
HAL Id: tel-04637117
https://theses.hal.science/tel-04637117v1

Submitted on 5 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid optimization approaches for vehicle routing
problems with profits

Trong-Hieu Tran

To cite this version:
Trong-Hieu Tran. Hybrid optimization approaches for vehicle routing problems with profits. Op-
erations Research [math.OC]. Université Paul Sabatier - Toulouse III, 2023. English. �NNT :
2023TOU30367�. �tel-04637117�

https://theses.hal.science/tel-04637117v1
https://hal.archives-ouvertes.fr

Doctorat de
l’Université de Toulouse

préparé à l'Université Toulouse III - Paul Sabatier

Méthodes d'optimisation hybrides pour des problèmes de
routages avec profits

Thèse présentée et soutenue, le 13 décembre 2023 par

Trong Hieu TRAN
École doctorale
EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse

Spécialité
Informatique et Télécommunications

Unité de recherche
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Hélène FARGIER et Cédric PRALET

Composition du jury
M. Christian ARTIGUES, Président, LAAS-CNRS Toulouse
M. Gilles AUDEMARD, Rapporteur, Université d'Artois
M. Aziz MOUKRIM, Rapporteur, Université de Technologie de Compiègne
Mme Christine SOLNON, Examinatrice, INSA de Lyon
Mme Hélène FARGIER, Directrice de thèse, IRIT-CNRS, Université Toulouse III - Paul Sabatier
M. Cédric PRALET, Co-directeur de thèse, ONERA

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 13/12/2023 par :
Trong Hieu TRAN

Hybrid optimization approaches
for vehicle routing problems with profits

JURY
Gilles AUDEMARD Professeur d’Université Rapporteur
Christian ARTIGUES Directeur de Recherche Examinateur
Hélène FARGIER Directrice de Recherche Directrice de thèse
Aziz MOUKRIM Professeur d’Université Rapporteur
Cédric PRALET Directeur de Recherche Directeur de thèse
Christine SOLNON Professeur d’Université Examinateur

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (IRIT-CNRS, UMR 5505)

Directeur(s) de Thèse :
Hélène FARGIER et Cédric PRALET

Rapporteurs :
Gilles AUDEMARD et Aziz MOUKRIM

Résumé

L’optimisation combinatoire est une branche de l’optimisation mathématique
qui se concentre sur la recherche de solutions optimales parmi un ensemble
fini de combinaisons possibles, tout en respectant un ensemble de contraintes
et en maximisant ou minimisant une fonction objective. Pour résoudre ces
problèmes, les méthodes incomplètes sont souvent utilisées en pratique, car
ces dernières peuvent produire rapidement des solutions de haute qualité, ce
qui est un point critique dans de nombreuses applications.

Dans cette thèse, nous nous intéressons au développement d’approches
hybrides qui permettent d’améliorer la recherche incomplète en exploitant
les méthodes complètes. Pour traiter en cas pratique, nous considérons ici le
problème de tournées de véhicules avec profits, dont l’objectif est de sélec-
tionner un sous-ensemble de clients à visiter par des véhicules de manière à
maximiser la somme des profits associés aux clients visités.

Plus précisément, nous visons tout d’abord à améliorer les algorithmes
de recherche incomplets en exploitant les connaissances acquises dans le
passé. L’idée centrale est de : (i) apprendre des conflits (combinaisons de
décisions qui conduisent à une violation de certaines contraintes ou à une
sous-optimalité des solutions) et les utiliser pour éviter de réexaminer les
mêmes solutions et guider la recherche, et (ii) exploiter les bonnes carac-
téristiques de solutions élites afin de produire de nouvelles solutions ayant
une meilleure qualité. En outre, nous étudions le développement d’un solveur
générique pour des problèmes de routage complexes pouvant impliquer des
clients optionnels, des véhicules multiples, des fenêtres temporelles multiples,
des contraintes supplémentaires, et/ou des temps de transition dépendant
du temps. Le solveur générique proposé exploite des sous-problèmes pour
lesquels des méthodes de raisonnement dédiées sont disponibles.

L’efficacité des approches proposées est évaluée par diverses expérimen-
tations sur des instances classiques et sur des données réelles liées à un pro-
blème d’ordonnancement pour des satellites d’observation de la Terre, qui
inclut éventuellement des profits incertains.

Mots-clés : Recherche opérationnelle, optimisation combinatoire, mé-
thodes hybrides complètes/incomplètes, métaheuristiques, apprentissage de
clauses, programmation dynamique, routage avec profits, satellites d’obser-
vation.

Abstract

Combinatorial optimization is an essential branch of computer science and
mathematical optimization that deals with problems involving a discrete and
finite set of decision variables. In such problems, the main objective is to find
an assignment that satisfies a set of specific constraints and optimizes a given
objective function. One of the main challenges is that these problems can be
hard to solve in practice. In many cases, incomplete methods are preferred to
complete methods since the latter may have difficulties in solving large-scale
problems within a limited amount of time. On the other hand, incomplete
methods can quickly produce high-quality solutions, which is a critical point
in numerous applications.

In this thesis, we investigate hybrid approaches that enhance incomplete
search by exploiting complete search techniques. For this, we deal with a
concrete case study, which is the vehicle routing problem with profits. In
particular, we aim to boost incomplete search algorithms by extracting some
knowledge during the search process and reasoning with the knowledge ac-
quired in the past. The core idea is two-fold: (i) to learn conflicting solutions
(that violate some constraints or that are suboptimal) and exploit them to
avoid reconsidering the same solutions and guide search, and (ii) to exploit
good features of elite solutions in order to hopefully generate new solutions
having a higher quality. Furthermore, we investigate the development of
a generic framework by decomposing and exchanging information between
sub-modules to efficiently solve complex routing problems possibly involving
optional customers, multiple vehicles, multiple time windows, multiple side
constraints, and/or time-dependent transition times.

The effectiveness of the approaches proposed is shown by various experi-
ments on both standard benchmarks (e.g., the Orienteering Problem and its
variants) and real-life datasets from the aerospace domain (e.g., the Earth
Observation Satellite scheduling problem), and possibly involving uncertain
profits.

Keywords: Operations research, combinatorial optimization, hybrid com-
plete/incomplete approaches, metaheuristics, clause learning, dynamic pro-
gramming, routing with profits, orienteering problems, Earth Observation
Satellites.

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my super-
visors, Cédric Pralet and Hélène Fargier, for their invaluable guidance and
continuous encouragement throughout my doctoral journey. Their expertise
and mentorship have been instrumental in shaping this thesis. Their patience
and advice were remarkable, and working with them was an incredibly hon-
orable experience for me.

I am profoundly grateful to the reviewers of my manuscript, Prof. Gilles
Audemard and Prof. Aziz Moukrim, for their thorough evaluation and valu-
able suggestions, which have significantly enhanced the quality of this thesis.
I also extend my sincere appreciation to the members of my doctoral commit-
tee, Christian Artigues and Prof. Christine Solnon, for their time, insightful
feedback, and constructive criticism, all of which greatly contributed to re-
fining this manuscript.

I would like to acknowledge the institutes where I conducted my research
- IRIT, ONERA, and ANITI - for providing the necessary resources and
facilities essential for the successful completion of this study.

To my family - Ba, Má, and Huy - your unconditional love, encourage-
ment, and sacrifices have been my source of strength and motivation. Your
constant support is invaluable, and I would like to express my deepest grati-
tude for all you do for me. This thesis is a testament to your tireless support
and belief in me.

To my beloved Hà, who has stood by me through the highs and lows of
this journey, your love and support have been my guiding light throughout
this journey. I am also grateful for the companionship and joy brought by
you, Húc, and Hem, who provided comfort during challenging times. I am
thrilled to share this milestone with you and look forward to many more in
the future.

i

ii

Special thanks to my teammates at ONERA and ANITI - Louis, Samuel,
Romain B., D. Anh, Anouck, Guillaume, Florent, Romain G., Jérôme - for
their camaraderie, collaboration, and shared experiences, which have en-
riched my research and personal growth. Thanks should also go to my dear
friends, Dr. Yung and Le Minh, with whom I have shared a longstanding
friendship long before the inception of this thesis.

I would be remiss in not mentioning my esteemed teachers at INSA
Toulouse, Marie-Jo Huguet, and Mohamed Siala, whose belief in my abil-
ities and encouragement ignited the spark for pursuing this thesis. Your
guidance continues to resonate in my work.

Lastly, I wish to express my gratitude to all those who have supported
me in ways seen and unseen throughout this journey. Your contributions,
whether large or small, have not gone unnoticed and are deeply appreciated.

Toulouse, 12 March 2024
Trong-Hieu TRAN

iv

Contents

Acknowledgments i

I Background and context 1

1 Introduction 3

2 Background and notations 7
2.1 Combinatorial optimization problems 7

2.1.1 Problem definition . 7
2.1.2 Solving techniques . 9

2.2 Incomplete search algorithms 10
2.2.1 Constructive search . 10
2.2.2 Local search and perturbative search 11
2.2.3 Metaheuristics . 16

2.3 Hybrid complete/incomplete approaches 27
2.3.1 Collaborative combinations 28
2.3.2 Integrative combinations 31

2.4 Conclusion . 41

3 Orienteering Problem and its variations: A case study 43
3.1 Routing problems with profits 43
3.2 OP variants & solving approaches 47

3.2.1 Classical OP . 47
3.2.2 Team variant . 48
3.2.3 Time windows . 49
3.2.4 Time-dependent travel times 52

v

vi CONTENTS

3.2.5 Other variants . 53
3.3 Application to the aerospace domain 54
3.4 Conclusion . 57

II Contributions 59

4 Integrating clause learning to incomplete search 61
4.1 Incomplete search using a clause base 62
4.2 An application to the OPTW 64
4.3 Lazy clause generation procedure 66

4.3.1 Clauses related to local optima 67
4.3.2 Clauses generated based on temporal constraints 68

4.4 Data structures for the clause base (CB) 73
4.4.1 CB based on unit propagation 74
4.4.2 CB based on an incremental SAT solver 76
4.4.3 CB based on Ordered Binary Decision Diagrams 77

4.5 Experiments . 79
4.5.1 Benchmark and implementation settings 79
4.5.2 Parameter tuning for lazy clause generation 80
4.5.3 Performance analysis of the different CB data struc-

tures proposed . 81
4.6 Related works and discussion 85
4.7 Conclusion . 87

5 Route recombination procedure for deterministic and non-
deterministic scenarios 89
5.1 Generation of a pool of solutions 90
5.2 Route Recombination: an example 91
5.3 Dynamic programming formulation 93

5.3.1 Search states . 94
5.3.2 Extension rules . 95
5.3.3 Pseudocode of the route recombination procedure . . . 96
5.3.4 Pruning strategies . 97
5.3.5 Bounded-width recombination 98
5.3.6 Complexity results . 99

5.4 Usages of the RR procedure 101
5.4.1 Iterative Route Recombination (IRR) 101

CONTENTS vii

5.4.2 RR used for deterministic and non-deterministic prob-
lems . 102

5.5 Experiments . 103
5.5.1 Experimental settings 103
5.5.2 Deterministic scenarios: using IRR as a post-optimizer 104
5.5.3 Uncertain scenarios: using RR as an online solver . . . 110

5.6 Related works and discussion 115
5.7 Conclusion . 118

6 A generic framework for solving complex routing problems 119
6.1 Complex orienteering problem formulation 120
6.2 A generic solving framework 124
6.3 Definition of the low-level reasoners 126

6.3.1 Selection manager . 126
6.3.2 Routing manager . 131

6.4 A metaheuristic for the high-level GenOP 133
6.4.1 Solution representation 133
6.4.2 Multi-start Large Neighborhood Search 133
6.4.3 Destroy procedure . 135
6.4.4 Repair procedure . 136
6.4.5 Conflict analysis procedure 137
6.4.6 Search parameters . 139

6.5 Experiments . 140
6.5.1 TOPTW benchmark 142
6.5.2 MC-TOPTW benchmark 146
6.5.3 MC-TOP-MTW benchmark 150
6.5.4 TD-OP-MTW benchmark 153

6.6 Enhancements of the routing module 154
6.7 Related works and discussion 157
6.8 Conclusion . 158

7 Conclusion and perspectives 159

III Appendix 165

A Résumé étendu 167
A.1 Introduction . 167

viii CONTENTS

A.2 Recherche incomplète aidée par une base de clauses 169
A.2.1 Motivation et schéma général 169
A.2.2 Génération de clauses pour un OPTW 170
A.2.3 Gestion de la base de clauses 172
A.2.4 Résultats expérimentaux 173
A.2.5 Perspectives . 175

A.3 Recombinaison des routes par programmation dynamique . . . 175
A.3.1 Motivation . 175
A.3.2 Procédure de recombinaison (RR) 177
A.3.3 Variantes de la procédure de recombinaison 179
A.3.4 Résultats de complexité 180
A.3.5 Expérimentations . 180
A.3.6 Conclusion et perspectives 185

A.4 Résolution de problèmes de routage complexes par décompo-
sition . 186
A.4.1 Motivation . 186
A.4.2 Un cadre générique : solveur GenOP 186
A.4.3 Gestionnaire de sélection 187
A.4.4 Gestionnaire de séquencement 188
A.4.5 MSLNS : une métaheuristique pour GenOP 189
A.4.6 Expérimentations et analyses 190
A.4.7 Perspectives . 193

Bibliography 194

List of Figures

2.1 Local vs. global minimum . 12
2.2 Using complete techniques as a preprocessing step 28
2.3 Using complete techniques as post-optimization 30
2.4 Using complete techniques to guide constructive search 32
2.5 Using learning techniques to enhance constructive search . . . 34
2.6 Using complete techniques to explore large neighborhoods . . 36
2.7 Using complete techniques as search components in population-

based metaheuristics (e.g., crossover, mutation) 40

3.1 Number of publications per year with keywords: “Profitable
tour problem”, “Prize-collecting TSP”, “Orienteering Problem” 45

3.2 The number of publications in each research category with the
keyword “orienteering problem” 46

3.3 An agile satellite captures images over a target at different
start times on its orbit (source: Peng et al. (2019)) 55

3.4 An illustration of two consecutive acquisitions over Paris and
Toulouse at different observation start times; the transition
time on the left is shorter than the transition time on the right 56

3.5 An existing plan of activities (red line) needs to be revised
during a cloudy day . 56

4.1 Incomplete search combined with a clause base 63
4.2 OPTW example involving 8 customers, and representation of

a valid sequence of visits . 70
4.3 Incremental and decremental unit propagation 75
4.4 A conjunction of clauses and an equivalent OBDD 78
4.5 Impact of maxConfSize on the number of TW-conflicts 80

ix

x LIST OF FIGURES

4.6 Impact of maxConfSize on the clause generation time (within
a 1-minute time limit for LNS) 81

4.7 Evolution of the average gaps for CB-UP and CB-UP-Lopt
on Solomon instances . 85

4.8 Evolution of the average gaps for CB-UP and CB-UP-Lopt
on Cordeau instances . 85

5.1 For the example of Table 5.1, the above figures a-f provide the
routes associated with the solutions of the pool (blue lines)
and with the combined route σ∗ (red line); the star represents
the starting node; the red points represent the nodes visited
in σ∗ . 92

5.2 (a) Possible actions (jump in red, direction in blue) given the
last visited customer i; (b) a possible sequence generated with
4 jumps (in red) given a pool of 5 sequences of visits 96

5.3 Using RR in a deterministic context without reward uncertainty102
5.4 Using RR as an online solver in the case of reward uncertainty 102

6.1 A general architecture for solving complex orienteering problems125

A.1 Recherche incomplète aidée par une base de clauses 169
A.2 (a) Actions possibles (jump en red, direction en blue) compte

tenu du dernier client visité i ; (b) une séquence possible gé-
nérée avec 4 jumps (dans red) étant donné un ensemble de 5
séquences de visites. 176

A.3 Utilisation d’IRR pour post-optimiser les solutions fournies
par LNS dans un contexte déterministe 180

A.4 Un plan d’activités existant (ligne rouge) doit être révisé pen-
dant une journée nuageuse. 182

A.5 Résolution en ligne avec RR en cas d’incertitude des récompenses183
A.6 Une architecture générale pour résoudre des variantes com-

plexes du problème d’orienteering 187

List of Tables

4.1 Features of the OPTW benchmarks 79
4.2 Average gap (%) over 5 runs (maxCPUtime=60s, best average

gaps in red bold) . 82
4.3 Speed-up (%) when solving during 10 000 LNS iterations . . . 83
4.4 Size of CB for each instance group (CPU time: 10s) 84
4.5 Performance of the static and dynamic ordering strategies for

OBDDs on two instances (pr01: 48 variables, best static order
found = “increasing opening time”; pr06: 288 variables, best
static order found = “decreasing rewards”) 84

5.1 An improved solution (σ∗) that can be obtained by combin-
ing solutions σ1, . . . , σ5 in the elite pool (results obtained on
instance ti-singlesat-ttf2.0-500-16 used in the experiments) . . 92

5.2 Summary of notations of (TD)OPTW 93
5.3 A summary of benchmark datasets 103
5.4 Parameters used in all the experiments 104
5.5 Results obtained by using IRR as a post-optimization module

for the LNS solver over classical OPTW instances (Jmax = 2,
Wmax =∞) . 105

5.6 Results obtained by using IRR as a post-optimization mod-
ule for the LNS solver over the singlesat datasets (Jmax = 2,
Wmax =∞) . 106

5.7 Different CPUmax time limits of LNS over OPTW and single-
sat instances (IRR with Jmax = 2, Wmax =∞) 107

5.8 Impact of parameters Jmax and Wmax (CPUmax = 1s) 108
5.9 Number of RR iterations in the iterative recombination pro-

cess (CPUmax = 1s, Wmax =∞) 109

xi

xii LIST OF TABLES

5.10 Impact of weakDom and reverseJump on the computation time
of IRR (CPUmax = 1s) . 109

5.11 Impact of strongDom and reverseJump for several instances
(CPUmax = 1s, Jmax = 3, Wmax =∞) 110

5.12 Parameters used in uncertain scenarios 111
5.13 Comparison of results obtained by LNS and RR for a test

scenario involving a reward perturbation of 20% (CPUmax =
5s, Jmax = 2, Wmax =∞, nstrain = 10, pooltrain = 5) 112

5.14 Impact of reverseJump and weakDom (CPUmax = 5s, Jmax =
2, Wmax =∞, nstrain = 10, pooltrain = 5). 113

5.15 Impact of the number of solutions in the training pool (CPUmax =
5s, Jmax = 2, Wmax =∞) . 114

5.16 Adaptation of RR with different perturbation ratios (CPUmax =
5s, Jmax = 2, Wmax =∞, nstrain = 10, pooltrain = 5) 115

6.1 Parameters used for variants of GenOP-MSLNS 139
6.2 Results obtained on the TOPTW benchmark: quality gaps

(%) obtained by different algorithms (upper table); average
quality gaps (%) and average computational times (seconds)
per instance set (lower table) 144

6.3 Percentage (%) of best-known solutions obtained by different
algorithms on the TOPTW benchmark, extending the sum-
mary of Schmid & Ehmke (2017) 146

6.4 Results obtained on the MC-TOPTW benchmark: quality
gaps (%) obtained by different algorithms (upper table); av-
erage quality gaps (%) and average computational times (sec-
onds) per instance set (lower table) 147

6.5 Quality gaps (%) and computational times (seconds) of the
MSLNS variants on the MC-TOPTW benchmark (5-minute
timeout) . 148

6.6 Percentage of best-known solutions obtained by different al-
gorithms on the MC-TOPTW benchmark 149

6.7 New best-known solutions found by different MSLNS variants
on the MC-TOPTW benchmark (73 out of 148 cases) 149

6.8 Results obtained on the MC-TOP-MTW benchmark: quality
gaps (%) obtained by different algorithms (upper table); av-
erage quality gaps (%) and average computational times (sec-
onds) per instance set (lower table) 151

LIST OF TABLES xiii

6.9 Quality gaps (%) and computational times (seconds) of the
MSLNS variants on the MC-TOP-MTW benchmark (5-minute
timeout) . 152

6.10 Percentage of best-known solutions obtained by different al-
gorithms on the MC-TOP-MTW benchmark (the percentage
of new best-known solutions is highlighted in green) 152

6.11 New best-known solutions found by one of the MSLNS variants
on the MC-TOP-MTW benchmark (5 out of 148 cases) 152

6.12 Results obtained by MSLNS-basic on 20 TD-OP-MTW in-
stances (1-minute timeout); each instance involves 100 cus-
tomers . 154

6.13 Impact of the enhancements of the routing module on the MC-
TOP-MTW benchmark (gap in %) 156

A.1 Écarts moyens (%) obtenus en 1 minute en utilisant chaque
variante de CB (meilleurs écarts moyens en rouge gras) . . . 174

A.2 Taux d’accélération (%) suivant l’utilisation de chaque CB . . 174
A.3 Résultats obtenus avec différents temps limités CPUmax pour

LNS sur les instances OPTW et singlesat (IRR avec Jmax = 2,
Wmax =∞) . 181

A.4 Impact des paramètres Jmax et Wmax (CPUmax = 1s) 181
A.5 Résultats obtenus par LNS et RR pour un scénario de test im-

pliquant une perturbation de la récompense de 20% (CPUmax =
5s, Jmax = 2, Wmax =∞, nstrain = 10, pooltrain = 5). 184

A.6 Impact du nombre de solutions dans le pool d’entraînement
(CPUmax = 5s, Jmax = 2, Wmax =∞) 184

A.7 Adaptation de RR avec différents niveaux de perturbation
(CPUmax = 5s, Jmax = 2,Wmax =∞, nstrain = 10, pooltrain =
5) . 184

A.8 Ecarts obtenus (%) sur les instances TOPTW 191
A.9 Ecarts obtenus (%) sur les instances MC-TOPTW 191
A.10 Ecarts obtenus (%) sur les instances MC-TOP-MTW 191
A.11 Ecarts obtenus (%) par MSLNS-basic sur 20 instances TD-

OP-MTW en 1 minute ; chaque instance implique 100 clients . 191
A.12 Impact des améliorations du module de routage sur le bench-

mark MC-TOP-MTW (écart en %) 192

xiv LIST OF TABLES

List of Algorithms

2.1 BasicLocalSearch . 14
2.2 Simulated Annealing . 18
2.3 Tabu Search . 19
2.4 Iterated Local Search . 20
2.5 GRASP . 21
2.6 Variable Neighborhood Search 22
2.7 Guided Local Search . 23
2.8 Ant Colony Optimization 24
2.9 Evolutionary Algorithm 24
2.10 Path Relinking . 26
2.11 Best neighborhood search 37
2.12 Large Neighborhood Search 38

4.1 LNS-CB . 65
4.2 repair(σ,CB) . 66
4.3 evalNeighborhood(σ,U,CB) 66
4.4 clauseGeneration(σ∗,CB) . 67
4.5 extractMinTWconflicts(V) 72

5.1 LNS for the (TD)OPTW . 91
5.2 recombine({r1, . . . , rP},Jmax, Wmax) 97

6.1 selMgr::resetAssignment() . 129
6.2 selMgr::assign(xiv, b) . 130
6.3 selMgr::propagate() . 131
6.4 routingMgr::insert(i, v) . 132
6.5 GenOP::MSLNS(maxCpu,maxNoImpr , rmRatio) 134

xv

xvi LIST OF ALGORITHMS

6.6 GenOP::destroy(σ, rmRatio) 135
6.7 GenOP::repair(σ) . 137
6.8 GenOP::analyzeTWconflict(σ[v], i) 138
6.9 GenOP::analyzeLopt(σ∗) . 139

LIST OF ALGORITHMS xvii

Part I

Background and context

1

CHAPTER 1

Introduction

Combinatorial optimization is an essential branch of computer science
and mathematical optimization that deals with problems involving a discrete
and finite set of decision variables. In such problems, the main objective is
to find an assignment that satisfies a set of specific constraints and optimizes
a given objective function.

Combinatorial optimization emerges in many research fields, ranging from
operations research to artificial intelligence. It can handle numerous real-
world applications impacting our daily lives, from industrial engineering to
management science, from the biological industry to the medical field, from
Earth observation problems to the space sector in general. For example, in
logistics and transportation, optimizing delivery routes can lead to signifi-
cant cost savings and higher customer satisfaction. In scheduling, efficiently
allocating resources can maximize productivity and minimize downtime. For
biological insights, combinatorial optimization enhances genome sequencing
for DNA analysis and can be used to design proteins. In the aerospace indus-
try, scheduling satellite activities facilitates data collection for space missions.
Overall, the applications are diverse, highlighting the practical relevance of
solving combinatorial optimization problems.

Most of the combinatorial optimization problems are NP-hard, hence find-
ing an optimal solution can be very time-consuming or even computationally
intractable. In many practical cases, these problems are indeed hard to solve
due to the large size of the instances and/or the presence of complex con-
straints such as temporal constraints and/or capacity constraints. Also, some
variants may involve the uncertainty or time-dependency aspect that models

3

4 CHAPTER 1. INTRODUCTION

real-life issues. For example in routing problems, the transition times be-
tween customers may depend on some specific conditions (e.g., congestion or
rush hours) that vary throughout the day.

Solving techniques Solving a combinatorial optimization problem means
exploring the solution space to identify an optimal solution. This process
is often referred to as a search technique, as it involves traversing different
regions of the solution space to search for the best solution or solutions
that approximate the optimal objective value. Over the decades, numerous
researchers have studied both complete and incomplete methods for solving
combinatorial optimization problems.

• Complete methods, also known as exhaustive search algorithms, aim
to find an optimal solution despite the hardness of the problem. This
can be done by systematically searching the entire solution space and
selecting a solution that satisfies the constraints while optimizing the
objective function. Complete methods guarantee the finding of an op-
timal solution, but the search can be computationally expensive and
such methods may not be feasible for large problem instances.

• Incomplete methods, on the other hand, do not guarantee the finding
of an optimal solution, but rather aim to find a good solution within
an acceptable amount of time. These methods are typically faster than
complete methods because they do not explore the entire search space,
but instead, use heuristics or other techniques to quickly guide the
search toward promising solutions.

In many practical cases, incomplete methods are often preferred to com-
plete methods. This is mainly because complete methods have difficulties in
solving large-scale problems within a limited amount of time. On the other
hand, incomplete methods can quickly produce high-quality solutions even
within a limited computational time, which is a critical point in many appli-
cations. Despite the widespread use of incomplete search algorithms, there
remain many limitations: such algorithms may get stuck in local optima and
the solution quality heavily depends on the choice of the heuristics and search
strategies. To address these challenges, there is a need for techniques that
can help prevent the search algorithm from getting stuck in local optima and
guide it toward promising regions of the search space. This is why in the lit-
erature, numerous hybrid approaches are proposed to increase the efficiency

5

of incomplete search methods by exploiting various algorithmic ideas from
complete techniques.

Case study: vehicle routing problems with profits Among various
combinatorial optimization problems, in this thesis, we mainly focus on a
well-known variant of the Vehicle Routing Problem (VRP), where a set of
vehicles must visit a set of customers. In this variant, a profit is associated
with each customer and the primary objective is to find an optimal solution,
which means to find, given the vehicle available, sequences of visits traversing
a subset of customers and maximizing the profits acquired in the end.

Despite its broad applications to different sectors like logistics or tourism,
this variant has not received much attention for practical applications in the
aerospace sector. One such application, which is also the main motivation
behind this research, is the problem of scheduling (Agile) Earth Observation
Satellite missions. The latter can be modeled as a complex variant of the
routing problem involving optional customer selections, time window con-
straints, time-dependent transition times, and even time-dependent profits.
Concerning solving techniques for large-size vehicle routing problem with
profits, most of the existing methods in the literature use incomplete search.
Yet, there exist relatively few hybrid complete/incomplete approaches for
efficiently solving different problem variants.

Research statement and contributions Given the challenges mentioned
earlier, the topic of this thesis is the following:

In this thesis, we investigate the enhancement of incomplete
search techniques by exploiting knowledge acquired during the
search, together with techniques used in complete search.

More specifically, the subsequent chapters delve into the details of the
hybrid approaches that we propose for a practical case study, namely vehicle
routing problems with profits. The remainder of this dissertation is organized
as follows.

• In Chapter 2, we first provide the formal background and notations
about the combinatorial optimization problems and incomplete tech-
niques. Then, we specifically focus on hybrid approaches between com-
plete and incomplete techniques available in the literature with the
objective of enhancing these incomplete techniques.

6 CHAPTER 1. INTRODUCTION

• In Chapter 3, we present an overview of the case study considered in
this thesis, that is the routing problems with profits. In particular, we
are interested in the Orienteering Problem (OP) and its variations, a
specific problem class within this family that has received a lot of atten-
tion in the literature and for which there exist many variants. We also
briefly describe its practical applications to the aerospace domain, for
instance, for the (Agile) Earth Observation Satellite scheduling prob-
lem.

• In Chapter 4, we present a hybrid approach combining incomplete
search with conflict learning and provide an empirical study of how
to efficiently manage these conflicts with an application to the Ori-
enteering Problems with Time Windows (OPTWs). The key idea is
to learn conflicting solutions (that violate some constraints or that are
suboptimal) and exploit them to avoid reconsidering the same solutions
and to guide search.

• In Chapter 5, we present a novel method to exploit good features of elite
solutions using dynamic programming techniques. The objective is to
enhance the performance of a black-box incomplete search algorithm by
recombining high-quality solutions in an effective way. We conduct var-
ious experiments on a classical OPTW benchmark and a novel realistic
benchmark generated for the satellite scheduling problem, considering
different factors such as time-dependent transition times or reward un-
certainty.

• In Chapter 6, we present a generic framework that can efficiently solve
complex routing problems by decomposing them into subproblems, for
which efficient reasoning mechanisms can be used. The objective is
to avoid developing a new specific algorithm for each variant of the
routing problem with profits. The framework proposed is able to effi-
ciently solve variants that possibly involve optional customers, multi-
ple vehicles, multiple time windows, multiple side constraints, and/or
time-dependent transition times.

• In Chapter 7, we summarize our main contributions and provide direc-
tions for future research.

CHAPTER 2

Background and notations

In this chapter, we present a brief overview of well-known hybrid approaches
for solving hard combinatorial optimization problems. Our main focus is the
hybridization between incomplete and complete techniques, whose objective
is to enhance traditional incomplete search algorithms. Before discussing
these hybridizations, we first introduce several basic notations related to com-
binatorial optimization problems and then describe basic incomplete solving
techniques such as construction heuristics, local search, and metaheuristics.

2.1 Combinatorial optimization problems

2.1.1 Problem definition
Definition 2.1. A Combinatorial Optimization Problem (COP) P is defined
by:

• a set of variables X = {x1, . . . , xn};

• a set of finite and discrete variable domains D = {D1, . . . , Dn};

• (optional) a set of constraints C = {C1, . . . , Ck}, where a constraint Ci
is a relation defined over k variables xi1 , . . . , xik :

Ci : Di1 × . . .×Dik → {0, 1}

7

8 CHAPTER 2. BACKGROUND & NOTATIONS

• an objective function f to be optimized (minimized or maximized),
where

f : D1 × . . .×Dn → R

In this definition, the adjective ‘combinatorial’ refers to the presence of
finite and discrete variable domains. In the case where the domains Di are
continuous, P is called a continuous optimization problem. In practice, real-
life problems can be more complex, and the goal is often to optimize several
objective functions at the same time. Such problems are called the multi-
objective optimization problems.

Definition 2.2. A solution to a combinatorial optimization problem P =
(X,D,C, f) is an assignment of values to the variables s = {(xi, vi) | xi ∈
X, vi ∈ Di}. The set of all possible assignments, denoted by SP or shortly
S, is also called a search (or solution) space. A solution s is called feasible
or valid if it satisfies all constraints C1, . . . , Ck. Besides, a solution s is
called a partial solution if one or more variables are not assigned yet in s,
otherwise s is called a complete solution.

Solving a COP corresponds to finding an optimal solution s∗ ∈ S, i.e. a
feasible solution providing an optimal objective value. The objective func-
tion value of a solution is also called solution quality. As a result, solutions
that provide an objective function value close to the optimal value are con-
sidered to be of high-quality or good-quality. The problem can be stated as
a minimization or a maximization problem depending on whether the given
objective function f is to be minimized or maximized. Without loss of gen-
erality, we deal with a minimization problem where we try to minimize
the objective function value. Then, the globally optimal solutions can be
formally defined as follows.

Definition 2.3. A solution s∗ is called globally optimal if and only if

s∗ ∈ S ∧ f(s∗) ≤ f(s) ∀s ∈ S

It is also useful to clarify the distinction between problems and problem
instances. In general, a problem (also called a problem class or an abstract
problem) can be seen as a set of problem instances that contain specific in-
put data (e.g., variable domains, constraints, and objective functions). For
example, given the problem of ‘finding a shortest path that visits a set of
points in the Euclidean plan’ that is also known as the Traveling Salesman

2.1. COMBINATORIAL OPTIMIZATION PROBLEMS 9

Problem (TSP) (Bellmore & Nemhauser (1968)), an instance of this prob-
lem corresponds to a specific set of input data, a solution to this problem
instance is a path connecting all given points regardless of length, and among
these candidate paths, a globally optimal solution is a shortest one (i.e., with
minimal length).

2.1.2 Solving techniques
Solving a COP corresponds to searching for (near-)optimal solutions in the
solution space defined by a specific instance. In a sense, all computational
approaches for solving hard COPs can also be characterized as search algo-
rithms. Basically, the simplest idea behind the search approach is to itera-
tively generate and evaluate solutions with respect to the constraints and the
objective function. This raises the need for efficient search procedures, and
over decades, many search algorithms were developed to tackle these prob-
lems. These algorithms can be classified as either complete or incomplete.

Complete or systematic search algorithms aim to exhaustively explore the
entire search space, in the worst case, to determine an optimal solution. They
guarantee that, for every finite size problem instance, either an optimal solu-
tion is found in bounded time, or, if no solution exists, this fact is proved with
certainty (Papadimitriou & Steiglitz (1998); Wolsey & Nemhauser (1999)).
This property is called the completeness of the algorithm. Examples of com-
plete methods include brute-force search, backtracking search (Golomb &
Baumert (1965)), branch-and-bound (Lawler & Wood (1966)), dynamic pro-
gramming (Howard (1960); Bellman (1966)), and so forth. However, the
search space often contains a huge number of solutions and typically grows
at least exponentially with the size of the instance. In such cases, even the
most powerful computer cannot enumerate all solutions within a reasonable
amount of time. In order to push back the combinatorial explosion, the com-
plete search algorithms often employ pruning techniques and/or ordering
heuristics (the order in which variables or values are considered) to reduce
the search space. Yet, for NP-hard combinatorial optimization problems, no
polynomial time algorithm exists, assuming that P 6= NP (Garey & John-
son (1979)). Hence, these complete methods may require an exponential
computation time in the worst-case scenario.

Incomplete algorithms, on the other hand, focus on finding good-quality
solutions by exploring only some parts of the search space. Although these
methods do not guarantee to provide an optimal solution, they can find

10 CHAPTER 2. BACKGROUND & NOTATIONS

high-quality solutions in a significantly reduced amount of time. Moreover,
they usually can be stopped at any point during their execution, which is
called the anytime property of search algorithms. Such incomplete meth-
ods include heuristic search, where a solution is progressively built based on
efficient heuristics; local search, where various neighborhoods help improve
the current solution; and metaheuristics like genetic algorithms (Sampson
(1976)), tabu search (Glover (1989)), or iterated local search (Lourenço et al.
(2001)), to name just a few. In general, the fundamental differences between
incomplete methods rely on how they generate and evaluate solutions, which
has a significant impact on practical performance. Hence, selecting appro-
priate techniques and optimizing their parameters is crucial for achieving
satisfactory results.

2.2 Incomplete search algorithms
In the following, we summarize fundamental principles about incomplete
search techniques for solving COPs before detailing advanced approaches
hybridizing incomplete and complete techniques.

2.2.1 Constructive search
Constructive search methods are also called heuristic search methods or con-
struction heuristics. The key principle is to generate complete solutions by
iteratively extending partial solutions. At each iteration, a solution compo-
nent is considered to be added to the partial solution based on predefined
rules or heuristics. The process is repeated until a complete solution is found
or a stopping condition is reached. A well-known constructive search method
is based on greedy heuristics, where the choice that appears to be optimal is
iteratively selected at each stage. For example, a famous greedy strategy for
the Traveling Salesman Problem (TSP) is the Nearest Neighbor heuristic: at
each construction step, visit the nearest unvisited node (Rosenkrantz et al.
(1977)). This heuristic can yield a good-quality solution within a reasonable
number of steps.

Constructive methods are often very fast due to their single-pass nature,
meaning that there is no backtracking or revisiting of previous decisions.
Nonetheless, during the construction phase, dead-end situations may occur
when the current partial solution cannot be extended further due to the

2.2. INCOMPLETE SEARCH ALGORITHMS 11

violation of one or more constraints. Also, constructive methods often lead
to suboptimal solutions. Precisely, the quality of the solutions produced by
construction heuristics may heavily depend on the order in which solution
components are added, and these heuristics are usually imperfect. That is
why constructive search algorithms are often used to generate initial solutions
for other advanced search techniques, such as local search and metaheuristics.

Interestingly, there is a remarkable connection between constructive search
methods that build solutions incrementally and complete tree-based search
methods that explore the search tree systematically. Indeed, many com-
plete search algorithms use a constructive search method as a basis and add
some forms of backtracking (Golomb & Baumert (1965)). The latter means
undoing the last decisions made, going back to the previous state, and try-
ing a different option when reaching a dead-end situation. For constraint
satisfaction problems, this happens when the current solution violates some
constraints. By using backtracking, the algorithm can explore all the partial
solutions until it either finds a complete one or proves that none exists. For
optimization problems, the algorithm continues exploring the whole search
space to find the best solution.

2.2.2 Local search and perturbative search
In the literature, the terms “local search” and “perturbative search” refer to
methods that move from one solution to another one in the search space by
perturbing one or more solution components. Precisely, local search starts
with an initial solution and iteratively moves to neighboring solutions with
the hope of improving the objective function value. The search process is
repeated until a stopping condition is reached. The concept of neighborhood,
which is a key feature of local search algorithms, can be formally defined as
follows.

Definition 2.4. A neighborhood function is a mapping N : S → 2S that
defines, for each solution s ∈ S, a set of neighboring solutions N (s) ⊆ S.
N (s) is also called the neighborhood of s. We say that s′ is a neighbor
or neighboring solution of s if s′ ∈ N (s).

Intuitively, the neighborhood function describes how to make small changes
to a solution in order to get other solutions that are, in some sense, near to
it. Then, the local search process is guided by an evaluation function. The
latter is used for assessing or ranking neighbors of the current solution.

12 CHAPTER 2. BACKGROUND & NOTATIONS

Definition 2.5. An evaluation function is a mapping g : S → R that
assigns a value to each solution s ∈ S.

In pure optimization problems, the value returned by the evaluation func-
tion directly corresponds to the quantity to be optimized. For problems con-
taining both constraints and an objective function, an evaluation function g
may combine both feasibility and optimality measures. Sometimes, different
evaluation functions can also provide more effective guidance towards high-
quality or optimal solutions e.g., Guided Local Search (Voudouris (1997)).
In general, the evaluation function is problem-specific and its choice is, to
some degree, dependent on the search space and underlying neighborhood
structures. For the sake of simplicity, we assume in the following discussions
that the objective function f of the problem serves as an evaluation function
g, and the latter must be minimized.

The introduction of the neighborhood structure and the evaluation func-
tion allows us to define the concept of locally optimal solutions.

Definition 2.6. A solution s ∈ S is locally minimal (or a local mini-
mum) with respect to an evaluation function g : S → R and a neighborhood
structure N : S → 2S if and only if

∀s′ ∈ N (s) : g(s) ≤ g(s′)

Local maxima can be defined analogously.

Figure 2.1 – Local vs. global minimum

Said differently, a solution is locally optimal if it does not have an improv-
ing neighbor. However, it is important to note that, under this definition, the

2.2. INCOMPLETE SEARCH ALGORITHMS 13

local optimality depends on the evaluation function g and the neighborhood
structure N . This means that a solution s that is a local optimum with
respect to (g1,N1) is not necessarily a local optimum with respect to another
pair (g2,N2).

A problem instance together with the evaluation function and the neigh-
borhood structure define the topology of a so-called search landscape. The
latter can be visualized as a labeled graph in which the nodes are solu-
tions labeled by their objective function value, and the arcs represent the
neighborhood relations between these solutions. A single move in the search
landscape corresponds to the application of a neighborhood operator on a
solution s to produce a neighbor s′ ∈ N (s). Then, a search trajectory corre-
sponds to a finite sequence of solutions (s0, . . . , sk) where (si, si+1) is a move
i.e. si+1 ∈ N (si). Intuitively, any search trajectory can be seen as a walk in
the neighborhood graph or search landscape.

Frequently, the term fitness landscape is used to refer to the same concept,
which was initially introduced in the context of evolutionary theory (Wright
(1932)), and then adopted in the study of the factors underlying the behav-
ior of evolutionary algorithms (Jones et al. (1995)) and metaheuristics in
general (Fonlupt et al. (1999)).

Iterative improvement The basic local search is usually called an itera-
tive improvement local search. This strategy is also known as iterative de-
scent or hill-climbing. Its high-level description is presented in Algorithm 2.1.
Basically, the algorithm starts from an initial solution s ∈ S, which can be
randomly chosen in the search space or generated by a constructive search
method (Line 1). Then, it tries to improve the current solution by iteratively
performing moves from one solution to a better neighboring solution w.r.t.
the evaluation function g (Line 4). Such a move is also called an improving
move. The search process stops once it finds a local minimum i.e. once no
improving move is found (Line 6). The best solution found so far (called the
incumbent solution) is memorized and returned upon termination of the al-
gorithm. It is important to note that, in Algorithm 2.1, we omit the stopping
conditions, e.g., conditions related to the maximum CPU time available.

Local search may seem like a straightforward approach to design and
implement, yet it often requires considerable effort and a deep understanding
of the structure of the problem in order to obtain an efficient solver. In
essence, the effectiveness of a local search algorithm strongly relies on the

14 CHAPTER 2. BACKGROUND & NOTATIONS

Algorithm 2.1: BasicLocalSearch
1 s← generateInitialSolution()
2 s∗ ← s
3 while true do
4 s← selectNeighbor(N (s))
5 if isFeasible(s) ∧ g(s) < g(s∗) then s∗ ← s
6 else return s∗

evaluation of the neighborhood and the selection of the next neighbor (Line
4).

How to evaluate a neighborhood? The choice of an appropriate neigh-
borhood relation and the evaluation function is one of the most crucial fac-
tors affecting the performance of local search methods. In general, this choice
needs to be made in a problem-specific way. Besides, evaluating the neigh-
borhood of a solution may be computationally expensive, especially if the
neighborhood size is large or the evaluation function is complex. Therefore,
the value of the evaluation function should be maintained using incremental
updates after each search step instead of recomputing it from scratch in order
to improve the computational efficiency.

Constraint-based Local Search (CBLS) (Hentenryck & Michel (2005)) is
a typical example that addresses these genericity and incrementality issues
in designing effective local search. Its architecture consists of a modeling
part and a search part. In terms of modeling, CBLS uses specific concepts,
called invariants and differentiable objects, to model variables, constraints,
and objective functions. The core point of this framework is the incremental
update or maintenance of these objects during the search process, especially
by using a dependency graph between objects. At the search level, CBLS does
not prescribe any specific heuristics for each problem. Rather, it supports
various abstractions to simplify the implementation of different algorithmic
variants as well as for different problems.

In another direction, the evaluation of the neighborhood often requires
determining whether a neighbor solution satisfies all logical constraints. In-
feasible neighbors can be either discarded or penalized by the evaluation
function. The simplest option is to maintain feasibility at all times and
explore only feasible solutions in the neighborhood. However, the regions

2.2. INCOMPLETE SEARCH ALGORITHMS 15

containing the set of feasible solutions may be too narrow or disconnected.
In some problems, it is even hard to find the first feasible solution that sat-
isfies all the constraints. In such cases, it can be preferable to relax some of
the constraints to explore a larger search space. To satisfy both the feasibil-
ity and optimality requirements, a possible approach is to add penalties for
constraint violations into the objective functions. Technically, it is not easy
to design an appropriate penalty scheme, which depends on the problem as
well as the desired trade-off between feasibility and optimality. If the penalty
is too large, it may discourage the exploration of the infeasible regions from
the very beginning of the process. On the other hand, a low penalty will be
negligible with respect to the objective function, hence, the search algorithm
will spend a lot of time exploring the infeasible regions.

How to select the next neighbor? There are different strategies to
choose the next neighbor using only local information on the quality of the
neighbors. Two common deterministic strategies are:

• best improvement: this strategy consists in evaluating all neighboring
solutions and selecting a neighbor that provides the best improvement
in the evaluation function value;

• first improvement: the algorithm examines neighboring solutions one
by one and simply selects the first one that improves the evaluation
function value.

Example 2.1. A well-known example of a local search algorithm is the min-
conflict heuristic (Minton et al. (1992)) used for solving Constraint Satisfac-
tion Problems (CSPs). Here, constraints may be violated during the search
process, and that violation is measured and treated as an evaluation function.
During the local search procedure, given a complete assignment, the values of
some variables are changed to move from the current solution to a neighbor-
ing solution. The key idea is to always make a decision that minimizes the
total number of violations at each step (i.e. best-improvement strategy). Min-
conflict and related techniques are often used to solve decision problems, but
optimization problems can also be solved by considering a series of decision
problems and iteratively tightening an upper bound on the objective function.

One limitation of the best improvement approach is the necessity of scan-
ning the whole neighborhood to find the next move, which can be very time-
consuming. On the other hand, the first improvement approach is faster

16 CHAPTER 2. BACKGROUND & NOTATIONS

but may miss the best neighbor. In both cases, the algorithm eventually
gets stuck at local optima. To address this issue, the simplest idea is to
introduce randomness in the search process. This allows the algorithm to
explore a wider range of solutions and avoid premature convergence, thus
potentially escaping local minima. Examples of incorporating randomness in
neighborhood selection include:

• RandomWalk (Selman et al. (1993)), where the next neighbor is chosen
randomly with a small probability (controlled by a parameter). This
random selection allows the algorithm to occasionally explore solutions
that would not be reached based on the current search trajectory. By
doing so, the algorithm may have a chance to discover unexpected
promising regions of the search space;

• Roulette-Wheel Selection (Holland (1975)), that uses a probability dis-
tribution to choose a neighbor based on its quality. This approach gives
higher-quality solutions a greater chance of being selected, while still
allowing for some exploration of other solutions.

2.2.3 Metaheuristics

Local search can provide fairly good-quality solutions very quickly. However,
it can frequently visit the same locations within the search space and get stuck
at local optima. This is why other techniques were introduced for avoiding
or escaping from local minima, and directing the search towards globally
optimal or near-optimal solutions. Such techniques are also called meta-
heuristics, which is a term commonly used in the Artificial Intelligence (AI)
and Operations Research (OR) communities (Blum & Roli (2003); Glover
& Kochenberger (2006)). Typical representatives include tabu search, simu-
lated annealing, evolutionary computation, ant colony optimization, iterated
local search, and so on. In principle, metaheuristics can be characterized
as high-level strategies or generic search frameworks aiming at robustly and
effectively exploring a search space.

Once again, the quality of the solutions obtained can be very sensitive to
the initial solution, neighborhood function, underlying evaluation function
as well as search strategies. Based on this remark, several approaches can be
listed (Humeau et al. (2013)).

2.2. INCOMPLETE SEARCH ALGORITHMS 17

• Iterating from different initial solutions: The idea is simply to reinitial-
ize the search process by restarting from a different point in the search
space whenever a local minimum is encountered. This simple strat-
egy is employed in multi-start local search and iterated local search
(Lourenço et al. (2001)), as well as in the greedy randomized adaptive
search procedure (Feo & Resende (1995)).

• Accepting non-improving moves: One can relax the improvement crite-
rion and allow moves that degrade the current solution. This strategy
is applied in simulated annealing (Kirkpatrick et al. (1983)) and tabu
search (Glover (1989)).

• Changing the neighborhood landscape: One can change the neighbor-
hood size or structure during the search process as in variable neigh-
borhood search (Hansen & Mladenović (1999)), or change the objective
function or the constraints as in guided local search (Voudouris (1997)).

• Using learning techniques: One can tune the heuristics based on spe-
cific knowledge acquired during search, as in ant colony optimization
(Dorigo et al. (2006)).

Globally, intensification and diversification are two key concepts in meta-
heuristic approaches. Intensification refers to the process of exploring the
neighborhood of a current solution, while diversification refers to the pro-
cess of escaping from local optima and exploring new regions of the search
space. Finding a balance between intensification and diversification is crucial
for achieving a good performance. On one side, the search process should be
able to quickly identify regions in the search space containing high-quality so-
lutions. On the other side, it must not waste too much time in regions of the
search space that are either already explored or do not provide high-quality
solutions.

This section is not intended to provide an exhaustive description of meta-
heuristics but rather to review some of the most popular techniques available
in the literature. Several metaheuristics described here will be recalled later
in the next chapters, such as iterated local search, greedy randomized adap-
tive search procedure, tabu search, and path relinking.

Simulated Annealing (SA) is a metaheuristic based on an analogy with
the annealing process used in metallurgy, where a metal is heated to a high

18 CHAPTER 2. BACKGROUND & NOTATIONS

temperature and then slowly cooled down to reach its low-energy state. SA
was originally presented in statistical mechanics (Metropolis et al. (1953))
and then applied to search algorithms for combinatorial optimization prob-
lems (Kirkpatrick et al. (1983)).

The basic pseudocode of SA is provided in Algorithm 2.2. In principle, SA
works similarly to a classic iterative improvement algorithm, except that it
selects a random move at each step and occasionally allows degrading moves
by using a parameter T called the temperature. This parameter is used to
control the probability of accepting worse solutions as the search progresses
(Line 7).

Algorithm 2.2: Simulated Annealing
1 s← generateInitialSolution()
2 s∗ ← s
3 T ← setInitTemperature()
4 while termination conditions not met do
5 s′ ← selectRandomNeighbor(N (s))
6 if g(s′) ≤ g(s) then s← s′

7 else s← s′ with probability p(s′ | T, s) = e
−(g(s′)−g(s))

T

8 T ← updateTemperature(T)
9 if g(s) < g(s∗) then s∗ ← s

10 return s∗

Two critical points in simulated annealing consist in setting the initial
temperature (Line 3) and the cooling schedule that specifies how to adjust
the temperature over time (Line 8). Basically, the algorithm starts with a
high temperature and then slowly decreases the temperature over time. A
high temperature allows the algorithm to make many random moves initially,
leading to the exploration a broader region of the search space. As the
temperature decreases, the algorithm becomes more selective and mainly
focuses on improving the objective function. A cooling schedule that is too
fast may trap the algorithm in a local minimum, while a slow cooling schedule
may waste computational resources.

Tabu Search (TS) is another popular metaheuristic that makes use of a
memory for both escaping from local minima and guiding the search pro-

2.2. INCOMPLETE SEARCH ALGORITHMS 19

cess (Glover (1989)). As illustrated in Algorithm 2.3, the simplest version of
TS uses a short-term memory, called a tabu list, to prevent the search from
returning to recently visited solutions. This memory can be implemented by
explicitly storing either previously visited solutions, or only solution features,
or recent local moves. At each iteration of TS, this memory is updated. A
parameter called tabu tenure determines the duration for which these restric-
tions apply (Line 7). Basically, using a tabu mechanism has the same effect
as dynamically restricting the neighborhood of the current solution.

However, storing only local moves or features of solutions may exclude
high-quality solutions from the set of neighbors. To address this problem,
TS additionally employs a so-called aspiration criterion, which can override
the tabu status of moves that lead to an improvement in the best solution
found so far (Line 5).

Algorithm 2.3: Tabu Search
1 s← generateInitialSolution()
2 s∗ ← s
3 τ ← initializeTabuList()
4 while termination conditions not met do
5 Na(s)← {s′ ∈ N (s) | s′ does not violate a tabu condition, or it

satisfies the aspiration criterion, i.e. g(s′) < g(s∗)}
6 s′ ← selectNeighbor(Na(s))
7 τ ← updateTabuList(τ, s, s′, tabuTenure)
8 s← s′

9 if g(s) < g(s∗) then s∗ ← s

10 return s∗

The performance of TS strongly depends on the choice of the tabu tenure
parameter. If the tabu tenure is too small, the search may follow cycles in the
search space, while a large tabu tenure may be too restrictive and may miss
high-quality solutions. The tabu tenure can also be dynamically adapted dur-
ing the search, leading to more robust algorithms (Glover (1990)). Overall,
determining a good choice for the tabu tenure typically requires empirical ex-
perimentation and fine-tuning for different problems. Besides, the efficiency
of TS can be further increased by using techniques exploiting intermediate
and long-term memory to achieve a higher diversification of the search pro-
cess (Glover & Laguna (1998)).

20 CHAPTER 2. BACKGROUND & NOTATIONS

Iterated Local Search (ILS) essentially works like a multi-start local
search but focuses the search on the solutions that are returned by an em-
bedded local search, instead of using repeated random trials (Stützle (1999);
Lourenço et al. (2001)). For instance, the starting solution for the next itera-
tion can be created by perturbing the local optimum returned at the previous
iteration. The overall sketch of ILS is presented in Algorithm 2.4.

Algorithm 2.4: Iterated Local Search
1 s← generateInitialSolution()
2 s← localSearch(s)
3 s∗ ← s
4 while termination conditions not met do
5 s′ ← perturbation(s)
6 s′ ← localSearch(s′)
7 if g(s′) < g(s∗) then s∗ ← s′

8 s← applyAcceptanceCriterion(s, s′)
9 return s∗

Three core components of an ILS algorithm include a perturbation phase
(Line 5), a local search phase (Line 6), and an acceptance criterion (Line 8).
The strength of a perturbation refers to the number of solution components
that are modified. This modification is usually done in a non-deterministic
way in order to diversify search. Importantly, a weak perturbation may lead
the search back to the previous search region, while a strong perturbation
makes the search resemble a random multi-start strategy. Besides, there is no
restriction on the embedded local search procedure within the ILS framework.
Obviously, more effective local search methods potentially lead to a better
performance. Further details and references to applications of ILS can be
found in the survey of Lourenço et al. (2003).

Greedy Randomized Adaptive Search Procedure (GRASP) is a
multi-start method that combines constructive heuristics and local search
(Feo & Resende (1995); Pitsoulis & Resende (2002)). Its pseudocode is given
in Algorithm 2.5. At each iteration, a solution (not necessarily feasible) is
constructed in a greedy randomized way (Line 3). A repairing procedure
can then be invoked to restore solution feasibility when needed (Line 4).
Subsequently, this feasible solution is improved by using an embedded local

2.2. INCOMPLETE SEARCH ALGORITHMS 21

search algorithm until a local optimum is found (Line 5). The best overall
solution is registered (Line 6) and returned once a stopping condition is met
(Line 7).

Algorithm 2.5: GRASP
1 s∗ ← nil
2 while termination conditions not met do
3 s← greedyRandomizedContruction()
4 if ¬isFeasible(s) then s← Repair(s)
5 s← localSearch(s)
6 if g(s) < g(s∗) then s∗ ← s

7 return s∗

In contrast to standard construction heuristics, the construction phase in
GRASP (Line 3) does not necessarily add the best solution component (i.e.
with the maximal heuristic value) at each construction step. Instead, it ran-
domly selects a move from a collection of highly ranked solution components,
called restricted candidate list. Intuitively, GRASP can be seen as a repeti-
tive sampling technique, where each iteration outputs a sample solution from
an unknown distribution (Resende & Ribeiro (2010)).

It is important to note that the basic version of GRASP does not make
use of the search history for the construction phase. Due to its simplicity,
GRASP is often able to produce good solutions in a very short amount of
time. It can be even faster with parallel implementations, where only a
single global variable is required to store the best solution found over all
processors (Ribeiro et al. (2002a)). A detailed discussion as well as many
applications of GRASP can be found in the surveys of Ribeiro et al. (2002b);
Resende & Ribeiro (2010).

Variable Neighborhood Search (VNS) mainly relies on the adapta-
tion of the local search procedure to escape from local optima. In principle,
VNS successively explores a set of neighborhoods instead of a unique neigh-
borhood (Hansen & Mladenović (1999, 2001)). The general idea of VNS is
based on the fact that a local optimum is defined relatively to a neighborhood
relation. Indeed, a local optimum with respect to neighborhood N1 is not
necessarily a local optimum with respect to another neighborhood N2. Thus,

22 CHAPTER 2. BACKGROUND & NOTATIONS

VNS allows the neighborhood structure to be dynamically changed during
search to escape from local optima.

An outline of basic VNS is shown in Algorithm 2.6. Let N1, . . . ,Nkmax

be a set of predefined neighborhood structures, which are usually ordered
in an increasing neighborhood size. At each iteration, VNS selects a kth-
neighbor s′ ∈ Nk(s) of the current solution s (Line 5). If an improvement
is obtained, the algorithm comes back to neighborhood N1 (Line 7). Oth-
erwise, it switches to the next neighborhood (Line 9) and repeats the above
steps until some stopping condition is satisfied. In the literature, other ex-
tensions of this basic VNS alternate neighborhoods in different ways. For
example, Skewed VNS (Brimberg et al. (2015)) is conceptually related to
ILS. A description of other VNS variants and their applications are provided
by Hansen et al. (2019).

Algorithm 2.6: Variable Neighborhood Search
1 s← generateInitialSolution()
2 s∗ ← s
3 k ← 1
4 while termination conditions not met & k ≤ kmax do
5 s′ ← selectNeighbor(Nk(s))
6 if g(s′) < g(s) then
7 s← s′, k ← 1
8 if g(s′) < g(s∗) then s∗ ← s′

9 else k ← k + 1
10 return s∗

Guided Local Search (GLS) is based on the recognition that a local
optimum with respect to the evaluation function g may not be locally opti-
mal with respect to another evaluation function g′. As a result, the funda-
mental idea underlying GLS (Voudouris (1997); Voudouris & Tsang (1999))
involves dynamically modifying the evaluation function by penalizing solu-
tion features that are frequently present in visited solutions. These penalties
are applied to increase the cost of solutions that contain these features and
gradually reduce the attractiveness of the current local minimum over time.
These adjustments guide the search towards unexplored regions of the search

2.2. INCOMPLETE SEARCH ALGORITHMS 23

space. In some cases, GLS may accept moves in infeasible regions and take
into account the constraint violations in the evaluation function.

A generic template of GLS is depicted in Algorithm 2.7, whose embed-
ded local search is generic. In essence, GLS works similarly to the iterative
improvement procedure. Yet, a crucial step of GLS is the computation of
the new evaluation function based on the current locally optimal solution
(Line 7). The underlying penalizing scheme is not easy to appropriately de-
fine and is of course problem-dependent. A precise survey, guidelines, and
representative applications of GLS are provided by Voudouris et al. (2010).

Algorithm 2.7: Guided Local Search
1 s← generateInitialSolution()
2 s∗ ← s
3 g′ ← g
4 while termination conditions not met do
5 s← localSearch(s, g′)
6 if isFeasible(s) ∧ g(s) < g(s∗) then s∗ ← s
7 g′ ← updateEvaluation(s, g′)
8 return s∗

Ant Colony Optimization (ACO) is a metaheuristic approach inspired
by the behavior of ants for finding the shortest paths between their nest and
a food source (Blum (2005); Dorigo et al. (2006)). The basic idea is to use a
population of artificial ants that communicate with each other by depositing
and following pheromone trails on a graph that represents the problem to be
solved.

An outline of ACO is given in Algorithm 2.8. At each iteration, a pop-
ulation of virtual ants explores the search space by constructing solutions
incrementally (Line 3). Precisely, for each ant, the next solution component
is probabilistically chosen based on the concentration of pheromone trails
and heuristic information. Pheromone trails act as the collective memory of
the ants and guide their decisions.

Then, a local search procedure may be applied to improve the overall
best solutions obtained so far (Line 4). Finally, the pheromone trails are
dynamically updated to balance exploration and exploitation (Line 5). Basi-
cally, as ants discover better solutions, they deposit more pheromones along

24 CHAPTER 2. BACKGROUND & NOTATIONS

the edges they traverse, thus reinforcing the paths leading to high-quality
solutions. Also, the pheromone values decay over time to avoid stagnation
and promote diversity. Other versions of ACO mostly differ in the way they
update the pheromone values (Dorigo & Gambardella (1997); Stützle & Hoos
(2000)).

Algorithm 2.8: Ant Colony Optimization
1 initializePheromones()
2 while termination conditions not met do
3 constructAntSolutions()
4 applyLocalSearch()
5 updatePheromones()

Evolutionary Computation (EC) is a metaphor for algorithms based on
Darwinian principles of natural selection. These algorithms, known as evolu-
tionary algorithms (EAs) (Bäck et al. (1997)), are inspired by the evolution
process that happens in nature. Algorithm 2.9 shows a high-level sketch of
an EA. In principle, EAs work with a group of individuals and use specific
operators to create the next generation. These operators include recombi-
nation (or crossover) to combine individuals (Line 4), and modification (or
mutation) to introduce some randomness (Line 5). Then, the selection of
individuals for the next generation is performed based on their fitness (Line
7). Concretely, individuals having a higher fitness have a higher chance of
being selected for the next generation.

Algorithm 2.9: Evolutionary Algorithm
1 P ← generateInitialPopulation()
2 evaluate(P)
3 while termination conditions not met do
4 P ′ ← recombine(P)
5 P ′′ ← mutate(P ′)
6 evaluate(P ′′)
7 P ← select(P ′′, P)

Various EAs were proposed over the years with three different strands:

2.2. INCOMPLETE SEARCH ALGORITHMS 25

evolutionary programming (EP) (Fogel (1962, 1998, 1999)), evolutionary
strategies (ES) (Beyer & Schwefel (2002)), and genetic algorithm (GA) (Samp-
son (1976); Srinivas & Patnaik (1994)). Recently, other members of the EA
family such as genetic programming (GP) (Koza et al. (1994)) and scat-
ter search (SS) (Glover (1997b)) were developed and applied to COPs and
optimization problems in general.

Path Relinking (PR) is also a member of the EA family in the sense that
it tries to merge features of different solutions. PR was originally proposed as
an intensification strategy that explores trajectories connecting elite solutions
obtained by other metaheuristics (Glover (1997a); Glover & Laguna (1998);
Glover et al. (2000)). Intuitively, PR favors selecting attributes of high-
quality solutions in order to hopefully find better solutions.

A high-level pseudocode of PR is shown in Algorithm 2.10. Basically,
PR works with a pair of solutions: s1, called the initial solution, and s2 the
guiding solution. The procedure starts by computing ∆, the set of moves
needed to reach s2 from s1, i.e. the difference between these two solutions
(Line 2). Starting from the initial solution (Line 4), at each iteration, it
examines all possible moves m ∈ ∆ and applies the best one m∗ (Line 6). In
this context, m∗ is the move that results in the lowest cost solution, i.e. that
minimizes g(s⊕m) where s⊕m represents the solution obtained by applying
move m to solution s. Then, the set of available moves is updated (Line 7),
and the best move is applied (Line 8). If an improvement is found, the best
solution is updated (Line 9). The above steps are repeated until there is
no more candidate move (Line 5). Finally, a local search procedure can be
applied to s∗, with the hope of improving the solution quality obtained so
far (Line 10).

From this basic scheme, several alternatives were considered, including
forward PR (Laguna & Marti (1999)), backward PR (Resende & Ribeiro
(2003); Aiex et al. (2005)), mixed PR (Glover (1997a); Ribeiro & Rosseti
(2007)), truncated PR (Andrade & Resende (2007); Resende et al. (2010)),
greedy randomized adaptive PR (Binato et al. (2001)), or evolutionary PR
(Resende & Werneck (2004)). These variants differ in how to incorporate
attributes from the guiding solutions and balance the trade-offs between
computation time and solution quality. In the literature, PR was shown
to be effective when being hybridized with other metaheuristics, both as a
diversification and as an intensification strategy. For example, a survey of

26 CHAPTER 2. BACKGROUND & NOTATIONS

Algorithm 2.10: Path Relinking
1 s1 ← a starting solution, s2 ← a guiding solution
2 ∆← computeDifference(s1, s2)
3 s∗ ← argmin{g(s) | s ∈ {s1, s2}}
4 s← s1
5 while ∆ 6= ∅ do
6 m∗ ← argmin{g(s⊕m) | m ∈ ∆}
7 ∆← ∆ \ {m∗}
8 s← s⊕m∗
9 if g(s) < g(s∗) then s∗ ← s

10 s∗ ← localSearch(s∗)
11 return s∗

combining GRASP with PR is provided by Resendel & Ribeiro (2005). Be-
sides, PR can be used as an enhanced crossover operator when hybridizing
with genetic algorithms. This idea was shown to be efficient on various prob-
lems such as the flow shop scheduling problem (Reeves & Yamada (1998)) or
different variants of the routing problem with profits (Souffriau et al. (2010);
Karbowska-Chilinska & Zabielski (2014); Campos et al. (2014)).

Different classifications of metaheuristics There exist various ways to
classify and describe metaheuristics from different points of view.

For instance, metaheuristics can be classified based on the number of solu-
tions used in the search process: a single solution or a population of solutions.
Algorithms that work on a single solution are referred to as trajectory-based
metaheuristics. They include metaheuristics that are based on local search,
such as tabu search, iterated local search, and variable neighborhood search.
Population-based metaheuristics, on the contrary, use a set of solutions or
a probability distribution over the search space to guide the search process.
Representative examples of this class are evolutionary computation and ant
colony optimization.

Another classification is based on whether the metaheuristics use mem-
ory or not, so-called memory-based vs. memory-less methods. Memory-less
algorithms, for example, perform a Markov process (Howard (1960)), as they
only rely on the current state to decide the next action. Iterated local search
or genetic algorithms are typical examples of this class. On the other hand,

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 27

memory-based metaheuristics can learn from their experience and adapt their
search strategy accordingly. They use some form of memory to store and
retrieve information about the search history and/or the search state. Ex-
amples of memory-based metaheuristics include tabu search and ant colony
optimization.

Last, metaheuristics can be categorized into nature-inspired metaheuris-
tics or non-nature-inspired metaheuristics. Nature-inspired algorithms, such
as evolutionary computation and ant colony optimization, draw inspiration
from natural processes. Meanwhile, non-nature-inspired ones such as tabu
search and iterated local search do not have any connection to natural phe-
nomena.

2.3 Hybrid approaches combining complete
and incomplete techniques

Over the decades, so-called hybrid optimization techniques have become an
active research area for addressing NP-hard optimization problems. In fact,
when dealing with complex real-world scenarios, many incomplete algorithms
do not rely on one stand-alone classical (meta)heuristic but rather exploit
various algorithmic ideas from complete techniques such as tree search, dy-
namic programming (DP), mathematical programming (MP), constraint pro-
gramming (CP), and SAT solving. Such hybridizations aim at combining the
strengths of both complete and incomplete techniques for solving currently in-
tractable problems. The key ideas are: (i) incomplete algorithms can exploit
complete search techniques to increase efficiency; (ii) complete algorithms
can follow some incomplete search mechanisms to improve scalability.

In the literature, there is a wide range of hybrid approaches combining
incomplete methods with complete search techniques. Due to an excessive
number of approaches, providing an exhaustive description is obviously not
feasible here. In the following, we specifically focus on hybrid techniques
designed to enhance the performance of classical local search methods and
metaheuristics in solving hard combinatorial optimization problems. Among
existing classifications (Talbi (2002); Blum & Roli (2003); Puchinger & Raidl
(2005); Raidl (2006); Prestwich (2008)), we distinguish these techniques ac-
cording to their control strategy, which can be either collaborative or integra-
tive. The former means that different algorithms exchange information but

28 CHAPTER 2. BACKGROUND & NOTATIONS

are not part of each other, whereas the latter corresponds to systems that
exploit another technique as a subcomponent.

2.3.1 Collaborative combinations
In this case, complete and incomplete algorithms may be executed sequen-
tially, in parallel, or intertwined. This section mainly focuses on sequential
combinations where complete techniques are used either to initialize the so-
lutions of incomplete search algorithms or to post-optimize of the solutions
obtained by incomplete search algorithms.

Using complete techniques as pre-processing As illustrated in Fig-
ure 2.2, complete techniques can help define or reduce the search space for
the incomplete search procedure by generating promising initial solutions or
populations.

Mathematical Programming
Constraint Programming

Incomplete algorithms

• Constructive search

• Local search

• Metaheuristics

Optimal solution of relaxed problems
Partial solution
Domain reduction

Figure 2.2 – Using complete techniques as a preprocessing step

A common way to find a promising starting point for a metaheuristic is
to exploit the optimal solution of a relaxed version of the original problem.
Frequently, a Linear Programming (LP) relaxation of the problem considered
is exploited for this purpose. This can be done by relaxing the integrality
constraint of integer variables. In other words, an LP relaxation allows the
decision variables of the problem to take any real values while optimizing the
objective function. The resulting relaxed problem is often easier than the

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 29

original problem and can be solved to optimality by efficient methods such
as the simplex algorithm (Dantzig (1951)). However, an optimal solution to
the LP relaxation is usually infeasible for the original problem.

To deal with this issue, a possible approach is the “dive-and-fix” strategy:
(i) fix the integral part of the optimal relaxed solution, i.e. the decision
variables having integer values in that solution and (ii) optimize the fractional
or non-integral part. This approach is also referred to as core methods since
the original problem is reduced and only its “hardcore” is further optimized.
Vasquez et al. (2001) present such an example for solving the 0-1 multi-
dimensional knapsack problem. First, they solve a series of LP relaxations
to optimality, and then they use multiple tabu search (TS) to search for
the values of the non-integral part. This approach is further improved by
Vasquez & Vimont (2005) and extended for the multiknapsack problem by
Puchinger et al. (2006).

Another possibility is to restore the solution feasibility by using a simple
rounding procedure or more sophisticated repair strategies. This idea is ap-
plied in a genetic algorithm (GA) for both the multi-constrained knapsack
problem (MKP) (Raidl (1998)) and the generalized assignment problem (Feltl
& Raidl (2004)). In these works, the authors first solve the LP-relaxation of
the problem and then use a randomized rounding procedure to create a pop-
ulation of integral solutions for GA. Additionally, they apply randomized re-
pair and improvement operators to yield an even more promising initial pop-
ulation for the GA. Also for the MKP, Plateau et al. (2002) present a similar
search scheme, but the relaxation of the original problem is solved by using
an interior point method with early termination. Feasible integer solutions
are generated by rounding and applying several specific heuristics. These
solutions are then used as an initial population for a path-relinking/scatter
search.

In a loose combination, CP can also serve as a preprocessing step for an
incomplete solver (Wallace (1996)). In CP, the so-called constraint propa-
gation mechanism can be used to efficiently reduce the domains of the vari-
ables by filtering values leading to dead-end situations. On this point, Lever
(1996) employs CP to precompute all possible moves for a resource realloca-
tion problem. In another direction, tree-based search methods can provide
(partial) solutions that can be further refined or expanded by incomplete
methods (Prestwich (2000)). As an example, Dell’Amico & Lodi (2005)
describe some adaptations to perform a tabu search over partial solutions
obtained at inner nodes within a CP tree search.

30 CHAPTER 2. BACKGROUND & NOTATIONS

Using complete techniques as post-optimization In the opposite way,
complete techniques can be used as a post-optimization module for improv-
ing the quality of solutions obtained by incomplete algorithms. A common
approach is to merge elite components from a set of high-quality solutions
(Figure 2.3). This is based on the fact that, in many optimization problems,
high-quality solutions often share numerous features with the globally opti-
mal solutions. Remarkably, solution merging can be done with not just two
but possibly multiple input solutions.

Incomplete algorithms

• Constructive search

• Local search

• Metaheuristics

Dynamic Programming
Mathematical Programming

Constraint Programming

Set of good-quality solutions

Figure 2.3 – Using complete techniques as post-optimization

For instance, Clements et al. (1997) present a hybrid column generation
approach to solve a production line scheduling problem. First, they propose
a specific heuristic, called Squeaky Wheel Optimization (SWO), to generate
a feasible solution to the problem. This procedure is run several times to
generate a set of diverse solutions. These solutions are then used as columns
of a set partitioning formulation for the problem, which is solved to optimal-
ity. Their reports show that a classical tabu search is outperformed by the
hybrid method proposed.

A similar approach for solving the TSP is studied by Applegate et al.
(1998). The authors first derive a set of different tours by repeatedly running
an ILS algorithm. Then, a strongly restricted graph is built based on the set
of edges traversed in these solutions. The TSP on this restricted graph is
then solved to optimality. Their empirical results indicate that the optimal
TSP solution found on this restricted graph is typically superior to the best
solution found by ILS alone.

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 31

In the same spirit, Klau et al. (2004) employ Integer Linear Programming
(ILP) as a post-optimization procedure for the Prize-collecting Steiner tree
problem. Here, they first run a memetic algorithm (MA), a population-based
metaheuristic that combines different search strategies, to generate a set of
solutions. Then, the ILP part consists in using an exact branch-and-cut
algorithm to produce a final solution given the solutions obtained by MA.

In some sense, Hu & Lim (2014) describe a similar search scheme for the
Team Orienteering Problem with Time Windows (TOPTW), but perform it
in an iterative manner. Precisely, their algorithm, called I3CH, first runs both
local search and simulated annealing to build a pool of good-quality solutions.
Then, it applies a recombination procedure to produce a better solution by
solving a set packing problem based on Mathematical Programming (MP).
Besides using MP as a post-optimization module, this approach also exploits
the solution recombined to determine a new starting point for the incomplete
search process. An enhanced version of I3CH is proposed in Su & Nan (2023)
for a variant of TOPTW, but using the same MP approach for the route
recombination procedure.

2.3.2 Integrative combinations
In integrative combinations using both incomplete and complete techniques,
one technique is embedded in another algorithm. In other words, there is a
master algorithm and at least one integrated slave module.

Numerous hybrid systems integrate incomplete search principles (slave
module) within complete algorithms (master module) to increase scalabil-
ity. For instance, incorporating randomness or heuristics during a back-
tracking search can make it more flexible and guided, yet may sacrifice the
completeness of the search (Harvey & Ginsberg (1995); Lynce & Marques-
Silva (2007)). Within tree-based search procedures, (meta)heuristics can be
used to guide the branching strategy (Crawford (1993); Benoist & Bourreau
(2003)). Also, incomplete search algorithms can be beneficial for improving
exact mathematical programming techniques, for instance, to compute better
bounds for branch-and-bound (Woodruff (1999); Lever (2005)), to provide
columns in column generation (Ribeiro Filho & Lorena (2000); Puchinger
& Raidl (2004)), or to generate cuts in Benders decomposition (Poojari &
Beasley (2009); Raidl et al. (2014)), to name just a few.

Here, our attention is shifted towards hybrid approaches where incom-
plete search algorithms serve as master components and complete techniques

32 CHAPTER 2. BACKGROUND & NOTATIONS

are used to improve the search performance. Prominent examples include,
but are not limited to, enhancements of the solution construction or local im-
provement procedures, special techniques for exploring large neighborhoods,
or intelligent recombination of good solutions. Each of these points is detailed
below.

Guiding the constructive search by look-ahead strategies In con-
structive search, one can exploit look-ahead enhancements commonly used
in the complete search to quickly avoid inconsistent or suboptimal search
spaces. Precisely, for the selection of the next solution component to be
added at every step, MP or CP can be used to make better decisions by
evaluating their long-term impacts rather than only using their direct con-
tribution to the value of the evaluation function (Figure 2.4).

Constructive search

Mathematical Programming
Constraint Programming

next solution component?
Long-term evaluations
Domain reduction

Figure 2.4 – Using complete techniques to guide constructive search

A common approach consists in solving problem relaxations, where con-
straints of the original problem are loosened or omitted. Information ob-
tained from the relaxed problem can be exploited to determine the next
promising moves or eliminate moves that possibly lead to suboptimal solu-
tions. Following such an idea, Maniezzo (1999) presents the Approximate
Nondeterministic Tree Search (ANTS) algorithm for the quadratic assign-
ment problem (QAP). In this work, the basic search scheme is based on
ACO but uses lower bounds as heuristic information to influence the prob-
abilistic decisions of the ants during the solution construction phase. These
bounds are computed by solving a relaxed linear assignment problem to es-
timate the completion cost of a partial solution. However, as a lower bound

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 33

must be computed at each construction step, the resolution of the relaxed
problem must have a very low computational complexity. Maniezzo & Car-
bonaro (2000) and Maniezzo et al. (2001) also show the good performance
of ANTS in other applications. Besides linear relaxations, bounds or dual
values obtained through Lagrangian relaxations are also exploited in several
works (Beasley (1990); Ribeiro et al. (2002c)).

In another direction, CP/SAT techniques can be employed to quickly
detect inconsistent decisions during the construction process based on the
set of constraints to be satisfied at the end. For CSPs, Prestwich (2002)
presents an incomplete algorithm combined with pruning techniques used in
systematic search. This algorithm called Incomplete Dynamic Backtracking
(IDB), constructs a solution by: (i) randomly picking unassigned variables
and assigning values to them; (ii) randomly unassigning k assigned variables
when a dead-end is reached, i.e. when reaching a configuration where the
current partial assignment cannot be further extended. This basic schema is
then enhanced by using forward checking to quickly prune decisions leading
to dead-ends. The approach also uses dynamic variable orderings based on
domain sizes to guide the selection of an unassigned variable at each step.
Another well-known example is the tight coupling between CP and ACO
proposed by Meyer (2008) and Solnon (2010). Here, CP is used to avoid the
construction of infeasible solutions during the construction phase of ACO,
while pheromone learning in ACO is used to guide the variable/value selection
in CP.

Enhancing constructive search by learning techniques Learning is
a popular technique used in complete tree search algorithms to increase the
efficiency in SAT/CSP solving. A prominent example is the nogood learn-
ing mechanism that was first introduced by De Kleer (1986) and Ginsberg
& McAllester (1994). Technically, a nogood is a constraint that can be ex-
tracted during search. It defines a combination of variable assignments that
cannot simultaneously be chosen due to the constraints of the problem. In-
tuitively, these nogoods record information about the search history and can
be used to avoid repeating the same decisions in the future. Based on this
concept, numerous works study the integration of learning modules within
constructive search algorithms to analyze the failures encountered and direct
the future search effort toward better solutions, as illustrated in Figure 2.5.

For example, Yokoo (1994) proposes the Weak Commitment Search algo-

34 CHAPTER 2. BACKGROUND & NOTATIONS

Constructive search

Constraint Programming

Learning module next solution component? Domain reduction

Dead-end

Nogood

Figure 2.5 – Using learning techniques to enhance constructive search

rithm for solving CSPs. The algorithm greedily constructs consistent partial
assignments, and when a dead-end is reached, it randomly restarts from
scratch rather than performing chronological backtracking. Nogoods are also
extracted and recorded to avoid the re-exploration of the same space. Sim-
ilarly, Richards & Richards (2000) present a Learn-SAT algorithm that in-
crementally constructs a solution to a CSP. The construction phase is also
guided by the nogood constraints recorded so far. Notably, the authors pro-
pose another procedure, called “learning-by-merging”, that uses the SAT
resolution mechanism on the clauses responsible for emptying a variable do-
main. The objective is to generalize nogoods learned at each dead-end in
order to prune larger parts of the search space. Next, in the work of Jussien
& Lhomme (2002), the authors design a decision-repair algorithm for CSPs
and apply it to open-shop problems. They use filtering algorithms when
completing a partial assignment. Once an inconsistency is found, they try to
extract conflicts and use learned clauses to choose the variable to be unas-
signed. This unassignment can be seen as a local search move to another
neighboring assignment. Also, Fang & Ruml (2004) present the Complete
Local Search that uses constraint learning for SAT solving. In principle,
they generate new clauses when reaching a local minimum. In particular,
the clauses generated are used to dynamically change the objective function
which guides the search.

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 35

Guiding local improvements Inference and learning techniques are ef-
fective for guiding not only constructive search (Figure 2.4) but also in the
context of local search. As an example, De Backer et al. (1997) present a
hybrid LS/CP approach for tackling the vehicle routing problem with side
constraints. For the CP model, they use decision variables nexti associ-
ated with each node i to indicate which node is visited after i. They apply
local search to assign values to these variables and exploit a CP solver at
each step to check the consistency of the current assignment as well as to
filter the domains of the remaining nexti variables (but not to search for solu-
tions). Notably, this approach is quite generic and can be applied to different
problem classes. Another example is the UnitWalk algorithm (Hirsch & Ko-
jevnikov (2005)) that combines local search and unit propagation for SAT
solving. In principle, the algorithm starts with a random initial assignment
and iteratively modifies it by flipping the truth value of Boolean variables.
The modification step using these ‘flip’ moves is enhanced with unit propa-
gation for early detection of inconsistency. Such a unit propagation is a key
technique used in complete SAT solving to eliminate branches in the search
tree that do not contain any model of the given formula. This is done by
propagating the logical consequences of atomic variable assignments to the
clauses of the model until no further unit clause is found or an inconsistency
is detected. In the latter case, the algorithm restarts using a slightly different
variable ordering and possibly a modified value ordering. Empirical results
show that UnitWalk achieves a better performance while performing fewer
‘flip’ moves compared to other contemporary incomplete SAT solvers.

Also, MP techniques can be exploited to guide the local improvement
procedure toward better search regions. As an example, Puchinger & Raidl
(2008) propose a variant of the VNS metaheuristic, called Relaxation Guided
VNS, for the multiple knapsack problem. Their main search strategy uses
different types of neighborhood structures. For each neighborhood Ni where
i ∈ {1, . . . , k}, they first solve a relaxed problem R(Ni) to obtain an objec-
tive value zi. These values are then used to determine the most promising
neighborhood to explore next, for example, a neighborhood whose index
i∗ ∈ argmin{zi | i ∈ {1, . . . , k}} yields the best improvement.

Exactly exploring large neighborhoods Large neighborhoods contain-
ing more solutions offer better chances to reach high-quality local optima, but
they require a considerable amount of time to scan and evaluate the whole

36 CHAPTER 2. BACKGROUND & NOTATIONS

set of neighbors. Hence, the bottleneck of local search in large neighborhoods
is the task of searching for a better (or even the best) neighboring solution.
In this line, a possible approach is to model the problem of searching for
the best neighbor as an optimization problem and solve it to optimality, in-
stead of enumerating or randomly sampling the neighborhood. As illustrated
in Figure 2.6, methods for solving these neighborhood search problems can
range from dynamic programming to MP or CP solvers.

Trajectory-based metaheuristics

• Iterative improvement

• TS, VNS, ILS, ...

Dynamic Programming
Mathematical Programming

Constraint Programming

Large neighborhoods Optimal neighbor

Figure 2.6 – Using complete techniques to explore large neighborhoods

Exactly exploring large neighborhoods based on CP For problems
involving complex side constraints, the feasible solution space may be small
but the neighborhood exploration may require a significant computational
effort since checking solution feasibility is expensive. To overcome this diffi-
culty, a well-known approach is to integrate CP techniques within incomplete
algorithms, as CP is efficient in constraint handling. This approach is partic-
ularly effective when the neighborhood is tightly constrained. In other words,
CP techniques are of interest when constraint propagation significantly re-
duces the search space, thus generating much fewer feasible neighbors than
traditional incomplete algorithms. In the following, we summarize two main
possibilities to explore neighborhoods using CP, depending on how the neigh-
borhood search problem is formulated.

The first approach is introduced by Pesant & Gendreau (1996, 1999)
for the TSP with time windows (TSPTW) and a scheduling problem. Subse-
quent works are also described by Backer et al. (2000) and Shaw et al. (2002)

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 37

for other problem benchmarks. In a generic manner, a high-level sketch of
this approach is described in Algorithm 2.11. The latter is similar to the
best-improvement strategy in local search except that the best neighbor is
determined using complete techniques. The key point here is to define a CP
problem P(s) modeling the full exploration of neighborhood N (s) given the
current complete solution s (Line 4). Concretely, every feasible solution to
this CP problem must correspond to a valid move in the neighborhood graph.
Then, this CP problem can be solved to optimality (Line 5), and the optimal
solution obtained is selected as the next neighbor in case of improvement
(Line 6).

Algorithm 2.11: Best neighborhood search
1 s← generateInitialSolution()
2 s∗ ← s
3 while termination conditions not met do
4 P(s)← an optimization problem defined on the neighborhood

N (s)
5 s∗ ← solve(P(s))
6 if g(s) < g(s∗) then s∗ ← s

7 return s∗

The second possibility to explore neighborhoods using CP was first pre-
sented by Shaw (1998). The corresponding approach is commonly known
as Large Neighborhood Search (LNS), whose neighborhood is implicitly de-
fined by a destroy and repair method. Its generic template is given in Algo-
rithm 2.12. In the destroy phase, the idea is to destruct a part of the current
solution. This is done by keeping a fragment sp of the current solution s (i.e.,
keeping the value assignment for a subset of variables) and erasing the values
of the other variables in r = s\sp, called the free segment (Lines 4-5). Then,
in the repair phase, the algorithm attempts to improve the destroyed solution
while respecting the fixed values of variables in sp. The solution is repaired
by using either a construction heuristic or a general-purpose solver like a
MIP or CP solver. For the latter case, the neighborhood search problem
can be defined by searching r∗ the optimal assignment for the free segment
given that sp (the fixed part) cannot be altered (Lines 6-7). An optimal
repair method will be slower than the heuristic one, but may potentially
produce high-quality solutions in fewer iterations. One of the first examples

38 CHAPTER 2. BACKGROUND & NOTATIONS

of such a search scheme is the shuffle heuristic for the job-shop scheduling
problem proposed by Applegate & Cook (1991). It consists in defining a
partial solution by leaving the sequence fixed for a few machines and solv-
ing to optimality the scheduling subproblem for the remaining machines. In
the literature, this technique is applied to various optimization problems,
such as scheduling problems (Caseau & Laburthe (1996); Nuijten & Le Pape
(1998)), quadratic assignment problems (Mautor & Michelon (1997)), and
vehicle routing problems (Shaw (1998)).

Algorithm 2.12: Large Neighborhood Search
1 s← generateInitialSolution()
2 s∗ ← s
3 while termination conditions not met do
4 r ← selectFreeSegment()
5 sp ← s \ r i.e. remove the values of the variables in r
6 P(r)← a search problem defined over the variables r
7 r∗ ← solve(P(r))
8 s← sp ∪ r∗ i.e. join two partial solutions to form a complete one
9 if g(s) < g(s∗) then s∗ ← s

10 return s∗

Exactly exploring large neighborhoods based on MP Similarly to
CP, MP techniques are also used to effectively explore large neighborhoods
as in both Algorithms 2.11 and 2.12. In fact, the neighborhood search prob-
lem can be modeled using mixed-integer programming (MIP), and a MIP
solver can be applied to find an optimal neighboring solution. For example,
Duarte et al. (2007) adapt the idea of Algorithm 2.11 by integrating MIP
within an ILS metaheuristic for the referee assignment problem. Here, a
MIP solver is used to replace a local search procedure based on swap and
replace moves. Similarly, Prandtstetter & Raidl (2008) use Integer Linear
Programming (ILP) techniques within a general VNS framework to examine
large neighborhoods for the car sequencing problem. Also, Hu et al. (2008)
describe a hybrid VNS to solve the generalized minimum spanning tree prob-
lem, where a MIP solver is used to optimize local parts within candidate
solutions, using a procedure that is somewhat close to Algorithm 2.12.

2.3. HYBRID COMPLETE/INCOMPLETE APPROACHES 39

Exactly exploring large neighborhoods based on DP Other works
showcase the effectiveness of dynamic programming for exploring neighbor-
hoods having an exponential size. One example is the dynasearch algorithm
first proposed by Potts & van de Velde (1995). Consider, for instance, the
application of dynasearch to the single-machine scheduling problem, whose
objective is to find a processing order of n jobs on one machine so as to
minimize a given cost function (e.g., total tardiness, makespan, etc.). In
this case, a simple neighborhood is defined by the swap move, also called
two-exchange move. If a solution is represented as a permutation of n jobs
π = (π1, . . . , πn), then a neighboring solution can be obtained by swapping
two objects (πi, πj) from π. Rather than applying a single swap move at
each iteration, a dynasearch swap move corresponds to a series of pairwise
independent swap moves. Thanks to the independence of each swap move,
it is possible to define a recursive enumeration algorithm based on DP such
that the resulting exploration is polynomial in time and space. Dynasearch is
commonly applied to problems where solutions are represented as permuta-
tions, including the TSP and the linear ordering problem (Congram (2000)),
the single machine total weighted tardiness problem (Congram (2000); Con-
gram et al. (2002); Grosso et al. (2004)), and a time-dependent variant of it
(Angel & Bampis (2005)). A general observation is that dynasearch is gen-
erally faster than a standard best-improvement descent algorithm and may
return slightly better solutions.

Another popular example is the Very Large-Scale Neighborhood search
(VLSN) introduced by Ahuja et al. (2000a, 2001). In these works, the authors
consider cyclic and path exchange neighborhoods for tackling problems that
can be formulated as kinds of set partitioning problems. Several examples
of such problems include graph coloring, vehicle routing, scheduling, and
so on. Basically, the primary objective is to seek a partition of items into
disjoint subsets while minimizing a specific cost function. Then, a cyclic
exchange move between k subsets {T1, . . . , Tk} is formally represented as a
cyclic permutation π of length k, where πi = j means that an element j ∈ Ti
moves to subset Ti+1 (or T1 if i = k). The authors then reformulate the search
problem within this neighborhood as a problem of finding the shortest path
in a directed graph. The latter is solved by using a dynamic programming
algorithm, and the optimal solution obtained exactly corresponds to the best
neighbor in the space of cyclic exchange moves. A detailed survey of VLSN
is presented by Ahuja et al. (2002).

Furthermore, Gillard & Schaus (2022) present a novel method that ex-

40 CHAPTER 2. BACKGROUND & NOTATIONS

ploits Decision Diagrams (DD) within LNS to solve combinatorial optimiza-
tion problems having a dynamic programming formulation. The authors
design a generic neighborhood exploration procedure by reusing the idea of
restricted Decision Diagrams introduced by Bergman et al. (2016b). Intu-
itively, to avoid memory explosion, only a subset of feasible but promising
solutions is kept and represented in such a restricted DD. Then, the optimal
path (i.e. with the shortest length) of the resulting DD can be computed
to get the new current solution in LNS. The effectiveness of this approach
is shown on two sequencing problems: TSPTW and a production planning
problem.

Merging solutions Efficiently merging solutions, which may be seen as
exploring a large neighborhood defined by two or more solutions, can also be
achieved using complete techniques. Several approaches following this idea
have already been presented in Section 2.3.1, but in a sequential architecture.
Here, we particularly consider approaches where complete techniques are
exploited iteratively within a metaheuristic. For example, in population-
based metaheuristics, complete techniques can be used to find the optimal
offspring (Figure 2.7).

Population-based
metaheuristics

• Evolutionary algorithms

Dynamic Programming
Mathematical Programming

Large set of offsprings Optimal offspring

Figure 2.7 – Using complete techniques as search components in population-
based metaheuristics (e.g., crossover, mutation)

As an illustration, Aggarwal et al. (1997) suggest such an optimized
crossover operator to replace the classical crossover operator in EAs for the
independent set problem. Ahuja et al. (2000b) present a matching-based
optimized crossover for a genetic algorithm used for solving the quadratic

2.4. CONCLUSION 41

assignment problem. Similarly, Cotta & Troya (2003) apply B&B as an
operator embedded in an EA for identifying the optimal offspring. The opti-
mal merging of solutions can also be computed using dynamic programming,
for example, for solving the k-cardinality tree problem as proposed by Blum
(2006). From a theoretical point of view, Eremeev (2008) studies the compu-
tational complexity of producing the best possible offspring from two parental
solutions having binary representations.

2.4 Conclusion
This chapter provided basic foundations for the subsequent chapters with
a particular focus on several well-known hybrid complete/incomplete ap-
proaches available in the literature for tackling combinatorial optimization
problems. Globally, designing and implementing hybrid techniques can be
rather complicated. It requires deep knowledge about a broad spectrum
of algorithmic techniques, programming, and data structures. For further
details, we refer the reader to a precise overview of hybridization between in-
complete algorithms and constraint programming (CP) provided by Focacci
et al. (2003), or the survey on promising combinations of metaheuristics and
integer linear programming (ILP) techniques provided by Puchinger & Raidl
(2005).

Overall, incomplete techniques are often preferred in practice when deal-
ing with large-size problems thanks to their effectiveness. Numerous ad-
vanced hybrid approaches are also proposed to further improve the perfor-
mance, yet selecting appropriate techniques for each specific problem and
optimizing their parameters are crucial for achieving satisfactory results.
These challenges motivated our study on the enhancement of existing incom-
plete approaches for combinatorial optimization problems and particularly
for routing problems with profits, which are our target applications. These
latter problems will be presented in the next chapter.

42 CHAPTER 2. BACKGROUND & NOTATIONS

CHAPTER 3

Orienteering Problem and its
variations: A case study

Among numerous combinatorial optimization problems, we are specifically
interested in routing problems with profits, especially those related to the
problem of Earth Observation Satellite scheduling. Essentially, this problem
can be viewed as a variant of a routing problem where a profit is associated
with each customer. The primary objective here is to find an optimal sched-
ule, which means to find an order to visit a subset of customers and maximize
the profits acquired in the end.

For the sake of clarity, we first provide an overview of the routing problem
with profits. Then, we dive into the orienteering problem, a specific problem
class within this family that has received a lot of attention in the litera-
ture. Additionally, we discuss typical variations of the orienteering problem,
highlighting their applicability in modeling diverse real-life scenarios in the
context of satellite scheduling. For each problem variation, we also summa-
rize various approaches proposed in the literature, in particular incomplete
algorithms that can handle large-scale problem instances.

3.1 Routing problems with profits

The Traveling Salesman Problem (TSP) is a classic optimization problem
whose objective is to find an optimal route to serve a set of customers. The
Vehicle Routing Problem (VRP) is a generalization of the TSP using a fleet

43

44 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

of vehicles instead of just one salesperson. In practice, modeling and solv-
ing real-world VRPs is particularly challenging, as their applications in real
contexts often involve complex constraints and objectives to reflect customer
demands and preferences. Various extensions or variants of the VRP were
proposed to make it more realistic and applicable. Among them, many prac-
tical problems can be modeled appropriately as routing problems with profits,
whose objective is to maximize the total profit collected by visiting the cus-
tomers rather than minimizing the total cost (distance or travel time). This
variant can be applied to various real-life scenarios where each potential des-
tination has a different value or reward associated with it.

Basically, routing problems with profits can be classified based on how
the profit and the travel cost (distance or time) are modeled. As presented
in Feillet et al. (2005), in the case of a single vehicle (namely the TSP with
profits), three generic problems can be distinguished.

• The Profitable Tour Problem (PTP) (Dell’Amico et al. (1995)) com-
bines both profits and travel costs in the objective function. Each com-
ponent can be weighted differently to reflect its relative importance.

• The Prize-Collecting TSP (PCTSP) (Balas (1989)) aims to minimize
the total travel cost while ensuring that at least a certain amount of
profit is collected. In this case, the profit aspect is seen as a constraint.

• The Orienteering Problem (OP) (Golden et al. (1987)) focuses on max-
imizing the total collected profit while not exceeding a given travel cost.
In this type of problem, the travel cost is seen as a constraint.

As shown in Figure 3.1, the OP and its variants appear to be the most
studied problem among other routing problems with profits in the literature.
At first glance, the OP is relatively similar to the regular routing problems
(e.g., TSP or VRP) where a route visiting customers needs to be optimized.
Yet, two crucial differences should be considered since they make solving an
OP significantly different and more time-consuming.

• In an OP, the selection of customers is optional. In fact, each customer
has a certain profit and requires a certain amount of time to be visited.
Due to the limited time budget, only a subset of customers can be
selected while the goal is to maximize the total profit. This selection is
related to the well-known knapsack problem (KP) (Salkin & De Kluyver
(1975)) but is more complex. This is because the time required to visit

3.1. ROUTING PROBLEMS WITH PROFITS 45

Figure 3.1 – Number of publications per year with keywords: “Profitable
tour problem”, “Prize-collecting TSP”, “Orienteering Problem”

a customer depends on which other customers are selected and in which
order.

• In an OP, the objective is to maximize the total profit collected. This
implies that finding the shortest route in the OP is not an objective
in itself. However, reducing travel times may help to visit an extra
customer or replace a visited customer with another one having a higher
profit. Overall, different solutions having the same profit but different
travel costs are considered equally good.

From Figure 3.2, we observe that the orienteering problem has numer-
ous applications across various domains. Representative examples include,
but are not limited to: home fuel delivery (Golden et al. (1987)), telecom-
munication networks building (Thomadsen & Stidsen (2003)), tourist trip
planning (Souffriau et al. (2008)), military application (Wang et al. (2008)),
or satellite scheduling problems (Peng et al. (2019)). Several variants may
require additional sets of specific constraints and/or different objective func-
tions in order to model real-life scenarios, for example: budget limitations,
uncertain profits, combinations of visits increasing or decreasing the sum of
profits, traffic congestion, time-dependent preferences, and so on.

46 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

Figure 3.2 – The number of publications in each research category with the
keyword “orienteering problem”

Technically, the orienteering problem is difficult to solve because it com-
bines two NP-hard problems: the traveling salesman problem and the knap-
sack problem, which are both already difficult problems on their own. More-
over, the time-dependent aspects or side constraints such as time window
constraints can make the problem even harder to solve. In such cases, the
search space becomes very complex, and finding an optimal solution requires
exploring many possible combinations of both selections and sequencing de-
cisions. In the following, we focus on providing formal definitions as well as
well-known solution approaches for the OP and several typical variations.

3.2. OP VARIANTS & SOLVING APPROACHES 47

3.2 OP variants and solving approaches

3.2.1 Classical OP
Problem definition In the classical Orienteering Problem (OP), the ob-
jective is to find a route that maximizes the total collected profit while re-
specting the travel cost constraint.

The OP can be formally defined as follows. Consider I = {0, . . . , N+1} a
set of nodes (customers) that can be visited, where 0 and N+1 are considered
as the source and sink depots (or the start and end nodes). Each node
i ∈ I is associated with a non-negative reward (or profit) Ri (each depot has
zero profit R0 = RN+1 = 0). A non-negative travel cost (time or distance)
between nodes i and j is denoted as tt(i, j) for each pair of distinct nodes
i ∈ I, j ∈ I. In general, travel costs are assumed to satisfy the triangular
inequality: ∀i, j, k ∈ I, tt(i, j) + tt(j, k) ≥ tt(i, k). Intuitively, for any three
distinct nodes i, j, k ∈ I, the direct route from i to j is never longer than
any detour through an intermediate node k. Besides, a visit duration di
can be considered for each node i ∈ I, however, we assume that these visit
durations are already included in the travel costs. This assumption holds for
all variants of OP considered in the following.

In an OP, each node can be visited at most once. A solution of the
OP is a sequence σ = [i0, . . . , iq+1] that starts and ends at the two depots
(i0 = 0, iq+1 = N+1), and visits a subset of distinct nodes S = {i1, . . . , iq} ⊆
{1, . . . , N}. A solution is feasible if and only if the total travel cost does not
exceed Tmax, a predefined limited budget (e.g., total travel duration). Then,
the goal is to find an optimal solution σ∗, which is feasible and maximizes
the total reward collected (i.e. ∑

i∈σ Ri).

Solution approaches Since OP is proven as NP-hard in the work of
Golden et al. (1987), no polynomial time algorithm has been designed to
solve this problem to optimality, or is expected to be designed assuming that
P 6= NP (Garey & Johnson (1979)). Several exact algorithms were proposed
by Laporte & Martello (1990); Gendreau et al. (1998a); Feillet et al. (2005) to
solve the OP, yet they are very time-consuming when dealing with large-size
instances in practical applications. In these cases, incomplete approaches
(heuristics or metaheuristics) are usually preferred.

More specifically, various heuristics can be used to tackle the OP, such as

48 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

the stochastic and the deterministic heuristic (Tsiligirides (1984)), the center-
of-gravity heuristic (Golden et al. (1987)), the four-phase heuristic (Ramesh
& Brown (1991)), or the five-step heuristic (Chao et al. (1996a)). Gendreau
et al. (1998b) give a few reasons why it is so difficult to design good heuristics
for the OP. One of them is because the score of a node and the time to reach
this node are independent. This makes it difficult to determine which node
will be part of the optimal solution.

Furthermore, there exist different (hybrid) metaheuristics proposed to ef-
ficiently solve the OP. For example, Schilde et al. (2009) develop a solution
approach for a bi-objective OP using a Pareto ACO and a multi-objective
VNS, both hybridized with path relinking. Şevkli & Sevilgen (2010); Şevkli &
Sevilgen (2010) introduce different variants of the Particle Swarm Optimiza-
tion (PSO) algorithm. Other advanced metaheuristics include the Multi-
Level VNS (Liang et al. (2013)), the GRASP-PR (Campos et al. (2014)) or
the Memetic-GRASP (Marinakis et al. (2015)).

3.2.2 Team variant
Problem definition The extension of the OP to multiple vehicles is known
as the Team Orienteering Problem (TOP) (Chao et al. (1996b)) or Multiple
Tour Maximum Collection Problem (MTMCP) (Butt & Cavalier (1994)).
The goal is to determine a set of M routes {σ1, . . . , σM}, given that:

(i) each node can be visited at most once,

(ii) every route σm must not exceed a limited travel cost (and must respect
custom constraints if there exist some),

(iii) the objective is to maximize the total collected profit across the set of
routes, i.e. maximize ∑M

m=1
∑
i∈σm

Ri.

It should be noted that the M routes can have different Tmax,m limited
travel costs. For the sake of simplicity, we assume that Tmax is the same for
all routes.

Solution approaches By considering multiple vehicles, the number of de-
cision variables and constraints increases significantly. For solving a TOP,
only a few exact algorithms were developed, using column generation (Butt

3.2. OP VARIANTS & SOLVING APPROACHES 49

& Ryan (1999)), branch-and-price (Boussier et al. (2007)), branch-and-cut-
and-price (Poggi et al. (2010)), or branch-and-cut (Dang et al. (2013a)).

Due to the complexity of the problem, the research on TOPs mainly
focuses on heuristic algorithms. Compared to OP, computational times for
the TOP heuristics are significantly higher. This is because TOP heuristics
should consider the transfers of nodes from one route to another, the grouping
of nodes together, and the exploitation of the time budget in each route.

A first heuristic for the TOP is introduced by Chao et al. (1996b). This
heuristic is relatively similar to a five-step heuristic defined for the OP by
Chao et al. (1996a). Tang & Miller-Hooks (2005) develop a tabu search
heuristic embedded in an Adaptive Memory Procedure that alternates be-
tween small and large neighborhoods. Archetti et al. (2007) present a slow
and a fast VNS. They also introduce two variants of tabu search: one that
explores only feasible search regions and another that explores unfeasible
search regions. ACO is also used to solve TOP instances in the work of Ke
et al. (2008) by applying different methods to construct feasible solutions.
Next, a TOP can be solved using GLS (Vansteenwegen et al. (2009b)) and
Skewed VNS (Vansteenwegen et al. (2009a)). The latter can obtain good
TOP solutions in only a few seconds of computational time. Souffriau et al.
(2010) propose a hybrid GRASP-PR algorithm, where PR is used to build a
new hopefully improved solution. Another hybrid algorithm, called Memetic
Algorithm (MA), is proposed by Bouly et al. (2010). This algorithm com-
bines GA and some LS techniques. Other advanced metaheuristics for the
TOP include the Discrete PSO (Muthuswamy & Lam (2011)), PSO-inspired
algorithms (Dang et al. (2011, 2013b)), the Multi-Restart Simulated Anneal-
ing (Lin & Kernighan (1973)), the Genetic Algorithm (Ferreira et al. (2014)),
the Pareto Mimic Algorithm (Ke et al. (2016)), and so forth.

3.2.3 Time windows
Problem definition The time window constraints arise in the context
where the service at a particular node has to start within a predefined time
window. This leads to two well-studied variants of the OP, namely the OP
with Time Windows (OPTW) (Kantor & Rosenwein (1992)) and the TOP
with Time Windows (TOPTW) (Labadie et al. (2012)).

It is also worth noting that some nodes may have multiple time win-
dows (Tricoire et al. (2010); Souffriau et al. (2013); Lin & Vincent (2015)).
A straightforward way to model this problem is that each node can be du-

50 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

plicated based on the number of time windows. Then a constraint must be
added to make sure that no duplicate nodes are simultaneously visited.

Formally, each node i ∈ I has a time window [Oi, Ci], and a solution
σ is feasible if and only if every node is visited within its time window.
It is important to note that each time window constraint always restricts
the start of the service, not the entire service. In other words, an early
arrival to a particular node i leads to waiting times until the opening date
Oi. Meanwhile, a late arrival (i.e., service starting after the closing date Ci)
causes an infeasibility issue. However, the service is allowed to start before
the closing date and finish after the closing date. Therefore, the service time
should be modeled appropriately and a straightforward way to do that is to
include the service times in the travel times.

Solution approaches Only a few exact algorithms are available to solve
OPTW. For example, Righini et al. (2006) design a bi-directional dynamic
programming algorithm to solve OPTW instances to optimality. Righini &
Salani (2009) also present an enhanced version, called Decremental State
Space Relaxation (DSSR), which helps reduce the number of states to be ex-
plored. Another approach is proposed by Duque et al. (2015) using a so-called
pulse framework. Precisely, this algorithm is inspired by an exact method
for shortest path problems with side constraints and incorporates problem-
specific knowledge from the OPTW. This pulse framework empirically out-
performs DSSR on highly constrained OPTW instances. Nevertheless, these
approaches become quite ineffective when dealing with less constrained in-
stances from Montemanni et al. (2011), even in the case of a single vehicle
(OPTW). For the team variant (TOPTW), several works apply mathemat-
ical programming (Tae & Kim (2015); El-Hajj et al. (2015); Hapsari et al.
(2018)) or constraint programming (Gedik et al. (2017)) to solve the problem
to optimality, but until now, there are not many exact methods proposed for
this problem variant.

Regarding incomplete methods, Kantor & Rosenwein (1992) describe a
straightforward insertion heuristic to solve OPTW, where the node with the
highest ratio “score over insertion time” is inserted into the current route
at each step, while respecting the time window constraints. Mansini et al.
(2006) develop a simple constructive heuristic and a VNS-based approach for
the OPTW. Moreover, numerous (meta)heuristic techniques are developed
for solving both OPTW and TOPTW. Vansteenwegen et al. (2009c) intro-

3.2. OP VARIANTS & SOLVING APPROACHES 51

duce an ILS framework to effectively solve TOPTW within a short amount of
time. Another hybridization between GRASP and evolutionary local search
(ELS) is proposed by Labadie et al. (2011). Here, five simple constructive
heuristics are used in GRASP for generating distinct initial solutions that are
further improved by the ELS algorithm. Gambardella et al. (2012) propose
an enhanced Ant Colony System (ACS) to overcome the drawbacks of the
ACS they designed earlier (Montemanni et al. (2011)). Also, Lin & Vincent
(2012) study the SA algorithms for TOPTW. Gavalas et al. (2013) focus on
the tourist trip design problem (TTDP) as an application of TOPTW. They
solve it with two clustered-based algorithms that extend ILS with cluster-
based heuristics for the construction phase, where nodes are grouped into
disjoint clusters based on geographical criteria. Hu & Lim (2014) propose
the I3CH framework that is based on LS and SA to explore the solution
space. Then, a Route Recombination procedure (using Mathematical Pro-
gramming) is invoked to produce the best combination of paths explored so
far. An enhanced version of I3CH is proposed by Su & Nan (2023) for solv-
ing a variant involving multiple deliverymen. Cura (2014) study an Artificial
Bee Colony approach with SA as an acceptance criterion. Gunawan et al.
(2015a,c) propose an ILS algorithm for solving (T)OPTWs and use multiple
operators in the local search phase. A well-tuned algorithm called SAILS is
presented by Gunawan et al. (2015b). In this work, using SA helps escape
from a local optimum by accepting a worse solution with a small probability.

Regarding the multiple time windows variants, Tricoire et al. (2010) study
a variant of OP, namely Multi-period OP with multiple TW (MuPOPTW)
for a real industrial case. The multi-period aspect means that each customer
node may have different time windows for each given day. To solve this
problem, they propose a constructive heuristic and a VNS metaheuristic. In
general, VNS provides good solutions although it requires more computation
time. Souffriau et al. (2013) present a hybrid of GRASP and ILS, namely
GRILS. This approach is used to tackle the Multi-Constraint Team Orien-
teering Problem with Multiple Time Windows (MC-TOP-MTW), a complex
variant of the TOPTW. In this problem, a certain number of additional
knapsack constraints are included in the problem. As there are no bench-
mark instances for the MC-TOP-MTW, the performance of the algorithm
proposed is evaluated by using three related problems, the TOPTW, the Se-
lective Vehicle Routing Problem with Time Windows (SVRPTW) (Boussier
et al. (2007)) and the Multi-Constraint Team Orienteering Problem with
Time Windows (MC-TOPTW) (Garcia et al. (2013)). Last, Lin & Vincent

52 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

(2015) propose two versions of SA with a restart strategy to solve the MC-
TOP-MTW variant.

3.2.4 Time-dependent travel times
Problem definition In the OP, the travel time between two given nodes
is assumed to be a static value. However, in many practical situations, the
travel time actually depends on the network properties, such as rush hours,
congestion levels, construction zones on certain links, and so on, which may
affect the travel time between two nodes. The OP variant where the travel
time between two nodes depends on the departure time at the first node is
called the Time Dependent OP (TDOP) (Fomin & Lingas (2002); Verbeeck
et al. (2014)). Another variant called Time Dependent OP with Time Win-
dows (TDOPTW) (Verbeeck et al. (2013)) considers the time window con-
straints for the nodes. Furthermore, considering multiple vehicles or paths
can lead to another variant, called the Time Dependent Team OP with Time
Windows (TDTOPTW) (Garcia et al. (2013)).

Formally, to move from node i ∈ {0, 1, . . . , N} to node j ∈ {1, . . . , N+1},
a minimum transition time tt(i, j, τ) is required, where τ is the departure time
from node i. This formulation allows us to consider the cases where the tran-
sition time between two locations depends on the conditions (e.g., congestion
or rush hours) that vary throughout the day. Transition function tt usually
satisfies the FIFO property according to which the earlier a transition starts,
the earlier it ends, i.e. τ + tt(i, j, τ) ≤ τ ′ + tt(i, j, τ ′) for τ ≤ τ ′. It may also
satisfy the triangular inequality, i.e. tt(i, j, τ)+ tt(j, k, τ ′) ≥ tt(i, k, τ), where
τ ′ = τ + tt(i, j, τ).

Solution approaches Verbeeck et al. (2014) propose an algorithm to
solve TDOP based on the combination of an Ant Colony System (ACS) with a
time-dependent local search procedure. Gunawan et al. (2014) study the real-
life TDOP application where the goal is to provide automatic tour guidance
to a large leisure facility. They use four different metaheuristics: a restart
greedy heuristic, a restart Variable Neighborhood Descent, a basic version of
ILS, and a modified ILS with adaptive perturbation size and probabilistically
intensified restart.

Besides, Garcia et al. (2010) study an application of the TDOPTW, called
the Personalized Electronic Tourist guide (PET). Here, the public trans-
portation infrastructure that influences the travel time between two nodes

3.2. OP VARIANTS & SOLVING APPROACHES 53

is incorporated. A hybrid algorithm combining two heuristics is used to
solve the problem. The first heuristic focuses on the calculation of the aver-
age travel time between all pairs of nodes, while the second one implements
ILS (Vansteenwegen et al. (2009c)). Similarly, the tourist trip design problem
(TTDP) in a large urban area is formulated as a TDOPTW and then solved
with GA in the work of Abbaspour & Samadzadegan (2011). Also, a fast
ACO algorithm is proposed by Verbeeck et al. (2013) to solve the TDOPTW.

Furthermore, Garcia et al. (2013) adapt ILS to deal with a TD-TOPTW
concerning a real case study for the city of San Sebastian. Also, Gavalas
et al. (2014) extend a previous work (Gavalas et al. (2013)) to solve the
TD-TOPTW using cluster-based algorithms.

3.2.5 Other variants
Over past years, numerous variants of OP were presented and discussed in
the literature, including but not limited to:

• Generalized OP (Wang et al. (1996); Geem et al. (2005); Wang et al.
(2008)) where the objective function is a more complicated (non-linear)
function of the nodes visited.

• OP with compulsory vertices (Gendreau et al. (1998a)), where a subset
of nodes has to be visited.

• OP with stochastic profits (Ilhan et al. (2008)), whose goal is to max-
imize, within a time limit, the probability of collecting more than a
specified target level.

• Bi-objective OP (Schilde et al. (2009)), where one objective is to achieve
more rewards and the other objective is to gain more free time.

• Capacitated TOP (Archetti et al. (2009)), where a non-negative de-
mand is associated with each node and the total demand covered by
each route cannot exceed a given capacity. In many real-life appli-
cations, the capacity of each vehicle is indeed an issue to take into
account.

• Clustered OP (Angelelli et al. (2014)), where nodes are clustered in
groups. A generalization is the Set OP (Archetti et al. (2018)), where
a profit is associated with each cluster.

54 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

• OP with variable profits (Erdoǧan & Laporte (2013)) or time-dependent
profits (Yu et al. (2019); Peng et al. (2019); Khodadadian et al. (2022)),
where profits are not simply static values.

3.3 Application to the aerospace domain
Over the last decades, variants of the OP have been widely used to model
many practical problems in logistics or tourism. More recently, OP variants
have also been used to address applications in the aerospace domain, in
particular for planning activities of Earth Observation Satellites (EOSs).

Basically, an EOS (Bensana et al. (1999a)) is designed to collect images
through its sensors and is widely used in many important fields, such as nat-
ural disaster monitoring or cartography. Precisely, the mission of observation
satellites is to capture images over specific targets on the Earth’s surface at
the request of different users including governments, research institutes, and
companies. In this context, each request generates a profit associated with
each observation. This profit can be related to the quality and resolution of
the images captured. Moreover, for non-geostationary satellites, the obser-
vation targets are not permanently visible due to the rotation of the satellite
around the Earth. More specifically, for a candidate ground target i, the time
frame during which the satellite overflies target i over a given orbit around
the Earth corresponds to a time window for target i. Also, to observe a tar-
get, the instrument of the EOS must be pointed to that target, and between
two consecutive observations, the EOS must perform a maneuver to change
its orientation. Such a maneuver requires some transition time between the
two observations. By analogy with the OPTW, a single satellite can be seen
as a vehicle that tries to visit some customers (i.e., ground targets) within
their predefined time windows. Due to temporal constraints and/or an ex-
cessive number of requests, it is often not possible to observe all the targets,
and each target captured yields a distinct profit. In the end, the primary
goal is to maximize the cumulative profit obtained at the end of the orbit
while satisfying the operational constraints.

One step further, the Agile EOS (AEOS) (Lemaıtre et al. (2002)) is a
new generation of EOS that can maneuver around its gravity center along
the three axes (roll, pitch, and yaw), while moving on its orbit. Compared
to a non-agile EOS maneuverable only on the roll axis, an AEOS offers more
flexibility to perform the observation tasks. Indeed, as illustrated in Figure

3.3. APPLICATION TO THE AEROSPACE DOMAIN 55

Figure 3.3 – An agile satellite captures images over a target at different start
times on its orbit (source: Peng et al. (2019))

3.3, the mobility along the roll angle allows the satellite to point on the left
or right, and the maneuverability along the pitch angle allows the satellite to
observe targets by pointing forward or backward. As illustrated in Figure 3.4,
the agility of AEOS also leads to crucial points in terms of routing problems.

• First, the minimum transition time required to adjust the viewing angle
between consecutive observations is not constant. Rather, it strongly
depends on the end time (or the start time) of the previous observation,
thus being time-dependent.

• Second, when capturing images of targets, the viewing angle of the
instrument also affects the quality of the images captured. For instance,
the images captured over Toulouse in Figure 3.4a may have a worse
quality than the one captured in Figure 3.4b. In other words, the profit
gained also depends on the time at which the acquisition is performed.

As a result, the problem obtained for this scenario can be modeled as an
OP with time-dependent transition times, time-dependent profits, and time
windows (TDOP-TDPTW) (Peng et al. (2019, 2020)).

56 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

(a) (b)

Figure 3.4 – An illustration of two consecutive acquisitions over Paris and
Toulouse at different observation start times; the transition time on the left
is shorter than the transition time on the right

Besides, practical satellite scheduling problems involve other complex op-
erational constraints concerning, for example, the image download process
or the onboard memory limitations (Rojanasoonthon et al. (2003); Liu et al.
(2017)). These constraints may also impact the performance of the remote
sensing systems but they are out of the scope of this thesis.

Figure 3.5 – An existing plan of activities (red line) needs to be revised during
a cloudy day

In practice, the problem becomes more challenging in an uncertain con-
text, where input data may change at the last minute. For instance, the

3.4. CONCLUSION 57

reward associated with each acquisition can be impacted by changes in the
weather forecast (Liao & Yang (2007); Wang et al. (2015); Povéda et al.
(2019)). As illustrated in Figure 3.5, during cloudy days, the images cap-
tured over a region have poor quality, which induces a reduction in their
rewards. In such scenarios, the existing plan may no longer be good enough,
and it can be useful to optimize again the sequence of observations to be per-
formed. Moreover, the time available for re-planning is often limited, which
makes the problem more complicated.

3.4 Conclusion
This chapter provides an overview of the orienteering problem and its typical
variants. Benchmark instances of these variants are also available online. 1, 2

For further details, we refer to the surveys of Vansteenwegen et al. (2011);
Gunawan et al. (2016); Vansteenwegen & Gunawan (2019). Overall, we ob-
serve that many researchers have extended their works beyond the classical
OP by considering more complex features, such as correlated nodes, non-
linear objective functions, multiple time windows, and so on. Some variants
have not received much attention but are relevant for practical applications
in the aerospace domain, such as time-dependent variants like TDOP or TD-
TOPTW which are essential for capturing real-world scenarios. For these
variants, being able to model congestion issues is a crucial requirement for
the solving techniques before they can be implemented in practice.

Concerning solving techniques in the literature, there exists a large num-
ber of incomplete methods but relatively few hybrid complete/incomplete ap-
proaches for efficiently solving different large-scale OP variants. Meanwhile,
the idea of hybridizing incomplete algorithms with complete techniques has
become more and more popular over the past years. Hence, our studies
presented in the following chapters of this thesis mainly focus on exploring
such hybrid approaches with the aim of enhancing the (meta)heuristic search
algorithms. The effectiveness of these approaches is demonstrated by deal-
ing with several variants of orienteering problems and then focusing on a
practical use case related to Earth Observation Satellites.

1https://www.mech.kuleuven.be/en/cib/op
2https://www.hds.utc.fr/~moukrim/dokuwiki/en/top

https://www.mech.kuleuven.be/en/cib/op
https://www.hds.utc.fr/~moukrim/dokuwiki/en/top

58 CHAPTER 3. ORIENTEERING PROBLEM & ITS VARIATIONS

Part II

Contributions

59

CHAPTER 4

Integrating clause learning
to incomplete search

In this chapter, we describe our first contribution, which aims to enhance
metaheuristics for the OP and its variants by incorporating an external and
long-term memory module. Precisely, we consider several types of conflicts
that can be extracted during search and study how to effectively manage
these conflicts. These conflicts are then reused to prune neighborhoods or
diversify the search by answering queries formulated by the incomplete search
process. We show the effectiveness of this framework with an application to
the Orienteering Problems with Time Windows (OPTW).

The rest of this chapter is organized as follows. First, we describe a
general framework combining clause learning and incomplete search in Sec-
tion 4.1 and present an instantiation of this framework for solving OPTWs
in Section 4.2. Following this, we detail a conflict generation procedure in
Section 4.3 and propose three data structures usable for managing these con-
flicts as clauses in Section 4.4. In Section 4.5, we present the experimental
results obtained on OPTW benchmarks to demonstrate the benefit of the
architecture proposed, while the integration effort required is rather small.
Finally, we compare our approach with relevant works in Section 4.6.

61

62 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

4.1 Incomplete search using a clause base

Local search-based algorithms are shown to be effective in solving NP-hard
combinatorial optimization problems. However, a common issue is the re-
peated exploration of the same regions in the search space, which wastes com-
putation time and resources, especially for large neighborhoods. Therefore,
techniques for pruning neighborhoods, that are inconsistent or suboptimal,
are essential. Moreover, in OPTWs, the search space is exponentially large,
so diversification strategies are necessary to explore unvisited yet promising
search regions.

To overcome these issues, a well-known technique is to use memory to
improve the search efficiency. As presented in Chapter 2, this idea was orig-
inally proposed in tabu search (TS) (Glover (1989)), where a short-term
memory can be used to avoid cycles and medium-term or long-term memo-
ries can be used to diversify the search. Besides, among the techniques that
record some knowledge during search, conflict-directed approaches are com-
monly used for guiding the tree-based search. Typical examples are conflict-
directed backjumping (Chen & Van Beek (2001)) and conflict-directed search
for scheduling (Vilím et al. (2015)). Frequently, conflicts are represented as
clauses and exploited during complete search procedures, such as in conflict-
driven clause learning (CDCL) (Marques-Silva et al. (2009)) or lazy clause
generation (LCG) (Schutt et al. (2013)).

A general framework This contribution aims to combine incomplete
search with clause learning techniques used in SAT. For this purpose, we
propose the hybrid architecture described in Figure 4.1, which is mainly in-
spired by the efficient complete search methods that use clause generation
(e.g., CDCL or LCG). The architecture proposed consists of three main com-
ponents: an incomplete search process (ISP), a clause generator (CG), and
a clause base (CB).

The global search scheme works as follows. Each time ISP, the main
search engine, converges to a locally optimal solution, the CG module an-
alyzes this solution and produces clauses holding on Boolean decision vari-
ables of the problem. The clauses generated represent either the reasons
why the current solution cannot be improved or conditions forbidding the
local optimum or regions around to be reached again in the future. The
clauses generated are then sent to CB. The latter is responsible for storing

4.1. INCOMPLETE SEARCH USING A CLAUSE BASE 63

the clauses and answering various queries that are relevant for the main ISP
to prune or guide the neighborhood exploration. In this architecture, the
clauses are generated in a lazy way, only for the parts of the search space
that ISP decides to explore. By doing so, the architecture involves a tight
interaction between the ISP and CB modules as well as a less frequent clause
generation phase.

Incomplete Search Process (ISP)
[specific]

Clause Base (CB)
[generic]

(Lazy) Clause Generator (CG)
[specific]

operations / queries

answers to queries

locally optimal solutions new clauses

Figure 4.1 – Incomplete search combined with a clause base

With regards to tabu search, the architecture obtained memorizes clauses
instead of just storing recent local moves or recent solutions in a tabu list.
One impact is that the clause manager must be able to quickly reason about
the clauses collected, instead of just reading explicitly forbidden configura-
tions. Concerning CDCL or LCG, one key difference is that ISP is free to
assign or unassign variables in any order, while the standard implication
graph data structure used by CDCL or LCG relies on the assumption that
the ordering of decision variables in the successive layers of the implication
graph is consistent with the “chronological” order used for assigning and
unassigning these variables during search. All these points raise several basic
research questions:

• Which generic clause base data structure should be used to be able to
follow the decisions made in any order by an incomplete search process
and to quickly reason about the set of clauses memorized?

• What is the effort required to integrate an existing specific ISP within
such a generic architecture, and which key functions should the clause
base offer?

64 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

• What is the content of the clause generation module that analyzes the
locally optimal solutions?

• From a practical point of view, is clause generation beneficial for an
incomplete search that might have to explore thousands of successive
neighborhoods per second?

4.2 An application to the OPTW
To evaluate the above framework, in the following, we consider the Orienteer-
ing Problem with Time Windows (OPTW) presented in Chapter 3. Globally,
this problem can be decomposed into a selection subproblem and a sequenc-
ing subproblem. Regarding the selection aspect, we introduce one Boolean
decision variable xi ∈ {0, 1} associated with each customer node i, where
xi = 1 means that node i is visited. One key idea is that pruning at the
selection level can help significantly reduce the search space.

Technically, our primary goal is to boost an existing ISP for OPTWs
thanks to clause learning. Therefore, we directly reuse the state-of-the-art
LNS algorithm for OPTWs proposed by Schmid & Ehmke (2017) and inte-
grate this algorithm within the hybrid architecture proposed. The enhanced
version, called LNS-CB for “LNS with a Clause Base”, is depicted in Al-
gorithm 4.1, where the few changes made on the baseline LNS version are
highlighted in gray. Starting from an initial solution (Line 1), LNS-CB it-
eratively destroys and repairs the current solution following the standard
concept of LNS (Lines 6-7). As in the baseline LNS algorithm, it also uses
an elite pool to record the best solutions obtained so far (Line 4). This pool
is reset whenever a better solution is found and extended when a new equiv-
alent solution is obtained (Line 11). When no improvement is found after K
iterations, a restart is performed by picking a random solution in the elite
pool (Lines 12-13).

The destroy phase at Line 6 exactly follows the idea proposed by Schmid
& Ehmke (2017). In this phase, several visited nodes are removed from σ,
the current solution. Rather than removing individual nodes one by one, the
approach removes sequences of customers using well-tuned heuristics. The
key differences compared to the classical LNS algorithm are (a) the use of
CB as an argument for the repair function, the objective being to improve
the repair phase (Line 7), and (b) the generation of clauses each time a full

4.2. AN APPLICATION TO THE OPTW 65

Algorithm 4.1: LNS-CB
1 σ ← construct()
2 clauseGeneration(σ,CB)
3 σ∗ ← σ;
4 elitePool← {σ}
5 while time limit is not reached do
6 σ ← destroy(σ)
7 σ ← repair(σ, CB)
8 clauseGeneration(σ,CB)
9 if σ better than σ∗ then

10 σ∗ ← σ;
11 update elitePool
12 else if no improvement after K iterations then
13 σ ← a random solution in elitePool

14 return σ∗

solution is produced, to enhance the knowledge stored in CB (Lines 2, 8).
The new repair phase is detailed in Algorithm 4.2. It takes as an input

the current solution σ and CB. Given σ, we denote U as the set of unvisited
nodes, and F as the set of feasible insertion moves (n, p) defined by a node
n ∈ U and a position p in σ. All insertion alternatives for each unvisited
node are explored by evalNeighborhood(σ, U, CB) (Lines 2, 7). In this
procedure, CB is used to prune neighbors that are invalid according to the
clauses registered. At each step of the repair procedure, node insertions
are iterated by selecting a move that has the best evaluation according to
the well-tuned heuristics of the original LNS method (Line 4), and they are
performed until there is no more feasible move (Line 3).

The neighborhood evaluation function corresponds to Algorithm 4.3. It
first determines the unvisited nodes that must be visited according to CB
(Line 1), and if there is no such mandatory node, it determines the unvisited
nodes that can be visited according to CB (Line 3). Then, for each node
selected, the algorithm determines its best insertion position according to
tuned insertion heuristics defined in the original LNS (Schmid & Ehmke
(2017)). In the end, the algorithm returns all pairs made by a node and
its best insertion position. Basically, when the selection problem is tightly
constrained, CB is especially efficient in pruning infeasible neighborhoods.

66 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

Algorithm 4.2: repair(σ,CB)
1 U ← nodes that are not in σ
2 F ← evalNeighborhood(σ, U , CB)
3 while F 6= ∅ do
4 (n∗, p∗)← select(F)
5 Insert node n∗ at position p∗ in σ
6 U ← U \ {n∗}
7 F ← evalNeighborhood(σ, U , CB)
8 return σ

Algorithm 4.3: evalNeighborhood(σ,U,CB)
/* Evaluation at the selection level */

1 U ′ ← {n ∈ U |CB allows decision [xn = 1] and forbids decision [xn = 0] }
2 if U ′ = ∅ then
3 U ′ ← {n ∈ U |CB allows decision [xn = 1]}

/* Evaluation at the sequencing level */
4 F ← ∅
5 for each n ∈ U ′ do
6 p← best feasible insertion position for n in σ
7 if p 6= nil then
8 F ← F ∪ {(n, p)}

9 return F

4.3 Lazy clause generation procedure

As mentioned earlier, the clause generation module strongly depends on the
problem considered. This section details the clause generation procedure
developed for the OPTWs. In this case, we consider only clauses holding over
the selection decisions, and not clauses related to the detailed sequencing
decisions defining the order of the visits. This is based on the fact that
managing clauses over customer selections is easier and faster. Indeed, given
N customers, we only need to manage constraints over N Boolean variables
xi expressing the selection of node i, instead of N2 Boolean variables nextij
commonly used for expressing sequencing decisions between any pair of nodes
(i, j). For large-size instances, the number of sequencing variables can be

4.3. LAZY CLAUSE GENERATION PROCEDURE 67

extremely high, however, the search space pruned by each clause over nextij
variables can be relatively small, which is why we focus on the selection
variables.

Several kinds of clauses can be generated during the search, and the gen-
eration of these clauses exploits problem-dependent techniques, as for the
cuts generated in Logic-Based Benders decomposition (Hooker & Ottosson
(2003)). For OPTWs, as illustrated in Algorithm 4.4, we consider two possi-
ble types of conflicts and generate them in a lazy way, i.e. only when a local
minimum σ∗ is reached. The generation of these clauses and parameters used
in this procedure are detailed hereafter.

Algorithm 4.4: clauseGeneration(σ∗,CB)
/* Local-optima-based clause generation (Section 4.3.1/optional) */

1 U ← sort{i 6∈ σ∗} based on their rewards Ri
2 Y ← best approxSize elements in U
3 Generate a temporary clause

∨
j∈Y xj

/* Time-window-based clause generation (Section 4.3.2) */
4 for i 6∈ σ∗ do
5 V ← select(σ∗, i, maxConfSize)
6 C ← extractMinTWconflicts(V ∪ {i})
7 for each TW-conflict Sc ∈ C do
8 Generate clause

∨
j∈Sc
¬xj

4.3.1 Clauses related to local optima
Inspired by tabu search, the core idea here is to avoid revisiting again and
again local optima explored so far. To do so, whenever reaching a locally
optimal solution σ∗, it is possible to generate clause ∨

j 6∈σ∗ xj to force that at
least one node unvisited in σ∗ must be selected in the future. Such a clause
is called a local optimum conflict or Lopt-conflict. Adding this clause is safe
in the sense that it will never forbid a solution that is strictly better than
the best solution found so far.

Obviously, a smaller clause has a higher pruning power while requiring
less management effort. Thus, rather than generating a full Lopt-conflict, we
can derive an approximate Lopt-conflict ∨

j∈Y xj where Y contains at most
approxSize nodes that are not involved in σ∗. To hopefully improve the

68 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

solution quality, we can favor the selection of nodes having a high profit in
the future. This can be done by keeping in Y the best approxSize unvisited
nodes in terms of profit (Algorithm 4.4, Lines 1-2). However, a large set of
approximate clauses can increase the risk of pruning optimal solutions. To
overcome this issue, these approximate clauses are used by CB only during
a certain number of steps called tabuSize, similarly to a short-term tabu
list (Algorithm 4.4, Line 3). So the main objective is to hopefully diversify
search, which is also the reason why the generation of approximate Lopt-
conflicts is optional here. This can be easily managed by adjusting the two
global parameters approxSize and tabuSize.

Last, we could also avoid suboptimal solutions by generating a Pseudo-
Boolean constraint ∑

i∈{1,...,N}Rixi ≥ LB+ 1 taking into account the reward
Ri associated with each customer i and the best total profit known so far
LB. We omit this point here, as we only focus on clause generation in this
chapter, but we will explain it in more detail in Chapter 6.

4.3.2 Clauses generated based on temporal constraints
The other idea is to try to find valid explanations for infeasible local moves if
possible. This can be done by analyzing the infeasibility or finding conflicts
based on temporal constraints (e.g., travel times, time windows, and global
limited time budget). Such conflicts can be formally defined as follows.

Definition 4.1. Consider {1, . . . , N} the set of nodes excluding the de-
pots, where each node is associated with a predefined time window. Then,
a time-window-based conflict (called TW-conflict) is a subset of nodes
Sc ⊆ {1, . . . , N} such that there is no sequence of visits that traverses all
the nodes in Sc and respects their time window constraints.

Intuitively, a TW-conflict Sc expresses that at least one customer i ∈ Sc
must not be selected due to temporal constraints. Hence, if all customers
in Sc \ {i} are visited, such an TW-conflict can be used to quickly detect
that customer i cannot be selected during the construction process, without
explicitly examining all possible insertions of i at every position in the cur-
rent sequence of visits σ. Nevertheless, enumerating all such TW-conflicts is
impossible. Thus, in Algorithm 4.4, we describe a procedure for generating
clauses based on TW-conflicts in a lazy way. Technically, whenever a locally
optimal sequence σ∗ is found over nodes in S∗, we seek TW-conflicts prevent-
ing the other nodes from being added to σ∗. In other words, we try to find

4.3. LAZY CLAUSE GENERATION PROCEDURE 69

valid explanations for every unvisited node i, if possible (Algorithm 4.4, Lines
4-8). To bound the complexity of the explanation procedure, we consider a
maximum length of a TW-conflict referred to as maxConfSize. With a prede-
fined maxConfSize, the algorithm first heuristically selects a set V containing
maxConfSize−1 nodes in σ∗ that might prevent a node i 6∈ σ∗ from being vis-
ited (Algorithm 4.4, Line 5). There are various problem-dependent heuristics
for this selection, for example, we use here the NearestTimeWindow heuris-
tic: to define V , we choose nodes j ∈ S∗ such that the distance between the
midpoint of the time window of j and the midpoint of the time window of i is
as small as possible. The idea here is to try and fill V with nodes that com-
pete with i for being visited. Then, in function extractMinTWconflicts, a
dynamic programming (DP) procedure determines whether V ∪ {i} is truly
a TW-conflict. If so, it also extracts C, a set of TW-conflicts of minimal
cardinality and stores the corresponding clauses in CB (Algorithm 4.4, Lines
6-8). Indeed, the smaller the clauses the better, since smaller clauses prune
larger parts of the search space.

For an easier understanding, let us describe a simple example before going
into details about the procedure for extracting minimal TW-conflicts.
Example 4.1. Consider the toy instance containing N=7 customers pro-
vided in Figure 4.2. For each customer, its time window and profit are ex-
plicitly given in the figure. We also assume that all travel times are equal to
3 time units and that all customer service times are equal to 0.

Assume that solution σ∗ = [1, 2, 4, 6] is a current local optimum con-
structed based on the GreatestProfit heuristic, which considers inserting the
customer having a highest profit at each construction step.

Then, we try to generate clauses by analyzing solution σ∗. In other words,
we try to identify the reason why customers 3, 5, and 7 cannot be added to
σ∗. Let us assume that maxConfSize = 3.

• For customer 3, it is possible to see that visiting customers 1, 2, and
3 together is not possible. As a result, Sc1 = {1, 2, 3} is a minimal
TW-conflict and clause c1 : ¬x1 ∨ ¬x2 ∨ ¬x3 is generated.

• For customer 5, the selection is forbidden due to customer 2 since the
transition requires 3 time units. Therefore, Sc2 = {2, 5} is a TW-
conflict and clause c2 : ¬x2 ∨ ¬x5 is generated.

• For customer 7, there may not be a valid explanation due to the visit
order in σ∗. In other words, with another visit order of the customers

70 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

in σ∗, there actually exists a solution that can visit customer 7, for
example the sequence σ′ = [7, 1, 2, 6, 4].

• For customer 8, no clause is added since there is no valid explanation
of restricted size. However, there exists a valid TW-conflict {2, 4, 6, 8}
if one allows a larger value for maxConfSize.

Last, to avoid reproducing σ∗, a clause c3 : x3 ∨ x5 ∨ x7 can be added to CB,
as proposed in Section 4.3.1.

T1

T2

T3

T4

T5

T6

T7

T8

R1 = 9
R2 = 7
R3 = 2
R4 = 6
R5 = 3
R6 = 4
R7 = 3
R8 = 4

Figure 4.2 – OPTW example involving 8 customers, and representation of a
valid sequence of visits

Minimal TW-conflict extraction Checking whether Sc is a TW-conflict
is strongly NP-complete when the size of Sc ⊆ {1, . . . , N} is not bounded,
since it is equivalent to determining whether there exists a feasible solution
to a Traveling Salesman Problem with Time Windows (TSPTW) over the
customers in Sc (Savelsbergh (1985)). However, if |Sc| is bounded, the prob-
lem of checking and extracting the minimal TW-conflict is polynomial and
solvable within a reasonable amount of time.

This can be done by using a dynamic programming procedure. The key
principle is to compute, for each set Sc, quantities of the form arr(Sc, i)
representing the earliest arrival time at node i ∈ Sc for a path starting at
node 0, visiting all nodes in Sc \ {i}, and ending at node i. Similar to
existing methods for TSP (Bellman (1962); Held & Karp (1962)), starting

4.3. LAZY CLAUSE GENERATION PROCEDURE 71

from arr({0}, 0) = 0, these quantities can be computed by increasing the
size of Sc following a recursive formula.

arr(Sc, i) = min(arr(Sc, j, i) | j ∈ Sc \ {i}) (4.1)
arr(Sc, j, i) = max(arr(Sc \ {i}, j), Oj) + tt(j, i) (4.2)

Recall that we denote tt(i, j) as the time-independent transition time
between two distinct customers i and j and [Oi, Ci] as the time window
available for starting the visit of node i. So, Equation 4.1 ensures that
arr(Sc, i) is the earliest arrival time at node i, while Equation 4.2 computes
the arrival time at node i knowing that j is visited just before i. It is also
noteworthy that the extension of the recursive formula above to the variant
involving time-dependent transition times is quite straightforward.

Proposition 4.1. Assume the availability of values returned by arr(Sc, i)
for any set Sc and node i ∈ Sc. Then, Sc ⊆ V is a TW-conflict if and only
if, for every i ∈ Sc, at least one of following conditions is satisfied:

(a) arr(Sc, i) > Ci
(b) max (arr(Sc, i), Oi) + tt(i, N + 1) > Tmax

Proof. Intuitively, the first condition corresponds to late arrivals at the last
node i, while the second one corresponds to the violation of the global time
limit when returning to the depot node (N + 1).

Next, the pseudocode of function extractMinTWconflicts is provided
in Algorithm 4.5, based on Proposition 4.1. This function takes as an input
a set of nodes V ⊆ [1..N] and tries to determine all minimal TW-conflicts
Sc ⊆ V (minimal in terms of cardinality).

Proposition 4.2. The extractMinTWconflicts(V) algorithm always re-
turns TW-conflicts of minimal cardinality among TW-conflicts included in
V , if such conflicts exist.

Proof. The algorithm seeks TW-conflicts of size k in an increasing order
(Line 3). Once a valid TW-conflict of size k is found, it continues seeking
other TW-conflicts having a same size k until all subsets of size k are checked
(Lines 10-11). Then, if there exists at least one conflicts having size k, the
algorithm immediately stops and does not check any subsets of size larger
than k (Lines 12-13). This implies that the TW-conflicts returned, if any,
are of minimal cardinality in V .

72 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

Algorithm 4.5: extractMinTWconflicts(V)
1 C ← ∅
2 arr({0}, 0) = 0
3 for k ∈ {2, . . . , |V |} do
4 for Sc ⊆ V with |Sc| = k do
5 nFails← 0
6 for node i ∈ Sc do
7 Compute arr(Sc, i) by following Equations 4.1 and 4.2
8 if arr(Sc, i) > Ci or

max(arr(Sc, i), Oi) + tt(i, N + 1) > Tmax then
9 nFails← nFails+ 1

10 if nFails = k then
11 C ← C ∪ {Sc}

12 if |C| > 0 then
13 return C

14 return ∅

Proposition 4.3. The extractMinTWconflicts(V) algorithm, which is an
extension of Held-Karp algorithm, has worst-case time complexity O(2nn2)
and space complexity O(n2n), where n is the number of customers in V .

Proof. The algorithm considers 2n subset Sc ⊆ V , where n is the number of
customers in V (Lines 3-4). Then, it computes the value of arr(Sc, i) for each
node i ∈ Sc following Equations 4.1 and 4.2. This computation has a worst-
case time complexity O(n2) and a space complexity O(n) (since arr(Sc, i, j)
are intermediate variables and do not consume memory for storage). Thus,
extractMinTWconflicts(V) has worst-case time complexity O(2nn2) and
space complexity O(n2n).

In practice, this procedure is pretty fast if there exist small TW-conflicts
in V , since it does not necessarily enumerate all possible sets of Sc ⊆ V . In
contrast, if no conflict exists, this procedure is time-consuming when |V | is
large. This is why, in this work, we only consider sets V of restricted size
when invoking extractMinTWconflicts.

4.4. DATA STRUCTURES FOR THE CLAUSE BASE (CB) 73

4.4 Data structures for the clause base (CB)
The CB part is responsible for storing the clauses generated during search.
Due the separation of CB and the core search engine, CB can be externally
saved and reused when ISP invokes it. As shown in Figure 4.1, ISP needs
to frequently query CB, meaning that there is a need for continuous and
incremental interactions between these two components. In other words,
ISP needs to update the current state to CB whenever a decision is made.
Meanwhile, CB also needs to quickly indicate to ISP whether a decision
is worth considering given the current state. This raises many challenging
questions about the choice of a specific data structure for CB. In principle,
an ideal clause manager must be able to:

• quickly integrate all the clauses generated step-by-step and compactly
represent them (possibly with some trashing when the size of CB be-
comes too large);

• frequently update the partial assignment of the decision variables over
which the clauses hold, to keep up-to-date knowledge of the content
of the current solution considered by the main ISP. For LNS-CB, this
occurs whenever a node is selected or removed, and for a general ISP
these assign/unassign decisions can be sent to CB in any order;

• quickly answer queries formulated by ISP, such as “evaluate whether
decision [xi = 1] is feasible”. For OPTW, if CB proves that this deci-
sion is infeasible given the current assignment and the clauses gener-
ated, then testing the insertion of node i in the current solution σ is
unnecessary (neighborhood pruning). Another example is: “evaluate
whether decision [xi = 1] is mandatory”. If so, node i must be inserted
into σ (mandatory visit).

The previous operations and queries required over CB are actually not
specific to OPTW. In the following, we study three generic versions for CB:

• CB-UnitPropagation, where CB stores a list of clauses and per-
forms incremental and decremental unit propagation to evaluate the
consistency of the clause store for a given partial assignment of the xi
variables;

74 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

• CB-IncrementalSAT, where CB stores a list of clauses and employs
powerful modern SAT solvers supporting incremental or assumption-
based solving (Eén & Sörensson (2003); Nadel & Ryvchin (2012); Au-
demard et al. (2013));

• CB-OBDD, where the clauses are stored in an Ordered Binary Deci-
sion Diagram (OBDD), a data structure defined in the field of knowl-
edge compilation that has good compactness and efficiency properties
(Bryant (1986); Darwiche & Marquis (2002)).

4.4.1 CB based on unit propagation
For this version of CB, unit propagation is used to prune infeasible values for
the decision variables. In SAT, unit propagation can be achieved based on
the two-watched literals technique (Moskewicz et al. (2001)), which consists
in maintaining, for each clause, two distinct literals that can take value true.
In case there is no valid watched literal for a clause c, an inconsistency is
detected. If only a single valid watched literal l is found, then clause c
becomes unit and l must necessarily be true to satisfy the clause. In this
case, literal ¬l takes value false and unit propagation is applied to other
clauses to further detect other propagated decisions.

Example 4.2. Consider a clause c : x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 as illustrated in
Figure 4.3. Initially, all literals are unassigned yet (i.e. called free variables)
and two watched literals of c can be randomly chosen e.g., {x2, x4}.

• Let us assume that two decisions [x1 = false] and [x5 = false] are made.
In this case, we do not need any update since the two watched literals
remain valid. This also means that c is still consistent.

• If decision [x4 = false] is made, then literal x4 is not valid anymore and
cannot be watched by c. This leads to the use of another valid literal,
e.g., x2, as a new watched literal for c.

• If decision [x2 = false] is made, however, no other valid watched literal
can replace x2, thus c is a unit clause. We can infer that x3 necessarily
takes values true.

Consider another clause c′ : ¬x3 ∨ x6 ∨ x7. In this case, c′ can be replaced by
x6 ∨ x7, or equivalently ¬x3 cannot be a valid watched literal for c′.

4.4. DATA STRUCTURES FOR THE CLAUSE BASE (CB) 75

In SAT, one advantage of the watched literal technique is that no literal
reference needs to be updated when chronological backtracking occurs. But
during incomplete search, variables can be assigned or unassigned in any
order and some adaptations are required to maintain the watched literals.
Precisely, to handle random variable unassignments and perform decremen-
tal unit propagation, we maintain a list of complementary watched literals for
each unit clause c (see Figure 4.3). Clause c is revised whenever one comple-
mentary watched literal l′ becomes free due to unassignment decisions, and
in this case, l′ can directly become a watched literal for clause c.

Figure 4.3 – Incremental and decremental unit propagation

Example 4.3. Following Example 4.2, when c is a unit clause, we maintain
a list of complementary watched literals for c, whose values are false, e.g.,
{x1, x2, x4, x5}. For example, when x1 is unassigned, x1 can directly replace
x2 as a new valid watched literal for c. In this case, c is not a unit clause
anymore, and x3 is unassigned if there is no other unit clause that propagates
[x3 = true]. This may also trigger the revision of other clauses involving ¬x3
as a complementary watched literal.

76 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

To answer the queries formulated by the ISP, we additionally record a
justification for each literal l referred to as justif (l). Basically, we have the
three following cases:

• justif (l) = > means that literal l takes value true because of a decision
received from the ISP,

• justif (l) = c means that literal l is propagated by unit clause c,

• justif (l) = nil means that there is no clue about the truth value of l.

Then, a decision like [x = 1] is allowed if and only if literal ¬x is not propa-
gated or decided yet, i.e. justif (¬x) = nil. The justification of each literal is
updated during incremental and decremental unit propagation. Obviously,
as unit propagation is incomplete, CB-UnitPropagation may not detect
some infeasible or mandatory node selections.

Example 4.4. Consider four clauses

c1 : ¬x1 ∨ ¬x2

c2 : ¬x4 ∨ ¬x5

c3 : x2 ∨ x3 ∨ x4

c4 : x2 ∨ x3 ∨ x5

If decision [x1 = 1] is made, clause c1 becomes unit and we have justif (x1) =
> and justif (¬x2) = c1. The other justifications take value nil. This implies
that decision [x3 = 0] is still evaluated as possible, even if it would lead to a
dead-end.

4.4.2 CB based on an incremental SAT solver
The idea of using incremental SAT solving was first proposed by Audemard
et al. (2013) to improve the efficiency of the search for Minimal Unsatisfiable
Sets. In this case, the goal is to reuse as much information as possible between
the successive resolutions of similar SAT problems. This is done by working
with assumptions. Basically, an assumption A is a set of literals {l1, . . . , lk}
where each literal is considered as an additional (unit) clause by the solver,
but this unit clause is not permanently added to the original CNF formula F
defining the problem to be solved. In the context of OPTWs, the assumptions

4.4. DATA STRUCTURES FOR THE CLAUSE BASE (CB) 77

are exactly the current node selection decisions. Then, a call solve(F ,A)
to an incremental SAT solver tries to find a model of F that satisfies all the
assumptions in A. By doing this, the incremental SAT solver can reuse some
previous knowledge and learn new clauses that will potentially be reused for
future calls solve(F ′,A′) using an updated CNF formula F ′ or an updated
set of assumptions A′.

At the level of CB, to determine whether literal l : [xi = a] can still
be assigned value true, it suffices to call solve(F ,A ∪ {l}) where A is the
set of assumptions representing the selection decisions made so far by the
ISP module. Then, decision [xi = a] is forbidden by CB if and only if
this call returns UNSAT. Contrarily to CB-UnitPropagation, the CB-
IncrementalSat method is complete (as it performs a full look ahead).

Example 4.5. Following Example 4.4, decision [x3 = 0] would directly be de-
tected as invalid after assigning [x1 = 1]. This is because solve(F , {x1,¬x3})
would return UNSAT.

Last, we employ an additional optimization to reduce the number of calls
to the solve function: when searching for the possible values of variable xi
given a set of assumptions A, if solve(F ,A∪{xi}) or solve(F ,A∪{¬xi})
returns a solution where another variable xj takes value 1, then [xj = 1] is
obviously allowed and calling solve(F ,A ∪ {xj}) is unnecessary.

4.4.3 CB based on Ordered Binary Decision Diagrams
The last CB data structure studied here makes use of Ordered Binary De-
cision Diagrams (OBDDs) (Bryant (1986)). Storing conflict clauses in an
OBDD during a systematic search process has been explored in the past,
e.g., for a search process based on DPLL (Ignatiev & Semenov (2011)). We
extend such an approach to deal with an incomplete search engine that again
can assign/unassign the decision variables of the problem in any order.

As illustrated in Figure 4.4, an OBDD defined over a set of Boolean vari-
ables X is a directed acyclic graph composed of one root node, two leaf nodes
labeled by > and ⊥, and non-leaf nodes labeled by a decision variable xi ∈ X.
Each node associated with variable xi has two outgoing arcs corresponding
to assignments [xi = 0] and [xi = 1] respectively (dotted and plain arcs in
the figure). The paths from the root node to leaf node > correspond to the
assignments that satisfy the logical formula represented by the OBDD, while
the paths leading to leaf node ⊥ correspond to the inconsistent assignments.

78 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

Additionally, OBDDs are ordered, meaning that the variables always appear
in the same order in any path from the root to the leaves.

CNF:
(¬x1 ∨ ¬x2)
∧(¬x4 ∨ ¬x5)
∧(x2 ∨ x3 ∨ x4)
∧(x2 ∨ x3 ∨ x5)

x1

x2 x2

x3

x4

x5

> ⊥

Figure 4.4 – A conjunction of clauses and an equivalent OBDD

In practice, to get a compact representation, OBDDs are also reduced,
meaning that redundant nodes (that have the same children) are recursively
merged. Such a data structure offers several advantages, including (1) the
capacity to be exponentially more compact than for instance an explicit
representation of all models of the logical formula that the OBDD represents,
and (2) the capacity to perform several operations and to answer several
queries in polynomial time. For instance, given two OBDDs OF and OG
representing logical formulas f and g and that use the same variable ordering,
operation “OF ∧ OG” computes an OBDD representing f ∧ g in polynomial
time in the number of nodes in OF and OG.

In CB-OBDD, one OBDD referred to as OCB stores the clauses learned
during search. Initially, OCB only contains leaf node > since all models are
accepted. Each generated clause ck can be transformed into an OBDD Ock

,
and a set of new clauses {c1, . . . , cn} is added to OCB by OCB ← [Oc1 ∧
. . . ∧ Ocn] ∧ OCB (conjunction of the elementary OBDDs associated with
the new clauses followed by a batch addition into OCB). During search, CB-
OBDD records the current list of assignments ACB made by the incomplete
search process (the assumptions). To determine whether a decision [x = 1]
is allowed, it suffices to condition OCB by ACB, and then to check that
assignment [x = 0] is not essential (not mandatory) for the resulting OBDD.
The conditioning primitive and the search for essential variables are standard
operations in OBDD packages. Their time complexity is linear in the number
of OBDD nodes.

4.5. EXPERIMENTS 79

4.5 Experiments

4.5.1 Benchmark and implementation settings
We carried out experiments on standard OPTW benchmarks1 whose features
are summarized in Table 4.1. As the number of customers increases, finding
an optimal selection and sequencing of customers is more challenging. Over-
all, the best-known total reward for each instance is retrieved from Schmid
& Ehmke (2017). We conduct experiments on Intel(R) Core(TM) i5-8265U
1.60 GHz processors with 32GB RAM. All implementations are written in
C++ and compiled in a Linux environment with g++17.

Instance Set #instances #nodes remark
Solomon 1 (c1*,r1*,rc1*) 29 100 -
Solomon 2 (c2*,r2*,rc2*) 27 100 wider TW
Cordeau 1 (pr01-pr10) 10 48-288 -
Cordeau 2 (pr11-pr20) 10 48-288 wider TW

Table 4.1 – Features of the OPTW benchmarks

As the implementation of the baseline LNS algorithm of Schmid & Ehmke
(2017) is not available online, we re-implemented it. We recover a similar
performance even if there are some differences with respect to the results
provided in the original paper, possibly due to random seeds or to a lack
of information concerning a reset parameter K (we set K = 50 in our LNS
implementation i.e. Algorithm 4.1, Line 12). Anyway, our primary objective
was to determine whether conflict generation can help a baseline algorithm,
therefore the slight differences in performance are not a real issue.

Concerning the management of clauses, the three data structures pro-
posed for CB are implemented as follows.

• For CB-UnitPropagation, the data structure is implemented from
scratch.

• For CB-IncrementalSat, we directly reuse CryptoMiniSat2 (Soos
et al. (2009)) that supports incremental solving and won the Incremen-
tal Track in the SAT competition 2020.

1Instances are available at https://www.mech.kuleuven.be/en/cib/op
2https://github.com/msoos/cryptominisat

https://www.mech.kuleuven.be/en/cib/op
https://github.com/msoos/cryptominisat

80 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

• For CB-OBDD, we reuse the CUDD library that offers many func-
tions to manage OBDDs.3 Notably, the variable ordering has a strong
impact on the size of OBDDs, while finding an ordering giving a min-
imal size is NP-hard (Tani et al. (1996); Bollig & Wegener (1996)).
Hence, we directly use the dynamic reordering operations available in
CUDD employing Rudell’s sifting algorithm (Rudell (1993)). Dynamic
reordering can take some time but reducing the size of OBDDs can pay
off in the long term.

4.5.2 Parameter tuning for lazy clause generation
As illustrated in Figure 4.5, we observe that the length of the time windows
in OPTW instances has a large impact on the number of TW-conflicts gen-
erated for a given value of maxConfSize: many TW-conflicts are generated
for the Solomon 1 & Cordeau 1 instances, contrarily to the case of Solomon 2
& Cordeau 2 instances that involve longer time windows. This is reasonable
since longer time windows make the problem less constrained, which implies
that a TW-conflict, if exists, usually has a large size. Besides, the com-
plexity of the dynamic programming algorithm producing the TW-conflicts
is exponential in maxConfSize and the computation times indeed strongly
increase when maxConfSize is higher (Figure 4.6). Thus, we decided to set
maxConfSize = 4 after the analysis of the global search efficiency.

Figure 4.5 – Impact of maxConfSize on the number of TW-conflicts

3https://github.com/ivmai/cudd

https://github.com/ivmai/cudd

4.5. EXPERIMENTS 81

Figure 4.6 – Impact of maxConfSize on the clause generation time (within a
1-minute time limit for LNS)

However, generating TW-conflicts all the time can slow down the global
search. Therefore, we define an explanation quota (denoted as xpQuota) for
every node i to reduce the workload of function extractMinTWconflicts.
This quota is decreased by one unit each time no TW-conflict explaining the
absence of customer i in a locally optimal solution is found. When the quota
of customer i becomes 0 after xpQuota searches for TW-conflicts related to
i, the absence of customer i in a locally optimal solution is not explained
anymore. With such an approach, there is somehow a warm-up phase where
TW-conflicts are learned, followed by an exploitation phase of these conflicts.
After performing tests with different values of xpQuota ∈ {20, 60, 100}, we
decided to set xpQuota = 20.

Last, concerning the generation of Lopt-conflicts to diversify search, we
need to forbid during tabuSize iterations a region around a locally optimal so-
lution, where the region size is controlled by the approxSize parameter which
defines the maximum size of the approximate Lopt-conflicts. After several
tests performed with approxSize ∈ {3, 5, 7} and tabuSize ∈ {10, 50, 100, 200},
we set approxSize = 7 and tabuSize = 50 for the experiments.

4.5.3 Performance analysis of the different CB data
structures proposed

Experiments are performed for the three CB data structures presented above.

• For LNS-CB-UnitPropagation (or shortly LNS-CB-UP), we con-

82 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

sider two versions: one called LNS-CB-UP where no Lopt-conflict is
generated, and another called LNS-CB-UP-Lopt where Lopt-conflicts
are generated.

• For LNS-CB-IncrementalSAT (or shortly LNS-CB-Sat), we do
not consider the case with Lopt-conflicts since the interface of Crypto-
MiniSat does not support clause removal.

• For LNS-CB-OBDD, we do not use the temporary Lopt-conflicts as
it would require (a) maintaining an OBDD containing only permanent
TW-conflicts, and (b) making time-consuming conjunctions with the
temporary Lopt-clauses that are still active at the current iteration.

Overall performance To quickly compare the baseline incomplete search
algorithm (called LNS-noCB) and the versions using a CB, we first compute,
for each solver and each instance, the average gap to the best known solution
after five runs, each within 1 minute. This gap gs for solver s is defined by

gs = 100 ∗ bk − bf s
bk

where bf s is the total reward of the best feasible solution found by s and bk is
the best known objective value. Table 4.2 shows that for 1-minute time limit,
using CB-UP globally improves the gaps (0.851% compared to 0.886% when
using noCB, while using CB-UP-Lopt also generates competitive results).
On the contrary, CB-Sat and CB-OBDD deteriorate the average gap (mean
gaps equal to 1.739% and 1.418% respectively).

Instance set Variants of CB in LNS
noCB UP UP-Lopt SAT OBDD simpleTabu

Solomon1 1.093 1.093 1.304 1.492 1.315 0.083
Solomon2 0.416 0.387 0.345 0.607 0.497 4.097
Cordeau1 0.139 0.078 0.351 1.125 0.903 1.540
Cordeau2 1.898 1.846 1.900 3.729 2.958 2.119

Grand mean 0.886 0.851 0.977 1.739 1.418 2.332

Table 4.2 – Average gap (%) over 5 runs (maxCPUtime=60s, best average
gaps in red bold)

To further analyze the results, each version of the solver is executed during
10 000 LNS iterations and the total time elapsed over each set of instances is

4.5. EXPERIMENTS 83

measured. Then, a speed-up rate compared to the noCB version is computed
by

speedUps = 100 ∗ timeNoCB − timeWithCBs

timeNoCB
Table 4.3 shows that the search process is accelerated with CB-UP and CB-
UP-Lopt almost all the time, especially on the Cordeau instances where
the speed-up reaches almost 50%. On the contrary, the search process is
drastically slowed down with CB-Sat and CB-OBDD.

Instance set Variant of CB in LNS
UP UP-Lopt SAT OBDD

Solomon1 -8.83 -18.66 -2517.14 -646.14
Solomon2 25.17 25.15 -492.75 -163.62
Cordeau1 48.66 47.04 -2779.32 -2446.31
Cordeau2 45.96 47.83 -2092.35 -610.95

Table 4.3 – Speed-up (%) when solving during 10 000 LNS iterations

Slow convergence with CB-SAT and CB-OBDD. Despite the rapid-
ity of incremental solving with CryptoMiniSat, the results obtained show
that the search process is slower for the LNS-CB-Sat version. The main
reason for this is that there are numerous calls to solve(F ,A ∪ {l}), and
each call must either find a full solution or prove that none exists.

As for CB-OBDD, while querying in OBDD is fast, the results are not
as good as expected. To understand this behavior, we analyzed the number
of conflicts generated during search, the number of OBDD nodes, and the
time consumed by the different OBDD functions. Table 4.4 shows that the
OBDDs obtained are globally compact given the number of conflicts. But the
reordering operations performed to get such a compactness can take a lot of
time: on some instances, CB-OBDD spends more than 60% of the CPU time
for reordering the variables. Alternatively, it is challenging to heuristically
compute in advance a good static variable ordering for compiling OBDDs
in a bottom-up manner, since we do not have the entire information about
the conflicts as well as when a static ordering must be defined. Meanwhile,
we tested eight problem-dependent heuristics (e.g., ordering the selection
variables depending on the rewards, the time windows, etc.), and as shown
in Table 4.5, the best heuristics are different in two cases, but overall these
static orderings give poor results on some instances.

84 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

Instance #OPTW #conflicts #OBDDnodes reordering
set nodes (average) (average) time (%)

Solomon1 100 509.66 257.59 34.15
Solomon2 100 19.19 11.19 6.91
Cordeau1 48-288 109.10 303.50 67.73
Cordeau2 48-288 0.40 1.70 2.15

Table 4.4 – Size of CB for each instance group (CPU time: 10s)

instance LNS #conflicts best-static-ordering dynamic-ordering
iteration #nodes time(s) #nodes time(s)

pr01

1 0 1 0.0006 1 0.0012
2 2 7 0.0013 5 0.0026
3 8 36 0.0021 13 0.0041
4 8 36 0.0030 12 0.0054

pr06

1 0 1 0.0885 1 0.4886
2 55 69219 0.1803 477 2.5110
3 80 6342191 19.1407 533 2.6108
4 94 38250383 367.198 833 2.6422

Table 4.5 – Performance of the static and dynamic ordering strategies for
OBDDs on two instances (pr01: 48 variables, best static order found =
“increasing opening time”; pr06: 288 variables, best static order found =
“decreasing rewards”)

Better and faster search with CB-UP. Figures 4.7 and 4.8 detail the
evolution of the mean gap during search over each set of instances. Glob-
ally, we observe that LNS is boosted by CB-UP over all sets. In particular,
for the Cordeau 1 set which involves many TW-conflicts, the search process
converges much more quickly with the support of CB-UP. This is because
more LNS iterations are performed thanks to the effectiveness of neighbor-
hood pruning through CB-UP. The strength of CB-UP-Lopt is particularly
visible over instance sets Cordeau 2 and Solomon 2. In these cases, even with
very few TW-conflicts, the approximate Lopt-conflicts help guide the search
towards other interesting search regions.

4.6. RELATED WORKS AND DISCUSSION 85

Figure 4.7 – Evolution of the average gaps for CB-UP and CB-UP-Lopt
on Solomon instances

Figure 4.8 – Evolution of the average gaps for CB-UP and CB-UP-Lopt
on Cordeau instances

4.6 Related works and discussion

Incomplete search and SAT/CP were combined in Large Neighborhood Search
(LNS), where a sequence of destroy-repair operations is performed on an in-
cumbent solution. The destroy phase unassigns a subset S of the decision
variables, while the repair phase can be delegated to a SAT/CP engine ca-

86 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

pable of quickly exploring all possible reassignments of S given the current
partial assignment. Some authors also proposed to represent specific neigh-
borhood structures using a tailored CP model and to translate the solutions
found for this model into changes at the level of the global solution (Pesant
& Gendreau (1999)). In the same spirit, our CB is built to quickly detect
inconsistent assignments at the selection level, therefore it can significantly
reduce the neighborhood size to explore in the repair phase, but one differ-
ence is that we generate new conflicts during search and for the incomplete
search process, CB only acts as a constraint propagation engine.

Other hybrid approaches exploit the strengths of incomplete search and
complete SAT/CP techniques at different search phases. As an illustration,
in SAT, Stochastic Local Search (SLS) has been combined with DPLL or
Conflict Directed Clause Learning (CDCL) (Crawford (1996); Mazure et al.
(1998); Audemard et al. (2010)). For the SLS-CDCL version, the idea is that
on one side, SLS can be run first to help CDCL have a heuristic for choosing
variable values or to help CDCL update the activities of the variables, and on
the other side CDCL can help SLS espace local optima. Another example is
the composition of traditional CP search and Constraint-Based Local Search
(CBLS) (Hentenryck & Michel (2005)), where the two search approaches can
exchange bounds, solutions, etc. In line with previous studies, inconsistency
explanations generated at each iteration are stored in CB and then reused
to help the search engine escape explored or invalid regions. In our case, by
taking into account the current search state along with the clauses learned in
the past iterations, CB may suggest mandatory assignments to quickly lead
the search to promising regions.

Another technique uses inference methods such as unit propagation or
constraint propagation initially developed for complete search strategies, to
speed up the neighborhood exploration during local search. As already pre-
sented in Chapter 2, one typical example following this line for SAT is the
UnitWalk algorithm (Li et al. (2003); Hirsch & Kojevnikov (2005)). At each
iteration, it considers a complete variable assignment and performs a pass
over this assignment to iteratively update the values of the variables with
unit propagation. Compared to this work, one of the novelties in CB-UP is
the decremental propagation aspect.

Last, the use of an external CB coupled with incomplete search can be
compared with the use of a memory data structure in tabu search. On this
point, instead of a simple list of forbidden local moves or forbidden variable
assignments as in tabu search (Glover & Laguna (1998)), CB memorizes log-

4.7. CONCLUSION 87

ical formulas about the selection of nodes in a long-term way (possibly with
some trashing when the size of CB becomes too large). CB is also equipped
with efficient mechanisms to quickly reason about the formulas collected, in-
stead of just reading explicit forbidden configurations. Another remark is
that traditional tabu search is usually not recyclable i.e. the memory is reset
at each resolution, while the time window conflicts stored in CB are easily
recyclable for dynamic OPTWs where the reward associated with each node
can change.

4.7 Conclusion
Our primary objective is to enhance memoryless incomplete search algo-
rithms with a memory component and exploit reasoning techniques used in
complete methods to improve the search performance. However, it is a chal-
lenge to efficiently manage and use this knowledge during search without
increasing the computational resources. To address this challenge, in this
chapter, we have described a hybrid optimization architecture combining an
incomplete search process with clause generation techniques. More precisely,
we have presented an application to the OPTWs with details on (1) a specific
lazy clause generation procedure and (2) three generic clause managers in-
spired by techniques in SAT solving and knowledge compilation (e.g., ordered
binary decision diagrams). The empirical study we have performed on the
classical OPTW benchmark demonstrates the efficiency of the approach pro-
posed, in particular when the clause base is exploited by using an enhanced
version of watched literal techniques and unit propagation mechanism com-
monly used in SAT community. With a well-tuned configuration, we have
observed that the clauses generated were able to help pruning inconsistent
neighborhood as well as diversifying search without decreasing the search
performance. The architecture proposed is also applicable to other combina-
torial optimization problems, beyond OPTWs.

88 CHAPTER 4. INCOMPLETE SEARCH & CLAUSE LEARNING

CHAPTER 5

Route recombination procedure
for deterministic and

non-deterministic scenarios

In this chapter, we describe our second contribution to hybrid optimization
methods for routing problems with profits. Differently from the clause gen-
eration mechanism of the previous chapter that exploits nogoods, the con-
tribution presented in this chapter aims at exploring goods that are fea-
tures of high-quality solutions. More specifically, our goal is to post-optimize
the quality of solutions obtained by classical meta-heuristics for the (Time-
dependent) Orienteering Problem with Time Windows ((TD)OPTW). With
this aim, we introduce a novel Route Recombination procedure that is able
to take as an input a set of solutions and return the best combination con-
taining at most k subsequences of customer visits from these solutions. This
route recombination procedure is based on a dynamic programming algo-
rithm enhanced with pruning strategies that significantly reduce the size of
the search space. It is also able to deal with or without time-dependent tran-
sition times. The experiments show that the algorithm proposed can be used
as a lightweight and efficient post-optimization procedure working on elite
solutions provided by a standard incomplete (TD)OPTW solver. Moreover,
it can be used in a non-deterministic context where the reward values are
not precisely known in advance; in this case, (TD)OPTW solutions can be
first generated for various reward scenarios during an offline phase, and then

89

90 CHAPTER 5. ROUTE RECOMBINATION

combined during an online phase to quickly get a high-quality solution given
the last-known reward values.

The rest of this chapter is organized as follows. Section 5.1 describes
an incomplete baseline search algorithm used to generate a pool of good-
quality solutions for a (TD)OPTW. Section 5.2 illustrates the idea of the
Route Recombination (called RR) procedure with a simple example. Sec-
tion 5.3 formalizes the RR procedure. Section 5.4 discusses possible usages
of RR for deterministic and non-deterministic (TD)OPTW. Section 5.5 gives
the experimental results obtained on classical OPTW benchmarks and on
an additional benchmark related to satellite scheduling problems. Last, Sec-
tion 5.6 discusses the contributions compared to other relevant works, and
Section 5.7 concludes by providing several perspectives.

5.1 Generation of a pool of solutions

To quickly generate a pool of elite solutions for a given (TD)OPTW, we
consider an incomplete algorithm that uses Iterated Local Search (ILS) and
Large Neighborhood Search (LNS). These metaheuristics were shown to be
efficient for solving both OPTWs (Gunawan et al. (2015a); Schmid & Ehmke
(2017)) and TDOPTWs (Garcia et al. (2013)). As shown in Algorithm 5.1,
the basic idea is to iteratively destroy (Line 2) and repair (Lines 3-8) a
solution until the stopping criterion is met (Line 1).

More precisely, in the destroy phase, the algorithm removes up to x% of
the customer nodes appearing in the current sequence of visits, referred to
as σ. The number of nodes selected for removal, denoted nR, is randomly
chosen from a discrete uniform distribution nR ∼ U(1, x ·nσ), where nσ is the
number of customer nodes currently visited in σ, excluding depot nodes. As
opposed to the LNS algorithm proposed by Schmid & Ehmke (2017) and the
version we implemented in Chapter 4, the removal operator here is simplified
by randomly choosing a node i ∈ σ from which a subsequence of length nR
is removed. Compared to the ILS algorithm of Vansteenwegen et al. (2009c),
the destroy phase is similar to a random shake operator.

After that, the partial solution obtained is repaired. For this, the algo-
rithm first uses the insert operator to insert unvisited customer nodes back
into the current solution (Line 3). Compared to the LNS we implemented in
Chapter 4, the repair phase is enhanced with a local search procedure that
exploits several neighborhoods (Lines 4-8). The idea is to locally improve

5.2. ROUTE RECOMBINATION: AN EXAMPLE 91

the current solution until no further improvement is found. As in the work
of Gunawan et al. (2015a), the local search procedure alternates between ap-
plying the swap and 2-opt operators to reduce the travel time, and applying
the replace and insert operators to improve the solution quality in terms of
collected rewards. All along the search process, a set of elite solutions of
bounded size is updated (Line 9).

Algorithm 5.1: LNS for the (TD)OPTW
1 while cpu() < maxCPU do
2 destroy x%
3 insert
4 while improvement do
5 swap
6 2-opt
7 replace
8 insert
9 update elite pool

10 return elite pool

Globally, the structure of the LNS algorithm obtained directly reuses
existing ideas from the literature and our implementations from Chapter 4,
the only contribution here is that adaptations are made to handle both time-
independent and time-dependent transitions. For the sake of simplification,
we do not consider here the version combining LNS with conflict learning.

5.2 Route Recombination: an example
To illustrate RR, let us consider Table 5.1 that gives a pool of five locally
optimal solutions σ1, . . . , σ5 found by LNS for a specific OPTW instance.
Each solution represents a feasible sequence of visits over a subset of customer
nodes, where each node corresponds to a location on a map as shown in Figure
5.1. We observe that by combining subsequences available in elite solutions
of the pool, it is possible to find a new solution σ∗ that has a better global
reward R(σ∗) equal to 652.

However, finding such a recombination of subsequences is challenging in
the general case, since exploring all possible combinations involving k sub-
sequences is exponential in k. To reduce the complexity, we can limit the

92 CHAPTER 5. ROUTE RECOMBINATION

maximum number of subsequences used for each combination, that is the
maximum number of so-called jumps between different elite solutions, where
a jump refers to a change in the elite solution followed at a given step.

id sequence of visits rewards
σ1 0 5 4 7 28 10 42 20 46 12 39 44 45 41 24 16 37 21 50 1 18 32 13 48 40 53 8 36 27 22 0 633
σ2 0 5 4 7 28 10 42 20 46 15 3 11 39 45 41 37 21 50 1 54 18 32 40 53 8 6 36 22 27 0 637
σ3 0 5 4 7 28 10 42 20 46 15 3 39 45 21 41 37 50 25 1 18 32 13 48 17 22 33 27 36 38 6 0 634
σ4 0 5 4 7 28 20 46 15 19 3 44 39 45 41 37 21 50 1 18 32 13 48 17 40 30 36 27 33 22 0 631
σ5 0 5 4 7 10 42 20 46 28 15 3 11 39 45 41 37 21 50 54 32 17 13 48 40 27 22 36 38 6 0 634
σ∗ 0 5 4 7 10 42 20 46 28 15 3 11 39 45 41 37 21 50 25 1 18 32 40 53 8 6 38 36 27 22 0 652

Table 5.1 – An improved solution (σ∗) that can be obtained by combining
solutions σ1, . . . , σ5 in the elite pool (results obtained on instance ti-singlesat-
ttf2.0-500-16 used in the experiments)

(a) σ1 (b) σ2 (c) σ3

(d) σ4 (e) σ5 (f) σ∗

Figure 5.1 – For the example of Table 5.1, the above figures a-f provide the
routes associated with the solutions of the pool (blue lines) and with the
combined route σ∗ (red line); the star represents the starting node; the red
points represent the nodes visited in σ∗

From Table 5.1, we observe that it is possible to create σ∗ by using 4
jumps and 5 subsequences highlighted in gray:

• (1) starting with σ5, the first forward jump is made from σ5 to σ3 via
node 50 to connect the red subsequence with the green one;

5.3. DYNAMIC PROGRAMMING FORMULATION 93

• (2) the second jump is made through node 32 to connect the green
subsequence in σ3 to the orange subsequence in σ2;

• (3) the third jump, called a backward jump, is from σ2 to σ3 via node
6; it links the orange subsequence with the blue one, but traverses the
blue subsequence in the backward direction;

• (4) the last jump is from σ3 to σ1 through node 36. All these jumps
lead to solution σ∗.

It should be emphasized that a jump can be performed in the forward or
backward direction, the semantics being that a backward jump traverses a
subsequence of visits in the reverse order. Figure 5.1 details the sequences of
visits used in each solution of the pool and in solution σ∗.

5.3 Dynamic programming formulation
In the following, we detail the Dynamic Programming (DP) algorithm used
for the RR procedure. We first describe the DP system with the definition
of states in Section 5.3.1 and state extension rules in Section 5.3.2. We
then show a detailed pseudo-code of the recombination procedure in Section
5.3.3. To reduce the search space, we introduce several pruning strategies in
Section 5.3.4 as well as a bounded-width version of RR in Section 5.3.5. We
also provide a detailed analysis about the complexity of the RR procedure
in Section 5.3.6.

For ease of understanding, we summarize in Table 5.2 several notations
in the formulation of (TD)OPTW used in the following sections.

Symbol Semantics
i ∈ {0, . . . , N + 1} a customer node, where 0 and N + 1 are depot nodes
Ri a reward associated with node i, where R0 = RN+1 = 0
[Ci, Oi] a predefined time window during which node i can be visited
Tmax the limited time budget
tt(i, j, τi) minimum transition time from node i to node j, where τi is

the departure time at node i
σ a solution i.e. a sequence of visits

Table 5.2 – Summary of notations of (TD)OPTW

94 CHAPTER 5. ROUTE RECOMBINATION

5.3.1 Search states
Formally, the RR procedure explores search states representing possible paths
from the source depot to the sink depot. These paths are built by following
the solutions of the pool. Formally, each search state is defined as a tuple
S = (V, i, r, d, n), where V is a set of visited customers, i is the last visited cus-
tomer, r is the current route (or solution) being followed, d ∈ {FWD,BWD}
is the current exploration direction of r (forward or backward), and n is the
number of jumps made so far. Intuitively, different states associated with the
same last visited customer i correspond to different feasible paths reaching
customer i.

Example 5.1. Let us consider an example based on the solutions provided
in Table 5.1. Let us assume that we initially follow solution σ5, then make
the first jump from σ5 to σ3 through node 50, and then continue the visits
until node 32. At this point, the current search state is

S = ({0, 5, 4, . . . , 18, 32}, 32, σ3,FWD, 1)

States are explored in a level-by-level manner, where the level of a state
S = (V, i, r, d, n) corresponds to the number of nodes visited in V . Initially,
for each route r in the pool, we define a starting state Sr0 = ({0}, 0, r,FWD, 0)
where the starting point is the source depot and the forward direction is
being followed. A state (V, i, r, d, n) is said to be terminal when it reaches
the sink depot, i.e. i = N + 1. Between the initial and terminal states,
the intermediate states represent incomplete solutions that visit a subset of
customers but do not return to the depot yet.

The reward R(S) of a state S = (V, i, r, d, n) is computed as the sum of
the rewards Rj of the customers j visited in V , i.e. R(S) = ∑

j∈V Rj.
The cost of a state S = (V, i, r, d, n), denoted as arr(S), is the minimal

arrival time at node i if all the customers in V are already visited, route r
is being followed in direction d, and n jumps have been performed so far.
Initially, arr(S) is set to 0 for the initial states and to +∞ for the other
states. During the exploration of the search space, arr(S) is updated each
time a new feasible path reaching S is found. Each non-initial state S also
keeps track of a parent state to visit before S in order to get cost arr(S). To
build the best route from the start to the end depot, it suffices to select a
terminal state that has a maximal reward and extract the corresponding best
path by backward propagation through the parent states. In the following,
we denote by Jmax the maximum number of jumps allowed for each state.

5.3. DYNAMIC PROGRAMMING FORMULATION 95

5.3.2 Extension rules
As illustrated in Figure 5.2a, extending a state S = (V, i, r, d, n) corresponds
to selecting a route and a direction from which we try to find the next
customer to visit after i. Formally, such an action is represented as a pair
(ρ, δ) where ρ is a route containing customer i and δ is a direction (forward
or backward). Applying action (ρ, δ) in state S leads to a new state S ′ =
(V ∪{i′}, i′, ρ, δ, n′) where one new customer i′ ∈ ρ is visited and where n′ = n
if ρ = r and n′ = n + 1 otherwise. Such a state transition is feasible only
when all the following conditions are satisfied.

• To satisfy the limit on the maximum number of jumps, a jump to
another solution (case ρ 6= r) is allowed only if n < Jmax, and a jump
in the backward direction is not allowed if there is only one jump left
(case n = Jmax − 1).

• Node i′ is the next feasible visit after i in solution ρ. More precisely, let
τ = arr(S) be the arrival time at the current state. If δ = FWD (resp.
BWD), then i′ is the first customer following i (resp. preceding i) in
route ρ such that (1) i′ is not visited yet (i′ ∈ {1, . . . , N} \ V), (2) it
is possible to visit i′ before its closing date (τ ′ = τ + tt(i, i′, τ) ≤ Ci′),
and (3) from i′, it is possible to return to node N + 1 before Tmax
(τ ′ + tt(i′, N + 1, τ ′) ≤ Tmax). Note that as shown in Figure 5.2b, this
rule can skip customers in ρ that are already visited in V or cannot be
visited due to the time window constraints. In other words, the rule is
more flexible than just strictly following solution ρ.

• If the selected route is the same as the current route (ρ = r), then the
state is feasible only if the direction does not change (δ = d). In other
words, moving in an opposite direction on the same sequence, that is
making a reverse jump, is not allowed. This last rule is introduced to
reduce the number of search states but can be omitted (more details
on this point are empirically discussed in Section 5.5).

If the transition from state S to state S ′ is feasible, the arrival time ob-
tained at customer i′ by following this transition is τ ′ = max(τ+tt(i, i′, τ), Oi′)
where τ = arr(S). If τ ′ < arr(S ′), this means that a path reaching S ′ at
a lower cost has been found. In this case, the cost of S ′ is updated by
arr(S ′)← τ ′ and S is set as the new parent of S ′.

96 CHAPTER 5. ROUTE RECOMBINATION

(a) (b)

Figure 5.2 – (a) Possible actions (jump in red, direction in blue) given the
last visited customer i; (b) a possible sequence generated with 4 jumps (in
red) given a pool of 5 sequences of visits

5.3.3 Pseudocode of the route recombination proce-
dure

Algorithm 5.2 details the RR procedure. For the moment, we ignore the lines
highlighted in gray and parameter Wmax. RR takes as an input a pool of P
elite solutions and parameter Jmax defining the maximum number of jumps.
Initially, the best-known solution is initialized by computing the total reward
provided by each individual solution in the elite pool (Line 1). Then, the
algorithm iteratively extends the set of states Sl at each level l, to generate
the set of states Sl+1 at level l + 1. Starting with the P initial states at
level 0 (Line 2), the process is repeated until no more feasible state is found
(Lines 4-16). For each state S reached at the current level, the algorithm
explores all actions (ρ, δ) satisfying the transition rules (Line 7). For each
new extended state S ′, the algorithm computes the earliest time at which S ′
can be reached and updates arr(S ′) if needed, together with the parent of
S ′ (Lines 6-10). States at level l + 1 are pruned if necessary by calling the
prune function (Line 11, more details later on this point). If the new feasible
state S ′ is not pruned, it is appended to Sl+1. The best reward value found
so far is updated if the new state is strictly better (Lines 12-13). Finally, the
best state found is returned at the end of the recombination process (Line
17). Strictly speaking, given Lines 12-13 in the pseudocode of Algorithm
5.2, S∗ is not a terminal state since it can be shown that it never ends with
customer N + 1 (Line 13); however, the state extension rules always ensure
that coming back to node N + 1 is feasible from S∗.

5.3. DYNAMIC PROGRAMMING FORMULATION 97

Algorithm 5.2: recombine({r1, . . . , rP},Jmax, Wmax)
1 S∗ ← preprocessing({r1, . . . , rP })
2 S0 ← {Sr1

0 , . . . , S
rP
0 }

3 l← 0
4 while Sl 6= ∅ do
5 Sl+1 ← ∅
6 for each state S = (V, i, r, d, n) ∈ Sl do
7 for each action (ρ, δ) feasible in state S given Jmax and the rules

of Section 5.3.2 do
8 (S′, τ ′)← extend(S, ρ, δ) /* Section 5.3.2 */
9 if τ ′ < arr(S′) then

10 arr(S′)← τ ′, parent(S′)← S
11 Sl+1 ← prune(Sl+1, S

′) /* Section 5.3.4 */
12 if R(S′) > R(S∗) then
13 S∗ ← S′

14 if |Sl+1| > Wmax then
15 Sl+1 ← restrict(Sl+1,Wmax) /* Section 5.3.5 */

16 l← l + 1
17 return S∗

5.3.4 Pruning strategies

The efficiency of dynamic programming algorithms often depends on the ca-
pacity to detect and eliminate states that cannot lead to an optimal solution
or are unlikely to lead to an optimal solution. In function prune used at Line
11, two pruning strategies are considered.

Pruning by bound At each step, given the solutions of the pool and
the states already reached, the algorithm disposes of the best-known state
S∗. From this, a state S can be pruned if R(S) + R(S) < R(S∗), where
R(S) is an upper bound on the maximum extra score that can be collected
from state S to a terminal state. To compute R(S), it is possible to find a
superset of customers ‘visitable’ from state S, denoted by V (S), and compute
R(S) = ∑

j∈V (S) Rj. We propose two ways to find V (S) depending on whether
state S = (V, i, r, d, n) has reached the maximum number of jumps:

98 CHAPTER 5. ROUTE RECOMBINATION

• if S already uses the maximum number of jumps (n = Jmax), the only
possible action is to follow the current route r in the forward direction
until reaching the end depot, hence we use V (S) = {j ∈ r | (j 6∈
V) ∧ (j follows i in route r)};

• otherwise (n < Jmax), if node i is reached at time τ , then we use V (S) =
{j ∈ {1, . . . , N} | (j 6∈ V) ∧ (τ + tt(i, j, τ) ≤ Cj)}; this definition of
V (S) guarantees that the optimal recombined route will not be pruned
if both the triangular inequality and the FIFO properties mentioned in
Section 3.2.4 are satisfied by tt (intuitively, the former means that the
shortest path between two customers is always the direct one; whereas,
the latter states that the earlier a transition starts, the earlier it ends).

Stronger bounds could be looked for, by exploiting linear programming
models of a relaxed problem, but this is not straightforward as we deal with
a black-box time-dependent transition function.

Pruning by dominance Given two states S1 = (V, i, r, d, n1) and S2 =
(V, i, r, d, n2), we say that S1 strongly dominates S2 if arr(S1) ≤ arr(S2)
and n1 < n2, which means that S1 has a lower cost and more remaining
jumps than S2. In this case, state S2 is not kept in the set of states to be
extended. Given the conditions checked, the number of non-dominated states
can however remain high. This is why, to reduce the number of states to be
explored, we introduce a weaker dominance rule that allows us to compare
two states S1 = (V, i, r1, d, n1) and S2 = (V, i, r2, d, n2) even if r1 is distinct
from r2. We say that S1 weakly dominates S2 if either arr(S1) < arr(S2),
or arr(S1) = arr(S2) ∧ n1 < n2. Intuitively, if two states reach the same
node i and visit the same set of nodes V , the weak dominance rule discards
the state that has the highest cost without taking into account the current
route being followed. Note that this dominance rule may prune states from
which a better reward could be reached in the end, since state S2 can be
relevant even if arr(S1) < arr(S2), especially if it uses fewer jumps than S1
(i.e. n1 > n2).

5.3.5 Bounded-width recombination
Although the approach restricts the number of states by limiting the maxi-
mum number of jumps and by incorporating pruning strategies, the recombi-
nation procedure possibly requires a memory size that is exponential in Jmax

5.3. DYNAMIC PROGRAMMING FORMULATION 99

(see Section 5.3.6). To address this issue, the algorithm employs an addi-
tional width-restriction mechanism that limits the number of states kept at
each decision level. This mechanism corresponds to the part highlighted in
gray in Algorithm 5.2. Basically, once all states in Sl+1 have been generated,
the state restriction phase is invoked. If Sl+1 contains too many states ac-
cording to an input parameter Wmax, the algorithm heuristically selects the
most promising ones and discards the others (Lines 14-15). Formally, for each
state S ∈ Sl+1, we compute a reward-to-cost ratio h(S) = R(S) / arr(S).
Based on this heuristic value, if |Sl+1| > Wmax, we keep only Wmax states
that have the highest heuristic values. Such a width-restriction strategy is
similar to the approach proposed by Gillard & Schaus (2022) for LNS with
decision diagrams.

5.3.6 Complexity results
For the theoretical complexity analysis, we only consider the pure dynamic
programming algorithm and do not take into account the state pruning
strategies.

Proposition 5.1. The number of feasible search states using k jumps is
bounded by 2k ∗ (NP)k+1, where P is the number of solutions in the elite pool
and N is the number of customers.

Proof. The statement holds for k = 0 because the only transitions that lead
to a state with no jump are those that move forward by following one of the
P routes of the solution pool. As these routes contain at most N transitions
between successive customers (if we omit customer N + 1), the number of
transitions leading to a state with no jump is less than N ∗ P .

Assuming that the statement holds for k jumps, let us show that it also
holds for k + 1 jumps. There are two different ways to generate a state with
k + 1 jumps.

• The first way is to make a transition from a state S using k jumps to
a new state S ′ using k + 1 jumps. This is done by jumping to another
sequence in the pool. Note that each jump can be either forward or
backward, resulting in at most 2(P − 1) such transitions for each state
using k jumps. By using the satisfaction of the property at step k,
the set of states T generated in this way has a cardinality bounded by
|T | ≤ 2(P − 1) ∗ 2k ∗ (NP)k+1 ≤ 2k+1 ∗Nk+1 ∗ P k+2.

100 CHAPTER 5. ROUTE RECOMBINATION

• The second way is to make transitions from states using k + 1 jumps
to new states using k + 1 jumps. This is simply done by following the
route r and direction d registered in each of the states in T . In the
worst case, the number of such transitions is at most N − 1, hence the
number of states with k+ 1 jumps generated in this way is bounded by
|T | ∗ (N − 1).

By combining the two cases, the number of states using k + 1 jumps is
bounded by |T | ∗N ≤ 2k+1 ∗ (NP)k+2. As the property holds at step k + 1,
we conclude that it holds for all k.

Proposition 5.2. The number of search states explored by the RR procedure
is O((2NP)Jmax+1), where N is the number of customers, P is the size of the
elite pool, and Jmax is the maximum number of jumps.

Proof. The maximum number of states µ explored by RR can be computed as
the sum of the number of states using k jumps where k ranges from 0 to Jmax.
Therefore, we can write µ ≤ ∑Jmax

k=0 (2k ∗ (NP)k+1) = NP
∑Jmax
k=0 (2NP)k =

NP (2NP)Jmax+1−1
2NP−1 ≤ (2NP)Jmax+1.

Proposition 5.3. The number of search states explored by the RR procedure
is O(NPWmax) where N is the number of customers, P is the size of the elite
pool, and Wmax is the maximum width per level.

Proof. The algorithm systematically explores states in a level-by-level man-
ner. In the worst case, there are at most N extension levels to consider. At
level l, for each state in Sl, the number of possible actions (ρ, δ) is bounded
by 2P (Line 7) since we can either follow the current route or jump to one of
the P − 1 solutions of the pool in the forward or backward direction. As the
width of each level is bounded by Wmax (Lines 14-15), the number of states
explored by Algorithm 5.2 is bounded by 2NPWmax.

Proposition 5.4. The number of search states explored by the RR procedure
is O(min((2NP)Jmax+1, NPWmax)) where N is the number of customers, P
is the size of the elite pool, Jmax is the maximum number of jumps, and Wmax

is the maximum width per level.

Proof. A direct consequence of Propositions 5.2 and 5.3.

Propositions 5.2, 5.3, and 5.4 directly provide the worst-case space com-
plexity of RR. For the worst-case time complexity, we must take into account

5.4. USAGES OF THE RR PROCEDURE 101

the fact that for each transition between two states, RR looks for the next
customer i′ that can be visited. In the worst case, N customers are consid-
ered for each transition. As a result, by assuming that each call to transition
function tt takes a time O(1), it suffices to multiply the quantities given in
Propositions 5.2, 5.3, and 5.4 by a factor N to get worst-case time complexity
results.

From a general point of view, Proposition 5.2 shows that for a fixed value
of Jmax, the RR procedure has a complexity that is only polynomial in N and
P . However, when Jmax is increased, the complexity of RR rapidly grows and
follows an exponential pattern. In this case, Wmax quickly becomes the main
factor that limits the complexity of RR, and Jmax mainly serves as a heuristic
for limiting the state exploration process, ensuring that the recombination
does not deviate too much from the baseline solutions.

5.4 Usages of the RR procedure

5.4.1 Iterative Route Recombination (IRR)

When considering a fixed value of Jmax, the generation of a new sequence
with the RR procedure typically involves the combination of at most Jmax+1
subsequences. This means that if Jmax is small, the diversity of the combined
sequences explored by RR is limited. However, it is possible to try to over-
come this restriction by using an iterative process where after each iteration
of RR leading to an improvement, the worst solution in the pool is replaced
by the new combined solution. This process continues until a fixed point is
reached, i.e. until no further improvement is found. In the end, even with
a fixed number of jumps Jmax, it is possible to iteratively create sequences
containing more than Jmax+1 subsequences contained in the solutions of the
original pool. Indeed, at the first iteration of RR, the resulting combined so-
lution incorporates components from at most Jmax+1 original subsequences,
but at the next iterations, the new sequences generated can themselves be
combined with other solutions of the pool. The iterative version of RR is
referred to as IRR in the following.

102 CHAPTER 5. ROUTE RECOMBINATION

5.4.2 RR used for deterministic and non-deterministic
problems

As mentioned previously, for standard (TD)OPTWs, RR can be used as
a post-optimization step that takes as an input the set of elite solutions
produced by the LNS algorithm and tries to produce an improved combined
solution. This usage of RR is illustrated in Figure 5.3.

Figure 5.3 – Using RR in a deterministic context without reward uncertainty

In another direction, RR can be used to deal with non-deterministic
(TD)OPTWs where there is uncertainty about the actual value of the re-
ward associated with each customer and where updated reward values can
be received during an online phase, just before the execution of the solutions.
For this, as illustrated in Figure 5.4, we first build a pool of elite solutions
during a training (offline) phase. For each training scenario, we change the
customer rewards by dR%, and run LNS to collect a pool containing pooltrain
high-quality solutions for the updated scenario. Later on, in the execution
(online) phase with new reward information, it is possible to use RR to try
and generate a high-quality solution very quickly, based on the sequences
available in the training pool.

Figure 5.4 – Using RR as an online solver in the case of reward uncertainty

5.5. EXPERIMENTS 103

5.5 Experiments

5.5.1 Experimental settings
We carried out experiments on two benchmarks that are summarized in Ta-
ble 5.3.

dataset #instances #nodes is time-dependent ?
optw-solomon1 29 100 no
optw-solomon2 27 100 no
optw-cordeau1 10 48-288 no
optw-cordeau2 10 48-288 no

ti-singlesat-ttf1.0 108 46-95 no
ti-singlesat-ttf1.5 108 46-95 no
ti-singlesat-ttf2.0 108 46-95 no
td-singlesat-ttf1.0 108 46-95 yes
td-singlesat-ttf1.5 108 46-95 yes
td-singlesat-ttf2.0 108 46-95 yes

Table 5.3 – A summary of benchmark datasets

The first benchmark contains 76 classical OPTW instances from Solomon
(1987) and Cordeau et al. (1997) already used in the previous chapter.1 We
recall that in the instances of sets Solomon 2 & Cordeau 2, the time windows
are longer than those in the instances of sets Solomon 1 & Cordeau 1.

The second benchmark, called singlesat,2 is a realistic dataset related to
optimization for an Earth-observing satellite that can observe a set of ground
targets (the customers). This benchmark contains 108 instances divided into
three sets (500km, 700km, 800km) corresponding to different altitudes of
the satellite. These instances were originally generated by Pralet (2023)
for the Time-Dependent Traveling Salesman Problem with Time Windows
(TSPTW), therefore there exists a sequence that can visit all the nodes. In
order to diversify the experiments, for each instance, we multiply all the tran-
sition times by a factor ttf ∈ {1, 1.5, 2} to reduce the number of feasible visits
in a solution. Roughly speaking, factor ttf = 2 corresponds to a satellite ro-
tating around its center of gravity at half its normal speed. Besides, since the

1Instances are available at https://www.mech.kuleuven.be/en/cib/op
2Instances are available on request

https://www.mech.kuleuven.be/en/cib/op

104 CHAPTER 5. ROUTE RECOMBINATION

rewards are not available in the original dataset, we generated a random re-
ward for each customer by using a uniform distribution R ∼ U(10, 30). Last,
the experiments are run over both time-independent and time-dependent
variants of the singlesat instances, referred to as ti-singlesat and td-singlesat
respectively.3

All the experiments are performed on Intel(R) Core(TM) i5-1145G7 @
2.60GHz processors with 64GB RAM. The implementation is in C++14 and
compiled in a Linux environment with gcc 9.4.0. Table 5.4 summarizes the
parameters used for these experiments and the values considered in the fol-
lowing. Two parameters rm and CPUmax are used for the LNS solver, while
two other parameters Jmax and Wmax are used to control the complexity of
the (I)RR procedure. Parameter rm defining the customer removal ratio of
the LNS destroy phase is always set to 0.4. For each instance, we perform
a single run of (I)RR since given a pool of elite solutions, the behavior of
(I)RR is fully deterministic.

Parameter Semantics Values
rm customer removal ratio (LNS destroy phase) 0.4
CPUmax max. CPU time of each LNS run 1s, 2s, 5s, 10s, 30s, 60s
Jmax max. number of allowed jumps 1, 2, 3, 4
Wmax max. number of states explored in each level 100, 1000, 5000, 10000,∞

Table 5.4 – Parameters used in all the experiments

In the following, we evaluate the performance of the RR procedure in two
use cases: (1) as a post-optimization step in deterministic cases, and (2) as
a solver in uncertain scenarios involving updated rewards.

5.5.2 Deterministic scenarios: using IRR as a post-
optimizer

In this experiment, we run LNS for a limited CPU time. We then collect
the 10 best solutions found by LNS. After that, we apply IRR over this elite
pool to search for an improved solution.

3We did not perform experiments on the TDOPTW instances proposed by Verbeeck
et al. (2017), for two main reasons. First, for small instances, LNS quickly finds the
optimal solution, rendering RR unnecessary. Second, for the large instances, the authors
used an additional procedure to modify the original instances so as to obtain known
optimal solutions, but the modified instances are not available online.

5.5. EXPERIMENTS 105

Overall performance We first compare the results obtained by LNS and
LNS-IRR (that uses IRR after LNS) over all instance sets. Here, LNS is run
for 1 second (i.e. CPUmax = 1s) and IRR then uses Jmax = 2 andWmax =∞.

For the classical OPTW instances, we report the average gaps in percent
compared to the best-known solutions available in the literature. Formally,
the gap in percent for each instance is given by

gap = 100 ∗ bk − bf
bk

where bf is the best profit found by each solver and bk is the best-known
value found in the literature.

Table 5.5 shows that using IRR helps improve the average gaps over all
instance sets. Precisely, the average mean over all instances is improved
from 1.70% to 1.22% after using IRR, with a very short average computation
time of 16.20 milliseconds for IRR. For the Solomon2 and Cordeau2 datasets,
the execution time of IRR is slightly longer because the instances in these
datasets are less constrained on the temporal aspect and the sequences in
the elite pool are usually longer (up to 50 customers per sequence).

dataset Average Gap (%)
tIRR(ms)LNS LNS-IRR

optw-solomon1 0.00 0.00 0.87
optw-solomon2 2.39 1.76 37.92
optw-cordeau1 1.90 1.01 6.07
optw-cordeau2 4.55 3.52 12.10

All 1.70 1.22 16.20

Table 5.5 – Results obtained by using IRR as a post-optimization module for
the LNS solver over classical OPTW instances (Jmax = 2, Wmax =∞)

Table 5.6 summarizes the results obtained by LNS and LNS-IRR when
dealing with the singlesat instances. Since the best-known solutions are un-
available, we report in the first two columns the best rewards collected by
each solver, averaged over all instances of each dataset. The third column
reports the time consumed by the IRR procedure. In addition, we measure,
for each instance, the reward improvement of LNS-IRR by computing

∆R = 100 ∗ RLNS−IRR −RLNS

RLNS

106 CHAPTER 5. ROUTE RECOMBINATION

where RLNS and RLNS−IRR are the best profit found by LNS and LNS-
IRR, respectively. Then, in the two following columns, we report ∆Ravg and
∆Rmax as the average and the highest reward improvement over all instances.
In the last column, we show the number of instances where IRR helps improve
the quality of solutions found by LNS i.e. ∆R > 0.

dataset Rwd(LNS) Rwd(LNS-IRR) tIRR(ms) ∆Ravg(%) ∆Rmax(%) nbImpr
ti-singlesat-ttf1.0 1311.06 1315.59 7.94 0.33 2.67 38/108
ti-singlesat-ttf1.5 1082.19 1089.27 17.88 0.63 3.36 72/108
ti-singlesat-ttf2.0 897.10 903.42 25.30 0.67 3.25 70/108
td-singlesat-ttf1.0 1319.76 1325.31 23.29 0.40 3.50 48/108
td-singlesat-ttf1.5 1091.44 1101.86 41.35 0.94 3.55 85/108
td-singlesat-ttf2.0 907.95 917.65 33.56 1.04 4.44 85/108

Grand mean 1101.59 1108.85 24.89 - - -

Table 5.6 – Results obtained by using IRR as a post-optimization module for
the LNS solver over the singlesat datasets (Jmax = 2, Wmax =∞)

As before, LNS-IRR outperforms LNS for all instance sets, and IRR only
requires a very short time, with an average of 24.89 milliseconds to enhance
the performance of LNS. Regarding the last three columns, we observe that
IRR leads to higher improvements when dealing with the more constrained
sets. In particular, for ti-singlesat-ttf2.0, IRR helps improve the best so-
lution for 70 over 108 instances, with an average and the highest reward
improvement equal to 0.67% and 3.25%, respectively. For the td-singlesat-
ttf2.0 dataset, the number of improving cases is up to 85 over 108 instances,
with an average and the highest reward improvement equal to 1.06% and
4.44%, respectively.

For both benchmarks, results obtained show that using the IRR procedure
after LNS is both light and efficient in most cases.

Impact of the elite pool To investigate the impact of the quality of
the solutions in the pool on the final solution found by IRR, we analyze the
evolution of the grand mean gap (for the classical OPTW datasets) or reward
(for the singlesat datasets) over different values of CPUmax for LNS, varying
from 1 second to 60 seconds.

In Table 5.7a, we observe that on classical OPTW datasets, LNS-IRR
using 10 seconds of LNS and 21.64 milliseconds of IRR achieves almost the
same average gap as pure LNS running during 60 seconds. As for the singlesat
datasets, Table 5.7b shows that LNS-IRR only needs 10 seconds of LNS to get
a slightly better average reward than LNS alone running during 60. In both

5.5. EXPERIMENTS 107

cases, we remark that LNS-IRR outperforms LNS i.e. LNS-IRR produces
better results within a much shorter CPU time.

CPUmax(s)
Average Gap (%)

tIRR(ms)LNS LNS-IRR ∆Gap
1 1.70 1.22 0.48 16.20
2 1.44 1.12 0.32 15.21
5 1.39 1.03 0.36 30.26
10 1.14 0.88 0.26 21.64
30 0.91 0.69 0.22 15.10
60 0.80 0.62 0.18 17.31

(a) OPTW

CPUmax(s)
Reward

tIRR(ms)LNS LNS-IRR ∆R
1 1101.59 1108.85 7.26 24.89
2 1107.03 1112.94 5.91 17.15
5 1109.66 1114.94 5.28 15.91
10 1111.82 1116.68 4.86 15.16
30 1114.81 1117.99 3.18 12.80
60 1115.99 1119.09 3.10 14.56

(b) singlesat

Table 5.7 – Different CPUmax time limits of LNS over OPTW and singlesat
instances (IRR with Jmax = 2, Wmax =∞)

Besides, Tables 5.7a and 5.7b also show that the improvement provided
by IRR decreases if the computation time allocated to LNS is higher (see
columns ∆Gap and ∆R). This is reasonable since with a higher time limit,
LNS can converge to a better local optimum, making it harder for IRR to
find new improving solutions.

Impact of parameters Jmax and Wmax The complexity of RR is con-
trolled by parameters, Jmax and Wmax. To study the impact of these pa-
rameters, we report results obtained by LNS-IRR for Jmax ∈ {0, 1, 2, 3, 4}
(Jmax = 0 means that we do not use IRR after running LNS) and Wmax ∈
{100, 1000, 5000, 10000,∞}. The timeout duration for IRR is set to 5 min-
utes.

As shown in Table 5.8, when Wmax = ∞, increasing Jmax can lead to
higher improvements in solution quality. Indeed, for the classical OPTW
instances, the average gap decreases from 1.70% without jumps to 1.05%
with 3 jumps. However, the average gap obtained with 4 jumps is worse
than the one with 3 jumps. This is because, on some instances, IRR using

108 CHAPTER 5. ROUTE RECOMBINATION

Jmax = 4 reaches the time limit and does not complete the recombination
process. On this point, we additionally report in column #t.o. the number
of instances over which a timeout of IRR occurs given the time limit of 5
minutes. Similar results are observed with both the OPTW and singlesat
datasets: when we do not constrain the width of each level (Wmax = ∞),
IRR requires much more time to finish when Jmax increases. This is due to
the exponential increase in the number of states to consider during dynamic
programming.

Jmax Wmax
optw singlesat

AvgGap%(LNS-IRR) tIRR(ms) #t.o AvgRwd(LNS-IRR) tIRR(ms) #t.o
0 ∞ 1.70 0 0 1101.59 0 0
1 ∞ 1.63 1.48 0 1103.35 2.77 0
2 ∞ 1.22 16.20 0 1108.85 24.89 0
3 ∞ 1.05 1929.95 0 1112.26 554.14 0
4 ∞ 1.24 81370.61 17/76 1113.75 37561.21 31/648
4 10000 0.89 2321.45 0 1113.65 6694.53 0
4 5000 0.95 828.19 0 1113.13 3589.63 0
4 1000 1.11 129.03 0 1109.25 622.03 0
4 100 1.47 11.79 0 1103.49 43.80 0

Table 5.8 – Impact of parameters Jmax and Wmax (CPUmax = 1s)

However, limiting Wmax can help overcome this issue. With 4 jumps, for
the singlesat datasets, tIRR decreases from 37 seconds to about 6 seconds
after setting Wmax = 10000 and there is no instance over which a timeout
is reached. For the classical OPTW instances, the speed-up is even more
significant: tIRR decreases from 81 seconds to about 2 seconds with Wmax =
10000, while the average gap is even better than when using configuration
Jmax = 3,Wmax = ∞ (0.89% compared to 1.05%). Obviously, for smaller
values of Wmax, IRR is faster but provides lower rewards, since more states
are pruned by the state restriction phase.

Effectiveness of the iterative recombinations Table 5.9 gives the total
number of RR iterations done over all the instances of each dataset. For
instance, column #RR=1 counts the number of instances for which the first
iteration of RR brings no improvement. For the Solomon1 and Cordeau1
datasets, since the best solution provided by LNS is already near-optimal, we
always have #RR≤ 2. For the singlesat datasets, there exist many instances
where RR is applied more than 3 times. In these cases, combined solutions
potentially involve the combination of more than three (or four) sequences
of the original pool, even though the maximum number of jumps Jmax is set
to 2 (or 3).

5.5. EXPERIMENTS 109

dataset #instances #RR (Jmax = 2) #RR (Jmax = 3)
1 2 3 4 5 6 1 2 3 4 5 6

optw-solomon 1 29 29 0 0 0 0 0 29 0 0 0 0 0
optw-solomon 2 27 12 10 4 1 0 0 7 14 6 0 0 0
optw-cordeau 1 10 4 6 0 0 0 0 4 6 0 0 0 0
optw-cordeau 2 10 4 4 1 1 0 0 4 6 0 0 0 0
ti-singlesat-ttf1.0 108 70 27 10 1 0 0 60 27 19 2 0 0
ti-singlesat-ttf1.5 108 36 48 19 3 2 0 31 54 11 7 4 1
ti-singlesat-ttf2.0 108 38 52 15 3 0 0 32 54 18 4 0 0
td-singlesat-ttf1.0 108 60 29 15 3 1 0 63 25 16 3 1 0
td-singlesat-ttf1.5 108 23 55 28 2 0 0 17 55 27 8 1 0
td-singlesat-ttf2.0 108 23 59 25 1 0 0 23 63 20 2 0 0

Table 5.9 – Number of RR iterations in the iterative recombination process
(CPUmax = 1s, Wmax =∞)

Impact of the weak dominance rule Furthermore, to measure the
strength of the pruning strategies, we run again the IRR procedure by re-
placing the weak dominance rule with the strong dominance rule. The two
variants obtained are referred to as IRR-weakDom and IRR-strongDom re-
spectively, IRR-weakDom being our default configuration. As indicated in
Table 5.10, for the singlesat datasets, IRR-weakDom with Jmax = 4 and
Wmax =∞ reaches its time limit for 31 instances, compared to 99 instances
for IRR-strongDom. Indeed, RR with the strong dominance rule requires ex-
ploring a higher number of states during dynamic programming. Moreover,
we can observe that the execution time of IRR-strongDom and the number
of timeouts significantly increase when using more than 2 jumps. Yet again,
settingWmax can help overcome this issue (see the last column in Table 5.10).

dataset IRR variant
Jmax = 2 Jmax = 3 Jmax = 4 Jmax = 4
Wmax =∞ Wmax =∞ Wmax =∞ Wmax = 10000

tIRR(ms) #t.o tIRR(ms) #t.o tIRR(ms) #t.o tIRR(ms) #t.o

optw

weakDom 16 0 1929 0 81370 17/76 2321 0
strongDom 52 0 8149 0 105787 23/76 7180 0

weakDom + revJump 135 0 62428 13/76 138709 34/76 6639 0
strongDom + revJump 938 0 66670 14/76 137345 32/76 112208 0

singlesat

weakDom 24 0 554 0 37561 31/648 6687 0
strongDom 61 0 1391 0 81575 99/648 12415 0

weakDom + revJump 48 0 2486 0 140199 208/648 10581 0
strongDom + revJump 127 0 14862 3/648 161587 258/648 15463 0

Table 5.10 – Impact of weakDom and reverseJump on the computation time
of IRR (CPUmax = 1s)

Impact of reverse jumps As mentioned earlier in Section 5.3.2, we call
reverse jump a jump within the same sequence but in an opposite direction.

110 CHAPTER 5. ROUTE RECOMBINATION

The state extension rules forbid the reverse jumps, thereby reducing the
number of search states. To illustrate this point, we compare the standard
configuration with the one that allows reverse jumps (by omitting the last
state extension rule). As reported in Table 5.10, the variants allowing reverse
jumps, denoted shortly as IRR-revJump, require a larger amount of time in
all cases. For example, for the singlesat datasets, IRR-revJump is about up
to four times slower with Jmax = 4 and reaches the timeout for more than
200 instances. Similarly, for the classical OPTW instances, IRR-revJump is
slower and reaches the timeout for several instances, even with Jmax = 3.

Instance LNS LNS-IRR LNS-IRR LNS-IRR LNS-IRR
weakDom strongDom weakDom-revJump strongDom-revJump

Rwd Rwd tIRR(ms) #RR Rwd tIRR(ms) #RR Rwd tIRR(ms) #RR Rwd tIRR(ms) #RR
optw-pr15 642 676 746.68 2 678 1409.79 3 698 3681.02 5 703 248592.00 6
optw-pr18 528 528 70.28 1 528 99.04 1 531 251.48 2 531 740.19 2
optw-pr20 621 628 165.44 2 629 414.09 2 637 10647.00 4 629 14856.00 2

Table 5.11 – Impact of strongDom and reverseJump for several instances
(CPUmax = 1s, Jmax = 3, Wmax =∞)

Essentially, reverse jumps are able to explore the sequences produced
by the state-of-the-art 2-opt operator and can be useful in some cases. As
shown in Table 5.11, this is empirically observed for several optw-cordeau2
instances (e.g., instances pr15, pr18, and pr20) where IRR-revJump gives
the best solution quality compared to other variants. However, IRR-revJump
requires a much larger execution time, which is why we deactivate the reverse
jumps in the baseline dynamic programming algorithm proposed.

Summary Globally, the results obtained show that using iterative RR
(IRR) in a post-optimization phase can quickly improve the quality of solu-
tions provided by a standard LNS solver. IRR is very fast with a small value
of Jmax. While using a larger value for Jmax leads to further improvements,
it also requires much more time. To overcome this issue, setting Wmax be-
comes essential. Moreover, using the weak dominance test and omitting the
reverse jumps help speed up the recombination phase, while inducing a slight
decrease in the solution quality in some cases.

5.5.3 Uncertain scenarios: using RR as an online solver
The general scheme of this experiment corresponds to the approach provided
earlier in Figure 5.4, which involves uncertain reward values that can be

5.5. EXPERIMENTS 111

updated at the last minute. In the following, we use a fixed configuration
where Jmax = 2 and Wmax = ∞, and we run RR only once instead of using
the iterative recombination version, to avoid modifying the sequences in the
training pool. In other words, we use RR instead of IRR. The remaining
parameters of the experiments are given in Table 5.12.

Parameter Semantics Values
dR perturbation ratio for the rewards 10%, 20%, 30%, 50%
nstrain number of training scenarios (i.e. number

of reward scenarios)
5, 10

pooltrain max. number of solutions generated for
each training scenario

5, 10

Table 5.12 – Parameters used in uncertain scenarios

Basically, we generate nstrain reward scenarios based on a perturbation
ratio referred to as dR. More specifically, to generate one reward scenario,
we randomly chose, for each customer i whose original reward is Ri in an
instance, a reward in interval [Ri ∗(1−dR), Ri ∗(1+dR)] following a uniform
distribution. Then, for each reward scenario, we generate a pool of pooltrain
elite solutions. After that, the online reward scenario is also built by choosing
a reward R̃i following the same uniform distribution R̃i ∼ U(Ri∗(1−dR), Ri∗
(1 + dR)). With this configuration, the online rewards do not necessarily
correspond to the expected mean of the rewards chosen in the scenarios.

Overall performance In this experiment, we set dR = 20%, nstrain = 10,
and pooltrain = 5. As a result, the pool contains at most nstrain∗pooltrain = 50
sequences.

Table 5.13 compares the best-combined solutions obtained by RR and the
best solution found by a run of LNS during 5 seconds given the online reward
scenario. The online scenarios are created based on both the classical OPTW
instances and the singlesat instances, but with dR% reward perturbation to
introduce variability. Due to the unavailability of best-known solutions for
these test instances, in the first two columns of the upper table, we report
the average rewards obtained by each solver on the online reward scenario.
In the next two columns, we report tf LNS, the average time at which LNS
produces its best solution, and tRR, the computation time consumed by RR
given the training pool. Besides, we also compute the reward gap (in %)

112 CHAPTER 5. ROUTE RECOMBINATION

between two solvers, which is given by

∆R = 100 ∗ RRR −RLNS

RLNS

where RRR and RLNS are the total rewards provided by RR and LNS, re-
spectively. This means that RR achieves a better solution quality if ∆R > 0.

dataset Rwd Time(ms)
LNS RR tf LNS(ms) tRR(ms)

optw-solomon1 299.69 299.69 105.99 8.14
optw-solomon2 905.04 910.78 1915.68 3375.48
optw-cordeau1 368.40 372.50 1876.66 156.70
optw-cordeau2 411.70 418.60 1791.92 295.53
optw-mean 495.05 500.97 1422.56 958.96

ti-singlesat-ttf1.0 1200.64 1209.37 1860.90 103.99
ti-singlesat-ttf1.5 1003.91 1013.16 2329.27 400.76
ti-singlesat-ttf2.0 841.07 846.40 1865.40 408.91
td-singlesat-ttf1.0 1213.16 1221.11 2058.36 96.39
td-singlesat-ttf1.5 1018.14 1029.94 2004.76 268.49
td-singlesat-ttf2.0 854.09 862.17 2082.80 338.93
singlesat-mean 1021.83 1030.36 2033.58 269.58

dataset RR wins RR=LNS LNS wins ∆R(%)
min avg max

optw-solomon1 0 29 0 0.00 0.00 0.00
optw-solomon2 18 6 3 -0.46 0.54 2.38
optw-cordeau1 5 5 0 0.00 0.92 2.88
optw-cordeau2 7 2 1 -0.20 1.48 5.32
optw-mean - - - -0.08 1.18 3.17

ti-singlesat-ttf1.0 79 28 1 -0.68 0.72 2.91
ti-singlesat-ttf1.5 92 12 4 -0.28 0.89 2.98
ti-singlesat-ttf2.0 75 26 7 -0.73 0.58 2.53
td-singlesat-ttf1.0 77 30 1 -0.39 0.63 2.41
td-singlesat-ttf1.5 97 7 4 -0.24 1.14 3.16
td-singlesat-ttf2.0 85 20 3 -0.61 0.88 5.46
singlesat-mean - - - -0.49 0.81 3.24

Table 5.13 – Comparison of results obtained by LNS and RR for a test
scenario involving a reward perturbation of 20% (CPUmax = 5s, Jmax = 2,
Wmax =∞, nstrain = 10, pooltrain = 5)

Once again, the results obtained indicate that RR outperforms LNS while
requiring a lower computation time. Indeed, with the singlesat datasets, RR
takes only 269.58 milliseconds on average and achieves a better grand mean
(1030.36) than LNS alone run during 5 seconds (1021.83). This is also true
for the classical OPTW datasets, where RR only requires 958.96 milliseconds
on average. It is worth noting that there still exist a few cases where LNS
obtains better solutions, but the gap compared to RR is relatively small. For
example, for dataset ti-singlesat-ttf2.0, RR is only less effective in 7 out of 108

5.5. EXPERIMENTS 113

cases, the worst gap being just −0.73% compared to the solution found by
LNS. Meanwhile, in the time-dependent version (td-singlesat-ttf2.0), there
are only 3 instances where LNS is better than RR and the worst gap being
just −0.61%.

Regarding the execution time (column tRR, Table 5.13), RR consumes
more time for the optw-solomon2 instances, mainly because these instances
are less constrained (the optimal solution visits around 50 over 100 cus-
tomers). This leads to a larger number of possible combinations, resulting
in an increase of processing times. Yet globally, these findings demonstrate
that RR can effectively adapt the solutions to small changes in the rewards
with the use of a pre-trained elite pool.

Impact of weakDom and revJump Once again, we aim to study the effec-
tiveness of the proposed pruning strategies. Here, we evaluate these pruning
strategies with Jmax = 2, but dealing with a larger pool of solutions (50
solutions in the pool). Table 5.14 details the average rewards and execution
times obtained with different variants of RR.

As before, using the exact dominance rule (RR-strongDom) instead of
the weak version (RR-weakDom) gives a better solution quality, yet requires
more time. In terms of runtime, the variant using both strongDom and
revJump is the slowest version over both datasets (e.g., up to 109 seconds
for optw-solomon2). Overall, RR-weakDom is the fastest version, while RR
using strongDom (with or without revJump) appears to be better in terms
of solution quality.

dataset RR-weakDom RR-strongDom RR-weakDom-revJump RR-strongDom-revJump
Rwd t(ms) Rwd t(ms) Rwd t(ms) Rwd t(ms)

optw-solomon1 299.69 8.14 299.69 11.40 299.69 17.11 299.69 13.84
optw-solomon2 910.78 3375.48 911.00 4327.26 885.30 24056.81 870.56 109487.10
optw-cordeau1 372.50 156.70 372.50 312.51 372.50 459.23 372.40 469.57
optw-cordeau2 418.60 295.53 420.70 715.02 419.90 2864.23 419.40 1972.55
optw-mean 500.39 958.96 500.97 1341.55 492.68 6489.14 490.51 27985.77

ti-singlesat-ttf1.0 1209.37 103.99 1212.67 781.40 1209.42 198.86 1213.56 1171.37
ti-singlesat-ttf1.5 1013.16 400.76 1014.47 1546.66 1011.68 834.61 1014.57 2546.70
ti-singlesat-ttf2.0 846.40 408.91 846.78 952.48 846.34 728.47 846.63 1523.38
td-singlesat-ttf1.0 1221.11 96.39 1225.56 788.31 1219.79 176.41 1225.34 1299.59
td-singlesat-ttf1.5 1029.94 268.49 1031.47 1438.11 1029.47 495.45 1031.44 2429.55
td-singlesat-ttf2.0 862.17 338.93 862.54 979.55 862.48 596.31 862.70 1407.89
singlesat-mean 1030.36 269.58 1032.25 1081.09 1029.86 505.02 1032.37 1248.22

Table 5.14 – Impact of reverseJump and weakDom (CPUmax = 5s, Jmax = 2,
Wmax =∞, nstrain = 10, pooltrain = 5).

114 CHAPTER 5. ROUTE RECOMBINATION

Impact of the training pool It is also natural to inquire about the num-
ber of training scenarios and solutions per scenario required to make RR
efficient enough during the online phase.

Table 5.15 shows that the configuration using a larger pool produces a
better average reward, though the difference is not significant. On the other
hand, reducing the number of solutions in the pool by using either fewer
scenarios or fewer sequences per scenario significantly reduces the execution
time of RR without deteriorating the solution quality.

Indeed, for the singlesat instances and nstrain = 10, generating 5 se-
quences per scenario yields a similar solution quality compared to using 10
sequences per scenario (average rewards equal to 1030.36 and 1030.79 respec-
tively), while being four times faster (269.58ms compared to 1318.42ms). For
the classical OPTW instances, the speed-up ratio is even higher (about ten
times).

nstrain pooltrain
OPTW singlesat

Rwd(RR) tRR(ms) Rwd(RR) tRR(ms)
5 5 499.15 136.65 1028.44 65.35
5 10 499.93 1230.83 1029.02 357.12
10 5 500.97 958.96 1030.36 269.58
10 10 501.09 11232.44 1030.79 1318.42

Table 5.15 – Impact of the number of solutions in the training pool
(CPUmax = 5s, Jmax = 2, Wmax =∞)

From a general point of view, having more solutions in the pool results
in a longer execution time for RR, while having fewer solutions leads to a
lower reward in the end. It is however counterproductive to keep too many
solutions in the elite pool because this increases the execution time of RR
without significantly improving the solution.

Impact of reward perturbations Last, to assess the adaptation capacity
of the RR module, we run additional tests with different levels of reward
perturbations.

From Table 5.16, we observe that RR becomes less effective when the
reward perturbation is large, e.g., when dR is set to 50%. Intuitively, this is
because the scenarios used to build the solutions in the training pool become
too distinct from the scenario to consider during the online phase.

5.6. RELATED WORKS AND DISCUSSION 115

dR(%) meanRwd-OPTW meanRwd-singlesat
LNS RR LNS RR

10 512.90 518.80 1039.29 1048.44
20 495.05 500.97 1021.83 1030.36
30 547.31 552.04 1049.41 1055.87
50 546.83 544.10 1045.12 1044.14

Table 5.16 – Adaptation of RR with different perturbation ratios (CPUmax =
5s, Jmax = 2, Wmax =∞, nstrain = 10, pooltrain = 5)

Summary The experimental results show that for scenarios involving un-
certain rewards, RR can be effectively used as a fast online solver working
on a pre-trained pool of solutions. The size of the pool of solutions must not
be too large to keep short computation times, and RR is less effective with
large reward perturbations.

5.6 Related works and discussion
Deterministic (TD)OPTW In the literature, various approaches are in-
troduced to solve (TD)OPTW (i.e. with or without time dependent transi-
tion times) in a deterministic case (see Section 3.2 for more details). With
regards to these existing works, the approach proposed in this chapter is
a post-optimization step that can take as an input good-quality solutions
provided by any of the existing algorithms.

(TD)OPTW with uncertain rewards In this work, we also consider
problems in which there is uncertainty about the precise values of the re-
wards, and where updated reward values can be received at the last minute.

From a general point of view, a few contributions were proposed in the
literature to solve orienteering problems with uncertain profits. One con-
tribution is a work by Ilhan et al. (2008), that considers the orienteering
problem with stochastic profits where the goal is to maximize the proba-
bility to get a reward greater than a given value. In this case, a unique
solution is built beforehand. Other authors considered orienteering problems
where customers are present with a certain probability, the goal being then
to maximize the total expected reward. For this, Angelelli et al. (2017) de-
veloped mathematical programming models and matheuristics, Zhang et al.

116 CHAPTER 5. ROUTE RECOMBINATION

(2018) introduced a genetic algorithm optimizing the expected profit and
the expected travel cost, and Chou et al. (2021) defined a tabu search algo-
rithm. In all these works, a unique solution is built beforehand. In another
direction, Evers et al. (2014) and Verbeeck et al. (2016) considered problems
where there is uncertainty about the transition times, but we focus here on
profit uncertainty.

This configuration is motivated by a kind of (TD)OPTW under uncer-
tainty related to the satellite observation scheduling problem presented in
Chapter 3. In this problem, the vehicle is an observation satellite and the
customers are ground targets that should be observed. Each ground target
can only be observed during the time window where the satellite overflies
that target. The (time-dependent) minimum transition time between the
visits of targets i and j corresponds to the time required by the satellite to
move around its center of gravity from a configuration where it is pointed to
target i to a configuration where it is pointed to target j. In this context,
the reward associated with each customer depends on the cloud cover, since
images full of clouds bring a lower reward compared to images of ground
targets benefiting from clear sky conditions. The objective is then to select
and schedule candidate acquisitions in order to maximize the total reward
collected. In practice, the problem becomes more challenging due to the
uncertainty about the cloud cover conditions.

As for the literature related to Earth observation satellites, several meth-
ods were proposed to deal with the uncertainty about the cloud cover, in-
cluding stochastic optimization methods that associate a probability of suc-
cess with each observation and possibly plan multiple observations of the
same target (Wang et al. (2015)), multi-stage optimization methods that
anticipate the possibility of generating new observation tasks to react to
the actual weather conditions (Valicka et al. (2019)), as well as robust opti-
mization approaches that exploit an uncertainty budget (Wang et al. (2015,
2019)). Besides, some approaches use the Markov Decision Process frame-
work (Bensana et al. (1999b)) or deep reinforcement learning (Hadj-Salah
et al. (2019); Lam et al. (2019)) to learn observation selection rules. How-
ever, none of these approaches exploits the last-minute weather data. For
this, onboard decision-making techniques were proposed, mainly to adapt a
baseline plan given updated weather data obtained just before executing the
plan (Beaumet et al. (2011); Chien et al. (2014); Pralet et al. (2019)). But
again, a unique baseline plan is considered in these works.

5.6. RELATED WORKS AND DISCUSSION 117

Contributions We employ the route recombination terminology by anal-
ogy with the post-processing module of the I3CH algorithm proposed by Hu
& Lim (2014). With regards to the works discussed previously as well as the
principle of solution merging using complete techniques presented in Section
2.3.1, the techniques proposed bring several contributions.

• First, the RR method proposed is based on a new dynamic program-
ming algorithm that is able to efficiently explore various combinations
of subsequences of visits involved in a set of baseline solutions. This
differs from existing iterative methods that only explore a path be-
tween two baseline solutions, and from existing techniques that use
mathematical programming to combine solutions. The dynamic pro-
gramming algorithm proposed is enhanced with pruning strategies that
allow the search space to be reduced. As shown in the experimental
results, the algorithm obtained is both fast and efficient on standard
OPTW benchmarks.

• Second, to the best of our knowledge, the approach proposed is the first
route recombination algorithm that is applied to both time-independent
and time-dependent problems, especially contrarily to recombination
methods based on the mathematical programming model introduced by
Hu & Lim (2014). Moreover, in the case of time-dependent problems,
RR does not require the transition function to be piecewise linear.

• Third, the recombination method proposed can combine up to k sub-
sequences of customer visits involved in the whole set of baseline so-
lutions, unlike existing path relinking methods that only combine two
solutions at a time. This broader exploration can yield larger improve-
ments in solution quality. On this point, RR is inspired by the k-opt
moves used for the Traveling Salesman Problem and its variants (Hels-
gaun (2017); Tinós et al. (2018)). Similiarly to k-opt, RR is able to
traverse subsequences of visits both in the forward and backward di-
rections. But unlike k-opt moves that work on a single solution, RR
tries to find the best combination of multiple sequences of visits. More-
over, RR is able to deal with a selection problem where only a subset of
customers is visited and where the goal is to maximize the total reward.

• Fourth, we provide worst-case time and space complexity results for
the RR procedure, showing that the complexity of RR can be fully

118 CHAPTER 5. ROUTE RECOMBINATION

controlled based on only two parameters, namely Jmax the maximum
number of subsequences that can be combined andWmax the maximum
number of states maintained by the dynamic programming procedure at
each step. With the latter parameter, each application of RR explores
a number of states that is only linear in the number of customers.

• Fifth, the RR procedure is applied not only to a deterministic con-
text i.e. to post-optimize a set of elite (TD)OPTW solutions, but also
to non-deterministic scenarios involving uncertainty about the actual
reward provided by each customer visit. For such scenarios, baseline
solutions can first be produced during an offline phase for diverse re-
wards, and the RR module can then exploit these baseline solutions
to try and produce a good sequence of visits given the last-known re-
ward values, during an online phase. In particular, for the satellite
benchmark, the idea is to build baseline solutions some hours in ad-
vance using randomized cloud cover scenarios, and quickly adapt the
plan at the last minute given the updated weather forecast, possibly di-
rectly onboard the satellite that may have very limited computational
capabilities (Figure 3.5).

5.7 Conclusion
This chapter presented a Route Recombination (RR) method applicable to
both deterministic and non-deterministic (TD)OPTWs. This method ex-
ploits a pool of elite solutions and searches for the best recombination of
subsequences of visits available in the pool. The algorithm proposed uses
a dynamic programming approach whose complexity is controlled by two
parameters, namely Jmax the maximum number of jumps between baseline
solutions, and Wmax the maximum width of the dynamic programming pro-
cess. Moreover, pruning rules were introduced to limit the number of states
to consider. The experiments performed show that RR is very efficient in
various situations. In deterministic cases, RR can be used as a lightweight
post-optimization component for a standard incomplete solver. It can also
be used to deal with uncertain rewards, by generating a pool of elite solutions
from a set of training scenarios. Our experimental results indicate that, with
appropriate parameter selections, RR outperforms a standard LNS solver
while requiring a shorter CPU time.

CHAPTER 6

A generic framework for solving
complex routing problems

In the previous chapters, several hybrid optimization methods have been in-
troduced to deal with OPTWs and TDOPTWs. However, in practice, routing
problems with profits may involve many other specifications. This is why in
this chapter, we focus on complex scenarios possibly involving optional cus-
tomers, multiple vehicles, multiple time windows for each customer, multi-
ple knapsack constraints (e.g., capacity constraints), and/or time-dependent
transition times modeling traffic conditions (e.g., congestion or rush hours)
varying over time. For each problem variant, dedicated powerful heuristic,
local search, and metaheuristic algorithms have been defined in the litera-
ture, especially in order to solve large-size instances. However, this raises
some issues because each time a new problem is introduced, the powerful
algorithms defined for the baseline problems need to be revised.

To avoid developing new specific algorithms for each problem variant, we
present a hybrid approach for solving complex routing problems involving
optional customers, while making an effort to minimize the potential perfor-
mance loss associated with an increase in genericity. Precisely, we propose
a modular architecture exploiting (1) on one side a sub-module managing
all customer selection decisions, and (2) on the other side a sub-module ef-
ficiently managing customer sequencing decisions. On top of that, a generic
solver interface can freely choose a specific metaheuristic while interacting
with the low-level modules to search for solutions.

The rest of this chapter is organized as follows. First, the problem con-

119

120 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

sidered is formally defined in Section 6.1. Then, the generic framework is
described in Section 6.2. After that, an implementation of two sub-modules
is detailed in Section 6.3. A metaheuristic using this framework is presented
in Section 6.4. The experiments presented in Section 6.5 show the efficiency
and genericity of the approach proposed. Last, related works are discussed
in Section 6.7, and the contribution is summarized in Section 6.8.

6.1 Complex orienteering problem formula-
tion

To define the complex orienteering problem considered, we recall several basic
notations introduced in Chapter 3. Formally, we consider here a fleet of
vehicles v ∈ {1, . . . ,M} and a set of customers i ∈ {1, . . . , N}, plus two
fictitious customers numbered 0 and N + 1 that respectively represent the
source depot from which each vehicle starts and the sink depot at which each
vehicle must finish its tour. A reward Ri and possibly multiple successive
and non-overlapping time windows [Oiw, Ciw], w ∈ {1, . . . ,Wi} are associated
with each customer i ∈ {0, . . . , N + 1}. By convention, R0 = RN+1 = 0,
W0 = WN+1 = 1, and [O0,0, C0,0] = [ON+1,0, CN+1,0] = [0, Tmax], where
Tmax is the predefined limited time budget for each vehicle v.

In this formulation, we use a black-box transition function tt(i, j, si) to
cover both time-independent and time-dependent variants of the transition
times between two distinct customers i and j when the transition starts at
time si. For the sake of simplification, we assume that a visit duration of cus-
tomer i is already included in the transition time from customer i to customer
j. We also assume that tt returns only positive values i.e. tt(i, j, si) > 0.

A classic orienteering problem can be formulated as a mixed integer (non-
linear) program using the following variables.

• ∀i ∈ {0, . . . , N + 1} ∀v ∈ {1, . . . ,M} xiv ∈ {0, 1}: a binary decision
variable taking value 1 if and only if customer i is visited by vehicle v;

• ∀i ∈ {0, . . . , N} ∀j ∈ {1, . . . , N + 1} ∀v ∈ {1, . . . ,M} yijv ∈ {0, 1}:
a binary decision variable taking value 1 if and only if customer i is
immediately followed by customer j 6= i in the sequence of visits of
vehicle v;

6.1. COMPLEX ORIENTEERING PROBLEM FORMULATION 121

• ∀i ∈ {0, . . . , N + 1} ∀v ∈ {1, . . . ,M} siv ∈ [Oi1, CiWi
]: a continuous

variable denoting the start of the visit at customer i by vehicle v, that
is bounded by the start of the first time window of customer i and the
end of its last time window.

Together with temporal constraints, several complex variants of this prob-
lem can involve additional side constraints in terms of customer selection. As
an example, one may extend the OP with capacity constraints like in the ca-
pacitated vehicle routing problems. In such a case, each customer has a
certain demand ci and every vehicle has a restricted capacity Cmax

v to serve
these customers. Then, these capacity constraints can be formally repre-
sented as ∑N

i=1 cixiv ≤ Cmax
v ∀v ∈ {1, . . . ,M}. In another direction, one may

also have a constraint defining a minimum reward that must be collected,
i.e., ∑M

v=1
∑N
i=1 Rixiv ≥ LB, as previously mentioned in Section 4.3.1. From

a general point of view, these constraints can be expressed in the form of z
linear pseudo-Boolean constraints, i.e. ∑

i,v eivzxiv ∼ Ez where ∼ ∈ {≤,≥},
xiv ∈ {0, 1}, and eivz, Ez ∈ N for z ∈ {1, . . . , Z}. Therefore, to cover all these
points in a generic formulation, we introduce additional notations as follows.

• ∀z ∈ {1, . . . , Z} cz: a linear pseudo-Boolean constraint defined over
binary variables xiv;

• ∀i ∈ {0, . . . , N+1} ∀v ∈ {1, . . . ,M} ∀z ∈ {1, . . . , Z} eivz ∈ N: the inte-
ger coefficient associated with decision variable xiv in linear constraint
cz;

• Ez ∈ N: the right-hand side value associated with linear constraint cz.

The model of the complex orienteering problem is described step-by-step
as follows.

max
M∑
v=1

N∑
i=1

Rixiv (6.1)

The objective function (Equation 6.1) maximizes the total reward collected
by all vehicles.

122 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

N+1∑
j=1

y0jv =
N∑
i=0

yi(N+1)v = 1; ∀v ∈ {1, . . . ,M} (6.2)

M∑
v=1

xkv ≤ 1; ∀k ∈ {1, . . . , N} (6.3)

N∑
i=0

yikv =
N+1∑
j=1

ykjv = xkv; ∀k ∈ {1, . . . , N}; ∀v ∈ {1, . . . ,M} (6.4)

Constraints 6.2 guarantee that all vehicles start and end at the depot
nodes. Constraints 6.3 guarantee that each node is visited at most once by
all vehicles in the case of the multi-vehicle variant. Constraints 6.4 ensure the
consistency of the visit sequence of each vehicle, meaning that if a customer is
visited by a vehicle, it is preceded and followed by exactly one other customer
in the same visit sequence.

(yijv = 1)→ (siv + tt(i, j, siv) ≤ sjv);
∀i ∈ {0, . . . , N}; ∀j ∈ {1, . . . , N + 1}; ∀v ∈ {1, . . . ,M}

(6.5)

∃w ∈ {1, . . . ,Wi} : Oiw ≤ siv ≤ Ciw;
∀i ∈ {1, . . . , N}; ∀v ∈ {1, . . . ,M}

(6.6)

Constraints 6.5 define the start time of each visit and Constraints 6.6 force
the start of the service at a customer to be included in one of the predefined
time windows. More precisely, in Constraints 6.5, if the vehicle makes a
transition from customer i to customer j, then the start time of the visit at
customer j should not be earlier than the start of the service at customer i
plus the travel time between i and j. On the other hand, if the vehicle does
not travel between i and j, then there is no direct constraint between siv and
sjv. It is also important to emphasize that the linearity of this formulation
strongly depends on whether transition function tt is piecewise linear. In the
case of a linear time-dependent transition function, we refer to the work of
Verbeeck et al. (2013) for a precise MIP formulation.

N∑
i=1

M∑
v=1

eivzxiv ∼ Ez; ∼∈ {≤,≥}; ∀z ∈ {1, . . . , Z} (6.7)

6.1. COMPLEX ORIENTEERING PROBLEM FORMULATION 123

Constraints 6.7 describe linear side constraints in terms of customer se-
lection. Such constraints can be used to formalize several variants of the OP.
As an example, Constraints 6.7 using relation “≤” can be used to express
the capacity constraints (e.g., Selective VRPTW (Boussier et al. (2007))) or
budget limitations (e.g., Tourist Trip Decision Problem (Souffriau (2010))).
Meanwhile, Constraints 6.7 using relation “≥” are useful for setting a lower
bound on the reward collected (e.g., Prize-Collecting TSP (Balas (1989))) or
expressing the selection of mandatory customers (e.g., OP with compulsory
vertices (Gendreau et al. (1998a))).

In particular, the multiple-time-window variant expressed in Constraints
6.6 can be reformulated through a simple problem transformation. Precisely,
each customer i having a set of Wi time windows [Oiw, Ciw], w ∈ {1, . . . ,Wi}
can be replaced by a set of Wi atomic customers Si (one customer per time
window) having the same location and the same properties. Then, a con-
straint is added to guarantee that at most one of these atomic customers is
visited:

M∑
v=1

∑
j∈Si

xjv ≤ 1 (6.8)

Summary The mathematical model using Equations 6.1 to 6.8 described
above can cover various variants of the orienteering problems, which possibly
involve:

• multiple vehicles (when M > 1),

• multiple time windows for each customer (Constrains 6.8),

• multiple linear selection constraints (Constraints 6.7),

• and/or time-dependent transition times (Constraints 6.5).

Problem decomposition As mentioned in Chapter 3, the orienteering
problem can be decomposed into two subproblems:

• a selection subproblem dedicated to the selection of the subset of cus-
tomers to visit and to the assignment of a vehicle to each customer.

124 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Based on the formulation given before, the selection subproblem can
be formulated as follows.

max
M∑
v=1

N∑
i=1

Rixiv

subject to:
Constraints 6.7
xiv ∈ {0, 1}; ∀i ∈ {1, . . . , N}; ∀v ∈ {1, . . .M}

Here, Constraints 6.3 and 6.8 are implicitly expressed as a special case
of Constraints 6.7.

• a sequencing subproblem used for determining a visit sequence travers-
ing a specific set of customers while respecting the temporal constraints,
which can be formulated as a Constraint Satisfaction Problem as below.

Constraints 6.2, 6.4, 6.5
yijv ∈ {0, 1}; ∀i ∈ {0, . . . , N};∀j ∈ {1, . . . , N + 1}; ∀v ∈ {1, . . . ,M}
siv ∈ [Oi, Ci]; ∀i ∈ {0, . . . , N + 1}; ∀v ∈ {1, . . . ,M}

In the above formulation, we assume that thanks to the transforma-
tion expressed in Constraint 6.8, we only deal with atomic customers
(i.e. having only one time window). Therefore, Constraints 6.6 can be
discarded from the model of the problem.

6.2 A generic solving framework
To search for near-optimal solutions to complex orienteering problems, we
propose the modular architecture provided in Figure 6.1. This architecture
is composed of three components, namely one main solver interface (called
GenOP), one reasoning engine (called selMgr) dedicated to the selection (or
assignment) subproblem, and one reasoning engine (called routingMgr) ded-
icated to the routing (or sequencing) subproblem. The primary idea here
is to be able to directly reuse low-level optimization techniques related to
selection subproblems and routing subproblems without optional customers.
Technically, the GenOP solver contains the main solving function and inter-
acts with the low-level reasoners through queries and operations, which are
described below.

6.2. A GENERIC SOLVING FRAMEWORK 125

GenOP solver interface

Selection
Manager
(selMgr)

Routing
Manager

(routingMgr)

answer to
queries and
operations

answer to
queries and
operations

queries
and

operations

queries
and

operations

Figure 6.1 – A general architecture for solving complex orienteering problems

Possible functionalities at the selection level The selMgr module con-
centrates on managing the constraints of the problems at the selection level.
In principle, selMgr must keep track of every decision made by GenOP and
update the constraints accordingly. Moreover, selMgr should be able to
quickly answer queries sent by GenOP, regarding the feasibility or optimal-
ity of the selection problem. Technically, several functions of selMgr can be
considered for these purposes.

• addConstraint(cz), to add a selection constraint cz to the selection
manager (i.e. constraints of the form given in Equation 6.7);

• removeConstraint(cz), to remove an existing selection constraint cz;

• addObjective(cobj), to set the objective function at the selection level;

• setBoundOnObjective(LB), to update the lower bound for the objec-
tive function;

• assign(xiv, b), to specify an assignment [xiv = b] for a selection variable
xiv of the selection subproblem;

• unassign(xiv), to declare that selection decision xiv is unassigned;

• propagate(), to check the consistency of the selection subproblem and
find propagated decisions;

• isAllowed(xiv, b), to evaluate whether value b is still a possible value
for selection variable xiv according to the selection manager;

126 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

• resetAssignment(), to reset the domain of all the selection variables
and other related information (i.e. a call to this function expresses that
all the variables are unassigned).

Possible functionalities at the routing level Module routingMgr is
responsible for evaluating the feasibility (or the optimality) at the sequencing
level. This module disposes of several basic functions such as:

• resetSequences(), to reinitialize the sequences of visits by removing
all customers visited;

• insert(i, v), to evaluate whether a customer i can be inserted into
the visit sequence of vehicle v and incrementally apply the insertion if
feasible;

• remove(i, v), to incrementally remove customer i from the visit se-
quence of vehicle v.

The list of functions mentioned above is not exhaustive, and there may be
other relevant functions depending on the search strategy used by GenOP.
In the following, we detail the functions associated with each sub-module in
Section 6.3, and show how we design a metaheuristic for the GenOP solver
at the upper level in Section 6.4.

6.3 Definition of the low-level reasoners
In this section, we detail the techniques and functions defined for each sub-
module, to exchange information with GenOP as incrementally as possible.

6.3.1 Selection manager
Globally, the selection subproblem involves a set of linear pseudo-Boolean
constraints of the form ∑

i,v eivzxiv ∼ Ez where ∼ ∈ {≤,≥}, xiv ∈ {0, 1},
and eivz, Ez ∈ N. The primary objective here is to find an assignment A
of values to variables xiv such that all these constraints are satisfied. In
the following, we denote D(xiv) = {0, 1} as the domain of variable xiv and
A(xiv) ∈ {nil, 0, 1} as the truth value of variable xiv in the assignment A,
where A(xiv) = nil means that xiv is not assigned yet in A.

6.3. DEFINITION OF THE LOW-LEVEL REASONERS 127

In principle, selMgr aims to perform operations and to answer queries re-
quested by the GenOP solver as incrementally as possible. Globally, the goal
of selMgr is to enforce the consistency of the selection problem. In fact, there
exist various solvers available online developed for pseudo-Boolean constraint
solving (Sheini & Sakallah (2005); Piotrów (2020)), making them suitable for
fulfilling the role of selMgr . However, to fully control and exploit information
obtained at the selection level in a flexible manner, we decided to construct
our own selMgr instead of relying on the existing ones, given that the im-
plementation of the basic mechanisms considered here is not particularly
challenging and it also allows us to define incremental computation methods.

For ease of understanding, we first provide some background related to
the pseudo-Boolean constraints before detailing the implementation of the
necessary functions of the selMgr module.

Preliminaries In the literature, various works exploit consistency checking
and unit propagation to solve problems involving pseudo-Boolean constraints
(Dixon & Ginsberg (2002); Chai & Kuehlmann (2003); Sheini & Sakallah
(2005)). In principle, inconsistent values for unassigned variables can be effi-
ciently filtered by regarding the slack values of a pseudo-Boolean constraint,
which can be formally defined as follows.
Definition 6.1. Given a pseudo-Boolean constraint (called LE constraint for
Less than or Equal)

cz :
M∑
v=1

N∑
i=1

eivzxiv ≤ Ez

where eivz, Ez ∈ N, and the current assignment A, the slack value of cz is
formally defined by

slackz = Ez −
∑

A(xiv)=1
eivz

Definition 6.2. Given a pseudo-Boolean constraint (called GE constraint
for Greater than or Equal)

cz :
M∑
v=1

N∑
i=1

eivzxiv ≥ Ez

where eivz, Ez ∈ N, and the current assignment A, the slack value of cz is
formally defined by

slackz =
∑

A(xiz) 6=0
eiz − Ez

128 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Intuitively, the slack value of a constraint cz measures how much margin
is left to satisfy the constraint. Based on the slack values, inconsistent as-
signments can be detected and such values can be filtered from the variable
domains.

Proposition 6.1. Given a pseudo-Boolean constraint

cz :
M∑
v=1

N∑
i=1

eivzxiv ∼ Ez

where ∼ ∈ {≤,≥}, xiv ∈ {0, 1}, and eivz, Ez ∈ N. Then, cz is satisfied if and
only if slackz ≥ 0.

Proposition 6.2. Given an LE constraint cz, if there exist an unassigned
variable xiv (i.e. A(xiv) = nil) such that slackz < eivz, then value 1 can be
pruned from the domain of xiv.

Proposition 6.3. Given a GE constraint cz, if there exist an unassigned
variable xiv (i.e. A(xiv) = nil) such that slackz < eivz, then value 0 can be
pruned from the domain of xiv.

Example 6.1. Let us consider the two following pseudo-Boolean constraints:

c1 : 2x1 + 2x2 + x3 ≤ 3
c2 : x2 + 2x3 + x4 ≥ 2

At initialization, no variable is assigned then slack(c1) = 3 and slack(c2) = 2.
Assume that we assign [x1 = 1], then the slack value of constraint c1 can be
updated incrementally by

slack(c1)← slack(c1)− 2 = 1

As slack(c1) = 1 < 2, we can propagate x2 6= 1, or equivalently we must
assign [x2 = 0] to avoid the violation of constraint c1. Once again, the slack
value of constraints c1 and c2 are incrementally updated by

slack(c1)← 1
slack(c2)← slack(c2)− 1 = 1

Similarly, as slack(c2) = 1 < 2, we can infer that x3 6= 0, or equivalently, we
must assign [x3 = 1] to avoid the violation of constraint c2.

6.3. DEFINITION OF THE LOW-LEVEL REASONERS 129

Detailed implementation For the resetAssignment() function, as illus-
trated in Algorithm 6.1, we simply reinitialize the domain and the assignment
of all decision variables (Lines 1-3), together with the slack value of all con-
straints (Lines 4-8).

Algorithm 6.1: selMgr::resetAssignment()
1 for all variables xiv do
2 A(xiv)← nil
3 D(xiv)← {0, 1}
4 for all constraints cz do
5 if cz is an LE constraint then
6 slackz ← Ez

7 else if cz is a GE constraint then
8 slackz ←

∑N
i=1

∑M
v=1 eivz − Ez

Next, the assign(xiv, b) function described in Algorithm 6.2 tries to add
assignment decision [xiv = b] and returns value true if and only if this change
is accepted based on its compatibility with the current state of the selection
manager. In particular, there is no update required when variable xiv is
already assigned (Line 1). Otherwise, besides setting value b ∈ {0, 1} for
variable xiv (Line 2), the function also incrementally updates the slack values
of the constraints (Lines 5, 11). Then, these slack values can be used to reduce
the domain of other variables (Lines 8, 14). Once an empty domain is found,
this function immediately returns value false (Lines 9, 15).

It is worth noting that the assign function described above only performs
some domain reductions and no actual full propagation mechanism. On
the latter point, to enhance the reasoning power of selMgr, we consider the
propagate() function presented in Algorithm 6.3. This function performs
unit propagation, a key technique used in the context of SAT solving and
pseudo-Boolean solving, to simplify the formula and check its consistency.
Precisely, while there exists an unassigned variable xiv having a singleton
domain (Line 2), the propagate() function can successfully infer the value
of xiv (Line 3) or detect inconsistency if this assignment is not accepted
(Lines 4-5). Moreover, this function also records all positive assignments, i.e.
[xiv = 1], that are derived during the propagation phase (Line 6). This point
is very useful in our context. Indeed, for complex orienteering problems,

130 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Algorithm 6.2: selMgr::assign(xiv, b)
1 if A(xiv) 6= nil then return true
2 A(xiv)← b
3 for every constraint cz s.t. xiv ∈ cz do
4 if (cz is a LE constraint) and (b = 1) then
5 slackz ← slackz − eiv
6 for xi′v′ ∈ cz s.t A(xi′v′) = nil do
7 if slackz < ei′v′ then
8 D(xi′v′)← D(xi′v′) \ {1} /* Proposition 6.2 */
9 if D(xi′v′) = ∅ then return false

10 else if (cz is a GE constraint) and (b = 0) then
11 slackz ← slackz − eiv
12 for xi′v′ ∈ cz s.t A(xi′v′) = nil do
13 if slackz < ei′v′ then
14 D(xi′v′)← D(xi′v′) \ {0} /* Proposition 6.3 */
15 if D(xi′v′) = ∅ then return false

16 return true

such an assignment [xiv = 1] means that customer i has to be visited by
vehicle v to avoid the violation of selection constraints. Therefore, selMgr
can identify mandatory selections and notify them to GenOP for guiding the
search process. More details are provided later on this point (Section 6.4.4).

From a technical point of view, the assign and the propagate functions
are implemented in an incremental manner to optimize the performance. The
key technique is to use, for instance, FIFO queues to incrementally revise
modifications and to avoid repeating redundant works in the assignment or
the propagation procedure. For example, when multiple assign operations
are consecutively applied, instead of checking for domain reductions after
each assignment one-by-one, we first store all the constraints involving the
newly assigned variables in a queue, then update the slack values of these
constraints and finally search for the domain reductions. Similarly, for the
propagate function, we use a queue to store all unassigned variables having a
singleton domain. This queue is updated each time such a variable is found,
and the propagation process repeats until the queue becomes empty.

6.3. DEFINITION OF THE LOW-LEVEL REASONERS 131

Algorithm 6.3: selMgr::propagate()
1 Q← ∅
2 while ∃xiv s.t. A(xiv) = nil and D(xiv) = {b} do
3 consistent← assign(xiv, b)
4 if ¬consistent then
5 return (¬consistent,Q)
6 if b = 1 then Q← Q ∪ {xiv}
7 return (true, Q)

For other functions such as addConstraint(cz), addObjective(cobj),
setBoundOnObjective(LB), isAllowed(xiv, b), their implementations are
quite straightforward. Remarkably, the unassign function is not imple-
mented yet in our current selMgr , but it would be useful to quickly undo
previous decisions, for example, when some of the customers are individually
removed from the current sequences of visits.

6.3.2 Routing manager
Basically, the routingMgr module is responsible for managing all tempo-
ral constraints of the problem. To increase the generality of GenOP, the
routingMgr should be able to handle a TSP in a flexible manner, regard-
less of whether the problem involves time window constraints and/or time-
dependent transition times.

For this purpose, we can fully exploit the specificity and efficient OR
techniques for a standard Time-Dependent TSP with Time Windows (TDT-
SPTW). In this contribution, we directly reuse a state-of-the-art TDTSPTW
solver, called ImaxLNS, recently presented by Pralet (2023), as our routingMgr
module. Besides using this solver to find the optimal visit sequence given a
specific set of customers, we make some adaptations to this algorithm to use
it in a dynamic context where customers can be iteratively added or removed,
as requested by the GenOP solver.

In principle, the ImaxLNS solver was originally developed to handle prob-
lems involving a single vehicle. Hence, to deal with the multi-vehicle variant,
we employ multiple ImaxLNS solvers associated with different vehicles within
the routingMgr module. In the following, we denote σ[v] as the visit sequence
of vehicle v, and tdtsptwSolver[v] as the ImaxLNS solver for vehicle v.

132 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Then, the implementation of the insert(i, v) function is straightforward
as illustrated in Algorithm 6.4. In principle, this function checks whether a
customer i can be inserted in the current visit sequence of vehicle v. The
insertion method used in Line 1 is a fast greedy insertion algorithm available
in ImaxLNS, that simply tries to heuristically insert customer i at the best
possible position in the current sequence of visits of vehicle v. In this context,
the term ‘best’ refers to the position that yields the least increase in the total
traveling time. Functions getSequence() and setSequence() allow us to
get the current sequence of visits manipulated by the ImaxLNS solvers and
to update this sequence.

Algorithm 6.4: routingMgr::insert(i, v)
1 insertOK ← tdtsptwSolver[v].insert(i)
2 if insertOK then
3 σ[v]← tdtsptwSolver[v].getSequence()
4 else
5 tdtsptwSolver[v].setSequence(σ[v])
6 return insertOK

The routingMgr module also disposes of a remove(i, v) function that al-
lows us to incrementally remove customer i from the current sequence of
visits of vehicle v. A key point here is that the insertion and removal opera-
tions can be requested by GenOP in any order. For the resetSequences()
function, routingMgr simply restarts all the ImaxLNS solvers from an empty
sequence of visits.

More than that, ImaxLNS also offers other advanced functions that can
help optimize the sequencing decision of the routingMgr module. Several
typical functions are the well-tuned specific insertion method rather than
greedy heuristics, or the reordering of the visit sequence. The latter operation
can be used to search for a new sequence of visits that is compatible with
the time window constraints or to minimize the total traveling time. These
points will be exploited later in Section 6.6.

6.4. A METAHEURISTIC FOR THE HIGH-LEVEL GENOP 133

6.4 A metaheuristic for the high-level GenOP

In principle, the GenOP solver exploits the functions available in each sub-
module to try and build a customer selection strategy in order to find se-
quences of visits maximizing the total reward collected. The search at the
level of GenOP can be enhanced thanks to the feedback (or advice) received
from the selection module and the feedback received from the routing module
concerning the feasibility of the sequences of visits. On this point, there exist
several candidate metaheuristics inspired by the techniques available in the
literature for solving variants of OP (see Chapter 3).

6.4.1 Solution representation
In the GenOP solver, a solution is represented as M sequences of visits asso-
ciated with M vehicles or formally σ = {σ[1], . . . , σ[M]}. The total reward
collected through all the vehicles can be denoted as R(σ) = ∑M

v=1
∑N
i=1Rixiv.

As explained before, at the lower level, selMgr manipulates Boolean vari-
ables xiv to represent the assignment of the customers i to the vehicles v
during the search process, whereas the routing information (e.g., the starting
time of a customer visit) is implicitly stored in the routingMgr and used to
evaluate the feasibility of a sequence of visits with respect to the temporal
constraints.

6.4.2 Multi-start Large Neighborhood Search
In this contribution, we propose an example of a metaheuristic for the GenOP
solver, the so-called Multi-Start Large Neighborhood Search (MSLNS), to
find a high-quality solution for complex orienteering problems. As shown in
Algorithm 6.5, our implementation of MSLNS for GenOP relies on LNS as
the core search technique to intensify the search (Lines 10-22) and performs
multiple restarts from scratch to diversify the search (Lines 6-9).

Precisely, the algorithm first declares the Boolean variables xiv and adds
the initial selection constraints and the objective function to the selMgr
module (Lines 2-4). For each different starting point, the algorithm sim-
ply re-initializes the solution representation σ (Line 6), the sequencing data
in routingMgr (Line 7), and the customer selection in selMgr (Line 8). It
is important to note that selMgr still keeps additional selection constraints

134 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Algorithm 6.5: GenOP::MSLNS(maxCpu,maxNoImpr , rmRatio)
1 σ∗ ← nil; σ ← nil
2 selMgr .declareVar()
3 for each constraint cz do selMgr .addConstraint(cz)
4 selMgr .addObjective()
5 while cpu() < maxCpu do

/* Restart from scratch */
6 for v ∈ [1..M] do σ[v]← [0, N + 1]
7 routingMgr .resetSequences()
8 selMgr .resetAssignment()
9 selMgr .setBoundOnObjective(1)

/* LNS procedure */
10 σLopt ← σ
11 while cpu() < maxCpu and noImpr < maxNoImpr do
12 σ ← destroy(σ, rmRatio) /* Section 6.4.3 */
13 σ ← repair(σ) /* Section 6.4.4 */
14 if R(σ) ≥ R(σLopt) then
15 if R(σ) > R(σLopt) then
16 selMgr .setBoundOnObjective(R(σ))
17 noImpr ← 0
18 else noImpr ← noImpr + 1
19 σLopt ← σ

20 else
21 σ ← σLopt
22 noImpr ← noImpr + 1

/* Update best found solution */
23 if R(σLopt) > R(σ∗) then σ∗ ← σLopt

24 return σ∗

possibly generated during the search as they are useful for the subsequent
steps.

For the LNS procedure, the algorithm employs successive destroy and
repair operators to hopefully search for a better quality solution (Lines 12-
13, more details later on this point). If the new solution obtained, σ, is better
than or equal to the current local optimum σLopt, it is used for the next LNS

6.4. A METAHEURISTIC FOR THE HIGH-LEVEL GENOP 135

iteration (Lines 14, 19) and the bound on the objective value can be tightened
(Line 16). Otherwise, the algorithm comes back to the solution available
before the destroy-repair step (Line 21). These procedures are repeated until
no strict improvement is found after maxNoImpr iterations or the global
computational time maxCpu is reached.

Remarkably, preliminary tests show that keeping the strictly tightened
bound on the objective value, i.e. ∑M

v=1
∑N
i=1Rixiv ≥ R(σ∗) + 1, does not

produce the better results since this condition is too restrictive and limits
the diversification degree in the context of incomplete search. This is why
we decide to relax the constraint on the objective value in selMgr by:

• setting ∑M
v=1

∑N
i=1Rixiv ≥ R(σ) once a new strict improvement is found

within the LNS procedure (Line 16);

• and resetting ∑M
v=1

∑N
i=1Rixiv ≥ 1 at each restart (Line 9).

6.4.3 Destroy procedure
Function destroy(σ, rmRatio) shown in Algorithm 6.6 takes as an input a
set of visit sequences σ (one sequence per vehicle) and a parameter rmRatio
indicating the maximum destroy degree.

Algorithm 6.6: GenOP::destroy(σ, rmRatio)
1 selMgr .resetAssignment()
2 for v ∈ [1..M] do
3 F ← select k consecutive customers in σ[v] to remove given

rmRatio
4 σ[v]← σ[v] \ F
5 for i ∈ σ[v] do
6 selMgr .assign(xiv, 1)
7 for i ∈ R do
8 routingMgr .remove(i, v)

9 return σ

Similarly to the principle of the destroy operators presented in Sections 4.2
and 5.1, for each vehicle v, GenOP applies a random shake operator to remove
a subset F of consecutive customers from the current sequence of visits σ[v]

136 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

(Lines 2-4). The number of customers selected for removal, denoted k, is
randomly chosen from a discrete uniform distribution k ∼ U(1, rmRatio∗Nv),
where Nv is the number of customers visited by vehicle v (as in Section 5.1).

For the selection aspect, as the selMgr that we developed does not dispose
of an unassign(xiv) function to incrementally unassign the customer selec-
tion, the destroy procedure simply resets the assignment in selMgr (Line 1)
and performs again the assignments from scratch given the new current so-
lution (Lines 5-6). For the routingMgr module, the sequencing data of each
vehicle v is incrementally updated using the remove functions offered by the
ImaxLNS solvers (Lines 7-8).

6.4.4 Repair procedure
One of the core components of the MSLNS algorithm is the repair procedure
specifying how to re-optimize the current solution through iterative customer
selections and insertions. In this procedure, GenOP proposes a customer
selection strategy and employs selMgr and routingMgr to verify the feasibility
at the selection and sequencing levels, respectively. The pseudocode of the
repair procedure is outlined in Algorithm 6.7. For the sake of simplification,
we can temporarily ignore the lines highlighted in gray (Lines 7, 13, and 17),
which will be detailed later in Section 6.4.5.

Initially, GenOP defines a naive selection order by sorting unassigned
selection variables xiv in a priority queue Q (Line 1). In this list, the xiv
variables are sorted in a decreasing order based on the value fi ∼ U(1, Ri),
corresponding to a random reward uniformly distributed in interval [1, Ri].

Based on this selection order, the algorithm repeatedly evaluates candi-
date selections in Q until Q is empty, while ensuring consistency at the level
of the selection subproblem (Lines 2-16). The latter is examined by calling
the propagate() function available in selMgr , and in case of consistency, a
set of mandatory assignments at the selection level is returned (Lines 2, 16).
For every mandatory assignment, the algorithm invokes the routingMgr to
evaluate the sequencing feasibility and tries to apply such an assignment if
possible. In case of failure, the algorithm immediately stops the repairing
procedure (Lines 6-8).

If there is no such mandatory assignment, the algorithm proceeds to eval-
uate a candidate selection xiv retrieved from Q (Line 9). If decision [xiv = 1]
is allowed by selMgr (Line 10), the routingMgr module attempts to insert
customer i into the visit sequence of vehicle v (Line 11). The selMgr mod-

6.4. A METAHEURISTIC FOR THE HIGH-LEVEL GENOP 137

Algorithm 6.7: GenOP::repair(σ)
1 Q← sort({xiv | i ∈ {1, . . . , N}, i 6∈ σ, v ∈ {1, . . . ,M}}) based on

noisy reward
2 (isConsistent,mandatoryQueue)← selMgr.propagate()
3 while isConsistent and Q 6= ∅ do

/* Evaluate ALL mandatory selection */
4 while mandatoryQueue 6= ∅ do
5 xiv ← mandatoryQueue.pop()
6 if routingMgr .insert(i, v) = false then
7 analyzeTWconflict(σ[v], i)
8 return σ

/* Evaluate a candidate selection */
9 xiv ← Q.pop()

10 if selMgr .isAllowed(xiv, 1) then
11 if routingMgr .insert(i, v) = false then
12 selMgr .assign(xiv, 0)
13 analyzeTWconflict(σ[v], i)
14 else
15 selMgr .assign(xiv, 1)
16 (isConsistent,mandatoryQueue)← selMgr.propagate()

17 analyzeLopt(σ)
18 return σ

ule also updates the current assignment based on the result returned by
routingMgr (Lines 12, 15).

Overall, the repair procedure terminates in three cases: when there is a
disagreement between the selMgr and the routingMgr (Line 8), when there
is no candidate selection left, or when an inconsistency is detected (Line 18).

6.4.5 Conflict analysis procedure
The last point concerns the generation of additional selection constraints
during the search procedure to enhance the knowledge of the selection as-
pect. This can be done by analyzing insertion failures based on temporal
constraints (Algorithm 6.7 - Lines 7, 13) and/or by analyzing the solution

138 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

obtained after the repair phase (Algorithm 6.7 - Line 17), following the ideas
presented in Chapter 4.

The constraint generation procedures outlined in Algorithms 6.8 and 6.9
are mainly derived from the clause generation procedure described in Section
4.3. Once difference here is that the conflicts generated are not represented as
clauses, but rather as pseudo-Boolean constraints. Precisely, a TW-conflict
Sc = {i1, . . . , ik} ⊆ {1, . . . , N} can be applied for all vehicles using v con-
straints, called TW-constraints:

∑
i∈Sc

xiv ≤ |Sc| − 1 ∀v ∈ {1, . . . ,M} (6.9)

Notably, in Equation 6.9, we assume that all the vehicles are homogeneous
(i.e. having the same transition function) and that all customers have the
same time windows for all vehicles. Otherwise, only one TW-conflict is added
to selMgr and the framework still works.

Algorithm 6.8: GenOP::analyzeTWconflict(σ[v], i)
1 V ← select(σ[v], i, maxConfSize)
2 C ← extractMinTWconflicts(V ∪ {i}) /* Section 4.3.2 */
3 for Sc ∈ C do
4 for v ∈ {1, . . . ,M} do
5 cTW ←

∑
i∈Sc

xiv ≤ |Sc| − 1
6 selMgr .addConstraint(cTW)

Similarly, an approximate Lopt-conflict, that requires at least one vehicle
to visit at least one customer i ∈ Y (where Y is the set of unvisited customers
having high rewards) can also be expressed as the following pseudo-Boolean
constraint, called an Lopt-constraint:

M∑
v=1

∑
i∈Y

xiv ≥ 1 (6.10)

An interesting point is that such Lopt-constraints are stored in selMgr in
a temporary manner by using a specific addTmpConstraint function. This is
done by using a tabu list that only keeps Lopt-constraints in selMgr . When

6.4. A METAHEURISTIC FOR THE HIGH-LEVEL GENOP 139

Algorithm 6.9: GenOP::analyzeLopt(σ∗)
1 U ← sort({i | i ∈ {1, . . . , N}, i 6∈ σ∗}) based on their rewards
2 Y ← approxSize elements having the highest rewards in U
3 clOpt ←

∑M
v=1

∑
i∈Y xiv ≥ 1

4 selMgr .addTmpConstraint(clOpt, tabuTenure)

this tabu list reaches its maximum size, denoted as tabuTenure, the oldest
Lopt-constraint is discarded, as in tabu search. This point can be easily done
since we can fully control the content of the selMgr module.

6.4.6 Search parameters
As usual in metaheuristic search, the algorithm proposed has several pa-
rameters summarized in Table 6.1, which also provides the values chosen
after preliminary tests. Since the conflict analysis procedure is optional, the
MSLNS metaheuristic proposed for GenOP has different variants, depend-
ing on whether additional constraints are generated during the main search
procedure or not.

Component Parameter Semantics Values
MSLNS maxNoImpr Max. number of LNS iterations without

improvement
1000 ∗M

rmRatio Max. removal ratio used in the LNS de-
stroy phase

40%

xpTW maxNbTwCtr Max. number of TW-constraints stored in
selMgr

20000 ∗M

maxConfSize Max. cardinality of a TW-conflict 4
xpQuota Max. number of successive useless expla-

nation attempts for each customer
20

xpLopt approxSize Max. number of customers in an approx-
imate Lopt-conflict

7

tabuTenure A number of iterations during which an
Lopt-constraint is available in selMgr

50

Table 6.1 – Parameters used for variants of GenOP-MSLNS

Interestingly, the simplest version of MSLNS has only two parameters:
maxNoImpr and rmRatio, which allow us to easily adjust the balance be-
tween search intensification (large value of maxNoImpr and/or small value of
rmRatio) and search diversification (small value of maxNoImpr and/or large

140 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

value of rmRatio). In the following experiments, we always use rmRatio =
40% as in the work of Schmid & Ehmke (2017) and our experiments in Section
5.5. As for parameter maxNoImpr , we empirically observe that the problem
becomes more complex when considering multiple vehicles, as we have to
deal with more variables and constraints in the selMgr module. Therefore,
to intensify the search in this case, we use maxNoImpr = 1000 ∗M to adjust
parameter maxNoImpr according to the number of vehicles (M).

Besides, GenOP-MSLNS can be further enhanced with the conflict anal-
ysis procedure given in Section 6.4.5. There are several parameters for con-
trolling the use of each type of constraint (TW-constraint or Lopt-constraint)
in the selMgr module. The values of these parameters are chosen based on
the experiments from our previous work in Section 4.5.

6.5 Experiments
To demonstrate the genericity of the GenOP solver for solving complex vari-
ants of the orienteering problem, we carry out experiments on various bench-
marks including1

• (1) TOPTW instances involving multiple vehicles (M = {1, . . . , 4}),

• (2) TOPTW instances involving multiple knapsack constraints (de-
noted as MC-TOPTW),

• (3) TOPTW instances involving both multiple knapsack constraints
and multiple time windows (denoted as MC-TOP-MTW),

• and (4) generated OPTW instances that cover the time-dependency
and multiple time windows aspects (denoted as TD-OP-MTW).

For the GenOP solver, three variants of MSLNS are considered. The
simplest version denoted as MSLNS-basic, does not invoke the conflict anal-
ysis procedure and only uses a greedy randomized selection strategy (i.e.
based on the noisy reward function) as well as the greedy insertion heuristics
concerning the sequencing aspect. On the other hand, two other variants
of MSLNS consider the conflict analysis procedure to generate additional

1Instances for TOPTW, MC-TOPTW, MC-TOP-MTW are available at https://
www.mech.kuleuven.be/en/cib/op

https://www.mech.kuleuven.be/en/cib/op
https://www.mech.kuleuven.be/en/cib/op

6.5. EXPERIMENTS 141

selection constraints during search. For these two variants, one exploits TW-
constraints only (denoted as MSLNS+TW), and another one exploits both
TW-constraints and Lopt-constraints (denoted as MSLNS+TW+Lopt). The
motivation behind this is derived from our previous work in Chapter 4, whose
objective is to enhance the knowledge in selMgr with the hope of guiding the
selection strategy in GenOP.

The effectiveness of the GenOP-MSLNS algorithm can be evaluated by
comparing the results obtained by other relevant methods dedicated to each
specific problem in the literature. For measuring the quality of the solutions
obtained, we can compute the average gap compared to the best-known so-
lutions available in the literature. For each solver, this quality gap in percent
(%) is formally given by

gap = 100 ∗ Rbk −Rbf

Rbk

where Rbk (or Rbf) is the total reward of the best-known (respectively, best-
found) solution. Then, a smaller gap indicates a more effective solver. In
particular, a negative gap signifies that the solver discovers a new best-known
solution. Also, it is crucial to report the computational time required by each
solver to produce a low quality gap.

However, we need to be careful when comparing the performance of dif-
ferent solvers (including both the quality gap and the computational time),
since the results reported in the literature correspond to the best and/or
the average solutions obtained by using a varying number of runs and/or
different termination conditions. On this point, there are two possible ways
commonly used in the literature.

• A direct way to compare a single-run algorithm with a multiple-run al-
gorithm is to report the average results and the average computational
time.

• In the case where the best results of a multiple-run algorithm are used
for comparison, we should consider the total computational time of all
runs. This is analogous to a multi-start algorithm which requires the
total time for performing all runs to obtain the best result.

Since the MSLNS algorithm dynamically performs restarts during search,
all the experiments for the MSLNS variants are executed only once by us-
ing a fixed CPU time (or timeout), and the best result is returned. Said

142 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

differently, MSLNS is akin to a single-run algorithm mentioned in the above
discussion. Also, the computational time of MSLNS reported in the following
experiments is the time spent to find the best solution before the timeout is
reached.

Last, all the implementations are written in C++ and compiled in a
Linux environment with gcc-9.4.0. All the experiments are performed over
one thread on a processor Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz.

6.5.1 TOPTW benchmark
This first benchmark contains 76 standard TOPTW instances generated
based on the datasets of Solomon (1987) and Cordeau et al. (1997), where
the number of vehicles ranges from 1 to 4. We recall that all instances defined
by Solomon (1987) contain 100 customers, while the number of customers in
the instances defined by Cordeau et al. (1997) varies between 48 and 288. All
the best-known solutions are retrieved from the work of Schmid & Ehmke
(2017).

Experimental settings The standard TOPTW instances considered here
were tackled by several authors in the past, which gives us a baseline pro-
vided by specific TOPTW solvers. Yet, we only consider here the hybrid
SAILS of Gunawan et al. (2015b) and the effective LNS (eLNS) of Schmid
& Ehmke (2017) as reference points for GenOP-MSLNS. Besides having a
similar search behavior (i.e. destroy and repair mechanisms), these two meta-
heuristics are shown to be very effective not only for TOPTW but also for
several OP variants. We briefly recall that, in SAILS, the authors exploit dif-
ferent local search operators including the insert, replace, swap, and exchange
moves. These moves update either each individual route or multiple routes
at the same time. For eLNS, the algorithm iteratively performs customer
removals and insertions based on well-designed heuristics.

It is also important to note that the GenOP-MSLNS variants are run
within a predefined limited CPU time. Meanwhile, reference solvers (SAILS
and eLNS) perform multiple independent runs and use a termination condi-
tion corresponding to a maximum number of iterations without improvement.
To achieve a comparison that is as fair as possible, for SAILS and eLNS, we
directly use both the average and the best results of different independent
runs (10 runs for SAILS, 5 runs for eLNS) presented in the original papers of
Gunawan et al. (2015b) and Schmid & Ehmke (2017). Based on the largest

6.5. EXPERIMENTS 143

computational time used by SAILS and eLNS for hard instances (around
hundreds of seconds), we decided to set the timeout to 5 minutes for each
variant of GenOP-MSLNS in the following experiments.

Nonetheless, a potential issue of this comparison is that we do not take
into account the speed difference between the different computation setups.
This problem can be handled by using the same approach as Hu & Lim
(2014), namely the SuperPi benchmark, whose basic idea is to adjust the
computational time based on the single-thread performance of the computers
used. However, we do not consider this point in our experiments as we lack
enough information on the experimental setup used by eLNS, for instance,
to be able to estimate their SuperPi scores. Therefore, we assume that all
experimental setups have a similar performance. This also means that all
the comparisons of the computational times between different solvers are
only relative.

Numerical analysis Table 6.2 shows the comparison of different solving
approaches in terms of solution quality and computational time. The first
column indicates the number of vehicles M and the second column gives
the name of the instance set over which the results are aggregated. The
following columns present the quality gaps obtained by SAILS, eLNS, and
the three variants of GenOP-MSLNS. In the upper table, the quality gaps
are reported over a total of 16 cases, given M ranging from 1 to 4 and 4 sets
of instances (Solomon1, Solomon2, Cordeau1, Cordeau2). The lower table
summarizes the average quality gap and the average computational time of
the solver in each column over two large sets (i.e. Solomon and Cordeau) as
well as all instance sets (Line ‘All’), taking into account different numbers of
vehicles. Notably, the computational time given here represents the average
time required to reach the best-found solution.2

Focusing on the lower part of Table 6.2, we observe that the three GenOP-
MSLNS variants are very competitive compared to the other two reference
solvers. On average, MSLNS-basic achieves the best quality gap over all
instances, though the difference is not significant (0.69% for MSLNS-basic
compared to 0.71% for eLNS-best and 0.81% for the SAILS-best). This
is mainly because MSLNS-basic performs better than the other solvers on
Cordeau instances. Overall, all variants of MSLNS can quickly achieve a low
average gap (less than 1%) for most cases, with an average computational

2For SAILS and eLNS, computational times are reported from the original papers.

144 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

M Instance set Gunawan et al. (2015c) Schmid & Ehmke (2017) GenOP-MSLNS (5mins)
SAILS (avg) SAILS (best) eLNS (avg) eLNS (best) basic TW TW+Lopt

1

Solomon1 0.02 0.00 0.10 0.00 0.14 0.14 0.14
Solomon2 1.06 0.36 0.20 0.06 0.25 0.24 0.24
Cordeau1 0.93 0.44 0.20 0.10 0.00 0.00 0.02
Cordeau2 2.31 1.17 2.10 1.44 1.05 1.04 1.05

2

Solomon1 0.02 0.00 0.20 0.11 0.21 0.20 0.20
Solomon2 1.66 0.73 0.14 0.02 0.53 0.47 0.49
Cordeau1 2.19 0.66 1.00 0.58 0.35 0.47 0.49
Cordeau2 3.44 1.74 2.60 1.69 1.18 1.88 1.74

3

Solomon1 0.52 0.09 0.40 0.07 0.19 0.25 0.25
Solomon2 1.90 0.16 0.04 0.02 0.09 0.11 0.11
Cordeau1 2.86 1.27 1.60 0.89 0.73 0.74 0.79
Cordeau2 3.39 2.02 2.70 1.92 1.70 1.69 1.74

4

Solomon1 1.28 0.32 0.60 0.28 0.40 0.52 0.59
Solomon2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cordeau1 3.58 2.08 2.60 1.72 2.03 2.15 2.15
Cordeau2 3.97 1.88 3.30 2.52 2.24 2.60 2.60

Summary

Gap(%)
Solomon 0.81 0.21 0.21 0.07 0.22 0.24 0.25
Cordeau 2.83 1.41 2.01 1.36 1.16 1.32 1.32

All 1.82 0.81 1.11 0.71 0.69 0.78 0.79

Time (s)
Solomon 98.76 - 9.59 29.00 47.88 49.13 52.24
Cordeau 198.94 - 75.59 129.39 107.38 101.37 93.25

All 148.85 - 42.59 79.19 77.63 75.25 72.75

Table 6.2 – Results obtained on the TOPTW benchmark: quality gaps (%)
obtained by different algorithms (upper table); average quality gaps (%) and
average computational times (seconds) per instance set (lower table)

time of only 80 seconds, similarly to the best version of eLNS.
Our three MSLNS variants outperform SAILS in terms of both quality

gap and computational time for most cases. Regarding computational time,
SAILS takes about 100 seconds for Solomon instances and 200 seconds for
Cordeau instances, on average. MSLNS, on the other hand, needs only half
as much time, i.e. about 50 seconds and 100 seconds on average for Solomon
and Cordeau instances, respectively. Besides, MSLNS gives better quality
gaps than the best version of SAILS in 11 out of 16 cases. For SAILS-best,
although the total time for obtaining the best results is not reported in the
literature, it is obviously larger than their average time.

On the other hand, the performance of MSLNS-basic is somehow equiv-
alent to the performance of eLNS-best. Comparing the quality gaps ob-
tained for 16 cases, MSLNS-basic has better results in 8 out of 16 cases,
while eLNS-best outperforms MSLNS-basic in 7 out of 16 cases (both solvers
achieve the optimal solutions on Solomon2 instances using 4 vehicles). In
general, for different numbers of vehicles, we remark that eLNS performs
better on Solomon instances, whereas MSLNS-basic is better on Cordeau
instances. Concretely, on Solomon instances, eLNS-best achieves an average
gap of 0.07% with an average computational time of 29.00 seconds, while

6.5. EXPERIMENTS 145

MSLNS-basic has a slightly higher average gap of 0.22% and a longer av-
erage computational time of 47.88 seconds. On the contrary, when dealing
with Cordeau instances, eLNS-best shows a higher average gap of 1.36% and
a longer average runtime of 129.39 seconds, while MSLNS-basic achieves a
somewhat lower average gap of 1.16% with a shorter average time of 107.38
seconds. These differences in performance showcase the sensitivity of each
algorithm to the specific problem instances it deals with.

Besides, we remark that the impact of using additional constraints is not
significant, contrarily to what was observed in Chapter 4. There are several
possible explanations for this.

• First, in the LNS algorithm presented in Chapter 4, the use of TW-
constraints for neighborhood pruning is efficient since at each construc-
tion step, the algorithm explores, for all unvisited customers, their in-
sertion at each position in the visit sequence before choosing the best
one according to a specific heuristic function. Meanwhile, in MSLNS,
the algorithm selects a customer first and subsequently tests its inser-
tion. As a result, there are fewer insertion tests. Also, in MSLNS,
each TW-constraint is duplicated for every vehicle, which leads to a
significant increase in the number of constraints in selMgr when using
multiple vehicles. This implies that selMgr also requires more effort for
the unit propagation procedure at the selection level.

• Second, using approximate Lopt-constraints can be efficient when cus-
tomers having a high reward are not visited in the locally optimal
solution. However, for problems involving multiple vehicles, more cus-
tomers are selected. This implies that only less favorable customers
(having a low reward) remain in the approximate Lopt-constraints.

To further compare the MSLNS variants with several relevant metaheuris-
tics for the TOPTW, we show in Table 6.3 the percentage of best-known solu-
tions obtained per number of vehicles. In general, eLNS gives the best results
in all cases compared to the other solvers reported in this table. However,
we can observe that the MSLNS used by GenOP, which employs a random-
ized customer selection strategy, provides a similar proportion of best-known
solutions as other methods involving specific heuristics developed for this
problem, like ILS or SAILS.

Overall, these findings showcase that the MSLNS metaheuristic used by
the GenOP solver performs very well on the standard TOPTW instances.

146 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Reference Algorithm Percentage of best known solutions Average
M = 1 M = 2 M = 3 M = 4

Labadie et al. (2011) GRASP-ELS 50.0 21.1 32.9 46.1 37.5
Lin & Vincent (2012) SSA 51.3 34.2 39.5 56.6 45.5
Labadie et al. (2012) GVNS 36.8 30.3 40.8 44.7 38.2
Souffriau et al. (2013) GRILS 51.3 15.8 22.4 39.5 32.5
Hu & Lim (2014) I3CH 43.4 34.2 57.9 55.3 47.7

Cura (2014) ABC 48.7 36.8 46.1 48.7 45.1
Gunawan et al. (2015c) ILS 48.7 36.5 46.1 48.7 45.1
Gunawan et al. (2015b) SAILS 67.1 50.0 57.9 53.9 57.2
Schmid & Ehmke (2017) eLNS 82.9 71.1 65.8 60.1 70.0

GenOP (Ours)
MSLNS-basic 75.9 43.2 63.1 52.6 58.5
MSLNS-TW 75.0 46.1 61.8 48.7 57.9

MSLNS-TW-Lopt 73.7 43.4 60.5 47.3 56.3

Table 6.3 – Percentage (%) of best-known solutions obtained by different
algorithms on the TOPTW benchmark, extending the summary of Schmid
& Ehmke (2017)

It should also be emphasized that our primary objective is to evaluate the
genericity of the framework proposed, not to outperform the latest state-of-
the-art solvers for TOPTW in the literature. In other words, this approach
is not particularly designed only for the TOPTW problem but also targets
different complex variants of OP, thanks to the modularity of the algorithmic
architecture.

6.5.2 MC-TOPTW benchmark
A MC-TOPTW benchmark is designed by Souffriau (2010) based on in-
stances from Solomon1 and Cordeau1 sets, where each instance involves 11
extra knapsack constraints on the selection aspect. Specifically, these con-
straints are designed so that high-quality (T)OPTW solutions are also valid
high-quality solutions for the new MC-TOPTW problem. In short, optimal
solutions are known for M = 1, and for other values of M = {2, 3, 4}, only
good-quality solutions are known but they can be used as a reference for
comparison.

Experimental settings To the best of our knowledge, only the works
of Souffriau (2010) and Souffriau et al. (2013) deal with this benchmark.
Therefore, we consider here as a baseline the GRILS algorithm proposed by
Souffriau et al. (2013), which is a hybrid metaheuristic combining GRASP
and ILS. In this work, the authors empirically study advanced but complex

6.5. EXPERIMENTS 147

insertion heuristics based on the reward gain, the time shift, and information
related to the knapsack constraints.

Each experiment of GRILS is performed based on 10 independent runs
on an Intel Xeon @ 2.5GHz (since the series details are not provided, we
cannot compare the two different experimental environments). Therefore,
to quickly compare our MSLNS variants with GRILS, we set a timeout of
1 minute for all variants of MSLNS to obtain a computational time that is
similar to the time allocated to GRILS in the results provided by Souffriau
et al. (2013). Then, we report here the best results obtained by each solver
and the corresponding time that is spent to find the best solution.3 Also, to
look for new best-known solutions if any, we extend the time limit up to 5
minutes for GenOP in the second experiment.

Numerical analysis Table 6.4 presents the results of different solvers on
8 cases, with the number of vehicles ranging from 1 to 4 (column 1) and
2 instance sets (column 2). From the above table, we can observe that all
three variants of MSLNS produce negative gaps in most cases, meaning that
many best-known solutions are found by MSLNS. In general, MSLNS-basic
seems to be the best version with the lowest quality gap obtained over all

M Instance set Souffriau et al. (2013) GenOP-MSLNS (1min)
GRILS (best) basic TW TW+Lopt

1 Solomon 0.59 0.58 0.58 0.58
Cordeau 4.24 0.00 0.00 0.00

2 Solomon 1.46 -0.13 -0.07 -0.06
Cordeau 1.91 -3.23 -3.41 -3.36

3 Solomon 1.80 -0.33 -0.29 -0.26
Cordeau 2.57 -3.50 -3.26 -3.22

4 Solomon 2.85 -0.68 -0.22 -0.15
Cordeau 2.86 -2.11 -2.38 -2.38

Summary

Gap (%)
Solomon 1.68 -0.14 0.00 0.03
Cordeau 2.89 -2.21 -2.26 -2.24

All 2.28 -1.17 -1.13 -1.11

Time (s)
Solomon 8.35 14.23 13.82 14.36
Cordeau 19.24 19.94 23.30 24.23

All 13.79 17.08 18.56 19.29

Table 6.4 – Results obtained on the MC-TOPTW benchmark: quality gaps
(%) obtained by different algorithms (upper table); average quality gaps (%)
and average computational times (seconds) per instance set (lower table)

3For GRILS, computational times are reported from the original paper.

148 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

cases. Yet, the effect of additional constraints generated during the search
process is not negligible. Indeed, the MSLNS+TW variant gives the best
results when aggregating over all Cordeau instances.

Based on the results obtained, we remark that all three variants of MSLNS
outperform GRILS in all cases within a similar computational time. A possi-
ble explanation is that GRILS spends more effort in the insertion procedure
by using a more fine-tuned but complicated heuristic. Precisely, the opti-
mal insertion move is chosen by evaluating the insertion of every unvisited
customer at all possible positions while satisfying the constraints. On the
other hand, MSLNS first focuses on the customer selection constraints to
find a feasible selection and then uses greedy heuristics for testing insertions.
Thus, MSLNS seems to be faster in each insertion phase and can restart more
frequently, leading to more diversification.

Next, Table 6.5 reports the quality gap obtained when a higher CPU time
limit is allowed, i.e. 5 minutes. We observe that the quality gap is further
improved in most cases, where the computational time required to find the
best-found solutions is about 70 seconds, on average.

M Instance set GenOP-MSLNS (5min)
basic TW TW+Lopt

1 Solomon 0.58 0.58 0.58
Cordeau 0.00 0.00 0.00

2 Solomon -0.16 -0.16 -0.16
Cordeau -3.66 -3.64 -3.73

3 Solomon -0.73 -0.69 -0.68
Cordeau -4.17 -4.23 -4.12

4 Solomon -1.51 -1.32 -1.27
Cordeau -3.22 -3.18 -3.18

Summary

Gap (%)
Solomon -0.45 -0.40 -0.38
Cordeau -2.76 -2.76 -2.76

All -1.61 -1.58 -1.57

Time (s)
Solomon 48.38 52.43 53.46
Cordeau 92.12 76.56 77.49

All 70.25 64.49 65.48

Table 6.5 – Quality gaps (%) and computational times (seconds) of the
MSLNS variants on the MC-TOPTW benchmark (5-minute timeout)

In addition, we report in Table 6.6 the percentage of best-known solutions
found by all solvers, for different numbers of vehicles, given the baseline
provided by Souffriau (2010). Notably, for each solver, we distinguish the
cases where the given high-quality solution is found (Line %BK) and the
case where this solution is improved (Line %newBK, highlighted in green).

6.5. EXPERIMENTS 149

Reference Algorithm Percentage of (new) best known solutions Average
M = 1 M = 2 M = 3 M = 4

Souffriau et al. (2013) GRILS %BK 70.27 21.62 8.11 8.11 35.81%newBK 16.22 13.51 5.41

GenOP (Ours, 5mins)

MSLNS-basic %BK 86.48 56.75 13.51 8.11 89.85%newBK 37.83 75.67 81.06
MSLNS-TW %BK 86.48 54.05 16.21 8.11 89.85%newBK 40.54 72.97 81.06

MSLNS-TW-Lopt %BK 86.48 54.05 13.51 10.81 89.16%newBK 40.54 72.97 78.31

Table 6.6 – Percentage of best-known solutions obtained by different algo-
rithms on the MC-TOPTW benchmark

Overall, MSLNS outperforms GRILS in all cases, yet this comparison is not
fair due to the significant difference in computational time. Despite that
issue, we remark that the three MSLNS variants achieve very good results,
where nearly 90% of best-known or new best-known solutions are found, on
average. Also, MSLNS performs equivalently well for different numbers of
vehicles (M). Besides, we observe that the use of additional constraints in
MSLNS+TW or MSLNS+TW+Lopt is slightly effective when M = 2. In
summary, the MSLNS variants also manage to find new best-known solutions
for up to 73 out of 148 cases, which are detailed in Table 6.7.

M Inst. Old BK New BK M Inst. Old BK New BK M Inst. Old BK New BK
2 c103 700 720 3 pr07 713 737 4 c108 1100 1120
2 c108 670 680 3 pr08 1082 1120 4 pr02 1014 1073
2 pr01 471 493 3 pr09 1144 1223 4 pr03 1162 1207
2 pr02 660 700 3 r103 720 723 4 pr04 1452 1525
2 pr03 714 728 3 r104 765 767 4 pr05 1665 1723
2 pr04 863 918 3 r105 609 611 4 pr07 840 861
2 pr05 1011 1080 3 r107 747 750 4 pr08 1267 1319
2 pr07 552 558 3 r109 699 702 4 pr09 1460 1503
2 pr08 796 813 3 r110 711 734 4 r102 807 823
2 pr09 867 874 3 r111 764 765 4 r103 878 888
2 r107 529 532 3 r112 758 768 4 r104 941 969
2 r108 549 554 3 rc101 604 616 4 r105 735 765
2 r110 515 518 3 rc102 698 707 4 r106 870 893
2 r112 515 517 3 rc103 747 757 4 r109 866 884
2 rc102 494 495 3 rc105 654 657 4 r110 870 905
3 c102 890 900 3 rc106 678 690 4 r111 935 937
3 c103 960 980 3 rc107 745 753 4 r112 939 957
3 c106 840 870 3 rc108 757 765 4 rc103 947 967
3 c108 900 910 4 c101 1000 1010 4 rc104 1019 1050
3 c109 950 960 4 c102 1090 1140 4 rc105 841 843
3 pr01 598 613 4 c103 1150 1180 4 rc106 874 895
3 pr02 899 938 4 c104 1220 1230 4 rc107 951 961
3 pr03 946 992 4 c105 1030 1040 4 rc108 998 1016
3 pr04 1195 1232 4 c106 1040 1060
3 pr05 1356 1446 4 c107 1100 1110

Table 6.7 – New best-known solutions found by different MSLNS variants on
the MC-TOPTW benchmark (73 out of 148 cases)

150 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

6.5.3 MC-TOP-MTW benchmark
To generate a benchmark for the case of MC-TOP-MTW, Souffriau et al.
(2013) extend the existing MC-TOPTW benchmark instances by modifying
the time windows associated with each customer. More precisely, each time
window is divided into four equally reduced time windows. Additional con-
ditions are set to ensure that a high-quality TOPTW solution is still feasible
for the case of MC-TOP-MTW. For detailed description of the generation of
these benchmark instances, we refer to the work of Souffriau et al. (2013).

Experimental settings We consider here two metaheuristics developed
for the MC-TOP-MTW benchmark including the GRILS of Souffriau et al.
(2013) and the SA metaheuristic presented by Lin & Vincent (2015). More
precisely in the work of Lin & Vincent (2015), the authors experiment with
four different variants of the SA algorithm based on whether the acceptance
probability of a worse solution is determined by using Boltzmann function
(BF) or Cauchy function (CF), and with or without restart (RS). Their report
indicates that SA with a restart strategy is better than the no-restarting
version, hence we report here only the results of their two best variants,
namely SA-RSBF and SA-RSCF. In the following experiments, we analyze
the best solution found and the corresponding total computational time for
each solver.4 The baseline results are retrieved from the work of Lin &
Vincent (2015).

For technical information, the experiments of SA are run on an Intel Core
2 @ 2.5 GHz but no further details are provided; thus, we do not discuss
here the difference in the computational setups. Similarly to the previous
experiments on the MC-TOPTW benchmark, we simply run GenOP-MSLNS
for a 1-minute timeout to obtain results within a similar computational time.
Then, the GenOP solver is given more time (5 minutes) to hopefully find new
improved solutions and/or to assess the difficulty of each problem instance.

Numerical analysis Table 6.8 shows the results obtained by all solvers
within a similar computational time and on different cases. Regarding the
quality gap, MSLNS-basic is very competitive with the other solvers. In-
terestingly, we see that GRILS performs better on Solomon instances, while

4For GRILS and the variants of SA, computational times are reported from the original
papers.

6.5. EXPERIMENTS 151

M Instance set Souffriau et al. (2013) SA(Lin & Vincent (2015)) GenOP-MSLNS (1min)
GRILS RSBF RSCF basic TW TW+Lopt

1 Solomon 0.23 0.47 0.47 1.41 1.41 2.52
Cordeau 3.53 1.82 2.44 0.00 0.00 2.47

2 Solomon 1.93 3.86 2.26 4.26 4.66 4.84
Cordeau 6.21 4.16 3.70 4.56 5.82 3.11

3 Solomon 4.15 3.50 2.77 6.59 6.64 8.11
Cordeau 6.07 4.67 4.75 3.76 6.04 6.25

4 Solomon 5.40 4.17 3.53 6.02 9.62 7.71
Cordeau 6.93 4.51 3.98 5.34 6.85 7.14

Summary

Gap (%)
Solomon 2.93 3.00 2.26 4.57 5.58 5.79
Cordeau 5.69 3.79 4.12 3.20 4.36 5.42

All 4.31 3.40 3.19 3.88 4.97 5.61

Time (s)
Solomon 11.93 13.47 13.17 19.43 22.65 19.98
Cordeau 27.28 22.05 22.67 24.00 26.38 25.49

All 19.61 17.76 17.92 21.71 24.51 22.73

Table 6.8 – Results obtained on the MC-TOP-MTW benchmark: quality
gaps (%) obtained by different algorithms (upper table); average quality
gaps (%) and average computational times (seconds) per instance set (lower
table)

MSLNS gives better results on Cordeau instances. MSLNS-basic even gives
the best gap when averaging over Cordeau instances. Specifically, MSLNS
can quickly find the optimal solutions on Cordeau instances using 1 vehicle,
while the other solvers are still far from the optimum.

In general, MSLNS-basic seems to be the best version among the three
variants of MSLNS. The impact of the conflict analysis procedure is also
negligible when dealing with this benchmark. Although MSLNS+TW+Lopt
running within 1 minute outperforms the other variants on Cordeau instances
using M = 2, MSLNS-basic outperforms the other variants when allowing
a larger CPU time limit of 5 minutes, as shown in Table 6.9. Also, for all
variants of MSLNS, the computational time required to find the best solution
is about 100 seconds, on average.

Moreover, Table 6.10 summarizes the average percentage of best-known
solutions found by each solver and per number of vehicles. Also, we present
the percentage of cases where a new best-known solution is found by our
MSLNS variants, which are highlighted in green (Line %newBK). Overall,
MSLNS-basic gives the best average of 45.94% of best-known or new best-
known solutions over all instances, but this does not imply that MSLNS
outperforms the others due to the differences in computational time. Besides,
the results obtained show that MSLNS performs worse than the other solvers
in the mono-vehicle case (M = 1), but is particularly effective when dealing

152 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

M Instance set GenOP-MSLNS (5min)
basic TW TW+Lopt

1 Solomon 1.41 1.41 2.52
Cordeau 0.00 0.00 2.13

2 Solomon 0.81 1.62 1.28
Cordeau 0.70 2.15 1.92

3 Solomon 2.97 3.60 4.33
Cordeau 1.88 2.07 2.84

4 Solomon 3.97 6.08 5.70
Cordeau 2.55 4.87 4.26

Summary

Gap (%)
Solomon 2.29 3.18 3.46
Cordeau 1.28 2.27 2.79

All 1.78 2.73 3.12

Time (s)
Solomon 84.21 85.39 92.77
Cordeau 110.57 117.93 101.15

All 97.39 101.66 96.96

Table 6.9 – Quality gaps (%) and computational times (seconds) of the
MSLNS variants on the MC-TOP-MTW benchmark (5-minute timeout)

Reference Algorithm Percentage of (new) best known solutions Average
M = 1 M = 2 M = 3 M = 4

Souffriau et al. (2013) GRILS %BK 83.78 37.83 10.81 8.10 35.10

Lin & Vincent (2015) SA-RSBF %BK 86.48 40.54 18.91 8.10 38.51
SA-RSCF %BK 86.48 51.35 18.91 8.10 41.21

GenOP (Ours, 5mins)

MSLNS-basic %BK 78.37 67.57 18.91 8.10 45.94%newBK 2.70 2.70 5.40
MSLNS-TW %BK 78.37 62.16 8.10 2.70 39.18%newBK 2.70 2.70

MSLNS-TW-Lopt %BK 67.56 59.45 18.91 10.81 40.53%newBK 2.70 2.70

Table 6.10 – Percentage of best-known solutions obtained by different algo-
rithms on the MC-TOP-MTW benchmark (the percentage of new best-known
solutions is highlighted in green)

with M = 2 (up to 67.57% of best-known solutions are found by MSLNS-
basic while the best version of SA, SA-RSCF, gets an average of 51.35%).
Overall, several new best-known solutions are found by different variants of
MSLNS. These solutions are detailed in Table 6.11.

M Inst. Old BK New BK M Inst. Old BK New BK
2 pr02 660 663 4 c102 1110 1120
3 c106 840 850 4 pr02 1014 1018
3 rc105 654 657

Table 6.11 – New best-known solutions found by one of the MSLNS variants
on the MC-TOP-MTW benchmark (5 out of 148 cases)

6.5. EXPERIMENTS 153

6.5.4 TD-OP-MTW benchmark
This benchmark contains TD-OP-MTW instances where customers possibly
have multiple time windows and the transition function is time-dependent. It
is generated from an existing TD-TSP with multiple time windows bench-
mark (called a TD-TSP-MTW) related to urban delivery problems.5

Experimental settings In this experiment, we consider the case of a
mono-vehicle problem and test with 20 instances, each containing 100 cus-
tomers. Remarkably, for each existing TD-TSP-MTW instance, there is a
best-known makespan m during which all the customers can be visited with
only 1 vehicle. This problem can be seen as a TD-OP-MTW by defining
a unit reward for each customer (i.e. Ri = 1) and by defining Tmax = m.
Therefore, in this case, the GenOP solver should be able to visit all cus-
tomers. The instances are generated based on a transition duration function
obtained from data matrix00.txt available in the initial benchmark.

For these new TD-OP-MTW instances, there is no competitor since we
are not aware of a solver available for such a kind of problems. Therefore,
we conduct experiments using only MSLNS with a timeout of 1 minute. For
this benchmark, we only test MSLNS-basic (the simplest version) due to the
results obtained on previous benchmarks compared to the two other variants.

Numerical analysis As shown in Table 6.12, GenOP-MSLNS can quickly
find a feasible TSP solution (i.e. a visit sequence that can traverse all the cus-
tomers) for several instances within a reasonable computational time. How-
ever, there exist difficult cases where GenOP is still far from the optimal so-
lution (about 70 out of 100 customers are visited). On this point, a possible
explanation is that the customer selection strategy of MSLNS is randomized
and the insertion method used is based on a local greedy heuristic. In addi-
tion, the transition function for this benchmark does not necessarily satisfy
the triangular inequality meaning that the shortest path between two cus-
tomers may not be the direct one. Therefore, the GenOP solver that inserts
customers one by one using local information can get stuck at some point
while a global solver considering all customers simultaneously can manage to
find a valid solution.

5Available at http://perso.citi-lab.fr/csolnon/TDTSP.html

http://perso.citi-lab.fr/csolnon/TDTSP.html

154 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Instance #nVisits time (s) Instance #nVisits time (s)
inst_100_1 100 16.61 inst_100_11 63 2.13
inst_100_2 63 13.52 inst_100_12 100 1.42
inst_100_3 100 4.12 inst_100_13 100 16.14
inst_100_4 68 1.34 inst_100_14 69 7.21
inst_100_5 99 0.79 inst_100_15 99 10.23
inst_100_6 64 2.81 inst_100_16 70 0.29
inst_100_7 63 7.53 inst_100_17 100 1.29
inst_100_8 100 30.72 inst_100_18 67 3.86
inst_100_9 62 18.77 inst_100_19 64 59.38
inst_100_10 100 1.28 inst_100_20 100 4.13

Table 6.12 – Results obtained by MSLNS-basic on 20 TD-OP-MTW instances
(1-minute timeout); each instance involves 100 customers

Overall, the results obtained on this benchmark indicate that GenOP is
applicable to the time-dependent versions of the OP problems. This opens up
opportunities for testing the framework on the standard TDOP or TDOPTW
instances of Verbeeck et al. (2013, 2014) as well as practical instances of the
satellite scheduling problem generated by Pralet (2023).

6.6 Enhancements of the routing module
Apart from the enhancements of the knowledge in the selMgr module, we
can also consider the improvement of the routingMgr module to make better
decisions at the sequencing level. In fact, the ImaxLNS solver employed
within routingMgr offers several advanced functions that can be used to
enhance the customer insertion procedure, which are briefly described below.
We refer to the work of Pralet (2023) for further details.

Enhanced insertion method Instead of using the greedy insertion heuris-
tic, the ImaxLNS solver offers a well-tuned insertion procedure by exploiting
the precedence graph of the problem. The latter expresses that some cus-
tomers must necessarily be visited before others due to the time window
constraints and the transition time function. In short, the reinsertion step is
achieved by a dynamic programming algorithm whose complexity is bounded
by a specific parameter.

Reordering procedure A reordering operation, namely a reorder() func-
tion, is also offered in the existing ImaxLNS solver, whose objective is to
minimize first the makespan (time at which the vehicle arrives at the final

6.6. ENHANCEMENTS OF THE ROUTING MODULE 155

depot) and then, as a secondary objective, the sum of the transition times
required between the successive visits. This reordering procedure can help
us gain some free time to insert new customers. But one key point is that we
need to avoid re-initializing all data structures after each customer insertion
or reordering procedure. So, in ImaxLNS, the algorithm incrementally up-
dates the precedence graph of the problem, to take into account all customer
removals and insertions made since the last call to the reorder() function.

Modified repair procedure for GenOP-MSLNS The advanced pro-
cedures described above are shown to be very effective for solving TSPTWs
both with or without time-dependent transition times. In essence, it would
be possible to invoke the reordering function and/or the enhanced insertion
function for each customer insertion operation in MSLNS. The intuitive idea
is to make the best sequencing decision as possible at each step. However,
we empirically observe that this is not efficient, especially for instances con-
taining hundreds of customers. Based on this observation, we consider two
key modifications to the previous MSLNS procedures shown in Algorithms
6.5 and 6.7.

First, we can allocate more effort to the insertion of mandatory customers
(i.e., [xiv = 1]) suggested by selMgr (Algorithm 6.7, Lines 4-8). Precisely,
instead of testing the insertion of a mandatory customer using a greedy
heuristic (Algorithm 6.7, Line 6), we first rearrange the visit sequence (by
using the reorder() function) and then insert the mandatory customer in the
reordered visit sequence. For testing the insertion of other (non-mandatory)
candidate customers, only the greedy heuristic is used to get quick updates.

Second, the reordering procedure is also called when a new locally optimal
solution is found (Algorithm 6.5, Line 19), which increases the possibility of
obtaining a new best solution from this local optimum.

Experimental settings To better observe the impact of the enhancements
detailed before, we conduct experiments only on the MC-TOP-MTW bench-
mark as the quality gap is still far from the best-known solutions in this
case. The tests are performed only with the MSLNS-basic variant since the
benefits of the conflict analysis procedure are not evident in the previous ex-
periments. For ImaxLNS, we directly reuse the best configuration provided
by Pralet (2023).

156 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

Numerical analysis Table 6.13 shows the quality gaps obtained by the
standard version and the enhanced version of the MSLNS-basic algorithm
for different time limits (1 or 5 minutes). From this table, we observe that,
within a 1-minute timeout, the enhanced version outperforms the standard
version of MSLNS-basic on Cordeau instances for different numbers of ve-
hicles. However, when using a larger time limit of 5 minutes, the standard
version performs better than the enhanced version in most cases. As a result,
it appears that investing effort in the routing aspect is beneficial when there
is a short time limit, but the benefit becomes negligible when allowing for a
larger CPU time.

M Instance set
GenOP-MSLNS-basic (1min) GenOP-MSLNS-basic (5 mins)
standard enhanced standard enhanced

1 Solomon 1.41 1.41 1.41 1.41
Cordeau 0.00 0.00 0.00 0.00

2 Solomon 4.26 4.18 0.81 1.16
Cordeau 3.70 2.85 0.70 1.34

3 Solomon 6.59 7.33 2.97 3.12
Cordeau 3.76 3.58 1.88 2.18

4 Solomon 6.02 6.13 3.97 3.94
Cordeau 5.34 4.01 2.55 2.57

Summary

Gap (%)
Solomon 4.57 4.77 2.29 2.41
Cordeau 3.20 2.61 1.28 1.52

All 3.88 3.69 1.78 1.97

Table 6.13 – Impact of the enhancements of the routing module on the MC-
TOP-MTW benchmark (gap in %)

Based on these findings, we can observe the impact of the intensifica-
tion and diversification in metaheuristics. In fact, it is hard to determine
whether using more intensification (focusing on optimizing the routing part
frequently) or more diversification (using greedy routing heuristics and quick
restarts) is the best approach. In the broader sense, this concept is also
somewhat related to the effort required in the propagation phase in CP solv-
ing: using light constraint propagation rules is fast (as our greedy insertion
procedure) while using advanced constraint propagation rules is more accu-
rate in terms of inconsistency detection (as our insertion procedure exploiting
reordering operations).

6.7. RELATED WORKS AND DISCUSSION 157

6.7 Related works and discussion

The techniques introduced in this chapter can be compared with the ex-
isting heuristics, local search, and metaheuristics proposed for OPTW and
its extensions (Kantor & Rosenwein (1992); Solomon (1987); Vansteenwegen
et al. (2009c)). In fact, the GenOP solver does not use fine-tuned heuris-
tics like other approaches for OP and its variants, which rely on information
such as the increase in rewards for a customer selection, the time shift when
inserting a customer into a visit sequence, and/or the slack consumption
of knapsack constraints (Souffriau et al. (2013); Gunawan et al. (2015b);
Schmid & Ehmke (2017)). Rather, the GenOP solver intends to balance the
work performed for selecting the right customers and the work performed
for finding feasible sequences of visits. In general, our main contributions
are that the solver proposed (1) is applicable to a larger class of problems
(complex variants of orienteering problems), (2) has a modular conception
that allows state-of-the-art methods for TDTSPTW and selection problems
to be directly reused.

From a wider perspective, the idea of decomposing a problem into sev-
eral sub-problems represented in different modeling frameworks is not new
in optimization. In mathematical programming, such an approach is used
in Logic-Based Benders Decomposition (Hooker & Ottosson (2003)), where
solutions obtained by a master LP solver are analyzed by a solver tackling
a sub-problem. If this solution is infeasible, the solver for the sub-problem
returns Benders cuts (new linear constraints) that are integrated into the
master solver. Hence, at each iteration, the master solver somehow learns
new constraints. The analogy with the GenOP solver is that the conflicts
sent to the selection problem from the analyses performed by the TDTSPTW
manager are kinds of cuts that are learned following selection mistakes. In
the same spirit, SAT Modulo Theory (SMT) (Barrett et al. (2009)) also uses
a hybrid approach when SAT techniques are combined with techniques devel-
oped for specific theories such as the linear arithmetic theory. In this case,
the SAT solver selects the linear constraints that should be satisfied and
sends them to the theory reasoner, which possibly returns inconsistency ex-
planations. In our case, selMgr can play a master role by proposing customer
selections to the routingMgr modules. The latter is then used for checking
feasibility at the theory level, which is a standard routing problem. If an
inconsistency is found, several explanations might be returned to enhance

158 CHAPTER 6. SOLVING COMPLEX ROUTING PROBLEMS

the constraint base in selMgr .
Last, the modularity of the GenOP solver architecture proposed and the

propagation performed by the selMgr and routingMgr modules can be re-
lated to Constraint Programming (CP). In CP, models are expressed by
a set of constraints and there exists a specific reasoning method for each
constraint. We use the same kind of approach here in the sense that the
selection subproblem and the routing subproblem can be seen as two global
constraints for which specific and efficient reasoning mechanisms can be used.
One difference though is that we exploit local search techniques instead of
tree search with backtracking. In some senses, our work is actually closer to
Constraint-Based Local Search (CBLS (Hentenryck & Michel (2005))), which
combines constraint-based modeling and local search techniques. With re-
gards to CBLS, the neighborhoods considered in the GenOP solver are much
larger, especially the neighborhood that tries to reorder the sequences of
visits at the routing level.

6.8 Conclusion
This chapter introduced a hybrid resolution approach for solving a general
class of complex routing problems, possibly involving multiple vehicles, mul-
tiple time windows, multiple side constraints, and/or time-dependent transi-
tion times. This approach is based on a modular architecture where (1) the
GenOP solver at the upper level is free to choose any metaheuristic to search
for high-quality solutions, (2) efficient solvers at lower levels dedicated to spe-
cific sub-problems are exploited, with an effort to adapt these solvers to a
dynamic context where customers can be added or removed in any order,
(3) inconsistency explanations are possibly generated and recorded during
search for enhancing the knowledge available in the selection sub-module.
The experimental results show that despite being quite general, the approach
proposed obtains competitive results on various benchmarks of OP variants
including standard OPTW, MC-TOPTW, MC-TOP-MTW, and generated
TD-OP-MTW instances. The approach also manages to find new best-known
solutions on numerous instances.

CHAPTER 7

Conclusion and perspectives

In a general sense, our primary research objective was to enhance incomplete
search algorithms for vehicle routing problems with profits. For this purpose,
our study focused on developing hybrid optimization methods that exploits
techniques commonly used in complete search.

More specifically, we first studied the generation of ‘nogoods’ (inspired
by the term nogood constraints) to help a specific incomplete search process.
The core principle is to develop a hybrid (integrative) approach between in-
complete search and satisfaction techniques, where several clauses are lazily
generated and incrementally managed during the search process. In the con-
text of an OPTW, we proposed a dynamic programming-based algorithm to
extract clauses that represent several types of constraints/conflicts, namely
(i) TW-conflicts that are generated based on the temporal constraints, and
(ii) Lopt-conflicts that are generated based on the local optima obtained.
The former type of conflict was used for neighborhood pruning while the
latter one was used for search diversification. In addition, we performed an
empirical study on three data structures with the objective of managing the
clauses in an efficient way i.e. without diminishing the performance of the
main search process. The numerical results obtained showed that the man-
agement employing two-watched literal techniques (commonly used in SAT)
along with some enhancements yields the best performance, i.e. improves
the solution quality and speeds up the search process. Meanwhile, the two
other techniques (the use of a powerful incremental SAT solver and the com-
pilation into an Ordered Binary Decision Diagram), appear to be ineffective

159

160 CHAPTER 7. CONCLUSION & PERSPECTIVES

in this context, despite their effectiveness in related domains.

In the opposite direction, we studied the exploitation of ‘goods’ taking
the form of a pool containing high-quality solutions obtained from a spe-
cific incomplete search algorithm for the (TD)OPTW (i.e. with or without
time-dependent transition times). Precisely, we defined a novel Route Re-
combination (RR) procedure based on dynamic programming to search for an
optimal combination of k visit subsequences. The complexity of this proce-
dure is controlled by using only two parameters. From a technical standpoint,
the RR procedure can be hybridized with other black box incomplete search
techniques in a collaborative way, where RR can post-optimize the solutions
provided by a metaheuristic with the hope of finding a new solution having
a higher quality. From a knowledge compilation perspective (Bryant (1986);
Darwiche & Marquis (2002)), the RR procedure proposed shares similari-
ties with algorithms used to recursively build so-called restricted decision
diagrams. In this study, the effectiveness of the approach proposed was
evaluated on two mono-vehicle benchmarks including the standard OPTW
instances and a realistic dataset, named singlesat, corresponding to the satel-
lite scheduling problem with or without time-dependent transition times.
More specifically, experiments were conducted for both deterministic and
non-deterministic use cases where in the latter, some information (e.g. the
rewards associated with the customers) may be perturbed in an online sce-
nario. Our experimental results showed that: (i) in the deterministic case,
RR quickly improves the solution quality obtained by a standard LNS meta-
heuristic, when being used as a post-optimization module; (ii) in the case
of non-deterministic scenarios, by using a ‘pretrained’ pool containing high-
quality solutions generated from similar scenarios in the offline phase, RR
also outperforms a standard LNS metaheuristic within a short time limit in
the online phase.

Last, we developed a generic framework, called the GenOP solver, to solve
complex variants of the vehicle routing problem with profits that possibly in-
volve multiple vehicles, multiple time windows, multiple side constraints,
and/or time-dependent transition times. We implemented this framework
in a modular architecture that involves two low-level reasoners: one rea-
soner dedicated to the selection of customers, and another one dedicated
to the sequencing problems given a specific set of customers. At the upper
level, a generic GenOP solver can freely choose a specific metaheuristic while

161

interacting with the low-level reasoners. Technically, for the selection sub-
problem, we managed selection constraints as pseudo-Boolean constraints,
whereas for the sequencing subproblem, we employed a state-of-the-art TDT-
SPTW solver. From a constraint programming perspective, the selection and
sequencing subproblems can be seen as two global constraints for which effi-
cient reasoning mechanisms can be used to support the core search. Also, the
GenOP solver can be related to Constraint-Based Local Search (CBLS) which
integrates constraint-based modeling and local search techniques. From a
wider perspective, the modular framework proposed is somehow in the same
spirit as SAT Modulo Theory (SMT), which combines SAT techniques with
powerful techniques developed for a specific theory. In our case, the counter-
part of the SAT problem is the selection problem and the counterpart of the
theory solver is the module that handles the sequencing problems (i.e. TDT-
SPTWs). Overall, the experimental results obtained on various benchmarks
highlighted the effectiveness of the approach proposed despite its genericity.

Perspectives
This dissertation has explored various hybrid approaches that could be fur-
ther investigated. Each of the questions tackled in this work offers several
potential implications and extensions for future research.

Local search and nogood learning In the literature, nogood learning
appears to be effective in improving the performance of complete techniques
for SAT/CSP solving. However, there are few works exploiting the nogood
learning mechanism to boost incomplete search methods on specific prob-
lems considered in the Operations Research community. Concerning our
first contribution (Chapter 4) and the nogood management techniques, sev-
eral perspectives can be listed.

• First, it is promising to apply the framework proposed to other prob-
lems involving two decision levels, for instance, the flexible scheduling
problems (Chaudhry & Khan (2016)). Briefly, such problems can be
also decomposed into two subproblems: (1) an assignment subproblem
that consists in assigning operations to machines (one machine-choice
variable xi ∈ [1..Mi] per operation i), and (2) a scheduling subproblem
corresponding to the sequencing of operations on machines, given an

162 CHAPTER 7. CONCLUSION & PERSPECTIVES

upper bound UB on the makespan. Given that the generic clause man-
agers are defined, the main effort to tackle a new problem is to define
the problem-dependent clause generation procedure.

• Second, rather than exploiting nogood information only in an on-the-fly
manner, some conflicts could be compiled into a compact form during a
preprocessing step and reused to help the search, e.g. for neighborhood
pruning and/or search guidance.

• Third, it would be interesting to explore other clause managers (e.g.
based on 0/1 linear programming and reduced-cost filtering) or other
knowledge bases represented as exact, relaxed, or restricted decision
diagrams (Andersen et al. (2007); Bergman et al. (2016a)).

Route recombination Regarding our second contribution (Chapter 5),
the route recombination (RR) algorithm proposed can be further improved
or hybridized with other methods for solving variants of the routing problems
(with or without uncertainty).

• A direct future work is to integrate RR into the previous framework (i.e.
incomplete search using clause bases) to improve further the quality of
solutions found for a (TD)OPTW. This would also require adapting the
clause generation procedure to the case of time-dependent transition
times. Besides the collaborative hybridization, RR could be hybridized
with other search methods in an integrative way, for instance, to get
more powerful crossover operations within a genetic algorithm.

• Another perspective is to develop an Adaptive RR procedure, where
several parameters could be learned, such as (1) parameters referred to
as Jmax andWmax, (2) the choice of the dominance rule between states,
or (3) the usage of reverse jumps.

• To better evaluate the effectiveness of the online RR solver under re-
ward uncertainty, one has to experiment with real-life data, beyond the
benchmark generated in this study. There are also possible avenues to
enhance the adaptation to real-world situations with the presence of
other sources of uncertainty:

163

(1) A first example is in logistic problems, where the transition times
can change due to traffic, weather, road conditions, or other fac-
tors that affect the speed of the vehicle. The adaptation is quite
straightforward as the new transition times can be taken into ac-
count when extending the search states in the dynamic program-
ming algorithm achieved by RR.

(2) Another possible scenario is that new urgent customers may arrive
during the online phase. This can happen in the case of the Earth
Observation Satellite scheduling when new requests are sent to
the satellite just before the start of an orbit. In such a situation,
one needs to adjust the schedule of the satellite and prioritize
the new requests over the old ones. However, the RR method
proposed may have some issues that need to be addressed. The
main reason is that the online RR solver produces a new solution
based on a pool containing only old customers without knowing
any information about new ones.

Generic framework for complex routing problems Concerning our
third contribution (Chapter 6), further enhancements can be considered to
increase both the genericity and efficiency of the GenOP solver proposed.

• First, as the GenOP solver can freely choose a search strategy, other
advanced metaheuristics can be tested to try to achieve a better perfor-
mance. Given that fine-tuning parameters for a specific metaheuristic
as well as for low-level reasoners may require a lot of work, several pa-
rameters could be learned or automatized. For instance, it would be
relevant to automatically determine when to reorder the visit sequence
at the routing level.

• Another perspective to explore is the design of fine-tuned selection
heuristics for the GenOP solver at the upper level. The key idea is
to evaluate the long-term impact of the decisions on the selection and
sequencing levels, based on inputs provided by the low-level reasoners.
For instance, in the presence of multiple side constraints, the heuristic
search should not only prioritize increasing the profit and minimizing
resource consumption for each decision but also consider the impor-
tance of the different constraints to guide the search. As pointed out

164 CHAPTER 7. CONCLUSION & PERSPECTIVES

by Souffriau et al. (2013), a constraint can be seen as important if it
has a high-profit potential but is challenging to gain this profit.

• Last, regarding the genericity, one can adapt the GenOP solver to tackle
other variants of the routing problems, such as variants considering
time-dependent profits (Peng et al. (2019)) or non-linear profit function
(Wang et al. (2008)). This can be done using the same functions imple-
mented in the low-level selection and sequencing sub-modules. Yet, it
could be necessary to adjust the selection strategy to achieve a better
result with the new profit function. Last but not least, the architecture
proposed could be also considered for solving other types of problems
involving two levels of decisions (e.g., flexible job-shop scheduling).

Part III

Appendix

165

ANNEXE A

Résumé étendu

A.1 Introduction

Problématique L’optimisation combinatoire se concentre sur la recherche
des solutions optimales parmi un ensemble fini de combinaisons possibles,
tout en respectant un ensemble de contraintes et en maximisant ou mi-
nimisant une fonction objectif. Pour résoudre ces problèmes, les méthodes
incomplètes sont souvent utilisées en pratique, car elles peuvent produire ra-
pidement des solutions de haute qualité, ce qui est un point critique dans de
nombreuses applications. Pourtant, ces algorithmes ont également de nom-
breuses limitations : ils n’offrent pas la garantie de trouver une solution op-
timale et peuvent rester bloqués dans des optima locaux, et la qualité de la
solution obtenue dépend fortement du choix de l’heuristique et des stratégies
de recherche. C’est pourquoi il est utile de développer des techniques permet-
tant d’éviter rapidement les optima locaux et de guider la recherche vers des
régions prometteuses de l’espace des solutions. Pour cela, dans la littérature,
de nombreuses approches hybrides sont proposées pour accroître l’efficacité
des méthodes incomplètes en exploitant diverses idées algorithmiques issues
des méthodes complètes.

Techniques hybrides mises en œuvre Le but de cette thèse est de
développer des approches hybrides qui permettent d’améliorer la recherche
incomplète en exploitant les méthodes complètes. Plus précisément, cette
thèse présente trois contributions principales :

167

168 ANNEXE A. RÉSUMÉ ÉTENDU

• Une approche hybride intégrant l’apprentissage de clauses pour amé-
liorer l’efficacité d’une méthode incomplète (Section A.2).

• Une hybridation avec la programmation dynamique afin de produire de
nouvelles solutions de meilleure qualité (Section A.3).

• Un solveur générique couplé avec des mécanismes de propagation de
contraintes pour résoudre efficacement des problèmes de routage com-
plexes (Section A.4).

Cas d’étude Les approches hybrides proposées sont appliquées aux pro-
blèmes de routage avec profits et avec clients optionnels. En particulier, nous
nous intéressons à une application pertinente dans le domaine aérospatial
qui est le problème d’ordonnancement de prises de vue pour les satellites
d’observation de la Terre, incluant éventuellement des profits incertains.

Dans un le problème de routage avec profits, on considère un ensemble
de N clients optionnels pouvant être visités, chacun apportant un certain
profit. Parmi les variantes de ce problème dans la littérature, le problème
d’orienteering (OP) semble être le problème le plus étudié. Dans ce problème,
l’objectif est de maximiser le profit total collecté en visitant les clients plutôt
que de minimiser le coût total (distance ou temps de trajet). Ce problème
peut être défini formellement comme suit.

Considérons I = {0, . . . , N + 1} un ensemble de nœuds (ou clients) qui
peuvent être visités, où 0 et N+1 sont considérés comme les nœuds de départ
et d’arrivée. Chaque nœud i ∈ I est associé à une récompense (ou profit) non
négative Ri, avec R0 = RN+1 = 0. Pour les contraintes temporelles, chaque
nœud i ∈ I peut avoir une (ou plusieurs) fenêtre(s) temporelle(s) [Oik, Cik]
autorisé(s) pour commencer la visite. De plus, une durée de transition non
négative entre les nœuds i et j existe pour chaque paire de nœuds distincts
i ∈ I, j ∈ I. Cette durée de transition peut être “time-dependent”, c’est-
à-dire qu’elle peut dépendre de la date précise à laquelle la transition est
réalisée. Une durée de visite di peut être considérée pour chaque nœud i ∈ I,
cependant nous supposons que ces durées de visite sont déjà incluses dans les
coûts de déplacement. En plus des contraintes temporelles, plusieurs variantes
complexes de ce problème peuvent également impliquer des contraintes sup-
plémentaires au niveau de sélection, telles que des contraintes de capacité.

En général, une solution de l’OP est une séquence σ = [i0, . . . , iq+1] qui
commence et se termine aux deux dépôts (i0 = 0, iq+1 = N + 1), et qui

A.1. APPRENTISSAGE DE CLAUSES 169

visite un sous-ensemble de nœuds distincts S = {i1, . . . , iq} ⊆ {1, . . . , N}.
Pour la variante impliquant plusieurs véhicules, une solution correspond à
un ensemble de M séquences de visites {σ1, . . . , σM}, où chaque nœud peut
être visité au plus une fois. Une solution est dite faisable si et seulement si
chaque nœud est visité dans une fenêtre temporelle autorisée, et le coût total
de chaque trajet ne dépasse pas Tmax, un budget limité prédéfini. L’objectif
est alors de trouver une solution optimale σ∗, qui soit faisable et qui maximise
la récompense totale collectée (c’est-à-dire ∑M

v=1
∑
i∈σv

Ri). Globalement, ce
problème implique deux niveaux de décision, avec d’un côté la sélection des
clients à visiter, et de l’autre côté le séquencement des visites des clients
sélectionnés.

A.2 Recherche incomplète aidée par une base
de clauses

A.2.1 Motivation et schéma général
Notre première contribution combine la recherche incomplète avec des tech-
niques d’apprentissage de clauses souvent utilisées en SAT. L’idée principale
est d’exploiter une mémoire long terme pour améliorer l’efficacité de la re-
cherche, un peu comme dans une recherche tabou (Glover (1989)), mais avec
des mécanismes qui s’inspirent de méthodes de recherche complète efficaces
exploitant la génération de clauses (Marques-Silva et al. (2009); Schutt et al.
(2013)). À partir de ces idées, nous proposons une architecture hybride décrite
à la figure A.1. Cette architecture se compose de trois éléments principaux :
une procédure de recherche incomplète (ISP), un générateur de clauses (CG),
et une base de clauses (CB).

Procédure de recherche
incomplète (ISP)
[spécifique]

Base de clauses (CB)
[générique]

Générateur de clauses (CG)
[spécifique]

opérations / requêtes

réponses aux requêtes

solutions optimales locales nouvelles clauses

Figure A.1 – Recherche incomplète aidée par une base de clauses

170 ANNEXE A. RÉSUMÉ ÉTENDU

Le schéma de recherche global fonctionne comme suit. Chaque fois que
le moteur de recherche principal (ISP) converge vers une solution localement
optimale, le module CG analyse cette solution et produit des clauses portant
sur des variables de décision booléennes du problème. Les clauses générées
représentent soit les raisons pour lesquelles la solution actuelle ne peut pas
être améliorée, soit des conditions interdisant l’optimum local trouvé d’être
rencontré à nouveau dans le futur. Ces clauses sont ensuite envoyées à une
base de clauses (CB). Cette dernière est responsable du stockage des clauses
sur le long terme. Elle est aussi exploitée pour répondre à diverses requêtes
qui sont pertinentes pour la recherche incomplète principale ISP afin d’éla-
guer ou de guider l’exploration du voisinage d’une solution courante. Dans
cette architecture, les clauses sont générées de manière paresseuse (lazy),
c’est-à-dire uniquement pour les parties de l’espace de recherche que ISP
décide d’explorer. Au final, cette architecture implique d’un côté des inter-
actions très fréquentes entre les modules ISP et CB, et de l’autre une phase
de génération de clauses moins fréquente afin de ne pas ralentir la recherche
principale.

Application au problème OPTW Pour évaluer cette approche, nous
considérons ici le problème d’orienteering avec fenêtres temporelles (OPTW).
Pour un OPTW, une méthode de référence est l’algorithme LNS proposé par
Schmid & Ehmke (2017) qui consiste à itérer des phases de destruction et de
réparation de la solution courante. Ces itérations sont généralement effectuées
de façon totalement indépendantes, c’est-à-dire qu’une itération donnée n’ex-
ploite pas du tout des connaissances qu’il aurait été possible d’acquérir lors
des itérations précédentes. Partant de ce constat, nous envisageons d’extraire
des connaissances au fur et à mesure des itérations (A.2.2) et de mémoriser
ces connaissances acquises (A.2.3) pour éviter de réexplorer des configura-
tions non admissibles ou pour identifier les zones les plus prometteuses dans
l’espace de recherche.

A.2.2 Génération de clauses pour un OPTW
Dans ce travail, nous ne considérons que les clauses relatives aux décisions de
sélection, et non les clauses relatives aux décisions de séquencement définis-
sant l’ordre des visites. En fait, l’élagage de voisinage au niveau de la sélection
peut contribuer à réduire de manière significative l’espace de recherche.

A.2. APPRENTISSAGE DE CLAUSES 171

En ce qui concerne l’aspect sélection, nous introduisons une variable de
décision booléenne xi ∈ {0, 1} associée à chaque nœud client i, où xi = 1
signifie que le nœud i est visité. Plusieurs types de clauses peuvent être
générés au cours de la recherche et la génération de ces clauses exploite des
techniques dépendantes du problème, comme pour les coupes générées dans
la décomposition de Benders logique (Hooker & Ottosson (2003)). Pour les
OPTW, nous considérons deux types de conflits possibles et nous les générons
de manière “lazy”, c’est-à-dire uniquement lorsqu’un minimum local σ∗ est
atteint.

Conflits basés sur les contraintes temporelles (conflits TW) Une
première idée est d’essayer de trouver des explications minimales pour les vi-
sites localement infaisables. Plus précisément, après chaque convergence vers
une solution localement optimale, l’algorithme cherche à expliquer pourquoi
les clients non visités ne peuvent pas être insérés dans le plan courant. De ma-
nière intuitive, un conflit est un ensemble des clients Sc qui exprime qu’il est
impossible de visiter tous les clients i ∈ Sc en respectant leurs fenêtres tem-
porelles. Un tel conflit peut être vu formellement comme une clause ∨

j 6∈Sc
¬xj

spécifiant qu’au moins un client de Sc ne doit pas être sélectionné. Autrement
dit, si tous les clients de Sc\{i} sont visités, un tel conflit peut être utilisé pour
détecter rapidement que le client i ne peut pas être sélectionné pendant le
processus de construction d’une solution, sans examiner explicitement toutes
les insertions possibles de i à chaque position dans la séquence actuelle de
visites σ. Pour cela, dans l’algorithme 4.5 (voir la partie du manuscrit en
anglais), nous décrivons une procédure pour générer des clauses basées sur
les conflits de fenêtres temporelles en utilisant la programmation dynamique.
Néanmoins, énumérer tous ces conflits de fenêtres temporelles est impossible.
C’est pourquoi nous fixons une taille maximum pour les conflits recherchés
afin de limiter le temps dédié à la procédure d’explication. De plus, nous défi-
nissons pour chaque client j un nombre maximum de tentatives d’explication
de l’absence du client j dans une solution localement optimale.

Conflits basés sur les optima locaux (conflits Lopt) Une remarque
importante est que, pour les instances ayant de longues fenêtres temporelles,
les conflits temporels impliquent souvent un plus grand nombre de clients.
Autrement dit, il existe très peu de conflits TW de petite taille générés dans
ces cas. Partant de ce constat, notre idée est de diversifier la recherche en

172 ANNEXE A. RÉSUMÉ ÉTENDU

générant une autre type de clause basé sur les solutions localement optimales
σ∗ explorées dans le passé. Pour cela, nous définissons un conflit Lopt comme
une clause ∨

j 6∈σ∗ xj qui favorise la sélection de nœuds non visités dans σ∗ pour
les prochaines itérations. En pratique, ces conflits Lopt sont de tailles très
longues s’il existe seulement un ensemble restreint de clients visités dans
chaque tournée. Dans ce cas, ces conflits sont moins efficaces pour guider
la recherche vers des régions de solutions non-explorées. Afin de parvenir
à intensifier la recherche, nous considérons des conflits de taille plus petite
en sélectionnant seulement K des clients non-visités dans σ∗. Cependant,
un grand nombre de clauses Lopt ainsi réduites peut également augmenter
le risque d’élaguer des solutions optimales. Pour surmonter ce problème, ces
clauses approximatives sont gardées dans CB uniquement pendant un certain
nombre d’étapes appelé tabuSize, de la même manière qu’une recherche tabou
à court terme.

A.2.3 Gestion de la base de clauses
La partie CB est responsable du stockage des clauses générées étape par
étape pendant la recherche. Idéalement, le module CB doit intégrer rapide-
ment ces clauses et les représenter de manière compacte. De plus, comme
ISP doit interroger fréquemment CB, nous avons besoin d’interactions conti-
nues et incrémentales entre ces deux composants. En d’autres termes, CB
doit mettre à jour son état courant à chaque fois qu’une décision est prise
par ISP. De même, CB doit également répondre rapidement aux requêtes
formulées par ISP, telles que “évaluer si la décision [xi = 1] est réalisable”.
Pour un OPTW, si CB prouve que cette décision est infaisable compte tenu
de l’affectation actuelle des variables de décision et des clauses générées par
le passé, il n’est pas nécessaire de tester l’insertion du nœud i dans la solution
courante σ (élagage du voisinage). Un autre type de requête est : “évaluer
si la décision [xi = 1] est obligatoire”. Si c’est le cas, le nœud i doit être
inséré immédiatement dans σ (guidage de la recherche). En général, les opé-
rations et les requêtes mentionnées précédemment ne sont pas spécifiques
aux OPTW, donc dans ce travail, nous étudions trois approches génériques
pour définir CB.

• CB-UnitPropagation (CB-UP) : La première approche mémorise
simplement les conflits sous forme d’une liste de clauses. Elle utilise
ainsi des mécanismes de propagation unitaire pour évaluer la cohérence

A.2. APPRENTISSAGE DE CLAUSES 173

d’une prochaine décision. Plus précisément, une clause est dite "uni-
taire" lorsqu’il ne reste qu’un seul littéral l non assigné dans la clause,
nécessitant que l soit vrai pour satisfaire la clause. Dans ce cas, ¬l
est faux et la propagation unitaire est utilisée pour détecter d’autres
décisions propagées dans les autres clauses. Comme en SAT, la pro-
pagation unitaire peut être réalisée en se basant sur la technique des
“two-watched literals” (Moskewicz et al. (2001)). Une contribution clé
ici est l’introduction de la propagation unitaire décrémentale pour gérer
les “backtracking” aléatoires lors de la recherche incomplète (possible
pour ISP d’ajouter et retirer des décisions dans n’importe quel ordre).

• CB-IncrementalSAT (CB-SAT) : La deuxième approche mémorise
toujours une simple liste de clauses mais utilise directement un solveur
SAT incrémental pour déterminer très rapidement et précisément la
cohérence de décision proposées par ISP vis-à-vis de la base de clauses.
L’idée d’utiliser la résolution SAT incrémentale a été proposée pour
la première fois par Audemard et al. (2013) dans le but d’améliorer
l’efficacité de la recherche en réutilisant le plus d’informations possibles
entre les résolutions successives de problèmes SAT similaires.

• CB-OBDD : La troisième approche implique l’utilisation d’un dia-
gramme de décision binaire ordonné (OBDD (Bryant (1986))) pour
stocker des conflits. Les bonnes propriétés des OBDDs permettent d’ex-
traire une sélection optimale de clients en temp linéaire en la taille de
l’OBDD, cependant cette taille peut croître très rapidement lors des
ajouts successifs de clauses.

A.2.4 Résultats expérimentaux
L’approche proposée a été évaluée sur des instances classiques du problème
OPTW, décomposées en quatre groupes (Solomon1, Solomon2, Cordeau1
et Cordeau2), les instances des groupes Solomon1 et cordeau1 impliquant
des fenêtres plus courtes que les instances des groupes Solomon2 et Cor-
deau2. Concernant la partie gestion des clauses, nous considérons l’utilisa-
tion des trois structures de données proposées : CB-UP, CB-SAT et CB-
OBDD. Pour chaque variante, nous mémorisons sur le long terme seulement
les clauses basées sur des conflits temporels (conflits TW). Pour CB-UP,
nous considérons en plus la génération des clauses provenant de conflits Lopt

174 ANNEXE A. RÉSUMÉ ÉTENDU

afin d’évaluer leur impact sur la diversification de la recherche. Le tableau
A.1 donne, sur la base de 5 résolutions avec un temps de calcul de 1 minute
pour chaque instance, les écarts moyens obtenus par rapport à la meilleure
solution connue. D’autre part, le tableau A.2 donne le taux d’accélération
obtenu avec chaque CB en réalisant 10 000 itérations de LNS, où un taux
positif indique que la recherche est plus rapide.

Instance set Variants of CB in LNS
noCB UP UP-Lopt SAT OBDD

Solomon1 1.093 1.093 1.304 1.492 1.315
Solomon2 0.416 0.387 0.345 0.607 0.497
Cordeau1 0.139 0.078 0.351 1.125 0.903
Cordeau2 1.898 1.846 1.900 3.729 2.958

Grand mean 0.886 0.851 0.977 1.739 1.418

Table A.1 – Écarts moyens (%) obtenus en 1 minute en utilisant chaque
variante de CB (meilleurs écarts moyens en rouge gras)

Instance set Variant of CB in LNS
UP UP-Lopt SAT OBDD

Solomon1 -8.83 -18.66 -2517.14 -646.14
Solomon2 25.17 25.15 -492.75 -163.62
Cordeau1 48.66 47.04 -2779.32 -2446.31
Cordeau2 45.96 47.83 -2092.35 -610.95

Table A.2 – Taux d’accélération (%) suivant l’utilisation de chaque CB

En général, la gestion des clauses avec CB-SAT et CB-OBDD détériore
les performances, car elle exige beaucoup d’effort de raisonnement sur les
conflits et diminue donc fortement le nombre d’itérations de recherche prin-
cipale réalisées dans un temps de calcul donné. En revanche, l’utilisation de
la base de clauses CB-UP a permis d’accélérer globalement la recherche et
de réduire les écarts aux meilleures solutions connues sur tous les groupes
d’instances. Cela s’explique par le fait que des conflits TW appris ont aidé à
éviter un grand nombre d’essais d’insertion de clients qui sont incompatibles
avec des clients déjà présents dans la solution courante. Aussi, l’utilisation
de CB-UP-Lopt génère des résultats très compétitifs par rapport à la ver-
sion de base (noCB), ce qui montre que les conflits Lopt peuvent aider à

A.2. RECOMBINAISON DES ROUTES 175

diversifier la recherche, notamment avec des instances du groupe Solomon2.
En résumé, nous constatons que la recherche aidée par CB-UP ou CB-UP-
Lopt est plus rapide, et elle est efficace en termes de qualité de solutions
obtenues.

A.2.5 Perspectives
Dans ce travail, nous exploitons le mécanisme d’apprentissage des “nogoods”
pour améliorer les méthodes de recherche incomplète sur des problèmes spéci-
fiques de la communauté Recherche Opérationnelle. Sur cette base, plusieurs
perspectives peuvent être énumérées.

• Il serait intéressant d’appliquer le cadre proposé à d’autres problèmes
impliquant deux niveaux de décision, tels que les problèmes d’ordon-
nancement avec resources flexibles (Chaudhry & Khan (2016)). Comme
les gestionnaires de clauses génériques sont disponibles, l’effort princi-
pal consisterait à définir la procédure de génération de clauses pour ce
problème spécifique.

• Deuxièmement, au lieu d’exploiter les connaissances uniquement à la
volée, certains conflits pourraient être compilés sous une forme com-
pacte dans une phase hors ligne et réutilisés pour faciliter la recherche
dans une phase en ligne, par exemple pour élaguer les voisinages et/ou
guider la recherche.

• Il serait également possible d’explorer d’autres types de gestion de la
base de clauses (par exemple, basés sur la programmation linéaire 0/1
et le filtrage par coûts réduits), ou d’autres bases de connaissances
représentées sous forme de diagrammes de décision exacts, relâchés ou
restreints (Andersen et al. (2007); Bergman et al. (2016a)).

A.3 Recombinaison des routes par program-
mation dynamique

A.3.1 Motivation
Contrairement au mécanisme de génération de clauses qui exploite des no-
goods, nous visons également à explorer des goods, c’est-à-dire des bonnes

176 ANNEXE A. RÉSUMÉ ÉTENDU

caractéristiques de solutions de haute qualité. Plus précisément, notre ob-
jectif est d’optimiser a posteriori la qualité des solutions obtenues par les
méta-heuristiques classiques pour le problème d’orienteering avec fenêtres
temporelles (OPTW) et sa version time-dependent (TDOPTW). Dans ce
but, nous introduisons une nouvelle procédure de recombinaison capable de
prendre en entrée un ensemble de solutions et de retourner la meilleure com-
binaison contenant des sous-séquences de visites de clients obtenues à partir
de ces solutions. Par exemple, la procédure de recombinaison peut prendre en
entrée trois solutions σ1 = [0,2,3, 4, 6, 8, 10], σ2 = [0, 4,3,5,8, 1, 10] et σ3 =
[0, 1,8,7,6,10], et renvoyer une solution recombinée σ = [0,2,3,5,8,7,6,10]
qui suit d’abord σ1 puis σ2 puis σ3.

Toutefois, la recherche d’une telle recombinaison de sous-séquences est
difficile dans le cas général, étant donné que le nombre de toutes les combinai-
sons possibles impliquant k sous-séquences est exponentiel en k. Pour réduire
la complexité, nous pouvons limiter le nombre maximal de sous-séquences
utilisées pour chaque combinaison, c’est-à-dire le nombre maximal de jumps
entre différentes solutions élites, où un jump correspond à un changement
dans la solution d’élite suivie à une étape donnée. Dans la suite, nous dési-
gnons par Jmax le nombre maximum de jumps autorisés pour chaque com-
binaison. De plus, un jump peut être effectué vers l’avant ou vers l’arrière,
la sémantique étant qu’un jump vers l’arrière traverse une sous-séquence de
visites dans l’ordre inverse. Cette procédure de recombinaison repose sur un
algorithme de programmation dynamique amélioré par des stratégies d’éla-
gage qui réduisent de manière significative la taille de l’espace de recherche.

(a) (b)

Figure A.2 – (a) Actions possibles (jump en red, direction en blue) compte
tenu du dernier client visité i ; (b) une séquence possible générée avec 4 jumps
(dans red) étant donné un ensemble de 5 séquences de visites.

A.3. RECOMBINAISON DES ROUTES 177

A.3.2 Procédure de recombinaison (RR)

Dans ce qui suit, nous détaillons le système de programmation dynamique
(DP) utilisé pour la procédure de recombinaison (appelée RR) en décrivant
les états de recherche, les règles d’extension des états et les stratégies d’élagage
pour réduire l’espace de recherche.

Notion d’état La procédure RR explore des états de recherche représen-
tant les chemins faisables qui commencent et retournent au dépôt. Ces che-
mins sont construits en suivant des solutions d’un pool de solutions donné.
De manière formelle, chaque état est défini comme un tuple S = (V, i, r, d, n),
où V est un ensemble de clients visités, i est le dernier client visité, r est l’iti-
néraire (ou la solution) actuellement suivi, d ∈ {FWD,BWD} est la direction
d’exploration actuelle de r (vers l’avant ou vers l’arrière), et n est le nombre
de jumps effectués jusqu’à présent. Intuitivement, les différents états associés
au même dernier client visité i correspondent à différents chemins possibles
pour atteindre le client i. Pour l’évaluation de chaque état, nous considérons
les deux critères définis ci-dessous :

• La récompense R(S) d’un état S = (V, i, r, d, n) est calculée comme la
somme des récompenses Rj des clients j visités dans V , i.e. R(S) =∑
j∈V Rj.

• Le coût d’un état S = (V, i, r, d, n), noté arr(S), est le temps d’arrivée
minimal au nœud i si tous les clients de V ont déjà été visités. Au cours
de l’exploration de l’espace de recherche, arr(S) est mis à jour chaque
fois qu’un nouveau chemin réalisable atteignant S est trouvé. Chaque
état non initial S garde également la trace d’un état parent à visiter
avant S afin d’obtenir le coût arr(S).

Un état (V, i, r, d, n) est dit terminal lorsqu’il atteint le dépôt final, i.e.
i = N + 1. Entre l’état initial et l’état terminal, les états intermédiaires re-
présentent des solutions incomplètes qui visitent un sous-ensemble de clients
mais ne retournent pas encore au dépôt. Pour construire le meilleur itiné-
raire entre le dépôt initial et le dépôt final, il suffit de sélectionner un état
terminal qui a une récompense maximale et d’extraire le meilleur chemin
correspondant par rétropropagation à travers les états parents.

178 ANNEXE A. RÉSUMÉ ÉTENDU

Règles d’extension Les états sont explorés niveau par niveau, où le niveau
d’un état S = (V, i, r, d, n) correspond au nombre de nœuds visités dans
V . L’extension d’un état S = (V, i, r, d, n) correspond à la sélection d’une
séquence de visite et d’une direction, à partir desquelles nous essayons de
trouver le prochain client à visiter après i. Formellement, une telle action est
représentée par une paire (ρ, δ) où ρ est une séquence du pool de solutions
contenant le client i et δ est une direction (vers l’avant ou vers l’arrière).
L’application de l’action (ρ, δ) depuis l’état S conduit à un nouvel état S ′ =
(V ∪{i′}, i′, ρ, δ, n′) où un nouveau client i′ ∈ ρ est visité et où n′ = n si ρ = r
et n′ = n + 1 dans le cas contraire. Une telle transition d’état n’est possible
que si toutes les conditions suivantes sont remplies.

• L’état obtenu doit respecter la limite sur le nombre maximal de jumps
Jmax. Autrement dit, un jump vers une autre solution (c’est-à-dire,
ρ 6= r) n’est autorisé que si n < Jmax. En particulier, un jump vers
arrière n’est pas autorisé s’il ne reste qu’un seul jump possible (cas
n = Jmax − 1).

• La visite du nœud i′ après i est faisable. Plus précisément, soit τ =
arr(S) l’heure d’arrivée à l’état actuel. Si δ = FWD (ou BWD), alors
i′ est le premier client qui suit i (ou qui précède i) dans l’itinéraire ρ tel
que (1) i′ n’est pas encore visité (i′ ∈ {1, . . . , N}\V), (2) il est possible
de visiter i′ avant sa date de fermeture Ci′ (τ ′ = τ + tt(i, i′, τ) ≤ Ci′),
et (3) il est possible de retourner au nœud dépôt N + 1 depuis i′ avant
Tmax (τ ′ + tt(i′, N + 1, τ ′) ≤ Tmax).

• Si l’itinéraire sélectionné est le même que celui actuel (ρ = r), l’action
est autorisée uniquement si la direction ne change pas (δ = d). En
d’autres termes, il n’est pas permis de se déplacer dans une direction
opposée sur la même séquence, ce qui est appelé un jump renversé.
Cette dernière règle peut être négligée, mais elle est introduite dans ce
travail pour réduire le nombre d’états de recherche.

Stratégies d’élagage Afin d’accélérer le processus de recombinaison, deux
stratégies d’élagage sont utilisées pour éliminer les états qui sont sous-optimaux
ou semblent sous-optimaux en termes de récompenses.

• Premièrement, en considérant le meilleur état S∗ rencontré jusqu’alors,
un état S peut être élagué si R(S) + R(S) < R(S∗), où R(S) est une

A.3. RECOMBINAISON DES ROUTES 179

borne supérieure sur le score supplémentaire maximum qui peut être
collecté depuis l’état S jusqu’à un état terminal.

• La deuxième stratégie repose sur la règle de dominance. Intuitivement,
étant donné deux états S1 et S2, S2 est dit faiblement dominé par S1 si
ces deux états atteignent le même nœud i et visitent le même ensemble
de nœuds V , mais S1 a un coût plus faible et plus de jumps restants
que S2, sans tenir compte de l’itinéraire actuellement suivi. Dans ce
cas, l’état S2 est jugé comme moins favorable que S1 et l’algorithme de
recombinaison considère qu’il n’est pas nécessaire de développer S2. Il
convient de noter que cette règle de dominance est dite faible car elle
peut élaguer éventuellement des états à partir desquels une meilleure
récompense pourrait être obtenue à la fin.

A.3.3 Variantes de la procédure de recombinaison
Version restreinte Pour accélérer davantage le processus de recombinai-
son, l’algorithme utilise une stratégie supplémentaire qui limite le nombre
d’états conservés à chaque niveau de décision (largeur restreinte). Techni-
quement, une fois que l’ensemble des états SL au niveau L a été généré,
si SL contient trop d’états selon un paramètre d’entrée Wmax (c’est-à-dire
|SL| > Wmax), l’algorithme sélectionne de manière heuristique les états les
plus prometteurs à explorer et rejette les autres. Cette stratégie de restriction
de la largeur est similaire à l’approche proposée par Gillard & Schaus (2022)
concernant l’algorithme LNS couplé avec des diagrammes de décision.

Version itérative (IRR) L’utilisation d’un processus itératif peut contri-
buer à accroître la diversité des séquences combinées explorées par RR, même
en considérant une valeur fixe de Jmax. Techniquement, après chaque itération
de RR conduisant à une amélioration, la pire solution du pool en termes de
récompense est remplacée par la nouvelle solution combinée. Ce processus se
poursuit jusqu’à ce qu’un point fixe soit atteint, c’est-à-dire jusqu’à ce qu’au-
cune amélioration ne soit trouvée. En fin de compte, même avec un nombre
fixe de jumps Jmax, il est possible de créer itérativement des séquences conte-
nant plus de Jmax + 1 sous-séquences contenues dans les solutions du pool
original. En effet, à la première itération de RR, la solution combinée résul-
tante incorpore des composants provenant d’au plus Jmax + 1 sous-séquences

180 ANNEXE A. RÉSUMÉ ÉTENDU

originales, mais aux itérations suivantes, les nouvelles séquences générées
peuvent elles-mêmes être combinées avec d’autres solutions du pool.

A.3.4 Résultats de complexité
La complexité de RR reste efficace sous réserve que Jmax et Wmax sont bor-
nées : le nombre d’états explorés par RR est polynomiale avec Jmax borné et
linéaire avec Wmax.

A.3.5 Expérimentations
Des expérimentations ont été réalisées sur deux jeux de données. Le premier
contient des instances OPTW classiques et le second implique des données
réelles générées pour la planification d’observation pour un satellite d’ob-
servation (instances singlesat). De plus, il est important de souligner que les
tests sont effectués avec des variantes dépendantes et indépendantes du temps
(c’est-à-dire problèmes time-dependent ou non). Nous évaluons les perfor-
mances de la procédure RR dans deux cas d’utilisation : (1) en tant qu’étape
de post-optimisation pour des problèmes déterministes, et (2) en tant que
solveur pour des OPTW non déterministes impliquant des perturbations au
niveau des récompenses.

Scénarios déterministes : utilisation d’IRR comme post-optimisa-
teur Dans ce cas, nous collectons d’abord un pool contenant les meilleures
solutions trouvées par une recherche LNS, puis nous appliquons la procédure
RR itérative (IRR) à ce pool de solutions élites pour rechercher une solution
améliorée (voir figure A.3).

Figure A.3 – Utilisation d’IRR pour post-optimiser les solutions fournies
par LNS dans un contexte déterministe

Globalement, les résultats décrits dans le tableau A.3 montrent que le
processus de recombinaison IRR nécessite très peu de temps pour améliorer

A.3. RECOMBINAISON DES ROUTES 181

la qualité des solutions fournies par un solveur LNS standard. Par ailleurs,
l’amélioration apportée par IRR diminue lorsque le temps de calcul alloué
à LNS augmente (voir les colonnes ∆Gap et ∆R). Cela est raisonnable, car
avec un temps de calcul plus élevé, LNS peut converger vers un meilleur
optimum local, ce qui rend plus difficile pour IRR la découverte de nouvelles
solutions de meilleure qualité.

CPUmax(s)
OPTW | AvgGap (%)

tIRR(ms) singlesat | AvgRwd
tIRR(ms)LNS LNS-IRR ∆Gap LNS LNS-IRR ∆R

1 1.70 1.22 0.48 16.20 1101.59 1108.85 7.26 24.89
2 1.44 1.12 0.32 15.21 1107.03 1112.94 5.91 17.15
5 1.39 1.03 0.36 30.26 1109.66 1114.94 5.28 15.91
10 1.14 0.88 0.26 21.64 1111.82 1116.68 4.86 15.16
30 0.91 0.69 0.22 15.10 1114.81 1117.99 3.18 12.80
60 0.80 0.62 0.18 17.31 1115.99 1119.09 3.10 14.56

Table A.3 – Résultats obtenus avec différents temps limités CPUmax pour
LNS sur les instances OPTW et singlesat (IRR avec Jmax = 2, Wmax =∞)

De plus, vu les résultats donnés dans le tableau A.4, nous constatons que
IRR est très rapide avec une petite valeur de Jmax. D’autre part, l’augmen-
tation de Jmax entraîne une amélioration plus significative de la qualité de
la meilleure solution recombinée, mais nécessite également beaucoup plus de
temps, simplement en raison de la croissance exponentielle des états dans
le système de programmation dynamique. Toutefois, la limitation de Wmax

permet alors de surmonter ce problème (voir le cas Jmax = 4). En général,
avec des valeurs plus petites de Wmax, IRR est plus rapide mais il fournit
également un gain plus faible, car de nombreux états sont élagués par la
phase de restriction selon la paramètre Wmax.

Jmax Wmax
optw singlesat

AvgGap%(LNS-IRR) tIRR(ms) #t.o AvgRwd(LNS-IRR) tIRR(ms) #t.o
0 ∞ 1.70 0 0 1101.59 0 0
1 ∞ 1.63 1.48 0 1103.35 2.77 0
2 ∞ 1.22 16.20 0 1108.85 24.89 0
3 ∞ 1.05 1929.95 0 1112.26 554.14 0
4 ∞ 1.24 81370.61 17/76 1113.75 37561.21 31/648
4 10000 0.89 2321.45 0 1113.65 6694.53 0
4 5000 0.95 828.19 0 1113.13 3589.63 0
4 1000 1.11 129.03 0 1109.25 622.03 0
4 100 1.47 11.79 0 1103.49 43.80 0

Table A.4 – Impact des paramètres Jmax et Wmax (CPUmax = 1s)

182 ANNEXE A. RÉSUMÉ ÉTENDU

Scénarios incertains : utilisation de RR pour la résolution en ligne
En pratique, le problème devient plus difficile dans un contexte incertain
concernant la récompense associée à chaque client. Dans le contexte des satel-
lites d’observation, la récompense associée à chaque client dépend fortement
de la couverture nuageuse. Par exemple, pendant une journée nuageuse, les
images remplies de nuages rapportent une récompense plus faible par rapport
aux images des cibles au sol bénéficiant de conditions de ciel dégagé. Dans
de tels scénarios, il se peut que la solution actuelle ne soit plus adaptée et
qu’il faille retrouver une meilleure solution en fonction des dernières valuers
connues pour les récompenses (voir figure A.4).

Figure A.4 – Un plan d’activités existant (ligne rouge) doit être révisé
pendant une journée nuageuse.

La procédure RR peut être utile dans ce cas. En effet, nous pouvons
d’abord générer un pool de solutions de haute qualité à partir de différents
scénarios de récompense dans une phase hors ligne. Ensuite, dans la phase
en ligne, nous utilisons RR directement comme un outil de résolution pour
trouver la meilleure combinaison de ces solutions, basée sur les nouvelles
informations de récompense, sans avoir besoin de réutiliser le solveur classique
comme LNS (voir figure A.5).

A.3. RECOMBINAISON DES ROUTES 183

Figure A.5 – Résolution en ligne avec RR en cas d’incertitude des récom-
penses

Globalement, le tableau A.5 montre que pour les scénarios impliquant des
récompenses incertaines, l’application de RR sur un ensemble de solutions
pré-entraînées nécessite moins de temps pour obtenir de meilleures perfor-
mances par rapport au solveur LNS classique. Dans le tableau A.6, nous
avons étudié le nombre de scénarios d’entraînement et de solutions par scé-
nario nécessaires pour maximiser l’efficacité de RR pendant la phase en ligne.
Au final, avoir plus de solutions dans le pool entraîne un temps d’exécution
plus long pour RR, tandis que le maintien de moins de solutions conduit à
une récompense plus faible. Il est cependant contre-productif de conserver
trop de solutions dans le pool de solutions élites, car cela augmente le temps
d’exécution de RR sans améliorer significativement la solution, Ainsi, il est
nécessaire de trouver un compromis pour équilibrer qualité de la solution
combinée et temps d’exécution de RR.

En ce qui concerne l’effet de la perturbation de la récompense sur l’effi-
cacité de RR, les résultats du tableau A.7 révèlent que RR reste efficace avec
une perturbation modérée, par exemple moins de 30%. Cela s’explique par le
fait que si la perturbation est trop large, les scénarios utilisés pour construire
le pool d’entraînement deviennent trop différents du scénario à prendre en
compte pendant la phase en ligne.

184 ANNEXE A. RÉSUMÉ ÉTENDU

dataset Rwd Time(ms)
LNS RR tf LNS(ms) tRR(ms)

optw-solomon1 299.69 299.69 105.99 8.14
optw-solomon2 905.04 910.78 1915.68 3375.48
optw-cordeau1 368.40 372.50 1876.66 156.70
optw-cordeau2 411.70 418.60 1791.92 295.53
optw-mean 495.05 500.97 1422.56 958.96

ti-singlesat-ttf1.0 1200.64 1209.37 1860.90 103.99
ti-singlesat-ttf1.5 1003.91 1013.16 2329.27 400.76
ti-singlesat-ttf2.0 841.07 846.40 1865.40 408.91
td-singlesat-ttf1.0 1213.16 1221.11 2058.36 96.39
td-singlesat-ttf1.5 1018.14 1029.94 2004.76 268.49
td-singlesat-ttf2.0 854.09 862.17 2082.80 338.93
singlesat-mean 1021.83 1030.36 2033.58 269.58

dataset RR wins RR=LNS LNS wins ∆R(%)
min avg max

optw-solomon1 0 29 0 0.00 0.00 0.00
optw-solomon2 18 6 3 -0.46 0.54 2.38
optw-cordeau1 5 5 0 0.00 0.92 2.88
optw-cordeau2 7 2 1 -0.20 1.48 5.32
optw-mean - - - -0.08 1.18 3.17

ti-singlesat-ttf1.0 79 28 1 -0.68 0.72 2.91
ti-singlesat-ttf1.5 92 12 4 -0.28 0.89 2.98
ti-singlesat-ttf2.0 75 26 7 -0.73 0.58 2.53
td-singlesat-ttf1.0 77 30 1 -0.39 0.63 2.41
td-singlesat-ttf1.5 97 7 4 -0.24 1.14 3.16
td-singlesat-ttf2.0 85 20 3 -0.61 0.88 5.46
singlesat-mean - - - -0.49 0.81 3.24

Table A.5 – Résultats obtenus par LNS et RR pour un scénario de test
impliquant une perturbation de la récompense de 20% (CPUmax = 5s, Jmax =
2, Wmax =∞, nstrain = 10, pooltrain = 5).

nstrain pooltrain
OPTW singlesat

Rwd(RR) tRR(ms) Rwd(RR) tRR(ms)
5 5 499.15 136.65 1028.44 65.35
5 10 499.93 1230.83 1029.02 357.12
10 5 500.97 958.96 1030.36 269.58
10 10 501.09 11232.44 1030.79 1318.42

Table A.6 – Impact du nombre de solutions dans le pool d’entraînement
(CPUmax = 5s, Jmax = 2, Wmax =∞)

dR(%) avgRwd-OPTW avgRwd-singlesat
LNS RR LNS RR

10 512.90 518.80 1039.29 1048.44
20 495.05 500.97 1021.83 1030.36
30 547.31 552.04 1049.41 1055.87
50 546.83 544.10 1045.12 1044.14

Table A.7 – Adaptation de RR avec différents niveaux de perturbation
(CPUmax = 5s, Jmax = 2, Wmax =∞, nstrain = 10, pooltrain = 5)

A.3. OPTIMISATION PAR DÉCOMPOSITION 185

A.3.6 Conclusion et perspectives

En résumé, l’algorithme de recombinaison des routes (RR) proposé peut être
utilisé comme une procédure de post-optimisation légère et efficace travaillant
sur des solutions élites fournies par un solveur (TD)OPTW incomplet stan-
dard. De plus, il peut être utilisé dans un contexte non déterministe où les
valeurs des récompenses ne sont pas précisément connues à l’avance. Dans ce
cas, les solutions (TD)OPTW peuvent d’abord être générées pour différents
scénarios de récompense au cours d’une phase hors ligne, puis combinées au
cours d’une phase en ligne pour obtenir rapidement une solution de haute
qualité compte tenu des dernières valeurs de récompense connues. Divers
travaux futurs sont envisagés :

• Un travail futur direct consiste à combiner RR avec les méthodes de la
section A.2, c’est-à-dire avec la recherche incomplète aidée par une base
de clauses, afin d’améliorer encore la qualité des solutions trouvées pour
un (TD)OPTW. Cela nécessiterait également d’adapter la procédure
de génération de clauses au cas des temps de transition dépendant
du temps. RR pourrait aussi être hybridé avec d’autres méthodes de
recherche, par exemple pour réaliser des opérations de croisement plus
puissantes dans un algorithme génétique.

• Une autre perspective consiste à développer une procédure RR Adap-
tative, où plusieurs paramètres pourraient être appris, tels que (1) les
paramètres appelés Jmax etWmax, (2) le choix de la règle de dominance
entre les états, ou (3) l’utilisation de jumps renversés.

• Pour mieux évaluer l’efficacité du solveur RR en cas d’incertitude sur
les récompenses, il serait nécessaire d’expérimenter RR avec des don-
nées réelles. De plus, il serait possible de gérer d’autres sources d’in-
certitude, telles que des temps de transition incertains ou l’arrivée de
clients urgents pendant la phase en ligne.

186 ANNEXE A. RÉSUMÉ ÉTENDU

A.4 Résolution de problèmes de routage com-
plexes par décomposition

A.4.1 Motivation
En pratique, les problèmes de tournées peuvent être complexes, impliquant
éventuellement des clients optionnels, de nombreux véhicules, plusieurs fe-
nêtres temporelles pour chaque client, des contraintes de sélection telles que
des contraintes de capacité, et/ou des temps de transition “time-dependent”
qui modélisent par exemple les conditions de circulation liées avec embou-
teillages. Pour résoudre rapidement ces problèmes, notamment avec des ins-
tances de taille volumineuse, de nombreux algorithmes (méta)heuristiques
spécifiques pour chaque variante ont été proposés dans la littérature. Toute-
fois, cela pose un défi, car chaque fois qu’une nouvelle variante est introduite,
les algorithmes performants définis pour les problèmes de base doivent être
révisés.

Afin d’éviter de développer de nouveaux algorithmes spécifiques pour
chaque variante du problème, nous proposons une approche hybride et géné-
rique qui est capable de résoudre efficacement diverses variantes complexes
du problème. Plus précisément, cette approche repose sur une architecture
modulaire exploitant (1) d’une part un sous-module gérant toutes les dé-
cisions de sélection des clients, et (2) d’autre part un sous-module gérant
efficacement les décisions de séquencement des clients sélectionnés. En outre,
une interface de résolution générique peut librement choisir une métaheuris-
tique tout en interagissant avec les modules de bas niveau pour rechercher
des solutions.

A.4.2 Un cadre générique : solveur GenOP
Pour rechercher des solutions quasi optimales pour des variantes complexes
du problème d’orienteering, nous proposons l’architecture modulaire présen-
tée à la figure A.6. Cette architecture est composée de trois éléments : une
interface de résolution principale (appelée GenOP), un moteur de raisonne-
ment (appelé selMgr) s’occupant du sous-problème de sélection de clients (ou
d’affectation des clients aux véhicules), et un moteur de raisonnement (appelé
routingMgr) dédié au sous-problème de routage (ou de séquencement).

L’idée principale ici est de pouvoir réutiliser directement les techniques

A.4. OPTIMISATION PAR DÉCOMPOSITION 187

Interface du solveur GenOP

Gestionnaire
de sélection
(selMgr)

Gestionnaire de
séquencement
(routingMgr)

réponses aux
requêtes et
opérations

réponses aux
requêtes et
opérations

requêtes
et

opérations

requêtes
et

opérations

Figure A.6 – Une architecture générale pour résoudre des variantes com-
plexes du problème d’orienteering

d’optimisation de bas niveau liées au sous-problème de sélection et au sous-
problème de routage sans clients optionnels. En d’autres termes, GenOP
conduit la recherche grâce aux conseils reçus du module de sélection et aux
réponses reçues du module de routage concernant la faisabilité des séquences
de visites. Techniquement, le solveur GenOP contient la fonction de résolu-
tion principale et interagit avec les modules de raisonnement bas niveau par
des requêtes et opérations spécifiques.

A.4.3 Gestionnaire de sélection

Le module selMgr se concentre sur la gestion des contraintes des problèmes
au niveau de la sélection. En géneral, selMgr doit prendre en compte chaque
décision prise par GenOP et mettre à jour les contraintes en fonction de
ces décisions. De plus, selMgr doit être en mesure de répondre rapidement
aux requêtes envoyées par GenOP concernant la faisabilité ou l’optimalité
du problème de sélection.

Formellement, le sous-problème de sélection implique des contraintes li-
néaires pseudo-booléennes de la forme ∑

i,v eivzxiv ≤ Ez ou ∑
i,v eivzxiv ≥ Ez

où les termes eivz, Ez ∈ N sont des constantes, et où les termes xiv ∈ {0, 1}
sont des variables de décisions. Par exemple, les contraintes utilisant la re-
lation “≤” peuvent être utilisées pour exprimer les contraintes de capacité
(Boussier et al. (2007)) ou les limitations budgétaires (Souffriau (2010)). De
l’autre côté, les contraintes utilisant la relation “≥” sont utiles pour fixer

188 ANNEXE A. RÉSUMÉ ÉTENDU

une borne inférieure à la récompense collectée (Balas (1989)) ou pour expri-
mer la sélection de clients obligatoires (Gendreau et al. (1998a)). L’objectif
principal est ici de trouver une affectation A de valeurs aux variables xiv
telle que toutes ces contraintes soient satisfaites. L’idée centrale est d’ex-
ploiter les techniques de propagation de contrainte pour raisonner sur des
problèmes impliquant des contraintes pseudo-booléennes (Dixon & Ginsberg
(2002); Chai & Kuehlmann (2003); Sheini & Sakallah (2005)). Par exemple,
considérons une contrainte c : 2x1 + 2x2 +x3 ≤ 3, si nous assignons [x1 = 1],
alors nous pouvons déduire que x2 doit être fixé à 0 pour éviter la violation
de la contrainte c. En fait, plusieurs solveurs dans la littérature ont été dé-
veloppés pour cela (Sheini & Sakallah (2005); Piotrów (2020)), et pourraient
remplir le rôle de selMgr . Toutefois, pour contrôler et exploiter pleinement
les informations obtenues au niveau de la sélection de manière flexible, nous
avons décidé de construire notre propre selMgr au lieu de nous appuyer sur
les mécanismes existants. Cela nous permet de définir des méthodes de calcul
incrémentales adaptées à nos besoins.

A.4.4 Gestionnaire de séquencement

Le module routingMgr est chargé d’évaluer la faisabilité (ou l’optimalité) au
niveau du séquencement, c’est-à-dire de déterminer s’il existe une séquence
de visites traversant un ensemble spécifique de clients sélectionnés tout en
respectant les contraintes temporelles.

Afin d’augmenter la généricité de GenOP, routingMgr doit être capable
de traiter des problèmes de voyageur de commerce (TSP) impliquant des
contraintes de fenêtre temporelle, avec ou sans temps de transition “time-
dependent”. Pour ce faire, nous pouvons exploiter les techniques efficaces pour
traiter des TSP “time-dependent” avec des fenêtres temporelles (TDTSPTW).
Dans ce travail, le module routingMgr réutilise directement un solveur de
l’état de l’art pour les TDTSPTW, appelé ImaxLNS (Pralet (2023)). Outre
l’utilisation de ce solveur pour trouver une séquence de visites faisable pour
un ensemble spécifique de clients, nous adaptons cet algorithme pour l’utiliser
dans un contexte dynamique où les clients peuvent être ajoutés ou supprimés
de manière itérative, conformément aux demandes envoyées depuis l’interface
du solveur GenOP.

A.4. OPTIMISATION PAR DÉCOMPOSITION 189

A.4.5 MSLNS : une métaheuristique pour GenOP

Pour le solveur maître GenOP, il existe plusieurs métaheuristiques candi-
dates inspirées des techniques disponibles dans la littérature pour résoudre
des variantes de l’OP (voir le chapitre 3). Dans ce travail, nous proposons une
métaheuristique pour le solveur GenOP appelée “Multi-Start Large Neigh-
borhood Search” (MSLNS), afin de trouver une solution de haute qualité
pendant un temps de calcul limité. L’algorithme MSLNS pour GenOP s’ap-
puie sur une méthode LNS en tant que technique de recherche principale
pour intensifier la recherche et effectue de temps en temps des redémarrages
à partir de zéro pour diversifier la recherche. Au cours de la recherche, le sol-
veur GenOP exploite les fonctions disponibles dans chaque sous-module pour
essayer de sélectionner des clients et de construire une séquence de visites,
tout en respectant des contraintes de sélection et des contraintes temporelles.

Dans la procédure LNS, l’algorithme utilise itérativement des opérateurs
de destruction et de réparation pour rechercher une solution de meilleure
qualité. Plus précisément, dans la phase de destruction, pour chaque véhicule,
un sous-ensemble F de clients consécutifs est supprimé de la séquence de
visites en cours. Le module GenOP notifie ce changement aux modules bas
niveau selMgr et routingMgr afin qu’ils puissent mettre à jour leur état.
L’une des composantes essentielles de l’algorithme MSLNS est la procédure
de réparation qui spécifie comment réoptimiser la solution actuelle par le
biais de sélections et d’insertions itératives de clients. Dans cette procédure,
GenOP exploite une stratégie de sélection des clients et essaie de les insérer
un par un tout en assurant la cohérence des sous-problèmes de sélection et de
séquencement. Contrairement aux méthodes d’insertion traditionnelles, qui
utilisent des heuristiques bien réglées pour vérifier l’insertion d’un client à
toutes les positions possibles tout en respectant les contraintes, MSLNS se
concentre d’abord sur les contraintes de sélection des clients pour trouver
une sélection réalisable, et utilise ensuite des heuristiques gloutonnes pour
tester les insertions. Ainsi, MSLNS peut être plus rapide pour chaque phase
d’insertion et peut redémarrer plus fréquemment, ce qui conduit à une plus
grande diversification

De plus, nous pouvons envisager la génération de contraintes de sélection
apprises en cours de recherche afin d’enrichir la connaissance du module
selMgr et d’améliorer le guidage au niveau de la sélection. Cela peut se
faire en analysant les échecs d’insertion basés sur contraintes temporelles
(c’est-à-dire la génération des conflits TW) et/ou en examinant la solution

190 ANNEXE A. RÉSUMÉ ÉTENDU

localement optimale obtenue après chaque phase de réparation (c’est-à-dire
la génération des conflits Lopt), en suivant les idées présentées précédemment
dans la section A.2.

A.4.6 Expérimentations et analyses
Pour les expérimentations, nous avons considéré trois variantes de MSLNS
pour le solveur GenOP. La version la plus simple, appelé MSLNS-basic,
n’utilise qu’une heuristique de sélection gloutonne aléatoire et une heuristique
d’insertion gloutonne. Les deux autres variantes, appelées MSLNS+TW et
MSLNS+TW+Lopt, prennent également en compte la génération de conflits
en cours de recherche pour ajouter des contraintes au niveau du module de
sélection.

Afin d’évaluer la généricité des solveurs GenOP pour résoudre des va-
riantes complexes du problème d’orienteering, nous comparons les résultats
obtenus par le solveur GenOP avec ceux de solveurs spécifiques pour chaque
variante. Cette comparaison est résumée à travers les tableaux A.8, A.9, A.10,
et A.11, à partir d’expérimentations menées sur différents jeux de données :

(1) les instances TOPTW classiques (Team OPTW) qui impliquent plu-
sieurs véhicules, allant de un à quatre ;

(2) les instances TOPTW qui comprenent plusieurs contraintes de type
“knapsack” sous la forme ∑

i,v eivzxiv ≤ Ez (dénotées par MC-TOPTW) ;

(3) les instances TOPTW qui présentent à la fois plusieurs contraintes de
type “knapsack” et plusieurs fenêtres temporelles pour chaque client
(dénotées par MC-TOP-MTW) ;

(4) des instances OPTW que nous avons générées et qui couvrent les as-
pects “time-dependent” et des fenêtres temporelles multiples pour chaque
client (désignées par TD-OP-MTW).

Globalement, nous constatons que la métaheuristique MSLNS utilisée par
le solveur GenOP donne de bons résultats sur différents jeux de données.
Plus précisément, la métaheuristique GenOP-MSLNS est très compétitive
par rapport à d’autres métaheuristiques classiques conçues spécifiquement
pour chaque problème dans la littérature. En particulier, avec les instances
MC-TOPTW, GenOP-MSLNS parvient à trouver de nouvelles meilleures

A.4. OPTIMISATION PAR DÉCOMPOSITION 191

solutions connues pour 73 des 148 instances de la litérature dans un temps
de calcul raisonnable.

Instance set Gunawan et al. (2015c) Schmid & Ehmke (2017) MSLNS (5mins)
SAILS (avg) SAILS (best) eLNS (avg) eLNS (best) basic TW TW+Lopt

Gap(%) Solomon 0.81 0.21 0.21 0.07 0.22 0.24 0.25
Cordeau 2.83 1.41 2.01 1.36 1.16 1.32 1.32

Time (s) Solomon 98.76 - 9.59 29.00 47.88 49.13 52.24
Cordeau 198.94 - 75.59 129.39 107.38 101.37 93.25

Table A.8 – Ecarts obtenus (%) sur les instances TOPTW

Instance set Souffriau et al. (2013) MSLNS (1min)
GRILS (best) basic TW TW+Lopt

Gap (%) Solomon 1.68 -0.14 0.00 0.03
Cordeau 2.89 -2.21 -2.26 -2.24

Time (s) Solomon 8.35 14.23 13.82 14.36
Cordeau 19.24 19.94 23.30 24.23

Table A.9 – Ecarts obtenus (%) sur les instances MC-TOPTW

Instance set Souffriau et al. (2013) Lin & Vincent (2015) MSLNS (1min)
GRILS SA-RSBF SA-RSCF basic TW TW+Lopt

Gap (%) Solomon 2.93 3.00 2.26 4.57 5.58 5.79
Cordeau 5.69 3.79 4.12 3.20 4.36 5.42

Time (s) Solomon 11.93 13.47 13.17 19.43 22.65 19.98
Cordeau 27.28 22.05 22.67 24.00 26.38 25.49

Table A.10 – Ecarts obtenus (%) sur les instances MC-TOP-MTW

Instance #nVisits time (s) Instance #nVisits time (s)
inst_100_1 100 16.61 inst_100_11 63 2.13
inst_100_2 63 13.52 inst_100_12 100 1.42
inst_100_3 100 4.12 inst_100_13 100 16.14
inst_100_4 68 1.34 inst_100_14 69 7.21
inst_100_5 99 0.79 inst_100_15 99 10.23
inst_100_6 64 2.81 inst_100_16 70 0.29
inst_100_7 63 7.53 inst_100_17 100 1.29
inst_100_8 100 30.72 inst_100_18 67 3.86
inst_100_9 62 18.77 inst_100_19 64 59.38
inst_100_10 100 1.28 inst_100_20 100 4.13

Table A.11 – Ecarts obtenus (%) par MSLNS-basic sur 20 instances TD-
OP-MTW en 1 minute ; chaque instance implique 100 clients

Analyses complémentaires En général, nous remarquons que l’impact
de l’utilisation des conflits TW et Lopt n’est pas significatif, contrairement
à ce qui a été observé dans la section A.2. Plusieurs facteurs peuvent ex-
pliquer cette observation dans notre contexte. Tout d’abord, l’utilisation des

192 ANNEXE A. RÉSUMÉ ÉTENDU

contraintes TW pour l’élagage du voisinage est moins efficace ici, étant donné
qu’il y a moins de tests d’insertion à chaque étape de construction de MSLNS.
Ainsi, vu que chaque conflit TW est dupliqué pour chaque véhicule, il conduit
à une augmentation significative du nombre de contraintes dans selMgr , et il
demande donc plus d’efforts pour le raisonnement au niveau de la sélection.
De plus, l’efficacité des conflits Lopt est limitée dans les problèmes impliquant
plusieurs véhicules, où la plupart des clients sont sélectionnés et visités. Dans
ce cas, seuls les clients moins favorables, ayant une faible récompense, restent
dans les contraintes Lopt approximatives, réduisant ainsi leur impact sur la
diversification de la recherche.

En outre, nous envisageons l’amélioration du module routingMgr afin de
prendre de meilleures décisions au niveau du séquencement en exploitant les
fonctions avancées du solveur ImaxLNS. Plus précisément, l’idée principale
consiste à optimiser le séquencement en utilisant la procédure de réorgani-
sation de la séquence de visites afin de gagner du temps pour l’insertion de
nouveaux clients. Les résultats expérimentaux donnés au tableau A.12 in-
diquant que l’optimisation au niveau du routage semble plus efficace avec
un temps limité et devient moins efficace lorsque le temps est plus large.
Cela illustre également l’analogie entre le compromis entre intensification et
diversification dans les métaheuristiques, et entre la propagation simple et
avancée dans la programmation par contraintes.

M Instance set
GenOP-MSLNS-basic (1min) GenOP-MSLNS-basic (5 mins)
standard enhanced standard enhanced

1 Solomon 1.41 1.41 1.41 1.41
Cordeau 0.00 0.00 0.00 0.00

2 Solomon 4.26 4.18 0.81 1.16
Cordeau 3.70 2.85 0.70 1.34

3 Solomon 6.59 7.33 2.97 3.12
Cordeau 3.76 3.58 1.88 2.18

4 Solomon 6.02 6.13 3.97 3.94
Cordeau 5.34 4.01 2.55 2.57

Summary

Gap (%)
Solomon 4.57 4.77 2.29 2.41
Cordeau 3.20 2.61 1.28 1.52

All 3.88 3.69 1.78 1.97

Table A.12 – Impact des améliorations du module de routage sur le bench-
mark MC-TOP-MTW (écart en %)

A.4. OPTIMISATION PAR DÉCOMPOSITION 193

A.4.7 Perspectives
En ce qui concerne notre troisième contribution (chapitre 6), plusieurs amé-
liorations peuvent être envisagées pour accroître à la fois la généricité et
l’efficacité du solveur GenOP proposé.

• Comme le solveur GenOP peut choisir librement une stratégie de re-
cherche, il est possible d’explorer d’autres métaheuristiques avancées
pour tenter d’améliorer ses performances. Cela pourrait impliquer le
réglage fin des paramètres d’une métaheuristique spécifique et des pa-
ramètres des raisonneurs de bas niveau, réglage qui pourraient être
appris ou adapté en continu. Par exemple, il serait utile de déterminer
automatiquement quand autoriser la réorganisation de la séquence des
visites au niveau du routage.

• Une autre perspective consiste à recherche des heuristiques de sélection
de clients efficaces pour le solveur GenOP. Une idée consisterait à ap-
prendre l’impact à long terme des décisions de sélection de clients ou
d’affectation de clients à des véhicules.

• Concernant la généricité de l’approche proposée, il serait possible d’adap-
ter le solveur GenOP pour traiter d’autres variantes des problèmes de
routage, telles que les variantes tenant compte des profits dépendant du
temps (Peng et al. (2019)) ou les variantes faisant intervenir une fonc-
tion d’évaluation des profits non linéaire (Wang et al. (2008)). Enfin,
l’architecture proposée pourrait également être envisagée pour résoudre
d’autres problèmes impliquant plusieurs types de contraintes.

194 ANNEXE A. RÉSUMÉ ÉTENDU

Bibliographie

Abbaspour, R. A. & Samadzadegan, F. (2011). Time-dependent personal
tour planning and scheduling in metropolises. Expert Systems with Appli-
cations, 38(10), 12439–12452.

Aggarwal, C. C., Orlin, J. B., & Tai, R. P. (1997). Optimized crossover for
the independent set problem. Operations research, 45(2), 226–234.

Ahuja, R. K., Ergun, Ö., Orlin, J. B., & Punnen, A. P. (2002). A survey of
very large-scale neighborhood search techniques. Discrete Applied Mathe-
matics, 123(1-3), 75–102.

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2000a). Very large-scale neighbo-
rhood search. International Transactions in Operational Research, 7(4-5),
301–317.

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2001). Multi-exchange neigh-
borhood structures for the capacitated minimum spanning tree problem.
Mathematical Programming, 91, 71–97.

Ahuja, R. K., Orlin, J. B., & Tiwari, A. (2000b). A greedy genetic algorithm
for the quadratic assignment problem. Computers & Operations Research,
27(10), 917–934.

Aiex, R. M., Resende, M. G., Pardalos, P. M., & Toraldo, G. (2005). GRASP
with path relinking for three-index assignment. INFORMS Journal on
Computing, 17(2), 224–247.

Andersen, H. R., Hadzic, T., Hooker, J. N., & Tiedemann, P. (2007). A
constraint store based on multivalued decision diagrams. Proceedings of

195

196 BIBLIOGRAPHIE

the 13th International Conference on Principles and Practice of Constraint
Programming, 118–132.

Andrade, D. V. & Resende, M. G. (2007). GRASP with path-relinking for
network migration scheduling. Proceedings of the International Network
Optimization Conference, 1–7.

Angel, E. & Bampis, E. (2005). A multi-start dynasearch algorithm for the
time-dependent single-machine total weighted tardiness scheduling pro-
blem. European Journal of Operational Research, 162(1), 281–289.

Angelelli, E., Archetti, C., Filippi, C., & Vindigni, M. (2017). The probabilis-
tic orienteering problem. Computers & Operations Research, 81, 269–281.

Angelelli, E., Archetti, C., & Vindigni, M. (2014). The clustered orienteering
problem. European Journal of Operational Research, 238(2), 404–414.

Applegate, D., Bixby, R., Cook, W., & Chvátal, V. (1998). On the solution
of traveling salesman problems. Documenta Mathematica, 645–656.

Applegate, D. & Cook, W. (1991). A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 3(2), 149–156.

Archetti, C., Carrabs, F., & Cerulli, R. (2018). The set orienteering problem.
European Journal of Operational Research, 267(1), 264–272.

Archetti, C., Feillet, D., Hertz, A., & Speranza, M. G. (2009). The capa-
citated team orienteering and profitable tour problems. Journal of the
Operational Research Society, 60, 831–842.

Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the
team orienteering problem. Journal of Heuristics, 13, 49–76.

Audemard, G., Lagniez, J.-M., Mazure, B., & Saïs, L. (2010). Boosting local
search thanks to CDCL. Proceedings of the 17th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, 474–488.

Audemard, G., Lagniez, J.-M., & Simon, L. (2013). Improving Glucose for in-
cremental SAT solving with assumptions : Application to MUS extraction.
Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing, 309–317.

BIBLIOGRAPHIE 197

Bäck, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of evolutionary
computation (1st ed.). Taylor & Francis.

Backer, B. D., Furnon, V., Shaw, P., Kilby, P., & Prosser, P. (2000). Solving
vehicle routing problems using constraint programming and metaheuris-
tics. Journal of Heuristics, 6, 501–523.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks,
19(6), 621–636.

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2009). Satisfia-
bility modulo theories. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications, 825–885. IOS Press.

Beasley, J. E. (1990). A lagrangian heuristic for set-covering problems. Naval
Research Logistics (NRL), 37(1), 151–164.

Beaumet, G., Verfaillie, G., & Charmeau, M.-C. (2011). Feasibility of auto-
nomous decision making on board an agile Earth-observing satellite. Com-
putational Intelligence, 27(1), 123–139.

Bellman, R. (1962). Dynamic programming treatment of the travelling sa-
lesman problem. Journal of the ACM (JACM), 9(1), 61–63.

Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34–37.

Bellmore, M. & Nemhauser, G. L. (1968). The traveling salesman problem :
a survey. Operations Research, 16(3), 538–558.

Benoist, T. & Bourreau, E. (2003). Improving global constraints support by
local search. Proceedings of the CP 2003 Workshop on Cooperative Solvers
in Constraint Programming.

Bensana, E., Lemaitre, M., & Verfaillie, G. (1999a). Earth observation sa-
tellite management. Constraints, 4, 293–299.

Bensana, E., Verfaillie, G., Michelon-Edery, C., & Bataille, N. (1999b). Dea-
ling with uncertainty when managing an earth observation satellite. Arti-
ficial Intelligence, Robotics and Automation in Space, volume 440, 205.

Bergman, D., Cire, A. A., Van Hoeve, W.-J., & Hooker, J. (2016a). Decision
diagrams for optimization, volume 1. Springer.

198 BIBLIOGRAPHIE

Bergman, D., Cire, A. A., Van Hoeve, W.-J., & Hooker, J. N. (2016b). Dis-
crete optimization with decision diagrams. INFORMS Journal on Com-
puting, 28(1), 47–66.

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies–a comprehensive
introduction. Natural Computing, 1, 3–52.

Binato, S., Faria Jr, H., & Resende, M. G. (2001). Greedy randomized adap-
tive path relinking. Proceedings of the 4th Metaheuristics International
Conference, 393–397.

Blum, C. (2005). Ant colony optimization : Introduction and recent trends.
Physics of Life reviews, 2(4), 353–373.

Blum, C. (2006). A new hybrid evolutionary algorithm for the huge k-
cardinality tree problem. Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, 515–522.

Blum, C. & Roli, A. (2003). Metaheuristics in combinatorial optimization :
Overview and conceptual comparison. ACM Computing Surveys (CSUR),
35(3), 268–308.

Bollig, B. & Wegener, I. (1996). Improving the variable ordering of OBDDs
is NP-complete. IEEE Transactions on Computers, 45(9), 993–1002.

Bouly, H., Dang, D.-C., & Moukrim, A. (2010). A memetic algorithm for the
team orienteering problem. 4OR, 8, 49–70.

Boussier, S., Feillet, D., & Gendreau, M. (2007). An exact algorithm for team
orienteering problems. 4OR, 5, 211–230.

Brimberg, J., Mladenović, N., & Urošević, D. (2015). Solving the maximally
diverse grouping problem by skewed general variable neighborhood search.
Information Sciences, 295, 650–675.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computers, 100(8), 677–691.

Butt, S. E. & Cavalier, T. M. (1994). A heuristic for the multiple tour
maximum collection problem. Computers & Operations Research, 21(1),
101–111.

BIBLIOGRAPHIE 199

Butt, S. E. & Ryan, D. M. (1999). An optimal solution procedure for the
multiple tour maximum collection problem using column generation. Com-
puters & Operations Research, 26(4), 427–441.

Campos, V., Martí, R., Sánchez-Oro, J., & Duarte, A. (2014). GRASP with
path relinking for the orienteering problem. Journal of the Operational
Research Society, 65, 1800–1813.

Caseau, Y. & Laburthe, F. (1996). Improving branch and bound for jobshop
scheduling with constraint propagation. Proceedings of the 8th Franco-
Japanese and 4th Franco-Chinese Conference on Combinatorics and Com-
puter Science, 129–149.

Chai, D. & Kuehlmann, A. (2003). A fast pseudo-boolean constraint solver.
Proceedings of the 40th annual Design Automation Conference, 830–835.

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996a). A fast and effective
heuristic for the orienteering problem. European Journal of Operational
Research, 88(3), 475–489.

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996b). The team orienteering
problem. European Journal of Operational Research, 88(3), 464–474.

Chaudhry, I. A. & Khan, A. A. (2016). A research survey : review of flexible
job shop scheduling techniques. International Transactions in Operational
Research, 23(3), 551–591.

Chen, X. & Van Beek, P. (2001). Conflict-directed backjumping revisited.
Journal of Artificial Intelligence Research, 14, 53–81.

Chien, S., Doubleday, J., Thompson, D. R., Wagstaff, K. L., Bellardo, J.,
Francis, C., Baumgarten, E., Williams, A., Yee, E., Fluitt, D., Stanton,
E., & Piug-Suari, J. (2014). Onboard autonomy on the intelligent payload
experiment (IPEX) cubesat mission : a pathfinder for the proposed hys-
piri mission intelligent payload module. Proceedings of the International
Symposium on Artificial Intelligence, Robotics and Automation in Space.

Chou, X., Gambardella, L. M., & Montemanni, R. (2021). A tabu search
algorithm for the probabilistic orienteering problem. Computers & Opera-
tions Research, 126, 105107.

200 BIBLIOGRAPHIE

Clements, D., Crawford, J., Joslin, D., Nemhauser, G., Puttlitz, M., & Sa-
velsbergh, M. (1997). Heuristic optimization : A hybrid AI/OR approach.
Proceedings of the Workshop on Industrial Constraint-Directed Scheduling,
33.

Congram, R. K. (2000). Polynomially searchable exponential neighbourhoods
for sequencing problems in combinatorial optimisation. Doctoral Disserta-
tion, University of Southampton.

Congram, R. K., Potts, C. N., & van de Velde, S. L. (2002). An iterated
dynasearch algorithm for the single-machine total weighted tardiness sche-
duling problem. INFORMS Journal on Computing, 14(1), 52–67.

Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic
for periodic and multi-depot vehicle routing problems. Networks : An
International Journal, 30(2), 105–119.

Cotta, C. & Troya, J. M. (2003). Embedding branch and bound within
evolutionary algorithms. Applied Intelligence, 18, 137–153.

Crawford, J. (1996). Solving satisfiability problems using a combination of
systematic and local search. Second Challenge on Satisfiability Testing
organized by Center for Discrete Mathematics and Computer Science of
Rutgers University.

Crawford, J. M. (1993). Solving satisfiability problems using a combination of
systematic and local search. Second DIMACS Challenge : cliques, coloring,
and satisfiability.

Cura, T. (2014). An artificial bee colony algorithm approach for the team
orienteering problem with time windows. Computers & Industrial Engi-
neering, 74, 270–290.

Dang, D.-C., El-Hajj, R., & Moukrim, A. (2013a). A branch-and-cut al-
gorithm for solving the team orienteering problem. Proceedings of the
10th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, 332–
339.

BIBLIOGRAPHIE 201

Dang, D.-C., Guibadj, R. N., & Moukrim, A. (2011). A PSO-based memetic
algorithm for the team orienteering problem. Applications of Evolutionary
Computation : EvoApplications 2011, 471–480.

Dang, D.-C., Guibadj, R. N., & Moukrim, A. (2013b). An effective pso-
inspired algorithm for the team orienteering problem. European Journal
of Operational Research, 229(2), 332–344.

Dantzig, G. B. (1951). Maximization of a linear function of variables subject
to linear inequalities. Activity Analysis of Production and Allocation, 13,
339–347.

Darwiche, A. & Marquis, P. (2002). A knowledge compilation map. Journal
of Artificial Intelligence Research, 17, 229–264.

De Backer, B., Furnon, V., Prosser, P., Kilby, P., & Shaw, P. (1997). Lo-
cal search in constraint programming : Application to the vehicle routing
problem. Proceedings of CP-97 Workshop Industrial Constraint-Directed
Scheduling, 1–15.

De Kleer, J. (1986). An assumption-based truth maintenance system. Arti-
ficial intelligence, 28(2), 127–162.

Dell’Amico, M. & Lodi, A. (2005). On the integration of metaheuristic stra-
tegies in constraint programming. Metaheuristic Optimization via Memory
and Evolution : Tabu Search and Scatter Search, 357–371.

Dell’Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize-collecting tours
and the asymmetric travelling salesman problem. International Transac-
tions in Operational Research, 2(3), 297–308.

Dixon, H. E. & Ginsberg, M. L. (2002). Inference methods for a pseudo-
boolean satisfiability solver. Proceedings of the Eighteenth National Confe-
rence on Artificial Intelligence, 635–640.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4), 28–39.

Dorigo, M. & Gambardella, L. M. (1997). Ant colony system : a cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1), 53–66.

202 BIBLIOGRAPHIE

Duarte, A. R., Ribeiro, C. C., & Urrutia, S. (2007). A hybrid ILS heuristic to
the referee assignment problem with an embedded MIP strategy. Hybrid
Metaheuristics : 4th International Workshop, 82–95.

Duque, D., Lozano, L., & Medaglia, A. L. (2015). Solving the orienteering
problem with time windows via the pulse framework. Computers & Ope-
rations Research, 54, 168–176.

Eén, N. & Sörensson, N. (2003). Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4), 543–560.

El-Hajj, R., Moukrim, A., Chebaro, B., & Kobeissi, M. (2015). A column
generation algorithm for the team orienteering problem with time win-
dows. Proceedings of the 45th International Conference on Computers &
Industrial Engineering.

Erdoǧan, G. & Laporte, G. (2013). The orienteering problem with variable
profits. Networks, 61(2), 104–116.

Eremeev, A. V. (2008). On complexity of optimal recombination for binary
representations of solutions. Evolutionary Computation, 16(1), 127–147.

Evers, L., Glorie, K., Van Der Ster, S., Barros, A. I., & Monsuur, H. (2014).
A two-stage approach to the orienteering problem with stochastic weights.
Computers & Operations Research, 43, 248–260.

Fang, H. & Ruml, W. (2004). Complete local search for propositional satis-
fiability. Proceedings of the Nineteenth National Conference on Artificial
Intelligence, volume 4, 161–166.

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems
with profits. Transportation Science, 39(2), 188–205.

Feltl, H. & Raidl, G. R. (2004). An improved hybrid genetic algorithm for the
generalized assignment problem. Proceedings of the 2004 ACM Symposium
on Applied Computing, 990–995.

Feo, T. A. & Resende, M. G. (1995). Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6, 109–133.

BIBLIOGRAPHIE 203

Ferreira, J., Quintas, A., Oliveira, J. A., Pereira, G. A., & Dias, L. (2014).
Solving the team orienteering problem : developing a solution tool using a
genetic algorithm approach. Proceedings of the 17th Online World Confe-
rence on Soft Computing in Industrial Applications, 365–375.

Focacci, F., Laburthe, F., & Lodi, A. (2003). Local search and constraint
programming. Handbook of Metaheuristics, 369–403. Springer.

Fogel, D. B. (1998). Artificial intelligence through simulated evolution, 227–
296. Wiley-IEEE Press.

Fogel, D. B. (1999). An overview of evolutionary programming. Evolutionary
Algorithms, 89–109.

Fogel, L. J. (1962). Toward inductive inference automata. Communications
of the ACM, volume 5, 319–319.

Fomin, F. V. & Lingas, A. (2002). Approximation algorithms for time-
dependent orienteering. Information Processing Letters, 83(2), 57–62.

Fonlupt, C., Robilliard, D., Preux, P., & Talbi, E.-G. (1999). Fitness land-
scapes and performance of meta-heuristics. Meta-heuristics : Advances and
Trends in Local Search Paradigms for Optimization, 257–268.

Gambardella, L. M., Montemanni, R., & Weyland, D. (2012). Coupling ant
colony systems with strong local searches. European Journal of Operational
Research, 220(3), 831–843.

Garcia, A., Arbelaitz, O., Vansteenwegen, P., Souffriau, W., & Linaza, M. T.
(2010). Hybrid approach for the public transportation time dependent
orienteering problem with time windows. Proceedings of the 5th Interna-
tional Conference on Hybrid Artificial Intelligence Systems, 151–158.

Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., & Linaza, M. T.
(2013). Integrating public transportation in personalised electronic tourist
guides. Computers & Operations Research, 40(3), 758–774.

Garey, M. R. & Johnson, D. S. (1979). Computers and intractability : A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company.

204 BIBLIOGRAPHIE

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Tasoulas,
Y. (2013). Cluster-based heuristics for the team orienteering problem with
time windows. Proceedings of the 12th International Symposium on Expe-
rimental Algorithms, 390–401.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N.
(2014). Efficient heuristics for the time dependent team orienteering pro-
blem with time windows. Proceedings of the First International Conference
on Applied Algorithms, 152–163.

Gedik, R., Kirac, E., Milburn, A. B., & Rainwater, C. (2017). A constraint
programming approach for the team orienteering problem with time win-
dows. Computers & Industrial Engineering, 107, 178–195.

Geem, Z. W., Tseng, C.-L., & Park, Y. (2005). Harmony search for gene-
ralized orienteering problem : best touring in china. Proceedings of the
International Conference on Natural Computation, 741–750.

Gendreau, M., Laporte, G., & Semet, F. (1998a). A branch-and-cut algorithm
for the undirected selective traveling salesman problem. Networks : An
International Journal, 32(4), 263–273.

Gendreau, M., Laporte, G., & Semet, F. (1998b). A tabu search heuristic for
the undirected selective travelling salesman problem. European Journal of
Operational Research, 106(2-3), 539–545.

Gillard, X. & Schaus, P. (2022). Large neighborhood search with decision dia-
grams. Proceedings of the 31st International Joint Conference on Artificial
Intelligence, 4754–4760.

Ginsberg, M. L. & McAllester, D. (1994). GSAT and dynamic backtracking.
Proceedings of the International Workshop on Principles and Practice of
Constraint Programming, 243–265.

Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3),
190–206.

Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1),
4–32.

BIBLIOGRAPHIE 205

Glover, F. (1997a). Tabu search and adaptive memory program-
ming—advances, applications and challenges. Interfaces in Computer
Science and Operations Research : Advances in Metaheuristics, Optimi-
zation, and Stochastic Modeling Technologies, 1–75.

Glover, F. (1997b). A template for scatter search and path relinking. Pro-
ceedings of the European Conference on Artificial Evolution, 1–51.

Glover, F. & Laguna, M. (1998). Tabu search. Springer US.

Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search
and path relinking. Control and Cybernetics, 29(3), 653–684.

Glover, F. W. & Kochenberger, G. A. (2006). Handbook of metaheuristics,
volume 57. Springer Science & Business Media.

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval
Research Logistics (NRL), 34(3), 307–318.

Golomb, S. W. & Baumert, L. D. (1965). Backtrack programming. Journal
of the ACM (JACM), 12(4), 516–524.

Grosso, A., Della Croce, F., & Tadei, R. (2004). An enhanced dynasearch
neighborhood for the single-machine total weighted tardiness scheduling
problem. Operations Research Letters, 32(1), 68–72.

Gunawan, A., Lau, H. C., & Lu, K. (2015a). An iterated local search algo-
rithm for solving the orienteering problem with time windows. Proceedings
of the 15th European Conference on Evolutionary Computation in Combi-
natorial Optimization, 61–73.

Gunawan, A., Lau, H. C., & Lu, K. (2015b). SAILS : hybrid algorithm for
the team orienteering problem with time windows. Proceedings of the 7th
Multidisciplinary International Scheduling Conference.

Gunawan, A., Lau, H. C., & Lu, K. (2015c). Well-tuned ils for extended
team orienteering problem with time windows. Living Analytics Research
Center, Singapore, Technical Report.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering pro-
blem : A survey of recent variants, solution approaches and applications.
European Journal of Operational Research, 255(2), 315–332.

206 BIBLIOGRAPHIE

Gunawan, A., Yuan, Z., & Lau, H. C. (2014). A mathematical model and
metaheuristics for time dependent orienteering problem. Proceedings of the
10th International Conference of the Practice and Theory of Automated
Timetabling.

Hadj-Salah, A., Verdier, R., Caron, C., Picard, M., & Capelle, M. (2019).
Schedule earth observation satellites with deep reinforcement learning.
Proceedings of the International Workshops on Planning and Scheduling
for Space.

Hansen, P. & Mladenović, N. (1999). An introduction to variable neigh-
borhood search. Meta-heuristics : Advances and Trends in Local Search
Paradigms for Optimization, 433–458. Springer.

Hansen, P. & Mladenović, N. (2001). Variable neighborhood search : Prin-
ciples and applications. European Journal of Operational Research, 130(3),
449–467.

Hansen, P., Mladenović, N., Brimberg, J., & Pérez, J. A. M. (2019). Variable
neighborhood search. Springer International Publishing.

Hapsari, I., Surjandari, I., & Komarudin, K. (2018). Solving multi objectives
team orienteering problem with time windows using multi integer linear
programming. Proceedings of the International Conference on Industrial
Revolution for Polytechnic Education.

Harvey, W. D. & Ginsberg, M. L. (1995). Limited discrepancy search. Procee-
dings of the 14th International Joint Conference on Artificial Intelligence,
607–615.

Held, M. & Karp, R. M. (1962). A dynamic programming approach to se-
quencing problems. Journal of the Society for Industrial and Applied ma-
thematics, 10(1), 196–210.

Helsgaun, K. (2017). An extension of the Lin-Kernighan-Helsgaun TSP solver
for constrained traveling salesman and vehicle routing problems : Techincal
report. Roskilde : Roskilde University, 12.

Hentenryck, P. V. & Michel, L. (2005). Constraint-based local search. MIT
Press, Cambridge, MA.

BIBLIOGRAPHIE 207

Hirsch, E. A. & Kojevnikov, A. (2005). UnitWalk : A new SAT solver that
uses local search guided by unit clause elimination. Annals of Mathematics
and Artificial Intelligence, 43, 91–111.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University
of Michigan Press, Ann Arbor, 7, 390–401.

Hooker, J. N. & Ottosson, G. (2003). Logic-based Benders decomposition.
Mathematical Programming, 96(1), 33–60.

Howard, R. A. (1960). Dynamic programming and markov processes. MIT
Press, Cambridge, MA.

Hu, B., Leitner, M., & Raidl, G. R. (2008). Combining variable neighborhood
search with integer linear programming for the generalized minimum span-
ning tree problem. Journal of Heuristics, 14, 473–499.

Hu, Q. & Lim, A. (2014). An iterative three-component heuristic for the team
orienteering problem with time windows. European Journal of Operational
Research, 232(2), 276–286.

Humeau, J., Liefooghe, A., Talbi, E. G., & Verel, S. (2013). Paradiseo-mo :
From fitness landscape analysis to efficient local search algorithms. Journal
of Heuristics, 19, 881–915.

Ignatiev, A. & Semenov, A. (2011). DPLL+ ROBDD derivation applied to
inversion of some cryptographic functions. Proceedings of the International
Conference on Theory and Applications of Satisfiability Testing, 76–89.

Ilhan, T., Iravani, S. M., & Daskin, M. S. (2008). The orienteering problem
with stochastic profits. IIE Transactions, 40(4), 406–421.

Jones, T. et al. (1995). Evolutionary algorithms, fitness landscapes and
search. Doctoral Dissertation, The University of New Mexico.

Jussien, N. & Lhomme, O. (2002). Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1), 21–45.

Kantor, M. G. & Rosenwein, M. B. (1992). The orienteering problem with
time windows. Journal of the Operational Research Society, 43(6), 629–635.

208 BIBLIOGRAPHIE

Karbowska-Chilinska, J. & Zabielski, P. (2014). Genetic algorithm with path
relinking for the orienteering problem with time windows. Fundamenta
Informaticae, 135(4), 419–431.

Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering
problem. Computers & Industrial Engineering, 54(3), 648–665.

Ke, L., Zhai, L., Li, J., & Chan, F. T. (2016). Pareto mimic algorithm : An
approach to the team orienteering problem. Omega, 61, 155–166.

Khodadadian, M., Divsalar, A., Verbeeck, C., Gunawan, A., & Vansteenwe-
gen, P. (2022). Time dependent orienteering problem with time windows
and service time dependent profits. Computers & Operations Research,
143, 105794.

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671–680.

Klau, G. W., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl,
G., & Weiskircher, R. (2004). Combining a memetic algorithm with integer
programming to solve the prize-collecting steiner tree problem. Proceedings
of the Genetic and Evolutionary Computation Conference, 1304–1315.

Koza, J. R. et al. (1994). Genetic programming II, volume 17. MIT Press,
Cambridge, MA.

Labadie, N., Mansini, R., Melechovskỳ, J., & Calvo, R. W. (2012). The team
orienteering problem with time windows : An lp-based granular variable
neighborhood search. European Journal of Operational Research, 220(1),
15–27.

Labadie, N., Melechovskỳ, J., & Wolfler Calvo, R. (2011). Hybridized evolu-
tionary local search algorithm for the team orienteering problem with time
windows. Journal of Heuristics, 17, 729–753.

Laguna, M. & Marti, R. (1999). GRASP and path relinking for 2-layer
straight line crossing minimization. INFORMS Journal on Computing,
11(1), 44–52.

Lam, J. T., Rivest, F., & Berger, J. (2019). Deep reinforcement learning
for multi-satellite collection scheduling. Proceedings of 8th International
Conference on the Theory and Practice of Natural Computing, 184–196.

BIBLIOGRAPHIE 209

Laporte, G. & Martello, S. (1990). The selective travelling salesman problem.
Discrete Applied Mathematics, 26(2-3), 193–207.

Lawler, E. L. & Wood, D. E. (1966). Branch-and-bound methods : A survey.
Operations Research, 14(4), 699–719.

Lemaıtre, M., Verfaillie, G., Jouhaud, F., Lachiver, J.-M., & Bataille, N.
(2002). Selecting and scheduling observations of agile satellites. Aerospace
Science and Technology, 6(5), 367–381.

Lever, J. (1996). Resource reallocation : a preprocessing role for constraint
programming. Proceedings of Practical Applications of Constraint Techno-
logy.

Lever, J. (2005). A local search/constraint propagation hybrid for a network
routing problem. International Journal on Artificial Intelligence Tools, 14,
43–60.

Li, X. Y., Stallmann, M. F., & Brglez, F. (2003). QingTing : a fast SAT
solver using local search and efficient unit propagation. Sixth International
Conference on Theory and Applications of Satisfiability Testing, volume 1.

Liang, Y.-C., Kulturel-Konak, S., & Lo, M.-H. (2013). A multiple-level va-
riable neighborhood search approach to the orienteering problem. Journal
of Industrial and Production Engineering, 30(4), 238–247.

Liao, D.-Y. & Yang, Y.-T. (2007). Imaging order scheduling of an earth ob-
servation satellite. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 37(5), 794–802.

Lin, S. & Kernighan, B. W. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations Research, 21(2), 498–516.

Lin, S.-W. & Vincent, F. Y. (2012). A simulated annealing heuristic for
the team orienteering problem with time windows. European Journal of
Operational Research, 217(1), 94–107.

Lin, S.-W. & Vincent, F. Y. (2015). A simulated annealing heuristic for the
multiconstraint team orienteering problem with multiple time windows.
Applied Soft Computing, 37, 632–642.

210 BIBLIOGRAPHIE

Liu, X., Laporte, G., Chen, Y., & He, R. (2017). An adaptive large neigh-
borhood search metaheuristic for agile satellite scheduling with time-
dependent transition time. Computers & Operations Research, 86, 41–53.

Lourenço, H. R., Martin, O., & Stützle, T. (2001). A beginner’s introduction
to iterated local search. Proceedings of the 4th Metaheuristics Conference,
volume 2, 1–6.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search.
Handbook of Metaheuristics, 320–353. Springer.

Lynce, I. & Marques-Silva, J. (2007). Random backtracking in backtrack
search algorithms for satisfiability. Discrete Applied Mathematics, 155(12),
1604–1612.

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search
procedures for the quadratic assignment problem. INFORMS Journal on
Computing, 11(4), 358–369.

Maniezzo, V. & Carbonaro, A. (2000). An ants heuristic for the frequency
assignment problem. Future Generation Computer Systems, 16(8), 927–
935.

Maniezzo, V., Carbonaro, A., Golfarelli, M., & Rizzi, S. (2001). An ANTS
algorithm for optimizing the materialization of fragmented views in data
warehouses : Preliminary results. Proceedings of the Applications of Evo-
lutionary Computing, 80–89.

Mansini, R., Pelizzari, M., &Wolfer, R. (2006). A granular variable neighbou-
rhood search heuristic for the tour orienteering problem with time windows.
Technical report, University of Brescia, Italy.

Marinakis, Y., Politis, M., Marinaki, M., & Matsatsinis, N. (2015). A
memetic-GRASP algorithm for the solution of the orienteering problem.
Proceedings of the 3rd International Conference on Modelling, Computa-
tion and Optimization in Information Systems and Management Sciences,
105–116.

Marques-Silva, J., Lynce, I., & Malik, S. (2009). Conflict-driven clause lear-
ning SAT solvers. Handbook of Satisfiability, 131–153. IOS Press.

BIBLIOGRAPHIE 211

Mautor, T. & Michelon, P. (1997). MIMAUSA : A new hybrid method com-
bining exact solution and local search. Proceedings of the 2nd International
Conference on Meta-heuristics.

Mazure, B., Sais, L., & Grégoire, É. (1998). Boosting complete techniques
thanks to local search methods. Annals of Mathematics and Artificial
Intelligence, 22, 319–331.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller,
E. (1953). Equation of state calculations by fast computing machines. The
Journal of Chemical Physics, 21(6), 1087–1092.

Meyer, B. (2008). Hybrids of constructive metaheuristics and constraint pro-
gramming : A case study with ACO. Hybrid Metaheuristics : An Emerging
Approach to Optimization, 151–183.

Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimi-
zing conflicts : a heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence, 58(1-3), 161–205.

Montemanni, R., Weyland, D., & Gambardella, L. (2011). An enhanced ant
colony system for the team orienteering problem with time windows. Pro-
ceedings of the International Symposium on Computer Science and Society,
381–384.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001).
Chaff : Engineering an efficient SAT solver. Proceedings of the 38th annual
Design Automation Conference, 530–535.

Muthuswamy, S. & Lam, S. S. (2011). Discrete particle swarm optimization
for the team orienteering problem. Memetic Computing, 3, 287–303.

Nadel, A. & Ryvchin, V. (2012). Efficient SAT solving under assumptions.
Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing, 242–255.

Nuijten, W. & Le Pape, C. (1998). Constraint-based job shop scheduling
with ILOG SCHEDULER. Journal of Heuristics, 3, 271–286.

Papadimitriou, C. H. & Steiglitz, K. (1998). Combinatorial optimization :
algorithms and complexity. Courier Corporation, United States.

212 BIBLIOGRAPHIE

Peng, G., Dewil, R., Verbeeck, C., Gunawan, A., Xing, L., & Vansteenwe-
gen, P. (2019). Agile earth observation satellite scheduling : An orientee-
ring problem with time-dependent profits and travel times. Computers &
Operations Research, 111, 84–98.

Peng, G., Song, G., Xing, L., Gunawan, A., & Vansteenwegen, P. (2020).
An exact algorithm for agile earth observation satellite scheduling with
time-dependent profits. Computers & Operations Research, 120, 104946.

Pesant, G. & Gendreau, M. (1996). A view of local search in constraint
programming. Proceedings of the International Conference on Principles
and Practice of Constraint Programming, 353–366.

Pesant, G. & Gendreau, M. (1999). A constraint programming framework
for local search methods. Journal of Heuristics, 5, 255–279.

Piotrów, M. (2020). Uwrmaxsat : Efficient solver for MAXSAT and pseudo-
boolean problems. Proceedings of the 32nd International Conference on
Tools with Artificial Intelligence, 132–136.

Pitsoulis, L. S. & Resende, M. G. (2002). Greedy randomized adaptive search
procedures. Handbook of Applied Optimization, 168–183.

Plateau, A., Tachat, D., & Tolla, P. (2002). A hybrid search combining inter-
ior point methods and metaheuristics for 0–1 programming. International
Transactions in Operational Research, 9(6), 731–746.

Poggi, M., Viana, H., & Uchoa, E. (2010). The team orienteering problem :
Formulations and branch-cut and price. Proceedings of the 10th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems.

Poojari, C. A. & Beasley, J. E. (2009). Improving benders decomposition
using a genetic algorithm. European Journal of Operational Research,
199(1), 89–97.

Potts, C. N. & van de Velde, S. L. (1995). Dynasearch-iterative local impro-
vement by dynamic programming : Part I, the traveling salesman problem.
Laboratory of Production and Operations Management Report, University
of Twente, 95.

BIBLIOGRAPHIE 213

Povéda, G., Regnier-Coudert, O., Teichteil-Königsbuch, F., Dupont, G., Ar-
nold, A., Guerra, J., & Picard, M. (2019). Evolutionary approaches to dy-
namic earth observation satellites mission planning under uncertainty. Pro-
ceedings of the Genetic and Evolutionary Computation Conference, 1302–
1310.

Pralet, C. (2023). Iterated maximum large neighborhood search for the trave-
ling salesman problem with time windows and its time-dependent version.
Computers & Operations Research, 150, 106078.

Pralet, C., Lesire, C., & Jaubert, J. (2019). An autonomous mission control-
ler for earth observing satellites. Proceedings of the 11th International
Workshop on Planning and Scheduling for Space.

Prandtstetter, M. & Raidl, G. R. (2008). An integer linear programming
approach and a hybrid variable neighborhood search for the car sequencing
problem. European Journal of Operational Research, 191(3), 1004–1022.

Prestwich, S. (2000). A hybrid search architecture applied to hard random
3-sat and low-autocorrelation binary sequences. Proceedings of the Interna-
tional Conference on Principles and Practice of Constraint Programming,
337–352.

Prestwich, S. (2002). Combining the scalability of local search with the
pruning techniques of systematic search. Annals of Operations Research,
115, 51–72.

Prestwich, S. (2008). The relation between complete and incomplete search.
Hybrid Metaheuristics : An Emerging Approach to Optimization, 63–83.
Springer.

Puchinger, J. & Raidl, G. R. (2004). An evolutionary algorithm for column
generation in integer programming : an effective approach for 2d bin pa-
cking. Proceedings of the International Conference on Parallel Problem
Solving from Nature, 642–651.

Puchinger, J. & Raidl, G. R. (2005). Combining metaheuristics and exact
algorithms in combinatorial optimization : A survey and classification. Pro-
ceedings of the International Work-conference on the Interplay between Na-
tural and Artificial Computation, 41–53.

214 BIBLIOGRAPHIE

Puchinger, J. & Raidl, G. R. (2008). Bringing order into the neighborhoods :
relaxation guided variable neighborhood search. Journal of Heuristics,
14(5), 457–472.

Puchinger, J., Raidl, G. R., & Pferschy, U. (2006). The core concept for
the multidimensional knapsack problem. Proceedings of the 6th European
Conference on Evolutionary Computation in Combinatorial Optimization,
195–208.

Raidl, G. R. (1998). An improved genetic algorithm for the multiconstrained
0-1 knapsack problem. Proceedings of the International Conference on
Evolutionary Computation, 207–211.

Raidl, G. R. (2006). A unified view on hybrid metaheuristics. Proceedings of
the International Workshop on Hybrid Metaheuristics, 1–12.

Raidl, G. R., Baumhauer, T., & Hu, B. (2014). Speeding up logic-based
benders’ decomposition by a metaheuristic for a bi-level capacitated vehicle
routing problem. Proceedings of the International Workshop on Hybrid
Metaheuristics, 183–197.

Ramesh, R. & Brown, K. M. (1991). An efficient four-phase heuristic for
the generalized orienteering problem. Computers & Operations Research,
18(2), 151–165.

Reeves, C. R. & Yamada, T. (1998). Genetic algorithms, path relinking, and
the flowshop sequencing problem. Evolutionary Computation, 6(1), 45–60.

Resende, M. G., Martí, R., Gallego, M., & Duarte, A. (2010). GRASP and
path relinking for the max–min diversity problem. Computers & Opera-
tions Research, 37(3), 498–508.

Resende, M. G. & Ribeiro, C. C. (2003). A GRASP with path-relinking for
private virtual circuit routing. Networks : An International Journal, 41(2),
104–114.

Resende, M. G. & Ribeiro, C. C. (2010). Greedy randomized adaptive search
procedures : Advances, hybridizations, and applications, 283–319. Hand-
book of Metaheuristics, Springer New York.

BIBLIOGRAPHIE 215

Resende, M. G. & Werneck, R. F. (2004). A hybrid heuristic for the p-median
problem. Journal of Heuristics, 10, 59–88.

Resendel, M. G. & Ribeiro, C. C. (2005). GRASP with path-relinking :
Recent advances and applications. Metaheuristics : Progress as Real Pro-
blem Solvers, 29–63.

Ribeiro, C. C., Hansen, P., Cung, V.-D., Martins, S. L., Ribeiro, C. C., &
Roucairol, C. (2002a). Strategies for the parallel implementation of meta-
heuristics. Essays and Surveys in Metaheuristics, 263–308.

Ribeiro, C. C., Hansen, P., Festa, P., & Resende, M. G. (2002b). GRASP : An
annotated bibliography. Essays and Surveys in Metaheuristics, 325–367.

Ribeiro, C. C., Hansen, P., & Grünert, T. (2002c). Lagrangean tabu search.
Essays and Surveys in Metaheuristics, 379–397.

Ribeiro, C. C. & Rosseti, I. (2007). Efficient parallel cooperative implemen-
tations of GRASP heuristics. Parallel Computing, 33(1), 21–35.

Ribeiro Filho, G. & Lorena, L. N. (2000). Constructive genetic algorithm
and column generation : an application to graph coloring. Proceedings of
the 5th Conference of the Association of Asian-Pacific Operations Research
Societies, 35.

Richards, E. T. & Richards, B. (2000). Nonsystematic search and no-good
learning. Journal of Automated Reasoning, 24, 483–533.

Righini, G. & Salani, M. (2009). Decremental state space relaxation strategies
and initialization heuristics for solving the orienteering problem with time
windows with dynamic programming. Computers & Operations Research,
36(4), 1191–1203.

Righini, G., Salani, M., et al. (2006). Dynamic programming for the orientee-
ring problem with time windows. Technical report, Università degli Studi
di Milano-Polo Didattico e di Ricerca di Crema.

Rojanasoonthon, S., Bard, J. F., & Reddy, S. D. (2003). Algorithms for
parallel machine scheduling : a case study of the tracking and data relay
satellite system. Journal of the Operational Research Society, 54(8), 806–
821.

216 BIBLIOGRAPHIE

Rosenkrantz, D. J., Stearns, R. E., & Lewis, II, P. M. (1977). An analysis
of several heuristics for the traveling salesman problem. SIAM Journal on
Computing, 6(3), 563–581.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision
diagrams. Proceedings of 1993 International Conference on Computer-
Aided Design, 42–47.

Salkin, H. M. & De Kluyver, C. A. (1975). The knapsack problem : a survey.
Naval Research Logistics Quarterly, 22(1), 127–144.

Sampson, J. R. (1976). Adaptation in natural and artificial systems (John
H. Holland). SIAM Review, 18(3), 529–530.

Savelsbergh, M. W. (1985). Local search in routing problems with time
windows. Annals of Operations Research, 4(1), 285–305.

Schilde, M., Doerner, K. F., Hartl, R. F., & Kiechle, G. (2009). Metaheuristics
for the bi-objective orienteering problem. Swarm Intelligence, 3, 179–201.

Schmid, V. & Ehmke, J. F. (2017). An effective large neighborhood search
for the team orienteering problem with time windows. Proceedings of the
8th International Conference on Computational Logistics, 3–18.

Schutt, A., Feydy, T., Stuckey, P., & Wallace, M. (2013). Solving
RCPSP/max by lazy clause generation. Journal of Scheduling, 16(3), 273–
289.

Selman, B., Kautz, H., et al. (1993). Domain-independent extensions to
GSAT : Solving large structured satisfiability problems. Proceedings of the
13th international joint conference on Artificial intelligence, volume 93,
290–295.

Şevkli, A. Z. & Sevilgen, F. E. (2010). StPSO : Strengthened particle swarm
optimization. Turkish Journal of Electrical Engineering and Computer
Sciences, 18(6), 1095–1114.

Şevkli, Z. & Sevilgen, F. E. (2010). Discrete particle swarm optimization for
the orienteering problem. Proceedings of the IEEE Congress on Evolutio-
nary Computation, 1–8.

BIBLIOGRAPHIE 217

Shaw, P. (1998). Using constraint programming and local search methods to
solve vehicle routing problems. Proceedings of the International Conference
on Principles and Practice of Constraint Programming, 417–431.

Shaw, P., De Backer, B., & Furnon, V. (2002). Improved local search for CP
toolkits. Annals of Operations Research, 115, 31–50.

Sheini, H. M. & Sakallah, K. A. (2005). Pueblo : A modern pseudo-Boolean
SAT solver. Proceedings of the Design, Automation, and Test in Europe,
684–685.

Solnon, C. (2010). Ant colony optimization and constraint programming.
John Wiley & Sons, Inc., London.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research, 35(2), 254–
265.

Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to
cryptographic problems. Proceedings of the 12th International Conference
on Theory and Applications of Satisfiability Testing (SAT), 244–257.

Souffriau, W. (2010). Automated tourist decision support. Doctoral Disser-
tation, Katholieke Universiteit Leuven.

Souffriau, W., Vansteenwegen, P., Berghe, G. V., & Van Oudheusden, D.
(2010). A path relinking approach for the team orienteering problem.
Computers & Operations Research, 37(11), 1853–1859.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., & Van Oudheusden,
D. (2013). The multiconstraint team orienteering problem with multiple
time windows. Transportation Science, 47(1), 53–63.

Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G. V., & Oud-
heusden, D. V. (2008). A personalized tourist trip design algorithm for
mobile tourist guides. Applied Artificial Intelligence, 22(10), 964–985.

Srinivas, M. & Patnaik, L. M. (1994). Genetic algorithms : A survey. IEEE
Computer, 27(6), 17–26.

218 BIBLIOGRAPHIE

Stützle, T. (1999). Local search algorithms for combinatorial problems : ana-
lysis, improvements, and new applications. Doctoral Dissertation, Darm-
stadt University of Technology.

Stützle, T. & Hoos, H. H. (2000). MAX–MIN ant system. Future Generation
Computer Systems, 16(8), 889–914.

Su, X. & Nan, H. (2023). An enhanced heuristic for the team orienteering
problem with time windows considering multiple deliverymen. Soft Com-
puting, 27(6), 2853–2872.

Tae, H. & Kim, B.-I. (2015). A branch-and-price approach for the team
orienteering problem with time windows. International Journal of Indus-
trial Engineering, 22(2).

Talbi, E.-G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heu-
ristics, 8, 541–564.

Tang, H. & Miller-Hooks, E. (2005). A tabu search heuristic for the team
orienteering problem. Computers & Operations Research, 32(6), 1379–
1407.

Tani, S., Hamaguchi, K., & Yajima, S. (1996). The complexity of the optimal
variable ordering problems of a shared binary decision diagram. IEICE
Transactions on Information and Systems, 79(4), 271–281.

Thomadsen, T. & Stidsen, T. (2003). The quadratic selective travelling sa-
lesman problem. Technical report, Technical University of Denmark.

Tinós, R., Helsgaun, K., & Whitley, D. (2018). Efficient recombination in the
Lin-Kernighan-Helsgaun traveling salesman heuristic. Proceedings of the
15th International Conference on Parallel Problem Solving from Nature,
95–107.

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuris-
tics for the multi-period orienteering problem with multiple time windows.
Computers & Operations Research, 37(2), 351–367.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of
the Operational Research Society, 35, 797–809.

BIBLIOGRAPHIE 219

Valicka, C. G., Garcia, D., Staid, A., Watson, J.-P., Hackebeil, G., Rathinam,
S., & Ntaimo, L. (2019). Mixed-integer programming models for optimal
constellation scheduling given cloud cover uncertainty. European Journal
of Operational Research, 275(2), 431–445.

Vansteenwegen, P. & Gunawan, A. (2019). Orienteering Problems : Models
and Algorithms for Vehicle Routing Problems with Profits. Springer Nature
Switzerland.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Oudheusden, D. V.
(2009a). Metaheuristics for tourist trip planning. Metaheuristics in the
Service Industry, 15–31.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D.
(2009b). A guided local search metaheuristic for the team orienteering
problem. European Journal of Operational Research, 196(1), 118–127.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D.
(2009c). Iterated local search for the team orienteering problem with time
windows. Computers & Operations Research, 36(12), 3281–3290.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orien-
teering problem : A survey. European Journal of Operational Research,
209(1), 1–10.

Vasquez, M., Hao, J.-K., et al. (2001). A hybrid approach for the 0-1 mul-
tidimensional knapsack problem. Proceedings of the International Joint
Conference on Artificial Intelligence, 328–333.

Vasquez, M. & Vimont, Y. (2005). Improved results on the 0–1 multidi-
mensional knapsack problem. European Journal of Operational Research,
165(1), 70–81.

Verbeeck, C., Aghezzaf, E.-H., & Vansteenwegen, P. (2013). A fast solution
method for the time-dependent orienteering problem with time windows.
Proceedings of the 6th Multidisciplinary International Conference on Sche-
duling : Theory and Applications, 1–4.

Verbeeck, C., Sörensen, K., Aghezzaf, E.-H., & Vansteenwegen, P. (2014). A
fast solution method for the time-dependent orienteering problem. Euro-
pean Journal of Operational Research, 236(2), 419–432.

220 BIBLIOGRAPHIE

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2016). Solving the sto-
chastic time-dependent orienteering problem with time windows. European
Journal of Operational Research, 255(3), 699–718.

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2017). The time-
dependent orienteering problem with time windows : a fast ant colony
system. Annals of Operations Research, 254, 481–505.

Vilím, P., Laborie, P., & Shaw, P. (2015). Failure-directed search for
constraint-based scheduling. Proceedings of the 12th Internation Confe-
rence on Integration of AI and OR Techniques in Constraint Programming,
437–453.

Voudouris, C. (1997). Guided local search for combinatorial problems. Doc-
toral Dissertation, University of Essex.

Voudouris, C. & Tsang, E. (1999). Guided local search and its application to
the traveling salesman problem. European Journal of Operational Research,
113(2), 469–499.

Voudouris, C., Tsang, E. P., & Alsheddy, A. (2010). Guided local search.
Handbook of metaheuristics, 321–361. Springer New York.

Wallace, M. (1996). Practical applications of constraint programming.
Constraints, 1, 139–168.

Wang, J., Zhu, X., Yang, L. T., Zhu, J., & Ma, M. (2015). Towards dynamic
real-time scheduling for multiple earth observation satellites. Journal of
Computer and System Sciences, 81(1), 110–124.

Wang, Q., Sun, X., & Golden, B. (1996). Using artificial neural networks to
solve generalized orienteering problems. Intelligent Engineering Systems
through Artificial Neural Networks, 6, 1063–1068.

Wang, X., Golden, B. L., & Wasil, E. A. (2008). Using a genetic algorithm to
solve the generalized orienteering problem. The vehicle routing problem :
latest advances and new challenges, 263–274.

Wang, X., Song, G., Leus, R., & Han, C. (2019). Robust earth observation
satellite scheduling with uncertainty of cloud coverage. IEEE Transactions
on Aerospace and Electronic Systems, 56(3), 2450–2461.

BIBLIOGRAPHIE 221

Wolsey, L. A. & Nemhauser, G. L. (1999). Integer and combinatorial opti-
mization, volume 55. John Wiley & Sons, New York.

Woodruff, D. L. (1999). A chunking based selection strategy for integrating
meta-heuristics with branch and bound. Meta-Heuristics : Advances and
Trends in Local Search Paradigms for Optimization, 499–511. Springer,
Boston, MA.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. Proceedings of the Sixth International Congress on
Genetics, volume 1, 356, 366.

Yokoo, M. (1994). Weak-commitment search for solving constraint satisfac-
tion problems. Proceedings of the Twelfth National Conference on Artifical
Intelligence, 313–318.

Yu, Q., Fang, K., Zhu, N., & Ma, S. (2019). A matheuristic approach to
the orienteering problem with service time dependent profits. European
Journal of Operational Research, 273(2), 488–503.

Zhang, M., Qin, J., Yu, Y., & Liang, L. (2018). Traveling salesman pro-
blems with profits and stochastic customers. International Transactions
in Operational Research, 25(4), 1297–1313.

Titre : Méthodes d'op�misa�on hybrides pour des problèmes de routages avec profits
Mots clés : recherche opéra�onnelle, op�misa�on combinatoire, méthodes hybrides complètes/incomplètes, appren�ssage de clauses,
programma�on dynamique, routage avec profits
Résumé : L'op�misa�on combinatoire est une branche de l'op�misa�on mathéma�que qui se concentre sur la recherche de solu�ons op�males
parmi un ensemble fini de combinaisons possibles, tout en respectant un ensemble de contraintes et en maximisant ou minimisant une fonc�on
objec�f. Pour résoudre ces problèmes, les méthodes incomplètes sont souvent u�lisées en pra�que, car ces dernières peuvent produire rapidement
des solu�ons de haute qualité, ce qui est un point cri�que dans de nombreuses applica�ons. Dans ce�e thèse, nous nous intéressons au
développement d'approches hybrides qui perme�ent d'améliorer la recherche incomplète en exploitant les méthodes complètes. Pour traiter en cas
pra�que, nous considérons ici le problème de tournées de véhicules avec profits, dont l'objec�f est de sélec�onner un sous-ensemble de clients à
visiter par des véhicules de manière à maximiser la somme des profits associés aux clients visités. Plus précisément, nous visons tout d'abord à
améliorer les algorithmes de recherche incomplets en exploitant les connaissances acquises dans le passé. L'idée centrale est de: (i) apprendre des
conflits (combinaisons de décisions qui conduisent à une viola�on de certaines contraintes ou à une sous-op�malité des solu�ons) et les u�liser pour
éviter de réexaminer les mêmes solu�ons et guider la recherche, et (ii) exploiter les bonnes caractéris�ques de solu�ons élites afin de produire de
nouvelles solu�ons ayant une meilleure qualité. En outre, nous étudions le développement d'un solveur générique pour des problèmes de routage
complexes pouvant impliquer des clients op�onnels, des véhicules mul�ples, des fenêtres temporelles mul�ples, des contraintes supplémentaires,
et/ou des temps de transi�on dépendant du temps. Le solveur générique proposé exploite des sous-problèmes pour lesquels des méthodes de
raisonnement dédiées sont disponibles. L'efficacité des approches proposées est évaluée par diverses expérimenta�ons sur des instances
classiqueset sur des données réelles liées à un problème d'ordonnancement pour des satellites d'observa�on de la Terre, qui inclut éventuellement
des profits incertains.

Title: Hybrid op�miza�on approaches for vehicle rou�ng problems with profits
Key words: opera�ons reasearch, combinatorial op�miza�on, hybrid complete/incomplete approaches, clause learning, dynamic programming,
rou�ng with profits
Abstract: Combinatorial op�miza�on is an essen�al branch of computer science and mathema�cal op�miza�on that deals with problems involving a
discrete and finite set of decision variables. In such problems, the main objec�ve is to find an assignment that sa�sfies a set of specific constraints
and op�mizes a given objec�ve func�on. One of the main challenges is that these problems can be hard to solve in prac�ce. In many cases,
incomplete methods are preferred to complete methods since the la�er may have difficul�es in solving large-scale problems within a limited amount
of �me. On the other hand, incomplete methods can quickly produce high-quality solu�ons, which is a cri�cal point in numerous applica�ons. In this
thesis, we inves�gate hybrid approaches that enhance incomplete search by exploi�ng complete search techniques. For this, we deal with a concrete
case study, which is the vehicle rou�ng problem with profits. In par�cular, we aim to boost incomplete search algorithms by extrac�ng some
knowledge during the search process and reasoning with the knowledge acquired in the past. The core idea is two-fold: (i) to learn conflic�ng
solu�ons (that violate some constraints or that are subop�mal) and exploit them to avoid reconsidering the same solu�ons and guide search, and (ii)
to exploit good features of elite solu�ons in order to hopefully generate new solu�ons having a higher quality. Furthermore, we inves�gate the
development of a generic framework by decomposing and exchanging informa�on between sub-modules to efficiently solve complex rou�ng
problems possibly involving op�onal customers, mul�ple vehicles, mul�ple �me windows, mul�ple side constraints, and/or �me-dependent
transi�on �mes. The effec�veness of the approaches proposed is shown by various experiments on both standard benchmarks (e.g., the
Orienteering Problem and its variants) and real-life datasets from the aerospace domain (e.g., the Earth Observa�on Satellite scheduling problem),
and possibly involving uncertain profits.

	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Part I Background and context
	CHAPTER 1 Introduction
	CHAPTER 2 Background and notations
	2.1 Combinatorial optimization problems
	2.1.1 Problem definition
	2.1.2 Solving techniques

	2.2 Incomplete search algorithms
	2.2.1 Constructive search
	2.2.2 Local search and perturbative search
	2.2.3 Metaheuristics

	2.3 Hybrid complete/incomplete approaches
	2.3.1 Collaborative combinations
	2.3.2 Integrative combinations

	2.4 Conclusion

	CHAPTER 3 Orienteering Problem and its variations: A case study
	3.1 Routing problems with profits
	3.2 OP variants & solving approaches
	3.2.1 Classical OP
	3.2.2 Team variant
	3.2.3 Time windows
	3.2.4 Time-dependent travel times
	3.2.5 Other variants

	3.3 Application to the aerospace domain
	3.4 Conclusion

	Part II Contributions
	CHAPTER 4 Integrating clause learning to incomplete search
	4.1 Incomplete search using a clause base
	4.2 An application to the OPTW
	4.3 Lazy clause generation procedure
	4.3.1 Clauses related to local optima
	4.3.2 Clauses generated based on temporal constraints

	4.4 Data structures for the clause base (CB)
	4.4.1 CB based on unit propagation
	4.4.2 CB based on an incremental SAT solver
	4.4.3 CB based on Ordered Binary Decision Diagrams

	4.5 Experiments
	4.5.1 Benchmark and implementation settings
	4.5.2 Parameter tuning for lazy clause generation
	4.5.3 Performance analysis of the different CB data structures proposed

	4.6 Related works and discussion
	4.7 Conclusion

	CHAPTER 5 Route recombination procedure for deterministic and non-deterministic scenarios
	5.1 Generation of a pool of solutions
	5.2 Route Recombination: an example
	5.3 Dynamic programming formulation
	5.3.1 Search states
	5.3.2 Extension rules
	5.3.3 Pseudocode of the route recombination procedure
	5.3.4 Pruning strategies
	5.3.5 Bounded-width recombination
	5.3.6 Complexity results

	5.4 Usages of the RR procedure
	5.4.1 Iterative Route Recombination (IRR)
	5.4.2 RR used for deterministic and non-deterministic problems

	5.5 Experiments
	5.5.1 Experimental settings
	5.5.2 Deterministic scenarios: using IRR as a post-optimizer
	5.5.3 Uncertain scenarios: using RR as an online solver

	5.6 Related works and discussion
	5.7 Conclusion

	CHAPTER 6 A generic framework for solving complex routing problems
	6.1 Complex orienteering problem formulation
	6.2 A generic solving framework
	6.3 Definition of the low-level reasoners
	6.3.1 Selection manager
	6.3.2 Routing manager

	6.4 A metaheuristic for the high-level GenOP
	6.4.1 Solution representation
	6.4.2 Multi-start Large Neighborhood Search
	6.4.3 Destroy procedure
	6.4.4 Repair procedure
	6.4.5 Conflict analysis procedure
	6.4.6 Search parameters

	6.5 Experiments
	6.5.1 TOPTW benchmark
	6.5.2 MC-TOPTW benchmark
	6.5.3 MC-TOP-MTW benchmark
	6.5.4 TD-OP-MTW benchmark

	6.6 Enhancements of the routing module
	6.7 Related works and discussion
	6.8 Conclusion

	CHAPTER 7 Conclusion and perspectives
	Perspectives

	Part III Appendix
	ANNEXE A Résumé étendu
	A.1 Introduction
	A.2 Recherche incomplète aidée par une base de clauses
	A.2.1 Motivation et schéma général
	A.2.2 Génération de clauses pour un OPTW
	A.2.3 Gestion de la base de clauses
	A.2.4 Résultats expérimentaux
	A.2.5 Perspectives

	A.3 Recombinaison des routes par programmation dynamique
	A.3.1 Motivation
	A.3.2 Procédure de recombinaison (RR)
	A.3.3 Variantes de la procédure de recombinaison
	A.3.4 Résultats de complexité
	A.3.5 Expérimentations
	A.3.6 Conclusion et perspectives

	A.4 Résolution de problèmes de routage complexes par décomposition
	A.4.1 Motivation
	A.4.2 Un cadre générique : solveur GenOP
	A.4.3 Gestionnaire de sélection
	A.4.4 Gestionnaire de séquencement
	A.4.5 MSLNS : une métaheuristique pour GenOP
	A.4.6 Expérimentations et analyses
	A.4.7 Perspectives

	Bibliography

