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Resumen: Contribuciones a la teoría de Agente-Principal y aplica-
ciones en economía

En esta tésis se estudian aspectos teóricos del modelo de Agente-Principal y se presentan
algunas aplicaciones en economía.

En la primera parte de la tésis se presentan dos aplicaciones del modelo. En la primera,
un proveedor de electricidad determina la tarifa óptima para cobrar a los clientes por su
consumo. La población es heterogénea y el proveedor observa perfectamente el consumo
de cada cliente. Esto conlleva a una situación de selección adversa sin riesgo moral. El
problema del Principal se escribe como un problema variacional no estándar que se resuelve
para formas particulares de la utilidad de reserva de la población. El contrato óptimo resulta
ser o bien lineal o polinomial con respecto al consumo y el proveedor contrata solo a aquellos
consumidores que presentan una alta o una baja necesidad de electricidad.

En la segunda aplicación, un banco monitorea un conjunto de préstamos idénticos sujetos
a contagio Markoviano. El banco obtiene fondos de un inversor, que no puede observar
las acciones del banco y tampoco conoce su competencia para el trabajo. Este trabajo es
una extensión del modelo de Pagès and Possamaï [84] al caso de incluye tanto riesgo moral
como selección adversa. Siguiendo el enfoque de Cvitanić, Wan and Yang [31] para este tipo
de problemas, el conjunto creíble dinámico es calculado explícitamente y la función valor
del inversor se obtiene a través de un sistema recursivo de inecuaciones variacionales. Las
propiedades del contrato óptimo se discuten en detalle.

En la segunda parte de la tesis se estudia el problema de un Agente que controla el retorno
esperado de un proceso de difusión bajo incerteza de la volatilidad. Se asume que tanto
el Principal como el Agente tiene un enfoque pesimista al problema y actúan como si un
tercer jugador, la Naturaleza, escogiera la peor volatilidad posible. Este trabajo es una
extensión de Mastrolia y Possamaï [64] y de Sung [125] a un marco más general. Se demuestra
que la función valor del Agente puede ser representada como la solución de una Ecuación
Diferencial Estocástica Retrógrada de segundo orden, y también que la función valor del
Principal corresponde a la única solución viscosa de la ecuación de Hamilton-Jacobi-Bellman-
Isaacs asociada, asumiendo que esta última satisface un principio de comparación.

Key words: problema de agente-principal, riesgo moral, selección adversa, tarificación
de electricidad, monitoreo de bancos, incerteza en la volatilidad, EDERs de segundo or-
den, análisis variacional, análisis u−convexo, juegos diferenciales estocásticos, ecuación HJB,
ecuación HJBI.





Résumé: Contributions à la théorie d’agent principal et applications
en économie

Dans cette thèse, les aspects théoriques et les applications en économie du modèle Principal-
Agent sont étudiés.

La première partie de la thèse présente deux applications du modèle. Dans la première,
un fournisseur d’électricité détermine le tarif de consommation optimal pour ses clients. La
population est hétérogène et le fournisseur observe parfaitement la consommation des clients.
Cela conduit à une sélection adverse sans aléa moral. Le problème du Principal s’écrit comme
un problème variationnel non standard, qui peut être résolu sous certaines formes particulières
de l’utilité de réservation de la population. Les contrats optimaux obtenus sont linéaires ou
polynomiaux par rapport à la consommation et le fournisseur d’électricité ne contracte que
les consommateurs avec un faible ou un fort appétit pour l’électricité.

Dans la deuxiéme application, une banque surveille un pool de prêts identiques soumis à
une contagion Markovienne. La banque collecte des fonds auprès d’un investisseur, qui ne
peut pas observer les actions de la banque et ne sait pas sa capacité à faire son travail.
Cet travaux c’est une extension du modèle de Pagès et Possamaï [84] au cas du aléa moral
avec sélection adverse. Suivant l’approche de Cvitanić, Wan et Yang [31] à ces problèmes,
l’ensemble crédible est calculé explicitement et la fonction valeur de l’investisseur est obtenue
au moyen de un système récursif d’inégalités variationnelles. Les propriétés des contrats
optimaux sont discutées en détail.

Dans la deuxième partie de la thèse, le problème d’un Agent contrôlant le drift d’un processus
de diffusion sous incertitude de volatilité est étudié. On suppose que le Principal et l’Agent
ont une approche pessimiste du problème et ils agissent comme si un troisième joueur, la
Nature, choisissait la pire volatilité possible. Ce travail est une extension à Mastrolia et
Possamaï [64] et Sung [125] à un cadre plus général. Il est prouvé que la fonction valeur
de l’Agent peut être représentée comme la solution à un EDSR de second ordre, et aussi
que la fonction valeur du Principal correspond à la solution de viscosité unique de l’équation
associée Hamilton-Jacobi-Bellman-Isaacs, étant donné que celle-ci satisfait un résultat de
comparaison.

Mots clés : problème principal-agent, aléa moral, sélection adverse, tarification de
l’électricité, surveillance des banques, incertitude de la volatilité, EDSR du seconde ordre,
analyse variationnelle, analyse u−convexe, jeux différentiels stochastiques, équation de HJB,
équation de HJBI.





Abstract: Contributions to the Principal-Agent theory and applica-
tions in economics

In this thesis, theoretical aspects and applications in economics of the Principal-Agent model
are studied.

The first part of the thesis presents two applications of the model. In the first one, an
electricity provider determines the optimal tariff of consumption for its clients. Population
is heterogeneous and the provider observes perfectly the consumption of the clients. This
leads to a setting of adverse selection without moral hazard. The problem of the Principal
writes as a non-standard variational problem, which can be solved under certain particular
forms of the reservation utility of the population. The optimal contracts obtained are either
linear or polynomial with respect to the consumption and the electricity provider contracts
only consumers with either low or high appetite for electricity.

In the second application, a bank monitors a pool of identical loans subject to Markovian
contagion. The bank raises funds from an investor, who cannot observe the actions of the
bank and neither knows his ability to do the job. This is an extension of the model of Pagès
and Possamaï [84] to the case of both moral hazard and adverse selection. Following the
approach of Cvitanić, Wan and Yang [31] to these problems, the dynamic credible set is
computed explicitly and the value function of the investor is obtained through a recursive
system of variational inequalities. The properties of the optimal contracts are discussed in
detail.

In the second part of the thesis, the problem of an Agent controlling the drift of a diffusion
process under volatility uncertainty is studied. It is assumed that the Principal and the Agent
have a worst–case approach to the problem and they act as if a third player, the Nature, was
choosing the worst possible volatility. This work is an extension to Mastrolia and Possamaï
[64] and Sung [125] to a more general framework. It is proved that the value function of
the agent can be represented as the solution to a second–order BSDE, and also that the
value function of the Principal corresponds to the unique viscosity solution of the associated
Hamilton-Jacobi-Bellman-Isaacs equation, given that the latter satisfies a comparison result.

Key words: principal-agent problem, moral hazard, adverse selection, power tarification,
bank monitoring, volatility uncertainty, second–order BSDEs, variational analysis, u−convex
analysis, stochastic differential games, HJB equation, HJBI equation.
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Chapter 1

Introduction

The Principal-Agent problem arises when an individual or entity (she, the Principal) wants
to hire another one (he, the Agent) to do some work or action on her behalf. When working,
the Agent performs one of several possible actions. By doing so, he incurs into a personal cost
and an outcome which benefits the Principal is generated (possibly in a non-deterministic
way). Since both parties are selfish and have opposite interests, the Principal offers a contract
to the Agent which specifies a compensation depending on the result of the work. The Agent
can accept or reject the contract, depending on the benefits he expects to obtain from it. In
a competitive setting, it is considered that the Agent has an outside option so he will not
accept any contract which reports him less benefits than what he could get by making use
of this option. The problem of the Principal consists in designing a contract which will be
accepted by the Agent and under which his work is expected to produce the best outcome
for her.

The situation just described fits into a great number of economic interactions that take
place everyday in real life. Therefore the Principal-Agent model can be applied to formally
study such interactions. Just to mention some of them, the model has natural applications
into agency problems, delegated portfolio management and project selection. Apart from
the situation of a boss hiring an employee, the model can also be applied into the study
of insurance contracts, derivatives design, electricity tarification, pollution regulators and
even into non-economic interactions such as the one between the voters and a candidate in a
election. 1

An important feature of the Principal-Agent model is the asymmetry of information between
the two parties. There are three main cases which are studied in the literature. In the risk-
sharing or first-best problem, the Principal can observe and contract the action performed by
the Agent. The Principal can freely choose what action will be performed by the Agent and
she only takes care of remunerating the Agent in a way which provides him more benefits
than his outside option. In the moral hazard problem, the action performed by the Agent is

1 See for instance the works of De Marzo and Sannikov [35], Cvitanić, Possamaï and Touzi [26], Cadenillas,
Cvitanić and Zapatero [21], Zeckhauser [134], Carlier, Ekeland and Touzi [24], Aïd, Possamaï and Touzi [1],
section 2.5 of this introduction and Banks and Sundaram [5] respectively.
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not observable or non-contractible. In this case the Principal can only observe the outcome
of the work and she cannot deduce merely from this information what action the Agent did.
If the Principal wants the Agent to perform a specific action she must provide incentives
through the contract in order to align both their interests. Compared to the risk-sharing
problem, the Principal faces an additional constrain which results in a loss of utility for her.
For this reason the moral hazard problem is also referred to as the second-best problem. In
the adverse selection case, the Agent possesses private characteristics (such as his ability for
the work) which can be resumed on a type. The Principal does not know the type of the
Agent, but only the distribution of types in the population. In this case the Principal offers
a menu of contracts to the Agent, one for each type, and then the Agent reveals his type and
accepts or rejects the corresponding contract. Since the Agent is not forced to reveal his true
type, the Principal has to provide incentives through the menu of contracts to make sure the
Agent will not lie (this could happen if a contract designed for a certain type is much better
than the contract designed for the real type of the Agent). This constrain supposes another
loss of utility for the Principal and for this reason the problem including both moral hazard
and adverse selection is also called the third-best problem.

If the work of the Agent consists in performing several actions, each one of them producing
an outcome, then time plays a crucial role in the model. Two classes of Principal-Agent
models can be distinguished, the one with models in which time is continuous and the one
with models in which time is considered as a discrete variable. The latter class include also
the static models in which the Agent acts only once and a single outcome is generated.

Discrete–time models are the result of a game theoretic analysis of the relationship between
the Principal and the Agent. They have a simple and natural formulation but they suffer the
disadvantage of being quite hard to solve in general. In non-static problems, the optimality
conditions obtained are recursive systems of equations which require advanced computational
algorithms to be solved. This fact makes difficult to study the dynamic properties of the
contract as well as its dependence on the contractual environment. On the other side, the
continuous–time framework allows to use classic tools from stochastic control and calculus
of variation which render the continuous–time models more tractable. Different approaches
can be used to solve the problems, based mainly on the martingale representation theorem,
the stochastic maximum principle, and the dynamic programming principle. As soon as
the problem of the Principal is related to a Hamilton-Jacobi-Bellman equation, the optimal
contract can be fully studied. In some cases by solving explicitly the equation and in others
by approximating it numerically, where a deep literature on the subject is available.

In the rest of the introduction, a detailed description of the moral hazard problem and the
adverse selection problem is given. For the moral hazard problem, the discrete–time and
continuous–time settings are considered separately. The standard models and main results
in the literature are presented. Also, a contribution from this Thesis to the continuous–time
setting is introduced. In the adverse selection problem, two particular models and approaches
in the literature are presented, with the purpose of introducing related applications in eco-
nomics which are part of this Thesis.
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1 Moral hazard in the Principal-Agent problem

1.1 Discrete-time model

The Principal-Agent problem with moral hazard caught the attention of economists in the
1970s, in the context of equilibrium theory under uncertainty. Arrow [4] and Pauly [88] were
the first who pointed out that unobservable behaviour by insured persons could reduce the
efficiency of the economy. However, they did not provide any mathematical model for the
economic behaviour of insured persons. Early models for insurance contracts under moral
hazard were those of Zeckhauser [134] and Spence and Zeckhauser [120], where solutions were
computed using first-order optimality conditions.

Mirrlees [71, 72] introduced a satisfactory formulation of the general moral hazard problem,
extended later by Hölmstrom [52], which constituted the starting point of the rigorous study
of the Principal-Agent problem by the economical community. This basic model was referred
to as the single time model, since it considered the situation where the Agent acts only once
and a single outcome is generated. In game theory terms, the single time model corresponds
to a Stackelberg game in which the Principal is the leader and the Agent is the follower.
There is a vast literature on the single time model including, among others, the works of
Shavell [113], Grossman and Hart [47], Rogerson [105] and Jewitt [55].

When the single time model was well understood, a dynamic version of it was necessary.
In many real life situations in which the Principal-Agent model is suitable, the interaction
between both parties continues over time. Based on the repeated games theory, the natural
extension was then a repeated version of the single time model. There is a large literature
of the repeated Principal-Agent problem, including Chiappori, Macho, Rey and Salanié [25],
Fudenberg, Hölmstrom and Milgrom [45], Hölmstrom and Milgrom [53], Lambert [60], Mal-
comson and Spinnewyn [62], Radner [96], Rey [99], Rey and Salanie [100], Rogerson [104]
and Spear and Srivastava [118] among others. In the dynamic problem new questions were of
interest, such as the role memory, savings and the commitment of the Agent in the optimal
contract. A question of practical importance was if the optimal contract of the repeated
model could be replicated by a sequence of single time contracts. This question is related to
the concept of perfect equilibria in repeated games. Chiappori, Macho, Rey and Salanié [25]
collected the main results on these aspects in the literature and presented some extensions.

1.1.1 Single time model

In the single time model, the Principal hires the Agent to perform a single action which
will generate an outcome. The model for the moral hazard problem, introduced by Mirrless
[71, 72] and extended by Hölmstrom [52], is presented next. Denote by A ⊂ R the set of
actions of the Agent. For every action a′ ∈ A chosen by the Agent, the outcome x is a random
variable taking values in X ⊂ R, with distribution function F (·, a′) and density f(·, a′). The
Principal does not observe what action is chosen by the Agent but only the outcome. The
Principal will offer to the Agent a payment rule w, depending on the outcome of his work,
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and she will also recommend the Agent to perform a certain action a. The Principal benefits
from the outcome of the project through his utility function UP , which depends also on the
payments she provides to the Agent. The Agent possesses utility function UA, which depends
on the payments he receives and the action he performs. The Agent is not forced to accept
the contract and he has an outside option which provides him utility R0, this quantity is
called the reservation utility of the Agent.

Since the interaction between both parts is sequential (first the Principal offers the contract
to the Agent and then the Agent accepts it or rejects it and eventually works), the action
chosen by the Agent depends directly on the contract offered by the Principal. From the
game theory point of view, this means that the Principal and the Agent play a Stackelberg
game. Therefore, the Principal can anticipate the reaction of the Agent and take it into
account when he is designing the contract he will offer.

Mathematically, the problem of the Principal consists in finding the most convenient payment
rule and recommended action, solutions to the following optimization problem.

(P )





maximize
w(·),a

∫

X

UP (x,w(x))f(x|a)dx

s.t.
∫

X

UA(w(x), a)f(x|a)dx ≥ R0, (IR)

a ∈ argmax
a′∈A

∫

X

UA(w(x), a′)f(x|a′)dx. (IC)

The above formulation corresponds to the moral hazard problem faced by the Principal
in a single time setting. Constrain (IR) is called the individual rationality constrain and
represents the fact that the Agent will accept only contracts which provide him more utility
than his reservation utility R0. Constrain (IC) is referred to as the incentive compatibility
constrain and it states the fact that the Agent acts according to his own benefit. Given any
contract offered by the Principal, since the action performed by the Agent is not observable,
he will simply choose the one which provides him the highest expected utility. Consequently,
when the Principal recommends an action, she must make sure that the Agent will not find
another one under which he can obtain more utility.

Moral hazard is present because the Principal can not observe the action of the Agent. In
case she could do so, she would design a forcing contract guaranteeing that the Agent selects
the most convenient action for her, even if such an action does not maximize the Agent’s
utility. In that case the Principal would face the following first-best problem, in which (IC)
constrain is omitted.

(PFB)





maximize
w(·),a

∫

X

UP (x,w(x))f(x|a)dx

s.t.
∫

X

UA(w(x), a)f(x|a)dx ≥ R0. (IR)

In the described single time model, three main aspects arise and are subject of study in the
literature.
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• Existence of solutions to (P ).

• Characterization of solutions to (P ).

• Comparison between the value of (P ) and the value of (PFB).

While the importance of the first two points is evident in a rigorous study of the moral hazard
problem, the last aspect can be understood as the main purpose of the model, since it seeks
to quantify the loss of utility suffered by the Principal due to her inability to observe the
Agent’s actions. The difference between the value of the first-best problem and the value
of the moral hazard problem is the resulting loss of efficiency considered by Arrow [4] and
Pauly [88].

It will be seen that the mentioned aspects are very connected and they are frequently studied
under similar assumptions in the literature. Whether problem (P ) is well–posed or not, i.e.
it possesses a solution which can be characterized, will generally determine if its value is
strictly inferior to the value of problem (PFB). In the next sections, the main results for each
one of these points are detailed.

1.1.1.1 Characterization of solutions: First-order approach

The main tool for the characterization of the solutions to problem (P ) is the so–called first-
order approach, which will be explained in this section. For the sake of simplicity, we assume
that outcome is monetary, the utility function of the Principal depends only on his wealth
and the utility function of the Agent is additively separable in consumption (earned money)
and effort (chosen action). These assumptions are common in the literature and are present
in most of the applications of the single time model. Thus, by abusing the notation, the
utility functions have the following form

UP (x,w(x)) = UP (x− w(x)), UA(w(x), a) = UA(w(x))− c(a),

where c : A −→ R+ is the cost function of the Agent for performing actions. In this case the
moral hazard problem corresponds to

(P )





maximize
w(·),a

∫

X

UP (x− w(x))f(x|a)dx

s.t.
∫

X

UA(w(x))f(x|a)dx− c(a) ≥ R0, (IR)

a ∈ argmax
a′∈A

∫

X

UA(w(x))f(x|a′)dx− c(a′). (IC)

Problem (P ) is a non-standard optimization problem, the main difficulty of it being the
variational inequality constrain (IC). For non-trivial sets A of admissible actions, the (IC)
constrain represents a continuum of inequalities and therefore problem (P ) cannot be solved
by means of the Karush-Kuhn-Tucker multipliers. A common way of avoiding this difficulty
is the so–called first-order approach, in which the utility maximizing requirement for the rec-
ommended action is relaxed and instead only a stationary condition is asked. More precisely,
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the following relaxed problem is solved instead of (P )

(RP )





maximize
w(·),a

∫

X

UP (x− w(x))f(x|a)dx

s.t.
∫

X

UA(w(x))f(x|a)dx− c(a) ≥ R0, (IR)
∫

X

UA(w(x))fa(x|a)dx− c′(a) = 0. (RIC)

where the relaxed incentive compatibility condition (RIC) replaces the original constrain
(IC). If the set A is open, the solutions to problem (P ) are feasible points in problem (RP ).
However, both problems have different values in general and their solutions do not coincide. In
such a case, the first-order approach is not valid. Mirrlees [71] was the first to give importance
to this fact, by showing examples where the solution to problem (RP ) is not even a feasible
point in (P ). Nevertheless, a substitute of the first-order approach was not proposed and
effort was put into finding classes of problems for which the solutions to problems (P ) and
(RP ) are the same. Mirrlees [73] introduced two conditions under which the first-order
approach should be valid. Assume that for every a ∈ A that the density f(·, a) is of class
C1(X), we say the monotone likelihood ratio condition (MLRC) is satisfied if it holds

x 7−→ fa(x|a)

f(x|a)
is strictly increasing, ∀a ∈ A. (MLRC)

The convexity of the distribution function condition (CDFC) is defined as follows

Faa(x|a) ≥ 0, ∀x ∈ X, ∀a ∈ A. (CDFC)

Rogerson [105] proved that if (MLRC) and (CDFC) are satisfied, the solutions of the relaxed
problem (RP ) and the moral hazard problem (P ) do coincide. The advantage of the relaxed
problem is that it can be easily solved. Point-wise optimization of the associated Lagrangian
provides the following characterization of the optimal pair (w, a)

U ′P (x− w(x))

U ′A(w(x))
= λ+ µ

fa(x, a)

f(x, a)
, (1.1)

where λ ≥ 0 and µ ∈ R are the associated KKT multipliers. Moreover, second order
optimality conditions imply that µ ≥ 0.2 Consequently, under the natural assumption that
UP and UA are concave functions, condition (CDFC) implies that the optimal sharing rule is
increasing in output, a pleasing result which follows the intuition.

1.1.1.2 Existence of solutions

Mirrlees [71] constructed an example of a moral hazard problem with no solution, in which no
contract attains the value of problem (P ). This construction is based on the unboundedness
of the likelihood ratio fa

f
and the utility function of the Agent UA.

2Rogerson [105] works with a different doubly-relaxed problem in which the relaxation of the (IC) constrain
is an inequality and the multiplier associated to it is immediately non-negative.
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To deal with Mirrlees’s example it is generally assumed that the set of outcomes X is compact
and for every action a ∈ A the density f(·, a) is a strictly positive function of class C2(X). If,
in addition, proper integrability conditions are imposed on the utility function of the Agent
UA and the class of feasible contracts is restricted by imposing point-wise boundedness, it
can be proved that problem (P ) admits a solution. (See Hölmstrom [52] and Jewitt, Kadan
and Swinkels [56]).

If no constrains on the set of feasible contracts are desired, then the existence of solutions to
(P ) depends on the utility function of the Agent. If UA is bounded below, it was proved by
Jewitt, Kadan and Swinkels [56] that a solution to the moral hazard problem exists. Moroni
and Swinkels [76] addressed the existence of solutions when UA is unbounded below. They
identify two cases: if the utility of the Agent diverges when the consumption of the Agent
goes to −∞ then a solution exists if and only if the following (ARA) condition holds

lim
w↓−∞

−UA(w)

U ′A(w)
+ w = −∞. (ARA)

In case UA diverges at a finite level of consumption, it is possible to construct examples where
problem (P ) does not have a solution, by choosing different cost functions c and values of
R0.

1.1.1.3 Cost of moral hazard

The risk-sharing problem has been widely studied in economics. Early works on this subject
can be found, among others, in Arrow [3], Borch [17] and Wilson [131]. With the introduction
of the moral hazard problem, it arose naturally the question of quantifying the loss of utility
suffered by the Principal, due to the unobservable behaviour of the Agent. It was shown by
Mirrlees [71] that in some cases the Principal is not significantly affected by the self-interested
behaviour of the Agent, since she can offer incentive compatible contracts to the Agent which
provide her utility as close as desired to the value of the first-best problem. In such examples,
the moral hazard problem does not have a solution and the value of the second-best problem
is equal to the value of the first-best problem. However, these examples are based on the
unboundedness of the likelihood ratio and this situation is in general ruled out, as explained
in the previous section, precisely for avoiding the non-existence of solutions to the moral
hazard problem.

In the single time setting, under the assumptions that outcome is monetary and the utility
function of the Agent is additively separable, problem (PFB) takes the form

(PFB)





maximize
w(·),a

∫

X

UP (x− w(x))f(x|a)dx

s.t.
∫

X

UA(w(x)f(x|a)dx− c(a) ≥ R0. (IR)

The above problem is a very simple standard optimization problem with an inequality con-
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strain. The optimality condition associated to it is the following Borch’s rule

U ′P (x− w(x))

U ′A(w(x))
= λ, (1.2)

where λ ≥ 0 is the associated Lagrange multiplier. Comparing this equation with (1.1),
the difference lies in the multiplier µ ≥ 0 which can make the right-hand side of (1.1) non-
constant. If µ > 0 then necessarily problem (P ) and (PFB) have different solutions and
therefore the value of the latter problem is strictly greater than the value of the former
one. Different approaches can be used for proving that µ is indeed positive, depending on
the assumptions of the model. For instance, Hölmstrom [52] concluded this fact from the
validity of the first–order approach, while Rogerson [105] argued that (MLRC) is sufficient in
the case where the Principal is risk-neutral. Jewitt [55] gave a direct argument which proves
the result in the case of a risk-neutral Principal neither assuming (MLRC) nor (CDFC).

1.1.2 Repeated model

From the game theory perspective, the natural extension of the single time model is the
repeated version of the game played by the Principal and the Agent.

In the repeated moral hazard problem there are T periods of time, indexed by t ∈ {1, . . . , T}.
The Principal hires the Agent for performing T actions, one during each period. Every action
at generates an outcome xt which is a real random variable that depends exclusively on the
action performed during the current period. At this point, the Principal can observe only the
outcomes Xt = (x1, . . . , xt) of the project produced so far, but not the actions (a1, . . . , at)
chosen by the Agent. After observing Xt the Principal remunerates the Agent with some
payment rule wt and the Agent consumes. If the Agent has access to a credit line he may
decide to save an amount of money st at every period and his consumption will be given by
ct = wt + st−1 − st. If the Agent does not have access to a credit line his consumption is
simply ct = wt at every t.

For simplicity it will be assumed that the utility functions of the Principal and the Agent are
separable in time and they are equal to the undiscounted sum of some within-period utility
functions. The problem faced by the Principal in this case is

(PT )





maximize
{(wt,at,st,s̃t)(·)}

E

[
T∑

t=1

UP (xt − wt(Xt) + s̃t−1(Xt−1)− s̃t(Xt))

]

s.a E

[
T∑

t=1

UA (wt(Xt) + st−1(Xt−1)− st(Xt), at(Xt−1))

]
≥ R0, (IR)

{(at, st)} maximizes

E

[
T∑

t=1

UA (wt(Xt) + st−1(Xt−1)− st(Xt), at(Xt−1))

]
, (IC)

where s̃t is the amount of money saved by the Principal at time t. A solution to this problem
will be referred to as an optimal long–term contract.
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The introduction of time in the moral hazard problem arises new questions which are inherent
to repeated games. One of them is the presence of memory in the optimal long–term contract,
i.e. whether the payments wt, actions at and consumptions ct depend actually on the previous
outcomes Xt−1 or not. A second interesting question is whether the optimal long–term
contract is implementable via single time contracts, i.e. there exists a perfect Bayesian
equilibrium of the repeated single time game, the outcome of which replicates the long–term
contract. The importance of this point is related to the commitment of the Agent to the
contract. Indeed, it may be too costly (illegal) to design (enforce) a contract which covers
the full length of the relationship and cannot be broken by the Agent at any time. It is
important therefore to study in which situations the Principal and the Agent obtain more
benefits by committing themselves to a long–term contract than by simply negotiating a
single time contract at the beginning of every period.

Chiappori, Macho, Rey and Salanié [25] was a unifying paper which presented several results
from the literature in repeated moral hazard and also extended some of them. In this work
it was shown that the answer to the previous questions depends mainly on what access to
credit has the Agent. They studied three different cases, the one with free access to credit
(as in (PT )), the case in which the Agent does not have access to credit (st = 0) and the case
in which his savings are monitored by the Principal (st is not a maximizer in equation (IC)).

1.1.2.1 Presence of memory

Lambert [60] and Rogerson [104] proved that when the Agent has no access to credit, the
optimal long–term contract exhibits memory of consumption (equivalently memory of pay-
ments). If during certain period the outcome of the project affects the payment received by
the Agent, then in the next period his consumption and salary will also do. As shown by Mal-
comson and Spinnewyn [62], the presence of memory is just a consequence of intertemporal
smoothing between consecutive periods.

To illustrate this, consider T = 2 and there are N possible outcomes {x1, . . . , xN} with
probabilities {pk(·)}Nk=1 induced by the Agent’s actions. Denote by a0 the action of the
Agent in period 1 and by aj the action in period 2, given that the outcome in period 1 is xj.
Call wi the payment in period 1 if outcome xi occurs and wij the payment in period 2 if xi

occurs in period 1 and xj occurs in period 2. Then, if UA is separable in money and effort
the following optimality condition is satisfied

U ′P (xj − wj)
U ′A(wj)

=
N∑

k=1

pk(aj)
U ′P (xk − wjk)
U ′A(wjk)

, j ∈ {1, . . . , N}. (1.3)

Chiappori, Macho, Rey and Salanié [25] studied the case in which the Agent has free access
to credit and the case when his savings can be monitored by the Principal. They showed
that in both cases memory of consumption is also present due to intertemporal smoothing.
Concerning the memory of payments, it depends on the presence of wealth effects in the
utility function of the Agent. For instance, in the particular case of CARA functions it
disappears.
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1.1.2.2 Implementability of the long–term contract

The conclusions of Chiappori, Macho, Rey and Salanié [25] were disappointing because in
the most interesting cases of access to credit, the long–term optimal contract cannot be
implemented by single time contracts.

Consider first the case when the Agent has access to credit, but he can be monitored by
the Principal. This setting can be reduced to an equivalent situation in which the Agent
has no access to credit and only the Principal does. Rey [99] extended a result of Rogerson
[104], for the case of no access to credit, and showed that if the Principal is risk-neutral and
can monitor the Agent’s savings, then under the optimal long–term contract the Agent will
always want to save more money than what he is allowed to. This result is problematic, since
a situation of constrained savings is not appropriated for many applications. Therefore, it
renders the case of constrained savings very unattractive.

It is shown in Chiappori, Macho, Rey and Salanié [25] that the optimal long–term contract
cannot be implemented by single time contracts if the Agent does not have access to credit
or if he has free access which cannot be monitored by the Principal. On the other side, if
the Agent’s access to credit can be monitored, then the implementation is possible. These
results were distressing, since implementability was possible only in the least realistic models.
To quote Chiappori, Macho, Rey and Salanié [25] "The analysis of repeated moral hazard
therefore seems to lead to a dead-end in the general case". More complex analysis of the
problem, or a new model, was needed.

1.2 Continuous-time model

The main drawback of discrete–time models was that the resulting problems were in general
quite hard to solve. One of the motivations to move to the continuous–time setting was to
construct tractable models, by making use of the technical advantages of stochastic calculus
and stochastic control.

The continuous–time Principal–Agent literature started with the work of Hölmstrom and
Milgrom [53]. In their model, the Agent is hired by the Principal to control the drift of a
diffusion process, the output, which may be understood as the value of a firm. The Principal
observes only the output process, so the actions of the Agent are hidden. They studied the
case in which the Principal and the Agent have exponential utilities, where the main result is
that the optimal contract turns out to be a linear function of the output. This simple setting
was generalized by Schättler and Sung [111, 112], Sung [122, 123] and Müller [77, 78] among
others.

There are different approaches to the moral hazard problem in continuous–time. Williams
[129] and Cvitanić, Wan and Zhang [30] used the stochastic maximum principle to charac-
terize the optimal contract via coupled systems of Forward-Backward Stochastic Differential
Equations (FBSDEs). Sannikov [109] used the martingale representation theorem to write
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the continuation utility of the Agent as a controlled process and then found heuristically a
Hamilton-Jacobi-Bellman equation associated to the problem of the Principal. The former
method is rigorous and very general but it results in difficult systems of FBSDEs where little
can be said about the properties of the optimal contract. The latter method is tractable,
but not justified rigorously. The methodology is an extension of the one used by Spear and
Srivastava [118] in the discrete–time model. To solve the problem of the Principal, her con-
tinuation utility is assumed to be a deterministic function of the continuation utility of the
Agent, which leads to an HJB equation.

Recently, Cvitanić, Possamaï and Touzi [28] provided a general, tractable and rigorous
method for solving continuous-time Principal-Agent problems in finite horizon when the
Agent is in charge of controlling both the drift and the volatility of the outcome. Their
so–called dynamic programming approach, consists in restricting the set of contracts offered
to the Agent to a convenient class, in which the problem of the Principal is reduced to a
standard stochastic control problem and can be associated to a HJB equation. The authors
proved that their restriction of the class of contracts is without loss of generality by making
use of the theory of second-order BSDEs (2BSDEs), introduced by Soner, Touzi and Zhang
[116] and extended by Possamaï, Tan and Zhou [93].

In the next sections, a description of the Principal-Agent models in continuous–time is given.
First, the drift control model is presented together with the two most common approaches
in the literature to solve it. Second, the recent extension of the model to the volatility
control case and the dynamic programming approach of Cvitanic, Possamaï and Touzi [28] is
presented. Finally, one of the works of this thesis, a Principal-Agent model under volatility
uncertainty, is introduced. The model is studied in detail in Part II, Chapter 4 of this
document.

1.2.1 Drift control: the model

The moral hazard in continuous–time was introduced in Hölmstrom and Milgrom [53] by
considering that the Agent controls the drift of a diffusion, the outcome process, which is
the only process observable by the Principal. This situation is modelled using the weak
formulation of a controlled SDE, which is presented next.

Let (Ω,F ,P) be a probability space and W a one–dimensional Brownian motion on it. Let
F := (FWt )t∈[0,T ] be the filtration induced by W . Consider the volatility process σ, which is
an F−adapted process, square integrable and non-null. Define the outcome process by

Xt =

∫ t

0

σsdWs.

An F−adapted process α is said to be admissible, denoted by α ∈ A, if it takes values in some
set A ⊂ R and the process M defined below is an (F,P)−uniformly integrable martingale.

Mα
t = E

(∫ t

0

αsdWs

)
.
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From Girsanov’s theorem we have that

Xt =

∫ t

0

αsσsds+

∫ t

0

σsdW
α
s , Pα − a.s., (1.4)

where dPα
dP = Mα

T on FT and Wα := W −
∫ ·

0
αsds is a Pα−Brownian motion.

The Principal wants to hire the Agent to be in charge of controlling the distribution of
the outcome process, by choosing properly the process α in (1.4). Due to the presence
of moral hazard, the Principal can observe merely X and not the actions of the Agent. To
compensate his work, the Principal offers to the Agent continuous payments χ and a terminal
remuneration ξ which are respectively an F−adapted process and an FT−measurable random
variable. Such a pair of (χ, ξ) are referred to as contracts.

Given a contract (χ, ξ) offered by the Principal, if the Agent accepts to work and chooses
the control α ∈ A his expected utility is given by

uA0 (χ, ξ, α) := EPα
[
UA(ξ) +

∫ T

0

(uA(s,X, χs)− c(s,X, αs))ds
]
,

where the real maps uA and UA are respectively his instantaneous and terminal utility func-
tions and c is the cost function of his actions. Naturally, the Agent chooses the control α ∈ A
which maximizes his expected utility, which makes him face the following optimization prob-
lem

V A(χ, ξ) := sup
α∈A

uA0 (χ, ξ, α). (1.5)

Denote by A?(χ, ξ) the set of optimal controls of the Agent when he is offered the contract
(χ, ξ), i.e. the solutions to the previous problem. It is assumed that if this set has more than
one element, the Agent chooses the control which benefits most the Principal. The Principal
can anticipate the responses of the Agent to the contracts and faces the problem

V P := sup
(χ,ξ)∈Ξ

sup
α∈A?(χ,ξ)

EPα
[
UP (ξ) +

∫ T

0

uP (s,X, χs)ds

]
, (1.6)

where the real maps up and UP are respectively the instantaneous and terminal utility function
of the Principal and Ξ is the set of pairs (χ, ξ) sufficiently integrable, such that A?(χ, ξ) 6= ∅
and V A(χ, ξ) ≥ R0. The latter conditions are imposed because if the Principal wants to
effectively anticipate the response to the contracts of the Agent, he must be able to optimally
choose his most convenient actions. Moreover, as already explained in the discrete–time
model, the Agent accepts only contracts which provide him more utility than his reservation
value R0.

Different approaches can be followed to solve both problems (1.5) and (1.6) above. In the
following sections the main two of them are described, namely, the martingales and dynamic
programming approach introduced by Sannikov [109] and the stochastic maximum principle
approach introduced by Williams [129] and Cvitanić, Wan and Zhang [30].
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1.2.1.1 Martingale and dynamic programming approach

In this section the approach initiated by Sannikov [109] is presented, with a small variant
when solving the problem of the Agent. The difference and the reason to do so are detailed
below.

Fix a contract (χ, ξ) ∈ Ξ. For t ∈ [0, T ], define the continuation value of the Agent by

V A
t (χ, ξ) := sup

α∈A
EPα

[
UA(ξ) +

∫ T

t

(uA(s,X, χs)− c(s,X, αs))ds
∣∣∣ Ft

]
.

Consider next the continuation utility of the Agent if he chooses the action α ∈ A

uAt (χ, ξ, α) := EPα
[
UA(ξ) +

∫ T

t

(uA(s,X, χs)− c(s,X, αs))ds
∣∣∣ Ft

]
.

Observe that the process uAt (χ, ξ, α)+
∫ t

0
(uA(s,X, χs)−c(s,X, αs))ds is an (F,P)−martingale.

Then, by the martingale representation theorem there exists a process ZA,α such that

uAt (χ, ξ, α) = UA(ξ) +

∫ T

t

(
uA(s,X, χs)− c(s,X, αs) + αsZ

A,α
s

)
ds−

∫ T

t

ZA,α
s dWs, P− a.s.

Therefore, the continuation utility of the Agent under the action α ∈ A is the solution to a
BSDE3 with terminal condition UA(ξ) and generator

f(s,X, χ, α, z) = uA(s,X, χ)− c(s,X, α) + αz.

The previous representation of the continuation utility of the Agent is very important because
it allows to solve the problem of the Agent under mild conditions, even in the non-markovian
case, by means of the comparison theorems for BSDEs. To do so, start defining the maximal
generator

f ?(s,X, χ, z) = sup
α∈A

f(s,X, χ, α, z),

and consider the following BSDE

Yt = UA(ξ) +

∫ T

t

f ?(s,X, χs, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ], P− a.s. (1.7)

Under appropriate integrability conditions on the components of the model, (1.7) is well-
posed and has a unique solution (Y, Z). Moreover, if there exists a maximizer function a?

such that

f ?(t,X, χ, z) = f(t,X, χ, a?(t,X, χ, z), z) and α?t = a?(t,X, χt, Zt) ∈ A,

then V A
t (χ, ξ) = Yt for every t ∈ [0, T ] and the optimal effort of the Agent is given by α?. It

is worthwhile to mention that in Sannikov [109] the problem of the Agent was not solved by
using the comparison results for BSDEs. Instead, a specific proof for his particular model

3See the seminal works of Pardoux and Peng [86, 87] and El Karoui, Peng and Quenez [39] for the
definitions and main results on this subject.
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was made, leading of course to the same result as the one exposed here. The BSDEs variant
is presented here for two reasons: it provides a better understanding of the problem of the
Agent and it serves as a first-step to the more general 2BSDEs approach, introduced in
Cvitanić, Possamaï and Touzi [28], used in the case of volatility control.

Moving to the problem of the Principal, it is necessary to restrict to the markovian case.
The procedure to solve the problem is heuristic and it relies in making the ansatz that the
continuation value of the Principal is a deterministic function of the continuation value of the
Agent. Then, a Hamilton-Jacobi-Bellman equation associated to the problem of the Principal
can be written and studied. The continuation value of the Agent plays the role of a state
variable in the optimal contract, since its components are obtained through the maximizers
appearing in the HJB equation.

To illustrate this, consider Sannikov’s [109] model with infinite horizon, T =∞, and

uA(s,X, χs) = e−rsuA(χs), c(s,X, αs) = e−rsc(αs).

This case is very convenient since it renders the contracting problem stationary and the time
variable is not present in the associated HJB equation. Recall the representation (1.7) for
the continuation value of the Agent. Assuming that V P

t = F (V A
t ) for some deterministic and

smooth function F leads to the following HJB equation

sup
(a,k,Z)

(
r(a− k)− rF (V ) + F ′(V )r(V − uA(k) + c(a)) +

1

2
r2σ2Z2F ′′(V )

)
= 0.

It can be proved that the optimal contract for the Principal, in terms of the continuation
utility of the Agent, is given by α?t = â?(V A

t ) and χ?t = k?(V A
t ), where â?(V ) and k?(V ) are

the maximizers in the previous equation.

Although the characterization of the value of the Principal through an HJB equation gives
great tractability (observe that in the previous example the obtained equation is just an
ODE), the described method is not very rigorous. For instance, the crucial ansatz is not
justified properly and it appears just as an attempt to extend the method of Spear and
Srivastava [118] for discrete–time problems.

1.2.1.2 Stochastic maximum principle approach

In this section the stochastic maximum principle approach, introduced by Williams [129]
and Cvitanić, Wan and Zhang [30], is presented. Roughly speaking, the approach consists
in solving a problem of calculus of variation, where the (IR) constrain of the problem of the
Principal is treated by a KKT multiplier.

Define then, for λ > 0, the relaxed problem

V P (λ) := sup
(χ,ξ)∈Ξ

EPα
[
UP (ξ) +

∫ T

0

uP (s,X, χs)ds+ λ(V A
0 −R0)

]
.
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Observe that defining λt = λδ0(t), where δ0 is the Dirac function, the previous problem can
be rewritten as

V P (λ) = sup
(χ,ξ)∈Ξ

EPα
[
UP (ξ) +

∫ T

0

(
uP (s,X, χs) + λs(V

A
s −R0)

)
ds

]
. (1.8)

Define now the continuation utility of the Principal under the contract (χ, ξ) by

V P,ξ,χ
t := EPα

[
UP (ξ) +

∫ T

t

(
uP (s,X, χs) + λs(V

A
s −R0)

)
ds
∣∣∣Ft

]
.

From the martingale representation theorem, we have the existence of a process ZP,ξ,χ such
that

V P,ξ,χ
t = UP (ξ)+

∫ T

t

(
uP (s,X, χs) + λs(V

A
s −Rs)αsZ

P,ξ,χ
s

)
ds−

∫ T

t

ZP,ξ,χ
t dWt, P−a.s. (1.9)

The relaxed problem (1.8) corresponds then to a stochastic control problem of a 2-dimensional
BSDE, given by (1.9) and (1.7), and with controls (χ, ξ). Optimality conditions to this
problem can be obtained by applying the Stochastic Maximum Principle, which take the
form of a coupled system of Forward-Backward stochastic differential equations (FBSDEs).
For notational convenience, suppress all the dependences on the outcome X. Define then the
maps

IA = (c′)−1, I1
P =

(
−U

′
P

U ′A

)−1

, I2
P =

(
−u

′
P

u′A

)−1

.

Under mild conditions, the continuation values of the Principal and the Agent can be obtained
as solutions to the following coupled system of FBSDEs, where D? is an adjoint process

D?
t = λ+

∫ t

0

ZP,?
s I ′A(s, ZA,?

s )
(
dWs − IA(s, ZA,?

s )ds
)
.

V A,?
t = UA(I1

P (D?
T )) +

∫ T

t

(
uA(s, I2

P (s,D?
s))− c(s, IA(s, ZA,?

s ))
)

ds

−
∫ T

t

ZA,?
s

(
dWs − IA(s, ZA,?

s )ds
)
.

Ṽ P,?
t = UP (I1

P (D?
T )) +

∫ T

t

uP (s, I2
P (s,D?

s)ds−
∫ T

t

ZP,?
s

(
dWs − IA(s, ZA,?

s )ds
)
.

Moreover, the solution to the relaxed problem of the Principal is given by

ξ? = I1
P (D?

T ), χ?t = I2
P (t,D?

t ).

Although this approach is very rigorous and the methodology to follow is clear, it has the
drawback that the optimality conditions obtained can be quite hard to solve. Even for
the simple model presented in this section, one should solve a non-trivial coupled system
of FBSDEs and the situation gets much more complicated as soon as one looks for more
generality. Unfortunately, the stochastic maximum principle approach seems to be as hard
to apply as the solutions to discrete–time models, considering that one of the motivations to
move to the model in continuous–time was to obtain more tractability.
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1.2.2 Volatility control: the model

Let T > 0 be the horizon of the project and d, a positive integer, be the dimension of the
outcome process. Let Ω := {ω ∈ C

(
[0, T ] ,Rd

)
: ω0 = 0} be the canonical space of continuous

maps from [0, T ] into Rd, endowed with the uniform norm ‖ω‖∞ = supt∈[0,T ] ‖ωt‖. Denote
by X the canonical process on Ω, representing the outcome of the project, i.e. Xt(x) = xt,
for all x ∈ Ω and t ∈ [0, T ]. Set F := (Ft)t∈[0,T ] the filtration generated by X.

A control process is a pair (α, ν) of F-adapted processes taking values in A×N , where A and
N are subsets of a finite dimensional space. The controlled drift coefficient b : [0, T ] × Ω ×
A×N −→ Rn is bounded and satisfies that b(·, a, n) is an F-progressively measurable process
for every (a, n) ∈ A×N . The controlled volatility coefficient σ : [0, T ]×Ω×N −→Md,n(R)
is uniformly bounded and such that σσ>(·, n) is an invertible F-progressively measurable
process for any n ∈ N .

The controlled state equation is defined from the following SDE

Xν
s =

∫ s

0

σ(r,Xν , νr)dWr, s ∈ [0, T ]. (1.10)

A weak solution to (1.10) is a pair (P, ν) such that the processes

X· and X·X>· −
∫ ·

0

σ(r,X, νr)σ
>(r,X, νr)dr,

are (P,F)−martingales on [0, T ]. For such a weak solution (P, ν) and every control α it
follows from Girsanov’s theorem that

Xs =

∫ s

0

b(r,X, αr, νr)dr +

∫ s

0

σ(r,X, νr)dW
α
r , s ∈ [0, T ], Pα − a.s., (1.11)

where Wα is a Pα−Brownian motion and the measure Pα is defined by

dPα

dP
= E

(∫ T

0

σ>(σσ>)−1(s,X, νs)b(s,X, αs, νs) · dW P
s

)
,

for a P−Brownian motion W P.

Due to the presence of moral hazard, the Principal can observe merely the outcome process
X and not the actions of the Agent. Therefore, as explained in the case of drift control, a
contract consists in a pair (χ, ξ) of continuous payments χ which is an F−adapted process
and a terminal payment ξ which is an FT−measurable random variable.

Let k : [0, T ] × Ω × A × N −→ R be a discount factor and c : [0, T ] × Ω × A −→ R be
the cost function of the Agent. Denote by uA : [0, T ] × Ω × R+ −→ R the instantaneous
utility function of the Agent and by UA : R −→ R his utility function at the horizon T . The
objective function of the Agent is given by

uA0 (χ, ξ,P, α, ν) := EPα
[
Kα,ν0,TUA(ξ) +

∫ T

0

Kα,ν0,s (uA(s,X, χs)− c(s,X, αs))ds
]
,
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where

Kα,νs,t := exp

(
−
∫ t

s

k(u,X, αu, νu)du

)
, 0 ≤ s ≤ t ≤ T.

At this point, different criteria may be assigned to the Agent and the Principal and there
is freedom for studying distinct models. For instance, Cvitanić, Possamaï and Touzi [27]
studied the general case where the Agent controls effectively both the drift and the volatility
of the outcome process and both players are utility-maximizers. This is an extension of the
model presented in section 1.2.1 in which no volatility control is considered, that is N = {n},
and the Agent controls only the drift of the outcome process. In this model, the value function
of the Agent when he is offered a certain contract and the value function of the Principal are
respectively given by

V A(χ, ξ) := sup
(P,α,ν)∈M

uA0 (χ, ξ,P, α, ν), (1.12)

V P := sup
(χ,ξ)∈Ξ

sup
(P,α,ν)∈M?(χ,ξ)

EPα
[
UP

(
L(XT )− ξ −

∫ T

0

χsds

)]
, (1.13)

where the real functions L and UP are the liquidate and utility functions of the Principal. The
setM of admissible triplets (P, α, ν) is obtained by imposing technical integrability conditions
on the weak solutions to (1.10) in order to guarantee that all the stochastic integrals and
change of measures considered so far are well defined. The setM?(χ, ξ) is the set of optimal
controls of the Agent when the contract (χ, ξ) is offered by the Principal. As usual in the
literature, it is assumed that when the Agent is indifferent between many optimal controls
he chooses one of the most convenient for the Principal. Finally, Ξ is the set of admissible
contracts. The Principal is restricted to offer contracts sufficiently integrable, such that the
Agent can optimally choose his actions and his value function is greater than his reservation
utility R0. Mathematically we have

Ξ :=
{

(χ, ξ) ∈ C :M?(χ, ξ) 6= ∅, V A(χ, ξ) ≥ R0

}
.

In Chapter 4 of this thesis the problem of volatility uncertainty is studied. A brief description
of the model and the differences with the system (1.12)-(1.13) is given in section 1.2.2.2. In
the next section, the dynamic programming approach of Cvitanić, Possamaï and Touzi [28]
for solving (1.12)-(1.13) is presented.

1.2.2.1 Dynamic programming approach

In the Principal-Agent relationship, the sequential interaction between the Principal and
the Agent makes them play a Stackelberg game. Therefore, in the designing of the optimal
contract, the Principal first anticipate what will be the optimal response of the Agent to every
contract she may offer to him and next, taking this information into account, she decides
what contract provides her the highest utility. However, mathematically, this strategy may
be quite hard to apply since the problems which have to be solved on every step are non-
standard stochastic control problems. In fact, the optimal control of the Agent may have
a highly non-linear dependence on the control proposed by the Principal and moreover, the
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controls offered by the Principal may be as complicated as desired, since there is no reason
a priori to impose any additional restriction on the set of admissible contracts.

The dynamic programming approach, proposed by Cvitanić, Possamaï and Touzi [28] avoids
the difficulties just mentioned by showing that it is possible to restrict without loss of gen-
erality the class of contracts that the Principal offers to the Agent. The class of restricted
contracts is chosen conveniently. Its elements correspond to the terminal values of a con-
trolled SDE and this allows to reduce the problem of the Principal to a standard stochastic
control problem where a Hamilton-Jacobi-Bellman equation can be written.

The authors also present a 2BSDE representation of the value function of the Agent. The
intuition of this result is that, as shown in section 1.2.1, if the volatility of the outcome is
fixed the value function of the Agent is the solution to a BSDE so when the Agent takes
supremum on the possible volatilities his value function becomes the solution to a 2BSDE.
The dynamic programming approach is presented next.

Define the function F : [0, T ]× Ω× R× Rd × R× A×N −→ R by

F (t, x, y, z, χ, α, ν) := −k(t, x)y + uA(t, x, χ)− c(t, x, α) + b(t, x, α, ν) · z.

The Hamiltonian H : [0, T ] × Ω × R × Rd × S+
d −→ R associated with the problem of the

Agent (1.12) is

H(t, x, y, z, γ, χ) := sup
Σ∈S+

d

{
1

2
Tr(Σγ) + sup

(α,ν)∈A×Vt(x,Σ)

F (t, x, y, z, χ, α, ν)

}
,

where Vt(x,Σ) :=
{
ν ∈ N, σ(t, x, ν)σ>(t, x, ν) = Σ

}
. Define the optimal map F ? by

F ?(t, x, y, z, χ,Σ) := sup
(α,ν)∈A×Vt(x,Σ)

F (t, x, y, z, χ, α, ν).

It holds that the value function of the Agent can be obtained from the solution to the following
2BSDE.

Yt = UA(ξ) +

∫ T

t

F ?(s,X, Ys, Zs, χs, σ̂
2
s)ds−

∫ T

t

Zs · dXs +

∫ T

t

dKs, PA − q.s. (1.14)

More precisely, denote by (Y, Z,K) the solution to (1.14). Then, the value function of the
Agent is equal to

V A(χ, ξ) = sup
P∈P

EP [Y0] ,

where P is the set of probability measures on Ω such that (P, ν) is a weak solution to (1.10)
for some ν. Moreover, the optimal controls of the Agent are given by the corresponding
maximizers in F ?(t,X, Yt, Zt, χt, σ̂

2
t ).

Consider now a restricted class of terminal payments of the form ξ = Y Z,Γ
T , where Y Z,Γ is

defined as follows for sufficiently integrable processes (Z,Γ)
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Y Z,Γ
t := Y0 +

∫ t

0

Zr · dXr +
1

2

∫ t

0

Γr :d〈X〉r −
∫ t

0

Hr

(
Y Z,Γ
r , Zr,Γr, χr

)
dr. (1.15)

Under this nice class of contracts, it follows from simple arguments that the value function
of the Agent is given by V A(χ, Y Z,Γ

T ) = Y0, which leads to a representation of the problem
of the Principal as a standard stochastic problem with controls (χ, Z,Γ) and state variables
(X, Y Z,Γ). It is shown in [28] that the value function of the Principal is the same under the
restricted class of contracts, that is

V P = sup
Y0≥R0

sup
(χ,Z,Γ)∈V

sup
(P,α,ν)∈M?(χ,Y Z,ΓT )

EPα
[
UP

(
L(XT )− Y Z,Γ

T −
∫ T

0

χsds

)]
.

Where V denotes the class of sufficiently integrable processes such that (1.15) is well-posed.
As explained earlier, this representation allows to solve the problem of the Principal by means
of the associated HJB equation.

1.2.2.2 Contribution: the case of volatility uncertainty

In this section, a brief description of the Principal-Agent problem under volatility uncertainty
is given. This problem is studied in detail in Part II, Chapter 4 of this Thesis

In the volatility uncertainty case, the Agent controls only the drift of the outcome process.
However, the setting of volatility control is needed to model the problem, given the form in
which both sides face the uncertainty. The Principal and the Agent do not know exactly what
is the volatility of the outcome but they have some beliefs about it, which are represented
by some sets of probability measures PP and PA. Moreover, both players have a worst-case
approach to the contract and they act as if a third player, the Nature, was choosing the worst
possible volatility of the outcome process. Therefore, the value functions of the Agent and
the Principal are

V A(χ, ξ) := sup
α∈A

inf
(P,ν)∈NA

uA0 (χ, ξ,P, α, ν), (1.16)

V P := sup
(χ,ξ)∈Ξ

inf
(P,ν)∈NP

EPα?(χ,ξ)

[
UP

(
L(XT )− ξ −

∫ T

0

χsds

)]
, (1.17)

where the sets NA and NP correspond to the set of weak solutions of (1.10) such that P ∈ PA
and P ∈ PP respectively. The control α?(χ, ξ) represents the optimal control of the Agent
to the contract (χ, ξ), with the assumption that in case of multiple solutions he chooses one
which is best for the Principal.

In this case, the Hamiltonian H : [0, T ]×Ω×R×Rd×S+
d −→ R associated with the problem

of the Agent (1.16) is defined by

H(t, x, y, z, χ, γ) := inf
Σ∈S+

d

{
1

2
Tr(Σγ) + sup

α∈A
inf

ν∈Vt(x,Σ)
F (t, x, y, z, χ, α, ν)

}
.

19



Defining in this case, the map F ? by

F ?(t, x, y, z, χ,Σ) := sup
α∈A

inf
ν∈Vt(x,Σ)

F (t, x, y, z, χ, α, ν),

the value function of the Agent can be obtained from the solution to the following 2BSDE

Yt = UA(ξ) +

∫ T

t

F ?(s,X, Ys, Zs, χs, σ̂
2
s)ds−

∫ T

t

Zs · dXs −
∫ T

t

dKs, PA − q.s. (1.18)

More precisely, denoting by (Y, Z,K) the solution to (1.18), the value function of the Agent
is given by

V A(χ, ξ) = sup
α∈A

inf
(P,ν)∈NA

EPα [Y0] ,

and the optimal controls (α?,P?, ν?) are given by the ones which attain the sup-inf in
F ?(t,X, Yt, Zt, χt, σ̂

2
t ).

The problem of the Principal cannot be solved as a straightforward application of the result
of Cvitanić, Possamaï and Touzi [28] because in this case it corresponds to a stochastic
differential game. In Chapter 4 it is proved that the value function of the Principal is a
viscosity solution of the associated Hamilton-Jacobi-Bellman-Isaacs equation by following the
Stochastic Perron’s method of Bayraktar and Sîrbu [11, 12, 13, 115]. This method consists in
proving that the value function of the Principal lies between two well–constructed functions,
which are a viscosity super-solution and a viscosity sub-solution of the HJBI equation. Then,
assuming that the PDE admits a comparison theorem, it follows that its unique solution is
the value function of the Principal.

1.3 Perspectives

A natural extension of the model presented in section 1.2.2.2 is to consider the case in
which the agent can control also the volatility of the outcome. By considering a volatility
coefficient which depends on the control of the agent, σ(t, x, α, ν), the value function of
the agent cannot longer be represented as the solution to a 2BSDE. As explained in Remark
4.4.2 from Chapter 4, this case leads to a non-standard control of 2BSDEs for which a general
theory is still lacking. It is necessary then to develop such theory in order to study more
realistic situations when the agent can indeed have an impact on the volatility but in an
uncertain way which makes him maintain his worst-case approach to the problem.

An interesting extension of the volatility control model is to add jumps to the output process.
If the jumps of the output represented possible accidents, then the Agent would have an
impact on the frequency of the accidents, by controlling the intensity of the jumps, and also
on their severity, by controlling the size of the jumps. To the best of my knowledge, there
is no literature in principal-agent models with an agent controlling both the size and the
jumps of the outcome process. To develop this ideas, the theory of 2BSDEs with jumps
(2BSDEJ) is required. Since such theory is very recent and is not completely developed
yet, this project would involve important theoretic work. However, a model of this kind has
natural applications in insurance contracts, what means a return to the original motivation
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of the principal-agent model, but in a much more general setting. Currently, I have started
to work on the theoretical aspects of this project.

2 Adverse selection in the Principal-Agent problem

Two main sources of inefficiencies were identified in the Principal-Agent relationship, namely,
hidden actions of the Agent (moral hazard) and hidden information on the Agent (adverse
selection). In the adverse selection case, there is a population of Agents and each one of them
has private characteristics which are resumed in a type ρ ∈ R. The Principal can initiate a
contractual relationship with a single Agent or with the whole population. The key feature
of the adverse selection is that, when the Principal offers a contract to a particular Agent,
she does not know what is his type.

During the 1970s, the first studies in the pure adverse selection case were made in parallel with
the theory of pure moral hazard. These works include Mirrlees [68], Mussa and Rosen [79],
Roberts [101] and Spence [119]. Later works in the pure adverse selection case can be found
in Baron and Myerson [10], Maskin and Riley [63], Guesnerie and Laffont [48], Salanié [108],
Wilson [132], and Rochet and Choné [102] in the discrete–time setting, and in Zhang [135] and
Williams [130] in the continuous–time setting. However, although they evidently represent
more realistic situations, problems including both moral hazard and adverse selection have
not been frequently studied, and the literature on the subject is a very small fraction of
the rich literature on the Principal-Agent problem. The reason behind this, is probably the
mathematical difficulty that adverse selection conveys in the optimal design of a contract.
If the Principal-Agent problem including only moral hazard is already difficult to solve, the
presence of adverse selection complicate things much more.

In the presence of adverse selection, the interaction between the Principal and Agent is
slightly different from the one in the pure moral hazard case. Since the Principal is not
informed about the type of the Agent when she makes him an offer, she designs a menu of
contracts (Ψρ)ρ∈R, one for each possible type. The Principal offers the menu of contracts
to the Agent and the Agent declares a type (not necessarily his true type). Then, he can
accept or reject the contract corresponding to the declared type. The revelation principle
states that if the Principal restricts herself to offer contracts in which the Agent reveals his
true type, she incurs in no loss of utility. Mathematically, this condition means that

UA(ρ,Ψρ) = sup
ρ′∈R

UA(ρ,Ψρ′), ∀ρ ∈ R, (2.1)

where UA(ρ,Ψρ′) denotes the maximal utility that the Agent can obtain from the contract
of type ρ′ if his real type is ρ. A menu of contracts satisfying (2.1) is referred to as truth–
revealing. The presence of adverse selection thus, adds an additional constraint to the prob-
lem of the Principal. Depending on the setting, this constrain can take different forms and
different approaches can be used to deal with it.

Discrete–time problems including both moral hazard and adverse selection are studied in
Mirrlees [68], Weitzman [128], Baron and Holmström [9], Baron [6], Antle [2], Myerson [80],
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Dionne and Lasserre [36], Laffont and Tirole [59], McAfee and McMillan [65], Picard [91],
Baron and Besanko [7, 8], Melumad and Reichelstein [66, 67], Guesnerie, Picard and Rey
[49], Page [83], Zou[136], Caillaud, Guesnerie and Rey [22], Lewis and Sappington [61], or
Bhattacharyya [15].

The first study of the continuous time problem with moral hazard and adverse selection was
made by Sung [124], in an extension of the pure moral hazard model of Hölmstrom and
Milgrom [53]. In that paper, the author studied the case of a risk–neutral Agent and an
Agent with exponential utility who controls the drift and the volatility of the outcome. In
a different framework, Cvitanić and Zhang [32] studied the case of an Agent who controls
either the drift or the volatility of the outcome, with a continuum of types in the population.
Cvitanic, Wan and Yang [29] extended the pure moral hazard model of Sannikov [109], where
the Agent controls the drift of the outcome, to the case where there are two types of Agents
in the market.

In the next sections, the problem of pure adverse selection and the third-best problem are
discussed. Since there are many different approaches to these situations in the literature,
one approach to the problem is presented in each case. Following each exposition, a related
application in economics of the Principal-Agent model is briefly described. Such applications
are part of this Thesis and the complete works can be found in Part I of this document, in
Chapters 2 and 3.

2.1 Pure adverse selection

In the pure adverse selection setting, the case of a finite number of types becomes irrelevant,
since equation (2.1) reduces to a finite number of inequalities which must be simply added
to the participation constrain of the Agent (IR). Consider thus that the set of types R is a
bounded open convex subset of a finite dimensional space. Consider also, for simplicity, that
the problem is static. The introduction of continuous time is discussed in the next section.

Different models have been proposed for studying particular applications of the pure moral
hazard problem. However, all these models share the same mathematical structure, due to
the design of truth–revealing contracts. By making some redefinitions, it is possible to move
from one model to the other in most of the cases. Nonetheless, different approaches for solving
the problem can be found in the literature, since different assumptions on the components
of the model are made by different authors. In this section, the model introduced by Carlier
[23] is presented, due to its great generality which allows to encompass most of the other
models.

The Agent is hired by the Principal to perform an observable and contractible action a ∈
A ⊂ RN

+ . The type of the Agent is unknown for the Principal, her only information being the
density function f of the types in the population. The Principal offers to the Agent a menu of
contracts (a(ρ), w(ρ))ρ∈R, where for every Agent of type ρ, a(ρ) is the action he must perform
and w(ρ) is the payment he receives for his work. Observe that different from the moral hazard
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setting, the payment is a direct function of the revealed type. In the same line, the Principal
benefits directly from the action of the Agent through a function P which is usually assumed
to be linear. The preferences of the Agent have the form UA(ρ, a, w) = uA(ρ, a) + w. In this
case the truth–revealing condition (2.1) becomes

uA(ρ, a(ρ)) + w(ρ) ≥ uA(ρ, a(ρ′)) + w(ρ′), ∀ρ, ρ′ ∈ R.

The Agent possesses an outside option which provides him reservation utility R0. Then,
recalling the revelation principle, the problem of the Principal becomes

(PAS)





maximize
ρ,a(·),w(·)

∫

R

(P (a(ρ))− w(ρ)) f(ρ)dρ

s.t. uA(ρ, a(ρ)) + w(ρ) ≥ R0, (IR)

uA(ρ, a(ρ)) + w(ρ) ≥ uA(ρ, a(ρ′)) + w(ρ′), ∀ρ, ρ′ ∈ R. (TR)

The main difficulty of this problem is the truth–revealing constrain (TR). As in the pure
moral hazard theory, effort has been put in studying such constrain and finding equivalent
formulations. Wilson [133] computed the first–order conditions for the equation (TR), which
in some particular cases lead to a change of variables in the objective function. In the one–
dimensional case, Mussa and Rosen [79] constructed an equivalent problem of calculus of
variations where the (TR) becomes a non-decreasing constrain. Rochet and Choné [102]
consider the multidimensional case when the preferences of the Agent are linear in type.
By following the dual approach of Mirrlees [68], they constructed an equivalent problem of
calculus of variations where (TR) becomes a convexity constrain.

The approaches just mentioned are particular cases of the one presented next. Before doing
so, some basic concepts of the u−convex analysis are needed. A function V : R −→ R∪{+∞}
is said to be uA−convex if there exists a set S ⊂ A× R such that

V (ρ) = sup
(a,w)∈S

uA(ρ, a) + w, ∀ρ ∈ R.

For a function V : R −→ R ∪ {+∞} and ρ ∈ R, a ∈ A is called a uA−subgradient of V at ρ
if

V (ρ′) ≥ V (ρ) + uA(ρ′, a)− uA(ρ, a), ∀ρ′ ∈ R.

Define the set ∂?V (ρ) as the one formed by all the uA−subgradients of V at ρ. The function
V is called uA−subdifferentiable at ρ if ∂?V (ρ) 6= ∅.

It follows from the previous definitions that a menu of contracts (a(ρ), w(ρ))ρ∈R is truth–
revealing if and only if

• V (ρ) := uA(ρ, a(ρ)) + w(ρ) is uA−convex,

• uA−subdifferentiable,

• a(ρ) ∈ ∂?V (ρ), for every ρ ∈ R.
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Consequently, problem (PAS) is equivalent to

(PAS)





minimize
V (·),x(·)

∫

R

(P (x(ρ)) + uA(ρ, x(ρ))− V (ρ)) f(ρ)dρ

s.t. V is uA − convex,

V (ρ) ≥ R0, ∀ρ ∈ R,

x(ρ) ∈ ∂?V (ρ),∀ρ ∈ R.

This formulation of the problem of the Principal opens the door to techniques from func-
tional analysis and calculus of variation in the study of the existence of solutions and their
characterization. Imposing integrability conditions on the parameters of the model, existence
of solutions can be obtained in appropriate Sobolev spaces. Concerning the characterization
of solutions, different tools are available depending on the particularities of the problem.

2.2 Application: power tarification under adverse selection

This section introduces a problem of power tarification, which is modelled as a Principal-
Agent situation under adverse selection. It is important to remark that the model is not
exactly of pure adverse selection, even if moral hazard is not present. However, the ideas
presented in section 2.1 are the main tools used to approach it. The problem presented here
is studied in detail in Part I, Chapter 2 of this Thesis.

An electricity company, the Principal, wants to determine the optimal instantaneous tariff
p(t, c) for the electrical consumption of its clients, the Agents. Such tariff is a function of
the amount c ∈ R+ of electricity consumed and the time t ∈ [0, T ] at which the consumption
is made. The Principal aggregated cost of production is K : [0, T ] × C −→ R+. The clients
are heterogeneous, represented by a type x ∈ [0, 1]. The density of the distribution of types
in the population is denoted by f and is known by the Principal. Finally, the instantaneous
utility function of the Agents is given by u : [0, T ]×X × C −→ R.

The action of every Agent is a consumption plan c : [0, T ] −→ R+. The consumptions are
observable by the Principal, so there is no moral hazard in this setting. Despite of this, each
Agent can choose his own consumption, as the one which maximizes his benefits. This is the
main difference with the case of pure adverse selection of section 2.1. A contract is a tariff p
proposed by the Principal. In this model, the presence of types in the population generates
adverse selection. However, due to legal reasons or to large costs of implementation, the
Principal does not design a menu of tariffs, but instead a general p for all the clients. Let P
be set of sufficiently integrable tariffs. Given p ∈ P , the problem of the Agent of type x is

V A(p, x) := sup
c(·)

∫ T

0

u(t, x, c(t))− p(t, c(t)) dt. (2.2)

Complementing the basic concepts of u−convex analysis introduced in the previous section,
for any function ϕ from [0, T ]×R+ to R, its u−transform is defined as the map ϕ? : [0, T ]×
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X −→ R ∪ {+∞} given by

ϕ?(t, x) := sup
c∈R+

{u(t, x, c)− ϕ(t, c)} , for any (t, x) ∈ [0, T ]×X.

It follows then that for every p ∈ P and for almost every x ∈ X

V A(p, x) =

∫ T

0

p?(t, x)dt.

Since every type of Agent possesses private characteristics, their reservation utilities may
differ. Consider then a non–decreasing function H : [0, 1] −→ R, representing the total
benefits that the Agents could obtain by signing a contract with a competitor in the market,
or even by producing energy locally. The set of Agents who accept the contract p offered by
the Principal is given by

X?(p) :=

{
x ∈ [0, 1],

∫ T

0

p?(t, x)dt ≥ H(x)

}
.

Thus, optimal contracting problem faced by Principal is

V P := sup
p∈P

sup
c∈∂?p?

∫ T

0

[∫

X?(p?)

p(t, c(t, x))f(x)dx−K
(
t,

∫

X?(p?)

c(t, x)f(x)dx

)]
dt,

with the usual convention that when indifferent between two consumptions, the Agent chooses
the one which benefits most the Principal. Recall from section 2.1 that c(t, x) ∈ ∂?p?(t, x) if
and only if c(t, x) is the optimal consumption in problem (2.2).

The characterization of the value function of the Agent V A(p, x) and the set X?(p) in terms
of p? suggest a reformulation of the problem V P as a variational problem in terms of p?.
With that purpose in mind, the tractable case of an Agent with CRRA utility is studied.
Assume that

u(t, x, c) = g(x)φ(t)
cγ

γ
,

where g : [0, 1] −→ R+ represents the willingness of the Agents to pay for consumption,
φ : [0, T ] −→ R+ represents that clients prefer to consume more at certain hours of the day,
and γ ∈ (0, 1). In this case the optimal consumption of the Agent is uniquely determined by
the equivalent condition

c(t, x) ∈ ∂?p?(t, x) ⇐⇒ c(t, x) =

(
γ

φ (t) g′(x)

∂p?

∂x
(t, x)

) 1
γ

.

Without entering into details, the problem of the Principal can be rewritten as

V P = sup
p∈A

∫ T

0

[∫

X?(p)

(
g(x)

g′(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(p)

(
γ

φ(t)g′(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt, (2.3)

where the set A is the set of tariffs p sufficiently integrable such that
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• p is a u−convex function.

• ∂?p?(t, x) is non-empty for every (t, x).

• p? is increasing.

Compared to problem (PAS) from section 2.1, in problem V P not all the Agents are necessary
contracted. The presence of the set X?(p) in (2.3) makes problem V P very difficult. Since
this set is determined directly by H, the problem is studied for different classes of reservation
utilities.

IfH is assumed to be constant, the setX?(p) is an interval. Therefore, sufficient and necessary
first-order conditions can be found when V P is a concave problem (this is indeed the case by
considering that K is a convex cost function). If H is an increasing and concave function,
by applying multiple tools from variational analysis, the problem V P can be reduced to an
equivalent one in which the tariffs p offered by the Agent are restricted. The restriction
consists in the set X?(p) taking the form X?(p) = [0, b0] ∪ [a0, 1], for some a0, b0 ∈ [0, 1].
Again, this simple form of X? leads to standard optimality conditions.

2.3 Third-best problem: the temptation-value approach

In this section, the third–best continuous–time model of Cvitanić, Wan and Yang [29] is
presented. This work is an extension of Sannikov [109], by considering two types of Agents
in the population.

Recall that in the pure moral hazard setting, the approach of Sannikov [109] consisted in
assuming that the continuation value of the Principal was a deterministic function of the
continuation value of the Agent, what allowed to write an HJB equation associated to the
optimal contract. In the presence of a finite number of types, the previous approach can
be generalized by increasing the number of state variables of the value of the Principal, and
therefore the optimal contract. In the optimal contract designed for a particular type of
Agent, the Principal also looks at the utilities that the other types would obtain if they
lied and accepted the contract, the so–called temptation utilities. Therefore, under a fixed
contract, the utility of the Principal is assumed to be a deterministic function of the po-
tential values of all the types of Agents. This allows to associate each optimal contract
to a high-dimensional HJB equation, with non-trivial domain and boundary conditions. A
methodology to determine the latter components of the PDE is introduced in Cvitanić, Wan
and Yang [29]. The details of their approach are given next.

Recall from section 1.2.1, the weak formulation of the drift-control performed by the Agent

Xt =

∫ t

0

αsσsds+

∫ t

0

σsdW
α
s , Pα − a.s., (2.4)

where Wα is a Pα−Brownian motion.
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The two types of Agents in the population, are referred to as the good Agent and the bad
Agent. The difference between the two types lies in how they profit from the payments, or
equivalently, in how hard it is to provide them a certain level of utility. More precisely, the
set of types is R = {ρg, ρb}, with ρg > ρb. The expected utility of the Agent of type ρi under
the contract χ, when performing the action α ∈ A, is given by

uA0 (ρi, χ, α) := EPα
[∫ ∞

0

(ρiuA(s,X, χs)− c(s,X, αs))ds
]
, i ∈ {g, b}.

Since the Agents are utility-maximizers, the problem of the Agent of type ρi, when offered
the contract χ, is

V A(ρi, χ) := sup
α∈A

uA0 (ρi, χ, α). (2.5)

The solution to this problem can be obtained exactly as in section 1.2.1.1, what provides a
characterization of V A(ρi, χ) via BSDEs. Moving to the Principal, recall that she designs a
menu of contracts (χg, χb). The Principal knows that when she meets an Agent, he is of type
ρi with probability pi, for i ∈ {g, b}. Therefore, her expected utility when offering the menu
(χg, χb) is equal to

V P (χg, χb) := sup
αg∈Ag,?(χg)

pgEPαg
[∫ ∞

0
uP (s,X, χ

g
s)ds

]
+ sup
αb∈Ab,?(χb)

pbEPαb
[∫ ∞

0
uP (s,X, χ

b
s)ds

]
.

(2.6)
The so–called screening contract, is the solution to the following problem

V P :=





maximize
(χg ,χb)∈Ξ2

V P (χg, χb)

s.t. V A(ρi, χi) ≥ R0, i ∈ {g, b},
V A(ρi, χi) ≥ V A(ρi, χj), i 6= j, i, j ∈ {g, b}.

Another interesting contract to study is the so–called shutdown contract, in which the Prin-
cipal is interested in hiring only the good Agent. For instance, Cvitanić, Wan and Yang [29]
showed that in cases where the reservation utility of the Agents is high, she obtains more
benefits from the shutdown contract than from the screening contract. Under a contract
which is accepted only for the good Agent, the expected utility of the Principal is

V̂ P (χg) := sup
αg∈Ag,?(χg)

pgEPαg
[∫ ∞

0

uP (s,X, χgs)ds

]
. (2.7)

The shutdown contract is the solution to the following problem

V̂ P :=

{
maximize

χg∈Ξ
V̂ P (χg)

s.t. V A(ρg, χg) ≥ R0 ≥ V A(ρb, χg).

As explained earlier, the idea is to rewrite the previous problems as stochastic control prob-
lems with state variables given by the continuation utilities of the Agents when they are
offered the same contract. By doing so, an associated HJB can be written for each problem,
whose domain and boundary conditions are non-trivial and must be determined rigorously.

The approach to determine the domain and the boundary conditions of the HJB equations
is the following. Suppose that for every admissible contract χ, the value functions of the
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good and the bad Agent take values in some sets Vg and Vb respectively (this sets can be
explicitly determined depending on the components of the model). The so–called credible
set C is defined as the subset of Vb × Vg containing the pairs of values of the bad and good
Agents under every admissible contract offered by the Principal. Formally,

C =
{

(ub, ug) ∈ Vb × Vg : ∃χ ∈ Ξ, V A,b(χ) = ub, V A,g(χ) = ug,

(V A,b
s (χ), V A,g

s (χ)) ∈ Vb × Vg ∀s ≥ 0
}
,

with the notation V A,i(χ) = V A(ρi, χ) for i ∈ {g, b}. The credible set corresponds to the
domain of the HJB equation associated to V̂ P . In problem V P , since two contracts are
designed, the domain of the HJB equation associated to it is C × C. To determine the
credible set it is convenient to denote by U(ub) the largest value ug that the good Agent can
obtain from all the contracts χ such that V A,b(χ) = ub, and denote by L(ub) to the lowest
value.

The functions U and L can be obtained as solutions to one–dimensional stochastic control
problems, leading to associated HJB equations which are ODEs. U and L correspond re-
spectively to the upper boundary and the lower boundary of the credible set. By proving
attractive properties of U and L, the value function of the Principal on the boundaries can
be computed as the solution to one–dimensional stochastic control problems. By doing so,
boundaries conditions for the HJB equation are obtained.

2.4 Application: third-best solution to bank monitoring

In this section, a brief description of a bank monitoring problem including both moral hazard
and adverse selection is given. The problem studied is an extension of the model of Pagès
and Possamaï [84], which studies the contracting problem between competitive investors and
an impatient bank who monitors a pool of long-term loans subject to Markovian contagion.
The model is in continuous time with a finite number of types, so the study of the problem
is based on the techniques of Cvitanić, Wan and Yang [29] introduced in section 2.3. The
problem is studied in detail in Part I, Chapter 3 of this Thesis

A bank monitors a pool of I identical loans, indexed by j = 1, . . . , I, each one of them yields
cash flow µ per unit of time until it defaults. The bank is the Agent of the model and he
raises funds from an investor, who is the Principal. There are two types of banks in the
market: the good bank and the bad bank. As in the previous section, the set of types has
the form R = {ρg, ρb} with ρg > ρb. The proportions of banks of type ρg and ρb in the
population are respectively pg and pb.

Let τ j be the default time of loan j. The size of the pool at time t is equal to I −Nt, where

Nt :=
I∑

j=1

1{τ j≤t}, t ∈ [0, T ].

The action of the Agent of type ρi is to decide how many loans he does not monitor. The
action he chooses at time t is denoted by ki

t ∈ {0, . . . , I −Nt}. The Agent has incentives to
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shirk, since each non-monitored loan renders him a private benefit B per unit of time. How-
ever, by not monitoring, the default intensity of the loans increases. The latter is explicitly
given by

λk
i

t :=
I−Nt∑

j=1

αj,it = αI−Nt
(
I −Nt + εki

t

)
,

where ε > 0 and the coefficients {αi}Ii=1 represent the contagion effect, by assuming that
αi ≤ αi−1, i ≤ I.

As usual in the Principal–Agent literature, the Agent affects the distribution of the state
process, in this case N . Since so far only the case of diffusion control had been considered,
the details of the weak formulation in this case are presented. Consider a probability space
(Ω,F ,P) on which N is a Poisson process with intensity λ0

t . Call τ the liquidation time of the
whole pool and let G := (Gt)t≥0 be the minimal filtration containing (FNt )t≥0 which makes τ
a G-stopping time. Define Pk on Gt by

dPk

dP
= Zk

t ,

where Zk is the unique solution of the following SDE

Zk
t = 1 +

∫ t

0

Zk
s−

(
λks
λ0
s

− 1

)(
dNs − λ0

sds
)
, 0 ≤ t ≤ τ, P− a.s.

It follows from Girsanov’s Theorem that Nt −
∫ t

0
λkt ds, is a Pk−martingale.

The Principal designs a menu of contracts (Ψi)i∈{g,b} := (ki, θi, Di)i∈{g,b} consisting in:

• Predictable, non-decreasing payments Di.

• Probabilities (1− θi) under which the project is liquidated given a default.

• Recommended level of effort ki.

Denoting Ht := 1t≥τ , then

dHt =

{
0 with probability θi

t,

dNt with probability 1− θi
t.

The utility functions of the Agent of type ρi and the Principal are respectively

ui
0(ki, θi, Di) := EPki

[∫ τ

0

e−rs(ρidD
i
s +Bki

s ds)

]
,

v0 (Ψi) := piEPki
[∫ τ

0

(I −Ns)µds− dDi
s

]
.

Therefore, when offered a contract (θi, Di), the Agent faces the problem

V A,i(θi, Di) := maximize
k∈K

ui
0(k, θi, Di).
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On the other side, in the design of the screening contract, the Principal faces the problem

V P :=





maximize
(Ψg ,Ψb)∈Ξ2

v0(Ψg) + v0(Ψb)

s.t. ui
0(ki, θi, Di) ≥ R0, i ∈ {g, b},
ui

0(ki, θi, Di) = sup
k∈K

ui
0(k, θi, Di), i ∈ {g, b},

ui
0(ki, θi, Di) ≥ sup

k∈K
ui

0(k, θj, Dj), i 6= j, (i, j) ∈ {g, b}2.

In the design of the shutdown contract, the Principal faces the problem

V̂ P :=





maximize
Ψg∈Ξ

v0(Ψg)

s.t. ug0(kg, θg, Dg) ≥ R0 ≥ sup
k∈K

ub0(k, θg, Dg),

ug0(kg, θg, Dg) = sup
k∈K

ug0(k, θg, Dg).

Similar to the drift control case presented in 1.2.1, the presence of jumps in the model does
not change the methodology to solve the problem of the Agent. By defining the continuation
utility of the Agent, and applying the martingale representation Theorem conveniently, it
follows the existence of processes h1,k and h2,k such that

dui
t(k, θ

i, Di) =
(
rui

t(k,D
i, θi)−Bkt

)
dt− ρidD

i
t − h1,i,k

t

(
dNt − λkt dt

)

− h2,i,k
t

(
dHt − (1− θi

t)λ
k
t dt
)
, 0 ≤ t < τ, P− a.s.

Therefore, the optimal control of the Agent is obtained from the comparison theorems for
BSDEs with jumps. In this case it is given by

k?,it = (I −Nt)1{Zi
t·(1,1−θi

t)
><bt},

where (Y i, Z i) is the unique (super–)solution to the following BSDE

Y i
t = 0−

∫ τ

t

gi(s, Y i
s , Z

i
s)ds+

∫ τ

t

Z i
s · dM̃ i

s +

∫ τ

t

dK i
s, 0 ≤ t ≤ τ, P− a.s.,

with

gi(t, y, z) := inf
k∈{0,...,I−Nt}

ry −Bk + kαI−Ntεz · (1, 1− θi
t)
>,

M̃ i
t := Mt −

∫ t

0

λ0
s(1, 1− θi

s)
>ds, K i

t := ρiD
i
t.

Moreover, V A,i
t (θi, Di) = Y i

t for every t ∈ [0, T ].

Moving to the problem of the Principal, different from Cvitanić, Wan and Yang [29] and
Sannikov [109], in this case it is not stationary. The size of the project depends on time,
but only through the number of loans left. An important difference with Cvitanić, Wan and
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Yang [29] is that in this setting the credible set is dynamic. The precise definition of the
credible set CI−Nt , when there are I −Nt loans left, is the following

CI−Nt =
{

(ub, ug) ∈ Vbt × Vgt : ∃Ψ ∈ Ξ, V A,b(Ψ) = ub, V A,g(Ψ) = ug,

(V A,b
s (Ψ), V A,g

s (Ψ)) ∈ Vbs × Vgs ∀s ≥ 0
}
,

where V i
s is the set where the continuation utility of the Agent of type ρi takes values at time

s, the dynamic version of the set V i introduced in section 2.3.

Since the impact of time in the model is reduced only to a finite set (the values of I −Nt),
it does not count exactly as a state variable of the value function of the Principal. Instead,
the presence of the temporal variable leads to a system of value functions, one for every size
of the project, associated to a recursive system of HJB equations. The domains of these
equations are the analogous to the stationary problem. The credible set CI−Nt is the domain
of the HJB equation associated to the shutdown contract with I − Nt loans left. Similarly,
the domain of the HJB equation associated to the screening contract with I −Nt loans left
is CI−Nt × CI−Nt .

2.5 Perspectives

The tarification model introduced in section 2.2 is the first-step to more general models in
electricity contracts. To leave the intermediate position between a pure adverse selection
problem and a third–best problem, it may be interesting to study the case in which the
Principal is allowed to design a menu of contracts. Also, more general contracts can be
considered. For instance, taking into account the availability of power, or with interactions
between the consumptions of the different agents. Since the Principal negotiates with a
great number of Agents, aggregate behaviour can have a crucial role and the problem can be
approached from the theory of mean field games.

Staying in the electricity markets, there are many situations in which the principal-agent
model can be applied. Recently I have started to work in the problem of a regulator of
electricity providers, who gives incentives to the providers to reduce their pollutant emissions
in their productive processes (for instance by preferring cleaner technologies). An interesting
feature of the model, is that the regulator cannot punish the high-polluting technologies
arbitrarily since she faces a social cost when the total energy generated by the providers is
not enough to satisfy the demand of the population.

In the third–best problem, as happens in the bank monitoring problem introduced in section
2.4, adding a type of agent in the population increases exponentially the number of states
variables of the optimal contract. Indeed, in the design of a contract for a particular type of
Agent, the Principal takes care of all the temptation values of the other types. This makes
the case with more than two agents intractable, due to the associated high-dimensional HJB
equations. The study of the case with a continuum of types becomes relevant then, and
the approach initiated by Cvitanić and Zhang [32] can be followed. In this setting, we can
think about a Principal who is not perfectly informed about the distribution of types in the
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population. If she has a worst–case approach to the uncertainty, then the problem can be
studied with the same techniques presented in section 1.2.2.2.
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Part I

Economic applications of the
principal-agent model.
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Chapter 2

An adverse selection approach to power
tarification

2.1 Introduction

Electricity is non-storable, except marginally: any quantity which is consumed now must
be produced now, and conversely. Since there are no stocks to dampen shocks and smooth
discrepancy, adjusting supply to demand is a difficult task. One way to do so is to use
prices. Very early on, power companies have hit upon the idea of making electricity more
expensive in peak hours, so that consumers who are able to do so would switch their demand
to off-peak periods. Present-day electricity tariffs are based on (a) total consumption, and
(b) maximum power available. But at least two important changes in the electricity sector
make previous tariff structure questionable. First change is the development of smart meters
which enables a precise metering of electricity consumption (USmartConsumer report [95]
states that at the end of 2016 30% of overall European electricity meters were equipped by
smart technology). Second change is the development of competition on electricity retail (see
[75]). Previous analysis on electricity pricing had focused the point of view in a monopoly
which needs to recover its costs, such as in the famous Ramsey-Boiteux tarification described
in [19] or in [97]. Our setting considers electricity retailers which acquire electricity partly on
the market and partly from their own production, if any, and whose purpose is to maximize
their outputs.

This falls naturally within the framework of Principal-Agent problems: the Principal (here
the power company) offers a variety of contracts, and each Agent picks the one which suits
him best.

It does not seem, however, that such an analysis is available at the present time, and the
aim of the present work is to fill this gap. Electricity pricing has a special feature, which
distinguishes it from other Principal-Agent problems. Usually, the profit of the Principal is
the sum of the profits she gets from all participating Agents. Here, the cost to the power
plant is the cost of producing the aggregate demand, which is not the sum of the costs of
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producing the individual demands, because of decreasing returns to scale in production. This
introduces a mathematical difficulty which, fortunately, can be superseded, as we will provide
explicit solutions.

We now proceed to describe the mean features of our model. The Principal’s cost, as men-
tioned above, is a convex function of aggregate production. The Agents’ utilities are separa-
ble: the utility which an Agent of type x derives from consuming a quantity c of electricity
at time t and being charged a (nonlinear) price p is:

u (t, x, c)− p

where u (t, x, ·) is a concave function of c. This separability assumption is traditional in
Principal-Agent problems. In this case, there are additional justifications, as a large part of
the Agents are industrial users, who consume electricity in order to produce other goods, so
that their utility simply identifies to the profit they derive from this activity. Note also the
time-dependence, which reflects the seasonality of consumption.

In the sequel, we will consider CRRA utilities, of the type γ−1cγ, with γ < 1, and we will
provide explicit solutions (except in the case γ = 0, or u (c) = ln c). The case γ < 0
reflects the "household "behavior, where electricity fulfills some basic needs, such as lighting
or appliances, and 0 consumption is not acceptable while high consumption is not needed.
The case 0 < γ < 1 reflects the "industrial" behavior, where high consumption is the norm,
subject to decreasing returns to scale. Note, however, that in both cases there is a "fallback"
option, a substitute to electricity when it becomes too expensive, for instance an alternative
energy source, or simply another provider. This fallback option is expressed by a reservation
utility, which may be constant or vary across Agents.

Despite the particular structure of the cost function, we are able to solve explicitly the
problem at hand. We observe that the optimal contract rewrites as the combination of a
fixed cost together with two variable costs, proportional to either the electricity consumption
or a power function of it. This tariff structure happens to be quite simple and quite close to
the classical tariff structures offered by most electricity providers.

Whenever the fallback option is the same for every Agent, we observe as usual in Principal-
Agent problems, that the lower end of the market is not covered: the low types (meaning
those households who are less dependent on electricity, or those industry users who are less
efficient) will not be offered contracts which they are willing to accept, and will have to fall
back on the outside option. More interestingly, we are also able to solve explicitly the case
where the fallback option of the Agents depends on their type in a concave manner. In
this case, the population of Agents accepting the optimal contract offered by the electricity
provider may include the lower end as well as the higher end of the Agent types. In this case,
getting more efficient Agents can be too costly, and the electricity provider has interest in
including the less efficient but less expensive consumers.
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2.2 General settings and optimal tariff

The model we are proposing is set up on Principal-Agent relationship where the Principal
is an electricity provider and the Agents are electricity consumers. Since the electricity
consumption is observed by the Principal, we suppose that there is no moral hazard. On the
other hand, adverse selection is in force as the Agent’s willingness to pay for electricity is not
known by the Principal. This taste for electricity represents how much Agents price a given
volume of electricity in term of usefulness. For an industrial Agent, this would represent the
benefit he gets by running his industrial process with this given volume of electricity. For
a residential Agent, this would represent the comfort he gets by using this given volume of
electricity to perform domestic tasks (heating, lightning...). Of course, this depends on the
Agent’s efficiency of his equipment referred as his type X. As classically assumed in adverse
selection setting, even if the Principal does not know the exact type of a particular Agent,
he knows the repartition of Agents’ type among the population. This hypothesis is realistic
as the electricity provider can always make surveys in order to acquire this information.

2.2.1 Players’ objectives and electricity particularity

Both players have their particular objectives:

• Agent’s objective is to choose the level of electricity consumption c at any time t, which
maximize his utility for electricity u (t, x, c) with respect to his type x minus the tariff
p(t, c) that he needs to pay for the electricity consumed.

max
c

{∫ T

0

u (t, x, c)− p (t, c) dt

}

• Principal’s objective is to offer the tariffs which maximize his own profits: all payments
she receives from consumers accepting the contract minus the costs for providing the
total volume of electricity consumed by her clients. The provider can offer power either
by buying on the electricity market or by producing it herself.

The tariffs designed by the Principal need to respect two conditions. The first one is the
individual rationality of the Agents. Indeed, Agents are not forced to accept the contract
offered by the Principal as they can pick alternative electricity providers, offering better con-
ditions. This is taken into account in the model via a reservation utility H which represents
the minimum level of satisfaction that an Agent needs to achieve in order to accept the
contract. This reservation utility could interprets as an aggregation of competitors’ offers or
as a minimum level of utility imposed by public services, who offer a regulated tariff. The
second condition that tariffs are required to respect is the so-called incentive compatibility
condition:, which will be automatically satisfied, as there is no moral hazard in this model.

One particular feature of electricity product is the fact that it suffers from decreasing returns
to scale: its marginal price increases with the total aggregate consumption. This comes from
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the fact that several technologies can be used in order to produce electricity. Some power
plants have no or very low fuel costs such as renewable (hydro power plants, wind or solar
production...) or nuclear production. These types of productions are chosen for satisfying
base-load consumption. But when, the electricity consumption increases such as in peak
hours, other power plants (coal, gas or fuel thermal plants for example) need to be turned
on and their cost of production is much more expensive. The electricity spot price shows
this strong base/peak patterns and can exhibit high spikes when capacity productions reach
their limit with respect to consumption. For this reason, we impose in our model that the
electricity production cost of the Principal depends on the consumption of all her clients. In
fact, this cost should depend on the consumption of all consumers and not only on all clients
of this provider but we assume that aggregate consumption of clients who select the provider
is correlated to the consumption of the other consumers. This is justified since there are
strong common preferences and behaviours among consumers, for example consumptions are
higher during daytime than during the night.

2.2.2 Notations and model assumptions

We consider CRRA (Constant Relative Risk Aversion) utility function for the Agents.

u(t, x, c) = gγ(x)φ(t)
cγ

γ
(2.2.1)

where φ(t) represents the Agents’ time preference for electricity. This factor is common to
every Agent and typically represents for example the preference to have electricity during
the daytime than during the middle of the night. x ∈ [0, 1] is the type of the Agent. We
suppose that γ < 1 and we consider two different cases: γ ∈ (0, 1) and γ < 0. The function
gγ represents the willingness of the Agents to pay for their consumption depending on their
type x and we take typically gγ(x) = x if γ ∈ (0, 1) and gγ(x) = 1 − x if γ < 0. Graphic
illustrations of the utility function are shown in Figure 2.1. The case γ ∈ (0, 1) corresponds
to the modeling of industrial Agents, whose utility grows to infinity if they can have infinite
volume of electricity: they can always make their industrial capacities grow and generate
more benefits whenever they have extra electricity. On the contrary, they can stop producing
if they could not get any electricity or substitute it by another energy, which corresponds to a
zero utility whenever c = 0. The case γ < 0 illustrates the residential Agents utility for whom
electricity is a staple product: they can not avoid consuming electricity (they would get −∞
utility). They also have a saturation for electricity : above a high volume of electricity, they
do not gain much satisfaction with an extra volume because all their electrical needs are
already fullfilled.

The indirect utility p?(x) is the best level of utility that the Agent can obtain by signing the
contract, which is entitled on the period [0, T ].

P ?(x) :=

∫ T

0

p?(t, x)dt = sup
c

{∫ T

0

u(t, x, c)− p(t, c)dt
}
, (2.2.2)

The Agent’s decision to sign the contract depends on his reservation utility, denoted H(x)
for an Agent of type x: he signs the contract with the Principal if and only if P ?(x) ≥ H(x).
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γ ∈ (0, 1) γ < 0

Figure 2.1: Agent’s utility with respect to consumption.

We consider two cases for H(x), either a constant function or a concave one verifying that
the elasticity of reservation utility is smaller than the the elasticity of willingness to pay for
consumption, i.e. gγ

g′γ
≤ H

H′
. The concavity of H indicates that competitors target principally

the more efficient Agents. We denote by X∗ the set of Agents who end up signing the
contract:

X?(p?) := {x ∈ [0, 1], P ?(x) ≥ H(x)} .

We suppose that Agents are uniformly distributed among the population and, as already
mentioned, this feature is known by the Principal. We assume a convex cost of power
production K:

K(t, c) = k(t)
cn

n
(2.2.3)

The term k(t) is positive and indicates the time dependence of electricity production
costs: for example photovoltaic production occurs only at day and wind is blowing more
during winter. The power n > 1 reflects the production fleet composition: for example when
the fleet has expensive peak power plants n is high.

2.2.3 Optimal tariffs

In the setting we previously described, the Principal-Agent problem can be explicitly solved.
We present in this part only a brief sketch of the argumentation and formal mathematical
proofs are postponed to the remaining sections of this chapter. Let’s stress out that the
problem is solved without imposing a priori structure of the tariff function, except that it
only depends on time and consumption. In order to be admissible, a tariff p should verified
the individual rationality and incentive compatibility conditions, that is denoted p ∈ P .
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Let’s write formally the objective function of the Agents UA and Principal UP :

UA(p, x) := sup
c

∫ T

0

(u(t, x, c(t))− p(t, c(t))) dt =

∫ T

0

p?(t, x)dt.

UP := sup
p∈P

∫ T

0

[∫

X?(p?)

p(t, c?(t, x))f(x)dx−K
(
t,

∫

X?(p?)

c?(t, x)f(x)dx

)]
dt.

The demonstration is performed into five main steps:

• For a given tariff p, the optimal responding consumption of the Agents can be deter-
mined as a function of ∂p?

∂x
. This is injected in the Principal problem which is now a

problem expressed in term of p? only.

• In order to solve the Principal problem, we first consider an alternative problem ŨP ,
where we impose to the tariff p to be only continuous and non-decreasing, instead of
being admissible.

• This alternative problem is simpler to solve. First, the structure of X? is determined.
Whenever H is constant, it is proven that X? is of the form [a0, 1] meaning only the
most efficient Agents select the contract. Whenever H is concave, X? is of the form
[0, b0] ∪ [a0, 1], meaning that the Principal not only selects the most efficient, but also
the less efficient ones.

• Knowing the structure of X?, we rewrite ∂p?

∂x
(t, x) as f(t, a0, b0) using calculus of vari-

ations, we plug this expression into ŨP in order to determine a0 and b0.

• We finally verify whether the derives solution p? for the alternative problem satisfies
indeed the conditions of the initial problem, i.e. that it is admissible. By doing so, we
are able to conclude that the solution p? of the simpler problem, also solves the initial
one of interest.

We compute that, whatever γ or H (constant or concave), the optimal tariff is a function of
three components at most: a constant part p3, a proportional part p2 of the consumed power
c and a proportional part p1 of cγ:

p(t, c) = p1(t)cγ + p2(t)c+ p3(t) . (2.2.4)

First, an important observation is that this tariff is quite simple and close to current tariff
structures proposed by electricity providers. Indeed, these tariffs are commonly split into a
fixed charge in Euro, a volumetric charge in Euro/MWh and possibly a demand charge in
Euro/MW. The fixed and the volumetric charges can depend on the maximum subscribed
power which is another way to price the demand charge. A detailed interpretation of the
optimal tariff is given the next paragraph.

The optimal tariffs the Principal offers in our settings are summarized in the following table.
The explicit expressions for the functions (pi, γ)i, (pji )i,j and ĉγi (t) are respectively provided
in Theorem 2.5.2 and Theorem 2.6.3 hereafter.
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H constant H concave
X? [a0, 1] [0, b0] ∪ [a0, 1]
p(t, c) p1,γ(t)c

γ + p2,γ(t)c+ p3,γ(t), γ ∈ [0, 1] p1
2(t)c+ p1

3(t), c < ĉγ1(t)
p2,γ(t)c+ p3,γ(t), γ < 0 p2

1(t)cγ + p2
3(t), ĉγ1(t) < c < ĉγ2(t)

p3
1(t)cγ + p3

2(t)c+ p3
3(t), ĉγ2(t) < c

Let’s point out that the optimal tariffs are understandable and the three components can
be connected to electricity pricing standard issues. Clearly, in the obtained optimal tariff
p3 represents the fixed charge. The volumetric charge is the combination of a standard
term p2(t)c plus p1(t)cγ. This last term is a way to charge more high demand consumers
(indeed it only features when c is high enough or when γ is positive). Finally, no explicit
demand charge appears but the coefficients pi depend on the maximum subscribed power ĉγi
which ensures to limit instantaneous power and to charge more high power consumers. In
addition, the peak/off-peak issues are handled by the temporal structure of the tariff: each
component depends on time t. Therefore, high power consumption within peak period will
be overcharged compared to off-peak period. Let’s notice that the proportional part p1(t) to
cγ only depends on the Agent’s utility parameters. Therefore this part should be common to
any Principal whatever her cost of production, or the utility of reservation of the consumers.

The selected Agents are the most efficient when H is constant, which a classical result. But
whenever H is concave, the Principal should also select Agents among the less efficient one.
Indeed, when H is concave, reaching most efficient Agents is costly and it happens that
getting less efficient Agents can in this case be profitable as they are easily satisfied. This
type of feature seems to be uncommon in the Principal-Agent literature.

When H is constant, the tariff is a unique simple function of consumption, which even
happens to be linear in c when γ < 0. When H is concave, the tariff is the combination
of three functions depending on the level of consumption c. Nevertheless, let’s observe that
Agents who sign the contract never consume in the range [ĉγ1 , ĉ

γ
2 ]. Hence, the tariff portion

p1(t)2cγ + p2
3(t) only acts as a repellent part.

2.3 Economical interpretations and numerical results

2.3.1 Examples when the reservation utility is constant

For a constant utility reservation, more efficient Agents are selected and we draw numerical
illustration in figure 2.2 for negative and positive γ. As previously explained, the tariff
structure is linear with the consumption when γ < 0 and is concave otherwise which is
represented in the upper graphics of figure 2.2. Middle graphics represent the utility Agents
can obtain by signing the contract, depending on their type. If this utility level is smaller than
their reservation utility (represented by the dashed line) they do not enter the contract and
their consumption is null, as represented in the lower graphics. These utility representations
also illustrate a classical result of informational rent: the most efficient Agents obtain a tariff
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inferior to what they are willing to pay, whereas the less efficient ones need to pay as much
as they are able to, or are excluded.

Figure 2.2: H is constant, examples of bill paid with respect to consumption (upper graphs),
Agents’s utility with respect to their type x and reservation utility in dashed lines (middle
graphs) and selected consumption against Agents’ type x (lower graphs) for γ < 0 (left
figures) and γ ∈ (0, 1) (right figures)

2.3.2 Examples when the reservation utility is concave

For a concave utility reservation, not only most efficient Agents are selected and we draw
numerical illustrations of examples where either most efficient or less efficient Agents are
selected on figure 2.3. First, let’s analyze the example when H(x) =

√
x and γ ∈ (0, 1)

which corresponds to the left column. In this example, only the most efficient Agents sign
the contract as they are the only ones obtaining a higher utility than their reservation one.
As presented in the previous section, the tariff structure is the combination of three functions
of consumption (upper graphics) but Agents who sign the contract only choose consumption
such that ĉγ2 < c which corresponds to the concave tariff part p1(t)3cγ + p3

2(t)c+ p3
3(t).

When H(x) = log (x) and γ < 0 (the right column of figure 2.3), only less efficient Agents
take the contract. Indeed, the concavity of the reservation utility makes it profitable for the
Principal to select these Agents, rather than the most efficient ones. The tariff structure is
again the combination of three functions of consumption (upper graphics) but Agents who
sign the contract only take consumption such that ĉγ2 < c (of course ĉ2 is different from the
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Figure 2.3: H is concave, examples of bill paid with respect to consumption (upper graphs),
Agents’s utility with respect to their type and reservation utility (dash lines) (middle graphs)
and selected consumption against Agents’ types (lower graphs )for γ < 0 and H(x) =

√
x

(left figures) and γ ∈ (0, 1) H(x) = log x (right figure)

one in the previous example because we consider a different H). This again corresponds to
the concave tariff part p1(t)3cγ + p3

2(t)c+ p3
3(t).

2.3.3 Impact of competition when the reservation utility is constant

When H increases because competition is for example more intense, the Principal adapts
his tariff in order to remain competitive. In that case, the Principal mainly decreases the
constant part p3,γ of its tariff in order to attract consumers, see the left graphic of figure 2.5
when γ < 0). The consumers selecting this new tariff obtain better conditions and as such
consume more power because it is cheaper, see the same example on the left graphic of figure
2.4 when γ < 0. Therefore, when the Principal decreases his tariff, he does not decrease it
enough in order to keep the same quantity of consumers: he accepts to retain less consumers
but who consume more, as represented on the right graphic of figure 2.4. Nevertheless, the
utility of the Principal decreases with competition, see the right part of figure 2.5. At the
extreme, the Principal even offers no tariff whenever H is too high. Let’s observe that in this
example, the fixed part of the tariff represents more than a half of the total cost of electricity
for the consumers.
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Figure 2.4: Evolution of Agents’ utility (left) and consumption (right) against Agent’s type
X, when H increases and γ < 0

Figure 2.5: Evolution of tariff’s components (left) and Principal utility UP (right), when H
increases and γ < 0

2.3.4 Impact of cost of production when the reservation utility is
constant

For an increase of cost of production K, the Principal also adapts his tariff in order to reflect
this cost increase. In that case, the Principal mainly increases the proportional part p2,γ of its
tariff so that he continues to attract consumers, see an example for constant H and γ < 0 on
the left part of figure 2.7. Consumers who select this new tariff are offered worse conditions
and as such consumes less power because it is more expensive, see the same example on the
left graphic of figure 2.6. In addition, less consumers select the contract. Therefore, the
utility of the Principal decreases with the cost of production, as illustrated in the right part
of figure of 2.6.
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Figure 2.6: Agents’ utility (left) and consumption (right figure) evolution againts Agent’s
type X when K increases and γ < 0

Figure 2.7: Evolution of tariff’s components (left) and Principal utility UP (right) against
increase of K and γ < 0

2.4 Model specification

We now turn to a more precise presentation of the model and try to present it in a rather
general setting. In particular, the specific assumptions on the shape on the utility, type
distribution or cost functions will only be introduced later, in order present our results in a
more explicit fashion.

In this model, the Principal is a power company, whose purpose is to offer to its clients a
collection of tariffs in order to maximise its profits. The time horizon T > 0 is fixed. The
following notations will be used throughout the article

• C represents the admissible levels of consumption for the Agents, and will either be R+

or R∗+ depending on the utility function of the Agents.

• p : [0, T ]×C −→ R+ is the tariff proposed by the Principal, such that p(t, c) represents
the price of electricity at time t corresponding to a level of consumption c.
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• K : [0, T ]×C −→ R+ is the cost of production of electricity for the Principal, such that
K(t, c) represents the cost at time t for an aggregate level of production c. We assume
that K is continuous in t, increasing, continuously differentiable and strictly convex in
c.

• x is the Agent’s type, assumed to take values in some subset X of R.

• c : [0, T ] × X −→ C is the consumption function, such that c(t, x) represents the
consumption of electricity by an Agent of type x at time t.

• u : [0, T ] × X × C −→ R is the utility function of the Agents, such that u(t, x, c)
represents the utility obtained by an Agent of type x at time t when he consumes c.
We will always assume that the map c 7−→ u(t, x, c) is non-decreasing and concave for
every (t, x) ∈ [0, T ]×X. Moreover, the map u is assumed to be jointly continuous, such
that x 7−→ u(t, x, c) is non-decreasing and differentiable Lebesgue almost everywhere
for every (t, c) ∈ [0, T ] × C, and such that c 7−→ ∂u

∂x
(t, x, c) is invertible. Finally, we

assume that if C = R+, the value u(t, x, 0) ∈ R+ is independent of x, and if C = R∗+
that limc→0 u(t, x, c) = −∞, for every (t, x) ∈ [0, T ]×X. In other words, all the Agents
have the same utility when they do not consume electricity.

• f : X −→ R+ is the distribution of the Agent’s type over the population. As is
customary in adverse selection problems, f is supposed to be known by the Principal.

2.4.1 Agent’s problem

Let us start by defining the consumption strategies that the Agents are allowed to use. A
consumption strategy c will be said to be admissible, which we denote by c ∈ C, if it is a
Borel measurable map from [0, T ] to C. Given a tariff p, that is a map from [0, T ]×R+ to R,
proposed by the Principal, an Agent of type x ∈ X determines his consumption by solving
the following problem

UA(p, x) := sup
c∈C

∫ T

0

(u(t, x, c(t))− p(t, c(t))) dt. (2.4.1)

The tariff that the Principal can offer to the Agents has to satisfy the incentive compatibility
(IC) and the individual rationality (IR) conditions. In our setting, there is no moral hazard,
so that the incentive compatibility condition is automatically satisfied. Furthermore, the
(IR) condition can be expressed through the set X(p) of the types of Agents which accept
the contract p, which can be defined as

X(p) := {x ∈ X, UA(p, x) ≥ H(x)} ,

with a continuous and non-decreasing function H which represents the reservation utility of
the Agents of different types, that is to say the utility that the Agents can hope to obtain
by subscribing their power contract with a competitor. Agents for which the map UA(p, ·) is
smaller than H will not accept the contract offered by the Principal.
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We are now ready to give our definition of admissible tariffs, which uses vocabulary from
u−convex analysis. We have regrouped all the pertinent results and definitions in Appendix
2.7.1, for readers not necessary familiar with this theory.

Definition 2.4.1 A tariff p : [0, T ] × C −→ R will be said to be admissible, denoted by
p ∈ P , if it satisfies

(i) For any (t, x) ∈ [0, T ]×X(p) the set ∂?p?(t, x) is non–empty.

(ii) The map x 7−→ p?(t, x) is continuous on X, differentiable Lebesgue almost everywhere,
for every t ∈ [0, T ], and satisfies

∫ T

0

∫

X

∣∣∣∣
∂p?

∂x

∣∣∣∣ (t, x)dxdt < +∞.

(iii) If one defines the map c? : [0, T ]× [0, 1] −→ R+ by

c?(t, x) =

(
∂u

∂x
(t, x, ·)

)(−1)(
∂p?

∂x
(t, x)

)
, (2.4.2)

then the restriction of p to {(t, c) ∈ [0, T ]× C, ∃x ∈ X(p), c = c?(t, x)} is u−convex.

Let us comment on the above definition. First of all, the regularity assumptions are mainly
technical. The main point here is that since only the clients with type in X(p) are going to
accept the contract, the Principal will only have to face consumptions chosen by these clients.
Besides, as we are going to prove in the the next proposition, this optimal consumption is
exactly c?(t, x). Therefore, any consumption c ∈ C which does not belong to the pre–image
of X(p) will never have to be considered by the Principal. In particular, there is a degree
of freedom when defining the value of p there. Indeed, if clients of some type x reject the
contract p, they will reject any contract with a higher price. This is the reason why we do not
impose the admissible tariffs to be u−convex on C but only on the corresponding pre–image
of the set X(p).

Our main result in this section is

Proposition 2.4.1 For every p ∈ P and for almost every x ∈ X(p), we have

UA(p, x) =

∫ T

0

p?(t, x)dt,

and the optimal consumption of Agents of type x at any time t ∈ [0, T ] is given by c?(t, x)
defined in (2.4.2). In particular, X(p) can be defined through p? only as follows

X(p) = X?(p?) :=

{
x ∈ X, P ?(x) :=

∫ T

0

p?(t, x)dt ≥ H(x)

}
.

Proof. Since the space of admissible strategies for the Agent is decomposable and the
integrand is normal when p is admissible (see Definitions 14.59 and 14.27 in Rockafellar and
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Wets [103] and also the particular case 14.29 of a Carethéodory integrand), we have from
Theorem 14.60 in [103] that the solution of problem (2.4.1) is given by pointwise optimization.
Moreover, ∂?p?(t, x) is non–empty for every (t, x) ∈ [0, T ] × X(p), so we have that every
optimal consumption strategy c? : [0, T ] −→ R+ satisfies c?(t) ∈ ∂?p?(t, x) for almost every
t ∈ [0, T ] and

p?(t, x) = u(t, x, c?(t))− p(t, c?(t)).
Since u(t, x, 0) does not depend on x, the envelop Theorem ensures that the map x 7−→ p?(t, x)
is differentiable Lebesgue almost everywhere and that we have for almost every (t, x) ∈
[0, T ]×X(p)

∂u

∂x
(t, x, c?(t)) =

∂p?

∂x
(t, x). (2.4.3)

Indeed, if c?(t) > 0, that is the classical envelop Theorem. Otherwise, when C = R+, it
is immediate to check, using the fact that u(t, x, 0) does not depend on x, that for any
(t, x) ∈ [0, T ]×X(p), we have

0 ∈ ∂?p?(t, x) =⇒ 0 ∈ ∂?p?(t, x′), for all x′ ≤ x,

so that both terms in (2.4.3) are then actually equal to 0.

Then, since the map c 7−→ ∂u
∂x

(t, x, c) is invertible, we have for almost every (t, x) ∈ [0, T ]×
X(p) that ∂?p?(t, x) is a singleton, and the optimal consumption is c? : [0, T ]×X(p) −→ R+

defined in (2.4.2). �

2.4.2 The Principal’s problem

The Principal sets a tariff p ∈ P as a solution to his maximization problem

UP := sup
p∈P

∫ T

0

[∫

X(p)

p(t, c?(t, x))f(x)dx−K
(
t,

∫

X(p)

c?(t, x)f(x)dx

)]
dt. (2.4.4)

Using the results of Section 2.4.1, we can rewrite this problem in terms of p? only as

UP = sup
p∈P

∫ T

0

[∫

X?(p?)

(
u

(
t, x,

(
∂u

∂x
(t, x, ·)

)(−1)(
∂p?

∂x
(t, x)

))
− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(p?)

(
∂u

∂x
(t, x, ·)

)(−1)(
∂p?

∂x
(t, x)

)
f(x)dx

)]
dt. (2.4.5)

Now notice that by (2.4.3), p? is actually non-decreasing (since x 7−→ u(t, x, c) is non-
decreasing for every (t, c) ∈ [0, T ] × C). Let us then consider the space C+ of maps g, such
that for every t ∈ [0, T ], x 7−→ g(t, x) is continuous and non-decreasing with

∫ T

0

∫

X

∣∣∣∣
∂g

∂x
(t, y)

∣∣∣∣ dydt < +∞.
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We shall actually consider the problem ŨP ≥ UP , defined by

ŨP := sup
p?∈C+

∫ T

0

[∫

X?(p?)

(
u

(
t, x,

(
∂u

∂x
(t, x, ·)

)(−1)(
∂p?

∂x
(t, x)

))
− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(p?)

(
∂u

∂x
(t, x, ·)

)(−1)(
∂p?

∂x
(t, x)

)
f(x)dx

)]
dt, (2.4.6)

where we have forgotten the implicit link existing between p and p?, which explains why we
have in general ŨP ≥ UP . We will see in the frameworks described below that we can give
conditions under which the two problems are indeed equal. The main advantage of ŨP is
that it no longer contains the condition that p? has to be u−convex, a constraint that is not
easy to consider in full generality.

Besides, we also emphasize that since the elements of C+ are non-decreasing with respect to
x, they are also differentiable Lebesgue almost everywhere, so that ŨP is indeed well defined.
Our aim now will be to compute ŨP . However, the present framework is far too general to
hope obtaining explicit solutions, which are of the utmost interest in our electricity pricing
model, so that we will concentrate our attention on the case of Agents with power-type
utilities. In the next Section, we will focus on the particular case where the reservation
utility H is constant, and shall consider the more general case where it may depend on the
Agents’ type in Section 2.6.

2.5 Agents with CRRA utilities and constant reservation
utility

In this section, we shall use the following standing assumptions

Assumption 2.5.1 (i) X = [0, 1].

(ii) We have for every (t, x, c) ∈ [0, T ]×X × C

u(t, x, c) = gγ(x)φ(t)
cγ

γ
,

for some γ ∈ (−∞, 0) ∪ (0, 1), some map gγ : X −→ R+ which is continuous, increasing if
γ ∈ (0, 1), decreasing if γ ∈ (−∞, 0), and for some continuous map φ : [0, T ] −→ R?

+.

Let us comment on this modeling choice for the utility function. The term gγ(x) represents
the willingness of the Agents to pay for their consumption, i.e. their need for energy depends
on their type. The term φ is common to every type of Agents and represents the fact that
(almost) everyone is eager to consume at the same time (for example during the day rather
than at night). Furthermore, we consider both the cases γ ∈ (0, 1), which would be the
classical power utility function, as well as the case γ < 0, which corresponds to a situation
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where Agents actually cannot avoid consuming electricity, as it would provide them a utility
equal to −∞, which may be seen as more realistic. As discussed previously, taking γ ∈ (0, 1)
identifies to considering industrial Agents, as γ < 0 more typically refers to residential Agents.

Equation (2.4.2) now can be written as

c?(t, x) =

(
γ

φ (t) g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

. (2.5.1)

By inserting the previous expression in equation (2.4.4) and using that

p(t, c?(t, x)) = gγ(x)φ(t)
c?(t, x)γ

γ
− p?(t, x),

the problem to solve can now be expressed as

ŨP = sup
p?∈C+

∫ T

0

[∫

X?(p?)

(
gγ(x)

g′γ(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(p?)

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt. (2.5.2)

We consider in this section a further simplification, related to the reservation utility of the
Agents, which we suppose to be independent of their type. This assumption will be relieved
in Section 2.6 hereafter.

Assumption 2.5.2 The reservation utility H is actually independent of x, that is

H(x) =: H, for every x ∈ [0, 1].

Under Assumptions 2.5.1 and 2.5.2, the (IR) condition reduces to

X?(p?) =

{
x ∈ [0, 1],

∫ T

0

p?(t, x)dt ≥ H

}
.

Since p? is non-decreasing in x we have for any x0 ∈ [0, 1] that
∫ T

0

p?(t, x0)dx ≥ H =⇒
∫ T

0

p?(t, x)dx ≥ H, ∀x ≥ x0.

Therefore, the set X?(p?) has necessarily the form

X?(p?) = [x0, 1],

where x0 ∈ [0, 1] needs to be determined and verifies, by continuity, that P ?(x0) = H. This
means that the Principal will only offer contracts to Agents of type greater than x0. The
problem (2.5.2) can therefore be written equivalently

ŨP = sup
x0∈[0,1]

sup
p?∈C+(x0)

∫ T

0

[∫ 1

x0

(
gγ(x)

g′γ(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

− K

(
t,

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt, (2.5.3)
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with

C+(x0) :=

{
p? ∈ C+,

∫ T

0

p?(t, x0)dt = H

}
=
{
p? ∈ C+, X?(p?) = [x0, 1]

}
.

Let us end this section with the following sufficient condition of u−convexity when Assump-
tion 2.5.1 holds. Its proof is deferred to Appendix 2.7.2.

Lemma 2.5.1 Let Assumption 2.5.1 hold and suppose in addition that gγ is concave if
γ ∈ (0, 1) and convex if γ ∈ (−∞, 0). Let ψ : [0, T ] × X −→ R be a map such that
x 7−→ ψ(t, x) is non-decreasing and convex. Then ψ is u−convex. Furthermore, if we take

gγ(x) :=

{
x, if γ ∈ (0, 1),

1− x, if γ < 0,

then any u−convex function is convex.

2.5.1 General distribution of costs and Agent types

Denote by F the cumulative distribution function of the types of Agents. By integration by
parts we have for every x0 ∈ [0, 1] and every p? ∈ C+(x0)

∫ T

0

[∫ 1

x0

(
gγ(x)

g′γ(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx−K

(
t,

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt

=

∫ T

0

[∫ 1

x0

(
gγ(x)

g′γ(x)
f(x) + F (x)− 1

)
∂p?

∂x
(t, x)dx−K

(
t,

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt

+ (F (x0)− 1)

∫ T

0
p?(t, x0)dt.

We therefore end up with the maximization problem

ŨP = sup
x0∈[0,1]

sup
p?∈C+(x0)

∫ T

0

[∫ 1

x0

(
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

)

g′γ(x)

∂p?

∂x
(t, x)dx

− K

(
t,

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt+ (F (x0)− 1)H. (2.5.4)

We can now state our main result of this section, wholes proof is postponed to Appendix
2.7.2. It requires the introduction of the following function

`(x0) :=

∫ 1

x0

([
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

fγ(x)

) 1
1−γ

dx, x0 ∈ [0, 1].

Theorem 2.5.1 Let Assumptions 2.5.1 and 2.5.2 hold. We have
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(i) The maximum in (2.5.3) is attained for the maps

p?(t, x) = p?(t, x?0) +

∫ x

x?0

g′γ(y)

γ

(
φ(t)

1
γ
[
gγ(y)f(y) + g′γ(y)F (y)− g′γ(y)

]+

f(y)∂K
∂c

(t, A(t, x?0))

) γ
1−γ

dy, x ∈ [0, 1],

where A(t, x0) is defined

A(t, x0) :=

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx.

and x?0 is any maximizer of the map and

[0, 1] 3 x0 7−→
∫ T

0

(
∂K

∂c
(t, A(t, x0))m(t, x0)−K(t, γm(t, x0))

)
dt+ (F (x0)− 1)H,

with

m(t, x0) :=
φ

1
1−γ (t)`(x0)

γ

(
∂K

∂c
(t, A(t, x0))

) 1
1−γ

, (t, x0) ∈ [0, T ]× [0, 1],

and t 7−→ p?(t, x?0) is any map such that
∫ T

0

p?(t, x?0)dt = H.

For instance, one can choose p?(t, x?0) := H/T, t ∈ [0, T ].

(ii) Define p for any (t, c) ∈ [0, T ]× R+ by

p(t, c) = sup
x∈[0,1]

{
gγ(x)φ(t)

cγ

γ
− p?(t, x)

}
.

If the map defined on [0, 1] by

x 7−→ g′γ(x)

([
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

f(x)

) γ
1−γ

,

is non-decreasing, then p? is u−convex, and p is the optimal tariff for the problem (2.4.4).
Furthermore, the Principal only signs contracts with the Agents of type x ∈ [x?0, 1].

(iii) Finally, in the case γ ∈ (0, 1), if f is non-increasing and the map

β : x 7−→ (gγ(x)f(x) + g′γ(x)F (x)− g′γ(x))

fγ(x)
,

is increasing over the set L := {x ∈ [0, 1], β(x) > 0}, then x?0 is unique and is characterized
by the equation (

1− γ
γ

)
φ(t)

1
1−γ β(x?0)

(
∂K
∂c

(t, A(t, x?0))
) γ

1−γ
= f(x?0)H.

The same result holds in the case γ ∈ (−∞, 0) if f is non-decreasing and β is decreasing over
L.
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2.5.2 An explicit example

We insist on the fact that the tariff p defined in Theorem 2.5.1 is u−convex by definition,
and it is finite since it is written as a supremum of a continuous function over a compact
set. In order to verify that p ∈ P , one therefore only needs to make sure that p? is indeed
the u−transform of p (which is the case if p? is u−convex) and satisfies the other required
properties. We will consider here a simplified framework where all the computations can be
done almost explicitly.

Assumption 2.5.3 The cost function K is given, for some n > 1, by

K(t, c) := k(t)
cn

n
, (t, c) ∈ [0, T ]× R+,

for some map k : [0, T ] −→ R?
+. Moreover, the distribution of the type of Agents is uniform,

that is f(x) = 1, and we impose gγ(x) := x1γ∈(0,1) + (1− x)1γ<0, for every x ∈ [0, 1].

Under Assumption 2.5.3, we then have

A(t, x0) =

(
φ(t)

k(t)

) 1
n−γ

`
1−γ
n−γ (x0),

and the maximization problem becomes

ŨP = sup
x0∈[0,1]

{(
1

γ
− 1

n

)∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt `(x0)
n(1−γ)
n−γ + (x0 − 1)H

}
.

Define

Bγ(T ) :=

(
1

γ
− 1

n

)∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt, Φ(x0) := Bγ(T )`(x0)
n(1−γ)
n−γ + (x0 − 1)H,

where we emphasize that since n > 1, when γ ∈ (0, 1), we easily have that Bγ(T ) > 0, while
Bγ(T ) < 0 when γ < 0. Furthermore, we remind the reader that when γ > 0, the reservation
utility of the Agents is necessarily non-negative, while it has to be negative when γ < 0, since
the utility function itself is negative.

Our result rewrites in this case

Theorem 2.5.2 Let Assumptions 2.5.1, 2.5.2 and 2.5.3 hold.

(i) If γ ∈ (0, 1), then, the optimal tarif p ∈ P is given for any (t, c) ∈ [0, T ]× R+ by

p(t, c) = φ(t)
cγ

2γ
+

((
φ(t)

2

) 1
1−γ 1− γ

γM(t)

) 1−γ
γ

c− H

T
+M(t)(2x?0 − 1)

1
1−γ ,

where

M(t) =
1− γ

2γ

(
2(2− γ)

1− γ

) γ(n−1)
n−γ

(
φn(t)

kγ(t)

) 1
n−γ (

1− (2x?0 − 1)
2−γ
1−γ

)− γ(n−1)
n−γ

,
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and where x?0 is the unique solution in (1/2, 1) of the equation

H = 2nAγ(T )
2− γ
n− γ (2x?0 − 1)

1
1−γ

(
1− (2x?0 − 1)

2−γ
1−γ

)− γ(n−1)
n−γ

.

Furthermore, only the Agents of type x ≥ x?0 will accept the contract.

(ii) If γ < 0, then, the optimal tarif p ∈ P is given for any (t, c) ∈ [0, T ]× R+ by

p(t, c) = −γc
(
−φ(t)

γ

) 1
γ

(
1− γ
M̂(t)

) 1−γ
γ

− H

T
− M̂(t)(1− x̂?0)

1
1−γ ,

where

M̂(t) = −1− γ
γ

(
2− γ
1− γ

) γ(n−1)
n−γ

(
2γφn(t)

kγ(t)

) 1
n−γ

(1− x̂?0)−
γ(2−γ)(n−1)
(n−γ)(1−γ) ,

and where

x̂?0 :=

(
1−

(
n− γ

n(1− γ)Bγ(T )
H

) n−γ
n(1−γ)+γ

(
2− γ
1− γ

) −γ(n−1)
n(1−γ)+γ

2
−n

n(1−γ)+γ

)+

.

Furthermore, only the Agents of type x ≥ x̂?0 will accept the contract.

2.6 Agents with CRRA utilities and general reservation
utility

In this part we study the case where the reservation utility H is a general continuous and
non-decreasing function of the Agent type x ∈ [0, 1]. This case strongly differs from the
previous section as the existence of a solution to the infinite-dimensional problem faced by
the Principal is not guaranteed and we need to impose some additional structure to the set
of admissible tariffs. Specifically, we will consider a new set of admissible tariffs which is
contained in a reflexive Banach space and we will use the classical results from functional
analysis to prove the existence of solutions to the Principal’s problem. With that purpose in
mind, we introduce the following Sobolev-like spaces.

Definition 2.6.1 For any ` ≥ 1 and any open subset O of X, we denote by W 1,`
x (O) the

space of maps q : [0, T ] × O −→ R for which there exists a null set N (q) ⊂ [0, T ] (for the
Lebesgue measure) satisfying that for every t ∈ [0, T ] \ N (q) the map x 7−→ q(t, x) belongs
to W 1,`(O)1 and such that

||q||`,O :=

(∫ T

0

∫

O
|q(t, x)|`dxdt

) 1
`

+

(∫ T

0

∫

O

∣∣∣∣
∂q

∂x
(t, x)

∣∣∣∣
`

dxdt

) 1
`

<∞.

1That is to say the usual Sobolev space of maps admitting a weak first order derivative.
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Remark 2.6.1 For the rest of the chapter, for every map q belonging to some spaceW 1,`
x (O),

the set N (q) will make reference to the one mentioned in Definition 2.6.1.

For all the analysis of this section, we fix a number m > 1 such that mγ < 1. We are now
ready to give our new definition of admissible tariffs.

Definition 2.6.2 A tariff p : [0, T ] × R+ −→ R is said to be admissible (in the case when
H is not constant), denoted by p ∈ P̂ , if in addition to Definition 2.4.1, it satisfies that

p? ∈ W 1,m
x (

o

X).

In this new setting, the Principal offers a tariff p ∈ P̂ which solves his maximization problem

ÛP := sup
p∈P̂

∫ T

0

[∫

X?(p?)

p(t, c?(t, x))f(x)dx−K
(
t,

∫

X?(p?)

c?(t, x)f(x)dx

)]
dt. (2.6.1)

Following the previous sections, we will consider the problem UP ≥ ÛP , defined by

UP = sup
p?∈Ĉ+

∫ T

0

[∫

X?(p?)

(
gγ(x)

g′γ(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(p?)

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt, (2.6.2)

where Ĉ+ = C+ ∩ W 1,m
x (

o

X). We aim at solving UP and give conditions under which it
coincides with ÛP .

Now, moving to the reservation utility function H, recall that it determines the set X?(p?).
In order to avoid complex forms of this set we make the following assumption on g, H and
f .

Assumption 2.6.1 The functions g and H are such that for every x ∈ [0, 1]

gγ(x)

g′γ(x)
≤ H(x)

H ′(x)
. (2.6.3)

Moreover, the following maps

v1(x) := g′γ(x)

([
gγ(x)f(x) + g′γ(x)F (x)

]+

f(x)

) γ
1−γ

,

v2(x) := g′γ(x)

([
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

f(x)

) γ
1−γ

,

are non-decreasing on [0, 1].

Remark 2.6.2 Condition (2.6.3) is equivalent to the elasticity of reservation utility being
less than the elasticity of willingness to pay for consumption. For instance, in the case
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γ ∈ (0, 1), it is automatically satisfied when H is constant and if gγ(x) = x then (2.6.3)
reduces to H being concave. Similarly, in the case γ < 0, (2.6.3) holds if gγ(x) = 1− x and
H(x) = xα with α > 1. On the other hand, if for instance, f(x) = 1 and g(x) = xα with
α ∈ (0, 1], then v1, v2 are increasing when α ≥ 1− γ.

The following proposition shows that when Condition (2.6.3) holds, it is actually never op-
timal for the Principal to propose a tariff for which the (IR) condition is binding on any
measurable subset of [0, 1] with positive Lebesgue measure. Its proof is postponed to Ap-
pendix 2.7.3.

Proposition 2.6.1 Let Assumptions 2.5.1 and 2.6.1 hold, and let p? ∈ Ĉ+ be any function
such that the set

Y ?(p?) := {x ∈ [0, 1], P ?(x) = H(x)} ,

has positive Lebesgue measure. Then p? is not optimal for problem (2.6.2).

In this section, we show that the problem splits into subintervals. Thanks to the previous
proposition, we can consider without loss of generality functions p? ∈ Ĉ+ such that the
Lebesgue measure of Y ?(p?) is zero. For these functions, we define the set

X̂?(p?) := X?(p?) \ Y ?(p?) = {x ∈ [0, 1], P ?(x) > H(x)} ,

which by continuity is an open subset of [0, 1]. As X? and p? are continuous, we can replace
all the integrals over X?(p?) by integrals over X̂?(p?) and we can write the latter set as a
countable union of open disjoint intervals, that is

X̂?(p?) := [0, b0) ∪
⋃

n≥1

(an, bn) ∪ (a0, 1],

for some a0 ∈ (0, 1], b0 ∈ [0, 1), and 0 < an < bn < 1, ∀n ≥ 0. We denote a := (an)n≥0,
b := (bn)n≥0 and define A as the set of such that pairs (a, b). For any (a, b) ∈ A, we also
define the set

X?(a, b) = [0, b0) ∪
⋃

n≥1

(an, bn) ∪ (a0, 1].

Remark 2.6.3 The case b0 = 0 stands for P ?(b0) < H(b0) and the case a0 = 1 stands for
P ?(a0) < H(a0). By continuity we have P ?(an) = H(an) and P ?(bn) = H(bn) for every
n ≥ 1.

We can therefore write

UP = sup
(a,b)∈A

sup
p?∈C+(a,b)

∫ T

0

[∫

X?(a,b)

(
g(x)

g′(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(a,b)

(
γ

φ(t)g′(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt, (2.6.4)
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where C+(a, b) is given by all the maps p? ∈ Ĉ+ such that X̂?(p?) = X?(a, b). Define for
every (a, b) ∈ A the operator Ψ(a,b) : C+(a, b) −→ R by

Ψ(a,b)(p
?) :=

∫ T

0

[∫

X?(a,b)

(
gγ(x)

g′γ(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

−K
(
t,

∫

X?(a,b)

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt.

We optimize first with respect to p?, and then study the problem

(Pa,b) sup
p?∈C+(a,b)

Ψ(a,b)(p
?).

Our first result gives the existence of a solution to the above infinite-dimensional optimization
problem, and requires the following assumption, which involves mainly the cost function. It
is required in order to obtain nice coercivity properties

Assumption 2.6.2 The cost function K satisfies the following growth condition

K(t, c) ≥ k(t)cn, ∀c ∈ C,
where the map k : [0, T ] −→ R+ is bounded from below by some constant k > 0 and n ≥ 1.
Moreover, we have that

I := inf

{
k(t)

(
γf(x)

φ(t)g′γ(x)

)n
, (t, x) ∈ [0, T ]× [0, 1]

}
> 0.

We now have

Proposition 2.6.2 Let Assumptions 2.5.1 and 2.6.2 hold. For every (a, b) ∈ A, the opti-
mization problem (Pa,b) has at least one solution.

Next, we obtain necessary optimality conditions for (Pa,b). Recalling from Remark 2.6.3 that
the (IR) condition is binding at each an, bn, by integration by parts we can rewrite Ψ(a,b) as

Ψ(a,b)(p
?) =

∫ T

0

∫ b0

0

(
gγ(x)f(x) + g′γ(x)F (x)

)

g′γ(x)

∂p?

∂x
(t, x)dxdt

+

∫ T

0

∫ 1

a0

(
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

)

g′γ(x)

∂p?

∂x
(t, x)dxdt

+
∞∑

n=1

∫ T

0

∫ bn

an

(
gγ(x)f(x) + g′γ(x)F (x)

)

g′(x)

∂p?

∂x
(t, x)dxdt

−K
(
t,

∫

(0,b0)∪
⋃
n≥1(an,bn)∪(a0,1)

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)
dt

+
∞∑

n=1

F (an)H(an)−
∞∑

n=1

F (bn)H(bn)− F (b0)H(b0) + (F (a0)− 1)H(a0).

(2.6.5)
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To simplify notations, denote

A(t, a, b) :=

∫

X?(a,b)

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx.

Theorem 2.6.1 Let Assumptions 2.5.1 and 2.6.2 hold and let p? be a solution of (Pa,b).
Consider an interval I = (x`, xr) ⊆ X?(a, b) such that P ?(x) > H(x) for every x ∈ I,
P ?(x`) = H(xl) and P ?(xr) = H(xr). Then there exists a null set N ⊂ [0, T ] and a constant
µt for every t ∈ [0, T ] \ N such that the following optimality condition is satisfied

(i) In the case I ⊆ (a0, 1), for every x ∈ I we have

∂p?

∂x
(t, x) =

(
φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x) + g′γ(x)µt

]+

f(x)∂K
∂c

(t, A(t, a, b))

) γ
1−γ

g′γ(x)

γ
. (2.6.6)

(ii) In the case I ⊆ (0, b0) ∪n≥1 (an, bn), for every x ∈ I we have

∂p?

∂x
(t, x) =

(
φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x) + g′γ(x)µt

]+

f(x)∂K
∂c

(t, A(t, a, b))

) γ
1−γ

g′γ(x)

γ
. (2.6.7)

The proof of the Theorem 2.6.1 consists in several technical propositions which are given and
proved in Section 2.7.3.2 below.

The next and last proposition of this section proves the convexity of the solutions to problems
(Pa,b) over intervals where the (IR) condition is not binding. This result will allow us to
completely solve the Principal’s problem in the next subsection, when the function H is
strictly concave.

Proposition 2.6.3 Let Assumptions 2.5.1, 2.6.1 and 2.6.2 hold. Let p? be a solution to
problem (Pa,b). Then P ? is convex on every interval over which P ? is strictly greater than
H.

Proof. From Assumption 2.6.1 and Theorem 2.6.1 we have that on every interval I
over which P ? > H, there exists a null set N ⊂ [0, T ] such that for every t ∈ [0, T ] \ N ,
x 7−→ ∂p?

∂x
(t, x) is non-decreasing on I. Therefore P ? is convex on I since

∂P ?

∂x
(x) =

∫ T

0

∂p?

∂x
(t, x)dt.

2.6.1 Strictly concave reservation utility

In this section we show that there are at most that
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Assumption 2.6.3 The map x 7−→ H(x) is strictly concave and non-decreasing.

The main interest of Assumption 2.6.3 is the following simple result, which shows that we
can always restrict our attention to sets X? with a very simple form.

Proposition 2.6.4 Let Assumptions 2.5.1, 2.6.1, 2.6.2 and 2.6.3 hold. Let (a, b) ∈ A be
such that 0 < an0 < bn0 < 1 for some n0 ≥ 1. Then the solution to problem (Pa,b) is not
optimal for problem (2.6.2).

Proof. Let p? be the solution of problem (Pa,b). We will prove that P ? ≡ H in the interval
(an0 , bn0) and the result will follow from Proposition 2.6.1. Suppose not, then there exists
x0 ∈ (an0 , bn0) such that P ?(x0) > H(x0) and p? is given by (2.6.6) in a neighbourhood
around x0, so P ? is increasing in that neighbourhood. By Proposition 2.6.3 we have that
P ?(bn0) > H(bn0), because on every interval which is contained in the set {x, P ?(x) ≥ H(x)}
the convex map P ? and the strictly concave map H can intersect at most at one point. This
contradicts the fact that p? ∈ C+(a, b). �

In the rest of this section, we start by deriving a general solution under some implicit as-
sumptions, and then show that the latter can be verified in the context of Assumption 2.5.3.

2.6.1.1 The general tariff

Proposition 2.6.4 implies that the solution of (2.6.4) is attained for some p? satisfying
X̂?(p?) = [0, b0) ∪ (a0, 1]. We expect then the optimal tariff to look like the curve in Fig-
ure 2.8.

b0 a0

P ?(x)

H(x)

Figure 2.8: X̂?(p?) for strictly concave H.

Let us then define the set
A2 :=

{
(a, b) ∈ [0, 1]2, b ≤ a

}
.

Theorem 2.6.1 gives us only partial information about the solution of the problem (Pa,b), for
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(a, b) ∈ A2. Now that we assume in addition that H is strictly concave, we can actually
complete that information with the following proposition, which tells us that the value of the
constants µt is zero in the intervals of the form [0, b) and (a, 1]. Its proof is postponed to the
Appendix.

Proposition 2.6.5 Let Assumptions 2.5.1, 2.6.1, 2.6.2 and 2.6.3 hold. Let p? be a solution of
(Pa,b), for (a, b) ∈ A2, and I be as in Theorem 2.6.1. Then there exists a null set N ′ ⊂ [0, T ]
such that for every t ∈ [0, T ] \ N ′ the optimality conditions from Theorem 2.6.1 hold with
µt = 0.

Following the computations of Section 2.5, we define

A(t, a0, b0) := g
(−1)
K

(
φ(t)

1
1−γ

∫ b0

0

(
[g(x)f(x) + g′(x)F (x)]+

fγ(x)

) 1
1−γ

dx

+φ(t)
1

1−γ

∫ 1

a0

(
[g(x)f(x) + g′(x)F (x)− g′(x)]+

fγ(x)

) 1
1−γ

dx

)
.

The aim of the next proposition is similar in spirit to that of Proposition 2.6.4, in the sense
that it allows to exclude many specifications of (a, b) ∈ A2 when one is interested in solving
problem (2.6.2).

Proposition 2.6.6 Let Assumptions 2.5.1, 2.6.1, 2.6.2 and 2.6.3 hold. Let p? be a solution
of (Pa,b). If either

Ξγ(a0, b0) :=

∫ T

0

(
φ(t)

1
γ
[
gγ(a0)f(a0) + g′γ(a0)F (a0)− g′γ(a0)

]+

f(a0)∂K
∂c

(t, A(t, a0, b0))

) γ
1−γ

g′γ(a0)

γ
dt < H ′(a0),

or

Ψγ(a0, b0) :=

∫ T

0

(
φ(t)

1
γ
[
gγ(b0)f(b0) + g′γ(b0)F (b0)

]+

f(b0)∂K
∂c

(t, A(t, a0, b0))

) γ
1−γ

g′γ(b0)

γ
dt > H ′(b0),

then the solution to problem (Pa,b) is not optimal for problem (2.6.2).

Judging by the results of Proposition 2.6.6, it is natural to define A′2 as the set of all the
pairs (a, b) ∈ A2 for which

Ξγ(a0, b0) ≥ H ′(a0), Ψγ(a0, b0) ≤ H ′(b0).

Thanks to Proposition 2.6.6, we have thus reduced the problem (Pa,b) to

sup
(a0,b0)∈A′2

∫ T

0


 φ(t)

1
1−γ `(a0, b0)

γ
(
∂K
∂c

(t, A(t, a0, b0))
) γ

1−γ
−K


t, φ(t)

1
1−γ `(a0, b0)

(
∂K
∂c

(t, A(t, a0, b0))
) 1

1−γ




 dt+ θ(a0, b0).
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where we abused notations and defined the corresponding functions

`(a0, b0) :=

∫ b0

0

(
[g(x)f(x) + g′(x)F (x)]+

fγ(x)

) 1
1−γ

dx

+

∫ 1

a0

(
[g(x)f(x) + g′(x)F (x)− g′(x)]+

fγ(x)

) 1
1−γ

dx,

θ(a0, b0) :=− F (b0)H(b0) + (F (a0)− 1)H(a0),

Since all these maps are continuous on [0, 1]2, the supremum over the compact set above is
attained at some (a?0, b

?
0) ∈ A′2. We have therefore proved

Theorem 2.6.2 Let Assumptions 2.5.1, 2.6.1, 2.6.2 and 2.6.3 hold. We have

(i) The maximum in (2.6.2) is attained for the map

p?(t, x) =





H(b?0)

T
− φ(t)

1
1−γ

γ
(
∂K
∂c

(t, A(t, a?0, b
?
0))
) γ

1−γ

∫ b?0

x

v1(y)dy, if x ∈ [0, b?0),

p̃?(t, x), if x ∈ [b?0, a
?
0],

H(a?0)

T
+

φ(t)
1

1−γ

γ
(
∂K
∂c

(t, A(t, a?0, b
?
0))
) γ

1−γ

∫ x

a?0

v2(y)dy, if x ∈ (a?0, 1],

where p̃?(t, x) is any continuous and non-decreasing map (with respect to x) such that
∫ T

0

p̃?(t, b?0)dt = H(b?0),

∫ T

0

p̃?(t, a?0)dt = H(a?0),

∫ T

0

p̃?(t, x)dt < H(x), for all x ∈ (b?0, a
?
0).

(ii) Define p, for any (t, c) ∈ [0, T ]× R+, by

p(t, c) := sup
x∈[0,1]

{
gγ(x)φ(t)

cγ

γ
− p?(t, x)

}
.

If p? is u−convex on X?(p?), then p is the optimal tariff for the problem (2.6.1). Furthermore,
the Principal only signs contracts with the Agents of type x ∈ [0, b?0] ∪ [a?0, 1].

2.6.1.2 Power type cost function

Exactly as in the case where H was independent of x, the computations become much simpler
as soon as Assumption 2.5.3 holds. Let’s note Rγ(a0, b0) = 1 + (2b0)

2−γ
1−γ − ((2a0 − 1)+)

2−γ
1−γ if

γ ∈ (0, 1) and Rγ(a0, b0) = 1− ((1− 2b0)+)
2−γ
1−γ + (2− 2a0)

2−γ
1−γ if γ < 0. Then, the functions

` and A are given, for any (t, a0, b0) ∈ [0, T ]×A′2, by

`γ(a0, b0) =
1− γ

2(2− γ)
Rγ(a0, b0), A(t, a0, b0) =

(
φ(t)

k(t)

) 1
n−γ

`(a0, b0)
1−γ
n−γ .
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So, in order to obtain (a?0, b
?
0) we have to solve

sup
(a0,b0)∈A′2

(
1

γ
− 1

n

)∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt `(a0, b0)
n(1−γ)
n−γ − b0H(b0) + (a0 − 1)H(a0). (2.6.8)

Let us now compute the associated tariff p and check that p indeed belongs to P and that
its u−transform is p?. Fix some t ∈ [0, T ] and define

Nγ :=
2

γ
1−γ (1− γ)

γ

(
2(2− γ)

1− γ

) γ(n−1)
n−γ

(
φn(t)

kγ(t)

) 1
n−γ

Rγ(a0, b0)−
γ(n−1)
n−γ .

Recall that by Proposition 2.6.6, the following inequalities must be satisfied

(i) If γ ∈ (0, 1)

((2a?0 − 1)+)
γ

1−γ

γ`(a?0, b
?
0)

γ(n−1)
n−γ

∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt ≥ H ′(a?0), (2.6.9)

(2b?0)
γ

1−γ

γ`(a?0, b
?
0)

γ(n−1)
n−γ

∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt ≤ H ′(b?0). (2.6.10)

(ii) If γ < 0

− (2(1− a?0)+)
γ

1−γ

γ`(a?0, b
?
0)

γ(n−1)
n−γ

∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt ≥ H ′(a?0), (2.6.11)

− ((1− 2b?0)+)
γ

1−γ

γ`(a?0, b
?
0)

γ(n−1)
n−γ

∫ T

0

(
φ(t)n

k(t)γ

) 1
n−γ

dt ≤ H ′(b?0). (2.6.12)

Notice in particular that when γ ∈ (0, 1), (2.6.9) implies that a?0 > 1/2, since H is increasing.
With similar computations as in Section 2.5.2, we compute that

(i) If γ ∈ (0, 1)

p?(t, x) =





H(b?0)

T
−Nγ

(
(b?0)

1
1−γ − x 1

1−γ

)
, if x ∈ [0, b?0),

p̃?(t, x), if x ∈ [b?0, a
?
0],

H(a?0)

T
+Nγ

((
x− 1

2

) 1
1−γ

−
(
a?0 −

1

2

) 1
1−γ
)
, if x ∈ (a?0, 1],

(ii) If γ < 0

p?(t, x) =





H(b?0)

T
−Nγ

((
1

2
− b?0 ∧

1

2

) 1
1−γ

−
(

1

2
− x ∧ 1

2

) 1
1−γ
)
, if x ∈ [0, b?0),

p̃?(t, x), if x ∈ [b?0, a
?
0],

H(a?0)

T
+Nγ

(
(1− x)

1
1−γ − (1− a?0)

1
1−γ

)
, if x ∈ (a?0, 1],
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Actually, in this case, the map p? will be u−convex if and only if the following implicit
assumption holds.

Assumption 2.6.4 The solutions (a?0, b
?
0) of (2.6.8) are such that

b?0 ≤ a?0 −
1

2
.

Our main result in this case reads.

Theorem 2.6.3 Let Assumptions 2.5.1, 2.5.3, 2.6.1, 2.6.2, 2.6.3 and 2.6.4 hold, then the
optimal tariff p ∈ P̂ is given for any (t, c) ∈ [0, T ]× R+, when γ ∈ (0, 1) by

p(t, c) =





φ(t) c
γ

2γ
+ φ(t)Lγ(t)

γ−1c+Nγ

(
a?0 − 1

2

) 1
1−γ − H(a?0)

T
, if Lγ(t)

(
a?0 − 1

2

) 1
1−γ < c ≤ Lγ(t)2

− 1
1−γ ,

x̃?(c)φ(t) c
γ

γ
− p̃?(t, x̃(c)), if Lγ(t)(b?0)

1
1−γ < c ≤ Lγ(t)

(
a?0 − 1

2

) 1
1−γ ,

φ(t)Lγ(t)
γ−1c− H(b?0)

T
+Nγ(b

?
0)

1
1−γ , if 0 ≤ c ≤ Lγ(t)(b

?
0)

1
1−γ ,

and when γ < 0 by

p(t, c) =





φ(t)Lγ(t)
γ−1c+Nγ(1− a?0)

1
1−γ − H(a?0)

T
, if 0 < c ≤ Lγ(t)(1− a?0)

1
1−γ ,

x̃?(c)φ(t) c
γ

γ
− p̃?(t, x̃(c)), if Lγ(t)(1− a?0)

1
1−γ < c ≤ Lγ(t)

(
1
2
− b?0

) 1
1−γ ,

φ(t) c
γ

2γ
+ φ(t)Lγ(t)

γ−1c+Nγ

(
1
2
− b?0

) 1
1−γ − H(b?0)

T
, if Lγ(t)

(
1
2
− b?0

) 1
1−γ < c ≤ Lγ(t)2

− 1
1−γ ,

where

Lγ(t) :=

(
γNγ

(1− γ)φ(t)

) 1
γ

and where (a?0, b
?
0) are maximizers of

sup
(a0,b0)∈A′2

C(T )Rγ(a0, b0)
n(1−γ)

2−γ − b0H(b0) + (a0 − 1)H(a0).

Furthermore, the Principal will only choose clients with type x ∈ [0, b?0] ∪ [a?0, 1].

2.6.2 Extension to other cases of reservation utility

In this section, we want to point out that the assumption of the reservation utility function
H being strictly concave is not mandatory in order to solve problem (2.6.2), and we intend
to explain in which other cases we can hope to solve it.

In order to reduce problem (2.6.2) to a finite dimensional problem, we just need H to have
at most a finite number of intersecting points with a strictly convex function. If H were to
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satisfy this property, then we would be able to prove a result similar to Proposition 2.6.4,
and we would know that the optimal set X̂?(p?) is a finite union of intervals contained in
[0, 1].

The next step then is to prove that the Lagrange multipliers µt in Theorem 2.6.1 are equal
to zero, using for instance local perturbations as we did to prove Proposition 2.6.5. This
would allow to solve the optimality conditions (2.6.6) and (2.6.7) by using the corresponding
auxiliary map A(a, b). We illustrate this in the following example.

Example 2.6.1 Suppose that H has the form

H(x) =

{
β, if x ∈ [0, xh],

α(x− xh) + β, if x ∈ [xh, 1],

where α, β ≥ 0 and where xh ∈ [0, 1].

Such a reservation utility accounts for the fact that all the Agents, whatever their appetence
for power consumption is, should at least receive a minimal level of utility, in this case β.
Though in general two convex functions can intersect at countably many points, given the
specific form of H, it can intersect an increasing and convex function at at most three points,
as shown in Figure 2.9.

a1 a2 a3xh

P ?(x)

H(x)

(a) Case a1 = 0.

b0 a0

P ?(x)

H(x)

(b) Case a1 > 0.

Figure 2.9: X?(p?) for a "constant-linear" H.

Therefore, we deduce that X?(p?) has the following form

X?(p?) = [a1, a2] ∪ [a3, 1], for some 0 ≤ a1 ≤ a2 ≤ a3 ≤ 1.

We define then the set
A3 :=

{
(a, b, c) ∈ [0, 1]2, a ≤ b ≤ c

}
.
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After proving that the Lagrange multipliers µt in Theorem 2.6.1 are equal to zero, Problem
(Pa,b) becomes, abusing notations slightly

sup
(a1,a2,a3)∈A3

∫ T

0


 φ(t)

1
1−γ `(a1, a2, a3)

γ
(
∂K
∂c (t, A(t, a1, a2, a3))

) γ
1−γ
−K


t, φ(t)

1
1−γ `(a1, a2, a3)

(
∂K
∂c (t, A(t, a1, a2, a3)

) 1
1−γ




dt+θ(a1, a2, a3),

where for any (t, a1, a2, a3) ∈ [0, T ]×A3

`(a1, a2, a3) :=

∫ a2

a1

(
[g(x)f(x) + g′(x)F (x)]+

fγ(x)

) 1
1−γ

dx+

∫ 1

a3

(
[g(x)f(x) + g′(x)F (x)− g′(x)]+

fγ(x)

) 1
1−γ

dx,

θ(a1, a2, a3) := F (a1)H(a1)− F (a2)H(a2) + (F (a3)− 1)H(a3),

A(t, a1, a2, a3) := g
(−1)
K


φ(t)

1
1−γ

∫ a2

a1

(
[g(x)f(x) + g′(x)F (x)]+

fγ(x)

) 1
1−γ

dx

+φ(t)
1

1−γ

∫ 1

a3

(
[g(x)f(x) + g′(x)F (x)− g′(x)]+

fγ(x)

) 1
1−γ

dx


 .

2.7 Appendix

2.7.1 u-convex analysis

We first recall the definition of u−convexity (adapted to our context, we refer the reader to
the monograph by Villani [127] on optimal transport theory for more details).

Definition 2.7.1 Let ψ be a map from [0, T ]×X to R. The u−transform of ψ, denoted by
ψ? : [0, T ]× C −→ R ∪ {+∞} is defined by

ψ?(t, c) := sup
x∈X
{u(t, x, c)− ψ(t, x)} , for any (t, c) ∈ [0, T ]× C.

Similarly, if ϕ is a map from [0, T ] × C to R, its u−transform, still denoted by ϕ? : [0, T ] ×
X −→ R ∪ {+∞}, is defined by

ϕ?(t, x) := sup
c∈C
{u(t, x, c)− ϕ(t, c)} , for any (t, x) ∈ [0, T ]×X.

A map φ : [0, T ]× C −→ R ∪ {+∞} is then said to be u−convex if it is proper2and if there
exists some ψ : [0, T ]×X −→ R such that

φ(t, c) = ψ?(t, c), for any (t, c) ∈ [0, T ]× C.
Similarly, a map Φ : [0, T ] × X −→ R ∪ {+∞} is said to be u−convex if it is proper and
there exists some Ψ : [0, T ]× C −→ R such that

Φ(t, x) = Ψ?(t, x), for any (t, x) ∈ [0, T ]×X.
2That is to say not identically equal to +∞.
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We recall the following easy characterization of u−convexity.

Lemma 2.7.1 A map φ : [0, T ]× C −→ R ∪ {+∞} is u−convex if and only if

φ(t, c) = (φ?)?(t, c), for any (t, c) ∈ [0, T ]× C.
A similar statement holds for maps Φ : [0, T ]×X −→ R ∪ {+∞}.

Proof. We only prove the first statement, the other one being exactly similar. The result is
an easy consequence of the fact that for any map φ : [0, T ]× C −→ R ∪ {+∞}, we have the
identity

φ?(t, x) = ((φ?)?)?(t, x), for any (t, x) ∈ [0, T ]×X.
Indeed, we have by definition that for any (t, x) ∈ [0, T ]×X

((φ?)?)?(t, x) = sup
c∈C

{
u(t, x, c)− sup

x′∈X

{
u(t, x′, c)− sup

c′∈C
{u(t, x′, c′)− φ(t, c′))}

}}

= sup
c∈C

inf
x′∈X

sup
c′∈C
{u(t, x, c)− u(t, x′, c) + u(t, x′, c′)− φ(t, c′)} .

Choosing x′ = x, we immediately get that ((φ?)?)?(t, x) ≤ φ?(t, x), while the converse in-
equality is obtained by choosing c = c′. �

Next, we can define the notion of the u−subdifferential of a u−convex function.

Definition 2.7.2 Let φ : [0, T ] × C −→ R ∪ {+∞} be a u−convex function. For any
(t, c) ∈ [0, T ] × C, the u−subdifferential of φ at the point (t, c) is the set ∂?φ(t, c) ⊂ X
defined by

∂?φ(t, c) := {x ∈ X, φ?(t, x) = u(t, x, c)− φ(t, c)} .
Similarly, let ψ : [0, T ]×X −→ R∪{+∞} be a u−convex function. For any (t, x) ∈ [0, T ]×X,
the u−subdifferential of ψ at the point (t, x) is the set ∂?ψ(t, x) ⊂ R+ defined by

∂?ψ(t, x) := {c ∈ C, ψ?(t, c) = u(t, x, c)− ψ(t, x)} .

Notice that since the map u is continuous, a u−convex function is automatically lower-
semicontinuous and its u−subdifferential is a closed set.

2.7.2 Proofs of Section 2.5

Proof of Lemma 2.5.1. By Lemma 2.7.1, we know that the u−convexity of ψ is equivalent
to

ψ(t, x) = sup
c>0

min
y∈[0,1]

{
(gγ(x)− gγ(y))φ(t)

cγ

γ
+ ψ(t, y)

}
. (2.7.1)

First notice that since ψ is convex in y and gγ
γ

is concave, then for any (t, x, c) ∈ [0, T ] ×
[0, 1]× (0,+∞), the map

f(t,x)(y, c) := (gγ(x)− gγ(y))φ(t)
cγ

γ
+ ψ(t, y),
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is convex in y. Furthermore, for any (t, x, y) ∈ [0, T ] × [0, 1]2, the map c 7−→ f(t,x)(y, c) is
monotone on (0,+∞) and therefore quasiconcave. Since [0, 1] is convex and compact, we can
apply Sion’s minimax theorem [114] to obtain that

sup
c>0

min
y∈[0,1]

{
(gγ(x)− gγ(y))φ(t)

cγ

γ
+ ψ(t, y)

}
= min

y∈[0,1]
sup
c>0

{
(gγ(x)− gγ(y))φ(t)

cγ

γ
+ ψ(t, y)

}

= min
y∈[0,1]

{+∞1x>y + ψ(t, y)}

= ψ(t, x),

since ψ is non-decreasing.

Finally, it is easy to see that when gγ is defined as in the statement of the lemma, we have

sup
c>0

min
y∈[0,1]

{
(gγ(x)− gγ(y))φ(t)

cγ

γ
+ ψ(t, y)

}
= sup

c>0
min
y∈[0,1]

{(x− y)c+ ψ(t, y)} ,

which corresponds to the classical convex conjugate, hence the desired result by Fenchel-
Moreau’s theorem. �

Proof of Theorem 2.5.1. We optimize first with respect to p?. For fixed x0, start by
defining Ψx0 : L1([0, T ]× [0, 1]) −→ R by

Ψx0(p?) :=

∫ T

0

[∫ 1

x0

(
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

)

g′γ(x)

∂p?

∂x
(t, x)dx

− K

(
t,

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx

)]
dt+ (F (x0)− 1)H. (2.7.2)

Ψx0 is clearly continuous and Fréchet differentiable and it is also concave because K is convex
in c. Furthermore, for any q ∈ L1([0, T ]× [0, 1]), we have

Ψ′x0
(p?; q) =

∫ T

0

∫ 1

x0

(
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

)

g′γ(x)

∂q

∂x
(t, x)dxdt

−
∫ T

0

∫ 1

x0

∂q

∂x
(t, x)

1

γ

(
∂p?

∂x
(t, x)

) 1−γ
γ
(

γ

φ(t)g′γ(x)

) 1
γ

f(x)
∂K

∂c
(t, A(t, x0)) dxdt,

where we defined

A(t, x0) :=

∫ 1

x0

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx.

Since Ψx0 is concave, the necessary and sufficient optimality condition for the problem with
fixed x0 is

Ψ′x0
(p?; q) ≤ 0, ∀q ∈ TC+(x0)(p

?), (2.7.3)

where TC+(x0)(p
?) denotes the tangent cone to the closed set C+(x0) at the point p? defined

by

TC+(x0)(p
?) :=

{
z, ∃ε > 0,∀h ∈ [0, ε] ∃w(h) ∈ C+(x0), ||p? + hz − w(h)|| = ◦(h)

}
.
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Using local functions we see that the inequality (2.7.3) must be satisfied almost everywhere
on [0, T ] × [x0, 1], that is, for every q ∈ TC+(x0)(p

?) and almost every (t, x) ∈ [0, T ] × [x0, 1]
we have

∂q
∂x(t, x)

[
(gγ(x)f(x)+g′γ(x)F (x)−g′γ(x))

g′γ(x) − 1
γ

(
∂p?

∂x (t, x)
) 1−γ

γ
(

γ
φ(t)g′γ(x)

) 1
γ
f(x)∂K∂c (t, A(t, x0))

]
≤ 0.

Therefore, the optimal p? ∈ C+(x0) should verify

∂p?

∂x
(t, x) =



φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

f(x)
∂K

∂c
(t, A(t, x0))




γ
1−γ

g′γ(x)

γ
, (2.7.4)

with a+ = max{a, 0}, the positive part operator. By the above equation, we must have

A(t, x0)

(
∂K

∂c
(t, A(t, x0))

) 1
1−γ

= φ
1

1−γ (t)

∫ 1

x0

([
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

fγ(x)

) 1
1−γ

dx.

Now, let

gK(c) := c

(
∂K

∂c
(t, c)

) 1
1−γ

, c ≥ 0.

Since K is strictly convex and increasing with respect to c, it can be checked directly that
gK is increasing as well (on R+), so that we deduce

A(t, x0) = g
(−1)
K


φ 1

1−γ (t)

∫ 1

x0

([
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

fγ(x)

) 1
1−γ

dx


 .

Therefore the solution to the problem with fixed x0 is given by (2.7.4). We have thus reduced
the problem (2.5.4) to

ŨP = sup
x0∈[0,1]

∫ T

0




φ
1

1−γ (t)`(x0)

γ

(
∂K

∂c
(t, A(t, x0))

) γ
1−γ
−K


t,

φ
1

1−γ (t)`(x0)
(
∂K

∂c
(t, A(t, x0))

) 1
1−γ





dt+ (F (x0)− 1)H.

Seen as a function of x0, the right-hand side above is clearly a continuous function. It
therefore attains its maximum over the compact set [0, 1] at some (possibly non unique) x?0.
We will abuse notations and denote by x?0 a generic maximizer.

If p? is u−convex, since p is also u−convex (by definition), then p? is necessarily the u−transform
of p and therefore p ∈ P , which means that we actually have ŨP = UP . For the uniqueness
result, define

α(x0) :=

∫ T

0


 φ

1
1−γ (t)`(x0)

γ
(
∂K
∂c

(t, A(t, x0))
) γ

1−γ
−K


t, φ

1
1−γ (t)`(x0)

(
∂K
∂c

(t, A(t, x0))
) 1

1−γ




 dt+ (F (x0)− 1)H.
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Note that α does not attain its maximum over any interval outside L, because there ` is
constant (and therefore A(t, ·) too) and F is increasing. Then, since over L we have

α′(x0) =

∫ T

0

(
1− γ
γ

)
φ(t)

1
1−γ `′(x0)

(
∂K

∂c
(t, A(t, x0))

) −γ
1−γ

dt+ f(x0)H

= −
∫ T

0

(
1− γ
γ

)
φ(t)

1
1−γ β(x0)

(
∂K

∂c
(t, A(t, x0))

) −γ
1−γ

dt+ f(x0)H.

Under the hypotheses of the theorem, α′ is decreasing over L in each one of the two cases so
α is strictly concave. �

Proof of Theorem 2.5.2. We divide the proof in two cases.

• Case 1: γ ∈ (0, 1)

In this case we have

`(x0) =

∫ 1

x0∨ 1
2

(2x− 1)
1

1−γ dx =
1− γ

2(2− γ)

(
1−

(
(2x0 − 1)+

) 2−γ
1−γ
)
.

Hence, it is clear that x0 7−→ Φ(x0) is increasing in [0, 1
2
], so that it suffices to solve

sup
x0∈[1/2,1]

{
Bγ(T )`(x0)

n(1−γ)
n−γ + (x0 − 1)H

}
.

Let

y0 := (2x0 − 1)
1

1−γ , Aγ(T ) := Bγ(T )

(
1− γ

2(2− γ)

)n(1−γ)
n−γ

.

Defining the map Φ : [0, 1] −→ R by

Φ(y0) := Φ

(
y1−γ

0 + 1

2

)
,

we deduce
Φ(y0) = Aγ(T )

(
1− y2−γ

0

)n(1−γ)
n−γ +

1

2

(
y1−γ

0 − 1
)
H.

Next, we can check directly that Φ is concave on [0, 1], and we have for any y0 ∈ [0, 1]

Φ
′
(y0) =

1− γ
2

y−γ0

(
H − 2nAγ(T )

2− γ
n− γ y0

(
1− y2−γ

0

)− γ(n−1)
n−γ

)
.

Denote finally for any y0 ∈ [0, 1]

χ(y0) := H − 2nAγ(T )
2− γ
n− γ (2x0 − 1)

1
1−γ
(
1− y2−γ

0

)− γ(n−1)
n−γ .

We have for any y0 ∈ [0, 1]

χ′(y0) = −2n(2− γ)

(n− γ)2
Aγ(T )

(
1− y2−γ

0

)−n+γ(n−2)
n−γ

(
n− γ + γ(n− 1)(2− γ)y2−γ

0

)
< 0,

68



since γ ∈ (0, 1). Thus, since in addition we have

χ(0) = H > 0, and lim
y0↑1

χ(y0) = −∞,

there is a unique y?0 ∈ (0, 1) (and thus a unique x?0 ∈ (1/2, 1)) such that Φ
′
(y?0) = 0, at

which the maximum of Φ is attained. Finally, we can compute explicitly p?(t, x) for any
(t, x) ∈ [0, T ]× [0, 1] as

p?(t, x) =
H

T
+M(t)

(
((2x− 1)+)

1
1−γ − (2x?0 − 1)

1
1−γ

)
,

where we defined for simplicity

M(t) :=
1− γ

2γ

(
2(2− γ)

1− γ

) γ(n−1)
n−γ

(
φn(t)

kγ(t)

) 1
n−γ (

1− (2x?0 − 1)
2−γ
1−γ

)− γ(n−1)
n−γ

.

It can then be checked directly that for any c ≥ 0, the map x 7−→ xφ(t)cγ/γ − p?(t, x) is
concave on [0, 1] and attains its maximum at the point

x?(c) := 1
c>( 2γM(t)

(1−γ)φ(t))
1
γ

+
1

2

(
1 +

(
(1− γ)φ(t)

2γM(t)

) 1−γ
γ

c1−γ

)
1
c≤( 2γM(t)

(1−γ)φ(t))
1
γ
.

Therefore, we deduce immediately that for any (t, c) ∈ [0, T ]× R+

p(t, c) =





φ(t)
cγ

γ
+M(t)

(
(2x?0 − 1)

1
1−γ − 1

)
− H

T
, if c >

(
2γM(t)

(1− γ)φ(t)

) 1
γ

,

φ(t)
cγ

2γ
+

((
φ(t)

2

) 1
1−γ 1− γ

γM(t)

) 1−γ
γ

c− H

T
+M(t)(2x?0 − 1)

1
1−γ , otherwise.

Next, we notice that for any (t, x) ∈ [0, T ] × [0, 1], the map c 7−→ xφ(t)cγ/γ − p(t, c) is
decreasing on R+ if x < 1/2, and that it is concave on R+ if x ≥ 1/2, so that it attains its
maximum at the point

c?(t, x) :=

(
2γM(t)

(1− γ)φ(t)

) 1
γ

(2x− 1)
1

1−γ 1x∈(1/2,1].

It is also immediate that p? is always non-decreasing and is convex, and therefore u−convex
by Lemma 2.5.1, so much so that we conclude that p ∈ P .

It can easily be shown that the following suboptimal but simpler tariff will give the same
results in terms of selected Agents, optimal consumption and Principal’s utility: for any
(t, c) ∈ [0, T ]× R+

p(t, c) = φ(t)
cγ

2γ
+

((
φ(t)

2

) 1
1−γ 1− γ

γM(t)

) 1−γ
γ

c− H

T
+M(t)(2x?0 − 1)

1
1−γ

• Case 2: γ ∈ (−∞, 0)
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Now, we actually have

`(x0) = 2
1

1−γ

∫ 1

x0

(1− x)
1

1−γ dx = 2
1

1−γ

(
1− γ
2− γ

)
(1− x0)

2−γ
1−γ .

The problem to solve is now

sup
x0∈[0,1]

{
Bγ(T )`(x0)

n(1−γ)
n−γ + (x0 − 1)H

}
.

It can be checked directly that the above map is actually strictly concave for x0 ∈ [0, 1], and
therefore that it attains its maximum at

x̂?0 :=

(
1−

(
H

Bγ(T )

n− γ
n(1− γ)

) n−γ
n(1−γ)+γ

(
2− γ
1− γ

) −γ(n−1)
n(1−γ)+γ

2
−n

n(1−γ)+γ

)+

.

Finally, we can compute explicitly p?(t, x) for any (t, x) ∈ [0, T ]× [0, 1] as

p?(t, x) =
H

T
+ M̂(t)

(
(1− x̂?0)

1
1−γ − (1− x)

1
1−γ

)
,

where we defined for simplicity

M̂(t) := −1− γ
γ

(
2− γ
1− γ

) γ(n−1)
n−γ

(
2γφn(t)

kγ(t)

) 1
n−γ

(1− x̂?0)−
γ(2−γ)(n−1)
(n−γ)(1−γ) .

We deduce directly that in this case the map x 7−→ (1− x)φ(t)cγ/γ − p?(t, x) is concave, so
that it attains its maximum on [0, 1] at

x̂?(c) :=


1−

(
−φ(t)(1− γ)

γM̂(t)

) 1−γ
γ

c1−γ




+

,

so that

p(t, c) =





φ(t)
cγ

γ
− H

T
− M̂(t)(1− x̂?0)

1
1−γ + M̂(t), if c >

(
− γM̂(t)

φ(t)(1− γ)

) 1
γ

,

−γc
(
−φ(t)

γ

) 1
γ

(
1− γ
M̂(t)

) 1−γ
γ

− H

T
− M̂(t)(1− x̂?0)

1
1−γ , otherwise.

It is also immediate in this case that p? is always non-decreasing and is convex, and therefore
u−convex by Lemma 2.5.1, so much so that we conclude that p ∈ P .

It can easily be shown that the following suboptimal but simpler tariff will give the same
results in terms of selected Agents, optimal consumption and Principal’s utility: for any
(t, c) ∈ [0, T ]× R+

p(t, c) = −γc
(
−φ(t)

γ

) 1
γ

(
1− γ
M̂(t)

) 1−γ
γ

− H

T
− M̂(t)(1− x̂?0)

1
1−γ

�
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2.7.3 Proofs of Section 2.6

2.7.3.1 Technical results

Proof of Proposition 2.6.1. Define the following functionals on Ĉ+

K(p) :=

∫ T

0

K

(
t,

∫

X?(p)

(
γ

φ(t)g′(x)

∂p

∂x
(t, x)

) 1
γ

f(x)dx

)
dt,

J(p) :=

∫ T

0

[∫

X?(p)

(
g(x)

g′(x)

∂p

∂x
(t, x)− p(t, x)

)
f(x)dx

]
dt.

Proposition 2.6.1 states that if Y ?(p?) has positive measure, then p? is not a maximizer of
p 7−→ J(p)−K(p) over the set Ĉ+. Indeed, in this case we can find an interval [c, d] ⊂ Y ?(p?)
(remember that this is an open set with positive Lebesgue measure and that the latter is
regular) and thus ∫ T

0

p?(t, x)dt = H(x), for every x ∈ [c, d].

Next, define
T+ = {t ∈ [0, T ] : p?(t, c) < p?(t, d)} .

Since H is strictly increasing we have that T+ has positive Lebesgue measure. For every
t ∈ T+, define over [c, d] a continuous and increasing function q satisfying q(t, c) := p?(t, c),
q(t, d) := p?(t, d) and q(t, x) < p?(t, x) over (c, d). Consider the following modification of p?.

p̂(t, x) :=

{
q(t, x), if (t, x) ∈ T+ × [c, d],

p?(t, x), if (t, x) 6∈ T+ × [c, d].

We have that X?(p̂) = X?(p?) \ (c, d) and therefore K(p̂) < K(p?). Moreover,

J(p̂) = J(p?)−
∫ T

0

[∫ d

c

(
g(x)

g′(x)

∂p?

∂x
(t, x)− p?(t, x)

)
f(x)dx

]
dt

= J(p?)−
∫ d

c

(
g(x)

g′(x)
H ′(x)−H(x)

)
f(x)dx

> J(p?),

where we used Assumption 2.6.1. Since p̂ is also non-decreasing in x, p̂ ∈ Ĉ+, and we
conclude that p? is not optimal. �

Proof of Proposition 2.6.2. Note that in the optimization problem (Pa,b) we can
without loss of generality restrict our attention to the feasible maps on [0, T ] × X?(a, b).
In other words, for fixed (a, b) ∈ A, we define the closed and convex set Fa,b as the set of
maps q ∈ W 1.m

x (X?(a, b)) such that for every t ∈ [0, T ], x 7−→ q(t, x) is continuous and
non-decreasing, Q(x) :=

∫ T
0
q(t, x)dt ≥ H(x) for every x ∈ X?(a, b) and Q(an) = H(an),

Q(bn) = H(bn) for every n ≥ 1.
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We show that Ψ(a,b), seen on the Banach space
(
W 1,m
x (X?(a, b)), || · ||m,X?(a,b)

)
, is coercive on

Fa,b.

• Case 1: γ ∈ (0, 1)

Observe first that if (qn)n∈N ⊂ Fa,b is such that ||qn||Lm([0,T ]×X?(a,b)) −→
n→∞

∞, then since for

every n ∈ N the map x 7−→
∫ T

0
qn(t, x)dt is bounded from below by H on X?(a, b), we have

that

−
∫ T

0

∫

X?(a,b)

qn(t, x)f(x)dxdt −→
n→∞

−∞. (2.7.5)

Next, define

A :=

∫

X?(a,b)

f(x)

(
γ

φ(t)g′(x)

) 1
γ

dx, B :=

∫ T

0

k(t)dt.

From Jensen’s inequality for the maps ψA(x) = x
1
γm , ψB(x) = x

n
γm , we have that (recall that

m is such that γm < 1 and that n > 1)

∫ T

0

K

(
t,

∫

X?(a,b)

(
γ

φ(t)g′γ(x)

∂qn
∂x

(t, x)

) 1
γ

f(x)dx

)
dt

≥
∫ T

0

k(t)

(∫

X?(a,b)

(
γ

φ(t)g′γ(x)

∂qn
∂x

(t, x)

) 1
γ

f(x)dx

)n

dt

≥An(1− 1
γm

)

∫ T

0

k(t)

(∫

X?(a,b)

(
γ

φ(t)g′γ(x)

) 1
γ
∣∣∣∣
∂qn
∂x

(t, x)

∣∣∣∣
m

f(x)dx

) n
γm

dt

≥An(1− 1
γm

)B(1− n
γm

)

(∫ T

0

∫

X?(a,b)

k(t)

(
γ

φ(t)g′γ(x)

) 1
γ
∣∣∣∣
∂qn
∂x

(t, x)

∣∣∣∣
m

f(x)dxdt

) n
γm

≥An(1− 1
γm

)B(1− n
γm

)I

∣∣∣∣
∣∣∣∣
∂qn
∂x

∣∣∣∣
∣∣∣∣
n
γ

Lm([0,T ]×X?(a,b))

.

We have therefore proved that, denoting by m′ the conjugate of m

Ψ(a,b)(qn) ≤
∣∣∣∣
∣∣∣∣
gγ
g′γ

∣∣∣∣
∣∣∣∣
Lm′ ([0,T ]×X?(a,b))

∣∣∣∣
∣∣∣∣
∂qn
∂x

∣∣∣∣
∣∣∣∣
Lm([0,T ]×X?(a,b))

− An(1− 1
γm

)B1− n
γm I

∣∣∣∣
∣∣∣∣
∂qn
∂x

∣∣∣∣
∣∣∣∣
n
γ

Lm([0,T ]×X?(a,b))

.

This with (2.7.5) implies clearly that Ψ(a,b) is indeed coercive in Fa,b.

• Case 2: γ < 0

In this case gγ
g′γ
< 0. Since ∂qn

∂x
is non-negative, if ||∂qn

∂x
||Lm([0,T ]×X?(a,b)) −→∞ we have that

∫ T

0

∫

X?(a,b)

gγ(x)

g′γ(x)

∂qn
∂x

(t, x)f(x)dx dt −→ −∞.

Then, from (2.7.5) and the positiveness of K we conclude that Ψ(a,b) is coercive in Fa,b.
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To conclude the proof, note thatW 1,m
x (X?(a, b)) is a reflexive Banach space, so the coercivity

of Ψ(a,b) implies that it possesses at least a maximizer p? in Fa,b. Therefore any q ∈ W 1.m
x (0, 1),

continuous and non-decreasing in x, which coincides with p? in X?(a, b) and such that Q(x) =∫ T
0
q(t, x)dt satisfies Q(x) < H(x) for x ∈ [0, 1] \X?(a, b) is a solution to (Pa,b).

We state the following Lemma before proving Proposition 2.6.5.

Lemma 2.7.2 Let p? be a solution of (Pa,b). Define

T b0 =

{
t ∈ [0, T ] :

∂p?

∂x
(t, x) = 0,∀x ∈ (0, b0)

}
, T a0 =

{
t ∈ [0, T ] :

∂p?

∂x
(t, x) = 0,∀x ∈ (a0, 1)

}
.

If T a0 has positive Lebesgue measure, then for every x ∈ (0, b0), g(x)f(x) + g′(x)F (x) ≤ 0. If
T b0 has positive Lebesgue measure, then for every x ∈ (a0, 1), g(x)f(x)+g′(x)F (x)−g′(x) ≤ 0.

Proof. We consider the case in which T a0 has positive Lebesgue measure. Suppose there
exist [x1, x2] ⊂ [a0, 1] such that for every x ∈ [x1, x2]

g(x)f(x) + g′(x)F (x)− g′(x) > 0.

Then, for any q ∈ W 1,m
x (0, 1) satisfying q(t, x) = 0,∀(t, x) 6∈ T a0 × [x1, 1], x 7−→ q(t, x) is

increasing in [x1, x2], ∀t ∈ T a0 , and q(t, x) = q(t, x2), ∀(t, x) ∈ T a0 × [x2, 1], the map p? + εq
belongs to C+(a, b) for ε ≥ 0. Therefore Ψ′(a,b)(p

?; q) ≤ 0,, which means
∫

Ta0

∫ x2

x1

∂q

∂x
(t, x)

f(x)g(x) + g′(x)F (x)

g′(x)
≤ 0,

hence a contradiction.

Proof of Proposition 2.6.5. Let us prove the case I ⊂ (a0, 1), the case I ⊂ (0, b0) being
similar. From the convexity of P ? on every interval over which P ? is strictly greater than
H we deduce the existence of c0 ∈ [a0, 1) such that P ?(x) > H(x) for every x ∈ (c0, 1] and
P ?(x) = H(x) for every x ∈ [a0, c0]. It follows from Lemma 2.7.2 that either T a0 is a null
set or for every t ∈ T a0 the optimality conditions from Theorem 2.6.1 hold with µt = 0. Call
T1 = [0, T ] \ (N ∪ T a0) and define for every t ∈ T1

x1(t) = inf

{
x ∈ (c0, 1) :

∂p?

∂x
(t, x) > 0

}
.

We have that p?(t, ·) is strictly increasing in [x1(t), 1] and it is given by (2.6.6). Define next

T+
1 := {t ∈ T1, µt > 0} , T−1 := {t ∈ T1, µt < 0} .

We will prove that T−1 and T+
1 have Lebesgue measure equal to zero. Consider any map

q ∈ W 1,m
x (0, 1) satisfying

{
q(t, x) = 0,∀(t, x) 6∈ T−1 × (x1(t), 1],

x 7−→ q(t, x) is increasing in [x1(t), 1],∀t ∈ T−1 .
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Then p? + εq ∈ C+(a, b) for every ε ≥ 0, so Ψ′(p?; q) ≤ 0. Since

Ψ′(p?; q) =

∫

T−1

∫ 1

x1(t)

−∂q
∂x

(t, x)µtdxdt,

we conclude that T−1 is a null set. Next, take any x̄ ∈ (c0, 1) such that P ?(x̄) > H(x̄) and for
every t ∈ T+

1 redefine if necessary the point x1(t) in order to satisfy x1(t) ≥ x̄. Define then
q : [0, T ]× [0, 1] −→ R by

q(t, x) := 1{t∈T+
1 , x≥x1(t)}

∂p?

∂x
(t, x1(t))(x− x1(t)) + p?(t, x1(t))− p?(t, x)

p?(t, 1)− p?(t, x1(t))− ∂p?

∂x
(t, x1(t))(1− x1(t))

∆.

Since p?(t, ·) is convex, we have that q is non-increasing, p?(t, ·) + εq(t, ·) is non-decreasing
for ε ∼ 0 and p(t, 1) + q(t, 1) = p(t, 1) − ∆. Therefore p? + εq ∈ C+(a, b) for ε ∼ 0 so
Ψ′(p?; q) ≤ 0. Since

Ψ′(p?; q) =

∫

T+
1

∫ 1

x1(t)

−∂q
∂x

(t, x)µt dx dt,

we conclude that the set T+
1 has Lebesgue measure equal to zero.

Proof of Proposition 2.6.6. We show that under the conditions of the proposition,
P ? ≡ H over some subset of (0, a0] ∪ [b0, 1) with positive Lebesgue measure and the result
follows from Proposition 2.6.1. Suppose not, then for almost every t ∈ [0, T ] we have

∂p?

∂x
(t, x) =





(
φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x)

]+

f(x)∂K
∂c

(t, A(t, a0, b0))

) γ
1−γ

g′γ(x)

γ
, x ∈ (0, b0),

(
φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x)− g′γ(x)

]+

f(x)∂K
∂c

(t, A(t, a0, b0))

) γ
1−γ

g′γ(x)

γ
, x ∈ (a0, 1).

Thus either ∂P ?

∂x
(a0) > H ′(a0) or ∂P ?

∂x
(b0) < H ′(b0), which contradicts that X̂?(p?) = [0, b0) ∪

(a0, 1].

Proof of Theorem 2.6.3. First of all, we recall that we have a degree of freedom in
choosing the map p̃ to which p is equal on [b?0, a

?
0], since it does not play any role in criterion

that p? maximises. Of course, if we want to be able to conclude, this map has to be u−convex
in the end. Therefore, if we can choose it so that p? is C1 and convex in x, we can apply
Lemma 2.5.1 and conclude that p? is indeed u−convex. This can be made if and only if the
derivative of p? at a?0 is greater or equal to the derivative of p? at b?0, which can be shown
immediately to be equivalent to, regardless of the value of γ,

a?0 −
1

2
≥ b?0.

Furthermore, if this is not satisfied, then p? is not convex, and we can apply the second part
of Lemma 2.5.1 to conclude that p? is not u−convex.
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We now divide the proof in two steps.

• Case (i): γ ∈ (0, 1).

Given the discussion above, in this case the only thing we have to do is to compute p. Denote
for simplicity

Lγ(t) :=

(
γNγ

(1− γ)φ(t)

) 1
γ

.

We know that the map x 7−→ xφ(t)cγ/γ − p?(t, x) is concave on [0, 1]. Notice as well that
since a?0 > 1/2, we have 1/2 ≥ a?0− 1/2 ≥ b?0. We can then compute its maximum and obtain
directly that it is attained at

x?(c) :=





1, if c > Lγ(t)2
− 1

1−γ ,

1

2
+ Lγ(t)

γ−1c1−γ, if Lγ(t)
(
a?0 −

1

2

) 1
1−γ

< c ≤ Lγ(t)2
− 1

1−γ ,

x̃?(c), if Lγ(t)(b?0)
1

1−γ < c ≤ Lγ(t)

(
a?0 −

1

2

) 1
1−γ

,

Lγ(t)
γ−1c1−γ, if 0 ≤ c ≤ Lγ(t)(b

?
0)

1
1−γ ,

where x̃?(c) is any point in [b?0, a
?
0] such that

∂p̃?

∂x
(t, x̃?(c)) = φ(t)

cγ

γ
.

We deduce that

p(t, c) =





φ(t) c
γ

γ −Nγ

(
2
− 1

1−γ −
(
a?0 − 1

2

) 1
1−γ
)
− H(a?0)

T , if c > Lγ(t)2
− 1

1−γ ,

φ(t) c
γ

2γ + φ(t)Lγ(t)
γ−1c+Nγ

(
a?0 − 1

2

) 1
1−γ − H(a?0)

T , if Lγ(t)
(
a?0 − 1

2

) 1
1−γ < c ≤ Lγ(t)2−

1
1−γ ,

x̃?(c)φ(t) c
γ

γ − p̃?(t, x̃(c)), if Lγ(t)(b?0)
1

1−γ < c ≤ Lγ(t)
(
a?0 − 1

2

) 1
1−γ ,

φ(t)Lγ(t)
γ−1c− H(b?0)

T +Nγ(b
?
0)

1
1−γ , if 0 ≤ c ≤ Lγ(t)(b?0)

1
1−γ .

As in the case H constant, it can easily be shown that the following simpler tariff will
produced the same results:

p(t, c) =





φ(t) c
γ

2γ + φ(t)Lγ(t)
γ−1c+Nγ

(
a?0 − 1

2

) 1
1−γ − H(a?0)

T , if Lγ(t)
(
a?0 − 1

2

) 1
1−γ < c ≤ Lγ(t)2−

1
1−γ ,

x̃?(c)φ(t) c
γ

γ − p̃?(t, x̃(c)), if Lγ(t)(b?0)
1

1−γ < c ≤ Lγ(t)
(
a?0 − 1

2

) 1
1−γ ,

φ(t)Lγ(t)
γ−1c− H(b?0)

T +Nγ(b
?
0)

1
1−γ , if 0 ≤ c ≤ Lγ(t)(b?0)

1
1−γ .

• Case (ii): γ < 0. As in the previous case, our assumptions imply that a?0 ≥ 1/2 and
1/2 ≥ a?0 − 1/2 ≥ b?0. We can then prove that the maximum of the map x 7−→ xφ(t)cγ/γ −
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p?(t, x) is attained at

x?(c) :=





1− Lγ(t)γ−1c1−γ, if 0 < c ≤ Lγ(t)(1− a?0)
1

1−γ ,

x̃?(c), if Lγ(t)(1− a?0)
1

1−γ < c ≤ Lγ(t)

(
1

2
− b?0

) 1
1−γ

,

1

2
− Lγ(t)γ−1c1−γ, if Lγ(t)

(
1

2
− b?0

) 1
1−γ

< c ≤ Lγ(t)2
− 1

1−γ ,

0, if c > Lγ(t)2
− 1

1−γ ,

where x̃?(c) is any point in [b?0, a
?
0] such that

∂p̃?

∂x
(t, x̃?(c)) = φ(t)

cγ

γ
.

We deduce that

p(t, c) =





φ(t)Lγ(t)
γ−1c+Nγ(1− a?0)

1
1−γ − H(a?0)

T , if 0 < c ≤ Lγ(t)(1− a?0)
1

1−γ ,

x̃?(c)φ(t) c
γ

γ − p̃?(t, x̃(c)), if Lγ(t)(1− a?0)
1

1−γ < c ≤ Lγ(t)
(

1
2 − b?0

) 1
1−γ ,

φ(t) c
γ

2γ + φ(t)Lγ(t)
γ−1c+Nγ

(
1
2 − b?0

) 1
1−γ − H(b?0)

T , if Lγ(t)
(

1
2 − b?0

) 1
1−γ < c ≤ Lγ(t)2−

1
1−γ ,

φ(t) c
γ

γ +Nγ

((
1
2 − b?0

) 1
1−γ − 2

− 1
1−γ
)
− H(b?0)

T , if c > Lγ(t)2
− 1

1−γ .

As previously, it can easily be shown that the following simpler tariff will produced the same
results:

p(t, c) =





φ(t)Lγ(t)
γ−1c+Nγ(1− a?0)

1
1−γ − H(a?0)

T , if 0 < c ≤ Lγ(t)(1− a?0)
1

1−γ ,

x̃?(c)φ(t) c
γ

γ − p̃?(t, x̃(c)), if Lγ(t)(1− a?0)
1

1−γ < c ≤ Lγ(t)
(

1
2 − b?0

) 1
1−γ ,

φ(t) c
γ

2γ + φ(t)Lγ(t)
γ−1c+Nγ

(
1
2 − b?0

) 1
1−γ − H(b?0)

T , if Lγ(t)
(

1
2 − b?0

) 1
1−γ < c ≤ Lγ(t)2−

1
1−γ .

2.7.3.2 Proof of Theorem 2.6.1

We give here a series of result which once combined prove Theorem 2.6.1. To simplify the
statements, we give them in a generic set (an, bn), the generalization being straightforward.
The first proposition shows that the existence of the interval I in the theorem allows us to
localize Problem (Pa,b), and replace it by a simpler one, in which the constraint P ?(x) ≥ H(x)
for every x ∈ X?(a, b) can be ignored.
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Proposition 2.7.1 Let p? be a solution of (Pa,b) and suppose there exists x1 ∈ (an, bn) such
that P ?(x1) > H(x1). Then, there exists x0 ∈ (an, bn), x0 < x1, such that p? is solution to
the following problem

(Px0,x1) sup
q∈C(x0,x1)

Ψx0,x1,p?

(a,b) (q), (2.7.6)

where

Ψx0,x1,p?

(a,b) (q) :=

∫ T

0

∫ x1

x0

gγ(x)f(x) + g′γ(x)F (x)

g′γ(x)

∂q

∂x
(t, x)dxdt

−
∫ T

0

K

(
t,

∫ x1

x0

(
γ

φ(t)g′γ(x)

∂q

∂x
(t, x)

) 1
γ

f(x)dx+ Ix0,x1

(a,b) (p?)

)
dt,

Ix0,x1

(a,b) (p?) :=

∫

X?(a,b)\(x0,x1)

(
γ

φ(t)g′γ(x)

∂p?

∂x
(t, x)

) 1
γ

f(x)dx,

and C(x0, x1) denotes the set of maps q ∈ W 1,m
x (x0, x1) such that

• x 7−→ q(t, x) is continuous and increasing for every t ∈ [0, T ] \ N (q).

• p?(t, x0) +

∫ x1

x0

∂q

∂x
(t, x) dx = p?(t, x1) for every t ∈ [0, T ] \ N (q).

Proof. Define

x0 := inf {z ∈ X?(a, b), P ?(x) ≥ H(x1) for every x ∈ [z, x1]} .

By continuity we have that x0 < x1 and P ?(x0) = H(x1). Notice that the restriction
of p? to the set [x0, x1] belongs to C(x0, x1). Suppose the restriction is not a solution of
(Px0,x1), then there exists q? ∈ C(x0, x1) such that Ψx0,x1,p?

(a,b) (q?) > Ψx0,x1,p?

(a,b) (p?). Define then
p̄ : [0, T ]× [0, 1] −→ R by

p̄(t, x) :=




p?(t, x), x 6∈ [x0, x1],

p?(t, x0) +

∫ x

x0

∂q?

∂x
(t, x)dx, x ∈ (x0, x1).

Then, for every x ∈ [x0, x1]

∫ T

0

p̄(t, x)dt ≥
∫ T

0

p̄(t, x0)dt ≥ H(x1) ≥ H(x),

and it is straightforward that p̄ ∈ C+(a, b). This is a contradiction with the optimality of p?
in problem (Pa,b) because

Ψ(a,b)(p̄) = Ψ(a,b)(p
?)−Ψx0,x1,p?

(a,b) (p?) + Ψx0,x1,p?

(a,b) (q?).

Now we state the optimality conditions for the problem (Px0,x1).
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Proposition 2.7.2 Let p? be a solution of (Px0,x1) with x0, x1 as in Proposition 2.7.1. Then
there exists a null set N ⊂ [0, T ] and a constant µt for every t ∈ [0, T ] \ N such that for
every x ∈ (x0, x1)

∂p?

∂x
(t, x) =

(
φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x) + g′γ(x)µt

]+

f(x)∂K
∂c

(t, A(t, a, b))

) γ
1−γ

g′γ(x)

γ
. (2.7.7)

Proof. Notice that the set C(x0, x1) can be written as

C(x0, x1) =
{
q ∈ W 1,m

x (x0, x1), g(q) ∈ C, h(q) = 0
}
,

where g : W 1,m
x (x0, x1) −→ Lm([0, T ]× [x0, x1]) is defined by g(q) = ∂q

∂x
, where C is the follow-

ing convex cone C := {q ∈ Lm([0, T ]× [x0, x1]), q(t, x) ≥ 0, a.e.} and h : W 1,m
x (x0, x1) −→

Lm([0, T ]) is defined by

h(q) :=

∫ x1

x0

∂q

∂x
(·, x)dx+ p?(·, x0)− p?(·, x1).

It can be checked in the same way as in Remark 5 from [33], that their Assumption S is
satisfied in this context. Furthermore, it is a classical result that the dual of W 1,m

x (x0, x1) is
W

1,m/(m−1)
x (x0, x1).

Define now the Lagrangian L : W 1,m
x (x0, x1)×W 1,m/(m−1)

x (x0, x1)× L m
m−1 (0, T ) −→ R by

L(q, λ, µ) := Ψx0,x1,p?

(a,b) (q) +

∫ T

0

∫ x1

x0

λ(t, x)
∂q

∂x
(t, x)dxdt

+

∫ T

0

µ(t)

(∫ x1

x0

∂q

∂x
(t, x)dx+ p?(t, x0)− p?(t, x1)

)
dt.

Then, from Corollary 2 in [37] it follows that there exists λ ∈ W 1,m/(m−1)
x (x0, x1), µ ∈ Lm(0, T )

such that



0 =
gγ(x)f(x) + g′γ(x)F (x)

g′γ(x)
− 1

γ

(
∂p?

∂x
(t, x)

) 1−γ
γ
(

γ

φ(t)g′γ(x)

) 1
γ

f(x)
∂K

∂c
(t, A(t, a, b))

+µ(t) + λ(t, x), a.e. in [0, T ]× [x0, x1],

λ(t, x)
∂p?

∂x
(t, x) = 0, λ(t, x) ≥ 0, a.e. in [0, T ]× [x0, x1].

Then, when ∂p?

∂x
(t, x) > 0 we have that λ(t, x) = 0 and

∂p?

∂x
(t, x) =

(
φ(t)

1
γ
[
gγ(x)f(x) + g′γ(x)F (x) + g′γ(x)µ(t)

]

f(x)∂K
∂c

(t, A(t, a, b))

) γ
1−γ

g′γ(x)

γ
.

In case ∂p?

∂x
(t, x) = 0 we have that

gγ(x)f(x) + g′γ(x)F (x)

g′γ(x)
+ µ(t) = −λ(t, x) ≤ 0,

which ends the proof.
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We prove finally that the map µ does not depend on x0, x1 and is the same in the interval
I = (x`, xr).

Proposition 2.7.3 Let I = (x`, xr) ⊂ (an, bn) be as in Theorem 2.6.1. Then for any x0,
x1 ∈ I, there exist a null set N ⊂ [0, T ] and a constant µt for every t ∈ [0, T ] \ N such that
for every x ∈ (x0, x1) (2.6.7) is satisfied.

Proof. Let y0 := x1 and define by induction for k ≥ 0

zk := inf{z ∈ (an, bn), P ?(x) ≥ H(yk), ∀x ∈ [z, yk]}, yk+1 :=
zk + yk

2
.

By continuity we have that P ?(zk) = H(yk), so yk+1 < yk and the sequence (yk)k converges
necessarily to an. We conclude by applying Proposition 2.7.2 to every interval (zk, yk) and
noting that these intervals overlap themselves.
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Chapter 3

Bank monitoring incentives under moral
hazard and adverse selection

3.1 Introduction

Principal-Agent problems with moral hazard have an extremely rich history, dating back to
the early static models of the 70s, see among many others Zeckhauser [134], Spence and
Zeckhauser [120], or Mirrlees [69, 70, 72, 74], as well as the seminal papers by Grossman and
Hart [47], Jewitt, [55], Holmström [52] or Rogerson [105]. If moral hazard results from the
inability of the Principal to monitor, or to contract upon, the actions of the Agent, there
is a second fundamental feature of the Principal-Agent relationship which has been very
frequently studied in the literature, namely that of adverse selection, corresponding to the
inability to observe private information of the Agent, which is often referred to as his type. In
this case, the Principal offers to the Agent a menu of contracts, each having been designed for
a specific type. The so-called revelation principle, states then that it is always optimal for the
Principal to propose menus for which it is optimal for the Agent to truthfully reveal his type.
Pioneering research in the latter direction were due to Mirrlees [68], Mussa and Rosen [79],
Roberts [101], Spence [119], Baron and Myerson [10], Maskin and Riley [63], Guesnerie and
Laffont [48], and later by Salanié [108], Wilson [132], or Rochet and Choné [102]. However,
despite the early realisation of the importance of considering models involving both these
features at the same time, the literature on Principal-Agent problems involving both moral
hazard and adverse selection has remained, in comparison, rather scarce. As far as we know,
they were considered for the first time by Antle [2], in the context of auditor contracts,
and then, under the name of generalised Principal-Agent problems, by Myerson [80]1. These
generalised agency problems were then studied in a wide variety of economic settings, notably
by Dionne and Lasserre [36], Laffont and Tirole [59], McAfee and McMillan [65], Picard [91],
Baron and Besanko [7, 8], Melumad and Reichelstein [66, 67], Guesnerie, Picard and Rey
[49], Page [83], Zou[136], Caillaud, Guesnerie and Rey [22], Lewis and Sappington [61], or

1There were earlier attempts in this direction, but providing a less systematic treatment of the problem;
see the income tax model of Mirrlees [68], the Soviet incentive scheme study of Weitzman [128], or the papers
by Baron and Holmström [9] and Baron [6].
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Bhattacharyya [15]2.

All the previous models are either in static or discrete-time settings. The first study of
the continuous time problem with moral hazard and adverse selection was made by Sung
[124], in which the author extends the seminal finite horizon and continuous-time model of
Holmström and Milgrom [53]. A more recent work, to which this chapter is mostly related
has been treated by Cvitanić, Wan and Yang [29], where the authors extend the famous
infinite horizon model of Sannikov [109] to the adverse selection setting. If one of the main
contributions of Sannikov [109] was to have identified that the continuation value of the Agent
was a fundamental state variable for the problem of the Principal, [29] shows that in a context
with both moral hazard and adverse selection, the Principal has also to keep track of the
so-called temptation value, that is to say the continuation utility of the Agent who would not
reveal his true type. Although close to the latter paper, our work is foremost an extension of
the bank incentives model of Pagès and Possamaï [85], which studies the contracting problem
between competitive investors and an impatient bank who monitors a pool of long-term loans
subject to Markovian contagion (we also refer the reader to the companion paper by Pagès
[84] for the economic intuitions and interpretations of the model). In the model of [85],
moral hazard emerges because the bank has more "skin a game" than the investors, and has
the opportunity, ex ante and ex post, to exercise a (costly) monitoring of the non-defaulted
loans. This is a stylised way to sum up all the actions than the bank can enter into to ensure
itself of the solvability of the borrowers. Since the investors cannot observe the monitoring
effort of the bank, they offer CDS type contracts offering remuneration to the bank, and
giving it incentives through postponement of payments and threat of stochastic liquidation
of the contract (similarly to the seminal paper of Biais, Mariotti, Rochet and Villeneuve
[16]). In the present work, we assume furthermore that there are two types of banks, which
we coin good and bad, co-existing in the market, differing by their efficiency in using their
remuneration (or equivalently differing by their monitoring costs). Even if the investor is
supposed to know the distribution of the type of banks, he cannot know whether the one is
entering into a contract with is good or bad.

Mathematically speaking, we follow both the general dynamic programming approach of Cvi-
tanić, Possamaï and Touzi [27], as well as the take on adverse selection problems initiated by
[29]. Intuitively, these approaches require first, using martingale (or more precisely backward
SDEs) arguments, to solve the (non-Markovian) optimal control problem faced by the two
type of banks when choosing each contracts. This requires obviously, using the terminology
introduced above, to keep track of both the continuation value and the temptation value of
the banks, when they choose the contract designed for them or not. The problem of the
Principal rewrites then as two standard stochastic control problems, one in which he hires
the good bank, and one in which he hires the bad one. Each of these problems uses in turn
the aforementioned two state variables (and these two only, because the horizon is infinite
and the Principal is risk-neutral), with truth-telling constraint, asserting that the continua-
tion value should always be greater than the temptation value. This leads to optimal control
problems with state constraints, and thus to Hamilton-Jacobi-Bellman (HJB for short) equa-
tions (or more precisely variational inequalities with gradient constraints, since our problem

2We refer the interested reader to the more recent works of Faynzilberg and Kumar [43], Theilen [126],
Jullien, Salanié and Salanié [57], Gottlieb and Moreira [46].
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is actually a singular stochastic control problem) in a domain, which, following [29], we call
the credible set. This set is defined as the set containing the pair of value functions of the
good and bad bank under every admissible contract offered by the investor. The determi-
nation of this set is the first fundamental step in our approach. Following the the orignal
ideas of [29], we prove that the determination of the boundaries of this set can be achieved
by solving two so-called double-sided moral hazard problems, in which one of the type of
banks is actually hiring the other one. Fortunately for us, it turned out to be possible to
obtain rigorously3 explicit expressions for these boundaries by solving the associated system
of HJB equations and using verification type arguments. We also would like to emphasise
that unlike in [29], there is certain dynamic component in our model, since we have to keep
track of the number of non-defaulted loans, through a time inhomogeneous Poisson process.
This leads to a dynamic credible set, as well as, in the end, to a recursive system of HJB
equations characterising the value function of the Principal.

After having determined the credible set itself, we pursue our study by concentrating on two
specific forms of contracts: the shutdown contract in which the investor designs a contract
which will be accepted only by the good bank, and the more classical screening contract,
corresponding to a menu of contracts, one for each type of bank, which provides incentives to
reveal her true type and choose the contract designed for her. These two contracts correspond
simply to the offering, over the correct domain of expected utilities of the banks (so as to
satisfy the proper truth-telling and participation constraints), of the best contracts that the
investor can design independently for hiring the good and the bad bank.

Since we characterise, under classical verification type arguments, the value function of the
investor through a system of HJB equations, we also have classically access to the optimal
contracts through this value function and its derivatives. This allows us to provide an asso-
ciated qualitative and quantitative analysis. It turns out that he optimal contracts designed
for the good and the bad bank share the same attributes, and are close in spirit to the ones
derived in the pure moral hazard case in [85]. On the boundaries of the credible set, the
value function of the bad bank plays the role of a state process. The payments of the optimal
contracts are postponed until the moment the state process reaches a sufficiently high level,
depending on the current size of the project. Similarly, when one of the loans of the pool
defaults, the project is liquidated with a probability that decreases with the value of the
state process. If the value function of the bad bank at the default time is below some critical
level, the project will be liquidated for sure under the optimal contracts. On the other side,
if the value function of the bad bank is high enough at the default time, the project will be
maintained. In the interior of the credible set, the continuation value and the temptation
value of the banks are the state processes for the optimal contracts. It is possible to identify
zones of good performance inside of the credible set, where the Agents are remunerated and
the project is maintained in case a default occurs. It is also possible to identify zones of bad
performance, where the Agents are not paid and the project is liquidated in case of default.
In the rest of the credible set the optimal contracts provide intermediary situations.

Notations: Let N denote the set of non–negative integers. For any n ∈ N\{0}, we

3Notice that in this respect the study in [29] was more formal, and our work provides, as far as we know,
the first rigorous derivation of this credible set.
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identify Rn with the set of n−dimensional column vectors. The associated inner product
between two elements (x, y) ∈ Rn × Rn will be denoted by x · y. For simplicity of notations,
we will sometimes write column vectors in a row form, with the usual transposition operator
>, that is to say (x1, . . . , xn)> ∈ Rn for some xi ∈ R, 1 ≤ i ≤ n. Let R+ denote the set
of non–negative real numbers, and B(R+) the associated Borel σ−algebra. For any fixed
non–negative measure ν on (R+,B(R+)), the Lebesgue–Stieljes integral of a measurable map
f : R+ −→ R will be denoted indifferently

∫

[u,t]

f(s)dνs or
∫ t

u

f(s)dνs, 0 ≤ u ≤ t.

3.2 The model

This section is dedicated to the description of the model we are going to study, presenting
the contracts as well as the criterion of both the Principal and the Agent. As recalled in the
Introduction, it is actually an adverse selection extension of the model introduced first by
Pagès in [84] and studied in depth by Pagès and Possamaï [85].

3.2.1 Preliminaries

We consider a model in continuous time, indexed by t ∈ [0,∞). Without loss of generality
and for simplicity, the risk–free interest rate is taken to be 04. Our first player will be a bank
(the Agent, referred to as "she"), who has access to a pool of I unit loans indexed by j = 1,
. . . , I which are ex ante identical. Each loan is a perpetuity yielding cash flow µ per unit time
until it defaults. Once a loan defaults, it gives no further payments. As is commonplace in the
Principal-Agent literature, especially since the paper of Sannikov [109], the infinite maturity
assumption is here for simplicity and tractability, since it makes the problem stationary, in
the sense that the value function of the Principal will not be time–dependent. We assume
that the banks in the market are different, and that two types of banks coexist, each one
being characterised by a parameter taking values in the set R := {ρg, ρb} with ρg > ρb. We
call the bank good (respectively bad) if its type is ρg (respectively ρb). Furthermore, it is
considered to be common knowledge that the proportion of the banks of type ρi, i ∈ {g, b},
is pi.

Denote by

Nt :=
I∑

j=1

1{τ j≤t},

the sum of individual loan default indicators, where τ j is the default time of loan j. The
current size of the pool is, at some time t ≥ 0, I −Nt. Since all loans are a priori identical,

4As already pointed out in the seminal paper of Biais, Mariotti, Rochet and Villeneuve [16], see also [85],
the only quantity of interest here is the difference between the discounting factors of the Principal and the
Agent.
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they can be reindexed in any order after defaults. The action of the banks consists in deciding
at each time t ≥ 0 whether they monitor any of the loans which have not defaulted yet. These
actions are summarised by the functions ej,it , where for 1 ≤ j ≤ I −Nt, i ∈ {g, b}, ej,it = 1 if
loan j is monitored at time t by the bank of type ρi, and ej,it = 0 otherwise. Non-monitoring
renders a private benefit B > 0 per loan and per unit time to the bank, regardless of its type.
The opportunity cost of monitoring is thus proportional to the number of monitored loans.
Once more, more general cost structures could be considered, but this choice has been made
for the sake of simplicity.

The rate at which loan j defaults is controlled by the hazard rate αjt specifying its instan-
taneous probability of default conditional on history up to time t. Individual hazard rates
are assumed to depend on the monitoring choice of the bank and on the size of the pool. In
particular, this allows to incorporate a type of contagion effect in the model. Specifically, we
choose to model the hazard rate of a non–defaulted loan j at time t, when it is monitored
(or not) by a bank of type ρi as

αj,it := αI−Nt

(
1 +

(
1− ej,it

)
ε
)
, t ≥ 0, j = 1, . . . , I −Nt, i ∈ {b, g}, (3.2.1)

where the parameters {αj}1≤j≤I represent individual “baseline” risk under monitoring when
the number of loans is j and ε > 0 is the proportional impact of shirking on default risk.
We assume that the impact of shirking is independent of the type of the bank. Actually, we
found out that differentiating between the banks in this regard created degeneracy in the
model. We refer the reader to Section 3.6.8 in the Appendix for a more detailed explanation.

For i ∈ {b, g}, we define the shirking process ki as the number of loans that the bank of type
ρi fails to monitor at time t ≥ 0. Then, according to (3.2.1), the corresponding aggregate
default intensity is given by

λk
i

t :=
I−Nt∑

j=1

αj,it = αI−Nt
(
I −Nt + εki

t

)
. (3.2.2)

The banks can fund the pool internally at a cost r ≥ 0. They can also raise funds from a
competitive investor (the Principal, referred to as "he") who values income streams at the
prevailing risk–less interest rate of zero. We assume that both the banks and the investor
observe the history of defaults and liquidations, as well as the parameters pb and pg, but the
monitoring choices and the type of the bank are unobservable for the investor.

3.2.2 Description of the contracts

Before going on, let us now describe the stochastic basis on which we will be working. We will
always place ourselves on a probability space (Ω,F ,P) on which N is a Poisson process with
intensity λ0

t (which is defined by (3.2.2)). We denote by F := (FNt )t≥0 the P−completion
of the natural filtration of N . We call τ the liquidation time of the whole pool and let
Ht := 1{t≥τ} be the liquidation indicator of the pool. We denote by G := (Gt)t≥0 the minimal
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filtration containing F and that makes τ a G−stopping time. We note that this filtration
satisfies the usual hypotheses of completeness and right–continuity.

Contracts are offered by the investor to the bank and agreed upon at time 0. As usual in
contracting theory, the bank can accept or refuse the contract, but once accepted, both the
bank and the investor are fully committed to the contract. More precisely, the investor offers
a menu of contracts Ψi := (ki, θi, Di), i ∈ {g, b} specifying on the one hand a desired level
of monitoring ki for the bank of type ρi, which is a G−predictable process such that for
any t ≥ 0, ki

t takes values in {0, . . . , I − Nt} (this set is denoted by K), as well as a flow of
payment Di. These payments belong to set D of processes which are càdlàg, non–decreasing,
non–negative, G−predictable and such that

EP[Di
τ ] < +∞.

We do not rule out the possibility of immediate lump–sum payments at the initialisation of
the contract, and therefore the processes in D are assumed to satisfy D0− = 0. Hence, if
D0 6= 0, it means that a lump–sum payment has indeed been made.

The contract also specifies when liquidation occurs. We assume that liquidations can only
take the form of the stochastic liquidation of all loans following immediately default5 Hence,
the contract specifies the probability θi

t, which belongs to the set Θ of [0, 1]−valued, G−predictable
processes, with which the pool is maintained given default (dNt = 1), so that at each point
in time, if the bank has indeed chosen the contract Ψi

dHt =

{
0 with probability θi

t,

dNt with probability 1− θi
t.

With our notations, given a contract Ψi, the hazard rates associated with the default and liq-
uidation processes Nt andHt are, if the bank does choose the contract Ψi, λk

i

t and
(
1− θi

t

)
λk

i

t ,
respectively.

The above properties translate into

P
(
τ ∈

{
τ 1, ..., τ I

})
= 1, and P(τ = τ j|Fτ j , τ > τ j−1) = 1− θi

τ j , j ∈ {1, . . . , I} .

For ease of notations, a contract Ψ := (k, θ,D) will be said to be admissible if (k, θ,D) ∈
K × Θ × D. As is commonplace in the Principal–Agent literature, we assume that the
monitoring choices of the banks affect only the distribution of the size of the pool. To
formalise this, recall that, by definition, any shirking process k ∈ K is G−predictable and
bounded. Then, by Girsanov Theorem, we can define a probability measure Pk on (Ω,F),
equivalent to P, such that Nt −

∫ t
0
λkt ds, is a Pk−martingale. More precisely, we have on Gt

dPk

dP
= Zk

t ,

5Obviously, several other liquidations procedures could be considered. In the pure moral hazard case
treated in [85] (see also the thesis [92, Chapter 8, Section 4]), which will be reviewed below in Section 3.3,
some heuristic justifications are given, which lead to thinking that this should in general be, at least, not too
far from optimality.
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where Zk is the unique solution of the following SDE

Zk
t = 1 +

∫ t

0

Zk
s−

(
λks
λ0
s

− 1

)(
dNs − λ0

sds
)
, 0 ≤ t ≤ τ, P− a.s.

Then, if the bank of type ρi chooses the contract Ψi, her utility at t = 0, if she follows the
recommendation ki, is given by

ui
0(ki, θi, Di) := EPki

[∫ τ

0

e−rs(ρidD
i
s +Bki

s ds)

]
, (3.2.3)

while that of the investor is

v0

(
(Ψi)i∈{g,b}

)
:=

∑

i∈{g,b}

piEPki
[∫ τ

0

(I −Ns)µds− dDi
s

]
. (3.2.4)

The parameter ρi actually discriminates between the two types of banks through the way
they derive utility from the cash–flows delivered by the investor. Hence, for a same level of
salary, the good bank will get more utility than a bad bank. Such a form of adverse selection
is also considered in the paper of Cvitanić, Wan and Yang [29].

3.2.3 Formulation of the investor’s problem

We assume for simplicity that the reservation utility for banks of both type is R0. The
investor’s problem is to offer a menu of admissible contracts (Ψi)i∈{g,b} := (ki, θi, Di)i∈{g,b}
which maximises his utility (3.2.4), subject to the three following constraints

ui
0(ki, θi, Di) ≥ R0, i ∈ {g, b}, (3.2.5)

ui
0(ki, θi, Di) = sup

k∈K
ui

0(k, θi, Di), i ∈ {g, b}, (3.2.6)

ui
0(ki, θi, Di) ≥ sup

k∈K
ui

0(k, θj, Dj), i 6= j, (i, j) ∈ {g, b}2. (3.2.7)

Condition (3.2.5) is the usual participation constraint for the banks. Condition (3.2.6) is the
so–called incentive compatibility condition, stating that given (θi, Di) the optimal monitoring
choice of the bank of type ρi is the recommended effort ki. Finally, Condition (3.2.7) means
that if a bank adversely selects a contract, she cannot get more utility than if she had
truthfully revealed her type at time 0. Following the literature, we call such a contract a
screening contract.

In the sequel, we will start by deriving the optimal contract in the pure moral-hazard case,
then we will look into the so–called optimal shutdown contract, for which the investor delib-
erately excludes the bad bank, before finally investigating the optimal screening contract.

3.3 The pure moral hazard case

In this section, we assume that the type of the bank is publicly known and is fixed to be
some ρi, i ∈ {g, b}, which makes the problem exactly similar to the one considered in [85] (up
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to the modification of some constants). In particular, the investor only offers one contract.
We will briefly explain how to solve the general maximisation problem for the bank and then
recall the results obtained in [85]. Furthermore, the results we obtain here, in particular
the dynamics of the continuation utilities of the banks, will be crucial to the study of the
shutdown and screening contracts later on. Therefore, they will be used throughout without
further references.

In this setting, the utility of the investor, when he offers a contract (ki, θi, Di) ∈ K×Θ×D
is given by

vpm
0 (ki, θi, Di) := EPki

[∫ τ

0

(I −Ns)µds− dDi
s

]
, (3.3.1)

for which we define the following dynamic version for any t ≥ 0

vpm
t (ki, θi, Di) := EPki

[∫ τ

t∧τ
(I −Ns)µds− dDi

s

∣∣∣∣Gt
]
.

3.3.1 The bank’s problem

3.3.1.1 Dynamics of the bank’s value function

As usual, the so–called continuation value of the bank (that is to say her future expected
payoff) when offered (θi, Di) ∈ Θ × D plays a central role in the analysis. It is defined, for
any (t, k) ∈ R+ × K by

ui
t(k, θ

i, Di) := EPk
[∫ τ

t∧τ
e−r(s−t)

(
ρidD

i
s + ksBds

)∣∣∣∣Gt
]
.

We also define the value function of the bank for any t ≥ 0

U i
t(θ

i, Di) := ess sup
k∈K

ui
t(k, θ

i, Di).

Departing slightly from the usual approach in the literature, initiated notably by Sannikov
[109, 110], we reinterpret the problem of the bank in terms of BSDEs, which, we believe, offers
an alternative approach which may be easier to apprehend for the mathematical finance
community. Of course, such an interpretation of optimal stochastic control problem with
control on the drift is far from being original, and we refer the interested reader to the
seminal papers of Hamadène and Lepeltier [50] and El Karoui and Quenez [40] for more
information, as well as to the recent articles by Cvitanić, Possamaï and Touzi [26, 27] for
more references and a systematic treatment of Principal–Agent type problems with this
backward SDE approach. Before stating the related result, let us denote by (Y i, Z i) the
unique (super–)solution (existence and uniqueness will be justified below) to the following
BSDE

Y i
t = 0−

∫ τ

t

gi(s, Y i
s , Z

i
s)ds+

∫ τ

t

Z i
s · dM̃ i

s +

∫ τ

t

dK i
s, 0 ≤ t ≤ τ, P− a.s., (3.3.2)
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where

Mt := (Nt, Ht)
>, M̃ i

t := Mt −
∫ t

0

λ0
s(1, 1− θi

s)
>ds, K i

t := ρiD
i
t,

gi(t, y, z) := inf
k∈{0,...,I−Nt}

f i(t, k, y, z) = ry − (I −Nt)
(
αI−Ntεz · (1, 1− θi

t)
> −B

)−
.

We have the following proposition, which is basically a reformulation of [85, Proposition 3.2].
The proof is postponed to Appendix 3.6.1

Proposition 3.3.1 For any (θi, Di) ∈ Θ×D, the value function of the bank has the dynamics,
for t ∈ [0, τ ], P− a.s.

dU i
t(θ

i, Di) =
(
rU i

t(θ
i, Di)−Bk?,it + λk

?,i

t Z i
t · (1, 1− θi

t)
>
)

dt− ρidD
i
t − Z i

t · dM̃ i
t ,

where Z i is the second component of the solution to the BSDE (3.3.2). In particular, the
optimal monitoring choice of the bank is given by

k?,it = (I −Nt)1{Zi
t·(1,1−θi

t)
><bt}.

Notice that the above result implies that the monitoring choices of the bank are necessarily
of bang–bang type, in the sense that she either monitors all the remaining loans, or none
at all, which in turn implies that the investor can never give the bank incentives to monitor
only a fraction of the loans at a given time6.

3.3.1.2 Introducing feasible sets

Following the terminology of Cvitanić, Wan and Yang [29], let us discuss the so–called feasible
set for the banks.

Definition 3.3.1 We call V i
t the feasible set for the expected payoff of banks of type ρi,

starting from some time t ≥ 0, that is to say all the possible utilities that a bank of type ρi

can get from all the admissible contracts offered by the investor from time t on.

Our first result gives an explicit form of the the feasible set V i
t, which turns out to be

independent of the type of the bank. The proof is relegated to Appendix 3.6.1

Lemma 3.3.1 For i ∈ {g, b} and for any t ≥ 0, we have that V i
t = Vt, with

Vt :=

[
B(I −Nt)

r + λI−Ntt

,+∞
)
.

To describe the results of [85], we need to limit our subsequent analysis (for this section
only), to contracts enforcing a constant monitoring from the banks, that is to say contracts

6We assume here, as is commonplace in the Principal–Agent literature, that in the case where the bank
is indifferent with respect to her monitoring decision, that is when Z i

t · (1, 1− θit)> = bt, she acts in the best
interest of the investors, and thus monitors all the I −Nt remaining loans.
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incentive–compatible with k = 0. Obviously, for such contracts, the feasible set of the banks
are not equal to Vt, although we will see next that in this case again, it does not depend on
the type of the bank.

Definition 3.3.2 The set V0,i
t ⊂ Vt is called the feasible set for the expected payoff of the

banks of type ρi, starting from some time t ≥ 0, when the investors can only offer contracts
enforcing k = 0.

This sets can also be obtained explicitly, see Appendix 3.6.1 for the proof.

Lemma 3.3.2 We have for i ∈ {g, b} and for any t ≥ 0 that V0,i
t = V0

t , with V0
t := [bt,+∞) .

3.3.2 The investor’s problem and the optimal full–monitoring con-
tract

As mentioned above, in this section only, we follow [85] and consider that the only acceptable
behaviour for the bank, from the social point of view, is that she never shirks away from her
monitoring responsibilities7. In other words, we only allow contracts with a recommendation
of k = 0. Therefore, the value function of the investor becomes

V pm,0
t (R0) := ess sup

(Di,θi)∈A0,i(t,R0)

EP0

[∫ τ

t∧τ
(I −Ns)µds− dDi

s

∣∣∣∣Gt
]
,

where the set of admissible contracts A0,i(t, R0) is defined for R0 ≥ bt, by

A0,i(t, R0) :=
{

(θi, Di) ∈ Θ×D, s.t. (θi, Di) enforces k = 0 and U i
t(θ

i, Di) ≥ R0

}
.

The main findings of [85] require the following assumptions. Define for any t ≥ 0 and
j ∈ {1, . . . , I},

j

αj
:=

j∑

i=1

1

αi

, λ̂0
j := αjj, b̂j :=

B

αjε
.

Assumption 3.3.1 (i) µ ≥ αI .

(ii) We have for all j ≤ I, rB(1 + ε) ≤ (µε−B)εαj.

(iii) Individual default risk is non–decreasing with past default, αj ≤ αj−1, for all j ≤ I.

Define next for x > 0

φ(x) :=

(
1 + x

1 + 2x

) 1
x
−1

, ψ(x) :=
φ(x)− x

(1− x)φ(x)
.

7We refer however to Example 3.3.1 below, where we show that this may not always be optimal for the
investor, which is reason why we will forego this assumption later in this work.
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Let us then define some family of concave functions, unique solutions to the following system
of ODEs




(
ru+ λ̂0

j b̂j

)
(vi
j)
′(u) + jµ− λ̂0

j

(
vi
j(u)− u− b̂j

b̂j−1

vi
j−1(̂bj−1)

)
= 0, u ∈

(
b̂j, b̂j + b̂j−1

]
,

(
ru+ λ̂0

j b̂j

)
(vi
j)
′(u) + jµ− λ̂0

j

(
vi
j(u)− vi

j−1(u− b̂j)
)

= 0, u ∈
(
b̂j + b̂j−1, γ

i
j

]
,

ρi(v
i
j)
′(u) + 1 = 0, u > γi

j,

(3.3.3)
with initial values γi

1 := b̂1 and

vi
1(u) := vi

1 −
1

ρi

(u− b̂1), u ≥ b̂1, v
i
1 :=

µ

λ̂0
1

− b̂1(r + λ̂0
1)

ρiλ̂0
1

,

and where for j ≥ 2, γi
j is defined recursively by r/λ̂0

j − 1 ∈ ∂vi
j−1(γi

j − b̂j), where ∂vi
j−1 is

the super–differential of the concave function vi
j−1. The main result of [85] is

Theorem 3.3.1 Assume that the
(
λ̂0
j

)
1≤j≤I satisfy the following recursive conditions for

j ≥ 2

r

λ̂0
j

− 1 ≤
vi
j−1

(
b̂j−1

)

b̂j−1

and
(

(vi
j−1)′

(
b̂j−1

))+ b̂j−1

vi
j−1

(
b̂j−1

) ≤ ψ

(
r

λ̂0
j

)
.

Then, under Assumption 3.3.1, the system (3.3.3) is well–posed and we have

V pm,0
t (R0) = sup

ut≥R0

vi
I−Nt (ut) ,

where (us)s≥t is defined as the unique solution to the SDE on [t, τ)

dus =
(
rus + λ0

I−Ns b̂I−Ns

)
ds− ρidD

?,i
s

−
(
1{us∈[̂bI−Ns ,̂bI−Ns−1+b̂I−Ns )}(us − b̂I−Ns−1) + b̂I−Ns1{us∈[̂bI−Ns+b̂I−Ns−1,γ

i
I−Ns )}

)
dNs

−
(
1{us∈[̂bI−Ns ,̂bI−Ns−1+b̂I−Ns )}b̂I−Ns−1 + (us − b̂I−Ns)1{us∈[̂bI−Ns+b̂I−Ns−1,γ

i
I−Ns )}

)
dHs,

with initial value ut at t, and where we defined for s ∈ [t, τ) and j = 1, . . . , I

D?,i
s := 1{s=t}

(ut − γi
I−Nt)

+

ρi

+

∫ s

t

δI−Nri (ur)dr, θ
?
s := θI−Nsi (us),

δji (u) := 1{u=γi
j}
λ̂0
j b̂j + rγi

j

ρi

, θji (u) := 1{u∈[̂bj ,̂bj−1+b̂j)}
u− b̂j
b̂j−1

+ 1{u∈[̂bj+b̂j−1,γi
j)}
.

We finish this section with an example showing that forcing the bank to always monitor all
the loans may not always be optimal for the Principal, which we explain why we forego this
assumption in the rest of the chapter.
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Example 3.3.1 Consider the case when there is one loan in the project, I = 1. The value
function of the investor is given by

V pm,0
t (R0) = sup

ut≥R0

vi
1 (ut) =

{
vi

1 − 1
ρi

(R0 − b̂1), R0 ≥ b̂1,

vi
1, R0 < b̂1.

It follows from Lemma 3.3.1 that the contract given by θ ≡ 0, D ≡ 0 is the only one such
that the banks get utility equal to B

r+λ̂1
1

under it. Therefore, the value function of the investor
at the point of minimum utility is equal to

V pm
t

(
B

r + λ̂1
1

)
=

µ

λ̂1
1

.

If R0 ≤ B

r+λ̂1
1

and µ < λ̂0
1b̂1(r+λ̂0

1)

ρi(λ̂
1
1−λ̂1

0)
, then V pm

t

(
B

r+λ̂1
1

)
> V pm,0

t

(
B

r+λ̂1
1

)
and it is not optimal for

the investor to offer contracts under which the banks never shirks.

3.4 Credible set

In this section we come back to the case in which there are two types of banks in the market,
and study the so–called credible set, which is formed by the pairs of value functions of the
banks under the admissible contracts. We follow the ideas developed in section 2.4 of the
Introduction, to define a dynamic version of the credible set.

As in [29], we do not expect all the points in the feasible set to correspond to a pair of
reachable values of the banks under some admissible contract. We will therefore follow
the approach initiated by [29] and we will characterize the credible set. We emphasise an
important difference with [29] though, in the sense that in our context, the credible set
becomes dynamic as it depends on the current size of the pool.

In this section we work with generic contracts (θ,D) ∈ Θ × D, not necessarily designed for
a particular type of bank.

3.4.1 Definition of the credible set and its boundaries

We first define V̂j := [Bj/(r + λ̂SHj ),∞). Observe that the feasible set

Vt =

[
B(I −Nt)

r + λI−Ntt

,+∞
)
,

satisfies Vt = V̂I−Nt for every t, so the only dependence of the feasible set in time is due to
the number of loans left. The formal definition of the credible set is the following.
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Definition 3.4.1 For any time t ≥ 0, we define the credible set CI−Nt as the set of (ub, ug) ∈
V̂I−Nt × V̂I−Nt such that there exists some admissible contract (θ,D) ∈ Θ × D satisfying
U b
t (θ,D) = ub, U g

t (θ,D) = ug and (U b
s (θ,D), U g

s (θ,D)) ∈ V̂I−Ns × V̂I−Ns for every s ∈ [t, τ),
P− a.s.

Given a starting time t ≥ 0 and ub ∈ V̂I−Nt , define the set of contracts under which the value
function of the bad bank at time t is equal to ub,

Ab(t, ub) =
{

(θ,D) ∈ Θ×D, U b
t (θ,D) = ub

}
.

We denote by Ut(u
b) the largest value U g

t (θ,D) that the good bank can obtain from all the
contracts (θ,D) ∈ Ab(t, ub). Once again, this set only depends on t through the value of
I −Nt, so that we will also use the notation ÛI−Nt(u

b) := Ut(u
b). We also denote the lowest

one by Lt(u
b) and L̂I−Nt(u

b) indifferently. Next, define

Ĉj :=
{

(ub, ug) ∈ V̂j × V̂j, L̂j(ub) ≤ ug ≤ Ûj(u
b)
}
.

We will prove in Proposition 3.4.3 below that Ĉj = Cj for every j = 1, . . . I. Therefore, we
will call respectively the functions L̂j and Ûj the lower and upper boundary of the credible
set when there are j loans left. The aim of the next sections is to obtain explicit formulas
for these boundaries.

3.4.2 Utility of not monitoring

We introduce some notations, and denote by kSH the strategy of a bank which does not
monitor any loan at any time, i.e. kSHs = I −Ns for every s ≥ 0. We also denote by λ̂SHj the
default intensity under kSH when there are j loans left, i.e. λ̂SHj := αjj(1 + ε). We observe
that λ̂SHj = λk

SH

t = αI−Nt(I −Nt)(1 + ε), for every t ≥ 0 such that I −Nt = j. Now consider
any starting time t such that I − Nt = j and any θ ∈ Θ. The continuation utility that the
banks get from always shirking (without considering the payments) is

ugt (k
SH , θ, 0) = ubt(k

SH , θ, 0) = EPkSH
[∫ τ

t∧τ
e−r(s−t)BkSHs ds

∣∣∣∣Gt
]
. (3.4.1)

This quantity is obviously increasing in θ, so that (3.4.1) attains its minimum value under
any contract with θ ≡ 0, which is equal to c(j, 1) := Bj/(r + λ̂SHj ). Moreover, if the pool
is liquidated exactly after the next m defaults, with m ∈ {2, . . . , j}, (3.4.1) is equal to (see
Appendix 3.6.2)

c(j,m) :=
Bj

r + λ̂SHj
+

j−1∑

i=j−m+1

Bi

r + λ̂SHi

j∏

`=i+1

λ̂SH`

r + λ̂SH`
.

In particular, under any contract such that θ ≡ 1, (3.4.1) attains its maximum value, which
is equal to

C(j) := c(j, j) =
Bj

r + λ̂SHj
+

j−1∑

i=1

Bi

r + λ̂SHi

j∏

`=i+1

λ̂SH`

r + λ̂SH`
. (3.4.2)
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3.4.3 Lower boundary of the credible set

The lower boundary of the credible set is the simplest of the two boundaries and it can be
computed directly. We will see that it is a piecewise linear function corresponding to two
lines with different slopes. The next proposition states the main inequalities that determine
the lower boundary.

Lemma 3.4.1 For any t ∈ [0, τ ] and any admissible contract (θ,D) ∈ Θ × D, the value
functions of the good and the bad banks satisfy, P− a.s.

U g
t (θ,D) ≥ U b

t (θ,D), (3.4.3)

U g
t (θ,D) ≥ ρg

ρb
U b
t (θ,D)− (ρg − ρb)

ρb
C(I −Nt), (3.4.4)

where the function C(j) is defined in (3.4.2).

Using Lemma 3.4.1, we prove the following characterisation of the lower boundary of the
credible set.

Proposition 3.4.1 For any j ∈ {1, . . . , I}, the lower boundary when there are j loans left
is given by

L̂j(u
b) =




ub, c(j, 1) ≤ ub ≤ C(j),
ρg
ρb
ub − (ρg − ρb)

ρb
C(j), C(j) ≤ ub < +∞.

3.4.4 Upper boundary of the credible set

The upper boundary of the credible set is not as simple to obtain as the lower boundary and
we have to solve a specific stochastic control problem to identify it. Notice that this approach
is similar to the one used in [29].

Let us fix any contract (θ,D) ∈ Θ × D. We remind the reader that thanks to Proposition
3.3.1, we know that there exist G−predictable and integrable processes (h1,g(θ,D), h2,g(θ,D))
such that

dU g
s (θ,D) = (rU g

s (θ,D)−Bk?,gs (θ,D)) ds− ρgdDs − h1,g
s (θ,D)

(
dNs − λk

?,g(θ,D)
s ds

)

− h2,g
s (θ,D)

(
dHs − (1− θs)λk

?,g(θ,D)
s ds

)
, s ∈ [0, τ ], (3.4.5)

where we recall that the optimal monitoring choice k?,g(θ,D) is given by

k?,gs (θ,D) = (I −Ns)1{h1,g
s (θ,D)+(1−θs)h2,g

s (θ,D)<bs}.

Similarly, there exist G−predictable and integrable processes (h1,b(θ,D), h2,b(θ,D)) such that

dU b
s (θ,D) =

(
rU b

s (θ,D)−Bk?,bs (θ,D)
)

ds− ρbdDs − h1,b
s (θ,D)

(
dNs − λk

?,b(θ,D)
s ds

)

− h2,b
s (θ,D)

(
dHs − (1− θs)λk

?,b(θ,D)
s ds

)
, s ∈ [0, τ ], (3.4.6)
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with k?,bs (θ,D) = (I − Ns)1{h1,b
s (θ,D)+(1−θs)h2,b

s (θ,D)<bs}. We will use the dynamics (3.4.5)–
(3.4.6) to define a simple set of admissible contracts in which we will reinterpret both
the value functions of the Agents as controlled diffusion processes, where the controls are
(D, θ, h1,g, h2,g, h1,b, h2,b) and satisfying the instanteneous conditions (3.6.2). Obviously, doing
so makes us look at a larger class of "contracts", in the sense that in the above representation
of the value functions of the bank, the choice of the processes (h1,g, h2,g, h1,b, h2,b) is not free,
since they are completely determined by the choice of (θ,D). Nonetheless, we will prove later
a verification result that will ensure us that the solution of the stochastic control problem we
consider provides us the upper boundary of the credible set.

Let us therefore denote byH the set of non–negative, G−predictable and integrable processes.
We abuse notations and define, for every Ψ := (D, θ, h1,g, h2,g, h1,b, h2,b) ∈ D × Θ ×H4, the
processes U g(Ψ) and U b(Ψ) which satisfy the following (linear) SDEs (well–posedness is
trivial)

dU g
s (Ψ) = rU g

s (Ψ)−Bk?,gs (Ψ)− ρgdDs − h1,g
s

(
dNs − λk

?,g(Ψ)
s ds

)
− h2,g

s

(
dHs − (1− θs)λk

?,g(Ψ)
s ds

)
,

(3.4.7)

dU b
s (Ψ) = rU b

s (Ψ)−Bk?,bs (Ψ)− ρbdDs − h1,b
s

(
dNs − λk

?,b(Ψ)
s ds

)
− h2,b

s

(
dHs − (1− θs)λk

?,b(Ψ)
s ds

)
,

(3.4.8)

where we defined

k?,gs (Ψ) := (I −Ns)1{h1,g
s +(1−θs)h2,g

s <bs}, k
?,b
s (Ψ) := (I −Ns)1{h1,b

s +(1−θs)h2,b
s <bs}.

Remark 3.4.1 In the model, there is no need to consider h1,g and h1,b as positive processes
and we do this just for technical reasons. Intuitively, the optimal contracts should satisfy
this additional constraint because the investor does not benefit from earlier defaults and if a
contract increases the banks’ continuation utilities after one of the defaults, the banks should
increase the default intensity as much as possible.

For any starting time t ∈ [0, τ ] and for every ub ≥ B(I −Nt)/(r + λ̂SHI−Nt) define

Ab(t, ub) :=

{
Ψ = (D, θ, h1,b, h2,b) ∈ D ×Θ×H2, such that ∀s ∈ [t, τ ],

U b
s−(Ψ) = h1,b

s + h2,b
s , U

b
s−(Ψ)− h1,b

s ≥
B(I −Ns)

r + λI−Nss

, U b
t (Ψ) = ub

}
.

We will abuse notations and also call elements of Ab(t, ub) contracts. The upper boundary
Ut solves the following control problem

Ut(u
b) = ess sup

Ψ∈Ab(t,ub)
EPkg(Ψ)

[∫ τ

t

e−r(s−t)(ρgdDs +Bkgs(Ψ)ds)

∣∣∣∣∣Gt
]
,
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subject to the dynamics

U b
r (Ψg) = ub +

∫ r

t

(
rubs −Bk?,bs (Ψ) + h1,b

s λ
k?,b

s + h2,b
s (1− θs)λk

?,b

s

)
ds− ρb

∫ r

t

dDs

−
∫ r

t

h1,b
s dNs −

∫ r

t

h2,b
s dHs, t ≤ r ≤ τ,

with

k?,bs (Ψ) = (I −Ns)1{h1,b
s +(1−θs)h2,b

s <b̂I−Ns}
, kg(Ψ) ∈ arg max

k∈K
EPk
[∫ τ

t

e−r(s−t)(ρgdDs +Bksds)

∣∣∣∣∣Gt
]
.

Indeed, the above stochastic control problem corresponds to the highest value that the good
bank can obtain from any admissible contract, while ensuring that when the bad bank takes
it, she receives exactly ub, which is exactly the definition of the upper boundary of the credible
set. Also, notice that the dependence of U on the time is only through the number of loans
left at time t.

The next subsections are devoted to first obtaining the HJB equation associated with the
above problem, its resolution and then finally to the proof of a verification theorem adapted
to our framework. Notice that the above is actually a singular stochastic control problem,
since the controlD is a non–decreasing process, which is not necessarily absolutely continuous
with respect to the Lebesgue measure. We refer the reader to the monograph by Fleming
and Soner [44] for more details. In particular, this implies that the HJB equation associated
to the problem will be a variational inequality with gradient constraints.

3.4.4.1 HJB equation for the upper boundary

Fix some 1 ≤ j ≤ I, and define for every k = 0, 1, · · · , j, λ̂kj := αj(j + kε). The system of
HJB equations associated to the previous control problem is given by Û0 ≡ 0, and for any
1 ≤ j ≤ I

min

{
− sup

(θ,h1,h2)∈Cj

{
Û ′j(ub)

(
rub −Bkb + [h1 + (1− θ)h2]λ̂k

b

j

)

+λ̂k
g

j θÛj−1(ub − h1)− (λ̂k
g

j + r)Ûj(ub) +Bkg

}
, Û ′j(ub)−

ρg
ρb

}
= 0,

(3.4.9)
for every ub ≥ Bj

r+λ̂SHj
, with the boundary condition Ûj(Bj/(r+ λ̂SHj )) = Bj/(r+ λ̂SHj ), where

kb := j1{h1+(1−θ)h2<b̂j}, k
g := j1{Ûj(ub)−θÛj−1(ub−h1)<b̂j}, and the set of constraints is defined

by

Cj :=

{
(θ, h1, h2) ∈ [0, 1]× R2

+, h
1 + h2 = ub,c, h2 ≥ B(j − 1)

r + λ̂SHj−1

}
.

Remark 3.4.2 Note that the incentive compatibility condition for the good bank is implicit
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in the HJB equation. Indeed, at every s we have

ÛI−Ns(U b
s (Ψ))− ÛI−Ns− (U b

s−(Ψ)) =
(
ÛI−Ns−−1(U b

s−(Ψ)− h1,b
s (Ψ))− ÛI−Ns− (U b

s−(Ψ))
)

∆Ns

− ÛI−Ns−−1(U b
s−(Ψ)− h1,b

s (Ψ))∆Hs,

which implies that on the upper boundary h1,g
s (Ψ) = ÛI−Ns− (U b

s−(Ψ))− ÛI−Ns−−1(U b
s−(Ψ)−

h1,b
s (Ψ)) and h2,g

s (Ψ) = ÛI−Ns−−1(U b
s−(Ψ)− h1,b

s (Ψ)). Therefore

h1,g
s (Ψ) + (1− θgs)h2,g

s (Ψ) = ÛI−Ns− (U b
s−(Ψ))− θgs ÛI−Ns−−1(U b

s−(Ψ)− h1,b
s (Ψ)).

At the points where Û ′j(ub) > ρg/ρb, the first term of the variational inequality (3.4.9) must
be equal to zero, so the upper boundary must satisfy the following equation

rÛj(ub) = sup
(θ,h1,h2)∈Cj

{
Û ′j(ub)

(
rub −Bkb + [h1 + (1− θ)h2]λ̂k

b

j

)

+[Ûj−1(ub − h1)θ − Ûj(ub)]λ̂kgj +Bkg

}
. (3.4.10)

We will refer to this equation as the diffusion equation.

• Step 1: case of 1 loan, solving the diffusion equation

Before dealing with the variational inequality (3.4.9), we will solve the diffusion equation
(3.4.10). When j = 1, it reduces to

rÛ1(ub) = Û ′1(ub)
(
rub −Bkb + ubλ̂k

b

1

)
− Û1(ub)λ̂k

g

1 +Bkg, (3.4.11)

with kb = 1{ub<b̂1}, k
g = 1{Û(ub)<b̂1}.

Remark 3.4.3 Notice that the boundary condition Û1

(
B

r+λ̂1
1

)
= B

r+λ̂1
1

is implicit in the
equation.

Our first result is the following, whose proof is deferred to Appendix 3.6.6

Lemma 3.4.2 There is a family of continuously differentiable solutions to the diffusion
equation, indexed by some constant C > 0, which are given by

ÛC1 (ub) :=





C
r+λ̂1

1
r+λ̂0

1

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

, ub ∈
[

B

r + λ̂1
1

, x?C

)
,

Cb̂

λ̂1
1−λ̂

0
1

r+λ̂1
1

1

(
r + λ̂1

1

r + λ̂0
1

) r+λ̂0
1

r+λ̂1
1

(
ub − B

r + λ̂1
1

) r+λ̂0
1

r+λ̂1
1

, ub ∈ [x?C , b̂1),

Cub, ub ∈ [̂b1,+∞),

where xC,?1 :=

(
1

C

) r+λ̂1
1

r+λ̂0
1
b̂1
r + λ̂0

1

r + λ̂1
1

+
B

r + λ̂1
1

.
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• Step 2: case of 1 loan, solving the HJB equation

In this case the variational inequality (3.4.9) reduces to

min

{
rÛ1(ub)− Û ′(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ Û1(ub)λ̂k

g

1 −Bkg, Û ′1(ub)− ρg
ρb

}
= 0.

(3.4.12)
We already found the solutions of the diffusion equation inside of this variational inequality
and now we will take care of the whole HJB equation. We expect the upper boundary to
saturate the second term in the variational inequality for big values of ub, so we will search
for a solution of (3.4.12) satisfying the following condition: there exists x? ∈ [B/(r+ λ̂1

1),∞)
such that

Û ′1(x?) =
ρg
ρb

and Û ′1(ub) >
ρg
ρb
, for ub < x?. (3.4.13)

At first sight it could seem that by doing this we face the risk of not finding the correct
solution of the dynamic programming equation. Nevertheless, this is not the case and we
will prove later a verification result which assures us that the solution that we find under
this condition corresponds indeed to the upper boundary of the credible set. The proof of
the following Lemma will be given in Appendix 3.6.6.

Lemma 3.4.3 The unique solution of the HJB equation which satisfies condition (3.4.13) is
given by, defining x?1 := x

ρg/ρb,?
1

Û?1 (ub) := Ûρg/ρb,?1 (ub) =





(
ρg
ρb

) r+λ̂1
1

r+λ̂0
1

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

, ub ∈
[

B

r + λ̂1
1

, x?1

)
,

ρg
ρb
b1

λ̂1
1−λ̂

0
1

r+λ̂1
1

(
r + λ̂1

1

r + λ̂0
1

) r+λ̂0
1

r+λ̂1
1

(
ub − B

r + λ̂1
1

) r+λ̂0
1

r+λ̂1
1

, ub ∈ [x?1, b̂1),

ρg
ρb
ub, ub ∈ [̂b1,+∞).

(3.4.14)

As an illustration, in Figure 3.1 we show the credible set which corresponds to the region
delimited by its upper and lower boundaries. In this example, we considered r = 0.02,
B = 0.002, ε = 0.25, α1 = 0.055, ρg

ρb
= 2.

• Step 3: solving the HJB equation in the general case

In the general case, when j > 1, we can reduce the number of variables and rewrite the
diffusion equation (3.4.10) in an equivalent form

rÛj(ub) = sup
(θ,h1)∈Ĉj




Û ′j(ub)

(
rub −Bkb + [ub − θ(ub − h1)]λ̂k

b

j

)

+
(
Ûj−1(ub − h1)θ − Ûj(ub)

)
λ̂k

g

j +Bkg



 , (3.4.15)

where we recall that kb = 1{ub−θ(ub−h1)<b̂j}, k
g = 1{Ûj(ub)−θÛj−1(ub−h1)<b̂j} and the set of con-
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B

r+λ̂1
1

x?1 b̂1

B

r+λ̂1
1

b̂1

ρg
ρb
b̂1 ug = ub

L̂1(u
b)Û?1 (ub)

ub

ug

Figure 3.1: Credible set with one loan left.

straints is now given by

Ĉj :=

{
(θ, h1) ∈ [0, 1]× R+, u

b ≥ h1 +
B(j − 1)

r + λ̂SHj−1

}
. (3.4.16)

When we proved that the lower boundary of the credible set is reachable we used contracts
of maximum duration, which maintain the pool until the last default. This gives us the
intuition that the longer the contract lasts, the smaller the difference between the utilities
of the banks will be. Therefore the upper boundary of the credible set, where the difference
between both utilities is maximal, should be reachable with contracts of minimum duration,
which terminate the contractual relationship immediately after the first default. In the model
this means that θ is equal to zero and the resulting HJB equation for the upper boundary has
the same form that the one in the case with one loan left. We expect then that the solution
of the diffusion equation will be the of the same form as (3.4.14). The object of the next
proposition is to prove our guess rigorously. We postpone the proof to Appendix 3.6.6.

Proposition 3.4.2 For any j ≥ 1, the function Û?j defined by

Û?j (ub) :=





(
ρg
ρb

) r+λ̂SHj

r+λ̂0
j

(
ub − Bj

r + λ̂SHj

)
+

Bj

r + λ̂SHj
, ub ∈

[
Bj

r + λ̂SHj
, x?j

)
,

ρg
ρb
bj

λ̂SHj −λ̂0
j

r+λ̂SH
j

(
r + λ̂SHj

r + λ̂0
j

) r+λ̂0
j

r+λ̂SH
j

(
ub − Bj

r + λ̂SHj

) r+λ̂0
j

r+λ̂SH
j

, ub ∈ [x?j , b̂j),

ρg
ρb
ub, ub ∈ [̂bj,+∞),

(3.4.17)

where x?j :=

(
ρb
ρg

) r+λ̂SHj

r+λ̂0
j
b̂j
r + λ̂0

j

r + λ̂SHj
+

Bj

r + λSHj
, is a solution of the HJB equation (3.4.9).
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3.4.4.2 Verification Theorem

According to the maximisers in equation (3.4.15) we define the following controls




δj(ub) := 1{ub≥b̂j}
ub(r+λ̂0

j )

ρb
,

θj(ub) := 0,

h1,b,j(ub) := ub, h2,b,j(ub) := 0,

kb,j(ub) := j1{ub<b̂j}, k
g,j(ub) := j1{Û?j (ub)<b̂j}.

(3.4.18)

Before stating the verification result for the upper boundary, we make a comment about the
domain of the functions Û?j . Rigorously speaking, it is possible for the utilities of the banks
to be zero but this happens only at time τ when all the pools are liquidated. The domain of
Û?j is the set V̂j but in the proof of the verification theorem it will be implicitly understood
that Û?j (0) = 0. In any case, we do not need the functions Û?j to be defined at zero because
Itô’s formula will be used on intervals which do not contain τ .

Theorem 3.4.1 Consider any starting time t ≥ 0. For any ub ≥ B(I−Nt)
r+λ̂SHI−Nt

, let the process

(ubs)s∈[t,τ ] be the unique solution of the following SDE

ubv = ub +

∫ v

t

[
(r + λk

b,I−Nt
s )ubs −Bkb,I−Nt(ubs)− ρbδI−Nt(ubs)

]
ds−

∫ v

t

ubs−dNs, v ∈ [t, τ ].

(3.4.19)
Then, under the contract Ψ? := (Dg,?, θg,?, h1,b,?, h2,b,?) ∈ D×Θ×H2 defined for s ∈ [t, τ ] by

dD?
s := δI−Nt(ubs)ds, θ

?
s ≡ 0, h1,b,?

s := h1,b,I−Nt(ubs), h
2,b,?
s ≡ 0,

the value function of the bad bank is U b
t (Ψ

?) = ub and the one of good bank is U g
t (Ψ?) =

Û?I−Nt(ub). Moreover, Ψ? ∈ Ab(t, ub) and for any other contract which belongs to Ab(t, ub),
the value function of the good bank under such a contract is less or equal to Û?I−Nt(ub). In
particular, this implies that

Û?I−Nt(ub) = ÛI−Nt(u
b).

To conclude the section, we state that Cj is indeed equal to the credible set with j loans left
and therefore the functions Ûj and L̂j correspond to its upper and lower boundaries.

Proposition 3.4.3 For every 1 ≤ j ≤ I, Ĉj = Cj.

3.5 Optimal contracts

In this section we study two kind of contracts that the investor can offer to the bank, the
shutdown contract, which corresponds to a single contract designed to be accepted only for
the good bank and the screening contract, corresponding to a menu of contracts, one for each
type of Agent, providing incentives to the bank to accept the contract designed for her true
type.
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3.5.1 Shutdown contract

In the so–called shutdown contract, the investor designs a contract Ψg = (kg, Dg, θg) only for
the good bank and makes sure that the bad bank will not accept it. Under these conditions
the utility of the investor at time t = 0 is

vg,Shut
0 (Ψg) = pgEPkg

[∫ τ

0

µ(I −Ns)ds− dDg
s

]
. (3.5.1)

So the investor will offer a contract which maximises (3.5.1) subject to the constraints

ug0(kg, θg, Dg) ≥ R0 ≥ sup
k∈K

ub0(k, θg, Dg), (3.5.2)

ug0(kg, θg, Dg) = sup
k∈K

ug0(k, θg, Dg). (3.5.3)

Recalling the dynamics (3.4.5)–(3.4.6), we can rewrite the investor’s maximisation problem
as follows

vShut
0 := sup

(θg ,Dg)∈AgShut

pgEPk?,g(θg,Dg)

[∫ τ

0

µ(I −Ns)ds− dDg
s

]
,

where
AgShut :=

{
(θg, Dg) ∈ Θ×D, U b,c

0 (θg, Dg) ≤ R0 ≤ U g
0 (θg, Dg)

}
.

Remark 3.5.1 We will use the notation U b,c(θg, Dg) for the value function that the bad
bank gets if she does not reveal her true type and accepts the contract designed for the
good bank. We make a distinction between this process and U b(θb, Db), which corresponds
to the value function that the bad bank obtain if she accepts the contract designed for her
by the investor. We make the same distinction between the associated processes h1,b,c(θ,D),
h2,b,c(θ,D) and h1,b(θ,D), h2,b(θ,D).

As in the previous section, we will define a simple set of contracts and consider the value
functions of the Agents as diffussion processes controlled by (D, θ, h1,g, h2,g, h1,b,c, h2,b,c). As
explained before, by doing so we will look at a larger class of "contracts". Nonetheless, we
will prove later that under reasonable assumption the solution of the problem we consider
do coincide with the optimal shutdown contract.

Define for any (t, ug, ub,c) ∈ [0,+∞)× CI−Nt

Âg(t, ug, ub,c) :=

{
Ψg = (Dg, θg, h1,g, h2,g, h1,b,c, h2,b,c) ∈ D ×Θ×H4, such that ∀s ∈ [t, τ ],

U g
s−(Ψg) = h1,g

s + h2,g
s , U g

s−(Ψg)− h1,g
s ≥

B(I −Ns)

r + λI−Nss

, U g
t (Ψg) = ug

U b,c
s− (Ψg) = h1,b,c

s + h2,b,c
s , U b,c

s− (Ψg)− h1,b,c
s ≥ B(I −Ns)

r + λI−Nss

, U b,c
t (Ψg) = ub,c

}
.
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We will also consider in the sequel the following standard control problem, for any (ub,c, ug) ∈
CI

v̂g0(ub,c, ug) := sup
Ψg∈Âg(0,ug ,ub,c)

pgEPk
?,g(Ψg)

[∫ τ

0

µ(I −Ns)ds− dDg
s

]
.

We abuse notations and also call elements of Âg(t, ug, ub,c) contracts.

3.5.1.1 Value function of the investor

In this section, we characterise the value function of the investor when he offers only shutdown
contracts. We will start by computing the value function on the boundaries of the credible
set, before explaining how it can be characterised by a specific HJB equation in the interior
of the credible set, under reasonable assumptions.

3.5.1.1.1 Value function of the investor on the lower boundary Recall the lower
boundary with j loans left

L̂j(u
b,c) =




ub,c, c(j, 1) ≤ ub,c ≤ C(j),
ρg
ρb
ub,c − (ρg − ρb)

ρb
C(j), C(j) ≤ ub,c <∞.

Consider any starting time t ≥ 0. For ub,c ∈ CI−Nt , we denote by V L,g(ub,c) the value function
of the investor in the lower boundary, that is

V L,g
t (ub,c) := ess sup

Ψg∈Âg(t,L̂I−Nt (u
b,c),ub,c)

EPk
?,g(Ψg)

[∫ τ

t

(µ(I −Ns)ds− dDg
s)

∣∣∣∣Gt
]
. (3.5.4)

The following two propositions are proved in Appendix 3.6.7 and give explicitly the value of
V L,g
t (ub,c).

Proposition 3.5.1 For every ub,c ∈ CI−Nt , if ub,c ≥ C(I −Nt) then the value function of the
investor in the lower boundary is given by

V L,g
t (ub,c) =

I−1∑

i=Nt

µ(I − i)

λ̂SHI−i

−
(
ub,c − C(I −Nt)

ρb

)
.

Proposition 3.5.2 Fix some t ≥ 0. For every ub,c ∈ CI−Nt , with c(I − Nt, 1) ≤ ub,c <
C(I −Nt), let ν(ub,c) be the unique solution of the following equation in ν

(
B(I −Nt)

r + λ̂SHI−Nt
− ub,c

)
+

I−1∑

i=Nt+1

∫ ∞

si(ν)

(
B(I − i)

r + λ̂SHI−i

e−rx

)
fτi(x)dx = 0,
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where fτi is the density of the law of τi under Pk
SH and where

si(ν) :=





0, ν ≤ µ(r + λ̂SHI−i)

Bλ̂SHI−i

,

1

r
ln

(
νBλ̂SHI−i

µ(r + λ̂SHI−i)

)
, ν ≥ µ(r + λ̂SHI−i)

Bλ̂SHI−i

.

Then the value function of the investor in the lower boundary is given by

V L,g
t (ub,c) =

µ(I −Nt)

λ̂SHI−Nt
+

I−1∑

i=Nt+1

∫ ∞

si(ν(ub,c))

µ(I − i)

λ̂SHI−i

fτi(x) dx.

Remark 3.5.2 Observe that the function V L,g
t computed in Propositions 3.5.1 and 3.5.2

depends on t only through the quantity I −Nt. Define, for any j = 1, . . . , J the map

V̂ L,g
j (ub,c) :=





j∑

i=1

µi

λ̂SHi

−
(
ub,c − C(j)

ρb

)
, ub,c ≥ C(j),

µj

λ̂SHj
+

j−1∑

i=1

∫ ∞

sI−j(ν(ub,c))

µi

λ̂SHi

fτI−i
(x) dx, ub,c ∈ (c(j, 1), C(j)) .

We have therefore, that V L,g
t (ub,c) = V̂ L,g

I−Nt(u
b,c).

3.5.1.1.2 Value function of the investor on the upper boundary The next propo-
sition states that the upper boundary of the credible set is absorbing in the following sense:
if under any contract the pair of value functions of the banks reaches the upper boundary at
some time, the pair will stay on the upper boundary until the pool is liquidated.

Proposition 3.5.3 Consider (t, ug, ub,c) ∈ [0,+∞) × CI−Nt such that ug = ÛI−Nt(u
b,c)

and any contract Ψg = (Dg, θg, h1,g, h2,g, h1,b,c, h2,b,c) ∈ Âg(t, ug, ub,c). Then U g
s (Ψg) =

ÛI−Ns(U
b,c
s (Ψg)) for every s ∈ [t, τ).

The next proposition states an important property satisfied by the contracts which make
the continuation utilities of the banks lie in the upper boundary of the credible set.

Proposition 3.5.4 Consider (t, ug, ub,c) ∈ [0,+∞) × CI−Nt such that ug = ÛI−Nt(u
b,c) and

any contract Ψg = (Dg, θg, h1,g, h2,g, h1,b,c, h2,b,c) ∈ Âg(t, ug, ub,c). Then

(i) θgs = 0 for every s ∈ [t, τ) such that U b,c
s (Ψg) < bs.

(ii) If U b,c
s0

(Ψg) ≥ bs0 for some s0 ∈ [t, τ) then k?,b,cs (Ψg) = 0 and U b,c
s (Ψg) ≥ bs for every

s ∈ [s0, τ).

We are now ready to give the value function of the investor on the upper boundary of the
credible set, under the assumptions of Theorem 3.3.1.

103



Proposition 3.5.5 Under Assumption 3.3.1, we have that for any t ≥ 0 and any ub,c ∈ V̂I−Nt ,
the value function of the investor on the upper boundary, defined by

V U,g
t (ub,c) := ess sup

Ψg∈Âg(t,ÛI−Nt (u
b,c),ub,c)

EPk
?,g(Ψg)

[∫ τ

t

(µ(I −Ns)ds− dDg
s)

∣∣∣∣Gt
]
, (3.5.5)

verifies V U,g
t (ub,c) = V̂ U,g

I−Nt(u
b,c), where for any j = 1, · · · , I

V̂ U,g
j (ub,c) :=





µj

λ̂SHj
+ Ĉj

(
ub,c − Bj

r + λ̂SHj

) λ̂SHj

r+λ̂SH
j

, ub,c < x?j ,

µj

λ̂0
j

+

(
vbj (̂bj)−

µj

λ̂0
j

)(
b̂j
r + λ̂0

j

r + λ̂SHj

)− λ̂0
j

r+λ̂SH
j

(
ub,c − Bj

r + λ̂SHj

) λ̂0
j

r+λ̂SH
j

, ub,c ∈
[
x?j , b̂j

)
,

vbj(u
b,c), ub,c ≥ b̂j,

with

Ĉj :=


µj
λ̂0
j

− µj

λ̂SHj
+

(
ρb
ρg

) λ̂0
j

r+λ̂0
j

(
vbj (̂bj)−

µj

λ̂0
j

)

(
ρb
ρg

)− λ̂SHj

r+λ̂0
j

(
b̂j(r + λ̂0

j)

r + λ̂SHj

)− λ̂SHj

r+λ̂SH
j

.

3.5.1.1.3 Value function of the investor in the credible set We define, for any
t ≥ 0 and any (ub,c, ug) ∈ ĈI−Nt , the value function of the investor in the credible set by

V g
t (ub,c, ug) := ess sup

Ψg∈Âg(t,ug ,ub,c)

EPk
?,g(Ψg)

[∫ τ

t

(µ(I −Ns)ds− dDg
s)

∣∣∣∣Gt
]
. (3.5.6)

The system of HJB equations associated to this control problem is given by V̂ g
0 ≡ 0, and for

any 1 ≤ j ≤ I

min





− sup
C
j





∂ub,cV̂
g
j (ub,c, ug)

(
rub,c −Bkb,c + [h1,b,c + (1− θ)h2,b,c]λ̂k

b,c

j

)

+∂ug V̂
g
j (ub,c, ug)

(
rug −Bkg + [h1,g + (1− θ)h2,g]λ̂k

g

j

)

+[V̂ g
j−1(ub,c − h1,b,c, ug − h1,g)− V̂ g

j (ub,c, ug)]λ̂k
g

j

−V̂ g
j−1(ub,c − h1,b,c, ug − h1,g)(1− θ)λ̂kgj + µj





, ρb∂ub,cV̂
g
j (ub,c, ug) + ρg∂ug V̂

g
j (ub,c, ug) + 1

}
= 0. (3.5.7)

With kb,c = j · 1{h1,b,c+(1−θ)h2,b,c<b̂j}, k
g = j · 1{h1,g+(1−θ)h2,g<b̂j} and the set of constraints

C
j

=

{
(θ, h1,b,c, h2,b,c, h1,g, h2,g), θ ∈ [0, 1], ug = h1,g+h2,g, ub,c = h1,b,c+h2,b,c, h2,g;h2,b,c ≥ B(j − 1)

r + λ̂SHj−1

}
.
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The boundary conditions of (3.5.7) are given by

V̂ g
j (ub,c, Ûj(u

b,c)) = V̂ U ,gj (ub,c), for every ub,c ∈ V̂j,
V̂ g
j (ub,c, L̂j(u

b,c)) = V̂ L,gj (ub,c), for every ub,c ∈ V̂j.

The last step would now be to make a rigorous link between a solution in an appropriate
sense to the above system and the value function V g. We have then two possibilities at hand.

(i) First, we can use classical arguments to prove that V̂ g
j is a viscosity solution of the above

PDE for every j = 1, . . . , I, a result we should then complement with a comparison theorem
ensuring uniqueness of the viscosity solution. This would provide a complete characterisa-
tion of the value function of the investor, and more importantly would make the problem
amenable to numerical computations, using for instance classical finite difference meth-
ods. As for the optimal contract, it will correspond to the maximisers in the Hamiltonian
above, and therefore would require that we prove that V̂ g

j is at least weakly differentiable
(for instance if V̂ g

j is concave or Lipschitz continuous, which we expect from the form of the
problem) to be well defined. This program can in principle be carried out using standard
arguments in viscosity theory of Hamilton–Jacobi equations. However, given the length
of the present work, we believe that it would not serve a specific purpose and decided to
leave these arguments out.

(ii) Another possibility would be to show existence of a smooth solution to the PDE, and
prove a comparison theorem similar to Theorem 3.4.1. However, since the above recursive
system involves elliptic PDEs in dimension 2 in a non–trivial domain, we do not expect to
be able to obtain explicit solutions in general, which means that existence would have to
be proved through abstract arguments. Once again, we believe that such considerations
are outside the scope of this work. We will therefore simply state without proof (since it
would be extremely similar to that of Theorem 3.4.1) a verification theorem adapted to
our framework.

Theorem 3.5.1 Assume that the system of HJB equations (3.5.7) has a C1−solution and
that (θ?i (ub,c, ug), h?,1,b,ci (ub,c, ug), h?,2,b,ci (ub,c, ug), h?,1,gi (ub,c, ug), h?,2,gi (ub,c, ug)) attains the supre-
mum in the Hamiltonian. Define then

δ?,gs (ub,c, ug) :=
1

ρg

(
rug −Bk?,gs + λ̂k

?,g
s
I−Nsh

?,1,g
I−Ns(u

b,c, ug) + (1− θ?I−Ns(ub,c, ug))λ̂
k?,gs
I−Nsh

?,2,g
I−Ns(u

b,c, ug))
)

× 1{ρb∂ub,c V̂
g
I−Ns (ub,c,ug)+ρg∂ug V̂

g
I−Ns (ub,c,ug)+1},

where

k?,gs (ub,c, ug) : = (I −Ns)1{h?,1,gI−Ns (ub,c,ug)+(1−θ?,gI−Ns (ub,c,ug))h?,2,gI−Ns (ub,c,ug)<b̂I−Ns}
,

k?,b,cs (ub,c, ug) : = (I −Ns)1{h?,1,b,cI−Ns (ub,c,ug)+(1−θ?,gI−Ns (ub,c,ug))h?,2,b,cI−Ns (ub,c,ug)<b̂I−Ns}
.

If the corresponding contract is admissible

Ψ?,g :=
((
δ?,gI−N· , θ

?
I−N· , h

?,1,b,c
I−N· , h

?,2,b,c
I−N· , h

?,1,g
I−N· , h

?,2,g
I−N·

)
(U?,b,c, U?,g)

)
,
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where (U?,b,c, U?,g) are weak solutions to the corresponding SDEs

dU?,g
s =

(
rU?,g

s −Bk?,gs (U?,b,c
s , U?,g

s )− ρgδ?,gI−Ns(U?,b,c
s , U?,g

s )
)

ds

− h?,1,gI−Ns(U
?,b,c
s , U?,g

s )
(

dNs − λk
?,g((U?,b,c,U?,g))
s ds

)

− h?,2,gI−Ns(U
?,b,c
s , U?,g

s )
(

dHs − (1− θ?,gI−Ns(U?,b,c
s , U?,g

s ))λk
?,g((U?,b,c,U?,g))
s ds

)
,

dU?,b,c
s =

(
rU?,b,c

s −Bk?,b,cs (U?,b,c
s , U?,g

s )− ρbδ?,gI−Ns(U?,b,c
s , U?,g

s )
)

ds

− h?,1,b,cI−Ns (U?,b,c
s , U?,g

s )
(

dNs − λk
?,b,c((U?,b,c,U?,g))
s ds

)

− h?,2,b,cI−Ns (U?,b,c
s , U?,g

s )
(

dHs − (1− θ?,gs (U?,b,c
s , U?,g

s ))λk
?,b,c((U?,b,c,U?,g))
s ds

)
,

then we have
vShut

0 = sup
ub,c≤R0≤ug

v̂g0(ub,c, ug) = sup
ub,c≤R0≤ug

pgV̂
g
I (ub,c, ug),

and Ψ?,g is an optimal contract for the investor.

3.5.2 Screening contract

Recall that in the screening contract the investor designs a menu of contracts, one for each
Agent, and his expected utility is given by

v0

(
(Ψi)i∈{g,b}

)
=
∑

i∈{g,b}

piEPki
[∫ τ

0

(I −Ns)µds− dDi
s

]
. (3.5.8)

In this case, we will have to keep track of the continuation utilities of both banks, when they
choose the contract designed for them, as well as when they do not truthfully reveal their
type. We will denote by v0 the maximal utility that the investor can get out of the screening
contract.

v0 := sup
(θg ,θb,Dg ,Db)∈AScr

pgEPk?,g(θg,Dg)

[ ∫ τ

0

µ(I−Ns)ds−dDg
s

]
+pbEPk?,b(θb,Db)

[ ∫ τ

0

µ(I−Ns)ds−dDb
s

]
,

where

AScr :=
{

(θg, θb, Dg, Db) ∈ Θ2×D2, U b
0(θb, Db) ≥ R0, U

j
0 (θj, Dj) ≥ U j,c

0 (θi, Di), (i, j) ∈ {g, b}2, i 6= j
}
.

Remark 3.5.3 Observe that we can omit the condition U g
0 (θg, Dg) ≥ R0 in the definition

of AScr. Indeed, it is implied by the inequality U g,c
0 (θb, Db) ≥ U b

0(θb, Db), which follows from
Lemma 3.4.1.

Different from the study of the shutdown contract, where the investor contracts only the
good bank, in order to obtain the optimal screening contract we need to characterise also
the value function of the investor when he contracts the bad bank. We will therefore follow
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Section 3.5.1.1, but by replacing the good bank by the bad bank. Hence, we define for any
(t, ub, ug,c) ∈ [0,+∞)× CI−Nt the set

Âb(t, ug,c, ub) :=

{
Ψb = (Db, θb, h1,g,c, h2,g,c, h1,b, h2,b) ∈ D ×Θ×H4, such that ∀s ∈ [t, τ ],

U b
s−(Ψb) = h1,b

s + h2,b
s , U

b
s−(Ψb)− h1,b

s ≥
B(I −Ns)

r + λI−Nss

, U b
t (Ψb) = ub,

U g,c
s− (Ψb) = h1,g,c

s + h2,g,c
s , U g,c

s− (Ψb)− h1,g,c
s ≥ B(I −Ns)

r + λI−Nss

, U g,c
t (Ψb) = ug,c

}
.

We also introduce the following stochastic control problem for any (ub, ug,c) ∈ CI

v̂b
0 (ub, ug,c) := sup

Ψb∈Âb(0,ug,c,ub)
pbEPk

?,b(Ψb)

[∫ τ

0

µ(I −Ns)ds− dDb
s

]
.

The aim of the next sections is to compute the function v̂b
0 (ug,c, ub), representing the utility

of the investor when hiring the bad bank. We start by studying it on the boundary of the
credible set.

3.5.2.1 Boundary study

We denote by V L,b(ug,c) the value function of the investor in the lower boundary, when hiring
the bad bank, defined by

V L,b
t (ub) := ess sup

Ψb∈Âb(t,L̂I−Nt (ub),ub)
EPk

?,b(Ψb)

[∫ τ

t

(
µ(I −Ns)ds− dDb

s

)∣∣∣∣Gt
]
. (3.5.9)

The first result is that the value function of the investor on the lower boundary of the credible
set is the same when hiring either the bad or the good bank. This is mainly due to the fact
that both banks shirk on the lower boundary.

Proposition 3.5.6 For every ub ∈ CI−Nt , we have V L,b
t (ub) = V L,g

t (ub).

Proof. By definition we have the set equality Âg(t, L̂I−Nt(ub), ub) = Âb(t, L̂I−Nt(ub), ub).
From Lemmas 3.6.1 and 3.6.2 we know that for every Ψb ∈ Âb(t, L̂I−Nt(ub), ub), both Agents
always shirk under Ψb, therefore the objective functions in the definitions of V L,g

t (ub) and
V L,b
t (ub) are also the same and equality holds. �

Let us now consider the upper boundary. We denote by V U,b(ub) the value function of the
investor on the upper boundary when hiring the bad Agent.

V U,b
t (ub) := ess sup

Ψb∈Âb(t,ÛI−Nt (ub),ub)
EPk

?,b(Ψb)

[∫ τ

t

(
µ(I −Ns)ds− dDb

s

)∣∣∣∣Gt
]
. (3.5.10)

We have the following result.
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Proposition 3.5.7 Under the assumptions of Theorem 3.3.1, for any t ≥ 0 and any ub ∈
V̂I−Nt , we have that V U,b

t (ub) = V̂ U,b
I−Nt(u

b), where for any j = 1, · · · , I

V̂ U,b
j (ub) :=





µj

λ̂SHj
+ C̃j

(
ub − Bj

r + λ̂SHj

) λ̂SHj

r+λ̂SH
j

, ub < b̂j,

vbj(u
b), ub ≥ b̂j,

with

C̃j =

(
vbj (̂bj)−

µj

λ̂SHj

)(
b̂j(r + λ̂0

j)

r + λ̂SHj

) −λ̂SHj
r+λ̂SH

j

.

Proof. The proof is identical to the proof of Proposition 3.5.5, with the only difference
that since the Principal is hiring the bad Agent, for ub < b̂j the ODE associated to the value
function is

0 = V̂ ′j(ub)
((
r + λ̂SHj

)
ub −Bj

)
− V̂j(ub)λ̂SHj + µj,

with the boundary condition V̂j
(

Bj

r+λ̂SHj

)
= µj

λ̂SHj
. �

3.5.2.2 Study of the credible set

We define, for any t ≥ 0 and any (ub, ug,c) ∈ ĈI−Nt , the value function of the investor in the
credible set when hiring the bad bank by

V b
t (ub, ug,c) := ess sup

Ψb∈Âb(t,ug,c,ub)
EPk

?,b(Ψb)

[∫ τ

t

(
µ(I −Ns)ds− dDb

s

)∣∣∣∣Gt
]
. (3.5.11)

The system of HJB equations associated to this control problem is given by V̂ b
0 ≡ 0, and for

any 1 ≤ j ≤ I

min





− sup
C
j





∂ubV̂
b
j (ub, ug,c)

(
rub −Bkb + [h1,b + (1− θ)h2,b]λ̂k

b

j

)

+∂ug,cV̂
b
j (ub, ug,c)

(
rug,c −Bkg,c + [h1,g,c + (1− θ)h2,g,c]λ̂k

g,c

j

)

+[V̂ b
j−1(ub − h1,b, ug,c − h1,g,c)− V̂ b

j (ub, ug,c)]λ̂k
b

j

−V̂ b
j−1(ub − h1,b, ug,c − h1,g,c)(1− θ)λ̂kbj + µj





, ρb∂ubV̂
b
j (ub, ug,c) + ρg∂ug,cV̂

b
j (ub, ug,c) + 1

}
= 0. (3.5.12)

With kb = j · 1{h1,b+(1−θ)h2,b<b̂j}, k
g,c = j · 1{h1,g,c+(1−θ)h2,g,c<b̂j} and the same set of constraints

C
j as in the system of HJB equations associated to the functions V̂ g

j (ub,c, ug). The boundary
conditions of (3.5.12) are given by

V̂ b
j (ub, Ûj(u

b)) = V̂ U ,bj (ub), for every ub,c ∈ V̂j,
V̂ b
j (ub, L̂j(u

b)) = V̂ L,gj (ub), for every ub,c ∈ V̂j.
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Theorem 3.5.2 Assume that the conditions of Theorem 3.5.1 hold, that (3.5.12) admits
a C1−solution and that (θ?i , h

?,1,g,c
i , h?,2,g,ci , h?,1,bi , h?,2,bi )(ug,c, ub) attains the supremum in the

Hamiltonian. Define then

δ?,bs (ug,c, ub) :=
1

ρb

(
rub −Bk?,bs + λ̂k

?,b
s
I−Nsh

?,1,b
I−Ns(u

g,c, ub) + (1− θ?I−Ns(ug,c, ub))λ̂
k?,bs
I−Nsh

?,2,b
I−Ns(u

g,c, ub))
)

× 1{ρg∂ug,c V̂ bI−Ns (ug,c,ub)+ρb∂ub V̂
b
I−Ns (ug,c,ub)+1},

where

k?,bs (ug,c, ub) : = (I −Ns) · 1{h?,1,bI−Ns (ug,c,ub)+(1−θ?,bI−Ns (ug,c,ub))h?,2,bI−Ns (ug,c,ub)<b̂I−Ns}
,

k?,g,cs (ug,c, ub) : = (I −Ns) · 1{h?,1,g,cI−Ns (ug,c,ub)+(1−θ?,bI−Ns (ug,c,ub))h?,2,g,cI−Ns (ug,c,ub)<b̂I−Ns}
.

If the corresponding contract is admissible

Ψ?,b :=
((
δ?,bI−N· , θ

?
I−N· , h

?,1,g,c
I−N· , h

?,2,g,c
I−N· , h

?,1,b
I−N· , h

?,2,b
I−N·

)
(U?,g,c, U?,b)

)
,

where (U?,g,c, U?,b) are weak solutions to the corresponding SDEs

dU?,b
s =

(
rU?,b

s −Bk?,bs (U?,g,c
s , U?,b

s )− ρbδ?,bI−Ns(U?,g,c
s , U?,b

s )
)

ds

− h?,1,bI−Ns(U
?,g,c
s , U?,b

s )
(

dNs − λk
?,b((U?,g,c,U?,b))
s ds

)

− h?,2,bI−Ns(U
?,g,c
s , U?,b

s )
(

dHs − (1− θ?,bI−Ns(U?,g,c
s , U?,b

s ))λk
?,b((U?,g,c,U?,b))
s ds

)
,

dU?,g,c
s =

(
rU?,g,c

s −Bk?,g,cs (U?,g,c
s , U?,b

s )− ρgδ?,bI−Ns(U?,g,c
s , U?,b

s )
)

ds

− h?,1,g,cI−Ns (U?,g,c
s , U?,b

s )
(

dNs − λk
?,g,c((U?,g,c,U?,b))
s ds

)

− h?,2,g,cI−Ns (U?,g,c
s , U?,b

s )
(

dHs − (1− θ?,bI−Ns(U?,g,c
s , U?,b

s ))λk
?,g,c((U?,g,c,U?,b))
s ds

)
,

then (Ψ?,g,Ψ?,b) is an optimal menu of contracts for the investor, and we have

v0 = sup
{R0≤ub,ub,c≤ub,ug,c≤ug}

v̂g0(ub,c, ug) + v̂b
0 (ub, ug,c)

= sup
{R0≤ub,ub,c≤ub,ug,c≤ug}

pgV̂
g
I (ub,c, ug) + pbV̂

b
I (ub, ug,c).

3.5.3 Description of the optimal contracts

In this section we describe the optimal contracts for the investor when he designs a contract
for the good or the bad bank. We explain in detail the optimal contracts on the boundaries
of the credible set, which can be obtained explicitly from the value function of the investor.
In the interior of the credible set, we discuss the properties we expect the optimal contracts
to have when the verification theorems 3.5.1 and 3.5.2 hold.
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3.5.3.1 Optimal contracts on the boundaries of the credible set

We start with the upper boundary of the credible set. The following result is a direct
consequence of the proofs of Proposition 3.5.5 and 3.5.7, and the optimal contract for the
pure moral hazard case described in Theorem 3.3.1.

Proposition 3.5.8 Under Assumption 3.3.1, consider for any t ≥ 0 and (ub,Ut(u
b)) ∈ CI−Nt

the process (ubs)s≥t as the solution of the following SDE on [t, τ)

dubs =
(

(rubs −Bkb,?s + λk
b,?

s (h1,b,?
s + (1− θ?s)h2,b,?

s )
)

ds− ρbdD?
s − h1,b,?

s dNs − h2,b,?
s dHs,

(3.5.13)
with initial value ub at t, and with

D?
s := 1{s=t}

(ub − γbI−Nt)+

ρb
+

∫ s

t

δI−Nr(ubr)dr, θ
?
s := θI−Ns(ubs),

h1,b,?
s := h1,b,I−Ns(ubs), h

2,b,?
s := h2,b,I−Ns(ubs), k

b,?
s := kb,j(ubs),

for s ∈ [t, τ) and j = 1, . . . , I, where

δj(u) := 1{u=γbj}
λ̂0
j b̂j + rγbj
ρi

, θj(u) := 1{u∈[̂bj ,̂bj−1+b̂j)}
u− b̂j
b̂j−1

+ 1{u∈[̂bj+b̂j−1,γbj )},

h1,b,j(u) := 1{u∈[c(j,1),̂bj)}u+ 1{u∈[̂bj ,̂bj−1+b̂j)}(u− b̂j−1) + 1{u∈[̂bj+b̂j−1,γbj )}b̂j,

h2,b,j(u) := u− h1,b,j(u), kb,j(u) = j1{h1,b,j(u)+(1−θj(u))h2,b,j(u)<b̂j}.

Then, the contract Ψ? = (D?, θ?, h1,b,?, h2,b,?) is the unique solution of problems (3.5.5) and
(3.5.10).

Let us comment the optimal contract for the investor on the upper boundary of the credible
set. It is the same if he designs a contract for the good or the bad bank. The state process
(ubs)s≥t defined by (3.5.13) corresponds to the value function of the bad bank under the
optimal contract. The optimal contract offers no payments to the banks when ubs is smaller
than γbI−Ns . In this case the continuation utility of the bad bank is an increasing process
and eventually reaches the value γbI−Ns , if no default happens in the meantime. Payments
are postponed until this moment. If the initial value for the bad Agent ub is greater than
γbI−Nt , a lump-sum payment is made at t− in order to have ut = γbI−Nt . When ubs = γbI−Ns ,
the banks receive constant payments which keep the value function of the bad bank constant
at this level. Concerning the liquidation of the project, if at the default time τj, it holds that
ubτj < b̂j the project is liquidated. In case ubτj ∈ [̂bj + b̂j−1, γ

b
j), the project will continue with

probability θj ∈ (0, 1) which will be closer to one as ubτj gets closer to γbj . If ubτj ≥ γbj , the
project will be maintained. Finally, the bad bank will monitor all the loans only when her
value function is greater than b̂I−Ns , whereas the good bank will monitor when the value of
the bad bank is greater than x?I−Ns . Figure 3.2 depicts the optimal contract of the investor
on the upper boundary of the credible set, denoting B̂j := b̂j + b̂j−1.
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ubsc(I −Ns, 1) x?I−Ns b̂I−Ns
B̂I−Ns

γbI−Ns

kgs = I −Ns kgs = 0 kgs = 0 kgs = 0 kgs = 0

kbs = I −Ns kbs = I −Ns kbs = 0 kbs = 0 kbs = 0

θs = 0 θs = 0 θs ∈ (0, 1) θs = 1 θs = 1

dDs = 0 dDs = 0 dDs = 0 dDs = 0 dDs > 0

Figure 3.2: Optimal contract on the upper boundary.

For the lower boundary of the credible set, we have the following result.

Proposition 3.5.9 Under Assumption 3.3.1, consider for any t ≥ 0 and (ub,Lt(u
b)) ∈ CI−Nt

the process (ubs)s≥t as the solution of the following SDE on [t, τ)

dubs =
(

(rubs −Bkb,?s + λk
b,?

s (h1,b,?
s + (1− θ?s)h2,b,?

s )
)

ds− ρbdD?
s − h1,b,?

s dNs − h2,b,?
s dHs,

(3.5.14)
with initial value ub at t, and with

D?
s := 1{s=t}

(ub − C(I −Ns))
+

ρb
, θ?s := 1{ubs≥C(I−Ns)},

h1,b,?
s := ubs − C(I −Ns − 1)1{ubs≥C(I−Ns)}, h

2,b,?
s := C(I −Ns − 1)1{ubs≥C(I−Ns)},

kb,?s = (I −Ns)1{h1,b,?
s +(1−θ?s )h2,b,?

s <bs},

for s ∈ [t, τ). Then, the contract Ψ? = (D?, θ?, h1,b,?, h2,b,?) is the unique solution of (3.5.4)
and (3.5.9).

Proof. The payments and the value of θ? in the case ub ≥ C(I − Nt) are a direct
consequence of the proof of Proposition 3.5.1. From the proof of Proposition 3.5.2 we have
that if ub < C(I −Nt) then

θ?s = 1{
s−t> 1

r
ln

(
ν(ub)Bλ̂SH

I−Nt
µ(r+λ̂SH

I−Nt
)

)},

where ν(ub) the solution of the associated dual problem. Since the quantity inside of the
logarithm decreases with time, we have that θ? is a process which starts at zero, jumps to
one at some instant and keeps constant afterwards. This means that if θ? jumps to one at
some time s and the project is still running, necessarily the continuation utility of the bad
Agent is equal to C(I −Ns) because the project will continue until the last default. �

On the lower boundary of the credible set, the optimal contract for the investor also does
not depend on the type of the bank. If the initial value of the bad bank ub is greater than
C(I − Nt), the banks receive a lump-sum payment such that ubt+ = C(I − Nt). This is
the only payment offered by the contract. If there is a default at some time s such that
ubs < C(I − Ns), the project is liquidated. When ubs = C(I − Ns) the contract maintains
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the project until the last default. Since the optimal contract does not provides incentives to
the banks to monitor the loans, the good and the bad bank shirk until the liquidation of the
project. Figure 3.3 depicts the optimal contract of the investor on the lower boundary of the
credible set.

ubsc(I −Ns, 1) C(I −Ns)

kgs = I −Ns kgs = I −Ns

kbs = I −Ns kbs = I −Ns

θs = 0 θs = 1

dDs = 0 dDs > 0

Figure 3.3: Optimal contract on the lower boundary.

3.5.3.2 Optimal contracts in the interior of the credible set

Figure 3.4 represents the optimal contracts on the boundaries of the credible set as well as
the movements of the values of the banks along these curves. The green zone corresponds to
the region where the contract offers payments to the Agents and the project is maintained if
there is a default. The red zone corresponds to the region where there are no payments and
the project is liquidated immediately after a default. Intermediate situations correspond to
the yellow zone. We remark that the banks are paid only on the green zone.

Bj

r+λ̂j
j

x?j b̂j C(j) γj

Bj

r+λ̂j
j

b̂j

ρg
ρb
b̂j

C(j)

ug = ub

L̂j(u
b)Û?j (ub)

ub

ug

Figure 3.4: Optimal contract on the boundaries of the credible set.

Let us now consider the whole credible set and explain how we expect the green and red zones
on the boundaries to propagate towards the interior region. If the verification theorems 3.5.1
and 3.5.2 hold, then the optimal contracts for problems (3.5.6) and (3.5.11) correspond to
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the maximisers in the Hamiltonian of the systems (3.5.7) and (3.5.12). Moreover, payments
only take place when the value function of the investor saturates the gradient constraint.
Therefore, it is natural to expect that if at some point of the credible set the banks are paid,
this will also be the case under movements in the direction (ρb, ρg). The interpretation of this
property is that the green region, where the banks are paid and the project is maintained
after a default, is formed by the points where the banks have a good performance and they
are rewarded. A movement in the direction (ρb, ρg) correspond to a better performance of
both banks, so it seems unnatural to deprive them of the reward. We can do the opposite
interpretation for the red region, consisting of the points where the banks receive no payments
and the project is liquidated after a default. In consequence, we expect that under the optimal
contracts, it will be possible to identify red and green areas in the credible set, where the
characteristics described in the boundaries will remain, and that will be delimited by some
curves similar to those shown in figure 3.5 below.

Bj

r+λ̂j
j

x?j b̂j C(j) γj

Bj

r+λ̂j
j

b̂j

ρg
ρb
b̂j

C(j)

ug = ub

L̂j(u
b)Û?j (ub)

ub

ug

Figure 3.5: Optimal contract on the credible set.

3.6 Appendix

3.6.1 Proofs for the pure moral hazard case

We provide in this section all the proofs of the results of Section 3.3. We start with the

Proof. [Proof of Proposition 3.3.1] Using the martingale representation theorem8 (recall
that D is supposed to be integrable and that k is bounded by definition), we deduce that for

8We emphasise that since the filtrationG is augmented and generated by inhomogeneous Poisson processes,
the predictable martingale representation holds for any of the probability measures (Pk)k∈K.
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any k ∈ K there exist G−predictable processes h1,i,k and h2,i,k such that

dui
t(k, θ

i, Di) =
(
rui

t(k,D
i, θi)−Bkt

)
dt− ρidD

i
t − h1,i,k

t

(
dNt − λkt dt

)

− h2,i,k
t

(
dHt − (1− θi

t)λ
k
t dt
)
, 0 ≤ t < τ, P− a.s. (3.6.1)

Let us then define

Y i,k
t := ui

t(k, θ
i, Di), Z i,k

t := (h1,i,k
t , h2,i,k

t )>, Mt := (Nt, Ht)
>,

M̃ i
t := Mt −

∫ t

0

λ0
s(1, 1− θi

s)
>ds, K i

t := ρiD
i
t,

so that we can rewrite (3.6.1) as follows

Y i,k
t = 0−

∫ τ

t

f i(s, ks, Y
i,k
s , Z i,k

s )ds+

∫ τ

t

Z i,k
s · dM̃ i

s +

∫ τ

t

dK i
s, 0 ≤ t ≤ τ, P− a.s.,

where
f i(t, k, y, z) := ry −Bk + kαI−Ntεz · (1, 1− θi

t)
>.

In other words, (Y i,k, Z i,k) appears as a (super–)solution to a BSDE with (finite) random
terminal time, as studied for instance by Peng [89] or Darling and Pardoux [34]. Following
then Hamadène and Lepeltier [50] and El Karoui and Quenez [40]. By direct computations,
it is easy to see that gi satisfies, for any (t, y, y′, z, z′) ∈ R+ × R× R× R2 × R2

∣∣gi(t, y, z)− gi(t, y′, z)
∣∣ = r |y − y′| ,

gi(t, y, z)− gi(t, y, z′) ≤ sup
0≤k≤I−Nt

{
kαI−Ntε(z − z′) · (1, 1− θi

t)
>
}

= γt(z, z
′)λ0

t (z − z′) · (1, 1− θi
t)
>,

where γt(z, z′) := ε1{(z−z′)·(1,1−θi
t)
>>0}, verifies 0 ≤ γt(z, z

′) ≤ ε. In particular, this means that
the generator gi satisfies the classical sufficient condition, introduced by Royer [107, Condition
(Aγ)], ensuring that a comparison theorem holds for the corresponding BSDE with jumps
(see [107, Theorem 2.5]). Moreover, since the intensity of the Poisson process M under P
is bounded, it is clear that τ has exponential moments of any order. Since in addition we
have gi(t, 0, 0) = −B(I − Nt), it is clear that the generator and the terminal condition of
the BSDE (3.3.2) admit moments of any order and thus satisfy all the requirements ensuring
wellposedness. Therefore, we deduce immediately that for any k ∈ K

Y i,k
t ≤ Y i

t = Y i,k?,i

t , P− a.s.,

where we defined

k?,it := (I −Nt)1{Zi
t·(1,1−θi

t)
><bt}, and bt :=

B

αI−Ntε
, t ≥ 0.

This means that Y i is the value function of the bank, and that her optimal response given
(θi, Di) ∈ Θ×D is k?,i. �

We continue with the
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Proof. [Proof of Lemma 3.3.1] First of all, it is clear that the bank of type ρi can get
arbitrarily large levels of utility (it suffices for the investor to set dDi

s := nds for n large
enough, starting from time t). The bank’s maximal level of utility is therefore +∞, which
corresponds to a utility equal to −∞ for the investor. Then, coming back to the definition of
the bank’s problem, or to the BSDE (3.3.2), it is clear, for instance by using the comparison
theorem for super solutions to (3.3.2) (see [107, Theorem 2.5]), that in order to minimise the
utility that the bank obtains, the investor has to set Di = 0. Moreover, since by definition
we must always have Y i

t ≥ 0 and Y i
τ = 0, and since the totally inaccessible jumps of Y (recall

that D is assumed to be predictable) are given by ∆Y i
t = −Z i

t ·∆Mt, we must have that

Y i
t− = Z i

t · (1, 1)>, and Y i
t− ≥ Z i

t · (1, 0)>, t > 0, P− a.s., (3.6.2)

Indeed, the support of the laws of τ and the τ j under P is [0,+∞). This implies in particular
that we must have Z i

t · (0, 1)> ≥ 0, which in turn implies that the generator gi is then non–
increasing with respect to θi, and thus that the minimal utility for the bank is attained, as
expected, when θi = 0. Then, if (θi, Di) = (0, 0) (which is obviously in Θ×D) starting from
time t, it is clear that the bank will never monitor and will obtain

U i
t(0, 0) = B(I −Nt)EPI−N·

[∫ τ

t

e−r(s−t)ds

∣∣∣∣Gt
]

=
B(I −Nt)

r

(
1− EPI−N· [e−r(τ−t)

∣∣Gt
])

=
B(I −Nt)

r

(
1−

∫ +∞

0

λI−Ntt e−x(r+λ
I−Nt
t )dx

)

=
B(I −Nt)

r + λI−Ntt

.

Notice that this corresponds to the investor getting

µ(I −Nt)EPI−N· [τ − t| Gt] =
µ(I −Nt)

λI−Ntt

.

�

We finish with the

Proof. [Proof of Lemma 3.3.2] Let us show that for any (θi, Di) ∈ Θ × D enforcing k = 0
from time t, we have U i

t(θ
i, Di) ≥ bt. With such a contract, we must have

Z i
s · (1, 1− θi

s)
> ≥ bs, s ≥ t.

By (3.6.2), this implies that for s ≥ t, Y i
s− ≥ bs, which, by right-continuity at time t leads to

the desired result. Notice also that this result implies the so–called limited liability property
of the bank, which reads

Y i
t− − Z i

t · (1, 0)> ≥ bt.

Now, in order for the investor to ensure that U i
t(θ

i, Di) = bt, it suffices for him, after time
t, to offer the optimal contract derived in [85] (with initial condition bt at time t), which we
recall below (see Theorem 3.3.1). By [85, Proposition 3.16], the utility of the bank will then
be bt. �
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3.6.2 Utility of not monitoring

In this section we compute the utilities that the banks get from always shirking (without
considering the payments) under contracts which liquidates the pool after some fixed number
of defaults. Observe first that we have

EPkSH
[
e−r(τNt+1−t)

∣∣∣∣Gt
]

=

∫ ∞

0

e−rxλSHI−Nte
−λSHI−Ntx dx =

λSHI−Nt
r + λSHI−Nt

,

and for any l ∈ {Nt + 1, . . . , I − 1}

EPkSH
[
e−r(τl+1−τl)

∣∣∣∣Gt
]

=

∫ ∞

0

e−rxλSHI−le
−λSHI−lx dx =

λSHI−l
r + λSHI−l

.

For m ∈ {2, . . . , I −Nt}, consider θ ∈ Θ given by

θs =

{
1, t ≤ s ≤ τNt+m,

0, s > τNt+m.

It means that the pool will be liquidated exactly after the following m defaults, so that the
utility that the bank gets from shirking is

ut(k
SH , θ, 0) = EPkSH

[∫ τ

t

e−r(s−t)B(I −Ns) ds

∣∣∣∣Gt
]

= EPkSH
[∫ τNt+1

t

e−r(s−t)B(I −Nt) ds+
Nt+m−1∑

i=Nt+1

∫ τi+1

τi

e−r(s−t)B(I − i) ds

∣∣∣∣Gt
]

=
B(I −Nt)

r
EPkSH

[
1− e−r(τNt+1−t)

∣∣∣∣Gt
]

+
Nt+m−1∑

i=Nt+1

B(I − i)

r
EPkSH

[
e−r(τi−t) − e−r(τi+1−t)

∣∣∣∣Gt
]

=
B(I −Nt)

r + λSHI−Nt
+

Nt+m−1∑

i=Nt+1

B(I − i)

r
EPkSH

[
(
1− e−r(τi+1−τi)

) i−1∏

l=Nt

e−r(τl+1−τl)

∣∣∣∣∣Gt
]
.

Therefore, by independence we have

ut(k
SH , θ, 0) =

B(I −Nt)

r + λSHI−Nt
+

Nt+m−1∑

i=Nt+1

B(I − i)

r + λSHI−i

i−1∏

l=Nt

λSHI−l
r + λSHI−l

=
B(I −Nt)

r + λSHI−Nt
+

I−Nt−1∑

i=I−Nt−m+1

Bi

r + λSHi

I−Nt∏

l=i+1

λSHl
r + λSHl

.

3.6.3 Short–term contracts with constant payment

In this section we analyse the optimal responses and the value functions of the banks at a
starting time t ≥ 0, under contracts with constant payments of the form dDs = cds, where
c is any Gt-measurable random variable, and with θ ≡ 0, so that the pool is liquidated
immediately after the first default.
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3.6.3.1 Optimal responses and feasible set

In this section we compute the optimal responses of the Agents to the described contracts,
depending on the value of c. We also show that for this class of contracts the set of expected
payoff of the Agents, starting of time t, is exactly Vt =

[
B(I −Nt)/(r + λk

SH

t ),∞
)
.

(i) Let k0 := 0. If the bank of type ρi always monitors, we have

ui
t(k

0, θ,D) = EP0

[∫ τ

t

e−r(s−t)ρicds

∣∣∣∣Gt
]

=
ρic

r + λk
0

t

.

Hence, the continuation utility is constant in time and if the payment c is exactly equal to
ui(r + λk

0

t )/ρi, then the bank receives exactly ui. In this case, k0 is incentive compatible if
and only if ui ≥ bI−Nt . The minimum payment such that the bank of type ρi will always
work is therefore

ci =
bI−Nt(r + λk

0

t )

ρi

.

(ii) If the bank of type ρi always shirks, her continuation utility is constant and equal to

ui
t(k

SH , θ,D) = EPkSH
[∫ τ

t

e−r(s−t)(ρic+B)ds

∣∣∣∣Gt
]

=
ρic+B(I −Nt)

r + λk
SH

t

.

Then, if one takes c equal
ui(r + λk

SH

t )−B(I −Nt)

ρi

,

the bank receives ui. Therefore kSH is incentive compatible if and only if ui < bI−Nt . Never-
theless, since the payment c must be positive, ui must be greater than B(I −Nt)/(r+λk

SH

t ).
The supremum of the payments such that the bank of type ρi will always shirk is therefore
equal to

ci =
bI−Nt(r + λk

SH

t )−B(I −Nt)

ρi

=
bI−Nt(r + λk

0

t )

ρi

= ci.

Therefore the set of expected payoff under this class of contracts is Vt. Let us summarise our
findings.

Response of the bank of type ρi to the contract θ ≡ 0, dDs = cds, after time t:

With ci =
bI−Nt(r + λk

0

t )

ρi

,

• if c ≤ ci =⇒ k?,i(θ,D) = kSH , U i
t(θ,D) =

ρic+B(I −Nt)

r + λk
SH

t

.

• if c ≥ ci =⇒ k?,i(θ,D) = k0, U i
t(θ,D) =

ρic

r + λk
0

t

.
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3.6.3.2 Credible region under short–term contracts with constant payments

Once we know the optimal responses of the good and the bad bank for every payment c, we
can study the relationship between their value functions for any short–term contract with
constant payments.

(i) Suppose c ∈ [0, cg). Since cg < cb, we have that k?,b(θ,D) = k?,g(θ,D) = kSH and

U g
t (θ,D) =

B(I −Nt)

r + λk
SH

t

+
ρgc

r + λk
SH

t

, U b
t (θ,D) =

B(I −Nt)

r + λk
SH

t

+
ρbc

r + λk
SH

t

.

Thus, the value functions verify the following equation

U g
t (θ,D) =

ρg
ρb
U b
t (θ,D) +

B(I −Nt)

r + λk
SH

t

(
1− ρg

ρb

)
,

as well as

U g
t (θ,D) ∈

[
B(I −Nt)

r + λk
SH

t

, bI−Nt

)
, U b

t (θ,D) ∈
[
B(I −Nt)

r + λk
SH

t

,
ρb
ρg
bI−Nt +

B(I −Nt)

r + λk
SH

t

(
1− ρb

ρg

))
.

(ii) If c ∈ [cg, cb), then k?,g(θ,D) = k0, k?,b(θ,D) = kSH and the value functions of the
banks are

U g
t (θ,D) =

ρgc

r + λk
0

t

, U b
t (θ,D) =

B(I −Nt)

r + λk
SH

t

+
ρbc

r + λk
SH

t

.

Hence, they verify

U g
t (θ,D) =

ρg
ρb

(
r + λk

SH

t

r + λk
0

t

)
U b
t (θ,D)− ρg

ρb

B(I −Nt)

r + λk
0

t

,

with

U g
t (θ,D) ∈

[
bI−Nt ,

ρg
ρb
bI−Nt

)
, U b

t (θ,D) ∈
[
ρb
ρg
bI−Nt +

B(I −Nt)

r + λk
SH

t

(
1− ρb

ρg

)
, bI−Nt

)
.

(iii) Finally, if c ∈ [cb,∞) then k?,b(θ,D) = k?,g(θ,D) = k0 and

U g
t (θ,D) =

ρgc

r + λk
0

t

, U b
t (θ,D) =

ρbc

r + λk
SH

t

.

Hence
U g
t (θ,D) =

ρg
ρb
U b
t (θ,D),

with
U g
t (θ,D) ∈

[
ρg
ρb
bI−Nt ,∞

)
, U b

t (θ,D) ∈ [bI−Nt ,∞) .

Figure 3.6 shows the pair of values of the banks that can be obtained using contracts with
constant payments. For simplicity, ug denotes the value function of the good bank and ub

that of the bad bank, and j := I −Nt. Depending on the payments, the values of the banks
belong to one of the three lines represented, the last one being unbounded.
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ub

ug

ug = ub

L3

L2

L1

Bj

r+λ̂SH
j

Bj

r+λ̂SH
j

bj

ρg
ρb
bj

xj bj

L1 : ug =
ρg
ρb
ub

L2 : ug =
ρg(r+λ̂

SH
j )

ρb(r+λ̂0
j )

ub − ρg
ρb

Bj

r+λ̂0
j

L3 : ug =
ρg
ρb
ub + Bj

r+λ̂SH
j

(
1− ρg

ρb

)

xj :=
ρb
ρg
bj +

Bj

r+λ̂SH
j

(
1− ρb

ρg

)

Figure 3.6: Credible region under short-term contracts with constant payments.

3.6.3.3 Initial lump–sum payment

Take any point (ub, ug) ∈ L1∪L2∪L3. We know that there exists a contract θ ≡ 0, dDs = cds,
starting from time t, such that U b

t (θ,D) = ub and U g
t (θ,D) = ug. Consider the payments D`

which differ from D only at time t, where a lump-sum payment of size ` > 0 is made. This
added lump-sum payment will not change the banks’ incentives and the new value functions
at time t will be

U g
t (θ,D`) = ug + ρg`, U

b
t (θ,D

`) = ub + ρb`.

Hence, the new pair of values of the banks belong to the line with slope ρg
ρb

which passes
through the point (ub, ug). Since in our setting there is no upper bound on the payment, by
increasing the value of ` it is possible to reach every point of the ray which starts at (ub, ug)
and goes in the positive direction. The subregion of the credible set that can be obtained
by short-term contracts with constant payments and initial lump–sum payments is shown in
Figure 3.7, with the same conventions as in Figure 3.6.

3.6.4 Short-term contracts with delay

In this section we study the optimal responses of the banks and their value functions at a
starting time t ≥ 0, under contracts with constant payment after a certain time t? > t, and
θ ≡ 0. The case t? = t corresponds to the situation of Appendix 3.6.3.
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ub

ug

ug = ub

L3

L2

L1

Bj
r+λSH

j

Bj
r+λSH

j

bj

ρg
ρb
bj

xj bj

L1 : ug =
ρg
ρb
ub

L2 : ug =
ρg(r+λ

SH
j )

ρb(r+λ0
j )

ub − ρg
ρb

Bj
r+λ0

j

L3 : ug =
ρg
ρb
ub + Bj

r+λSH
j

(
1− ρg

ρb

)

xj =
ρb
ρg
bSHj + Bj

r+λSH
j

(
1− ρb

ρg

)

Figure 3.7: Credible region under short-term contracts with constant payment and lump-sum
payments.

3.6.4.1 Optimal responses and feasible set

In this section we compute the optimal responses of the Agents to the described contracts,
depending on the values of c and t?. We also show that under this class of contracts the set of
expected payoff of the Agents, starting at time t, is exactly Vt =

[
B(I −Nt)/(r + λk

SH

t ),∞
)
.

(i) If the bank of type ρi always works, at any time t ≤ s < t?, her continuation utility is,
noticing that since θ = 0, we have that (λk

0

u )u≥t is constant,

ui
s(k

0, θ,D) = EP0

[∫ τ

t?∧τ
e−r(u−s)ρicdu

∣∣∣∣Gs
]

=
e−(r+λk

0

t )(t?−s)ρic

r + λk
0

t

= ui
t(k

0, θ,D)e(r+λk
0

t )(s−t).

Therefore, at s = t? the continuation utility of the bank is ui
t?(k

0, θ,D) = ui
t(k

0, θ,D)e(r+λk
0

t )(t?−t).
Next, for any s > t?, the continuation utility of the bank will be

ui
s(k

0, θ,D) = EP0

[∫ τ

s

e−r(u−s)ρicds

∣∣∣∣Gs
]

=
ρic

r + λk
0

t

.

Then, we see that once the bank starts being paid, her continuation utility becomes constant
and it must be equal to ui

t?(k
0, θ,D). Then, if for some ui ≥ 0, one chooses c equal to

uie(r+λk
0

t )t?(r + λk
0

t )

ρi

, (3.6.3)

the continuation utility of the bank will be an increasing process with initial value ui. There-
fore, k0 is incentive compatible if and only if ui ≥ bI−Nt . The minimum payment and delay
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such that the bank always works are t? = 0 and

ci =
bI−Nt(r + λk

0

t )

ρi

.

(ii) If the bank of type ρi always shirks, at any time t ≤ s < t?, her continuation utility is

ui
s(k

SH , θ,D) = EPSH
[∫ τ

t?∧τ
e−r(u−s)ρicdu+

∫ τ

s

Bdu

∣∣∣∣Gs
]

=
e−(r+λk

SH

t )(t?−s)ρic

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

.

Therefore

ui
s(k

SH , θ,D) = e(r+λk
SH

t )(s−t)
(
ui
t(k

SH , θ,D)− B(I −Nt)

r + λk
SH

t

)
+
B(I −Nt)

r + λk
SH

t

,

and the continuation utility is an increasing process. Recall that kSH is incentive compatible
if and only if ui

s(k
SH , θ,D) < bI−Nt for every s ≥ t. However, if t? is large, there will exist tw

such that ui
tw(kSH , θ,D) = bI−Nt and the bank will start to work. More precisely, tw depends

on the initial value ui
t(k

SH , θ,D) and is given by

tw = t+
1

r + λk
SH

t

log

(
bI−Nt(r + λk

SH

t )−B(I −Nt)

ui
t(k

SH , θ,D)(r + λk
SH

t )−B(I −Nt)

)
.

Notice that tw ≥ t if and only if bI−Nt ≥ ui
t(k

SH , θ,D). Therefore, kSH is incentive compatible
if and only if t? < tw. Under this condition, at t = t? the continuation utility of the bank is

ui
t?(k

SH , θ,D) = e(r+λk
SH

t )(t?−t)
(
ui
t(k

SH , θ,D)− B(I −Nt)

r + λk
SH

t

)
+
B(I −Nt)

r + λk
SH

t

< bI−Nt .

Once the bank starts being paid her continuation utility is constant and equal to

ui
s(k

SH , θ,D) = EPSH
[∫ τ

s

e−r(u−s)(ρic+B(I −Nt))ds

]
=
ρic+B(I −Nt)

r + λk
SH

t

.

So if the payment c is equal to

e(r+λSHj )(t?−t)
(
ui(r + λk

SH

t )−B(I −Nt)
)

ρi

, (3.6.4)

the expected payoff of the bank at time t is ui. The supremum of the delays and payments
such that the bank always shirks are tw and

ci =
e(r+λk

SH

t )(tw−t)
[
bI−Nt(r + λk

SH

t )−B(I −Nt)
]

ρi

=
bI−Nt(r + λk

0

t )

ρi

= ci.

(iii) Finally, consider the case when t? is greater than tw. Under this contract, the bank
will shirk until time tw and will work afterwards. Indeed, from the previous analysis we know
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that this strategy is incentive compatible. At time tw we have that ui
tw(kSH , θ,D) = bI−Nt

and for s ∈ [tw, t
?) the continuation utility is given by

ui
s(k

0, θ,D) = EP0

[∫ τ

t?∧τ
e−r(u−s)ρicdu

∣∣∣∣Gs
]

=
e−(r+λk

0

t )(t?−s)ρic

r + λk
0

t

= e(r+λk
0

t )(s−tw)ui
tw(kSH , θ,D) = bI−Nte

(r+λk
0

t )(s−tw).

Therefore, at t = t? the continuation utility of the bank is

ui
t?(k

0, θ,D) = bI−Nte
(r+λk

0

t )(t?−tw),

and for any s > t?, the continuation utility of the bank is constant and equal to

ui
s(k

0, θ,D) = EP0

[∫ τ

s

e−r(u−s)ρicdu

∣∣∣∣Gs
]

=
ρic

r + λk
0

t

.

So if the payment c is equal to

bI−Nt(r + λk
0

t )e(r+λk
0

t )(t?−t)

ρi

(
ui(r + λk

SH

t )−B(I −Nt)

bI−Nt(r + λk
0

t )

) r+λk
0
t

r+λk
SH
t

, (3.6.5)

the expected payoff of the bank at time t is ui. The minimum payment and delay such that
the bank shirks first and works afterwards are t? = tw and

ci =
bI−Nt(r + λk

0

t )

ρi

= ci.

The following box summarizes our findings in this case. Here, ti(c) is the corresponding
expression for tw as a function of the payments c.

Response of the bank of type ρi to the contract θ ≡ 0, dDs = 1{s≥t?}cds after t:

Let ci =
bI−Nt(r + λk

0

t )

ρi

, ti(c) := t+
1

r + λk
0

t

log

(
ρic

bI−Nt(r + λk
0

t )

)
.

• If c ≤ ci =⇒ k?,i(θ,D) = kSH , U i
t(θ,D) = e−(r+λk

SH

t )(t?−t) ρic

r + λk
SH

t

+

B(I −Nt)

r + λk
SH

t

.

• If c > ci, t
? ≤ ti(c) =⇒ k?,i(θ,D) = k0, U i

t(θ,D) = e−(r+λk
0

t )(t?−t) ρic

r + λk
0

t

.

• If c > ci, t
? > ti(c) =⇒ k?,is (θ,D) = kSHs 1{s<tj(c)} + k0

s1{s≥tj(c)} and

U i
t(θ,D) = e−(r+λk

SH

t )(t?−t)
[

ρic

bI−Nt(r + λk
0

t )

] r+λkSHt

r+λk
0
t bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

.
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3.6.4.2 The upper boundary can be reached with contracts with delay

In this section we show that in some cases the short-term contracts with delay provide to the
Agents a pair of value functions lying in the upper boundary of the credible set.

(i) Let c > cb > cg and t? ≤ tb(c) < tg(c). Then k?,b(θ,D) = k?,g(θ,D) = k0 and the values
of the banks are

U g
t (θ,D) =

ρgc

r + λk
0

t

e−(r+λk
0

t )(t?−t), U b
t (θ,D) =

ρbc

r + λk
0

t

e−(r+λk
0

t )(t?−t).

Therefore the utilities satisfy

U g
t (θ,D) =

ρg
ρb
U b
t (θ,D), with U g

t (θ,D) ∈
[
ρg
ρb
bI−Nt ,∞

)
, U b

t (θ,D) ∈ [bI−Nt ,∞) .

(ii) If c > cb and tb(c) < t? ≤ tg(c), we have that the good bank will always work and the
bad bank will start to work at time tb(c). Their value functions are

U g
t (θ,D) =

ρgc

r + λk
0

t

e−(r+λk
0

t )(t?−t),

U b
t (θ,D) = e−(r+λk

SH

t )(t?−t)
[

ρbc

bI−Nt(r + λk
0

t )

] r+λkSHt

r+λk
0
t bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

,

so they belong to the curve

U g
t (θ,D) =

ρg
ρb
b

λk
SH
t −λk

0
t

r+λk
SH
t

I−Nt

(
U b
t (θ,D)− B(I −Nt)

r + λk
SH

t

) r+λk
0
t

r+λk
SH
t

(
r + λk

SH

t

r + λk
0

t

) r+λk
0
t

r+λk
SH
t

,

and take values in the sets (recall the definition of x?j in proposition 3.4.2)

U g
t (θ,D) ∈

[
bI−Nt ,

ρg
ρb
bI−Nt

)
, U b

t (θ,D) ∈ [x?I−Nt , bI−Nt).

(iii) If c > cb and tg(c) < t?, the good bank will start to work at time tg(c) and the bad
bank will start to work at time tb(c). Their value functions are

U g
t (θ,D) = e−(r+λk

SH

t )(t?−t)
[

ρgc

bI−Nt(r + λk
0

t )

] r+λkSHt

r+λk
0
t bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

,

U b
t (θ,D) = e−(r+λk

SH

t )(t?−t)
[

ρbc

bI−Nt(r + λk
0

t )

] r+λkSHt

r+λk
0
t bI−Nt(r + λk

0

t )

r + λk
SH

t

+
B(I −Nt)

r + λk
SH

t

,
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so they belong to the line

U g
t (θ,D) =

(
ρg
ρb

) r+λk
SH
t

r+λk
0
t

(
U b
t (θ,D)− B(I −Nt)

r + λk
SH

t

)
+
B(I −Nt)

r + λk
SH

t

,

with

U g
t (θ,D) ∈

[
B(I −Nt)

r + λk
SH

t

, bI−Nt

)
, U b

t (θ,D) ∈
[
B(I −Nt)

r + λk
SH

t

, x?I−Nt

)
.

3.6.4.3 Credible region under contracts with delay

From the previous subsection we know that for every point (ub, ug) on the upper boundary
there exists a pair (c, t?), with c > cb, such that under the contract (θ ≡ 0, dDs = c1{s≥t?}ds)
we have U b

t (θ,D) = ub and U g
t (θ,D) = ug. As explained in 3.6.3.3, if we consider the

contract (θ,D`) with an additional initial lump-sum payment, the incentives of the banks
will not change and the new value functions of the Agents will be U b

t (θ,D
`) = ub + ρb`,

U g
t (θ,D) = ug +ρg`. Therefore under short-term contracts with delay which reach the upper

boundary and lump-sum payments, all the subregion of the credible set delimited by the
lines shown in Figure 3.8 can be reached. We will not enter into details but it can be proved
that under all the short-term contracts with delay (not only the ones who reach the upper
boundary) and lump-sum payments, the subregion of the credible set which can be reached is
exactly the same. When there is only one loan left, this region is equal to the whole credible
set but when j > 1 the credible set is strictly bigger due to the pair of utilities that can be
achieved in situations when θ 6≡ 0.

ub

ug ug = ub

L

Û?j (ub)

B

r+λ̂SH
j

B

r+λ̂SH
j

bj

ρg
ρb
bj

x?j bj

L : ug =
ρg
ρb
ub + B

r+λ̂SH
j

(
1− ρg

ρb

)
.

Figure 3.8: Credible region under short-term contracts with delay and lump-sum payment.
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3.6.5 Technical results for the lower boundary

We begin this section with the

Proof. [Proof of Lemma 3.4.1] The value functions of the banks under Ψ := (θ,D) are given
by

U g
t (Ψ) = EPk?,g(Ψ)

[∫ τ

t

e−r(s−t)(ρgdDs +Bk?,gs (Ψ)ds)

∣∣∣∣Gt
]
,

U b
t (Ψ) = EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)(ρbdDs +Bk?,bs (Ψ)ds)

∣∣∣∣Gt
]
.

Thus, we first have, P− a.s.

U g
t (Ψ) ≥ EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)(ρgdDs +Bk?,bs (Ψ)ds)

∣∣∣∣Gt
]

≥ EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)(ρbdD
g
s +Bk?,bs (Ψ)ds)

∣∣∣∣Gt
]

= U b
t (Ψ).

But we also have

U g
t (Ψ) ≥ EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)(ρgdDs +Bk?,bs (Ψ)ds)

∣∣∣∣Gt
]

= U b
t (Ψ) + (ρg − ρb)EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)dDs

∣∣∣∣Gt
]

= U b
t (Ψ) +

(ρg − ρb)
ρb

(
U b
t (Ψ)− EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)Bk?,bs (Ψ)ds

∣∣∣∣Gt
])

=
ρg
ρb
U b
t (Ψ)− (ρg − ρb)

ρb
EPk?,b(Ψ)

[∫ τ

t

e−r(s−t)Bk?,bs (Ψ)ds

∣∣∣∣Gt
]
.

Observe next that

sup
k∈K

EPk
[∫ τ

t

e−r(t−s)Bksds

∣∣∣∣Gt
]

= EPkSH
[∫ τ

t

e−r(t−s)BkSHs ds

∣∣∣∣Gt
]
,

because the left–hand side is the value function of a bank who is offered a contract with no
payments. Therefore, we have that

U g
t (Ψ) ≥ ρg

ρb
U b
t (Ψ)− (ρg − ρb)

ρb
EPkSH

[∫ τ

t

e−r(s−t)BkSHs ds

∣∣∣∣Gt
]
≥ ρg
ρb
U b
t (Ψ)− (ρg − ρb)

ρb
C(I −Nt),

because the utility that the banks get from shirking is non–decreasing with respect to the
process θ and its maximum value is equal to C(I −Nt), attained when θ ≡ 1 (see (3.4.2)).
�

We continue this section with the

Proof. [Proof of Proposition 3.4.1] Due to Lemma 3.4.1, it suffices to prove the existence of
contracts under which the value functions of the banks satisfy the equalities.
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• Step 1: First, fix some t ≥ 0, take any ub ∈ [c(I −Nt, 1), C(I −Nt)] and fix
m ∈ {1, . . . , I − Nt − 1} such that c(I − Nt,m) ≤ ub ≤ c(I − Nt,m + 1). Next, take
θ0
t (u

b) ∈ [0, 1] such that

ub = c(I −Nt,m) + θ0
t (u

b) (c(I −Nt,m+ 1)− c(I −Nt,m)) .

Then, there is a contract (θ,D) ∈ Θ×D such that U g
t (θ,D) = U b

t (θ,D) = ub. Such a contract
can be defined as follows

dDs := 0, θs := 1{t≤s≤τNt+m} + (1− θ0
t (u

b))1{τNt+m<s≤τNt+m+1}, for every s ≥ t.

The contract has no payments, it always maintains the pool after the first m defaults, main-
tains the pool with probability θ0 after default m + 1, and liquidates the pool at default
m + 2. It is clear that under this contract both banks always shirk in [t, τ ], since they are
not paid, and their value functions satisfy

U g
t (θ,D) = U b

t (θ,D) = EPkSH
[∫ τ

t

e−r(s−t)BkSHs ds

∣∣∣∣Gt
]

= c(I −Nt,m) + θ0
t (u

b) (c(I −Nt,m+ 1)− c(I −Nt,m)) = ub.

• Step 2: Fix again some t ≥ 0, and choose now any ub ≥ C(I −Nt) and define

ug :=
ρg
ρb
ub − (ρg − ρb)

ρb
C(I −Nt).

Let `t := (ub−C(I −Nt))/ρb and consider the admissible contract satisfying, θs = 1, dDs =
`t1{s=t}, for every s ≥ t. The optimal strategy for both banks under this contract is to always
shirk and then

U b
t (θ,D) = EPkSH

[∫ τ

t

e−r(s−t)(ρbdDs +BkSHs ds)

∣∣∣∣Gt
]

= ρb`t + C(I −Nt) = ub,

U g
t (θ,D) = EPkSH

[∫ τ

t

e−r(s−t)(ρgdDs +BkSHs ds)

∣∣∣∣Gt
]

= ρg`t + C(I −Nt) = ug.

�

We conclude this section by proving some useful results that will be used in Section 3.5.1.1
in the study of the value function of the investor on the lower boundary. We show that there
are several ways of reaching the lower boundary and that all the contracts which can achieve
it have the same structure as the ones used in the proof of Proposition 3.4.1.

Lemma 3.6.1 Consider any (t, ub, ug) ∈ [0, τ ]×V̂I−Nt×V̂I−Nt such that in addition ub = ug.
Any contract Ψ = (θ,D) ∈ Θ×D such that U b

t (Ψ) = ub and U g
t (Ψ) = ug, has no payments

on [t, τ ] and consequently both banks always shirk under Ψ.

Proof. Looking at the proof of (3.4.3) we deduce that necessarily

k?,gs (Ψ) = k?,bs (Ψ), dDs = 0, ∀s ≥ t.
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Since there are no payments, we have that k?,gs (Ψ) = k?,bs (Ψ) = kSHs for s ∈ [t, τ ] and indeed
have

U g
t (Ψ) = U b

t (Ψ) = EPkSH
[∫ τ

t

e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt
]
.

�

Lemma 3.6.2 Consider any (t, ug, ub) ∈ R+ × V̂I−Nt × V̂I−Nt such that in addition

ug =
ρg
ρb
ub − (ρg − ρb)

ρb
C(I −Nt).

Under any contract Ψ = (θ,D) ∈ Θ×D such that U b
t (Ψ) = ub and U g

t (Ψ) = ug, the pool is
not liquidated until the last default (τ = τ I) and both banks always shirk on [t, τ ].

Proof. Looking at the proof of (3.4.4), we deduce that necessarily k?,gs (Ψ) = k?,bs (Ψ) =
kSHs , θs = 1, for every s ≥ t. Thus, the value functions of the banks are given by

U g
t (Ψ) = ρgEPkSH

[∫ τI

t

e−r(s−t)dDs

∣∣∣∣∣Gt
]

+ C(I −Nt),

U b
t (Ψ) = ρbEPkSH

[∫ τI

t

e−r(s−t)dDs

∣∣∣∣∣Gt
]

+ C(I −Nt).

�

3.6.6 Technical results for the upper boundary

Lemma 3.6.3 For every j ≥ 1, x?j >
ρb
ρg
bj.

Proof. For any j ≥ 1, define the functions g, h : R −→ R by

g(x) := x

r+λ̂SHj

r+λ̂0
j bj

r + λ̂0
j

r + λ̂SHj
+

Bj

r + λ̂SHj
, h(x) := bjx.

Then g is strictly convex in R+ and we have that g(1) = h(1) = bj and g′(1) = h′(1) = bj.
Thus, h is the tangent line to g at x = 1 so g(x) > h(x) for every x 6= 1 and therefore

x?j = g

(
ρb
ρg

)
> h

(
ρb
ρg

)
=
ρb
ρg
bj.

�

Proposition 3.6.1 For every j ≥ 1, the function Û?j defined by (3.4.17) satisfies

Û?j (x)

x
≤ ρg
ρb
, ∀x ≥ Bj

r + λ̂SHj
.

Moreover, equality holds if and only if x ≥ b̂j.
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Proof. Define A(x) :=
Û?j (x)

x
. If x ≥ b̂j−1 then A(x) = ρg/ρb. If now x ∈ [x?j , b̂j), we have

A(x) =
ρg
ρb

(̂bj)

λ̂SHj −λ̂0
j

r+λ̂SH
j

(
r + λ̂SHj

r + λ̂0
j

) r+λ̂0
j

r+λ̂SH
j 1

x

(
x− Bj

r + λ̂SHj

) r+λ̂0
j

r+λ̂SH
j

.

This function is decreasing so that A reaches its maximum value over [x?j , b̂j) at x?j . Next,
we have

A(x?j) =
b̂j
x?j

<
ρg
ρb
⇐⇒ x?j >

ρb
ρg
bj,

and the last inequality holds as a consequence of Lemma 3.6.3.

Finally, if x ∈
[

Bj

r+λ̂SHj
, x?j

)
then

A(x) =
1

x

(
ρg
ρb

) r+λ̂SHj

r+λ̂0
j

(
x− Bj

r + λ̂SHj

)
+

1

x

Bj

r + λ̂SHj
.

This function is increasing, hence A(x) ≤ A(x?j) <
ρg
ρb
, ∀x ∈

[
Bj

r+λ̂SHj
, x?j

]
. �

Corollary 3.6.1 Let j ≥ 2 and Û?j , Û?j−1 defined by (3.4.17), and assume that λ̂kgj ≤ λ̂k
b

j .
Then, for any ub ≥ h1,b + B(j−1)

r+λ̂SHj−1

we have

Û?j−1(ub − h1,b)λ̂k
g

j −
(
Û?j
)′

(ub)λ̂k
b

j (ub − h1,b) ≤ 0.

Furthermore, equality holds if and only if ub − h1,b ≥ b̂j, ub ≥ b̂j and λ̂k
b

j = λ̂k
g

j .

Proof. Under the conditions of the corollary, the following allows us to conclude immediately

Û?j−1(ub − h1,b)

ub − h1,b
≤ ρg
ρb
≤
(
Û?j
)′

(ub).

�

Corollary 3.6.2 For j ≥ 1, let Ĉj and Û?j be defined by (3.4.16) and (3.4.17) respectively.
If (θ, h1,b) ∈ Ĉj is such that ub − θ(ub − h1,b) ≥ b̂j then Û?j (ub) − θÛ?j−1(ub − h1,b) ≥ b̂j. As
a consequence, in the context of equation (3.4.15), for every (θ, h1,b) ∈ Ĉj we have kg ≤ kb

and λ̂kgj ≤ λ̂k
b

j .

Proof. First observe that ub − θ(ub − h1,b) ≥ b̂j implies ub ≥ b̂j. Then we have

Û?j (ub)− b̂j ≥
ρg
ρb

(ub − b̂j) ≥
Û?j−1(ub − h1,b)

ub − h1,b
(ub − b̂j).
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Also, θ ≤ ub − b̂j
ub − h1,b

and thus

Û?j (ub)− θÛ?j−1(ub − h1,b) ≥ Û?j (ub)−
(
ub − b̂j
ub − h1,b

)
Û?j−1(ub − h1,b) ≥ b̂j.

�

We now proceed with the

Proof. [Proof of Lemma 3.4.2] We start with the region ub < b̂1, Û1(ub) < b̂1. For these
points, we have that kb = kg = 1, so (3.4.11) can be solved easily and leads to, for some
C1 ∈ R,

Û1(ub) = C1

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

.

If ub < b̂1 and Û1(ub) ≥ b̂1, then kb = 1, kg = 0 and we can solve (3.4.11) to obtain for some
C2 ∈ R

Û1(ub) = C2

(
ub − B

r + λ̂1
1

) r+λ̂0
1

r+λ̂1
1

.

Finally, when ub ≥ b̂1 and Û(ub) ≥ b̂1 the optimal strategies are kb = kg = 0 and we have for
some C3 ∈ R, Û1(ub) = C3u

b. We are interested in smooth solutions of (3.4.11). Denote by
Û (1)

1 , Û (2)
1 and Û (3)

1 the following functions

Û (1)
1 (ub) := C1

(
ub − B

r + λ̂1
1

)
+

B

r + λ1
1

, Û (2)
1 (ub) := C2

(
ub − B

r + λ̂1
1

) r+λ̂0
1

r+λ̂1
1

, Û (3)
1 (ub) := C3u

b.

We will determine the relations between the constants which allow the smooth fitting of Û1.
First we impose Û (2)

1 (̂b1) = Û (3)
1 (̂b1) and we get

C2

(
b̂1
r + λ̂0

1

r + λ̂1
1

) r+λ̂0
1

r+λ̂1
1

= C3b̂1.

It can be checked that this relation between C1 and C2 ensures also that (Û (2)
1 )′(̂b1) =

(Û (3)
1 )′(̂b1). Next, define x1 as the point such that Û (1)

1 (x1) = b̂1, i.e.

x1 =
b̂1

C1

(
r + λ̂0

1

r + λ̂1
1

)
+

B

r + λ̂1
1

.

Also, define x2 as the point such that Û (2)
1 (x2) = b̂1, i.e.

x2 =

(
b̂1

C2

) r+λ̂1
1

r+λ̂0
1

+
B

r + λ̂1
1

.
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We impose x1 = x2 and we get

b̂1

C1

(
r + λ̂0

1

r + λ̂1
1

)
=

(
b̂1

C2

) r+λ̂1
1

r+λ̂0
1

,

and this relation ensures also that (Û (1)
1 )′(x1) = (Û (2)

1 )′(x2). Expressing both C1 and C2 in
terms of C3 we get Û (3)

1 (ub) = C3u
b, and

Û (1)
1 (ub) = C3

r+λ̂1
1

r+λ̂0
1

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

,

Û (2)
1 (ub) = C3b̂

λ̂1
1−λ̂

0
1

r+λ̂1
1

1

(
r + λ̂1

1

r + λ̂0
1

) r+λ̂0
1

r+λ̂1
1

(
ub − B

r + λ̂1
1

) r+λ̂0
1

r+λ̂1
1

.

�

We pursue with the

Proof. [Proof of Lemma 3.4.3] For C > 0, define the following modification ÛC,?1 of ÛC1

ÛC,?1 (ub) :=




ÛC1 (ub), ub ≤ xC,?1 ,

ρg
ρb

(ub − xC,?1 ) + ÛC1 (xC,?1 ), ub ≥ xC,?1 ,

where

xC,?1 := inf

{
ub ∈

[
B

r + λ̂1
1

,+∞
)
,
(
ÛC1
)′

(ub) ≤ ρg
ρb

}
.

The function ÛC,?1 is continuously differentiable, solves the diffusion equation in [B/(r +

λ̂1
1), xC,?1 ) and satisfies

(
ÛC,?1

)′
= ρg/ρb in (xC,?1 ,∞). In the following we will study for which

values of C this function indeed solves the HJB equation.

− First of all, if C
r+λ̂1

1
r+λ̂0

1 ≤ ρg
ρb
, we have that

xC,?1 =
B

r + λ̂1
1

, ÛC,?1 (ub) =
ρg
ρb

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

,
(
ÛC,?1

)′
(ub)ρb − ρg = 0,

so that we need to check that for every ub in [B/(r + λ̂1
1),∞)

rÛC,?1 (ub)−
(
ÛC,?1

)′
(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ ÛC,?1 (ub)λ̂k

g

1 −Bkg ≥ 0.
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Take ub > b̂1. Then kg = kb = 0, and we have

rÛC,?1 (ub)−
(
ÛC,?1

)′
(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ ÛC,?1 (ub)λ̂k

g

1 −Bkg

= r

[
ρg
ρb

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

]
− ρg
ρb

[
(r + λ̂0

1)ub
]

+ λ̂0
1

[
ρg
ρb

(
ub − B

r + λ̂1
1

)
+

B

r + λ̂1
1

]

= (r + λ̂0
1)

B

r + λ̂1
1

(
1− ρg

ρb

)
< 0.

Hence ÛC,?1 is not a solution of (3.4.12).

− If
(
ρg
ρb

) r+λ̂0
1

r+λ̂1
1 < C ≤ ρg

ρb
, then xC,?1 = b̂1

r+λ̂0
1

r+λ̂1
1

(
C ρb
ρg

) r+λ̂1
1

λ̂1
1−λ̂

0
1 + B

r+λ̂1
1

. Take ub > b̂1, then

kg = kb = 0 and

rÛC,?1 (ub)−
(
ÛC,?1

)′
(ub)

(
rub −Bkb + ubλ̂k

b

1

)
+ ÛC,?1 (ub)λ̂k

g

1 −Bkg

= (r + λ̂0
1)


b̂1C

r+λ̂1
1

λ̂1
1−λ̂

0
1

(
ρb
ρg

) r+λ̂0
1

λ̂1
1−λ̂

0
1 λ̂1

1 − λ̂0
1

r + λ̂1
1

− ρg
ρb

B

r + λ̂1
1




≤ (r + λ̂0
1)


b̂1

(
ρg
ρb

) r+λ̂1
1

λ̂1
1−λ̂

0
1

(
ρb
ρg

) r+λ̂0
1

λ̂1
1−λ̂

0
1 λ̂1

1 − λ̂0
1

r + λ̂1
1

− ρg
ρb

B

r + λ̂1
1




= (r + λ̂0
1)

(
b̂1
ρg
ρb

λ̂1
1 − λ̂0

1

r + λ̂1
1

− B

r + λ̂1
1

ρg
ρb

)
= 0.

The inequality is strict if C < ρg
ρb

so the only value of C such that ÛC,?1 solves the HJB
equation is C = ρg

ρb
.

− For large values of C, i.e. C > ρg
ρb
, we have that xC,?1 = +∞ and then ÛC,?1 = ÛC1 .

We exclude this case because these functions do not satisfy condition (3.4.13). �

We end this section with the

Proof. [Proof of Proposition 3.4.2] The proof is by induction. For j = 1 the result is proved
in Step 2, so we take any j > 1 and assume that Û?j−1 solves its corresponding diffusion
equation. We will need to consider three different cases to prove that Û?j solves the equation
(3.4.15). In each one of them we prove that the supremum in the right–hand side of (3.4.15)
is attained with θ = 0, so therefore the diffusion equation takes the same form as the one
in the case with one loan left. Then, it follows from the analysis in Step 2 that its solution
satisfies also the variational inequality (3.4.9).

− Case 1: ub < b̂j, Û?j (ub) < b̂j.

In this case for any (θ, h1) ∈ Ĉj, we have that kg = kb = j. To simplify the notations, let
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us define cj(ub) :=
(
Û?j
)′

(ub)
(
rub −Bj + ubλ̂SHj

)
, then the term inside the sup in (3.4.15)

becomes

cj(u
b)− Û?j (ub)λ̂SHj +Bj + θλ̂SHj

[
Û?j−1(ub − h1)−

(
Û?j
)′

(ub)(ub − h1)

]
,

and the optimal choice of θ in this case is 0 (uniquely) because from Corollary 3.6.1 we have

Û?j−1(ub − h1)−
(
Û?j
)′

(ub)(ub − h1) < 0.

− Case 2: ub < b̂j, Û?j (ub) ≥ b̂j.

In this case kb = j for every (θ, h1) ∈ Ĉj. The term inside the sup in (3.4.15) becomes

cj(u
b)− Û?j (ub)λ̂k

g

j +Bkg + θ

[
Û?j−1(ub − h1)λ̂k

g

j −
(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]
.

Define the following sets

Ĉ0
j := {(θ, h1) ∈ Ĉj, Û?j (ub)−θÛ?j−1(ub−h1) ≥ b̂j}, Ĉj

j := {(θ, h1) ∈ Ĉj, Û?j (ub)−θÛ?j−1(ub−h1) < b̂j},

and note that kg = 0 for every (θ, h1) ∈ Ĉ0
j and kg = j for every (θ, h1) ∈ Ĉj

j . Also, the pair
(0, h1) belongs to Ĉ0

j for every feasible h1.

• If (θ, h1) ∈ Ĉ0
j we have

cj(u
b)− Û?j (ub)λ̂k

g

j +Bkg + θ

[
Û?j−1(ub − h1)λ̂k

g

j −
(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]

= cj(u
b)− Û?j (ub)λ̂0

j + θ

[
Û?j−1(ub − h1)λ̂0

j −
(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]
≤ cj(u

b)− Û?j (ub)λ̂0
j ,

where the inequality is due to Corollary 3.6.1.

• If (θ, h1) ∈ Ĉj
j we have

cj(u
b)− Û?j (ub)λ̂k

g

j +Bkg + θ

[
Û?j−1(ub − h1)λ̂k

g

j −
(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]

= cj(u
b)− Û?j (ub)λ̂SHj +Bj + θ

[
Û?j−1(ub − h1)λ̂SHj −

(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]

< cj(u
b)− Û?j (ub)λ̂SHj +Bj

= cj(u
b)− Û?j (ub)λ̂SHj + bj(λ̂

SH
j − λ̂0

j)

≤ cj(u
b)− Û?j (ub)λ̂SHj + Û?j (ub)(λ̂SHj − λ̂0

j) = cj(u
b)− Û?j (ub)λ̂0

j ,

where the first inequality is a consequence of Corollary 3.6.1 and the second one holds because
Û?j (ub) ≥ b̂j. So we conclude that the optimal value for θ in this case is also 0 (uniquely).
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− Case 3: ub ≥ b̂j, Û?j (ub) ≥ b̂j.

Thanks to Proposition 3.6.2 , we know that there are only three possibilities for the value
of (kb, kg). Define the sets

Ĉ0,0
j :=

{
(θ, h1) ∈ Ĉj, ub − θ(ub − h1) ≥ b̂j, Û?j (ub)− θÛ?j−1(ub − h1) ≥ b̂j

}
,

Ĉj,0
j :=

{
(θ, h1) ∈ Ĉj, ub − θ(ub − h1) < b̂j, Û?j (ub)− θÛ?j−1(ub − h1) ≥ b̂j

}
,

Ĉj,j
j :=

{
(θ, h1) ∈ Ĉj, ub − θ(ub − h1) < b̂j, Û?j (ub)− θÛ?j−1(ub − h1) < b̂j

}
.

Then, (kb, kg) = (0, 0) for every (θ, h1) ∈ Ĉ0,0
j , (kb, kg) = (j, 0) for every (θ, h1) ∈ Ĉj,0

j and
(kb, kg) = (j, j) for every (θ, h1) ∈ Ĉj,j

j . Also, (0, h1) belongs to Ĉ0,0
j for any feasible h1.

• If (θ, h1) ∈ Ĉ0,0
j then the term inside the sup in (3.4.15) is, because of Corollary

3.6.1, equal to

(
Û?j
)′

(ub)ub
(
r + λ̂0

j

)
− Û?j (ub)λ̂0

j + θλ̂0
j

[
Û?j−1(ub − h1)−

(
Û?j
)′

(ub)(ub − h1)

]

≤
(
Û?j
)′

(ub)ub
(
r + λ̂0

j

)
− Û?j (ub)λ̂0

j ,

• If (θ, h1) ∈ Ĉj,0
j , then h1 < b̂j and

ub−bj
ub−h1 < θ ≤ Û?j (ub)−b̂j

Û?j−1(ub−h1)
. The term in the sup

in (3.4.15) is

cj(u
b)− Û?j (ub)λ̂0

j + θ

[
Û?j−1(ub − h1)λ̂0

j −
(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]

< cj(u
b)− Û?j (ub)λ̂0

j +

(
ub − b̂j
ub − h1

)[
Û?j−1(ub − h1)λ̂0

j −
(
Û?j
)′

(ub)λ̂SHj (ub − h1)

]

≤ cj(u
b)− Û?j (ub)λ0

j + (ub − b̂j)
[(
Û?j
)′

(ub)λ̂0
j −

(
Û?j
)′

(ub)λ̂SHj

]

=
(
Û?j
)′

(ub)
(
rub + ubλ̂0

j

)
− Û?j (ub)λ̂0

j .

Both inequalities are direct consequences of Corollary 3.6.1.

• Finally, if (θ, h1) ∈ Ĉj,j
j , note that h1 < b̂j, Û?j (ub)− Û?j−1(ub − h1) < b̂j and

ub − b̂j
ub − h1

≤ Û?j (ub)− b̂j
Û?j−1(ub − h1)

< θ.
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Then, the term inside the sup in (3.4.15) becomes

cj(u
b)− Û?j (ub)λ̂SHj +Bj + θλ̂SHj

[
Û?j−1(ub − h1)−

(
Û?j
)′

(ub)(ub − h1)

]

≤ cj(u
b)− Û?j (ub)λ̂SHj +Bj +

Û?j (ub)− b̂j
Û?j−1(ub − h1)

λ̂SHj

(
Û?j−1(ub − h1)−

(
Û?j
)′

(ub)(ub − h1)

)

≤ cj(u
b)− Û?j (ub)λ̂SHj +Bj + λ̂SHj

(
Û?j (ub)− b̂j −

(
Û?j
)′

(ub)
Û?j (ub)− b̂j

ρg
ρb

)

= cj(u
b)− b̂jλ̂0

j + λ̂SHj

(
−ρb
ρg

(
Û?j
)′

(ub)Û?j (ub) +
ρb
ρg

(
Û?j
)′

(ub)̂bj

)

= λ̂SHj

(
Û?j
)′

(ub)

(
ub − ρb

ρg
Û?j (ub)

)
+
(
Û?j
)′

(ub)

(
rub +

ρb
ρg
λ̂SHj b̂j −Bj

)
− λ̂0

j b̂j.

The first inequality is a consequence of Corollary 3.6.1 and the second one of the fact that
the function h1 7−→ Û?j−1(ub − h1)/(ub − h1) is non–decreasing and constant for large values
of h1, which implies that Û?j−1(ub − h1)/(ub − h1) ≤ ρg/ρb. Now we use the explicit form of
Û?j and compute

λ̂SHj

(
Û?j
)′

(ub)

(
ub − ρb

ρg
Û?j (ub)

)
+
(
Û?j
)′

(ub)

(
rub +

ρb
ρg
λ̂SHj b̂j −Bj

)
− λ̂0

j b̂j

=
ρg
ρb
rub + λ̂SHj b̂j −

ρg
ρb
Bj − λ̂0

j b̂j =
ρg
ρb
rub +Bj

(
1− ρg

ρb

)
<
ρg
ρb
rub.

The term in the last line corresponds to
(
Û?j
)′

(ub)
(
rub + ubλ̂0

j

)
− Û?j (ub)λ̂0

j and therefore

the optimal θ in this case is also 0. Observe that in this case every (θ, h1) ∈ Ĉ0,0
j such that

ub − h1 ≥ b̂j is optimal. �

We next continue with the

Proof. [Proof of Theorem 3.4.1] We divide the proof in 3 steps.

• Step 1: Let us prove first that the SDE (3.4.19) has a unique solution, keeping in
mind that Ψ? liquidates the pool immediately after the first default. We consider two cases:
if ub < b̂I−Nt , by right–continuity we can find for every solution of (3.4.19) some ε ∈ (0, τ − t)
such that ubs < b̂I−Nt for s ∈ [t, t+ ε]. Consequently ub solves the ODE

dubs =
[
(r + λ̂SHI−Nt)u

b
s −B(I −Nt)

]
ds, s ∈ [t, t+ ε],

whose unique solution is given by

ubs = e(r+λ̂SHI−Nt
)(s−t)

(
ub − B(I −Nt)

r + λ̂SHI−Nt

)
+
B(I −Nt)

r + λ̂SHI−Nt
, s ∈ [t, t+ ε].
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So, as long as there is no default and the project keeps running ubs will be deterministic until
it reaches the value b̂I−Nt . That will eventually happen at time

t?(ub) := t+
1

r + λ̂SHI−Nt
log

(
b̂I−Nt(r + λ̂0

I−Nt)

ub(r + λ̂SHI−Nt)−B(I −Nt)

)
,

and we see from (3.4.19) that at time t?(ub) we will have dubs = 0, so ubs = b̂I−Nt for every
s ∈ [t?(ub), τ). In the second case, if ub ≥ b̂I−Nt then (3.4.19) becomes dubs = −ubs−dNs, s ∈
[t, τ ], and necessarily ubs = ub for every s ∈ [t, τ). This proves the existence and uniqueness
of the solution of (3.4.19) in both cases.

• Step 2: Now we turn to the values of the banks under Ψ?. If ub ≥ b̂I−Nt , we
know from the previous analysis that ubs = ub ≥ b̂I−Nt for every s ∈ [t, τ), so in this case Ψ? is
a short–term contract with constant payment, see Section 3.6.3.1. Using the notations of this
section, since c ≥ cb ≥ cg both banks will always work, the value function of the bad bank is
U b
t (Ψ

?) = ρbc/(r + λ̂0
I−Nt) = ub and the one of the good bank is U g

t (Ψ?) = ρgc/(r + λ̂0
I−Nt) =

ρg/ρbu
b = Û?I−Nt(ub).

In the case where ub < b̂I−Nt , Ψ? is a short–term contract with delay t?(ub) and constant
payment, see Section 3.6.4.1. Using the notations of this section, since c = cb the bad bank
will always shirk and her value function is

U b
t (Ψ

?) = ρbc
e−(r+λ̂SHI−Nt

)t?(ub)

r + λ̂SHI−Nt
+

B

r + λ̂SHI−Nt
= ub.

For the good bank we have two sub-cases. First, if ub ∈ [x?I−Nt , b̂I−Nt) then tg(c) ≥ t?(ub), so
the good bank will always work and her value function is

U g
t (Ψ?) =

ρg
ρb
b̂

λ̂SHI−Nt
−λ̂0

I−Nt
r+λ̂SH

I−Nt
I−Nt

(
r + λ̂SHI−Nt

r + λ̂0
I−Nt

) r+λ̂0
I−Nt

r+λ̂SH
I−Nt

(
ub − B(I −Nt)

r + λ̂SHI−Nt

) r+λ̂0
I−Nt

r+λ̂SH
I−Nt

= Û?I−Nt(ub).

If ub ∈
[

B

r+λ̂SHI−Nt
, x?I−Nt

)
then tg(c) < t?(ub), so the good bank will start working at time

t?(ub) and her value function is

U g
t (Ψ?) =

ρg
ρb

r+λ̂SHI−Nt
r+λ̂0

I−Nt

(
ub − B(I −Nt)

r + λ̂SHI−Nt

)
+
B(I −Nt)

r + λ̂SHI−Nt
= Û?I−Nt(ub).

• Step 3: Since U b
t (Ψ

?) = ub, it is trivial that Ψ? ∈ Ab(t, ub). Consider now any
contract Ψ = (D, θ, h1,b, h2,b) ∈ Ab(t, ub). We recall that the value function of the bad bank
under Ψ satisfies

dU b
s (Ψ) =

(
rU b

s (Ψ)−Bk?,bs (Ψ) + [h1,b
s + h2,b

s (1− θs)]λk
?,b(Ψ)
s

)
ds−ρbdDs−h1,b

s dNs−h2,b
s dHs,
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with k?,bs (Ψ) = 1{h1,b
s +(1−θs)h2,b

s <bs}. Define the process

Gw :=

∫ w

t

e−r(s−t) [ρgdDs + k?,gs (Ψ)Bds] + e−r(w−t)Û?I−Nw(U b
w(Ψ)), w ∈ [t, τ ].

Observe we can rewrite the second term in the following form (with the convention τNt = t,
τNw+1 = w)

e−r(w−t)Û?I−Nw(U b
w(Ψ)) =

Nw∑

i=Nt

e−r(τi+1−t)Û?I−i

(
U b
τ−i+1

(Ψ)
)
− e−r(τi−t)Û?I−i

(
U b
τi

(Ψ)
)

+
Nw−1∑

i=Nt

e−r(τi+1−t)
(
Û?I−(i+1)

(
U b
τi+1

(Ψ)
)
− Û?I−i

(
U b
τ−i+1

(Ψ)
))

+ Û?I−Nt
(
U b
t (Ψ)

)
.

Since the functions Û?j are C1, we can apply Itô’s formula on the intervals [τi∧τ, τi+1∧τ) with
i ∈ {Nt, . . . , Nw} to obtain an integral expression for the first sum. Regarding the second
sum, observe that

Û?I−(i+1)

(
U b
τi+1

(Ψ)
)
− Û?I−i

(
U b
τ−i+1

(Ψ)
)

=
(
Û?I−(i+1)

(
U b
τ−i+1

(Ψ)− h1,b
τi+1

)
− Û?I−i

(
U b
τ−i+1

(Ψ)
))

∆Nτi+1
− Û?I−(i+1)

(
U b
τ−i+1

(Ψ)− h1,b
τi+1

)
∆Hτi+1

=

∫ τi+1

τi

(
Û?I−(i+1)

(
U b
s−(Ψ)− h1,b

s

)
− Û?I−i

(
U b
s−(Ψ)

))
dNs −

∫ τi+1

τi

Û?I−(i+1)

(
U b
s−(Ψ)− h1,b

s

)
dHs.

Hence

Gτ∧v = Û?I−Nt(ub) +
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)

(
ρg − ρb

(
Û?I−i

)′ (
U b
s (Ψ)

))
dDs

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)

(
k?,gs (Ψ)B − rÛ?I−i

(
U b
s (Ψ)

))
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)λk

?,g(Ψ)
s

(
θsÛ?I−i−1

(
U b
s−(Ψ)− h1,b

s

)
− Û?I−i

(
U b
s (Ψ)

))
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)Û?′I−i

(
U b
s (Ψ)

)(
rU b

s (Ψ)−Bk?,bs (Ψ) + λk
?,b(Ψ)
s (h1,b

s + (1− θs)h2,b
s )
)

ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)

(
Û?I−i−1

(
U b
s−(Ψ)− h1,b

s

)
− Û?I−i

(
U b
s−(Ψ)

))
(dNs − λk

?,g(Ψ)
s ds)

−
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)Û?I−i−1

(
U b
s−(Ψ)− h1,b

s

)
(dHs − λk

?,g(Ψ)
s (1− θs)ds).

We know that the derivative of every Û?j is greater than ρg/ρb by definition, and since D is
non–decreasing, the first sum of integrals is non–positive. Also, the functions Û?j are solutions
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of the system of HJB equations, which implies that for any admissible contract the second
and the third sum of integrals are also non–positive. We deduce

Gτ∧v ≤ Û?I−Nt(ub) +
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
er(t−s)

(
Û?I−i−1

(
U b
s−(Ψ)− h1,b

s

)
− Û?I−i

(
U b
s−(Ψ)

))
(dNs − λk

?,g

s ds)

−
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
e−r(s−t)Û?I−i−1

(
U b
s−(Ψ)− h1,b

s

)
(dHs − λk

?,g(Ψ)
s (1− θs)ds). (3.6.6)

Next, for every i we have that, recalling that the functions Û?j are non–decreasing and null
at 0

EPk?,g
[∫ τ

t

e−r(s−t)
∣∣∣Û?I−i−1

(
U b
s (Ψ)− h1,b

s

)∣∣∣ ds
∣∣∣∣Gt
]
≤ EPk?,g

[∫ τ

t

e−r(s−t)
ρg
ρb
U b
s (Ψ)ds

∣∣∣∣Gt
]

≤ EPk?,g
[∫ τ

t

e−r(s−t)
ρg
ρb
ube(r+λ)sds

∣∣∣∣Gt
]
<∞,

with λ := max1≤j≤I λ̂
SH
j . Indeed, we have between two consecutive jump times of N

dU b
s (Ψ) =

(
rU b

s (Ψ)−Bk?,bs (Ψ) + (h1,b
s + (U b

s (Ψ)− h1,b
s )(1− θs))λk

?,b(Ψ)
s

)
ds− ρbdDs

≤
(
rU b

s (Ψ) + h1,b
s λ

k?,b(Ψ)
s + (U b

s (Ψ)− h1,b
s )(1− θs)λk

?,b(Ψ)
s

)
ds

= U b
s (Ψ)

(
r + (1− θs)λk

?,b(Ψ)
s

)
ds+ h1,b

s θsλ
k?,b(Ψ)
s ds

≤ U b
s (Ψ)

(
r + λk

?,b(Ψ)
s

)
ds,

where we used the facts that h1,b
s ∈ [0, U b

s (Ψ)], the functions Û?j are non–decreasing and U b
s (Ψ)

is bounded from below and has positive jumps. Similarly

EPk?,g
[∫ τ

t

e−r(s−t)
∣∣∣Û?I−i−1

(
U b
s−(Ψ)− h1,b

s

)
− Û?I−i

(
U b
s−(Ψ)

)∣∣∣ ds
∣∣∣∣Gt
]

≤ EPk?,g
[∫ τ

t

e−r(s−t)
∣∣∣Û?I−i−1

(
U b
s−(Ψ)− h1,b

s

)∣∣∣ ds
∣∣∣∣Gt
]

+ EPk?,g
[∫ τ

t

e−r(s−t)
∣∣∣Û?I−i

(
U b
s−(Ψ)

)∣∣∣ ds
∣∣∣∣Gt
]

≤ EPk?,g
[∫ τ

t

e−r(s−t)
ρg
ρb
U b
s (Ψ)ds

∣∣∣∣Gt
]

+ EPk?,g
[∫ τ

t

e−r(s−t)
ρg
ρb
U b
s (Ψ)ds

∣∣∣∣Gt
]

≤ 2EPk?,g
[∫ τ

t

e−r(s−t)
ρg
ρb
ube(r+λ)sds

∣∣∣∣Gt
]
<∞.

Then, the stochastic integrals appearing above are martingales, and taking conditional ex-
pectation in (3.6.6) we get EPk?,g [Gτ∧v| Gt] ≤ Û?I−Nt(ub) and from Fatou’s Lemma we obtain

Û?I−Nt(ub) ≥ lim
v→∞

EPk?,g [Gτ∧v| Gt] ≥ EPk?,g
[

lim
v→∞

Gτ∧v

∣∣∣∣Gt
]

= U g
t (Ψ),

where we used that, Pk?,g − a.s.

lim
v→∞

Gτ∧v = lim
v→∞

∫ τ∧v

t

e−r(s−t) [ρgdDs + k?,gs (Ψ)Bds] + 1{v<τ}e
−r(v−t)Û?I−Nv(U b

v(Ψ))

=

∫ τ

t

e−r(s−t) [ρgdDs + k?,gs (Ψ)Bds] .
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We end this section with the

Proof. [Proof of Proposition 3.4.3] The definition of Ĉj does not necessarily match with the
credible set Cj, however we can notice that the inclusion Cj ⊆ Ĉj holds and therefore we only
need to prove that Ĉj ⊆ Cj. We will make use of contracts with lump–sum payments to prove
that every point from Ĉj belongs to the credible set Cj. We start by defining the line with

slope ρg/ρb which passes through the point (ub, ug) =

(
Bj

r+λ̂SHj
, Bj

r+λ̂SHj

)
,

M̂j(u
b) :=

ρg
ρb
ub +

Bj

r + λ̂SHj

(
1− ρg

ρb

)
,

and the sets

Ĉ1
j :=

{
(ub, ug) ∈ V̂j × V̂j, M̂j(u

b) ≤ ug ≤ Ûj(u
b)
}
,

Ĉ2
j :=

{
(ub, ug) ∈ V̂j × V̂j, L̂j(ub) ≤ ug ≤ M̂j(u

b)
}
.

From Section 3.6.4.3 in the Appendix, we know that Ĉ1
j ⊆ Cj. The reason of this is that every

point from the upper boundary Ûj belongs to the credible set and that if we perturb a contract
Ψ = (θ,D) only by adding a lump–sum payment ε at time t, that is dDΨ′

s = 1{s=t}ε+ dDΨ
s ,

then the values of the banks under Ψ′ are U g
t (Ψ′) = ug + ερg and U b

t (Ψ
′) = ub + ερb, so

(U b
t (Ψ

′), U g
t (Ψ′)) = (ub, ug) + ε(ρb, ρg). We use this idea to prove also that Ĉ2

j ⊆ Cj. From
Proposition 3.4.1, we know that the graph of L̂j is contained in Cj. Therefore any point of
the following form belongs to Cj

(ûb, ûg) = (ub, ug) + `(ρb, ρg), ` ≥ 0, ug = L̂j(u
b). (3.6.7)

By the geometry of the lower boundary L̂j, the set of points of the form (3.6.7) is exactly Ĉ2
j .
�

3.6.7 Principal’s value function on the boundary of the credible set

We start this section with the

Proof. [Proof of Proposition 3.5.1] Consider any time t ≥ 0 and take any ub,c ≥ C(I−Nt), as
well as some Ψg ∈ Âg(t, L̂I−Nt(ub,c), ub,c). From Lemma 3.6.2, we know that the components
of Ψg must satisfy θg ≡ 1 and that both banks shirk under Ψg. The payments determine the
utility of the banks and the following holds by definition

EPkSH
[∫ τI

t

e−r(s−t)dDg
s

∣∣∣∣∣Gt
]

=
ub,c − C(I −Nt)

ρb
.
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Besides, the utility of the investor under the contract Ψg is

EPkSH
[∫ τI

t

(µ(I −Ns)ds− dDg
s)

∣∣∣∣∣Gt
]

=
I−1∑

i=Nt

µ(I − i)

λ̂SHI−i

− EPkSH
[∫ τI

t

dDg
s

∣∣∣∣∣Gt
]
.

Now, observe that

EPkSH
[∫ τI

t

dDg
s

∣∣∣∣∣Gt
]
≥ EPkSH

[∫ τI

t

e−r(s−t)dDg
s

∣∣∣∣∣Gt
]

=
ub,c − C(I −Nt)

ρb
,

and the equality holds if and only if Dg has a jump at time t of size ub,c−C(I−Nt)
ρb

and dDg
s = 0

for every s > t. That means that it is optimal for the investor to use a contract with an
initial lump–sum payment and to pay nothing afterwards. Consequently, the value function
of the investor on the lower boundary is given by

V L,g
t (ub,c) =

I−1∑

i=Nt

µ(I − i)

λ̂SHI−i

−
(
ub,c − C(I −Nt)

ρb

)
.

�

We continue this section with the

Proof. [Proof of Proposition 3.5.2] Consider any time t ≥ 0. Take any ub,c ∈ [c(I −
Nt, 1), C(I−Nt)), and Ψg ∈ Âg(t, ub,c, ub,c). From Lemma 3.6.1, we know that the components
of Ψg must satisfy dDg

s = 0 for all s ≥ t and that both banks will shirk under this contract.
Then, θg determines the continuation utilities of the banks in the following way

ub,c = EPkSH
[∫ τ

t

e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt
]
,

so in this case, the problem (3.5.4) reduces to

(P ) sup
θ∈Θ

EPkSH
[∫ τ

t

µ(I −Ns)ds

∣∣∣∣Gt
]
, s.t EPkSH

[∫ τ

t

e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt
]

= ub,c.

Next, we rewrite the objective function in a more convenient way

EPkSH
[∫ τ

t

µ(I −Ns)ds

∣∣∣∣Gt
]

= µ(I −Nt)EPkSH [τNt+1 − t|Gt] +
I−1∑

i=Nt+1

µ(I − i)EPkSH [1{τ>τi}(τi+1 − τi)
∣∣Gt
]

=
µ(I −Nt)

λ̂SHI−Nt
+

I−1∑

i=Nt+1

µ(I − i)EPkSH
[
EPkSH [1{τ>τi}(τi+1 − τi)

∣∣Gτi
]∣∣∣Gt

]

=
µ(I −Nt)

λ̂SHI−Nt
+

I−1∑

i=Nt+1

µ(I − i)EPkSH
[
EPkSH [1{τ>τi}

∣∣Gτi
]
EPkSH [τi+1 − τi| Gτi ]

∣∣∣Gt
]

=
µ(I −Nt)

λ̂SHI−Nt
+

I−1∑

i=Nt+1

µ(I − i)

λ̂SHI−i

EPkSH [θτi | Gt] .
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We do the same with the constraint

EPkSH
[∫ τ

t

e−r(s−t)B(I −Ns)ds

∣∣∣∣Gt
]

= EPkSH
[∫ τNt+1

t

B(I −Nt)e
−r(s−t)ds+

I−1∑

i=Nt+1

1{τ>τi}

∫ τi+1

τi

e−r(s−t)B(I − i)ds

∣∣∣∣∣Gt
]

=
B(I −Nt)

r + λ̂SHI−Nt
+

I−1∑

i=Nt+1

B(I − i)

r
EPkSH

[
EPkSH [1{τ>τi}

(
e−r(τi−t) − e−r(τi+1−t)

)∣∣Gτi
]∣∣∣Gt

]

=
B(I −Nt)

r + λ̂SHI−Nt
+

I−1∑

i=Nt+1

B(I − i)

r
EPkSH

[
e−r(τi−t)EPkSH [1{τ>τi}

∣∣Gτi
]
EPkSH [1− e−r(τi+1−τi)

∣∣Gτi
]∣∣∣Gt

]

=
B(I −Nt)

r + λ̂SHI−Nt
+

I−1∑

i=Nt+1

B(I − i)

r + λ̂SHI−i

EPkSH [θτie−r(τi−t)
∣∣Gt
]
.

So we obtain the following expression for our problem

(P )





sup
θ∈Θ

µ(I −Nt)

λ̂SHI−Nt
+

I−1∑

i=Nt+1

µ(I − i)

λ̂SHI−i

EPkSH [θτi| Gt]

s.t
B(I −Nt)

r + λ̂SHI−Nt
+

I−1∑

i=Nt+1

B(I − i)

r + λ̂SHI−i

EPkSH [θτie−r(τi−t)
∣∣Gt
]

= ub,c.

We do not know how to solve (P ) directly, so we will define its dual problem, characterise its
solution and show that the duality gap is zero. In order to do that, we define the Lagrangian
function L : Θ× R× Ω −→ R as follows

L(θ, ν, ω) :=− µ(I −Nt(ω))

λ̂SHI−Nt(ω)

−
I−1∑

i=Nt(ω)+1

µ(I − i)

λ̂SHI−i

EPkSH [θτi | Gt] (ω)

+ ν


B(I −Nt(ω))

r + λ̂SHI−Nt(ω)

+
I−1∑

i=Nt(ω)+1

B(I − i)

r + λ̂SHI−i

EPkSH
[
θτie

−r(τi−t)
∣∣Gt
]
(ω)− ub,c


 ,

and also define the dual function and the dual problem respectively as

g(ν, ω) := inf
θ∈Θ

L(θ, ν, ω), (D) sup
ν∈R

g(ν, ω) .

Then, we have the weak duality inequality (where val denotes the value of the optimisation
problem)

−val(P ) = inf
θ∈Θ

sup
ν∈R

L(θ, ν, ω) ≥ sup
ν∈R

inf
θ∈Θ

L(θ, ν, ω) = val(D).

We rewrite the dual function as follows

g(ν, ω) =− µ(I −Nt(ω))

λ̂SHI−Nt(ω)

+ ν

(
B(I −Nt(ω))

r + λ̂SHI−Nt(ω)

− ub,c
)

+ inf
θ∈Θ

I−1∑

i=Nt(ω)+1

∫

Ω

θτi(ω̃)

(
ν
B(I − i)

r + λ̂SHI−i

e−r(τi(ω̃)−t) − µ(I − i)

λ̂SHI−i

)
dPSHt,ω (ω̃),
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where PSHt,ω is a regular conditional probability distribution for the conditional expectation
with respect to the raw (that is to say not completed) version of Gt. We have easily that it
is optimal to set the optimal control θν to be θντi(ω̃) := 1ω̃∈Ai

ν
(ω̃), where the set Ai

ν is defined
by

Ai
ν :=





Ω, if ν <
µ

B

r + λ̂SHI−i

λ̂SHI−i

,

{
ω̃, τi(ω̃)− t > 1

r
ln

(
νBλ̂SHI−i

µ(r + λ̂SHI−i)

)}
, if ν ≥ µ

B

r + λ̂SHI−i

λ̂SHI−i

.

Therefore, for any ν ∈ R the dual function has the following form, using that the conditional
law of τi − t given Gt is the same as the law of τi

g(ν, ω) =− µ(I −Nt(ω))

λ̂SHI−Nt(ω)

+ ν

(
B(I −Nt(ω))

r + λ̂SHI−Nt(ω)

− ub,c
)

+
I−1∑

i=Nt(ω)+1

∫ ∞

si(ν)

(
νB(I − i)e−rx

r + λ̂SHI−i

− µ(I − i)

λ̂SHI−i

)
fτi(x)dx. (3.6.8)

It is not difficult to see that g is a continuous and differentiable function. As we want to
maximise g in the dual problem, we compute its derivative with respect to ν and we get

g′(ν, ω) =
B(I −Nt(ω))

r + λ̂SHI−Nt
− ub,c +

I−1∑

i=Nt+1

∫ ∞

si(ν)

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx.

Since ν 7−→ si(ν) is non–decreasing for any i = 1, . . . , I, g′ is non–increasing in ν. Further-
more, since ub,c ≥ c(I − Nt, 1), we have the limit at +∞ of g′ is non–positive, and that its
value for small ν is positive because ub,c < C(I −Nt) and

B(I −Nt(ω))

r + λ̂SHI−Nt
+

I−1∑

i=Nt+1

∫ ∞

0

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx = C(I −Nt).

Therefore, there is a unique value of ν that makes g′ equal to 0.

Now, we compute for any ν the value of the constraint from the primal problem for the
control θν

I−1∑

i=Nt+1

B(I − i)

r + λ̂SHI−i

EPkSH
[
θντie

−r(τi−t)
∣∣Gt
]

=
I−1∑

i=Nt+1

∫ ∞

si(ν)

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx,

so θν is feasible in problem (P ) if and only if g′(ν, ω) = 0. Next, we compute for θν the value
of the objective function in the primal (minimisation) problem

−µ(I −Nt)

λ̂SHI−Nt
−

I−1∑

i=Nt+1

µ(I − i)

λ̂SHI−i

EPkSH
t

[
θντi
]

= −µ(I −Nt)

λ̂SHI−Nt
−

I−1∑

i=Nt+1

∫ ∞

si(ν)

µ(I − i)

λ̂SHI−i

fτi(x)dx.
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If this quantity is equal to g(ν, ·), the duality gap is zero. From (3.6.8) we see that this
happens if and only if

ν

(
B(I −Nt)

r + λ̂SHI−Nt
− ub,c +

I−1∑

i=Nt+1

∫ ∞

si(ν)

B(I − i)

r + λ̂SHI−i

e−rxfτi(x)dx

)
= 0 ⇐⇒ νg′(ν, ·) = 0.

We conclude that if ν ∈ R is such that g′(ν) = 0 then the control θν is optimal in the primal
problem. �

We continue with the

Proof. [Proof of Proposition 3.5.3] Define the process `s = ÛI−Ns(U
b,c
s (Ψg)) − U g

s (Ψg) and
note that `s ≥ 0 for every s ≥ 0. We will prove that `t = 0 implies `v = 0 for every v ≥ t.
Assume thus that `t = 0. Following the same idea as in the proof of Theorem 3.4.1, we have
for v ≥ t

`v =
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
−
(
rU g

s (Ψg)−Bk?,gs (Ψg) + [h1,g
s + (1− θgs)h2,g

s ]λk
?,g(Ψg)
s

)
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
Û′I−i(U

b,c
s (Ψg))

(
rU b,c

s (Ψg)−Bk?,b,cs (Ψg) + λ
k?,b,c(Ψg)
I−i (h1,b,c

s + (1− θgs)h2,b,c
s )

)
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h1,g
s + ÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )− ÛI−i(U

b,c
s− (Ψg))

)
dNs

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h2,g
s − ÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )

)
dHs +

(
ρg − ρbÛ′I−i(U

b,c
s (Ψg))

)
dDg

s .

Since the functions Ûi solve the system of HJB equations (3.4.9), and
(
ρg − ρbÛ′i(U b,c

s (Ψg))
)

dDg
s ≤
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0 for every s, we have

`v ≤
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
rÛI−i(U

b,c
s (Ψg))− rU g

s (Ψg)− [h1,g
s + (1− θgs)h2,g

s ]λk
?,g(Ψg)
s

)
ds

−
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
λk

?,g(Ψg)
s

(
θsÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )− ÛI−i(U

b,c
s (Ψg))

)
ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h1,g
s + ÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )− ÛI−i(U

b,c
s− (Ψg))

)
dNs

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h2,g
s − ÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )

)
dHs

=
I−1∑

i=Nt

∫ τi+1∧v

τi∧v
(r + λk

?,g

s )(ÛI−i(U
b,c
s (Ψg))− U g

s (Ψg)) + (h2,g
s − ÛI−i−1(U b,c

s (Ψg)− h1,b,c
s ))θgsλ

k?,g

s ds

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h1,g
s + ÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )− ÛI−i(U

b,c
s− (Ψg))

)
dNs

+
I−1∑

i=Nt

∫ τi+1∧v

τi∧v

(
h2,g
s − ÛI−i−1(U b,c

s− (Ψg)− h1,b,c
s )

)
dHs.

Recall from Remark 3.4.2 that on the upper boundary, we have

h1,g
s = ÛI−Ns− (U b,c

s− (Ψg))−ÛI−Ns−−1(U b,c
s− (Ψg)−h1,b,c

s (Ψg)), h
2,g
s = ÛI−Ns−−1(U b,c

s− (Ψg)−h1,b,c
s (Ψg)),

so that for i = Nt the drift of the right–hand side is 0 in [τi, τi+1) and the jump at time τi+1 is
also 0. It is easy to see that the same happens for every i ∈ {Nt, . . . , I} and therefore `v ≤ 0
for every v ≥ 0 which means `v = 0 for every v ≥ t. �

We go on with the

Proof. [Proof of Proposition 3.5.4]

(i) We have from the proof of Proposition 3.5.3 that the processes (θg, h1,b,c, h2,b,c) are
necessarily maximisers of the system of HJB equations (3.4.9). We can go back to the proof
of Proposition 3.4.2, which is based on Corollary 3.6.1, to observe that for ub,c < b̂j the
optimal θ ∈ Cj is uniquely given by θ = 0.

(ii) Observe that for every (t, ub,c, ug) ∈ [0, τ ]× V̂I−Nt × V̂I−Nt and Ψg ∈ Âg(t, ug, ub,c) we
have

U b,c
t (Ψg) ≥ EPk

?,g(Ψg)

[∫ τ

t

e−r(s−t)(ρbdD
g
s +Bk?,gs (Ψg)ds)

∣∣∣∣Gt
]

=
ρb
ρg
U g
t (Ψg) + EPk

?,g(Ψg)

[∫ τ

t

e−r(s−t)Bk?,gs (Ψg)ds

∣∣∣∣Gt
](

1− ρb
ρg

)
≥ ρb
ρg
U g
t (Ψg).
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Then U b,c
s0

(Ψg) = ρg
ρb
U g
s0

(Ψg) implies that k?,gs (Ψg) = k?,b,cs (Ψg) = 0, for every s ∈ [s0, τ), and
in consequence

U b,c
s (Ψg) =

ρg
ρb
U g
s (Ψg) ≥ bs, for every s ∈ [s0, τ).

�

We end this section with the

Proof. [Proof of Proposition 3.5.5] We divide the proof in 2 steps.

• Step 1: We start with the region ub,c > b̂I−Nt . Let Ψg = (Dg, θg, h1,b,c, h2,b,c) ∈
Ag(t, ub,c) be such that U b,c

t (Ψg) = ub,c ≥ b̂I−Nt , U
g
t (Ψg) = ÛI−Nt(u

b,c). From Proposition
3.5.4 we know that

U b,c
s (Ψg) ≥ b̂I−Ns , k

?,b,c(Ψg) = 0, s ∈ [t, τ).

Therefore, Problem (3.5.5) is equivalent to

V U,g
t (ub,c) = sup

Ψg∈A
g
(t,ub,c)

EP0

[∫ τ

t

µ(I −Ns)ds−
∫ τ

t

dDg
s

]
, s.t





U b,c
s (Ψg) ≥ b̂I−Ns , s ∈ [t, τ),

EP0

[∫ τ

t

e−r(s−t)dDg
s

]
=
ub,c

ρb
.

This is exactly the problem of [85], recalled in Section 3.3.2, so we conclude that V U,g
t (ub,c) =

vbI−Nt(u
b,c).

• Step 2: For the rest of the upper boundary, observe that the system of HJB
equations associated to (3.5.5) is is given by V̂0 ≡ 0, and for any 1 ≤ j ≤ I

min

{
− sup

(θ,h1,h2)∈CU,j

{
V̂ ′j(ub,c)

(
rub,c −Bkb,c + [h1 + (1− θ)h2]λ̂k

b,c

j

)

+µj + λ̂k
g

j θV̂j−1(ub,c − h1)− λ̂kgj V̂j(ub,c)

}
, V̂ ′j(ub,c)+

1

ρb

}
= 0,

(3.6.9)
for every ub,c ≥ Bj

r+λ̂SHj
, with the boundary condition V̂j(Bj/(r+ λ̂SHj )) = µj/λ̂SHj , and where

kb,c := j1{h1+(1−θ)h2<b̂j}, k
g := j1{Û?j (ub,c)−θÛ?j−1(ub,c−h1)<b̂j},

and the set of constraints CU,j determined by Proposition 3.5.4 is defined by

CU,j :=

{
(θ, h1, h2) ∈ [0, 1]×R2

+, h
1+h2 = ub,c, h2 ≥ B(j − 1)

r + λ̂SHj−1

, θ1{ub,c<b̂j} = (kb,c+kg)1{ub,c≥b̂j} = 0

}
.

Then, for any ub,c < b̂j, the diffusion equation in (3.6.9) reduces to the ODE

0 = V̂ ′j(ub,c)
((
r + λ̂SHj

)
ub,c −Bj

)
− V̂j(ub,c)λ̂k

g

j + µj, (3.6.10)

with the boundary condition V̂j
(

Bj

r+λ̂SHj

)
= µj

λ̂SHj
. If ub,c < x?j , we get that

V̂j(ub,c) =
µj

λ̂SHj
+ C1

((
r + λ̂SHj

λ̂SHj

)
ub,c − Bj

λ̂SHj

) λ̂SHj

r+λ̂SH
j

,
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for some C1 ∈ R. If ub,c ∈
[
x?j , b̂j

)
, equation (3.6.10) is solved by

V̂j(ub,c) =
µj

λ̂0
j

+ C2

((
r + λ̂SHj

λ̂0
j

)
ub,c − Bj

λ̂0
j

) λ̂0
j

r+λ̂SH
j

,

for some C2 ∈ R. The values of C1 and C2 for which the solution of equation (3.6.10) is
continuous are

C1 =

µj

λ̂0
j

− µj

λ̂SHj
+
(
ρb
ρg

) λ̂0
j

r+λ̂0
j

(
vbj (̂bj)− µj

λ̂0
j

)

(
ρb
ρg

) λ̂SH
j

r+λ̂0
j

(
b̂j(r+λ̂0

j )

λ̂SHj

) λ̂SH
j

r+λ̂SH
j

, C2 =

(
vbj (̂bj)−

µj

λ̂0
j

)(
b̂j
r + λ̂0

j

λ̂0
j

)− λ̂0
j

r+λ̂SH
j

.

It follows from the properties of the map vbj , that the resulting function V̂j is a concave map
with slope greater than − 1

ρb
and therefore the family {V̂j}1≤j≤I is a solution of the system

of HJB equations (3.6.9). It can be proved similarly as in the proof of Theorem 3.4.1 (see
also Theorem 3.15 in [85]), that the verification result holds for this family of functions. We
therefore omit the proof of this result. �

3.6.8 Extension: unbounded relationship between utilities of the
banks

One possible extension of our model could rely on a further differentiation between the work
of the two banks, i.e. when both banks work, the good one would be more efficient in the
sense that the associated default intensity is strictly smaller than that of the bad bank. We
can do this by introducing an extra type variable with values mg and mb, with mg < mb and
modelling the hazard rate of a non-defaulted loan i at time t, when it is monitored by a bank
of type j as αi,j

t = αI−Nt(1 + ei,j
t mj + (1− ei,j

t )ε). Then, if the banks fails to monitor k loans,
the default intensity will be

λk,jt = αI−Nt((I −Nt)(1 +mj) + (ε−mj)kt).

We did not consider such a situation because it creates a degeneracy, in the sense that the
credible set no longer has an upper boundary. Indeed, consider for simplicity the case j = 1
and take any ub0 ≥ bj1, t? ≥ 0 and choose the corresponding payment

c(t?) := ub0
e(r+λ̂0,b

1 )t?(r + λ̂0,b
1 )

ρb
≥ bb1(r + λ̂0,b

1 )

ρb
≥ bg1(r + λ̂0,g

1 )

ρg
.

Then, under the contract with delay and constant payments given by dDs = c(t?)1{s>t?}ds
the bad bank will always work and her value function will be equal to ub0 (see section 3.6.4.1).
Notice that the optimal strategy for the good bank will be also to work at every time. Then,
her value function is equal to

ug0 := ub0
ρg(r + λ̂0,b

1 )

ρb(r + λ̂0,g
1 )

e(λ̂0,b
1 −λ̂

0,g
1 )t? .
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We see that by increasing t?, it is possible to make ug0 as big as we want and keep fixed the
value of the bad bank. This means that the credible set will have no upper boundary in the
interval [bb1,∞). Moving to any j > 1 and considering short-term contracts with delay, with
θ = 0 and the analogous payments, we observe the same degeneracy and the credible set will
have no upper boundary in the interval [bbj,∞).

One way out of this problem would be to consider different discount rates for the banks, rb
and rg, and assume that the default intensities are such that λ0,b

t + rb ≤ λ0,g
t + rg. However,

this complicates things a lot because simple statements that we expect to be true are very
difficult to prove or need assumptions on the parameters of the problem. For example the
inequality U g

t (D, θ) ≥ U b
t (D, θ) is no longer clear at all. We therefore refrained from going

into that direction, and leave it for potential future research.
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Part II

Contributions to the continuous-time
model.
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Chapter 4

Moral hazard under volatility
uncertainty

4.1 Introduction

Invented by the US army and used afterwards in the business glossary, the acronym VUCA
reflects through four concepts to deal with a challenging problem: Volatility, Uncertainty,
Complexity and Ambiguity. A nice article1 of Bennett and Lemoine aims at defining all
the situations and issues characterized by these concepts. The notion of Volatility is at
the heart of mathematical finance, by reflecting unstable properties of financial products,
such as prices, which are often modelled through the presence of noise in their dynamics.
Uncertainty can be viewed as a lack of information for an active Agent with information
asymmetry between what this Agent observes and the intrinsic effects of her observations.
Complexity holds in general when several interconnected entities interact, leading to issues
whose solutions are not obvious at first sight. These three first concepts typically provide
the difficulty of general problems appearing in contract theory with moral hazard.

The study developed in this chapter is at the heart of a VUCA model by focusing on the last
concept, the Ambiguity, which can be seen as a pattern of uncertainty by making unknown
events fully unclear and not controlled. This last concept express itself in our model with
the introduction of a third player in the Principal-Agent relationship, named the Nature,
which randomly modifies the volatility of the output without any control on it. The present
work is an extension of the models proposed by Mastrolia and Possamaï [64] and Sung [125]
to a more general framework. The Agent is hired by the Principal to manage a project,
by controlling the drift of an output process, which is a diffusion representing generally the
value of the firm. The Principal can not observe the actions of the Agent, so moral hazard
is present. Moreover, the Principal and the Agent are not informed about the volatility of
the project and they just have some beliefs about it. Since we work under weak formulation,
the uncertainty on the volatility is represented by assigning to the Principal and the Agent

1What VUCA Really Means for You, N. Bennett and GJ. Lemoine, Harvard Business Review, January-
February 2014.
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different sets of probability measures under which they make their decisions. Moreover, both
individuals present an extreme ambiguity aversion and they have a worst case approach to
the problem. They act as if a third individual, the Nature, was playing against them and
choosing the worst possible volatility. As a consequence, both the Principal and the Agent
play a stochastic differential game against the Nature.

Cvitanić, Possamaï and Touzi [28] provided a general method for solving continuous-time
Principal-Agent problems in finite horizon when the Agent is in charge of controlling both
the drift and the volatility of the outcome. Their so–called dynamic programming approach,
consists in restricting the set of contracts offered to the Agent to a convenient class, in which
the problem of the Principal is reduced to a standard stochastic control problem and can be
associated to a Hamilton-Jacobi-Bellman equation. The authors proved that their restriction
of the class of contracts is without loss of generality by making use of the theory of second-
order BSDEs. It is well known that when the Agent controls only the drift of a diffusion
process, the value function of his utility maximization problem corresponds to the solution
of a BSDE (we refer to the works of Rouge and El Karoui [106], Hu, Imkeller and Müller
[54], Hamadéne, Lepeltier and Peng [51] and references therein for more details). Therefore,
when the Agent takes also supremum over the possible volatilities his value function is the
solution to a 2BSDE. The restricted class of contracts in [28] is chosen so conveniently, that
the value function of the Agent under these contracts is the solution of a BSDE instead.
Thus, the main difference between the unrestricted and the restricted class of contracts lies
in the absolutely continuity of the increasing process appearing in the 2BSDE. The proof
consists then in constructing absolutely continuous approximations of the increasing process
and showing that the restricted and the unrestricted problems have the same value.

In our problem, we follow partially the dynamic programming approach introduced in [28].
The Agent does not choose the volatility of the outcome process but his worst case approach
makes his value function be the solution to a 2BSDE, since it can be identified with an
infimum of BSDEs. For the problem of the Principal, the same kind of proof as in [28] does
not work because we deal with a non-standard stochastic differential game instead. However,
we write the Hamilton-Jacobi-Bellman-Isaacs equation associated to the class of restricted
contracts and we prove that the value function of the Principal is a viscosity solution to
it by following the stochastic Perron’s method of Bayraktar and Sîrbu [11, 12, 13, 115].
The Perron’s method amounts to a verification result and it consists in proving that the
value function of the Principal lies between a viscosity super-solution (the supremum of the
stochastic sub-solutions) and a viscosity sub-solution (the infimum of the stochastic super-
solutions) of the HJBI equation. Thus, as soon as a comparison theorem holds for such
PDE, and the set of stochastic semi-solutions are non-empty, it follows that the value of the
Principal coincides with the unique viscosity solution. Moreover, the dynamic programming
principle is obtained as a consequence of the definition of the stochastic semi-solutions. This
is another contribution with respect to [64], where the DPP is assumed.

An interesting point to mention is that the problem degenerates if the sets of beliefs of the
Principal and the Agent are disjoint. In this case the Principal can obtain the highest possible
expected utility by offering contracts which penalize the Agent extremely hard on the support
of the beliefs of the Principal and on the support of the beliefs of the Agent his reservation
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utility is met.

4.2 Preliminares

4.2.1 Canonical process, semi-martingale measure and quadratic
variation

For T > 0 and a positive integer d, let Ω := {ω ∈ C
(
[0, T ] ,Rd

)
: ω0 = 0} be the canonical

space of continuous maps from [0, T ] into Rd, endowed with the uniform norm

‖ω‖∞ = sup
t∈[0,T ]

‖ωt‖.

We denote by X the canonical process on Ω, i.e. Xt(x) = xt, for all x ∈ Ω and t ∈ [0, T ]. We
set F := (Ft)t∈[0,T ] the filtration generated by X and F+ := F+

t , 0 ≤ t ≤ T , the right limit of
F, where F+

t :=
⋂
s>tFs for s ∈ [0, T ) and F+

T := FT . We denote by P0 the Wiener measure
on (Ω,FT ). Let M(Ω) be the set of all probability measures on (Ω,FT ). Recall the so–called
universal filtration F? := {F?t }0≤t≤T defined as follows

F?t :=
⋂

P∈M(Ω)

FP
t ,

where FP
t is the usual completion under P.

For any subset P ⊂ M(Ω), a P−polar set is a P−negligible set for all P ∈ P , and we say
that a property holds P−quasi–surely if it holds outside some P−polar set. We introduce
the following filtration GP := {GPt }0≤t≤T which will be useful in the sequel

GPt := F?t ∨ T P , t ≤ T,

where T P is the collection of P−polar sets, and its right-continuous limit, denoted GP,+.

For any subset P ⊂M(Ω) and any (t,P) ∈ [0, T ]× P we denote

P [P,F+, t] :=
{
P′ ∈ P , P′ = P on F+

t

}
.

We also recall that for every probability measure P on Ω and F−stopping time τ taking
values in [0, T ], there exists a family of regular conditional probability distribution (r.c.p.d.
for short) (Pτx)x∈Ω (see e.g. Stroock and Varadhan [121]), satisfying Properties (i) − (iv) of
[93] and we refer to [93, Section 2.1.3] for more details on it.

We set Md,n(R) the space of matrices with d rows and n columns with real entries. We
define a semi-martingale measure on (Ω,FT ) as any probability measure P such that X is
a semi-martingale under P. We denote by PS the set of all semi-martingale measures. It is
well-known, see for instance the result of [58], that there exists an F-progressively measurable
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process denoted by 〈X〉 := (〈X〉t)t∈[0,T ] coinciding with the quadratic variation of X, P−a.s.
for any P ∈ PS. We introduce the non-negative symmetric matrix σ̂t ∈Md,d(R) defined by

σ̂t := lim sup
ε−→0
ε>0

〈X〉t − 〈X〉t−ε
ε

.

The formal definition of all the functional spaces mentioned in this chapter can be found in
Appendix 4.7.1.

4.2.2 Weak formulation of the output process

We start defining A and N as the sets of F-adapted processes taking values in A and N
respectively, where A,N are compact subsets of some finite dimensional space. We will call
control process to every pair (α, ν) ∈ A × N. To clarify the notations for the rest of the
chapter, α has to be understood as the control of the Agent and ν as the control of the
Nature. Consider next the volatility coefficient for the controlled process

σ : [0, T ]× Ω×N −→Md,n(R),

which is assumed to be uniformly bounded and such that σσ>(·, n) is an invertible F-
progressively measurable process for any n ∈ N . For every (t, x) ∈ [0, T ]× Ω and ν ∈ N, we
set the following SDE driven by an n-dimensional Brownian motion W

X t,x,ν
s = x(t) +

∫ s

t

σ(r,X t,x,ν , νr)dWr, s ∈ [t, T ], (4.2.1)

X t,x,ν
r = x(r), r ∈ [0, t].

We present now the definition of a weak solution to SDE (4.2.1).

Definition 4.2.1 Given (t, x) ∈ [0, T ]×Ω, a weak solution to SDE (4.2.1) is a pair (P, ν) ∈
M(Ω)×N such that

• X·∧t = x·∧t, P− a.s.

• The processes

X· and X·X>· −
∫ ·

t

σ(r,X, νr)σ
>(r,X, νr)dr,

are (P,F)-martingales on [t, T ].

Recall, for instance from [121, Theorem 4.5.2], that for any weak solution (P, ν), there exists
a P−Brownian motion, denoted by W P, such that

Xs = x(t) +

∫ s

t

σ(r,X, νr)dW
P
r , s ∈ [t, T ], P− a.s. (4.2.2)
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We will denote by N (t, x) the set of weak solutions to SDE (4.2.1). We also define the set
P(t, x) of probability measures which are components of weak solutions by

P(t, x) :=
⋃

ν∈N

Pν(t, x), where Pν(t, x) := {P ∈M(Ω), (P, ν) ∈ N (t, x)} .

We conclude this section by showing that the sets P(t, x) satisfy an important property which
is essential to deal with the wellposedness of 2BSDEs, the main tool we will use later to solve
the problem of the Agent. We recall first the definition of a saturated set of probability
measures (see [93, Definition 5.1]).

Definition 4.2.2 A set P ⊂M(Ω) is said to be saturated if for every P ∈ P , any probability
Q ∈M(Ω) which is equivalent to P and under which X is a local martingale, belongs to P .

We thus have the following Lemma, whose proof follows the same lines that [28, Proof of
Proposition 5.3, step (i)]

Lemma 4.2.1 The family {P(t, x), (t, x) ∈ [0, T ]× Ω} is saturated.

4.2.3 Estimate sets of volatility

The beliefs of the Agent and the Principal about the volatility of the project will be summed
up in the families of measures (PA(t, x))(t,x)∈[0,T ]×Ω and (PP (t, x))(t,x)∈[0,T ]×Ω respectively,
which satisfy that PA(t, x) ∪ PP (t, x) ⊂ P(t, x) for every (t, x) ∈ [0, T ] × Ω. We emphasize
that the families PA and PP cannot be chosen completely arbitrarily, and have to satisfy a
certain number of stability and measurability properties, classical in stochastic control theory,
for allowing us to use the theory of 2BSDEs developed in [93]. The following assumption
guarantees the well-posedness of 2BSDEs defined in the set of beliefs of the Principal and
the Agent.

Assumption 4.2.1 For Ψ = A,P , we have

(i) For every (t, x) ∈ [0, T ] × Ω, one has PΨ(t, x) = PΨ(t, x·∧t) and P(Ωx
t ) = 1 whenever

P ∈ PΨ(t, x). The graph [[PΨ]] of PΨ, defined by [[PΨ]] := {(t, x,P) : P ∈ PΨ(t, x)}, is
upper semi–analytic in [0, T ]× Ω×M(Ω).

(ii) PΨ is stable under conditioning, i.e. for every (t, x) ∈ [0, T ]×Ω and every P ∈ PΨ(t, x)
together with an F−stopping time τ taking values in [t, T ], there is a family of r.c.p.d.
(Px)x∈Ω such that Px ∈ PΨ(τ(x), x), for P− a.e. x ∈ Ω.

(iii) PΨ is stable under concatenation, i.e. for every (t, x) ∈ [0, T ] × Ω and P ∈ PΨ(t, x)
together with a F−stopping time τ taking values in [t, T ], let (Qx)x∈Ω be a family
of probability measures such that Qx ∈ PΨ(τ(x), x) for all x ∈ Ω and x 7−→ Qx is
Fτ−measurable, then the concatenated probability measure P⊗τ Q· ∈ PΨ(t, x).
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Notice that under property (i) the sets PA(t, x) and PP (t, x) at time t = 0 are independent
of x. Define PA := PA(0, x), PP := PP (0, x) for every x ∈ Ω, and consider also

(iv) The set PΨ is saturated.

An example of estimate sets of volatility which satisfy Assumption 4.2.1 is the learning model
presented in Mastrolia and Possamaï [64].

Example 4.2.1 Consider, for Ψ = A,P , set–valued processes DΨ : [0, T ]× Ω 7−→ 2R?+ such
that for every t ∈ [0, T ]

{
(s, ω,A) ∈ [0, t]× Ω× R?

+, A ∈ DΨ(s, ω)
}
∈ B([0, t])⊗Ft ⊗ B(R?

+),

where B([0, t]) and B(R?
+) denote the Borel σ−algebra of [0, t] and R?

+ respectively. Define
next, for every (t, w) ∈ [0, T ]×Ω, the set PΨ(t, ω) as the set of probability measures P ∈M(Ω)
such that

σ̂s(w
′) ∈ DΨ(s+ t, ω ⊗t w′), for ds⊗ dP− a.e. (s, w′) ∈ [0, T − t]× Ω.

It is shown by Nutz and van Handel [82] that the sets PΨ(t, ω) satisfy Assumption 4.2.1.

In the context of the previous example, Mastrolia and Possamaï [64] study the case where

DA(t, ω) = [σAt (ω), σAt (ω)], DP (t, ω) = [σPt (ω), σPt (ω)],

for certain processes (σP , σA, σP , σA) ∈
(
H0(R∗+,F)

)4. We refer to their paper for an inter-
pretation of such model. To conclude this section, we define the set of weak solutions to the
SDE (4.2.1) associated to the beliefs of the Principal of the Agent

NA(t, x) = {(P, ν) ∈ N (t, x) : P ∈ PA(t, x)} , NP (t, x) = {(P, ν) ∈ N (t, x) : P ∈ PP (t, x)} .

We define the sets NA and NP equivalently. The importance of these sets is that, as explained
in the next section, both the Principal and the Agent consider that the volatility of the
outcome process is chosen from one of them, according to their beliefs.

4.3 The contracting problem

We study a generalization of both the classical problem of Holmström and Milgrom [53]
and the problem of moral hazard under volatility uncertainty studied in [64, 125]. In our
model, the Agent is hired by the Principal to control the drift of the outcome process X, but
neither side have certainty about what is the volatility of the project. Both individuals have
a "worst-case" approach to the contract, in the sense that they act as if a third player, the
"Nature", was playing against them by choosing the worst possible volatility.

153



4.3.1 Admissible efforts

As usual in the literature, we work under the weak formulation of the Principal-Agent prob-
lem. Therefore, the set of controls of the Agent is restricted to the ones for which an appro-
priate change of measure can be applied to the weak solutions to SDE (4.2.1). In this section
we precise the condition required on a control to be an admissible effort and the impact of
the actions of the Agent in the outcome process.

The Agent exerts an effort α ∈ A to manage the project, unobservable by the Principal,
impacting the outcome process through the drift coefficient b : [0, T ] × Ω × A × N −→ Rn,
which satisfies that b(·, a, n) is an F-progressively measurable process for every (a, n) ∈ A×N .
The actions of the Agent are costly for him, so his benefits are penalized by a cost function
c : [0, T ]× Ω× A −→ R such that for every a ∈ A, c(·, a) is an F−progressively measurable
process. We assume that for some p > 1 there exists κ ∈ (1, p] such that

sup
P∈PA

EP

[
ess supP

0≤t≤T
EP

[(∫ T

0

sup
a∈A
|c(s,X, a)|κds

) p
κ ∣∣∣F+

t

]]
< +∞. (4.3.1)

The Agent discounts the future through a map k : [0, T ] × Ω × A × N −→ R, such that
k(·, a, n) is an F−progressively measurable process for every (a, n) ∈ A × N . For some
(`,m,m) ∈ [1,+∞) × [`,+∞) × (0, ` + m − 1], we impose the following conditions on the
maps b, c and k.

Assumption 4.3.1 (H`,m,m) There exists 0 < κ < κ such that for any (t, x, a, η) ∈ [0, T ]×
Ω× A×N

(i) The drift b satisfies

‖b(t, x, a, η)‖ ≤ κ
(
1 + ‖x‖t,+∞ + ‖a‖`

)
, ‖∂ab(t, x, a, η)‖ ≤ κ

(
1 + ‖a‖`−1

)
.

(ii) The map a 7−→ c(t, x, a) is increasing, strictly convex and continuously differentiable
for any (t, x) ∈ [0, T ]× Ω and satisfies

0 ≤ c(t, x, a) ≤ κ

(
1 + ‖x‖t,∞ + ‖a‖`+m

)
,

κ‖a‖m ≤ ‖∂ac(t, x, a)‖ ≤ κ

(
1 + ‖a‖`+m−1

)
and lim|a|→∞

c(t, x, a)

‖a‖` = +∞.

(iii) The discount factor k is uniformly bounded by κ.

Remark 4.3.1 Observe that for (`,m,m) = (1, 1, 1) the model studied in [64] is recovered.

We present finally the definition of admissible efforts of the Agent.
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Definition 4.3.1 (Admissible efforts) A control process α ∈ A is said to be admissible, if
for every (P, ν) ∈ NA the following process is an (F,P)-martingale

(
E
(∫ t

0

σ>(σσ>)−1(s,X, νs)b(s,X, αs, νs) · dW P
s

))

t∈[0,T ]

.

We denote by A the set of admissible efforts.

To conclude, we present the impact of the actions of the Agent in the outcome process.
Consider an admissible effort α ∈ A and (t, x) ∈ [0, T ] × Ω. For every subset N ⊂ N (t, x)
define

N α :=

{
(Pα, ν),

dPα

dP
= E

(∫ T

t

σ>(σσ>)−1(s,X, νs)b(s,X, αs, νs) · dW P
s

)
, (P, ν) ∈ N

}
.

Thus, under Assumption (H`,m,m), by Girsanov’s Theorem we have for any α ∈ A, and for
any (Pα, ν) ∈ N α

Xs = xt +

∫ s

t

b(r,X, αr, νr)dr +

∫ s

t

σ(r,X, νr)dW
α
r , s ∈ [t, T ], Pα − a.s., (4.3.2)

where Wα is a Pα−Brownian motion. More precisely,

Wα := W P −
∫ ·

t

σ>(σσ>)−1(r,X, νr)b(r,X, αr, νr)dr,

for some P ∈ P .

4.3.2 Admissible contracts

The Principal offers to the Agent a final salary taking place on the horizon T . Since the
Principal can observe merely the outcome process X, a contract corresponds to an FT -
measurable random variable ξ. The Agent benefits from the payments of the Principal
through his utility function UA : R −→ R, which depends on his terminal remuneration
and is a continuous, increasing and concave map. The Principal benefits from her wealth,
penalized by the salary given to the Agent, through her utility function UP : R −→ R which is
a continuous, increasing and concave map. The outcome process is not necessary monetary so
the Principal possesses a liquidation function L : R −→ R which is assumed to be continuous
with linear growth. The following (classical) notion of admissibility for the set of contracts
proposed by the Principal is due to the fact that we will reduce later the problem of the
Agent to solve a 2BSDE.

Definition 4.3.2 (Admissible contracts) A contract ξ is called admissible, if

• For some p > 1 there exists κ ∈ [1, p) such that UA(ξ) ∈ Lp,κ0 (PA).

• For any (P, ν) ∈ NP we have EP [UP (L(XT )− ξ)] < +∞.

We denote by C the class of admissible contracts.
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4.3.3 The problem of the Agent

For a given contract ξ ∈ C offered by the Principal, the utility of the Agent at time t = 0, if
he performs the action α ∈ A, is given by his worst-case approach over the set N α

A of weak
solutions to (4.2.1) associated to his beliefs. That is

uA0 (ξ, α) := inf
(P,ν)∈NαA

EP
[
Kα,ν0,TUA(ξ)−

∫ T

0

Kα,ν0,s c(s,X, αs)ds

]
,

where

Kα,νs,t := exp

(
−
∫ t

s

k(u,X, αu, νu)du

)
, 0 ≤ s ≤ t ≤ T.

The problem of the Agent, consisting in finding the action which maximizes his utility, is
therefore

UA
0 (ξ) := sup

α∈A
inf

(P,ν)∈NαA
EP
[
Kα,ν0,TUA(ξ)−

∫ T

0

Kα,ν0,s c(s,X, αs)ds

]
. (4.3.3)

We will denote by A?(ξ) the set of optimal α ∈ A when ξ is offered, and define the set of
optimal weak solutions

N ?
A(ξ) :=

⋃

α?∈A?(ξ)

N α?

A .

4.3.4 The problem of the Principal

Since the strategy of the Principal is to anticipate the response of the Agent to the offered
contracts, she is restricted to offer contracts such that the Agent can optimally choose his
actions. Moreover, the Agent accepts only contracts under which he obtains more benefits
than his reservation utility R0. All of this implies that the set of admissible contracts is
restricted to the following set

Ξ := {ξ ∈ C, A?(ξ) 6= ∅, UA
0 (ξ) ≥ R0}.

Notice that for any ξ ∈ Ξ, the set A?(ξ) is not necessarily reduced to a singleton. As is
common in the literature, we will assume that when there is more than one optimal strategy
for the Agent, he chooses one which is best for the Principal. We denote such a strategy by
α?(x, ξ). Thus, the problem of the Principal is to solve

Up
0 := sup

ξ∈Ξ
inf

(P,ν)∈Nα
?(x,ξ)

P

EP [UP (L(XT )− ξ)] . (4.3.4)

Remark 4.3.2 For the sake of simplicity, we do not add any discount factor for the Princi-
pal’s problem (4.3.4). A model dealing with a discount factor kP : [0, T ]×Ω −→ R could be
easily studied and does not add any difficulties, as soon as kP is sufficiently integrable, by
modifying the HJBI equation (4.5.11) below.
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4.4 The Agent’s problem: a 2BSDE’s story

In this section we study the Agent’s problem (4.3.3). We follow both the study made in
Section 4.1 of [64] by extending it to a more general framework, and [28] by adding uncertainty
on the volatility. We mention also that another approach which does not use the theory of
2BSDEs has been proposed in [125].

4.4.1 Definition of the Hamiltonian

Define the function F : [0, T ]× Ω× R× Rd × A×N −→ R by

F (t, x, y, z, α, ν) := −k(t, x)y − c(t, x, α) + b(t, x, α, ν) · z.

Define also for every (t, x,Σ) ∈ [0, T ]× Ω× S+
d the set

Vt(x,Σ) :=
{
ν ∈ N, σ(t, x, ν)σ>(t, x, ν) = Σ

}
,

and denote by V(σ̂2) the set of controls ν with values in Vt(x, σ̂
2
t ), dt ⊗ P-a.e. for every

P ∈ PA.

The Hamiltonian H : [0, T ] × Ω × R × Rd × S+
d −→ R associated with the problem of the

Agent (4.3.3) is defined by (see [20])

H(t, x, y, z, γ) := inf
Σ∈S+

d

{
1

2
Tr(Σγ) + sup

α∈A
inf

ν∈Vt(x,Σ)
F (t, x, y, z, α, ν)

}
.

Let us define the map F ? : [0, T ]× Ω× Rd+1 × S+
d −→ R by

F ?(t, x, y, z,Σ) := sup
α∈A

inf
ν∈Vt(x,Σ)

F (t, x, y, z, α, ν).

We thus state a fundamental lemma on the growth of any control α? which maximizes F ?(·).
We refer to the proof of [42, Lemma 4.1] which fits our setting.

Lemma 4.4.1 Let Assumption (H`,m,m) hold. Then, for any (t, x, y, z,Σ) ∈ [0, T ] × Ω ×
Rd+1 × S+

d and for any maximiser α? of F ?(t, x, y, z,Σ) with ν ∈ Vt(x,Σ), there exists some
positive constant C such that

‖α?(t, x, y, z,Σ)‖ ≤ C
(

1 + ‖z‖ 1
m+1−`

)
,

|F ?(t, x, y, z,Σ)| ≤ C
(

1 + ‖x‖t,∞ + |y|+ ‖z‖ `+m
m+1−`

)
.
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4.4.2 2BSDEs representation of the Agent’s problem

Consider the following 2BSDE

Yt = UA(ξ) +

∫ T

t

F ?(s,X, Ys, Zs, σ̂
2
s)ds−

∫ T

t

Zs · dXs −
∫ T

t

dKs, PA − q.s. (4.4.1)

Recall now the notion of solution to this 2BSDE introduced in [116] and extended in [93].

Definition 4.4.1 We say that a triplet (Y, Z,K) is a solution to the 2BSDE (4.4.1) if there
exists p > 1 such that (Y, Z,K) ∈ Sp0(FPA+ ,PA)×Hp

0(FPA ,PA)×Kp
0(FPA ,PA) satisfies (4.4.1)

and K satisfies the minimality condition

Kt = ess infP
P′∈PA[P,F+,t]

EP′
[
KT

∣∣∣FP,+
t

]
, t ∈ [0, T ], P− a.s., ∀P ∈ PA. (4.4.2)

Remark 4.4.1 Similarly to [28], we use here the result of [81] for stochastic integral by
considering the aggregative version of the non-decreasing process K.

From now, we set the standing assumption to be used in all the following results

Assumption 4.4.1 (S) For some (`,m,m) ∈ [1,+∞) × [`,+∞) × (0, ` + m − 1] with
`+m
m+1−` ≤ 2, Assumption (H)`,m,m holds together with Assumptions 4.2.1.

We have the following result which ensures that the 2BSDE (4.4.1) is well-posed. Its proof
is postponed to the Appendix.

Lemma 4.4.2 Under Assumption (S), the 2BSDE (4.4.1) has a unique solution (Y, Z,K)
for any ξ in C.

The next Theorem is the main result of this section and it provides an equivalence between
solving the Agent’s problem (4.3.3) and the 2BSDE (4.4.1). Its proof is postponed to the
Appendix and is similar to the proof of [28, Proposition 5.4], being its extension to the
worst-case volatility case.

Theorem 4.4.1 Let Assumption (S) hold and denote by (Y, Z,K) the solution to the 2BSDE
(4.4.1). Then, the value function of the Agent is given by

UA
0 (ξ) = sup

α∈A
inf

(P,ν)∈NαA
EP [Y0] . (4.4.3)

Moreover, (α?,P?, ν?) ∈ A?(ξ)×N ?
A(ξ) if and only if (α?,P?, ν?) ∈ A×NA and satisfies

(i) (α?, ν?) attains the sup-inf in the definition of F ?(·, X, Y, Z, σ̂2), dt⊗ P?−a.e.,

(ii) KT = 0, P?−a.s.
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To conclude this section, let us comment the intuition behind this result and the limitations
of our model.

Remark 4.4.2 If the volatility of the outcome process is fixed and the Agent controls only
the drift, it is well-known that his value function is the solution to a BSDE (see section 1.2.1
in the Introduction of the Thesis). The worst-case approach of the Agent makes his value
function be the infimum of BSDEs and therefore the solution to a 2BSDE. This reasoning
works because the Agent controls only the drift and not the volatility of the outcome. Indeed,
by considering a controlled volatility coefficient σ(t, x, α, ν), the worst-case approach of the
Agent induces a first 2BSDE and the control α induces a second 2BSDE on top of that.
Currently, such kind of 2BSDEs control has not been studied in the literature.

4.5 The Principal’s problem

In this section, we aim at solving the contracting problem (4.3.4). This corresponds to an
extension of both [28] to the uncontrolled volatility case and [64] in a more general model,
without assuming that a dynamic programming principle holds for the value function of the
Principal. We follow the ideas of [11, 12, 115].

4.5.1 A pathological stochastic control problem

To facilitate the understanding of this section, we provide a general overview of the method
we use, dividing it in the following steps.

Step 1. In Section 4.5.2, we rewrite the set of admissible contracts and the Principal’s
problem (4.3.4) making use of the results obtained in Section 4.4. We also make a distinction
between the case in which the estimation sets of the Principal and the Agent are disjoint and
the case in which they are not.

Step 2. In Section 4.5.3, we show that if the beliefs of the Principal and the Agent are
disjoints, there is a degeneracy in the sense that the Principal can propose to the Agent a
sequence of admissible contracts such that asymptotically she gets her maximal utility.

Step 3. We solve next the problem of the Principal in Section 4.5.4 when the beliefs about
the volatility of the Principal and the Agent are not disjoint by restricting the study to
piece-wise constant controls and by using Perron’s method.

In the following, we suppose that (S) and the next assumption are enforced.

Assumption 4.5.1 (Markovian case) All the objects considered are Markovian, i.e. they
depend on (t,X·) only through (t,Xt).
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Remark 4.5.1 Assumption 4.5.1 may be removed if we deal with the theory of path de-
pendent PDEs (see among others [38, 98]). Here, we assume that it holds for the sake of
simplicity and to focus on the procedure to solve the Principal’s problem.

4.5.2 Reformulation of the problem and the set of admissible con-
tracts

The solution to the problem of the Agent provides a very particular form for UA(ξ). Indeed,
let (Y, Z,K) be the solution of 2BSDE (4.4.1), then

UA(ξ) = Y0 −
∫ T

0

F ?(s,Xs, Ys, Zs, σ̂
2
s)ds+

∫ T

0

Zs · dXs +

∫ T

0

dKs, PA − q.s., (4.5.1)

the process K satisfies the minimality condition (4.4.2), and

sup
α∈A

inf
(P,ν)∈NαA

EP [Y0] ≥ R0.

Let us define the set of F0−measurable random variables

Y0 :=

{
Y0, sup

α∈A
inf

(P,ν)∈NαA
EP [Y0] ≥ R0

}
.

Then, for any contract ξ ∈ Ξ there exists a triplet (Y0, Z,K) ∈ Y0 × Hp
0(FNA) × Kp

0(FNA)
such that (4.4.2) and (4.5.1) hold. Since such a triplet is unique, we can establish a one-to-
one correspondence between the set of admissible contracts Ξ and an appropriate subset of
Y0 × Hp

0(FNA) × Kp
0(FNA). However, as explained in [64], decomposition (4.5.1) only holds

PA−quasi surely and we have to take this fact into account in order to provide a suitable
characterization of the set of admissible contracts by means of this formula.

For any (Y0, Z,K) ∈ Y0×Hp
0(FNA)×Kp

0(FNA) such that K satisfies (4.4.2) and every (P, t) ∈
PA × [0, T ], we define the process Y Y0,Z,K by

Y Y0,Z,K
t := Y0 −

∫ t

0

F ?(s,Xs, Y
Y0,Z,K
s , Zs, σ̂

2
s)ds+

∫ t

0

Zs · dXs +

∫ t

0

dKs, P− a.s. (4.5.2)

Recall that since k is bounded, F ? is Lipschitz with respect to y, thus Y Y0,Z,K is well defined.
The definition is independent of the probability P because the stochastic integrals can be
defined pathwise (see [28, Definition 3.2] and the following paragraph).

Fix now Y0 ∈ Y0 and let KY0 be the set of pairs (Z,K) ∈ Hp
0(FNA) × Kp

0(FNA) sufficiently
integrable such that U−1

A (Y Y0,Z,K
T ) ∈ CPA and with K satisfying (4.4.2). The Principal has

thus to propose a contract with the form U−1
A (Y Y0,Z,K

T ) under every probability measure in
the space PA. Outside of the support of this space, the Principal is completely free on the
salary given to the Agent.
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We denote by D the set of FT−measurable random variables ξ such that

ξ =

{
U−1
A (Y Y0,Z,K

T ), PA − q.s.,
ξ̂, PP\PA − q.s.,

(4.5.3)

for some triplet (Y0, Z,K) ∈ Y0 × KY0 and some ξ̂ ∈ CPP \PA . The integrability conditions
imposed on Z, K and ξ̂ ensure us that D ⊂ Ξ. In fact, from the reasoning given in the para-
graphs above we have that D coincides with Ξ and (4.5.3) corresponds to a characterization
of the set of admissible contracts. Therefore, the problem of the Principal (4.3.4) becomes

UP
0 = sup

(Y0,Z,K,ξ̂)∈Y0×KY0
×CPP \PA

UP
0 (U−1

A (Y Y0,Z,K
T ), ξ̂), (4.5.4)

with the following slight abuse of notations

UP0 (X , ξ̂) := min

{
inf

(P,ν)∈Nα
?(X )

P ∩Nα
?(X )

A

EP [UP (L(XT )−X )] , inf
(P,ν)∈Nα

?(X )
P \Nα

?(X )
A

EP
[
UP (L(XT )− ξ̂)

]}
.

4.5.3 Degeneracy for disjoint beliefs

Similarly to the study made in [64, Section 4.3.1.], if the believes of the Agent and the
Principal are disjoint, we face a pathological case caused by the fact that the Agent and the
Principal do not somehow live in the same world. Indeed, if PA ∩ PP = ∅ we have

UP
0 = sup

(Y0,Z,K,ξ̂)∈Y0×KY0
×CPP

inf
(P,ν)∈Nα

?(X )
P

EP
[
UP (L(XT )− ξ̂)

]
, (4.5.5)

with X = U−1
A (Y Y0,Z,K

T ). We then have the following proposition.

Proposition 4.5.1 If PP ∩ PA = ∅ then UP
0 = limx→∞ UP (x).

Proof. Let n be any positive integer and define ξ̂n := L(XT ) − n. Take any (Y0, Z,K) ∈
Y0 ×KY0 and set the admissible contract

ξn :=

{
U−1
A (Y Y0,Z,K

T ), PA − q.s.,
ξ̂n, PP − q.s.

Then, we have

UP
0 ≥ inf

(P,ν)∈Nα
?(X )

P

EP [UP (L(XT )− L(XT ) + n)] = UP (n).

By making n→∞ we conclude, since the other inequality is trivial.
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This result is the same as in [64, Proposition 4.2]. Since the Agent does not see the random
variables defined outside of his set of beliefs PA, the Principal is completely free on the design
of the contract on PP . Thus, the Principal can offer a contract which satisfies the reservation
utility constraint on PA and which attains asymptotically her maximal utility on PP . By
doing this the Principal cancel all her risk. This situation is not realistic, since a Principal
should not hire an Agent with a completely different point of view on the market behaviour.

4.5.4 Solution for common beliefs.

We now turn to a more realistic situation and we study the problem when PA ∩ PP 6= ∅. In
this case, as showed in [64, Proposition 4.3], (4.5.4) becomes

UP
0 = sup

Y0∈Y0

UP
0 (Y0), (4.5.6)

with the abuse of notation

UP
0 (Y0) := sup

(Z,K)∈KY0

inf
(P,ν)∈Nα

?(X )
P ∩Nα

?(X )
A

EP
[
UP

(
L(XT )− U−1

A (Y Y0,Z,K
T )

)]
, (4.5.7)

with X = U−1
A (Y Y0,Z,K

T ).

4.5.4.1 A natural restriction to piece-wise constant controls

As explained in [109], then in [26, 28], the problem (4.5.7) coincides with the weak formulation
of a (non standard) zero-sum stochastic differential game with the following characteristics

• control variables: (Z,K) ∈ KY0 for the Principal and (P, ν) ∈ N α?(X )
P ∩ N α?(X )

A for the
Nature,

• state variables: the output process Xx,Θ and the continuation utility of the Agent Y y,Θ,
with dynamic given for any t ≤ s ≤ T , P− a.s., by





X t,x,Θ
s = x+

∫ s

t

b
(
r,X t,x,Θ

r , α? (X )) , νr
)

dr +

∫ s

t

σ(r,X t,x,Θ
r , νr)dW

α?(X )
r ,

Y t,y,Θ
s = y +

∫ s

t

Zr · b
(
r,X t,x,Θ

r , α? (X )) , νr
)
− F ?(r,X t,x,Θ

r , Y t,y,Θ
r , Zr, σ̂

2
r)dr

+

∫ s

t

Zr · σ(r,X t,x,Θ
r , νr)dW

α?(X )
r +

∫ s

t

dKr.

,

with Θ ≡ (Z,K, ν) and X = U−1
A (Y Y0,Z,K

T ).

We now fix an arbitrary Y0 ∈ Y0 and turn to the procedure to solve (4.5.7). The main issue
is that the class of controls KY0 is too general since, as explained in [64, Section 4.3.2] and
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[26, 28], the non-decreasing process K impacts the dynamic of Y Y0,Z,K only throught the
minimality condition (4.4.2) and more information on this process is required to solve the
problem. As emphasized in [115, Remark 3.4], we need to consider piece-wise controls and
restrict our investigation on elementary strategies. This issue is intrinsically linked to the
fact that we are looking for a zero-sum game between the Principal and the Nature. We now
consider a restricted set of controls piece-wise constant included in KY0 .

Definition 4.5.1 (Elementary controls starting at a stopping time) Let t ∈ [0, T ] and τ a
stopping time Gts-adapted for any s ∈ [t, T ]. We say that an Rd × R+-valued process (Z,K)
(resp. ν ∈ N) is an elementary control starting at τ for the Principal (resp. the Nature) if
there exist

• a finite sequence (τi)0≤i≤n of Ft-adapted stopping times such that

τ = τ0 ≤ · · · ≤ τn = T,

• a sequence (zi, ki)1≤i≤n of Rd × R+-valued random variables such that zi, ki are F tτi−1
-

measurable and

Zt =
n∑

i=1

zi1τi−1<t≤τi , Kt =
n∑

i=1

ki1τi−1<t≤τi ,

resp. a sequence (ni)1≤i≤n ofN -valued random variables such that ni is F tτi−1
−measurable

and

νt =
n∑

i=1

ni1τi−1<t≤τi .

We denote by U(t, τ) (resp. V(t, τ)) the set of elementary controls of the Principal (resp. the
Nature). If τ = t = 0, we just write U (resp. V).

We now set
UY0 := KY0 ∩ U ,

and for any (Z,K) ∈ UY0

VY0,Z,K :=
{

(P, ν) ∈ N α?(X )
P ∩N α?(X )

A

∣∣∣ν ∈ V
}
.

We thus consider the following restricted problem

V P
0 = sup

Y0∈Y0

V P
0 (Y0), (4.5.8)

with the abuse of notation

V P
0 (Y0) := sup

(Z,K)∈UY0

inf
(P,ν)∈VY0,Z,K

EP
[
UP

(
L(XT )− U−1

A (Y Y0,Z,K
T )

)]
. (4.5.9)

The literature in stochastic control problems, in particular [115, 90, 117], leads us to expect
that in our problem the equality UP

0 = V P
0 holds. That is, the value of the general problem

(4.5.6) coincides with its restriction (4.5.8) to piece-wise defined controls. In the following,
we will focus on the restricted problem (4.5.8), that we aim to solve completely.
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4.5.4.2 The intuitive HJBI equation

Assumption (PPD) in [64] seems to be too complicated to prove2 for a general class of
processes K, since it requires a deep study of the measurability of the dynamic version of the
value function associated with the problem (4.5.8). To avoid this difficulty linked directly to
the ambiguity on the volatility of the model, we will deal with the so-called Perron’s method
by following the same ideas as in [11, 13, 12, 115]. Recall that if one aims at associating
(4.5.7) with an HJBI equation, as usual in the stochastic control theory, the problem seems
to be ill-posed and we need more information on the process K. We thus expect to have
an optimal contract ξ := U−1

A (Y Y0,Z,K
T ) for which the process K is absolutely continuous.

More precisely, by following [28, Remark 5.1] we expect the optimal contract to belong to
the subclass of contracts for which there exists a GNA-predictable process Γ with values in
Md,d(R) such that

Kt =

∫ t

0

(
F ?(s, Ys, Zs, σ̂

2
s) +

1

2
Tr
(
σ̂2
sΓs
)
−H(s,Xs, Ys, Zs,Γs)

)
ds. (4.5.10)

This intuition leads us to set the following Hamiltonian function G : [0, T ] × Rd × R × R ×
Rd × R× Sd,d × R× Rd −→ R defined by

G(t, x, y, u, p, p̃, q, q̃, r) := sup
(z,γ)∈Rd×Md,d(R)

inf
n∈N

g(t, x, y, u, p, p̃, q, q̃, r, z, γ, n),

where

g(t, x, y, u, p, p̃, q, q̃, r, z, γ, n) := p · b(t, x, α?(t, x, y, z, σ̂t), n) +
1

2
Tr
(
σ(t, x, n)σ(t, x, n)>q

)

+ p̃

(
1

2
Tr
(
σ(t, x, n)σ(t, x, n)>γ

)
−H(t, x, y, z, γ)

)

+ p̃ b(t, x, α?(t, x, y, z, σ̂t), n) · z + Tr
(
z>σ(t, x, n)σ(t, x, n)>r

)

+
1

2
q̃ Tr

(
z>σ(t, x, n)σ(t, x, n)>z

)
.

We can now set the HJBI equation which is hopefully strongly connected to the problem of
the Principal (4.5.9)
{
−∂tu(t, x, y)−G(t, x, y, u,∇xu, ∂yu,∆xxu, ∂yyu,∇xyu) = 0, (t, x, y) ∈ [0, T )× Rd × R
u(T, x, y) = UP (L(x)− U−1

A (y)).

(4.5.11)

4.5.4.3 The one dimensional case

In this section we lose generality by considering the one-dimensional case and imposing
additional assumptions on the drift coefficient b and the volatility coefficient σ. We enforce

2Another approach not considered in this work, may consist in proving a weak dynamic programming
principle by following [18, 14].

164



these conditions to prove that the supremum over (z, γ) in the definition of G can be reduced
to a supremum over a compact set. This result is fundamental in the proof of Theorem 4.5.1
below, but not the one-dimensionality. We point out that if we can extend Lemma 4.5.1
below to the general finite dimensional case, then Theorem 4.5.1 follows directly. We indeed
believe we can extend this result under appropriate conditions for b and σ.

Assumption 4.5.2 b and σ are continuous functions which satisfy the following properties.

1. For every (t, x, α) ∈ [0, T ] × R × A and for every x global minimum of σ(t, x, ·), the
following limit is finite

lim
ν→ν

b(t, x, α, ν)− b(t, x, α, ν)

σ(t, x, ν)− σ(t, x, ν)
.

2. For every (t, x, α) ∈ [0, T ] × R × A and for every x global maximum of σ(t, x, ·), the
following limit is finite

lim
ν→ν

b(t, x, α, ν)− b(t, x, α, ν)

σ(t, x, ν)− σ(t, x, ν)
.

Under Assumption 4.5.2, we have the following result, whose proof is postponed to the
Appendix 4.8.

Lemma 4.5.1 Let q̃ < 0. Then, for every (t, x, y, u, p, p̃, q, r) ∈ [0, T ] × R × R × R × R ×
R× R× R there exists R := R(t, x, y, u, p, p̃, q, q̃, r) such that

G(t, x, y, u, p, p̃, q, q̃, r) = sup
|z|≤R

sup
|γ|≤R

inf
n∈N

g(t, x, y, u, p, p̃, q, q̃, r, z, γ, n).

Remark 4.5.2 As can be seen in the proof of the previous Lemma, when p̃ < 0, there are val-
ues of γ ∈ R such that the optimal ν?G in the definition of the HamiltonianG(t, x, y, u, p, p̃, q, q̃, r)
is different from the optimal ν?H in the definition of H(t, x, y, z, γ). This means that if the
volatility of the outcome process takes one of these values, then the worst-case response of
the Nature is different from the point of view of the Principal and the Agent. This is not
the case in [125], where the author proves that in his particular model the two worst-case
responses of the Nature coincide.

4.5.4.4 Perron’s method

We now focus on a deep study of PDE (4.5.11). We assume that b and σ are continuous
functions and that Lemma 4.5.1 holds. We recall that the proof of Theorem 4.5.1 does not
rely on the one–dimensional setting and all its arguments work as soon as Lemma 4.5.1 holds.

In this section we drop the assumptions made in [64] and we prove a verification result for
a non-smooth value function, by following the Stochastic Perron’s method introduced by
Bayraktar and Sîrbu [11, 13, 12, 115]. More precisely, we show that the value function of the
Principal associated with the problem (4.5.9) is a viscosity solution to the HJBI equation
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(4.5.11). The approach we follow avoids to prove (or assume) a dynamic programming princi-
ple and only deals with comparison results. Moreover, the dynamic programming principle is
a consequence of the used method. We adapt now the definition of stochastic semi-solutions
to stochastic differential games [115] to our framework under the weak formulation.

Definition 4.5.2 (Stopping rule) For t ∈ [0, T ], let X̂ be the canonical process on C
(
[t, T ] ,Rd+1

)
.

Define the filtration Bt = (Bts)t≤s≤T by

Bts := σ(X̂(u), t ≤ u ≤ s), t ≤ s ≤ T.

τ ∈ C
(
[t, T ] ,Rd+1

)
is a stopping rule starting at t if it is a stopping time with respect to Bt.

Definition 4.5.3 (Stochastic semisolutions of the HJBI equation) Let Y0 ∈ Y0.

• A function v : [0, T ] × Rd × R −→ R is a stochastic sub-solution of HJBI equation
(4.5.11) if

(i-) v is continuous and v(T, x, y) ≤ UP (L(x)− U−1
A (y)) for any (x, y) ∈ Rd × R,

(ii-) for any t ∈ [0, T ] and for any stopping rule τ ∈ Bt, there exists an elementary
control (Z̃, K̃) ∈ UY0(t, τ) such that for any (Z,K) ∈ UY0(t, t), any (P, ν) ∈ VY0(t, t)
and each stopping rule ρ ∈ Bt with τ ≤ ρ ≤ T we have

v(τ ′, Xτ ′ , Yτ ′) ≤ EP [v(ρ′, Xρ′ , Yρ′)
∣∣F tτ ′

]
, P− a.s., (4.5.12)

where for any (x, y, ω) ∈ R2 × Ω,

X := X t,x,(Z,K)⊗τ (Z̃,K̃),ν , Y := Y t,y,(Z,K)⊗τ (Z̃,K̃),ν ,

τ ′(ω) := τ(X t,x,(Z,K)⊗τ (Z̃,K̃),ν
· (ω), Y t,y,(Z,K)⊗τ (Z̃,K̃),ν

· (ω)),

ρ′(ω) := ρ(X t,x,(Z,K)⊗ρ(Z̃,K̃),ν
· (ω), Y t,y,(Z,K)⊗τ (Z̃,K̃),ν

· (ω)).

We denote by V− the set of stochastic sub-solution of (4.5.11).

• A function v : [0, T ] × Rd × R −→ R is a stochastic super-solution of HJBI equation
(4.5.11) if

(i+) v is continuous and v(T, x, y) ≥ UP (L(x)− U−1
A (y)) for any (x, y) ∈ Rd × R

(ii+) for any t ∈ [0, T ], for any stopping rule τ ∈ Bt and for any (Z,K) ∈ UY0(t, t),
there exists an elementary control (P̂, ν̃) ∈ VY0(t, τ) such that for every ν ∈ V(t, t)
satisfying (P̂, ν) ∈ VY0(t, t) and every stopping rule ρ ∈ Bt with τ ≤ ρ ≤ T we
have

v(τ ′, Xτ ′ , Yτ ′) ≥ EP̂ [v(ρ′, Xρ′ , Yρ′)
∣∣F tτ ′

]
, P̂− a.s., (4.5.13)

where for any (x, y, ω) ∈ R2 × Ω,

X := X t,x,Z,K,ν⊗τ ν̃ , Y := Y t,x,Z,K,ν⊗τ ν̃ ,

τ ′(ω) := τ(X t,x,Z,K,ν⊗τ ν̃
· (ω), Y t,x,Z,K,ν⊗τ ν̃

· (ω)),

ρ′(ω) := ρ(X t,x,Z,K,ν⊗τ ν̃
· (ω), Y t,x,Z,K,ν⊗τ ν̃

· (ω)).
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We denote by V+ the set of stochastic super-solution of (4.5.11).

To apply Perron’s method we need the following assumption, assuring the existence of
stochastic semi-solutions to the HJBI equation (4.5.11) (see Assumptions 3.4 and 4.3 in
[12]).

Assumption 4.5.3 The sets V+ and V− are non-empty.

As explained in [11, 13] the set V+ is trivially non empty if the function UP is bounded by
above, whereas V− is non empty if UP is bounded by below.

Now we follow the stochastic Perron’s method proposed in [115]. Let us define

v− := sup
v∈V−

v, v+ := inf
v∈V+

v,

and notice that we have from Definition 4.5.3 that for any Y0 ∈ Y0

v−(0, x, Y0) ≤ V P
0 (Y0) ≤ v+(0, x, Y0). (4.5.14)

We thus get the main theorem of this work and we refer to the Appendix 4.9 for the proof.

Theorem 4.5.1 v− is a lower semi-continuous viscosity super-solution of HJBI equation
(4.5.11) and v+ is an upper semi-continuous viscosity sub-solution of HJBI equation (4.5.11).
Moreover, if there exists a comparison result for HJBI equation (4.5.11), i.e. for any lower
semi-continuous viscosity sub-solution v and for any upper semi-continuous viscosity super-
solution v, we have v ≤ v, then

v−(0, x, Y0) = V P
0 (Y0) = v+(0, x, Y0).

4.6 Conclusion

In this work we provide the first comprehensive methodology for Principal-Agent problems
with volatility uncertainty and worst-case approach from both sides. We consider a general
framework in which we characterize the value function of the Agent as the solution to a
second–order BSDE. Concerning the problem of the Principal, we rewrite it as a non–standard
stochastic differential game and we restrict our attention to the sub–problem where only
piece–wise constant controls are allowed. This restricted class of controls is common in the
literature, as in Pham and Zhang [90] and Sîrbu [115]. We expect this restriction does
not suppose any loss of utility for the Principal, based on the results of El Karoui and
Tan [41], in which the approximation of different controlled diffusion problems by piecewise
constant controls is studied. In the restricted problem, we prove that the value function of
the Principal is the unique viscosity solution of the associated HJBI equation by assuming
that this equation satisfies a comparison result. To do so, we follow the Stochastic Perron’s
method of Bayraktar and Sîrbu [11, 12, 13, 115]. This is an improvement with respect to the
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work of Mastrolia and Possamaï [64], in which a dynamic programming principle is assumed.
In fact, in our case the dynamic programming principle is a consequence of the previous
result. We also extend the work of Sung [125] by considering a more general model without
any restrictions on the form of the contracts.

4.7 Appendix

4.7.1 Functional spaces

We introduce the spaces used in this chapter, by following [93]. Let t ∈ [0, T ] and x ∈ Ω
and a family (P(t, x))t∈[0,T ]×x∈Ω of sets of probability measures on (Ω,FT ). In this section,
we denote by X := (Xs)s∈[0,T ] a general filtration on (Ω,FT ). For any XT−measurable real
valued random variable ξ such that supP∈P(t,x) EP[|ξ|] < +∞, we set for any s ∈ [t, T ]

EP,t,x,X+

s [ξ] := ess supP

P′∈P(t,x)[P,X+,t]

EP′ [ξ|Xs].

Let p ≥ 1 and P ∈ P(t, x) and XP the usual P-augmented filtration associated with X.

• Let κ ∈ [1, p], Lp,κt,x (X,P) denotes the space of XT−measurable R−valued random vari-
ables ξ such that

‖ξ‖pLp,κt,x (X,P)
:= sup

P∈P(t,x)

EP
[
ess supP

t≤s≤T

(
EP,t,x,F+

s [|ξ|κ]
) p
κ

]
< +∞.

• Hp
t,x(X,P) denotes the spaces of X-predictable Rd-valued processes Z such that

‖Z‖pHpt,x(X,P)
:= EP

[(∫ T

t

‖σ̂
1
2
s Zs‖2ds

) p
2

]
< +∞.

We denote by Hp
t,x(X,P) the spaces of X-predictable Rd-valued processes Z such that

‖Z‖pHpt,x(X,P)
:= sup

P∈P(t,x)

‖Z‖pHpt,x(P)
< +∞.

• Spt,x(X,P) denotes the spaces of X-progressively measurable R-valued processes Y such
that

‖Y ‖pSpt,x(X,P)
:= EP

[
sup
s∈[t,T ]

|Ys|p
]
< +∞.

We denote by Spt,x(X,P) of X-progressively measurable R-valued processes Y such that

‖Y ‖pSpt,x(X,P)
:= sup

P∈P(t,x)

‖Y ‖pSpt,x(P)
< +∞.
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• Kp
t,x(X,P) denotes the spaces of X-optional R-valued processes K with P−a.s. càdlàg

and non-decreasing paths on [t, T ] with Kt = 0, P− a.s. and

‖K‖pKpt,x(X,P)
:= EP [Kp

T ] < +∞.

We denote by Kp
t,x((XP)P∈P(t,x)) the set of families of processes (KP)P∈P(t,x) such that

for any P ∈ P(t, x), KP ∈ Kp
t,x(XP,P) and

sup
P∈P(t,x)

‖KP‖Kpt,x(P) < +∞.

• Mp
t,x(X,P) denotes the spaces of X-optional R-valued martingalesM with P−a.s. càdlàg

paths on [t, T ] with Mt = 0, P− a.s. and

‖M‖pMp
t,x(X,P)

:= EP
[
[M ]

p
2
T

]
< +∞.

We denote by Mp
t,x((XP)P∈P(t,x)) the set of families of processes (MP)P∈P(t,x) such that

for any P ∈ P(t, x), MP ∈Mp
t,x(XP,P) and

sup
P∈P(t,x)

‖MP‖Mp
t,x(P) < +∞.

When t = 0 we simplify the previous notations by omitting the dependence on x.

4.7.2 Proofs for the Agent’s problem

Proof. [Proof of Lemma 4.4.2.] Since `+m
m+1−` ≤ 2, we have from Lemma 4.4.1 that the 2BSDE

(4.4.1) has quadratic growth with respect to z and coincide with the framework of [94]. In
view of Remark 4.2 in [93], we aim at applying Theorem 4.1 in [93] by slightly changing its
assumptions. More precisely, we replace (i) of Assumption 2.1 in [93] by Assumption 2.1 in
[94], excepting part (iii). Condition (iv) in [94] is a consequence of Lemma 4.4.1. Conditions
(v)-(vi) in [94] holds in our setting because k is bounded. Therefore, Assumption 2.1 in [94]
is satisfied.

Finally, we turn to parts (ii)–(v) of Assumption 2.1 in [93]. The terminal condition UA(ξ)
belongs to Lp,κ0,x(PA) by definition of the admissible contracts and the conditions imposed on
c in (H`,m,m) ensure that (ii) holds. The parts (iii), (iv) and (v) correspond exactly to our
Assumption 4.2.1. �

Proof. [Proof of Theorem 4.4.1.] We first prove that (4.4.3) holds with a characterization
of the optimal effort of the Agent as a maximizer of the 2BSDE (4.4.1). The proof is divided
in 4 steps.

• Step 1: For every (α, ν) ∈ A×V(σ̂2) denote by (Y α,ν , Zα,ν , Kα,ν) the solution of the
following controlled 2BSDE, defined PA − q.s. (well-posedness holds by the same arguments
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employed in the proof of Lemma 4.4.2)

Y α,ν
t = UA(ξ) +

∫ T

t

F (s,X, Y α,ν
s , Zα,ν

s , αs, νs)ds−
∫ T

t

Zα,ν
s · dXs −

∫ T

t

dKα,ν
s −

∫ T

0

dMα,ν
s .

(4.7.1)
Consider also, for every α ∈ A, the solution (Y α, Zα, Kα) of the following 2BSDE, defined
PA − q.s.

Y α
t = UA(ξ) +

∫ T

t

inf
ν∈Vs(x,σ̂2

s)
F (s,X, Y α

s , Z
α
s , αs, ν)ds−

∫ T

t

Zα
s · dXs −

∫ T

t

dKα
s −

∫ T

0

dMα
s .

(4.7.2)
We have from comparison theorems for 2BSDEs (which are inherited by the classical com-
parison results for BSDEs)

Y0 = ess supP

α∈A
Y α

0 , P− a.s. for every P ∈ PA

= ess supP

α∈A
ess infP
ν∈V(σ̂2)

Y α,ν
0 , P− a.s. for every P ∈ PA. (4.7.3)

• Step 2: Next, consider for any P ∈ PA the triple (YP,α,ν
t ,ZP,α,ν

t ,MP,α,ν
t )t∈[0,T ] which

is the solution of the (well-posed) linear BSDE

YP,α,ν
0 = UA(ξ)+

∫ T

0

F (s,X,YP,α,ν
s ,ZP,α,ν

s , αs, νs)ds−
∫ T

0

ZP,α,ν
s ·dXs−

∫ T

0

dMP,α,ν
s , P−a.s.

(4.7.4)

We will follow the idea of Theorem 4.2 in [93], to prove that for every (α, ν) ∈ A × V(σ̂2),
the solution of the 2BSDE (4.7.1) satisfies the following representation

Y α,ν
0 = ess infP

P′∈PA[P,F+,0]
YP′,α,ν

0 , P− a.s. for every P ∈ PA. (4.7.5)

First, notice that sinceKα,ν is non-decreasing, we have for every P ∈ PA and P′ ∈ PA[P,F+, 0]

Y α,ν
0 ≤ YP′,α,ν

0 , P− a.s.

thus
Y α,ν

0 ≤ ess infP
P′∈PA[P,F+,0]

YP′,α,ν
0 , P− a.s. for every P ∈ PA.

To the reverse inequality, compute for every P ∈ PA

YP,α,ν
t − Y α,ν

t =

∫ T

t

(
F (s,X,YP,α,ν

s ,ZP,α,ν
s , αs, νs)− F (s,X, Y α,ν

s , Zα,ν
s , αs, νs)

)
ds

−
∫ T

t

(
ZP,α,ν
s − Zα,ν

s

)
· dXs +

∫ T

t

dKα,ν
s −

∫ T

t

(
dMP,α,ν

s − dMα,ν
s

)
,P− a.s.
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Which is equivalent to

YP,α,ν
t − Y α,ν

t =

∫ T

t

(
−k(s,X, αs, νs)(YP,α,ν

s − Y α,ν
s ) + b(s,X, αs)

(
ZP,α,ν
s − Zα,ν

s

))
ds

−
∫ T

t

(
ZP,α,ν
s − Zα,ν

s

)
· dXs +

∫ T

t

dKα,ν
s −

∫ T

t

(
dMP,α,ν

s − dMα,ν
s

)
,P− a.s.

Using a linearization (see for instance [39]), we get

YP,α,ν
0 − Y α,ν

0 = EPα
[∫ T

0

Kα,ν0,s dKα,ν
s

∣∣∣∣∣ F0

]
, P− a.s.

Then, from Assumption (H`,m,m) (iii) we deduce that

YP,α,ν
0 − Y α,ν

0 ≥ e−κTEPα
[∫ T

0

dKα,ν
s

∣∣∣∣∣ F0

]
, P− a.s.

SinceKα,ν satisfies the minimality condition (4.4.2), we deduce that YP,α,ν
0 −Y α,ν

0 ≥ 0, P−a.s.
for every P ∈ PA and (4.7.5) holds.

• Step 3: Finally, by denoting cαs := c(s,X, αs), kα,νs = k(s,X, αs, νs), bα,νs =
b(s,X, αs, νs), we can rewrite the BSDE (4.7.4) P− a.s. as

YP,α,ν
0 = UA(ξ) +

∫ T

0

(
−kα,νs YP,α,ν

s − cαs + ZP,α,ν
s · bα,νs

)
ds−

∫ T

0

ZP,α,ν
s · dXs −

∫ T

0

dMP,α,ν
s .

Which is equivalent to

YP,α,ν
0 = UA(ξ) +

∫ T

0

(
−kα,νs YP,α,ν

s − cαs + (σνs )>ZP,α,ν
s · (σνs )>

(
σνsσ

ν>

s

)−1

bα,νs

)
ds

−
∫ T

0

(σνs )>ZP,α,ν
s · dW P

s −
∫ T

0

dMP,α,ν
s .

Defining ẐP,α,ν
s = (σνs )>ZP,α,ν

s , we obtain

YP,α,ν
0 = UA(ξ) +

∫ T

0

(
−kα,νs YP,α,ν

s − cαs + ẐP,α,ν
s · (σνs )>

(
σνsσ

ν>

s

)−1

bα,νs

)
ds

−
∫ T

0

ẐP,α,ν
s · dW P

s −
∫ T

0

dMP,α,ν
s ,

whose solution is

YP,α,ν
0 = EPα,ν

[
Kα,ν0,TUA(ξ)−

∫ T

0

Kα,ν0,s c
α
s ds

∣∣∣∣∣ F0

]
, P− a.s.,

where the measure Pα,ν is equivalent to P and is defined by

dPα,ν

dP
:= E

(∫ T

0

σ>(σσ>)−1(s,X, νs)b(s,X, αs, νs) · dW P
s

)
.
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• Step 4: We have from the previous steps that the measure Pα,ν ∈ PαA and for every
measure P ∈ PA we have P-a.s.

Y0 = ess supP

α∈A
ess infP
ν∈V(σ̂2)

ess infP
P′∈PA[P,F+,0]

EP′α,ν
[
Kα,ν0,TUA(ξ)−

∫ T

0

Kα,ν0,s c
α
s ds

∣∣∣∣∣ F0

]

= ess supP

α∈A
ess infP

(P′,ν)∈NαA [P,F+,0]
EP′
[
Kα,ν0,TUA(ξ)−

∫ T

0

Kα,ν0,s c
α
s ds

∣∣∣∣∣ F0

]
.

By similar arguments to the ones used in the proofs of Lemma 3.5 and Theorem 5.2 of [93],
it follows that

sup
α∈A

inf
(P,ν)∈NαA

EP [Y0] = sup
α∈A

inf
(P,ν)∈NαA

EP
[
K0,TUA(ξ)−

∫ T

0

K0,sc
α
s ds

]

= UA
0 (ξ).

We now turn to the second part of the Theorem with the characterization of an optimal
triplet (α,P, ν) for the optimization problem (4.4.3). From the proof of the first part, it is
clear that a control (α?,P?, ν?) is optimal if and only if it attains all the essential suprema
and infima above. The infimum in (4.7.5) is attained if (ii) holds and equality (4.7.3) holds
if α? and ν? satisfy (i). �

4.8 Proof of Lemma 4.5.1

The proof of Lemma 4.5.1 is based on the following Lemma.

Lemma 4.8.1 Let σ : [c, d] → R be continuous, strictly positive and let q : [c, d] → R be
continuous. Define for every γ ∈ R the map fγ(x) := γσ(x)2 − q(x).

1. Suppose that for every x global minimum of σ, the following limit is finite

` := lim
x→x

q(x)− q(x)

σ(x)− σ(x)
.

Then there exists M > 0 such that fγ attains its minimum over [c, d] at x for every
γ > M .

2. Suppose that for every x global maximum of σ, the following limit is finite

L := lim
x→x

q(x)− q(x)

σ(x)− σ(x)
.

Then there exists m < 0 such that fγ attains its minimum over [c, d] at x for every
γ < m.

Proof.
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1. We suppose without loss of generality that σ attains its minimum over [c, d] at a unique
point x. Define g : [c, d]→ R by

g(x) =

{
q(x)−q(x)
σ(x)−σ(x)

, x 6= x,

`, x = x.

We have that g is continuous on [c, d] and therefore there exists Mg such that

|g(x)| ≤Mg, ∀x ∈ [c, d].

Then, for every γ > M := Mg

2σ(x)
we have

γ >
q(x)− q(x)

2σ(x)(σ(x)− σ(x))
, ∀x ∈ [c, d], x 6= x,

⇐⇒ γ · 2σ(x)(σ(x)− σ(x)) > q(x)− q(x), ∀x ∈ [c, d], x 6= x,

=⇒γ(σ(x) + σ(x))(σ(x)− σ(x)) > q(x)− q(x), ∀x ∈ [c, d], x 6= x,

⇐⇒ γσ(x)2 − q(x) > γσ(x)2 − q(x), ∀x ∈ [c, d], x 6= x.

2. We suppose without loss of generality that σ attains its maximum over [c, d] at a unique
point x. Define G : [c, d]→ R by

G(x) =

{
q(x)−q(x)
σ(x)−σ(x)

, x 6= x,

L, x = x.

We have that G is continuous on [c, d] and therefore there exists MG such that

|G(x)| ≤MG, ∀x ∈ [c, d].

Then, for every γ < m := − MG

2σ(x)
we have

γ <
q(x)− q(x)

2σ(x)(σ(x)− σ(x))
, ∀x ∈ [c, d], x 6= x,

⇐⇒ γ · 2σ(x)(σ(x)− σ(x)) < q(x)− q(x), ∀x ∈ [c, d], x 6= x,

=⇒γ(σ(x) + σ(x))(σ(x)− σ(x)) < q(x)− q(x), ∀x ∈ [c, d], x 6= x,

⇐⇒ γσ(x)2 − q(x) < γσ(x)2 − q(x), ∀x ∈ [c, d], x 6= x.

�

Proof. [Proof of Lemma 4.5.1.] If q̃ < 0, the boundedness of b and σ makes g coercive in
z and the supremum in this variable can be restricted to a compact. The property on γ is
independent of the sign of q̃ and is presented next. Recall the Hamiltonian

H(t, x, y, z, γ) = sup
α∈A

inf
ν∈N

{
1

2
γσ(t, x, ν)2 − k(t, x)y − c(t, x, α) + b(t, x, α, ν)z

}
.

173



It follows from Lemma 4.8.1 the existence of m,M ∈ R such that if γ > M then the infimum
in H is attained at the minimizer ν of σ(t, x, ·) and if γ < m then the infimum in H is
attained at the maximizer ν of σ(t, x, ·).

Suppose now that p̃ > 0. It follows again from Lemma 4.8.1, that for γ big enough, the
infimum in G is attained at the minimizer ν. For γ negative enough, the infimum in G is
attained at the maximizer ν. This means that there exists some R := R(t, x, y, u, p, p̃, q, q̃, r)
such that G and H attain its minima at the same value n ∈ N for |γ| > R. Therefore G
does not depend on γ and the supremum on γ can be restricted to the set |γ| ≤ R.

Suppose finally that p̃ < 0. Then for γ big enough, the infimum in G is attained at the
maximizer ν. For γ small enough, the infimum in G is attained at the minimizer ν. In both
cases, the dependence of G on γ is given by the term p̃|γ|(σ(t, x, ν)2−σ(t, x, ν)2) so it follows
that g is coercive in γ. �

4.9 Proof of Theorem 4.5.1 for the problem of the Prin-
cipal

The following Lemma is used in the proof of Theorem 4.5.1. Its proof is omitted, being a
path-wise approximation of deterministic Lebesgue integrals.

Lemma 4.9.1 Define the process K(Z,Γ) by

Kt(Z,Γ) =

∫ t

0

(
F ?(s, Ys, Zs, σ̂

2
s) +

1

2
Tr
(
σ̂2
sΓs
)
−H(s,Xs, Ys, Zs,Γs)

)
ds. (4.9.1)

Then, for any bounded map ψ, there exists a sequence kn of elementary controls such that
for any ε > 0 and any n big enough

∣∣∣∣
∫ t

0

ψsdKs(Z,Γ)−
∫ t

0

ψsdk
n
s

∣∣∣∣ ≤ ε, PP − q.s. (4.9.2)

Proof. [Proof of Theorem 4.5.1 ] We follow the ideas of [115]. Intuitively, V0 has to be greater
than v− since v− is roughly speaking the HJBI equation associated with the problem of the
Principal when K has the particular decomposition (4.5.10). In other words, the value of the
unrestricted problem for the Principal has to be a super-solution of such HJBI equation.

Step 1. v− is a viscosity super-solution of (4.5.11).

We prove that v− is a viscosity super-solution of (4.5.11) by contradiction.

1. The viscosity supersolution property on [0, T )

a. Setting the contradiction. Let ϕ be some map from [0, T ] × Rd × R −→ R
continuously differentiable in time and twice continuously differentiable in space.
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Let (t0, x0, y0) ∈ [0, T )×Rd×R be such that v−−ϕ attains a strict local minimum
equal to 0 at this point. We assume (by contradiction) that

∂tϕ(t0, x0, y0) +G(t0, x0, y0, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ) > 0 (4.9.3)

In particular, there exists some (ẑ, γ̂) ∈ Rd×Md,d(R) and a small ε > 0 such that

∂tϕ(t0, x0, y0) + inf
n∈N

g(t0, x0, y0, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ, ẑ, γ̂, n) > ε.

Recall that g is continuous and N is a compact subset of some finite dimensional
space. From Heine’s Theorem, we deduce that there exists some ε′ > 0 such that
for any (t, x, y) ∈ B((t0, x0, y0); ε′) we have

∂tϕ(t, x, y) + inf
n∈N

g(t, x, y, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ, ẑ, γ̂, n) > ε′. (4.9.4)

We denote Tε′ := B((t0, x0, y0); ε′) \ B((t0, x0, y0); ε
′

2
). On Tε′ , we have v− > ϕ so

that the maximum of ϕ− v− is attained and is negative. Thus, there exists some
η > 0 such that ϕ < v− − η on Tε′ . From [115, Lemma 3.8] there exists a non
decreasing sequence wn in V− converging to v−. Then, there exists n0 ≥ 1 such
that for any n ≥ n0 large enough, ϕ + η

2
< wn on Tε′ . We denote by wn0+ such

wn. Thus, for 0 < δ < η
2
we define

wδ :=

{
(ϕ+ δ) ∨ wn0+, on B((t0, x0, y0); ε′),

wn0+, outside B((t0, x0, y0); ε′).

Notice that

wδ(t0, x0, y0) = (ϕ(t0, x0, y0) + δ) ∨ wn0+(t0, x0, y0)

≥ ϕ(t0, x0, y0) + δ

> v−(t0, x0, y0). (4.9.5)

Thus proving that wδ ∈ V− provides the desired contradiction. From now, we fix
some t ∈ [0, T ] and τ ∈ Bt. We need to build a strategy (Z̃, K̃) ∈ UY0(t, τ) such
that Property (ii−) in Definition 4.5.3 holds. Recall that wn0+ ∈ V−, thus there
exists some elementary strategy (Z̃1(τ), K̃1(τ)) ∈ UY0(t, τ) such that Property
(ii−) in Definition 4.5.3 holds.

b. Building the elementary strategy and Property (ii-) We consider the fol-
lowing strategy that we denote by (Z̃, K̃).

∗ If ϕ+ δ > wn0+ at time τ , we choose the strategy (ẑ, k̂p(ẑ, γ̂)), where k̂p(ẑ, γ̂)
is such that inequality (4.9.2) holds with ε

2
.

∗ Otherwise we follow the elementary strategy (Z̃1(τ), K̃1(τ)).

Let τ1 be the first time when (t,Xt, Yt) exits from B((t0, x0, y0); ε) (which can be
τ itself). On the boundary of this ball, we know that wδ = wn0+, thus we choose
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the strategy (Z̃1(τ1), K̃1(τ1)) ∈ U(t, τ1), coinciding with the strategy associated
with wn0+ starting at τ1.

Rigorously speaking, define

Z̃(s, x(·), y(·)) := ẑ1{ϕ(τ(x,y),x(τ(x,y)),y(τ(x,y)))+δ>wn0+(τ(x,y),x(τ(x,y)),y(τ(x,y)))}

+ Z̃1
s (τ)1{ϕ(τ(x,y),x(τ(x,y)),y(τ(x,y)))+δ≤wn0+(τ(x,y),x(τ(x,y)),y(τ(x,y)))},

K̃(s, x(·), y(·)) := k̂ps(ẑ, γ̂)1{ϕ(τ(x,y),x(τ(x,y)),y(τ(x,y)))+δ>wn0+(τ(x,y),x(τ(x,y)),y(τ(x,y)))}

+ K̃1
s (τ)1{ϕ(τ(x,y),x(τ(x,y)),y(τ(x,y)))+δ≤wn0+(τ(x,y),x(τ(x,y)),y(τ(x,y)))},

and the stopping rule τ1 : C([t, T ],Rd+1) −→ [t, T ] by

τ1(x, y) = inf
τ(x,y)≤s≤T

(s, x(s), y(s)) ∈ ∂B((t0, x0, y0); ε).

Then, we consider the following strategy

Z̃ := Z̃ ⊗τ1 Z̃1(τ1), K̃ := K̃ ⊗τ1 K̃1(τ1). (4.9.6)

From Lemma 2.8 in [115], we have (Z̃, K̃) ∈ U(t, τ). It remains to prove that K̃
satisfies the minimality condition (4.4.2) to conclude that the strategy defined by
(4.9.6) is in UY0(t, τ). Using a measurability selection argument as in the proof
of Theorem 5.3 in [116], for any ε > 0 there exists a weak solution Pε such that
K(ẑ, γ̂) ≤ ε, P̂ε − a.s.. By Lemma 4.9.1, we deduce that for any ε > 0, any p big
enough and any t ∈ [0, T ], |k̂pt (ẑ, γ̂)| ≤ 2ε, P̂ε − a.s. Hence, (Z̃, K̃) ∈ UY0(t, τ).

Fix (Z,K) ∈ UY0(t, t), (P, ν) ∈ VY0(t, t) and ρ a stopping rule in Bt such that
τ ≤ ρ ≤ T . With the notations in Definition 4.5.3 (ii-), we define the event

A := {ϕ(τ ′, Xτ ′ , Yτ ′) + δ > wn0+(τ ′, Xτ ′ , Yτ ′)} .

Applying Ito’s formula to ϕ + δ on A, and setting σr := σ(r,X ẑ,k̂p

r , ν), we get for
any t ≤ τ ′ ≤ s′ ≤ s ≤ τ ′1

ϕ(s,X ẑ,k̂p

s , Y ẑ,k̂p

s ) = ϕ(s′, X ẑ,k̂p

s′ , Y ẑ,k̂p

s′ ) +

∫ s

s′
(∇xϕ+ ∂yϕẑ) · σrdW ?

r

+

∫ s

s′
∂tϕ+ g(r,X ẑ,k̂p

r , Y ẑ,k̂p

r , ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ, ẑ, γ̂, ν)dr

+

∫ s

s′
∂yϕ(r,X ẑ,k̂p

r , Y ẑ,k̂p

r )
(

dk̂ps − dKr(ẑ, γ̂)
)
.

From Lemma 4.9.1 together with (4.9.4), we get (for p big enough)

ϕ(s,X ẑ,k̂p

s , Y ẑ,k̂p

s ) > ϕ(s′, X ẑ,k̂p

s′ , Y ẑ,k̂p

s′ ) +

∫ s

s′
(∇xϕ+ ∂yϕẑ) · σrdW ?

r

+ (s− s′)ε
′

2
.
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Thus, ϕ is a sub-martingale on [τ, τ1] under P and Property (ii−) is satisfied on
[τ ′, τ ′1]. On Ac, wn0+ automatically satisfies Property (ii−). By noticing that for
any τ ′ ≤ s ≤ τ ′1

X t,x,(Z,K)⊗τ (Z̃,K̃),ν
s = 1AX

t,x,(Z,K)⊗τ (ẑ,k̂p),ν
s + 1AcX

t,x,(Z,K)⊗τ (Z̃1(τ),K̃1(τ)),ν
s ,

using iterated conditioning and by following the same lines in proof 1.1 of Theorem
3.5 in [115], we deduce that wδ ∈ V−, which contradicts (4.9.5). Thus,

∂tϕ(t0, x0, y0) +G(t0, x0, y0, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ) ≤ 0.

2. The viscosity supersolution property at time T . We now aim at proving that
v−(T, x, y) ≥ UP (L(x)− U−1

A (y)) for any (x, y) ∈ Rd × R. This proof follows the same
lines that the step 3 of the proof of Theorem 3.1 in [12] or the proof of Theorem 3.5,
1.2 in [115]. We assume by contradiction that there exists (x0, y0) ∈ Rd × R such that
v−(T, x0, y0) < UP (L(x0) − U−1

A (y0)). Since UP is continuous, there exists ε > 0 such
that

UP (L(x)− U−1
A (y)) ≥ v−(T, x, y) + ε, (x, y) ∈ B((x0, y0); ε).

We define Tε := B((T, x0, y0); ε) \B((T, x0, y0); ε
2
). Let η > 0 be small enough such that

v−(T, x0, y0) + ε <
ε2

4η
+ inf

(t,x,y)∈Tε
v−(t, x, y).

Thus, using exactly the same Dini type arguments that in [115, 13], there exists n0 big
enough such that for some wn0 ∈ V− we have

v−(T, x0, y0) + ε <
ε2

4η
+ inf

(t,x,y)∈Tε
wn0(t, x, y).

We now define for any λ > 0

ϕε,η,λ(t, x, y) := v−(T, x0, y0)− ‖(x, y)− (x0, y0)‖2

η
− λ(T − t).

By using the result of Lemma 4.5.1, for some λ > 0 large enough, we get for any
(t, x, y) ∈ B((T, x0, y0); ε)

−∂tϕε,η,λ(t, x, y)−G(t, x, y, ϕε,η,λ,∇xϕ
ε,η,λ, ∂yϕ

ε,η,λ,∆xxϕ
ε,η,λ, ∂yyϕ

ε,η,λ,∇xyϕ
ε,η,λ) < 0.

Moreover, such ϕε,η,λ satisfies on Tε

ϕε,η,λ(t, x, y) ≤ v−(T, x0, y0)− ε2

4η

≤ wn0(t, x, y)− ε,

and on B((x0, y0); ε),

ϕε,η,λ(T, x, y) ≤ v−(T, x, y) ≤ UP (L(x)− U−1
A (y))− ε.
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Thus, for 0 < δ < η
2
we define

wε,η,λ,δ :=

{
(ϕε,η,λ + δ) ∨ wn0+, on B((T, x0, y0); ε),

wn0+, outside B((T, x0, y0); ε).

The rest of the proof is analogous similar to the step 1, we show that wε,η,λ,δ ∈ V− and

wε,η,λ,δ(T, x0, y0) = v−(T, x0, y0) + δ

> v−(T, x0, y0),

which leads to a contradiction. We conclude that

v−(T, x, y) ≥ UP (L(x)− U−1
A (y))

for any (x, y) ∈ Rd × R.

Step 2. v+ is a viscosity sub-solution of (4.5.11).

We now prove that v+ is a viscosity sub-solution of (4.5.11) by contradiction.

1. The viscosity subsolution property on [0, T )

a. Setting the contradiction. Let ϕ be some map from [0, T ] × Rd × R −→ R
continuously differentiable in time and twice continuously differentiable in space.
Let (t0, x0, y0) ∈ [0, T )×Rd×R be such that v+−ϕ attains a strict local maximum
equal to 0 at this point. We assume (by contradiction) that

∂tϕ(t0, x0, y0) +G(t0, x0, y0, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ) < 0 (4.9.7)

Then, for any (z, γ) ∈ Rd ×Md,d(R), we have

∂tϕ(t0, x0, y0) + inf
ν∈N

g(t0, x0, y0, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ, z, γ, ν) < 0.

Therefore, there exists ε > 0 and ν̂(z, γ) ∈ N such that

∂tϕ(t0, x0, y0) + g(t0, x0, y0, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ, z, γ, ν̂(z, γ)) < −ε.

Using the continuity of our applications, we deduce that on B((t0, x0, y0); ε) we
have, for a small ε′ > 0,

∂tϕ(t, x, y) + g(t, x, y, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ, z, γ, ν̂(z, γ)) < −ε′.

We denote Tε′ := B((t0, x0, y0); ε′) \ B((t0, x0, y0); ε
′

2
). On Tε′ , we have v+ < ϕ so

that the minimum of ϕ − v+ is attained and is positive. Thus, there exists some
η > 0 such that ϕ > v+ + η on Tε′ . From [115, Lemma 3.8] there exists a non
increasing sequence wn in V+ converging to v+. Then, there exists n0 ≥ 1 such
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that for any n ≥ n0 large enough, ϕ − η
2
> wn on Tε′ . We denote by wn0+ such

wn. Thus, for 0 < δ < η
2
we define

wδ :=

{
(ϕ− δ) ∧ wn0+, on B((t0, x0, y0); ε′),

wn0+, outside B((t0, x0, y0); ε′).

Notice that

wδ(t0, x0, y0) = (ϕ(t0, x0, y0)− δ) ∧ wn0+(t0, x0, y0)

≤ ϕ(t0, x0, y0)− δ
< v+(t0, x0, y0). (4.9.8)

Thus proving that wδ ∈ V+ provides the desired contradiction. From now, we
fix t ∈ [0, T ], a stopping rule τ ∈ Bt and (Z,K) ∈ UY0(t, τ). We need to build
a strategy (P, ν̃) ∈ VY0(t, τ) such that Property (ii+) in the definition 4.5.3 of a
super-solution holds. Recall that wn0+ ∈ V+, thus for the fixed (Z,K) ∈ UY0(t, τ),
there exists some elementary strategy (P̃, ν̃1) ∈ VY0(t, τ) such that Property (ii+)
in Definition 4.5.3 holds.

b. Building the elementary strategy and Property (ii+) We consider the
following strategy that we denote by ν̃.

∗ If ϕ− δ < wn0+ at time τ , we choose the strategy (P̂, ν̂(Z, 0)), where P̂ ∈ PA
is such that the minimality condition (ii) in Theorem 4.4.1 holds with control
K,

∗ Otherwise we follow the elementary strategy (P̃, ν̃1).

The rest of this part is completely similar to Step 1., paragraph 1.b. with control

ν̃t := ν̂(Z, 0)1{ϕ−δ<wn0+} + ν̃1
t 1{ϕ−δ≥wn0+},

and considering the event

Ã := {ϕ(τ ′, Xτ ′ , Yτ ′)− δ < wn0+(τ ′, Xτ ′ , Yτ ′)} .
Applying Ito’s formula to ϕ + δ on Ã, and setting σr := σ(r,X ν̃

r , ν̂(Z, 0)), we get
for any t ≤ τ ′ ≤ s′ ≤ s ≤ τ ′1

ϕ(s,X ν̃
s , Y

ν̃
s ) = ϕ(s′, X ν̃

s′ , Y
ν̃
s′ ) +

∫ s

s′
(∇xϕ+ ∂yϕZ) · σrdW ?

r +

∫ s

s′
∂tϕdr

+ g(r,X ν̃
r , Y

ν̃
r , ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ,Z, 0, ν̂(Z, 0))dr

+

∫ s

s′
∂yϕ(r,X ν̃

r , Y
ν̃
r )dKs.

Since K = 0 under P̂ we have that ϕ is a super–martingale under P̂ and (ii+)
is satisfied on [τ, τ1]. We thus deduce similarly that wδ ∈ V+ which contradicts
(4.9.8) so that for any (t, x, y) ∈ [0, T )× Rd × R

−∂tϕ(t, x, y)−G(t, x, y, ϕ,∇xϕ, ∂yϕ,∆xxϕ, ∂yyϕ,∇xyϕ) ≤ 0
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2. The viscosity supersolution property at time T . We now aim at proving that
v+(T, x, y) ≤ UP (L(x) − U−1

A (y)) for any (x, y) ∈ Rd × R. This proof follows the
same lines that the previous step 1.2. We assume by contradiction that there exists
(x0, y0) ∈ Rd × R such that v+(T, x0, y0) > UP (L(x0)− U−1

A (y0)). By continuity, there
exists ε > 0 such that

UP (L(x)− U−1
A (y)) ≤ v+(T, x, y)− ε, (x, y) ∈ B((x0, y0); ε).

We define Tε := B((T, x0, y0); ε) \B((T, x0, y0); ε
2
). Let η > 0 be small enough such that

v+(T, x0, y0) +
ε2 + 4 ln(1 + ε

2
)

4η
> ε+ sup

(t,x,y)∈Tε
v+(t, x, y).

Thus, using exactly the same Dini type arguments that in [115, 13], there exists n0 big
enough such that for some wn0 ∈ V+ we have

v+(T, x0, y0) +
ε2 + 4 ln(1 + ε

2
)

4η
> ε+ sup

(t,x,y)∈Tε
wn0(t, x, y).

We now define for any λ > 0

ϕε,η,λ(t, x, y) := v+(T, x0, y0) +
‖x− x0‖2 + ln(1 + |y − y0|)

η
+ λ(T − t).

By using the result of Lemma 4.5.1, for some λ > 0 large enough, we get for any
(t, x, y) ∈ B((T, x0, y0); ε)

−∂tϕε,η,λ(t, x, y)−G(t, x, y, ϕε,η,λ,∇xϕ
ε,η,λ, ∂yϕ

ε,η,λ,∆xxϕ
ε,η,λ, ∂yyϕ

ε,η,λ,∇xyϕ
ε,η,λ) > 0.

In particular, such ϕε,η,λ satisfies on Tε

ϕε,η,λ(t, x, y) ≥ v+(T, x0, y0) +
ε2 + 4 ln(1 + ε

2
)

4η

≥ wn0(t, x, y) + ε,

and on B((x0, y0); ε),

ϕε,η,λ(T, x, y) ≥ v−(T, x, y) ≥ UP (L(x)− U−1
A (y)) + ε.

Thus, for 0 < δ < ε small enough we define

wε,η,λ,δ :=

{
(ϕε,η,λ − δ) ∧ wn0+, on B((T, x0, y0); ε),

wn0+, outside B((T, x0, y0); ε).

The rest of the proof is completely similar to the step 1.b, we show that wε,η,λ,δ ∈ V+

and

wε,η,λ,δ(T, x0, y0) = v+(T, x0, y0) + δ

> v+(T, x0, y0),

which leads to a contradiction. We deduce that

v+(T, x, y) ≤ UP (L(x)− U−1
A (y))

for any (x, y) ∈ Rd × R.
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General conclusion and verification. In step 1 (resp. in step 2) we have proved that
v− is a viscosity super-solution (resp. v+ is a viscosity sub-solution) of the HJBI equation
(4.5.11). If a comparison theorem in the viscosity sense holds, then we deduce from (4.5.14)
that

v−(0, x, Y0) ≤ V P
0 (Y0) ≤ v+(0, x, Y0) ≤ v−(0, x, Y0), x ∈ Rd,

which proves the theorem.

�
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