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Introduction

En francais

L’industrie aéronautique, secteur exigeant une fiabilité et une précision rigoureuses,
produit des avions capables de résister a des environnements hostiles. Ils doivent en
particulier faire face a des températures fluctuant entre -60°C lors des croisiéres en
altitude, et dépassant aisément les 500°C en sortie des moteurs. Liebherr-Aerospace
se positionne au coeur de ce secteur, concevant, développant et fabriquant une variété
de systémes essentiels & l'avion : systéemes de climatisation, commandes de vol,
trains d’atterrissage, sans oublier engrenages, boites de transmission et éléments

électroniques.

En tant que constructeur d’équipements d’origine (Original Equipment Manufac-
turer - OEM), la responsabilité de Liebherr-Aerospace est d’assurer une production
d’équipements hautement qualitatifs et fiables. Cette responsabilité s’étend non
seulement & la garantie de la qualité de leurs produits, mais également a l’assurance
d’un approvisionnement en piéces pour la production et la maintenance, ainsi qu’a
la fourniture d’un support technique pour leurs produits. Mais les responsabilités de
Liebherr-Aerospace ne se limitent pas & la production. En plus de son réle d’OEM,
Pentreprise fournit des services complets de Maintenance, Réparation et Opérations
(MRO). En d’autres termes, elle s’implique dans I’entretien régulier des avions, la
réparation des composants, et le support aux opérations de vol, assurant ainsi la
sécurité et l'efficacité des opérations aériennes en maintenant les avions en bon état
de fonctionnement. Un autre aspect crucial de son activité réside dans la fourniture
de services Aircraft On Ground (AOG). Ces services, devenant essentiels lors de
I’'immobilisation d’un avion pour des raisons techniques ou mécaniques, peuvent
permettre d’économiser des cofits substantiels pour les compagnies aériennes, car
chaque minute d’immobilisation au sol a un cott financier conséquent. Les services
AOG ont pour objectif de résoudre rapidement ces incidents, en assurant des répa-
rations d’urgence, des piéces de rechange et une coordination des services afin de

minimiser le temps d’immobilisation de I’appareil.



2 INTRODUCTION

En résumé, Liebherr-Aerospace est une entreprise qui joue un role clé a plusieurs
niveaux de l'industrie aéronautique, endossant plusieurs roles majeurs : elle est
fabricant d’équipements, assure des services de maintenance et fournit des services
AOG. De maniére plus spécifique, cette thése portera sur une des spécialité de
Liebherr-Aerospace Toulouse : les systémes d’air, également appelés "bleed air
systems". Dans ce contexte le développement d’outils de maintenance prédictive est
essentiel, car ils permettent d’abord de réduire le temps d’immobilisation au sol des
avions. En effet, si proposer une solution suite a une panne est important, pouvoir
anticiper les pannes et en réduire le nombre est également crucial.

Cette theése vise donc a élaborer de nouvelles méthodes de maintenance prédictive
performantes, acceptables et explicables. Fruit d’une collaboration entre plusieurs
entités sous le format CIFRE, ce travail de recherche implique I’entreprise Liebherr
Aerospace Toulouse, I'Institut de Mathématiques de Toulouse, ainsi que ANITI
(Artificial and Natural Intelligence Toulouse Institute).

Le premier chapitre, intitulé "Etat de I’art de la maintenance prédictive",
servira d’introduction a la maintenance prédictive en soulignant a la fois ses simili-
tudes et ses différences avec la détection d’anomalies. Nous effectuerons ensuite dans
une revue de la littérature, ot nous découvrirons comment les techniques de machine
learning et de deep learning sont mises a profit dans le domaine de la maintenance
prédictive. Cette partie du chapitre mettra en lumiére I'importance des ensembles
de données publiques pour la comparaison et 1’évaluation des techniques de mainte-
nance prédictive. De plus, nous mettrons en évidence comment ces datasets publics
permettent aux chercheurs de développer de nouvelles méthodes dans des conditions
optimales, favorisant ainsi 'innovation et ’avancement du domaine. Cependant,
nous ne manquerons pas de souligner les contraintes actuelles liées a la disponibilité
et & la qualité des datasets, tout en mettant en avant les efforts continus et les

progrés réalisés pour améliorer ces ressources essentielles.

Le deuxiéme chapitre, "Bleed Air Systems: Data & Challenges" abordera
tout d’abord le fonctionnement global des systémes d’air, également connus sous le
nom de systémes bleed, ainsi que les types de signaux qu’ils peuvent générer. Cette
exploration détaillée établira le contexte spécifique de cette thése et favorisera une
meilleure compréhension des types de signaux qui seront analysés et exploités tout au
long de notre travail. Aprés avoir cadré notre champ d’études, nous présenterons les
premiéres tentatives de maintenance prédictive, en commencant par ’extraction de
features simples suivis de la prédiction de la durée de vie restante (Remaining Useful
Life - RUL) avec des techniques d’apprentissage automatiques traditionnels et la

prédiction de la durée de vie restante directement a 'aide de réseaux de convolutions.



Cette approche initiale, en dépit de sa simplicité apparente, mettra en lumiére
les difficultés fondamentales liées & la maintenance prédictive dans le contexte des
systémes bleed. Les défis rencontrés, tant sur le plan de la capture de la complexité
des signaux que sur la précision des prédictions de durée de vie restante, mettront en
évidence 'importance de I'approche méthodologique et motiveront nos choix pour
les phases ultérieures de la thése. Ces constatations préliminaires nous permettront
de mieux orienter notre travail de recherche et de souligner la nécessité d’adopter des
méthodes plus sophistiquées et précises pour la maintenance prédictive des systémes
bleed.

Le troisiéme chapitre, "Dimension Reduction for time series with Vari-
ational Autoencoders" mettra en lumiére le role crucial des auto encodeurs
variationnels (Variational Autoencoders - VAE) dans le domaine de la réduction
de dimension. Nous examinerons la performance des VAE par rapport a d’autres
techniques de réduction de dimension largement utilisées, notamment la transfor-
mée en ondelettes et 'analyse en composantes principales fonctionnelle (Functional
Principal Component Analysis - FPCA). Notre analyse montrera que les VAE se dis-
tinguent par leur capacité a obtenir des taux de compression élevés, surpassant méme
la transformée en ondelettes dans des scénarios hypothétiques ot 'on retiendrait
les coefficients d’ondelettes optimaux. Ces résultats impressionnants sont validés
lorsque nous appliquons le VAE a différents jeux de données d’électrocardiogrammes
(ECG), soulignant ainsi sa capacité a généraliser et a étre efficace sur une variété de
cas d’utilisation. Au-dela de la performance brute du VAE, ce chapitre explorera
I'impact de différentes architectures VAE sur la capacité de réduction de dimension.
Nous examinerons comment des variations dans la conception des VAE peuvent
influencer leurs performances, apportant des informations précieuses pour le choix de
P’architecture appropriée dans des applications spécifiques. De plus, nous évaluerons
la robustesse des VAE face au bruit et leur capacité & maintenir une réduction de
dimension efficace dans des conditions non idéales. En résumé, ce chapitre mettra
en avant les performanaces des VAE en matiére de réduction de dimension, leur
efficacité, leur flexibilité et leur robustesse, illustrant ainsi leur pertinence pour notre

travail de thése.

Le quatriéme chapitre, "Counterfactual explanation for multivariate times
series using a contrastive variational autoencoder" présentera une version
étendue d’'un article publié a conférence ICASSP 2023. Ce chapitre aborde une
question essentielle : comment comprendre les comportements anormaux des séries
temporelles multivariées 7 Cette problématique est centrale dans notre étude étant

donné la nature des données que nous manipulons, & savoir des séries temporelles
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multivariées. En effet, il est crucial non seulement de pouvoir prédire la dégradation
des données et I'évolution des modéles, mais aussi de comprendre les mécanismes
sous-jacents a ces prédictions. Toutefois, peu de méthodes disponibles offrent une
explication contrefactuelle pour les séries temporelles et les rares existantes ne sont
pas adaptées ou scalables pour les types de jeux de données qui nous intéressent.
Face a cette lacune, nous avons développé une nouvelle approche. Nous montrerons
comment, grace a une séparation astucieuse de ’espace latent d’'un VAE a I’aide d'une
contrainte contrastive, nous parvenons a générer des espaces latents partiellement
ordonnés. Ces derniers nous permettent de concevoir des exemples contrefactuels
avec une grande efficacité. Pour attester de l'efficacité de cette méthode, nous
présenterons son application a un ensemble de données publiques de signaux ECG.
Cette validation sur des données réelles soulignera le potentiel de notre approche pour
améliorer la compréhension des prédictions d’anomalies pour des séries temporelles

multivariées.

Le cinquiéme et dernier chapitre, "Explainable Predictive Maintenance:
Revealing Degradation Factors with Contrastive Semi-Supervised VAE",
sera deédié a I’adaptation de la méthode CVAE (Contrastive Variational Autoencoder)
pour résoudre des problémes de maintenance prédictive. Nous nous intéresserons
notamment & l'intégration de la notion de voisinage dans le cycle de vie d’un
équipement, ce qui correspond aux vols précédant et suivant le vol cible. Cette
approche part de ’hypothése que le niveau de dégradation devrait étre similaire
entre ces vols voisins. Par ailleurs, nous explorerons la possibilité d’entrainer
le CVAE de maniére semi-supervisée. Nous illustrerons comment, grace a cette
stratégie, le modéle peut étre formé de maniére efficace méme en présence de données
censurées, offrant ainsi une grande flexibilité en termes de gestion des données. Ce
chapitre mettra également en évidence l'efficacité remarquable de ce modéle en le
comparant a des modeéles classiques de classification de séries temporelles, ainsi qu’a
un VAE entrainé avec des données saines, complété par un algorithme de détection
d’anomalies. Nos résultats démontreront que notre approche surpasse ces méthodes
de base. Enfin, nous adapterons une technique connue de la classification d’images,

appelée "selective kernels", a la classification de séries temporelles.



In english

The aeronautics industry, with its rigorous demands for reliability and precision,
produces aircraft that must withstand harsh environments. These machines must be
able to withstand temperatures ranging from -60°C during high-altitude flights to
over 500°C when the air exits the engines. Liebherr-Aerospace is at the heart of this
sector, designing, developing and manufacturing a wide range of systems essential
to the aircraft: air conditioning, flight controls, landing gear, not to mention gears,

gearboxes and electronic elements.

As an Original Equipment Manufacturer (OEM), Liebherr-Aerospace is responsible
for the production of high quality and reliable equipment. This responsibility extends
not only to guaranteeing the quality of its products, but also to ensuring the supply
of parts for production and maintenance, as well as providing technical support for
its products. But Liebherr-Aerospace’s responsibility is not limited to production.
In addition to its OEM role, the company provides comprehensive maintenance,
repair and operations (MRO) services. In other words, it is involved in regular
aircraft maintenance, component repair and flight operations support, ensuring safe
and efficient flight operations by keeping aircraft in good working order. Another
important aspect of its business is the provision of Aircraft On Ground (AOG)
services. These services, which are essential when an aircraft is grounded for
technical reasons, can save airlines significant costs, as every minute spent on the
ground represents a significant financial expense. AOG services aim to resolve
these incidents quickly by providing emergency repairs, spare parts and service

coordination to minimize aircraft downtime.

In conclusion, Liebherr-Aerospace is a company that plays a key role in several lev-
els of the aeronautical industry, taking on several important roles: it is an equipment
manufacturer, a maintenance provider, and an AOG provider. More specifically, this
thesis will focus on one of the specialties of Liebherr-Aerospace Toulouse: air sys-
tems, also called "bleed air systems". In this context, the development of predictive
maintenance tools is essential, as they allow us to reduce aircraft downtime. Indeed,
while it is important to provide a solution after a breakdown, it is also crucial to be

able to anticipate breakdowns and reduce their number.

The aim of this thesis is to develop new predictive maintenance methods that are
efficient, acceptable and explainable. This research is the result of a collaboration

between several entities under the CIFRE format, involving Liebherr Aerospace
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Toulouse, the Toulouse Mathematics Institute as well as ANITT (Artificial and

Natural Intelligence Toulouse Institute).

The first chapter, entitled "Etat de I’art de la maintenance prédictive", will
serve as an introduction to predictive maintenance by highlighting its similarities and
differences with anomaly detection. We will then dive into a literature review where
we will discover how machine learning and deep learning techniques are being used
in the field of predictive maintenance. This part of the chapter will highlight the
importance of public datasets for comparing and evaluating predictive maintenance
techniques. In addition, we will show how these public datasets allow researchers
to develop new methods under optimal conditions, thus promoting innovation and
advancement of the field. However, we will not fail to point out the current limitations
related to the availability and quality of datasets, while highlighting the ongoing

efforts and progress made to improve these essential resources.

The second chapter, "Bleed Air Systems: Data & Challenges" will first
discuss the overall operation of air systems, also known as bleed systems, and the
types of signals they can generate. This detailed examination will establish the
specific context of this thesis and promote a better understanding of the types of
signals that will be analyzed and exploited throughout our work. After defining our
field of study, we will present the first attempts of predictive maintenance, starting
with the extraction of simple features, followed by the prediction of Remaining Useful
Life (RUL) using traditional machine learning techniques, and the prediction of RUL
directly using convolutional networks. This initial approach, despite its apparent
simplicity, will highlight the fundamental difficulties associated with predictive
maintenance in the context of bleed systems. The challenges encountered, both in
terms of capturing signal complexity and the accuracy of remaining life predictions,
will highlight the importance of the methodological approach and motivate our
choices for the later phases of the thesis. These preliminary findings will help us to
better focus our research efforts and highlight the need for more sophisticated and

accurate methods for predictive maintenance of bleed systems.

The third chapter, "Dimension Reduction for Time Series with Variational
Autoencoders" will highlight the crucial role of Variational Autoencoders (VAE)
in the field of dimension reduction. We will examine the performance of VAE in
comparison to other widely used dimension reduction techniques, including the
Wavelet Transform and Functional Principal Component Analysis (FPCA). Our
analysis will show that VAE is characterized by its ability to achieve high compression

ratios, even outperforming the wavelet transform in hypothetical scenarios where



optimal wavelet coefficients are retained. These impressive results are validated
when we apply VAE to different ECG datasets, highlighting its ability to generalize
and perform across a variety of use cases. Beyond the raw performance of VAE, this
chapter will explore the impact of different VAE architectures on dimension reduction
capability. We will examine how variations in VAE design can affect its performance,
providing valuable information for selecting the appropriate architecture in specific
applications. In addition, we will evaluate the robustness of VAEs to noise and
their ability to maintain effective dimension reduction under non-ideal conditions.
In summary, this chapter will highlight the dimension reduction characteristics of
VAEs, their efficiency, flexibility, and robustness, and illustrate their relevance to

our thesis work.

The fourth chapter, "Counterfactual explanation for multivariate times
series using a contrastive variational autoencoder" presents an extended
version of a paper published at the ICASSP 2023 conference. This chapter addresses
a key question: how to understand anomalous behavior in multivariate time series.
This problem is central to our study given the nature of the data we are dealing
with, multivariate time series. Indeed, it is crucial not only to be able to predict
data degradation and model evolution, but also to understand the mechanisms un-
derlying these predictions. However, few available methods provide a counterfactual
explanation for time series, and the few that do exist are not suitable or scalable for
the types of datasets we are interested in. Faced with this shortcoming, we have
developed a new approach. We will show how, thanks to a strategic separation of
the latent space of a VAE using a contrastive constraint, we manage to generate
partially ordered latent spaces. These allow us to design counterfactual examples
with great efficiency. To prove the effectiveness of this method, we will present its
application on a public dataset of ECG signals. This validation on real data will
highlight the potential of our approach to improve the understanding of multivariate

time series prediction.

The fifth and final chapter, "Explainable Predictive Maintenance: Revealing
Degradation Factors with Contrastive Semi-Supervised VAE", is dedicated
to the adaptation of the CVAE (Contrastive Variational Autoencoder) method
to solve the predictive maintenance problem. In particular, we will focus on the
integration of the notion of neighborhood in the life cycle of an equipment, which
corresponds to the flights before and after the target flight. This approach assumes
that the level of degradation should be similar between these neighboring flights.
We will also explore the possibility of semi-supervised training of the CVAE. We

will illustrate how this strategy allows the model to be efficiently trained even in
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the presence of censored data, thus providing great flexibility in terms of data
management. This chapter will also highlight the remarkable efficiency of this model
by comparing it to classical time series classification models, as well as to a VAE
trained on healthy data and complemented by an anomaly detection algorithm.
Our results will show that our approach outperforms these conventional methods.
Finally, we will adapt a well-known image classification technique known as "selective

kernels" to the classification of time series.



Chapter 1

Etat de ’art de la maintenance

prédictive

1.1 Les maintenances dans 'industrie aéronautique

Il existe généralement trois stratégies de maintenance. La premiére, assez intuitive,
est la maintenance réactive. Cette approche consiste & agir suite & une panne ou une
alerte. Bien que parfois indispensable, cette forme de maintenance est imprévue et
peut par conséquent entrainer des immobilisations d’appareils au sol - une situation

que l'on cherche & éviter dans I'industrie aéronautique.

La deuxiéme forme de maintenance, largement adoptée dans le secteur aéronau-
tique, est appelée la maintenance préventive. Cette stratégie de maintenance se
focalise sur la prévention des pannes et 'amélioration de la fiabilité des équipements.
Cela est réalisé grace a des inspections réguliéres, des réparations, des mises a
jour, des nettoyages et des remplacements de piéces. L’objectif principal de cette
approche est d’identifier et de résoudre les problémes potentiels avant qu’ils ne se
transforment en défaillances d’équipement. Plusieurs caractéristiques essentielles
distinguent la maintenance préventive. Tout d’abord, elle est planifiée : les taches de
maintenance préventive sont organisées en amont, selon un calendrier prédéterminé,
basé sur le temps (par exemple, mensuellement) ou sur I'utilisation de I’équipement
(par exemple, aprés un nombre précis d’heures de fonctionnement). De plus, la
maintenance préventive est systématiquement effectuée en suivant des procédures
standard pour chaque type d’équipement, garantissant ainsi que toutes les étapes
nécessaires sont accomplies.

Enfin, contrairement & la maintenance réactive qui intervient aprés une panne,
la maintenance préventive est proactive. Son but est d’anticiper et de prévenir les

problémes, plutdét que de simplement réagir & ceux-ci. En bref, la maintenance
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Figure 1.1: Comparaison entre la maintenance réactive et prédictive : impact sur le
temps d’immobilisation au sol (AOG)

préventive est une approche de maintenance structurée et proactive, visant a opti-
miser la fiabilité et la longévité des équipements. Dans le contexte de 'industrie
aéronautique, la maintenance préventive est essentielle pour assurer la sécurité et la
fiabilité des avions. Elle comprend des activités telles que les inspections réguliéres
des avions, le remplacement des piéces usées, le controle des systémes de navigation

et de communication, ’entretien des moteurs, et bien d’autres taches.

Toutefois, la maintenance préventive a aussi des inconvénients. Elle peut étre
coliteuse et nécessiter beaucoup de temps, car elle implique des inspections et des
travaux de maintenance méme si aucun probléme n’est apparent. De plus, elle peut
parfois entrainer des réparations inutiles si les piéces sont remplacées avant la fin de
leur durée de vie utile. Pour ces raisons, de nombreuses entreprises combinent la
maintenance préventive avec d’autres approches, comme la maintenance prédictive,
pour optimiser leurs stratégies de maintenance. La maintenance prédictive est une
méthode de maintenance qui utilise des outils de suivi de I’état et des techniques
d’analyse de données pour surveiller I’état des équipements et des systémes en temps
quasi-réel. L’objectif est de prédire quand une défaillance est susceptible de se
produire, afin que la maintenance puisse étre planifiée juste avant la panne afin de
limiter le temps d’immobilisation des avions au sol, comme le montre la Figure La
maintenance prédictive repose fortement sur ’analyse des données collectées & partir
des équipements. Ces données peuvent comprendre des mesures de températures, de
pression, de vibrations, de débit, de bruit, et autres parameétres qui peuvent indiquer
I’état de I'équipement. Ces données sont collectés durant le vol et transmises de
maniére réguliére d’ot le fait que ce soit, dans notre cas, en temps quasi réel. Comme
la maintenance préventive, la maintenance prédictive est une approche proactive

qui vise a anticiper et a prévenir les défaillances avant qu’elles ne se produisent.
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Cependant, elle est généralement plus ciblée que la maintenance préventive, car elle
se concentre sur les problémes spécifiques qui sont les plus susceptibles de se produire
en fonction de 'analyse des données. Enfin la maintenance prédictive utilise souvent
des technologies avancées, telles que I'Internet des objets (IoT), I'apprentissage
automatique, l'intelligence artificielle (IA), et 'analyse prédictive. Ces technologies
permettent de collecter et d’analyser une grande quantité de données en temps
réel, ce qui rend possible la détection précise des anomalies et la prédiction des

défaillances.

L’implémentation de la maintenance prédictive dans le secteur aéronautique offre
plusieurs avantages substantiels. Cette méthode offre 'avantage d’identifier les
défaillances potentielles & I’avance, ce qui facilite la planification des opérations de
maintenance avant I’apparition effective des problémes. Ainsi, elle aide & prévenir
les arréts de production ou d’exploitation imprévus et potentiellement cotiteux. En
identifiant et en rectifiant les problémes avant qu’ils n’atteignent un stade critique,
la maintenance prédictive contribue a prolonger la durée de vie des équipements.
Dans le cadre d'un systéme de maintenance prédictive généralisé, il est possible
d’optimiser la gestion des stocks, évitant les ruptures de stock susceptibles de
retarder les réparations. De plus, cela permet d’améliorer la planification des
activités de maintenance, ce qui peut favoriser une meilleure allocation des ressources
et renforcer l'efficacité opérationnelle. Enfin, en minimisant les pannes et les
retards, la maintenance prédictive améliore la satisfaction des clients, qu’il s’agisse
de compagnies aériennes ou d’autres utilisateurs d’équipements. En somme, la
maintenance prédictive s’avére étre un outil précieux, contribuant & la performance

et a lefficacité globales de 'industrie aéronautique.

1.2 La maintenance prédictive

La maintenance prédictive, sujet principal de cette section, représente une approche
proactive novatrice dans le domaine de la maintenance industrielle. Cette méthode
s’appuie sur 'exploitation de données, ’analyse statistique, ’apprentissage automa-
tique et 'application d’algorithmes pour anticiper les défaillances d’équipements ou
prévoir les nécessités de maintenance. Bien que ces techniques soient ’objet d’intenses
recherches, leur complexité intrinseque a jusqu’a présent limité leur déploiement
dans 'industrie en général. Cependant, leur intégration semble particuliérement
prometteuse dans le contexte de l'industrie aéronautique. En effet, la nature so-
phistiquée des composants d’un avion, souvent dotés de nombreux capteurs pour

assurer leur performance optimale, génére une quantité impressionnante de données
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sur les équipements vitaux de 'appareil. Cet aflux de données crée une opportunité
unique pour ’application de la maintenance prédictive, offrant un cadre propice a

I’expansion de ces techniques au sein de cette industrie.

La philosophie fondamentale de la maintenance prédictive repose sur la conviction
qu’il est plus efficace, plus siir et économiquement plus rentable de prévenir les
pannes plutdét que d’y remédier. En anticipant les problémes avant qu’ils ne se
manifestent, nous pouvons non seulement prolonger la durée de vie des composants
de I'avion, mais aussi prévenir les pannes imprévues qui pourraient immobiliser un
avion au sol. En outre, cette démarche proactive contribue a renforcer la sécurité
globale des vols en minimisant les risques associés aux défaillances inattendues. Ainsi,
la maintenance prédictive se présente comme une stratégie d’avenir pour l'industrie
aéronautique, promettant une optimisation des procédures de maintenance et une

amélioration de la sécurité des vols.

Maintenance prédictive et détection d’anomalies

La maintenance prédictive et la détection d’anomalies sont étroitement liées, toutes
deux visant a identifier des comportements anormaux dans les signaux de données. La
détection d’anomalies se concentre sur l'identification de points de données aberrants
qui s’écartent d’un schéma de données couramment observé, qui peuvent signaler des
erreurs dans la collecte ou 'enregistrement des données ou des événements inhabituels.
En revanche, la maintenance prédictive se focalise davantage sur 'identification de

signes de dégradation avant une éventuelle panne.

Dans leur étude, Chandola et al., 2009| examinent diverses techniques de détection
d’anomalies. Ils les répartissent en trois grandes catégories : les techniques basées
sur la classification, celles basées sur le voisinage, et les techniques statistiques. Les
techniques de classification s’appuient sur un modéle formé & partir d’un ensemble
de données dont la classe de chaque observation est connue a ’avance (anomalie
ou non-anomalie), ce modéle étant par la suite utilisé pour classer de nouvelles
observations comme normales ou anormales. Les techniques basées sur le voisinage,
comme leur nom l'indique, étudient ’environnement immédiat de chaque point
de données, et les points dont le voisinage différe significativement de la majorité
sont considérés comme des anomalies. Enfin, les techniques statistiques partent de
I’hypothése que les données normales suivent une distribution statistique donnée.
Les points ne correspondant pas a cette distribution sont alors identifiés comme des

anomalies.
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La maintenance prédictive va au-deld de la simple détection d’anomalies en
prévoyant le moment ott une intervention de maintenance sera nécessaire sur un
équipement spécifique. Cela est rendu possible grace a ’exploitation de données
historiques, de mesures de capteurs et d’analyses avancées. La principale différence
entre ces deux approches réside dans le fait que, tandis que la détection d’anomalies
se base sur des classes clairement définies, en maintenance prédictive, la distinction
entre les données normales et anormales peut étre moins évidente. En effet, la
dégradation de I'équipement se produit généralement de maniére progressive tout au
long de sa durée de vie, marquée par des épisodes sporadiques de dégradation plus
sévere. Ainsi, il est difficile d’établir un critére objectif pour distinguer ces phases

de dégradation.

La détection d’anomalies peut souvent servir d’étape préliminaire a la maintenance
prédictive. L’identification d'une anomalie peut signaler qu'un équipement commence
a présenter des dysfonctionnements et qu’il pourrait nécessiter une maintenance
prochaine. Par conséquent, la détection d’anomalies permet d’alerter les opérateurs
a un stade précoce, favorisant une intervention proactive pour prévenir les pannes
d’équipement. Cependant, il est crucial de souligner que, bien que la détection
d’anomalies puisse enrichir la maintenance prédictive, elle ne saurait la remplacer.
La maintenance prédictive requiert des modéles plus sophistiqués, capables non
seulement de prédire la probabilité d’une panne d’équipement, mais aussi d’estimer

le moment de survenue de cette panne.

La mise en ceuvre de la maintenance prédictive est souvent entravée par le manque
de données pertinentes. En effet, I’état de I’équipement ne peut généralement étre
déterminé qu’a deux moments critiques : au moment de la défaillance, signalant
une dégradation ou une anomalie, et lors de l'installation ou de la réparation de
I’équipement, témoignant d’un état sain ou normal. De surcroit, la rareté des
défaillances amplifie la pénurie de données labellisées. Une autre difficulté inhérente
a la maintenance prédictive est la dégradation graduelle de I'état de ’équipement
au fil du temps, impliquant qu’il ne devrait pas y avoir de différence notable dans le
niveau de dégradation ou l'indice de santé entre deux instances rapprochées dans le

temps.

L’objectif premier en maintenance prédictive est souvent de déterminer la durée
de vie utile restante, ou Remaining Useful Life (RUL), comme souligné par Jardine
et al., 2006, Le concept de RUL est fondamental dans le domaine de la maintenance

prédictive et du pronostic. Il désigne le temps estimé restant avant qu'une machine,



14 CHAPTER 1. ETAT DE L’ART DE LA MAINTENANCE PREDICTIVE

un composant ou un systéme atteigne la fin de sa vie utile ou nécessite une interven-
tion de maintenance. En d’autres termes, la RUL prédit le temps de fonctionnement
restant avant qu’une défaillance prévue ou une dégradation de la performance de la
machine ne survienne. Dans le cas des vannes de bleed, les alarmes qui signalent un
dysfonctionnement sont activées directement dans ’avion. On considére qu’il y a
une défaillance lorsque ces alarmes nécessitent une intervention de maintenance. Le
déclenchement des alarmes peut étre influencé par divers facteurs environnementaux,
tels que la température des aéroports de départ et d’arrivée, ce qui peut introduire
une variabilité supplémentaire dans le calcul de la RUL.

Une autre complexité notable dans I’estimation du RUL dans le secteur aéro-
nautique provient de la diversité des mesures disponibles pour estimer le RUL. Ce
dernier peut étre estimé en termes d’heures d’utilisation ou de cycles de vol, par
exemple. Chaque mesure présente des avantages et des inconvénients, et le choix le

plus approprié dépend de nombreux facteurs.

L’estimation du RUL en termes d’heures d’utilisation est généralement précise
puisqu’elle est basée sur le temps réel de fonctionnement de I’équipement. Cepen-
dant, elle ne tient pas compte de I'intensité de l'utilisation de 1’équipement durant
différentes phases de vol, comme au décollage ou a 'atterrissage, ou les équipements
peuvent étre plus sollicités. Par exemple, certains équipements, tels que les vannes,
ne fonctionnent pas en continu pendant le vol. Ces vannes peuvent rester entiérement
ouvertes et donc étre en quelque sorte au repos. Cela souléve la question de savoir
si le temps de travail effectif d’une vanne doit étre compté, ou s’il faut considérer le
nombre de fois o elle est actionnée. D’un point de vue technique, ces questions sont
difficiles & trancher. De plus, le temps de travail effectif d’'une vanne est difficile a
prévoir pour les vols futurs car il dépend des conditions de vol. L’objectif principal de
la maintenance prédictive est de pouvoir avertir 1'utilisateur d’'une panne imminente.
Par conséquent, les prédictions du RUL ne peuvent pas étre directement utilisées
pour prévenir d'une panne future. Il est nécessaire de transformer cette information
en quelque chose de plus exploitable, comme un nombre de jours ou de vols avant

une panne, informations utiles pour 1'utilisateur.

L’estimation du RUL en matiére de cycles de vol est particuliérement pertinente
pour les équipements aéronautiques car elle prend en compte le nombre de décollages
et d’atterrissages, cette mesure est aussi directement exploitable pour les compagnies
aériennes. Cependant, cette mesure peut s’avérer difficile & estimer car elle ne
tient pas compte de la durée des cycles. Méme en se focalisant sur un modéle
spécifique d’avion, on observe fréquemment une grande variabilité dans la durée

des cycles. Cette variabilité est notable au sein dune flotte d’avions, méme au sein
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Figure 1.2: Comparaison de la durée des vols entre trois compagnies aériennes

d'une méme compagnie. Les compagnies aériennes peuvent utiliser le méme modéle
d’avion de différentes maniéres selon leurs besoins spécifiques. Par exemple, une
)
compagnie aérienne peut utiliser un avion pour des vols courts et fréquents, tandis
qu’'une autre compagnie aérienne peut utiliser le méme modeéle d’avion pour des vols
longs et moins fréquents. La Figure [I.2 illustre ce phénomeéne. On observe que la
compagnie A effectue des vols variant de 1 & 8 heures, tandis que la compagnie B se
concentre principalement sur des vols d’une heure. Quant a la troisiéme compagnie,
la majorité de ses vols se situe entre 1h30 et 4h. Ces variations mettent en lumiére la
grande disparité de durée des vols a la fois inter et intra-compagnies. Ces différences
d’utilisation peuvent avoir un impact significatif sur la durée totale d’utilisation
des équipements. Par conséquent, avec cette métrique, des avions ayant le méme
Y )

nombre de cycles peuvent avoir un nombre d’heures d’utilisation trés différent.

Il convient de souligner que 'estimation de la RUL comporte une part d’incertitude
intrinséque, due a la complexité et a la dynamique du fonctionnement des machines,
a la multitude de facteurs influents et aux éventuelles erreurs de mesure. Lorsqu’il
s’agit de prévoir la durée de vie restante d'un élément intégré a un systéme, comme
c’est le cas dans notre contexte, les autres composants du systéme peuvent affecter
les données recueillies. On peut ainsi observer des phénomeénes de compensation ou
d’aggravation de la performance d’'un élément en fonction des autres composants du
systéme. Ces interactions complexifient davantage 1’évaluation de ’état de santé
de I'élément. L’estimation de la RUL peut se révéler étre un processus complexe,

étant donné que le taux de dégradation peut varier en fonction des pannes. Dans ce
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contexte, 'indice de santé est fréquemment employé comme outil d’estimation de
la RUL (Kang et al., [2021; Riad et al.,|2010)). Ce concept permet de quantifier de
maniére continue I’état de santé d’un équipement, fournissant ainsi un parameétre
essentiel pour la prédiction de la durée de vie restante.

Généralement, ’estimation de la RUL est réalisée a 1’aide d’un indice de santé
(Health Index - HI), qui suppose une dégradation linéaire jusqu’a la défaillance
ou, dans certains cas, adopte une fonction linéaire par morceaux (Jiang et al.,
2020; Laredo et al., [2019; Teng et al., 2016). Ces indices de santé sont basés
sur I’hypothése que la dégradation est linéaire par morceaux avec une vitesse de
dégradation identique pour toute la flotte ce qui peut étre problématique si ces
défaillances proviennent de causes différentes. De plus, dans le modéle linéaire
par morceaux, le choix du taux de dégradation est souvent approximatif bien que

déterminant pour ’entrainement du modéle.

Afin de mieux comprendre les données ou la vitesse de dégradation n’est pas
constante tout au long du cycle de vie d'un équipement, Kang et al., 2021| exploitent
I'indice de santé pour estimer la RUL. Ils élaborent un modele d’apprentissage
automatique afin de prévoir I’'HI d’un moteur turbo & chaque cycle. Etant donné
que la RUL n’est pas incluse dans les jeux de données d’entrainement, une fonction
polynomiale est adaptée aux HI, et le point d’intersection entre le polynoéme et
I’axe du cycle est considéré comme le point de défaillance. Ils supposent que les
cycles initiaux présentent un HI = 1, et que les derniers cycles ont un HI = 0. Les
données restantes sont ensuite estimées par interpolation. Cette méthode permet de
modéliser des formats de dégradation plus complexes, mais ne prend pas en compte
les éventuelles différences de vitesse de dégradation entre les cycles de vie.

Pour gérer des vitesses de dégradation différentes, Omshi et al., 2020| suggérent
une politique de maintenance prédictive qui s’ajuste en fonction des inspections
effectuées au cours du cycle de vie. L’hypothése clé est que les paramétres du
processus de dégradation sont inconnus. Toutefois, contrairement aux méthodes
précédentes, 'estimation de la RUL ici est effectuée a partir d’inspections et non
d’un grand nombre de données recueillies tout au long du cycle de vie des systémes.
Cela permet de faire ces prédictions lorsque peu de données sont disponibles, mais
cette approche n’est pas congue pour un suivi permanent durant le cycle de vie.

Ces difficultés considérables associées a 1'utilisation d’un indice de santé pour
ajuster les algorithmes ont guidé notre attention vers des informations plus fiables :
les données collectées juste avant une défaillance doivent étre considérées comme
anormales, tandis que les données provenant d’un nouvel équipement ou apres
des réparations doivent étre considérées comme saines. Nous ne voulons pas faire

d’hypothéses sur I’état de dégradation des équipements en dehors de certains mo-
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Figure 1.3: Périodes de dégradation dans le cycle de vie de I'équipement

ments précis. Comme illustré a la Figure [I.3] nous ne définirons que trois périodes
: une ou aucune dégradation n’est observée, et une autre ou la dégradation est
confirmée. Nous désignerons une troisiéme période comme celle pendant laquelle
la dégradation se produit, mais sans prétendre connaitre le moment exact de son

début ni la rapidité de ce processus de dégradation.

En conclusion, si les techniques de détection de défauts et de maintenance pré-
dictive contribuent toutes deux a la gestion globale de la santé des machines et des
systémes, la maintenance prédictive apporte une valeur supplémentaire en estimant
I’état de santé et en optimisant les activités de maintenance. En développant des
stratégies de maintenance prédictive, les organisations peuvent réaliser des améliora-
tions significatives en matiére de fiabilité des équipements, d’efficacité opérationnelle

et d’économies de cotts.

Techniques de maintenance prédictive

La maintenance prédictive est un domaine en pleine expansion, avec de nombreuses
techniques développées pour améliorer ses capacités dans une large gamme de cas
d’utilisation. En conséquence, une variété de méthodes a émergé pour répondre
aux défis posés par différentes applications. Selon Ran et al., 2019, nous pouvons
classifier les techniques de maintenance prédictive en trois groupes distincts. Le
premier groupe inclut les méthodes basées sur les connaissances, qui se fondent sur
une expertise spécifique du systéme ou sur la modélisation physique. Le second
regroupe les méthodes d’apprentissage automatique traditionnelles, tandis que la
troisiéme et derniére catégorie comprend les approches axées sur 'apprentissage

profond.

Approches basées sur les connaissances

Les approches basées sur les connaissances peuvent complémenter les méthodes axées
sur les données en fournissant un contexte et un raisonnement humain pour aider a

interpréter les résultats. On peut distinguer trois sous-catégories de ces méthodes.
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Approches basées sur l’ontologie : L’ontologie exprime formellement les connais-
sances contextuelles & travers les concepts et les relations existant dans un domaine
précis. Elle peut servir de base de connaissances pour différents systémes de machines
et peut étre associée a divers algorithmes de raisonnement existants pour réaliser le

diagnostic et le pronostic des pannes.

Approches basées sur les régles : Ces méthodes évaluent les données surveillées en
temps réel selon un ensemble de régles préétablies a partir de I'expertise humaine,
connues sous le nom de systémes experts. Ces systémes conservent le "savoir-faire"

des experts humains sous forme de régles expertes.

Approches basées sur les modeéles : Ces méthodes associent généralement des
modéles mathématiques a des processus physiques ayant un impact direct ou indirect
sur la santé des systémes ou des composants concernés. Elles utilisent des résidus
comme caractéristiques, en vérifiant la cohérence entre les résultats mesurés et
le comportement attendu du processus au moyen d’un modéle analytique. Cette
catégorie comprend notamment ce que 'on appelle couramment les "jumeaux

numériques" ou "digital twins", trés utilisés dans l'industrie.

Pour résumer, ’'ontologie offre un moyen potentiel d’intégrer, de partager et de
réutiliser les connaissances contextuelles d'un systéme, mais nécessite l'intégration
d’autres méthodes de raisonnement pour réaliser la maintenance prédictive. Les
approches basées sur les régles sont utiles lorsqu’il y a une grande expertise mais pas
suffisamment de détails pour développer des modeéles quantitatifs précis. Toutefois,
un systéme basé sur des régles a souvent du mal a gérer les nouvelles pannes
et & acquérir une connaissance exhaustive pour construire un systéme fiable. Les
approches basées sur les modeles sont pertinentes lorsque des modéles mathématiques
précis peuvent étre construits a partir de systémes physiques. Cependant, pour de
nombreux systémes complexes, les modéles mathématiques explicites peuvent étre

inaccessibles.

Modéles d’apprentissage automatique traditionnels

La maintenance basée sur les données est devenue la méthode la plus utilisée pour
gérer la maintenance prédictive (PdM), notamment pour la surveillance de la santé
des machines (par exemple le diagnostic des défaillances et I’évaluation de la durée de
vie restante). Les algorithmes d’apprentissage automatique sont couramment utilisés
pour analyser les données, en se concentrant particuliérement sur la précision de la

prédiction. Selon W. Zhang et al., 2019} les signaux utilisés pour le diagnostic des
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défaillances peuvent inclure les émissions acoustiques, les paramétres de signature
électrique (courant et tension), la température, la pression, la vitesse de rotation et
la vibration. Néanmoins, les signaux de vibration sont le plus souvent exploités, car
ils fournissent des informations précieuses, notamment pour les systémes rotatifs.
Dans le cadre de cette thése, nous nous concentrerons principalement sur des signaux
physiques tels que la pression et la température, mais aussi sur des signatures

électriques correspondant aux commandes envoyées aux instruments controlés.

Parmi les modéles d’apprentissage automatique traditionnels, on retrouve la
régression logistique (LR), un modele de classification bien connu pour sa faible
complexité algorithmique. La revue de W. Zhang et al., 2019 énumeére plusieurs
applications de la régression logistique pour la maintenance prédictive. Par exemple,
H. Li et al., 2015 ont proposé une méthode qui combine un modéle LR avec des
signaux d’émission acoustique et de force de coupe pour surveiller le processus
d’usure des outils de coupe et déterminer le moment optimal pour la maintenance.
On peut citer également Yan and Lee, 2005 pour la surveillance de la santé des portes
d’ascenseur. La régression logistique est une méthode précieuse pour la maintenance
prédictive, offrant une précision de prédiction élevée dans certains cas, une faible
complexité de modele, et une interprétabilité appréciable pour les experts industriels.
Cependant, la simplicité de ces méthodes peut limiter leur utilisation dans les cas
plus complexes de dégradation, ou des méthodes plus avancées se révéleront plus

performantes.

On retrouve également les modéles basés sur les foréts aléatoires (RF). Les RF
sont des collections d’arbres de décision formés a partir de sous-ensembles aléatoires
de caractéristiques, dont les résultats sont ensuite agrégés par une moyenne. Les
travaux de Prytz et al., 2015 ont utilisé RF comme algorithme de classification, en
association avec deux méthodes de sélection de features, pour prédire les réparations
de divers composants de véhicules commerciaux. De méme, Canizo et al., |2017| ont
fait appel a la méthode des RF pour générer des modéles prédictifs dynamiques
destinés au suivi des éoliennes. Cette approche a permis une accélération significative
du traitement des données, tout en garantissant la scalabilité et I’automatisation des
prédictions. Cette technique, robuste face au surapprentissage et simple & mettre en
place, est la méthode d’apprentissage automatique la plus utilisée et comparée dans

les applications de maintenance prédictive Carvalho et al., [2019.

Les machines a vecteurs de support (SVM) et les k-plus proches voisins (KNN) sont
également des méthodes largement utilisées. Les SVM sont couramment employées

pour des taches de classification et de régression en raison de leur précision élevée.
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Elles permettent une séparation précise entre différentes classes de données. Les
KNN sont des méthodes utilisées pour trouver des partitions (ou clusters) dans un
ensemble de données. Faciles a mettre en ceuvre, performants et capables de gérer
de grands ensembles de données, ces méthodes ont été testées par Mathew et al.,

2017 sur un jeu de données de la NASA dont nous discutons plus en détail dans la

Section

Ces modéles d’apprentissage automatique traditionnels nécessitent généralement
I'utilisation de features qui représentent les données. Toutefois, dans des cas
d’utilisation complexes, un ensemble simple de feature peut s’avérer insuffisant, né-
cessitant 'intervention d’un expert du systéme pour générer des features sur mesure
qui peuvent capturer avec précision la dégradation de la santé des équipements
pour un cas d’utilisation spécifique. Cette tache peut étre assez difficile en raison
des connaissances expertes requises, ce qui pousse a l'utilisation de modéles plus

complexes qui vont permettre d’extraire de maniére automatique ces features.

Modéles d’apprentissage profond

La troisiéme et derniére catégorie regroupe les approches basées sur I’apprentissage
profond. L’enquéte approfondie de Serradilla et al., [2022] examine diverses tech-
niques d’apprentissage profond utilisées pour la maintenance prédictive (PdM), des

méthodes dont I'usage est en croissance constante.

De nombreuses études ont mis en avant ['usage des réseaux de neurones convolutifs
(CNN) pour extraire des caractéristiques pertinentes en vue de la prédiction de pannes.
Parmi ces travaux, Huuhtanen and Jung, 2018 se sont penchés sur ’application des
CNN a la maintenance prédictive des panneaux solaires. En dépit de défis tels que
les variations météorologiques et les ombres générées par les objets environnants,
I’étude a souligné le potentiel des approches basées sur les CNN pour la maintenance
prédictive des systémes photovoltaiques. Une autre étude de Kiangala and Wang,
2020 a mis ’accent sur 'utilisation de la maintenance prédictive pour les moteurs
de convoyeurs dans le cadre de l'industrie 4.0. Ce travail a montré comment
mettre en place un cadre de maintenance prédictive en s’appuyant sur un modele
de classification basé sur les CNN. Les séries temporelles, représentant diverses
observations enregistrées au fil du temps, sont alors prétraitées pour optimiser leur
utilisation dans ces réseaux. Par ailleurs, Cinar et al., 2020 ont proposé une revue
exhaustive des progrés récents en matiére d’application des techniques d’apprentissage
automatique a la maintenance prédictive dans le contexte de la fabrication intelligente

(industrie 4.0). Ce travail met en exergue les nombreux avantages des applications
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d’apprentissage automatique, comme la réduction des cotits de maintenance, la
diminution des interruptions pour réparation, et l’allongement de la durée de vie des
piéces de rechange. Néanmoins, malgré ces avancées et le potentiel de 'apprentissage
automatique, une enquéte de PwC révele que seulement 11% des entreprises ont
effectivement mis en ceuvre une maintenance prédictive basée sur 'apprentissage
automatique. En somme, ces études mettent en lumiére 'importance et le potentiel
des CNN dans le domaine de la maintenance prédictive, tout en soulignant les défis
a relever pour en généraliser I'usage. Les recherches futures pourraient envisager
de combiner différentes approches et techniques pour surmonter ces obstacles et

optimiser davantage 'efficacité de la maintenance prédictive.

Les données utilisées pour la maintenance prédictive proviennent souvent de
capteurs qui générent des séries temporelles. Les réseaux de neurones récurrents
(RNN), spécialement congus pour traiter ce type de données, sont par conséquent
fréquemment employés dans ce domaine. Dans une étude menée par Q. Wang
et al., 2020, les chercheurs ont proposé une approche innovante pour moderniser
les méthodes de maintenance désuétes des équipements d’alimentation ferroviaire a
grande vitesse. Ils ont mis en ceuvre un réseau de neurones récurrents a mémoire a
long terme (LSTM-RNN) pour prédire le moment idéal pour effectuer la maintenance,
se basant sur les données historiques. Les essais réalisés sur un disjoncteur isolé au
gaz ont démontré la possibilité de prédire avec précision le moment de la prochaine
maintenance. Dans une autre publication, Rahhal and Abualnadi, 2020 ont collecté
une grande quantité de données pour chaque dispositif. Ces données ont été ensuite
transmises & un serveur central de traitement pour la construction d’un modéle
mathématique. Deux types de RNN, le Vanilla-RNN et le LSTM-RNN, ont été mis
en ceuvre pour réaliser des prédictions. Le LSTM-RNN a démontré une meilleure
performance prédictive et a été recommandé pour des équipements ou des dispositifs
dont la défaillance ou l'interruption de fonctionnement aurait des conséquences
significatives. En conclusion, les RNN, notamment les LSTM-RNN, ont prouvé leur
potentiel pour améliorer la précision de la maintenance prédictive. En couplant ces
modeéles d’apprentissage profond a d’autres technologies, telle que I'Internet des
Objets (IoT), chercheurs et professionnels sont en mesure de concevoir des systémes

de maintenance plus efficaces et plus précis.

Les auto-encodeurs sont couramment utilisés pour extraire des features pertinentes
sans avoir besoin de labels (Davari et al., [2021; Jakubowski et al., [2021; Su et al.,
2020), contrairement aux modéles RNN et CNN qui nécessitent un label cible pour
lapprentissage. Les auto-encodeurs (AE) sont des architectures de réseaux de

neurones congues pour réduire la dimensionnalité des données. Ils se composent de
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deux réseaux distincts : un premier réseau qui encode les données en réduisant leur
dimensionnalité, et un second qui reconstruit les données a partir de cette version
compressée. L’un des avantages majeurs des AE réside dans leur non-linéarité, qui
permet de compresser les données de maniére souvent plus efficace que d’autres
techniques telles que l'analyse en composantes principales (PCA). De plus, ces
modéles s’entrainent de maniére non supervisée, éliminant ainsi le besoin de labels.
Les parameétres du modéle sont optimisés pour minimiser ’erreur de reconstruction
entre la donnée d’entrée et la sortie du décodeur. Dans leur étude, Jia et al., 2018
ont exploré 1'utilisation d’auto-encodeurs pour le diagnostic automatique des défauts
de machines. Comparativement aux méthodes conventionnelles, qui requiérent une
caractérisation manuelle des anomalies limitant ainsi leur capacité & automatiser le
processus, les auto-encodeurs ont démontré une nette supériorité. En effet, ils ont
atteint un taux de précision de 99,43%, bien supérieur a celui obtenu en utilisant
une méthode combinant une réduction de dimension via une PCA suivie d’une
classification endommagé/sain a 1'aide de SVM, qui a seulement atteint 41,04% de
précision.

Lu et al., 2015 ont exploité un AE basique comme extracteur de features pour
obtenir une représentation en petite dimension a partir de signaux de roulement de
grande dimension. Néanmoins, des données brutes de grande dimension peuvent
entrainer un cott de calcul élevé et du surapprentissage. Par conséquent, des
caractéristiques multi-domaines peuvent étre préalablement extraites a partir des
données brutes, puis introduites dans des modéles basés sur AE. En raison du manque
de données historiques sur les défaillances ou de données correctement labélisées,
les modéles basés sur AE s’avérent étre un outil pertinent pour ’estimation du
processus de dégradation. Ces approches sont capables de mesurer I’état de santé
du systéme et de distinguer les différents niveaux de gravité des pannes. Enfin, les
modeéles basés sur AE sont généralement combinés avec divers modéles de régression
pour prédire la durée de vie restante (RUL) des équipements. Par exemple, Xia
et al., 2018 ont développé une approche de pronostic en deux étapes. D’abord, un
AE est utilisé pour classer les signaux en différentes étapes de dégradation. Ensuite,
des modeéles de régression sont construits pour chaque étape de santé afin de prédire
la RUL. Cette combinaison de techniques permet une prédiction plus précise et

adaptée a chaque étape de dégradation.

En réalité, une multitude de méthodes élaborées pour la classification, la régression
ou méme le clustering peuvent étre employées pour la maintenance prédictive. Le
choix d’un modéle spécifique sera généralement guidé par la quantité et le type de
données disponibles. L’avantage majeur de ces techniques d’apprentissage profond

réside dans leur capacité a reconnaitre automatiquement les patterns précurseurs de
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pannes, réduisant ainsi le besoin d’une expertise spécifique pour leur génération. Par
conséquent, elles ouvrent la voie a la mise en ceuvre de la maintenance prédictive
dans des environnements ol les connaissances spécialisées peuvent étre restreintes.
Cependant, ces méthodes requiérent généralement un volume conséquent de données
pour entrainement. Aussi, W. Zhang et al., [2019| pointent du doigt le fait que,
bien que ces algorithmes soient utilisables pour la plupart des applications indus-
trielles, ils souffrent d’un manque d’interprétabilité et sont incapables d’expliquer

les phénoménes spécifiques.

Conclusion

Il est important de souligner que ces méthodes ne sont pas mutuellement exclu-
sives. En effet, elles peuvent souvent étre utilisées conjointement dans un systéme
de maintenance prédictive, comme l’illustrent les méthodes en plusieurs étapes
mentionnées précédemment. Ainsi, les données collectées par les capteurs sur les
machines pourraient étre analysées a la fois avec des techniques de machine learning
et d’apprentissage profond. Les résultats de ces analyses pourraient alors servir a
mettre a jour ou a affiner les systémes fondés sur des connaissances spécifiques et

expertes.

Tandis que chaque méthode présente ses propres avantages et inconvénients, il
est essentiel de comprendre que la meilleure approche pour une application donnée
dépendra de nombreux facteurs. Parmi ceux-ci figurent la disponibilité des données,

I’expertise disponible, ainsi que le format des données en question.

1.3 De I'importance des jeux de données

L’étude de W. Zhang et al., 2019 met également 1’accent sur 'importance de la
provenance des données. Les auteurs remarquent que la majorité des jeux de
données proviennent de centres de données publics ou de plateformes expérimentales
a ’échelle du laboratoire. Ils observent que seuls quelques articles utilisent des jeux
de données collectés & partir d’équipements en service réel, mettant en évidence la
nécessité d’approfondir la recherche dans des conditions d’exploitation concrétes.
C’est dans cette optique que nous discuterons plus en détail des jeux de données et

de leurs limites dans cette section.

Le jeu de données sur les roulements de la Case Western Reserve University
(CWRU Bearing Dataset) représente une ressource largement utilisée et reconnue

pour le diagnostic des pannes. Dés 2015, il a été qualifié de jeu de données de référence
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dans I’étude de Smith and Randall, 2015, qui a réalisé un benchmark sur les méthodes
de détection des défauts. Ce jeu de données est composé d’enregistrements de tests
de roulements a billes dans diverses conditions, allant de I’état normal a plusieurs
niveaux de défectuosité. Les défauts ont été introduits méthodiquement a l'aide
d’une machine d’électro-érosion (EDM), offrant des tailles de défauts multiples. La
collecte des données a été réalisée en utilisant des accélérométres fixés a la fois
au boitier du roulement et, dans certains cas, a la plaque de base de soutien du
moteur. Les signaux de vibration ont été enregistrés via un dispositif a 16 canaux et
ensuite post-traités dans un environnement Matlab. Les données numériques ont été
collectées a des fréquences allant de 12 000 a 48 000 échantillons par seconde, avec
des données complémentaires sur la vitesse et la puissance également enregistrées.
En raison de la prévalence de ce type de données dans l'industrie, le jeu de données
CWRU est devenu une ressource précieuse pour les chercheurs et les ingénieurs
travaillant dans le domaine de la maintenance prédictive, la détection de défauts et

I’analyse des vibrations dans les systémes de roulements a billes.

Cependant, il est important de noter certaines limitations inhérentes a ce jeu de
données. En premier lieu, les données ont été recueillies sur un banc d’essai, ce
qui peut différer des conditions d’utilisation réelles et avoir une incidence sur la
capacité de généralisation des résultats. En outre, les défauts ont été introduits de
maniére expérimentale, ce qui peut ne pas correspondre exactement aux types de
dégradations observées dans des machines a roulements en conditions d’utilisation
réelles. De plus, le jeu de données ne permet pas une étude approfondie de 1’évolution
et de la dégradation des équipements au cours de leur cycle de vie, car les données
sont présentées de maniére binaire (soit saines, soit avec un défaut spécifique). Ainsi,
malgré son utilité et son utilisation répandue, ces aspects doivent étre pris en compte

lors de I'exploitation du jeu de données CWRU pour le diagnostic des défauts.

Le jeu de données Nectoux et al., 2012| repose sur PRONOSTIA, une plateforme
expérimentale con¢ue pour les tests de dégradation accélérée des roulements a billes.
Cette plateforme a été élaborée pour authentifier et affiner les méthodes relatives
a I'évaluation de I’état, au diagnostic et au pronostic des roulements, compte tenu
du fait que la majorité des défaillances des machines tournantes sont associées a
ces composants. L’objectif principal de PRONOSTTA est de fournir des données
concrétes concernant la dégradation accélérée des roulements, réalisée sous des
conditions de fonctionnement constantes et/ou variables, controlées en temps réel.
De plus, I'article annonce 'organisation du "IEEE PHM 2012 Prognostic Challenge"
lors de la conférence PHM, ot un lien vers les données de dégradation sera accessible

aux concurrents, leur permettant de tester et de vérifier leur méthodologie de
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pronostic. Ce jeu de données offre une caractéristique intéressante : il propose des
exécutions jusqu’a la défaillance compléte (run-to-failure), ce qui permet d’observer
I’évolution de la dégradation au cours de la durée de vie des équipements. Les
auteurs soulignent que certaines dégradations surviennent soudainement, rendant
leur prédiction difficile. Tout comme le jeu de données précédent, celui-ci est produit
grace & un banc d’essai, ce qui entraine des limitations similaires. Cependant, les
dégradations sont réelles et recueillies tout au long du cycle de vie, ce qui apporte

une valeur ajoutée notable a ce dataset.

Bien que les ensembles de données soient cruciaux pour la maintenance prédictive,
les données de vibrations de roulement sont trés spécifiques et peu pertinentes pour
le sujet de cette thése, qui se concentre principalement sur des mesures physiques
enregistrées a basse fréquence (1 Hz). Pour de ce type de données, I’ensemble de
données C-MAPSS est largement exploité, voir Saxena et al., 2008 Les chercheurs
ont utilisé une simulation thermo-dynamique pour générer les réponses d’un grand
nombre de capteurs en fonction des variations de flux et de l'efficacité des modules
concernés. Ils ont imposé un taux de changement exponentiel pour la perte de flux et
d’efficacité pour chaque ensemble de données, indiquant une défaillance non spécifiée
avec des conséquences de plus en plus nuisibles. La progression des dommages est
autorisée a se poursuivre jusqu’a 'atteinte d’un critére d’échec. Ils ont défini un
indice de santé comme le minimum de plusieurs marges opérationnelles & un moment
donné et le critére d’échec est atteint lorsque l'indice de santé atteint zéro. Cet
ensemble de données est largement utilisé pour illustrer les nouvelles méthodes de
maintenance prédictive, mais il présente néanmoins certaines limites. Premiérement,
les données proviennent de simulations numériques. Les systémes moteurs des avions
évoluent dans des contextes trés variés et sous de fortes contraintes. Dans ces
conditions, la simulation numérique s’écarte rapidement des données que I'on peut
collecter en vol. Deuxiémement, les dégradations présentes dans cet ensemble de
données sont facilement identifiables, méme sans l'extraction de caractéristiques
d’intérét, comme le montre 1'évolution des données brutes dans la Figure [I.4] Sur
cette figure, nous représentons 1’évolution de deux séries de données brutes jusqu’au
moment de la panne (temps 0). En superposant simplement les signaux du dataset,
on peut déja trouver une régle "d’expert" pour distinguer les moments proches d’une

panne de ceux ol le systéme est en bon état.

Cet ensemble de données, tout en étant utile, présente des dégradations relative-
ment simples a identifier et ne tient pas compte de la variété des contextes dans
lesquels les systémes moteurs évoluent lors des vols. En raison de ces facteurs, il est

particulierement complexe d’estimer la performance réelle d'un modéle fondé sur cet
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Figure 1.4: Evolution de donnés récoltés sur les capteurs du dataset C-MAPSS

ensemble de données. Il est donc crucial de relativiser les performances des méthodes
uniquement testées sur cet ensemble. Une version améliorée de cet ensemble de
données, appelée N-CMAPSS (Arias Chao et al., , a été développée pour tenir
compte des conditions de vol réelles, telles qu’elles sont enregistrées a bord des
avions de ligne. Cette version élargit le spectre de la simulation et s’efforce ainsi de

se rapprocher davantage de la réalité opérationnelle.

Récemment, des ensembles de données basés sur des informations recueillies a
partir d’équipements en fonctionnement ont été mis a disposition, comme celui issu de
la base de données NGAFID (National General Aviation Flight Information Database
- Yan and Lee, [2005; Yang et al., [2022). Ce dataset constitue I'ensemble de données
publiques non simulées le plus vaste, couvrant l'intégralité d'une flotte d’avions (des
Cessna 172), les enregistrements de vols et les journaux de maintenance pour la
prédiction des défaillances matérielles et des besoins en maintenance. Il contient 31
177 heures de données de vol sur 28 935 vols, correspondant & 2 111 événements
de maintenance non prévus classés en 36 types de problémes de maintenance. Cet
ensemble de données revét une importance capitale pour les recherches futures en
matiére de maintenance prédictive, car il offre la possibilité de tester des méthodes sur
des données réelles généralement inaccessibles. La seule limitation que l'on pourrait
signaler ici est I’absence de données sur le cycle de vie complet des équipements ; on
ne trouve que des données sur les vols sains (aprés réparation) et les vols avec des
équipements endommagés (vols réalisés 1 & 2 jours avant une panne). Ce format

de données encourage des approches basées sur la classification des vols (sains ou
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dégradés) mais ne permet pas vraiment de tester les prédictions de la durée de vie

restante utile.

Un autre ensemble de données réelles est disponible, provenant du projet de
maintenance prédictive mené avec le service de transport public urbain de métro a
Porto, au Portugal (Veloso et al., 2022)). Collectées en 2022, ces données englobent
une diversité de signaux issus de capteurs analogiques (pression, température,
consommation de courant), de signaux numériques (signaux de controle, signaux
discrets) ainsi que des informations GPS (latitude, longitude, vitesse). L’accent
est mis sur les défaillances de 'unité de production d’air, qui alimente différentes
unités assurant diverses fonctions. Parmi ces unités, la suspension secondaire, qui
maintient la hauteur du véhicule stable indépendamment du nombre de passagers a
bord. Les données ont été recueillies de janvier a juin 2022, a partir d'un train en
exploitation. Avec un taux d’acquisition de données de 1Hz, cet ensemble de données
comprend plus de 3000 heures d’informations. Ce dataset offre un historique des
données, mais il ne recense que trois pannes sur une période de six mois. Cette
particularité pourrait limiter 'utilisation de cet ensemble de données aux méthodes

de détection de défauts non supervisées.

Conclusion

Au terme de notre étude approfondie des divers jeux de données dans le domaine de
la maintenance prédictive, il est clair que chaque ensemble de données a ses avantages
distincts, mais aussi ses limites inhérentes. Les jeux de données traditionnels, tels
que le CWRU Bearing Dataset et C-MAPSS, ont contribué¢ de maniére significative
a ’avancement de la recherche dans ce domaine. Toutefois, il convient de reconnaitre
leurs limitations, notamment leur dépendance vis-a-vis des conditions d’essai en
laboratoire ou des simulations numériques, qui ne reflétent pas toujours fidélement

la complexité des scénarios du monde réel.

D’autre part, nous saluons ’apparition d’ensembles de données plus réalistes
et dynamiques, provenant d’équipements en fonctionnement, comme le dataset
NGAFID et celui du service de métro de Porto. Ces ensembles de données nous
rapprochent de 'objectif de la maintenance prédictive, & savoir prévoir et éviter
les défaillances matérielles dans des conditions d’exploitation réelles. Cependant, il
est également crucial de prendre en compte les limitations de ces datasets, comme
I’absence de données sur le cycle de vie complet des équipements et le nombre limité

de défaillances enregistrées.
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En conclusion, ’exploration et 1’évaluation rigoureuse de ces divers jeux de données
mettent en lumiére 'importance d’une approche pluraliste dans le domaine de la
maintenance prédictive. Il est impératif de ne pas se reposer uniquement sur un type
de données, mais plutot de tirer le meilleur parti des caractéristiques spécifiques de
chaque jeu de données, tout en tenant compte de leurs limites.

Un dataset de référence va devoir émerger pour permettre d’avancer dans le
domaine. Mais il convient de souligner que bon nombre des méthodes de maintenance
prédictive reposent généralement sur I’expertise spécialisée et sont souvent concues
pour s’adapter & des cas d’utilisation spécifiques. Cette réalité met en lumiére
la nécessité d’utiliser des données de nature diverse pour concevoir et évaluer des
modéles. L’idée de recourir & un unique ensemble de données pour tester toutes les
méthodes de maintenance prédictive semble donc irréaliste. Une variété de jeux de
données est nécessaire pour embrasser les complexités et spécificités des scénarios de
maintenance prédictive de la vie réelle et pour permettre de comparer sereinement

les méthodes développées.



Chapter 2

Bleed Air Systems: Data &
Challenges

In the context of predictive maintenance, particularly for critical aerospace compo-
nents, this chapter lays a comprehensive foundation for our research by delving into
the underlying systems, available data, and preliminary approaches. We begin with
a detailed explanation of the bleed air system in the first section. As one of the key
components in the functional operation of an aircraft, it is critical to understand
the details of the bleed air system, its primary components, and the role it plays in

the overall performance of the aircraft.

Once the technical landscape of the bleed air system is unraveled, we turn to
the data available to us. Our research benefits from the rich data set provided
by Liebherr Aerospace Toulouse, which furnishes us with a wealth of information,
enabling us to analyze real-world functioning of bleed air systems and their failure
patterns. The data is a crucial aspect of our research and the backbone of any
machine learning project. In the second part of this chapter, we will provide an
overview of the dataset’s components, their interrelations, and the notations used
to represent them. We will also discuss the data collection procedure, the steps
involved in data pre-processing, and the splitting of data into training and testing

sets.

In the third and final part of this chapter, we will evaluate some preliminary and
admittedly naive approaches to predictive maintenance. Recognizing that a simple
approach might not always yield the most accurate results, it serves as a critical
stepping stone for our understanding of the problem at hand. It allows us to gauge
the difficulty of the task, identify the limitations of straightforward methodologies,

and lays the groundwork for more sophisticated and accurate models to be discussed
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in the subsequent chapters.

This chapter sets the stage for the rest of the research, providing us with a deep
understanding of the context in which we operate, the data at our disposal, and a

starting point from which we can build upon.

2.1 Bleed air systems

A bleed air system is a critical component in the design and operation of an aircraft.
It comprises a sophisticated network designed to deliver and regulate compressed
air from an aircraft’s engines. Within an aircraft, the air system performs several
key functions that contribute to the safe and efficient operation of the aircraft.
Primarily, it is used to provide air conditioning and manage cabin pressurization,
which helps maintain a comfortable and safe environment for passengers and crew at
high altitudes where the air is naturally thinner. In addition, the air system plays a
critical role in de-icing and anti-icing the wings and engines, preventing the formation
of ice that could degrade aircraft performance or even pose a hazard. The tapped
air is also used to cool various avionic systems and heat-generating components.
Consequently, the significance of the air system extends beyond ensuring passenger
comfort. It plays a more substantial role in guaranteeing the safety and enhancing
the operational efficiency of the aircraft. As such, the reliability of the air system
becomes critical, positioning the maintenance of its components as a high priority
within the aviation industry. Moreover, it’s noteworthy that the bleed air system
is one of the most energy-intensive systems on an airplane, surpassed only by the
engines. This presents another compelling reason to monitor it closely, preventing

potential losses in efficiency.

The air system operates by drawing air from the engine as needed, which can
be taken from two different locations in the engine. The extracted air can easily
reach temperatures exceeding 500°C, thereby imposing substantial stress on various
system components. This mass of hot air is channeled, through a series of carefully
orchestrated valves, to an initial radiator. This radiator, utilizing an additional
influx of fresh air captured from outside, is tasked with moderating the temperature
of the extracted air before its subsequent use. Depending on specific conditions, the
air can then be directed towards the aircraft’s wings to ensure a de-icing function.
Finally, a terminal valve regulates the pressure of this treated air, making it suitable
to be injected into the air conditioning system, commonly known as PACK. This

sequence of operations ensures a constant supply of regulated air, crucial to the
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Figure 2.1: Simplified Overview of the Bleed Air System’s Architecture

comfort and safety of the aircraft and its occupants. These first step of bleed air
systems are detailed in the Figure [2.1]

This intricate system is composed of numerous components, among which the most
critical are valves that can be controlled either pneumatically or electrically. These
valves are primarily utilized to regulate output pressure, a function which is essential
to the safety and efficiency of downstream components. Figure provides an
example of this type of valve. These pieces of equipment can be subjected to various
types of degradation, including leaks in the valve’s flap or the valve becoming stuck.
These types of degradation can impact the valve’s ability to maintain a consistent

and accurate pressure.

Another key component is the heat exchanger, which uses ambient cool air to
reduce the temperature of the hot air emanating from the turbines. This process
enables downstream components to receive air at a moderately reduced temperature.
An example of such a component is depicted in Figure [2.2b] Common degradation
in this component often takes the form of leaks. While a minor leak might not
pose a direct threat to the rest of the system, it can impact the overall efficiency of
the aircraft. Therefore, it’s crucial to ensure timely replacement of a leaking heat
exchanger. The task of preventive maintenance in this case isn’t straightforward
because heat exchangers can be quite large, making their replacement a complex

procedure. This makes heat exchangers ideal candidates for predictive maintenance.

Failures in the air system can have severe consequences from both safety and
operational perspectives. From a safety viewpoint, a failure of this system could

compromise cabin pressurization, endangering the health and comfort of passengers
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(a) Valve (b) Heat Exchanger

Figure 2.2: Exemples of Key Components of the Bleed Air System

and crew, especially during high-altitude flights. Similarly, a failure in de-icing
and anti-icing systems can cause ice accumulation on the wings and engines, a
situation that can affect the aircraft’s maneuverability and, in extreme cases, result
in engine failures. However, it’s essential to highlight that the design of these systems
incorporates significant redundancy, with each engine equipped with its own air
system. Thus, even in case of a failure on one side, the other can take over all vital

functions, thereby minimizing risks and ensuring optimal safety.

From an operational perspective, air system failures can lead to flight delays or
cancellations, bearing significant financial consequences for airlines. Moreover, if an
aircraft is grounded for repairs, this can also impact flight scheduling and aircraft
availability. For all these reasons, predictive maintenance of the air system is a
major priority in the aviation industry, as it enables the detection of problems before

they escalate and hence minimizes associated risks and costs.

2.2 Data collection

In the upcoming sections, we will delve deeper into the specifics of the data collection
process, exploring the types of data primarily involved in our analyses and the
rationale behind their selection. Additionally, we will also introduce the preprocessing

steps and the evaluation strategy.
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Data Acquisition and Analysis in Aircraft Bleed Air Systems

Aircraft, particularly in their complex functionalities and mechanical nuances, are
equipped with an extensive network of sensors that ensure their optimal performance.
These sensors, some of which are strategically placed around components of the
bleed air systems (as illustrated in Figure , actively monitor and record crucial
operational data during flights. The raw time-series data, constituting various
measurements and status indicators, are transferred to our database post-flight,
offering a comprehensive dataset spanning hundreds of thousands of flight hours

across the fleet.

The primary focus of this thesis rests on physical measurements including, but
not limited to, pressure and temperature values. Additionally, we consider control
commands sent to the valves, flow measurements preceding the air conditioning
component, and importantly, the altitude of the aircraft. The inclusion of altitude
data plays a pivotal role in our analysis as it provides insights into the specific flight
phase at the time of data collection. Aircraft operations are typically divided into
distinct phases, each with their unique operational characteristics and requirements.
A general overview of these phases includes: Ground before Departure (ghd): This
phase marks the time leading up to the takeoff, encompassing pre-flight checks
and preparatory procedures. Climb (clb): Initiating when the aircraft is off the
ground, this phase extends until the aircraft reaches its cruising altitude. Cruise
(crz): Starting when the aircraft attains its cruising altitude, the cruise phase
continues until the initiation of the descent. Descent (des): This phase begins
when the aircraft starts descending from the cruise altitude and concludes when the
aircraft touches the ground. Ground after Arival (gaa): Following the landing, this
phase encompasses the time until engine shutdown. Figure illustrates a typical
flight profile, highlighting the evolution and sequence of different phases throughout
the course of a flight. The depicted altitude changes reflect standard patterns of
ascent, cruising altitude, and descent, offering insights into key moments where the
bleed air system may face varying operational demands. In fact, flight profiles vary
significantly based on many factors. For example, the length of the flight, weather
conditions, and air traffic control guidelines all play a significant role in shaping a
flight profile.

Alarms, generated by the aircraft’s monitoring systems, play a crucial role in
safeguarding the aircraft’s operational integrity. They continually oversee various
parameters and operational metrics, working in synergy with avionic systems that

handle navigation, communications, and display. Modern aircraft incorporate
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Figure 2.3: A Typical Flight Profile

advanced alarm management systems that help prioritize alarms and control 'alarm
floods.” In the event of a cascade of triggered alarms, the system highlights the
root cause, allowing the crew to address the primary issue first. These alarms are
systematically logged, and any alarm concerning a component of the bleed system
typically necessitates subsequent maintenance. Occasionally, maintenance may be
conducted without a prior alarm, signifying a right-censored scenario in our data

interpretation.

Our goal is to preemptively identify and resolve issues that may trigger these
alarms. To this end, we define the last flight of a component’s lifecycle as the flight
preceding the alarm-triggering event. Therefore, the overall goal is to improve the
accuracy of predicting potential maintenance needs, thereby promoting operational

efficiency and safety:.

Preprocessing

The data collection and processing pipeline for aircraft sensor data involve several
critical steps. These steps ensure the integrity of the data and its suitability for
the complex analyses required for predictive maintenance. One of the primary
data sources in this regard are the numerous sensors installed throughout the
aircraft, some of which focus on monitoring the bleed air systems. These sensors
predominantly operate at a sampling rate of 1 Hz, ensuring a steady stream of data
during each flight. The sensor data is gathered across two separate channels, which
each capture slightly differing sets of values. This dual-channel setup is designed to
enhance the robustness of the data collection process and provides an added level of

redundancy to maintain data integrity. However, while most sensors adhere to the 1
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Hz sampling rate, their data collection cycles might not be perfectly synchronized.
This discrepancy in synchronization can potentially result in minor variations in
the time-stamping of data points from different sensors. Even small inconsistencies
could potentially affect the precision of certain analyses, particularly those requiring

correlation between different types of measurements or intricate time-series analysis.

To address this challenge, the first step in our data preprocessing is the synchro-
nization of all time series data. We achieve this via linear interpolation, a technique
that fills in missing data points within a series based on the linear relationship
between known data points. This process allows us to create a unified timeline
for all data, ensuring accurate comparisons and correlations between different mea-
surements. Following the synchronization of the time series data, we merge the
data from the two channels associated with each sensor. While the channels collect
slightly different values, they essentially capture the same physical measurements.
Hence, they can be combined into a unified time series. This merging step simplifies
our data, reducing the number of time series to be analyzed while preserving the
comprehensiveness and richness of our dataset. These pre-processing steps are
essential to ensure the accuracy and usability of our sensor data. Through effective
synchronization and consolidation of our data, we lay the groundwork for robust

subsequent analyses and the development of reliable predictive maintenance models.

Each flight is stored as a multivariate time series consisting of K parameters,
each observed over T} time steps. We represent this time series as & = {zbk},
teT ={1,....,T;}, k€ K={1,...,K}. Here, t refers to the set of observation
times 7, and k is a member of the set of parameters K. Our dataset, of size n,
consists of pairs, each including the i'* time series and its corresponding label (or
class). We express these pairs as &;, §;, for each ¢ in the range 1 to n. It’s essential
to note that the number of parameters, K, and the duration of each flight (which
influences the length of each time series) can vary. This variability adds another level
of complexity to the dataset. We denote these cropped time series as x = {z%*},
t €T C T;, k € K. The choice of T can depend on the flight phases we wish to
investigate, as deriving meaningful features from each phase can enrich our analysis.
Specifically, for deep learning models that require uniform input dimensions, we
may need to standardize the lengths of our time series. In such scenarios, T' can
be selected to represent a 'window’ within each flight of a specific duration. This
approach allows us to accommodate the inherent variability in our time series lengths

while still utilizing the advanced capabilities of deep learning models.
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Data Partitioning for Robust Aircraft Predictive Maintenance

The implementation of a robust and unbiased testing strategy is a critical element
in developing our predictive maintenance models. The aircraft bleed air system,
characterized by its complexity and significant role in aircraft operations, is one such
system that requires particular attention. An aircraft typically has two independent
bleed air systems, each consisting of several interconnected components. To simplify
the analysis, we treat each system independently in our model. However, because
the components of these systems are interconnected, the health of one part can
potentially affect others within the same system. As such, we need to carefully
consider this interconnectedness when partitioning our dataset into training and

testing subsets to avoid undue interference and bias.

The data partitioning approach we have adopted is driven by a fundamental
principle: splitting by aircraft. This means, rather than taking a random sampling
of individual flights or components to form the training and testing groups, we
specifically assign all flights from particular aircraft to the test set. This technique
plays a pivotal role in maintaining the integrity of the bleed air system under
observation. As the system’s components are inherently interconnected, it’s essential
to encapsulate the entire system’s behavior in our test data. Allocating all flights
from certain aircraft to the test set enables us to achieve this goal, thereby ensuring
the relevance and validity of our testing procedures. This approach also acts as a
safeguard against potential interference that could stem from overlapping health
states within a system. When we consider the interconnected nature of different parts
within a bleed air system, it becomes clear that the health state of one component
could influence another. Therefore, by keeping the aircraft data distinct within
the training and testing groups, we ensure a clear demarcation and an unbiased
reflection of our model’s predictive accuracy. Moreover, our data partitioning
approach addresses the need to account for operational variability across different
aircraft. By assigning all flights from specific aircraft to the test set, we encapsulate
this variability within our test data. This strategy enables us to check our model’s
ability to generalize its predictions across varying operational conditions, thereby
enhancing its practical applicability and strengthening its predictive capabilities. To
implement this partitioning strategy, we randomly select n. aircraft and assign all
of their flights to form our test set. The remaining flights of the remaining aircraft

form our training set.
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2.3 First approach

In this section, we propose a comparative exploration of prevalent methodologies in
the field of predictive maintenance. Our focus will primarily be centered around two
key approaches: the application of classical machine learning techniques involving
feature extraction in conjunction with tree-based machine learning models for
predicting the Remaining Useful Life (RUL), and a deep learning-based strategy

tailored specifically for the same purpose.

The metric of our primary interest throughout this investigation is the RUL,
defined as the estimated number of operational hours that remain before an alarm
triggers, signifying a potential failure or need for maintenance. We aim to provide an
analytical overview of how these two diverse methodologies perform in predicting this
critical parameter, thus enabling a more informed strategy for predictive maintenance.

The succeeding subsections will present the exploration of each of these ap-
proaches, their implementation, and the results of their performance in predicting
the RUL. The objective of this section is not only to understand these approaches
better but also to shed light on their strengths and potential areas for improvement

within the context of predictive maintenance.

Feature Extraction Based Approach

This subsection delves into our methodological approach, grounded in the principles
of feature extraction, where we concentrate on two pivotal flight phases: the ascent
and descent. These flight segments have been identified as being vital for the bleed
air system, primarily due to the strain placed on the engine and its components.
For example, during climb, the engine operates at high throttle, requiring active
valve control to maintain air balance. Conversely, the cruise phase typically exhibits
stability, which could limit the informational value of related signals. The descent
phase, nonetheless, provides another rich opportunity for data collection and analysis,

potentially revealing unique system behaviors under varying throttle conditions.

As part of our feature extraction strategy, we collect an array of basic statistical
features for each signal. This comprehensive collection, which results in a significant
number of features per flight, includes not only the maximum and minimum values,
but also the mean, median, variance, percentiles, interquartile range, skewness, and
kurtosis. Each of these features offers unique insights into the bleed air system’s
performance during the critical ascent and descent phases of flight. To further

enhance our feature set, we also compute the signal’s autocorrelation, capturing
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its self-similarity across different time lags and adding another layer of valuable
data about its temporal behavior. We supplement these time-domain features by
delving into the frequency domain. This involves performing a spectral analysis of
the signal, identifying the frequency with the highest energy — a key factor that
often reveals hidden patterns — and calculating the energy of 10 distinct frequency
bands. Furthermore, we determine the skewness and kurtosis of these frequency
values, providing information about the asymmetry and ’tailedness’ of the frequency
distribution. The choice of these features is informed by their potential to highlight
critical system anomalies, or variations that could indicate an impending system
failure. In summary, our feature extraction strategy encapsulates a comprehensive
exploration of each signal from multiple analytical perspectives, aiming to maximize
the potential to uncover meaningful patterns and correlations in our predictive

maintenance task.

Following feature extraction, we pivot to the application of machine learning
algorithms—specifically, Random Forest and Boosted Trees—to predict the Remain-
ing Useful Life (RUL). Random Forest utilizes an ensemble of decision trees and
operates by aggregating their predictions to enhance overall prediction accuracy.
Boosted Trees, on the other hand, employs an iterative process to minimize errors in
prediction, refining its model with each iteration for improved prediction accuracy.
Through this approach, we intend to take advantage of the vast wealth of features
that are collected from each flight and use this information to effectively predict
RUL and facilitate proactive maintenance planning. These algorithms have been
utilized in various fields and applications due to their robustness and capability to
handle complex datasets, making them an ideal choice for our predictive maintenance

framework.

This methodology offers several significant advantages, primarily in its computa-
tional efficiency and scalability, which are crucial when dealing with massive amounts
of data. By extracting simple features and using tree-based models, computation
and training are accelerated, allowing for faster data processing. This efficiency is
particularly beneficial in a real-world scenario where it is necessary to make daily
predictions for a large fleet. Furthermore, the use of tree-based models contributes to
the robustness of predictions, handling various data distributions and complexities,
thereby ensuring the applicability and effectiveness of this method in a dynamic

operational environment.
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Deep Learning Approach

In this portion of our investigation, we delve into the utilization of deep learning
methodologies. As with the feature-based approach, we concentrate on the climb
phase of the flight. For the deep learning models, the climb phase data are seg-
mented into 256-length crops, with a 50% overlap between each crop, creating a
comprehensive and interlinked representation of the phase. This data preparation
strategy can be seen as a data augmentation strategy and helps the model find

relevant patterns anywhere in the time series.

The duration variability of the climb phase is significantly lower than that of
the cruise phase, making it technically feasible to present the entire climb phase
to our deep learning models. However, addressing shorter phases by zero-padding
could lead to an inflation of non-informative data, which could potentially dilute
meaningful patterns and impact the learning capabilities of our models. Furthermore,
using the entire climb phase as input can lead to significantly less training data
points as each data point becomes longer. This reduction in the number of training
examples might make the deep learning models harder to train, posing a challenge
to achieving high prediction accuracy. Additionally, incorporating longer time series
data necessitates larger model architectures. While these larger models might be
capable of capturing more complex patterns, they also require more computational
resources for both training and prediction. This increase in resource demand can
be a barrier to operational applicability, particularly when predictions need to be
made daily on a large fleet. In light of these considerations, we adopt a balanced
approach of segmenting the climb phase into manageable lengths while ensuring we
do not lose essential information. This strategy seeks to strike a balance between
maximizing model performance and maintaining reasonable resource requirements

for effective real-time prediction.

The final RUL prediction for each flight is computed by taking the mean of the
predictions for each crop, providing a consolidated estimate. For this task, we employ
a three-layer convolutional neural network (CNN). In our context, the CNN operates
on our time-series sensor data, effectively identifying potentially complex patterns

that could be indicative of future system failures.

Results

This section provides an in-depth examination of the outcomes of our experimen-
tation with the feature extraction based approach and the deep learning approach.

The analysis is rooted in several crucial aspects of predictive accuracy: capturing
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degradation trends, predicting the remaining useful life (RUL) of the bleed air

system, and the precision of predictions as the system approaches the end of its life.

When comparing both methodologies, it’s crucial to note that they were found to
have different strengths and weaknesses. We have used three common metrics to
evaluate the performance of these models: the Mean Absolute Error (MAE), the
Mean Squared Error (MSE), and the median error. A summary of the comparative
results is presented in Table 2.1} It can be observed that the deep learning model,
more specifically the Convolutional Neural Network (CNN), has outperformed the
AdaBoost model based on extracted features in all the metrics. The feature extraction
based methodology struggles to effectively capture the degradation patterns of
the bleed air system, and this is not surprising for two main reasons: First, the
degradation patterns tend to manifest at specific moments during the flight. However,
since the features are computed over large sections of the flight, these vital signals
could be drowned out amidst the surrounding noise. Secondly, the bleed air system
is a sophisticated device with no obvious degradation features. The lack of clear
indicators that align with its component degradation makes the task of predicting its
health status substantially more challenging than in comparatively simpler scenarios,
such as the ones encountered in the C-MAPSS dataset. This complexity amplifies
the difficulty of predictive maintenance, necessitating more robust and nuanced

modeling strategies.

Models ‘ MAE MSE Median error
AdaBoost | 181 12 206 £14 173 +£12
CNN 162 +£11 191 £12 146 410

Table 2.1: First approach performances

For a more qualitative perspective on the results, we have charted the evolution
of the RUL predictions over two lifecycles, as shown in Figure In this figure,
the solid lines depict the 7-day rolling means with their corresponding confidence
intervals. The target RUL is indicated by the black line. In Figure [2.4a] both the
AdaBoost and CNN models successfully capture the degradation trend, which bodes
well for their predictive capabilities. However, the CNN model seems to deliver
predictions that are closer to the target RUL. Figure shows a similar pattern,
with the CNN capturing the degradation trend while the AdaBoost model does
not. Yet, there is a notable failing in the CNN model’s predictions as the system
approaches failure - it does not predict the RUL accurately during this crucial period.

This issue is also apparent in the first lifecycle, which presents a significant problem.
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The ability to predict with high precision as the system nears its end of life is crucial
for scheduling timely maintenance. Hence, despite the better overall performance of
the CNN model, this limitation presents an area needing further investigation and

potential improvement.
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Figure 2.4: Comparative Analysis of RUL Predictions for Two Lifecycles

In summary, while the CNN-based method demonstrated superior capabilities in
trend prediction compared to the AdaBoost model, its end-of-life prediction precision
and higher computational demands present notable limitations. Future work could
focus on refining these models further to enhance their prediction precision towards
the end of life, improving their computational efficiency, and exploring hybrid
methodologies that could leverage the strengths of both approaches. Despite the
current shortcomings, these methodologies provide a strong foundation for the

development of a more refined predictive maintenance framework.

2.4 Conclusion and Insights

This chapter marks the preliminary stages of our work on predictive maintenance
for critical aircraft components, with a special focus on the bleed air system. Our
discussion begins with a comprehensive exploration of the bleed air system, a major
feature critical to the functionality of an aircraft. Understanding its complexity,
primary components, and their impact on the overall performance of the aircraft
is essential to our research. The final part of this chapter brings to light some

fundamental approaches to predictive maintenance. Although relatively simple, these
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methods allow us to understand the problem, appreciate the challenge involved, and
identify the limitations of basic methodologies. It also lays the groundwork for the
development and application of more sophisticated models discussed in subsequent

chapters.

Building on this foundation, we have considered two prevalent methodologies
for predicting the Remaining Useful Life (RUL) - one based on feature extraction
with tree-based machine learning models, and the other rooted in deep learning
strategies. Through our analyses, we highlighted that while the Convolutional
Neural Network (CNN) demonstrated superior performance in capturing degradation
trends, it failed in its predictive accuracy as the system approached end-of-life.
Meanwhile, the AdaBoost model based on extracted features struggled to effectively
capture degradation patterns due to the complexity and the sporadic nature of the

degradation signals.

The results of our exploratory research highlight the complex nature of predictive
maintenance in aviation, coupled with the existing limitations of the models we
evaluated. However, these challenges should not discourage us, but rather serve as
drivers for further investigation and refinement of our methods. A prominent result
of our investigations is the demonstrated ability of deep learning models to detect
pertinent features indicative of the degradation of the bleed air system. Despite
this positive result, the issue of constructing an effective strategy for generating the
Remaining Useful Life (RUL) target remains a significant hurdle. As we outlined in
the first chapter, developing a robust RUL prediction strategy for our use cases is
extremely challenging due to the intricacies of aircraft operations and maintenance

schedules.

Another significant constraint we face is the lack of labeled data. In the aviation
industry, preventive maintenance often precedes an actual system failure, making it
impossible to establish an accurate RUL target in scenarios where there is no immi-
nent failure or where preventive maintenance has been performed. This limitation
reduces our ability to make the best use of available data and limits the application of
more sophisticated deep learning models that could potentially detect more complex
degradation features. However, we believe that there is unexploited potential in
autoencoder models, particularly variational autoencoders (VAEs), for our use case.
The ability of autoencoders to capture complex phenomena in high-dimensional data
and effectively reduce dimensionality is widely recognized. Coupled with the need
to distinguish between healthy and degraded system behavior, similar to anomaly

detection, VAEs in particular appear to be an excellent fit for our needs.



2.4. CONCLUSION AND INSIGHTS 43

In the next chapter, we will present the beneficial properties of VAE for dimen-
sionality reduction, especially in the context of multivariate time series data. We
will take the opportunity to compare different VAE architectures and explore their
unique features and advantages. By taking this step, we expect to improve our

understanding of predictive maintenance in aviation and identify better strategies

to address the challenges we face.
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Chapter 3

VAE as a feature extraction tool

In the next chapter, we will explore the beneficial properties of VAE for dimen-
sionality reduction, especially with respect to multivariate time series data. We will
engage in an extensive comparison of different VAE architectures, exploring their

unique characteristics and advantages.

In order to do this, we will be using a data set that is different from the data
from the bleed air system that we have been working with so far. Our choice was
driven by two key considerations. First, we wanted to use a well-studied and publicly
available dataset that would allow us to compare our results and findings more
broadly. Second, we were looking for a dataset that represented multivariate time
series data with intrinsic correlations between signals and that demonstrated the

presence of anomalous behavior within these signals.

With these considerations in mind, we chose electrocardiogram (ECG) data as
the subject of our investigation. ECG data not only meet our requirement for
multivariate time series data, but also reflect the interplay observed in aircraft
systems by showing robust correlations between signals. Furthermore, the presence
of distinct pathological classes within the ECG data, representative of abnormal

behavior, provides us with an ideal playground to explore the strengths of VAEs.
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Abstract

In this study, we investigate dimensionality reduction techniques for
univariate and multivariate time series data, with a particular focus
on comparing wavelet decomposition and convolutional variational
autoencoders (VAEs) for this purpose. Our experiments demonstrate
that VAEs are a promising option for reducing the dimensionality of
high-dimensional data, such as electrocardiogram (ECG) signals. We
conduct these comparisons on a real-world, publicly available ECG
dataset characterized by substantial variability, using reconstruction
error as the evaluation metric. Furthermore, we assess the robustness
of these models in the presence of noisy data during both training
and inference, reflecting the challenges commonly encountered in
real-world time series data analysis. Our results indicate that the
VAE exhibits remarkable resilience in both settings. Additionally,
we explore the impact of different encoder and decoder architectures
on the performance of VAEs. This comprehensive analysis provides
valuable insights for practitioners seeking to employ dimensionality
reduction techniques in the analysis of time series data.

3.1 Context

The curse of dimensionality has been at the heart of decades of research in statistics
and machine learning, preventing the use of many methods as the dimension of
the data increases. However, with the exponential growth of data collection, high-
dimensional data such as images, time series, or functional data are being studied
more and more. Traditional machine learning techniques are not a good fit for this
kind of data, firstly due to the practical difficulty of handling this kind of data from

a computational point of view, but also from a theoretical point of view since the
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accuracy of the algorithms is hindered for high dimensional data. To overcome these
problems, a well-studied way of preprocessing the data is to reduce its dimensionality.
Principal Components Analysis (PCA) Wold et al., |1987|is a well-known general
technique that has been widely studied together with Independent Components
Analysis (ICA) Comon, |1994 or Factor Analysis (FA) Harman, 1976 and more. More
recently, with the advent of AutoEncoders (AE) and Variational AutoEncoders (VAE)
Kingma and Welling, 2013, more complex data-driven dimensionality reduction
techniques have become possible and have been benchmarked (Mahmud et al., 2020
& Dai et al., 2017]).

Time series and multivariate time series require a special attention. Actually
classical dimensionality reduction techniques fail to capture the temporal aspect
of the observations, therefore there are some specific techniques for that kind of
data, in particular projection methods onto specific bases for instance onto generical
wavelet basis as in Y. Liu, 2009| or data driven basis using for instance Functional
Principal Component Analysis (FPCA) Di et al., 2009. Wavelet transform uses a
low-pass filter to extract low frequency information and a high-pass filter to extract
high frequency information. The advantage over the Fourier transform is that the
positional information is conserved with the wavelet transform. FPCA decomposes
functional data into basis functions that explain the variance. The outcome of
such method is to discover features using such projections, that are expected to
concentrate the information on a small number of coefficients. Dimension reduction
plays a pivotal role in managing the voluminous information encapsulated in time
series data. This technique, widely employed in tasks such as clustering Javed et al.,
2020/ and anomaly detection Barreyre et al., 2019, facilitates efficient data analysis

by reducing computational requirements and mitigating the curse of dimensionality.

Very recently, Machine Learning methods using deep neural networks have been
considered as alternatives to such methods. They enable to construct low dimension
embedding by considering the features from the penultimate neural layer that are
used to build the forecast. In the same vein, variational autoencoders map the data
into a structured representation of lower dimension in a data driven way. However,
the use of variational autoencoders on time series as a dimension reduction technique

is not yet well studied or compared to other methodologies.
This paper shows the advantages of VAE regarding the dimensionality reduction

power and robustness against more traditional methods like wavelet decomposition
and FPCA on real world ECG datasets.
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In this paper, we trained various convolutional variational autoencoders to obtain
a lower dimensional representation of the dataset PTB-XL Wagner et al., 2020 We
compare those results with the state of the art method of the wavelet decomposition.
Then we stress the tests to highlight the good properties of VAEs. We also test
these VAEs on other real world ECG datasets from the Physionet challenge Alday
et al., [2020L

3.2 Background

Datasets

In this study, we utilize a real-world dataset of ECG measurements: the PTB-
XL dataset. This dataset consists of samples that each contain 12 recordings of
electrical activity on the body surface, measured over a duration of 10 seconds at
a sampling frequency of 100 Hz. Consequently, each sample in this dataset is a
12,000-dimensional point, highlighting the necessity for dimensionality reduction.
The PTB-XL dataset features a diverse range of ECG signals, providing a robust
testbed for evaluating the effectiveness of our dimensionality reduction methods. To
further investigate the performance of these techniques on univariate time series, we
also employ a cropped version of the PTB-XL dataset. This cropped version retains
all samples but includes only the first ECG lead, resulting in each sample consisting
of 1,000 data points, as depicted in Figure [3.1]

By conducting experiments on both the original and cropped versions of the
PTB-XL dataset, we can evaluate the efficacy of our proposed dimensionality
reduction techniques on multivariate and univariate time series data, respectively.
This comprehensive analysis will provide valuable insights into the most suitable

methods for ECG signal compression and reconstruction.

In order to demonstrate the generalization capability of the VAE trained on the
PTB-XL dataset, we evaluate its performance on two additional datasets from the
PhysioNet Challenge Alday et al., 2020. The first dataset, referred to as "Georgia,"
consists of 10, 344 ECG recordings sourced from Georgia. The second dataset, named
"China," contains 3,453 ECG recordings of unused data from the CPSC2018 F. Liu
et al., 2018 To ensure consistency across datasets and facilitate a fair comparison,
we adopt the preprocessing steps outlined in Singstad and Tronstad, 2020. These
steps include scaling the ECG signals and resampling them to a frequency of 100
Hz, which matches the sampling rate of the PTB-XL dataset. By evaluating the
VAE’s performance on these diverse datasets, we aim to demonstrate its potential

for generalization and applicability to a wide range of ECG signal analysis tasks.
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Figure 3.1: Example signal from the dataset PTB-XL

This comprehensive evaluation will provide valuable insights into the versatility and

robustness of the VAE as a dimensionality reduction technique for ECG data.

For the purpose of the paper, we denote the length of the time series as T" and the
number of parameters or features in the data as K. For a given time series, each
data point at time ¢ can be represented as z%*, where k is the index of the feature
dimension. Similarly, the corresponding reconstructed data point from the VAE is
denoted as 24",

We define the sets of all time points and feature dimensions as 7 = 1,2,...,T

and K = 1,2, ..., K respectively.

VAE

Variational Autoencoder (VAE) is a powerful deep learning technique that has
attracted considerable attention in the fields of machine learning and computer
vision. VAEs are generative models that use a neural network architecture to learn
the underlying probability distribution of a given data set. The main idea behind
VAE is to find a latent representation of the data that captures the important
features of the data while allowing us to sample from this latent space to generate

new data points that are similar to the original data set.

VAEs were introduced by Kingma and Welling, and Rezende et al.,
They consist of two main components: an encoder and a decoder. The encoder,
denoted as qo(Z| X = x), takes an input z from a high-dimensional space and maps it
to a J-dimensional Gaussian distribution with a mean vector p(z) = (11;(2)), ;. ; and

2

diagonal covariance matrix diag (o®(x)) with o®(z) = (o3 (x))1<j<J. The resulting
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distribution can be expressed as q3(Z|X = x) ~ Nj(u(z),diag(c?(z))). The
decoder, denoted as py(X|Z = z), takes a sample z from the latent Gaussian
distribution produced by the encoder as input and generates the associated element
in the original high-dimensional space. This reconstructed data point is denoted by

A

x.

The VAE is trained by optimizing the evidence lower bound (ELBO), which
is a lower bound on the log-likelihood of the data. The ELBO consists of two
terms: the reconstruction loss and the KL-divergence regularization term. The
reconstruction loss measures the difference between the original input data point z
and its reconstructed version z. This is typically calculated using the mean squared
error (MSE) for continuous data. The KL-divergence regularization term, denoted
as Dk (qo(Z|X = z)||p(Z)), encourages the learned latent space to be close to a
standard normal distribution, which is typically represented as p(Z) ~ N (0, Id),

where Id is the identity matrix.

EVAE((I); 9; .%’) = — ]EZ~q<I>(Z|X:z) [lOg pG(X’Z)] (3 1)
+ Dk [q2(Z]X = 2)||p(Z)]

The conditional distribution, ps(X|Z), is specified by the decoder as a Gaussian
distribution, denoted as N'(u = #,%). In the context of VAEs, it is common to
assume a unit variance, i.e., 2 = Id, for simplicity. When optimizing the negative
log-likelihood expectation, —Ez.4,(z|x=s) [l0g po(X|Z)], under this assumption, it
turns out to be equivalent to minimizing the mean squared error (MSE) between the
input data x and the reconstructed data z. This equivalence allows us to express the
first term in Eq.(3.1) as the MSE within the VAE framework, providing an intuitive

connection between the VAE’s probabilistic formulation and familiar error metrics.

ol = e S0 (0 R) — (R (3.2

tETz,kEX

The second term in Eq.(3.1]) is the Kullback-Leibler (KL) divergence between
qs(Z|X = z) and p(Z). Since the distributions are respectively N (u(z); diag (2(x)))
and N;(0; Id;), we can easily compute this term. The KL divergence is a measure
of the difference between two probability distributions and is defined as:

(3.3)

Dylga (21X = 2)[|p(2)] = Ez~qy(21x=0) l0g (W)

p(2)

For the given Gaussian distributions, the KL divergence can be calculated as:
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DO | —

Dxilge(Z|X = 2)||p(Z -Z —1—log (03(z)) + 13 (x) + o} ()] (3.4)

Thus, the optimization of the VAE involves minimizing the sum of the recon-
struction loss, as represented by the MSE in Eq., and the KL divergence
regularization term in Eq.. By striking a balance between these two terms,
VAEs provide a powerful framework for learning compact, meaningful representations
of high-dimensional data through an unsupervised generative process. VAEs are
particularly suitable for applications such as dimensionality reduction and anomaly

detection.

Wayvelets

Another dimensionality reduction technique studied is the wavelet decomposition
technique, which is a popular method for signal compression and dimensionality
reduction Hilton, 1997, Wavelet transform efficiently concentrates the signal in-
formation into a small number of coefficients, making it possible to perform lossy
compression by eliminating coefficients with small magnitudes. This powerful concen-
tration of information was in particular largely used in the standard of compression
of images JPEG 2000 Rabbani and Joshi, 2002 To evaluate the effectiveness of
wavelet-based compression on ECG signals, we adopt two different methods and
compare the compression rate, which is computed by counting the number of kept

coefficients.

The Global Approach, suitable for real-world settings, computes the wavelet
transform across the entire dataset, retaining only the n coefficients with the highest
energy. Here, the energy refers to the the absolute value of a wavelet coefficient, a
measure indicative of its significance within the transformed signal. After calculating
the energy of each coefficient across the entire dataset, we then select the n coefficients
that possess the highest energy. This method is especially useful for handling non-
synchronous time series, where the location of important features may vary across
different series in the dataset.

In wavelet decomposition, the first wavelet coefficients typically arise from the
highest level of decomposition and therefore possess the greatest energy. Hence,
in practice, the Global Approach often boils down to retaining the first n wavelet
coefficients. It’s important to note that the mean energy of the wavelet coefficients

throughout the dataset doesn’t necessarily indicate the location of a specific feature,
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but rather reflects the level of decomposition. This phenomenon is illustrated in
Figure [3.2] which visualizes the wavelet decomposition process and the selection of

high-energy coefficients.

The second method involves retaining the n largest coefficients for each individual
signal. While this approach yields significantly better performance compared to the
Global Approach, it is less practical in real-world applications. The reason for this
limitation is that we need to keep track of which coefficients were retained in order
to reconstruct the signal accurately. Essentially, this method serves as an oracle,
demonstrating the best-case scenario for wavelet decomposition if we had perfect

knowledge of which coefficients to keep for each signal.

By examining both the Global Approach and this oracle method, we can gain a
comprehensive understanding of the potential performance of wavelet decomposition

in compressing ECG signals.

By comparing the VAE compression and wavelet decomposition techniques, we
aim to identify the most effective method for compressing ECG signals. Wavelet
decomposition is a widely used technique in this context, as shown in Addison,
2005 and C. Li et al., |1995. We take into account factors such as compression rate,
signal reconstruction quality, and computational efficiency in our comparison. This
comparison will provide valuable insights for researchers and practitioners working

on multivariate time series and related applications.

Wavelet coefficients mean

1.4
124+
1.0 1
0.8
0.6
044
o
0.2 1 “’.:"-‘;__.
00] e
0 200 400 600 800 1000

Figure 3.2: Mean throughout the dataset of the energy of the wavelet decomposition
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Functional PCA

Functional Principal Component Analysis (FPCA) introduced in Di et al., 2009 is a

widely-used technique for dimensionality reduction in functional data, where the

observations are functions or curves measured over a continuous domain, such as

time or space. FPCA is particularly effective at capturing the main patterns or

structures in smooth and regular functional data with a strong temporal structure.

The method involves several key steps, including the computation of the mean
1

function m(t) = =~ > "% | x;(t), which represents the average value of the functional

data at each time point .

oy [@i(s) = m(s)] [x;(t) — m(t)], measures

The covariance function, C(s,t) = + >
the similarity between observations at different time points s and ¢. The eigen-
analysis of the covariance function involves solving the eigenvalue-eigenfunction
equation [ C(s,t)¢y(t)dt = Mgy (s), where A, are the eigenvalues and ¢y(s) are the

corresponding eigenfunctions.

The functional principal components (FPCs) are obtained as the projections of
the original data onto the eigenfunctions, given by ay, = [ [z;(t) — m(t)] ¢x(t)dt.
Finally, the original functional data can be approximated by using a subset of the
most significant FPCs, as shown in the formula ;(¢) = m(t) + Zszl Pk (t), where
K is the number of selected FPCs and #;(t) is the reconstructed version of the
original data z;(t). By choosing an appropriate number of FPCs, FPCA can reduce
the dimensionality of the data while preserving most of its information content as
shown in Muelas et al., 2017,

In some cases, however, FPCA may not be the most suitable method for dimen-
sionality reduction, particularly when dealing with non-synchronous or highly diverse
functional data. Non-synchronous data refers to time series that are not aligned,
meaning that significant features or events occur at different time points across the
dataset. Applying FPCA to non-synchronous or highly diverse data often requires
extensive preprocessing, such as resynchronizing the time series in the dataset. This
can be a complex and time-consuming process, potentially introducing inaccuracies

or biases in the data.

Due to these challenges and limitations, we have chosen not to use FPCA for
comparison purposes in this paper. Instead, we will focus on alternative methods

that are more suitable for our specific dataset and research objectives.
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3.3 One dimensional time series

Method

In this section, we outline the architecture, training process, and implementation
details of the VAEs used for one-dimensional time series experiments. We employ
the PyTorch library Paszke et al., 2019 to implement the VAE, as it offers significant
flexibility for developing these models.

Our experiments utilize a CNN VAE with symmetrical encoder and decoder
architectures, each comprising a 3-layer deep convolutional neural network. Through-
out the experiments, the number of filters and their sizes remain constant at 256,
512, and 512 for the number of filters, and a filter size of 5.

During the training phase, we incorporate 256-length crops of the signal, a data
augmentation technique inspired by the methods presented in Strodthoff et al., 2020
In their work, they benchmark various deep learning models for ECG analysis. They
demonstrated the efficacy of using shorter signal crops for training these models,
which improved model generalization by allowing the model to learn from different
parts of the ECG signals. Following a similar approach, we employ these crops in our
training process to account for the potential variability in the location of regions of
interest within the signal, especially given that the heartbeats are not synchronized.
To further enhance the robustness of our model to different heart rates present in
the dataset, we introduce additional variability into the training data. Specifically,
we artificially modulate the cardiac rhythm by up-sampling and down-sampling the
input signal. This procedure ensures that our model is exposed to a wider range of

heart rate patterns during training.

The reconstruction error is computed as the mean of four VAE reconstruction
errors, ensuring that the error measurement encompasses the entire signal rather
than just the cropped portion. This approach provides a more robust assessment of
the model’s performance in reconstructing the original ECG signals.

For each experiment, we employ 10-fold cross-validation using the pre-defined
folds within the dataset, which helps to mitigate the risk of overfitting and provides
a more reliable estimation of the model’s performance. In the accompanying figures,
we present confidence intervals to provide a visual representation of the variability
in the model’s performance across different folds.

We investigate various compression ratios for both the VAE technique and the
wavelet approaches described in Section [3.2] We utilize the mean squared error

(MSE) between the original and reconstructed signals as our evaluation metric. The
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Figure 3.3: Performance comparison between VAE and wavelets giving the percentage
of kept coefficients

performance of these methods is compared in Figure 3.3

Our results demonstrate that variational autoencoders outperform both the stan-
dard wavelet decomposition method and the oracle when compressing data to a very
low dimension (compression rate of 10 or higher). This outcome can be attributed
to the fact that VAEs employ tailored convolutional filters, which provide a bet-
ter fit for the data compared to the non-data-driven wavelet basis. Consequently,
VAEs achieve a lower reconstruction error than wavelet decomposition, maintaining
competitive performance even with a reduced compression rate.

Variational autoencoders offer several advantages over wavelet transform in
high compression rate scenarios, including a lower error rate and a well-structured
latent space that can be readily employed for further processing. Although VAEs
also possess powerful feature extraction capabilities, we do not delve into this
aspect in the current analysis. Instead, our focus remains on demonstrating the
superior performance of VAEs in reconstructing ECG signals from highly compressed

representations.

3.4 Multidimensional time series

Reconstruction

In the previous section, we established that the Oracle wavelet method is the only
approach that can closely compare to the performance of the VAE at high levels of

compression, which is our primary focus in this paper. Consequently, in this section,
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we will only consider the comparison between the wavelet oracle and the VAE.
The oracle method retains the n largest coefficients from the decomposed signals,
implying that we may not necessarily maintain the same number of coefficients for
each dimension. In some cases, we might even completely ignore one dimension if
no coefficients are retained. This aspect is crucial in understanding the performance
difference between the oracle wavelet method and the VAE, especially when dealing

with highly correlated multivariate time series data.

The CNN VAE employs filters that can combine information from all dimensions
of the time series. The 12-lead ECG data are highly correlated since they all capture
the same heartbeat from different positions. This inherent correlation provides an
opportunity for the CNN VAE to exploit this relationship and effectively reduce
dimensionality for this type of data. In practice, this holds true when retaining
a small number of coefficients for reconstruction, as shown in Figure [3.4, When
less than 4% of the coefficients are retained, the reconstruction error is significantly
better than that of the wavelet oracle. However, beyond that point, the model does
not exhibit substantial improvement despite an increase in the size of the latent

space.

Several factors can contribute to the VAE’s limited ability to reconstruct input
with high precision, even with a large latent space. One primary reason is the
regularization imposed on the VAE, which can sometimes create a trade-off between
accurate reconstruction and a well-structured latent space. As a consequence, the
VAE might struggle to reconstruct the input with high precision, even when provided
with a larger latent space. In the context of image data, VAEs often produce blurry
images due to this regularization effect. Similarly, for time series data, the regular-
ization can result in the loss of high-frequency components during reconstruction.
Another potential issue arises when the training set is not representative of the test
set, leading to suboptimal learned decompositions. In such cases, the model may
not perform well on unseen data as it has not adequately captured the underlying
data distribution. In our particular case, it is most likely the regularization that is

primarily responsible for the limited reconstruction performance of our models.

The results are summarized in Table [3.1], where the numbers are bolded when
the VAE results surpass the global wavelet method and underlined when the VAE
outperforms the wavelet oracle. The performance on the Georgia and China datasets
are computed using the VAE trained on the PTB dataset. The results are similar on
the Georgia dataset and only slightly inferior on the China dataset, demonstrating

the impressive generalization capabilities of the VAE. We observe the same trends
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across all three datasets: VAEs consistently perform better than the wavelet method
at high compression ratios, even when compared to the oracle. This outcome
highlights the VAE’s ability to capture and reconstruct the important features of the
ECG signals more effectively than wavelet methods, particularly when working with
multivariate time series data. In addition to better reconstruction performance, the
VAE’s structured latent space can be easily used for further processing and analysis,

offering numerous advantages over the wavelet transform.

Reconstruction error
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Figure 3.4: Performance comparison between VAE and wavelets giving the percentage
of kept coefficients on PTBXL dataset, Wavelet correspond to the oracle

Prediction after reconstruction

The primary goal of dimensionality reduction is to enable efficient processing of
multivariate time series data while mitigating the curse of dimensionality. In this
context, we aim to assess how dimension reduction techniques impact the class-
related characteristics of the signals. The PTB-XL dataset comprises samples labeled
by one or multiple experts based on the associated pathologies. The dataset contains

four pathological classes and one healthy class.

For each test fold, we train a convolutional neural network (CNN) classifier on
raw signals and then predict the classes using various reconstructed signals. The

classifier consists of a standard 4-layer CNN architecture, with each convolutional
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Dataset | Method Mean Squared Error
VAE 0.02201 0.00723 0.00487
PTB | Global | 0.05074  0.03815 0.00603
Oracle | 0.03624  0.02002  0.00008
VAE 0.01759 0.00723 0.00531
Georgia | Global | 0.04057  0.03220  0.00576
Oracle | 0.02871 0.01612  0.00008
VAE 0.03632 0.01972 0.01424
China | Global | 0.06356  0.05313  0.00710
Oracle | 0.04053 0.02175  0.00009
Coefficients % 0.5 2 33

Table 3.1: Dataset Comparison

block containing a convolutional layer, batch normalization, leaky ReLLU activation,
and max pooling layer to increase the receptive field throughout the model. Dropout
layers are placed between each convolutional block. The classifier employs 64, 128,
256, and 512 convolutional filters with sizes of 5, 5, 3, and 3, respectively. Overall,
this architecture performs similarly to the classifiers presented in the benchmark
from Strodthoff et al., [2020], achieving an AUC of approximately 0.92.

We compare the AUC scores of the raw data with the results from the reconstructed
signals obtained using VAE and oracle wavelet methods, as presented in Figure
3.5 As expected, when the wavelet method provides better reconstruction, it also
yields better prediction results, starting with more than 8% of the coefficients
retained. Interestingly, at high compression ratios of 50 or more (i.e., less than
2% of the coefficients), the performance of the VAE reconstruction is significantly
better. Notably, the disparity in prediction performance exceeds the difference in
MSE scores. This observation implies that, despite the relatively small difference in
MSE scores between the two methods, the VAE’s ability to preserve class-related
features at high compression ratios has a more substantial impact on the classifier’s
performance. Consequently, this highlights the importance of considering not
only reconstruction errors, but also the preservation of meaningful features in the
context of dimensionality reduction for classification tasks. It appears that, at
high compression ratios, class-related features are largely absent from the wavelet
reconstruction, leading to the classifier’s inability to differentiate classes in the
reconstructions. As previously explained, the oracle method can entirely miss some
signals at high compression rates, which impairs the classifier’s ability to distinguish

between classes.
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Figure 3.5: Prediction AUC after reconstruction

Noise Robustness

In this section, we present experiments conducted to assess the robustness of VAE
feature extraction on noisy data, given that wavelet decomposition is frequently
employed as a denoising tool. By eliminating small coefficients in the wavelet
decomposition using hard or soft thresholds, noise in the reconstructed signal is
reduced (Donoho and Johnstone, (1994, Chang et al., 2000). We introduce white
noise to our time series, as illustrated in Figure [3.6] accounting for 20% of the signal

variance.

We assess the robustness of the VAE to noise through two distinct experimental
scenarios. The first scenario, labeled as 'noisy VAE noisy input’ in the figure,
simulates real-world conditions where data collection is often influenced by noise.
Here, we train the VAE on noisy data and evaluate its performance by comparing
the reconstruction of a noisy time series to the original clean time series. This allows
us to gauge the impact of noise on the VAE’s training and its ability to reconstruct
clean signals from noisy inputs. The second scenario, termed '"VAE noisy input’,
tests the VAE’s resilience to unexpected noise during inference. In this case, the
VAE is trained on clean data, but it encounters noisy data during the testing phase.
This scenario lets us explore the model’s robustness when faced with noise that was

not present during training.
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As depicted in Figure a VAE trained on clean data and tested on noisy
data exhibits strong performance, with only a slight difference compared to the
VAE tested on clean data. This result demonstrates the VAE’s robustness to noise.
Moreover, the figure indicates that the VAE trained on noisy data maintains good

performance despite some information loss.
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Figure 3.6: Effect of the added noise
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Figure 3.7: Performance comparison for VAE trained on various kinds of data

Anomaly detection

In this section, we present an experiment that evaluates the anomaly detection capa-

bilities of a Variational Autoencoder (VAE) on noisy time series data. The primary
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Predicted label
Anomaly | Normal
Anomaly 55% 45%
Normal 45% 55%

True Label

Table 3.2: Confusion matrix for anomaly detection using wavelets reconstruction
errors

Predicted label
Anomaly | Normal
Anomaly 69% 31%
Normal 31% 69%

True Label

Table 3.3: Confusion matrix for anomaly detection using VAE reconstruction errors

advantage of VAEs over wavelet decomposition is their ability to learn specialized
convolutional filters tailored to the data, as opposed to wavelet decomposition’s
generic, non-data-driven approach. This characteristic enables VAEs to maintain a

relatively low reconstruction error even at high compression ratios, as illustrated in

Section [3.4]

Variational Autoencoders (VAEs) are often employed in anomaly detection tasks.
In this study, we investigate the utility of a VAE, originally trained for dimensionality
reduction, in anomaly detection without requiring any modifications to its training
process. To this end, we train a VAE exclusively on data without any detected
diseases, utilizing the same parameters and hyperparameters as in previously trained
VAE models. Our anomaly detection strategy is straightforward: we posit that a
high reconstruction error indicates an anomaly. To operationalize this, we set a
threshold on the reconstruction error. This threshold is determined by maximizing
the accuracy on the training set. Following this, we implement a decision rule: a
reconstruction error surpassing the set threshold is classified as an anomaly. The
results of our approach are presented in confusion matrices in Tables and
Remarkably, due to its adaptability, the VAE outperforms wavelet decomposition in
this task

3.5 Other architectures of VAE

The results presented in this paper were obtained using simple variational convo-
lutional autoencoders, where both the encoder and decoder consist of three layers
of convolution and deconvolution, respectively. In order to examine the impact of

different encoder and decoder architectures on VAE performance, we conducted
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experiments with various configurations. This section provides a detailed overview
of the experiments performed to investigate the influence of the encoder and de-
coder architecture in the VAE. The performance analysis of these configurations is
summarized in Table [3.1], with all experiments conducted using a latent space of 32

dimensions.

The first type of autoencoder employed in this study is based on Convolutional
Neural Networks (CNN), as detailed in Section CNN-based autoencoders offer
several advantages, including an easy-to-implement symmetric structure and a highly
parallelizable architecture that allows for rapid training on GPUs.

Given that our research focuses on time series data, assessing recurrent neu-
ral network architectures, such as Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), is crucial. We tested both LSTM and GRU, observing
no significant differences in reconstruction error for this particular dataset. This
result is consistent with the findings of Greff et al., 2016, which suggest that LSTM
variants perform similarly to the original LSTM, provided they maintain the forget
gate and output activation function.

Incorporating LSTM or GRU architectures into the encoder is relatively simple, as
we use the values from the last hidden layer of the RNN to feed a neural network that
generates the Gaussian’s mean and variance. However, the decoder implementation is
more intricate due to multiple possible configurations. To reconstruct a multivariate
time series, we first obtain a vector with the size of the latent space, sampled from
the Gaussian output of the encoder. We then explored various approaches using
LSTM.

In all of our approaches, we first employ a single-layer neural network to reshape
the input vector to the desired length, which is subsequently used by the LSTM
layers. We can either use a single-layer neural network to initialize the "cell states"
(commonly denoted as Cj) and "hidden states" (Hp) with the input vector, or
initialize them with zeros. Next, we need to generate a reconstruction with the shape
(nbyarams,lengthys). This can be accomplished by either using an LSTM with
the number of features in the hidden state h equal to nb,arams, or by employing
another single-layer neural network to reshape the LSTM output to the desired size.
The method initializing Cy and H, with a simple neural network and using a final
neural network to reshape the output to the correct size performed better, so it was

selected as the benchmark method.

Additionally, we experimented with a variation of the CNN-based VAE incorpo-
rating squeeze-and-excitation (SE) layers after the CNN layers, which we refer to as

CNNSE. SE layers are a type of self-attention mechanism specifically designed for
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convolutional neural networks (CNNs). They were introduced by Hu et al., [2018| the
primary goal of SE layers is to adaptively recalibrate channel-wise feature responses
in a CNN by explicitly modeling the interdependencies between channels.

In a traditional CNN, each convolutional filter operates independently, and the
output feature map is a combination of these filters’ responses. However, not all
filters contribute equally to the final representation for every input sample. SE layers
address this issue by learning to assign different weights to each filter depending
on the input. This enables the model to emphasize the most relevant features and
suppress less important ones, resulting in improved performance without significantly
increasing the model’s complexity. Our experiments demonstrate that this variation
performs well for the encoder portion of the VAE.

Furthermore, we tested more sophisticated models inspired by the MLSTM-FCN
classifier proposed by Karim et al., 2019, which represents the state of the art for
multiple multivariate time series classification datasets. This model combines both
LSTM and CNNSE components, with the outputs of the two models concatenated
to form the final prediction. For the encoder, the implementation is straightforward;
for the decoder, we added a neural network to reshape the input vector for each part
of the model. In the CNN component, we employed deconvolution with squeeze-and-
excitation. Instead of concatenating the results, we averaged the outputs of the two
parts to obtain the final reconstruction. Utilizing this method for both the encoder

and the decoder yields the best results for that specific latent space dimension.

Finally, we tested a new model architecture featuring an MLSTMFCN encoder
and a CNNSE decoder with various latent space dimensions to compare with the
basic CNN VAE tested throughout the paper. These results are illustrated in Figure
and indicate that employing more complex architectures for the VAE is beneficial
at very high compression ratios but may lead to overfitting when using a larger
latent space, resulting in compromised performance. Therefore, it is recommended

to test different architectures depending on the latent space size and the dataset.

3.6 Conclusion

In this study, we conducted a comprehensive comparison between the data-driven
dimension reduction technique, VAE, and the classical wavelet decomposition for
analyzing real-world ECG datasets. Our results revealed that the CNN-VAE is a
suitable architecture for addressing this specific problem, providing good perfor-

mances in terms of reconstruction fidelity and in preserving important features of
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Decoders

CNN CNNSE LSTM MLSTMFCN | Mean

CNN 0.0131 0.0130 0.0165 0.0125 0.0137

% CNNSE 0.0121  0.0137 0.0160 0.0124 0.0136
F'é GRU 0.0123  0.0155 0.0206 0.0113 0.0149
Lﬂg LSTM 0.0127 0.0258 0.0233 0.0172 0.0198
MLSTMFCN | 0.0120 0.0117 0.0144 0.0108 0.0122
Mean 0.0125 0.0159 0.0181 0.0128 0.0148

Table 3.4: Mean squared error depending on the architectures of the encpders and
decoders

Reconstruction error Classifier score after reconstruction

Wavelet
0.04 VAE 0.9
VAE MLSTM-CNNSE
E 0.03 0.8
?.'- 0.02 é 07
2 Raw data
0.01 0.6 Wavelet
VAE
000 o VAE MLSTM-CNNSE (good folds)
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
% of coefficients % of coefficients
Figure 3.8: figure Figure 3.9: figure
Reconstruction error Prediction after reconstruction

the time series, particularly when reducing dimensions to smaller spaces. Moreover,
we demonstrated the robustness of the CNN-VAE to noise during both the training
and inference phases and underscored its potential for anomaly detection in time
series data.

Apart from these findings, our research contributes valuable insights to the field
of dimensionality reduction in multivariate time series data, thereby paving the
way for further investigation. We conducted an exploration of various encoder
and decoder architectures, including LSTM and GRU-based models, and examined
the impact of different latent space sizes on model performance. This exploration
provided a deeper understanding of the factors that influence the efficacy of VAEs
in the context of time series data analysis, as well as their potential limitations.

Future work may delve into the disentanglement of variational autoencoders’ la-
tent spaces to further improve performance in this domain. Additionally, researchers
may consider investigating more sophisticated architectures, such as those that
combine CNN, LSTM, and self-attention mechanisms, to achieve better adaptability
and reconstruction quality. Exploring hybrid models and new architectures inspired
by state-of-the-art classification techniques may also yield improvements in the

analysis of time series data.



Chapter 4

Counterfactual explanation for MTS

Building on the insights gathered in the previous chapter, we now move to an
even more crucial issue in the realm of multivariate time series data - the challenge
of explainability. In this next chapter, we will focus specifically on developing a

method for generating counterfactual explanations for this type of data.

As before, we continue with the ECG dataset for several reasons. First and
foremost, it provides us with a familiar and well-studied context that allows for
a more seamless comparison with other methods. However, another important
motivation is the need to evaluate the performance of our newly developed method.
To achieve this, we need a dataset that allows the application of a high performance

classifier, a condition that is not always feasible in predictive maintenance scenarios.

The upcoming chapter expands and elaborates on a paper we presented at the
ICASSP 2023 conference: Counterfactual Explanation for Multivariate Times Series
Using A Contrastive Variational Autoencoder Todo et al., 2023 While the conference
paper provides a high-level overview, this chapter provides a more comprehensive

and detailed examination of the same topic.
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CHAPTER 4. COUNTERFACTUAL EXPLANATION FOR MTS

Counterfactual explanation for
multivariate times series using a
contrastive variational autoencoder

William Todo'?, Merwann Selmani?, Béatrice Laurent!'3, Jean-Michel Loubes!

! Institut de Mathématiques de Toulouse, Toulouse, France
2 Liebherr Aerospace Toulouse
3 INSA de Toulouse, Toulouse, France

Abstract

We tackle the important problem of anomaly detection for multivariate
functional data in a supervised setting, which has become increasingly
important in medical applications such as electrocardiogram (ECG)
analysis. While deep learning has shown great promise in this area,
there are few techniques that provide explainability for multivariate
time series. In this paper, we propose a novel approach to understand
abnormal class features on multivariate time series by dividing the
latent space generated by a variational autoencoder (VAE) into general
and class-based features using contrastive learning. The resulting
Contrastive VAE provides a well-organized latent space that enables
us to modify only the class-based features and generate counterfactual
examples. Our method is able to produce plausible counterfactual
observations that highlight the differences between pathological and
non-pathological data. We demonstrate the superiority of our approach
over other counterfactual methods through a thorough evaluation that
shows significant improvements in both validity and performance.

4.1 Introduction

Anomaly detection in time series data is a fundamental problem in many real-world

applications, including healthcare, aerospace, and cybersecurity. Because of the

complexity of defining what constitutes an anomaly, standard methods aim to extract

key behaviors and understand the observations that deviate from those patterns.

In recent years, many research works have focused on building functional features

that characterize the normal behavior of time series data. These features can be



4.1. INTRODUCTION 67

extracted using reduction techniques to overcome the high-dimensional aspect of
the problem. For instance, we refer to Antoniadis et al., 2013, Jacques and Preda,
2014} and Tarpey and Kinateder, 2003 Barreyre et al., [2019.

Numerous methods for detecting outliers exist, ranging from probabilistic and
parametric to non-parametric approaches, as reviewed in Pimentel et al., [2014] and
Markou and Singh, 2003. Density-based methods, which rely on the fact that
an outlier can be an individual situated in low-density regions, have also been
proposed. The One-Class Support Vector Machine (OCSVM) Schélkopf et al., 1999
is a reference method for density level set, while the Local Outlier Factor (LOF)
Breunig et al., 2000/ was introduced to identify density-based local outliers. However,
most existing methods in Explanable Al fail to generate explanations for time-series
data, which is often present in critical systems and applications.

This can be a problem when dealing with such applications and can hinder
the adoption of machine learning based techniques. One of the main challenges in
generating explainable algorithms for time series is that they are high-dimensional
objects composed of values observed at different observation times. Hence, using
classical algorithms that consider explainability with respect to the input variables
fail since they face variables which suffer from the curse of dimensionality and also

from the fact that these values are highly dependent variables.

First, time series are very high-dimensional objects composed of values observed
at different observation times. Thus, the use of classical algorithms that consider
explainability with respect to the input variables fail because they are faced with
variables that suffer from the curse of dimensionality and also from the fact that
these values are highly dependent variables. Hence, feature based methods have
to be considered. The usual features considered for time series are often either a
low-dimensional representation such as its projection onto a proper basis (for instance
wavelet basis as in Mallat, [1999) or a data driven basis as in Shang, 2014}, or features
obtained by the embedding using a deep neural network or a variational auto-encoder.
Yet explanations that are based on such features carry little explainability for the
user who only observes the initial time series. Indeed the relationship between the
variability of the features and the corresponding variability of the time series is
difficult to understand.

For this reason, counterfactual explanations are well-suited to highlight small
changes in the time series that lead to a change in the predicted class. Counterfactual
explanations can be generated by manipulating the original time series data in a
controlled way to generate a new time series that is similar to the original data

but belongs to a different class. This approach has the advantage of providing an
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explanation that is based on the original data and is therefore easier for the end

user to interpret.

Time series data often involve multiple explanatory factors, and disentangling
these factors is a critical step in developing accurate models. Recent research has
shown that a good representation of time series data should be able to separate these
multiple explanatory sources (Bengio et al., 2013, Woo et al., 2022). In this paper,
we consider time series that are generated from general explanatory factors labelled
as general behaviour F; and deviations around this general behaviour depending on
the label F;. The latter are generated with salient features that represent alterations

in the explanatory factors of the time series.

Specifically, we study electrocardiogram (ECG) data, where the general behavior
is due to common characteristics of ECGs, and the deviations are due to cardiac
pathologies. We use the encoder part of a variational autoencoder (VAE), denoted
as qo(Z|X), to represent the functional data F in a low-dimensional latent space Z,
which can be manipulated more easily than the original functional data.

The encoder part of the VAE, ¢y(Z|X), maps the high-dimensional functional
data F to a lower-dimensional latent space Z. This latent representation captures the
underlying structure of the data in a more compact and manipulable form. However,
in many cases, the latent space may still be entangled and not fully disentangle the
explanatory factors of the data. To overcome this, we use a contrastive loss that
separates the features of the general shape of the signals and the features resulting
from anomalies in the latent space. Note that the supervised contrastive loss can
be trained either by using y the label or by using a prediction 3 of a classifier to

explain.

In our proposed method, we use the latent space Z to represent the time series
data, where Z, captures the general features of the signal, such as the positions of
the peaks, heart rate, and the overall shape of the ECG, and Z, captures the salient
features that differentiate the classes, such as the small alterations characteristic of
pathologies. We use a latent prototype from healthy data in the salient space Z, to
transform the latent representation of the signal, and then use the decoder part of
the VAE, py(X|Z), to construct the counterfactual explanation. The prototype can
be seen as a reference point that represents the ideal healthy salient features.

The contributions of this paper are firstly a new method of training VAEs
that separates salient features from features shared across all classes, by using
a contrastive loss to untangle salient features in the latent space. This partially

untangled latent space is used to find latent prototypes that generate counterfactual
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examples. These examples show good properties compared to other techniques with

an independent classifier.

4.2 Background and related work

Dataset

This article is centered on analyzing multivariate ECG data, which is common in
modern ECG datasets collected through the 12-lead procedure. We therefore use
the PTB-XL dataset (Wagner et al., 2020)), which contains 21,801 12-lead ECG
records from 18,869 patients. Each ECG record comprises a 10-second time series of
12 channels (I, II, III, AVL, AVR, AVF, V1, ..., V6), with each channel representing
a distinct measure of the heart’s electrical activity at a given time, and has been
annotated by one or two cardiologists.

These time series are divided in 5 classes : ’CD’ for conduction disturbance,
"HYP" for hypertrophy, "MI" for myocardial infarction, "NORM" for normal ECG,
"STTC" for ST/T change, with normal data representing 42% of the dataset. We
are interested in distinguishing between time series with pathology (i.e., those in
the CD, HYP, MI, and STTC classes) and those without (i.e., the NORM class).
Let K be the dimension of the multivariate time series and T be the number of
timesteps. # = {#*}, t € T = {1,...,T}, k € K = {1,..., K} denote the K-
dimensional time series, T is the set of observation times. We note n the size of the
dataset and {#;, %}, i € {1,...,n} a view of the i" element of the dataset with the
corresponding label (or class). In the use case, we have T = 1000, K = 12. We use
data augmentations to generate different views of the time series by cropping them to
T-length multivariate time series along with some slight transformations, T is fixed
to 256. The whole process is detailed in Section 4.4, Let x = {z%*, t € T,, k € K}

be that view, and 7, the timesteps corresponding to the new z.

Variational Auto Encoders

Variational Autoencoder (VAE) is a powerful deep learning technique that has
attracted considerable attention in the fields of machine learning and computer
vision. VAEs are generative models that use a neural network architecture to learn
the underlying probability distribution of a given data set. The main idea behind
VAE is to find a latent representation of the data that captures the important
features of the data, while at the same time allowing us to sample from this latent

space to generate new data points that are similar to the original data set.
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VAE was introduced by Kingma and Welling, 2013| and Rezende et al., 2014
they are generative models composed of an encoder go(Z|X = x) which takes the
entry x from a high-dimensional space and maps it to a J-dimensional Gaussian
with mean vector p(z) and diagonal covariance matrix diag(o?(z)), ¢a(Z|X =
z) ~ Ny (u(z),diag (6*(z))). The decoder py(X|Z = z) takes a sample z of that
distribution as input and generates the associated element in the starting high-
dimensional space, we note this reconstruction z.

The VAE is trained by optimizing the evidence lower bound (ELBO), which
is a lower bound on the log-likelihood of the data. The ELBO consists of two
terms: the reconstruction loss and the KL-divergence regularization term. The
reconstruction loss measures the difference between the original input data point x
and its reconstructed version . The KL-divergence regularization term encourages

the learned latent space to be close to a standard normal distribution.

Lyap(®,0;7) = — Ezogy(z1x=2) [log po(X|Z)]
+ Dkilge(Z|X = )||p(Z)]

The conditional distribution, py(X|Z), is specified by the decoder as N'(u = z,X).
When optimizing the negative log-likelihood expectation, —E g, (z|x=2) [l0g po(X|7Z)],

(4.1)

it turns out to be equivalent to minimizing the mean squared error (MSE) between
the input data x and the reconstructed data z. As a result, it is reasonable to
express the first term in Eq.(4.1) as the MSE within the VAE framework.

. 1 .
o=l = rge D (@ —a") (12)

te€Te, kek
The second term in Eq.({4.1]) is the Kullback-Leibler divergence between ¢o(Z]X =
x) and p(Z). Since the distributions are respectively N (u(x), diag (o?(z))) and

N;(0, Idy), we can easily compute this term. Namely, we have :

Drcwlga (21X = 2)[[p(2)] = Ezngy (z1x=2) Lo (W)

p(2)
(4.3)

= %Z —1 —log (03 (x)) + pi3(x) + o ()]

Although VAESs are typically trained in an unsupervised way, it is often possible
to identify clusters in the latent space that are correlated with the input data
labels, especially on well-known datasets such as MNIST or FashionMNIST. This
is typically observed when differences between data points are largely driven by

differences in the input labels. In the case of ECG data, variations in the data
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are mainly caused by general features such as frequency, amplitude, and position.
However, pathologies induce local variations around the general shape of the ECG,
which have a minimal effect on the reconstruction loss and thus the shape of the
latent space. To ensure that the VAE can effectively capture these salient features,
it is necessary to incorporate additional mechanisms that encourage the encoder to

encode and preserve these features.

Contrastive representation learning

Semi-supervised learning has proven to be an important part of training large image
classifiers. In this vein, Chen, Kornblith, Norouzi, et al., 2020, inspired by Berthelot
et al., 2019, propose a new method for training deep neural networks to learn
useful visual representations in an unsupervised manner, which is called contrastive

learning.

Contrastive learning is a method of training neural networks in which the network
is trained to learn representations that bring similar inputs closer together and
dissimilar inputs further apart in the representational space. The idea is to train the
network to identify which images are "positive" (i.e., similar) and which images are
"negative" (i.e., dissimilar), based on a set of "anchor" images. The network takes
pairs of images as input, and each image is passed through the network to obtain
two feature vectors. These feature vectors are then compared using a contrastive
loss function that encourages similar images to have feature vectors that are close
together and dissimilar images to have feature vectors that are far apart. The

supervised version of this technique is proposed in Khosla et al., [2020.

We take a set of N randomly sampled sample/label pairs, {%;, 9}, {=1,..., N.
The training batch consists of 2N pairs {z;,y;}, ¢ = 1,...,2N where x5 and
x9;_1 are 2 different views (random data augmentations, see Section of #; and
U1 = Yo;i = Y21 18 the corresponding label. Let I = {1,...,2N} be the set of
indices of the different views. A(i) = I \ ¢ are all the indices of the batch except
i, P(i) = {p € A(i) : y, = v;} is the set of indices of all positives in the batch,
distinct from ¢ and 7 a positive parameter, we follow the original implementation to
set it. Note that using 2 views of each time series ensure that |P(i)| > 0, Vi € I.

Let j(i) be the index of the other augmented sample from the same source
sample.
We note z; = Enc(x;) the projection of x; into a low-dimensional space using an

encoder network Enc(.) and < .,. > the usual scalar product in R”.
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In Chen, Kornblith, Norouzi, et al., 2020, the unsupervised contrastive loss takes

this form.

Zlog eXp < %, Zj) > /T)

L¢ z
on{zlGI aeA)exp(<2i,Za>/T)

(4.4)

iel

Here, we encounter a potential issue highlighted by Khosla et al., 2020L If
two elements within the same batch belong to the same class, the unsupervised
contrastive loss will not pull them closer together; instead, it may drive them apart.
This observation is what led to the development of the supervised version of the
contrastive loss, which addresses this limitation by incorporating label information.

The supervised contrastive loss is formulated as follows:

exp (< 2,2y, > /7T
LsupCon {zz zGI Z | Z Z £ / ) (45)

i acA@) XD (< 2120 > /T)

In this case, incorporating the positive information P(7) from the batch is expected
to facilitate the formation of even more refined and meaningful representations, as

it takes into account the similarity of data points belonging to the same class.

Counterfactual explanations

Counterfactual explanations are a way of explaining why a particular model makes
certain decisions by generating hypothetical examples of what might have been
different, answering the question of what it would take to change the classification
of that particular input. In other words, counterfactual explanations help to identify
the characteristics of an input that contributed most to the output. In Karimi
et al., [2020], they point out that this type of explanation is easy for an individual to
understand. By providing a clear and interpretable explanation of why a particular
decision was made, counterfactual explanations can help improve the transparency
and accountability of Al systems. This is particularly important in situations where
the consequences of a decision can have significant real-world impacts, such as in
aerospace, criminal justice, or in our use case: healthcare. There are many techniques

developed for this purpose, and we will present some of them in this section.

Delaney et al., 2021 propose a novel model agnostic technique that generates
counterfactual explanations for time series classifiers. The method is a case-based
technique that retrieves existing instances from the training data and adapts them
to generate counterfactual explanations. Parts of the signal are replaced by the
signal of the target class using class activation mapping (CAM) (Zhou et al., |2016))
to select the parts to be replaced.
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Although this method gives impressive results, it requires the time series to be
aligned, which is not usually the case with multivariate series. Moreover, using CAM
on multivariate time series is not a straightforward process, as it requires a specific

architecture, as shown in Assaf et al., 2019 and Fauvel et al., 2021

In Ates et al., 2021 (CoMTE), a method for generating counterfactual explanations
for multivariate time series, a nearby multivariate time series in the training dataset
with the target label is selected using a KD-Tree in a feature space. This nearby
time series, called a distractor, is then used to substitute parts of the signal into the
original time series to generate a counterfactual explanation. Two algorithms are
used to make substitutions in the time series. The Sequential Greedy Algorithm
replaces each variable in the time series with the corresponding variable in the
distractor time series that results in the largest increase in the probability predicted
by the classifier. This process is repeated iteratively until the predicted probability
exceeds a given threshold. The Random-Restart Hill Climbing algorithm is also
applied to minimise the loss function, which involves adding or removing a variable
to the set of substituted variables. This algorithm starts with a random initialization
point for the set of variables and evaluates the loss function for random neighbours
until it finds a better neighbour. However, hill climbing can settle into local minima,
so random restart is used to explore more of the search space. In the rare cases
where all variables can be pruned, the greedy search algorithm is used to find a

viable solution.

Replacing parts of the signal in a multivariate framework would affect the inter-
signal consistency, which is not desirable, as there are often significant correlations

between the signals.

In Bahri et al., 2022}, they propose a model-agnostic, instance-based explanation
algorithm called Shapelet Explainer for Time Series (SETS). SETS uses a dictionary
of shapelets extracted from the dataset to represent the time series data in an efficient
and meaningful way. The algorithm generates counterfactual instances by replacing
segments of the input signal with shapelets representing the target class. The process
involves computing the distances between the shapelets and the dataset instances,
selecting class-specific shapelets, and calculating the occurrence distributions. Then,
for a given instance of class A, the algorithm generates a counterfactual instance of
class B by replacing the shapelets of class A with the closest shapelets of class B
according to the occurrence distributions. The resulting counterfactual instance is

visually interpretable and can help explain the decision process of black box models.
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The approach presented in Wachter et al., [2017 proposes constructing an objective
function that modifies the classifier’s output by making small changes to the original
data using an optimization algorithm. The suggested loss function is defined as
follows:

L(z,a"y) = (f(«') = y')* + d(z,2')
where f() is the trained classifier,  is the original data point, 2’ is the counterfactual,
y' is the target class, and d(.,.) is a distance metric such as the Manhattan distance
used to keep x and 2’ close to each other. Specialized techniques for time series have
been developed in Dhurandhar et al., 2018 and Karlsson et al., 2018, However, these
methods have two main drawbacks. Firstly, the optimization process can be costly
and time-consuming. Secondly, the quality of the counterfactual is dependent on

the quality of the classifier f, which can limit the method’s practical applicability.

The counterfactual generation method proposed in Balasubramanian et al., 2020
works by searching for counterfactuals in the latent space of an autoencoder (AE).
An autoencoder is a neural network architecture that learns a compressed represen-
tation (latent space) of an input data point. When generating counterfactuals, the
autoencoder is trained on the original data set and learns to map each data point
to a compressed representation in the latent space. To generate a counterfactual
for a given data point x, the method first encodes the data point into its latent
representation z using the trained autoencoder. It then searches near z to find a
new latent representation z’ that is close to z and produces a different classification
output for the classifier. This search is done using gradient descent optimization on a
loss function that aims to minimize the distance between z and z’ while maximizing
the difference in classifier outputs between x and the counterfactual x’. Once a
suitable 7z’ is found, it is decoded back into the original data space using the decoder
part of the autoencoder, producing the counterfactual x’. Adding more constraints
to the optimization problem and using Adam optimizer showed good results in
Z. Wang et al., [2021.

These methods can produce plausible counterfactuals if the model is well trained,
but they do not provide good explanations if the latent space is entangled. Unfortu-
nately, the latent space produced by VAE and AE models on the ECG dataset does

not separate the classes, and therefore these techniques do not work well (see table

1),

Desirable counterfactual properties are discussed in the paper Verma et
al., 2020l Indeed, not all counterfactuals are created equal. To be truly useful

and informative, a good counterfactual explanation should satisfy certain desirable
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properties. The authors outline the properties that a good counterfactual should
verify and explain why these properties are important. In this article, we will focus
on some of the most important properties highlighted in the review and explore why

they are crucial for creating effective and trustworthy counterfactual explanations.

One key aspect of this evaluation is validity, which measures the extent to which
the generated counterfactuals actually lead to a change in the predicted class of
the signal relative to the target. This can be quantified as the percentage of
counterfactuals that cause an independent classifier f to change its predictions from
Y tO Yiarget- A higher validity score indicates that the generated counterfactuals
are more likely to be useful and informative for understanding the model, while
a lower score suggests that the method may be struggling to generate effective
counterfactuals. Thus, validity is an important metric for evaluating the overall

quality and utility of a counterfactual generation method.

Another important metric for evaluating counterfactual explanations is sparsity,
which measures the extent to which the generated counterfactuals change the smallest
number of features necessary to achieve the desired outcome. For tabular data,
sparsity is easily computed as the number of features changed in the counterfactual,
while for time series data it is more complex. In our case, we use a parameter € to
control the possible deviation between the original time series and the counterfactual,

allowing a deviation of up to 25% of the variance.

1
Sparsity(z, ze, €) = YK Z A Ie (4.6)
t€Tz, keK

A sparser explanation should make it easier to understand the underlying differ-

ences between the classes.

The plausibility refers to the ability of the generated counterfactuals to resemble
realistic, plausible data points that could have been observed in the original dataset.
In our case, since we use the decoder part of a Variational Autoencoder (VAE) to
construct the counterfactuals, this property is automatically verified by design. A
well-trained VAE will produce plausible data points that are consistent with the
underlying structure and patterns of the original dataset. By ensuring plausibility,
we can increase the reliability and usefulness of the generated counterfactuals and
gain a better understanding of the underlying factors and drivers that influence the

model’s predictions.
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Scalability refers to the ability of the model to provide counterfactuals for large
datasets in a timely and efficient manner. This is particularly important in real-world
settings where large datasets are common and timely decision making is critical. For
most counterfactual generation techniques, we need to consider both training time
and inference time, as these can have a significant impact on the overall scalability
and feasibility of the approach. While a longer training time may be acceptable if
it leads to better performance and more accurate counterfactuals, it is important
to ensure that the inference time remains reasonable and feasible for real-world

applications.

4.3 Method

Contrastive variational autoencoder

We want a VAE where the latent space is separated into two distinct parts, one part
coding for phenomena related to normal behaviour Z, and another part coding for
variations due to a change in behaviour Z (in our case pathologies). Unlike previous
work (Cai et al., 2019, Zheng and Sun, 2019, Poels and Menkovski, 2022)) we do
not want to use an additional classifier, adversarial training or multiple encoders /

decoders.

The representation of time series data in a latent space is a powerful approach that
can reveal the underlying structure and relationships within the data. In particular,
it is important to capture the disentangled sources of variation contributing to the
data, as this can enable more effective downstream analysis and modeling. To this
end, we aim to construct a latent space that reflects both the general and salient
sources of the data. The general sources are the common features shared by all
signals, such as the overall shape or rhythm, while the salient sources represent the
specific patterns or variations that distinguish a healthy signal from a pathological

one.

To achieve this disentanglement, we partition the latent space into two subspaces,
Z, and Zj, representing the general and salient features, respectively. Specifically,
we define the dimensions of the general part of the latent space, J,, and the salient
part of the latent space, J;, where J = J, + J;, and we use the sets of indices
Jg=1,...,Jyand J, = J, +1,...,J to differentiate between the two subspaces.
Within this framework, our goal is to ensure that signals with similar general features

are close together in Z,, while those with different salient features are far apart in
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Z,. This allows us to more effectively group signals that share common properties,

while also emphasizing the differences that are most relevant for downstream tasks.

In order to achieve this goal, we make use of a contrastive loss that is specifically
focused on the salient part of the latent space, Z;. This loss can be unsupervised,
as in Eq., or supervised, as in Eq., depending on whether we have access
to labeled data. By applying this loss to the salient features, we can better capture
the differences between signals belonging to different classes or categories, which
in turn can improve the discriminative power of the representation. Overall, this
approach provides a powerful framework for representing time series data in a way
that captures both the general and salient features, and enables effective downstream
analysis and modeling. Through the use of contrastive loss on the salient features,
we can more effectively capture the differences between signals and create a more

powerful representation for a variety of tasks.

We sample z* from the Gaussian output of the encoder ¢o(Z|X = x) ~
N (u(x), diag (o*(z))), we apply the contrastive loss only on the salient dimensions
{zf , j € Js}. This part of the latent space will be forced to disentangle classes and
thus, encode class-specific features. The choice of the dimension of the salient space
is not straightforward. This is why the experiments show a variable size of salient
dimensions. The strategy chosen to select this dimension is discussed in Section [4.4]
We finally define our contrastive variational loss two ways.

Initially, we define the unsupervised contrastive variational loss as follows:

Lowvas(®, 0; {z:}ier) MZH@ il * + MZDKL (g0 (Z|X = 2:)||p(Z)]

el el

+ LCon({Zmi }ie])

1 1 . 2
“n5 (w5, )
1€

teTy, ke

+ % Z <% Z [—1 — log (UJQ(%)) + M?(zz) + 0"72<:B2)i|>

exp <Zj€.75 (Zf'z;]()) /T>
iel ZaeA(i) €xp (Zjejs (le xa) /T)

Subsequently, we introduce the supervised variant of the contrastive variational

loss, which incorporates class information:
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LSupCtrVAE((I) 9 {xz ze] |]| Z ||$z xz||2 |[| ZDKL 4o Z|X = T )Hp( )]

icl
+ LsupCon({z Z}ie[)
1 1 (w,k t,k)2>
_ Ak _ g
1 1
+ i Z (5 Z [—1 —log (o5 (x)) + i3 (2) + a?(xﬁ})
el j=1

_—1 log exp (Z]EJS ( ) /T)
P(1)] peP()  DaacA(i) OXP (ZJEJS ("% )/T>

These two formulations allow us to compare the effectiveness of contrastive

learning in generating meaningful latent representations for time series data.

One way to look at the partially constrained latent space is to think of an
encoder /decoder pair as being able to compress only a certain amount of information.
During training, salient features are represented in the part of the latent space
constrained by the contrastive loss to help form clusters and thus minimize the loss.
Non-salient features should remain in the general latent space to avoid cluttering

the salient space.

To better understand and visualize the structure of this latent space, we use a
dimensionality reduction technique called UMAP introduced by Mclnnes et al., 2018|
UMAP allows us to project the high-dimensional latent space onto a 2D plane,
which we can then visualize and analyze. Fig. shows the UMAP projections of
the latent space for two different encodings: one for general features Z,, and one
for pathological features Z, . In the latent space encoding for general features Z,
(located at the top of Fig. 4.1]), we observe that the data are uniformly distributed
across the 2D space. This indicates that there is no clear clustering or separation
between the different classes of data. On the other hand, in the latent space encoding
for pathological features Z;, we see a clear separation between normal data and
anomalies. This means that the encoding has successfully captured the key features
that distinguish between normal and anomalous data, and has represented these

features in a way that allows for easy differentiation and classification.
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Counterfactual explanation

The contrastive variational autoencoder is a method for disentangling the latent
space of data into general and salient features. This disentanglement enables
us to selectively modify the salient features in order to produce counterfactual
explanations for pathological data. Specifically, we aim to generate the time series
that a pathological instance would have exhibited if it had been healthy. To achieve
this, we employ a "healthy latent prototype" z;, which is representative of healthy
data in the salient space Z,. By replacing the salient features of a pathological
instance with those of z;, we obtain a counterfactual instance that is expected to be
healthy.

Our goal is to change only the salient part of the signal and thus to change only
the salient part of the latent space. We use a "healthy latent prototype" to make
this change, this prototype is a representative of the healthy data in Z, and since
this is our target, we call this prototype z;. The transformation is done by replacing
Zs by 2.

Given a time series z, we have z(z) = {z,(x), z;(x)} its latent representation
and ze(x) = {z4(x), 2} the latent counterfactual, let x.f = py (X|Z = z.¢(x)) be the

counterfactual explanation for x.

To determine the best method for selecting a prototype, we evaluated four ap-
proaches. The first method uses the mode of the target class distribution, which is
estimated by applying kernel density estimation to the target class in the training
set of Z5. The second method selects the median of the target class, while the third
method chooses the mean. The fourth method, called the sub-method, applies kernel
density estimation to both the target and other classes and selects the point that
maximizes the difference between the two estimated densities.

After evaluating the four methods, we found that the sub-method had slightly
better validity performance than the other three methods. This is because it
considers the density of both the target and other classes, which provides a more
comprehensive understanding of the overall distribution.

Although the clusters produced by the different methods gave similar positions
for z;, the sub-method was more robust in terms of prototype selection. The
counterfactuals generated by the three methods were similar because the salient part
of the latent space produced good class-related clusters. Overall, the slightly superior
performance and robustness of the sub-method makes it the preferred approach for

selecting prototypes. These results are summarized in Table [4.1]



4.4. EXPERIMENTS 81

Table 4.1: Prototype comparison

CVAE (16,4) CVAE (32,8) CVAE (64,32)
Mode | 0.984 £0.006 0.938 £0.016  0.895 +0.008
Validity Median | 0.982 £0.007  0.933 £0.017  0.895 £0.007
Sub | 0.985 £0.006 0.945 £0.014 0.908 =£0.009
Mode | 0.514 £0.016 0579 £0.018  0.591 £0.019
Sparsity Median | 0.519 £0.014 0.581 £0.018 0.591 +0.019
Sub | 0.512 £0.019  0.576 £0.019  0.586 £0.020

When using the unsupervised contrastive loss function in CVAE; it is still necessary
to define a healthy latent prototype for generating counterfactual examples. This
requires access to labeled healthy data to estimate Z;. However, the well-disentangled
salient latent space of the CVAE ensures that the estimated Z; produces high quality

counterfactuals, as demonstrated by our experimental results, see Table (4.1}).

In Fig. (.1, we demonstrate an example of the transformation process using
our proposed method, and the resulting counterfactual closely resembles the recon-
structed signal. In particular, we observe that the cavities of the original signal are
reduced after each "peak" in the counterfactual examples generated for I, a VL, and
V1. This observation suggests that these types of cavities are representative of the
pathological class and highlights the relevance of the features highlighted by our
method. To further confirm the plausibility of our counterfactuals, we consulted
a cardiologist who confirmed the significance of the features highlighted by our
method. This validation supports the effectiveness of our approach in generating

accurate counterfactuals for medical diagnosis.

One of the major advantages of our method is the speed with which we can
generate counterfactuals using prototypical salient targets. Unlike optimization-
based methods, our approach requires only the inference time of the VAE. This
is a significant advantage, as optimization-based methods can require a significant
amount of computation time to generate a counterfactual, which can be impractical
in many real-world scenarios. Overall, the use of prototypical salient targets allows us
to provide fast and accurate counterfactual explanations, which could have important

implications for medical diagnosis and treatment planning.

4.4 Experiments

To mitigate the randomness in the formation of different architectures, we performed

multiple training runs with varying random seeds. Confidence intervals of 20 are
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represented in the figures by colors around the mean.

Training details

The training was conducted on one Nvidia RTX A6000, and we trained a total of
270 models for the experiments, with a total training time of approximately 300
hours. We estimated total emissions to be 5.22 kgCOseq using the Lacoste et al.,
2019 method and the electricitymap.org website.

To achieve our goal of developing a new way of generating counterfactual expla-
nations, we used a standard architecture for the encoder and a reversed version for
the decoder. The architecture consisted of three convolutional blocks with filters of
size 5 and 256, 512, and 512 neurons, respectively. During training, we used a batch
size of 256 and added coefficients to the KLL and contrastive losses to balance them
with the reconstruction loss.

We use the PyTorch implementation of the supervised contrastive loss from Tian,
2020| and used it as the basis for both the supervised and unsupervised contrastive
losses. We employed a learning rate that reduces on plateau with a patience of 45
epochs and early stopping after 100 epochs without improvement. We also used the
Adam optimizer to optimize the model parameters.

In addition, we used 20% dropout on the convolutional blocks to reduce overfitting
during training. We also included leaky ReLLU activation layers with a negative slope
of 0.01 and batch normalization to improve the stability of the training process.
Overall, our training process was designed to optimize the performance of our deep
learning model for generating counterfactual explanations. The use of multiple
training runs with varying seeds helped to mitigate the impact of randomness, while
the addition of coefficients to the loss functions helped to balance their contributions

to the overall objective.

Data augmentation

Data augmentation is an essential component of training deep learning models to
improve their ability to generalize to new data and achieve good performance. While
there are many techniques for image models to add diversity to the dataset, such as
adding different types of noise, flipping and rotating images, and more advanced
techniques such as Mixup and CutMix (Yun et al., 2019, H. Zhang et al., 2017), it
can be more challenging to apply such transformations to multivariate time series
data, as it may not always make sense to modify the time series in this way, and it
could therefore harm the model. In our case, we did not add noise or other complex

time series-specific augmentations, such as time wrapping, for two reasons. First,
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because they must be done on the fly during training, these augmentations can be
quite time-consuming. In addition, some of these techniques may not make sense
for the type of data we are using. For example, heart rate is mostly stable during

recording, so techniques like time wrapping would not be appropriate.

Instead, our data augmentation strategy focuses mainly on random cropping,
which is widely used in time series data whenever possible, and is notably used in the
benchmark of the Strodthoff et al., 2020 dataset. We also employ an augmentation
technique that extends or condenses the time series time-wise, using a random length
(U(256 — Pscales 256 + Pscale), Pscale = 0.3 X 256]) crop of the time series and then
linearly interpolating to make it 256-length.. This artificially alters the cardiac
rhythm of the samples and is similar to the randomly resized cropping technique
used in image data. Overall, our data augmentation strategy is designed to increase
the diversity of our training data and improve the generalization performance of our
deep learning model. While we did not use more complex augmentations specialized
for time series, our approach still provides a simple and effective way to augment the
data and train our model to better detect and respond to different cardiac rhythms
and pathologies.

Contrastive VAE

Intra signal distance (mean radius) 16 Intra signal distance (mean radius) 32 Intra signal distance (mean radius) 64

VAE VAE
16 Z, 16 Z, 16
Z. Z.

10 10 10 VAE
Zg

0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 0 10 20 30 40 50 60
Salient dim Salient dim Salient dim

Figure 4.2: Mean dispersion radius. The mean dispersion radius over the latent
space of the classical VAE is shown for comparison, the dotted lines represent +20.

To evaluate the performance of our proposed contrastive VAE, we conducted
several experiments to assess the quality of the disentangled representations learned
by the model, as well as its ability to generate plausible data from the decoder. Our
results demonstrate the ability of the CVAE model to produce high quality synthetic

data from a well disentangled latent space.



84 CHAPTER 4. COUNTERFACTUAL EXPLANATION FOR MTS

A key metric for evaluating the disentanglement performance of our CVAE model
is the average radius of dispersion in the two parts of the latent space (Z, and Z;)
for different views of the same time series. For each data sample, we take seven
different views (crops) and compute the dispersion on the two parts of the latent
space. Since each cropped signal is generated by the same underlying phenomenon
(i.e., pathology), it should appear close together in Z,. As shown in Figure ,
the dispersion in Z; is small, indicating that this part of the latent space is highly
dependent on the pathology rather than the general shape of the signal.

This is a promising result that confirms the effectiveness of our disentanglement
approach, which separates the signal’s pathology from other factors that may
influence its shape. Another important measure of the model’s performance is its
reconstruction capability, which determines how accurately the decoder can generate
plausible data from latent space. We have compared the mean square error between
the input signal and the reconstructed signal for both the traditional VAE and
CVAE models in Figure[£.3] Our results indicate that the addition of the contrastive
loss does not degrade the reconstruction compared to the traditional VAE, and may

even slightly improve the quality when using a sufficiently large latent space.

MSE latent 16 MSE latent 32 MSE latent 64

VAE 00225 VAE
CVAE CVAE

0.0200 0.0200 0.0200

0.0225 0.0225

0.0175 0.0175 0.0175
0.0150 0.0150 0.0150
0.0125 0.0125 0.0125
0.0100 0.0100 0.0100
0.0075 0.0075 0.0075

VAE
0.0050 CVAE 0.0050 0.0050

Salient dim salient dim Salient dim

Figure 4.3: Reconstruction error, the dotted line represents the +2¢ intervals of
classical VAE

Counterfactual explanations

To thoroughly evaluate the validity and effectiveness of our counterfactual expla-
nations, we used an independent classifier trained according to the recommended
practices of the Strodthoff et al., 2020 benchmark. Our classifier, a convolutional
neural network, achieved an overall AUC of 0.928 on the test set when its predictions

were averaged over the entire signal. This high level of performance is similar to
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Validity / Sparsity

Figure 4.4: Validity as a function of sparsity, the higher the better. The arrows
indicate the architectures that are a good compromise.

that of the benchmark, indicating that our classifier is a trustworthy and reliable

tool for assessing the accuracy of our counterfactual explanations.

It is important to note, however, that our classifier is completely independent
of the VAE and counterfactual generation process. This is a critical consideration
because many methods that generate optimization-based counterfactuals rely on the
same classifier to assess the validity of the explanations as to construct them, which
can lead to confusion and misinterpretation. By using an independent classifier, we
eliminate this potential problem and ensure that our counterfactuals are both credible
and reliable. This added level of assurance is critical when using counterfactuals in

high-stakes real-world applications, such as medical diagnosis or treatment planning.

To strike a balance between validity and sparsity in the generated counterfactuals,
we must carefully select the salient dimensions of our contrastive VAE model. A
smaller number of salient dimensions will result in smaller changes in the signal,
leading to better sparsity, but it may also make it more challenging to change classes.
Thus, we aim to choose the smallest number of salient dimensions that still produce
acceptable validity scores. To aid in this decision-making process, we plot validity as
a function of sparsity in Figure [4.4] This plot is also useful for comparing the effects
of different latent space dimensions on the performance of the proposed method.
As we can see from the figure, when the latent space is relatively large (e.g., 128

dimensions), the generation of counterfactual examples becomes more difficult.
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Furthermore, we have achieved high validity scores without significantly altering
the original signal, as confirmed by an independent classifier. Comparing the curves,
we observe that the contrastive VAE model with a latent dimension of 16 can
generate better counterfactual examples. However, it is crucial to note that the
reconstruction error is also a crucial metric for evaluating the quality of the CVAE
model. Based on our evaluation, we conclude that the preferred model has a latent
dimension of 32 and uses 8 salient variables, for the model with a latent dimension
of 64 we keep the one with 32 salient dimensions, and for the model with a latent

space of 16 we keep the one with 4 salient dimensions.

Overall, the choice of salient dimensions is a crucial aspect of our model and
affects the trade-off between validity and sparsity of the generated counterfactuals.
Our approach leverages the validity-sparsity plot to determine the optimal number
of salient dimensions, and our results show that our contrastive VAE model can
effectively generate counterfactuals that are both valid and sparse.

The results of our experiments highlight the importance of partitioning the latent
space of the CVAE into two distinct subspaces, Z, and Z,. The contrastive loss
function can be applied to the entire latent space to produce high validity scores, but
at the cost of generating counterfactual examples with low sparsity and substantial
deviation from the original sample. In contrast, applying the contrastive loss only to
the subspace Z,, which captures the salient factors of the input data, results in more
sparse counterfactual examples that preserve the essential features of the original
sample. This approach provides a better balance between validity and sparsity,
and generates counterfactuals that are more interpretable and actionable for end
users. Our experiments show that this partitioning of latent space into salient and
non-salient dimensions leads to better performance in terms of both sparsity and
validity, and provides a valuable tool for generating counterfactuals that are reliable

and accurate.

Another way to adapt the sparsity score to user needs is to use linear interpolation
between z; and z;. This method involves replacing the prototype z; with zproj =
zs + Mz — z5),; A € [0,1]. By varying the value of A\, we can adjust the tradeoff
between sparsity and validity in the generated counterfactuals. As shown in Figure
[4.5] small values of A can increase sparsity while sacrificing some degree of validity,
while larger values of A result in more valid counterfactuals but with less sparsity. It is
important to note that this parameter is optional and should be used at the discretion
of the user based on their specific needs and preferences.These results demonstrate
the trade-off between sparsity and validity in our counterfactual generation process

and highlight the flexibility of our approach in meeting the needs of different users.
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Validity / Sparsity with multiple A
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Figure 4.5: Evolution of sparsity and validity given different parameters A
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Figure 4.6: Average predictions of the baseline classifier on the different classes

The performance of the contrastive VAE with a latent space of 16 dimensions, four
of which are dedicated to salient features, is shown in Figure |4.6, To evaluate its
effectiveness, we compared the mean predictions of the baseline model between the
input and counterfactual time series for each class. The results show a clear change in
classifier prediction, highlighting the usefulness of our approach in generating realistic
and meaningful counterfactual explanations for ECG data. This improvement is
particularly important given the difficulty of making accurate predictions on ECG
data, which is a complex and nuanced domain that requires specialized knowledge
and techniques. The results demonstrate the potential of contrastive VAE as a
powerful tool for generating meaningful counterfactual explanations in the context

of ECG data analysis.
In summary, our study highlights the potential of using contrastive VAEs for
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generating valid and sparse counterfactual explanations. By carefully selecting
the salient dimensions and partitioning the latent space, our approach provides
a valuable tool for generating actionable explanations that are both reliable and

interpretable.

Comparison with Lime

In Ribeiro et al., 2016, the authors argue that transparency and interpretability
of these models are critical for building trust and acceptance of their predictions.
Their method, called LIME (Local Interpretable Model-Agnostic Explanations),
provides a general framework for generating explanations for any type of classifier,
both in quantitative and visual forms. The effectiveness of LIME is demonstrated
through several experiments with different datasets and classifiers, including text
classification, image recognition, and credit scoring. The paper presents a promising
approach to addressing the challenges of interpreting and trusting the predictions of

machine learning models.

To evaluate the effectiveness of our proposed counterfactual explanation method,
we compared it with an adaptation of the LIME technique presented in Hering et al.,
2020. In this technique, the signal is perturbed multiple times by replacing certain
parts with the mean, and then fed to a basic classification model. The resulting
predictions are then used to feed a linear model that estimates the influence of
certain parts of the signal on the prediction. While this method assumes that a
simple linear model is sufficient to provide a good local explanation, our approach

aims to provide more accurate and localized explanations.

Our experiments show that the parts of the signal significantly changed by our
CVAE method are more important than the rest of the signal according to the
LIME method. However, in addition to providing more localized explanations, our
approach also shows the form needed to change the class, which can be particularly
useful for understanding the underlying causes of the change in classification.

As shown in Figure [4.7] we provide two examples of counterfactual explanations
and saliency maps given by the LIME method. The LIME method gives great
importance mainly to the peaks of the signal, and there is no clear difference
between the explanations of the MI and CD classes. In contrast, our proposed
method provides more detailed and accurate explanations, as shown in Figure [4.7al
In signals V2 and V3, the bumps after the peaks are larger in the counterfactual
generated by our method, which is not the case for the MI class. On the other hand,
the bumps before the peaks are smoothed in the III and aVF signals in the MI class
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Figure 4.7: Two counterfactual explanations with the original signal in blue, the
counterfactual one in green and the background is colored given the LIME explana-
tions

(Figure 4.7b)), but not in the CD class, demonstrating that our method produces

well-fitted counterfactual explanations that capture the key features of the data.

Ablation study

The ablation study presented in Figure [£.8 and in Table [1.2] provides important
insights into the design of effective counterfactual generation models. One of
the key findings is that the choice to use a variational autoencoder instead of
a simple autoencoder has a significant impact on the quality of the generated
counterfactuals. While the contrastive autoencoder performs slightly better in terms
of reconstruction error, its performance on the sparsity and validity metrics is lower
than that of the contrastive VAE. This suggests that the Kullback-Leibler divergence
constraint, which is an essential component of the VAE, is crucial for generating
good counterfactuals that are both sparse and valid. One possible reason why the
VAE outperforms the AE in generating counterfactuals is that the VAE can learn
a probabilistic distribution over latent space. This means that it can generate a
diverse set of counterfactuals, rather than just reproducing the same set of input
data. In contrast, the AE is limited in its ability to generate new data because it

can only reconstruct the input data deterministically.

Overall, the results of the ablation study highlight the importance of using a

variational autoencoder to generate counterfactuals. By leveraging the VAE’s ability
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Table 4.2: Ablation study depending on the salient dim J

Js 2 8 12 16 20 30

Validit CVAE | 0.75 £0.09 0.93 £0.03 0.95 £0.02 0.97 £0.01 0.95 £0.09 0.99 +0.01
alidity --------c oo
Y CAE | 0.68 £0.01 0.87 £0.02 0.91 +£0.03 0.90 £0.07 0.95 £0.05 0.99 £+0.01

S " CVAE | 0.89 £0.02 0.78 +£0.03 0.73 £0.04 0.65 £0.05 0.57 £0.09 0.51 +0.04
ATSI Y~ - oo oo
P Y CAE | 0.89 £0.02 0.74 £0.02 0.68 £0.01 0.59 £0.03 0.52 £0.02 0.53 £0.04
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(a) Reconstruction MSE for latent space 32 (b) Sparsity / validity plot for Contrastive AE

Figure 4.8: Contrastive AE compared and contrastive VAE

to learn a probabilistic distribution over the data it is possible to generate high-quality

counterfactuals that are both valid and sparse.

An explanable classifier ?

We claim that the salient space produced by our particular training of the VAE
is disentangled, i.e., it allows us to distinguish between data samples belonging to
different labels in the latent space. To further validate our claim, we trained a
weak classifier, a logistic regression, on the salient space. We then compared the
performance of this classifier with the baseline CNN model on the PTB-XL dataset.
As shown in Table [4.3] the logistic regression classifier is not as accurate as the
CNN model. However, the results also confirm that the salient space generated by
our contrastive VAE is indeed disentangled, which is a promising finding for the

development of explainable Al models.
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Table 4.3: Classification performances

AUC
CVAE(16,4) + LogReg | 0.797 £0.010
CVAE(32,8) + LogReg | 0.801 £ 0.020
CVAE(64,32) + LogReg | 0.827 £+ 0.003
Baseline CNN 0.928

Moreover, the use of logistic regression on the salient latent space allows us to
have an explainable classifier that can provide valuable insights into the decision-
making process of the CNN model. With this simple addition, we can now not only
generate counterfactual examples, but also explain the classification decisions in a
transparent and interpretable way, which is an essential step towards the development

of trustworthy and reliable AT models.

Methods comparisons

In this section, we compare the effectiveness of our proposed counterfactual VAE
method with other existing counterfactual techniques. The results are summarized
in Table [4.4] In this table, training and inference time are in seconds per sample.
We first tested a simple baseline method composed of a rolling mean of the
time series data. The goal of this test was to determine whether the smoothing
effect resulting from the counterfactual VAE was responsible for the improved
counterfactual properties of our model. We used a window of length 8 for the rolling
mean and found that simply smoothing the signal was not enough to make it look

like a healthy time series.

LatentCF (Balasubramanian et al., |2020) and LatentCF++ (Z. Wang et al., [2021)
are counterfactual methods that use an autoencoder and a classifier to modify the
latent representations in a direction that will change the prediction of the classifier.
However, as stated in the introduction, the latent space produced by VAEs or AEs
trained on this dataset does not correspond to the different classes present in the
data. This leads to the inability of LatentCF and LatentCF-+-+ to produce good
counterfactuals. As a result, these methods have a low validity score, which is a
critical metric for assessing the quality of counterfactual explanations. The inability
of these methods to capture the different classes in the latent representation is a
major limitation, and underscores the importance of developing techniques that can
produce disentangled latent spaces that can better capture the underlying structure
of the data.

Furthermore, these optimisation-based techniques have another drawback, as they
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Table 4.4: Methods comparisons

Validity Sparsity Training Inference

CVAE (J =16, J, = 4) 98.50% 51.21 % 0.196 s 1.7¢-3 s
CVAE (J =32, J, = 8) 94.46 % 57.61 % 0241s  1.7e-3s
CVAE (J =64, J, = 32) 90.84 % 5856 % 0.281 s 1.8e-3 s
RollMean 2.86 % 85.6 % 0s le-4 s
LatentCF Balasubramanian et al., [2020 | 57.22 % 58.11 % 0.0935s 7.3s
LatentCF++ Z. Wang et al., [2021 5297 % 59.29 % 0.0935s 10.8 s
CoMTE Ates et al., 2021 34.45 % 93.00 % 0.0146s 84.07s

use gradient descent at the time of inference, the generation of the counterfactual
takes about 7 and 10 seconds respectively. Making these techniques unable to

produce counterfactual examples in large quantities.

While the CoMTE method has good sparsity performance, it has not worked well
for several reasons. One of the key features of the method is the ability to replace
only a certain part of the signal while leaving the rest unchanged, which explains
the good sparsity score. The feature extraction and the classifier used for training
are fast. However, the classifier performs poorly on the dataset. This is a major
drawback since it is used for the optimization part, which is critical for generating
effective counterfactuals. In addition, the optimization time during inference is
significant, making it difficult to generate large numbers of counterfactuals. In
summary, the CoMTE method has some useful features, but the poor performance of

the classifier and the long optimization time during inference limit its effectiveness.

We attempted to use the SETS method (Bahri et al., [2022)) presented in Section
4.2l However, we encountered significant challenges when attempting to apply this
method to our dataset. In fact, the computational cost of generating the Shapelet
dictionary grows with the length of the time series, making it prohibitively expensive
to generate the dictionary for our dataset, which contains over 21,000 samples of
1000 time steps; the dataset used in the paper is relatively small (1354 samples of
60 time steps). As a result, we were unable to test the effectiveness of SETS for

generating counterfactual explanations on our dataset.

Limitations

While our proposed counterfactual VAE method provides promising results, there
are some limitations to consider. One of the main limitations is the smoothing effect
of VAE on the generated data. This can make it difficult to understand and generate

counterfactual explanations when pathologies cause only subtle changes in the signal.
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In addition, the effectiveness of our method depends on the performance of the
VAE, and out-of-distribution data may not be well encoded by the VAE, resulting
in less relevant counterfactual explanations. Furthermore, while our model performs
well with simple convolutional variational autoencoders, further optimization of the
hyperparameters and architecture could potentially improve the model’s performance.
Finally, it’s worth noting that our experiments were conducted on a specific dataset,
and further research is needed to determine the generalizability of our method to

other datasets and domains.

4.5 Conclusion

In conclusion, our proposed contrastive VAE method provides a promising approach
for generating valid and sparse counterfactual explanations in multivariate time
series data. Our approach successfully partitions the latent space into general and
class-based features, allowing us to modify only the class-based features and generate
interpretable and actionable explanations that are both reliable and effective. The
validity-sparsity plot provides a useful tool for determining the optimal number of
salient dimensions, and our experiments demonstrate the trade-off between sparsity
and validity in our counterfactual generation process. Furthermore, our independent
classifier showed a high validity score, indicating that our counterfactuals are credible
and reliable. While our proposed method shows promising results, it is important
to note its limitations, including the smoothing effect of the VAE on the generated
data, the dependence on the performance of the VAE, and the need for further
optimization of the hyperparameters and architecture. Some interesting research
around diffusion models and VAE, as in Pandey et al., 2022, could help generate
even better counterfactuals. In addition, further research is needed to determine the

generalizability of our method to other datasets and domains.

In summary, our proposed approach has the potential to advance the field of
anomaly detection in medical applications and other domains by providing a powerful
tool for generating valid and interpretable counterfactuals. Our results suggest that
our method could be used to improve the understanding of complex time series
data, which could have significant implications for medical diagnosis and treatment

planning.
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Chapter 5

VAE trained for predictive

malintenance

In the following chapter, we present a refined version of the previously discussed
method, specifically adapted to the unique requirements of predictive maintenance.
This updated technique is rigorously tested and validated using three different
datasets, giving us a broader understanding of its performance and applicability in
different scenarios. The corresponding research paper is currently undergoing peer

review for publication in the journal Reliability Engineering and System Safety.
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Abstract

In this paper, we address the challenge of understanding degradation
processes in multivariate time series data. Our primary goal is to
identify the key parameters that influence the degradation process,
while maintaining a good degradation estimate. We employ counter-
factual explanations and develop a novel contrastive semi-supervised
loss function for training a counterfactual variational autoencoder
(CVAE), effectively leveraging censored data that remains inaccessible
to traditional approaches. We evaluate our CVAE method on three
datasets and against two state-of-the-art time series classification
models - Inception Time and MLSTM FCN - as well as a standard
predictive maintenance method using a variational autoencoder (VAE).
The counterfactuals generated by our method reveal the critical role
of specific parameters in the degradation process and demonstrate
the effectiveness of counterfactual explanations in highlighting dis-
parities between healthy and degraded time series. Our approach
enables domain experts and decision-makers to concentrate on the
most critical factors contributing to degradation, paving the way for
the development of effective mitigation strategies.

5.1 Introduction

Predictive maintenance plays a crucial role in the aerospace industry, where ensuring
the safety, reliability, and cost efficiency of aircraft is of paramount importance
Mobley, 2002, As the adoption of artificial intelligence (AI) and machine learning

(ML) techniques in predictive maintenance continues to grow the need for explainable
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AT (XAI) becomes increasingly significant Shukla et al., [2020. Understanding the
underlying reasons behind maintenance predictions enables engineers and decision-
makers in the aerospace industry to gain valuable insights, refine designs, and
improve the overall robustness of their products.

To address the challenges associated with explainable predictive maintenance in
the aerospace industry, we propose a novel approach that leverages counterfactual
explanations for in-flight data. This study is situated at the intersection of predictive
maintenance and explainable Al it seeks to advance the state of the art in these

domains.

Our methodology is based on Variational Autoencoders (VAEs) and contrastive
learning, a combination that has not been previously applied to predictive main-
tenance in the aerospace industry. We specifically tailor the contrastive loss to
better fit the unique characteristics of predictive maintenance data, which allows
for more effective learning of meaningful representations from time series data. The
proposed approach demonstrates an improvement in the performance of predictive
maintenance systems in the aerospace industry. The use of counterfactual explana-
tions not only enhances the model’s interpretability but also enables engineers and
decision-makers to better understand the factors contributing to potential failures
Goyal et al., 2019 Guidotti, 2022,

The remainder of this article is organized as follows: Section provides an
overview of related work on predictive maintenance, counterfactual explanations
for time series and contrastive representation learning; Section details our
methodology, including the development of tailoring of the VAE-based contrastive
learning approach; Section presents our experimental results, comparing the
performance of our proposed method with existing techniques and the explanations
analysis.

In this paper, we make several significant contributions to the field of predictive
maintenance, with a primary focus on introducing a novel technique that provides a
higher level of explainability. Our key contributions are as follows:

We present a new approach to training predictive maintenance models by lever-
aging contrastive learning, an area that has not been extensively explored in this
domain. This innovative methodology allows us to extract more meaningful repre-
sentations from time series data, ultimately improving the performance of predictive

maintenance systems in the aerospace industry.

In Figure [5.1] we visualize the effects of the novel contrastive loss developed in
this paper (detailed in Section [5.3)). The red arrows illustrate the attraction forces

induced by the loss within the representational space. The grey circle represents
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the time series data’s representational space. In this example, we analyze a batch
containing three flight IDs ¢, j, and k—each representing a distinct equipment
lifecycle stage. The index 7 corresponds to the mid-lifecycle stage, at which the
equipment’s degradation state is unknown. Consequently, the loss treats i as
unlabeled, and the pulling force is only applied between different views of this flight
(i.e., time series from its neighborhood, see Section . In contrast, 7 and k£ both
represent early stages of their respective lifecycles, and we assume that the equipment
is healthy in both cases. Thus, the loss aims to pull j and k& closer together within

the representational space.

Healthy state Damaged state

- T ) L b0

o ~<

(na1(k), na(k))

Neighborhood

>—<  Pulling Force

[ Equipment life cycle e e s

Figure 5.1: Illustration of the forces of attraction in representational space induced
by the novel contrastive loss

Our proposed technique offers enhanced explainability, enabling a better under-
standing of the factors influencing equipment health. This increased interpretability
can facilitate more informed decision-making and lead to more effective mainte-
nance strategies for aerospace engineers and decision-makers. Additionally, the
improved explainability provided by our approach can support retrofit programs in
the aerospace industry, helping to identify areas for improvement and optimization in
existing aircraft systems. This in turn can contribute to enhanced safety, reliability,

and cost efficiency of aircraft operations.

5.2 Preliminaries

Predictive maintenance and anomaly detection

Fault detection methods, such as statistical process control, machine learning algo-
rithms, and model-based techniques, aim to identify anomalies in the operation of
machines or systems by classifying instances as either normal or anomalous Chandola
et al., 2009 These techniques play a crucial role in monitoring the performance and
health of equipment and inform maintenance activities. Predictive maintenance, on

the other hand, goes beyond mere anomaly detection by predicting when mainte-
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nance is required on a particular machine using historical data, sensor measurements,
and advanced analytics. The primary difference between the two is that while

anomaly detection deals with clearly defined classes (anomaly or non-anomaly).

In predictive maintenance, distinguishing between normal and abnormal data
can be very difficult because equipment degradation typically occurs gradually
over its lifetime, interspersed with sporadic episodes of more severe degradation.
Predictive maintenance is hampered by the lack of data because the condition of
the equipment can only be determined at two critical points: when a failure occurs,
indicating degradation or abnormality, and when the equipment is installed or
repaired, indicating a healthy or normal condition. In addition, the rarity of failures
exacerbates the scarcity of labels. Another consideration in predictive maintenance
is the gradual degradation of equipment condition over time, which means that there
should not be a significant difference in the level of degradation or health index

between two instances that are very close in time.

The objective function in predictive maintenance is frequently identified as the
Remaining Useful Life (RUL) Jardine et al., 2006, Remaining Useful Life is a pivotal
concept in the domain of predictive maintenance and prognostics. It denotes the
estimated duration remaining before a machine, component, or system approaches
the end of its useful life or necessitates maintenance intervention. Essentially, RUL
is a prediction of the remaining operational time prior to an anticipated machine
failure or performance degradation.

It is vital to acknowledge that RUL estimation is inherently uncertain due to
the complex and dynamic nature of machine operation, the presence of numerous
influencing factors, and potential measurement errors. Estimating RUL can be a
convoluted process, as the degradation rate may fluctuate depending on the failures.
In this context, the health index concept is often employed to estimate the RUL
Kang et al., 2021 & Riad et al., 2010l

Commonly, RUL estimation is achieved through the use of a health index, which
typically involves assuming linear degradation to failure or, in certain instances,
adopting a piecewise constant linear function (Teng et al., 2016, Jiang et al., [2020,
Laredo et al., |2019). These health indexes are based on the assumption that
degradation is predominantly linear and consistent across different failures, which
can be problematic when diverse failures stem from unique causes. In the piecewise
linear model, determining the appropriate degradation rate is a critical factor.

In Kang et al., 2021, the authors estimate the RUL by fitting a polynomial
function to the health index of the dataset. The degradation of the health index

can be estimated using expert knowledge, as demonstrated in El Mejdoubi et al.,
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2017, However, estimating the health index of equipment is a complex task, and
predicting the RUL based on this index can be even more challenging.

These considerable difficulties associated with utilizing a health index for fitting
algorithms have guided our attention towards more reliable information: data
collected just before a failure should be regarded as abnormal, while data from new

equipment or after repairs ought to be considered healthy.

In conclusion, while both fault detection and predictive maintenance techniques
contribute to the overall health management of machines and systems, predictive
maintenance provides additional value by estimating the health state and optimiz-
ing maintenance activities. By embracing the complexity and unique challenges
of predictive maintenance, organizations can achieve significant improvements in

equipment reliability, operational efficiency, and cost savings.

Predictive maintenance techniques

Predictive maintenance is a rapidly growing field, with numerous techniques being
developed to enhance its capabilities across a wide range of use cases. As a result, a
diverse array of methods has emerged to address the unique challenges posed by

different applications.

In the survey by Ran et al., 2019| predictive maintenance techniques are categorized
into three distinct groups. The first category consists of knowledge-based methods,
which rely on expert knowledge about the system or physical modeling. The second
category encompasses traditional machine learning methods, such as tree-based
models, Support Vector Machines (SVM), and k-Nearest Neighbors (KNN), see
Mathew et al., 2017. Machine learning-based methods require the use of features
that adequately represent the data. However, for complex use cases, a simple set of
features may not suffice, necessitating the involvement of a system expert to generate
tailored features that can accurately capture health degradation for a specific use
case. This task can be quite challenging, and due to the expert knowledge required,

these features can also be considered part of the knowledge-based category.

The third and final category encompasses deep learning-based approaches that
leverage deep learning models for predictive maintenance tasks. In their extensive
survey, Serradilla et al., [2022 explore various deep learning techniques applied to
predictive maintenance (PdM), such as Self-Organizing Maps (SOMs) for clustering
and anomaly detection, and One-Class Neural Networks (OC-NNs) for identifying

deviations from normal behavior. Deep learning techniques also enable the automatic
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recognition of degradation indicators within raw data, streamlining the process of
predictive maintenance. By facilitating the scalable deployment of such models,
these approaches have the potential to transform the field of predictive maintenance,
effectively eliminating the need for labor-intensive, custom feature engineering
tailored to individual use cases. However, deep learning techniques also present their
own challenges, as they can be difficult to train, computationally demanding, and
often viewed as black boxes. This category includes Recurrent Neural Networks
(RNN) models, convolutional neural networks (CNN) models, and autoencoder

models.

Autoencoders are often employed to extract meaningful features without requiring
labels (Davari et al., 2021; Jakubowski et al., 2021; Su et al., 2020), whereas RNN
and CNN models necessitate a target label for training, which frequently takes the
form of a piecewise linear RUL function. As previously mentioned, the choice of
the RUL function is crucial. Despite the inherent challenges, deep learning-based
approaches present promising advancements in the realm of predictive maintenance

and prognostics.

In this study, we aim to tackle a critical challenge often encountered in the
predictive maintenance field: the issue of censored data. Censored data is a prevalent
concern in real-world predictive maintenance scenarios, as it represents incomplete
information about the time to failure or the condition of a system or component.
This incompleteness can be attributed to various reasons, such as the termination of
observation before the occurrence of a failure event, planned maintenance actions,
or replacement of a component before failure.

There are two main types of censored data: right-censored data and left-censored
data. Right-censored data occurs when equipment failure has not yet happened
within the monitoring period, implying that the exact time of failure remains un-
known. On the other hand, left-censored data arises when observations on equipment
are conducted after its early operational stage, leading to uncertainties in estimating
the time to failure. While left-censored data can be employed for Remaining Useful
Life (RUL) predictions, right-censored data presents a more significant challenge, as
it cannot be utilized directly due to the absence of failure points. This limitation
is particularly problematic in certain predictive maintenance application domains,
such as aeronautics, where failure events are infrequent, resulting in a considerable

amount of right-censored data.

To address this challenge, our paper proposes the use of a semi-supervised loss

function capable of handling censored data effectively. By incorporating this loss
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function into our predictive maintenance model, we aim to leverage the information
contained in both left and right-censored data to improve model accuracy and
reliability. This approach offers significant advantages in enhancing the performance

and applicability of predictive maintenance models in real-world situations.

Contrastive VAE

In Todo et al., 2023| the critical problem of supervised anomaly detection in multivari-
ate functional data is addressed, with a particular emphasis on medical applications
such as electrocardiogram (ECG) analysis. While deep learning has demonstrated
significant potential in this field, there is a notable scarcity of techniques that provide

explainability for multivariate time series.

To tackle this challenge, and inspired by Khosla et al., 2020, an innovative approach
that combines the power of variational autoencoders (VAEs) and contrastive learning
is introduced. The method separates the latent space generated by the VAE into
general features, which are common to all instances, and class-based features that
distinguish between normal and abnormal instances. This partitioning of the
latent space allows for the generation of counterfactual examples that showcase the

differences between pathological and non-pathological data.

The paper emphasizes the importance of disentangling the multiple explanatory
factors in time series data to develop accurate models. To address this issue, the
authors introduce a contrastive loss function that effectively distinguishes between
the general features of the time series and the salient features arising from anomalies.
This distinction is achieved by applying the contrastive loss exclusively to a portion of
the latent space, referred to as the salient part. Consequently, the salient part of the
latent space becomes disentangled, while the remaining portion encodes the general
features of the ECG. This approach ensures a more structured and interpretable
latent space, facilitating the identification of meaningful relationships within the
data.

To explicit the loss we introduce let introduce N randomly sampled sample/label
pairs, {Z;, 9}, [ = 1,..., N. The training batch consists of 2V pairs {z;,y;}, i =
1,...,2N where zo; and z5; 1 are 2 different views (random data augmentations, see
Section of Z; and §; = yo; = yo;—1 is the corresponding label. Let I = {1,...,2N}
be the set of indices of the different views. P(i) = {p € I\ {¢} : y, = v;} is the set

of indices of all positives in the batch, distinct from ¢ and 7 a positive parameter,
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we follow the original implementation to set it. Note that using 2 views of each time
series ensure that |P(i)| > 0, Vi € I.

With z* a sample from the Gaussian output of the encoder ¢o(Z|X = x) ~
N (u(z), diag (6%(z))), we apply the contrastive loss only on the salient dimensions
{27, j € Js}-

The supervised contrastive loss for VAE takes this from :
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The study specifically focuses on ECG data, where the general behavior is
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attributed to common characteristics of ECGs, and deviations are due to cardiac
pathologies. The authors use the encoder part of a VAE to represent the functional
data in a low-dimensional latent space, which can be manipulated more easily than
the original data.

Their proposed method employs the latent space to represent the time series
data, capturing both the general features of the signal and the salient features that
differentiate the classes. By using a latent prototype from healthy data in the salient
space, the method transforms the latent representation of the signal only on the

salient space and constructs counterfactual explanations through the decoder part
of the VAE.

Datasets

This study is situated in the dynamic and complex aerospace industry, where the
proper functioning and maintenance of equipment is of paramount importance.
During each flight, sensors continuously monitor various equipment, capturing
multivariate time series data. In this study, the time series are sampled at 1 Hz,
which is the standard for this type of data. This data can be grouped with other

time-series data collected throughout the equipment’s lifetime, from the moment
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of installation to its eventual failure. The result is a comprehensive collection of
time series data for a wide range of equipment, providing invaluable insight into its

performance and maintenance requirements.

Aircraft are equipped with a variety of components that require close monitoring.
However, for the purposes of this paper, we will focus specifically on two predictive
maintenance use cases, both derived from proprietary, undisclosed industrial datasets.
The first use case involves the Heat Exchanger (HE) dataset, which is centered
around the detection of leaks in a heat exchanger. These leaks can potentially
impair the overall performance of the system. The data for this particular use case is
gathered primarily from temperature sensors and the command of a valve adjacent
to the heat exchanger, presenting an effective way to monitor the integrity of the
heat exchanger.

Our second dataset pertains to a flow regulation valve (FV). This component
plays a pivotal role in the overall functionality of the aircraft, as malfunctions
can disrupt the operation of subsequent valves or equipment, thereby reducing the
overall efficiency of the bleed system. In this case, the dataset is formed using data
from sensors that measure upstream and downstream pressure, in addition to the
commands sent to the downstream valve and the pressure after the downstream
valve. In total, five parameters are utilized for this dataset, providing comprehensive

insights into the operational status of the flow regulation valve.

Both these datasets provide valuable insights into the operation of key aircraft
components. Moreover we can note that these two datasets present different kind of
data, one is focused on temperature sensors and the other is focused on pressure
sensors. Temperature changes generally occur more gradually because of the thermal
inertia or heat capacity of materials, which is their ability to absorb and store heat.
When a component or system is heated or cooled, it often takes time for that energy
to be fully absorbed or released, leading to a more gradual change in temperature.

On the other hand, pressure changes can happen rapidly due to the compressible
nature of gases. In systems like an aircraft’s bleed air system, changes in pressure can
occur almost instantaneously in response to alterations in flow rate or valve position.
This is because gases are highly responsive to changes in volume or temperature, and
their pressure can adjust almost immediately to balance with the new conditions.

In the context of the two datasets mentioned, these differences in behavior mean
that the temperature data from the HE dataset is likely to present smoother trends
over time, while the pressure data from the FV dataset might show more immediate

responses to changes in system conditions.
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Having access to these two distinct types of datasets, each with a different
primary focus and rate of fluctuation, provides a robust platform to assess the
performance of our predictive maintenance model.

Moreover, the diversity in these datasets represents a wide range of real-world
scenarios, enhancing the generalizability and versatility of our model. By performing
well across both these datasets, the model demonstrates its robustness and reliability,
regardless of the nature of the data it encounters. This is particularly valuable in
industrial applications where sensor data can vary greatly depending on the specific
components and systems being monitored.

By examining these use cases, we aim to shed light on the broader context of
equipment maintenance within the aerospace industry. To address the unique
challenges of each use case, we will select portions of the flights that are most
relevant to the problems we are trying to solve. This selection can be very simple,
as in the FV dataset, where it is sufficient to select the part of the flight where
the valve is active. Unfortunately, due to confidentiality constraints, these in-house
datasets cannot be shared publicly.

In order to ensure the repeatability of our findings and to allow for independent
validation, we also test our methodology on a public dataset known as NGAFID,
Yang and Desell, 2022 The HE dataset is composed of 149 equipment lifetimes,
referred to as periods, and includes data from 144 repaired or new equipment, only 5
faults, and a total of 168,000 flights, resulting in an impressive 12,000 hours of flight
time. The FV dataset boasts 663 periods, encompassing data from 493 repaired or
new equipment, 350 faults, and a grand total of 379,000 flights, which translates to
42,000 hours of flight time.

The publicly available NGAFID dataset, on the other hand, primarily consists
of flights that take place immediately before equipment failure (damaged flights) or
immediately after a repair (repaired or healthy flights). Interestingly, some flights in
the dataset are labeled as having been repaired during the flight, which suggests that
they are most likely test flights. In order to maintain the integrity of our analysis, we
have chosen to exclude these flights from the dataset, along with any flights shorter
than 1024 seconds. After applying these filters, the NGAFID dataset contains a
total of 15,298 flights, with 7,987 damaged and 7,311 healthy flights, amounting to
19,000 hours of flight time. The table summarizes the dimensions of the dataset
presented here.

By utilizing these diverse datasets, our research endeavors to enhance the under-
standing and application of predictive maintenance within the aerospace industry,

contributing to the development of more reliable, efficient, and safe aviation systems.
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‘Lifetimes Faults Flights Datapoints

HE 149 5 12000 43.2 M
FV 663 350 379 000 151.2 M
NGAFID - - 15298 68.4 M

Table 5.1: Datasets size

5.3 Method

Contrastive Drift Loss

As mentioned earlier, accurately determining the condition of equipment in predictive
maintenance data is only possible when the equipment is near the beginning (healthy)
or end (damaged) of its life. Condition assessment becomes increasingly difficult
when the data is far from these two points in time. Given that a majority of flights
fall into this intermediate category, it is of utmost importance to incorporate these
instances into the training dataset.

In the unsupervised contrastive learning framework, presented by Chen, Kornblith,
Norouzi, et al., [2020], it is assumed that two views of the same sample should be
situated in close proximity to each other in the feature space while remaining distant
from other samples. When processing a batch of data, the method allows for the
separation of two representations belonging to the same class, which is the primary
reason behind the development of the supervised method.

In light of these considerations, the natural next step is to combine the two ver-
sions of the contrastive loss (supervised and unsupervised) to create a semi-supervised
approach. When a label is available, the goal is to draw other representations of that
same label closer together. However, if a label is not available, the focus shifts to
bringing other views of the same sample closer to one another. This can be achieved
by referring to Eq. and modifying the definition of P(i) to accommodate both

supervised and unsupervised loss components:

{pe Ali) 1y, =y} if y; exist
(1) if z; unlabeled

We name that loss the semi supervised contrastive loss or Lgscontrastive- and it
effectively leverage the strengths of both approaches to create a more robust and

efficient learning framework.

An other significant challenge that may arise is ensuring the reliability of the labels
assigned to equipment. Identifying the root cause of a failure can be a complex task,

as failures often stem from multiple contributing factors. Even with an extensive
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examination of the deteriorating equipment, pinpointing the exact origin of the
failure may prove difficult. As a result, two equipment units nearing failure may

display dissimilar behaviors, despite being in a similar state of disrepair.

Given the inherent complexity of determining the root cause of equipment failures,
it has been decided to treat damaged samples differently. Rather than grouping them
together, damaged samples will be considered as unlabeled data. This approach
acknowledges the possibility that each damaged sample may be unique in its failure
characteristics. Conversely, healthy data samples are expected to exhibit similar
behavior and, therefore, should be grouped together within the representation space.
To accomplish this goal, the definition of P(7) in Eq. can be adapted as follows

{p € A(i) 1 yp = wi} if y; = healthy

P(i) =
©) J(4) else

Views in predictive maintenance

In the context of contrastive learning, generating multiple views of the same data
point is a crucial aspect. This technique was initially developed for image models. In
the case of image data, a variety of data augmentation techniques, such as rotation,
random cropping, resizing, flipping, random solarization, and noise addition, are
employed to generate different views. These techniques have been extensively
discussed in various papers on contrastive learning, including Chen, Kornblith,
Norouzi, et al., 2020, Chen, Kornblith, Swersky, et al., [2020, He et al., 2020, and
Grill et al., 2020.

For time series data, the available data augmentation options are somewhat more
limited. Nevertheless, some straightforward augmentations like random cropping and
noise addition can be applied. More complex techniques, such as time warping-based
augmentations, can also be utilized, as discussed in Ismail Fawaz et al., 2019 and Um
et al., [2017. It is important to note, however, that the computational complexity of
these advanced augmentation techniques may constrain their practical use, especially
for large-scale datasets or real-time applications.

In this paper, we use simple data augmentation techniques for time series data.
This includes the addition of random noise, slight modifications to the mean and
trend of the data, and the application of random cropping to generate alternative

views of the same data point.
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The generation of random views for contrastive learning can be approached
differently from traditional data augmentation methods. The main goal of using
multiple views of the same data point in contrastive learning is to train the model to
represent similar data (e.g., the same image) close to each other in the representation
space. In the context of our study, we aim for data representing the same health
level of a device to be situated close together in the representation space. As a
result, it is reasonable to extend the concept of randomly sampling within a time
series to randomly sampling from data points that are temporally close within a
device’s lifetime.

Health index

A

» Time

Figure 5.2: Graphical Comparison of RUL Modeling Approaches

Our proposed methodology effectively addresses the complexities inherent in the
estimation of Remaining Useful Life (RUL). Regardless of the RUL modeling strategy
chosen - be it a conventional linear approach, a piecewise linear approach, or a
strategy that incorporates exponential decay - neighboring flights are expected to
exhibit a similar health index. This is illustrated in Figure[5.2] This key assumption
holds even in the face of different degradation rates over individual lifecycles. The
power of our approach lies in its ability to detect and learn from these different
degradation patterns, leading to a more nuanced understanding and more accurate
prediction of device health over time.

By adopting this approach, we can not only leverage a more extensive range of data
augmentation for use in contrastive loss, but also account for the temporal ordering

within a series of time series. This consideration is also relevant for the analysis of



5.3. METHOD 109

long time series data in predictive maintenance settings, where continuous sensor
recordings are common. By taking random crops within a time window surrounding
a given time series, we can effectively incorporate the temporal relationships between
different data points, thereby enhancing the model’s ability to learn meaningful

representations of the underlying data.

Contrastive VAE training

The contrastive VAE for predictive maintenance is a two-phase approach that com-
bines the advantages of unsupervised learning with specialized techniques designed
for predictive maintenance tasks. The first phase involves training a contrastive VAE
using the predictive maintenance-tailored loss function, referred to as the contrastive
drift loss, which is detailed in [5.3] This loss function leverages different views of the

predictive maintenance data.

As a result of this specialized training, the salient features within the CVAE
are those that can effectively discriminate between healthy and faulty time series.
This structured and informative latent space is then utilized in the second phase of
the method, focusing on anomaly detection. The aim of this phase is to maintain
simplicity; hence, an anomaly detection model is trained on the salient space
representation of the healthy flights. v The differences between the representations
of the two classes in each part of the latent space are illustrated in Figure for the
FV dataset. To effectively visualize the differences between these two components
of the latent space, we use the Uniform Manifold Approximation and Projection
(UMAP, from Mclnnes et al., 2018|) technique to reduce the dimensionality to two
dimensions. As shown in the figure, the general latent space does not show noticeable
differences between the two classes. However, the salient space allows for a more
noticeable separation between the classes. This finding highlights the effectiveness
of the salient space representation in training the detection model for identifying

anomalies in flight data.

Various methods have been explored for this purpose, including isolation forest
(IF) F. T. Liu et al., 2008, one-class SVM (OCSVM) K.-L. Li et al., [2003, and local
outlier factor (LOF) Breunig et al., 2000, Each of these approaches can provide
an anomaly score, which is subsequently used to assess the health of a device. By
integrating the strengths of the CVAE’s discriminatory features and the simplicity
of the anomaly detection models, this two-phase method offers a robust and efficient
solution for identifying potential issues in the maintenance of equipment, ultimately

enhancing the reliability and longevity of these systems.
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Figure 5.3: Comparison of General and Salient Latent Spaces for the F'V Dataset

Explanation

In this study, we employ VAE based method to address the challenges associated
with the analysis of time series data, particularly in the context of detecting and
correcting abnormalities. One key advantage of utilizing this VAE-based technique
is that we can exploit the decoder component of the VAE architecture to generate
novel samples. This is achieved by partitioning the latent space into two distinct
segments: one which encodes the general shape information of the time series, and

another that captures the specific characteristics associated with abnormalities.

To effectively "remove" abnormalities from the signal, we manipulate the salient
portion of the latent space corresponding to these anomalous features. We adopt the
approach outlined in Todo et al., which entails identifying a healthy prototype
within the latent space z,, characterized as a representative element that embodies
typical, non-anomalous behavior. To compute the healthy representative z;, we use
the mean of the healthy data in z,. By substituting z; with z; in a damaged time
series, we can then simulate the appearance of the time series in the absence of any

damage.

This process facilitates a comparative analysis between the original degraded data
and the counterfactual corrected version, which in turn enables users to gain a deeper
understanding of the degradation process. Furthermore, this comparison makes
it easier for users to discern the differences between healthy and damaged data.
As such, this VAE-based method provides a powerful tool for detecting, isolating,
and visualizing abnormalities in time series data. Additionally, the proposed VAE-
based approach allows for the extraction of valuable insights from time series data.

By enabling the identification of abnormal patterns or behaviours and subsequent
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correction, practitioners can make more informed decisions and take appropriate

actions to prevent or mitigate potential problems.

In summary, the VAE-based method proposed in this paper offers a versatile and
effective means of addressing the complexities associated with the analysis of time
series data. By leveraging the decoder component of the VAE architecture to generate
new samples and partitioning the latent space to isolate and correct abnormalities,
this technique presents a powerful tool for enhancing our understanding of the

underlying processes and improving decision-making in a variety of applications.

5.4 Results

Experimental setup

We have maintained minimal preprocessing across all the datasets utilized in our
study. For HE and FV datasets, we restricted the time series data to specific
moments during the flights, as determined by domain experts. This selection process
is crucial for constructing accurate and reliable datasets. However, we were unable
to apply a similar selection process to the NGAFID dataset due to the absence of
expert knowledge on these particular aircraft. Consequently, we want to emphasize
the importance of selecting specific moments in flight data for generating reliable
datasets. To ensure consistency, we applied standard scaling to the time series data

for each dataset.

In each dataset, our models are designed to operate on short segments of 128
seconds. Throughout the training process, we use random cropping to provide input
data to our models. For the final prediction, we compute the average score across all
128-second segments of the flight, yielding the overall classification. This approach
proves effective in representing flights, as evidenced by the significant performance
improvement observed on the NGAFID dataset compared to the results reported in
the referenced study. This highlights the potential of our method to address complex

predictive maintenance tasks, particularly for challenging datasets.

The Variational Autoencoder (VAE) models employed for both encoding and
decoding purposes consist of three convolutional layers, with attention layers adopting
the squeeze and excitation layers from Hu et al., 2018 These layers have been
previously utilized in time series analysis, as demonstrated by Karim et al., [2019.

Regarding the training parameters, certain aspects will vary depending on the

dataset being used. For instance, the dimensions of the latent space and the salient
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features can be adjusted according to the specific dataset requirements. Furthermore,
scaling parameters have been introduced to account for the composition of the loss
function, which includes reconstruction loss, Kullback-Leibler (KL) divergence, and
contrastive loss. The scaling parameters, named kl_scaler and contrastive_ scaler,
are designed to facilitate the optimization process by maintaining a similar scale

across the three loss components.

The optimization process in our study employs the Adam optimizer, a widely-used
optimization algorithm. We use the default parameters for the Adam optimizer,
ensuring that our optimization approach aligns with established practices. To
further refine the optimization process, we incorporate a learning rate schedule that
combines Cosine Annealing with Warm Restarts and Linear Warmup. The learning
rate schedule begins with a linear warmup phase, during which the learning rate
gradually increases from an initial value to a specified maximum learning rate. In
our case, the maximum learning rate is set at 0.0005. The linear warm-up phase
helps stabilize the training process and prevents the occurrence of undesirable large

weight updates in the early stages of training.

Following the linear warmup phase, the learning rate is adjusted using the Cosine
Annealing technique. Cosine Annealing allows the learning rate to decrease smoothly,
enabling the model to explore the optimization landscape effectively and avoid local
minima. Warm Restarts after each Cosine Annealing cycle reset the learning rate
to the maximum value, which subsequently follows the cosine annealing schedule
once again. This technique promotes exploration of the optimization landscape,
reducing the risk of the model becoming trapped in local minima and facilitating the
discovery of better optima. In our experimental setup, the first Cosine Annealing
cycle lasts for 100 epochs. With each subsequent cycle, we double the number of
epochs.

To assess the performance of our models, we implemented cross-validation
techniques, and the results presented are the average of the outcomes obtained from
each test set. This approach ensures a robust evaluation of our models, providing
a comprehensive understanding of their performance across different datasets and

lending credibility to the conclusions drawn from this study.

Evaluation metrics

In this paper, we address two key objectives that are critical to the advancement of
predictive maintenance in the aviation industry. The first objective is to create a

robust predictive maintenance model that is able to discriminate between flights
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Hyperparameter Value
n_filters convl 256
n_filters conv2 512
n_filters conv3 512
size filters 5
reduction_ratio (squeeze and excite) 16

kl scaler 0.0005
contrastive scaler 0.2

Table 5.2: Hyperparameters

in optimal operating condition and those on the verge of failure. To effectively
assess this aspect, we adopt balanced accuracy as our performance metric, which
accounts for the class imbalance commonly encountered in such problems. Balanced
accuracy is defined as the average of the true positive rate (sensitivity) and the
true negative rate (specificity), ensuring equal importance is given to both classes.

Mathematically, balanced accuracy can be calculated as follows:

1 /TP TN
Bal dA = | =+ —
alanced Accuracy 5 ( P + N >

where TP denotes the number of true positives, P represents the total number of
positives, TN is the number of true negatives, and N signifies the total number
of negatives. This metric provides a more insightful evaluation of the model’s
performance, particularly in scenarios where the class distribution is imbalanced, as

it prevents the dominance of the majority class in the evaluation.

Recognizing the potential problem of false positives, we include an additional
simple metric to address this concern. We set an acceptable false positive rate of 2%
by determining the corresponding threshold on the training set. We then use this
threshold to calculate the false positive rate (FP) on the test set, which includes the
number of healthy flights misclassified as damaged, as well as the true positive rate

(TP) , which is the proportion of correctly identified flights with impending failures.

The second objective involves generating counterfactual explanations for damaged
time series data, thereby providing actionable insights for system improvement. To
assess the effectiveness of our model in generating counterfactual explanations, we
utilize a validity metric that quantifies the degree to which the generated counter-
factuals result in a shift in the predicted class of the signal relative to the target.
Mathematically, this is represented as the proportion of counterfactuals causing

an independent classifier, denoted by f, to alter its predictions from y to Yrarget-
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However, the computation of this metric necessitates the availability of a reliable
independent classifier, which may not always be accessible within the context of

predictive use cases.

Classification

In order to benchmark our proposed method, we selected two state-of-the-art time
series models for comparison: InceptionTime Ismail Fawaz et al., [2020| and MLSTM-
FCN Karim et al., 2019. InceptionTime employs various filter sizes (10, 20, and
40) to capture features at different time scales, making it a powerful tool for time
series classification. On the other hand, MLSTM-FCN combines the strengths
of convolutional neural networks (CNN) with squeeze-and-excitation layers, as
well as the long short-term memory (LSTM) architecture, to effectively handle
multivariate time series data. These two methods have demonstrated state-of-the-art
performance in numerous time series classification tasks, and as such, they serve as

strong benchmarks for our proposed model.

We also use a modified version of MLSTM-FCN with selective kernels called
MLSTM-FCN(SK), this model is described in detail in the appendix [5.6]

Additionally, we explored the use of a classical Variational Autoencoder (VAE)
to extract meaningful features from the time series data, as this approach has been
commonly employed to address similar problems. By evaluating our model against
these established techniques, we aim to demonstrate the efficacy and competitiveness
of our proposed method in the context of predictive maintenance.

The performance metrics for all methods are summarized in Table [5.3] Upon
examining the simpler use case (HE dataset), all techniques achieve satisfactory
performance. However, InceptionTime and MLSTM-FCN exhibit slightly lower
performance, likely due to the limited number of damaged flight examples within
this specific dataset. As the analysis advances to the more challenging F'V dataset,
the CVAE method notably surpasses the MLSTM-FCN and InceptionTime models
in terms of performance. This significant improvement highlights the potential of the
CVAE approach to effectively tackle complex predictive maintenance problems in
various application areas. By leveraging its strengths, practitioners can gain valuable

insights and develop more efficient maintenance strategies for diverse systems.

Figure[5.4| presents the anticipated degradation of the health index for two separate
equipment lifetimes within the FV dataset. The visualized data have been smoothed
using a 7-day rolling mean average to reduce random fluctuations and highlight

overall trends. The colored bands encapsulating the mean lines correspond to
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the standard deviations, providing a measure of variability around the average.
It’s important to note that the output from the anomaly detection models is not
restricted to the range between 0 and 1. To facilitate more meaningful comparisons,
these anomaly scores are appropriately scaled.

In this study, the CVAE approach consistently outperforms the other three
techniques in terms of early detection of degradation across various scenarios. As
illustrated in Figure the CVAE method stands out as the sole approach capable
of identifying the degradation effectively, whereas the other techniques fall short in
providing timely detection.

Meanwhile, in Figure [5.4D] the alternative methods exhibit a delay in detecting
degradation compared to the CVAE method. This observation underscores the
superior performance of the CVAE method in terms of degradation detection.

Overall, the CVAE method outperforms its counterparts in these specific lifetimes,
which aligns with the comprehensive results presented in Table This observation
underscores the effectiveness of the CVAE approach for degradation detection in
the context of the FV dataset.
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Figure 5.4: Examples of Health Index evolution across two equipment lifetimes

For the NGAFID dataset, deep learning-based classifiers outperform the CVAE
method. This can be attributed to the lack of flight history in the dataset, which
prevents the effective exploitation of the semi supervised contrastive loss applied
to the neighborhood, limiting it to the crops of the same flight. Additionally, the
NGAFID dataset is well-suited for time series classification models, as it comprises
flights with clearly defined labels.

It is noteworthy that the performance of our methods surpasses that reported in
the study by Yang and Desell, 2022 (achieving a maximum accuracy of 76.1%). The
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Dataset Model FP TP Balanced
Accuracy
InceptionTime 0.0247 +0.003 0.9821 +0.034 0.8727 +0.158
MLSTM _FCN 0.0238 +0.004 0.9992 +0.001 0.9141 4+0.095
MLSTM _FCN(SK) 0.0208 1.0 0.9144
IF 0.0134 +0.003 0.7520 +0.121 0.9728 +0.013
HE VAE (3) LOF 0.0320 £+0.007 0.9959 £0.006 0.9944 40.001
OCSVM 0.0147 +0.009 0.9837 +0.023 0.9897 +0.007
IF 0.0163 +0.129 1.0 £0.001 0.9930 4+0.005
CVAE (16,8) LOF 0.0382 £+0.028 0.9959 +0.006 0.9980 £0.003
OCSVM 0.0159 +0.014 1.0 £0.001 0.9152 +0.119
InceptionTime 0.0218 +0.003 0.1031 40.020 0.5870+0.023
MLSTM _FCN 0.0212+0.004 0.1036 +0.037 0.5847 +0.018
MLSTM _FCN(SK) 0.0215 0.0983 0.5798
IF 0.0187 4+0.03 0.0530 £+0.02 0.5492 4+0.03
FV VAE (8) LOF 0.0329 £0.02 0.1170 £0.015 0.5768 +0.04
OCSVM 0.0196 +0.03 0.0674 +0.02 0.5510 +0.03
IF 0.0261 +0.02 0.1961 £0.05 0.724940.04
CVAE (64,8) LOF 0.2077 +0.06 0.6707 +0.03 0.7013 £+0.03
OCSVM 0.0670 +0.05 0.4238 +0.06 0.739240.04
InceptionTime 0.0263 £0.004 0.4615 £0.109 0.7794 £0.031
MLSTM _FCN 0.0265 +0.005 0.4549+0.139 0.7713 +0.028
NGAFH}\/[LSTM_FCN(SK) 0.0306 0.6239 0.7856
VAE (64) IF 0.0202 4+0.003 0.0207+0.006 0.5004 40.006
CVAE IF 0.1183 £0.021 0.5459 4+0.062 0.7454 +0.015
(256,128)

Table 5.3: Comparative Performance Metrics

performance improvement can be attributed to two factors: the averaging of scores
across different crops and the utilization of smaller windows for our classifiers. This
demonstrates the effectiveness of our approach in handling predictive maintenance
tasks, particularly for challenging datasets such as FV and NGAFID.

Explanation

In Figure we present a counterfactual explanation for a multivariate time series
from the dataset FV, to identify factors contributing to degradation. Counterfactuals
serve as valuable tools for identifying the differences between healthy and degraded
time series. By examining these disparities, we can effectively investigate the

parameters that influence the degradation process. This analysis allows us to
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identify critical factors that contribute to degradation, providing insights for domain
experts and decision makers to develop targeted strategies to mitigate and prevent

degradation in various systems.

A closer look reveals that there are minimal differences between the counterfactual
explanation and the original time series for the final pressure and the upstream
pressures. This suggests that these parameters have a relatively low impact on the
degradation process. In contrast, more substantial differences are observed for the
downstream valve command and the downstream pressure, indicating their higher
influence on degradation.

Regarding the downstream pressure, the counterfactual emphasizes the presence
of spikes indicating degradation. In addition, a relatively high value for the down-
stream pressure seems to indicate a near failure, which is not surprising since the
role of the valve is to regulate this pressure.

For the downstream valve command, the counterfactual explanation shows
that a healthy time series should have lower values than those observed in the
original time series. It is crucial to note that the overall shape of the time series is
preserved in the counterfactual explanation, further reinforcing the importance of
the downstream valve command in the degradation process. We can explain this
because the downstream valve is trying to compensate for the high pressure from
the faulty valve, so it is working harder than it normally would. These results are
consistent with those reported by domain experts for this specific use case, lending

credibility to our analysis.

In conclusion, our exploration of counterfactual explanations for the multivariate
time series from the F'V dataset has enabled us to identify key parameters that play a
significant role in the degradation process. Importantly, these findings are consistent
with observations made by domain experts for this specific use case, demonstrating
the validity of our counterfactual explanations. This information is valuable to
domain experts and decision makers, allowing them to focus on the most critical
factors contributing to degradation and develop effective strategies to address them.
By aligning our analysis with the expertise of domain experts, we can ensure that
our approach is both accurate and relevant to the challenges faced in real-world

applications.

Robustness

A major challenge we face when using VAE methods to detect degradation in time

series data is the heavy dependence on the quality of the label annotations. The
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Figure 5.5: Counterfactual explanation of multivariate time series for dataset FV
highlighting parameters impacting degradation process

accuracy of these labels is of paramount importance, as the VAE may inadvertently
learn the characteristics of mildly degraded or degraded time series during the
training phase when they are fed into the model. As a result, the VAE may have
difficulty distinguishing between truly degraded time series and those that are healthy
during the testing phase.

In real-world predictive maintenance scenarios, the data labeling process is often
complex and challenging. Several issues can arise during the generation of the
data set, such as anomalies in other parts of the system that cause the selected
equipment to fail, or other components within the system that compensate for the
degradation of the target equipment. These factors can further complicate the
task of accurately labeling data. In addition, it has been observed that VAE-based
techniques underperform when applied to datasets with a high degree of diversity in
both healthy and degraded time series. For example, in complex systems, a single
piece of equipment may not consistently affect the accessible sensors, which can
lead to misleading signals. In addition, other components within the system may
introduce noise into the time series, further exacerbating the challenge of accurately

detecting degradation.

In contrast to VAE, we found the CVAE method to be more robust to these

challenges, prompting the present experiment. Our goal was to evaluate the per-
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formance of CVAE and VAE under the worst-case scenario of swapping time series
instances between the healthy and damaged classes in the training set and analyze
the impact on accuracy. Figure shows the results for the FV dataset (Figure
. In this case, the performance of the VAE is already relatively low, indicating
that the deterioration of the training dataset did not significantly affect its accuracy.
Conversely, for the HE dataset (Figure , where the two methods show compa-
rable results, the degradation of the dataset significantly affects the performance of
the VAE, while only minimally affecting the CVAE.

This study demonstrates the superior suitability of the CVAE method for real-
world predictive maintenance problems. These problems often involve a diverse
dataset and the possibility of imperfectly classified time series. CVAE’s robustness to
noise and diverse data sets positions it as a reliable choice in scenarios where perfect
labeling is unlikely. In contrast to traditional VAE approaches, CVAE maintains
its accuracy in the presence of label noise and multiple data sources. This distinct
advantage enables the CVAE methodology to effectively address the complexities

inherent in real-world predictive maintenance scenarios.
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Figure 5.6: Evolution of the accuracy with bad labels

5.5 Conclusion

In this study, we addressed the challenge of understanding degradation processes in
multivariate time series data by employing counterfactual explanations, focusing on
three datasets: FV, HE, and the publicly available NGAFID dataset. Our primary
objective was to identify key parameters that significantly impact the degradation

process, providing valuable insights for domain experts and decision-makers, while
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also assessing degradation estimation performance through the classification of
healthy and degraded flights.

To train our counterfactual variational autoencoder (CVAE) method, we developed
a novel contrastive loss function, which encourages the model to produce more
meaningful and discriminative representations in the latent space. This loss function
effectively captures the equipment lifecycle stages and improves the interpretability
of the counterfactual explanations.

We compared our CVAE method against two state-of-the-art time series classifi-
cation methods, Inception Time and MLSTM-FCN, as well as a standard predictive
maintenance method using a variational autoencoder (VAE). Our method outper-
formed the deep learning models on the FV and HE datasets and demonstrated
competitive performance on the NGAFID dataset.

The insights gained from this research contribute to the predictive maintenance
field and degradation estimation. By pinpointing critical factors contributing to
degradation and accurately classifying healthy and degraded flights, we can enable
domain experts and decision-makers to focus their efforts on addressing these factors

and devising effective strategies for mitigation.

In conclusion, our research demonstrates the potential of counterfactual explana-
tions, CVAE, and the novel contrastive loss function in uncovering crucial parameters
that influence the degradation process in multivariate time series data and accurately
estimating degradation. We believe that continued exploration of this approach and
its applications in predictive maintenance will yield even more impactful findings and
contribute to the development of targeted, effective strategies to address complex

challenges across various domains.
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Appendix

5.6 Selective kernels

Selective kernels, as described in the work of X. Li et al., 2019 play an important
role in image classification, primarily due to their adaptability and ability to exploit
information at multiple scales as illustrated in the Figure[5.7] This method is widely
used in image classification, providing a more dynamic and versatile model that

competently captures complex patterns in the data.

A noteworthy application of this technique is found in the SimCLRv2 algorithm,
specifically within the ResNet architecture, as explored by Chen, Kornblith, Swersky,
et al., 2020l The inclusion of selective kernels in this context led to an enhancement
in the model’s performance, demonstrating the technique’s effectiveness in deep
learning architectures.

Moreover, the utility of selective kernels extends to time series data, particularly
in human activity recognition (HAR) tasks. According to Gao et al., 2021}, the
incorporation of selective kernels into a relatively straightforward convolutional
neural network (ConvNet) architecture resulted in performance improvements. This
attests to the technique’s potential not only in intricate models but also in simpler,
more streamlined architectures. Thus, the broad applicability and adaptability of

selective kernels.

@ element-wise summation ® element-wise product
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Figure 5.7: The Diagram of a Selective Kernel Convolution module from the paper
X. Li et al., 2019

In terms of its mechanism, selective kernels share common ground with the
'squeeze-and-excitation’ technique. Both methods adaptively modulate the promi-
nence of various convolutional filters, guided by a compact representation of the
model’s current state. These techniques fundamentally aim to augment the model’s
discriminative prowess, honing in on the most informative features at a given

juncture.
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However, the key distinction between selective kernels and the ’squeeze-and-
excitation” approach arises in the diversity of filters deployed. While the squeeze-and-
excite technique primarily adjusts the weights of filters of the same size, selective
kernels increase the adaptability of the model. They dynamically select from
convolutional filters of different sizes, thus accommodating a spectrum of receptive
field sizes within the model. This feature facilitates the capture and integration of
multiscale features from the image or time series, enhancing the model’s ability to
handle complex classification tasks. The ability of selective kernels to adapt their
receptive field in response to input features sets them apart and provides a more

flexible and robust approach to image classification.

One can argue that InceptionTime is competitive on a lot of benchmark dataset
for time series classification because of its multi scale feature extraction capabilities,
indeed it uses different sizes of convolutional filter to capture those patterns of
different scale. The selective kernels allows the model to have convolutional filters of
different size thus being able to capture differnt scaled features. More importantly
, as per the squeeze and excite networks, it can choose which filters to use. This
make the selective kernel a key asset to learn complex patterns from time series.
Also our experiences shows that it can in certain times surpass previous method for
time series classification.

The efficacy of InceptionTime across numerous benchmark datasets for time
series classification can be largely attributed to its multiscale feature extraction
capabilities. It employs convolutional filters of varying sizes to capture patterns at
different scales, thus providing a comprehensive view of the data.

To have better performances they used in the paper one 3x3 convolution and
instead of using the 5x5 convolution they used a 3x3 convolution with a dilation rate
of 2. Dilated convolution, a technique that allows CNNs to augment their receptive
field without an increase in computational complexity or parameter count. The
dilation rate, indicating the spacing between kernel values, is a crucial factor in
this process. For instance, a dilated convolution with a rate of two and a kernel
size of 3 will achieve the same receptive field as a 5 convolution, but without the
added parameters and complexity. This efficient expansion of the receptive field is

particularly advantageous in tasks requiring larger contextual information.

Crucially, similar to squeeze-and-excitation networks, selective kernels have the
unique ability to modulate the use of filters. This ability provides the model with a
high degree of learning adaptability, allowing it to focus on the most informative
filters based on the given context. As a result, selective kernels emerge as a critical

component in decoding complex patterns from time series data.
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We have integrated selective kernels into the convolutional layers of the MLSTM-
FCN network, giving rise to a variant named MLSTM-FCN(SK). Specifically, we
employed kernel sizes of 5, 7, and 17 with a dilation rate of 2. This configuration
results in receptive fields of 9, 13, and 33, respectively. We chose these particular
parameters to align with the well-known receptive fields of InceptionTime, providing

a familiar and proven framework as the basis for our innovative approach.

Our empirical evaluations confirm the theoretical advantages posited earlier.
In several scenarios, we observed that the inclusion of selective kernels led to
models that outperformed traditional methods for time series classification. These
results highlight the potency of selective kernels in improving overall classification
performance, thereby demonstrating their value as a powerful tool in the time series
analysis toolkit. These results suggest that selective kernels could bring substantial
improvements to time series classification tasks, further reinforcing their potential

for wider adoption in the field.
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Chapter 6
Conclusion

This Ph.D. project is an exploration and advancement of applied artificial intel-
ligence, specifically in the field of predictive maintenance. The project departs
from traditional, often complex Remaining Useful Life (RUL) estimation techniques
and instead focuses on developing a highly scalable and novel explanatory tool for
multivariate time series, a task that has been relatively unexplored and difficult to
implement effectively. At the beginning of the thesis, we highlighted the lack of
standard methodologies in the field of predictive maintenance and the limitations
of currently available public datasets. Our research also revealed the limitations
associated with traditional RUL prediction approaches and emphasized the impor-
tance of effective feature extraction. By shifting our focus in this more focused and
promising direction, we were able to lay the foundation for a new wave of research

in predictive maintenance.

In the first focus of our research - dimension reduction for time series - we
established the superiority and utility of Variational Autoencoders (VAEs) over
other popular dimension reduction methods, including the wavelet transform and
Functional Principal Component Analysis. Our results highlighted the robustness
and high compression capabilities of VAEs, especially those with convolutional neural
network architectures, when dealing with different ECG data sets, even under noisy
conditions. In addition, we explored the impact of different VAE architectures on
their dimension reduction capabilities, providing invaluable guidance for selecting
appropriate architectures for specific applications. In our second area of investigation-
counterfactual explanation for multivariate time series-we developed an innovative
method that strategically bifurcates the VAE latent space using a contrastive
constraint. This approach resulted in the generation of partially ordered latent
spaces and consequently produced efficient and sparsely valid counterfactual examples.

This contributed to a deeper understanding of anomalies within multivariate time
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series. Our validation on real-world ECG datasets underscored the potential of this
new technique to improve the interpretability of multivariate time series predictions.
This part of our research goes beyond predictive maintenance and introduces a
new method for generating counterfactuals in an area where previous methods have
struggled to operate efficiently on large, highly diverse datasets. This novel approach
could prove critical for multivariate time series datasets, particularly in cases where
expert knowledge is scarce. It helps users to better understand complex interactions
within the dataset.

In our third and final research area - Explainable Predictive Maintenance - we
adapted the CVAE approach to the complexities of predictive maintenance. By
emphasizing the concept of "neighboring" lifecycle stages within an asset’s lifetime,
our strategy proved effective even in the presence of censored data, providing greater
flexibility in data management. Our comparison with conventional time series
classification models and a standard CVAE augmented with an anomaly detection
algorithm demonstrated the superior performance of our adapted CVAE method
in several predictive maintenance tasks. Indeed, the dual benefits of this new
method are noteworthy. First, it introduces a robust technique for predicting future
failures, especially under challenging conditions with censored data. Second, the
method provides explainable results that not only gain wider acceptance, but also
foster a deeper understanding of how equipment evolves over time. This knowledge
can potentially accelerate improvement cycles, which is of great benefit to the
organization. As a result, our research not only advances the field of predictive
maintenance, but also provides practical, actionable strategies for organizations

striving for efficiency and excellence in equipment maintenance.

While the use of CVAE for early failure prediction has yielded commendable
results, it has also revealed several avenues for further research. The method, as
efficient as it is, has a significant computational burden as the model’s "energy" or
resources are used for the explanatory component. In essence, the method requires
the training of two models - the encoder and the decoder - which may not always
be necessary or feasible. For example, in situations where explainability is not a
mandatory requirement, or when a more complex model that cannot be configured
as a VAE needs to be trained, alternative strategies may be preferable. In such
scenarios, it would be interesting to explore the use of contrastive loss as a pre-
training loss for more complex models. This approach could still take advantage of
CVAE training: the use of censored data and the elimination of the need to compute
the RUL at this stage. However, it would avoid the need to regenerate the time

series, thereby saving computational resources.
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It would be interesting to determine the applicability of the contrastive loss
function as a pre-training step for more sophisticated models. Exploring such an
avenue could provide valuable insights into the potential reduction in computational
complexity and the impact on predictive performance. The feasibility of retaining the
benefits of the current approach, such as the use of censored data and the avoidance
of RUL computation at this stage, in this new methodology is also an exciting
area of study. Solving this puzzle could reveal potential trade-offs and highlight an
optimal balance between retaining these benefits and moving to a more complex
model. We also envision the potential for significant advances in computational
efficiency through the proposed technique. The factors that would influence this
efficiency gain, and the methods to effectively manage them, could form the basis of

interesting explorations in machine learning and predictive maintenance.

The use of contrastive pre-training is not yet commonplace in predictive main-
tenance, primarily because it requires extensive training data to achieve optimal
performance. However, as industries increasingly adopt data collection for predictive
maintenance, the use of this method may become more widespread. This transition
may be accelerated by the emergence of large, publicly available data sets in the
future. It’s a clear trend that points to a potential norm in the coming years as
industries recognize the undeniable benefits of using comprehensive data to improve
their predictive maintenance capabilities. Beyond these specific areas of interest,
optimizing the technique across different data sets and domains holds great promise.
Given that the effectiveness of a model is closely tied to its adaptability to a wide
range of scenarios, this line of inquiry could shed light on how our approach can
be tailored and fine-tuned for datasets with different characteristics and levels of

complexity.

This research journey unfolded in the highly competitive landscape of predictive
maintenance, maintaining its exploratory ethos throughout. In a field teeming with
diverse techniques to address predictive maintenance issues, our study has been
characterized by a persistent pursuit of novel and results-oriented approaches. Such
an exploratory path may not have been the path of least resistance, but it allowed
us to revisit a well-established problem with a fresh, innovative perspective. In
summary, this research, while deeply rooted in the evolving context of predictive
maintenance, ventured into uncharted territory in an effort to uncover innovative
solutions. By choosing to deviate from the well-trodden path, we were able to
approach a familiar problem with a fresh lens. This approach not only led to the
development of new, more efficient and explainable methods, but also opened up

promising avenues for further exploration and innovation. The journey may not
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have been the easiest, but it has certainly been enlightening and rewarding.
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