(nr) = r. If we take n′ ∈ N ,

(n′ · y)(nr) = y(n′−1nr) = r = y(nr).

Thus, y ∈ FixR(N) and in particular N ⊆ stab(y). Next, we take r′ ∈ R and see that

y(nr) = (n−1 · y)(r) = y(r) ̸= y(rr′) = (n−1 · y)(rr′) = y(nrr′).

This way, y ∈ Σ, and therefore y ∈ L. Finally, if we take x ∈ L and g = nr ∈ stab(x), that is, g ·x = x, then

x = nr · x = r(r−1nr) · x = r · x.

With this, x(1) = x(r−1r) = (r · x)(r) = x(r). Because x ∈ Σ, r = 1G and thus g = n ∈ N .

Remark 6.3.3. An alternative way to see the N -locked subshift is a subshift of finite type when N is normal
and has finite index, is by Lemma 1.5.16 along with the fact that this subshift is the pull-back of the full-shift
RG/N .

We now have all the ingredients to prove the result.

Proposition 6.3.4. Let G be a finitely generated group and H a finite index normal subgroup. If H admits a
strongly aperiodic SFT, then G also does.

Proof. Let X ⊆ AH be a strongly aperiodic SFT over H. Given a set R of right coset representatives with
1 ∈ R, we define the G-SFT Y = X↑ × L, where L is the H-locked shift over R, and X↑ the free extension of
X. Let us see that Y is the subshift we are looking for. Suppose there is a y ∈ Y and g ∈ G \ {1G} such that
g · y = y. Due to Lemma 6.3.2 we know that g ∈ H. Then, for x = y|H ∈ X, g · x = x which contradicts the
aperiodicity of X.

6.3.1 Erratum to Strongly Aperiodic SFTs on generalized Baumslag-Solitar
groups

Section 6.3 has been modified from its original presentation in [ABH24]. Sadly, the proof of Proposition 3.5
which states that ‘For G a finitely generated group and H a finite index normal subgroup, if H admits a minimal
strongly aperiodic SFT, then so does G’, is incorrect. Given a minimal strongly aperiodic H-SFT X, the proof
begins by defining the set

X̂ = {y ∈ AG | ∃x ∈ X, ∀(h, r) ∈ H ×R, y(hr) = x(h)},

where R is a set of right coset representatives for H such that 1 ∈ R.

Erratum 1. There exists a group G and an H-SFT X such that X̂ is not shift invariant.

Proof. Let G = F2 ⋊ϕ Z/2Z with ϕ ∈ Aut(F2) defined as by ϕ(a) = b and ϕ(b) = a for {a, b} a free generating
set for F2, and H = F2. We denote the generator of Z/2Z by s, and take the set of right coset representatives
R = {1G, s}. Define the SFT X through the tileset graph Γ shown in Figure 6.1. Take x ∈ X and suppose

b

b

a a

Figure 6.1: Tileset graph Γ defining the SFT X that shows X̂ is not shift invariant.
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without loss of generality that x(1G) = . Define y ∈ X̂ by y(ws) = y(w) = x(w) for all w ∈ F2. Then,

(s · y)(w) = y(sw) = y(ϕ(w)s) = x(ϕ(w)),

for all w ∈ F2. Nevertheless, x ◦ ϕ /∈ X because x ◦ ϕ(1G) = x(1G) = and x ◦ ϕ(a) = x(b) = which is not
allowed in Γ. Therefore, s · y ̸∈ X̂.

Using a similar idea, we can show this happens even when X is strongly aperiodic. To do this we use the
notion of automorphism-free SFTs introduced by Jeandel [Jea15b]. Given a shift X ⊆ AG and a configuration
x ∈ X we define the set I(x,X) = {ϕ ∈ Aut(G) | x ◦ ϕ ∈ X}. We say the shift X is automorphism-free if
I(x,X) is trivial for all x ∈ X.

Proposition 6.3.5 (Prop. A.2 & A.3 [Jea15b]). Take G = Zd with d ≥ 2. Then the following hold:

• There exists an automorphism-free G-SFT,

• Every automorphism-free G-SFT is strongly aperiodic.

We use this result to state the following.

Erratum 2. There exists a virtually abelian group G and a strongly aperiodic H-SFT X such that X̂ is not
shift invariant.

Proof. Take H = Z2 and G = Z2 ⋊ϕ Z/2Z with ϕ(a) = b and ϕ(b) = a for the canonical generating set {a, b}
of Z2. As we did before, denote the generator of Z/2Z by s, and take the set of right coset representatives
R = {1G, s}. Let X be the strongly aperiodic automorphism-free Z2-SFT given by Proposition 6.3.5. Take
x ∈ X and define y ∈ X̂ by y(gs) = y(g) = x(g) for all g ∈ Z2. Then,

(s · y)(g) = y(sg) = y(ϕ(g)s) = x(ϕ(g)),

for all g ∈ Z2. But, x ◦ ϕ /∈ X as X is automorphism-free. Therefore, s · y ̸∈ X̂.

Even if X̂ turned out to be a subshift – as is the case when G is abelian – we can still show that the proof
does not work.

Erratum 3. Let G and H be such that [G : H] ≥ 3. Then, the H-locked subshift, L, is not minimal. As a
consequence X̂ × L is not minimal.

Proof. Let R be the set of right coset representatives used to define X̂, and L ⊆ RG the H-locked subshift. By
its construction, every configuration from L contains a different letter from R on each right H-coset. This fact
can be expressed as a permutation σx : R → R for x ∈ L defined by σx(r) = x(r). Because |R| ≥ 3 we can
take two non-trivial distinct coset representatives r1 ̸= r2. Take x ∈ L the configuration defining the trivial
permutation σx(r) = r. Next take x′ the configuration that is exactly like x except it exchanges r1 and r2, i.e.
σx′(r1) = r2 and σx′(r2) = r1. Suppose there exists a sequence hnrn ∈ G such that hnrn · x → x′. Because
L ⊆ FixR(H), and H is normal, hnrn · x = rn · x. Finally, because x′(1G) = 1G, for sufficiently big n we have
that (rn · x)(1G) = 1G. This in turn, implies that rn = 1G for sufficiently large n, which contradicts the fact
that x ̸= x′.

This previous fact shows that even with the proof of Proposition 6.3.4, which uses the free extension instead
of X̂, cannot prove the statement as it implies that X↑ × L is not minimal.
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6.4 Strong aperiodicity for GBS groups
In order to construct strongly aperiodic SFTs on GBS groups, we exploit their large scale structure, which is
well understood.

Theorem 6.4.1 (Whyte [Why01]). If Γ is a graph of Z’s, then for G = π1(Γ) exactly one of the following is
true:

1. G contains a finite index subgroup isomorphic to Fn × Z (these groups are called unimodular),

2. G = BS(1, n) for some n > 1,

3. G is quasi-isometric to BS(2, 3).

Remark 6.4.2. In the case of unimodular GBS it can even be proven that G contains Fn × Z as a normal
subgroup of finite index [DRT17, Lemma 4].

The strategy consists on finding a strongly aperiodic SFT for a representative of each of the three classes,
and then Theorem 5.1.6 on the invariance of strong aperiodicity under quasi-isometries for finitely presented
groups to conclude. In Section 6.6 we provide an example of a minimal strongly aperiodic SFT on Fn × Z for
all n ≥ 2, which implies the existence of strongly aperiodic SFTs for all unimodular GBS groups. The case of
groups quasi-isometric to BS(2, 3) is also treated in this chapter: in Section 6.7 we explain how to construct
a strongly aperiodic SFT on BS(2, 3). Groups G = BS(1, n) for some n > 1 are already known to possess a
minimal strongly aperiodic SFT [AS24]. In total, we are able to construct strongly aperiodic SFTs for all GBS.

6.5 A minimal, strongly aperiodic and horizontally expansive SFT
on Z2

In this section we present a construction of a strongly aperiodic SFT on Z2 with additional properties, that will
be useful in Section 6.6.2. We begin by presenting the notion of expansive subspaces or directions as introduced
in [BL97]. Let F be a subspace of R2 and v ∈ R2. We define

dist(v, F ) = inf{∥v − w∥ : w ∈ F},

where ∥ · ∥ denotes the Euclidean norm on R2. For t > 0 we define the thickening of F by t as the set

F t = {v ∈ Z2 : dist(v, F ) ≤ t}.

We say a subspace F is expansive for a subshift X if there exists t > 0 such that for any two configurations
x, y ∈ X, x|F t = y|F t implies x = y. Conversely, F is said to be non-expansive if for all t > 0 there exist
distinct x, y ∈ X such that x|F t = y|F t .

As we are working with two dimensions, non-trivial subspaces can be represented by directions. Thus we
speak of expansive and non-expansive directions.

For our purposes, a subshift X ⊂ AZ2 is horizontally expansive (resp. vertically expansive) if for every
pair of configurations x, y in X, x|Z×{0} = y|Z×{0} (resp. x|{0}×Z = y|{0}×Z) implies x = y. Stated otherwise,
one single row entirely determines the global configuration in the subshift. To construct our sought after SFT,
we can make use of the following construction.

Theorem 6.5.1 (Labbé, Mann, McLoud-Mann [LMM23], Labbé [Lab21b; Lab21a; Lab21c]). There exists an
aperiodic, minimal Z2-SFT X0 such that its non-expansive directions are exactly the ones given by the lines of
slope {0, φ+ 3, 2− 3φ, 5

2 − φ}, where φ = 1+
√

5
2 is the golden mean.
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In particular, this result tells us that the vertical line is an expansive direction for X0. It suffices to convert
this expansive direction into horizontal expansivity to get the desired SFT, as we show in what follows. Notice
that we can take X0 to be a Wang tile SFT by taking a higher block shift. This process preserves expansive
directions as stated in the next result.

Lemma 6.5.2 ([LMM23]). Let X and Y be two conjugate Z2-subshifts and v ∈ R2. Then, v is a non-expansive
direction for X if and only if it is non-expansive for Y .

Moreover, up to another conjugacy –a higher block again in this case– we also impose that the thickening t
of an expansive direction is zero. We then get the following.

Lemma 6.5.3. Let X be a Z2-subshift and v ∈ R2 an expansive direction for X. Then there exists Y a
Z2-subshift conjugate to X such that Y is expansive in direction v with thickening t = 0.

Now that the SFT X0 from Theorem 6.5.1 has been converted, thanks to Lemma 6.5.3, into a conjugate
vertically expansive Wang tile SFT Y0, we can rotate its Wang tiles (and thus its configurations) by π

2 (see
Figure 6.2). This rotated tileset defines an SFT, called the rotation by π

2 of Y0.

a

b

c

d

b

c

d

a

Figure 6.2: A Wang tile and its rotation by π
2 .

Lemma 6.5.4. Let X be a minimal, strongly aperiodic and vertically expansive Wang tile SFT. Then its rotation
by π

2 is a minimal, strongly aperiodic and horizontally expansive Wang tile SFT.

The proof of Lemma 6.5.4 does not pose any specific difficulties and is thus omitted. Combining this result
with Theorem 6.5.1 we conclude that there exists a minimal, strongly aperiodic and horizontally expansive
Wang tile SFT. This result will be used in Section 6.6.3.

Proposition 6.5.5. There exists a minimal, strongly aperiodic and horizontally expansive Wang tile SFT.

6.6 The path-folding technique on Fn × Z

In this section we present a technique to convert a subshift on Z2 into a subshift on Fn × Z that shares some
of its properties: the path-folding technique. In our case the properties that are proven to be preserved are:
being of finite type (SFT), strong aperiodicity and minimality. In this section we use π1 as the projection onto
the first coordinate, and not as a fundamental group.

As we will see later, this technique has a broader scope. In its most abstract version it consists on the
following steps:

1. Find a regular tree-like structure in the group. In the case of BS(2, 3) we take its Bass-Serre tree, and in
the case we of Fn × Z simply take Fn.

2. Define the flow shift on the tree: using an alphabet of arrows of the same size as the degree of the vertices,
we define a local rule demanding that, for every vertex, only one of its neighbors has an arrow pointing
away from the vertex, and the rest pointing towards. This allows us to make a correspondence between
the elements of the flow shift and the boundary of the tree.

3. Finally, fold configurations from other structures along the directions provided by the flow shift. In the
case of BS(2, 3) we fold configurations from the hyperbolic plane, and for Fn × Z we fold configurations
from Z2.
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6.6.1 The flow SFT
Let us begin by introducing the flow shift over Fn × Z, which we denote as Yf . We define this shift from tiles
representing different directions. Let S = {s1, ..., sn} be a set of generators of Fn and Z = ⟨t⟩. We understand
the group through the finite presentation

Fn × Z = ⟨t, s1, ..., sn | [t, si],∀i ∈ {1, ..., n}⟩.

We define the flow shift over the alphabet A = S∪S−1. We can interpret these tiles as pointing in the direction
specified by a generator or its inverse.

Figure 6.3: Flow tiles for F2.

To define Yf , we demand that a configuration y ∈ AFn×Z satisfies:

y(g) = s =⇒


y(gs) ̸= s−1

y(gs′) = s′−1, ∀s′ ∈ A \ {s}
y(gt) = s.

Notice that fixing a tile at the identity completely determines the tiling of the 2n − 1 subtrees of Fn the tile
does not point towards. Then, this leaves 2n − 1 possible tiles for the unspecified neighbour. In addition, the
last rule makes sure that each Z-coset contains the same tile.

This allows us to describe each configuration with an infinite word W . Given y ∈ Yf , we recursively define
W (y) ∈ AN by setting W0 = y(1) and setting Wn+1 = y(W0...Wn).

Due to the local rules, this correspondence between configurations and infinite words effectively creates a
bijection W between Yf and ∂∞Fn, the boundary of Fn.

Proposition 6.6.1. If y ∈ Yf has period g ∈ Fn, then W (y) is either the infinite word gN or the infinite
word (g−1)N.

Proof. Let y ∈ Yf be a configuration with a period g ∈ F2, that is, g ·y = y. We get right away that y(1) = y(g).
Let us write g as a reduced word g1 . . . gk on {s±1

1 , ..., s±1
n }. If we assume that y(1) ̸= g±1

1 , then following the
path from 1 to g, we get that y(g1) = g−1

1 , y(g1g2) = g−1
2 , . . . as well as that y(g) = gk, y(g1 . . . gk−1) = gk−1

and so on, by following the path in the opposite direction. So there necessarily exists an index i such that
y(g1 . . . gi) = g−1

i and y(g1 . . . gi) = gi, which is not possible, hence y(1) = g±1
1 . Iterating this process we

conclude that either y(g1 . . . gi) = g−1
i for each i = 1, . . . , k or y(g1 . . . gi) = gi for each i ∈ {1, . . . , k}. Thus

W (g) has either g or g−1 as a prefix. By applying the same reasoning to g · y, g2 · y, . . . , all of which also admit
g as a period, we conclude that either W (y) = gN or W (y) = (g−1)N.

6.6.2 The structure of a path-folding SFT
Let X ⊆ BZ2 be an horizontally expansive, strongly aperiodic nearest neighbor SFT on Z2; for instance, the
SFT detailed in Proposition 6.5.5. Without loss of generality we assume X to be a nearest neighbor SFT. We
want to "fold" each configuration along the path defined by the infinite word of a configuration in Yf . Let Z be
the subshift of the direct product2 BFn×Z × Yf , given be the following set of allowed patterns:

2see Section 5.3.1.
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Figure 6.4: If we look at the configuration in F2 = ⟨a, b⟩ as shown, the prefix of its infinite word is given by bab.

• For each valid pattern H of support {(0, 0), (1, 0)} in X, we define the pattern P of support {1, t} by:

P (1) = (H(0,0), d), P (t) = (H(1,0), d)

where d ∈ A.

• For each valid pattern V of support {(0, 0), (0, 1)} in X, we define the patterns Q of support {1, s} by:

Q(1) = (V(0,0), s), Q(s) = (V(1,0), s
′)

where s′ ∈ A \ {s−1}.

Proposition 6.6.2. The configurations in Z have the following structure:

x⊗ y : wti → (x(i, j), y(w)),

where w ∈ Fn, x ∈ X, y ∈ Yf defined by the word W , with

j = 2 max{|w′| | w′ ⊑p w ∧ w′ ⊑p W} − |w|,

where u ⊑p v denotes u being a prefix of v.

Proof. Let us have y ∈ Yf and x ∈ X. We begin by showing that x ⊗ y ∈ Z. We know the second coordinate
satisfies the allowed patterns by definition, so we must look at the first.

Let g = wti ∈ Fn × Z, then
(x⊗ y)(g) = (x(i, j), y(w)),
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as in the definition. We begin by looking at the support {1, t}. We have that gt = wti+1. Because w doesn’t
change when adding t, j does not change and y(wti+1) = y(wti). Therefore,

{(x⊗ y)(g), (x⊗ y)(gt)} = {(x(i, j), y(w)), (x(i+ 1, j), y(w))}

is allowed for all g ∈ Fn × Z. For patterns of support {1, s}, with s ∈ S ∪ S−1, we have gs = wsti. Let us
denote u = argmax{|w′| | w′ ⊑p w ∧ w′ ⊑p W}, j = 2|u| − |w| and π1(x ⊗ y)(gs) = x(i, j′). If it happens that
y(w) = s, we have two cases:

• u = w. Then, by applying s we continue on the configurations path, i.e. ws ⊑p W . Therefore, j′ = j + 1

• u ⊏ w. Then, because of the local rules defining Yf , the last letter in w must be s−1. Then |ws| = |w| − 1
and therefore j′ = j + 1.

This means {(x⊗ y)(g), (x⊗ y)(gs)} = {(x(i, j), y(w)), (x(i, j + 1), y(ws))} is allowed. If on the other hand,
y(w) ̸= s, we have that

argmax{|w′| | w′ ⊑p ws ∧ w′ ⊑p W} = u.

Thus, j′ = 2|u| − |ws| = j − 1. Once again, this means

{(x⊗ y)(g), (x⊗ y)(gs)} = {(x(i, j), y(w)), (x(i, j + 1), y(ws))},

is allowed. We conclude that x⊗ y ∈ Z.

Now, let us have z ∈ Z. We can easily obtain y ∈ Yf linked to a word W through the recursive method
mentioned above. To find x, we begin by setting:

x(i, 0) = π1(z(ti)), ∀i ∈ Z.

Next, we define the path function ρ : Z→ G as follows:

ρW (j) =
{
W0 ... Wj , if j ≥ 0
(W0)j if j < 0

.

We continue looking our configuration y by defining the group elements {gi,j}i,j∈Z as gi,j = ρW (j)ti.
Finally, we set

x(i, j) = π1(z(gi,j)).

Claim: x ∈ X.

Let us take a look at two cases:

• ∃(i, j) ∈ Z2: {x(i, j), x(i + 1, j)} is forbidden in X. This would mean that the pattern {z(gi,j), z(gi,jt)}
would be forbidden in Z, which is a contradiction.

• ∃(i, j) ∈ Z2: {x(i, j), x(i, j + 1)} is forbidden in X.
Notice that, gr,n+1 = gr,nWn+1. This would mean that the pattern {z(gi,j), z(gi,jWn+1)} would be
forbidden in Z, which is a contradiction.

Claim: z = x⊗ y.
Because of the way y was obtained, it suffices to check the first coordinate. Let us have g = wti and

π1(x⊗ y)(g) = x(i, j) as in the proposition statement. In addition, let

u = argmax{|w′| | w′ ⊑p w ∧ w′ ⊑p W},
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and N = |u|. As we have seen, this means that

π1(z(h)) = x(0, N),

because u = ρW (N). Now, if we have w = uw0...wm,we can see that y(u) is not in the direction of the flow.
Thus, we can deduce from the allowed local rules that the second coordinate of x must decrease by 1 when
applying w0. Now, because X is expansive, we know that x is the only configuration with the pattern x|Z×{N}
on Z× {N}. This allows us to say,

π1(z(hw0)) = x (0, N − 1) ,

By repeating the same argument for w1 up to wm, we obtain:

π1(z(w)) = π1(z(hw0...wm)) = x (0, N − (m−N)) = x(0, j)

we can conclude,

π1(z(g)) = π1(z(wti)) = x(i, j).

Theorem 6.6.3. There exists a strongly aperiodic SFT on Fn × Z.

Proof. We proceed by contradiction to prove that the SFT Z is strongly aperiodic. Let z ∈ Z be such that
there exists g ∈ Fn×Z\{1} satisfying g · z = z. We decompose g−1 as wti, with w ∈ Fn and i ∈ Z. In addition,
let us have x ∈ X and y ∈ Yf such that z = x⊗ y.
By Proposition 6.6.1, W = W (y) is a periodic word given by either wN or (w−1)N. Let us call l = |w|, and
suppose without loss of generality that W = wN.

Claim: (−i,−l) · x = x.

Let (α, β) ∈ Z2 and let h = ρW (β)tα. Then, x(α, β) = π1(z(h)).
If we call π1((g ·z)(h)) = π1(z(g−1h)) = x(α′, β′), it is straightforward to see that α′ = α+ i. For the second

coordinate, notice that for g−1h the greatest prefix this element has in common with W is given by wρW (β),
due to the definition of W . This means that, β′ = β + l, and thus x ∈ X is periodic in the direction (−i,−l),
which is a contradiction.

As a consequence, because unimodular groups contain Fn × Z as a finite index normal subgroup, Proposi-
tion 6.3.4 tells us that they admit strongly aperiodic SFTs. In particular, both torus knot groups and BS(n, n)
admit this kind of subshift, as they are unimodular.

Corollary 6.6.4. Unimodular GBS groups admit strongly aperiodic SFTs. In particular, both Λ(n,m) and
BS(n, n) admit strongly aperiodic SFTs.

6.6.3 Minimality
We would like to see if properties from the aperiodic SFT X over Z2 can be lifted to our new aperiodic subshift Z.
In particular, we are interested in preserving minimality. Recall that a Z2-SFT of the sought after characteristics
is shown to exist in Proposition 6.5.5.

The idea is as follows. First, we show that the flow shift Yf is minimal. The idea here is, for configurations
defined by words W ′ and W , to shift the first configuration progressively obtaining configurations whose defining
word is W0W1 ... WnenW

′, where en is an error term of length 1. Second, we couple this minimality with that
of X to establish the sought after result.
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y ab · y

a2b · y (ab)2 · y

Figure 6.5: The first three steps to go from the word (ba)∞ to (b−1a−1)∞, with error term en = a−1 for all n.
The original word is marked in red, the new one in blue, and the error term in green.

Lemma 6.6.5. Let y, y′ ∈ Yf be two configurations defined by the words W and W ′ respectively. Then, there
exists a sequence {gn}n∈N in Fn × Z such that

lim
n→∞

g−1
n · y′ = y,

and |gn+1| = |gn|+ 1 for all n ∈ N.

Proof. We would like to find gn such that W (g−1
n · y′) = W0 ... WnenW

′, with |en| = 1. We add the error term
so we avoid forbidden flow patterns (we must avoid Wn = (W ′

0)−1 at every point) and for the size of the new
word to increase by exactly 1 at each step. This term will disappear upon taking the limit.

We begin by introducing the directions involved in the error term:
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ai =
{
s−1
i if W ′

0 = si

si if not
.

Then, we define g0 = aiW
−1
0 for W0 ∈ (S ∪ S−1) \ {si, s−1

i }. This way, we arrive at W (g−1
0 · y′) = W0e0W

′,
where e0 is the arrow we added as padding to avoid W0 conflicting with W ′

0. Next, we recursively define
gn = ai(W0 ... Wn)−1 for Wn ∈ (S ∪ S−1) \ {si, s−1

i }. This way, we have

W (g−1
n · y′) = W0 ... WnenW

′,

where en is the error term of size 1. Therefore,

lim
n→∞

g−1
n · y′ = y.

Theorem 6.6.6. There exists a minimal strongly aperiodic SFT on Fn × Z.

Proof. We prove that the SFT Z satisfies the statement of the theorem. Let us take two configurations x′ ⊗ y′

and x⊗y in Z. Because X is minimal, there exists a sequence {(in, jn)}n∈N in Z2 with (jn)n∈N increasing, such
that

lim
n→∞

(in, jn) · x′ = x.

Let {gn}n∈N be the sequence from Lemma 6.6.5, that is,

lim
n→∞

g−1
n · y′ = y.

Let M ∈ N be such that jM ≥ 2. Next, let {nk}k≥M be the increasing subsequence satisfying nk + 1 = jk.
Then,

(gnktik)−1 · (x′ ⊗ y′) = (x′
(−ik,−jk),W0).

It follows that,
(gnktik)−1 · (x′ ⊗ y′) = ((ik, jk) · x′)⊗

(
g−1
nk
· y′) ,

and thus,
lim
k→∞

(gnktik)−1 · (x′ ⊗ y′) = x⊗ y.

This shows that Z is minimal.

6.7 Adaptation to the Baumslag-Solitar group BS(2, 3)

Amenable Baumslag-Solitar groups BS(1, n) are known to have strongly aperiodic SFTs [EM22a] and even
minimal strongly aperiodic SFTs [AS24]. The case of BS(m,n) for m ̸= n and m,n > 1 has remained unsolved
until now. Since all these groups are quasi-isometric [Why01], it is enough to focus on BS(2, 3). A weakly
aperiodic SFT is known to exist on this group [AK13] and we prove here that thanks to the path-folding
technique, this construction can be modified to get strong aperiodicity. In a few words, the weakly aperiodic
SFT relies on an embedding of BS(2, 3) into R2 that fails to be injective, and this injectivity default irremediably
produces some periods in the SFT. We modify the embedding so that it now depends on an infinite path in the
group, such that the choice of the path allows to break the existing periods.
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6.7.1 The group BS(2, 3)

t

a a

t

a a a

Figure 6.6: The Cayley graph of BS(2, 3) = ⟨a, t | t−1a2t = a3⟩

Since BS(2, 3) is an HNN-extension, by Lemma 1.3.28 we have a normal form for elements of BS(2, 3).

Lemma 6.7.1 (Normal form). Every element g ∈ BS(2, 3) can be uniquely decomposed as g = wak, where w
is a freely reduced word over the alphabet {t, at, t−1, at−1, a2t−1} and k ∈ Z.

Proof. Lemma 1.3.28 states that every element g ∈ BS(2, 3) has the form

g = aN te1am1 ... tenamn ,

where N ∈ Z and ei = ±1, such that if ei = 1 then mi ∈ {0, 1}, if ei = −1 then mi ∈ {0, 1, 2}, and we never
have a subword of the form t±a0t∓.

Notice that if g = aN , it is already in the form we are looking for. Next, if we have g = aN t, we can
decompose N = 2d+ r, where 0 ≤ r < 2 in order to change the order of the generators,

g = aN t = a2d+rt = arta3d.

Analogously, if g = aN t−1, we decompose N = 3d+ r with 0 ≤ r < 3 and arrive at

g = aN t−1 = a3d+rt−1 = art−1a2d.

Finally, for an arbitrary g, we simply iterate the two preceding procedures to arrive at an expression for g
in the sought after form.

6.7.2 The orbit coding construction
In this section we briefly overview the key ideas in the construction originally found by Kari for Z2 [Kar96] and
then generalized to BS(m,n) [AK13; AK21b]. We start with an overview of the original construction on Z2

from a group theoretical point of view to set the scene for generalizations to BS(m,n). For details and proofs
we refer to the original article [Kar96]. Consider the standard presentation ⟨a, t | at = ta⟩ for Z2. The idea of
Kari is to start with a rational piecewise affine map f : I ⊆ R→ R such that all x ∈ I are immortal, meaning
that for every k ∈ Z the k-th iteration fk(x) lies inside I, and f is aperiodic. Then he defines an SFT Xf such
that

1. Each configuration of the SFT encodes the orbit of an immortal point by f ;

2. Within a configuration, each ⟨a⟩-coset encodes a real number x ∈ I. This is done thanks to the Beatty
sequence (Bk(x))k∈Z of x given by Bk(x) = ⌊(k+1)x⌋−⌊kx⌋, that is, a bi-infinite sequence that alternates
between the two integers ⌊x⌋ and ⌊x⌋+ 1, and that in average converges to x;
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3. The computation of f follows the t-direction: if the real number x is encoded on tk · ⟨a⟩ for some k ∈ Z,
then the real number f(x) is encoded on tk+1 · ⟨a⟩ (see Figure 6.7 on the left). For g = ajtk ∈ Z2, the
integer k ∈ Z is called the height of g;

4. The function f is computed locally from one coset to the next one. This local computation is exact up
to some bounded error, in a way such that globally the errors compensate and vanish making the global
computation is exact.

5. The aperiodicity of each configuration is a consequence of the aperiodicity of f .
The main difficulty in this construction is to ensure that only finitely many letters are needed in the alphabet

of the SFT. Since we choose a rational piecewise affine map, the coefficients used as colors on the Wang tiles
are certainly also rational numbers. The nature of the different encodings (both of the real numbers and of
the local computation) ensures that there are a finite amount of Wang tiles and the corresponding SFT Xf is
non-empty (see [Kar07] for more details).

The same construction may be adapted to BS(m,n) as presented in [AK13; AK21b]. There are some
technicalities to synchronize the different sheets of BS(m,n), but the general idea is the same. The main
difference with Z2 is that in this construction, the real number fk(x) is encoded not only on a unique Z-coset
but on infinitely many of them. With the presentation ⟨a, t | t−1amt = an⟩ every coset g · ⟨a⟩ with g ∈ BS(m,n)
encodes the real number fk(x), provided that g can be represented by a word w on {a, a−1, t, t−1} such that
|w|t− |w|t−1 = k. Similarly to Z2, the number k plays the role of the height of g (see Figure 6.7 in the middle).
The construction provides a weakly aperiodic SFT, but since a same real number fk(x) is encoded on infinitely
many ⟨a⟩-cosets, this SFT is not strongly aperiodic.

We modify the construction for BS(m,n) so that the computation of f no longer follows the generator t,
but rather a direction given by a flow SFT similar to the flow of Section 6.6.1 (see Figure 6.7 on the right).
Figure 6.7 sums up how the Kari’s construction on Z2, the construction on BS(m,n) as presented in [AK21b]
and our construction on BS(m,n) are similar, but also how our construction differs from the one of [AK21b]
and thus provides strong aperiodicity instead of weak aperiodicity only.

f follows the height on Z2

f−2(x)

f−1(x)

x

f(x)

f 2(x)

f follows the height on BS(2, 3)

x

f−1(x)
f−1(x) f−1(x)

f(x) f(x)

x x

x

f follows the flow on BS(2, 3)

x

f−1(x)
f−1(x) f−1(x)

f−1(x) f(x)

x f 2(x)

f−2(x)

Figure 6.7: On the left the Cayley graph of Z2 = ⟨a, t | at = ta⟩ where is pictured how an orbit for f is
encoded. In the middle the equivalent picture for BS(2, 3) = ⟨a, t | t−1a2t = a3⟩. For these two pictures, edges
corresponding to generator t in the Cayley graphs are pictured with a double arrow. On the right, edges with
double arrows represent the direction given by the flow SFT on BS(2, 3).

6.7.3 A flow SFT on BS(2, 3)
Consider the alphabet A = {t, at, t−1, at−1, a2t−1} and the SFT Yflow ⊂ ABS(2,3) defined by the following local
rules: for every group element g ∈ BS(2, 3) and every configuration y ∈ Yflow,
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• y(g) = y(g · a2) if y(g) ∈ {t, at}

• y(g) = y(g · a3) if y(g) ∈ {t−1, at−1, a2t−1}

• if y(g) = u ∈ A then for every v ∈ A \ {u−1} we have y(g · v−1) = v

This SFT can be equivalently, and in a more visual way, defined through the finite patterns with support
{1, a, a2, t, ta, ta2, ta3} ∪A pictured below.

1

p
(1)
1 = t

1

p
(2)
1 = t−1

1

p
(3)
1 = at

1

p
(4)
1 = at−1

1

p
(5)
1 = a2t−1

Figure 6.8: The allowed patterns p(1) to p(5) for the flow SFT on BS(2, 3). For more readability the outgoing
edges are pictured in red.

Notice that for each flow configuration y ∈ Yflow and for every g ∈ BS(2, 3), the restriction of y to g · aZ
is necessarily periodic, with this period being either a2 or a3. More precisely the coset g · aZ is a2-periodic if
y(g) ∈ {t, at} and a3-periodic if y(g) ∈ {t−1, at−1, a2t−1}. Consequently we may represent y just by a flow
on the Bass-Serre tree of BS(2, 3), that is to say an edge coloring of the complete tree of degree 5 where each
vertex has a single outgoing arrow and four incoming arrows (see Figure 6.9).

In the same fashion as in Section 6.6.1, we can express flow configurations from Yflow as infinite words.

Proposition 6.7.2. There is a bijective corresponding between configurations of Yflow and semi-infinite words
on the alphabet A = {t, at, t−1, at−1, a2t−1}.

Proof. If y ∈ Yflow we denote by W (y) the word in AN given by the recursion starting with W0 = y(1) and
proceeding with Wn = y(W0...Wn−1).

Reciprocally if W is a word in AN we define a flow configuration Yflow. We set y(W0 ... Wn−1) = Wn for all
n ≥ 0. Next, we can determine all other values through the use of the periodicity of a-cosets and the third rule
rule defining the flow SFT, as shown by the definition of Yflow (see Figure 6.8).

Figure 6.9: A configuration in the flow SFT on BS(2, 3), pictured on the Bass-Serre tree only. Starting from
the upper-left corner, this configuration is represented by a word with prefix tta2t−1
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Proposition 6.7.3. If y ∈ Yflow has period g ∈ BS(2, 3) with normal form decomposition g−1 = wak, then
W (y) is either the infinite word wN or the infinite word (w−1)N.

Proof. The proof is analogous to the proof of Proposition 6.6.1.

6.7.4 Embedding BS(2, 3) into R2 along a flow configuration
We define an embedding of BS(2, 3) into R2 from a flow configuration y ∈ Yflow, denoted Φy : BS(2, 3) → R2,
that is recursively defined on finite words w on the alphabet B = {a, t, a−1, t−1}.

We define Φy(w) = (α(w), hy(w)) recursively, coordinate by coordinate. Let ε denote the empty word. The
second coordinate is such that, for u ∈

{
t, at, a2t, t−1, at−1}
hy(ε) = 0

hy(w.u) = hy(w) + 1 if y(w) = u

= hy(w)− 1 otherwise
hy(w.a) = hy(w) = hy(w.a−1).

This coordinate hy(g) represents how far the ⟨a⟩-cosets of a group element g are from ⟨a⟩ (the ⟨a⟩-coset of the
identity) if we follow the flow configuration y from the identity. In our construction this corresponds to the
simulated height in the original Kari’s SFT, and we call it the y-height of g in the sequel. The first coordinate
is:

α(ε) = 0
α(w.t) = α(w.t−1) = α(w)

α(w.a) = α(w) +
(

2
3

)β(w)

α(w.a−1) = α(w)−
(

2
3

)β(w)
.

where β(w) :=∥ w ∥t= |w|t − |w|t−1 counts the contribution of the generator t to w. This first coordinate
α(w) is exactly the first coordinate of the Φ embedding given in [AK21b]. The difference with Φy lies in the
second coordinate, hy(w), that no longer follows the generator t but the path induced by the flow configuration
y instead.

Proposition 6.7.4. For every g ∈ BS(2, 3) the value of hy(w) does not depend on the choice of the word w
that represents g, hence hy is well-defined on BS(2, 3).

Proof. We prove this by induction on the size of the normal form of Lemma 6.7.1. Since hy(w.a±1) = hy(w) we
can get rid of the last term, ak, in the writing of the normal form; it does not contribute to hy. Assume every hy is
well-defined for all group elements that can be written with n letters from alphabet A =

{
t, at, t−1, at−1, a2t−1}.

Let g ∈ BS(2, 3) be an element with normal form w ∈ An+1. Denote g′ the group element with normal form
w0 . . . wn−1 ∈ An . Then

hy(g) = hy(w0 . . . wn).

There are two cases, depending on whether wn = y(g′) or wn ̸= y(g′). In the first case

hy(g) = hy(w0 . . . wn) + 1
= hy(g′) + 1 by induction hypothesis,
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and in the second case

hy(g) = hy(w0 . . . wn)− 1
= hy(g′)− 1 by induction hypothesis,

so that hy(g) does not depend on the chosen word.

Proofs of analogous results for α and β can be performed in a similar way. Again following [AK21b] we
define λ : BS(2, 3)→ R as

λ(g) = 1
2

(
3
2

)β(g)
α(g).

Proposition 6.7.5. Let g be an element of BS(2, 3). Then for i = 0, . . . , 2:

1. β(g · tai) = β(g) + 1;

2. λ(g · tai) = 3
2λ(g) + i

2 .

Proof. The first point is a direct application of the rules that define β. For the second point we have that

λ(g · tai) = 1
2

(
3
2

)β(g·tai)
α(g · tai)

= 1
2

(
3
2

)β(g)+1
α(g · tai)

= 1
2

(
3
2

)β(g)+1
(
α(g) + i ·

(
2
3

)β(g·t)
)

= 3
2λ(g) + i

2

(
3
2

)β(g)+1(2
3

)β(g)+1

λ(g · tai) = 3
2λ(g) + i

2 .

6.7.5 A strongly aperiodic SFT on BS(2, 3)
To construct an aperiodic SFT we will add a new layer of tiles to the flow shift. These new tiles are Wang tiles
for BS(2, 3) that encode a piecewise linear function.

t1 t2

ℓ r

b1 b2 b3

Figure 6.10: A Wang tile for BS(2, 3)

Each tile consists 7-tuple of integers s = (t1, t2, l, b1, b2, b3, r), as shown in Figure 6.10. Let τ be a set of
these Wang tiles. We say a that a configuration z ∈ τBS(2,3) is a valid tiling if the colors of neighboring tiles
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match. More explicitly,for every g ∈ BS(2, 3) we must have:

z(g)(r) = z(g · a2)(ℓ)
z(g)(bi) = z(g · ai−1t)(t1) for i = 1, 2, 3
z(g)(bi) = z(g · ai−2t)(t2) for i = 1, 2, 3.

We say that a Wang tile for BS(2, 3) computes a function f : I ⊂ R→ I if

f

(
t1 + t2

2

)
+ ℓ = b1 + b2 + b3

3 + r.

If this equality holds for f , we say that the tile computes f along the generator t. If f is invertible and the tiles
computes f−1, we say that the tiles computes f against the generator t.

Let us define the circle I =
[ 1

10 ; 5
2
]
/ 1

10 ∼ 5
2
. We introduce T : I → I the piecewise linear map defined by

T : x 7→


5
2x if x ∈ [ 1

10 ; 1]

1
10x if x ∈]1; 5

2 [

T (x)

11
10 5

2

x
1
4

5
2

This linear map is invertible with inverse

T−1 : x 7→

 10x if x ∈] 1
10 ; 1

4 [

2
5x if x ∈ [ 1

4 ; 5
2 ]

It is not difficult to see that T admits immortal points, i.e. reals numbers x such that for every k ∈ Z, T k(x)
lies in I. It is also easy to check, since 5 and 2 are coprime, that T is aperiodic, meaning that for every x ∈ I
if T k(x) = x for some integer k ∈ Z, then k = 0.

We do not use the same function as in [Kar96] to construct a strongly aperiodic SFT on Z2 and in [AK13]
to construct a weakly aperiodic SFT on BS(3, 2), because it may cause trouble in our construction. Indeed
a careful observation of how tiles are built (see [AK21a] for the bounds on the values for ℓ) shows that the
tileset corresponding to the piece of the function given by x 7→ 2

3x is empty! It is safer to use a piecewise linear
function where no multiplicative coefficient matches 2

3 , hence our choice for T . More generally for BS(m,n) no
multiplicative coefficient should match m

n .

Thanks to the machinery presented in [AK13; AK21b], we can define from the function T two tilesets: first
τT that computes T along t then τT−1 that computes T−1 along t –or equivalently computes T against t. We
thus define the following quantities that depend on three parameters: a function f , that can be either T or T−1

in our case, a real number x ∈
[ 1

10 ; 5
2
]

and a group element g ∈ BS(2, 3).

tk(x, g) = ⌊(2λ(g) + k)x⌋ − ⌊(2λ(g) + (k − 1))x⌋ for k = 1, 2

bk(f, x, g) = ⌊(3λ(g) + k) f(x)⌋ − ⌊(3λ(g) + (k − 1)) f(x)⌋ for k = 1, 2, 3

ℓ(f, x, g) = 1
2f (⌊2λ(g)x⌋)− 1

3⌊3λ(g)f(x)⌋

r(f, x, g) = 1
2f (⌊(2λ(g) + 2)x⌋)− 1

3⌊(3λ(g) + 3) f(x)⌋

(6.1)
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We gather τT and τT−1 , that are both finite by [AK21a, Proposition 8], into a single tileset τ which is thus
finite and combine it with the flow SFT Yflow to define the SFT YT over the alphabet A × τ as follows: every
configuration z ∈ YT , which we denote z(g) = (y(g), τ(g)) for every g ∈ BS(2, 3), satisfies:

• if y(g) = t then τ(g) ∈ τT ;

• if y(g) ∈ {at, t−1, t−1, at−1, a2t−1} then τ(g) ∈ τT−1 .

These two conditions impose that the computation of iterates of T follows the flow: we put tiles that compute
T on outgoing arrows and tiles that computes T−1 on incoming arrows (see Figure 6.11).

x
g

y(g) = t

T (x)

T−1(x)
T−1(x)

T−1(x)

T−1(x)

x
g

y(g) = t−1

T−1(x)

T (x)
T−1(x)

T−1(x)

T−1(x)

x
g

y(g) = at

T−1(x)

T−1(x)
T−1(x)

T (x)

T−1(x)

x
g

y(g) = at−1

T−1(x)

T−1(x)
T (x)

T−1(x)

T−1(x)

x
g

y(g) = a2t−1

T−1(x)

T−1(x)
T−1(x)

T−1(x)

T (x)

Figure 6.11: The flow configuration drives the choice for computing T or T−1 in the different sheets of BS(2, 3).

Combining the formulas from (6.1) and the patterns from Figure 6.8 we can picture Wang tiles from τ as
below.

t1(x, g) x2(x, g)

ℓ(T, x, g) r(T, x, g)

b1(T, x, g) b2(T, x, g) b3(T, x, g)

t1(x, g) t2(x, g)

ℓ(T−1, x, g) r(T−1, x, g)

b1(T−1, x, g) b2(T−1, x, g) b3(T−1, x, g)

Figure 6.12: Wang tileset τ that computes T along a flow configuration for BS(2, 3).

Proposition 6.7.6. The tile pictured on the left of Figure 6.12 computes T along t, and the tile on the right
computes T−1 along t (or T against t).

Proof. The tiles are a simplified version of the tiles in [AK21b], since we have a one-dimensional function T or
T−1 instead of a two-dimensional one, and our functions are linear and not affine. The calculations are left to
the reader: the main idea is that terms on top and bottom telescope and the left and right carries precisely
compensate the remaining terms.

Remark 6.7.7. The proof of Proposition 6.7.6 does not depend on the choice for the function λ.

Proposition 6.7.8. There exists a configuration in YT .

Proof. The proof follows the proof of Lemma 9 from [AK21b], since the function T we have chosen has immortal
points. Fix a flow configuration y ∈ Yflow and choose x an immortal point for T . For every g ∈ BS(2, 3) we put
the tile τ(f, Thy(g)(x), g) in g, where f = T if y(g) = t and f = T−1 otherwise. This defines a configuration
z in τBS(2,3). It remains to check that it is indeed in the SFT YT . We need to check that the three matching
rules conditions on page 145 are satisfied.
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1. z(g)(r) = z(g ·a2)(ℓ)? We distinguish two cases, depending on whether y(g) = t or not. If this is the case,
then z(g)(r) is r(T, Thy(g)(x), g):

z(g)(r) = 1
2T
(
⌊(2λ(g) + 2)Thy(g)(x)⌋

)
− 1

3⌊(3λ(g) + 3)Thy(g)+1(x)⌋.

In this case, by the definition of Yflow (see Figure 6.8), we also have that y(g · a2) = t. Thus z(g · a2)(ℓ) is
ℓ(T, Thy(g·a2)(x), g · a2) and since hy(g · a2) = hy(g) we get:

z(g · a2)(l) = 1
2T
(
⌊2λ(g · a2)Thy(g)(x)⌋

)
− 1

3⌊3λ(g · a2)Thy(g)+1(x)⌋.

It suffices to use the fact that λ(g · a2) = λ(g) + 1 to conclude.

In the second case, y(g) ̸= t, z(g)(r) is r(T−1, Thy(g)(x), g) and the allowed patterns of Figure 6.8 impose
that y(g ·a2) ̸= t. Thus z(g ·a2)(ℓ) is equal to ℓ(T−1, Thy(g)·a2(x), g ·a2). The equalities λ(g ·a2) = λ(g)+1
and hy(g · a2) = hy(g) give that z(g)(r) = z(g · a2)(ℓ).

2. z(g)(bi+1) = z(g · tai)(t1) for i = 0, 1, 2?
If y(g) = t, then

z(g)(bi+1) = bi+1(T, Thy(g)(x), g)
= ⌊(3λ(g) + i+ 1)Thy(g)+1(x)⌋ − ⌊(3λ(g) + i)Thy(g)+1(x)⌋.

On the other hand,

z(g · tai)(t1) = t1(Thy(g·tai)(x), g · tai)

= ⌊
(
2λ(g · tai) + 1

)
Thy(g·tai)(x)⌋ − ⌊

(
2λ(g · tai)

)
Thy(g·tai)(x)⌋.

Using results from Proposition 6.7.5 we get that

z(g · tai)(t1) = ⌊
(

2
(

3
2λ(g) + i

2

)
+ 1
)
Thy(g)+1(x)⌋ − ⌊

(
2
(

3
2λ(g) + i

2

))
Thy(g)+1(x)⌋

= ⌊(3λ(g) + i+ 1)Thy(g)+1(x)⌋ − ⌊(3λ(g) + i)Thy(g)+1(x)⌋
= z(g)(bi+1).

If y(g) ̸= t, the calculations are quite similar, except that T is replaced by T−1 in the expression of
z(g)(bi+1), which is compensated by the fact that, in that case, hy(g · tai) = hy(g)− 1.

3. z(g)(bi+1) = z(g · tai−1)(t2) for i = 0, 1, 2?
This part is very similar to what precedes and left to the reader, since t2(x, g) is just a shift of t1(x, g).

Let (xi)i∈Z be a bi-infinite sequence on the alphabet {k, k + 1} for some integer k ∈ Z. Then (xi)i∈Z
is a representation of a real number x if arbitrarily long sub-sequences have averages arbitrarily close to x.
For instance a given real number x its Beatty sequence (Bk(x))k∈Z where Bk(x) = ⌊(k + 1)x⌋ − ⌊kx⌋ is a
representation of x. A compactness argument shows that any bi-infinite sequence (xi)i∈Z represents at least
one real number, but it may also represent different reals.

Proposition 6.7.9. The SFT YT is strongly aperiodic.
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Proof. Let z = (y, τ) be a configuration in YT and assume it possesses a period g ∈ BS(2, 3). Thus for every
k ∈ Z one has that

z(ak) = z(g−1 · ak)

so that the two ⟨a⟩-cosets at 1 and g−1 are the same. If we denote by x one real number represented by τ on
the ⟨a⟩-coset of the identity, we get that

Thy(g)(x) = x.

But the periodicity of z also constrains the flow configuration y. Necessarily by Proposition 6.7.3, if we decom-
pose g into its normal form g = wap, we have that y is characterized by either the infinite word wN or (w−1)N.
Without loss of generality we take W (y) = wN, which in particular implies that hy(w) = hy(g) = |g|t + |g|t−1 .
Hence we can rewrite Thy(g)(x) = x as

T |g|t+|g|t−1 (x) = x

which in turn implies, by the aperiodicity of T , that |g|t + |g|t−1 = 0. Because the two terms are positive they
are necessarily zero. The period g is therefore a power of a that we denote a−N for some N ∈ Z. We now know
that for every group element h ∈ BS(2, 3)

z(h) = z(aN · h),

so that each ⟨a⟩-coset in the configuration y wears a N -periodic bi-infinite word. Since there are only finitely
many possible words of length N , by following the flow component of y, there must exist two distinct integers
k, k′ such that T k(x) = T k

′(x). Again the aperiodicity of T implies that k = k′, which contradicts our initial
assumption. We conclude that z has no period.

Combining Proposition 6.7.8 and Proposition 6.7.9 gives the existence of a strongly aperiodic SFT on
BS(2, 3). Since all non-residually finite Baumslag-Solitar groups are finitely presented, torsion free and quasi-
isometric between them, Theorem 5.1.6 of [Coh17] applies and we conclude that all the BS(m,n) with m,n > 1
and m ̸= n admit strongly aperiodic SFTs.

Theorem 6.7.10. Non-residually finite Baumslag-Solitar groups BS(m,n) with m,n > 1 and m ̸= n admit
strongly aperiodic SFTs.

Corollary 6.7.11. All non-Z GBS groups admit a strongly aperiodic SFT.

6.8 Consequences
Through the machinery provided by Theorem 5.1.6, we can push the result to a broader class of groups, namely
those obtained as the fundamental group of a graph of virtual Z’s. This structure is the same as in Definition
6.1.5 but all vertex groups are virtually Z instead of just Z.

Theorem 6.8.1 ([MSW03]). A group G is quasi-isometric to a GBS group if and only if it is the fundamental
group of a graph of virtual Z’s.

This way, Corollary 6.7.11 implies the following result.

Corollary 6.8.2. Let G be the fundamental group of a graph of virtual Z’s. If G is not virtually Z it admits a
strongly aperiodic SFT.
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Substitutive Tools
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Chapter 7
Substitutions and Hierarchical Structures

As we explained in the introduction to this thesis, symbolic dynamics was largely conceived to represent general
dynamical systems through symbolic sequences, by coding orbits on a discretized space. Over time, this approach
has been applied to study various families of dynamical systems. Notable examples include linear recurrent sys-
tems [DHS99], Toeplitz flows [GJ00], interval exchange transformations [GJ02], dendric sequences [GL22], and
general minimal systems [HPS92].

One commonly used coding method, introduced in [Fer96; LV92], involves the use of infinite sequences of
morphisms, or substitutions, known as directive sequences or S-adic representations. Recent research has
shown that understanding the underlying S-adic structures of some subshifts sheds light on their dynamical
properties, such as the recognizability of morphisms [Ber+19], dimension groups [Ber+21], connections between
finite rank and non-superlinear complexity [Don+21], automorphism groups [EM22b], symbolic factors [Esp23a],
and more [ÁD23; ÁDE23]. A recent result by Espinoza even goes as far as to obtain a S-adic representations
of subshifts with sublinear complexity [Esp23b]. This answers what is known as the S-adic conjecture. The
conjecture, often attributed to B. Host, claims the existence of an S-adic characterization of such class of sub-
shifts. Moreover, the S-adic formalism provides representations through Kakutani-Rokhlin partitions. Systems
admitting such partitions with a uniform bound for the number of towers are of zero topological entropy [Dur10],
have an explicit description of their ergodic invariant probability measures [Bez+13] and there exist necessary
and sufficient conditions for a complex number to be a continuous or measurable eigenvalue [BDM10; DFM19].

Considering the previous studies and acknowledging the effectiveness of the S-adic framework as a tool for
proving general theorems and constructing subshifts with interesting dynamical and computational behavior, it
is natural to ask whether this setting is useful beyond the one-dimensional case. However, extending it even to the
multidimensional case presents important challenges, particularly in defining the types of morphisms involved.
Consequently, research in this direction has been very limited. Some advances have been made to study the
connections with sofic subshifts [AS14], as a generalization of the substitutive case proved in [Moz89], but these
are restricted to cases where the morphisms have a rectangular support. Nevertheless, these substitutions have
allowed for the construction of new aperiodic SFTs on Z2 and given novel proofs of the undecidability of the
Domino Problem through self-similarity [DRS12] (see also [JV20]).

In [Cab23], Cabezas introduced the notion of constant-shape substitutions; a multidimensional analog of the
well-studied constant-length substitutions. This has been one of the first attempts to study multidimensional
substitutions in a broader class than those defined solely by rectangular and square supports, and has al-
ready provided interesting examples of multidimensional subshifts and their properties [CP23; CL24]. However,
despite some progress, there is currently no established formalism for multidimensional non constant-length
substitutions. There has nevertheless been some important research in this direction. For instance, Kari and
Joliviet looked at non-constant-shape two dimensional substitutions where, in addition to the images of the
substitutions, a list of ways of concatenating the images is given [JK12]. There have also been works on the
substitutive structure of the minimal subsystem of the Jeandel-Rao aperiodic tiling [Lab21c] and metallic mean
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Wang tiles [Lab23; Lab24]. See [Fra08] for a survey on symbolic and geometric substitutive tilings on the
Euclidean plane. Furthermore, exploration in other contexts, such as general countable group actions, is even
more limited. There have been generalizations of substitutive systems for the hyperbolic plain [BH13], solv-
able Baumslag-Solitar groups [Sil20], the semigroup on two generators – aptly named substreetutions – [BL21;
BL23], and locally finite groups of the form

⊕
n∈N F , where F is a finite group [BS24]. The most robust gen-

eralization comes from Beckus, Hartnick and Pogorzelski who defined substitutions for lattices on a large class
of non-abelian nilpotent Lie groups [BHP21], with the objective of understanding the specturm of the discrete
Schrödinger operators on substitutive systems [Ten24].

The objective of this chapter is to serve as an introduction for an S-adic framework for general countable
group actions. An important distinction from the one-dimensional case is that, for general groups, defining such
morphisms heavily relies on the geometry inherent to these groups.

S-adic sequences and S-decomposable groups We begin by generalizing S-adic sequences in their broad-
est sense to groups that admit a hierarchical decomposition that is compatible with the sequence. We call the
class of groups that admit such a decomposition, S-decomposable groups, and introduce them in Section 7.1,
as well as their corresponding S-adic subshifts. Because the definitions are quite abstract, we present plenty of
examples from the one and two dimensional cases of these sequences.

Constant-shape S-adic sequences and ccc groups Next, we focus our attention on a more restrictive
type of sequence, namely S-adic sequence where each morphism has uniform support. Groups that admit a
decomposition compatible with these sequences are already present in the literature, in the form of ccc groups
and congruent monotileable groups. In Section 7.2, we introduce these classes of groups and their corresponding
constant-shape S-sequences. We also present examples of these systems on solvable Baumslag-Solitar groups
and locally finite groups.

Constant-shape substitutions and monoform groups Finally, we introduce monoform groups in Sec-
tion 7.3. These groups allow for the iteration of a single constant-shape substitution, effectively generalizing
many constructions from [Cab23]. We show many groups are monoform, including groups that admit expanding
endomorphisms and free groups. We also provide examples of these constant-shape systems.

The various hierarchical structures are summarized in the following diagram

res. finite

exp. endomorphism monoform ccc group S-decomposable group

virt. nilpotent congruent monotileable

T. 7.2.6

L. 7.3.8

φ morph.

T. 7.2.6

The chapter finishes with some dynamical properties of these systems. We study minimality for general
systems, and entropy and unique ergodicity for congruent monotileable groups.

7.1 A general framework for S-adic representations

An S-adic sequence on Z is a sequence of morphisms τ = (τn)n∈N and alphabets (An)n∈N such that for all
n ∈ N τn : An+1 → A∗

n. The n-th image of a letter a ∈ An by τ is defined as the composition

τ[0,n)(a) = τ0 ◦ τ1 ◦ ... ◦ τn−1(a).
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When composing the morphisms, the order in which images are placed is implicit by the geometry of Z, that
is, the image of ab is given by τi(a)τi(b).

The Z-subshift associated to τ is given by

Xτ = {x ∈ AZ
0 | ∀w ⊑ x, w ⊑ τ[0,n)(a), for some n ∈ N, a ∈ An}.

As mentioned in the chapter’s introduction, these sequences and their corresponding subshifts have provided
many examples of Z-subshifts with interesting dynamical properties. Due to this reason, we want to generalize
S-adic sequences to general groups. In this section we give a general definition for groups that allow a hierarchi-
cal decomposition compatible with S-adic sequences. The definition is quite technical and encompasses great
generality. We will later provide examples that illustrate the mechanics of the definition.

The main idea is as follows: for each n ∈ N we take a finite number of finite subsets, which we call tiles.
Then, we ask for each tile of level n+ 1 to be partitioned into translates of tiles of level n. The idea is that tiles
of level n will be the supports of the images of the nth composition of our S-adic sequence. For this purpose,
we also ask for the union over tiles of all levels to be the whole group.

7.1.1 Decomposing infinite countable groups
Definition 7.1.1. We say an infinite countable group G is S-decomposable if there exists a sequence of finite
sets (An)n∈N, and a sequence of finite subsets of G, (Fn,a)n∈N,a∈An , such that

• F0,a = {1G} for all a ∈ A0,

• (locally polytileable) there exist finite subsets {Cn,a,b | n ∈ N, a ∈ An+1, b ∈ An} of G such that,

Fn+1,a =
∐
b∈An

∐
c∈Cn,a,b

cFn,b,

• (centered) for all n ∈ N, and all a ∈ An, 1G ∈ Fn,a,

• (exhaustive) for any sequence (an)n∈N,an∈An , we have that
⋃
n∈N Fn,an = G.

The sequence {Cn,a,b | n ∈ N, a ∈ An+1, b ∈ An} will be referred as the polytiling sequence associated
with (Fn,a)n∈N,a∈An . We allow for Cn,a,b to be empty, as will be seen in the examples.

Example 7.1.2. Consider G = Z2. Let us look at the first three levels of an S-decomposition of Z2. We
begin with A0 = {a} and F0,a = {(0, 0)}. Next, for A1 = {a, b} we define F1,a = {(0, 0), (1, 0), (0, 1)} and
F0,b = {(0, 0)}. Graphically

F1,a F1,b

Thus, C0,a,a = {(0, 0), (1, 0), (0, 1)} and C0,b,a = {(0, 0)}. For A2 = {a, b, c} we take

• for a: C1,a,a = {(0, 0)} and C1,a,b = {(1, 1)},

• for b: C1,b,a = {(0, 0), (1, 1)} and C1,b,b = {(0, 2), (2, 0), (2, 2)},

• for c: C1,c,a = ∅ and C1,c,b = {(0, 0), (1, 0)}.
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This way, the sets F2,a, F2,b and F2,c can be seen graphically as

F2,a F2,b F2,c

For A3 = {a, b}, take C2,a,a = C2,b,a = {(0, 1)}, C2,a,b = C2,b,b = {(2, 0)}, and C2,a,c = C2.b.c = {(0, 0)}.
The tiles F3,a and F3,b are equal and are given by:

F3,a F3,b

Remark 7.1.3. A S-decomposable group G where |Fn,a| have the same cardinality for all a ∈ An is known as
a poly-ccc group, as introduced by Seward [Sew14, Theorem 6.1]. We look beyond this class of groups as we
want the freedom to have different sized supports the elements of our directive sequences. We see this in the
next section.

Notice that we partition every level with translates of tiles from any lower level. By induction it is possible
to obtain for j > i and a ∈ Aj ,

Fj,a =
∐

bj−1∈Aj−1

∐
bj−2∈Aj−2

...
∐
bi∈Ai

Cj−1,a,bj−1 · Cj−2,bj−1,bj−2 · ... · Ci,bi+1,biFi,bi .

To aliviate the notation, for a ∈ Aj and b ∈ Ai we write

C[i,j)(a, b) =
∐

(bj−1,...,bi+1)∈Aj−1×...×Ai+1

Cj−1,a,bj−1 · Cj−2,bj−1,bj−2 · ... · Ci,bi+1,b.

This way, the previous identity becomes

Fj,a =
∐
b∈Ai

C[i,j)(a, b)Fi,b.

Lemma 7.1.4. Let G be a countable group and {Fn,a}n∈N,a∈An be an exhaustive locally polytileable sequence
of G. Then, for every n ∈ N, {Fn,a}a∈An partitions G by translates, where the set of translates is given by

Ĉn,a =
⋃
m≥n

⋃
b∈Am

C[n,m)(b, a).

Proof. Note that for any m > n ∈ N and a ∈ Am, we have that

Fm,b =
∐

c∈C[m,n)(b,a)

cFn,a,

for all b ∈ Am. We then conclude by the exhaustiveness of locally polytileable sequence.

The generality of this definition allows us to capture a wide range of countable groups.
Theorem 7.1.5 (Theorem 6.1 [Sew14]). Every finitely generated group is poly-ccc, and therefore S-decomposable.

In Section 7.2 we look at examples of S-decomposable groups that are not finitely generated.
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7.1.2 S-adic systems
Now, we proceed to define S-adic subshifts for countable groups.

Definition 7.1.6. Let G be an S-decomposable group, with (Fn,a)n∈N,a∈An a decomposition. A directive
sequence τ = (τn)n∈N is a sequence of substitutions τn : An+1 → A∗G

n . such that for any a ∈ An,

supp(τn(a)) =
∐
b∈An

Cn,a,b,

and for any c ∈ Cn,a,b, τn(a)|c = b.

Intuitively, Cn,a,b is the set of positions on which we find the letter b in the image of a through τn. Therefore,
the family of sets {Cn,a,b | n ∈ N, a ∈ An+1, b ∈ An} completely determines the directive sequence.

We always assume that for any n ∈ N and a ∈ An+1, 1G ∈ supp(τn(a)). For two indices 0 ≤ i ≤ j, we denote
by τ[i,j) the concatenation of substitutions τi ◦ τi+1 ◦ · · · ◦ τj−1 : Aj → A∗G

i . Since for any a ∈ A1, we have

F1,a =
∐
b∈A0

C0,a,b,

by induction we have that for any n ≥ 1 and a ∈ An+1, supp(τ[0,n)(a)) = Fn+1,a.

The language of a directive sequence is defined as the collection of all the patterns occurring in τ[0,n)(a),
for some n ∈ N and a ∈ An, i.e.,

L(τ ) = {p ∈ A∗G
0 | p ⊑ τ[0,n)(a) for some a ∈ An and n ∈ N}.

With the language, we define the G-subshift associated to a directive sequence τ , denoted Xτ , as the
subshift in AG0 generated by the language L(τ ), that is,

Xτ = {x ∈ AG0 | ∀u ⊑ x, u ∈ L(τ )}.

Remark 7.1.7. The concatenation τ[0,n) can be extended from An to configurations from the full-shift AGn .
Recall from Lemma 7.1.4 that each level of tiles Fn,a partitions G. Specifically, for each g ∈ G there exists a
unique c ∈ Ĉn, a ∈ An and f ∈ Fn,a such that g = cf . With this decomposition, the image of a configuration
x ∈ AGn is defined as

τ[0,n)(x)(cf) = τ[0,n)(x(c))(f).
With this extension we can defined the limit set,⋂

n∈N
τ[0,n)(AGn ).

This set is always contained in Xτ , but its closure in both the dynamical and topological sense usually differ
from Xτ . This happens even in the one-dimensional case (see [Ber+19]).

To get a better understanding on the mechanics of S-decomposable groups and their directive sequences
work, let us look at classic examples of substitutive and S-adic systems.

Example 7.1.8. The Fibonacci substitution is defined by

σF : a 7→ ab
b 7→ a

,

It is an example of a non-constant length substitution. Using the previously defined formalism, the decomposi-
tion for the directive sequence associated to iterations of σF is given by
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• For a: Cn,a,a = {0}, Cn,a,b = {fn+1}, and Fn,a = {0, ..., fn+1 − 1},

• For b: Cn,b,a = {0}, Cn,b,b = ∅, and Fn,b = {0, ..., fn − 1},

where fn is the nth number of the Fibonacci sequence starting with f0 = f1 = 1. Then, the directive sequence
τF is given by substitutions τn such that supp(τn(a)) = {0, fn} and supp(τn(b)) = {0} where

τn(a)(0) = a, τn(a)(fn) = b, and τn(b)(0) = a.

This way, τ[0,n) = σnF .

When working with one-dimensional substitutions it is not necessary to explicitly give the placement of each
letter, as is done by the sets Cn,a,b. This is because the concatenation of images is implicit. This is no longer
the case when working with multi-dimensional substitution that are not constant-shape. In these cases, either
the placement of each image has be specified by the sets Cn,a,b, or rule that specifies how to concatenate the
differently shaped supports have to be given. These are known as concatenation rules, and were introduced
by Jolivet and Kari [JK12].

Example 7.1.9. Let σF 2 be the two-dimensional substitution given by

σF 2 :

This substitution is known as the Fibonacci direct product substitution. Its concatenation rules are:

With our formalism, the sets Cn,a,b are as follows:

• For : Cn, , = {(0, 0)}, Cn, , = {(0, fn+1)}, Cn, , = {(fn+1, fn+1)}, Cn, , = {(fn+1, 0)}.

• For : Cn, , = {(0, 0)}, Cn, , = Cn, , = ∅, Cn, , = {(fn+1, 0)}.

• For : Cn, , = {(0, 0)}, Cn, , = {(0, fn+1)}, Cn, , = Cn, , = ∅.

• For : Cn, , = {(0, 0)}, Cn, , = Cn, , = Cn, , = ∅.

By Definition 7.1.6 these sets completely determine the directive sequence (τn)n∈N. Figure 7.1 shows an example
of the application of the directive sequence.
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τ2 τ1 τ0

Figure 7.1: Applying the concatenation of elements of the directive sequence, namely τ[0,3), to which generates
a pattern of support F3, = {0, ..., 5}2.

The problem with concatenation rules is that the resulting substitution may fail to be consistent, that is,
depending on the sequence of concatenations a letter may have multiple images, or fail to be non-overlapping,
that is, the image of a pattern may contain more than one letter at a given position. Furthermore, it is unde-
cidable to determine if a substitution is consistent from its set of concatenation rules, and it is also undecidable
to determine is a consistent substitution is non-overlapping from its concatenation rules [JK12].

A particular case we are interested in is when every substitution in a directive sequence has the same support.
In other words, for each n ∈ N there exists Cn such that

Cn =
∐
b∈An

Cn,a,b,

for all a ∈ An+1. This would imply our substitutions are maps τn : An+1 → ACnn , and for all a, b ∈ An,
Fn,a = Fn,b.

Example 7.1.10. Take two substitutions, σ1 : {a, b} → {c, d}2 and σ2 : {c, d} → {a, b}3 defined by

σ1 : a 7→ cd
b 7→ dc

, σ2 : c 7→ aba
d 7→ bab

.

Let us define a directive sequence (τn)n∈N that describes the S-adic system generated by alternating these two
substitutions, with the final one being σ2, such that τ[0,2k) = (σ2σ1)k and τ[0,2k+1) = σ2(σ1σ2)k. For k ∈ N
define:

• C2k = {0, 2k3k, 2k+13k},

τ2k(c)(i) =
{
a if i ∈ {0, 2k+13k}
b if i = 2k3k

, τ2k(d)(i) =
{
b if i ∈ {0, 2k+13k}
a if i = 2k3k

.

• C2k+1 = {0, 2k3k+1} and

τ2k+1(a)(i) =
{
c if i = 0
d if i = 2k3k+1 , τ2k+1(b)(i) =

{
c if i = 0
a if i = 2k3k+1 ,

This way, the support of the concatenation of the first n levels is independent of the chosen letter. Explicitly,
the concatenations are τ[0,2k) : {a, b} → {a, b}F2k and τ[0,2k+1) : {c, d} → {a, b}F2k+1 , where F2k = {0, ..., 2k3k}
and Fk+1 = {0, ..., 2k3k+1}. As an example:

c
τ27−→ a _ _ _ _ _ b _ _ _ _ _ a _ _ _ _ _
τ17−→ c _ _ d _ _ d _ _ c _ _ c _ _ d _ _
τ07−→ a b a b a b b a b a b a a b a b a b.

Thus, τ[0,3)(c) = abababbababaababab = σ2(σ1(σ2(c))).
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The next section is devoted to groups that allow for such a decompositions permiting the defintion of con-
stant shape S-adic sequences.

We can further restrict this type of substitution to allow for a single constant-shape substitution.

Example 7.1.11. The Thue-Morse substitution is defined by

σTM : a 7→ ab
b 7→ ba

.

To write the substitutive systems defined by this substitution with our formalism, we define Cn = {0, 2n} and

τn(a)(i) =
{
a if i = 0
b if i = 2k

, τn(b)(i) =
{
b if i = 0
a if i = 2k

.

As before, this implies, τ[0,n) = σnTM. What is particular about this case is that by defining the function
φ(k) = 2k, we can write Cn = φn(C0), where C0 = {0, 1} is a set of coset representatives for φ(Z) = 2Z.
Furthermore, this allows us to define our directive sequence by τn(·)(φ(i)) = σTM(·)(i).

As the Thue-Morse example shows, if we find a map φ : G→ G with nice properties we can define constant-
shape substitutions. For multidimensional substitutions, this idea was formulated by Cabezas [Cab23].

Example 7.1.12. Take L ∈ GL(d,Z) of norm ∥L∥ > 1 and ∥L−1∥ < 1, and let F ⋐ Zd be a fundamental
domain for L(Zd) such that 0 ∈ F . That is, F is a finite set such that L(Zd)+F = Zd. Given a finite alphabet
A, a constant-shape substitution ζ with respect to L and F is a map ζ : A→ AF (see Figure 7.2).

ζ∆ :

Figure 7.2: An example of a two-dimensional constant-shape substitution with map L = 2I, where I is the
identity matrix, and fundamental domain is F = {(0, 0), (1, 0), (0, 1), (−1,−1)}. This substitution is known as
the triangular Thue-Morse substitution.

The iterates of this substitution are given by ζn : A → AFn , where F1 = F and Fn = L(Fn−1) + F1. For
any given v ∈ Fn, we can decompose v = L(w) + u with w ∈ Fn−1 and u ∈ F1, and define:

ζn(a)L(w)+u = ζ
(
ζn−1(a)w

)
u
.
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If we take Cn = Ln(F ) and substitutions τn(·)(L(v)) = ζ(·)(v), the directive sequence (τn)n∈N is the same
as the substitutive system generated by ζ. In other words, τ[0,n) = ζn.

In Section 7.3 we study the class of groups that allow for the definition of constant-shape substitutions.

7.2 Constant-shape S-adic representations
Let us add constraints on the decomposition of groups to allow for more rigid types of S-adic systems. Our
goal is to define such systems where the support of each substitution on our directive sequence is uniform, as
we saw in Example 7.1.10.

With this goal in mind, we begin by looking at some notions of group tileability already present in the
literature. These notions have been used in the study of hyperfinite relations [GJS16] and realizations of
Choquet simplices as invariant probability measures of minimal subshifts [CC19; CCG23].

7.2.1 Group tileability
Definition 7.2.1. Let F and E be two subsets of a group G. We say that F is a (left) monotile for E if there
exists a subset C ⊆ G, with |C| > 1, such that {cF | c ∈ C} is a partition of E.

This notion was originally introduced in [Wei01] due to its relationship to the Rokhlin Lemma from mea-
surable dynamics [OW80]. For our purposes, we need the following definitions.

Definition 7.2.2. Let G be a countable group. A sequence of sets (Fn)n∈N is said to be locally monotileable
if F0 = {1G} and Fn is a monotile for Fn+1 for all n ∈ N.

If (Fn)n∈N is a locally monotileable sequence, for every level n ∈ N, we denote Cn the set of translates that
partition Fn+1 into translated copies of Fn, that is, Fn+1 =

∐
c∈Cn cFn. The sequence (Cn)n∈N will be referred

to as the tiling sequence associated to (Fn)n∈N.

Definition 7.2.3. Let G be a countable group and (Fn)n∈N be a locally monotileable sequence of finite subsets
of G. We say that the sequence is

• congruent if 1G ∈ Cn for each n ∈ N,

• exhaustive if G =
⋃
n∈N Fn.

Note that a congruent sequence (Fn)n∈N is increasing, that is, Fn ⊆ Fn+1 for every n ∈ N, and moreover
Cn ⊆ Fn+1 for every n ∈ N. The converse is not true in general (see [Dik+22, Example 3.4]).

Definition 7.2.4. Let G be a countable group, we say that G is

• locally monotileable if it admits a locally monotileable sequence,

• ccc group if it admits an exhaustive congruent locally monotileable sequence,

• congruent monotileable if it is amenable and ccc group, where the locally monotileable sequence is a
right Følner sequence.

Remark 7.2.5. The notion of ccc groups was originally introduced by Gao, Jackson and Seward with a
different, nonetheless equivalent, definition (see [GJS16, Lemma 4.3.1]). In fact, the name comes from their
notions of coherent, cofinal and centered tiling sequences, which roughly correspond to the notions of locally
monotileable, exhaustive and congruent respectively.

Many natural classes of groups admit such hierarchical structures, but it is not known whether all countable
groups are ccc (or if all amenable groups are congruent monotileable).
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Theorem 7.2.6. The following groups are ccc groups (and congruent monotileable if they are amenable).

• residually finite groups [GJS16; CP14],

• locally finite groups [GJS16; Dik+22],

• virtually nilpotent groups [GJS16; CC19],

• solvable groups with a polycyclic commutator [GJS16].

In addition, ccc groups are closed under free sums, direct sums and direct products. Furthermore, virtually ccc
groups are also ccc groups.

The following result corresponds to the evolution of the tiling sequence for a locally monotileable sequence.
The proof is straightforward, but we include it for the sake of completeness.

Lemma 7.2.7. Let G be a ccc group with the sequence (Fn)n∈N of congruent left monotiles. Then, for every
m > n ∈ N, the collection {cm−1 · · · cnFn | ci ∈ Ci, for every n ≤ i < m} is a partition of Fm. Futhermore,
{cFn | c ∈ Ĉn} partitions G where,

Ĉn =
⋃
m≥n

Cm−1 ... Cn.

Proof. The first statement follows from a direct induction. For the second statement, take g ∈ G. By exhaus-
tivity, there exists M ∈ N such that for all m ≥M , g ∈ Fm. In particular, if we take the smallest such m that
is also greater that n, we have Fm = Cm−1 ... CnFn. Then, there exist c ∈ Cm−1 ... Cn ⊆ Ĉn and f ∈ Fn such
that g = cf . Thus G = ĈnFn. To see that it is a partition, take c1, c2 ∈ Ĉn. There exist m1,m2 ∈ N such that
ci ∈ Cmi−1 ... Cn for i = 1, 2. Take m ≥ max{m1,m2}. As Fm is partitioned by cFn with c ∈ Cm−1 ... Cn and
c1, c2 ∈ Cm−1 ... Cn, we have that c1Fn ∩ c2Fn = ∅.

Furthermore, when working with countable amenable groups the notion of local monotileability coincides
with the existing one of congruent monotileability when working with Følner sequences, i.e, for amenable groups,
from a locally monotileable Følner sequence (Fn)n∈N, we can obtain another locally monotileable Følner sequence
(Hn)n∈N that is congruent and exhaustive, as shown by Dikranjan et al. [Dik+22, Proposition 3.14].

7.2.2 Constant-shape S-adic systems on ccc groups
Let G be a ccc group with associated decomposition (Fn)n∈N and tiling sequence (Cn)n∈N. A constant-shape
directive sequence τ = (τn)n∈N is a sequence of substitutions τn : An+1 → ACnn , where (An)n∈N is a sequence
of finite alphabets.

As we defined in Section 7.1.2, the language associated to τ is given by

L(τ ) = {p ∈ A∗G
0 | p ⊑ τ[0,n)(a) for some a ∈ An and n ∈ N}.

which in turn defines the associated G-subshift as

Xτ = {x ∈ AG0 | ∀u ⊑ x, u ∈ L(τ )}.

Let us look at some examples of these directive sequences.

160



7.2. Constant-shape S-adic representations

Solvable Baumslag-Solitar groups

In his master thesis, Silva defined substitutions for solvable Baumslag-Solitar groups [Sil20]. Let us see that his
substitutions are particular cases of directive sequences on ccc groups.

Recall that the solvable Baumslag-Solitar groups BS(1, N) are defined by the presentation1

BS(1, N) = ⟨a, t | tat−1 = aN ⟩.

Being residually finite and amenable, these groups are congruent monotileable (Theorem 7.2.6). Furthermore,
the group’s decomposition can be made explicit. For m ∈ N define,

Rm = {ajtk | 0 ≤ j < Nm, 0 ≤ k < m}.

Lemma 7.2.8 ([Sil20]). The sequence of finite sets (Rm)m∈N is a Følner sequence for BS(1, N).

To decompose the group, we will use Fn = R2n−1m for some fixed m ≥ 1, where F0 = {1G} and C0 = Rm.
The corresponding tiling sequence is defined as the set

Cn =
{

aiN
2n−1m

| 0 ≤ i < N2n−1m

}
∪


2n−1m∏
k=1

aikt | 0 ≤ i1, ..., i2n−1m < N

 .

A straightforward calculation shows Fn+1 = CnFn (see [Sil20, Proposition 3.5]).
Silva’s definition for a substitution consists in taking a map σ : A → ARm and defining its iterations

σn+1 : A→ AFn+1 by

σn+1(a)(g) =


σn(σn(a)(ai))(f) if g = aiN

2n−1m
f,

σn
(
σn(a)

((∏2n−1m
k=1 aikt

)
t−1

))
(f) if g =

(∏2n−1m
k=1 aikt

)
f,

where f ∈ Fn. Using our formulation, we obtain the same substitutive system through the directive sequence:

τn(a)(g) =


τ[0,n)(a)(ai) if g = aiN

2n−1m
,

τ[0,n)(a)
((∏2n−1m

k=1 aikt
)

t−1
)

if g =
∏2n−1m
k=1 aikt,

with τ0 = σ. This results in the equality τ[0,n) = σn.

Example 7.2.9. Take the group BS(1, 2) and the substitution σ with support

R2 = {1BS(1,2), a, a2, a3, t, ta, at, ata},

given by,

1The attentive reader will note that this is not exactly the same presentation as the one in Chapter 6. We use this alternative
presentation, where the relation begins with t instead of t−1, to simplify what follows.
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We denote the corresponding directive sequence by (τn)n∈N. The composition τ[0,2) of support F2 = R4 is de-
picted in Figure 7.3. Its application begins with τ1, which has support C1 = {1BS(1,2), a4, a8, a12, t2, tat, at2, (at)2},
and then τ0 = σ on each point from C1.

τ1

τ0

Figure 7.3: A depiction of the application of τ[0,2) on the Cayley graph of BS(1, 2). It begin by applying τ1,
which has support C1, and then applying τ0 = σ to each point on C1. This implies leaves a support of F2 = R4.

Locally finite groups

An important class of congruent monotileable groups is the class of locally finite groups. A group is said to
be locally finite if the subgroup generated by any finite subset is finite. Notice that any locally finite finitely
generated group is finite.

Let G be a countable infinite locally finite group. We enumerate its elements by G = {g0, g1, g2, ...} where
g0 = 1G. If we take the finite subgroups Fn = ⟨g1, ..., gn⟩ we obtain a locally monotileable, exaustive, congruent
Følner sequence.

Example 7.2.10. Consider the locally finite group G = Q/Z. For n ∈ N, we define m(n) = lcm(2, ..., n) and
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d(n) = m(n)/m(n+ 1) ∈ N. Our tiles are

Fn =
〈

1
2 , ...,

1
m(n)

〉
=
〈

1
m(n)

〉
=
{

k

m(n) | 0 ≤ k < m(n)
}
,

with F0 = {0}. The associated tiling sequence (Cn)n∈N is

Cn =
{

j

m(n+ 1) | 0 ≤ j < d(n)
}
.

Thus, (Fn)n∈N is a locally monotileable, exhaustive, centered Følner sequence. Consider the substitutions
τ0 : {a, b} → {a, b}C0 and τ1 : {a, b} → {a, b}C1 defined by

τ0(b) =
)

b

0

a

1
2

τ0(a) =
)

a

0

b

1
2

τ1(b) =
)

b

0

a

1
6

a

1
3

1
2

2
3

5
6

τ1(a) =
)

a

0

b

1
6

b

1
3

1
2

2
3

5
6

Then, the application of τ[0,2) : {a, b} → {a, b}F2 on a is given by

a
τ1

)
a

0

b

1
6

b

1
3

b

1
2

a

2
3

a

5
6

τ0

)
a

0

b

1
6

b

1
3

1
2

2
3

5
6

In the next section we look at more examples of ccc groups, where the substutive systems are even more
rigid.

7.3 Constant-shape substitutions for groups

7.3.1 Monoform groups
In this section, we introduce the notion of monoform groups. Monoform groups are locally monotileable groups,
where the tiling sequence is defined through the iteration of a map from the group to itself.

Definition 7.3.1. We say that a countable group G is monoform with a localization map φ and F1 ⋐ G
such that 1G ∈ F1, if φ : G→ G is an injective map with φ(1G) = 1G such that

1. The sets Fn defined as the union of disjoint sets {φn(f)Fn−1 : f ∈ F1} for every n ∈ N, form an exhaustive
locally monotileable sequence of finite sets.

2. For any n ∈ N, and g0, . . . , gn−1 ∈ F1, we have that

φ(φn−1(gn−1) ... φ(g1)g0) = φn(gn−1) ... φ2(g1)φ(g0).
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Monoform groups are ccc groups: they are decomposed by the sequence (Fn)n∈N, where F0 = {1G} whose
associated tiling sequence is Cn = φn(F1), for every n ∈ N. Since 1G is in F1, the sequence is congruent.

Note that, condition 2 and exhaustiveness imply that for every n ∈ N, G = φn(G)Fn. Indeed, if for an
element g ∈ G there exists n such that g ∈ Fn. By Lemma 7.2.7, there exists f0, f1 . . . , fn−1 ∈ F1 such that
g = φn−1(fn−1) · · ·φ(f1)f0. In particular g = φ(h)f0 for some h ∈ G. A direct induction proves it for every
n ∈ N.

Remark 7.3.2. Note that the intersection of all φn(G) is trivial. Indeed, if g ̸= 1G is in the intersec-
tion, there exists a sequence (gn)n∈N such that g = φn(gn) for every n ∈ N. By exhaustiveness, for any
n ∈ N, there exists m(n) ∈ N such that g, gn ∈ Fm(n). This implies the existence of two sets of ele-
ments f0, f1, . . . , fm−1 ∈ F1 and gn,0, gn,1, . . . , gn,m(n)−1 ∈ F1 such that g = φm(n)−1(fm(n)−1) · · ·φ(f1)f0
and gn = φm(n)−1(gn,m(n)−1) · · ·φ(gn,1)gn,0. Since g = φn(gn), we have

g = φm(n)−1(fm(n)−1) · · ·φ(f1)f0,

= φm(n)+n−1(gn,m(n)) · · ·φm(n)(gn,1)φm(n)−1(gn,0).

The last one corresponds to the representation of g in Fm(n)+n−1. Since these representations are unique, we
conclude that f0 = f1 = . . . = fm(n)−1 = 1G, i.e., g = 1G.

The map φ : G→ G cannot have periodic points other than identity. Furthermore, since φ is injective and

F2 =
∐
f∈F1

φ(f)F1,

then |F2| is equal to |F1|2. In fact, for every n ∈ N, we have that |Fn| = |F1|n. In particular, non-trivial finite
groups are not monoform.

Furthermore, if φ : G → G is a group endomorphism, then the property of having an exhaustive sequence
of finite sets (Fn)n∈N such that {φn(f)Fn : f ∈ F1} partitions Fn+1, implies that the endomorphism must be
injective. Indeed, if φ(g) = φ(h), then φ(g)1G = φ(h)1G, which implies {φ(f)F1 : f ∈ G} is not a partition of
G. Along with Remark 7.3.2, this is a proof for the following proposition.

Proposition 7.3.3. If G is a monoform group with φ : G → G being an endomorphism, then G is residually
finite.

In this particular case, for every n ∈ N the set Fn is a set of representatives of right cosets of φn(G). Further-
more, φ(G) ≃ G which means the group is scalable (see Definition 2.4.6), and because the intersection of the
successive iterations φn(G) is trivial, these groups are strongly scale invariant as defined by Nekrashevych
and Pete [NP11].

Nevertheless, not all monoform groups are residually finite, as shown in the next example.

Example 7.3.4 (A non-residually finite monoform group). Consider the 2-Prüfer group given by

G = Z
[ 1

2
]
/Z =

⋃
n≥0

{
k

2n : 0 ≤ k ≤ 2n − 1
}
.

Since G is divisible, that is, for every g ∈ G there exist h ∈ G and n ∈ N such that hn = g, it is not residually
finite [CC10, Proposition 2.1.8]. Nevertheless, G is monoform. Indeed, consider the map

φ : G → G

g 7→ g

2 .
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It is clear that φ(G) is not a subgroup of G. Take F1 = {0, 1/2}. A straightforward computation shows
condition 2 from Definition 7.3.5 is satisfied, and for every n ∈ N,

Fn =
{
k

2n : 0 ≤ k ≤ 2n − 1
}
,

so
⋃
n∈N

Fn = G, {φn(f)Fn : f ∈ F1} is a partition of Fn+1 and {φn(g)Fn : g ∈ G} is a partition of G.

One of the main tools to find monoform groups in finitely generated groups are expansive endomorphisms.
Definition 7.3.5. We say that a finitely generated group G admits an expanding endomorphism if there
exists a finite generating set S, an endomorphism φ : G→ G and λ > 1 such that [G : φ(G)] < +∞ and for all
g ∈ G

dS(1G, φ(g)) ≥ λ · dS(1G, g).
Notice that such an endomorphism must be injective and satisfies

⋂
n∈N φ

n(G) = {1G}, so the group is
residually finite. If we take a set F of left coset representatives of φ(G) containing 1G, we can define the sequence
Fn = φn(F )Fn−1, for any n ≥ 1 with F0 = {1G} and F1 = F . Thus, Fn is a set of left coset representatives
for φn(G) and Fn partitions Fn+1. However, this sequence is not necessarily exhaustive. Nevertheless, up to
multiplying by a finite set and taking its images under power of the endomorphism φ, they cover the group.
This property is explained in the following proposition. It is similar to the notion of remainder in numeration
theory and will be technically useful, and the proof is inspired by the Euclidean Division Algorithm.
Proposition 7.3.6. Let G be a finitely generated group that admits an expanding endomorphism φ. Then, the
set Kφ given by

Kφ = {g ∈ G : ∃m ∈ N, g = φm(g)f, f ∈ Fm}
is finite and G =

⋃
n∈N

φn(Kφ)Fn.

Proof. Let S be a finite generating set for G. For every g ∈ G, we have that g = φ(g0)f0 for some g0 ∈ G,
f0 ∈ F . Then, we recursively define the sequence gn = φ(gn+1)fn+1 for some gn+1 ∈ G and fn+1 ∈ F . Now,
note that

∥gn+1∥S ≤
1
λ
∥φ(gn+1)∥S = 1

λ
∥gnf−1

n+1∥S ,

≤ 1
λ

(∥f−1
n+1∥S + dS(f−1

n+1, gnf
−1
n+1)),

= 1
λ

(∥f−1
n+1∥S + ∥gn∥S).

By iterating this process, we get that

∥gn∥S ≤
1
λn
∥g∥S + ∥F∥S(1− λ−n)

λ− 1 . (7.1)

Then, for sufficiently large n, ∥gn∥S ≤ ∥F∥S/(λ − 1) + 1. Since G is finitely generated, the ball of radius
∥F∥S/(λ − 1) + 1 is finite. Therefore, there is at least one element of the sequence {gn}n≥1 that repeats. Say
gn = gn+k for some k, n ≥ 1. Then, gn = φk(gn)f with f ∈ Fk, meaning gn ∈ Kφ. This implies that we can
decompose g = φn(gn)f ′ for some f ′ ∈ Fn as we were looking for.

Finally, to see that Kφ is finite, take g ∈ Kφ and k ∈ N such that g = φk(g)f , with f ∈ Fk. As before,
we begin an iterative process defining g1 ∈ G by g = φ(g1)f1 and so on. Because φ is injective and Fk is a
set of coset representatives for the quotient G/φk(G), we have that g = gmk for all m ∈ N. Plugging this into
equation (7.1) we obtain for all m ∈ N,

∥g∥S = ∥gmk∥S ≤
1
λmk
∥g∥S + ∥F∥S(1− λ−mk)

λ− 1 .

Taking the limit when m goes to infinite, we get that ∥g∥S ≤ ∥F∥S
λ−1 . Thus, Kφ is finite.
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A group with expanding endomorphism is monoform for the map φ and domain F1 when Kφ = {1G}.

Example 7.3.7. Let us look at the affine Coxeter group Ã2 from Example 1.3.29. Recall that this group is
given by the presentation,

Ã2 = ⟨a, b, c | a2, b2, c2, (ab)3, (bc)2, (ac)3⟩.

This group admits an expanding endomorphism ϕ defined through its action on its generators by ϕ(a) = aba,
ϕ(b) = cac and ϕ(c) = bcb. If we take the set of representatives F = {1Ã2

, a, b, c}, it is possible to see that
Kϕ = {1Ã2

}.

Given an expanding endomorphism φ with a fundamental domain F1, there exists a power of φ thas has
another fundamental domain, which makes the group monoform, as proved in the following result.

Lemma 7.3.8. Let G be a finitely generated group with an expanding endomorphism φ : G→ G and let F1 be
a fundamental domain of φ(G). Then, there exists k ∈ N such that G is monoform with φk and a fundamental
domain of φk(G) in G.

To prove this result we need a similar result to [Cab23, Proposition 2.12], which is useful to use sets satisfying
particular properties.

Proposition 7.3.9. Let G be a finitely generated group that admits an expanding endomorphism φ, and F1
a set of right coset representatives containing 1G. Take P ⋐ G and F ⋐ G containing F1. There exists a set
Q ⋐ G such that

1. PFQ ⊆ φ(Q)F1. Furthermore, for any n > 0, φn(PFQ)Fn ⊆ φn+1(Q)Fn.

2. The sequence of sets {φn(Q)Fn}n≥0 is nested.

3. ∥Q∥S ≤ (∥PF∥S + ∥F1∥S)/(λφ − 1).

Proof. The proof is done by induction. We define two sequence of sets (Pn)n∈N, (Qn)n∈N of G in the following
way: Set P0 = PF and Q0 = {h ∈ G : ∃g ∈ P0, f ∈ F1, g = φ(h)f}. Then, for each n ≥ 0 we define the
sets Pn+1 = PFQn and Qn+1 = {h ∈ G : ∃g ∈ Pn+1, f ∈ F1, g = φ(h)f}. Note that, because 1G belongs to
F1 and thus P and F , Qn ⊆ Qn+1. Now, for g′ ∈ Qn+1, there exists g ∈ PF , h ∈ Qn and f ∈ F1 such that
gh = φ(g′)f . Since φ is expanding we have that

∥g′∥S ≤ 1
λ
∥ghf−1∥S

≤ 1
λ

(∥PF∥S + ∥Qn∥S + ∥F−1
1 ∥S)

Note that ∥F−1
1 ∥S = ∥F1∥S , so ∥Qn+1∥S ≤ 1/λ (∥PF∥S + ∥Qn∥S + ∥F1∥S). This implies that

∥Qn∥S ≤
∥PF∥S
λn

+ (∥PF∥S + ∥F1∥S)(1− λ−n)
λ− 1 .

Given that λ is greater than 1, the sets (Qn)n∈N are bounded. Furthermore, because G is finitely generated,
the ball of radius (∥PF∥S + ∥F1∥S)/(λ− 1) is finite. Coupled with the fact that {Qn}n∈N is a nested sequence,
there exists m ∈ N such that Qm = Qn for all n ≥ m. We conclude the proof by choosing Q = Qm.

Now, we proceed to prove Lemma 7.3.8.

Proof of Lemma 7.3.8. Let G be a countable group admitting an expanding endomorphism φ and F1 be a
fundamental domain of φ(G) in G containing 1G. Consider the set Kφ given by Lemma 7.3.6. We take an
appropriate power ϕ = φj such that

Kφ = {g ∈ G : ∃f ∈ Fj , g = ϕ(g)f}.
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Set P0 = Kφ and Q0 = KφK
−1
φ KφF1. Then, for any n ≥ 1 we define

Pn+1 = {t ∈ G : ∃b ∈ Qn, f ∈ F1, b = ϕ(t)f},

and Qn+1 = KF1QnQ
−1
n . Note that for any n ∈ N, Qn ⊆ Qn+1. Using similar arguments from the proof of

Proposition 7.3.9 we obtain a finite set P , containing Kφ, such that KF1PP
−1 ⊆ ϕ(P )F1.

Consider a power ϕn of ϕ such that any element in P are different in Fn, that is, if t1 ̸= t2 ∈ P and
t1 = ϕn(bt1)ft1 , t2 = ϕn(bt2)ft2 , for some bt1 , bt2 ∈ P , then ft1 ̸= ft2 .

Define H0 = {1G} and H1 as the following: for any t ∈ PP−1, we replace ft ∈ Fn, by t ∈ PP−1. The
rest remains the same. We then inductively define for any m ≥ 0, Hm+1 = φn(H1)Hm. Hence, the sequence
(Hm)m≥0 is locally monotileable. We prove that is exhaustive.

Recall that
⋃
k≥0 φ

nk(Kφ)Fnk = G. Set p ≥ 0 and consider g ∈ φnp(Kφ)Fnp, i.e., there exists k ∈ Kφ and
f ∈ Fnp such that g = φnp(k)f . We can write f = φn(p−1)(fp−1) · · ·φn(f1)f0 for some f0, f1, . . . , fp−1 ∈ Fn.
If none of them are of the form ft for some t ∈ PP−1, then f0, f1, . . . , fp−1 are in H1 and we conclude than
g ∈

⋃
m≥0 Hm. Suppose there exists 0 ≤ i ≤ p − 1 such that fi = ft for some t ∈ PP−1. Take i minimal that

satisfies it. We recall that ft = φn(b−1
t )t, for a unique t ∈ PP−1. Then

f = φn(p−1)(fp−1) · · ·φn(i+1)(fi+1)φni(fi) · · ·φn(f1)f0
= φn(p−1)(fp−1) · · ·φn(i+1)(fi+1b

−1
t )φni(t) · · ·φn(f1)f0

We note that fi+1b
−1
t ∈ FnP−1. This implies there exists t1 ∈ P and f ′ ∈ Fn such that fi+1b

−1
t = φn(t1)f ′.

Then, we have that

f = φn(p−1)(fp−1) · · ·φn(i+1)(fi+2t1)φn(i+1)(f ′)φni(t) · · ·φn(f1)f0.

If f ′ ∈ H1, then we repeat the previous process with fi+2t1 ∈ FnP . If not, there exists tf ′ ∈ PP−1 and
bf ′ ∈ A such that f ′ = φn(b−1

f ′ )tf ′ . Hence

f = φn(p−1)(fp−1) · · ·φn(i+1)(fi+2t1b
−1
f ′ )φn(i+1)(tf ′)φni(t) · · ·φn(f1)f0.

Noting that fi+2t1b
−1
f ′ ∈ FnPP−1, we can repeat this process until p− 1 and conclude there exists elements

h0, h1 . . . , hp−1 ∈ H1, tp, bp ∈ P such that

f = φnp(bpt−1
p ) · · ·φn(h1)h0.

This proves that g = φnp(k)φnp(tpb−1
p )φn(p−1)(hp−1) · · ·φn(h1)h0. Since ktpb−1

p ∈ KPP−1, there exists
tp+1 ∈ P and gp ∈ Fn such that Ktpb−1

p = φn(tp+1)gp. If gp ∈ H1, we conclude that g ∈ Hp+1. If not, there
exists bp+1 ∈ P and tp+2 ∈ PP−1 such that g = φn(b−1

p+1)tp+2. Hence

g = φn(p+1)(tp+1b
−1
p+1)φnp(tp+2) · · ·φn(h1)h0.

Since tp+1b
−1
p+1 ∈ H1, we have that g ∈ Hp+1, which implies that G is monoform with ϕ = φn by the sequence

of sets (Hm)m∈N.

Example 7.3.10. The discrete Heisenberg group of upper triangular 3 × 3 matrices with 1s in the diagonal,
H3, given by the presentation

H3 = ⟨x, y, z | [x, z], [y, z], [x, y]z−1⟩,

admits the expansive endomorphism ϕ defined on the generators as ϕ(x) = x2, ϕ(y) = y2 and ϕ(z) = z4. By
the previous lemma, it is monoform.

Although these endomorphisms give us a good control in terms of their tiling sequence, as a consequence
of some multiple results [Fra70; Far81; Gel95; Gro81], only finitely generated virtually nilpotent groups admit
expanding endomorphisms.
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Some properties of monoform groups

In the rest of this section, we study some basic properties of monoform groups.

Proposition 7.3.11. Let G1, G2 be two monoform groups. Then G1 ×G2 is a monoform group.

Proof. Consider φi : Gi → Gi, the injective maps and (Fn,i)n∈N the exhaustive locally monotileable sequences
of finite sets (Fn,i)n∈N such that G1, G2 are monoform. Define φ : G1×G2 → G1×G2 as φ(g) = (φ1(g), φ2(g))
and F1 = F1,1 × F1,2. It is clear that, for any g ∈ G, f ∈ F1, the equality φ(φ(g) · f) = φ2(g) · φ(f) holds.
Define, for any n ∈ N, Fn = Fn,1 × Fn,2. Since, for every n ∈ N, Fn+1,i =

∐
f∈F1,i

φni (f)Fn,i, we have that
Fn+1 =

∐
f∈F1

φn(g)Fn. Hence the sequence (Fn)n∈N is locally monotileable. The exhaustiviness of (Fn)n∈N is
a direct consequence of the exhaustiviness of (Fn,i)n∈N for i = 1, 2. We conclude that G1 ×G2 is a monoform
group.

Now, we prove that free groups are monoform. Recall that, for n ≥ 2 an integer, Fn denotes the free group
on n generators, and Fω the free group on countably infinitely many generators. This proof is based on the one
given by Gao, Jackson and Seward where they proved that free groups are ccc groups [GJS16, Theorem 4.5.4].
We follow their notation.

Let T be the Cayley graph of G = Fn for some n ≥ 2 or G = Fω with respect to a free generating set, which
is a tree. In the case G = Fn two elements g and h of G are linked by an edge if either g = hxi or g = hx−1

i ,
where xi ∈ S, for some 1 ≤ i ≤ n. Hence, every node has degree 2n (∞ if G = Fω). We consider T as a rooted
tree with its root being g = 1G. For g ∈ G, the depth of g is the distance from g to 1G in T , and we denote it
d(g). When G = Fn, we have that d(g) = ∥g∥S , for the free generating set S. The children of a vertex g ∈ G
are the vertices adjacent to g of depth d(g) + 1. The parent of g ̸= 1G is the unique vertex adjacent to g with
depth d(x)− 1. We say that T ⊆ T is a subtree if 1G ∈ T and T is closed under the parent relation. We make
use of the following lemma.

Lemma 7.3.12 (Lemma 4.5.5 [GJS16]). Let T ⊆ G be a subtree of the free group G. Then T is a monotile for
G.

We are now ready to prove the following result.

Theorem 7.3.13. Every free group Fn or Fω is a monoform group.

Proof. Let G be a free group, and T be the corresponding Cayley graph as above. Let 1G = g0, g1, . . . be a
enumeration of the elements in G. In the case that G is finitely generated, we can consider the enumeration
given by the lexicographic geodesic order ≤S : given a total order on S, we define by ℓS(g) the unique geodesic for
g. Then, g ≤S h if ∥g∥S < ∥h∥S or ∥g∥S = ∥h∥S and ℓS(g) is lexicographically smaller than ℓS(h). Let T0 = 1G
and T1 ⊆ T be an arbitrary subtree of T , such that |T1| > 1. Let T1 = {f0, . . . , f|T1|−1} be a enumeration of
the subtree T1. We are going to recursively define a localization map φ : G → G, and an exhaustive locally
monotileable sequence of finite sets (Tn)n∈N that will be compatible with φ.

To define T2, take g to be the smallest element in the enumeration such that g /∈ T1, but the parent g′

of g is in T1. Then g = g′s or g = g′s−1, for some generator s ∈ S. Suppose g = g′s (the other case is
analogous). Note that g′, written as a reduced word, does not end in s−1. Let k ∈ N be such that (s−1)k ∈ T1,
but (s−1)k+1 /∈ T1 and consider h1 = g · sk. Then, T1 and h1T1 are disjoint, as g /∈ T1 and subtrees are closed
for parents. Furthermore, g ∈ h1T1 and T1 ∪ h1T1 is a subtree of T . Repeating this process |T1| times in total,
we get h0, . . . , h|T1|−1 ∈ G, where h0 = 1G, such that

T2 =
|T1|−1∐
i=0

hiT1

is a subtree of T . For each i ∈ {0, . . . , |T1| − 1}, we set φ(fi) = hi.

Suppose that at step n we obtain a subtree Tn of T from the sequence of subtrees T1 ⊆ T2 ⊆ . . . ⊆ Tn−1
such that
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• For i ∈ {1, . . . , n}, the set Ti is a disjoint union of |T1| copies of Ti−1.

• For i ∈ {1, . . . , n}, consider hi0, . . . , hi|T1|−1 such that

Ti =
|Ti|−1∐
j=0

hijTi−1.

• Any g ∈ Ti, can be written as g = hiji · · ·h
1
j1

, with (jk)ik=1 ∈ {0, . . . , |Ti| − 1}. Consequently, φ(g) is
defined as hi+1

ji
· · ·h2

j1
.

To define Tn+1, we do a process analogous to the one we did for T2, but starting from Tn. We get that

Tn+1 =
|T1|−1∐
j=0

hn+1
j Tn,

with hn+1
0 = 1G and hn+1

1 , . . . , hn+1
|T1|−1 ∈ G. Once again, by taking any g ∈ Tn, we have g = hnjn · · ·h

1
j1

, for some
j1, . . . , jn ∈ {0, . . . , |T1| − 1}. In turn, this defines φ(g) = hn+1

jn
· · ·h2

j1
.

This process eventually covers the whole group, that is G =
⋃
n∈N

Tn. So, (Tn)n∈N is an exhaustive locally

monotileable sequence of finite sets, where the tiling sequence is φn(T1). To finish the proof, note that the map
φ is well-defined. Indeed, if g ∈ Tn, then g ∈ Tm for all m ≥ n, and the representation of g is equal to

g = 1G · ... · 1G · hnjn · · ·h
1
j1
,

so φ(g) = φ(1G · ... ·1G ·hnjn · · ·h
1
j1

) = 1G · ... ·1G ·hn+1
jn
· · ·h2

j1
= hn+1

jn
· · ·h2

j1
. Also, a straightforward computation

shows that for any n ∈ N and gn−1, ... g0 ∈ F1 we have that

φ(φn−1(gn−1) ... φ(g1)g0) = φn(gn−1) ... φ2(g1)φ(g0).

We conclude that free groups are monoform.

Remark 7.3.14. Finitely generated free groups are another example of monoform group where the localization
map cannot be an endomorphism, even though they are residually finite. This is because, φ(Fn) would be a finite
index subgroup of Fn, which is not possible by the Nielsen-Schreier Formula which states that [Fn : Fk] = m if
and only if k = 1 +m(n− 1).

Let us look at an example of the process described in the proof for F2 = ⟨a, b⟩. We order the group through
lexicographic geodesic order induced by a < b < a−1 < b−1. Take T1 = {1F2 , b}. Following the procedure in
the proof, we obtain for:

• Step 2: h1
1 = a and T2 = T1 ∪ aT1 = {1F2 , b} ∪ {a, ab}. This defines φ(1G) = 1G and φ(b) = a,

• Step 3: h2
1 = a−2 and T3 = T2 ∪ a−2T2. This defines φ(a) = a−2,

• Step 4: h3
1 = b−2 and T4 = T3 ∪ b−2T3. This defines φ(a−2) = b−2,

and so on. Figure 7.4 shows a depiction of these subtrees.

Remark 7.3.15. For the finitely generated case, the procedure is effective, meaning that from an order on the
generating set S, it is possible to compute Cn = φn(T1) starting from n ∈ N.
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T1 T2 T3

T4

Figure 7.4: The succesive construction of the first 4 steps of the monoform decomposition of the free group
F2, as explained in Theorem 7.3.13, starting from the subtree T1 = {1F2 , b}. The identity is represented by a
double circle, edges corresponding to a are colored red, and edges representing b are colored blue.

7.3.2 Constant-shape substitutions on monoform groups
Let G be a monoform group, with map φ and (Fn)n∈N be an exhaustive locally monotileable sequence of finite
sets (Fn)n∈N with F0 = {1G}, 1G ∈ F1. A constant-shape substitution is a map ζ : A → AF1 . The set F1
will be called the support of the substitution. We define a directive sequence τ ζ = (τn)n∈N associated to ζ by
τ0 = ζ and

τn(a)(φn(f)) = ζ(a)(f),

with f ∈ F1. This allows us to define the iterations of ζ as ζn = τ[0,n) : A→ AFn . Notice that these iterations
are constant-shape substitutions in themselves with localization map φn and set Fn.

Given a constant-shape substitution ζ, we denote φζ its map and F ζ1 its support. Since any element g ∈ G
can be expressed in a unique way as g = φζ(h)f , with h ∈ G and f ∈ F ζ1 , we consider the substitution map
ζ : AG → AG, given by

ζ(x)(φζ(h)f) = ζ(x(h))(f).

A fixed point for ζ is a configuration x ∈ AG such that ζ(x) = x. The language of ζ, denoted L(ζ), is the
set of factors of the patterns ζn(a) for some n ≥ 0 and a ∈ A, i.e.,

L(ζ) = {p : p ⊑ ζn(a), for some n > 0, a ∈ A}.

Using the language, we define the subshift Xζ associated with a substitution ζ as the set of all sequences
x ∈ AG such that every pattern occurring in x is in L(ζ). We say that the substitution ζ is aperiodic if the
G-substitutive subshift that it defines is strongly aperiodic.

Example 7.3.16. Take the monoform group Ã2 from Example 7.3.7 with F1 = {1Ã2
, a, b, c} and localization

map ϕ defined by ϕ(a) = aba, ϕ(b) = cac and ϕ(c) = bcb. Consider the substitution ζ : {a, b, c} → {a, b, c}F1

given by
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b c

a

b c

a

b c

a

where a is represented by a red circle, b be a blue one, and c a green one. Applying ζ3 to b we obtain:

ζ3

7.4 Dynamical properties

7.4.1 Minimality
Definition 7.4.1. We say a directive sequence τ = (τn)n∈N is weakly primitive if for every i ∈ N, there
exists j ≥ i such that for every a ∈ Ai and b ∈ Aj we have a ⊑ τ[i,j)(b).

In the case where the group is monoform and τ is generated by a constant shape substitution ζ : A → AF

weak primitivity takes a simpler form. We say ζ is primitive if there exists n ∈ N such that for all we have
a, b ∈ A, a ⊑ ζn(b).
Proposition 7.4.2. If τ = (τn)n∈N is weakly primitive, then Xτ is minimal.
Proof. We prove X = Xτ is minimal by showing it is uniformly recurrent. Let u ∈ L(X) be a pattern appearing
in our subshift. By definition there exists i ∈ N and a ∈ Ai such that u ⊑ τ[0,i)(a). Because τ is weakly primitive
there exists j ≥ i such that a ⊑ τ[i,j)(b) for all b ∈ Aj .

Take a subset W ⋐ G that is sufficiently large to contain Fj . Then for any x ∈ X, there exists some b ∈ Aj
such that

τ[0,i)(a) ⊑ τ[0,j)(b) ⊑ xW .
Therefore, Xτ is minimal.
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7.4.2 Entropy
Proposition 7.4.3. Let G be a congruent monotileable group with Følner decomposition (Fn)n∈N and corre-
sponding tiling sequence (Cn)n∈N. For a directive sequence τ = (τn)n∈N defined by τn : An+1 → ACnn , we
have

h(Xτ ) ≤ inf
n≥0

log(|An|)
|Fn|

.

In particular, if the alphabets are uniformly bounded, h(Xτ ) = 0.

Proof. Fix n ∈ N and define the set of all nth level images by In = {τ[0,n)(a) | a ∈ An}. Take a pattern
P ∈ L(Xτ ). By definition, there exists m ∈ N and a0 ∈ Am such that P ⊑ τ[0,m)(a0). Decomposing τ[0,m)(a0)
into images of the nth level, we get that P is a factor of the concatenation of c ·Qc where c ∈ Cm−1 · ... ·Cn and
Qc ∈ In. Now, any factor of P of support FN for some N ∈ N must be a factor of concatenation of patterns of
the form c ·Qc, where this time c ∈ {g ∈ Cm−1 · ... · Cn | gFn ∩ hFN ̸= ∅}, and h is the position of the factor.
If we denote this set by B, the factor will appear in the concatenation of |B| patches from In. If g ∈ B, then
g ∈ hFNF−1

n . From this we deduce that

|B| ≤ |hFNF−1
n | = |FNF−1

n | = |CN−1 · ... · Cn| = |FN |/|Fn|.

As there are at most |An|
|FN |
|Fn| patterns of support B, we have that

log(pXτ (N))
|FN |

≤ inf
n≥0

log(|An|)
|Fn|

.

7.4.3 Unique ergodicity
The goal of this section is to prove unique ergodicity for many subshifts defined from directed sequences over
congruent monotileable groups under assumptions on the growth of the sequence (|An|)n∈N of sizes of the
alphabets, and the tiling sequence. With this in mind, we make extensive use of the following definitions.

Definition 7.4.4. Let E,F be two subsets of G. We define

• the E-interior of F as the set

F−E := {g ∈ G | gE ⊆ F} =
⋂
e∈E

Fe−1,

• the E-closure of F as

F+E := {g ∈ G | gE ∩ F ̸= ∅} =
⋃
e∈E

Fe−1 = FE−1,

• the E-boundary of F as ∂EF = F+E \ F−E .

Note that for any h ∈ G, (hF )−E = h(F−E), (hF )+E = h(F+E) and ∂E(hF ) = h∂EF .

Proposition 7.4.5 (Proposition 5.4.4 [CC10]). A sequence of finite subsets (Fn)n∈N is a right Følner sequence
if and only if for every finite subset E ⋐ G, we have that

lim
n→∞

|∂EFn|
|Fn|

= 0.
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Let X be a G-subshift and consider F the Borel σ-algebra of X. A probability measure µ on (X,F) is said
to be invariant or preserved by the G-action, if for any A ∈ F, and g ∈ G, µ(g−1A) = µ(A) and we say that
(X,F , µ,G) is a measure-preserving system. We say that (X,F , µ,G) is ergodic (or just that µ is ergodic,
when the G-subshift is clear) if for any A ∈ F, we have that[

∀g ∈ G, µ(g−1A∆A) = 0
]

=⇒ µ(A) = 0 ∨ µ(A) = 1.

For a G-subshift, we defineM(X,S,G) the set of all invariant probability measures. This set is convex and
compact on the weak-* topology. We say that (X,S,G) is uniquely ergodic if |M(X,S,G)| = 1, and strictly
ergodic if it is minimal and uniquely ergodic. We recall that if G is amenable, by the Krylov–Bogolyubov
theorem [KB37; Ano94], |M(X,S,G)| ≥ 1.

Towards Ergodicity

Given a directive sequence (τn)n∈N on a congruent monotileable group, we can study the number of occurrences
of letters under the substitution through the notion of abelianization.

Definition 7.4.6. Let τ : A → BF be a substitution. We define its abelianization as the matrix M(τ) of
dimension |B| × |A|, where M(σ)b,a is the number of occurrences of the letter b in τ(a).

If we have a directive sequence that witnesses a finite number of different abelianizations, we can find a
vector of frequencies through a generalization of the Perron-Frobenius theorem. Given a sequence of matrices
(Mn)n we use the notation M[i,j) = Mi ·Mi+1 · ... ·Mj−1.

Theorem 7.4.7 ([Fur60]). Let (Mn)n be a sequence of non-negative integer matrices. If there exists a matrix
M ′ and a sequence of indices ik < jk with jk ≤ ik+1 such that M ′ = M[ik,jk), then there exists a positive vector
v ∈ Rd+ such that ⋂

n∈N
M[0,n)Rdn+ = R+v.

Equipped with this result, we prove that some directive sequences define uniquely ergodic subshifts.

Theorem 7.4.8. Let τ = (τn)n be a directive sequence on a congruent monotileable group. If |An| and |Cn|
are uniformly bounded, and τ is weakly primitive, then Xτ is strictly ergodic.

The proof of this theorem relies on several key lemmas that will progressively show the existence of pat-
tern frequencies that are independent of the underlying configuration and Følner sequence. This proof closely
resembles the proof of Lee, Moody and Solomyak on the unique ergodicity of primitive geometric substitutive
systems [LMS03; Sol97].

Lemma 7.4.9. Let τ = (τn)n be a weakly primitive directive sequence on a congruent monotileable group, with
associated Følner sequence {Fn}n. Take x ∈

⋂
n∈N τ[0,n)(AGn ) and a pattern P ∈ L(Xτ ). Then,

1. There exist γ, n0 > 0, that depend only on P , such that |xhFn |P ≥ γ|Fn| for all n > n0.

2. We have that
lim
n→∞

|x∂EhFn |P
|xhFn |P

= 0,

uniformly on h ∈ G and x, where E = supp(P ).

Proof. As P is a pattern on Xτ , there exists k ∈ N and a ∈ Ak such that P ⊑ τ[0,k)(a). Because τ is weakly
primitive, there exists l ≥ k such that for all b ∈ Al, a ⊑ τ[k,l)(b). In particular, P ⊑ τ[0,l)(b) for all b ∈ Al.

Now, recall that G =
∐
c∈Ĉl cFl, with Ĉl =

⋃
m≥l Cm−1 · ... · Cl (see Lemma 7.2.7). As there exists y ∈ AG0

such that x = τ[0,l)(y), for any F ⋐ G and h ∈ G, the number of occurrences of P in xhF will be at least the
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number of elements c ∈ Ĉl such that cFl ⊆ hF , that is, |Ĉl ∩ (hF )−Fl |. In addition, there exists m > l such
that hF ⊆ Fm and Fm partitions in copies of Fl. Thus,

hF ⊆ {g ∈ Ĉl | g ∈ (hF )+Fl} · Fl. (7.2)

Take n > l and let M = |{g ∈ Ĉl | g ∈ ∂FlhFn}| and N = |{g ∈ Ĉl | g ∈ (hFn)−Fl}|. By (7.2),

N · |Fl| ≥ |Fn| −M · |Fl| ≥ |Fn| − |∂FlFn| · |Fl|.

By the Følner condition, there exists n0 > l such that |∂FlFn| < ε|Fl|−1|Fn|, for all n ≥ n0. Therefore,

|xhFn |P · |Fl| ≥ N · |Fl| ≥ (1− ε)|Fn|.

This proves (1). For our second point, we have that for n > n0,

|x∂EhFn |P
|xhFn |P

≤ |∂EFn|
γ|Fn|

,

which converges to 0 by the Følner condition.

Lemma 7.4.10. Let τ = (τn)n be a weakly primitive directive sequence on a congruent monotileable group, with
associated Følner sequence {Fn}n, such that |An| and |Cn| are uniformly bounded. Take a pattern P ∈ L(Xτ ).
Then,

fP := lim
n→∞

|xFn |P
|Fn|

,

exists and is equal for all x ∈
⋂
n∈N τ[0,n)(AGn ).

Proof. Because |An| and |Cn| are uniformly bounded, there are a finite amount of abelianizations Mn = M(τn).
Thus, in the sequence (Mn)n∈N one of the matrices repeats infinitely often. By Theorem 7.4.7, for every k ∈ N
there exists v(k) ∈ R|Ak|

+ such that ⋂
n≥k

M[k,n)R
|An|
+ = R+v

(k), (7.3)

We take v(k) such that the sum of its coordinates is 1. Notice that the abelianization for τ[k,n) is given by
M[k,n), which means that for all a ∈ An,

∑
b∈Ak

(M[k,n))b,a =
∑
b∈Ak

|τ[n,k)(a)|b = |suppτ[n,k)(a)| = |Fn|
|Fk|

.

Therefore, by (7.3)

lim
n→∞

(M[k,n))b,an
|Fn|

= v
(k)
b

|Fk|
, (7.4)

for every sequence (an)n defining an element in
⋂
n∈N τ[0,n)(AGn ).

Now, take x ∈
⋂
n∈N τ[0,n)(AGn ) and let an ∈ An be such that xFn = τ[0,n)(an). Furthermore, let k ∈ N be

such that |x∂EhFk |P ≤ ε|xhFk |P for every h ∈ G, which exists by Lemma 7.4.9. As we want to take a limit, we
can suppose n > k. Then, we approximate the occurrences of P in xFn by looking at the subdivision of Fn into
copies of Fk as follows,∑

c∈Cn−1·...·Ck

|xcFk |P ≤ |xFn |P = |τ[0,n)(an)|P ≤ (1 + ε)
∑

c∈Cn−1·...·Ck

|xcFk |P ,
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which can be re-written as∑
b∈Ak

|τ[0,k)(b)|P (M[k,n))b,an ≤ |τ[0,n)(an)|P ≤ (1 + ε)
∑
b∈Ak

|τ[0,k)(b)|P (M[k,n))b,an .

Dividing by |Fn| and using (7.4),

lim sup
n→∞

|xFn |P
|Fn|

− lim inf
n→∞

|xFn |P
|Fn|

≤ ε

|Fk|
∑
b∈Ak

|τ[0,k)(b)|P · v(k)
b ≤ ε,

as |τ[0,k)(b)|P ≤ |Fk|. Thus, fP exists as ε was arbitrary. Furthermore, fP is the same for every x as

∑
b∈Ak

|τ[0,k)(b)|P
v

(k)
b

|Fk|
≤ fP ≤ (1 + ε)

∑
b∈Ak

|τ[0,k)(b)|P
v

(k)
b

|Fk|
,

and k is independent of x.

Lemma 7.4.11. Let τ = (τn)n be a weakly primitive directive sequence on a congruent monotileable group,
with associated Følner sequence {Fn}n, such that |An| and |Cn| are uniformly bounded. Then, for all ε > 0 and
sufficiently big k ∣∣∣∣ |τ[0,k)(b)|P

|Fk|
− fP

∣∣∣∣ < ε,

for all b ∈ Ak.

Proof. We proceed by contradiction; suppose there exists ε > 0 such that for all k ∈ N, there exists φ(k) ≥ k
and bk ∈ Aφ(k) such that ∣∣∣∣∣ |τ[0,φ(k))(bk)|P

|Fφ(k)|
− fP

∣∣∣∣∣ > ε.

By compactness, there exists a subsequence of φ, ψ(k) such that τ[0,ψ(k))(bψ(k)) converges to a configuration
x from

⋂
n∈N τ[0,n)(AGn ). Then, by Lemma 7.4.10, for sufficiently big k,∣∣∣∣∣ |τ[0,ψ(k))(bψ(k))|P

|Fψ(k)|
− fP

∣∣∣∣∣ =
∣∣∣∣ |xFψ(k) |P
|Fψ(k)|

− fP
∣∣∣∣ < ε,

which is a contradiction.

Lemma 7.4.12. Let τ = (τn)n be a weakly primitive directive sequence on a congruent monotileable group, with
associated Følner sequence {Fn}n, such that |An| and |Cn| are uniformly bounded. Take x ∈

⋂
n∈N τ[0,n)(AGn )

and a pattern P ∈ L(Xτ ). Then, for any Følner sequence {F ′
n}n,

lim
n→∞

|xhF ′
n
|P

|F ′
n|

= fP ,

uniformly on h ∈ G.

Proof. We approximate the occurrences of P on xhF ′
n

by counting the occurrences of P on subdivisions of
support Fk that intersect hF ′

n. We define,

In,k = Ĉk ∩ (hF ′
n)−Fk = {g ∈ Ĉk | gFk ⊆ hF ′

n},

and
Jn,k = Ĉk ∩ (hF ′

n)+Fk = {g ∈ Ĉk | gFk ∩ hF ′
n ̸= ∅}.
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This allows us to approximate |xF ′
n
|P as∑

c∈In,k

|xcFk |P ≤ |xhF ′
n
| ≤

∑
c∈Jn,k

|xcFk |P + |x∂EcFk |P .

Because x ∈
⋂
n∈N τ[0,n)(AGn ), for every c ∈ Ĉk there exists bc ∈ Ak such that xcFk = τ[0,k)(bc). Now, from

Lemmas 7.4.9 and 7.4.11 we take k ∈ N such that |xc∂EFk |P ≤ ε|xcFk |P and∣∣∣∣ |τ[0,k)(b)|P
|Fk|

− fP
∣∣∣∣ < ε,

for all b ∈ Ak. We arrive at

(fP − ε)|In,k| · |Fk| ≤ |xhF ′
n
| ≤ (1 + ε)(fP + ε)|Jn,k| · |Fk|.

Notice that |In,k| · |Fk| ≥ |hF ′
n| − |Fk| · |∂FkhF ′

n| and |Jn,k| ≤ |hF ′
n|+ |Fk| · |∂FkhF ′

n|. As {F ′
n}n is a Følner

sequence, we take n sufficiently big such that |F ′
n| ≤ ε|Fk|−1|∂FkF ′

n|. Thus,

(1− ε)(fP − ε) ≤
|xhF ′

n
|P

|F ′
n|

≤ (1 + ε)2(fP + ε).

Therefore, we have the sought after limit whose convergence is independent of h.

Our final ingredient comes from the point-wise ergodic theorem for amenable groups. This theorem relies
on special kinds of Følner sequences.

Definition 7.4.13. A Følner sequence {Fn}n∈N is said to be tempered if there exists D > 0 such that∣∣∣∣∣
n−1⋃
i=1

F−1
i Fn

∣∣∣∣∣ ≤ D|Fn|,
for all n ≥ 2.

The general point-wise convergence theorem is stated for probability measure preserving actions, for our
purposes, we only need ergodic systems. For a full proof of the theorem see [KL16, Theorem 4.28].

Theorem 7.4.14. Let G↷ (X,µ) be an ergodic system. Then, for any tempered (right) Følner sequence {Fn}n∈N
and f ∈ L1(X),

1
|Fn|

∑
g∈Fn

f(g−1 · x) −−−−→
n→∞

∫
X

fdµ, µ-a.e.

Proof of Theorem 7.4.8. By the previous theorem, the action G ↷ Xτ is uniquely ergodic if for any L1(X)
function f : Xτ → R and any (right) Følner sequence {Fn}n,

(IFnf)(x) = 1
|Fn|

∑
g∈Fn

f(g−1 · x) −−−−→
n→∞

c(f), (7.5)

where c(f) is a constant and the convergence is uniform on x ∈ Xτ .

Let us take z ∈
⋂
n∈N τ[0,n)(AGn ). Because Xτ is minimal by Proposition 7.4.2, {h ·z | h ∈ G} is dense in Xτ .

Therefore, it suffices to prove that (7.5) for h · z uniformly on h. Furthermore, (IFnf)(h · z) = (Ih−1Fnf)(z).
Because we can approximate f by step-functions over cylinders, it suffices to study (Ih−1Fnf)(z) where f is the
characteristic function of a cylinder. By taking a cylinder Xτ ∩ [P ]g′ and denoting Hn := h−1Fn we have:∑

g∈Hn

f(g−1 · x) = |{g ∈ Hn | xgg′E = P}|,
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where E = suppP . If we index all occurrences of P in z by {gj}j∈N, that is, xgjE = P for all j ∈ N, we
obtain ∑

g∈Hn

f(g−1 · x) = |{g ∈ Hn | ∃j ∈ N, gg′ = gj}|,

= |{j ∈ N | gj(g′)−1 ∈ Hn}|.

Then, if the j-th occurrence of P is contained in xHng′ , then gj(g′)−1 ∈ Hn. On the other hand, if the j-th
occurrence of P is in xG\Hng′ , then gj(g′)−1 ̸∈ Hn. Therefore,

|xHng′ |P ≤
∑
g∈Hn

f(g−1 · x) ≤ |x(Hng′)+E |P ≤ |xHng′ |P + |∂EHng
′|.

Because Fng′ is a right Følner sequence, by Lemma 7.4.12 we have that (IFnf)(h · z) converges to fP uniformly
on h.

7.5 Perspectives and questions
As was pointed out in the introduction to this chapter, substitutions and their subshifts have provided key tools
in the study of the Domino Problem and aperiodic tilings. These contributions are usually done through the
notion of recognizability and SFT covers of substitutive systems. Let us explore these two ideas.

Recognizability

Definition 7.5.1. Let G be a monoform group. We say a primitive substitution ζ : A→ AF1 is recognizable
in the sense of Mossé on a fixed point x ∈ Xζ , if there exists a finite subset F ⋐ G with F1 ⊆ F such that
for any g, h ∈ G, x|φ(g)F = x|hF implies h ∈ φ(G).

This property’s name comes from the work of Mossé [Mos92]. For an introduction to this notion see [Ber+19].
Just for this section, we say that such a substitution is recognizable.

For monoform groups where φ is a morphism, we can find an example of a recognizable subtitution. Let G
be a monoform group with localization morphism φ and monotile F1. Up to taking an appropriate power of φ,
we assume |F1| ≥ 3. Take as alphabet A = F1 \ {1G}. We define the substitution ζφ,F1 : A→ AF1 as follows2:

(∀a ∈ A), ζφ,F1(a)(f) =
{
a when f = 1G
f when f ̸= 1G.

Note that all the patterns ζφ,F1(a) coincide in every position except at the identity, where the letter is uniquely
determined. It is direct to check that this substitution is primitive. Moreover, it has exactly |F1|−1 fixed points
{xf | f ∈ F1 \ {1G}}, determined by the elements in F1 \ {1G}, such that for any xf1(1G) = f1 and for any
f1 ̸= f2 ∈ F1 \ {1G} and any g ∈ G \ {1G}, xf1(g) = xf2(g). The value at this coordinate can be computed: for
any fixed point x ∈ X, we consider ng ∈ N as the minimal exponent such that g = φng+1(h)φng (f), for some
h ∈ G and f ∈ F1 \ {0}. Then x(g) = f .

An example of this substitution is shown in Example 7.3.16 for the Coxeter group Ã2.

Lemma 7.5.2. The substitution ζφ,F1 is recognizable on its fixed points.

Proof. Condider x ∈ Xζ a fixed point. Since |F1| ≥ 3, we consider f ∈ F1 \ {1G} such that hf /∈ φ(G). Note
that x(φ(g)f) = f and if hf = φ(h1)f1, for some h1 ∈ G, then x(hf) = x(φ(h1)f1) = f1. Hence f = f1, and
then h = φ(h1).

2This substitution is inspired by the substitution defined in [CP23, Lemma 4.2].
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The key property of recognizability is that it implies aperiodicity for suitable groups.

Lemma 7.5.3. Let G be an abelian monoform group such that the localization map φ is a morphism. If a
primitive substitution is recognizable on a fixed point, then it is aperiodic.

Proof. Let ζ : A → AF1 be a primitive constant-shape substitution, x ∈ Xζ the fixed point on which it is
recognizable and F the corresponding set. We begin by proving that ζn : A→ AFn is recognizable on x. This
is done by induction on n ∈ N for the set F̃n = φn−1(F ) · ... · φ(F )F . The base case is given by hypothesis.
Next, suppose ζn is recognizable and take g, h ∈ G such that

x|φn+1(g)F̃n+1
= x|hF̃n+1

.

Because 1G ∈ F , this can be re-written as x|φn(φ(g))F̃n = x|hF̃n . Then, because ζn is recognizable, there exists
h′ ∈ G such that h = φn(h′). We once again re-write the previous expression to obtain

x|φn(φ(g)F )F̃n = x|φn(h′F )F̃n .

As Fn ⊆ F̃n, we can use the fact that x is a fixed point for ζn to de-substitute and obtain x|φ(g)F = x|h′F . By
the recognizability of ζ, h′ ∈ φ(G) and thus h ∈ φn+1(G).

To prove the strong aperiodicity of Xζ , we first show x is aperiodic. For any g ∈ stab(x) we have

x|F̃n = (g · x)|F̃n = x|g−1F̃n
,

for all n ∈ N. By the recognizability of ζn, this implies g−1 is in the intersection of all φn(G), which is trivial.
Therefore, stab(x) = {1G}.

Finally, consider x′ ∈ Xζ . Because ζ is primitive, by Proposition 7.4.2, Xζ is minimal. We therefore have a
sequence (gm)m∈N such that gm · x′ → x. Take an element g ∈ stab(x′). Because the shift is continuous and G
is abelian

x = lim
m→∞

gm · x′ = lim
m→∞

gmg · x′ = g · lim
m→∞

gm · x′ = g · x.

Therefore, g = {1G} and Xζ is strongly aperiodic.

The previous lemma was proven in two steps: first we prove recognizability for all powers of the substitution,
and then we prove this implies aperiodicity. The first step uses the fact that φ is a morphism, and the second
that G is an abelian group. Can these restrictions be avoided?

Question 7.5.4. What is the class of monoform groups where recognizability imply aperiodicity?

SFT covers

An important class of results in the study of substitutive subshifts are simulation theorems. Their general
form is the following: a substitutive or S-adic subshift, where the directive sequence is computable, is sofic.
The first of these theorems is due to Mozes who showed that every substitutive Z2-subshift with rectangular
support is sofic. This result was latter expanded upon by Aubrun and Sablik who showed this theorem holds
for S-adic sequences with rectangular support on Z2, whose directive sequence is computable. Similar theorems
have also been obtained for geometric substitutions (see [FO10]). In contrast, no such theorem is possible
for Z-substitutions. Indeed, there exist primitive aperiodic substitutions on Z (for example, the Thue-Morse
substitution from Example 7.1.11), whereas every non-empty sofic Z-subshift must contain periodic points.

To find an easy simulation result, we look at a class of groups introduced by Barbieri, Sablik and Salo, where
the "self-simulable" aspect is intrinsic to the group’s geometry.

Definition 7.5.5 ([BSS21]). A group G is said to be self-simulable if every effectively closed G-action on
{0, 1}N is the factor of a G-SFT. In particular, every effectively closed G-subshift is sofic.
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Examples of this groups are the direct product of two non-amenable groups, braid groups of more than 7
braids, some RAAGs with conditions over the underlying graph, non-amenable branch groups, Thompson’s V ,
GL(n,Z), SL(n,Z), Aut(Fn), and Out(Fn) for n ≥ 5. Also, no amenable group can be self-simulable.

Definition 7.5.6. Let G be an S-decomposable group and τ = (τn)n∈N a directive sequence. We say τ is
computable if

• The function n 7→ An is computable.

• The function that given n ∈ N, a ∈ An+1 and b ∈ An computes a set of words Wn,a,b that contains a
unique representative for each element in Cn,a,b, is computable.

Proposition 7.5.7. Let G be a self-simulable group. For τ = (τn)n∈N a computable directive sequence, Xτ is
sofic.

Proof. If we show Xτ is effectively closed, by the self-simulability of G it will be sofic. Let us construct a set of
enumerable pattern codings for Xτ . For each n ∈ N we encode the images of τ[0,n) : An+1 → A∗G

0 .
For n = 1, compute A0 and A1. Then, for each a ∈ A1 and b ∈ A0 compute W0,a,b. Define the pattern

codings,
p(a, 1) = {(b, w) | b ∈ A0, w ∈W0,a,b}

Now, suppose we have enumerated the pattern codings {p(b, n)}b∈An−1 for some n ∈ N. These pattern
codings represent all images of τ[0,n). To obtain the next step, for each a ∈ An+2 we compute

p(a, n+ 1) = {(b, w1w2) | (b, w2) ∈ p(c, n), w1 ∈Wn+1,a,c}.

Using these pattern codings we can compute the set of pattern codings of the same support but are not
representing images of the directive sequence. This new set defines Xτ , making it an effectively closed shift.
Finally, Xτ is sofic because G is self-simulable.

Example 7.5.8. Take the group G = F2 × F2. This group is self-simulable (product of two non-amenable
groups) and monoform. If we take the set T1 = {1F2 , a, b} and construct its corresponding function φ from
Theorem 7.3.13. Then, as seen in Proposition 7.3.11, F2×F2 is monoform with localization map ψ = (φ,φ) and
set F1 = T1 × T1. As mentioned in Remark 7.3.15, φ is computable. By the previous proposition the subshift
Xζψ,F1

is sofic, as the localization map determines the tilling sequence {Cn}n∈N.

Question 7.5.9. For which S-decomposable groups does every computable directive sequence define a sofic
subshift?

Bringing all together, suppose that for a monoform group G we had a version of Lemma 7.5.3 and Propo-
sition 7.5.7. If both φ and F1 where computable, the subshift defined by the substitution ζφ,F1 would be the
factor of a strongly aperiodic G-SFT. This could provide new examples of groups which admit these SFTs.
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