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1 - Introduction and contributions

1.1 . Introduction

Since 2010, the field of machine learning has experienced tremendous growth in both
research and applications (Pugliese et al., 2021). This growth can be explained by the avail-
ability of large datasets, the development of newalgorithms, and the increase in computa-
tional power. In particular, the availability of graphical processing units (GPUs) has helped
to train large deep neural networks (DNNs) in a reasonable amount of time which has
paved the way for many new applications. In parallel, the high-performance computing
(HPC) community has been developing new systems to address the growing demand for
computational power. These systems are now available tomachine learning practitioners
and can be leveraged to solve challenging science applications. However, the optimiza-
tion of such learning workflows is still a challenge due to the large configurability of DNNs
and the high computational cost of evaluating these configurations.

A machine learning workflow is a program that executes a sequence of operations
to extract knowledge from data. It takes as input data corresponding to a specific task
(e.g., supervised learning) and produces as output a trained model. The model can then
be used for different types of inferences such as prediction (and therefore called a predic-
tor) or generation (and therefore called a generator). The modules of learning workflows
can perform (1) data transformations (e.g., augmentation, cleaning), (2) model training, (3)
model evaluation and selection. Also, each module generally offers a large set of param-
eters to configure such as: (1) select the data augmentation policy which can include the
type of transformations, their rate, and amplitude; (2) select the deep neural architecture
which can include the number of layers, the type of activation functions, the regulariza-
tion, the type of connections, etc.; (3) the metrics to evaluate and the selection proto-
col (e.g., early stopping, cross-validation). A High-Performance Computing (HPC) system
also known as a supercomputer is a collection of compute nodes connected through a
high-speed network. Each node can be composed of one or more CPUs or “accelerators”
(e.g., GPUs). The nodes are connected to a shared storage system and memory as well
as local. The HPC system can be used to accelerate the training of learning workflows or
evaluate many in parallel.

The optimization of learningworkflows has often been studied in the context of single-
node systems or small clusters (i.e., a few dozen parallel processes). For example and in
chronological order, Bergstra et al. (2011) use 5 parallel process, Snoek et al. (2012) use 10
parallel processes, Falkner et al. (2018) use 32 parallel processes, Cho et al. (2020) use 6
parallel processes, Awad et al. (2021) use 64 parallel processes. Few works covered larger
scales such as Snoek et al. (2015) which use a dynamic number of parallel processes be-
tween 300 and 800. Li et al. (2020) scale to 500 parallel processes but this is through a
(cheap in overhead) random search combined with an early discarding strategy. Wang
et al. (2018) scale Bayesian optimization to 500 parallel processes but mention a drop of
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efficiency due to synchronization. Balaprakash et al. (2018b) scale Bayesian optimization
to 1,024 parallel processes and it is one of the rare works that provide clear profiling of
workers’ activity. The profiling is presented through what is referred to as worker utiliza-
tion, and it demonstrates a clear bottleneck on the scaling of Bayesian optimization when
parallelized with the constant-liar strategy (Ginsbourger et al., 2010b).

All in all, the current literaturemakes it challenging to understand the benefit of paral-
lelism and scalability for the optimization of learning workflows. This research will mostly
experiment on the Polaris system at the Argonne Leadership Computing Facility which
has 480 nodes in the production queue. Each node is equipped with 32 cores AMD EPYC
"Milan" CPU and 4 NVIDIA A100 GPUs. This corresponds to a significantly larger scale than
previously cited works with a total of 15,360 parallel CPU cores and 1,920 parallel GPUs.
Polaris is a petascale supercomputer that serves as a developing platform for the Aurora
exascale supercomputer. Aurora will be composed of 10,624 nodes. Each node will be
equipped with 2 Intel Xeon CPUMax Series and 6 Intel Data Center GPUMax Series. Thus,
it will provide a much larger computing scale than Polaris.

The goal of this thesis is to develop and evaluate scalable methods for the op-
timization of learning workflows on large-scale high-performance computing sys-
tems. The research spans various domains frommachine learning and high-performance
computing, to the application of these techniques to cancer research, geophysical model-
ing, and storage services. The theoretical aspect of this thesis intersects multiple theories
such as probability and statistics, optimization, parallel computation, and learning theory,
where the challenge has been to have a formal universal notation We provide a listing of
our notations in Appendix A.

Early on and due to some properties of the optimization problem (e.g., expensive
evaluations, mixed-integer problem), the research focused on the class of model-based
Bayesian optimization (BO) algorithms. Bayesian optimization is known to be challenging
to scale due to multiple bottlenecks (Snoek et al., 2015; Balaprakash et al., 2018b). How-
ever, it is also known to have faster convergence (De Freitas et al., 2012), and as learning
workflows are known to be expensive to evaluate thismade Bayesian optimization a natu-
ral choice. Themethodology mainly consists of relying on a probabilistic surrogate model
(e.g., Gaussian Process) to guide the optimization process instead of directly querying the
real problem.

1.2 . Contributions

This thesis proposes a comprehensive framework for the scalable optimization of
learning workflows on large-scale high-performance computing (HPC) systems. It primar-
ily focuses on advancing Bayesian optimization techniques for efficient and scalable paral-
lel hyperparameter optimization of deep neural networks (DNNs). The key contributions
of the thesis can be summarized as follows:

1. Scalable Parallel Bayesian Optimization (Chapter 3): Introduces a decentralized
and asynchronous approach to scale Bayesian optimization for hyperparameter
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tuning across thousands of CPU andGPUprocesses, enabling optimization at scales
previously unattainable (Egelé et al., 2023).

2. Multi-objective Optimization (Chapter 4): Extends Bayesian optimization to effi-
ciently handle multi-objective scenarios through novel methods for objective nor-
malization and constraints integration, enhancing its utility in practical problems
(Égelé et al., 2023a).

3. Early Discarding Techniques (Chapter 5): Explores strategies to reduce computa-
tional demands of DNN training within hyperparameter optimization, demonstrat-
ing that a fixed number of training epochs can significantly reduce computational
requirements (Égelé et al., 2023b).

4. Uncertainty Quantification (Chapter 6): Employs hyperparameter optimization
for the quantification of uncertainty in DNN predictions, improving the reliability
and interpretability of machine learning models (Égelé et al., 2021; Égelé et al., 2022;
Maulik et al., 2023).

5. DeepHyper Software Package1: Contributes an open-source software package
that encapsulates the developed algorithms for scalable optimization, providing a
framework for asynchronous exploration and evaluation on HPC resources (Bal-
aprakash et al., 2018a).

Figure 1.1 provides an overview of the software architecture of DeepHyper. The inputs
defining the problem include the objective function f , which can return one or multiple
objectives, and the hyperparameter search space Θ. Subsequently, a Search object rep-
resents any algorithm capable of exploring the hyperparameter search space, such as
Bayesian optimization, random search, grid search, or genetic algorithms. This Search
algorithm submits hyperparameter configurations to be evaluated by the Evaluator.

The Evaluator then executes the objective function f with the submitted hyperpa-
rameter configurations on available computing resources (referred to as workers). Upon
completion of the evaluation of the objective function f , the search mechanism gathers
the results. Both the submission and gathering processes support asynchronous pro-
gramming, enabling non-blocking execution.

In the diagram, a blue rectangle represents a compute node, which serves as an
atomic unit within HPC systems. Additionally, the purple background denotes the avail-
able "shared memory," which can be any mechanism facilitating data sharing among dif-
ferent processes (e.g., a database, a filesystem).

1.3 . French Summary (Synthèse en Français)

1DeepHyper (Documentation: deephyper.readthedocs.io and Github: github.com/
deephyper/deephyper, accessed March 2024)
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Figure 1.1: Overview of the software architecture of DeepHyper for the parallel optimiza-tion of learning workflows.

Au cours de la dernière décennie, les processus d’apprentissage automatique offrant
connu une expansion exponentielle, stimulée par l’abondance de données disponibles,
les progrès algorithmiques ainsi que l’augmentation de la puissance de calcul. En même
temps, le calcul haute performance (HPC) a continué d’évolué pour répondre cette de-
mande accrue en ressources de calcul, ouvrant ainsi la possibilité pour les processus
d’apprentissage d’assimiler de plus grand volumes de données. Toutefois, les proces-
sus d’apprentissage machine sont souvent séquentiels, ce qui complique leur adaptation
aux systèmes HPC, naturellement orientés vers le parallélisme massif.

Les processus d’apprentissage machine s’appuient sur des modules dotés de nom-
breux paramètres configurables, ainsi appelés “hyperparamètres” et souvent figés pour
des raisons pratiques lors de l’apprentissage, allant des politiques d’augmentation des
données, aux procédures d’entraînement et aux architectures des réseaux de neurones
artificiels. L’optimisationdes hyperparamètres de cesmodules est essentielle pour dévelop-
per des modèles performants, bien que celle-ci soit généralement très gourmande en
calcul.

Cette thèse se concentre sur l’optimisationdes hyperparamètres des processus d’apprentissage
supervisé sur des systèmes HPC, comme Polaris à l’Argonne National Laboratory. Po-
laris dispose de 17 920 cœurs CPU et 2 240 accélérateurs GPU, offrant une plateforme de
teste idéale pour l’expérimentation d’algorithmes d’optimisation des hyperparamètres à
grande échelle. Les contributions majeures de cette thèse incluent:

1. L’optimisation Bayésienne largement parallèle (Chapitre 3) : une approche dé-
centralisée et asynchrone permettant de paralléliser l’optimisation Bayésienne des
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hyperparamètres pour l’apprentissage de réseaux de neurones profonds sur des
milliers de processus CPU et GPU. Cette méthode améliore les résultats tout en
réduisant significativement le temps de calcul nécessaire.

2. L’optimisationmulti-objectifs (Chapitre 4) : une extensionde l’optimisationBayési-
enne parallèle pour gérer efficacement les scénarios où plusieurs objectifs doivent
être optimisés simultanément. Cela permet par exemple demaximiser la qualité de
l’apprentissage tout enminimisant le temps de réponse. Grâce à desméthodes no-
vatrices de normalisation des objectifs et d’intégration de contraintes,la robustesse
de l’optimisation est améliorées dans des problèmes pratiques (Égelé et al., 2023a).

3. Les techniques de rejet précoce (Chapitre 5) : alors que les contributions précé-
dentes visentminimiser le nombred’itérations de l’optimisation des hyperparamètres,
cette approche vise à réduire les coûts de calcul des entraînements des réseaux
de neurones pendant l’optimisation des hyperparamètres. L’objectif est de cesser
l’entraînement des candidats peu prometteurs le plus tôt possible. Nous démon-
trons qu’un nombre fixe d’itérations d’entraînement peut réduire significativement
et de façonprédictible les besoins en calcul tout en restant compétitif, voire supérieur
à des méthodes plus complexes.

4. La quantification de l’incertitude (Chapitre 6) : cette partie montre comment
l’optimisation des hyperparamètres peut être utilisée pour améliorer la quantifi-
cation des incertitudes des prédictions des réseaux de neurones profonds, amélio-
rant la fiabilité et l’interprétabilité des modèles d’apprentissage machines (Égelé
et al., 2021; Égelé et al., 2022; Maulik et al., 2023). Notamment la recherche de
réseaux de neurones avec des hyperparamètres variés permet de produire des pré-
dictions plus diverses ce qui améliore significativement la quantificationde l’incertitude.

5. Le logiciel DeepHyper : fournit une plateforme open source encapsulant les algo-
rithmesdéveloppés pendant cette thèse, ce qui facilite la réutilisation et l’exploration
scientifique des méthodes proposées.

Cette thèse souligne l’importance de l’optimisation Bayésienne des hyperparamètres
pour les processus d’apprentissage, cruciale pour exploiter efficacement les vastes ressources
de calcul des systèmes HPC modernes.
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2 - Overview and formalism of the optimization of
learning workflows

In this chapter, we present a thorough overview and formalism for optimizing
learning workflows on high-performance computing systems. We start by intro-
ducing the notion of configurable learning workflows, providing clarity on their
structure and components. Then, we delve into hyperparameter optimization, a
pivotal aspect of this study, wherein we formally analyze the problem and scruti-
nize various key methods from the literature. Further details are provided on se-
quential Bayesian optimization, which serves as the cornerstone of this research.
This includes a review of acquisition functions, theminimization of these functions,
and the use of surrogate models. Additionally, we list performance metrics used
for experimental assessments. Finally, the chapter introduces challenges associ-
ated with high-performance computing within the domain of optimizing learning
workflows, thus laying the groundwork for more in-depth exploration in subse-
quent chapters.
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2.1 . Formalism of configurable learning workflows

In this section, we introduce the concepts of supervised learning workflows that we will
be optimizing throughout the remainder of this work.

In supervised learning, the aim is to construct a computer program (i.e., a set of in-
structions executed by a computer) capable of generating predictions by leveraging a
training dataset composed of examples of input-output pairs. The mechanism produces
the datasets is later referred to as supervisor. The learning process involves two distinct
types of programs: the learner and the predictor. The predictor is a program that ex-
ecutes the task of associating given inputs with corresponding outputs, serving as the
manifestation of knowledge acquired by learning. On the contrary, the learner program
is executes the task of assimilating this knowledge from the examples in the dataset, with
the objective of identifying an optimal predictor. When the learner is made up of various
subprograms (a.k.a., modules), such as different preprocessing and modeling programs,
it is often called a learning workflow. The learner and predictor usually take as inputs
some fixed parameters that impacts their execution. This is mainly due to the practical
consideration that computations are performed on finite resources (time and memory).
We refer to such parameters as hyperparameters. Ultimately, hyperparameters are fixed
parameters of the learning workflow.

Now, more formally, we follow the learning theory by Vapnik (1991) and borrow nota-
tions fromGuyon et al. (2010); Liu (2021). The supervised learning process can be described
through the following components:

• A generator of independent and identically distributed dataX with support X (pos-
sibly a vector, a matrix or a tensor space) with P (X) its probability distribution,
which is equivalent to P (x ∈ X ) for any x ∈ X .

• A supervisor which maps X to a target Y with support Y given a conditional distri-
bution P (Y |X) also fixed and unknown, which is equivalent to P (y ∈ Y|x ∈ X ) for
any x, y ∈ X × Y .

• A predictor, is a function αθ : X → Y from a space αθ ∈ Aθ, θ is a hyperparame-
ter vector. Then, Aθ represents a set of functions that can be implemented for a
fixed hyperparameter configuration θ of the predictor. This set generaly serves to
estimate statistics of P (Y |X) (e.g., mean, median, mode of the target).

• A loss function L : Y ×Y → R which describes the quality of the estimated statistic
on the current task given a set of training data D = {(X1, Y1), . . . , (Xn, Yn)} where
Xi, Yi are n ∈ [1, n], indepent and identically distributed (i.i.d. ), random variables
following the joint probability distribution P (X,Y ). The probability of a dataset
D ∈ D is denoted by P (D) = P (X1, Y1, . . . , Xn, Yn).
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In the case of parametrized predictors such as deep neural networks and to sim-
plify our notations we write αθ(.) in place of αθ(.;wθ) where wθ would be the parameters
(a.k.a., weights) of the neural network.

For some hyperparameters, let us define the risk which express the quality of a pre-
dictor on the learning task.
Definition 2.1 (Risk). Let X,Y ∼ P (X,Y ) be two random variables with support X ,Y . Let
αθ : X → Y be a predictor configured with hyperparameters θ ∈ Θ. Let L : Y × Y → R be a
loss function. The risk of αθ according to the loss L on the supervised task defined by P (X,Y )

is:
R (αθ) := EX,Y [L(Y, αθ(X))] =

∫
X,Y

L(Y, αθ(X))dP (X,Y )

Then, the learning problem is to find the predictor which minimizes the risk.
Problem 2.1 (Supervised Learning). Let X,Y be two random variables with support X ,Y
respectively and joint probability distribution P (X,Y ). Let αθ : X → Y be a predictor con-
figured with hyperparameters θ ∈ Θ. Let L : Y × Y → R be a loss function. The supervised
learning problem is then to minimize the risk of αθ according to the loss L on the supervised
task defined by P (X,Y ):

α∗θ = argmin
αθ∈Aθ

R (αθ)

such that for all αθ ∈ Aθ we have R (α∗θ) ≤ R (αθ).

Our formulation does not explicitly account for the possibility of multiple solutions
that minimize the risk, which often occurs for example because of problem symmetries.

Also, the only condition of optimality used is based on the value of the risk R (α∗θ) ≤
R (αθ). Due to thenature of the problemswe study (i.e., generally non-linear, non-continuous,
non-convex and in later sectionsmixed-integer), very little can be said about other criteria
of optimality (e.g., first derivative tests such as Karush–Kuhn–Tucker conditions).

The discrepancy in the risk output space between solutions of Problem 2.1 and the
actual data generator P (X,Y ) is commonly known as approximation error (Barron, 1994).
This is primarily attributed to the limited capacity of Aθ to encompass a predictor that
perfectly aligns with the actual data generator.

Returning to the assessment of risk, in practical scenarios, the joint distributionP (X,Y ) =

P (Y |X) P (X) is usually unknown. Therefore Problem 2.1 does not have a closed form so-
lution. However, samples of the distributionsmay be given as training data, and therefore
the problem shifts towards minimizing the empirical risk instead.
Definition 2.2 (Empirical Risk). LetD = {(X1, Y1), . . . , (Xn, Yn)} be a dataset of (Xi, Yi) ∼
P (X,Y ), i ∈ [1, n], i.i.d. random variables, with supportX ×Y . Let αθ : X → Y be a predictor
configured with hyperparameters θ ∈ Θ. Let L : Y × Y → R be a loss function. The empirical
risk of αθ according to the loss L on the supervised task defined by P (X,Y ) is:

Remp (αθ) :=
1

n

n∑
i=1

L(Yi, αθ(Xi))
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Since the empirical risk is determined by the datasetD, which is a random variable, it
consequently becomes a random variable itself. The goal is now tominimize the empirical
risk.
Problem2.2 (Empirical Supervised Learning). LetD = {(X1, Y1), . . . , (Xn, Yn)} be a dataset
of (Xi, Yi) ∼ P (X,Y ), i ∈ [1, n], i.i.d. random variables, with support X ×Y . Let αθ : X → Y
be a predictor configured with hyperparameters θ ∈ Θ. Let L : Y × Y → R be a loss func-
tion. The supervised empirical learning problem is then to minimize the empirical risk of αθ

according to the loss L on the supervised task defined by P (X,Y ):

A∗θ = argmin
αθ∈Aθ

Remp (αθ)

where A∗θ is a random variable, such that for all αθ ∈ Aθ, Remp (A
∗
θ) ≤ Remp (αθ).

Generally, the global optimality conditions for Problems 2.1 and 2.2 cannot be theoret-
ically confirmed; they can only be empirically validated for solution quality. Furthermore,
the difference in the risk output space between solutions of Problems 2.1 and 2.2 is com-
monly referred to as estimation error (Barron, 1994) (Figure 2.1). Since the resulting pre-
dictor A∗θ is determined by the empirical risk, which is a random variable, it consequently
becomes a random variable itself.

Let’s define a deterministic learner, which can also be configured through its hyperpa-
rameters, as a function (or algorithm) that provides an estimated solution to Problem 2.2.
Definition 2.3 (Deterministic Learner). Let D = {(X1, Y1), . . . , (Xn, Yn)} be a dataset of
(Xi, Yi) ∼ P (X,Y ), i ∈ [1, n], i.i.d. random variables, with support X × Y . Let αθ : X →
Y be a predictor configured with hyperparameters θ ∈ Θ. Let L : Y × Y → R be a loss
function. Then, a configurable learner is a function βθ : D → Aθ that, for a given configuration
of hyperparameters θ ∈ Θ, and a training dataset D ∈ D, returns an estimated optimal
predictor Aθ = βθ(D) approximate solution to Problem 2.2. Aθ is a random variable because
of randomness fromD.

The difference in the risk output space between Problem 2.2 and the expected predic-
tor returned by a deterministic learner ED

[
Remp (Aθ)

] will be referred to as learner error
(sometimes also referred to as the bias of the learner (Domingos, 2000)).

Definition 2.3 corresponds to a deterministic learner, even though we have presented
the output predictor as a random variable. This means that for the same dataset, the
returned predictor will provide the same outputs. For instance, consider the algorithm
computing the least-square solution in linear regression, where the hyperparameter θ ∈
[1, 3] configures the number of polynomial features generated during data preprocessing.

However, in many cases, a learner may instead be a randomized algorithm. For in-
stance, in the case of deep neural networks, randomness can arise from the initialization
of randomweights or the shuffling of the dataset during stochastic gradient descent (Bot-
tou, 2010). In Random Forests (Breiman, 2001), randomnessmay stem frombootstrapping
when constructing each tree (also known as bagging (Breiman, 1996)), random splits, or
feature selection at each node of a tree. Hence, the outcome Aθ of a learner may also be
influenced by such random effects.
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Figure 2.1: A visual representation of the hyperparameter optimization problem. F isthe set of computable (i.e., programmable) functions, and f is such a function that wewish to approximate. Aθ (in yellow) is a possible set of predictors that corresponds toa fixed hyperparameter configuration θ. For example, it can corresponds to all weightsthat a deep neural network with a fixed architecture can take. AΘ (in green) is the unionset of all Aθ for all possible hyperparameter configurations θ ∈ Θ. The hyperparameteroptimization process expores AΘ by sampling Aθ subsets.
Definition 2.4 (Randomized Learner). Let D = {(X1, Y1), . . . , (Xn, Yn)} be a dataset of
(Xi, Yi) ∼ P (X,Y ), i ∈ [1, n], i.i.d. random variables, with support X × Y . Let αθ : X → Y
be a predictor configured with hyperparameters θ ∈ Θ. Let L : Y ×Y → R be a loss function.
Then, a randomized learner is a function βθ : D × R → Aθ that, for a given configuration of
hyperparameters θ ∈ Θ, and a training datasetD ∈ D, returns an estimated optimal predictor
Aθ = βθ(D, E) solution to Problem 2.2 and E ∼ P (E) with E encoding the cumulative random
effects inherent to the learner β. Aθ is a random variable because of randomness fromD and
E .

Therefore, there are two sources of randomness, which may potentially interact, as
seen in algorithms like stochastic gradient descent (where the ordering and value of sam-
ples introduce variability). One approach to assessing the effectiveness of a randomized
learner is to choose one with low empirical risk on average, denoted as EE [Aθ].Now that we have defined the two main entities, the predictor and the learner, let’s
delve into further details about the hyperparameter space.

The hyperparameter space Θ encompasses all possible combinations of decisions
that can configure the predictor and learner. Variables within this space can represent
various aspects such as data-centric decisions (e.g., preprocessing, augmentation, clean-
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ing, normalization), learning procedure decisions (e.g., optimization procedure of a neural
network, learning rate, batch size, loss function), neural network architecture decisions
(e.g., types of neural network layers, connectivity between layers), and computational de-
cisions (e.g., parallelism configuration, memory limitations, optimized compute kernels).

Thus, the hyperparameter space can be described as a Cartesian product of different
variable types:

• Real: a subset of real numbers R with corresponding order relation and distance
(generally Euclidean).

• Discrete: a subset of natural numbers Z with a corresponding order relation and
distance (generally Euclidean).

• Categorical: a set of valuesK with (Ordinal) or without (Nominal) order relation and
no defined distance.

It can be represented in various formats such as a vector, a tree, or a graph. In
this work, we primarily use vector representations in our formalism, although other data
structures can be employed during implementation.

A space composed of such heterogeneous dimension types is termed asmixed and is
known to pose challenges in optimization due to potential high non-regularity (e.g., dis-
continuity in input and output spaces, frequent flatness/stationarity of the objective land-
scape). Additionally, it’s common for some (child) hyperparameters to be valid only if a
(parent) hyperparameter takes certain values. In such cases, there may exist redundancy
(known as symmetries) as different hyperparameter vectors could represent the same
learning workflow. Redundancy, where unique representation is lacking, can adversely
affect the performance of statistical estimators.

To address this issue, we propose enforcing the representation of “invalid” hyperpa-
rameters with a predetermined value. Specifically, we set this predetermined value as
the “lower bound” of the current hyperparameter dimension, thus breaking symmetries.
In the case of nominal categorical hyperparameters, it will be a constant value from the
categorical set. For example, if we have a hyperparameter representing the number of
layers in a neural network, and an hyperparameter for each activation function of each
of these layers, we can set the activation function of all inactive layers to a constant value
(e.g., “identity”). This approach ensures that the hyperparameter space is well-defined
and unique (i.e., no duplicate representation), thereby facilitating the optimization pro-
cess.

In this section, we have outlined the fundamental problem in learning, which involves
identifying an effective predictor for a predetermined set of hyperparameters.

Additionally, we have highlighted two distinct sources of randomness. The first per-
tains to the data and is represented through the random variables (Xi, Yi). The secondsource of randomness is associated with the learner, which encompasses the model or
algorithm utilized to tackle the learning problem, and is captured by the random variable
E .
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In the subsequent section, we will delve into problems andmethodologies concerning
the exploration of hyperparameters for such predictors and learners.

2.2 . Hyperparameter optimization of learning workflows

Oftentimes implementations of algorithms (a.k.a., programs) provide configurable pa-
rameters that impact the behavior of the algorithm during its execution. The problem of
finding the parameters that optimize the performance of an algorithm is generally called
“algorithm configuration” (AC).

A specific class of algorithms, presented in Section 2.1, is the class of machine learn-
ing (ML) algorithms. The parameters of ML algorithms that cannot be inferred during the
learning phase (Problem 2.2) are named hyperparameters. Therefore, the hyperparame-
ter optimization (HPO) problem is a subset of the algorithm configuration problem that
focuses on machine learning algorithms. The HPO problem is now of great importance
as ML algorithms have become extremely popular and the “performance” of these algo-
rithms is sensitive to the configured hyperparameters.

However, while choosing the correct hyperparameters is important it is also notori-
ously difficult to select them properly, even for experts. This difficulty can be attributed to
the quantity of available ML algorithms and hyperparameters, the lack of theoretical un-
derstanding about how such hyperparameters impact the performance (often resorting
to heuristic decisions), and the computational requirements it necessitates to test.

Therefore, the research community has actively proposed automated procedures to
resolve such challenges. In this chapter, wefirst present the formal problems (Section 2.2.1)
that model such challenges, then we review methods (Section 2.2.3) from the literature
that solves these problems.

2.2.1 . Formalism of the problem
In this section, we build on top of the previously introduced predictor and learner,

from Section 2.1, to develop the hyperparameter optimization problems. Our formalism
only considers the hyperparameter optimization problem without loss of generality to
the combined algorithm selection and hyperparameter optimization (CASH) problem or
the neural architecture search (NAS) problem (Eggensperger et al., 2013; Kotthoff et al.,
2017; Thornton et al., 2013; Zela et al., 2018). Typically, for practical purposes, hyperparam-
eter optimization in empirical supervised learning is formulated as a bi-level optimization
problem (Guyon et al., 2010, Section 3).
Problem 2.3 (Hyperparameter Optimization of Empirical Supervised Learning). Let D =

{(X1, Y1), . . . , (Xn, Yn)} be a dataset of (Xi, Yi) ∼ P (X,Y ), i ∈ [1, n], i.i.d. randomvariables,
with support X × Y . Let αθ : X → Y be a predictor configured with hyperparameters θ ∈ Θ.
LetL : Y×Y → R be a loss function. The hyperparameter optimization of empirical supervised
learning problem is then a two-level problem where the goal is to find θ such that the empirical
risk of its corresponding predictor αθ is minimal according to the loss L on the supervised task
defined given by P (X,Y ):
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Θ∗ = argmin
θ∈Θ

Remp (A
∗
θ)

s.t. A∗θ = argmin
αθ∈Aθ

Remp (αθ)

whereA∗θ andΘ∗ are randomvariables, such that for all θ ∈ Θ, for allαθ ∈ Aθ,Remp (A
∗
Θ∗) ≤

Remp (αθ).

Similar to supervised learning Problem 2.1, there may exist numerous optimal solu-
tions for hyperparameters. Additionally, for each such optimal hyperparameter solution,
there can be multiple optimal predictors (such as optimal weights). In practice, our goal
is to identify just one combination of optimal solutions.

From the definition of the hyperparameter optimization problem, we can directly rec-
ognize the two-step process of the principle of structural risk minimization introduced by
(Vapnik, 1991, Sections 7 and 8). In our scenario, the structure is defined by S = {Aθ : ∀θ ∈
Θ} and may not necessarily be nested. This implies that two hyperparameter vectors can
represent disjoint sets of predictors (for example, with different feature preprocessing).

In Figure 2.1, we present an illustration of the hyperparameter optimization process,
where f ∈ F is a computable (or programmable) function (Sipser, 1996), and AΘ =

∪θ∈ΘAθ represents the set of all predictors that can be computed from any hyperparam-
eter configuration θ ∈ Θ. The objective is to discover a better predictor by exploring
subsets of AΘ.Subsequently, the resolution of the sub-problem is frequently handled by another al-
gorithm, which is treated as a black box (meaning it is utilized based on observations of
its inputs and outputs). In Section 2.1, we referred to such an algorithm as a learner and
provided definitions for deterministic learners (see Definition 2.3) and randomized learn-
ers (see Definition 2.4). Therefore, let’s directly focus on presenting the hyperparameter
optimization of a randomized learner, as it represents the most general formalism.
Problem2.4 (HyperparameterOptimization of a Randomized Learner). LetD = {(X1, Y1),

. . . , (Xn, Yn)} be a dataset of (Xi, Yi) ∼ P (X,Y ), i ∈ [1, n], i.i.d. random variables, with sup-
port X × Y . Let αθ : X → Y be a predictor configured with hyperparameters θ ∈ Θ. Let
L : Y × Y → R be a loss function. Let βθ : D × R → Aθ be a randomized learner. The
hyperparameter optimization of a randomized learner is then to find θ such that the expected
empirical risk of its output predictor αθ is minimal according to the loss L on the supervised
task defined given by P (X,Y )

Θ∗ = argmin
θ∈Θ

EE
[
Remp (βθ(D, E))

]
where Θ∗ is a random variable, and such that for all θ ∈ Θ, EE

[
Remp (βΘ∗(D, E))

]
≤

EE
[
Remp (βθ(D, E))

]
.

Usually, Problem 2.4 is presented as black-box optimization problem (Bergstra et al.,
2011) of the form:

Θ∗ = argmin
θ∈Θ

f(θ)
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where f : Θ → R is a noisy function. In our case, we unfolded the optimized func-
tion f(θ) = Remp (βθ(D, E)) to clarify the source of randomness from the dataset D, the
learner E , and also link the hyperparameter optimization to the learning problem 2.3 pre-
viously introduced.

2.2.2 . Generalization and overfitting

In the previous section, to simplify the introduction of the hyperparameter optimiza-
tion problems we used only one dataset D. However, in general, excessively optimizing
a learning workflow (i.e., its parameters and hyperparameters) by using a single dataset
leads to overfitting (i.e., memorize observed samples, Ying (2019)). In our case, we are in-
terested in optimizing deep neural network learning workflows for which “overfitting” can
easily happen as they are universal approximators (Hornik et al., 1989).

To resolve this issue, a common practice in hyperparameter optimization and neural
architecture search is to split the dataset into three exclusive subsetsD = Dtrain∪Dvalid∪
Dtest called the training, validation, and test datasets respectively. The training dataset
Dtrain is used by the learner βθ(Dtrain, E) to produce a predictor (e.g., learning the param-
eters of a deep neural network), which corresponds to the lower level in Problem 2.3.
The validation datasetDvalid is used to select the optimal learned predictor and its corre-
sponding hyperparameters, which corresponds to the upper level in Problem 2.3. Finally,
the test dataset Dtest is used to report the final performance of the hyperparameter op-
timization algorithms and compare which one is better.

Even if this practice is common we wonder if repeated selection based on the valida-
tion dataset Dvalid could lead to overfitting the validation dataset. This would imply that
the empirical risk decreases (i.e., improves) on the validation dataset but increases on the
test datasets (i.e., deteriorates). In the hyperparameter optimization setting, we are under
a sequential adaptive process (e.g., Bayesian optimization that we present in Section 2.2.4)
that updates the selection of the best hyperparameters based on previously observed
outcomes (i.e., each new iteration depends on the outcome of past iterations). Therefore
common generalization bounds, based on Hoeffding’s inequality that assume indepen-
dence between selected predictors, are not applicable (Blum and Hardt, 2015). Neverthe-
less, it was observed that over-adaptation of the learner on the validation dataset does
not lead to overfitting the validation dataset (Recht et al., 2019; Blum and Hardt, 2015).
Throughout our research, we also did not observe overfitting to the validation even when
completing several thousands of optimization iterations.

We note that this methodology of a three-way splitting of the dataset and the issue of
generalization of the selected best candidate is a general problem in machine learning.
More specifically in the case of machine learning competitions (Pavão, 2023). In this case,
training data are provided during the development phase which provides a leaderboard
of competitors based on a hold-out dataset (corresponding to our validation dataset).
Then, after possibly filtering the candidates (e.g., to reduce noise in the selection) from
this development phase leaderboard, a final phase is organized to select the winners (cor-
responding to our test dataset).
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2.2.3 . Review of hyperparameter optimization methods
In this section, we conduct a literature review on hyperparameter optimization (HPO)

and neural architecture search (NAS), guided by the taxonomy illustrated in Figure 2.2
and proposed by Elsken et al. (2019). This taxonomy categorizes approaches based on the
optimization strategy (a.k.a., search strategy) and the performance estimation strategy. The
optimization strategy corresponds to the exploration of the hyperparameter space, de-
noted as Θ, while the performance estimation strategy corresponds to the methodology
employed to solve the sub-problem outlined in Problem 2.3, namely, how the learning
workflow is assessed.

 hyperparameters

Optimization
Strategy

 cost

Performance
Estimation
Strategy

 Hyperparamter Space
& Learning Workflow

Figure 2.2: Components of hyperparameter optimization methods (Elsken et al., 2019).

The case of random hyperparameter optimization

Before introducing more complex strategies, we present random optimization, meaning
sampling randomly (sometimes with an enforced prior or distribution) hyperparameters
θ to test. FromanHPC perspective, this strategy has the advantage of being stateless, with
negligible overhead, and does not require to communicate informationwhen parallelized.
Hence, it has excellent parallel scalability. From a hyperparameter optimization perspec-
tive, random search is often preferred over grid search as it is more robust to the vary-
ing importance of hyperparameters (Bergstra and Bengio, 2012). Let us see quickly what
would be the probability of finding the optimal solution with such a strategy. This proba-
bility exponentially reduces with the number of dimensions. For a given function f with d

dimensions we want to evaluate the probability of finding≈ θ∗. Assuming that we sample
the space θ fromauniformdistributionP (θ) := U([a, b]d), then the probability of sampling
at ϵ-precision for one dimension is pϵ := P (|θ − θ∗| ≤ ϵ) = P (θ∗ − ϵ ≤ θ ≤ θ∗ + ϵ) = 2ϵ

b−a .Now considering the sampling for each dimension to be independent, the probability of
sampling at ϵ-precision each dimension for d-dimensions is pd := pdϵ . Finally, assuming
that draws are independent for each new evaluation, the probability of sampling at ϵ-
precision each dimension after n-draws is pn := 1− (1− pd)

n.
In Figure 2.3, we present the probability of success pn to find a solution at ϵ-precisionfor increasing number of dimensions to illustrate (1) how it exponentially converges to 0

(a.k.a., curse of dimensionality) and (2) to understand when it is efficient and therefore
help quantify the difficulty of a problem. In Figure 2.3a, n = 104 and we change the pre-
cision of the solution from ϵ = 10−1, 10−2 to 10−3. As can be observed, increasing the
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(a) Increasing Precision of the Solution (b) Increasing the Number of Samples
Figure 2.3: Probability of Success with Random Optimization

precision of the solution of a few digits makes the problem a lot harder for random opti-
mization. Then, in Figure 2.3b the precision is fixed to ϵ = 10−3 and we vary the number
of samples from 10 to 1010. This shows the exponential increase of samples required to
solve problems with more dimensions. In conclusion, if the problem becomes exponen-
tially harder, even a perfect parallel scaling of random optimization could only increase
the number of samples linearly (i.e., number of samples per process× number of parallel
processes) and will therefore not be able to close the gap.
Overview and synthesis of optimization strategies

In this section, we provide a concise overview of optimization strategies proposed in the
hyperparameter optimization literature (Yang and Shami, 2020) and neural architecture
search literature (Elsken et al., 2019). We categorize these methods based on the level
of “information” they utilize from the learning workflow, specifically from the learner or
predictor.

The first category of methods, termed “derivative-free” optimization (Larson et al.,
2019), treats Problem 2.4 as pure black-box problems. In this scenario, the only available
information comprises input-output pairs, where the input represents a hyperparameter
configuration θ, and the output corresponds to ametric associated with the empirical risk
(Definition 2.2). This class of methods proves highly practical, as it does not necessitate
the examination or alteration of the internal workings of the learning workflow. Addition-
ally, it readily lends itself to optimizing hyperparameters concerning data preprocessing,
learning strategies, or neural architecture. Popular methods falling within this category
include grid search (a.k.a., factorial experimental design), random search (a.k.a., random
design), evolutionary algorithms (e.g., genetic algorithms and swarmoptimization), Covari-
ance Matrix Adaptation, Bayesian optimization, Powell’s methods, Nelder-Mead method,
Simulated annealing, and Stochastic optimization.

The second class of methods involves derivatives of orders greater than 0 (i.e., first-
order, second-order, etc.). In this scenario, more information can be gleaned from the
function f . For first-order methods, such as gradient-based optimization, the gradient of
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f with respect to the input configuration θ can be utilized. For second-order methods, the
Hessian can be employed. In the realm of neural architecture search (NAS), optimization
methods frequently leverage such information in a category of algorithms termed “dif-
ferentiable architecture search” (DARTS), as introduced by (Liu et al., 2019b). This involves
relaxing the optimization problem, making a non-differentiable discrete problem differ-
entiable by mapping it to a problem that operates on continuous support. However, it is
important to note that these methods generally incur a substantial memory cost and are
often prone to instability (Li et al.; Zela et al.; Chu et al., 2021).
Overview and synthesis of performance estimation strategies

Having outlined optimization strategies capable of exploring the search space of learning
workflows, we will now offer an overview of methods determining how a hyperparameter
configuration θ should be evaluated. Evaluation strategies primarily seek to minimize the
time needed to complete the optimization within a reasonable timeframe.

Many evaluation strategies have been proposed in the hyperparameter optimization
and neural architecture search literature. The perfect solution aims to predict the cost of
a given hyperparameter configuration with minimal time investment. Strategies can be
categorized along three axes: (1) parameter sharing, (2) one-shot, and (3)multi-fidelity. In pa-
rameter sharing methods (Pham et al., 2018; Chu et al., 2021), particularly relevant to deep
learningworkflows, the concept involves reusingweights froma shared set to initialize the
learning of each new candidate. One-shot methods (Guo et al., 2020; Elsken et al., 2019)
seek to estimate the ranking of candidates without undertaking a full training procedure,
which typically consumes a significant portion of the budget. Finally, multi-fidelity meth-
ods often employ a discretized concept of training budget (e.g., training iterations). They
dynamically allocate the training budget based on observed intermediate costs (Domhan
et al., 2015; Li et al., 2017; Jamieson and Talwalkar, 2016), or do so statically (Égelé et al.,
2023b). Generally, multi-fidelity methods are less intrusive and thus necessitate fewer
adjustments to the inner logic of the learning workflow.

2.2.4 . More details on sequential Bayesian optimization
In this section, we providemore details about sequential Bayesian optimization, which

serves as the fundamental algorithm underpinning our research. We chose Bayesian op-
timization as it is known to be efficient for the optimization of expensive black-box func-
tions.

First, we introduce a generic template of a sequential Bayesian optimization algorithm.
Subsequently, we examine three key components of this method: (1) the acquisition func-
tion (Section 13), (2) the resolution of the sub-problem aimed atminimizing the acquisition
function (Section 13), and (3) the surrogate models (Section 13).

The sequential Bayesian optimization algorithm, also known as Efficient Global Opti-
mization (EGO), was originally introduced by Jones et al. (1998). The core concept of EGO
is to employ surrogate models fitted on a subset of evaluations from the actual cost or
constraint functions, aiming to reduce the overall number of direct function evaluations,
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which may be infeasible in certain cases (e.g., due to unmanageable cumulative time).
In Algorithm 1, we present a generic template of this methodology. After initializing the
surrogate model (line 2), the algorithm enters the optimization loop (lines 3-12). At each
iteration, a hyperparameter configuration θ is selected (lines 4-9). This selection can be
achieved through randomized sampling (line 5), typically to gather initial samples, or via
the updated surrogate model (lines 7-8). Subsequently, the hyperparameter configura-
tion is evaluated on the actual function f (line 9). Upon completion of the evaluation,
the suggested optimal hyperparameters are updated (line 10), for instance, by identifying
the hyperparameters with the minimal observed cost if f is a deterministic function. This
process iterates until certain stopping criteria are met, such as reaching the maximum
number of evaluations, maximum time limit, or cost stagnation.

It is crucial to highlight that Algorithm 1 exclusively provides suggested optimal hyper-
parameters thetaStar and does not yield a trained predictor. In real-world scenarios, it is
feasible to checkpoint trained predictors throughout the optimization process or conduct
the training once optimization concludes, utilizing the suggested hyperparameters.
Algorithm 1: Bayesian Optimization (a.k.a., Efficient Global Optimization (EGO))
Inputs : thetaSpace: a configuration space

nInitial: the number of initial hyperparameter configurations
f: a function that returns the cost of the learning workflow

Output: thetaStar the recommended hyperparameter configuration.
1 thetaArray, costArray← New empty arrays of hyperparameter configurations and costs ;
2 model← New surrogate model ;
3 while stopping criteria not valid do
4 if Length of thetaArray< nInitial then
5 theta← Sample hyperparameter configuration from thetaSpace ;
6 else
7 Update model with thetaArray, costArray ;
8 theta← Returns theta in thetaSpace that minimizes the acquisition function for current model ;
9 end
10 cost← Returns the cost of learning workflow f(theta) ;
11 thetaArray, costArray← Concatenate thetaArray with [theta] and costArray with [cost];
12 thetaStar← Update recommendation ;
13 end

Review of acquisition functions

In Bayesian optimization, as depicted in Algorithm 1, we utilize an acquisition function to
assign a scalar score to candidate configurations, enabling their ranking and selection
for suggestion. Formally, an acquisition function takes the form a (θ) = s ∈ R, typically
based on the most recent updated model. Much of the Bayesian optimization literature
operates under the assumption that the optimization process follows a Gaussian process
(GP) framework, wherein f(θ) ∼ N (µ(θ), σ2(θ)). Acquisition functions under this GP as-
sumption fall into three main categories: (1) optimistic, (2) improvement-based, and (3)
information-based. In the following, we outline the key steps for deriving some of the
most commonly used acquisition functions, while omitting most of the technical details.
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First, from the class of optimistic acquisition functions, the lower confidence-bound
(LCB) (Cox and John, 1992) is given by:

aLCB (θ;κ) := µ(θ)− κ · σ(θ) (2.1)
where κ is a parameter controlling the exploitation/exploration trade-off. The larger is
κ the more is the exploration as we focus on configurations θ with uncertain outcomes.
Also, κ = 1.96 corresponds to a 95% confidence interval in the predicted score. The LCB
can be interpreted as “optimistic” as it considers the best possible estimated outcome.

Then, for the class of improvement-based acquisition functions, we need to start by
defining a notion of improvement as:

I(θ; ξ) : = max(f(θ⊛)− f(θ)− ξ, 0) (2.2)
= max(f(θ⊛)− µ(θ)− z · σ(θ)− ξ, 0) with z ∼ N (0, 1) (2.3)

where f(θ⊛) is the usually the best-observed score or current “recommendation”. There-
fore, Equation 2.2 quantifies the improvement of configuration θ concerning the current
best score. The ξ parameters help to tune the magnitude improvements of interest. In
Equation 2.3 the GP assumption is used to apply the “reparametrization trick” on f(θ).

From the definition of improvement we can now present the probability of improve-
ment (PI) (Kushner, 1964) as:

aPI (θ; ξ) : = P (0 < I(θ; ξ))

= P
(
f(θ) < f(θ⊛)− ξ

)
= F

(
f(θ⊛)− ξ

)
= Φ

(
f(θ⊛)− µ(θ)− ξ

σ(θ)

)
where F (.) is the cumulative distribution function of f(θ), and Φ (.) is the cumulative dis-
tribution function of the standard normal distribution (i.e., mean zero and variance one).

Another improvement-based acquisition function is the expected improvement (EI) (Jones
et al., 1998) which is more robust to noise than PI and is given by:

aEI (θ; ξ) := E [I(θ; ξ)] =

∫
max(f(θ⊛)− µ(θ)− z · σ(θ)− ξ, 0) · φ (z) dz

=
(
f(θ⊛)− µ(θ)− ξ

)
Φ

(
f(θ⊛)− µ(θ)− ξ

σ(θ)

)
+ σ(θ)φ

(
f(θ⊛)− µ(θ)− ξ

σ(θ)

)
=

(
f(θ⊛)− µ(θ)− ξ

)
aPI (θ; ξ) + σ(θ)φ

(
f(θ⊛)− µ(θ)− ξ

σ(θ)

)
where φ (.) is the distribution function of the standard normal distribution.

Finally, the class of information-based acquisition functions, generally based on mu-
tual information such as in entropy search (ES)(Hennig and Schuler, 2012) and predictive
entropy search (PES)(Hernández-Lobato et al., 2014). The mutual-information acquisition
function is given by:

aMI (θ) := I ({θ, f(θ)}; θ∗|Dt)
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where I (.; .) evaluates the mutual information between {θ, f(θ)} and θ∗ given a setDt =

{(θ1, f(θ1)), . . . , (θt, f(θt))} of t observations. However, such acquisition function is oftenhard to estimate due to untractable integral functions and therefore resorting to Monte-
Carlo estimation. A more tractable quantity is given by themax-value entropy search (MES)
(Wang and Jegelka, 2017):

αMES(θ) := I ({θ, f(θ)}; f(θ∗)|Dt)

where the mutual information is taken for the observed outcome instead.
Solving the sub-problem of minimizing the acquisition function

Another essential aspect of Bayesian optimization, as outlined in Algorithm 1, revolves
around addressing the minimization problem of the acquisition function (line 8). This
sub-problem’s resolution presents a significant challenge and cannot be easily resolved.
Various solvers may be employed for this task, depending on the surrogate model and
acquisition function utilized, such as gradient-based methods, genetic algorithms, or ran-
dom sampling. The complexity arises from the surrogate models’ aim to closely approx-
imate the target cost function, which entails capturing the optimization-related intrica-
cies of this function, such as its non-convexity. Furthermore, depending on the surrogate
model or acquisition function employed, derivability properties, and thus the existence
of a gradient function, may or may not be present (e.g., Random Forests). Moreover, strik-
ing a balance between the solution quality of the sub-problem and computational cost
necessitates careful consideration. This minimization process can significantly increase
the computational burden of the Bayesian optimization procedure, potentially rendering
it less effective by diminishing the computational gap between the real function and the
approximated sub-problem resolution.
Review of surrogate models

The final crucial component of Bayesian optimization, as depicted in Algorithm 1, is the
surrogate model. As discussed in Section 13 regarding acquisition functions, the Bayesian
optimization (BO) algorithm ranks candidate configurations by combining various statis-
tics from the distribution P (f(θ)). Consequently, a surrogate model is necessary to esti-
mate such quantities. Additionally, it is worth noting that we have assumed the BO pro-
cess to be a Gaussian process, with the cost distribution P (f(θ)) described as a normal
distribution denoted by its mean µ(θ) and variance σ2(θ). We now introduce two primary
classes of surrogates for BO, both of which are intriguingly non-parametric models.

Gaussian processes models: Gaussian processes (GPs) (Rasmussen and Williams,
2006) are Bayesian models where we assume a prior distribution over possible functions
and then update a posterior distribution based on observations. This class of surrogate
models is often employed to impose regularity assumptions, such as smoothness, sta-
tionarity, and characteristic length-scale, on the target unknown function. Regularity is
enforced through properties of the covariance function of the Gaussian process, which

21



is computed using a kernel function. Therefore, selecting the appropriate kernel func-
tion is crucial for the success of Gaussian processes. However, this introduces additional
parameters to tune, which goes against the objective of hyperparameter optimization.
It is possible to marginalize the hyperparameters of the Gaussian process to avoid the
need for tuning them. Gaussian processes naturally handle continuous variables, but
special treatment is required to deal with discrete and categorical variables. Additionally,
Gaussian processes exhibit cubic complexity with respect to the number of observations,
rendering them impractical for large-scale parallel optimization settings.

Random Forestsmodels: Surrogate models based on tree ensembles, commonly re-
ferred to as forests, are widely utilized in Bayesian optimization for the hyperparameter
tuning of learning workflows (Hutter et al., 2014b). In this approach, trees are constructed
to minimize the expected squared error, typically achieved through a greedy or random-
ized optimization process that minimizes the estimated variance within the leaves. Such
trees are employed to estimate the conditional expected outcome based on the input
variables. The term "Random Forests" is often used interchangeably in the literature to
describe various types of sets of randomized decision trees. In our study, we adhere to
the terminologies outlined by Geurts et al. (2006) and highlight their respective character-
istics:

• Tree Bagging (TB): an ensemble of bootstraped regression trees, with all features
available at each split and the “best”-split rule (Breiman, 1996; James et al., 2013).

• Random Subspace (RS): an ensemble of regression trees, with√
n randomly sam-

pled features available at each split and the “best”-split.
• Random Forest (RF): an ensemble of bootstraped regression trees, with √

n ran-
domly sampled features available at each split and the “best”-split rule (Breiman,
2001).

• Extremely Randomized Trees (ET): an ensemble of regression trees, with all fea-
tures available at each split and the “random”-split rule (Geurts et al., 2006).

• Mondrian Forest (MF): an ensemble ofMondrian regression trees (Lakshminarayanan,
2016; Lakshminarayanan et al., 2016), with all features available at each split.

we consider tree bagging, random subspace, random forest, and extremely randomized
trees to be part of the class of usual regression trees as they follow the same generic
algorithm but include different sources of randomness. In table 2.1 we provide a synthetic
overview of sources of randomness present in these algorithms.

This clarification is important as depending on themachine learning framework (e.g., Scikit-
Learn) or hyperparameter optimization software (e.g., SMAC3) the implementations cor-
responding to these models can vary (also within the same framework, by switching from
classification to regression). For example, in SMAC3 (and the corresponding PyRFR pack-
age) what is denoted as Random-Forest is closer in spirit to Extremely randomized trees
as it randomly samples the split of each node.
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Bootstrapping Feature Split
Tree Bagging (TB) x
Random Space (RS) x
Random Forest (RF) x x

Extremely Randomized
Trees (ET) x

Mondrian Forest (MF) x x
Table 2.1: Randomness in Regression Ensemble of Trees Models

2.2.5 . Overview of metrics of performance
Having elucidated the core problems and existing methods, this section offers an

overview of metrics utilized for quantitative assessments of learning workflow optimiza-
tion. These metrics commonly feature in theoretical convergence proofs of Bayesian op-
timization (Srinivas et al., 2010; De Freitas et al., 2012; Astete-Morales et al., 2016). Also,
it is interesting to note that at the moment common practices of benchmarking in opti-
mization such as performance profiles (Dolan and Moré, 2002) are not yet employed in
hyperparameter optimization.

The first metric, the regret (a.k.a., instantaneous regret, or uniform rate), considers
the quality of the last observed outcome.
Definition 2.5 (Regret).

r(i) := f(θi)− f(θ∗)

where i ∈ [|1, imax|] denotes the optimization steps with imax ∈ N∗ being the last or maximum
step, f(θ∗) = minθ∈Θ f(θ) is the true global optimum and f(θi) is the last observation at step
i.

The second metric, the simple regret, considers only the quality of the recommended
outcome.
Definition 2.6 (Simple Regret).

r⊛(i) := f(θi
⊛)− f(θ∗)

where i ∈ [|1, imax|] denotes the optimization steps with imax ∈ N∗ being the last or maximum
step, f(θ∗) = minθ∈Θ f(θ) is the true global optimum and θi

⊛ is the recommendation after
observing θi.

The third metric, cumulative regret, considers the quality of the full set of observed
outcomes (i.e., the complete optimization process).
Definition 2.7 (Cumulative Regret).

R(i) :=
∑

i′∈[|1,i|]

r(i′)

where i ∈ [|1, imax|] denotes the optimization steps with imax ∈ N∗ being the last or maximum
step, and r(i) is the regret from Definition 2.5.
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The three metrics introduced in Definitions 2.5, 2.6 and 2.7 mainly correspond to the
performance evaluation of sequential optimization processes such as Algorithm 1. These
metrics assume that (1) all optimization steps (lines 4-9 in Algorithm 1) have uniform du-
ration, and (2) all evaluation steps (line 10 in Algorithm 1) also have uniform duration. In
our case, we often use time-related versions of these metrics that we now introduce. For
simplicity, we use the same notations as the previously introduced metrics. In the case of
discrete regrets, we will use “iterations” or “evaluations” as the name of the absciss in our
graphics. Similarly, in the case of time-related regrets, we will use “time” as the name of
the absciss in our graphics.

The first, the temporal regret, is the time-related version of the regret from Defini-
tion 2.5.
Definition 2.8 (Temporal Regret).

r(t) := f(θt)− f(θ∗)

where t ∈ [0, tmax] denotes the current time of the optimization process with tmax ∈ R+ being
the maximum time, f(θ∗) = minθ∈Θ f(θ) is the true optimum and f(θt) is the last observation
at time t.

The second, the temporal simple regret, is the time-related version of the simple re-
gret from Definition 2.8.
Definition 2.9 (Temporal Simple Regret).

r⊛(t) := f(θt
⊛)− f(θ∗)

where t ∈ [0, tmax] denotes the current time of the optimization process with tmax ∈ R+ being
the maximum time, f(θ∗) = minθ∈Θ f(θ) is the true global optimum and θt

⊛ is the recom-
mendation at time t.

The third, the temporal cumulative regret, is the time-related version of the cumulative
regret from Definition 2.7.
Definition 2.10 (Temporal Cumulative Regret).

R(t) :=

∫ t

0
r(t′)dt′

where t ∈ [0, tmax] denotes the current time of the optimization process with tmax ∈ R+ being
the maximum time, and r(t) is the temporal regret from Definition 2.8.

This continuous version of the cumulative regret allows us to compare optimization
processes producing different numbers of observations (e.g., when using more parallel
workers, or due to the time consumed by optimization steps). While the temporal cumu-
lative regret is a natural time-related version of cumulative regret in practice we use the
following formulation as we have a discrete set of observations:

R(ti) ≈
i∑

i′=0

r(ti′) · (ti′+1 − ti′) (2.4)
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where ti are the observations times in increasing order, t0 = 0 and ti+1 = tmax by con-vention.
Last but not least, none of these metrics (either discrete or continuous) take into con-

sideration the randomness from f . To resolve this issue it is often possible to simply
replace the regret (Definitions 2.5 and 2.8) with the expected regret r̄(t) := E [r(t)] (Astete-
Morales et al., 2016).

2.3 . Opportunities and challenges of high-performance computing

In the preceding sections of this chapter, we introduced learning workflows and tech-
niques for their optimization. We will now delve into the challenges entailed in optimizing
learning workflows on high-performance computing (HPC) systems

2.3.1 . Introduction to high-performance computing
High-performance computing (HPC) systems typically comprise compute nodes, each

containing multiple processing units and memory tiers. Traditionally, these units were
solely CPUs, but it is now common to find a mix of processing units within a single node.
For example, a node may incorporate a combination of CPUs, GPUs, and TPUs. These
processing units, whether within a node or across nodes, can operate in parallel, offering
both inter and intra-node parallelism.

For instance, multiple nodes can be employed concurrently, with each node harness-
ing multiple cores of a single CPU simultaneously. Within each core, parallel operations
such as element-wise sums can be executed. Additionally, each node is furnished with
various types of memory. Determining the optimal utilization of these heterogeneous
resources, including processing units and memory, presents a significant challenge.

The primary HPC system employed in this research is Polaris1, located at the Argonne
Leadership Computing Facility. Each node of the Polaris system features 1 AMD Zen 3
(Milan) CPU with 32 cores, supplemented by 4 NVIDIA A100 GPUs. With a collective count
of 560 nodes, Polaris boasts a total of 17,920 CPU cores and 2,240 GPUs. Additionally, each
node is outfitted with DDR4 memory, a local SSD, and has access to a shared network
filesystem.

2.3.2 . Opportunities of high-performance computing for machine learning
There is a clear and notable correlation between the advancement of machine learn-

ing algorithms (Sevilla et al., 2022) and the increasing capabilities of computation (Sevilla
et al., 2022). This research is conducted in part at ArgonneNational Laboratory, a facility of
the United States Department of Energy (DOE). As part of the Exascale Computing Project2
(ECP), the DOE has initiated the construction of a series of exascale supercomputers, ca-
pable of achieving exaFLOPS computation speeds (1018, or a billion billion calculations per

1Polaris Hardware Overview: https://docs.alcf.anl.gov/polaris/hardware-overview/
machine-overview/ (accessed March 2024)2Exascale Computing Project: https://www.exascaleproject.org/about/ (accessed March2024)

25

https://docs.alcf.anl.gov/polaris/hardware-overview/machine-overview/
https://docs.alcf.anl.gov/polaris/hardware-overview/machine-overview/
https://www.exascaleproject.org/about/


second). Previous systems operated at the petascale level, reaching petaFLOPS computa-
tion capacities. In 2021, the first exascale supercomputer, Frontier3, was unveiled at Oak
Ridge National Laboratory, another DOE facility. Comprising 9,408 AMD compute nodes,
606,208 CPU cores, and 8,335,360 GPU cores, Frontier achieved a peak performance of
1.194 exaFLOPS (measured by Rmax, a specific metric for assessing computing system
capabilities). Shortly following Frontier’s launch, the Aurora4 (at Argonne National Labo-
ratory) and El Capitan5 ( Lawrence Livermore National Laboratory) supercomputers are
set to be introduced. Polaris, the petascale system utilized in our research, serves as a
testbed6 platform to prepare for Aurora. As a result, this research is centered on develop-
ing optimization algorithms for learning workflows, aimed at efficiently leveraging these
computing capabilities.

In our current context, our attention is directed towards optimizing the hyperparame-
ters of a deep neural network. Parallelization within this framework involves two primary
aspects: (1) identifying the optimal method for parallelizing the training of a single deep
neural network, which may entail using one or multiple GPUs or employing one or mul-
tiple nodes, and (2) formulating strategies for parallelizing the assessment of multiple
instances of deep neural network training, each with unique hyperparameter configura-
tions.

2.3.3 . Challenges of optimizing learning workflows at large scale
Several challenges are associatedwith hyperparameter optimization ofmachine learn-

ing on high-performance computing (HPC) systems:
1. Computational Resources: Hyperparameter optimization often requires signifi-
cant computational resources, including time,memory, processing power, and com-
munication bandwidth. HPC systems can provide these resources, but efficiently
managing them to accommodate the computational demands of hyperparameter
optimization can be challenging. These costs justify our choice to build on top of
Bayesian optimization methods that usually have faster convergence.

2. Variability: The use of computational resources of a learning workflow is variable.
It usually partially depends on (1) the hyperparameter configurations and (2) the us-
age of shared computational resources (e.g., filesystem). To illustrate the influence
of the hyperparameter configuration, a deep neural network with fewer neurons
per layer and fewer layers trains faster than a larger one. Such a simple example
may represent the underlying issue as simple but as soon as the number and types
of hyperparameters to configure increases it becomes extremely difficult to predict
the computational cost of each evaluation. For example, imagine configuring the

3Frontier supercomputer: https://www.olcf.ornl.gov/frontier (accessed March 2024)4Aurora supercomputer: https://www.alcf.anl.gov/aurora (accessed March 2024)5El Capitan supercomputer: https://asc.llnl.gov/exascale/el-capitan (accessed March2024)6Argonne’s 44-Petaflops “Polaris” Supercomputer Will Be Testbed for Aurora, Exascale Era (ac-cessed March 2024)
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type of training procedure, the stopping criteria of this training procedure, the size
of each neural network layer, and the activation function of these layers. To illus-
trate the influence of the usage of shared computational resources, imagine thou-
sands of deep neural network trainings loading simultaneously a large dataset from
the filesystem to start their training, and later checkpointing their learned weights
on this filesystem.

3. Parallel Optimization: Parallelizing an optimization process is often difficult as
they often are fundamentally sequential processes. Simple parallelization can of-
ten result in stagnation of the process. For example, this is well-known for the par-
allelization of gradient-based optimization methods. Therefore, a core challenge
will be to develop a parallel Bayesian optimization method that keeps improving
with increased parallelism. Effectively parallelizing this algorithm on HPC systems
requires careful consideration of communication overhead, load balancing, and re-
source utilization to ensure efficient utilization of computing resources (Wozniak
et al., 2018).

4. Algorithm Selection: Choosing the appropriate hyperparameter optimization al-
gorithm for the HPC environment is crucial. Different algorithms have varying com-
putational requirements, convergence properties, and scalability characteristics,
making it essential to select the most suitable algorithm for the specific applica-
tion and computing infrastructure. Our goal will be to propose an algorithm that
can adapt to any parallel scale and still provide the best outcome.

Last but not least, from a practical perspective, HPC systems often have extremely
variable hardware and software architectures across centers. A few examples are the sched-
uler (e.g., PBS, SLURM, COBALT), the CPU architecture (e.g., x86, arm), the GPU architecture
(e.g., NVIDIA, AMD), the interfaces of the network, and the operating system can change.
Therefore, to conduct our experiments and make our research reproducible we will have
to develop parallel optimization methods that can generalize (easily) across such differ-
ences.

2.4 . Conclusion

In this chapter, we introduced the foundational aspects of this thesis, which encom-
passes learningworkflows, their optimization, and thebenefits of leveraging high-performance
computing systems. The chapter started by developing the notion of learning workflows,
specifically focusing on the class of supervised learning workflows. This section intro-
duced the structure and learning dynamics of these workflows, emphasizing their config-
urability through their hyperparameters.

Then, we delved into the optimization of learning workflows from the viewpoint of
hyperparameter optimization. We presented hyperparameter optimization as the most
general problem that encompasses algorithm selection and neural architecture search.
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Bayesian optimization was highlighted as a promising approach for hyperparameter op-
timization, given its improved convergence rate that reduces the number of evaluations
required. However, the scalability of Bayesian optimization in parallel computing envi-
ronments remains a significant challenge.

The third part of the chapter was dedicated to dissecting the opportunities and ob-
stacles presented by high-performance computing (HPC) systems in the context of learn-
ing workflow optimization. We discussed how the vast computational resources available
within HPC systems could be leveraged to accelerate the optimization process, albeit with
considerations around computational overhead and resource allocation.

Overall, this chapter sets the stage for the contributions of this thesis which delves
deeper into how these three domains interact and how they can be harnessed to push
the boundaries of current machine learning capabilities.
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3 - AsynchronousdecentralizedBayesianoptimization
for large scale parallelism

As introduced in the previous chapter, sequential Bayesian optimization (BO, Sec-
tion 2.2.4) is a promising approach for hyperparameter optimization of expensive
learning workflows. We now look at deep neural networks (DNNs) learning work-
flows that can take minutes to hours to finish. In sequential BO (Algorithm 1), a
computationally “cheap” surrogate model is employed to learn the relationship
between hyperparameters and performance. The goal of this chapter is to effi-
ciently parallelize suchmethods to speed up the computation. For this, we present
an asynchronous-decentralized BO, wherein each worker runs a sequential BO
and asynchronously communicates its results through shared storage. We scale
our method without loss of computational efficiency with above 95% of worker’s
utilization to 1,920 parallel workers (full production queue of the Polaris super-
computer at the Argonne Leadership Computing Facility, Figure 3.1) and demon-
strate improvement in model accuracy as well as faster convergence on the CAN-
DLE benchmark from the Exascale computing project.
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3.1 . Introduction to parallel hyperparameter optimization

Black-box optimization seeks to optimize a function based solely on input-output in-
formation. This problem is of particular interest in many scientific and engineering appli-
cations and is quite relevant to several machine-learning tasks. In the former case, the op-
timized black box is often the result of a complex simulation code, software, or workflow
wherewe can get only the output for a given input configuration. In the latter, many learn-
ing algorithms are sensitive to hyperparameters, which cannot be inferred during the
training process and often need to be adapted by the user based on the training data (Hut-
ter et al., 2014a). Existing methods for solving black-box optimization can be grouped into
model-based and model-free methods. In the former, a surrogate model for the black-
box function is learned in an online fashion and used to speed up the search (Wild et al.,
2015; Hutter et al., 2011; Bergstra et al., 2011; Hauschild and Pelikan, 2011). In the latter, the
search navigates the search space directly without any explicit model (Olsson and Nel-
son, 1975; Poli et al., 2007; De Boer et al., 2005; Bäck and Schwefel, 1993; Rutenbar, 1989).
These two groups of methods have their strengths and weaknesses. A key advantage of
model-based overmodel-freemethods is the sample efficiency w.r.t. the number of black
box evaluations required by the search. Given the surrogatemodel, the search can quickly
identify promising regions of the search space and find high-quality solutions faster (w.r.t.
search iterations) than model-free methods can (Shahriari et al., 2016).

Bayesian optimization (BO) is a promising class of sequential optimization methods.
It has been used in a wide range of black-box function optimization tasks (Shahriari et al.,
2016; Bischl et al., 2017; Bartz-Beielstein, 2016). In BO, an incrementally updated surrogate
model is used to learn the relationship between the inputs and outputs during the search.
The surrogate model is then used to prune the search space and identify promising re-
gions. BO navigates the search space by achieving a balance between exploration and ex-
ploitation to find high-performing configurations. While the exploration phase samples
input configurations that can potentially improve the accuracy of the surrogate model,
the exploitation phase samples input configurations that are predicted by the model to
be high-performing.

With the transition of high-performance computing (HPC) systems from petascale to
exascale (Heldens et al., 2020), massively parallel Bayesian optimizations that can take
advantage of multiple computing units to perform simultaneous black-box evaluations
are drawing attention to accelerate black-box optimization. These methods will be partic-
ularly beneficial for many HPC use cases, such as simulator calibration, software tuning,
automated search ofmachine learning (ML) pipelines, neural network architecture, hyper-
parameter tuning (studied in this paper), and scientific simulation optimization. However,
one of the main challenges is to transform commonly proposed sequential BO (Bergstra
et al., 2011; Hutter et al., 2011; Bergstra et al., 2013; Klein et al., 2017) algorithms to be parallel
while keeping a similar sample efficiency.

Themost sample-efficient heuristic for parallel BOmethods is amultipoint acquisition
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strategy under a centralized architecture, where the manager performs BO and workers
evaluate the black-box functions. Also, these methods often use a Gaussian process re-
gression (GPR) as a surrogate model (Shahriari et al., 2016; Frazier, 2018). However, these
two components respectively the centralized architecture and the GPR are twomajor bot-
tlenecks for scaling BO in an HPC setting.

The problem we seek to solve is to improve both solution quality and the speed
of hyperparameter optimization (HPO), by optimizing resource utilization of a large
number of parallel computing workers. To that end, we develop a parallel BO method
based on a decentralized architecture (without a single manager). Each worker runs its
own sequential BO and communicates asynchronously its hyperparameter evaluation
results with other workers through a shared storage system. Additionally, each worker
performs asynchronous hyperparameter suggestion for the next evaluation. Fig-
ure 3.1 shows the comparison between the centralized and our proposed approach for
neural network hyperparameter tuning from the ECP Candle benchmark. Despite each
evaluation taking several minutes, the centralized scheme suffers from poor utilization at
scale. Our proposed decentralized method overcomes the limitation of a single-manager
scheme and achieves high resource utilization. In Section 3.4, we will show that the higher
utilization results in superior solution quality as well.

From the methodology perspective, our original contribution is to combine key algo-
rithmic ingredients (decentralized, asynchronous surrogate model queries, qLCB acquisi-
tion function, periodic exponential decay) which benefit from increasing the number of
workers to improve the final solution as well as reduce the time to this solution.

From the software perspective, our original contribution is first to provide an abstract
interface to submit and gather black-box evaluations in combination with a shared stor-

Figure 3.1: Utilization of computational resources between centralized (red) and decen-tralized (blue) Bayesian optimization equipped with Successive Halving (SHA) when using1,920 workers (GPUs) (full Polaris HPC-system at the Argonne Leadership Computing Fa-cility) to train neural networks configurations in parallel. The widely used single managermultiple worker utilization approach suffers from poor utilization. Our proposed decen-tralized approach maintains high utilization.
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age service. Our job scheduler can leverage different backends for distributed computing
(e.g., threads, processes, MPI, Ray), similarly, our storage service can leverage different
data services (e.g., local memory, Redis, Ray Actors). We believe that this extensible archi-
tecture can open new research for HPC services tailored for large-scale hyperparameter
optimization. Second, we provide a wrapper to launch seamlessly the method we pro-
pose with the Message Passing Interface (MPI) which could be valuable to run large-scale
BO campaigns on many modern HPC systems.

Our principal findings support the advantage of using asynchronous decentralized
BO:

1. Stable resource utilization when increasing the number of workers.
2. Faster convergence and better solution over the usual single manager and mul-

tiple workers when increasing the number of workers.
3. Benefit fromearly discarding strategies to speed up the procedure at a fixed com-

putational scale without loss of computational performance.
4. Parallel Bayesian Optimization at HPC scale involving 1,920 workers (one NVIDIA

A100 GPU per worker).

3.2 . Overview of parallel Bayesian optimization

Bayesian optimization is a well-established method to solve the global optimization
problem of expensive and noisy black-box functions (Mockus et al., 1978). For a detailed
overview see (Shahriari et al., 2016). In this chapter, we seek to solve the problem of hy-
perparameter optimization of a randomized learner (Problem 2.4). We do this from a
black-box optimization perspective given by the following problem:

θ∗ = argmin
θ∈Θ

f(θ) (3.1)
where θ ∈ Θ is a hyperparameter vector, and f(θ) ∈ R is a function that evaluates the
learner for hyperparameters θ and returns a scalar value corresponding to the perfor-
mance of the output predictor from this learner on a supervised learning task (Prob-
lem 2.2). We recall thatΘ is a space of mixed variables (Section 2.1). Typically, the feasible
hyperparameter set is defined by a set of constraints on θ or f(θ). This includes bound
constraints that specify the minimum and maximum values for the parameters and lin-
ear and non-linear constraints that express the feasibility of the given hyperparameters
through algebraic constraints. On the other hand, hidden constraints are unknown or
hard to express and generally require an evaluation of the black-box function f to be
uncovered. For example, it is hard to guess which hyperparameter configurations can
result in an “out of memory” GPU error. The objective function f(θ) can be deterministic
(the same values f(θ) for the same θ) or stochastic (different f(θ) values for the same θ).
Generally, finding and prooving the true global optimal solution of Problem 2.4 is not pos-
sible (Larson et al., 2019; Bartz-Beielstein, 2016; Bischl et al., 2017), except for the simplest
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cases. The presence of integer and categorical parameters, algebraic and hidden con-
straints, results in a highly irregular optimization landscape that makes the optimization
process difficult. Several mathematical optimization algorithms take advantage of gradi-
ents that measure the change in the value of the objective function w.r.t. the change in
the values of the parameters. This is not feasible in our setting as the black-box function
cannot be differentiated.

3.2.1 . Review of surrogate models
BO uses a surrogate model assumed to be computationally cheaper than the black

box to suggest the next points to evaluate. The choice of a good surrogate model plays a
crucial role in the scalability and effectiveness of the BO searchmethod. Inmost BOmeth-
ods, a Gaussian process regression (GPR) is employed because of its sound uncertainty
quantification capability (Shahriari et al., 2016; Frazier, 2018). Specifically, GPR implicitly
adopts Bayesian modeling principles of estimating the posterior distribution of output
from the given input-output pairs and provides the predictive mean and variance for the
unevaluated input configurations. GPR also has the advantage of being differentiable.
However, while GPR is superior for faster convergence when run sequentially on continu-
ous optimization problems it remains one of the key bottlenecks for computational scala-
bility in an HPC setting where thousands of input-output pairs (samples) can be computed
in one “batch”. The GPR model needs to be refitted with a rapidly growing set of samples
(past and new), but it has a cubic complexityO(n3sample) (Liu et al., 2019a) w.r.t. the number
of samples nsample. For a small nsample, this is not an issue. At scale, however, the cubic
time complexity formodel fittingwill slow or even stop the search’s ability to generate new
input configurations, thus increasing the idle time of the workers and eventually resulting
in poor HPC resource utilization as well as fewer overall evaluations. For example, the
popular Optuna (Akiba et al., 2019b; Optuna developers, 2018) hyperparameter optimiza-
tion software advises to use BoTorch (Balandat et al., 2020) (a efficient implementation of
BO based on GPR) for a range of 10 to 100 evaluations. Our largest parallel experimental
setting, 1,920 parallel workers, corresponds to about x20more evaluations in just one par-
allel iteration, therefore, making the use of a GPR surrogate impossible. Other surrogate
models were proposed in the HPO literature such as deep neural networks (Snoek et al.,
2015), Tree-Parzen estimation (TPE) (Bergstra et al., 2011), and random-forests regression
(RFR) (Breiman, 2001; Geurts et al., 2006; Hutter et al., 2014b). We adopt RFR for its wide
adoption thanks to its versatility with real, discrete, and categorical features as well as its
robustness. RFR has a fitting time complexity of O(ntree · nfeature · nsample · log(nsample))with ntree number of trees in the ensemble and nfeature number of features (= d, prob-
lem dimension) per sample, which is constant for each search setting. In addition to the
log-linear time complexity, RFR provides simple and easy in-node parallelization oppor-
tunities, where each tree can be built independently of other trees in the ensemble. It is
also important to note that RFR is not sensitive to the re-scaling of the input space (fea-
tures) but is particularly sensitive to the re-scaling of the target space. We apply a log(.)

transformation on the normalized (between [ϵ, 1] up to a sign depending on maximiza-
tion/minimization) target space to improve the convergence of the BO to quantities of
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interest.
3.2.2 . Review of multipoint acquisition strategies

How the input point θ is selected for evaluation is another bottleneck for scaling the
number of workers. The selection method comprises an acquisition function (Section 13)
that measures how good a point is and a solver that seeks to optimize the acquisition
function over θ (Section 13). Typically, when all the parameters are continuous (or if they
afford such encoding/transformation), gradient-based optimizers are employed to select
the next point. However, due to RFR not being differentiable such optimizers cannot be
employed. While derivative-free (Section 2.2.3) solvers for these types of problems do
exist, they are computationally expensive and cannot be employed in the fast iterative
context required for scaling. Therefore, we use a point selection scheme with the lower
confidence bound (LCB) (Shahriari et al., 2016) acquisition function on top of a random
sampling from Θ. This scheme selects an input point θ for evaluation as follows. A large
number of unevaluated configurations are sampled from the feasible hyperparameter
space. The BO uses a dynamically updated surrogate model m to predict a point esti-
mate (mean value) µ(θ) and variance σ(θ)2 for each sampled configuration θ. The best
sampled configurations has the smallest LCB score given by

aLCB (θ;κ) := µ(θ)− κ · σ(θ) (3.2)
where κ ≥ 0 is a parameter that controls the trade-off between exploration and exploita-
tion. When κ is set to zero, the search performs only exploitation (greedy); when κ is set to
a large value, the search performs stronger exploration. A balance between exploration
and exploitation is achieved when κ is set to an appropriate value, classically κ = 1.96,
which translates into a 95% confidence interval around themean estimate when comput-
ing LCB.

In parallel BO, there are mainly two ways for querying q > 1 new suggestions in par-
allel. On the one hand, the centralized method tries to resolve a multipoint optimization
problem such as the qEI criteria (Ginsbourger et al., 2010b; Shahriari et al., 2016). In this
case, a manager runs the BO and generates configurations (González et al., 2016; Snoek
et al., 2012), and theworkers evaluate the configurations and return the results to theman-
ager. The manager generates configurations in a batch synchronous or asynchronous
way (Alvi et al., 2019). But, to generate these batches the multipoint optimization problem
has to be solved and it becomes harder and more computationally expansive when q in-
creases. Therefore, heuristics such as the constant-liar (CL) strategy (Ginsbourger et al.,
2010b; Balaprakash et al., 2018b) have been used to approximate this criterion. Still, the CL
scheme has a linear temporal complexity w.r.t. the number of workers that blocks from
scaling when increasing the number of parallel workers. That is, for q new suggestions
the surrogate model needs to be updated q times sequentially. In addition, when a con-
figuration finishes (at any time) the previous batch can still be processed and therefore
results in congestion in the manager’s queue. In contrast to the centralized architectures,
decentralized BO was recently introduced based on stochastic policies such as Thomp-
son sampling and Boltzmann policy (Hernández-Lobato et al., 2017; Garcia-Barcos and
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(a) Decentralized (b) Centralized
Figure 3.2: Decentralized (3.2a) and centralized (3.2b) search models with a shared stor-age. A circle represents a process with W for a worker and M for a manager, an arrowrepresents a communication, O represents the optimizer, and f represents the compu-tation of the black-box function. twait is the time for which a worker waits before beingprocessed by the optimizer. tresp is the time taken by the optimizer to suggest a new con-figuration.
Martinez-Cantin, 2019). Stochastic policies allow bypassing communication in the decen-
tralized architecture, which enables asynchronous iterations. However, the asynchronous
case was not studied in these works.

3.3 . Anasynchronousanddecentralizedmethod to scale parallel Bayesian
optimization

In this section, we introduce our novel approach to BO in the context of HPC exploiting
a decentralized architecture with asynchronous communication. Multiple compute units
can be used on an HPC platform, where each function evaluation requires a fraction of
this platform. Let nworker be the number of available workers, where a worker represents
a unit of computational resource available to evaluate the black-box function (e.g., CPU,
GPU, a fraction of a compute node, whole node, or a group of nodes). Let Twall be thetotal wall-clock time for which these resources are available (i.e., job duration). Then the
overall available compute time Tavail = nworker ·Twall upper bounds the total time spent in
black-box function evaluations Teff =

∑
teff∈T teff used to perform the job, where T is the

set of duration teff for all evaluated black-box functions. We define “effective utilization”
as Ueff = Teff/Tavail. For the problem of “parallel black-box optimization”, we seek to
maximize the objective function f , as well as maximize the effective utilization Ueff. We
maximize utilization by minimizing the computational overhead of the search algorithm
and assume that the quality of the optimization will be a byproduct of better utilization. In
other words, in addition to the objective function maximization, the optimization method

35



should effectively use parallel resources by maximizing their usage mainly with black-box
evaluations.

BO is a promising approach for tackling the class of black-box optimization problems
described in Section 3.2. BO tries to leverage accumulated knowledge of f throughout
the search by modeling it as a probability distribution P (C|Θ), which represents the re-
lationship between θ, the input, and c, the output cost. Typically, BO methods rely on
dynamically updating a surrogate model that estimates p (c|θ). Often, this distribution
is assumed to follow a normal distribution (Section 13). Therefore, the surrogate model
estimates both µ(θ) themean estimate of c and σ(θ)2 the variance. The latter is leveraged
to assess (1) the distribution variance of P (C|Θ) (i.e., the noise of the black box function)
and (2) how uncertain the surrogate model is in predicting µ(θ) (Shahriari et al., 2016). The
surrogate model is cheap for prediction and can be used to prune the search space and
identify promising regions, where the surrogate model is then iteratively refined by se-
lecting new inputs that are suggested by the model to be high-performing (exploitation)
or that can potentially improve the quality of the surrogate model (exploration). BO nav-
igates the search space by achieving a balance between exploration and exploitation to
find high-performing input configurations.

3.3.1 . Asynchronous decentralized Bayesian optimization
Figure 3.2a shows a high-level sketch of our proposed asynchronous decentralized

Bayesian optimization (ADBO)method. The key feature of ourmethod is that eachworker
executes a sequential BO search (recall Algorithm 1); performs only one black-box evalu-
ation that avoids congestion occurring in a centralized setting (see Figure 3.2b); and com-
municates the results with all other workers in an asynchronous manner through shared
storage. The BO of each worker differs from that of the other workers w.r.t. the value
κ0 used in the LCB acquisition function. Each BO starts by sampling the value κ0 froman exponential distribution exp( 1κ), where κ is the user-defined parameter. The BO that
takes smaller κ0 values will perform exploitation and sample points near the best found
so far in observations. On the other hand, the BO that receives large κ0 values will per-form exploration to reduce the predictive uncertainty of the RFRmodel. Consequently, on
average multiple BO searches will seek to achieve a good trade-off between exploration
and exploitation; however, there will be several BO searches that perform stronger ex-
ploitation or exploration. This effect will increase as we scale to a large number of work-
ers and can benefit the overall search. Our approach is inspired by the qLCB acquisition
function (Jones, 2001; Hutter et al., 2012) where different κ values are sampled from the
exponential distribution for the LCB acquisition function and different points are selected
based on these values to find the balance between exploration and exploitation. Themain
reason for adopting qLCB is computational simplicity. Compared to other multipoint gen-
eration strategies, such as the constant liar (Ginsbourger et al., 2010b) (denoted by CL)
that exist mainly in the centralized (single-manager/multiple-worker) methods and has
an overhead increasing linearly with the number of workers, there is only an overhead
constant in the number of workers when using qLCB.

Algorithm2 shows the high-level pseudocodeof our proposedADBOmethod. As it can
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be seen it is a direct decentralized parallel extension of the sequential BO (Algorithm 1).
Each worker runs a sequential BO and communicates their observations with each other.
The search proceeds by initializing the surrogate model (line 2) and the initial κ0 with a
random sample from an exponential distribution with mean parameter 1/κ (line 3).

Then, we enter the sequential optimization loop (line 5). At the beginning of each loop,
the current κt is updated following the exponential decay schedule (line 6). The selectionof the next hyperparameter is done based on κt (lines 8-15) and it is evaluated accordingly.To handle failed evaluations, such as tested hyperparameter configurations that returned
a memory error, we replace the missing objective values with the maximum observed
cost (line 11). Completed evaluations are exchanged between workers (lines 18-19). In our
case, we implemented this communication through a fast in-memory database service
represented in purple in Figure 3.2a. Local data and remote data are concatenated (lines
21-22). The recommended hyperparameters are updated (line 23). Finally, we increment
the local iteration counter (line 24).
Algorithm 2: Asynchronous Decentralized Bayesian Optimization (Worker Pro-cess)
Inputs : thetaSpace: a configuration space,

nInitial: the number of initial hyperparameter configurations,
f: a function that returns the cost of the learning workflow,
κ: the parameter of qLCB,
T : the period of the exponential decay,
λ: the decay rate of the exponential decay

Output: thetaStar the recommended hyperparameter configuration.
1 thetaArray, costArray← New empty arrays of hyperparameter configurations and costs ;
2 model← New RFR surrogate model ;
3 κ0 ← Sample from exponential distribution with parameter 1/κ ;
4 t← 0 ;
5 while compute time is not exhausted do

/* Apply exponential decay */
6 κt ← κ0 · exp(−λ · ((t− nInitial) mod T )) ;
7
8 if Length of thetaArray< nInitial then
9 theta← Sample hyperparameter configuration from thetaSpace ;

10 else
11 costArrayAux← Returns new array where failures in costArray are replaced withmax(costArray);
12 Update model with thetaArray, costArrayAux ;
13 theta← Returns theta in thetaSpace that minimizes aLCB (θ;κt) for current model throughrandom sampling ;
14 end
15 cost← Returns the cost of learning workflow f(theta) ;
16

/* Exchange observations */
17 thetaArrayNew, costArrayNew← Collects new observations from other workers ;
18 Share new observation theta, cost with other workers ;
19
20 thetaArray, costArray← Concatenate thetaArray with thetaArrayNew and costArray with

costArrayNew;
21 thetaArray, costArray← Concatenate thetaArray with [theta] and costArray with [cost];
22 thetaStar← Update recommendation ;
23 t← t+ 1 ;
24 end
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3.3.2 . Extremely randomized trees surrogate model
Although RFR provides computational advantages, its uncertainty quantification ca-

pabilities are not well-known or documented in the literature. The most widely used RFR
implementation is from the Scikit-Learn package (Pedregosa et al., 2011). Our analysis of
uncertainty quantification with the default implementation of this package showed that
the predictive variance is not as good as that of GPR (Figure 3.3a). The primary reason
was the best-split strategy adopted in the usual random forest algorithm to minimize the
variance of the estimator. Although this results in better predictive accuracy, the predic-
tive variance is not informative in the context of Bayesian optimization because it remains
constant in unexplored areas. We tested the random-split strategy for tree splitting, as
suggested in (Hutter et al., 2014b), and found that the uncertainty estimates are improved
and are comparable to those with GPR in the interpolation area while remaining constant
in extrapolation areas (Figure 3.3b). It is good to note that doing so makes the Random-
Forest close to the Extremely Randomized Trees model (Section 3.2.1) also available in
Scikit-Learn. We believe that this confusion between Random-Forest (with best-split from
Breiman (2001)) and Extremely randomized forest (with random-split from Geurts et al.
(2006)) might be one of the reasons that Random-Forests (RFR, general class of models
using ensemble of randomized trees), despite their computational advantages, were not
thoroughly experimented with for uncertainty quantification. The uncertainty of the RFR
is computed by applying the law of total variance (Theorem 3.1).
Theorem 3.1 (Law of Total Variance). IfX and Y are random variables on the same proba-
bility space, and the variance of Y is finite then:

V [Y ] = EX [VY [Y |X]]︸ ︷︷ ︸
aleatoric

+VX [EY [Y |X]]︸ ︷︷ ︸
epistemic

where the left term (aleatoric) is the “unexplained”-variance and the right term (epistemic) is
the “explained”-variance.

The conditional mean EC [C|Θ = θ, tree] and variance VC [C|Θ = θ, tree] of the cost
C given hyperparameters θ are estimated through each tree and respectively denoted as
µtree(θ) and σtree(θ)2. Therefore we have:

σ(θ)2 = Etree
[
σtree(θ)2

]
+ Vtree [µtree(θ)] (3.3)

whereEtree [.] andVtree [.] are respectively the empiricalmean and variance. We denote by
tree the set of random effects that impact the construction of each tree (e.g., bootstrap-
ping, random-split, random feature selection). In Figure 3.3, we represented in purple σ2epthe epitemic uncertainty and in orange σ2al the aleatoric uncertainty. Later in Chapter 6,
we will expand on these two types of uncertainties and show how they can be used at
the level of the learning workflow instead of the optimization level such as done in the
current chapter.
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(a) Random Forest (b) Extremely Randomized Trees
Figure 3.3: Comparing uncertainty quantification of Random Forests.

We also compared the speed of RFRwith improved uncertainty (based on Scikit-Learn)
against the Python package pyrfr1 used by (Hutter et al., 2014b). We observed that our
implementation is orders of magnitude faster. For a test case with a single continuous in-
put variable and a single continuous output target with 10,000 samples (2/3 training and
1/3 test), ours takes 0.12 seconds while the pyrfr implementation takes 24 seconds. The
implementation based on Scikit-Learn can also benefit from multi-processing. Our new
implementation of RFR with its improved uncertainty estimate module is made available
as part of DeepHyper (Balaprakash et al., 2018a), open-source software for AutoML re-
search on HPC.

3.3.3 . Preventing stagnation with periodic exponential decay

Figure 3.4: Illustration of the distribution of periodic exponential decay.
We propose a heuristic to dynamically manage the trade-off between exploration and

exploitation of the qLCB in ADBO. For this, we rely on the idea of exponential decay for
1https://github.com/automl/random_forest_run
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the κ parameter of the qLCB acquisition function, given by:
κλ,T (t;κ0) = κ0 · exp(−λ · (t mod T ) (3.4)

where κ0 is the initial exploration-exploitation trade-off, t is the number of local evalua-
tions performed in the process, T is the period of the scheduler and λ is the decay rate
of the scheduler. From this definition, in the case of ADBO, the κ0 is a random variable
sampled from an exponential distribution exp(1/κ) where κ is the mean of the distri-
bution. Therefore we have the following average behavior for κ across processes in the
synchronized case:

Eκ0∼Exp(1/κ) [κλ,T (t;κ0)] = κ · exp(−λ · (t mod T )) (3.5)
We provide an illustration of the distribution of κλ,T (t;κ0) with respect to t in Figure 3.4.

With such a scheduler, the different processes are periodically converging to the “ex-
ploitation” regime (small κt values) while the original “exploration” is regularly recovered.This heuristic avoids “over-exploring” (i.e., behavior similar to random search) when the
number of parallel workers is increased.

3.3.4 . Early discarding with asynchronous successive halving
We propose to combine our Bayesian Optimizer with an early discarding strategy.

Early discarding strategies are methods used to discard early a hyperparameter config-
uration if it is not likely to improve over the best objective observed so far. In this work,
we use the asynchronous successive halving (SHA) algorithm (Li et al., 2020). The SHA al-
gorithm compares the performance of a new configuration with past evaluations. This
comparison is done at different "rounds" allocated according to a geometric progression
(based on training epochs such as 1, 3, 9, 27...). An algorithm is stopped if it is not among
the top-1ρ × 100% at the current round where ρ is called the reduction factor. Later, in
Chapter 5, we instigate more about early discarding strategies.

3.4 . Experimental results

We conduct an empirical study to demonstrate the benefits of using a decentralized
architecture. First, we analyze the effectiveness of the two approaches by looking at the
number of idle resources as well as the number of completed neural network training for
a fixed computational budget (i.e., number of workers and time of execution). Second, we
analyze the gain in the final objective and the speed of the HPO.

Platform and main libraries – All the experiments are performed on the Combo
benchmark from the Exascale-Computing Project. They are conducted on the Polaris
supercomputer at the Argonne Leadership Computing Facility (ALCF). Polaris is an HPE
Apollo Gen10+ platform that comprises 560 nodes, each equipped with a 32-core AMD
EPYC "Milan" processor, 4 Nvidia A100 GPUs, and 512 GB of DDR4 memory. The compute
nodes are interconnected by a Slingshot network. In our experiments, each worker is at-
tributed 1 GPU. The algorithm is implemented in Python 3.8.13 where the main packages
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used are deephyper 0.5.0, mpi4py 3.1.3, scikit-learn 1.1.2, Redis 7.0.5. Neural networks are
implemented in Tensorflow 2.10. The number of workers is increased from 40 (10 nodes),
160 (40 nodes), 640 (160 nodes) to 1920 (480 nodes – the full system in the production
queue).

Benchmark – The Combo benchmark dataset (Xia et al., 2018) is composed of 165668
training data points (60%), 55,222 (20%) validation data points and 55,222 (20%) test data
points respectively. Eachdata point has three types of input features: 942 (RNA-Sequence),
3,839 (drug-1 descriptors), and 3,893 (drug-2 descriptors) respectively. The data set size is
about 4.2 GB. It is a regression problem to predict the growth percentage of cancer cells
given cell line molecular features and the descriptors of two drugs. The networks are
trained for a maximum budget of 50 epochs and 30 minutes. The negative validation R2

coefficient at the last trained epoch is used as the objective for hyperparameter search.
The baselinemodel is composed of 3 inputs each processed by a sub-network of three

fully connected layers. Then, the outputs of these sub-models are concatenated and in-
put in another sub-network of 3 layers before the final output. All the fully connected
layers have 1000 neurons and ReLU activation. It reaches a validation and test R2 of 0.87
after 100 epochs. The number of neurons and the activation function of each layer are
exposed for the hyperparameter search. The search space is defined as follows: the num-
ber of neurons in [10, 1024]with a log-uniform prior; activation function in [elu, gelu, hard
sigmoid, linear, relu, selu, sigmoid, softplus, softsign, swish, tanh]; optimizer in [sgd, rm-
sprop, adagrad, adadelta, adam]; global dropout-rate in [0, 0.5]; batch size in [8, 512] with
a log-uniform prior; and learning rate in [10−5, 10−2] with a log-uniform prior. A learn-
ing rate warmup strategy is activated based on a boolean variable. Accordingly, the base
learning rate of this warmup strategy is searched in [10−5, 10−2] with a log-uniform prior.
Residual connections are created basedon aboolean variable. A learning rate scheduler is
activated based on a Boolean variable. The reduction factor of this scheduler is searched
in [0.1, 1.0], and its patience in [5, 20]. An early-stopping strategy is activated based on a
Boolean variable. The patience of this strategy is searched in [5, 20]. Then, batch normal-
ization is also activated based on the Boolean variable. The loss is searched among [mse,
mae, logcosh, mape, msle, huber]. The data preprocessing is searched among [std, min-
max, maxabs]. This corresponds to 22 hyperparameters. All experiments are performed
with the same initial random state 42.

Metrics – During HPO the objective minimized is the negative coefficient of determi-
nation −R2 on a hold-out validation dataset. Then, for our analysis, we use the regret
defined as 1 − R2 where 0 is the lower bound of the objective. The model selection is
always based on the validation scores but the test scores are presented to consider the
problem of generalization in ML. To compare the speed of convergence between experi-
ments as well as the quality of the solution we compute the Area Under the Regret Curve
(AURC) defined in (Liu et al., 2021) but without re-scaling of the time. The smaller the AURC
the best is the any-time performance. Both the regret and the AURC are commonmetrics
used in AutoML (Liu et al., 2021; Eggensperger et al., 2021a).

3.4.1 . Efficient utilization of computational resources
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(a) Effective utilization of workers. (b) Number of evaluated hyperparameter con-figurations.
Figure 3.5: Comparison of (3.5a) effective utilization and (3.5b) number of completed hy-perparameter evaluations of centralized/decentralized BO without/with Successive Halv-ing (SHA) for an increasing number of parallel workers (1 GPU per worker). Overall, thedecentralized approach is better with higher utilization and the number of evaluated con-figurations. Conversely, the utilization and number of evaluations quickly drop for thecentralized approach.

We study the effectiveness of the centralized and decentralized architectures when
the number of workers is increased. The general idea of looking at resource utilization
is to detect overheads in parallel algorithms which when excessive can be counterpro-
ductive and worsen the results even though resources were increased. For this, we com-
pute the effective utilization which we defined as the ratio between the cumulative time
spent in training neural networks and the allocated total time (= Number of Workers ×
Execution Time). The resource utilization w.r.t. the number of parallel workers is pre-
sented in Figure 3.5a. The centralized architecture has a utilization similar (> 90%) to
the decentralized at a small scale (40 workers). However, when the number of workers
increases utilization drops quickly and finishes below 25% meaning that more than 75%
of allocated resources are not being used. In addition, using an early discarding strat-
egy makes the computational efficiency even worse as it can be observed that from 160
workers Cent. SHA (orange) has about half the utilization of Centralized (red). This behav-
ior is normal as early discarding shortens the duration of evaluations by stopping early
non-promising networkswhich increases the number of queries received by themanager,
resulting in more frequent overhead.

However, looking at the utilization is not sufficient as it could be kept artificially high
just by submitting hyperparameter configurations which take longer to be completed and
therefore bypass the problem of querying frequently the BO agent. Therefore, we pro-
pose to also look at the number of completed evaluations, which is shown in Figure 3.5b.
The number of completed evaluations is significantly higher for decentralized executions
than for centralized ones. For 1,920 workers, the decentralized completed 29,222 evalu-
ations while the centralized completed only 6,055 evaluations. Similarly Dist. SHA com-
pleted 18,431 while Cent. SHA completed only 5,832 evaluations. The number of evalua-
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Figure 3.6: Comparing the evolution of worker utilization for the centralized and decen-tralized BO with a total of 1,920 parallel workers. Overall, the decentralized approach hashigh utilization while the centralized approach drops early on without ever recovering.
tions increases linearly for the decentralized, unlike the Centralized and Cent. SHA which
plateau. The behavior of Dist. SHA with 1,920 workers can be explained through the BO
agent that suggests in this case hyperparameter configurations that are longer to train. By
looking at the number of evaluations we showed that under frequent queries the search
can maintain high effective utilization.

Finally, to explain the drop in utilization of centralized executions we take a closer look
at the profile of the utilization during execution. The profiles are presented in Figure 3.6
and Figure 3.1 respectively for the black-box and gray box settings. It can be observed
that the Centralized starts to lag after only 10 minutes of execution (when the first results
are received) and displays some oscillations later on which are the results of completed
batches of received queries. However, these queries come in too quickly to be processed
and the manager is overloaded which results in congestion and a drop in utilization that
can never be recovered. The same type of profile can be observed in the Cent. SHA case
as well as in previous literature (Balaprakash et al., 2018b).

3.4.2 . Better and faster hyperparameter optimization
After analyzing the computational performance of ADBO compared to ACBO we now

evaluate the gain in “search quality” when the number of workers is increased. Increasing
the quantity of computational resources should speed up the HPO process as well as
improve the final results (i.e., the returned solution has better predictive capabilities).

The first thing we analyze is the “search trajectory” which corresponds to the evolu-
tion of the test regret w.r.t. the execution time such as presented in Figure 3.7. Intuitively,
the search trajectory can help judge the quality of an HPO algorithm through at least two
aspects: first the solution after convergence, and second the time it takes to reach this
solution. We start by providing a qualitative analysis of these figures which is later sup-
ported by quantitative metrics. It is clear from the centralized setting in Figure 3.7a and
3.7b that increasing the number of workers has a negative impact on the quality of the
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(a) Centralized (b) Centralized SHA

(c) Decentralized (d) Decentralized SHA
Figure 3.7: Comparing the “search trajectory” (i.e., the evolution of the test regret w.r.t.the execution time) for the centralized (top, 3.7a and 3.7b) and decentralized (bottom,3.7c and 3.7d) implementations with and without successive halving (SHA). Overall, thedecentralized scales consistently where each search trajectory with a larger number ofworkers dominates or performs similarly to smaller scales. A similar performance in re-gret can be explained by the benchmark reaching saturation (i.e., no better objective canbe found). On the contrary, the centralized approach becomes inefficient at large scalesand performs worse than at smaller scales.
search. Indeed, when using 1,920 workers even though the early iterations are efficient,
which confirms the “sample efficiency” of the constant-liar strategy, the trajectory reaches
a plateau early on which is surpassed by executions with fewer workers. However, in
the case of the decentralized setting in Figure 3.7c and Figure 3.7d the trajectories corre-
sponding to a larger number of workers are dominating trajectories with fewer workers.
It means that it is faster to get to the same solution and the final solution is better.

Now, the search trajectory is not all we want to observe because it does not display
the “strength” of convergence but only the quality of iterative improvements. Therefore,
the online observations of the execution at the largest scales are presented through scat-
ter plots in Figure 3.8a and 3.8b. Through these figures, it is clear that the decentralized
variants converged to an area of the search space consistently suggesting better hyper-
parameter configurations (the baseline has a performance of 0.125 in test regret). On
the contrary, the centralized variants seem to rarely suggest good configurations. The
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(a) Black-Box Bayesian Optimization. (b) Gray-Box Bayesian Optimization.
Figure 3.8: Comparing the observations of centralized (red) and decentralized (blue) ap-proaches for both (a) black-box and (b) gray-box (with Successive Halving – SHA) settingsat a scale of 1,920 parallel workers.

capability of a search to discover different hyperparameter configurations and therefore
neural network architectures can be used to assess the uncertainty in model-choice (aka
epistemic uncertainty) and reduce the variance of estimation through “ensembling” such
as proposed in (Wenzel et al., 2020; Égelé et al., 2022) and later presented in Chapter 6. The
behavior of SHA can also be observed through the stratification of the y-axis in Figure 3.8b
(i.e., early termination of low-performing configurations).

Finally, from a quantitative point of view, we summarize the AURC and minimum test
regret for all the methods in Table 3.1 over the different scales of parallel workers. The
performance of random search (without early discarding) is presented to complement
our previous sanity checks. Also, random search scales without issues as communication
is not required and is a good competitor when increasing the number of workers. At a

40 Workers 160 Workers 640 Workers 1920 Workers
Method AURC Min. Regret AURC Min. Regret AURC Min. Regret AURC Min. RegretRandom 0.234 0.185 0.156 0.116 0.128 0.104 0.12 0.096ACBO 0.154 0.098 0.126 0.092 0.116 0.089 0.122 0.100ADBO 0.162 0.085 0.120 0.087 0.102 0.081 0.099 0.079ACBO-SHA 0.125 0.089 0.118 0.089 0.119 0.091 0.117 0.1ADBO-SHA 0.132 0.083 0.105 0.080 0.099 0.08 0.103 0.08

Table 3.1: Summarizing the results across all the experiments for the Combo Benchmark.The centralized is colored in red and the decentralized is colored in blue. The “AURC” rep-resents the Area Under the (test) Regret Curve w.r.t. the time. The “Min. Regret” is thevalue of the test regret corresponding to the best validation objective observed by thesearch. Smaller values of AURC and Min. Regret are better. The best scores across meth-ods are in bold font. Overall, at the smallest scale the centralized is themost efficient
(smallest AURC)which confirms the sample efficiency of the constant-liar strategy. How-ever, when increasing the scale the decentralized is better with faster convergenceand smaller regret.
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small scale (40 workers) the centralized has a smaller AURC with a regret very close to
the decentralized. This confirms that at a small workers’ scale, the centralized approach
is efficient and legitimate. Then, when increasing the number of workers (from 160 to
1,920) the decentralized consistently outperforms the centralized settings. Also interest-
ing, when we reach the largest scale of workers we enter a regime where “compute” is
not a bottleneck for HPO anymore and we can observe that ADBO (maximum fidelity) is
outperforming ADBO+SHA (early discarding).

3.5 . Conclusion

The issue we address is the task of optimizing resource utilization for large-scale HPO.
We consider this problem to be of importance based on the last generation of released
HPC systems that are equipped with at least 1,000 accelerator chips (e.g., GPUs) and the
popularity of ML in science. In this study, we focus on a well-adopted BO procedure,
based on a Random-Forest surrogate model (Hutter et al., 2011), which already demon-
strated its efficiency in solving the HPO problem both sequentially and at small scales
of parallelism. Then, we focus on the asynchronous querying of the BO agent as the
training time of neural networks can vary depending on their hyperparameter configu-
rations (e.g., learning rate, batch size, number of weights) and it was already shown to
improve worker utilization (Li et al., 2020). We study the role of centralized and decentral-
ized architectures of parallel BO. Indeed, centralized approaches are known to be more
sample-efficient. However, the agent quickly becomes overloaded when the number of
workers increases Therefore we developed a decentralized BO procedure with a custom
acquisition function heuristic to maintain efficiency. We demonstrated at large scales (up
to 1,920 workers), both in the case of black-box and gray-box optimization, that this ap-
proach improves significantly the utilization of computational resources compared to the
centralized setting. We presented the profiles of worker utilization to explain our results.
Finally, we summarized our results over different scales of parallel workers with scalar
metrics (the “Area Under the Regret Curve” and the “Minimum Regret”) to demonstrate
the advantage both in the speed of convergence and quality of the solution when using
the decentralized BO.

During our investigations, we considered for comparison the most popular available
frameworks for distributed HPO such as RayTune (Liaw et al., 2018) and Optuna (Akiba
et al., 2019b). Both had issues when scaling to the full Polaris system. For RayTune, the
issue was to initialize the Ray cluster which resulted in a significant overhead and with
many workers failing to connect to the main server. For Optuna configured with Post-
greSQL and TPE sampler, when running properly at smaller scales (up to 640 workers)
the best objective was similar to our proposed ADBO but resource utilization was always
significantly lower and impacted by the scale. In this case, the limiting factor triggering
failures was the number of parallel open connections to the database (larger than the
number of workers).

One limitation of this study is the metric of worker utilization, measuring the time
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spent computing the black-box function which does not accurately reflect all the bottle-
necks of the BO procedure when increasing workers such as the overheads associated
with parallel training of neural networks. These overheads, such as parallel I/O (e.g., read-
ing data and checkpoint weights), can create latency that is not captured in the worker
utilizationmetric. Another important limitation of the paper is that the speed-up achieved
by scaling workers in HPO is problem-dependent and may vary based on factors such as
the dataset, hyperparameter search space, and ML pipeline (e.g., maximum number of
training epochs). Furthermore, the lack of repeated experiments is also to be noted with
the known variability of training neural networks making the results in objective quality
inconclusive. Lastly, the paper does not evaluate Gaussian processes regression due to
their quick limitations w.r.t. the number of observations. Overall, this paper provides in-
sights into the challenges associated with scaling the number of workers for HPO using
BO procedures.

We are making our work available to the community as part of existing open-source
software2. In our future work, we aim to transfer the discovered benefits of this study to
other applications such as simulation calibration, software, and workflow tuning. Other
areas of improvement are 1) the use of accelerators for surrogate model updates, 2) low
overhead optimization of the acquisition function instead of random sampling, 3) domain
decomposition of the search space, 4) optimization of parallel I/O due to repeated neural
network training, and 5) multi-objective optimization.
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4 - Multi-objectivehyperparameter optimizationwith
uniform normalization and bounded objectives

In the previous chapter, we presented a scalable decentralized Bayesian optimiza-
tion for large-scale parallel hyperparameter optimization. This method could op-
timize only a single objective such as accuracy. While accuracy is a commonly
used performance objective, in many settings, it is not sufficient. Optimizing the
learning workflows for multiple objectives such as accuracy, confidence, fairness,
calibration, privacy, latency, and memory consumption is becoming crucial. To
that end, in this chapter, we adapt our decentralized Bayesian optimization to
the multi-objective setting. Differences in objective scales, the failures, and the
presence of outlier values in objectives make the problem even harder than for
a single objective. We propose to address these problems through uniform ob-
jective normalization and randomized weights in scalarization. We increase the
efficiency further by imposing constraints on the objective to avoid exploring un-
necessary configurations (e.g., insufficient accuracy). Finally, we experiment with
our multi-objective strategy jointly with our decentralized BO to demonstrate its
scalability.
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4.1 . Introduction tomulti-objectivehyperparameter optimizationof learn-
ing workflows

Even though the field of HPO has made significant advances in the context of single-
objective optimization it seems now insufficient to consider only one objective as the set
of competing objectives (metrics) to improve has grown. In recent years, it has become
necessary for many applications to consider additional metrics, such as privacy (Dwork,
2008), bias and social fairness (Mehrabi et al., 2021), calibration (Song et al., 2021), predictive
uncertainty (Begoli et al., 2019; Gawlikowski et al., 2023), explainability (Burkart and Huber,
2021; Tjoa and Guan, 2020), adversarial robustness (Muhammad and Bae, 2022), temporal
and memory complexity (Tan et al., 2019). Equally important, recent progress in ML was
possible thanks to an increase in parallel computation (Jordan and Mitchell, 2015). As the
multi-objective problem is harder than single-objective, a promising approach to improve
consists in scaling the search to leveragemultiple compute units (such as GPUs) which we
study in this work.

After reviewing the currentmulti-objective hyperparameter optimization (MOHPO) lit-
erature we identify a few gaps. First, we notice that the strongest contenders such as
NSGA-II, a variant of genetic algorithms, lack iteration efficiency (i.e., improvement per
completed black-box evaluations). This is important for expensive black-box such as in
HPO. Second, we notice that most methods do not take into account practical consider-
ations such as exploring only interesting trade-offs. For example, let us imagine that we
wish to develop amodel that is accurate and fast to query. It can be that the accuracy is so
low that such a model (even if faster) would not be a good candidate for any other metric
(here the speed of inference). Third, we notice that surrogate-basedmethods often do not
provide solution diversity (w.r.t. hypervolume defined in a later section) and require spe-
cific adaptation and customization (e.g., choice of scalarization function, trade-offweights,
normalization of objectives, tuning of a surrogate). Finally, we notice that some surrogate-
basedmethods do not benefit from scaling tomore parallel resources as they do not gain
significantly in performance or can not keep up with the demand due to their temporal
complexity (e.g., methods using Gaussian-process models).

We focus on developing a method for MOHPO that addresses the presented limita-
tions: (a) improving iteration efficiency, (b) only exploring objectives trade-offs of interest,
and (c) using parallelism to improve the effectiveness of the HPO. To that end, we de-
velop a parallel search approach called decentralized multi-objective Bayesian optimiza-
tion (D-MoBO) that combines an extremely randomized trees surrogate model (a type
of Random-Forests), a randomized scalarization, a quantile transformation of objectives,
and a penalty function. The parallelism results from the fact that we extend Algorithm 2
from the previous Chapter 3. Themethodological contributions are:

1. A quantile uniform normalization of objectives gives more importance to the
approximated Pareto-Front in the hypervolume indicator and is also robust to out-
liers.
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2. A penalty to avoid “out of interesting range” objective trade-offs.
3. A parallel implementation boosts optimization performance.

4.2 . Overview of general multi-objective optimization

In a generic multi-objective optimization (MOO) problem, the cost function is a vector-
valued f : Θ → C, C = Rdc , where dc is the number of objectives which are either maxi-
mized orminimized. Denote each component of f by fi(θ), and without loss of generality,assume that our goal is to minimize all components; then the MOO problem can be writ-
ten as

min
x∈Θ

(f1(θ), ..., fdc(θ)) (4.1)
s.t. g(θ) = 1

where g : Θ → {0, 1} represents a constraint function. Then the feasible domain is the set
of points in input space which respect the constraint, Θ̄ := {θ : g(θ) = 1,∀θ ∈ Θ}. The
attainable set is the image by f of the feasible domain C̄ := {f(θ) : ∀θ ∈ Θ̄}. In most appli-
cations, it is not possible to simultaneously minimize all objectives as they often “conflict”
with each other, which means that an improvement in one objective deteriorates other
objectives (otherwise the MOO problem would be degenerated and therefore equivalent
to a single objective problem). Therefore, the solution to (4.1) is a set of possibly infinite
cardinal. Because these solutions may be incomparable, the solution set is defined via
partial ordering as opposed to total ordering (as in the single-objective case). To simplify
the notation we will denote f(θ) := c and fi(θ) := ci.
Definition 4.1 (Dominance partial ordering). For two points in the attainable set, c(1), c(2) ∈
C̄, c(1) is said to dominate c(2), written c(1) ≺ c(2) if and only if for all i ∈ [1, dc] c

(1)
i ≤ c

(2)
i

and, there exist j ∈ [1, dc] such that c(1)j < c
(2)
j .

With this definition, it is possible to define the notion of Pareto optimality.
Definition 4.2 (Non Dominance). A point of the attainable set c∗ = f(θ∗), θ∗ ∈ Θ̄ is said
to be non-dominated if and only if c ̸≺ c∗ for all c ∈ C̄. The corresponding θ∗ is said to be
efficient.

Then the solution to (4.1) is called the Pareto-Frontier (PF), which is the set of all non-
dominated points formally defined as F := {c∗ : c∗ = f(θ∗) is not dominated }. The
corresponding set of all efficient points θ∗ is called the Pareto-Set (PS).

In general, when all objectives are conflicting and continuous, the PF is a (dc − 1)-
dimensional trade-off surface embedded in C (e.g., with 2 objectives the PF is a curve). To
read more about MOO definitions and terminology, see Ehrgott (2005, Chapters 1 and 2).
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4.2.1 . Metrics of performance in multi-objective optimization
As in our set of methods of interest, it is not possible to return an infinite set of so-

lutions to cover the PF, we must approximate it via a discrete set instead. Therefore a
central challenge of MOO research is to measure the quality of the approximation of the
PF.

To evaluate how well a discrete set of approximate solutions describe the PF’s true
shape is an open problem, and many metrics of MOO performance have been proposed
(Audet et al., 2021). One desirable property of aMOOperformance indicator is Pareto com-
pliance. Let A andB be the sets of (approximately) non-dominated solutions returned by
two different algorithms. Then A ≺ B if for every b ∈ B, there exists a ∈ A such that
a ≺ b. An indicator I is Pareto compliant if either A ≺ B implies that I(A) < I(B) or
I(A) > I(B) (depending on whether the indicator is increasing or decreasing with im-
proved quality). To our knowledge, the only MOO performance indicators that possess
this property are the hypervolume indicator (HVI) and the improved inverse gener-
ational distance (IGD+) (Ishibuchi et al., 2015). The improved generational distance
(GD+) will also be of interest to us, although it does not possess this property. All of these
methods suffer from one drawback in that they rely on an appropriate choice of one or
more reference points, which may require a priori knowledge of the true PF.

TheHVI is given byHV I(A) = V (∪a∈A[a, cref]), whereV (·)denotes the volume, [a, cref]denotes a hypercube with lower bound a and upper bound cref, and cref denotes the ref-erence point, whichmust be dominated by every solution point (a.k.a., theNadir point). As
mentioned above, the HVI is Pareto compliant. In practice, it is typically possible to select
the reference point for the HVI by using unacceptably bad scores for each objective. How-
ever, an overly poor choice of reference points can lead to non-interpretable large values.
The HV I is also extremely sensitive to poor problem scaling. Finally, it is worth noting
thatHV I is exponentially expensive to calculate when dc > 2 (Ishibuchi et al., 2015).

The IGD+ and GD+ indicators are defined in terms of a modified distance metric
d+(ĉ, c) := ∥max(ĉ − c, 0)∥2, where c is a target point, ĉ is an objective point in the es-
timated PF, and themax is taken element-wise. Then given a set of target pointsC and a
set of estimated points on the PF Ĉ, the GD+ indicator is given by:

GD+(Ĉ;C) :=
∑
ĉ∈Ĉ

min
c∈C

d+(ĉ, c)/|Ĉ|

and the IGD+ indicator is given by:
IGD+(Ĉ;C) :=

∑
c∈C

min
ĉ∈Ĉ

d+(ĉ, c)/|C|

(with |.| the cardinal operator). In practice, these indicators are faster to compute thanHVI.
However, the need for a large target setC that “covers” the entire PF can be impossible to
satisfy when the true PF is unknown, making these indicators difficult to use in real-world
applications.

Balancing solution quality (i.e., closeness between approximated and true PF) against
diversity (i.e., coverage of the approximated PF) is considered one of the central challenges
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ofMOO (Audet et al., 2021; Deb et al., 2002). While HVI and IGD+ are both Pareto compliant,
they are redundant in that both tend to place a higher emphasis on diversity over quality.
In this paper, we prefer using the HVI, which is more standard in the MOO literature.
But, for algebraic (toy) problems, where the true PF is known, we also utilize GD+ as a
complementary metric, that places a higher emphasis on solution quality (i.e., closeness
of the estimated PF to the true PF).

4.2.2 . Scalarization of objectives
One classical approach to solving a multi-objective problem is to transform it into a

single-objective problem by using a scalarization function sw : C → R (Ehrgott, 2005,
Chapters 3 and 4), parameterized by a weight vectorw ≥ 0 normalized to 1, which reflects
the trade-off between objectives. The optimization problem now becomes

min
x∈Θ

sw(f1(θ), . . . , fdc(θ)) (4.2)
s.t. g(θ) = 1

For most common scalarizations sw, each choice of w produces a different solution
θ∗ to (4.2), such that θ∗ is efficient. By solving many instances of Problem 4.2 with differ-
ent w, numerous solutions are produced giving an approximation to the PS. Many exist-
ing scalarization functions were proposed in the literature (Chugh, 2020), and one way to
achieve parallelism is by solving numerous independent scalarizations (Chang and Wild,
2023b; Deb and Jain, 2013).

However, scalarization can be sensitive to scales and curvatures of objectives and of-
ten fails to produce complete coverage of the approximated PF. In particular, such char-
acteristics can cause different trade-off parameters w to produce similar or identical so-
lution points θ∗. This can result in grouped solutions on the approximated PF and may
leave certain regions sparsely populated or empty. Such unbalanced and clustered cov-
erage can give the user a biased understanding of the objectives trade-off.

To resolve such limitations it is possible to adaptively select weights such that the
approximated PF has a better coverage (Das and Dennis, 1998; Deshpande et al., 2016).
However, this can induce a sequential dependence between different instances of Prob-
lem 4.2, which can limit parallelism.

Alternatives to scalarization also exist and are often based on maximizing the HVI.
In Bayesian optimization (BO), one would often maximize the expected improvement in
the HVI in each iteration. The direct drawback of such an approach is the computational
expense of calculating expected HVI improvement with more than two objectives, so one
typically needs to approximate instead (Daulton et al., 2020). Another kind, more scalable,
is based upon multi-objective generalizations of genetic algorithms, which sort points ac-
cording to the non-dominance relation during the selection phase. The most popular in
this class is the non-dominated sorting genetic algorithm (NSGAII) (Deb et al., 2002), which
we use as a baseline in our experiments. One downside is that genetic algorithms can re-
quire several generations before they become significantly different from random sam-
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pling, and many more to converge. An efficient parallelization through the island model
also exists for NSGAII (Märtens and Izzo, 2013).

Finally, we introduce the set of scalarization functions we considered in our experi-
ments. Let w be a normalized weight vector of dimension dc. Let c ∈ C be an objective
vector also of dimension dc, and let z be the utopia point given by the objectivesminimized
independently.

The weighted-sum or linear (L) scalarization is:
sLw(c) =

dc∑
i=1

wici (4.3)
The Chebyshev (CH) scalarization is:

sCH
w,z (c) = max

i∈[1;dc]
wi|ci − zi| (4.4)

The penalty-boundary intersection (PBI) scalarization is:
sPBI
w,z (c) = d1(z − c;w) + λ · d2(z − c;w) (4.5)

where d1(c;w) = |c⊤w/∥w∥|, d2(c;w) = ∥c−d1w/∥w∥∥ and λ ∈ R a parameter (default to
5).

4.2.3 . Review of multi-objective hyperparameter optimization methods
In HPO,Θ is often amixed-integer search space composed of categorical, discrete, and

continuous variables (Section 2.1). The target objectives are non-smooth. The optimized
workflow is expensive to evaluate (in memory, in time). The run-time of evaluated work-
flows depends on the hyperparameters and has variability. Also, failures (a.k.a., hidden
constraints) can appear for some hyperparameter configurations (e.g., out-of-memory,
neural network training resulting in NaN).

To our knowledge, very few open-source software have features that can handle all
these requirements and also perform asynchronous large-scale parallelism. One of the
first solvers to offer support for multi-objective BO is the Pareto Efficient Global Opti-
mization (ParEGO) software, which uses augmented Chebyshev scalarization followed by
a Gaussian process surrogate model and expected improvement maximization to select
the next iterate(s) (Knowles, 2006; Cristescu and Knowles, 2015). Some newer notable soft-
ware include pymoo (Blank and Deb, 2020) (official implementation of NSGAII and other
genetic algorithms), BoTorch with the quasi-expected HVI (qEHVI) acquisition (Balandat
et al., 2020; Daulton et al., 2020) (Bayesian optimization with approximate expected HVI
maximization), ParMOO (Chang and Wild, 2023b) (customized MOO algorithms), DeepHy-
per (Balaprakash et al., 2018a) (parallel AutoML for HPC), Optuna (Akiba et al., 2019a) (HPO
solvers). More details about some software features can be found in Chang and Wild
(2023a, Table 1) and Karl et al. (2022). In this study, we will focus on DeepHyper for its asyn-
chronous BO solver; Optuna for its asynchronous NSGAII, MoTPE, and BoTorch+qEHVI
implementations (Ozaki et al., 2022, 2020); the ParEGO implementation from the SMAC
Python package (Lindauer et al., 2022) that provides a Random-Forest surrogate model
for comparison with ours.
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Algorithm 3: Asynchronous Decentralized Multi-Objective Bayesian Optimiza-tion (Worker Process)
Inputs : thetaSpace: a configuration space,

nInitial: the number of initial hyperparameter configurations,
f: a function that returns the cost of the learning workflow,
κ: the parameter of qLCB,
T : the period of the exponential decay,
λ: the decay rate of the exponential decay,
nObj: the number of objectives to optimize,
upperBoundObj: the objectives upper bound constraints,
γ: the penalty strength for objective bounds (defaults to 2)

Output: thetaStar the recommended Pareto-set of hyperparameter configuration.
1 thetaArray, costArray← New empty arrays of hyperparameter configurations and costs ;
2 model← New RFR surrogate model ;
3 κ0 ← Sample from exponential distribution with parameter 1/κ ;
4 t← 0 ;
5 while compute time is not exhausted do

/* Apply exponential decay */
6 κt ← κ0 · exp(−λ · ((t− nInitial) mod T )) ;
7
8 if Length of thetaArray< nInitial then
9 theta← Sample hyperparameter configuration from thetaSpace ;

10 else
/* Quantile-Uniform Normalization */

11 F̂ ← Estimate empirical cumulative distribution function from costArray ;
12 costArrayQU← F̂ (costArray) ;

/* Apply Penalty */
13 upperBoundObjQU← F̂ (upperBoundObj) ;
14 penalty← γ

∑
i∈[|1,nObj|] max(costArrayQU[:, i]− upperBoundObjQU[i], 0) ;

15 costArrayPenalized← costArrayQU+ penalty;
/* Scalarization */

16 weights← Sample array of nObj weights from∆nObj;
17 costArrayScalarized← Apply scalarization sweights(.) on all cost vectors in costArrayPenalized ;
18
19 costArrayAux← Returns new array where failures in costArray are replaced withmax(costArray);
20 Update model with thetaArray, costArrayAux ;
21 theta← Returns theta in thetaSpace that minimizes aLCB (θ;κt) for current model (randomsampling or genetic algorithm) ;
22 end
23 cost← Returns the cost of learning workflow f(theta) ;
24

/* Exchange observations */
25 thetaArrayNew, costArrayNew← Collects new observations from other workers ;
26 Share new observation theta, cost with other workers ;
27
28 thetaArray, costArray← Concatenate thetaArray with thetaArrayNew and costArray with

costArrayNew;
29 thetaArray, costArray← Concatenate thetaArray with [theta] and costArray with [cost];
30 thetaStar← Update recommendation ;
31 t← t+ 1 ;
32 end
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4.3 . Parallelmulti-objective Bayesian optimizationwith uniformnormal-
ization and bounded objectives

In this section, we propose our decentralized multi-objective Bayesian optimization
(D-MoBO) algorithm. It combines a parallel decentralized asynchronous architecture with
a sequential MoBO algorithm.

4.3.1 . Decentralized Bayesian optimization
The asynchronous decentralized scheme we use was presented in Chapter 3.3 (Egelé

et al., 2023). The main idea is to start independent Bayesian optimization agents in paral-
lel. Each agent is running a sequential BO algorithmbut stores its observations in a shared
memory space (e.g., database). The trick is to initialize different exploitation-exploration
parameters combined with an exponential-decay scheduler on this parameter to avoid
“over”-exploring when increasing workers (Algorithm 2).

4.3.2 . Multi-objective Bayesian Optimization
Themulti-objective Bayesian optimization (MoBO) algorithmwe propose is presented

in Algorithm 3. It is inspired by the ParEGO (Knowles, 2006) algorithm which performs
scalarization through the augmented Chebyshev function and the SMAC algorithm (Hut-
ter et al., 2012) which uses a Random-Forest (RF) surrogate model with random-splits. A
similar variant is already available in the SMAC3 (Lindauer et al., 2022) package.

Uniform normalization of objectives

(Lines 11-12, Algorithm 3) In the HPO setting, objectives of interest can have different scales
(e.g., accuracy, latency, FLOPS). Not only that but outliers are also common when explor-
ing a large hyperparameter search space (e.g., diverging metrics, numerical errors), see
Figure 4.1a which display typical observations from MOO on the NavalPropulsion task
from HPOBench (Klein and Hutter, 2019b; Eggensperger et al., 2021b) (other tasks of the
considered benchmarks displayed similar behavior). On the one hand, the combination
of both effects can make the HVI computation highly non-trivial. For example, the ob-
jective with the largest scale can weigh excessively and hide improvements in other ob-
jectives. Also, choosing a normalization and a reference point can become dependent
on the experiment due to sensitivity to outliers such as in Figure 4.1a where most of the
HVI between the top-right corner of the figure and the PF (red line) is empty. On the
other hand, the RF model used for BO can typically “under-fit” optimal configurations
which often have the smallest squared error (e.g., closer to zero) already in the single-
objective optimization setting. Previouswork on single-objective optimization (Egelé et al.,
2023; Lindauer et al., 2022), usually apply some sort of “log”-based transformation to mit-
igate the under-fitting problem. For instance, the MinMax-Log transformation tMML(c) =
log ((c− cmin)/cmax + ϵ) is usually effective. However, we noticed that such transforma-
tion is also sensitive to outliers in the multi-objective case and while it was not a problem
for single-objective, it can transform a convex PF into a non-convexwhichmakes theMOO
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problem much harder such as in Figure 4.1b.
For these reasons, as discussed in Section 4.2.2, scalarization can perform poorly on

real-world problems. In particular, it is well-known that uniformly sampled weights do not
produce uniformly distributed solution points on the PF, especially for linear scalariza-
tion (Das and Dennis, 1998). To resolve these problems, we require a transformation that
would conserve the PF properties, focus on areas of interest (i.e., close to the estimated
PF), and be robust to outliers. A mapping of the independent objective distributions P (ci)to the uniformdistribution can provide such properties. This also helps apply randomized
scalarization without worrying about differences in objective scales and curvatures.

To do so, following (Amaratunga and Cabrera, 2001) and (Bolstad et al., 2003) we per-
form quantile-normalization by composing the empirical cumulative distribution function
(ECDF) F̂ : R → [0, 1] with the quantile function (i.e., inverse of CDF) of the uniform dis-
tribution QU(0,1) : [0, 1] → R. As the latter is the identity function QU(0,1)(θ) = θ we just
need to apply F̂ (θ). This means that we map each objective to a uniform distribution
on [0, 1]. This allows us to have a better update of the surrogate model. The ECDF is
estimated from the observed objectives Y. The quantile-uniform (QU) transformation is
tQU(c) = F̂ (c). The result of this transformation is illustrated in Figure 4.1c. To show that

(a) Identity (Id) (b) MinMax-Log (MML)

(c) Quantile-Uniform (QU)
Figure 4.1: Comparing normalization of objectives on a 2-objectives hyperparameter opti-mization instance (NavalPropulsion from HPOBench) where both validation error c1 andtraining time c2 are minimized.
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(a) No Penalty (NP) (b) Penalty c1 < 0.5

Figure 4.2: Example effect of the penalty on the DTLZ 2 benchmark (Deb et al., 2005). Thecolor of points indicates the BO iteration at which the points were evaluated.
the above transformation preserves Pareto optimality, i.e., c is non-dominated in C̄ if and
only if tQU (c) is non-dominated in tQU (C̄), consider the following claim.
Claim 1 (Invariance under order-preserving transformations). If t : Rdc → Rdc is a compo-
nentwise order-preserving transformation on c ∈ C̄ such that ti(c(j)) < ti(c

(k)) ⇒ ti(c
(j)) <

ti(c
(k)) and vice versa, then t(c∗) is nondominated in t(C̄) if and only if c∗ is nondominated in

C̄.

Proof. Suppose that t is order-preserving, as defined above.
(⇒): Assume that t(c∗) is Pareto optimal in t(C̄), which implies that c(t,j) ̸≺ t(c∗) for all

c(t,j) ∈ t(C̄). For contradiction, suppose that c(j) ≺ c∗ for some c(j) ∈ C̄. Then by definition
c(j) ≤ c∗ and c

(j)
i < c∗k for at least one i ∈ {1, . . . , o}. Since t is order-preserving, this would

imply that ti(c(j)) < ti(c
∗) and componentwise t(c(j)) ≤ t(c∗). Since t(c(j)) ∈ t(C̄), this is a

contradiction.
(⇐): Assume that c∗ is Pareto optimal in C̄, which implies that c(j) ̸≺ c∗ for all c(j) ∈ C̄).

Each c(t,j) ∈ t(Θ̄) satisfies c(t,j) = t(c(j)) for some point in the untransformed set Θ̄. But
from the assumption, c(j) ̸≺ c∗. So by similar logic as above, t(c(j)) ̸≺ t(c∗).
Corollary 1 (QuantileUniformTransformation). The quantile transformation tQU is an ECDF.
By definition, an ECDF is monotone increasing (strictly monotone when invertible), so it is im-
mediately order-preserving. So from the claim, we immediately conclude that tQU preserves
the Pareto set.

Penalty on constrained objectives

(Lines 10-15, Algorithm 3) Even though we are interested in exploring a diverse set of solu-
tions on the PF, there are often minimal requirements on some objectives. For example,
if we have a baseline binary classifier with an error rate of 15%, likely, we would likely not
consider any solution configuration with an error rate greater than 20%. In the generic
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multi-objective Problem 4.1, there is no way to specify that some solutions are fundamen-
tally less interesting than others. Therefore, we propose to impose upper bounds on the
objective ranges. Since these constraints could be violated (i.e., obtaining some results
out of bounds), we can consider these objective bounds as soft constraints (Le Digabel
and Wild, 2015).

In the single-objective literature, nonlinear constraints are often handled via a penalty
function, such as an augmented Lagrangian. This technique generalizes to the multi-
objective case, where the penalty must be applied to all objectives (not only the objective
that violates its upper bound) (Cocchi and Lapucci, 2020). In our case where the constraint
functions are also black-box functions, the progressive barrier penalty function has been
shown to work well in the single-objective case (Audet and Dennis, 2009). In other multi-
objective black-box software, the progressive boundary approach has been successfully
implemented in the multi-objective case and shown to be effective in handling arbitrary
black-box constraints (Chang and Wild, 2023a).

To enforce upper bounds on objective ranges, we apply a progressive barrier penalty
to all objectives whenever one ormore objectives violate their upper bounds. The penalty
is calculated as the sum of all constraint violations multiplied by a penalty strength factor
γ. See the exact calculation in Algorithm 3. Note that, thanks to the QU transformation,
it is appropriate to choose a problem-independent penalty constant of γ = 2, which is
slightly greater than the normalized objective magnitudes. This penalty discourages the
optimizer from wasting resources further refining uninteresting trade-offs, which fail to
meet the minimal requirements. An example of the effect of such a penalty is provided in
Figure 4.2. In the casewhere no penalty is applied (Figure 4.2a) the full PF of the problem is
explored until the end (yellow points). But, when applying the penalty to enforce c1 < 0.5

(Figure 4.2b) we observe that most of the PF where c1 > 0.5 is rarely explored.
We stress two limitations of such a penalty. First, when the true PF is not known using

a penalty can be ineffective. Indeed, if the penalty does not impact the PF then we ob-
served that the performance of the MOO algorithms is similar or worse than not having
the penalty. Second, this penalty strategy is particularly effective for QU normalization.
However, when using the same schemewith other transformations (Identity andMinMax-
Log) it was very much ineffective or required harder tuning of the γ parameter.

Randomly weighted scalarization of objectives

(Lines 16-17, Algorithm 3)We focus on scalarization-based MoBO and as it is not clear which
function is betterwe consider several functions from the literature (Chugh, 2020): weighted-
sum or linear (L), the Chebyshev (CH), and the penalty-boundary intersection (PBI) (Sec-
tion 4.2.2). Then, to enhance the diversity of the estimated PF, in each BO iteration we
decide to re-sample weights uniformly from the unit-simplex ∆dc (Pinelis, 2019, Remark
1.3) wi = log(1− w̃i)/(

∑dc
j=1 log(1− w̃j)) with w̃i ∼ U(0, 1).

4.4 . Experimental results
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In this section, we present our experimental results on D-MoBO (Algorithm 3). First,
we evaluate which combination of scalarization function and normalization is the most
effective while also comparing it to other state-of-the-art algorithms. Then, we evaluate
the impact of the penalty on the optimization process. Finally, we evaluate the gain in
performance of D-MoBO when scaling parallel workers.

4.4.1 . Evaluation of different scalarization and normalization
In this section, we present the experimental results which led us to choose the Lin-

ear scalarization with QU normalization. For this, we select four HPO benchmark tasks
from HPOBench (Eggensperger et al., 2021b; Klein and Hutter, 2019b): NavalPropulsion,
ParkinsonsTelemonitoring, ProteinStructure, SliceLocalization. The two objectives are the
validation error and the training time. These benchmarks allow for fast evaluations of
HPO methods as they simulate learning workflow evaluations through a pre-computed
database. Also, in this experiment, we limit ourselves to studying the behavior of Algo-
rithm 3 for 200 sequential iterations. For the comparison, we choose three scalarization
functions: Linear (L), Chebyshev (CH), and PBI. And, three objective normalization strate-

(a) Ranking

(b) Hypervolume
Figure 4.3: Comparing scalarization functions and objective normalization combinationson the HPOBench tabular tasks (i.e., 40 experiments per curve).
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gies: Identity (Id), MinMax-Log (MML), and Quantile-Uniform (QU). As we want to study
the synergy between scalarization and objective normalization each combination (9 in to-
tal) is evaluated. We add five baselines for the comparison: random (Random), NSGAII,
MoTPE, ParEGO, and BoTorch with the qEHVI implementation of expected HVI (qEHVI).
Each configuration is repeated 10 times with fresh random states. The quality metric is
HVI. In Figure 4.3a, we present the averaged ranks over HVI curves across all tasks and
repetitions (i.e., 40 experiments). The average HVI curves are also given in Figure 4.3b.
Scalarization functions have different colors and objective normalization has different line
styles. The transparent bandwidth around the curves represents a confidence interval of
95% confidence of the mean-value estimation s (i.e., 1.96 standard error).

From the ranking curves (Figure 4.3a) (lower ranks are better), it is clear that QU nor-
malization is the best as strategies based on QU (dashed lines) have curves which domi-
nate all othermethods independently of the scalarization function. Then for the scalariza-
tion functions, it appears that PBI (blue dashed line) is under-performing compared to L
(green dashed line) and CH (orange dashed line). As L is winning we keep it as the default
scalarization function. However, because L and CH are statistically different (i.e., overlap-
ping standard errors) and also becausewe know that CHwould bemore robust in the case
of non-convex PF we keep it as an option for future work. Indeed, CH may be harder to
optimize for MoBO and could require a few iterations with fixed weights instead of always
re-sampling weight vectors. Finally, from 100 evaluations it seems like NSGAII manages
to slowly improve its ranking which seems normal as its population size is 50. The qEHVI
under-performs on these 4 tasks probably because the surrogate model is a Gaussian
process while the search space does not have any continuous ranges. The ParEGO imple-
mentation from SMAC which is also based on a Random-Forest surrogate model slightly
outperforms Random and is close in ranking to our variants with Identity (Id) objective
scaling which puts forward the advantage of objective scaling. Interestingly, the MoTPE is
performing better than any of the BO methods with Identity (Id) objective scaling.

4.4.2 . Adding the penalty to avoid uninteresting candidates
In this section, we show the effect of the penalty to explore only “useful” hyperpa-

rameter configurations. For this, we use a different benchmark more suitable for the
HPC setting. We choose the Combo problem from the ECP-Candle benchmark which was
introduced in previous works for AutoML on HPC (Balaprakash et al., 2019; Égelé et al.,
2021; Egelé et al., 2023). This benchmark contains 22 hyperparameters and performs a
regression task on the growth rate of Cancer cells given a treatment. The multi-objective
problem is to minimize c1 := 1− R2 (i.e., maximizing R2 the coefficient of determination
on validation data), minimize c2 the latency (i.e., inference time), and minimize the num-
ber of parameters (i.e., model size). Each model can train for a maximum of 50 epochs
and 30 minutes. Experiments are run on a maximum of 640 GPUs in parallel (1 evaluation
per GPU) for 2.5 hours (i.e., corresponds to only 5 sequential evaluations of 30 minutes).
Only 1 repetition is done per experiment due to their cost and the random seed is fixed to
42 for all experiments. The penalty upper-bound is set to c1 < 0.15 as the baseline model
from Combo reaches c1 = 0.13 after 100 epochs.
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(a) Hypervolume (b) Cumulated Hypervolume Regret
Figure 4.4: Observing the effect of penalty for D-MoBO on the Combo benchmark. Thepenalty is set toR2 > 0.85. D-MoBO (green), is the version implementing the penalty whileD-MoBO (NP) (pink) is without penalty. HVI is computed using the reference forR2 = 0.85.

In Figure 4.4a we present the HVI vs time curve for D-MoBO (without penalty), and D-
MoBO (P) (with penalty). The reference point to compute theHVI is set cref = (0.15,max(c2),

max(c3)). Such a penalty represents the practical consideration where any model with a
predictive performance less than a threshold is unusable (minimum requirement). It is
clear from the results that applying the penalty helps the algorithm focus on the solu-
tion set of interest as the HVI curve of D-MoBO (P) increases much faster than D-MoBO.
Similar improvements in the results were observed with fewer parallel workers (40 and
160). Then in Figure 4.4b we show the normalized temporal cumulated HVI regret curves.
We define the normalized temporal cumulated HVI regret by normalizing the temporal
cumulated regret (Definition 2.4) according to the maximum time.

R(ti) ≈
i∑

i′=0

(1−HV I(Ai′)) ·
(ti′+1 − ti′)

tmax (4.6)

where ti is the time at which the i-th evaluation was completed, 1−HV I(Ai′) is hypervol-ume regret after the i-th evaluation was completed, and tmax is themaximum time (in our
case 2.5 hours). The cumulated regret quantifies both the quality of the solution and the
convergence rate as detailed in (Srinivas et al., 2010). A linear cumulated regret often cor-
responds to a uniformly random strategy (e.g., Random in Figure 4.5b). The algorithm that
has the best convergence rate (i.e., how fast good solutions are good) will be lower than
others. Figure 4.4b shows that using the penalty improves the convergence rate. Also,
in Table 4.1 we provide additional quantitative metrics. Mainly, when comparing D-MoBO
and D-MoBO (P) we notice that without the penalty very few models are reaching the
threshold of required accuracy (denoted by %V). For example, the penalty helps, for the
same computational budget (640 workers), to move from 12.60% to 67.21% of successfully
evaluated models with c1 < 0.15.

Then, we also compare D-MoBO with other noticeable MOO algorithms of the liter-
ature (Figure 4.5): NSGAII, MoTPE (both from Optuna, Akiba et al. (2019b), with default
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(a) Hypervolume (b) Cumulated Hypervolume Regret
Figure 4.5: Comparing D-MoBO against other optimizers (all without penalty) on theCombo benchmark.

(a) Hypervolume (b) Cumulated Hypervolume Regret
Figure 4.6: Comparing D-MoBO (P) against other optimizers (all with penalty) on theCombo benchmark.
parameters), and Random search. While Random search is mostly used as a sanity check
of HPO algorithms in general, NSGAII is known to be a strong performer in the MOO field
and MoTPE is known to have faster convergence. Here we do not compare to ParEGO
or qEHVI for two reasons. First, they did not perform well in the first set of experiments
and second, because we do not have a scalable implementation of ParEGO, and qEHVI
does not scale to our setting even if it is available in Optuna, with which we run NSGAII
and MoTPE, as it is based on a Gaussian process surrogate model with cubic temporal
complexity in the number of observations (see Optuna developers (2018)). In Figure 4.5
we observe that D-MoBO and NSGAII have very similar performance for both the HVI and
the regret. However, we can see in Figure 4.5a that Random and MoTPE are performing
significantly worse. MoTPE improves significantly over Random and slightly better than
NSGAII in the first half (< 30 minutes), and then stagnates.

Finally, we compare D-MoBO (P) with NSGAII (P) and MoTPE (P) also enforcing the
constraint c1 < 0.15 (Figure 4.6). In Figure 4.5a, we can observe that D-MoBO (P) has the
advantage in early iterations but NSGAII (P) is closing the gap in late iterations. This effect
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40 Workers 160 Workers 640 Workers#D #F %V ↑ HVI ↓ Rfinal #S #F %V ↑ HVI ↓ Rfinal #S #F %V ↑ HVI ↓ Rfinal
Random 545 8 0.74 0.13 0.94 2,115 42 0.53 0.11 0.94 8,418 178 0.36 0.28 0.90
MoTPE 219 12 0.48 0.05 0.95 1,129 2 1.86 0.12 0.91 5,571 13 2.25 0.22 0.80
NSGAII 496 4 2.85 0.25 0.90 2,050 7 8.96 0.44 0.76 10,092 14 22.96 0.61 0.59
D-MoBO 311 2 1.94 0.21 0.93 1,105 5 5.18 0.40 0.79 4,620 18 12.60 0.64 0.57
MoTPE (P) 312 2 0.0 0.0 1.00 1,792 4 15.21 0.13 0.94 4,866 136 8.58 0.27 0.79
NSGAII (P) 693 3 22.32 0.22 0.96 3,508 4 58.70 0.54 0.70 13,056 19 71.02 0.70 0.54
D-MoBO (P) 496 0 49.19 0.36 0.76 1,719 5 60.91 0.68 0.52 6,805 16 67.21 0.73 0.45

Table 4.1: Comparing optimizers for different numbers of workers. #D: the number ofevaluations performed (successful or with failure), #F: the number of failed evaluations,%V: the percentage of successful evaluations with valid objective bounds, HVI: the finalHVI, and Rfinal: the final cumulated HVI regret.

is confirmed with different numbers of workers, see the appendix. We can also see that
MoTPE (P) stagnates quickly to barely outperform the Random search. MoTPE was not
expected to scale so poorly (here using 640 parallel workers). Then, in Figure 4.6b we see
through the cumulated regret curves D-MoBO (P) has the best convergence rate, closely
followed by NSGAII (P), then comes MoTPE (P), and Random search.

4.4.3 . Improved optimization when scaling parallel workers
In this section, we show the gain in solution quality and convergence rates when in-

creasing the number of parallel workers for D-MoBO and D-MoBO (P). For this, we follow
the same experimental setting as the previous section. In addition to the experiments
with 640 GPUs, we also run D-MoBO with 160 and 40 GPUs (i.e., varying the workers by a
factor of 4). In Figure 4.7 and 4.8, we see that increasing workers improves both solution
quality and convergence rate (i.e., how fast we get to the solution). For example, looking
at the convergence speed of D-MoBO (P), with 640 workers in 30 mins we reach the final
solution of 40 workers in 2.5 hours (i.e., 5x speed-up). The cumulated regret curves also
show consistent improvements in convergence rates. Then, for the solution quality, if we
look at any point in time the experiments with more workers have larger HVI. To aggre-
gate these, we provide, in Table 4.1, the HVI indicator at the end of the experiment (HVI,
a metric of solution quality) and the cumulated regret also at the end of the experiment
Rfinal (convergence rate) for each scale of workers. Both are improving with increased
workers.

Similar scaling experimentswere performed for otherMOOalgorithms: NSGAII,MoTPE,
and Random search. We notice that NSGAII (the strongest competitor in our study) gains
similarly in performance when increasing the number of parallel workers. However, for
MoTPE and Random search, the gain in performance is minor. Finally, we can see in
Table 4.1 that D-MoBO (P) consistently outperformed other competitors at the different
scales we tested. However, the difference in the final solution against NSGAII becomes
less significant when the computational budget increases.

4.5 . Conclusion
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(a) Hypervolume (b) Cumulated Hypervolume Regret
Figure 4.7: Observing the effect of increased parallel workers in D-MoBO (withoutpenalty). From 40, 160 to 640 parallel GPUs. The more workers the better the solutionand the convergence rate.

(a) Hypervolume (b) Cumulated Hypervolume Regret
Figure 4.8: Observing the effect of increased parallel workers in D-MoBO (P) (with penalty).From 40, 160 to 640 parallel GPUs. The more workers the better the solution and theconvergence rate.
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This study demonstrates that D-MoBO, both with and without penalty, serves as an
effective approach for parallel multi-objective hyperparameter optimization (MOHPO). Its
efficiency can be attributed to several factors: (1) its QU normalization, (2) its implementa-
tion of a soft penalty, and (3) its scalability, which allows it to leverage an increasednumber
of parallel workers. A notable advantage of this method, as revealed by our findings, is
its ability to consistently perform at or near the optimal level across various levels of par-
allelism. We term this capability "any-scale" performance. In practical terms, this implies
that users need not meticulously select the number of parallel workers, as the quality of
results will either improve or remain stable when additional computational resources are
allocated.

However, we have observed that the disparity in solution quality (measured by hy-
pervolume) between NSGAII and D-MoBO diminishes as the number of parallel workers
increases. Additionally, we have noted that NSGAII consistently achieves a significantly
higher number of successful evaluations compared to D-MoBO, while maintaining a sim-
ilar level of worker utilization. This suggests that NSGAII exhibits a stronger inclination
toward favoring hyperparameter configurations that are quick to train compared to D-
MoBO. Interestingly, despite this bias, NSGAII’s performance does not appear to suffer.
Lastly, the objective bounds can be hard to set without prior information about the prob-
lem. However, for predictive accuracy, the optimal constant predictor can always be used
as the worst objective bound.

Contrary to some previous benchmarks such as YAHPO-Gym (Pfisterer et al., 2022,
Figure 4) we find that Bayesian optimization can significantly outperform other optimiza-
tion algorithms. In addition, we observe that random search and MoTPE do not gain sig-
nificantly from an increase in parallel computations even if a lot more evaluations were
completed.

In future works, the policy to sample trade-off weights should be optimized as uni-
form sampling is simple but under-optimized and certainly not adapted to all considered
scalarization functions. Also, the scalarization function study should be refined by testing
more MOHPO problems to evaluate how frequent are non-convex PF. For this, we wish to
use JAHSBench-201 (Bansal et al., 2022) and YAHPO-Gym (Pfisterer et al., 2022) which are
two promising benchmarks for MOHPO currently being refined.
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5 - Early discarding at a constant epoch in hyperpa-
rameter optimization of neural networks

In the previous chapters, we have seen how to perform hyperparameter optimiza-
tion of learning workflows for one (Chapter 3) or multiple (Chapter 4) objectives.
However, this process is usually time-consuming due to repeated training. This is
even more true in the case of deep neural networks. Therefore, early discarding
techniques (such as SHA used in Chapter 3) limit the resources granted to un-
promising candidates by observing the empirical learning curves and canceling
training as soon as the lack of competitiveness of a candidate becomes evident.
Nevertheless, little is understood about the trade-off between the aggressiveness
of discarding and the loss of solution quality (e.g., predictive accuracy). In this
chapter, we study this trade-off for several commonly used discarding techniques
such as successive halving and learning curve extrapolation. Our surprising find-
ing is that these commonly used techniques offer minimal to no added value com-
pared to the simple strategy of discarding after a constant number of epochs of
training. The chosen number of epochs mostly depends on the overall available
compute budget. We call this approach i-Epoch (i being the constant number of
epochs with which neural networks are trained) and suggest to assess the quality
of early discarding techniques by comparing how their Pareto-Front (in consumed
training epochs and predictive performance) complement the Pareto-Front of i-
Epoch.
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5.1 . Introduction to early discarding in hyperparameter optimization

Optimizing the configuration of a deep learning pipeline is a complex task that involves
properly configuring the data preprocessing, training algorithm, and neural architecture.
A configuration is a specification of so-called hyperparameters (Yu and Zhu, 2020), which
control the behavior of pipeline elements and hence can greatly influence its final pre-
dictive performance. The objective is to identify the configuration of hyperparameters
that achieves the best predictive performance, usually referred to as hyperparameter op-
timization (HPO).

As HPO is often done from a black-box optimization point of view, that is by obser-
vation of input configuration and output performance, a major challenge is the required
computation to evaluate candidate hyperparameters by training deep neural networks.
This greatly limits the number of testable hyperparameter configurations within a practi-
cal time frame. This is why multi-fidelity hyperparameter optimization with early discard-
ing was proposed to switch the black-box problem to a “gray-box” optimization problem
by observing the intermediate training performance of neural networks and using it as
an estimate of the final performance. Such estimates can in principle be obtained at a
computationally cheaper training stage and therefore save overall computation. In deep
neural networks, the training epochs are usually used to perform early discarding. An
epoch usually refers to making a full pass over the training data. The predictive perfor-
mance versus the number of epochs is also known as a “learning curve” (Viering and Loog,
2022; Mohr and van Rijn, 2022).

HPO with early discarding trades-off computation with quality of extrapolated per-
formance. For example, if the neural network is trained for a few epochs, it can save
computation but it also means we have little (noisy) training information and therefore
increase the chances of mistaking the extrapolation. It is important to note that extrap-
olated performance is not always absolute but it can also be relative to other candidates
such as by predicting a ranking.

A shortcoming of the HPO early discarding literature is the multi-objective ((1) predic-
tive performance, (2) overall computation) optimization viewpoint that such techniques
are trying to solve. Therefore experimental evaluations lack comparison to proper base-
lines and sometimes present over-optimistic results. For example, it is common to com-
pare early discarding techniques with complete training discarding (Falkner et al., 2018)
and, only rare works consider the baseline performance which minimizes computation
by stopping the training after a single epoch (Égelé et al., 2023b; Bohdal et al., 2023) dur-
ing HPO and possibly selecting from the top-k models after further training. We call this
baseline “1-Epoch” or more generally i-Epoch when the training is stopped after epoch i.

In this work, we evaluate the computation optimal policy 1-Epoch and show its surpris-
ing effectiveness in detecting top-ranked hyperparameter configurations. In addition, we
look at the set of trade-offs between computation and predictive performance offered
by different early discarding methods among which is the i-Epoch baseline. We do this
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by spanning different levels of early discarding aggressiveness of each technique. Be-
ing more aggressive (i.e., stopping training earlier) reduces computation but also gener-
ally sacrifices predictive performance. Therefore, we evaluate the multi-objective opti-
mal frontier, also known as the Pareto-front, achieved by the different early discarding
techniques. Ideally, varying the aggressiveness parameters of the different techniques,
leads to a large Pareto-front, offering different trade-offs between aggressiveness (train-
ing epochs used) and predictive performance.

To simplify our experiments and avoid confounding factors, we do not use advanced
HPO solvers but instead perform a random sampling of hyperparameter configurations,
for which we can compare several early discarding techniques. We compare i-Epoch to
asynchronous successive halving (SHA), parametric learning curve extrapolation (LCE),
and the recently introduced LC-PFN model (Adriaensen et al., 2023) for learning curve ex-
trapolation. We study these techniques on various classification and regression tasks for
the class of fully connected deep neural networks. Against all expectations, our principal
findings are:

1. dynamically allocating resources as done by successive halving or learning curve
extrapolation offers minimal (and oftentimes no) utility compared to a constant
number of training epochs, and

2. one can often early discard models after only one epoch without losing significant
final predictive performance, indicating that perhaps learning curves aremorewell-
behaved than one may expect.

Webelieve these findings highlight the necessity to incorporate 1-Epoch in future stud-
ies since it achieves such good predictive performance for minimal computation while
being extremely simple to implement.

5.2 . Methods for vertical early discarding

We consider a function f(θ, i) ∈ R that returns (empirical) generalization error of a
deep neural network pipeline configured with hyperparameters θ ∈ Θ (i.e., a vector of
mixed variables) after i ∈ I training epochs. In our setting we bound the number of train-
ing epochs imin ≤ i ≤ imax. Next consider a hyperparameter optimization algorithm a ∈ A
such that a(f,Θ, I) = (cL, cI)

T where cL = f(θ∗, imax) ∈ R is the generalization error of
the returned trained deep neural network pipeline configured with hyperparameters θ∗
and cI ∈ N is the total number of training epochs used by a to complete the hyperpa-
rameter optimization process. Then, the multi-objective problem that hyperparameter
optimization with early discarding algorithms aims to solve is:

min
a∈A

(cL, cI) (5.1)
s.t. (cL, cI)

T = a(f,Θ, I)
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Figure 5.1: Hyperparameter optimization and its components including input/output,outer optimization loop exploring new hyperparameter configurations, inner optimiza-tion loop incrementally allocating training iterations (what we study in this work) andselection of hyperparameters to return. In italic we specify the blocks to match with ourexperimental study.

In Figure 5.1 we provide a flowchart diagram of the hyperparameter optimization with
early discarding algorithm classA that we consider. The HPO process comprises an outer
open cycle (red parts), in which an optimizer decides whether optimization should be con-
tinued or not. If so, it picks a candidate hyperparameter (HP) configuration (or various if
parallelization is supported) for evaluation. Then, the performance of the chosen config-
urations is computed (blue parts). Since we only consider training of neural networks one
can think of the candidate evaluation as an inner cycle inwhich an empirical learning curve
is constructed, with one entry per epoch. In the orange box, a set of final candidates is se-
lected (possibly of size 1) and trained to convergence (if not done already). Among these,
the candidate with the best performance is returned and serves as a trained model for
predictions.

In the interest of separation of concerns, this paper focuses only on the aspect of early
discarding (blue diamond). The other components are fixed as follows: The outer cycle
simulates a random search with an evaluation limit of 200 pipelines, which are sampled
offline to make sure that all early discarding methods decide upon the same pipelines.
Since no model of the performance landscape is built in the random search, the evalua-
tion module simply returns the prediction performance of the network at the time when
training is being stopped (no matter whether prematurely or because it has converged).
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The orange component selects the 3 best configurations found during optimization and
trains them to convergence (if not yet). It then returns the best of these models.

This being said, our study focuses only on early discarding techniques for single can-
didates as opposed to candidate portfolios. Many popular optimizers consider entire port-
folios of candidates, which are then reduced at some predefined ratio (Jamieson and Tal-
walkar, 2016; Li et al., 2018; Falkner et al., 2018; Awad et al., 2021). We are interested in a
more flexible class of early discarding techniques that do not need to know all the can-
didates upfront but decide only upon one candidate at a time based on the score of the
best candidate seen so far. This is also referred to as the difference between horizontal
optimization (simultaneously growing learning curves of a portfolio) and vertical optimiza-
tion (evaluating candidates one by one, possibly without even knowing the whole set of
candidates to be evaluated) (Mohr and van Rijn, 2022).

Among these early discarding techniques for single candidates, we consider three
state-of-the-art approaches from different research branches and an approach that sim-
ply trains the networks for a previously defined constant number of epochs. First, for the
idea of Successive Halving, which is used in many horizontal optimizers (Jamieson and
Talwalkar, 2016; Li et al., 2018; Falkner et al., 2018; Awad et al., 2021), there is a sequential
variant (Li et al., 2020) that can be used as an independent early discarding module. The
second and third approaches discard candidates based on extrapolated learning curves
using Monte Carlo Markov Chains (MCMC) (Égelé et al., 2023b) and Prior Fitted Networks
(PFN) (Adriaensen et al., 2023), respectively. Another approach for extrapolation, learn-
ing curve-based cross-validation (LCCV) (Mohr and van Rijn, 2023) with state-of-the-art
results in early discarding is not considered in the evaluation, because it is based on the
assumption of convexity (or concavity) of the learning curves, which is the typical case for
sample-wise learning curves but not iteration-wise learning curves as created during the
training of a neural network (Mohr and van Rijn, 2022).

5.2.1 . Successive halving in the vertical setting (r-SHA)
Successive Halving (SHA) (Jamieson and Talwalkar, 2016) is an optimization technique

that receives a set of candidates, which is successively reduced while granting more re-
sources to candidates that are being retained. A common approach is to eliminate 50%
of the candidates and double the amount of resources for the remaining candidates until
only one candidate remains; thereby, all iterations consume roughly the same quantity
of compute resources.

It is possible to isolate the idea of SHA to use it as an early discarding module such
as shown in blue in Figure 5.1 (Li et al., 2020). To do this, one can test at epoch i if the
currently observed score is among the top-100/r% already observed in the past for other
candidates at the same epoch i, where r is called the reduction factor (e.g., r = 2 for a
reduction of 50%). If this is the case, then the training is continued otherwise it is stopped.
This condition is not checked at every training epoch but follows a geometric schedule.

5.2.2 . Parametric learning curve extrapolation via MCMC (ρ-LCE)
Learning Curve Extrapolation (LCE) (Domhan et al., 2015) uses a parametric model

71



to predict the continuation of a learning curve. The parametric functions used for this
task are mostly power laws originating from physics research (Mohr and van Rijn, 2022). It
is also common to consider linear combinations of such functions (Domhan et al., 2015).

To enable a configurable greediness, we are interested in probabilistic extrapolations.
That is, the extrapolation technique should output a distribution over learning curves
rather than just a single one (usually the likelihoodmaximizer). These distributions can be
obtained by sampling from the posterior distribution, usually using a Bayesian approach
(Domhan et al., 2015; Klein et al., 2016).

However, we found that the above techniques suffer from instabilities, which is why
we here use a technique called RoBER (Robust Bayesian Early Rejection) (Égelé et al.,
2023b). Instead of considering a linear combination of several parametric models, we
only consider one, that is MMF4 which was found to work well in general for extrapo-
lation by (Mohr et al., 2022). In addition, for robustness, we use an approach that com-
bines frequentist and Bayesian modeling. That is, first, we fit the parametric model using
Levenberg-Marquadt, which minimizes the mean squared error on the observed anchors
of the learning curve. Afterward, we use these fitting parameters ν̂ ∈ Rdν to derive a
data-driven prior of the form ν ∼ N(ν̂, 1). We use a Gaussian likelihood on the observed
learning curve anchors with an exponential prior with scale parameter 1. This completely
defines the posterior, which is sampled using Markov-Chain-Monte-Carlo (MCMC). This
allows us to sample the distribution of extrapolated values at the largest anchor. We
compute this distribution for each currently observed learning curve. If this distribution
indicates for a learning curve candidate that we are with probability larger than ρ worse
than the current best-observed learning curve value, the candidate is eliminated. The
larger ρ, the more conservative: for example if ρ = 0.9, a candidate is only discarded if
the probability that it under-performs the currently best one at the horizon is greater or
equal to 90%.

5.2.3 . Learning curve extrapolation via prior fitted networks (ρ-PFN)
Prior Fitted Networks (PFN) are transformer networks that are being trained on syn-

thetical tasks sampled from a so-called prior distribution (Müller et al., 2021). Here, tasks
are described as labeled datasets together with unlabeled test points. For a new task, the
PFN does not only output a single prediction for each test point but a distribution.

Due to their general nature, PFNs can also be used to predict distributions over learn-
ing curves. A recent approach that reports results comparable to or better than theMCMC
approach of (Domhan et al., 2015) while being much faster was presented in (Adriaensen
et al., 2023). In this approach, synthetic learning curves are sampled from a prior over lin-
ear combinations of model classes; a subset of those suggested in (Domhan et al., 2015)
is used. The authors of this network offer a pre-trained implementation1, which comes
with an API that allows extrapolations of learning curves out of the box. Our experiments
are based on this implementation.

As for LCE, one can define a confidence level ρ and discard candidates only if the prob-
1https://github.com/automl/lcpfn
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ability that the limit performance is worse than the currently known best solution is at
least ρ.

5.2.4 . Discarding after a constant number of training epochs (i-Epoch)
The last and simplest method is the one of a constant number of epochs. In this case,

the number of epochs is defined a priori and does not depend on any observations made
during the evaluation of the candidate. In our experiments, we consider all number of
epochs between 1 and 100 as possible limits.

Thismethod is different from the others in that it does not necessarily train anymodel
to convergence during the evaluation. In all the other approaches, at least one network,
namely the one that is believed to be best, is trained until convergence. On the contrary,
in the case of a constant number of epochs, even the best network is not (necessarily)
trained to convergence during evaluation but only in the final selection phase (orange box
in Fig. 5.1). Of course, if the number of epochs configured is high, it can implicitly happen
that the networks converge during evaluation. In particular, no early stopping (mind the
difference to early discarding) is used to stop training once the curve has flattened out, so
training can even take more epochs than what would be observed with a standard early
stopping approach.

5.3 . Experimental design to compare early discarding strategies

Our experiments were designed to answer the following research questions (RQs) for
the hyperparameter optimization of deep neural networks:
RQ1: What is the anytime performance of the HPO process (i.e., when stopped at any

iteration of the red loop in Figure 5.1) when run with the different early discard-
ing techniques for extreme configurations of discarding aggressiveness (i.e., when
stopping training at the earliest and the latest)?

RQ2: For each early discarding technique, what is its Pareto-frontier in terms of (1) final
predictive performance (of the selected and trained hyperparameter configuration)
and (2) total training epochs consumed in the HPO process, obtained when testing
different settings of the method?

RQ3: What does each method contribute to the Pareto-frontier resulting from all tech-
niques? This aims to see if methods complement each other in terms of attainable
trade-offs and which algorithm offers the most diverse trade-offs.

RQ4: How does 1-Epoch compare to other methods and how can we understand its sur-
prisingly good performance?

Preempting the detailed results, we already summarize at this point that the answers
to these questions might be in contrast to the expectations in two ways:
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1. While it is clear that 1-Epoch is Pareto-optimal (since one cannot be faster), one
would expect that i-Epoch tends to develop a sub-optimal Pareto frontier (com-
pared to other early discarding methods) as i grows. This is because, since i-Epoch
does not react to the previous performance observations, there is an increasing
risk that (unpromising) candidates are trained unnecessarily long so that the num-
ber of total training epochs in the HPO increases without generating any benefit.
In other words, for pretty much any i > imin for some small imin, e.g., 5 or 10, onewould expect that there are configurations of the other early discarding methods
that Pareto-dominate i-Epoch. The surprising insight of our experiments is that the
simple i-Epoch policy is rarely ever Pareto-dominated by any other method.

2. While one would generally expect the maximally aggressive strategy 1-Epoch to de-
liver significantly sub-optimal results in predictive performance cL, we show that
generally there is little and sometimes no possible improvement in predictive
performance cL over the 1-Epoch baseline. In several cases, 1-Epoch is not only
Pareto-optimal but strictly optimal.
5.3.1 . Benchmarks of precomputed neural networks learning curves

To be able to generalize conclusions from this work, we answer the questions on sev-
eral datasets, both regression and classification, which displayed noticeable differences
in the observed learning curves. However, we limited our study to the class of fully con-
nected deep neural networks, still including a variety of hyperparameters (e.g., prepro-
cessing, residual connections, regularization).

All learning curves used to benchmark early discarding techniques were computed
and stored prior to the experimentation. We now describe this generating process. All
evaluated deep neural networks are trained for 100 epochs, which fixes imin = 1 and
imax = 100. For regression tasks, we used an external benchmark of pre-computed learn-
ing curves from HPOBench (Eggensperger et al., 2021a; Klein and Hutter, 2019a). The deep
neural networks from this benchmark are similar to ours but were generated from 9 hy-
perparameters listed in Table 5.1 and 4 datasets were used.

Hyperparameters ChoicesInitial LR {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}Batch Size {8, 16, 32, 64}LR Schedule {cosine,fix}Activation/Layer 1 {relu, tanh}Activation/Layer 2 {relu, tanh}Layer 1 Size {16, 32, 64, 128, 256, 512}Layer 2 Size {16, 32, 64, 128, 256, 512}Dropout/Layer 1 {0.0, 0.3, 0.6}Dropout/Layer 2 {0.0, 0.3, 0.6}

Table 5.1: Hyperparameter search space for regression benchmarks defined inHPOBench (Eggensperger et al., 2021a; Klein and Hutter, 2019a).
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Datasets were split into 3 folds. The training split was used to optimize the neural net-
work weights for a fixed hyperparameter configuration. The validation split was used to
optimize the hyperparameter configurations and serves as an estimate of generalization
performance. The test split was used as a final set of data to provide an unbiased report
of our results. The data split was 60% for training, 20% for validation, and 20% for testing
in the regression tasks, which was dictated by the setup of (Eggensperger et al., 2021a). In
the classification tasks, we chose the split to be 80% for training, 10% for validation, and
10% for test.

For classification tasks, we generated a set of 1,000 randomly sampled hyperparam-
eter configurations from a search space of 17 hyperparameters listed in Table 5.2. The
learning curve generation for each classification task required about 1 hour of computing
on 400 parallel NVIDIA A100 GPUs on the Polaris Supercomputer at the Argonne Leader-
ship Computing Facility.

Hyperparameters Choices

Activation Function {none, relu, sigmoid, softmax, softplus, softsign,tanh, selu, elu, exponential}Activity Regularizer {none, L1, L2, L1L2}Batch Normalization {True, False}Batch Size [1, 512] (log-scale)Bias Regularizer {none, L1, L2, L1L2}Dropout Rate [0.0, 0.9]

Kernel Initializer {random-normal, random-uniform, truncated-normal,zeros,ones, glorot-normal, glorot-uniform,he-normal,he-uniform,orthogonal, variance-scaling}Kernel Regularizer {none, L1, L2, L1L2}Learning Rate [10−5, 101] (log-scale)Number of Layers [1, 20]Number of Units [1, 200] (log-scale)Optimizer {SGD,RMSprop,Adam,Adadelta,Adagrad,Adamax,Nadam, Ftrl}Regularizer Factor [0.0, 1.0]Shuffle Each Epoch {True, False}Skip Connections {True, False}Transform Categorical {onehot,ordinal}Transform Real {minmax, std,none}
Table 5.2: Hyperparameter search space for classification benchmarks.

For all these configurations we compute the training, validation, and test learning
curves by collecting confusion matrices on predictions. Accounting for hyperparameter
configurations that resulted in failures (e.g., “nan” loss with overflow or underflow) we end
up with about 850 correct learning curves for each classification dataset. The diversity of
evaluated tasks is provided through the number of samples, features, classes or targets,
and the type of features (real or categorical) in Table 5.3.

5.3.2 . Experimental protocol
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Dataset (OpenML-Id) #Features #Samples #Classes
or #Targets

Real
Features

Categorical
Features

Slice Localization (42973) 380 53,500 1 True FalseProtein Structure (44963) 9 45,730 1 True FalseNaval Propulsion (44969) 14 11,934 1 True FalseParkinson’s Telemonitoring (4531) 20 5,875 2 True True
MNIST (554) 784 70,000 10 True FalseAustralian Electricity Market (151) 8 45,312 2 True TrueBank Marketing (1461) 16 45,211 2 True TrueLetter Recognition (6) 16 20,000 26 True FalseLetter Speech Recognition (300) 617 7,797 26 True FalseRobot Navigation (1497) 24 5,456 4 True FalseChess End-Game (3) 36 3,196 2 False TrueMultiple Features (Karhunen) (14) 76 2,000 10 True FalseMultiple Features (Fourier) (16) 64 2,000 10 True FalseSteel Plates Faults (40982) 27 1,941 7 True FalseQSAR Biodegradation (1494) 41 1,055 2 True FalseGerman Credit (31) 20 1,000 2 True TrueBlood Transfusion (1464) 4 748 2 True False

Table 5.3: Characteristics of datasets used for our experiments. On Top, the 4 datasetswere used for regression, and on the bottom, the 10 datasets were used for classification.The datasets are sorted by decreasing the number of samples.
As we are interested in evaluating early discarding techniques (blue diamond in Fig-

ure 5.1) isolated from the process which suggests hyperparameter configurations, we pro-
pose the following experimental protocol. The simulated process that suggests hyperpa-
rameter configurations (red rectangle in Figure 5.1) is a random sampling from the set of
pre-computed learning curves. This process is fixed by an initial random seed to simulate
the same stream of candidate learning curves to different early discarding techniques.
The number of search iterations (red diamond in Figure 5.1) is fixed to 200 (main con-
stant which makes outcomes of all experiments comparable). Once the (red) loop of 200
candidates is over, the Top-3 models observed are selected and trained to completion if
not already done. A model that was not trained to completion during the previous 200
iterations will be retrained from scratch. Of course, these additional training epochs are
accounted for in the total number of training epochs used by themethod. For example, in
1-Epoch after 200 iterations we select the Top-3 candidates based on the observed scores
cL, we train them to completion so it consumes an additional 3 × 100 epochs, then we
return the best from these 3. For 100-Epoch, as all evaluated models are already trained
to completion no additional training is required. The performance we report corresponds
to the score reached by “Method + Top-3” at any iteration of the search. This corresponds
to looking at the “any-time” performance of each early discarding method, that is looking
at what would be the outcome of the method if we were to stop after k hyperparameter
search iterations (red loop) for all k ∈ [imin = 1, imax = 100]. A fixed set of 10 random
seeds is set to perform 10 repetitions for each method. This protocol ensured that each
method was exposed to the same streams of candidates. Therefore the different out-
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comes observed are only coming from differences in the decisions taken by eachmethod
to stop or continue the training.

5.3.3 . Performance indicators
In this section, wedescribe the twoperformance indicators of importance in our study.

First, we detail the R2 metric (generalized to both regression and classification) used to
assess the predictive performance of evaluated hyperparameter configurations. Then, we
detail the hypervolume indicator (HVI) metric used to assess the quality of the solutions
for multi-objective optimization.

First, we introduce the coefficient of determinationR2 in the case of regression tasks,
where the target prediction is a real value, and, then we extend the notion to the case
of classification tasks, where the target prediction is a categorical value in the spirit of
(El-Yaniv et al., 2017), also called the Prediction Advantage. This metric is useful as it stan-
dardizes both regression and classification similarly which helps us homogenize regres-
sion and classification learning curves. A dataset D = {(x1, y1), ..., (xn, yn)} is composed
of i.i.d. variables from the joint distribution P (X,Y ). In regression, the usual definition of
R2 (a.k.a., coefficient of determination) is:

R2 := 1− SSres

SStot
= 1−

∑n
i=1(yi − ŷ(xi))

2∑n
i=1(yi − ȳ)2

(5.2)
whereSSres is the residual sumof squares,SStot is the total sumof squares, ȳ = 1

n

∑n
i=1 yiis the empirical mean of themarginal distribution P (Y ) and, ŷ(xi) is a prediction from our

model. This definition can also written as:
R2 = 1−

1
n

∑n
i=1 L2(yi, ŷ(xi))

1
n

∑n
i=1 L2(yi, ȳ) ≈ 1− E[(Y − E[Y |X])2|X]

E[(Y − E[Y ])2]
(5.3)

In the form given by Equation 5.3, the expectations E[Y ] and E[Y |X] correspond to the
optimal Bayes predictors for the squared loss L2(Y, Ŷ ) = (Y − Ŷ )2 respectively on the
marginal and conditional distributions. ThereforeR2 corresponds to the normalization of
the expected error of the optimal Bayes predictor on the conditional P (Y |X) distribution
by the expected error of the optimal Bayes predictor on the marginal distribution P (Y )

(a.k.a., constant or “dummy” predictor). In classification, we replace the squared-loss with
the 0 − 1 loss L0-1(Y, Ŷ ) = 1 if Y ̸= Ŷ else 0. The optimal Bayes predictor becomes the
mode instead of the mean (i.e., class with the highest probability). We then obtain a new
definition of R2 for classification:

R2 = 1−
1
n

∑
i L0-1(yi, ŷ(xi))

1
n

∑
i L0-1(yi, ẏ) (5.4)

where ẏ is the mode on the marginal distribution P (Y ). This is also known as the Predic-
tion Advantage (El-Yaniv et al., 2017). For both regression and classification, we have that
performance of zero means that the model is as bad as the optimal constant predictor
that only uses information from the marginal P (Y ) and ignores the input X . If the R2 is
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1 the prediction is “perfect” (which also means that there is no presence of random noise
on the target). In our study, the goal is to maximize theR2 score for improved predic-
tive performance which is equivalent to minimizing cL := 1−R2(θ, imax) in Equation 5.1(f(θ, i) returns the 1−R2 score for the hyperparameters θ at training epoch i).

Now that we have discussed the performance indicator for prediction we will present
themetric used to assess the quality ofmulti-objective optimization (MOO). For the sake of
brevity, we will not recall the formal definitions related to the notion of Pareto-optimality
in MOO. However, shortly we recall that Pareto-Front refers to the solution set in the ob-
jective space (i.e., 2-dimensional in our case as we have 2 objectives cL and cI ). As theseobjectives are (supposedly) conflicting, cL the predictive performance and cI the total
number of training iterations used, the Pareto-Front is a one-dimensional space (i.e., a
line) unless the problem is “degenerated”, meaning there is no real conflict between ob-
jectives and the solution set is therefore containing a single point. Among the possible
metrics used in MOO (Audet et al., 2021) and as we do not know the true Pareto-Front of
our problem we decide to use the hypervolume indicator (HVI). As we are in 2-D it cor-
responds to measuring the area defined by an estimated Pareto-Front and a reference
point (fixed for all experiments on the same dataset). The HVI is compliant with the notion
of Pareto-optimality and also known to measure the compare the diversity of solutions
(i.e., trade-offs) between different Pareto-Fronts. In our study, the goal is to identify
the early discarding technique which maximizes the Hypervolume indicator when
evaluated at different levels of aggressiveness.

5.4 . Experimental results

In this section, we present the results that helped us answer the research questions
introduced in Section 5.3.

5.4.1 . Anytime performance of early discarding techniques (RQ1)
To understand the anytime performance of early discarding techniques we plot the

1−R2 test performance as a function of overall training epochs realized so far. That is, a
curve that passes the point (t, l) in the plot means that the test score of the model that
would have beenpicked if theHPOprocess had stopped after t total training epochswould
have been l. This type of performance curve weighs training epochs equally for all hyper-
parameter configurations, which may be deceiving since they can vary in computational
cost (e.g., large and small neural networks). Still, it is a convenient simplemethod abstract-
ing from implementation details. We present the performance curves in Figures 5.2 and
5.3 for classification and regression respectively.

Themost important insight from the plots is that the sensitivity of the early discarding
techniques with respect to their aggressiveness parameter varies a lot. While the i-Epoch
and r-SHA algorithms are very sensitive to the aggressiveness (as expected), the learning
curve extrapolation-based methods (i.e., ρ-LCE and ρ-PFN) are surprisingly less sensitive
to aggressiveness parameter ρ. This can be observed especially on the set of classification
tasks shown in Figure 5.3. In other words, for ρ-LCE and ρ-PFN, it almost makes no differ-
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(a) Slice Localization (b) Protein Structure

(c) Naval Propulsion (d) Parkinson’s Telemonitoring
Figure 5.2: Comparing the any-time performance of various early discarding techniquesduring a random search (mean and one standard error over 10 repetitions) of 200 iter-ations (4 regression tasks). The two baseline strategies 1-Epoch and 100-Epoch methodbound the trade-offs that can be achieved. The predictive performance of 1-Epoch is
at least of the same order of magnitude as other strategies while consuming a sig-
nificantly smaller (the minimum in training epochs) number of training epochs.

ence in consumed training epochs whether the user requires almost certainty (ρ = 0.95)
or whether the certainty is just as good as a coin flip (ρ = 0.5). This could indicate that the
models express too little uncertainty about the extrapolated learning curve.

Another observation is that the ρ-PFN method hardly reduces the overall training
epochs used by 100-Epoch as can be seen for all datasets. It means that the learning
curve extrapolation of this method is probably over-optimistic. It even seems to perform
worse than 100-Epoch for both predictive performance and overall training epochs used
on learning curves which are very noisy and increasing. These failures can be observed
in Figures 5.3c, 5.3l and 5.3m.

A third observation is that ρ-LCE while being a more robust version of LCE, can still
under-perform in achieving predictive performance even when being set to be conserva-
tive (ρ=0.95). This can be seen in Figures 5.2d, 5.3d, 5.3h and 5.3k. This confirms our belief
that such models express too little uncertainty about the extrapolation.

From the practical viewpoint, no utopia method has yet been found. A utopia method
would achieve a strict and consistent dominance compared to the 100-Epoch baseline.
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(a) MNIST (b) Australian ElectricityMarket (c) Bank Marketing

(d) Letter Recognition (e) Speech Recognition (f) Robot Navigation

(g) Chess End-Game (h) Multiple Features(Karhunen) (i) Multiple Features (Fourier)

(j) QSAR Biodegradation (k) Steel Plates Faults (l) German Credit

(m) Blood Transfusion
Figure 5.3: Comparing the any-time performance of various early discarding techniquesduring a random search (mean and one standard error over 10 repetitions) of 200 itera-tions (on 13 classification tasks).
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(a) Naval Propulsion (b) Parkinson’s Telemonitoring

(c) Protein Structure (d) Slice Localization
Figure 5.4: Multi-objective profiles built from spanning various levels of aggressivenessof early discarding methods (on 4 regression tasks). The estimated Pareto-Front of eachmethod is shown in a plane line. The black dotted line corresponds to the estimatedPareto-Front including the methods altogether. It can be seen that the i-Epoch strat-
egy spans more trade-offs (larger area) than other methods while never being sig-
nificantly dominated.
That is a method that achieves, on all tasks, better predictive performance while being
faster than the base full training evaluation. Such a method seems not to exist currently
and may not exist if both objectives cL and cI are truly conflicting.Finally, the presented performance curve plots also show the importance of consid-
ering the 1-Epoch baseline to contextualize results and avoid an overly optimistic presen-
tation of the methods. Without the solid red line which corresponds to 1-Epoch, ρ-LCE
might appear a quite dominant approach in this experimental setting. While it is true that
learning curve extrapolation-based methods are very convincing in many cases, there
are several datasets, such as Protein Structure (Figure 5.2b), Parkinson’s Telemonitoring
(Figure 5.2d), MNIST (Figure 5.3a), QSAR-Biodegradation (Figure 5.3j), or German Credit
(Figure 5.3l), in which the 1-Epoch baseline can reduce the number of epochs of LCE again
by about 50% without losing significant or any predictive performance.

5.4.2 . Trade-offs between predictive accuracy and speed (RQ2)
While the previous question only considers two extreme configurations to understand

the sensitivity of the HPO process concerning the aggressiveness of the early discarding
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(a) MNIST (b) Australian ElectricityMarket (c) Bank Marketing

(d) Letter Recognition (e) Letter Speech Recognition (f) Robot Navigation

(g) Chess End-Game (h) Multiple Features(Karhunen) (i) Multiple Features (Fourier)

(j) Steel Plates Faults (k) QSAR Biodegradation (l) German Credit

(m) Blood Transfusion
Figure 5.5: Multi-objective profiles built from spanning various levels of aggressivenessof early discarding methods (13 classification tasks). The estimated Pareto-Front of eachmethod is shown in a plane line. The black dotted line corresponds to the estimatedPareto-Front including the methods altogether. It can be seen that the i-Epoch strat-
egy spans more trade-offs (larger area) than other methods while never being sig-
nificantly dominated.
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technique, we now want to better understand the actual trade-offs that each method can
span. At this point, we no longer look at any time performance but instead, we look at the
final predictive performance and overall consumed training epochs for one aggressive-
ness setting. Once all methods and all aggressiveness levels are collected we compute
the Pareto-Front of each early discarding method which does not always contain all eval-
uated points.

From the results presented in the previous section, we already know that the Pareto-
Fronts of ρ-PFN will be strictly dominated by other techniques (i.e., the area/hypervolume
it defines will be strictly included in the area of other methods). Since even the difference
between minimum (ρ = 0.95) and maximum aggressiveness (ρ = 0.5) had only minimal
effect, one expects the area covered by ρ-PFN in the multi-objective profile to be narrow.

Themulti-objective profiles and the corresponding Pareto-Fronts are presented in Fig-
ures 5.4 and 5.5. For i-Epoch, a value was computed for each 1 ≤ i ≤ 100. For ρ-LCE and
ρ-PFN, we used values of ρ ∈ {0.5, 0.7, 0.8, 0.9, 0.95}, and for r-SHA we used values of
r ∈ {

√√
2 = 1.19,

√
2 = 1.41, 2, 4, 8, 16, 32, 64}. For each approach, the Pareto-optimal

points are connected with a step function to indicate the respective Pareto frontier. The
shaded areas show the hypervolume of each approach.

Some plots, like in Fig. 5.4a, suggest a certain inconsistency in the trade-off logic of
i-Epoch in the sense that many points of a single method do not lie on the samemethod’s
Pareto frontier. However, this can often be attributed to noise on rather small scales.
For example, in the mentioned plot, differences are on a scale below 10−3, i.e., less than
0.1% difference in performance in terms of the constant predictor baseline. For the other
methods, this effect is less pronounced or does not occur becausemuch fewer points are
generated and the change in aggressiveness is more significant (10%-steps in the case of
ρ compared to single epochs in the case of i-Epoch).

The first observation confirmsour expectation that learning curve extrapolation-based
techniques offer little diversity of trade-offs. ρ-LCE, no matter how aggressiveness is
configured, tends to use about 10x less training epoch than 100-Epoch while sometimes
slightly under-performing in attained predictive performance. And, again, PFN on most
datasets offers almost no reductions regardless of the configuration of ρ.

5.4.3 . Identifying the most complete early discarding technique (RQ3)
To quantity the observation that i-Epoch offers a more diverse set of trade-offs we

compute the relative hypervolume spanned by each method in Figures 5.4 and 5.5. To
evaluate the hypervolume we set as reference point cref := (maxµL+σerrL ,maxµB +σerrB )

(i.e., element-wise upper-bound of observations) for all methods. Then we apply a log10(.)transformations on both cL and cI values (including the reference point). This transfor-mation serves to spread the volume contributed by small and large values equally. Other-
wise, differences in hypervolume would become unnoticeable as soon as improvements
in cL or cI become the order ofmagnitude smaller than the largest reference point values.
Finally, we compute the hypervolume of all methods which we divide the hypervolume of
the Pareto-Front considering all observations (in dotted black line). This relative hypervol-
ume then quantifies howmuch eachmethod contributes to the available set of trade-offs
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that we observed. The closer is the value to 1 the more complete the method. The result-
ing scores are presented in Table 5.4.

As it can be observed i-Epoch achieves the highest scores on all but one task giving
it an average rank of 1.125. The second best-ranked method is ρ-SHA followed by ρ-LCE.
The ρ-PFNmethod consistently finishes last ranked on all tested tasks. Lastly, we also no-
tice that relative hypervolume scores of i-Epoch are often close to 1 which confirms
that this method spans most of the observed trade-offs and it is never significantly
outperformed in either objective.

Dataset r-SHA ρ-PFN ρ-LCE i-EpochSlice Localization 0.930 0.401 0.823 0.932Protein Structure 0.916 0.241 0.652 0.989Naval Propulsion 0.881 0.280 0.742 0.951Parkinson’s Telemonitoring 0.930 0.201 0.667 0.880MNIST 0.858 0.176 0.743 0.994Australian Electricity Market 0.768 0.205 0.829 1.000Bank Marketing 0.609 0.184 0.847 0.989Letter Recognition 0.851 0.169 0.672 0.988Letter Speech Recognition 0.915 0.175 0.810 0.974Robot Navigation 0.882 0.218 0.789 0.992Chess End-Game 0.866 0.233 0.827 0.965Multiple Features (Karhunen) 0.901 0.231 0.606 0.955Multiple Features (Fourier) 0.936 0.239 0.697 0.951Steel Plates Faults 0.806 0.257 0.644 0.923QSAR Biodegradation 0.141 0.037 0.176 0.993German Credit 0.585 0.198 0.800 0.970Blood Transfusion 0.811 0.167 0.753 0.856
Average Rank 2.029 4.000 2.846 1.125

Table 5.4: Relative hypervolumes of each early discarding technique concerning the hy-pervolume including all the techniques. Bold and green is best, followed by yellow, orangeand red. These scores assess the diversity of trade-offs, in consumed training epochs andpredictive performance, offered by each technique among all observed outcomes. Thehigher the score themore complete (in terms of possible trade-offs) is the early discardingtechnique. In our experiments, the i-Epoch technique offers the best set of trade-offsand achieves a trade-off close to 1 indicating optimality amongst all methods.

5.4.4 . Theunreasonable effectiveness of early discarding after 1-Epoch (RQ4)
Last but not least, throughout our presented results we can notice the unreasonable

effectiveness of 1-Epoch. Despite sometimes being noisier in its performance profiles such
as in Figures 5.2c, 5.5f and,5.5l, it always achieved better any-time performance than other
early discarding methods. This is demonstrated by the fact that its performance curve
does not cross with the performance curves of other methods. However, the difference
in final predictive performance cL can sometimes be statistically significant such as in
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(a) Naval Propulsion (b) Parkinson’s Telemonitoring

(c) Protein Structure (d) Slice Localization
Figure 5.6: Visualizing the final ranking for good (light blue) and bad (yellow) models for500 randomly sampled learning curves (on 4 regression tasks). The constant predictorperformance (at 0) is shown as a green dashed line. Models can be selected from the
first epoch as there appear to be dominant models early on in the training epochs.

Figures 5.3c, 5.3g, 5.3i and, 5.3k which confirms the trade-off between the two objectives.
How is it possible this approach can perform so well? To better understand this, we

analyze the learning curves of our experiments. In Figures 5.6 and 5.7 we display 500
randomly sampled learning curves from our pre-computed sets, we then color the curves
by their ranking at 100 epochs (the maximum number of training epochs). Low ranks,
colored in light blue, correspond to the best models, while high ranks, colored in red and
then yellow, correspond to the worst models. We plot the performance of the constant
predictor as a dashed lime line and also plot its rank.

In these plots, it can be observed that for all benchmarks there exists among the
best models some that are also the best early in the training process. This observa-
tion explains the performance of 1-Epoch. Then, in a few cases, we can observe a signif-
icant proportion of models perform worse than the constant predictor. It is about
33% ofmodels in Figure 5.6a and about 80% ofmodels in 5.7g to 5.7i. Finally, it seems that
learning curve oscillations are correlatedwith thefinal predictive performance. The
best models present much fewer oscillations than the worst models, which justifies high
aggressiveness in the early discarding method.
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(a) MNIST (b) Australian ElectricityMarket (c) Bank Marketing

(d) Letter Recognition (e) Letter Speech Recognition (f) Robot Navigation

(g) Chess End-Game (h) Multiple Features(Karhunen) (i) Multiple Features (Fourier)

(j) QSAR Biodegradation (k) Steel Plates Faults (l) German Credit

(m) Blood Transfusion
Figure 5.7: Visualizing the final ranking for good (light blue) and bad (yellow) models for500 randomly sampled learning curves (on 13 classification tasks). The constant predictorperformance (at 0) is shown as a green dashed line. Models can be selected from the
first epoch as there appear to be dominant models early on in the training epochs.
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5.5 . Conclusion

In this paper, we conducted a comprehensive analysis of early discarding techniques
for hyperparameter optimization of fully connected deep neural networks. Our study rig-
orously compared an array of advanced techniques and unveiled intriguing findings: (1)
the unreasonable effectiveness of the 1-Epoch strategy, a straightforward yet previ-
ously overlooked baseline method, and (2) the Pareto-dominance of the i-Epoch strat-
egy despite its simplicity.

We attribute the success of this strategy to effectively differentiating between high
and low-potential models in the early stages of training. Notably, models with promis-
ing prospects exhibit minimal performance oscillations, a pattern consistently observed
in widely used benchmarks. These insights not only underscore the importance of incor-
porating the i-Epoch strategy in future benchmark analyses but also highlight the poten-
tial necessity of considering the multi-objective problem hidden behind early discarding
strategies. An early discarding method would bring significant value only if it com-
plements or dominates the i-Epoch Pareto-Front. Current early discarding approaches
only add minimal or no utility in this sense.

Besides its good performance, we believe that 1-Epoch’s simplicity is valuable in itself.
Besides being easy to implement, before execution, it is easy to predict the number of
training epochs consumed by i-Epoch for any i when it is not possible for either ρ-LCE or
r-SHA. This makes i-Epoch practically attractive.

To be noted, our work is limited to using “epoch" as iteration units for early discarding.
While this is convenient and appealing to conduct studies independent of hardware im-
plementation considerations, practical application settings may require considering wall
time or other options as units for early discarding. In particular, since different configura-
tions may have different batch sizes, some configurations could be much faster to train
than others. However, comparing wall-clock time is extremely hardware and software
implementation dependent. Maybe considering the size of the deep neural network as a
third objective of Equation 5.1 could be an improvement.

We have tried a limited range for the aggressiveness parameters of ρ-LCE and r-SHA.
Their Pareto-Front could be larger and more dominant for a wider range of parameters
considered. However, values of ρ < 0.5 seem relatively strange for ρ-LCE because in that
case it will be very pessimistic about extrapolated performance and discard models as
soon as there is a small probability of under-performing. r-SHA could bemore aggressive
but it should be noted that our largest reduction factor of 64 corresponds to continuing
training only if the model is in the current Top-1.5% meaning comparing to the single
best model after 100 Hyperparameter suggestions and Top-3 of 200. Also, this value is
significantly larger than the suggested default value of 4 in the original paper(Li et al.,
2020).

Also, we studied the early discarding methods in combination with a random search.
In other words, HPO is often combined with techniques that suggest candidates usemore
sophisticated methods, such as Bayesian optimization or portfolio (Jamieson and Tal-
walkar, 2016; Li et al., 2017; Falkner et al., 2018; Awad et al., 2021). However, for such ap-
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proaches we cannot quantify the computational cost as easily through the number of
epochs, as the Bayesian optimization may not be a neural net. Besides that, the com-
parison becomes more complicated, because the different components (configuration
proposer, early discarding technique, etc.) may interact in unexpected ways. Therefore,
such a comparison is out of the scope.

To come back to the question of the earlier work: is one epoch all you need? We think
the answer remains to be seen, in particular, we think that the 1-epoch approach can be
even pushed further. During the first epoch, more information is available for making
decisions. For example, the loss per batch could be collected. This again forms a curve of
performances versus the number of batches processed, which seems conceptually sim-
ilar to a learning curve. This curve could be extrapolated as well. This will allow us to
make potentially better decisions after 1 epoch or even training could be stopped before
finishing one epoch. The latter could be especially promising for large language models,
for which one epoch of training can already consume hours of training time.
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6 - Uncertainty quantification through deep ensem-
bles fromhyperparameter optimization checkpoints

Through previous chapters we understood how to efficiently explore configura-
tions of learning workflows. However, the resulting predictors generally did not
estimate uncertainty. In the case of deep neural networks, ensembles can be used
to quantify such uncertainty and hard know to be competitive with Bayesian ap-
proaches while benefiting from better computational scalability. Still, building a
good ensemble of deep neural networks is hard because the hyperparameters
of each member of this ensemble needs to be optimized for improved diversity
(known quality of a good ensemble). To address this issue, in this chapter we
propose AutoDEUQ, an automated approach for generating an ensemble of deep
neural networks. Our approach leverages the joint neural architecture and hy-
perparameter search to generate ensembles. We use the law of total variance to
decompose the predictive variance of deep ensembles into aleatoric (data) and
epistemic (model) uncertainties. We show that AutoDEUQ outperforms state-of-
the-hart methods such as probabilistic backpropagation, Monte Carlo dropout,
deep ensemble, distribution-free ensembles, and hyper ensemble methods on a
number of regression benchmarks.
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6.1 . Introduction to deep neural network uncertainty quantification

Uncertainty quantification (UQ) for machine-learning-based predictive models is cru-
cial for assessing the trustworthiness of predictions from the trained model. For deep
neural networks (DNNs), it is desirable for predictions to be accompanied with estimates
of uncertainty because of the black-box nature of the function approximation. Two ma-
jor forms of uncertainty exist (Hüllermeier and Waegeman, 2021): aleatoric data uncer-
tainty and epistemic model uncertainty. The former occurs due to the inherent variabil-
ity or noise in the data. The latter is attributed to the uncertainty associated with the
neural network model parameter estimation or out-of-distribution predictions. The epis-
temic uncertainty increases in the regions that are not well represented in the training
dataset (Gal and Ghahramani, 2016a). While the aleatoric uncertainty is irreducible, the
epistemic uncertainty can be reduced by collecting more training data in the appropriate
regions.

Several researchers have looked at extending deterministic neural networks to prob-
abilistic models. A strongly advocated method is to have a fully Bayesian formulation,
where each trainable parameter in a Dneural network is assumed to be sampled from a
very high-dimensional (and arbitrary) joint distribution (Neal, 2012). However, this is com-
putationally infeasible, for example because of issues of convergence, for any practical
deep learning tasks with millions of trainable parameters in the architecture and hav-
ing large datasets. Consequently, several approximations to fully Bayesian formulations
have been put forth to reduce the computational complexity of uncertainty quantification
in DNNs. These range from simple augmentations such as the mean-field approximation
in Bayesian backpropagation via variational inference (Hoffman et al., 2013; Hernández-
Lobato and Adams, 2015), where each parameter is assumed to be sampled from an inde-
pendent unimodal Gaussian distribution, to Monte Carlo dropout (Srivastava et al., 2014),
where randomneurons are switched offduring training and inference to obtain ensemble
predictions.

Ensemblemethods that utilizemultiple independently trained DNNs have shown con-
siderable promise for uncertainty quantification (Lakshminarayanan et al., 2017; Ovadia
et al., 2019; Ashukha et al., 2020) by outperforming conventional approximations to the
fully Bayesianmethodology. Blundell et al. (Wilson and Izmailov, 2020) argue that the deep
ensembles approach is fully congruouswith Bayesianmodel averaging, which attempts to
estimate the posterior distribution of the targets given input data bymarginalizing the pa-
rameters. However, a key factor in deep ensembles is model diversity without which un-
certainty cannot be captured efficiently. For example, in (Lakshminarayanan et al., 2017),
eachmember of the ensemble has an identical neural architecture and is trained by using
maximum likelihood ormaximumaposteriori optimization through different initialization
of weights. Consequently, ensemble diversity is limited since each model can at best set-
tle on distinct local minima. Marginalization over these models in the ensemble will force
the function approximation to collapse on one hypothesis and provide results similar to
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Bayesian model averaging for a single architecture with probabilistic trainable parame-
ters. Such an implicit assumption may be undesirable when dealing with datasets that
are generated from a combination of hypotheses. Moreover, the lack of flexibility in the
ensemble may lead to a poorer estimate of epistemic uncertainty. Although Wenzel et
al. (Wenzel et al., 2021) attempted to relax this issue by allowing more diversity in the en-
semble, they vary just two hyperparameters. Similarly, Zaidi et al. (Zaidi et al., 2020) vary
the architecture with fixed trainable hyperparameters to increase the ensemble diversity.
By constructing diverse DNNsmodels through amethodical and automated approach, we
hypothesize that the assumption of and the eventual collapse to one hypothesis can be
avoided, thus providing robust and efficient estimates of uncertainty.

6.1.1 . Overview of problems and methods
To model aleatoric uncertainty, one must model the conditional distribution p (y | x)

for the target y given an input x. One way is to assume that this distribution is Gaussian
and then estimate its parameters (mean and variance) (Nix andWeigend, 1994). However,
these estimates summarize conditional distributions into scalar values and are thus un-
able to model more complex profiles of uncertainty such as multimodal or heteroscedas-
tic profiles (i.e., where the noise depends on the input x). To resolve this issue, one can
use implicit generativemodels (Mohamed and Lakshminarayanan, 2016) andmixture den-
sity networks (Bishop, 1994). A different approach is deep kernel learning (van Amersfoort
et al., 2021), which extracts kernels and uses them in Gaussian-process-basedmethods for
datasets with large features and sample size. However, this adds additional complexity
because one must find the correct hyperparameters. An alternative strategy is to directly
output prediction intervals from the neural network, such as in (Pearce et al., 2018), which
has the advantage of not requiring any distribution assumption on the output variables.
However, these methods are ill-equipped to quantify epistemic uncertainty.

Several methods for epistemic uncertainty have been proposed. Bayesian neural net-
works (Bneural networks) (Maddox et al., 2019) and deep ensembles (Caruana et al., 2006)
are the main approaches. In Bneural network, the weights are assumed to follow a joint
distribution, and the epistemic uncertainty is quantified through Bayesian inference. Ex-
cept for trivial cases, however, Bayesian inference is computationally intractable. There-
fore, several approximations to Bneural network have been proposed, such as proba-
bilistic backpropagation (PBP) (Hernández-Lobato and Adams, 2015) and Bayes by Back-
prop (Blundell et al., 2015). In deep ensembles (Lakshminarayanan et al., 2017), multiple
networks are aggregated to quantify the uncertainty. Each network in the ensemble pro-
vides an estimate of aleatoric uncertainty, while their aggregation provides an estimate
of epistemic uncertainty. However, the members of such ensembles often have similar
architecture and hyperparameter values but with different weights generated through
randomweight initialization in addition to the stochastic aspect of the training procedure.
Recently, new automated methods were proposed to improve deep ensembles, wherein
hyperparameters (Wenzel et al., 2021) or neural architecture decision variables (Zaidi et al.,
2020) are varied to improve the diversity of models in the ensemble to achieve improved
aleatoric and epistemic uncertainty estimates.
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Recently, Russell and Reale (Russell and Reale, 2021) developed a joint covariance ma-
trix with end-to-end training using a Kalman filter to represent aleatoric uncertainty while
using dropout to estimate the epistemic component. Although not an ensemble method,
it models aleatoric and epistemic at the same time.

6.1.2 . Contributions
Given training and validation data, the proposed AutoDEUQ method (i) starts from a

user-defined neural architecture and hyperparameter search space; (ii) leverages aging
evolution and Bayesian optimizationmethods to automatically tune the architecture deci-
sion variables and training hyperparameters, respectively; (iii) builds a catalog of models
from the search; and (iv) uses a greedy heuristic to select models from the catalog to
construct ensembles. The predictions from the ensemble models are then used to es-
timate the aleatoric and epistemic uncertainty. AutoDEUQ is built on the successes of
three recent works in the deep ensemble literature: deep ensemble (Lakshminarayanan
et al., 2017), hyper ensemble (Wenzel et al., 2021), and neural ensemble search (Zaidi et al.,
2020). However, our AutoDEUQmethoddiffers fromdeep ensemble in the followingways.
While aleatoric and epistemic uncertainties are modeled empirically, we theoretically de-
compose the predicted variance of deep ensembles into its aleatoric and epistemic com-
ponents. Moreover, in AutoDEUQ, the Dneural network architectures and the training
hyperparameter values in the ensembles are different, and more importantly they are
generated automatically. While hyper ensemble and neural ensemble methods explore
hyperparameters and architectural choices, respectively, and generate ensembles, Au-
toDEUQ explores both spaces simultaneously. The key contributions of the paper are
as follows: (1) automation of deep ensembles construction with joint neural architecture
and hyperparameter search and (2) demonstration of improved uncertainty quantifica-
tion compared with prior ensemblemethods and, consequently, advancement of state of
the art in deep ensembles.

6.2 . Automateddeepensemblewithuncertaintyquantification (AutoDEUQ)

We focus on uncertainty estimation in a regression setting. Our methodology, auto-
mated deep ensemble for uncertainty quantification (AutoDEUQ), estimates aleatoric and
epistemic uncertainties by automatically generating a catalog of neural networks through
joint neural architecture and hyperparameter search, wherein each model is trained to
minimize the negative log likelihood to capture aleatoric uncertainty, and selecting a set
of models from the catalog to construct the ensembles and model epistemic uncertainty
without losing the quality of aleatoric uncertainty.

6.2.1 . Uncertainty quantification in deep ensembles
In supervised learning, the datasetD is composedofn realisations (xi, yi) from i.i.d. ran-

dom variables with supportX ×Y , where xi are called the inputs and yi are called the tar-gets. Here, we focus on regression problems, wherein the targets are real valued. Given
D, we seek to approximate the true probability density function p (y|x) using an ensemble
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of trained predictors α, in our case deep neural networks. Each neural network is used
as a model pα (y|x) of the true density function p (y|x). Following previous work (Lak-
shminarayanan et al., 2017), we assume that the true distribution follows a normal law
P (Y |X) ∼ N (µ, σ2) with mean µ and variance σ2. Then, a neural network is model of
the density of this law, pα (y|x) ∼ N (µα(x), σ

2
α(x)) where µα(x) is the learned predicted

mean and, σ2
α(x) is the learned predicted variance. The later being an approximation of

the true conditional varianceVY [Y |X = x], also known as aleatoric uncertainty. The epis-
temic uncertainty, related to the model this time, is estimated through the ensemble of
deep neural networks pξ (y|x)We represent each neural network αθ,wθ

by a tuple of its hyperparameters θ ∈ Θ and
weights wθ ∈ W(θ). For simplicity we will use the α notation in place of αθ,wθ

in the re-
maning of the chapter. Where Θ is the hyperparameter space and W(θ) is the space of
weights that can be attained given hyperparameters θ. Hyperparameters are partitionned
into θ = (θa, θp) ∈ Θa ×Θp, where Θa represents the neural network architecture hyper-parameters (i.e., describing the neural network topology), Θp represents neural networktraining pipeline hyperparameters (e.g., data preprocessing, learning rate, batch size).

As neural networks are trained to learn mean µα(x) and variance σ2
α(x), the goal isto find α such that the the likelihood p (D|α) of the data D is maximised. As described

by Lakshminarayanan et al. (2017), this corresponds to finding α such that the negative
log-likelihood loss is minimized (as opposed to the usual squared error), given by:

L (x, y;α) = − log pα (y|x) = − log
(
2πσ2

α(x)
)

2
− (y − µα(x))

2

2σ2
α(x)

(6.1)
To model epistemic uncertainty, we build an ensembles of such trained neural net-

works (Lakshminarayanan et al., 2017). In our approach, we first generate a catalog of
I ∈ Z checkpointed neural networks A := {α1, . . . , αI} (where α represents the neural
network architecture, training pipeline hyperparameters, and weights) during a hyperpa-
rameter optimization. Then, we iteratively select K ∈ Z of these checkpointed models
(with replacement) to form an ensemble ξ := {α1, . . . , αK}. This ensemble then repre-
sents a mixture distribution with density pξ (y|x) = 1

K

∑K
k=1 pαi (y|x) also approximating

the true density p (y|x). The mean of the mixture density is µξ(x) :=
1
K

∑K
k=1 µα(x), andthe variance (Rudary, 2009) is given by applying the law of total variance (Theorem 3.1):

σ2
ξ (x) = EA

[
σ2
A(x)

]︸ ︷︷ ︸
Aleatoric Uncertainty

+ VA [µA(x)]︸ ︷︷ ︸
Epistemic Uncertainty

, (6.2)

where E [.] is the expectation,V [.] is the variance andA is a random variable correspond-
ing to the deep neural network predictor. Equation (6.2) formally provides the decom-
position of overall uncertainty of the ensemble into its individual components such that
EA

[
σ2
A(x)

]marginalizes the effect ofA (the learnedmodel) and captures the aleatoric un-
certainty andVA [µA(x)] captures the variability of predictions between different models,
therefore capturing the epistemic uncertainty (a.k.a., uncertainty about the model).
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We write the empirical estimate of the mean and variance of the ensemble as:
µξ(x) =

1

K

K∑
k=1

µαk
(x)

σ2
ξ (x) =

1

K

K∑
k=1

σ2
αk
(x)︸ ︷︷ ︸

Aleatoric Uncertainty

+
1

K

K∑
k=1

(µαk
(x)− µξ(x))

2

︸ ︷︷ ︸
Epistemic Uncertainty

,
(6.3)

where K is the size of the ensemble. The total uncertainty quantified by σ2
ξ (x) is a com-

bination of aleatoric and epistemic uncertainty, which are given by the the mean of the
predictive variance of eachmodel in the ensemble and the predictive variance of themean
of each model in the ensemble.

6.2.2 . Building an ensemble from a diverse catalog of deep neural networks
LetD be decomposed asD = Dtrain∪Dvalid∪Dtest, referring to the training, validation,and test data, respectively. A neural architecture configuration θa is a vector from the neu-

ral architecture search spaceΘa, defined by a set of neural architecture decision variables.A hyperparameter configuration θp is a vector from the training pipeline hyperparameter
search space Θp defined by a set of hyperparameters used for training or preprocessing
the data (e.g., data normalization, learning rate, batch size). Following Problem 2.2, the
empirical problem of joint neural architecture and hyperparameter search can be formu-
lated as:

θ∗ = argmin
θ∈Θ

1

|Dvalid|
∑

(xi,yi)∈Dvalid
L
(
xi, yi;αθ,wθ∗

)
s.t. wθ

∗ = argmin
wθ∈W(θ)

1

|Dtrain|
∑

(xj ,yj)∈Dtrain
L (xj , yj ;αθ,wθ

)
(6.4)

whereL (.) is the negative log-likelihood (Equation 6.1), xi, yi are samples from thedataset,
the hyperparameters θ include both the neural architecture θa and the pipeline hyperpa-rameters θp, andwθ areweights of the neural network for the corresponding hyperparam-
eters. The hyperparameter are selected based on the validation setDvalid and the weightsare selected based on the training set Dtrain. As the sub-problem is solved through the
learner (Definition 2.4) the empirical problem we solve can be written as:

Θ∗ = argmin
θ∈Θ

1

|Dvalid|
∑

(xi,yi)∈Dvalid
L (xi, yi;βθ(Dtrain, E)) (6.5)

whereΘ∗ is a randomvariable because of the randomness from E the randomized learner
(e.g., , weight initialization, stochastic gradient descent). The pseudo code of the Au-
toDEUQ is shown in Algorithm 4. To perform a joint neural architecture and hyperpa-
rameter search, we leverage aging evolution with asynchronous Bayesian optimization
(AgEBO) (Égelé et al., 2021).

Aging evolution (AgE) (Real et al., 2018) is a centralized parallel neural architecture
search (NAS)method for searching over the neural architecture space. TheAgEBOmethod
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Algorithm 4: Automated Deep Ensemble with Uncertainty Quantification (Au-toDEUQ)
Inputs : thetaSpace: a configuration space, nInitial: the number of initial hyperparameter configurationsfor Bayesian optimization, f: a function that returns the cost of the learning workflow, nPopulation:the population size for aging evolution, nSample: the sample size for aging evolution, nWorker: thenumber of parallel workers, nEnsemble: the number of unique elements in the ensemble.
Output: ensemble the ensemble of selected trained deep neural networks.

1 thetaArray, costArray← New empty arrays of hyperparameter configurations and costs ;
2 catalog← New empty list ;
3 model← New surrogate model for Bayesian optimization ;
4 population← New empty queue of size nPopulation for Aging Evolution;
5 nFreeWorker← nWorker ;

/* Hyperparameter optimization (with AgEBO (Égelé et al., 2021)) */
6 while stopping criteria not valid do
7 for i ∈ [|1, nFreeWorker|] do

/* Select pipeline hyperparameters with (asynchronous) Bayesian optimiaztion */
8 if Length of thetaArray< nInitial then
9 thetaPipeline← Sample pipeline hyperparameters from thetaSpace ;

10 else
11 Update model with pipeline hyperparameters from thetaArray and costArray ;
12 thetaPipeline← Returns theta in thetaSpace that minimizes the acquisition function ;
13 end

/* Select neural architecture hyperparameters with (asynchronous) Aging Evolution
*/

14 if Length of population< nPopulation then
15 thetaArchitecture← Sample neural architecture hyperparameters from thetaSpace ;
16 else
17 sample← Select randomly without replacement nSample elements from population ;
18 parentArchitecture← Select the element from sample with lowest cost ;
19 thetaArchitecture← Apply a random mutation to parentArchitecture ;
20 end
21 theta← Concatenate architecture and pipeline hyperparameters ;
22 Submit theta to be evaluated by a free worker ;
23 nFreeWorker← nFreeWorker− 1 ;
24 end
25 weightDone, thetaDone, costDone← Returns weights, hyperparameters, and costs of completedevaluations ;
26 Push thetaDone, costDone in population queue ;
27 nFreeWorker← nFreeWorker+ length(thetaDone) ;
28 thetaArray, costArray← Concatenate thetaArray with thetaDone and costArray with costDone;
29 catalog← Add new trained neural networks (thetaDone, weightDone) to catalog ;
30 end

/* Ensemble Construction (with greedy selection (Caruana et al., 2004)) */
31 ensemble← New empty list ;
32 ensembleLoss← +∞
33 while Unique elements in ensemble ≤ nEnsemble do
34 modelLoss, model← Returns loss and model in catalog for which ensemble ∪ {model} has minimal losson the validation dataset ;
35 if modelLoss ≤ ensembleLoss then
36 ensemble← ensemble ∪ {model} ;
37 ensembleLoss← modelLoss ;
38 else
39 return ensemble
40 end
41 end
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follows themanager-worker paradigm, wherein amanager process runs a searchmethod
to generate multiple neural networks (including architecture and pipeline hyperparame-
ters). Several parallel worker processes train these neural networks simultaneously The
AgEBOmethod starts by sampling nFreeWorker neural architecture pipeline hyperparam-
eters (lines 9 and 15). The neural networks obtained by using these concatenated hyper-
parameter (line 21) are sent for simultaneous evaluation on nFreeWorkerworkers (line 22).
Then, we check whether any of the workers finish their evaluation (line 25), collect trained
weights, hyperparameters and validation metrics. These results are used to generate
the next set of neural architectures (lines 11-12) and pipeline hyperparameters (lines 17-
19) to fill up free workers. For select the next neural architecture, from the incumbent
population, nSample neural networks are sampled (line 17). The best neural architec-
ture is selected from this sample (line 18). A random mutation is applied to generate a
child architecture configuration (line 19). This mutation is obtained by first randomly se-
lecting an architecture decision variable from the selected neural network and replacing
its value with another randomly selected value excluding the current value. The AgEBO
optimizes the pipeline hyperparameters by using a centralized asynchronous Bayesian
optimization (asynchronous centralized and parallel version of Algorithm 1). To generate
multiple multiple pipeline hyperparameters at the same time, the Bayesian optimization
leverages amultipoint acquisition function based on a constant liar strategy (Ginsbourger
et al., 2010a).

The catalog catalog of neural networks is obtained by storing all the evaluated neural
networks (line 29). Then, to build the ensemble ensemble, we adopt a greedy selection
strategy (lines 31-41) (Caruana et al., 2004). At each step, the neural network from the
catalog thatmost improves the negative log likelihood (Equation 6.1 on the validation data
Dvalid of the incumbent ensemble is added to the ensemble (lines 34-36). The greedy
approach can work well when the validation data is representative of the generalisation
task (i.e., big enough, diverse enough, with good coverage) (Caruana et al., 2004).

6.3 . Experimental results

We first describe the search space used in AutoDEUQ. Next, using a one-dimensional
dataset, we present an ablation study to analyze the impact of different components of
AutoDEUQ. Then, we compare AutoDEUQ with other methods.

6.3.1 . Defining a search space of deep neural network learning workflows
The neural architecture search space is modeled by using a directed acyclic graph ,

which starts and ends with input and output nodes, respectively (Figure 6.1). They rep-
resent the input and output layer of neural network, respectively. Between the two are
intermediate nodes defined by a series of variableN and skip connection SC nodes. Both
types of nodes correspond to categorical decision variables. The variable nodes model
dense layers with a list of different layer configurations. The skip connection node creates
a skip connection between the variable nodes. This second type of node can take two val-
ues: disable or create the skip connection. For a given pair of consecutive variable nodes
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Nk, Nk+1, three skip connection nodes SCk+1
k−3,SCk+1

k−2,SCk+1
k−1 are created. These nodes

allow for connection to the previous nonconsecutive variable nodesNk−3,Nk−2,Nk−1, re-spectively.
Input 

 

 

 

 
 

Repeat

 
 

Output  

Figure 6.1: Search space of fully connectedneural networks with regression outputs.

Each dense layer configuration is de-
fined by the number of units and the
activation function. We used values in
{16, 32, . . . 256} and {elu, gelu, hard sig-
moid, linear (i.e., identity), relu, selu, sig-
moid, softplus, softsign, swish, and tanh},
respectively. These resulted in 177 (16
units × 11 activation functions, and iden-
tity) dense layer types for each variable
node. Skip connections can be created
fromatmost 3 previous dense layers. Each
skip connection is created with a linear
projection so that feature vectors match in
shape, and then addition is used to merge
the vectors. The number of variable nodes
is set to 3 for the one-dimensional toy
dataset and to 5 for the regression bench-
marks.

For the pipeline hyperparameter search
space, we use a learning rate in the contin-
uous range [10−4, 10−1] with a log-uniform
prior; a batch size in the discrete range
[1, 2, 3, . . . , bmax] (where bmax = 32 for the
toy example and bmax = 256 for the bench-
mark) with a log-uniform prior; an opti-

mizer in { sgd, rmsprop, adagrad, adam, adadelta, adamax, nadam }; a patience number
for the reduction of the learning rate in the discrete range [10, 11, . . . , 20], and a patience
number for early stopping in the discrete range [20, 21, . . . , 30]. The neural networks are
trained with 200 epochs for the toy example and 100 epochs for the benchmark. The
search space is the same for the toy and the benchmark. Models are checkpointed dur-
ing their evaluation based on the minimum validation loss achieved. Input and output
variables are standardized to have a mean of zero and a unit variance.

The experiments were conducted on the ThetaGPU system at the Argonne Leadership
Computing Facility. ThetaGPU is composed of 24 nodes, each composed of 8 NVIDIA A100
GPUs and 2 AMD Rome 64-core CPUs. For the generation of a catalog ofmodelswe use
different allocations (i.e., number of nodes) depending on the dataset size. During the
search, 1 process only using the CPU is allocated for the search algorithm; then neural
network configurations (hyperparameters and architecture) are sent to parallel workers
for the training. Eachworker corresponds to a single GPU. Therefore, 1node had 8parallel
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workers. For the construction of an ensemble, we load all checkpointed models on
different GPU instances to perform parallel inferences and then save the predictions to
apply the greedy strategy. On the software side, we used Python 3.8.5. The core of our
dependencies is composed of TensorFlow 2.5.0, TensorFlow-Probability 0.13.0, Ray 1.4.0,
Scikit-Learn 0.24.2, and Scipy 1.7.0.

6.3.2 . Qualitative assessement on a toy example
We follow the ideas from (Hernández-Lobato and Adams, 2015) to assess qualita-

tively the effectiveness of AutoDEUQ on a one-dimensional dataset. However, instead
of the unimodal dataset generated from the cubic function used in (Hernández-Lobato
and Adams, 2015), we used the y = 2 sin(x)+ ϵ(x) sine function. We generated 200 points
randomly sampled from a uniform prior in the x-range [−30,−20]with ϵ ∼ N (0, 0.25) and
200 other points randomly sampled in the x-range [20, 30] with ϵ ∼ N (0, 1). These 400
points constituteDtrain∪Dvalid. We used random sampling to split the generated data: 2/3
for training and 1/3 for validation datasets. The two x-ranges are sampled with different
noise levels to assess the learning of aleatoric uncertainty. The test set comprised 200
x-values regularly spaced between [−40, 40], and the corresponding y values were given
by 2 sinx with ϵ(x) = 0. Consequently, we had three different ranges of x-values to as-
sess epistemic uncertainty: training region, [−30,−20] and [20, 30]; interpolation region,
[−20, 20]; and extrapolation region: [−40,−30] and [30, 40]. We seek to verify that the pro-
posed method can model the aleatoric (different noise levels in the training region) and
epistemic uncertainty (interpolation and extrapolation regions).
Importanceof exploringdiverse learning strategies andneural architectures

We perform an ablation study to show the effectiveness of tuning both architecture de-
cision variables and training hyperparameters in AutoDEUQ. First, we designed a high-
performing neural network by manually tuning the architecture decision variables and
hyperparameter configurations on the validation data. We ran AutoDEUQ, which used
AgEBO for catalog generation and the greedy model selection method for ensemble con-
struction. Next, we used twoAutoDEUQ variants: (1) AutoDEUQ (AgE), which used only AgE
to explore the search space of the architecture space but used the hand-tuned hyperpa-
rameter values following the approach from (Zaidi et al., 2020), and (2) AutoDEUQ (BO),
which used the hand-tuned neural architecture and used BO to tune the hyperparame-
ters following the approach from (Wenzel et al., 2021). Finally, we switched off both AgE
and BO and trained the manually generated baseline with 500 random-weight initializa-
tions to build the catalog. All these methods used greedy selection to build an ensemble
of sizeK = 5 from their respective catalog of 500models.

Figure 6.2 shows the results of these variants. We observe that the proposed Au-
toDEUQ (Figure 6.2.a) obtains a superior aleatoric and epistemic uncertainty estimation.
The two different noise levels in the training region are well captured by the aleatoric
uncertainty estimate. In the interpolation region, aleatoric uncertainty follows the noise
levels of the nearby region. We also observe that epistemic uncertainty grows as wemove
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Figure 6.2: Ablation study of catalog generation: We progressively removed the differentalgorithmic components of AutoDEUQ and analyzed their impact on the uncertainty esti-mation.
from the training data region (grey). Moreover, we observe that its magnitude is large for
the extrapolation region comparedwith the interpolation regions. Unlike AutoDEUQ (AgE)
and AutoDEUQ (BO), the epistemic uncertainty grows from x = −20, peaks near x = 0,
and becomes zero near x = 20. The results of AutoDEUQ (AgE) and AutoDEUQ (BO) vari-
ants are similar: while the aleatoric uncertainty estimates are good, both suffer from poor
epistemic uncertainty estimation in the interpolation region. This can be attributed to a
lack of model diversity in the ensemble, the former with fixed hyperparameters and the
latter with fixed architectures. We observe that the random initialization strategy (Fig-
ure 6.2.d) with the hand-tuned neural architecture did not model epistemic uncertainty
well. This result can be attributed to the simplicity of the dataset: given its low dimen-
sion, for the same architecture and hyperparameter configurations, the training results
in similar neural networks.
Role of the hyperparameter optimization strategy

We analyze the impact of different search methods in AutoDEUQ on the uncertainty esti-
mation. We compare the default AutoDEUQ (AgEBO) method (Figure 6.2.a) with random
search (RS-Mixed) (Figure 6.3.a), AgE (AgE-Mixed) (Figure 6.3.b), and BO (BO-Mixed) (Fig-
ure 6.3.c). Note that RS, AgE, andBOdonot consider the architecture andhyperparameter
space separately. Instead, a configuration in the search space is given by a single vector
of architecture decision variables and training hyperparameters.

We observe that the uncertainty estimates from the AutoDEUQ (RS-Mixed) are infe-
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Figure 6.3: Comparison of different search methods in AutoDEUQ and their impact onuncertainty estimation.
Dataset NLL RMSE

PBP MCDropout DeepEns. HyperEns. DFEns. AutoDEUQ PBP MCDropout DeepEns. HyperEns. DFEns. AutoDEUQ
boston 2.57 2.46 2.41 2.15 (0.22) 2.74 2.46 (0.09) 3.01 2.97 3.28 2.87 (0.1) 3.38 3.09 (0.31)concrete 3.16 3.04 3.06 4.09 (0.17) 3.10 2.86 (0.07) 5.67 5.23 6.03 4.7 (0.08) 5.76 4.38 (0.15)energy 2.04 1.99 1.38 0.9 (0.04) 1.62 0.61 (0.19) 1.8 1.66 2.09 1.72 (0.08) 2.30 0.39 (0.02)kin8nm -0.9 -0.95 -1.2 6.89 (2.85) -1.14 -1.40 (0.01) 0.1 0.1 0.09 0.26 (0) 0.09 0.06 (0.00)navalpropulsion -3.73 -3.8 -5.63 -3.03 (0.49) -5.73 -8.24 (0.01) 0.01 0.01 0 0.01 (0) 0.00 0.00 (0.00)powerplant 2.84 2.8 2.79 5.24 (0.72) 2.83 2.66 (0.05) 4.12 4.02 4.11 4.38 (0.02) 4.10 3.43 (0.08)protein 2.97 2.89 2.83 21.12 (2.52) 3.12 2.48 (0.03) 4.73 4.36 4.71 5.09 (0.01) 4.98 3.52 (0.02)wine 0.97 0.93 0.94 1.92 (0.92) 1.15 1.00 (0.08) 0.64 0.62 0.64 0.73 (0.01) 0.65 0.62 (0.01)yacht 1.63 1.55 1.18 0.48 (0.19) 0.76 -0.17 (0.11) 1.02 1.11 1.58 1.86 (0.15) 1.00 0.44 (0.06)yearprediction 3.6 3.59 3.35 7.44 (0.08) 3.58 3.22 (0.00) 8.88 8.85 8.89 16.84 (0.08) 9.30 7.91 (0.04)

Mean Rank 4.9 3.4 2.5 4.7 3.9 1.5 3.7 2.6 3.8 4.6 4 1.3

Table 6.1: Results of the regression benchmark on 10 datasets.

rior to all other methods. AutoDEUQ (AgEBO) achieves more robust estimates than those
of AutoDEUQ (AgE-Mixed) and AutoDEUQ (BO-Mixed). The estimates of epistemic uncer-
tainty for AutoDEUQ (AgEBO), AutoDEUQ (AgE-Mixed), and AutoDEUQ (BO-Mixed) show
a growing trend in the interpolation region as we move away from the training region.
AutoDEUQ (BO-Mixed) has larger epistemic uncertainty in the interpolation region than
AutoDEUQ (AgEBO) and AutoDEUQ (AgE-Mixed) have.

The observed differences between the searchmethods can be attributed to the neural
network diversity in the ensembles. To demonstrate this, we computed the architecture
diversity for eachmethod as follows. Each architecture was embedded as a vector of inte-
gers where each integer represents a choice for one of the decision variable of the neural
architecture search space. To compute the diversity of an ensemble, we computed the
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pairwise Euclidean distance between the embeddings of the architectures composing the
ensemble. Then, we kept only the upper triangle of the pairwise distancematrix (because
it is symmetric) and normalized it by its norm. We then computed the cumulative sum of
the elements of this normalized triangularmatrix, which gives us a scalar value represent-
ing diversity. AutoDEUQ (RS-Mixed) achieved the lowest diversity score (1.41), which also
correlates with its poor epistemic uncertainty estimation. While AutoDEUQ (RS-Mixed)
obtained diverse models for the catalog, they are not high-performing, and consequently
the ensemble did not have diverse models. AutoDEUQ (AgE-Mixed) achieved a diversity
score of 2.86, which resulted in a better epistemic uncertainty estimate in the interpola-
tion region, but the estimates are poor in the extrapolation region. With a diversity score
of 3.49, AutoDEUQ (BO-Mixed) obtained more diverse models, but they contributed to
overly large epistemic uncertainty in the interpolation region and extrapolation regions.
AutoDEUQ (AgEBO) achieved a diversity score of 3.17, which was in between that of Au-
toDEUQ (AgE-Mixed) and AutoDEUQ (BO-Mixed). Moreover, we found that the learning
rate values obtained by AutoDEUQ (BO-Mixed) are more diverse than those obtained by
AutoDEUQ (AgEBO).

6.3.3 . Quantitative assessement on regression benchmarks
Here we compare our AutoDEUQ method with probabilistic backpropagation (PBP),

Monte Carlo dropout (MC-Dropout), deep ensemble (Deep Ens.), distribution-free ensem-
bles (DF-Ens.), and hyper ensemble (Hyper Ens.) methods. While PBP is selected as a
candidate for Bayesian neural network, MC-Dropout was selected for its popularity and
simplicity. The Deep Ens. (with random initialization of weights, fixed architecture, and
hyperparameters) will serve as a baseline method. The Hyper Ens. (ensemble with the
same architecture but with different hyperparameters) is selected because it was a re-
cently proposed high-performing ensemble method.

To assess the quality of uncertainty quantification methodologies, we used 10 regres-
sion benchmark datasets (Table 6.2) from the literature (Lakshminarayanan et al., 2017;
Hernández-Lobato and Adams, 2015; Gal and Ghahramani, 2016b). We compare these
methods using two metrics: (1) negative log likelihood (NLL) (i.e., how likely the data is
to be generated by the predicted normal distribution) and (2) root mean square error
(RMSE). These two metrics were widely adopted in the literature to compare the quality
of uncertainty estimation. The metric values of PBP, MC-Dropout, Deep Ens., and DF-Ens.
are copied from their corresponding papers (Hernández-Lobato and Adams, 2015; Gal
and Ghahramani, 2016b; Lakshminarayanan et al., 2017; Pearce et al., 2018), respectively.
Nevertheless, we extended and ran the Hyper Ens. method for regression based on the
information provided in (Wenzel et al., 2021).

For each dataset, we ran AgEBO to generate a catalog of 500 models and used the
greedy selection strategy to construct ensembles of K = 5 members. We repeated the
experiments 10 times with different random seeds for the training/validation split and
computed the mean score and its standard error. An exception was the yearprediction
dataset, which was run only 3 times because the dataset size was large.

The results are shown in Table 6.1. We observe that AutoDEUQ obtains superior per-
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Dataset’s Name Number of Samples Feature Sizeboston 506 13concrete 1030 8energy 768 8kin8nm 8192 8navalpropulsion 11934 16powerplant 9568 4protein 45730 9wine 1599 11yacht 308 6yearprediction 515345 90
Table 6.2: Description of the different datasets used in the regression benchmark.

formance compared with the other methods with respect to both NLL and RMSE. We
computed the ranking of the methods for each dataset and computed the mean across
the 10 datasets. This is shown in the last row of Table 6.1. AutoDEUQ with Greedy out-
performs all of the other methods on 8 out of 10 datasets. On boston and wine, Hyper
Ens. and MC Dropout have the lowest NLL and RMSE values. We note that, overall, the
recently proposed Hyper Ens. performs worse than all the other methods. This perfor-
mance can be attributed to the architecture used for regression in Hyper Ens., which is
a simple multilayer perception network as described in the original paper (Wenzel et al.,
2021). This further emphasizes the importance of and need for the architecture search for
different datasets.

6.4 . Conclusion

We developed AutoDEUQ, an approach to automate the generation of deep ensem-
bles for uncertainty quantification. We empirically demonstrated that epistemic uncer-
tainty is best captured when the neural networks considered in the ensemble are diverse
(in hyperparameters and architecture), yet all the neural networks perform well and sim-
ilarly on the validation set. This result is achieved by a two-step process: (1) using aging
evolution and Bayesian optimization to jointly explore the neural architecture and hyper-
parameter space and generate a diverse catalog of models and (2) using greedy selection
ofmodels optimizedwith the negative log likelihood, to findmodels that are very different
but all with high (and similar) performance. We conducted an extensive regression bench-
mark to compare AutoDEUQ with different classes of UQ methods, with and without en-
sembles. Our results confirm quantitatively what was observed on the toy example. The
key ingredient of our technique is the diversity and predictive strength and homogeneity
of the final ensemble.

Using a toy example, we performed an ablation study to visualize the impact of differ-
ent components of AutoDEUQ on uncertainty estimation. This impact appears clearly in
regions depleted in the training samples. Compared with AutoDEUQ,methods optimizing
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either hyperparameters independently or architecture search underestimate epistemic
uncertainty. Moreover, we conducted an extensive regression benchmark study to com-
pare AutoDEUQ against different classes of UQ methods, with and without ensembles.
Our results confirm quantitatively what was observed on the toy example.

The key ingredient of our technique is the diversity and predictive strength and homo-
geneity of the final ensemble. AutoDEUQ is a computationally expensive method. How-
ever, the computational need can be controlled by restricting the search space and run-
ning model evaluations in parallel.

Our future work will include (1) applying AutoDEUQ on larger datasets to assess its
scalability, (2) evaluating AutoDEUQ on a classification benchmark, and (3) seeking theo-
retical insights into the quality of epistemic uncertainty under the various data generation
assumptions.
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7 - Applications and influence of DeepHyper

This chapter provides an overview of the application of algorithms and techniques
from this thesis, showcasing their use across different domains such as climate
science, traffic forecasting, and high-performance computing (HPC). The surveyed
applications are not exhaustive but highlight the breadth of fields that benefit
from optimizing learning workflows through DeepHyper’s capabilities in hyperpa-
rameter optimization, neural architecture search, and uncertainty quantification.
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7.1 . Application to computational fluid dynamics
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Figure 7.1: Illustration from Mauliket al. (2020) showcasing the bestRNN architecture for sea-surfacetemperature forecasting.

In this section, our focus is on a series of studies
that employed DeepHyper for computational fluid
dynamics. Our paper Maulik et al. (2020) addresses
the development of surrogate models for geophys-
ical forecasting, which is key for economic planning,
disaster management, and climate change adapta-
tion. Traditional methods rely on costly numerical
simulations, prompting a shift towards data-driven
models, specifically neural networks, for more effi-
cient forecasting. However, creating effective neu-
ral networks for this purpose is challenging and of-
ten involves trial and error.

This research introduces a method for auto-
matically generating proper-orthogonal-decompo-
sition-based long short-term memory networks
(POD-LSTMs) to forecast sea-surface tempera-
ture using the NOAA Optimum Interpolation Sea-
Surface Temperature dataset1. By leveraging neu-
ral architecture search (NAS), the study aims to op-
timize stacked LSTM architectures without human
intervention, surpassing manually designed mod-
els and baseline methods in forecasting accuracy.
The approach uses the package DeepHyper (Bal-
aprakash et al., 2018a) we developed along this the-
sis (Chapter 6), a scalable, open-source NAS frame-
work, to parameterize the search space of stacked
LSTM architectures as a directed acyclic graph.

The NAS-derived POD-LSTMs showed superior
performance compared tomanually designedmod-
els and baseline machine learning forecast tools.
The method’s scalability was validated on up to 512
nodes of the Theta supercomputer. An example
prediction from the POD-LSTM is presented in Fig-
ure 7.2.

The machine learning problem is formulated with input as the historical sequence of
sea-surface temperatures and output as the future temperature forecast. The loss func-
tion used is the mean squared error during training, with the coefficient of determination

1NOAA Optimum Interpolation (OI) SST V2: https://psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.html (last accessed March 2024)
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(a) NOAA (Ground truth) (b) HYCOM

(c) POD-LSTM
Figure 7.2: Example result from Maulik et al. (2020) showcasing the ground truth data(7.2a), a state-of-the-art forecastingmodel (7.2b), and theprediction of the optimizedPOD-LSTM (7.2c) for sea-surface temperature forecasting on the week of June 14, 2015.

(R2) as the evaluation metric on the validation dataset. The NAS effectively navigates the
architecture search space, optimizing for architectures that yield high R2 values, indicat-
ing strong predictive performance.

In a follow-up paper (Maulik et al., 2023) we extended the neural architecture search
(NAS) framework for sea-surface temperature prediction via LSTM by (1) optimizing jointly
training hyperparameters and (2) integrating an ensemble method to assess uncertain-
ties. The addition of an ensemble method marks a significant advancement in the frame-
work’s capability to evaluate predictive uncertainties, addressing a crucial aspect of fore-
casting accuracy and reliability. Furthermore, they employed the variance-decomposition
technique to discern prediction errors related to model bias or data noise. An example of
the estimated epistemic and aleatoric uncertainties is shown in Figure 7.3.

The influence of the DeepHyper package has extended to a diverse array of research
endeavors at Argonne National Laboratory. Specifically, (Maulik et al., 2021) leveraged the
parallel Bayesian optimization (Chapter 3 in DeepHyper for the hyperparameter optimiza-
tion of LSTMs and neural ordinary differential equations (NODE), addressing the temporal
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Figure 7.3: Example result from Maulik et al. (2023) showcasing the estimated epistemic(7.3a) and aleatoric (7.3b) uncertainty of sea-surface temperature predictions.
dynamics of the viscous Burgers equation. This optimization process not only elevated the
models’ predictive accuracy but also facilitated comparative assessments across different
modeling approaches.

In a separate study, (Liu et al., 2022) applied DeepHyper to refine the hyperparame-
ters of an LSTMmodel designed to simulate coarsemesh turbulence for transient analysis
concerning thermal mixing and stratification in sodium-cooled fast reactors. The use of
DeepHyper enhanced the model’s predictive capabilities and contributed to a better un-
derstanding of the model’s analytical performance. These instances underscore DeepHy-
per’s broad applicability and its instrumental role in advancing computational modeling
and analysis in fields beyond those directly explored by its original authors.

Overall, the combination of methods provided by DeepHyper and their application on
computational fluid dynamics has significantly improved the predictive accuracy of mod-
els, facilitated their development, and enabled the quantification of predictive uncertain-
ties. This development enhances predictive and modeling functionalities in the domain
of climate science and associated disciplines.

7.2 . Application to traffic forecasting

In this section, we examine several studies utilizing DeepHyper for traffic forecasting.
Mallick et al. (2020) addresses the challengeof forecasting short-term trafficflowacross

large highway networks, a critical component for enhancing urbanmobility and planning,
notably in traffic congestion mitigation. The task presents considerable difficulty due to
(1) the spatial-temporal dependencies within traffic patterns and (2) the size of the data,
which traditional forecasting methodologies struggle to model. The authors use a Diffu-
sion Convolutional Recurrent Neural Network (DCRNN) integrated with graph partitioning
to enhance computational andmemory efficiency for large highway networks. The exam-
ple use case is on California’s network with 11,160 sensor (nodes) locations. In Figure 7.4
we present an illustration from the original paper to showcase the graph-partitioning of
the highway network in Los Angeles (USA).
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Figure 7.4: Illustration of graph-partitioning of the high-way network in Los Angeles (USA)from Mallick et al. (2020).

The learning is based on historical data from distributed sensors throughout the high-
way network to forecast future traffic conditions (e.g., vehicle speed and flow). Input to
the DCRNN consists of time-series graph representations of the highway network, where
nodes correspond to sensors and edges to the road segments connecting these sensors.
The DCRNN output is a predictive time series of short-term traffic conditions for each
network sensor. Predictive accuracy is quantified using the mean absolute error (MAE).

To enhance the model’s accuracy the study employs DeepHyper for parallel hyper-
parameter optimization (Chapter 3), concentrating on hyperparameters such as learning
rate, number of layers, units per layer, and graph filter type. Empirical outcomes indicate
superior prediction accuracy through the application of our hyperparameter optimization
technique over manual tuning.

A further investigation by Mallick et al. (2022) applies our parallel hyperparameter
optimization framework to build an ensemble of deep neural networks aimed for pre-
dictive uncertainty, aligning closely with our methodologies from Chapter 6. To avoid
repeated hyperparameter optimization, a generative model is derived from the set of
best-observed candidates after hyperparameter optimization, facilitating the on-demand
generation of diverse and accurate candidates to build new ensembles.

Another work Sun et al. (2022), including Mallick T. and Balaprakash P. as common
co-authors, focuses on the identification of traffic incidents. Instead of developing a new
model, this work focuses on improving the quality of training data. It was noticed by
the authors that previously trained models through supervised learning had a high false
alarm rate. After this observation, it was identified that training data (similar to previ-
ous works on DCRNN) contained mislabeled incidents that explained the difficult learn-
ing. Therefore the authors proposed a data-centric framework based onweak supervised
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learning to improve label quality. Weak supervision corresponds to using a combination
of heuristic rules to attribute probabilistic labels to input data. The best model obtained
from this weak supervision is an RNN for which the hyperparameters were optimized
using DeepHyper’s parallel Bayesian optimization.

Overall, the application of DeepHyper in traffic forecasting has helped in the develop-
ment of more accurate predictive models. However, as demonstrated by the last work,
improving the quality of training data is also crucial for the success of machine learning
models.

7.3 . Application to the optimization of HPC software

In this final application section, we examineworks utilizing DeepHypermethods to op-
timize HPC software performance. Although the thesis focus excludes high-performance
computing (HPC) software optimization, algorithms developed for hyperparameter opti-
mization in learning workflows can be used in this domain.

Our study with Dorier et al. (2022) tackles the task of automatically optimizing parame-
ters for an HPC storage service to enhance I/O and storage performance, a key challenge
within the HPC community. Due to similar but still different deployment settings of the
optimized software, we propose a transfer-learning approach for hyperparameter opti-
mization. This method extends our parallel Bayesian optimization (Chapter 3) technique
by leveraging prior optimization outcomes to better condition the initialization of new
optimization processes. Specifically, we use a generative model from optimal parame-
ters of past runs to suggest initial samples for a new optimization. An example result of
this transfer-learning strategy is presented in Figure 7.5. Integrated into the DeepHyper
framework, our approach undergoes testing against the optimization of a specialized I/O
service for high-energy physics workflows on Argonne’s Theta supercomputer, showcas-
ing a substantial speed enhancement facilitated by transfer learning.

Another of our papers by Dash et al. (2023) delves into the challenge of training large
languagemodels (LLMs) on high-performance computing (HPC) systems. The challenge of
this work is to efficiently scale up model training from billions to trillions of parameters,
necessitating solutions to address memory constraints and communication latency for
effective distributed training.

To tackle memory constraints, the paper explores techniques for fitting large models
into GPU memory by distributing them across multiple GPUs. Strategies such as pipelin-
ing, tensor parallelism (also known as model parallelism), and data parallelism are dis-
cussed to effectively manage the model’s memory footprint.

Regarding communication latency, the paper investigates methods enabling overlap
between computation and communication, thus minimizing idle times and enhancing
overall training efficiency.

The integration of these strategies provides a range of parameters for overall training
time. For instance, tensor parallelism determines how model layers are divided across
GPUs, crucial for balancing computational load and reducing communication overhead.
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Figure 7.5: Performance profile from Dorier et al. (2022) where the goal is to minimize therun-time in seconds of the best parameter configuration (y-axis). The blue curve repre-sents a standard optimization without transfer-learning while the red curve representsthe optimization with transfer-learning. The x-axis represents the execution time of theoptimization process. This result illustrates the significant speed-up enabled by transferlearning.

Pipelining involves segmenting the model into stages for sequential processing, impact-
ing throughput and latency. Data parallelism, on the other hand, is influenced by the
number of microbatches, affecting the granularity of training steps. Thus, directly im-
pacting the efficiency of overlapping computation with communication. Additionally, the
global batch size affects training speed and convergence, requiring meticulous tuning to
preserve model accuracy while leveraging parallelism.

Furthermore, employing mixed precision aids in reducing memory requirements and
increasing computational throughput.

The study underscores the efficacy of parallel and asynchronous hyperparameter op-
timization with DeepHyper in identifying efficient strategies for training LLMs of various
sizes on exascale HPC systems. Moreover, it demonstrates the potential to achieve sig-
nificant enhancements in computational performance and scaling efficiency.

Overall the application of DeepHyper in HPC software optimization has helped replace
the tedious manual task of minimizing software run-time. The parallel asynchronous op-
timization capabilities of DeepHyper were key enabling factors to the success of these
projects. In particular, the adaptability of DeepHyper’s software architecture, which facili-
tates seamless parallelization with various backends such as thread pools, process pools,
or MPI, explains its adoption and effectiveness.

7.4 . Conclusion
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This chapter has provided an overview of the application of algorithms and techniques
from this thesis, showcasing their use across different domains such as climate science,
traffic forecasting, and high-performance computing (HPC). The surveyed applications are
not exhaustive but highlight the breadth of fields that benefit from optimizing learning
workflows through DeepHyper’s capabilities in hyperparameter optimization, neural ar-
chitecture search, and uncertainty quantification. Other applications of DeepHyper that
were not detailed in this Chapter include optical character recognition (Belay et al., 2023),
molecular and crystal properties (Park et al., 2023), and continual learning (Madireddy
et al., 2023).

The scalability of the developed algorithms was an essential factor for these differ-
ent projects to obtain desired outcomes in a reasonable time. Without the parallel and
asynchronous capabilities of DeepHyper, the optimization of hyperparameters and neu-
ral architectures would have been practically infeasible for these applications. The use
of hyperparameter optimization provided improved predictive performance in most ap-
plications. However, it could not solve issues related to the quality of training data, as
demonstrated in the traffic incident detection application. This suggests that the quality
of the data is as important as the quality of themodel for the success of machine learning
applications. Therefore, automated data-quality checks should be combined with auto-
mated model optimization to ensure the success of machine learning applications.

112



8 - General conclusion and future perspectives

8.1 . Conclusion on the optimization of learning workflows at large scale

The fundamental research objective of this thesis aimed to devise scalablemethodolo-
gies for efficiently and effectively optimizing learningworkflowsonparallel high-performance
computing systems, also known as supercomputers. Specifically, we focused on investi-
gating deep neural network learning workflows. This section provides a concise overview
of the findings derived from this research endeavor.

In Chapter 3, the primary research objective was to develop an efficient and highly
parallelizable optimization algorithm for the optimization of learning workflows. Our fo-
cus centeredonBayesian optimizationdue to its recognized efficacy in optimizing resource-
intensive functions. We expanded upon the conventional sequential Bayesian optimiza-
tion approach to render it parallel, asynchronous, and decentralized, thereby address-
ing a fundamental bottleneck of previously proposed centralized Bayesian optimization
methods.

Subsequently, we empirically validated the scalability of our algorithm by deploying
it across 1,920 parallel processes, each utilizing 1 GPU, and in a preceding study involving
4,096 processes, each utilizing 16 CPU cores. Our findings underscored the sustained effi-
ciency of our algorithm across varying levels of parallelization. This translates practically
into two key benefits: firstly, alleviating user concerns regarding the optimal parallel scale
for hyperparameter optimization; and secondly, ensuring that the outcomes of hyperpa-
rameter optimization are improved by scaling, a non-trivial accomplishment as many op-
timization algorithms experience degradation under increased scaling due to bottlenecks
(e.g., as seen in the case of Bayesian optimization with Gaussian processes).

Before our work, no comprehensive investigation into large-scale parallel Bayesian
optimization had been conducted in the literature. Our research serves to inform practi-
tioners about the advantages (e.g., speed-up) and constraints (e.g., potential stagnation)
associatedwith large-scale parallelism in hyperparameter optimization. Subsequent chap-
ters of this thesis build upon the foundation laid by this decentralized Algorithm 2.

In Chapter 4, we addressed the single-objective limitation of our decentralized Algo-
rithm 2 tomake it compatible withmultiple objectives. This adaptation became necessary
due to the diverse requirements that modern learning workflowsmust fulfill, such as pre-
dictive performance, social fairness, latency, and memory consumption.

To achieve this, in Algorithm 3, we introduced a randomized scalarization method
coupled with (1) a quantile-based normalization of objectives and (2) a soft penalty mech-
anism to discourage exploration of uninteresting objective trade-offs. The proposed nor-
malization is robust to outliers while conserving the optimal solution set, and helps dif-
ferent objectives to be on the same scale, thereby facilitating the scalarization process.
The proposed normalization method is robust to outliers while preserving the optimal
solution set. Additionally, it facilitates the scalarization process by ensuring that different
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objectives are mapped to comparable scales. Prior works on hyperparameter optimiza-
tion used manually defined objective normalization and outlier filtering processes which
requires more domain knowledge about optimized objectives. The soft penalty mecha-
nism, on the other hand, discourages the exploration of uninteresting objective trade-
offs, thereby making the optimization process more effective in practice. We are the first
to explore the use of soft penalties with a Random-Forest-based Bayesian optimization
algorithm.

Empirical evaluations demonstrate that this approach outperforms other Bayesian
optimization techniques as well as a state-of-the-art genetic algorithm (NSGAII). Consis-
tent with the findings in Chapter 3, our multi-objective algorithm exhibits superior effi-
ciency across all tested scales, ranging from 40 to 640 parallel processes.

In Chapter 5, the aim was to speed up the optimization process by mitigating the
repetitive costs associated with lengthy deep neural network training. Our approach in-
volved investigatingmethods that could seamlessly extendAlgorithm2. Consequently, we
benchmarked early discarding techniques’ behavior when observing a stream of “learn-
ing curves” from various hyperparameter configurations. We conducted benchmarks
on prominent early discarding methods, namely Successive Halving and Learning Curve
Extrapolation, along with a straightforward baseline (i-Epoch) that halts training after i
epochs. Our benchmarking framework adopted a multi-objective perspective, aiming
to (1) minimize the final prediction error and (2) minimize the overall number of train-
ing epochs utilized. Our experiments revealed that selecting based on a single epoch
training often achieves performance close to optimality while maintaining simplicity. This
implies the existence of hyperparameter configurations that outperform others regard-
less of the training epoch. Furthermore, we observed that employing a fixed number
of epochs yields comparable or superior results to utilizing more complex (i.e., dynamic)
early discarding methods. We confirmed these findings by assessing the empirical Pareto
fronts of each early discarding method being investigated.

In Chapter 6, we leveraged our algorithms for optimizing learning workflows as a
foundational capability to enhance the quantification of uncertainty in deep neural net-
works. Deep ensembles are recognized for their competitiveness in uncertainty quantifi-
cation research and their role as variance-reduction methods for machine learning, ren-
dering them more resilient to the inherent randomness stemming from the dataset or
the learning process. In our study, we explored the use of evaluated learning workflows
from hyperparameter optimization as the basis for constructing an ensemble of deep
neural networks. This approach demonstrated an enhanced estimation of epistemic un-
certainty (arising from the model), attributed to the increased diversity among explored
models. Moreover, it streamlined the manual tuning of hyperparameters to achieve ac-
curate estimations of both point-wise predictions (i.e., mean) and aleatoric uncertainty
(arising from the data-generating process).

In summary, our series of contributions empower machine learning practitioners to
(1) efficiently automate the optimization of learning workflows, spanning from small-scale
laptops to the most advanced supercomputers developed to date (Dash et al., 2023), and
(2) serves as a novel capability for fostering further advancements in machine learning
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algorithm design, as illustrated in Chapter 6. Our work draws significant inspiration from
the renowned SMAC algorithm (Hutter et al., 2011; Lindauer et al., 2022). All the contribu-
tions presented are accessible through the open-source DeepHyper Python Package (Bal-
aprakash et al., 2018a).

8.2 . Future perspectives on the optimization of learning workflows

Numerous research opportunities exist to enhance the optimization of learning work-
flows, spanning across both small and large scales. Here, we outline several avenues for
pursuing these improvements.

Transfer and Meta-Learning: From a machine learning perspective, a key limitation
of our research is the absence of iterative learning across optimization tasks, commonly
referred to as meta-learning (from many tasks to many tasks) (Ruhkopf et al., 2022) or
transfer-learning (from one task to another). Incorporating such approaches could en-
hance the optimization process during initialization and prevent often redundant initial
exploration phases across optimization processes. Although we did not specifically inves-
tigate this aspect within the context of learning workflows, we proposed a straightforward
transfer-learning mechanism that demonstrated effectiveness in optimizing the runtime
of an HPC database service (Dorier et al., 2022).

Interpretability and Explainability: The interpretability and explainability of ma-
chine learning models are critical for ensuring the trustworthiness and accountability of
automated decision-making systems. In this work, we focused on optimizing learning
workflows, with a particular emphasis on predictive performance. Future research could
explore the use of quantitative metrics for interpretability and explainability to optimize
them jointly with predictive performance. Therefore enabling the identification of hyper-
parameter configurations that yield not only high predictive performance but alsomodels
that are interpretable and explainable. Another aspect would be to developmethods that
explain the hyperparameter optimization process itself, providing insights into why cer-
tain hyperparameter configurations were selected over others. This is particularly chal-
lenging due to the dependence between iterations of the process. During our research,
we resorted to using the SandDance tool1 (Drucker and Fernandez, 2015) to visualize the
hyperparameter optimization process, but more formal methods could be developed.

Overfitting with small datasets: Throughout this research, we employed the widely
utilized three-way split approach, encompassing training, validation, and test sets, to fa-
cilitate model selection (Section 2.2.2). This method is customary in hyperparameter opti-
mization for deep neural networks. Its viability hinges on the availability of datasets with
a sufficient volume of data, allowing the estimation of performance on the validation set
to serve as a reliable approximation of performance on unseen test data. In instances
where datasets are limited in size, implementing more robust model selection strategies
becomes imperative. For example, employing K-fold cross-validation can offer a solution.
However, this alternative approach can be computationally expensive as it necessitates

1SandDance: https://microsoft.github.io/SandDance/ (accessed March 2024)
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repeated training of models. Despite this drawback, it provides a more thorough assess-
ment of model performance across different subsets of the data, mitigating the risk of
overfitting and yielding more reliable results.

Bayesian optimization: Benchmarking the components of Bayesian optimization al-
gorithms poses several challenges due to the intricate nature of each element and their
interdependencies. Evaluating the surrogate model’s performance, which approximates
the objective function, requires careful consideration, especially as the performance ob-
servations collected are not independent and identically distributed. Additionally, assess-
ing the surrogate model’s implementation introduces complexities, as variations in algo-
rithms and hyperparameters significantly influence performance (Section 3.2.1). More-
over, the acquisition function, crucial for guiding the optimization process, poses another
layer of difficulty, as different formulations and strategies for utilizing uncertainty must
be evaluated. Furthermore, selecting an appropriate optimizer for minimizing the ac-
quisition function presents challenges, with the choice depending on factors such as the
surrogate model and the acquisition functions themselves. Benchmarking these com-
ponents under various conditions is essential for understanding their effectiveness and
robustness.

HPC system performance issues: From an HPC standpoint, a significant limitation is
the lack of detailed insight into the resource utilization of learningworkflows. For instance,
precise metrics concerning memory and compute usage (e.g., GPU utilization) were not
provided. We anticipate that such metrics would reveal (1) redundant memory consump-
tion (e.g., multiple duplicates of the same data) and (2) suboptimal utilization of computa-
tional resources. Additionally, we foresee potential I/O latencies arising from the simulta-
neous loading of large datasets by multiple processes, leading to delays when accessing
the filesystem.

Ethical and Fair AI: The ethical implications of machine learning algorithms are a
growing concern, for example with the potential for social biases to be inadvertently en-
coded into models. Incorporating fairness metrics into the multi-objective optimization
process could help mitigate these biases. Also identifying the hyperparameters that in-
fluence this fairness could be a research direction. For example, the class weights could
be optimized to explore the trade-off between predictive performance and fairness.

AI andSustainability: The environmental impact ofmachine learningworkflowspresents
a critical concern, especially given the field’s continuous expansion and escalating re-
source consumption. One promising avenue of research involves optimizing hyperpa-
rameters to minimize resource utilization of learning workflows. Nevertheless, the con-
sumption of High-Performance Computing (HPC) systems cannot be neglected. This study
introduced the feasibility of reducing the number of training epochs (see Chapter 5) dur-
ing the optimization process; thereby substantially decreasing the total training epoch
count by a factor of 40. Thus reducing overall resource utilization. Further investigations
along this trajectory could explore additional strategies such as reducing the volume of
training samples. Also reducing overall resource utilization. Additionally, employingmeta-
learning techniques can alleviate the initialization overheads of this process by providing
better early-stage suggestions; thus mitigating inefficient and resource-intensive explo-
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A - Formal Notations

In this appendix, we provide a summary of the formal notations we used.

• R set of real numbers.
• Z set of discrete numbers.
• N set of natural numbers.
• K a set of categorical values.
• := definition.
• = equality.
• ≈ approximation.
• [|a, b|] a discrete range.
• [a, b] a continuous range.

A.1 . Probability and Statistics

• i.i.d. : independantly and identically distributed.
• upper caseX are random variables.
• lower case x are regular variables.
• P (X) probability distribution/law (the input is a random variable).
• p (x) probability density (p.d.f.) or probability mass (p.m.f.) functions (the input is a
classic variable).

• F (x) cumulative distribution function (c.d.f.) (the input is a classic variable).
• φ (.) distribution function of the standard normal law.
• Φ (.) cumulative distribution function of the standard normal law.
• E [.] expectation operator.
• V [.] variance operator.
• I (X;Y )mutual-information operator.
• R2 coefficient of determination.
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A.2 . Learning Theory

• D = {(X1, Y1), . . . , (Xn, Yn)} is a dataset of n samples.
• (x, y) ∈ (X ,Y) are input and target data.
• Θ is hyperparameter search space (possibly inlcuding preprocessing, training and
neural architecture hyperparameters).

• θ ∈ Θ is a hyperparameter vector.
• Θ is a hyperparameter random vector.
• Aθ is a set of predictor configured with hyperparmeters θ.
• αθ ∈ Aθ is a predictor configured with hyperparameters θ.
• Aθ is a predictor random variable configured with hyperparameters θ.
• Bθ is a set of learner algorithms configured with hyperparameters θ.
• βθ ∈ Bθ is a learner configured with hyperparameters θ.
• Bθ is a learner random variable configured with hyperparameters θ.
• L (. . .) ∈ R is a loss function.
• R (.) is the risk.
• Remp (.) is the empirical risk.

A.3 . Optimization

• C is a cost or objective space.
• c ∈ C is a cost vector (e.g., loss, time, FLOPS, etc.).
• f ∈ F is the cost function to optimize.
• g ∈ G is the constraint function.
• x∗ is an optimal solution.
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