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Joint Modeling and Learning Approaches
for Hyperspectral Imaging and Changepoint Detection

Abstract

In the era of artificial intelligence, there has been a growing consensus that
solutions to complex science and engineering problems require novel methodologies
that can integrate interpretable physics-based modeling approaches with machine
learning techniques, from stochastic optimization to deep neural networks. This
thesis aims to develop new methodological and applied frameworks for combining the
advantages of physics-based modeling and machine learning, with special attention
to two important signal processing tasks: solving inverse problems in hyperspectral
imaging and detecting changepoints in time series. The first part of the thesis
addresses learning priors in model-based optimization for solving inverse problems
in hyperspectral imaging systems. First, we introduce a tuning-free Plug-and-Play
algorithm for hyperspectral image deconvolution (HID). Specifically, we decompose
the optimization problem into two iterative sub-problems, learn deep priors to solve
the blind denoising sub-problem with neural networks, and estimate hyperparameters
with a measure of the statistical whiteness of the residual. Second, we introduce an
original hyperspectral and multispectral image fusion (HMIF) method. It leverages
neural networks to learn image priors from data to solve the optimization problem
accounting for inter-image variability. We also propose a zero-shot strategy to learn
the image-specific priors in an unsupervised manner. The second part of the thesis
focuses on modeling changes in data distribution and learning knowledge of time
series signals to detect changepoints. First, we propose a changepoint detection (CPD)
method using an online approach based on neural networks and continual learning to
directly estimate the density ratio between current and reference windows of the data
stream. Second, we introduce a non-parametric algorithm for online CPD in manifold-
valued data and provide theoretical bounds on the detection and false alarm rate
performances using a new result on the non-asymptotic convergence of the stochastic
Riemannian gradient descent. Finally, we extend this algorithm to distributed CPD
in streaming manifold-valued signals over graphs with a parallel implementation of a
graph filter. This significantly improves the detection of changepoints in unknown
communities of networks.

Keywords: physics-based modeling, machine learning, hyperspectral images,
inverse problems, changepoint detection, Riemannian manifolds.



Approches conjointes de modélisation et d’apprentissage pour
l’imagerie hyperspectrale et la détection de changements

Résumé

À l’ère de l’intelligence artificielle, on observe un consensus croissant sur le fait
que des solutions à des problèmes complexes de science et d’ingénierie nécessitent
de nouvelles méthodologies qui peuvent associer des méthodes de modélisation
physique à des techniques d’apprentissage automatique, en recourant à l’optimisation
stochastique et aux réseaux neuronaux profonds. Cette thèse vise à étudier des
méthodes permettant de combiner les avantages de la modélisation basée sur la
physique et de l’apprentissage automatique, en accordant une attention particulière
à deux questions importantes de traitement du signal : la résolution de problèmes
inverses en imagerie hyperspectrale et la détection de changements dans des séries
temporelles. La première partie de la thèse traite de l’apprentissage d’informations a
priori dans une démarche orientée modèles pour la résolution de problèmes inverses
en imagerie hyperspectrale. Tout d’abord, nous introduisons un algorithme Plug-
and-Play pour la déconvolution des images hyperspectrales (HID). Plus précisément,
nous décomposons le problème d’optimisation correspondant en deux sous-problèmes
résolus itérativement, et apprenons les informations a priori profondes pour résoudre
le sous-problème de débruitage aveugle à l’aide de réseaux neuronaux, et estimons
les hyperparamètres à l’aide d’une mesure de la blancheur résiduelle. Dans un second
temps, nous introduisons une méthode originale de fusion d’images hyperspectrales
et multispectrales (HMIF). Elle s’appuie sur des réseaux neuronaux pour apprendre
des informations a priori sur les images, à partir de données, dans le but de résoudre
le problème d’optimisation en tenant compte de la variabilité entre les images. Nous
proposons également une stratégie "zero-shot" pour apprendre l’a priori spécifique
à l’image de manière non supervisée. La deuxième partie de la thèse se concentre
sur l’apprentissage de séries temporelles en vue de détection de changements. Tout
d’abord, nous proposons une méthode de détection de changements (CPD) utilisant
une approche en ligne reposant sur des réseaux neuronaux et leur apprentissage en
continu pour estimer directement le rapport des fonctions de densité des observations
entre deux fenêtres temporelles glissantes. Ensuite, nous introduisons un algorithme
non paramétrique pour la CPD en ligne dans le cas de signaux multi-variés. Nous
fournissons des limites théoriques sur les taux de détection et de fausse alarme à
l’aide d’un nouveau résultat sur la convergence non asymptotique de l’algorithme
de gradient stochastique sur des variétés riemanniennes. Enfin, nous étendons cet
algorithme à la CPD distribuée en ligne sur des signaux multi-variés sur graphes, et
proposons une implémentation parallèle sur graphe. Ceci améliore considérablement
la détection de changements survenant dans des communautés fortement connectées,
inconnues, des réseaux.

Mots clés : modélisation basée sur la physique, apprentissage automatique,
images hyperspectrales, problèmes inverses, détection de changements, variétés
riemanniennes.
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1.1 Joint Modeling and Learning Approaches

In the field of signal processing, physics-based modeling approaches and machine
learning techniques are two important methodologies that are often investigated
individually. Traditional physics-based approaches incorporate system, signal, and
noise models constructed based on a representation of the physical mechanisms
underlying the data generation process and admit a clear interpretation. Neverthe-
less, the physical processes underlying many real applications such as hyperspectral
imaging can be extremely complex and are often not completely known. Thus,
physics-based models defined a priori are often inaccurate, which limits their per-
formance in downstream tasks. Data-driven methods using machine learning, from
stochastic optimization [Bottou 2010, Bottou 2018] to deep neural networks [Kriz-
hevsky 2012, LeCun 2015], have developed rapidly in recent years. Their performance
in many problems has surpassed that of classical methods thanks to their using
less assumptions on the data distribution and having superior capability in directly
learning information from data. However, applying such machine learning techniques
as black boxes to perform signal processing tasks may lead to low interpretability
and poor generalization ability, especially when the amount of data available for
training is small.

To bring together the best of two worlds, recent research efforts have focused on
combining the advantages of physics-based and data-driven methods [Wen 2023, Ka-
dambi 2023, Shlezinger 2023] to explore the continuum between domain-specific
knowledge and machine learning. In this way, superior performance with clear in-
terpretation can be achieved with a principled design of the models and integration
methodologies to leverage available physical knowledge without restricting the re-
presentation capability of the model. This thesis aims to advance the state of the
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giving rise to distinct hyperspectral image degradation phenomena, it is possible
to unify these different phenomena mathematically by establishing a general model.
This model allows for the representation of the diverse degradation types as the
following linear model:

y “ Hx ` n, (1.1)

where y and x denote observed and latent HIs, respectively, H is a degradation
matrix, and n is independent and identically distributed (i.i.d.) Gaussian noise.
Problem (1.1) with different meanings of H represents distinct hyperspectral inverse
imaging problems:

— H is an identity matrix: HI denoising problem.
— H is a convolution matrix: HI deconvolution problem.
— H is a composite matrix of convolution and down-sampling matrices: HI

super-resolution problem.
Note the HI super-resolution problem is often addressed with the fusion of multis-
pectral images (MIs) of the same scene, which have higher spatial but lower spectral
resolution. This problem is consequently called as HMIF problem. One challenge
in solving (1.1) is that matrix H is typically ill-conditioned, making the process of
solving for x involving the inversion of H ill-posed and highly unstable. To tackle this
issue, regularization strategies can be employed to use additional prior information
to constrain the solution space, leading to a stable solution to (1.1). To provide a
statistical interpretation for these strategies, we will now formulate the optimization
models of solving (1.1) from a Bayesian inference viewpoint.

The distribution of y conditioned on x can be determined by the noise distribution:

ppy|xq “ N pHx, σ2Iq, (1.2)

where N pµ,Σq represents Gaussian distribution with mean µ and covariance matrix
Σ. From Bayes rule, we can compute the posterior distribution of x as

ppx|yq 9 ppy|xqppxq, (1.3)

where ppxq denotes the prior distribution of x and 9 means "proportional to".
Finally, the log-posterior distribution can be written as

´ log ppx|yq “
1

2
}y ´ Hx}2 ` log ppxq`K , (1.4)

where K is a constant. Different prior distributions of ppxq can be considered in
the literature to solve ill-posed inverse problems. In the sense of the maximum
a posteriori (MAP) principle, we can estimate x by seeking the minimum of the
following degradation model-based optimization problem:

x˚ “ argmin
x

1

2
}y ´ Hx}2 ` ηΦpxq, (1.5)

where 1
2}y ´ Hx}2 represents the data fidelity term and Φpxq is the regularization

term (which is related to the choice of prior) that enforces desirable properties of
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the solution with a regularization parameter η. In parametric models, the choice of
Φpxq is defined based on prior knowledge about the signal properties or about the
model defining ppxq. In contrast, this thesis focuses on non-parametric strategies,
i.e., without strong assumption on parametric form of ppxq.

1.1.2 Detecting changepoints in time series

Figure 1.2 – Illustration of changepoints between different states of a multivariate
time series.

Another common task in signal processing is the identification and analysis of
complex systems whose underlying state changes over time. Changepoint detection
(CPD) is the problem of finding abrupt variations in the statistical properties of
time series data, which may indicate transitions between different states [Amini-
khanghahi 2017, Truong 2020]. As a fundamental problem in statistics and signal
processing, CPD has seen major interest from the community in the past decades and
has been applied to fields as diverse as medical condition monitoring [Gajic 2015],
speech recognition [Rybach 2009] and image analysis [Borsoi 2021f]. In addition, this
problem also plays a central role in the modeling, analysis, and prediction of time
series data, and it has been addressed in many applications ranging from remote
sensing [Zeng 2020] and climatology [Reeves 2007] to financial data analysis [Bai 1998].

Let us consider a time series of d-dimensional vector-valued data txtutPN, with
xt P Rd. We assume that there exists a time index tr P N with an abrupt change in
the statistical distribution of xt, that is:

t ă tr : xt „ ppxq , t ě tr : xt „ qpxq , (1.6)

where ppxq and qpxq, which are assumed to be different, denote the probability
density functions (PDFs) of the data before and after tr. The latter is the so-called
changepoint, as illustrated in FIGURE 1.2. To make the presentation clearer, without
loss of generality, the problem in (1.6) presents only a single changepoint for simplicity,
but CPD algorithms are typically designed to handle multiple changepoints.

The CPD problem consists of estimating the changepoint t̂r that is as close as
possible to the true changepoint tr. In this thesis, we consider a more general version
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of this problem, in which txtu might contain multiple changepoints, and xt is a
streaming signal that is observed sequentially over time. We address the requirement
that changepoints must be detected online, i.e., we need to decide whether each time
instant t P N is a changepoint based only on past data txt1ut1ďt. This leads to two
objectives when designing an online CPD algorithm: minimizing the probability of a
false alarm (of flagging t ‰ tr as a changepoint), and minimizing the detection delay,
i.e., t̂r ´ tr for t̂r being the first detection after tr. Moreover, this thesis focuses on
non-parametric strategies, in which no parametric form is assumed for the probability
measures ppxq and qpxq.

1.2 Motivations and main contributions

The objective of this thesis is to develop new frameworks for integrating physics-
based modeling and machine learning methods, with special attention to solving
inverse problems in hyperspectral imaging and detecting changepoints in time series.
The motivation of this thesis is twofold regarding these two signal processing tasks
respectively.

In the hyperspectral imaging task, this thesis formulates and solves the inverse
problems to address three challenges, including HI denoising, deconvolution, and
fusion. The hyperspectral imaging inverse problems consist of dealing with their
ill-posedness and can be formulated as regularized optimization problems. A variety
of physics-based modeling methods have been developed with various hand-crafted
regularizers to promote the sparsity, spatial continuity, and edge-preservation of
images, which are useful prior information. These regularizers play a key role in
improving the performance and enhancing the stability of the inversion processing.
However, it is a non-trivial task to handcraft a powerful regularizer, and complex
regularizers may introduce extra difficulties in solving optimization problems, espe-
cially in the case where they are non-differentiable or non-convex. In recent years,
inspired by the success of deep learning, convolutional neural networks (CNNs) have
been used to restore images end-to-end. These data-driven methods require less
handcrafted prior knowledge of images and have been shown to achieve significant
performance enhancement compared to physics-based modeling methods. However,
they need massive amounts of data for training and may not be consistent with the
physical degradation model. To tackle the above issues, this thesis will investigate the
integration of the merits of both physics-based modeling and deep learning methods.

For the time series CPD task, the thesis considers sequential inputs with weaker
assumptions about the data distribution compared to parametric methods to detect
changepoints. The non-parametric and online CPD in time series can be addressed
by various physics-based modeling of the changes in data distributions, such as
estimating density ratio in sliding windows, or monitoring mean, variance, or general
statistics of time series. Based on these physics-based models, various methods have
been proposed to detect changepoints, such as kernel-based density ratio estimation,
monitoring maximum mean discrepancy, and random features of time series with
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exponentially weighted moving averages. However, kernel-based methods or hand-
crafted features may not be sufficient to handle complex scenarios, such as data
belonging to non-Euclidean spaces. For instance, the performance of kernel-based
methods and hand-crafted features heavily depends on the choice of the kernel
function and the design of the features. Identifying an appropriate kernel or feature
set and fine-tuning its parameters is often a non-trivial task, requiring domain
expertise and extensive experimentation. For very complex patterns or highly non-
linear data, even sophisticated kernels or hand-crafted features might not capture the
underlying structure effectively. Recently, machine learning, including deep neural
networks and stochastic optimization, has shown its powerful learning and adaptation
ability in many signal processing tasks [Bottou 2018, Wen 2023]. However, directly
applying these powerful tools to CPD is not trivial due to the lack of explicit learning
objectives, as this problem is different from traditional supervised and unsupervised
learning tasks. Therefore, this thesis will investigate appropriate designs of the
learning objectives derived from physics-based models and then leverage machine
learning to learn information from data to detect changepoints in time series.

Concentrating on the problems and the motivations presented above, the main
contributions of this thesis are the following as below:

— Proposition of a joint modeling and learning approach with application to HI
deconvolution, i.e., a Plug-and-Play algorithm with deep prior and design of
a parameter turning-free mechanism.

— Derivation of a joint modeling and learning algorithm accounting for hyper-
spectral and multispectral image fusion (HMIF) problem with inter-image
variability, including a general imaging model, an iteratively reweighted opti-
mization scheme with deep image-specific prior learning.

— Proposition of a joint modeling and learning approach with a neural online
density-ratio estimator for online and non-parametric CPD in Euclidean
spaces, which leverages neural networks to learn density ratio between test
and reference sliding windows, in the form of a continual learning problem.

— Derivation of a joint modeling and learning framework for non-parametric
online CPD on Riemannian manifolds, analysis of the performance guarantees
of this algorithm based on a new theoretical finding on the convergence of
Riemannian stochastic optimization, and application of this algorithm to two
common instances of manifolds.

— Development of distributed CPD for streaming manifold-valued signals over
networks with a parallel implementation of a graph filter.

1.3 Thesis organization and contents

The main body of this thesis is divided into two parts. The first part consists of
Chapters 2 and 3, and concerns joint modeling and learning approaches for solving
inverse problems in hyperspectral imaging. In Chapter 2, we present a tuning-free
Plug-and-Play framework for HI deconvolution with deep priors. In Chapter 3, we
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address the unsupervised deep HMIF method accounting for inter-image variability.
The second part consists of Chapters 4, 5, and 6, and investigates joint modeling
and learning approaches for detecting changepoints in time series. In Chapter 4, we
introduce a neural online density-ratio estimator for non-parametric online CPD in
Euclidean spaces. In Chapter 5, we consider non-parametric online CPD on manifolds
with theoretical analyses and its application to two instances of Riemannian manifolds.
In Chapter 6, we extend the algorithm in Chapter 5 to process streaming manifold-
valued data over networks.

Part I - Joint Modeling and Learning Approaches: Hyperspectral Imaging

Chapter 2: Considering a joint modeling and learning approach, we address
HI Deconvolution by solving an ill-posed inverse problem. we introduce a tuning-free
Plug-and-Play algorithm for HSI deconvolution. Specifically, we use the alternating
direction method of multipliers (ADMM) to decompose the optimization problem
into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is
designed to learn deep priors and to solve the denoising sub-problem with different
noise levels. A measure of 3D residual whiteness is then investigated to adjust the
penalty parameters when solving the quadratic sub-problems, as well as a stopping
criterion. This work is related to the publication [Wang 2023f].

Chapter 3: HMIF is another typical inverse hyperspectral imaging problem
that can be addressed by a joint modeling and learning approach. We present a general
imaging model that considers inter-image variability of data from heterogeneous
sources and flexible image priors. The fusion problem is stated as an optimization
problem in the maximum a posteriori framework. We introduce an original image
fusion method that, on the one hand, solves the optimization problem accounting for
inter-image variability with an iteratively reweighted scheme and, on the other hand,
that leverages lightweight CNN-based networks to learn realistic image priors from
data. In addition, we propose a zero-shot strategy to directly learn the image-specific
prior of the latent images in an unsupervised manner. This work is related to the
publications [Wang 2022a, Wang 2023c].

Part II - Joint Modeling and Learning Approaches: changepoint Detection

Chapter 4: Detecting changepoints in streaming time series data is a long-
standing problem in signal processing. Nevertheless, leveraging recent advances in
deep learning to detect changepoints in time series data is still challenging. We
propose a joint modeling and learning method using an online approach based
on neural networks to directly estimate the density ratio between current and
reference windows of the data stream. A variational continual learning framework is
employed to train the neural network in an online manner while retaining information
learned from past data. This leads to a statistically-principled fully nonparametric
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framework to detect changepoints from streaming data. This work is related to the
publication [Wang 2023b].

Chapter 5: Non-parametric detection of changepoints in streaming time series
data that belong to Euclidean spaces has been extensively studied in the literature.
Nevertheless, when the data belongs to a Riemannian manifold, existing approaches
are no longer applicable as they fail to account for the structure and geometry of
the manifold. In this chapter, we introduce a joint modeling and learning algorithm
for non-parametric online CPD in manifold-valued data streams. This algorithm
monitors the generalized Karcher mean of the data, computed using stochastic
Riemannian optimization. We provide theoretical bounds on the detection and
false alarm rate performances of the algorithm, using a new result on the non-
asymptotic convergence of the stochastic Riemannian gradient descent. In addition,
we apply our algorithm to two different manifolds. This work is related to the
publications [Wang 2023a, Wang 2024a].

Chapter 6: Signal processing methods over networks have recently been propo-
sed to detect changepoints occurring in localized communities of nodes. Nevertheless,
all these methods are mostly limited to time series data in Euclidean spaces. In this
chapter, we devise a distributed CPD method for streaming manifold-valued signals
over graphs. This framework combines a local test statistic at each node to account
for the data geometry residing on a Riemannian manifold, with a fully distributed
graph filter that incorporates information on network topology. This significantly
improves the detection of changepoints in unknown communities of networks. This
work is related to the publications [Wang 2023d, Wang 2023e].

At the end of this thesis, Chapter 7 summarizes our contributions and discusses
possible extensions and other open problems for future works, including an exploratory
study on Riemannian diffusion adaptation over graphs [Wang 2024b].
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Context

As mentioned in the introduction, the inverse problems in hyperspectral imaging
are typically ill-posed. This makes properly defining priors and designing regularizers
very important to improve performance and enhance the stability of the inversion
process. Some important types of prior information used in hyperspectral inverse
imaging problems are related to the sparsity or smoothness of the estimated values.
For instance, ℓpp0 ď p ď 1q norms are commonly employed to enhance the sparsity of
the recovered image when represented in some appropriate basis, while total variation
(TV) and Laplacian regularization are often utilized to promote the smoothness of
the estimated values [Boyd 2004].

However, it is a non-trivial task to handcraft a powerful regularizer to take
all types of prior information into account. Meanwhile, complex regularizers may
introduce extra difficulties in solving optimization problems in (1.5), especially in the
case of non-differentiable regularizers such as ℓ1-norm and TV-norm regularization
terms. Compared with optimization methods based on predefined priors, deep learning
methods require fewer assumptions on the prior knowledge of the latent solution x,
and can directly learn the relevant information from training data in an end-to-end
way. Nevertheless, these learning-based methods ignore the degradation model in (1.1),
though this model has a clear physical interpretation that relates the observed data
y and latent x. Recently, benefiting from the variable splitting principle, various
Plug-and-Play methods [Venkatakrishnan 2013, Romano 2017] have been proposed.
They consist of plugging image-denoising modules into optimization modules to solve
inverse problems.

We shall now outline the main principles of the Plug-and-Play framework [Venka-
takrishnan 2013, Romano 2017]. With the alternating direction method of multipliers
(ADMM) [Boyd 2011] or the half quadratic splitting (HQS) method [Geman 1995], the
optimization problem (1.5) can be solved iteratively consisting of two key operations:

x̂ “ argmin
x

1

2
}y ´ Hx}2 `

ρ

2
}x ´ ẑ}22, (1.7)

ẑ “ Denoiserpx̂, σq, (1.8)

where ρ is the penalty parameter, and Denoiserp¨q represents a denoising operator
with σ “

a

η{ρ the denoising strength. Conversely, this formulation can also implicitly
define Φp¨q when plugging an arbitrary denoising operator.

In this part, we explore a novel idea for two distinct inverse problems in hyperspec-
tral imaging by designing Plug-and-Play methods to integrate the merits of physical
modeling and deep learning. On the one hand, based on the ADMM algorithm,
we propose a completely turning-free Plug-and-Play framework for hyperspectral
image deconvolution (HID) with the design of a blind deep denoiser and residual
whiteness (Chapter 2). On the other hand, we consider a more challenging problem,
i.e., MHIF with the inter-image variability, and design an unsupervised algorithm
based on a more efficient variant of the Plug-and-Play framework (Chapter 3) and
zero-shot learning strategy. By considering the degradation model, both algorithms
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can directly learn prior information from data without any explicit assumption on
the properties of the latent HIs. Note that Chapter 3 considers an more efficient
variant of the Plug-and-Play framework but involves more hyperparameters, for the
ease of tuning-free mechanism design, Chapter 2 considers the original Plug-and-Play
framework.



Chapter 2

Tuning-free Plug-and-Play HID
with deep priors

Contents
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2.1 Introduction

As mentioned in Chapter 1, due to various physical and hardware limitations, one
degradation phenomenon is that observed HIs are usually blurred and corrupted by
noise during the acquisition process, leading to degraded performance in subsequent
analyses. Thus, it is desirable to restore images by deconvolution (inversion of the
degradation process) techniques beforehand.

Multichannel images contain abundant spectral information across neighboring
wavelengths, which raises the challenge of accounting for spectral correlations while
ensuring spatial consistency compared to ordinary 2D images [Bongard 2011, Sar-
der 2006]. Traditionally, the deconvolution of multichannel (multispectral) images
involves, e.g., Wiener filter [Galatsanos 1989, Hunt 1984], Kalman filter [Tekalp 1990],
and regularized least-squares [Galatsanos 1991]. For hyperspectral deconvolution,
an adaptive 3D Wiener filter [Gaucel 2006] and a filter-based linear method [Bon-
gard 2011] have been used for astronomic HIs. 2D Fast Fourier Transforms (FFTs)
and Fourier-wavelet techniques have been considered in [Thiébaut 2005] and [Neela-
mani 2004] for HID to benefit from computational efficiency in Fourier and wavelet
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domains. In [Song 2019], an online deconvolution algorithm was devised to process
HIs sequentially collected by a push-broom device.

Considering that deconvolution problems are usually highly ill-posed, it is stron-
gly desirable to incorporate prior information of images to regularize the solutions.
To this end, a computationally efficient algorithm in [Henrot 2012] performs HID
subject to positivity constraints while accounting for spatial and spectral correlations.
The work in [Chang 2020] investigates both the spatial non-local self-similarity and
spectral correlations by employing low-rank tensor priors. Defining proper priors
and designing regularizers play a key role in these methods. However, it is not a
trivial task to handcraft powerful regularizers, keeping in mind that complex re-
gularizers may also introduce extra difficulties in solving optimization problems.
Recently, benefiting from the variable splitting principle, various Plug-and-Play
methods have been proposed. This framework allows us to benefit from the merits
of deep learning and model-based optimization methods [Chen 2022], and to elimi-
nate the need for expensive network retraining whenever the inverse problem (i.e.,
the operator H) changes [Zhang 2017b]. Applications include magnetic resonance
imaging (MRI) reconstruction [Venkatakrishnan 2013, Wei 2020a], 2D image res-
toration [Brifman 2016, Zhang 2017b, Chen 2020, Zhang 2021] and hyperspectral
unmixing [Wang 2020b, Zhao 2021]. Despite its effectiveness, this strategy has not yet
been employed in HID problems, though similar difficulties of designing regularizers
are encountered there.

Regardless of whether the regularizers are manually designed or implicitly learned
as in recent Plug-and-Play algorithms, it is desirable to select the regularization
parameters properly to balance the contribution of prior information and observations.
Classic parameter estimation methods used with handcrafted regularizers include the
discrepancy principle (DP) [Thompson 1991], the L-curve [Hansen 1992, Vogel 1996],
the generalized cross-validation (GCV) [Golub 1979, Reeves 1994], and Stein’s
unbiased risk estimate (SURE) [Stein 1981, Van De Ville 2011]. Recently, the authors
of [Song 2016] proposed the maximum curvature criterion and the minimum distance
criterion (MDC) on the response surface to estimate the regularization parameters in
a non-negative HID problem [Henrot 2012]. The MDC has been extended to HI super-
resolution by considering a deep prior regularizer in [Wang 2021]. By defining and
maximizing some whiteness measures of residual images, the authors of [Almeida 2013]
proposed a 2D image deblurring method with objective criteria for adjusting the
regularization parameter as well as the stopping criterion. In [Lanza 2020], an exact
residual whiteness principle has been proposed for generalized Tikhonov-regularized
2D image restoration. However, a specific-designed criterion for 3D images, such as
HIs, is still missing.

Compared to handcrafted regularizers, implicit regularizers in Plug-and-Play
algorithms introduce extra challenges that need to be addressed for devising an
automatic regularization parameter estimation strategy. In the Plug-and-Play fra-
mework (1.7) and (1.8), η is reparameterized by a series of internal parameters,
including the penalty parameter ρ, the denoising strength σ, and the number of
iterations K (related to stopping criteria). In the plug-and-play approaches with re-
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gularizations based on a denoiser [Brifman 2016, Wang 2020b, Zhao 2021], a constant
scaling factor is used to increase ρ linearly as iterations proceed. In [Zhang 2017b],
σ is exponentially decayed in sequential denoising sub-problems. Nevertheless, the
selected parameters in all these handcrafted criteria may lead to sub-optimal perfor-
mance since the internal parameters may not change monotonically. To address this
issue, the methods in [Chen 2020, Zhang 2021] consist of training a blind denoising
network to estimate σ automatically. The work in [Chen 2020] considers a fixed ρ
while the approach in [Zhang 2021] considers a fixed η. Unlike these semi-automated
approaches, deep reinforcement learning is used in [Wei 2020a] to determine all the
internal parameters, leading to good convergence behavior and performance.

This chapter introduces a fully automatic Plug-and-Play hyperspectral deconvo-
lution method that uses spectral-spatial priors learned from data by a deep neural
network. The HID problem is addressed with an ADMM algorithm. To avoid manually
selecting the regularization parameters, we define a non-negative scalar measure of
whiteness for 3D residual images, which cooperates with a blind deep denoiser to
adaptively adjust all the internal parameters. The contributions of this work are
summarized as follows:

— We propose a Plug-and-Play HID framework. Based on the ADMM algorithm,
the optimization problem is split into two sub-problems, a simple quadratic
sub-problem and a 3D-image denoising sub-problem.

— A blind deep denoiser referred to as B3DDN is designed and plugged into the
proposed framework. This denoising operator learns both spatial context and
spectral attributes of HIs, bypassing the difficulty in designing regularizers.
After training with simulated data, the flexibility of the B3DDN allows it to
represent, without any extra training, the priors for real-world images even
with a distinct number of spectral channels.

— The proposed Plug-and-Play framework is designed in a completely turning-
free manner. Specifically, the penalty parameters are determined automatically
by solving a scalar optimization problem while the denoising strengths are
implicitly learned by the B3DDN. A stopping criterion for the iterative process
is also provided.

— An HI dataset containing six blurring and clear image pairs captured in indoor
and outdoor scenes is provided with this work. This dataset allows us to show
that our method applies to real-world scenarios. It also provides a benchmark
for future research works in hyperspectral deconvolution.

The chapter is organized as follows. In Section 2.2, HID is formulated as a
linear inverse problem. Section 2.3 introduces the proposed tuning-free deconvolution
method based on the Plug-and-Play framework with learned deep priors. In Sec-
tion 2.4, experiments with simulated and real-world data are conducted and analyzed.
Section 2.5 concludes this chapter.
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Figure 2.1 – Architecture of the proposed tuning-free scheme for HID. Top panel:
Network structure of the B3DDN. Bottom panel: Numerical optimization steps in
the ADMM framework.

2.2 Image deconvolution with linear model

We denote a degraded HI and its latent clean counterpart by Y P RLˆPˆQ and
X P RLˆPˆQ respectively, where P , Q, and L are the numbers of rows, columns and
spectral bands of the image. Using lexicographical order, Y and X can be reshaped
into vectors y P RLPQˆ1 and x P RLPQˆ1, respectively. The degraded image and the
clean image at the i-th spectral band are denoted by Y i P RPˆQ and Xi P RPˆQ.
For ease of mathematical formulation, the columns of Y i and Xi are stacked to form
vectors yi P RNˆ1 and xi P RNˆ1 with N fi PQ denoting the number of pixels. x
and y are vectors obtained by stacking vectors xi and yi (1 ď i ď L), respectively.
This notation system also works for other images.

For the i-th channel, Y i is generated from Xi according to the following 2D
degradation model:

Y i “ Hi ˚ Xi ` Ni, (2.1)

where Hi is the convolution kernel, possibly containing null entries, of size P ˆ Q

encoding the Point Spread Function (PSF) of the i-th channel:

Hi “

¨

˚

˚

˝

H1,1 ¨ ¨ ¨ H1,Q

...
. . .

...
HP,1 ¨ ¨ ¨ HP,Q

˛

‹

‹

‚

. (2.2)

Operator ˚ denotes the discrete 2D convolution performed in the image domain, and
Ni is an additive independent and identically distributed (i.i.d.) Gaussian noise with
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standard deviation σ. Following [Henrot 2012], model (2.2) can be written as:

yi “ Hixi ` ni, (2.3)

where Hi is a N ˆN block-Toeplitz matrix with P ˆQ Toeplitz blocks. Imposing
periodic boundary conditions on Hi, Hi can be rewritten as a block circulant matrix
with circulant blocks, a structure denoted as circulant-block-circulant (CBC). This
property allows us to design a Fourier domain implementation for solving the least
square problem in Section 2.3.1.

Assuming that the convolution is separable (i..e, the convolution kernel is invariant
across spectral channels) and the noise variance is independent over spectral bands,
the hyperspectral degradation model can be written in the form of (1.1) where H is
a block-diagonal matrix of size LN ˆ LN :

H “

»

—

—

—

—

—

–

H1 0 ¨ ¨ ¨ 0

0
. . . . . .

...
...

. . . . . . 0

0 ¨ ¨ ¨ 0 HN

fi

ffi

ffi

ffi

ffi

ffi

fl

. (2.4)

The problem in HID is formulated as an inverse problem, where X is estimated by
seeking the minimum of the objective function (1.5).

2.3 Proposed method

Designing an effective regularizer Φpxq along with an efficient solving method is
not trivial. Meanwhile, it is cumbersome to fine-tune the hyperparameter η to balance
the contribution of Φpxq for different images. To tackle these issues, we propose to
learn priors from hyperspectral data and incorporate them into the model-based
optimization to tackle the regularized inverse problem in (1.5). More specifically,
using the variable splitting technique [Boyd 2004], we transform problem (1.5) into
two sub-problems, namely, a simple quadratic problem with a penalty parameter
and a 3D-image denoising problem with a certain denoising strength. These sub-
problems are iteratively solved, using a linear method and a blind deep neural
network, respectively, until the convergence criterion is met. In this procedure,
the penalty parameter is automatically estimated while the denoising strength is
implicitly learned. Finally, the algorithm is automatically terminated by stopping
criteria. Our tuning-free HID scheme is illustrated in FIGURE 2.1.

2.3.1 Variable splitting based on the ADMM

The ADMM is adopted to decouple the data fidelity term and the regularization
term in (1.5). By introducing an auxiliary variable z, problem (1.5) can be written
in the equivalent form:

x̂ “ argmin
x

1

2
}y ´ Hx}2 ` ηΦpzq, s.t. z “ x. (2.5)



20 Chapter 2. Tuning-free Plug-and-Play HID with deep priors

The associated augmented Lagrangian function [Boyd 2004] is given by

Lρpx, z,vq “ argmin
x

1

2
}y ´ Hx}2 ` ηΦpzq ` vT px ´ zq `

ρ

2
}x ´ z}2, (2.6)

with v the dual variable, and ρ ą 0 the penalty parameter. Scaling v as u “ ρ´1v,
problem (2.6) can be iteratively solved by repeating the following successive steps:

xk`1 “ argmin
x

1

2
}y ´ Hx}2 `

ρk
2

}x ´ x̃k}2, (2.7a)

zk`1 “ argmin
z

ηΦpzq `
ρk
2

}z̃k ´ z}2, (2.7b)

uk`1 “uk ` xk`1 ´ zk`1, (2.7c)

where

x̃k “ zk ´ uk, (2.8a)

z̃k “ xk`1 ` uk, (2.8b)

and ρk denotes the penalty parameter at the k-th iteration. In this way, the data
fidelity term and the regularization term in (1.5) are decoupled into two sub-
problems, (2.7a) and (2.7b). Sub-problem (2.7a) is a least square problem that
can be solved analytically as follows:

xk`1 “ pHTH ` ρkIq
´1pHTy ` ρkx̃kq, (2.9)

Subproblem (2.7b) can be reformulated as:

zk`1 “ argmin
z

1

2σ2k
}z̃k ´ z}2 ` Φpzq, (2.10)

where σk “
a

η{ρk.
From a Bayesian perspective 1, (2.10) can be considered as a denoising problem,

removing Gaussian noise with noise-level σk from the noisy HI z̃k to obtain the clean
HI zk`1. In other words, a denoising operator can be used for implicitly designing
the regularization term Φpxq.

2.3.2 Estimating parameters via 3D residual whiteness

In most real-world applications, no ground-truth information is available for
fine-tuning the algorithm parameters or terminating the optimization at a proper

1. Considering a degradation model z̃k “ z ` nk where nk is Gaussian noise with standard
deviation σk. The denoising problem can be formulated as the recovery of the posterior proba-
bility density function (PDF) ppz|z̃kq. Using the Bayes theorem, this PDF can be written as:
ppz|z̃kq9ppz̃k|zqppzq where ppzq is the prior probability distribution of z. Finally, the log-posterior
distribution can be written as ´log ppz|z̃kq “ 1

2σ2
k

}z̃k ´ z}
2

` log ppzq ` C where C is a constant.
By rewriting log ppzq as Φpzq, estimating z in the sense of the maximum a posterior principle leads
to the optimization problem in (2.10).
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iteration. To tackle this issue, a measure of residual whiteness of 3D images is defined
in this subsection, and the optimal value of ρk at each iteration, as well as the number
of iterations, can be determined with the help of this measure. To be specific, we
propose to evaluate the optimal ρ˚

k in (2.7a) by solving a scalar optimization problem.
The stopping criterion then consists of comparing this 3D whiteness measure between
two iterations.

2.3.2.1 Measure of 3D residual whiteness

We define the residual image rk`1 P RLN by:

rk`1 “ Hxk`1 ´ y, (2.11)

with its equivalent 3D image cube denoted by Rk`1 P RNˆPˆQ. The auto-correlation
of Rk`1 is defined as:

ARk`1
“

1

LN
pRk`1 ‹ Rk`1q, (2.12)

where ‹ denotes the 3D discrete correlation. The sample auto-correlation at indexes
pl, p, qq is given by:

ARk`1
pl, p, qq“

1

LN

ÿ

m,i,j

Rk`1pl, p, qqRk`1pm`l, i`p, j`qq, (2.13)

with 1 ď m ď L, 1 ď i ď P , 1 ď j ď Q. When the residual is close to the modeling
error l, i.e., a white Gaussian noise, ARk`1

pl, p, qq satisfies the following asymptotic
property:

lim
LNÑ8

ARk`1
pl, p, qq «

#

σ2 if pl, p, qq “ p0, 0, 0q,

0 if pl, p, qq ‰ p0, 0, 0q.
(2.14)

The size LN of hyperspectral images is usually large (between 106 and 108), so that
we can assume that the sample auto-correlation at all indexes pl, p, qq ‰ p0, 0, 0q

is close to zero. This assumption is based on the following result of the Gaussian
process n with its equivalent 3D image matrix denoted by N P RLˆPˆQ and sample
auto-correlation ANk`1

pl, p, qq defined by replacing R as N in (2.13).
Theorem 1. If n has a finite variance σ and LN tends to 8, any ANk`1

pl, p, qq

with pl, p, qq ‰ p0, 0, 0q are asymptotically uncorrelated and their limiting distribution

is a Gaussian distribution with zero mean and standard deviation σa “

b

σ2

LN Ñ 0.
Proof. The proof follows directly by applying Proposition 1 of [Lanza 2018] to

the 3D domain.
The rationale behind imposing residual whiteness is to estimate parameters

by constraining the residual auto-correlation at non-zero indexes to be small. To
make this measure independent from σ, inspired by [Lanza 2020], we consider the
normalized auto-correlation defined as follows:

A
Rk`1

“
ARk`1

ARk`1
p0, 0, 0q

“
Rk`1 ‹ Rk`1

}Rk`1}2F
, (2.15)
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where } ¨ }F denotes the matrix Frobenius norm. All entries Arrpl, p, qq satisfies:

lim
LNÑ8

A
Rk`1

pl, p, qq «

#

1 if pl, p, qq “ p0, 0, 0q,

0 if pl, p, qq ‰ p0, 0, 0q.
(2.16)

We can now introduce the σ-independent non-negative scalar measure of 3D residual
whiteness defined as:

WpRk`1q “ ||A
Rk`1

||2F “
||Rk`1 ‹ Rk`1||2F

||Rk`1||4F
. (2.17)

2.3.2.2 Penalty parameter estimation

Solution xk`1 of (2.9) actually depends on the setting of parameter ρk. To devise
the parameter selection procedure, we make ρk explicit by writing xk`1,ρk . In order
to automatically estimate the penalty parameter ρk in (2.7a), the term }x ´ x̃k}2

can be viewed as a regularizer that enforces the solution xk`1,ρk to tend to x̃k. As
the restored image xk`1,ρk tends to fit the desired target image, the related residual
image rk`1,ρk “ Hxk`1,ρk ´ y tends to be close to the Gaussian noise perturbation
n in (1.1). With (2.17), we propose to estimate the optimal penalty parameter by
solving the following scalar optimization problem:

ρ˚
k “ argmin

ρk
Wprk`1,ρkq. (2.18)

The varying range of ρk is p0,8q. In practice, we substitute the 8 by a sufficiently
large value.

A fast golden-section search method is used for determining a local minimum
of (2.18). This method operates iteratively over an interval pa, bq and generates two
internal points:

ρ
p1q

k “ a` δpb´ aq,

ρ
p2q

k “ b´ δpb´ aq.
(2.19)

where δ “ 0.618 is the golden ratio. As shown in Algorithm 1, whiteness criterion
Wprk`1,ρkq is compared at ρp1q

k and ρp2q

k . If it is smaller at the former point than at
the latter point, then b is substituted by ρp2q

k . Otherwise, a is substituted by ρp1q

k .
This procedure is repeated with the new smaller interval pa, bq until b´ a ă ε with ε
a small positive threshold. Finally, the estimated optimal penalty parameter is given
by:

ρ˚
k “ pa` bq{2, (2.20)

and the solution of sub-problem (2.7a) is provided by:

xk`1 “ pHTH ` ρ˚
kIq

´1pHTy ` ρ˚
kx̃kq. (2.21)
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Algorithm 1 Adaptive Penalty Parameter Estimation.
Input : Blurred observation y, internal image x̃k, blurring matrix H.
Output : Optimal adaptive parameter ρ˚

k.
Initialize a, b, ε.
while b´ a ą ε do

ρ
p1q

k “ a` δpb´ aq,

ρ
p2q

k “ b´ δpb´ aq,
if Wpr

k`1,ρ
p1q

k

q ă Wpr
k`1,ρ

p2q

k

q

b “ ρ
p2q

k ,
else

a “ ρ
p1q

k ,
ρ˚
k “ pa` bq{2.

2.3.2.3 Stopping criterion

To take both HID performance and computational time into account, it is
important to properly set the maximum number of iterations. Iterations can be
performed until no significant improvement between two consecutive iterations is
observed. Considering the whiteness measure in (2.17), we propose to stop the
iterative process with the following normalized criterion:

Wprk`1q ě Wprkq or
||Wprk`1q ´ Wprkq||

Wprk`1q
ă ζ, (2.22)

where ζ is a small positive threshold, rk and rk`1 represent the residual image of
the solutions xk and xk`1, respectively.

2.3.3 Learning spectral-spatial priors via B3DDN

Instead of using a handcrafted regularizer Φp¨q and solving subproblem (2.7b)
explicitly, we propose to carry out this task with a deep neural network based denoiser.
This denoiser is trained beforehand to extract spectral-spatial prior information
from hyperspectral training observations. Then it is plugged into the iterative
algorithm to solve subproblem (2.7b). We denote this denoising operator by Dp¨q.
As it is performed in the 3D image domain to jointly capture spatial and spectral
information, we write (2.10) as follows:

Zk`1 “ DprZk, σkq, (2.23)

Observe that Dp¨q is parameterized by the noise level σk. For setting it, most
existing methods use empirical strategies that may lead to under-denoising or over-
smoothing of rZk [Chen 2020]. In addition, since σk decreases as iterations progress,
some works choose to train a set of specific models that can handle different noise
levels [Zhang 2017b]. To avoid these redundant learning tasks, we shall now see how
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Figure 2.2 – The denoising performance of B3DDN with different B.

to design a blind 3D denoising network Fp¨q w.r.t. a range of σk, denoted as Σ and
parameterized by ΘpΣq, by considering residual learning reformulation of (2.23) as:

Zk`1 “ rZk ´ FprZk; ΘpΣqq. (2.24)

2.3.3.1 3D convolution

Unlike 2D convolution resulting in spectral information distortion, 3D convolution
extracts spatial features from neighboring pixels and spectral features from adjacent
bands, simultaneously, without compromising spectral resolution. 3D convolution
also involves fewer parameters, and it is more appropriate for hyperspectral image
processing due to the difficulty in capturing a large enough volume of hyperspectral
data. In addition, 3D convolution enables the neural network to handle HIs with an
arbitrary number of spectral bands without modifying its architecture [Liu 2019b].
In this way, there is no need to retrain a neural network when the number of spectral
bands changes. This key property allows our method to be applied to any real-world
dataset using a pre-trained neural network.

2.3.3.2 Network architecture

The B3DDN architecture is a non-trivial extension from [Zhang 2017a] to the 3D
image domain and is illustrated in FIGURE 2.1 (top). Each 3D-block contains a 3D
convolution layer (3DConv), a batch normalization (BN) layer, and a ReLU layer.
Batch normalization is used to speed up the training process as well as to boost the
denoising performance [Zhang 2017a]. Besides the input layer and the output layer, a
3D convolution layer (3DConv), a ReLU activation function layer, B 3D-blocks and
a last 3D convolution layer are sequentially connected to form the proposed network.
The last convolutional layer contains one 3D-filter while the others are composed of
32 3D-filters. The kernel size of each 3D-filter is 3ˆ3ˆ3, which means that the depth
of the kernel along the spectral dimension and its size over the spatial dimension
are 3 and 3ˆ3 respectively. Compared to existing complex network architectures
for HI denoising, B3DDN achieves satisfactory performance with fewer parameters.
Moreover, it enables us to apply the neural network learned with simulated data, to
real data that lacks ground truth. An example is provided in subsection 2.4.4.
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Algorithm 2 Tuning-free HID with deep priors learned from B3DDN.
Input : Network parameters ΘpΣq, blurred observation y, blurring kernel H.
Output : Deblurred HI x.

Initialize x “ x0, auxiliary variable z0 “ x0,
scaled dual variable u0 “ 0, k “ 0.
while Stopping criteria in (2.22) are not met do
x̃k “ zk ´ uk,
Estimate ρ˚

k using Algorithm 1,
xk`1 “ pHTH ` µIq´1pHTy ` ρ˚

kx̃kq,
z̃k “ xk`1 ` uk,
zk`1 “ Z̃k ´ FpZ̃k; ΘpΣqq,
uk`1 “ uk ` xk`1 ´ zk`1,
k “ k ` 1.

The number of 3D-blocks B, and the number and size of 3D filters are fine-tuned
according to empirical performance. For example, the influence of the number of
3D-blocks B is examined in FIGURE. 2.2, where the average root-mean-square error
(RMSE) value based on the test set in the CAVE dataset is used to evaluate the
denoising performance. As shown in FIGURE. 2.2, large values of B generally lead
to better results. In our deconvolution experiment, we set B “ 8 as a larger value by
considering the computational cost and memory demand.

2.3.3.3 Learning strategy

The input of the proposed B3DDN is a noisy hyperspectral image z̃ “ z ` n,
where n is a Gaussian noise with arbitrary standard deviation. Inspired by 2D image
denoising algorithm [Zhang 2017a], we consider the learning residual to predict the
residual error Fpz̃k; ΘpΣqq « n in our denoising network. Then we can achieve
the estimated clean image by z̃ ´ Fpz̃; ΘpΣqq. To train the blind neural network
Fp ¨ ; ΘpΣqq, we use the following loss function:

ℓpΘpΣqq “ }Fpz̃m; ΘpΣqq ´ pz̃m ´ zmq}1, (2.25)

where tpz̃m, zmquMm“1 is a training set of generated noisy-clean HI (patch) pairs with
various noise levels. Note that the ℓ1-norm is used as a loss that is more robust to
noise than the ℓ2-norm, found to provide better performance in image restoration
in the literature [Zhao 2016, Wang 2021]. After the B3DDN has been trained, it is
incorporated into the ADMM framework as a blind denoiser, yielding Algorithm 2.

2.4 Experiments

In this section, we shall conduct experiments of HID on both simulated and
real-world datasets to validate our method. The results provided by the proposed
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Figure 2.3 – Visual results for all methods in the blurring scenario (a) on the
CAVE dataset. The first and second rows present the results for two different blurred
images. The false color images were generated for clear visualization with the 22nd,
14th and 7th channels used for red, green and blue, respectively.

Figure 2.4 – Blurring kernels used for the experiments: (a)-(c) are Gaussian kernels,
(d)-(f) are circle, motion and square kernels respectively.

method are compared with those of several HID methods from both quantitative
and qualitative perspectives. The source code and the proposed real-world data
are made available at https://github.com/xiuheng-wang/Tuning_free_PnP_HSI_
deconvolution.

2.4.1 Simulation datasets and experimental setup

Two simulation datasets, on the one hand the Columbia Multispectral Database
(CAVE) 2 [Yasuma 2010], and on the other hand a remotely sensed hyperspectral
data over Chikusei 3 [Yokoya 2016], were used to evaluate the performance of our
method.

2.4.1.1 CAVE dataset

The CAVE dataset contains 32 HIs recorded under controlled illuminations in a
laboratory. Each image has a spatial resolution of 512 ˆ 512 pixels, over 31 spectral

2. https://www1.cs.columbia.edu/CAVE/databases/multispectral/
3. http://naotoyokoya.com/Download.html

https://github.com/xiuheng-wang/Tuning_free_PnP_HSI_deconvolution
https://github.com/xiuheng-wang/Tuning_free_PnP_HSI_deconvolution
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Table 2.1 – RMSE, PSNR, SSIM and ERGAS of the different methods applied to
the CAVE dataset in the 6 blurring scenarios.

Scenarios Metrics HLP SSP WLRTR 3DFTV Proposed

(a)

RMSE 4.420 4.848 4.735 4.332 3.132
PSNR 36.166 35.373 35.872 36.450 39.252
SSIM 0.9167 0.9305 0.9380 0.9401 0.9493

ERGAS 18.15 19.51 18.96 17.34 13.01

(b)

RMSE 5.707 5.955 6.439 5.667 4.581
PSNR 34.034 33.541 33.084 34.116 36.305
SSIM 0.8911 0.9031 0.9025 0.9136 0.9234

ERGAS 22.92 23.71 25.46 22.40 18.54

(c)

RMSE 7.669 5.270 5.099 5.016 4.225
PSNR 30.599 34.309 34.827 34.741 36.211
SSIM 0.6406 0.8565 0.8956 0.8851 0.8708

ERGAS 33.49 22.28 20.80 20.47 18.64

(d)

RMSE 4.189 4.584 4.328 4.167 2.305
PSNR 36.548 35.862 36.686 36.805 41.653
SSIM 0.9165 0.9354 0.9450 0.9403 0.9542

ERGAS 17.36 18.49 17.45 16.69 9.86

(e)

RMSE 3.759 3.954 4.335 3.587 3.041
PSNR 37.149 37.160 36.497 37.991 40.722
SSIM 0.9118 0.9472 0.9428 0.9510 0.8907

ERGAS 15.94 16.01 17.46 14.37 15.56

(f)

RMSE 3.971 4.356 4.109 3.957 2.280
PSNR 36.910 36.322 37.130 37.225 41.932
SSIM 0.9195 0.9397 0.9480 0.9468 0.9475

ERGAS 16.58 17.60 16.64 15.89 9.79

The best results are indicated by boldface numbers.

channels ranging from 400 nm to 700 nm at a wavelength interval of 10 nm.

2.4.1.2 Chikusei dataset

The Chikusei dataset is an airborne hyperspectral scene acquired by a Visible
and Near-Infrared imaging sensor over agricultural and urban regions in Chikusei,
Ibaraki, Japan. The scene consists of 2517 ˆ 2335 pixels with a ground sampling
distance of 2.5 m, over 128 spectral channels ranging from 363 nm to 1018 nm. The
black boundaries in the spatial domain were removed, leading to a scene of size
2048 ˆ 2048 pixels.

The HIs of the two datasets were scaled to the range r0, 1s, and then used as
ground truths for x. The observations y were generated by using the blurring kernels
H and corrupted with a white Gaussian noise n with standard deviation σ, with H

and σ defined as follows; see FIGURE 2.4:
(a) 9ˆ9 Gaussian kernel with bandwidth 2, and σ“0.01;

(b) 13ˆ13 Gaussian kernel with bandwidth 3, and σ“0.01;

(c) 9ˆ9 Gaussian kernel with bandwidth 2, and σ“0.03;
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(d) Circle kernel with diameter 7, and σ “ 0.01;

(e) Motion kernel from [Levin 2009] of size 13ˆ13, and σ “ 0.01;
(f) Square kernel with side length 5, and σ “ 0.01.

Note these kernels are used in the steps (2.21), but not in the training of B3DDN.
Following the previous learning-based methods for hyperspectral imaging [Wang 2021,
Xie 2020], the first 20 images were selected from the CAVE dataset for training
and the remaining 12 images were used for the test. For the Chikusei dataset, a
1024ˆ2048 sub-image was extracted from the top area of the image for training while
the remaining part was cropped into 32 non-overlapping 256 ˆ 256 ˆ 128 sub-images
that were used as test data.

2.4.1.3 Implementation details

We implemented the proposed blind denoising network B3DDN with PyTorch
framework. The Adam optimizer [Kingma 2014a] with an initial learning rate 0.0002
and batch size 64 was used to minimize the loss function (2.25) with 500 epochs.
The weights were initialized by the method in [He 2015]. At every epoch of the
training stage, each original HI was randomly cropped into 128 and 512 patches of
size 64ˆ64 respectively for the CAVE and the Chikusei datasets, and each patch
was then randomly rotated or flipped once for data augmentation purposes. We used
empirical methods to determine the learning rate, batch size, and parameters used in
data augmentation. To train the B3DDN blindly, we added an i.i.d. Gaussian noise
with random standard deviation in the range Σ “ r0.2, 10s to each patch.

Once the denoiser was trained, assuming that the statistics of the test images
differed from the training images, we plugged the B3DDN into the ADMM. Since the
computational complexity of 3D discrete correlation in (2.17) can be high (OpL2N2q),
we used the fast Fourier transform (OpLN log pLNqq) to compute it. Step (2.21)
was also efficiently computed in the Fourier domain. For the golden-section search
method and the stopping criterion presented in Subsection 2.3.2, we set a “ 0,
b “ 10, ε “ 0.001 and ζ “ 0.0002. Note that the performance of our algorithm is not
sensitive to the settings of Σ, a, b, ε, and ζ, as these parameters only pertain to the
approximate range and accuracy of σk, ρk, and K. The parameters σk, ρk, and K
are either determined by a measure of 3D residual whiteness or implicitly learned by
the B3DDN.

2.4.2 Quantitative metrics and baselines

In order to evaluate the quality of the deconvolution result xX by comparing it
with the ground truth of X, we considered four quantitative metrics. The first one
is the Root Mean-Square Error (RMSE), defined as

RMSE “

g
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which measures the similarities between the deconvolution image and the reference
image. A lower RMSE value indicates better quality. The second metric is the
Peak-Signal-to-Noise-Ratio (PSNR):

PSNR “
1

L

L
ÿ

i“1

10 log10

˜

L maxpXiq
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›xXi ´ Xi

›

›
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¸

,

which measures the quality of the deconvolution image compared to the original
image. The higher the PSNR, the better the quality. The third metric is the average
of Structural SIMilarity (SSIM) [Wang 2004], averaged over all channels of xX and
X, i.e.,

SSIM “
1

L

L
ÿ

i“1

p2µ
xXi
µXi ` C1qp2σ

xXiXi
` C2q

pµ
xXi

` µXi ` C1qpσ
xXi

` σXi ` C2q
,

where µ
xXi

and µXi are the mean values of images xXi and Xi, σ
xXi

and σXi are

the standard deviations of xXi and Xi, σ
xXiXi

is the covariance of xXi and Xi,
and C1 ą 0 and C2 ą 0 are constants. The SSIM is an indicator of the spatial
structure preservation of the deconvolution image. A higher SSIM value indicates
better spatial structure preservation. The last metric is the Erreur Relative Globale
Adimensionnelle de Synthèse (ERGAS) [Wald 2000] defined as

ERGAS “ 100
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which characterizes the overall quality of the deconvolution image. A smaller ERGAS
means a better result.

We compared our method with three HID methods of reference: hyper-laplacian
priors (HLP) [Krishnan 2009a], spatial and spectral priors (SSP) [Henrot 2012],
weighted low-rank tensor recovery (WLRTR) [Chang 2020], 3D fractional total
variation (3DFTV) [Guo 2021], each with well-designed regularizers. The HLP
considers spatial gradient priors, i.e., the hyper-Laplacian priors of images. The SSP
exploits both the spatial and spectral smoothness priors of hyperspectral images.
The WLRTR simultaneously captures non-local similarity within spectral-spatial
cubic and spectral correlation by a low-rank tensor recovery model. The 3DFTV
exploits both the local and non-local smoothness of images in all dimensions. We
used the codes provided by the authors of these methods and downloaded them,
and we tuned their parameters by following the rules as stated in the corresponding
papers to achieve the best deconvolution performance.

2.4.3 Performance evaluation on simulated data

We start validating the tuning-free scheme with the CAVE dataset by demons-
trating its effectiveness in terms of HID performance over the other methods.
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Table 2.2 – RMSE, PSNR, SSIM and ERGAS of the different methods applied to
the Chikusei dataset in the 6 blurring scenarios.

Scenarios Metrics HLP SSP WLRTR 3DFTV Proposed

(a)

RMSE 3.233 3.050 3.138 3.207 2.560
PSNR 38.979 40.182 40.051 39.546 41.032
SSIM 0.9124 0.9334 0.9267 0.9171 0.9420

ERGAS 32.25 28.13 25.29 35.37 27.87

(b)

RMSE 3.945 3.819 4.091 4.037 3.428
PSNR 37.604 38.392 37.872 37.708 38.989
SSIM 0.8822 0.9016 0.8871 0.8819 0.9091

ERGAS 35.30 32.40 31.45 39.85 30.92

(c)

RMSE 7.094 3.506 3.777 3.662 3.413
PSNR 31.391 37.942 37.447 37.756 37.934
SSIM 0.6268 0.8839 0.8816 0.8841 0.8783

ERGAS 90.14 50.26 39.95 48.15 51.38

(d)

RMSE 3.361 2.879 2.890 3.076 2.335
PSNR 39.122 40.625 40.724 39.900 41.290
SSIM 0.9148 0.9399 0.9364 0.9228 0.9430

ERGAS 32.76 27.22 23.73 34.59 32.56

(e)

RMSE 2.960 2.436 2.790 2.797 1.995
PSNR 39.127 41.869 41.025 40.574 42.207
SSIM 0.9147 0.9558 0.9408 0.9338 0.9507

ERGAS 35.79 25.42 23.09 33.56 36.06

(f)

RMSE 2.990 2.688 2.691 2.913 2.148
PSNR 39.352 41.174 41.313 40.334 41.971
SSIM 0.9188 3 0.9456 0.9438 0.9295 0.9506

ERGAS 32.68 26.19 22.46 33.74 30.62

The best performance results are indicated by boldface numbers.
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Figure 2.5 – Visual results for all methods with the blurring scenario (d) applied to
the Chikusei dataset. The first and second rows present the results for two different
images. The false color images were generated for clear visualization with the 122nd,
84th and 57th channels used for red, green and blue, respectively.

Figure 2.6 – RMSE convergence mean curves (blue) of our method with the CAVE
dataset and blurring scenarios (a), (b) and (c). Red lines represent the iteration
number given by the proposed stopping criterion.

Figure 2.7 – Estimated penalty parameters ρk as a function of iteration index k,
for different images of the CAVE dataset and blurring scenarios (a), (b) and (c).
Lines with different colors refer to different test images.

TABLE 2.1 reports the average values and standard deviations of RMSE, PSNR,
SSIM and ERGAS. For all blurring scenarios, one can observe that our method
outperformed all competing methods in terms of performance and robustness. For
quality comparison, consider scenario (a) for example. FIGURE 2.3 provides the
blurred image, deblurred images, ground truth of real and fake peppers (first row) and
superballs (second row) from the CAVE dataset. Visually, our method provides more
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details, including sharper edges and more vivid gloss. This confirms the effectiveness
of the proposed method in recovering the spatial information of the latent clear HIs.

We now evaluate the proposed method on remotely sensed data: the Chikusei
dataset. This dataset, with more spectral bands, allows us to analyze how our method
exploits spectral information. The mean and variance of the numerical results for
all methods in 6 blurring scenarios are provided in TABLE 2.2. It can be observed
that the quantitative metrics of our method surpass the other competing methods in
most cases. FIGURE 2.5 displays the visual results. As can be seen, the proposed
method provides results with clearer and sharper visual effects compared to the other
methods. This illustrates the superiority of our method in recovering the latent HIs
with more spectral bands.

2.4.3.1 Convergence illustration

In many Plug-and-Play algorithms for inverse imaging problems, the ADMM
is widely used as a variable splitting technique. In some works, the convergence of
Plug-and-Play schemes based on some linear denoisers, including Non-Local Means
(NLM) [Sreehari 2016] and Gaussian Mixture Model (GMM) [Teodoro 2017], has
been proved theoretically. It is difficult to prove the convergence of our method as
the B3DDN denoiser involves several non-linear operators. In practice, however, as
illustrated below, we observed that the proposed deconvolution framework shows
good convergence behavior.

FIGURE 2.6 provides the mean RMSE curves of our algorithm obtained for the
CAVE dataset in the case of scenarios (a), (b) and (c). It can be observed that the
algorithm, even with its nonlinear B3DDN denoiser, exhibits a stable and robust
convergence behavior independently of the blurring kernel and noise level. Moreover,
a low mean RMSE value was reached after few iterations, which indicates that early
stopping can be considered to limit computation time.

2.4.3.2 Behavior with respect to Plug-and-Play internal parameter esti-
mation

Deep priors that capture both the spatial context and spectral correlations of the
latent clean HIs mainly contribute to the effectiveness of our method. But the internal
parameter setting procedure and the stopping criterion also play a crucial role in
achieving satisfactory performance by yielding a good balance with the contribution
of deep priors. In contrast, observe that the automatic setting of the regularization
parameters is not implemented by the other competing methods during test.

FIGURE 2.7 shows how the penalty parameter varies along with the iterations, for
different images of the CAVE dataset, and for scenarios (a), (b), and (c). According
to the Plug-and-Play principle, the estimated noise level σk is assumed to decrease
along with the iterations, as the reconstructed image converges to a desired point.
Therefore, the penalty parameter ρk “ η{σ2k is expected to increase [Zhang 2021]. As
can be seen on FIGURE 2.7, parameter ρ changes coincide with this trend for almost



2.4. Experiments 33

Figure 2.8 – Blurred images, reference images and visual results for all methods on
the real-world dataset. The false color images were generated for clear visualization
with the 38th, 24th and 10th channels used for red, green and blue, respectively.

all test images. FIGURE 2.6 shows the number of iterations K for scenarios (a), (b)
and (c). It can be observed that our stopping criterion automatically interrupts the
Plug-and-Play algorithm when it has nearly converged, which contributes to save
computation time.

2.4.4 Performance evaluation on real-world data

To validate the effectiveness of our method in real-world conditions, we collected
six unfocused HIs and the corresponding focused images for different indoor and
outdoor scenes. Specifically, as illustrated in FIGURE 2.9, the HIs of the indoor
scenes were recorded under controlled illuminations while the outdoor HIs were
captured under normal daylight illumination. To fully capture the complex blurs
caused by the imaging system, our dataset was elaborated to address hyperspectral
deconvolution problem with respect to defocus. In particular, blurred images were
obtained by making the camera out of focus while clear references were also captured



34 Chapter 2. Tuning-free Plug-and-Play HID with deep priors

Figure 2.9 – Indoor (left) and outdoor (right) experimental setups for collecting
real data.

Figure 2.10 – Estimated blurring kernels in the 10th, 20th, 30th and 40th channels
of the blurred images fruit (first row) and bicycle (second row) of the real-world
dataset.

by focusing the camera. We captured these images with the GaiaField systems (see
details in [Zhao 2019]) of our laboratory at Northwestern Polytechnical University.
The GaiaField (Jiangsu Dualix Spectral Image Technology Co. Ltd., GaiaField-V10)
is a push-broom imaging spectrometer with an HSIA-OL50 lens, covering the visible
and NIR wavelengths ranging from 373.70 to 1000.90 nm, with a spectral resolution
of 4.6 nm (129 channels in total). The spatial resolution of the images is 780 ˆ 696

pixels.
For all acquired images, we conducted a pre-processing procedure as described

in [Simões 2015]. First, we removed over-noisy and over-exposed bands. We got 45
exploitable bands, which were normalized such that the 0.999 intensity quantile
corresponded to the value 1. Then, all HIs were denoised using the approach described
in [Roger 1996] to enhance images. Blurred images and their clear counterparts are
illustrated in the first and second columns of FIGURE 2.8, respectively. Note that
these image pairs are not strictly aligned due to multiple factors affecting the camera
mounting. The clear images were used for visual comparisons only. The blurring
kernel in each channel was estimated using the method described in [Krishnan 2011].
For illustration purposes, FIGURE 2.10 shows the kernels in the 10th, 20th, 30th
and 40th channels of the blurred images fruit and bicycle. For all experiments, we
added an i.i.d. Gaussian noise to the blurred images, with a signal-to-noise ratio
(SNR) set to 40 dB.

In real-world HID scenarios, no ground truth is available for training the B3DDN.
Benefiting from the flexibility of the B3DDN in denoising HIs of various origins
with distinct numbers of spectral bands, in this experiment we used the network
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Table 2.3 – Time consuming of all compared methods for the blurred image fruit
of the real-world dataset.

HLP SSP WLRTR 3DFTV Proposed

Time (sec) 9.7 622.5 10501.2 6044.4 4280.6

parameters ΘpΣq learned with the CAVE dataset (31 spectral bands). FIGURE 2.8
shows the deblurred images obtained with all the competing algorithms, from columns
3 to 7. It can be seen that our method still performed better, or similarly, in recovering
details compared to HLP, SSP, WLRTR, and 3DFTV, though all competing methods
only achieved limited performance probably due to deviations in estimating kernels.
This demonstrates the applicability of our method in real-world scenarios, as well as
the necessity of further investigating blind hyperspectral deconvolution algorithms.

Finally, we conducted the experiment for evaluating the running time using the
blurred image fruit from our real-world dataset. All the baselines were implemented
using MATLAB while our method was carried out using Python. We conducted
all the experiments on a server with Intel Xeon Gold 6152 CPU, 512-GB random
access memory and NVIDIA Tesla P40 GPU. Time consumption of all the compared
methods is shown in TABLE 2.3. It can be observed that our method achieves the
most competitive deconvolution results with relatively smaller computation time
when compared to WLRTR and 3DFTV.

2.5 Conclusion

In this chapter, we presented a tuning-free HID method based on the Plug-and-
Play framework. Instead of using handcrafted priors, we designed a blind B3DDN
denoiser based on deep learning to learn the spectral-spatial information of hyper-
spectral images from data and plugged it into an ADMM optimizer. The internal
parameters were automatically estimated by a measure of 3D residual whiteness
and learned by the B3DDN during iterations. Experimental results demonstrated
that the proposed method cannot only effectively handle various simulated blurring
settings but can also be applied to real-world scenarios. In the future, we will address
blind HID and computational cost reduction to further enhance the applicability of
our method in real-world scenarios.
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3.1 Introduction

Another degradation phenomenon mentioned in Chapter 1 is that the high
spectral resolution of HIs limits their spatial resolution because of hardware limi-
tations [Shaw 2003]. In contrast, multispectral cameras can achieve a much higher
spatial resolution but over a small number of spectral bands. Consequently, a strategy
to improve the spatial resolution of HIs is to fuse them with MIs of the same scene.
This results in the hyperspectral and multispectral image fusion (HMIF) problem.

Several strategies have been proposed to solve the HMIF problem. These strategies
can be roughly divided into component substitution or multiresolution analysis
methods, matrix or tensor factorization methods, and deep learning approaches.
Component substitution or multiresolution analysis methods aim to substitute some
patterns of the HI, high-frequency ones in particular, by information extracted from
the MI [Yokoya 2012, Liu 2000, Aiazzi 2006]. These techniques employ different
representations of the images, e.g., in the wavelet domain, which are also used for
pansharpening [Vivone 2018, Loncan 2015].
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Subspace-based formulations have become very popular to address HMIF pro-
blems since they significantly reduce their dimensionality [Yokoya 2012, Simões 2015].
They also have a close connection with the widely used linear mixing model [Ke-
shava 2002, Dobigeon 2013], which represents each pixel of an HI as a linear combi-
nation of a small number of spectral signatures. Several subspace-based formulations
have been proposed, often employing prior information about the basis vectors or their
contributions in the decomposition, to improve the results. Examples include sparse
dictionary learning [Wei 2015a, Akhtar 2015] or matrix factorization [Yokoya 2012] ap-
proaches, which can use, e.g., spatial [Simões 2015] and sparse [Kawakami 2011, Lana-
ras 2015] regularizers or patch-level processing [Veganzones 2016]. Efficient algorithms
also convert this problem into solving a Sylvester equation [Wei 2015b]. Some ap-
proaches have considered the manifold structure of the image patches [Zhang 2018b].
Other approaches have explored the representation of HIs and MIs as three dimen-
sional tensors [Kanatsoulis 2018, Li 2018, Prévost 2020]. Low-rank tensor models
have been used to represent the high-resolution images (HRIs), such as the canonical
polyadic decomposition [Kanatsoulis 2018], the Tucker decomposition [Li 2018, Pré-
vost 2020, Borsoi 2021e], and the block term decomposition [Ding 2020].

Deep learning approaches have recently become very popular for HMIF [Li 2022,
Yao 2020, Zhang 2020b]. These approaches leverage the capability of neural net-
works to represent complex signals and images. Early supervised approaches were
based upon classical neural network architectures used in image processing such
as 3D convolutional neural networks (CNN) [Palsson 2017], while more recent me-
thods explore physical acquisition models to design architectures with improved
interpretability [Chen 2022], e.g., incorporating CNN results as priors in model-
based frameworks [Dian 2020, Wang 2021] or using architectures inspired by un-
rolling principle [Xie 2020]. However, the scarcity of training data with ground
truth has motivated the development of unsupervised approaches, that depend
only on the observed HI and MI. Examples include the use of autoencoders with
shared weights [Qu 2018, Liu 2022, Wang 2020c], and approaches based on deep
image priors [Ulyanov 2018], which parameterize the HRI as the output of a
neural network and train the latter using different options for the network in-
puts [Zhang 2020a, Wei 2020b].

Although different strategies have been investigated to solve the HMIF problem,
these methods assume that the observed HI and MI are acquired at the same
time instant and under the same conditions. However, platforms carrying both
hyperspectral and multispectral imaging systems are still limited [Borsoi 2020]. On the
contrary, due to the wider availability of satellites with multispectral sensors, e.g., the
Sentinel, Landsat and Quickbird missions, it has become of great interest to fuse HIs
and MIs acquired at different time instants by different instruments [Yokoya 2017b].
When applied in these realistic conditions, most existing methods suffer from severe
limitations as they ignore variability between the HI and MI. Inter-image variability
includes localized spatial and spectral changes and can occur due to differences
in acquisition conditions caused by, e.g., atmospheric, illumination or seasonal
variations [Borsoi 2021d], as well as abrupt changes [Liu 2019a].
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To tackle this issue, several HMIF frameworks addressing inter-image variability
have been recently proposed [Borsoi 2020, Borsoi 2021e, Prévost 2022, Borsoi 2021a,
Brezini 2021, Camacho 2022, Fu 2021]. A detailed review of these methods is
provided in Section 3.2. These methods formulate the HMIF problem with a key
difference when compared to the original approaches: the HI and the MI are assumed
to be generated from distinct HRIs, which are allowed to be different because of
spatially homogeneous variations [Borsoi 2020, Prévost 2022] or spatially localized
ones [Borsoi 2021e]. However, considering inter-image variability renders the HMIF
problem significantly more ill-posed, which makes the use of appropriate prior
information about the HRIs very important in order to achieve good performance.

Existing HMIF works that consider inter-image variability rely on handcrafted
priors, such as low-rank matrix [Borsoi 2020] or tensor [Borsoi 2021e, Prévost 2022]
decompositions. However, these priors are not adequate to model complex contents
embedded in real HIs. Without considering inter-image variability, this issue has
been addressed in the HMIF problem by exploring the powerful representation
capability of deep learning methods, as noted by various recent works on this topic.
Nevertheless, devising learning-based approaches to address inter-image variability
in HMIF incurs additional challenges, first because very little data is available
for training. Indeed, since inter-image variability originates from complex physical
phenomena, it is difficult to generate realistic synthetic data to be used for training
even if HIs of a single scene are available. This makes learning an end-to-end mapping
from an HI and an MI to the HRIs unfeasible.

Recently, deep image priors [Ulyanov 2018] and plug-and-play strategies [Venkata-
krishnan 2013] have been used to introduce prior information with either pre-trained
or unsupervised neural networks. However, adequately addressing inter-image va-
riability requires considering two different HRIs, underlying the HI and the MI,
respectively. Thus, directly exploiting such strategies to address inter-image variabi-
lity in HMIF is not very effective since: 1) existing strategies in this category would
fail to account for the joint prior information between the two HRIs, and 2) each of
the images can have distinct statistical properties, which makes obtaining adequate
priors more difficult. Moreover, although deep image priors are unsupervised [Ulya-
nov 2018], they require careful setup of the network architecture and the number of
stochastic gradient iterations to produce reasonable results. It must be noted that
these challenges related to the lack of training data and the corresponding difficulty
in learning priors of the scene of interest are also encountered more generally in
HMIF, i.e., even when inter-image variability is not present.

In this chapter, we propose a new image fusion method accounting for inter-
image variability between HIs and MIs which addresses the aforementioned challenges.
First, to adequately represent the image-specific information as well as the joint
prior information between the two HRIs, we propose a mixture distribution that
accounts for the leptokurtic nature of the inter-image variations while, at the same
time, represents complex image content by implicitly exploiting learning-based image
priors. An iteratively reweighted optimization strategy is then proposed, and the
regularization by denoising (RED) [Romano 2017] framework is employed to implicitly
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introduce prior information about the HRIs by means of denoising engines, one for
each latent HRI. The denoisers are trained using a zero-shot strategy [Shocher 2018]
and adapted during the optimization process, which allows them to account for the
content of each individual HRI. The proposed algorithm is called Deep hyperspectral
and multispectral Image Fusion with Inter-image Variability (DIFIV). Experiments on
data with real inter-image variability demonstrate the superiority of DIFIV compared
to other state-of-the-art methods. The contributions of the chapter are summarized
as follows.

— A general imaging model is formulated, where the inter-image variations of
the HRIs are modeled by a hyper-Laplacian distribution to account for the
joint image content, while the image content specific to each HRI is learned
by two distinct deep CNNs.

— To solve the non-convex, non-smooth HMIF optimization problem, a variable
splitting strategy is combined with an iteratively reweighted scheme to tackle
the difficulties introduced by both the hyper-Laplacian and deep priors, which
are defined implicitly based on CNN denoisers under the RED framework.

— We use a zero-shot strategy inspired by [Shocher 2018] to learn the CNN
denoisers based only on the observed HI and MI. Moreover, unlike the original
use of zero-shot methods for single image restoration, the denoisers are
trained iteratively during the optimization process based on the currently
estimated HRIs. This allows the learned priors to represent the individual
information in each of the HRIs adaptively while incorporating at the same
time information from both low resolution images as the method converges.
Furthermore, the architecture of CNNs is made lightweight by considering
separable convolutions and a low-rank representation of HIs to yield a small
number of network parameters.

The chapter is organized as follows. In Section 3.2, the HI and MI observation
processes are presented, as well as a review of recent methods considering inter-image
variability. Section 3.3 formulates a new model and introduces the proposed method.
Experimental results with data containing real inter-image variability are given in
Section 3.4. Finally, Section 3.5 concludes the chapter.

3.2 Image Fusion with Inter-image Variability

Let us denote an HI with Lh bands and N pixels by Yh P RLhˆN , and an MI
with Lm bands and M pixels by Ym P RLmˆM , where Lm ă Lh and N ă M .
These images are assumed to be degraded versions of a pair of underlying HRIs
Xh P RLhˆM and Xm P RLhˆM with high spatial and spectral resolutions, which
are related according to the following model:

Yh “ XhFD ` Nh ,

Ym “ RXm ` Nm ,
(3.1)
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Figure 3.1 – Top panel: Overall illustration of the proposed Deep hyperspectral
and multispectral Image Fusion with Inter-image Variability (DIFIV) method: the
HRIs underlying the HI and MI (Xh and Xm) are initialized (Init.), with interpola-
tions of observed images (Yh and Ym), and then used to compute the inter-image
variability weighting term W and to update the CNN-based denoisers; afterward,
these are used to re-compute the HRIs using a conjugate-gradient based algorithm;

this process is repeated iteratively until convergence. Bottom panel: The neural
network architecture of our CNN-based denoising engine (S-Conv, BN, and ReLU
stand for separable convolution, batch normalization and rectified linear unit layers,
respectively).
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in which matrices F P RMˆM and D P RMˆN represent optical blurring and
spatial downsampling occurring at the hyperspectral sensor, respectively; The matrix
R P RLmˆLh contains the spectral response functions (SRF) of the multispectral
instrument, and Nh P RLhˆN and Nm P RLmˆM denote additive noises.

In this setting, the image fusion problem consists of recovering the HRIs Xh and
Xm given the observations Yh and Ym. Most of the previous methods consider that
Yh and Ym are degraded from the same source, i.e., Xh “ Xm, which intrinsically
assumes that they are acquired under the same conditions, e.g., by sensors on board
a single satellite. However, due to the wider availability of satellites equipped with
multispectral sensors, it is of great interest to fuse HIs and MIs acquired by different
instruments at different time instants [Yokoya 2017b]. In that case, by assuming that
Xh “ Xm, most existing methods ignore variabilities between the HI and MI, which
can occur due to differences in acquisition conditions caused by, e.g., atmospheric,
illumination or seasonal variations [Borsoi 2021d], or abrupt changes [Liu 2019a].

Recently, image fusion frameworks addressing inter-image variability have been
proposed in [Borsoi 2020, Borsoi 2021e, Prévost 2022, Borsoi 2021a, Brezini 2021,
Camacho 2022, Fu 2021]. Such methods estimate both HRIs Xh and Xm by using
different assumptions to model both the images and the inter-image changes. The
first method to address this problem was FuVar [Borsoi 2020]. It considers that the
HRIs satisfy the linear mixing model (LMM) [Keshava 2002], but with a distinct set
of spectral basis vectors for each image:

Xh “ MhA , Xm “ MmA , (3.2)

where Mh and Mm P RLhˆR denote the set of spectral basis vectors related to the
HI and MI, respectively, and A P RRˆM their corresponding spatial coefficients. Note
that Mh and Mm are associated with the spectral signatures of the pure materials
(i.e., the endmembers) in the HI and MI, respectively. FuVar considers Mh and Mm

to be related to one another through a set of smooth multiplicative scaling factors
Φ P RLhˆR [Imbiriba 2018]:

Mm “ Mh d Φ , (3.3)

where d denotes the Hadamard product. Thus, this model successfully accounts for
changes in the spectral signatures of the endmembers between the HI and the MI,
which can occur when the materials are affected by seasonal variations or when the
MI is affected by uniform changes caused by, e.g., different illumination conditions.
However, the coefficients A shared by both images limit the capability of FuVar to
represent inter-image changes in the spatial domain.

This limitation has been addressed by considering spatially and spectrally lo-
calized inter-image variations through an additive model in a tensor-based frame-
work [Borsoi 2021e]. This latter work considers a model of the form:

Xh , Xm “ Xh ` Ψ , (3.4)

where Ψ P RLhˆM denotes a set of additive variability factors. Both the HRI
Xh and the variability Ψ are assumed to admit a Tucker tensor decomposition
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with low multilinear ranks [Sidiropoulos 2017]. This reduces the dimensionality of
the problem and allows theoretical identifiability and recovery guarantees to be
obtained [Borsoi 2021e].

A related work proposes to jointly address the image fusion and hyperspectral
unmixing problems in the presence of inter-image spectral variability [Prévost 2022].
This consists of the recovery of both the HRIs and the spectral signatures of the
endmembers and their abundances. An LL1 tensor model is considered, which is
closely related to the LMM in (3.2) but involves an additional low-rank assumption
on the coefficient maps A that allows theoretical identifiability results to be derived.
Other works propose to consider intra-image variability by extending the LMM to
consider spatial endmember variability, i.e., variability within a single image [Bre-
zini 2021, Camacho 2022]. Another work considers a robust version of the data
fidelity term related to the MI in the cost function to reduce the impact of possible
changes or outliers in the image fusion process [Fu 2021]. However, these methods
still assume that the HRIs underlying the HI and the MI are equal.

Despite the success of these approaches in addressing the inter-image variability
problem, they all rely on handcrafted priors for the HR images Xh and Xh, which
limits their capability of representing realistic and complex image content. In this
work, we propose an image fusion method that leverages the expressive power of
CNNs in order to construct accurate image priors for the HRIs while accounting for
inter-image variability, as detailed in the following section.

3.3 Proposed method

The proposed image fusion method is based on three important axes/contributions:
1) an imaging model that incorporates inter-image variability with learned image
priors, 2) an optimization scheme that can handle these flexible penalties, 3) a
lightweight unsupervised (zero-shot) scheme to iteratively learn deep priors of the
latent HRIs during the reconstruction process. The proposed image fusion method is
presented through four steps. First, we present the imaging model in Subsection 3.3.1
and formulate the optimization problem. In Subsection 3.3.2 we describe an itera-
tively reweighted scheme to optimize the cost function. The optimization steps, as
well as the integration of deep priors, are described in Subsection 3.3.3. We then
address the design of CNN architecture and its image-adapted training strategy in
Subsection 3.3.4. An overall illustration of the proposed DIFIV method is shown in
FIGURE 3.1.

3.3.1 The imaging model

Using a probabilistic framework, the HMIF problem can be formulated as the
recovery of the mean or mode of the posterior probability density function (PDF)
ppXh,Xm|Yh,Ymq of both HRIs given the LR observations. Using Bayes theorem,
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this PDF can be written as:

ppXh,Xm|Yh,Ymq 9 ppYh|XhqppYm|XmqppXm,Xhq , (3.5)

where we assumed the HI and MI to be conditionally independent given their
high-resolution counterparts.

The likelihoods of the observed images Yh and Ym can be written according
to their data generation process in (3.1). More precisely, assuming the elements
of Nh and Nm to be i.i.d. Gaussian random variables with variance σ2h and σ2m,
respectively, the conditional distributions of Y m and Y n in (3.5) are given by:

ppYh|Xhq “ MN pXhFD, σ2hILh
, IN q , (3.6)

ppYm|Xmq “ MN pRXm, σ
2
mILm , IM q , (3.7)

where MN pΥ,Σr,Σcq denotes the matrix normal distribution with mean matrix Υ

and row and column covariance matrices Σr and Σc, respectively [Wei 2015b].
The challenging question concerns how to meaningfully define the joint prior

ppXm,Xhq for both HRIs. This question is not trivial when the images differ due to
acquisition conditions or seasonal variations. A simplistic possibility is to consider
the images to be independent and to use priors used for super-resolution without
variability, such as low-rank matrix and tensor models [Yokoya 2012, Kanatsoulis 2018,
Prévost 2019], piecewise-smoothness [Simões 2015] or learned deep priors [Wang 2021,
Dian 2020, Wang 2022b]. However, the images Xm and Xh are observations of the
same scene, and thus are strongly dependent. Considering this, we can state the
following desirable properties for ppXm,Xhq:

— Apart from possible smooth inter-image variations (such as, e.g., illumination
or atmospheric changes, which tend to impact the images uniformly [Bor-
soi 2021d]), changes between Xm and Xh are generally small and sparse;
high magnitude changes are concentrated in a relatively small number of
pixels and bands [Liu 2019a].

— The prior should promote images Xm and Xh which are statistically similar
to real hyperspectral images (e.g., they can be well represented by learned
priors).

To achieve the above desiderata, we consider a mixture distribution, given by:

log ppXm,Xhq 9 ´
ηp
2

ÿ

ℓ,n

ˇ

ˇδ
pℓ,nq

h ´ δpℓ,nq
m

ˇ

ˇ

p

´ ηmϕmpXmq ´ ηhϕhpXhq , (3.8)

for 0 ă p ď 1, where δ
pℓ,nq

h and δ
pℓ,nq
m denote the pℓ, nq-th locations of a high-

pass spatio-spectral filtered version of Xh and Xm, which are denoted by ∆h and
∆m, respectively. We assume this filtering to be computed through an operator G
satisfying ∆h “ GpXhq, ∆m “ GpXmq, and in vector form as vecp∆hq “ G vecpXhq

and vecp∆mq “ G vecpXmq where G is the matrix form of G. One natural example
for G is the spatio-spectral gradient operator, e.g. Laplacian filter. Parameters ηp,
ηm and ηh are regularization parameters.
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The first term with 0 ă p ď 1 rather than p “ 2 in (3.8) corresponds to an
i.i.d. hyper-Laplacian distribution for the difference between the filtered HRIs [Krish-
nan 2009b], which has also been previously used to represent the gradient of the HRI
in image fusion [Peng 2021]. This distribution is effective for modeling leptokurtic
(i.e., heavy-tailed) distributions such as images [Krishnan 2009b]. This can represent
an important characteristic of the inter-image changes since these can be restricted
to a comparatively small number of pixels and are concentrated at low-frequency
spatial content [Borsoi 2018]. The functions ϕhp¨q and ϕmp¨q encode prior knowledge
about each HRI, and will be learned implicitly by using deep CNNs.

Note that the prior in (3.8) also corresponds to a model for the inter-image
variability, which can be written as:

Xm “ Xh ` Ψ∆ . (3.9)

What is distinctive in (3.9) when compared to the model in (3.4) is how prior
information is chosen. The prior for the inter-image variability term Ψ∆ cannot be
written in an analytical form; instead, its properties follow from the interactions of
the different terms in (3.8). The first term encourages the inter-image variability
Ψ∆ to have small and sparse gradients. The last two terms employ CNNs that can
incorporate realistic prior information about each of the HRIs, and only constrain
Ψ∆ indirectly through its effect on Xm and Xh.

Given this model, the image fusion problem then consists of finding the HRIs Xh

and Xm which maximize the logarithm of the posterior distribution ppXh,Xm|Yh,Ymq

defined in (3.5). This corresponds to the following optimization problem:

min
Xh,Xm

1

2
}Yh ´ XhFD}2F `

1

2
}Ym ´ RXm}2F

` ηhϕhpXhq ` ηmϕmpXmq

`
ηp
2

}GpXhq ´ GpXmq}pp , (3.10)

where } ¨ }p is the entrywise Lp matrix norm, satisfying }GpXhq ´ GpXmq}
p
p “

ř

ℓ,n

ˇ

ˇδ
pℓ,nq

h ´ δ
pℓ,nq
m

ˇ

ˇ

p. The spatial and spectral priors of Xm and Xh are encoded in
ϕhpXhq and ϕmpXmq, respectively.

3.3.2 An iteratively reweighted update scheme

Optimizing the cost function in (3.10) is challenging. Apart from the image priors
ϕhp¨q and ϕmp¨q that will be defined in the sequel, the inter-image prior term (i.e.,
the last term in (3.10)) is, in general, a non-convex and non-smooth function of both
Xh and Xm, which is not straightforward to optimize. To address this problem, we
consider an iteratively reweighted optimization strategy [Lu 2014, Ammanouil 2014].
First, note that the last term in (3.10) can be written as :

ÿ

ℓ,n

ˇ

ˇδ
pℓ,nq

h ´ δpℓ,nq
m

ˇ

ˇ

p
“
ÿ

ℓ,n

wℓ,n

ˇ

ˇδ
pℓ,nq

h ´ δpℓ,nq
m

ˇ

ˇ

2
, (3.11)
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where the weights wℓ,n are given by

wℓ,n “ |δ
pℓ,nq

h ´ δpℓ,nq
m |p´2 . (3.12)

Since wℓ,n ě 0, (3.11) can be expressed as:

ÿ

ℓ,n

wℓ,n

ˇ

ˇδ
pℓ,nq

h ´ δpℓ,nq
m

ˇ

ˇ

2
“ }W d p∆h ´ ∆mq}2F , (3.13)

where W is a matrix whose pℓ, nq-th entry is given by ?
wℓ,n, and d denotes the

Hadamard product.
When matrix W is fixed given Xh and Xm, (3.13) becomes a quadratic function

of the HRIs, which can be effectively optimized. The nonlinear dependency of W on
Xh and Xm will be resolved by using an iterative strategy: first the cost function is
optimized considering W fixed to obtain Xh and Xm, and afterwards W is updated
according to an approximate version of (3.12) by using the values of Xh and Xm

computed from previous iteration [Lu 2014]. This leads to the following iterative
procedure, which is repeated until convergence:
1) For a fixed W , compute Xh and Xm by solving the following optimization
problem:

min
Xh,Xm,∆h,∆m

1

2
}Yh ´ XhFD}2F `

1

2
}Ym ´ RXm}2F

` ηhϕhpXhq ` ηmϕmpXmq `
ηp
2

}W d p∆h ´ ∆mq}2F (3.14)

s.t. ∆h “ GpXhq, ∆m “ GpXmq .

2) Update the entries of W according to

wℓ,n “
`

|δ
pℓ,nq

h ´ δpℓ,nq
m | ` ε

˘p´2
, (3.15)

where ε ą 0 is a small constant included in (3.12) to ensure the numerical stability
of the algorithm.
3) Return to step 1) and repeat until convergence.

This strategy is efficient in solving sparsity-regularized optimization problems [Dau-
bechies 2010]. Moreover, iteratively reweighted optimization schemes have been shown
to converge to a local stationary point under relatively mild conditions [Lu 2014].
The main limitation of this scheme is the assumption that |δ

pℓ,nq

h ´δ
pℓ,nq
m |2´p (which is

equal to wℓ,n
´1) is nonzero, though this limitation is addressed in (3.15) with ε. When

this expression approaches zero during optimization, wℓ,n becomes excessively large,
causing the term |δ

pℓ,nq

h ´δ
pℓ,nq
m |2 in the cost function (3.14) to approach zero. Neverthe-

less, despite this limitation, it has been employed for sparse unmixing [Zhang 2018c]
due to the convenience it offers in optimizing the cost function.

In the following subsection, we shall focus on the minimization problem (3.14).
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3.3.3 The optimization problem

Handcrafting powerful regularizers ϕhpXhq and ϕmpXmq along with solving the
associated optimization problems efficiently is not a trivial task. In this subsection,
we propose to learn the image prior directly from the observed data and incorporate it
into the model-based optimization (3.14) to avoid designing regularizers analytically.

First, by introducing two auxiliary variables, Zh “ Xh and Zm “ Xm, pro-
blem (3.14) can be rewritten equivalently as:

min
Ω

1

2
}Yh ´ XhFD}2F `

1

2
}Ym ´ RXm}2F `

ηp
2

}W d p∆h ´ ∆mq}2F

` ηmϕmpZmq ` ηhϕhpZhq (3.16)

s.t. Zh “ Xh , Zm “ Xm , ∆h “ GpXhq , ∆m “ GpXmq ,

where Ω “ tXh,Xm,Zh,Zm,∆h,∆mu. By using the half-quadratic splitting (HQS)
approach [Geman 1995], we can decouple the data fidelity and regularization terms
in (3.16) and write this cost function as:

LρpXh,Xm,Zh,Zmq “
1

2
}Yh ´ XhFD}2F `

1

2
}Ym ´ RXm}2F

`
ηp
2

}W d pGpXhq ´ GpXmqq}2F

`
ρ

2
}Xm ´ Zm}2F `

ρ

2
}Xh ´ Zh}2F (3.17)

` ηmϕmpZmq ` ηhϕhpZhq ,

with ρ P R` the penalty parameter. In the following, we consider a block coordinate
descent (BCD) strategy and minimize Lρ with respect to each variable, one at a
time.

Optimization w.r.t. Xh: This optimization problem can be written as:

min
Xh

1

2
}Yh ´ XhFD}2F `

ηp
2

}W d pGpXhq ´ GpXmqq}2F

`
ρ

2
}Xh ´ Zh}2F . (3.18)

By taking the derivative of the cost function in (3.18), setting it equal to zero and
using the vectorization property of matrix products, we obtain:

´
“

pFDqJ b I
‰J
´

vecpYhq ´
“

pFDqJ b I
‰

vecpXhq

¯

` ηpG
J DiagpvecpW qq2G

`

vecpXh ´ Xmq
˘

` ρ vecpXh ´ Zhq “ 0 . (3.19)

Using the properties of the Kronecker product, this equation can be written as:
´

“

pFDqpFDqJ b I
‰

` ηpG
J DiagpvecpW qq2G ` ρI

¯

vecpXhq

“
“

pFDqJ b I
‰J

vecpYhq ` ηpG
J DiagpvecpW qq2G vecpXmq

` ρ vecpZhq , (3.20)
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which is a linear system of equations. However, solving this system directly is
prohibitive due to its large dimension. Since the matrix on the left-hand side is
symmetric positive-definite, we propose to solve this problem using the conjugate
gradient (CG) algorithm, which requires only matrix-vector products that can be
implemented implicitly and more efficiently.

Optimization w.r.t. Xm: This optimization problem can be written as:

min
Xm

1

2
}Ym ´ RXm}2F `

ηp
2

}W d pGpXhq ´ GpXmqq}2F

`
ρ

2
}Zm ´ Xm}2F . (3.21)

Following the same steps as for problem (3.18), we obtain:
´

“

I b RJR
‰

` ηpG
J DiagpvecpW qq2G ` ρI

¯

vecpXmq

“
“

I b R
‰J

vecpYmq ` ηpG
J DiagpvecpW qq2G vecpXhq

` ρ vecpZmq . (3.22)

Considering that the matrix on the left-hand side is symmetric positive-definite, the
CG algorithm is used to solve this problem.

Optimization w.r.t. Zh: This optimization problem can be written as:

min
Zh

ρ

2
}Zh ´ Xh}2F ` ηhϕhpZhq . (3.23)

As discussed above, designing accurate handcrafted regularizers for ϕhpZhq may
be complicated. To address this issue efficiently, we propose to use a strategy that
leverages a CNN denoiser. Popular strategies are the Plug-and-Play framework [Venka-
takrishnan 2013] and the Regularization by Denoising (RED) scheme [Romano 2017].
In this work, we consider the RED strategy since it is associated with an explicit
optimization objective and because it was experimentally shown in [Romano 2017]
to have more stable convergence and robustness in relation to the selection of hyper-
parameters when compared to Plug-and-Play methods. Consider denoising an HI
Z, we define the CNN denoiser as Dp¨q. RED framework defines ϕhp¨q as the inner
product between an image and its denoising residual:

ϕhpZq “
1

2
xZ,Z ´ DpZqy , (3.24)

where x¨, ¨y denotes the inner product. This can be interpreted as an image-adaptive
Laplacian regularizer. Using (3.24), the optimization problem (3.23) becomes

min
Zh

ρ

2
}Zh ´ Xh}2F `

ηh
2

xZh,Zh ´ DpZhqy . (3.25)

Taking the derivative of the cost function and setting it to zero, we obtain:

ρpZh ´ Xhq ` ηhpZh ´ DpZhqq “ 0 . (3.26)
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To solve this equation, a fixed-point iterative update is used, leading to the following
recursive update equation:

Z
pi`1q

h “
1

ρ` ηh

`

ρXh ` ηhDpZ
piq
h q

˘

. (3.27)

where Z
piq
h denotes the solution Zh at the i-th iteration.

Optimization w.r.t. Zm: Following the same strategy as above, we obtain:

Zpi`1q
m “

1

ρ` ηm

`

ρXm ` ηmDpZpiq
m q

˘

. (3.28)

Note that we only use a single step for the fixed point iteration in (3.27) and (3.28)
for computational efficiency.

3.3.4 Learning deep priors via image-specific CNNs

Generally, function Dp ¨ q can be any off-the-shelf denoiser. This offers the oppor-
tunity of incorporating a fast CNN denoising engine with powerful prior learning
ability into physical model-based iterative optimization procedure [Chen 2022]. Ho-
wever, there are three main challenges in using CNN denoisers to learn priors for
hyperspectral images in RED or Plug-and-Play frameworks [Dian 2020, Wang 2020a]:
First, there is a limited amount of data available for training; second, there is an
even greater scarcity of labeled training data; third, the noise level of the HRI to be
denoised in (3.27)-(3.28) changes over the BCD iterations as the method converges.
To overcome each of these challenges, we propose a lightweight, unsupervised and
image-specific CNN denoiser, which is detailed in the following.

Lightweight network architecture: To overcome the limited number of avai-
lable data to train efficient CNN denoisers, a lightweight architecture with fewer
parameters needs to be considered in the network design. In this work, two strategies
have been considered to lighten network architecture, namely: 1) dimensionality
reduction of the input image, which reduces the number of CNN filters, and 2)
separable convolutions [Howard 2017], which reduces the filter volume (i.e., the
number of parameters of each filter).

We considered the DnCNN [Zhang 2017a] as a backbone in network design. For
color (i.e., RGB) images, each layer of DnCNN contains 64 filters. Directly using
this network architecture to denoise an HI Z with Lh channels would approximately
lead to the use of 64 ˆ Lh{3 filters in each layer, leading to a very large number
of parameters. This increase in the number of network parameters makes it hard
to train since the amount of training data is usually very limited. Considering
that the spectral channels of Z are highly correlated and contain highly redundant
information, we can assume that there exists a subspace of dimension much lower
than Lh which captures all the information of Z [Wei 2016]. This allows us to write
Z using a low-rank representation as:

Z “ UV , (3.29)
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where U P RLhˆlh plh ! Lh,U
JU “ Iq and V P RlhˆM are the subspace matrix

and the representation coefficients, respectively. Small values of lh correspond to data
description in a low-dimensional space. Employing such dimensionality reduction in
the CNN denoising engine has a core benefit. It decreases the number of filters by a
ratio of lh{Lh in each layer by removing the burden of learning information that is
redundant across spectral channels.

To reduce filter volume, we use separable convolutions to further lighten the
backbone architecture as in [Imamura 2019]. In particular, the core idea of separable
convolution is decomposing a convolution filter with 3ˆ 3ˆ Depth parameters into a
depth-wise filter with 3ˆ 3ˆ 1 parameters and a point-wise filter with 1ˆ 1ˆ Depth
parameters, where Depth is the input depth of this CNN layer. This reduces the
number of parameters by a rate of 1{Depth`1{p3ˆ3q. Thus, the lightweight DnCNN
contains three kinds of operators: 3ˆ3 separable convolution layers (S-Conv), rectified
linear units (ReLU) and batch normalization (BN). ReLU is the activation function
while BN is used to accelerate the training speed. In the network architecture, the
first layer is “S-Conv + ReLU”, the hidden layer is “S-Conv + BN + ReLU” and the
last layer is “S-Conv”. This network architecture is illustrated in the bottom panel of
FIGURE 3.1. Furthermore, we adopt the residual learning strategy in [Zhang 2017a]
to predict the residual image before achieving the estimated clean image.

With these two strategies, the number of network parameters can be significantly
reduced with a ratio of plh{Lhq ˆ p1{Depth` 1{p3 ˆ 3qq, which is key to allowing the
denoising engine to learn a powerful prior from a small training set.

Zero-shot training strategy: In many real-world scenarios, training data with
paired noisy and clean images related to the scene of interest are not available.
Moreover, using synthetic training data or images from different sites may lead to
the so-called domain shift, where the model does not perform well due to differences
between the statistical distribution of training and test data [Dian 2020, Wang 2020a].
Therefore, it is desirable to consider a training strategy that is zero-shot [Glasner 2009,
Shocher 2018], that is, which is unsupervised and uses only the information of the
observed noisy HI and MI pair itself for training.

Thus, we propose to leverage the information inside a single image to train
the CNN denoiser. Natural images have significant information redundancy across
different spatial positions and scales, which has been successfully exploited in single
image restoration algorithms [Glasner 2009]. Consider the CNN-based denoiser
CNNp ¨ ; Θq with network parameters Θ, and an observed noisy image V generated
following the degradation model V “ V # ` N , where N is i.i.d. Gaussian noise
with a standard deviation σ. CNNp ¨ ; Θq. To learn the CNN denoiser CNNp ¨ ; Θq, we
make the important assumption that the set of parameters Θ which allow V # to
be recovered from V , are the same as those which allow CNNp ¨ ; Θq to recover V

from V ` N . This assumption has been used to learn image-adapted CNNs for
super-resolution in [Shocher 2018]. It allow us to train the denoising engine CNNp ¨ ; Θq

using the image pair pV ` N ,V q by minimizing the following ℓ1-norm loss function:

ℓpΘq “ }CNNpV ` N ; Θq ´ V }1 . (3.30)
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Algorithm 3 The Proposed CNN-based denoising engine.
Input: Noisy image Z and subspace dimension lh.
Output: Denoised image DpZq.

Find U and V in (3.29) using the (truncated) SVD of Z.
Optimize Θ by minimizing (3.30) with back-propagation.
Denoise V with Θ as CNNpV ; Θq.
Transform CNNpV ; Θq to DpZq “ U CNNpV ; Θq.

Note that the noisy-clean image pair pV ` N ,V q is generated by adding Gaussian
noise with standard deviation σ to the observation V . We adopted the method
described in [Donoho 1994] to estimate σ in each channel of V . In (3.30), the ℓ1-
norm is used as a loss that is more robust to noise than the ℓ2-norm, found to provide
better performance in image restoration in the literature [Zhao 2016, Wang 2021].

The procedure for learning the proposed CNN-based denoising engine is summa-
rized in Algorithm 3. Note that the training procedure considers the entire image,
V . However, for large images, other learning objectives that decompose the image
into different patches or across multiple scales can provide ways to parallelize the
training procedure, which might reduce the execution times.

Image-specific prior learning: Since there exist some inter-image variations
between V h and V m, we considered to train two independent denoising engines
CNNp ¨ ; Θhq and CNNp ¨ ; Θmq to denoise Zh and Zm, respectively. This leads to different
denoising engines, which can be expressed by substituting D by Dh in (3.27), and by
Dm in (3.28).

In general, the equivalent noise levels of Zh and Zm decrease over the block
coordinate descent (BCD) iterations since the reconstructed images get closer to the
ground truth. Thus, CNNp ¨ ; Θhq and CNNp ¨ ; Θmq should have the ability to tackle
multiple noise levels. To address this issue, we propose a strategy that adaptively
updates network parameters Θh and Θm to learn an image-specific prior at each BCD
iteration. This is performed by re-training CNNp ¨ ; Θhq and CNNp ¨ ; Θmq to denoise the
estimates of the HRIs at the current BCD iteration. To make the algorithm faster,
we consider training CNNp ¨ ; Θhq and CNNp ¨ ; Θmq in the first BCD iteration and then
fine-tune them in all the remaining iterations.

Overall, after overcoming the discussed challenges with the above strategies, the
denoising engine in Algorithm 3 is incorporated into the model-based optimization
procedure described in Subsection 3.3.3. The overall DIFIV strategy is described in
Algorithm 4.

3.4 Experiments

In this section, the effectiveness of the proposed DIFIV method is illustrated
through numerical experiments considering two categories of real data, i.e., observed
images with moderate and significant inter-image variability. The results provided by
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Algorithm 4 Deep Hyperspectral and Multispectral Image Fusion with Inter-image
Variability (DIFIV).
Input: Yh,Ym,F ,D,R, paramters p, ηp, ηh, ηm, ρ.
Output: The estimated high-resolution images pXh, pXm.

Interpolate Yh and Ym as rYh and rYm, respectively.
Initialize Xh “ Zh “ rYh and Xm “ Zm “ rYm.
Initialize W using (3.12).
while stopping criteria are not met do

Calculate Xh by solving (3.20) via CG algorithm.
Calculate Xm by solving (3.22) via CG algorithm.
Update W using (3.12).
Learn deep priors via denoising Zh with Algorithm 3.
Update Zh via (3.27).
Learn deep priors via denoising Zm with Algorithm 3.
Update Zm via (3.28).

the DIFIV method are compared with other state-of-the-art hyperspectral and mul-
tispectral image fusion methods from both quantitative and qualitative perspectives.
The code is made available at https://github.com/xiuheng-wang/DIFIV_release.

3.4.1 Baselines and experimental setup

We compared our method to nine other techniques, namely: the matrix factorization-
based methods HySure [Simões 2015] and CNMF [Yokoya 2012], tensor-based image
fusion methods STEREO [Kanatsoulis 2018] and SCOTT [Prévost 2020], the mul-
tiresolution analysis-based GLPHS algorithm [Aiazzi 2006], and the unsupervised
deep learning based algorithm PAR [Wei 2020b]. We also considered approaches
accounting for inter-image variability, including FuVar [Borsoi 2020], GSFus [Fu 2021]
and CB-STAR [Borsoi 2021e]. In this study, three real data sets with moderate
variability, namely, the Ivanpah Playa, the Lake Isabella and the Lookwood, and
three real data sets with significant variability, namely, the Lake Tahoe A and B, and
the Kern River, were used to evaluate the performance of each method. These data
sets contained one reference HRI Xh and an MI Ym acquired by the AVIRIS and the
Sentinel-2A instruments, respectively, with a pixel of 20m resolution [Borsoi 2020].
The HI and MI contain Lh “ 173 and Lm “ 10 bands, respectively.

For all acquired HRIs Xh, which have the same spatial resolution as the MIs Ym,
a pre-processing procedure as described in [Simões 2015] was performed. Specifically,
spectral bands that were overly noisy or corresponded to water absorption spectral
regions were removed manually, and then all bands of HRIs Xh and MIs Ym were
normalized such that the 0.999 intensity quantile corresponded to the value of 1.
Moreover, all HRIs Xh were denoised using the approach described in [Roger 1996].
To illustrate the existence of the inter-image variability in the considered datasets,
we computed the average absolute difference images 1

Lm

řLm
ℓ“1 |Ympℓ, :q ´ Rpℓ, :qXh|

https://github.com/xiuheng-wang/DIFIV_release
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Ivanpah Playa
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0 0.2 0.4 0.6

Figure 3.2 – Visible representation of the hyperspectral (left panels) and multis-
pectral images (middle panels) with moderate variability used in the experiments
and their inter-image change maps (right panels).

(where the modulus operation | ¨ | is applied elementwise), and displayed them in
Figures 3.2 and 3.3. The observed HIs Yh were generated according to (3.1), where
F was an 8 ˆ 8 Gaussian blurring operator with standard deviation 4 and D a
downsampling operator with the scaling factor 4. The SRF R was acquired from
calibration measurements of the Sentinel-2A instrument and known a priori 1. For
all experiments, Gaussian noise was added to both HIs and MIs to obtain a signal-
to-noise ratio (SNR) of 35 dB. To set up all baselines, we used the code provided by
the authors and tuned all parameters to achieve the best fusion performance.

We implemented the proposed DIFIV method with the CNN-based denoising
engine using the PyTorch framework. The dimension of subspace lh was set to 5

and the number of network layers was set to 8, the first and hidden layers contained
lh ˆ 4 S-Conv operators while the last layer was composed by lh S-Conv operators.
The Adam optimizer [Kingma 2014a] with an initial learning rate 0.0002 was used
to minimize the loss function in (2.25). The numbers of iterations of our DIFIV
method (Algorithm 4) and fix-point updates in (3.27) and (3.28) were set to 20,
1 and 1, which were sufficient to ensure convergence. The weights were initialized
with the method in [He 2015], trained for 10000 epochs in the first iteration, and
fine-tuned for 2000 epochs in the remaining iterations. We set p “ 1.5, ηp “ 0.01 and
ηm “ ηn “ 0.1 for the data with moderate variability. For the data with significant
variability, we set p “ 1.8, ηp “ 0.002 and ηm “ ηn “ 0.01. For the other parameters,
we set ρ “ 0.1 and ε “ 10´6. We used empirical methods to determine the above
parameters. Note the data does not need to be divided for cross-validation since our

1. The SRF can be downloaded online at https://github.com/xiuheng-wang/DIFIV_release.

https://github.com/xiuheng-wang/DIFIV_release
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Lake Tahoe A

Lake Tahoe B

Kern River

0 0.2 0.4 0.6

Figure 3.3 – Visible representation of the hyperspectral (left panels) and multis-
pectral images (middle panels) with significant variability used in the experiments
and their inter-image changes maps (right panels).

CNN-based denoising engine is unsupervised. In the following, the performance of
the methods is compared via Xh only since the HRI corresponding to Ym was not
available in the experiments.

3.4.2 Quality measure and visual assessment

Four quality metrics were considered to evaluate the quality of the fusion result
pXh compared to the ground truth Xh. The first one is the peak signal to noise ratio

(PSNR):

PSNR “
1

Lh

Lh
ÿ

ℓ“1

10 log10

˜

M maxpXhpℓ, :qq2

›

› pXhpℓ, :q ´ Xhpℓ, :q
›

›

2

¸

,

where Xhpℓ, :q and pXhpℓ, :q represent the ℓ-th channel of Xh and pXh, respectively.
The second metric is the Spectral Angle Mapper (SAM):

SAM “
1

M

M
ÿ

m“1

arccos

˜

pX
J

h p:,mqXhp:,mq
›

› pXhp:,mq
›

›

›

›Xhp:,mq
›

›

¸

,

where Xhp:,mq and pXhp:,mq denote the m-th pixel of Xh and pXh, respectively.
The third metric is the ERGAS [Wald 2000], which provides a global statistical
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CNMF GSFus CB-STAR FuVar DIFIV Reference

Figure 3.4 – Visible (top) and infrared (bottom) representation for the estimated
and true versions of the Ivanpah Playa HI.

CNMF GSFus CB-STAR FuVar DIFIV Reference

Figure 3.5 – Visible (top) and infrared (bottom) representation for the estimated
and true versions of the Lake Isabella HI.

measure of the fused image quality, defined as:

ERGAS “
M

N

g

f

f

e

104

Lh

Lh
ÿ

ℓ“1

›

› pXhpℓ, :q ´ Xhpℓ, :q
›

›

2

meanp pXhpℓ, :qq2
.

This metric is the average of the UIQI [Wang 2002] across bands. It evaluates image
distortions including correlation loss and luminance and contrast distortions, and
tends to 1 as pXh tends to Xh.

For the visual assessment of the reconstructed images, we displayed color images
at the visual spectrum (with band image at the wavelength 0.66, 0.56 and 0.45 µm

as red, green and blue channels) and false color images at the infrared spectrum
(with band image at the wavelength 2.20, 1.50 and 0.80 µm as red, green and blue
channels). Due to space limitations, in the following, we only display the results of the
five methods with the best quantitative performances, namely, CNMF, FuVar, GSFus,
CB-STAR and DIFIV. Note that the last four algorithms account for inter-image
variability.

3.4.3 Category 1: Moderate variability

In this category, we evaluated the methods using HI and MI pairs with moderate
variability, including Ivanpah Playa, Lake Isabella and Lockwood.
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CNMF GSFus CB-STAR FuVar DIFIV Reference

Figure 3.6 – Visible (top) and infrared (bottom) representation for the estimated
and true versions of the Lockwood HI.

The first image pair considered in this category was acquired over the area
surrounding Ivanpah Playa with a resolution of 80 ˆ 128 pixels. The second pair
of images, with 80 ˆ 80 pixels, was captured over the Lake Isabella region, while
the third pair of images containing 80 ˆ 100 pixels was acquired near Lockwood.
The visualizations of these three image pairs and their inter-image variability are
shown in FIGURE 3.2. In this category, the HI and MI look visually similar, which
is typical when small differences between acquisition dates are considered (which is
the case for the Lake Isabella and Lockwood images). Nevertheless, slight variations
still exist, as can be seen in the overall color hue of the Ivanpah Playa and Lockwood
images, and in the up part of the Lake Isabella image.

Table 3.1 – Quantitative Results on the Ivanpah Playa HI

Algorithm SAM ERGAS PSNR UIQI
HySure 2.262 2.639 21.923 0.511

CNMF 1.532 2.258 23.729 0.73

GLPHS 2.924 3.139 20.949 0.508

STEREO 29.173 1,643.756 17.744 0.49

SCOTT 41.025 618.314 9.388 0.307

PAR 3.506 2.26 24.011 0.752

FuVar 1.469 1.804 25.622 0.868

GSFus 1.72 1.497 27.264 0.874

CB-STAR 1.91 1.517 27.506 0.875

DIFIV 1.358 1.335 28.283 0.903

SAM, PSNR, ERGAS and UIQI metrics for all methods are reported in tables 3.1
to 3.3. As shown in tables 3.1 and 3.2, DIFIV outperforms all competing methods
in all metrics for the Ivanpah Playa and Lake Isabella images. Moreover, it can be
seen in TABLE 3.3 that DIFIV achieves overall the best results for the Lookwood
data, surpassing the other methods in all metrics except for SAM, where CNMF
yields the best results for this metric. Figures 3.4 to 3.6 illustrate the color and



3.4. Experiments 57

Table 3.2 – Quantitative Results on the Lake Isabella HI

Algorithm SAM ERGAS PSNR UIQI
HySure 3.021 5.363 19.905 0.637

CNMF 2.206 3.414 25.611 0.792

GLPHS 2.755 3.572 25.207 0.793

STEREO 27.859 2,145.707 19.221 0.573

SCOTT 26.281 282.097 8.453 0.076

PAR 7.482 4.044 25.454 0.805

FuVar 2.487 3.234 27.213 0.899

GSFus 2.759 3.787 26.448 0.864

CB-STAR 3.263 3.406 26.556 0.864

DIFIV 2.114 2.323 29.186 0.923

Table 3.3 – Quantitative Results on the Lockwood HI

Algorithm SAM ERGAS PSNR UIQI
HySure 3.384 4.384 22.678 0.881

CNMF 3.243 3.349 26.469 0.857

GLPHS 3.706 3.971 24.704 0.781

STEREO 28.185 883.508 21.079 0.639

SCOTT 20.109 204.538 9.273 0.094

PAR 6.61 4.433 23.634 0.754

FuVar 3.518 3.345 26.509 0.874

GSFus 3.331 3.332 26.329 0.87

CB-STAR 4.137 3.867 25.535 0.805

DIFIV 3.394 2.934 27.307 0.885

false color visualization of the fusion results of several algorithms. Visually, DIFIV
provides the best results in recovering details and spatial reconstructions closest to
the ground truth at both the visual and infrared spectra. Specifically, CNMF and
GSFus introduce artifacts and fail to recover many details while CB-STAR produces
blurry effects and color aberrations. FuVar and DIFIV give similar visual effects,
this demonstrates the efficiency of DIFIV in recovering the spatial information of
the latent HRIs is comparable to FuVar in this category.

3.4.4 Category 2: Significant variability

This category evaluates the performance of the different methods when there is
significant inter-image variability. We consider two image pairs acquired over the
Lake Tahoe area at different time instant, namely, Lake Tahoe A and B. Besides,
an image pair captured over the Kern River scene, which comprises a larger spatial
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CNMF GSFus CB-STAR FuVar DIFIV Reference

Figure 3.7 – Visible (top) and infrared (bottom) representation for the estimated
and true versions of the Lake Tahoe A HI.

CNMF GSFus CB-STAR FuVar DIFIV Reference

Figure 3.8 – Visible (top) and infrared (bottom) representation for the estimated
and true versions of the Lake Tahoe B HI.

CNMF GSFus CB-STAR FuVar DIFIV Reference

Figure 3.9 – Visible (top) and infrared (bottom) representation for the estimated
and true versions of the Kern River HI.
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area, was also considered.

The two Lake Tahoe image pairs contain 100 ˆ 80 pixels, while the Kern River
image pair contains 260ˆ340 pixels. The visualization of these HIs and MIs and their
corresponding inter-image changes maps can be seen in FIGURE 3.3. Significant
variability between the HI and MI can be easily verified in these cases. For the two
Lake Tahoe image pairs in this category, the color hue of the ground and the crop
circles is quite different. Moreover, an island on the lake is not visible in the MI of
Lake Tahoe A. For Lake Tahoe B, the lake in the MI is much larger than that in the
HI. For the Kern River image pair, the river in the MI is narrower, has an upstream
deposit, and shows a darker color in the water area.

The quantitative metrics are reported in tables 3.4, 3.5 and 3.6. As shown in
TABLE 3.4, DIFIV obtains the best results for most metrics for Lake Tahoe A
and only performs slightly worse in terms of SAM compared to GSFus. It can be
observed in TABLE 3.5 and 3.6 that the performance of DIFIV for Lake Tahoe B
and Kern River exceeds those of the competing methods for all metrics. A visual
illustration of the fusion results for Lake Tahoe A and B in color and false color is
displayed in FIGURE 3.7 and FIGURE 3.8. FIGURE 3.9 shows the visualization of
the fusion results for the Kern River dataset. It can be seen that DIFIV reconstructs
more details and produces a color hue closer to the reference images at both visual
and infrared spectral ranges. In particular, CNMF produced many artifacts and
lost some details. GSFus and FuVar generate results with blockiness and ghosting
effects while the results of CB-STAR are blurry and have some color distortions. This
demonstrates the superiority of DIFIV in recovering the latent HRIs when significant
variability exists.

Table 3.4 – Quantitative results on Lake Tahoe A HI

Algorithm SAM ERGAS PSNR UIQI
HySure 10.643 7.775 16.531 0.655

CNMF 12.371 7.514 18.102 0.676

GLPHS 10.803 7.206 18.303 0.701

STEREO 30.605 2,541.149 15.991 0.575

SCOTT 42.839 457.101 9.243 0.215

PAR 15.886 6.065 20.579 0.811

FuVar 8.373 6.545 19.258 0.78

GSFus 6.628 4.376 22.537 0.883

CB-STAR 7.548 3.769 24.165 0.917

DIFIV 6.737 3.706 24.174 0.922
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Table 3.5 – Quantitative results on Lake Tahoe B HI

Algorithm SAM ERGAS PSNR UIQI
HySure 13.458 12.042 11.913 0.235

CNMF 7.954 7.289 16.387 0.428

GLPHS 6.662 4.786 19.824 0.665

STEREO 29.877 7,936.808 15.208 0.463

SCOTT 42.427 491.817 7.504 0.136

PAR 11.787 6.21 21.405 0.728

FuVar 4.688 3.729 21.86 0.79

GSFus 4.182 3.16 23.425 0.826

CB-STAR 3.95 2.597 25.221 0.881

DIFIV 3.265 2.396 25.834 0.899

Table 3.6 – Quantitative results on Kern River HI

Algorithm SAM ERGAS PSNR UIQI
HySure 9.094 8.933 21.717 0.442

CNMF 5.851 8.471 22.853 0.356

GLPHS 8.231 7.279 24.19 0.492

STEREO 30.337 636.136 22.568 0.45

SCOTT 27.652 220.14 13.239 0.045

PAR 11.695 6.742 28 0.739

FuVar 4.654 5.144 28.335 0.797

GSFus 5.037 4.243 29.404 0.785

CB-STAR 5.298 5.004 28.884 0.729

DIFIV 3.412 3.734 31.506 0.852

3.4.5 Parameter sensitivity and computational cost

In this subsection, we study the sensitivity of DIFIV to the choice of values
for regularization parameters ηp, ηh, ηm. Considering the Ivanpah Playa scene as an
example, we varied each parameter individually while keeping the remaining ones
fixed at the values described in Subsection 3.4.1. The PSNR values of the fusion
results as a function of the ratio log10pη{ηoptq are shown in FIGURE 3.10, where
ηopt is the empirically selected value of the corresponding parameters. The PSNR
values of two selected competing methods (CB-STAR and GSFus) are also shown
for reference. It can be observed that varying parameters of DIFIV even by various
orders of magnitude only leads to moderate variations of PSNR values, which are
consistently higher than that of the competing methods. Moreover, the parameters
of GSFus and CB-STAR were adjusted to provide the best performance in each
example, and their performance would likewise degrade if their parameters move away
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3.5 Conclusion

This chapter presented an unsupervised deep learning-based HMIF method
accounting for inter-image variability. We first formulated a new imaging model
considering both the joint as well as the image-specific priors related to the two latent
HRIs. The inter-image variations were modeled using a hyper-Laplacian distribution,
while the image-specific priors of the latent HRIs were defined implicitly by deep
denoising engines. An iteratively reweighted scheme was then investigated to solve
the non-convex cost function and tackle the joint image prior term. The optimization
problem was solved using a variable splitting strategy, and the deep image priors
were implemented by means of CNN-based denoising operations. A lightweight,
image-specific CNN-based denoiser with a zero-shot training strategy was designed.
The network parameters were iteratively updated during the optimization procedure
in order to adapt to variations in the statistical properties of the estimated HRIs
as the method converged. The proposed method achieved superior experimental
performance in the presence of both moderate and significant inter-image variability
when compared to state-of-the-art approaches.
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Context

The challenges associated with the appropriate design of methods incorporating
machine learning and physical modeling are also present in other applications,
particularly in detecting changepoints in time series. Moreover, the CPD task also
involves additional challenges, including the need to tackle streaming data, real-time
processing, and low memory usage. A typical physics-based modeling of the changes
in data distributions involves estimating changes in the parameters of a family of
probability density functions (PDFs) representing the data.

In Part II, we investigate the integration of advanced machine learning tech-
niques, including neural networks and Riemannian stochastic optimization, with
the learning objectives derived by taking inspiration from physics-based models.
Without relying on any prior knowledge regarding the underlying data distribution,
we apply joint modeling and learning approaches to address different challenges
of the non-parametric CPD problem in streaming Euclidean data, data lying on
Riemannian manifolds, and manifold-valued data over graphs.

We begin by leveraging deep learning to detect changepoints in streaming Eu-
clidean data in Chapter 4. We present a novel approach for joint modeling and
learning, employing an online neural network-based method to estimate the density
ratio between current and reference windows within a data stream. Our method
utilizes a variational continual learning framework to facilitate online training of the
neural network while preserving information gleaned from previous data instances.
As a result, we establish a statistically-grounded, fully non-parametric framework
for detecting changepoints within streaming data.

Chapter 5 moves on to introduce the CPD on Riemannian manifolds, which is
a more challenging setting compared to the Euclidean case due to the nonlinear
geometry involved and the lack of a vector space structure. We present an algorithm
that integrates modeling and learning for non-parametric online CPD in data streams
with manifold-valued measurements. This algorithm tracks the generalized Karcher
mean of the data, calculated through stochastic Riemannian optimization. Theoretical
bounds on the performance metrics of detection and false alarm rates are derived,
leveraging a novel result concerning the non-asymptotic convergence of stochastic
Riemannian gradient descent. Furthermore, we demonstrate the efficacy of our
algorithm on two distinct manifolds.

Finally, in Chapter 6 we extend the CPD algorithm presented in Chapter 5 to
process the streaming manifold-valued data over graphs. Our approach integrates a
local test statistic at each node to handle the inherent geometry of data lying on a
Riemannian manifold, along with a fully distributed graph filter that incorporates
network topology information. This integration leads to notable improvements in
the detection of changes occurring within unknown network communities.
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4.1 Introduction

Numerous approaches have been proposed to perform CPD. Depending on
whether prior information on data distributions is available, recent CPD approaches
can be roughly divided into parametric and non-parametric strategies. Parametric
ones rely on model assumptions describing the probability density function (PDF) of
the data before and after an abrupt change. Examples of parametric CPD strategies
include the cumulative sum (CUSUM) [Inclan 1994], the generalized likelihood ratio
test (GLRT) [Gustafsson 1996], and subspace identification (SI) [Kawahara 2007].
The CUSUM algorithm [Inclan 1994] assumes that the parameters changing are
known and typically assumes that the underlying data follows a specific statistical
distribution. The GLRT method [Gustafsson 1996] assumes that observations are
driven by a linear state-space model. By explicitly considering a noise factor in a
linear state-space model, the SI approach [Kawahara 2007] detects changes using
distances between the subspaces spanned by two sequence windows.

Parametric CPD methods operate well when all the assumptions on the problem
at hand are met. Nevertheless, deriving a model that accurately describes the data
is usually intractable and makes parametric approaches sensitive to modeling er-
rors [Truong 2020]. Non-parametric CPD methods have been introduced to address
this issue. These approaches make weaker assumptions about the data and include,
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for instance, the use of empirical estimation of the cumulative data distribution, or
the deviation of a kernel embedding of the data from its mean [Truong 2020]. A
non-parametric strategy of particular interest is the use of density-ratio estimation.
Although the distribution of the pre- and post-change data can be hard to estimate,
only their ratio – which can be easier to estimate – is necessary to perform CPD [Su-
giyama 2012]. Several CPD methods based on density-ratio estimation have been
proposed in the literature. Examples include the Kullback-Leibler (KL) divergence
based importance estimation procedure (KLIEP) [Sugiyama 2007], the unconstrained
least squares importance fitting (uLSIF) and the relative uLSIF [Liu 2013].

Unlike these offline methods that detect changes in a dataset collected a priori,
online CPD algorithms process streaming data iteratively in an adaptive fashion. The
method in [Chen 2019] considers the k-nearest neighbors (kNN) algorithm to tackle
online CPD by extending SI techniques in non-linear subspaces. In [Keriven 2020],
the moving average-based algorithm NEWMA is introduced to monitor the mean
of the process in a feature space. An online version of the relative uLSIF-based
method NOUGAT is designed in [Ferrari 2022] to detect changepoints by learning
density-ratios with the kernel trick. Another important branch of non-parametric
online CPD is based on virtual classifiers (VC) [Desobry 2005, Yamada 2013]. These
methods train a binary classifier with pseudo labels to learn density-ratio over past
and future data, and consider the separability of data to detect changepoints. An
online Bayesian approach using a latent class model for the data whose number
of classes can increase over time was proposed in [Moreno-Muñoz 2020]. However,
Bayesian methods can have high complexity when compared to approaches such
as [Keriven 2020, Ferrari 2022].

Recently, deep learning has become a popular framework for addressing a va-
riety of signal processing tasks. Several works considered deep learning for CPD.
In [De Ryck 2021], an autoencoder is used to learn a time-invariant representation
of the data which is more amenable for CPD. Neural networks are used for density-
ratio estimation in [Khan 2019]. However, both approaches do not operate online.
Another method based on the reconstruction error of an autoencoder is proposed
in [Gupta 2022] with real-time preprocessing. However, it relies on strong assump-
tions about the nature of the changes. A related approach using an autoencoder
based on recurrent neural networks was proposed in [Atashgahi 2022]. Current deep
learning and density-ratio learning CPD algorithms are still limited in combining
flexibility with the ability to retain knowledge from past data while maintaining a
low complexity. Continual learning [De Lange 2021, Nguyen 2018] has the ability to
adapt to recent data while at the same time retaining past knowledge. This made it
successful in various online learning tasks.

In this chapter, a new online CPD strategy based on neural density-ratio estima-
tion and continual learning is proposed. First, density-ratio estimation is represented
as a binary classification problem over two sliding (reference and test) data win-
dows. This allows us to leverage state-of-the-art probabilistic classification neural
networks to perform CPD in a non-parametric manner. Moreover, to obtain an
adaptive detection strategy that leverages past information while operating online,
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a variational continual learning objective is devised to train the neural network
classifier in a Bayesian framework. Specifically, the statistical distribution of the
network parameters at each time step is used as a prior for the next classification
objective in a regularization-based framework. This allows the trade-off between
temporal smoothness and fast adaptation to be controlled using a single regulariza-
tion parameter. Experimental results with both synthetic and real data show the
effectiveness of the proposed strategy.

4.2 Proposed method

The basic idea of the proposed CPD strategy consists of estimating changepoints
by evaluating the density-ratio between the PDFs of the data over a reference and a
test window, given by:

rpxtq “
ptestpxtq

prefpxtq
, (4.1)

with ptestpxq the data PDF over the test window with N samples:

Xt “
␣

xt´N`1, . . . ,xt´1,xt

(

, (4.2)

and prefpxq the data PDF over the reference window with N 1 samples:

X 1
t “

␣

xt´N´N 1`1, . . . ,xt´N´1,xt´N

(

. (4.3)

Our objective is to estimate the density-ratio rpxtq, at each time t P N, given only
the data xt observed sequentially over windows Xt and X 1

t . To this end, we will
consider two steps: first, a probabilistic classification-based approach is introduced
to estimate the density-ratio; afterwards, we propose to use a Bayesian continual
learning strategy in order to learn the classifier online.

4.2.1 Neural Online Density-ratio Estimator

Without additional knowledge about ptestpxtq and prefpxtq, computing these PDFs
can be intractable, and a non-parametric estimation of rpxtq becomes more desirable.
Within this context, online kernel [Ferrari 2022] or offline deep learning [Khan 2019]
strategies have been proposed to estimate density-ratio with the design of specific
learning objectives, such as LSIF and RuLSIF [Liu 2013]. An important property
of the density-ratio is that it can be related to probabilistic binary classification,
allowing us to leverage state-of-the-art classification methods to address this pro-
blem [Cranmer 2015, Menon 2016, Durkan 2020]. First, let us annotate the samples
in datasets X 1

t and Xt with pseudo labels 0 and 1, respectively. This way, considering
the labels to be a random variable yt P t0, 1u, we can express the distributions
ptestpxtq and prefpxtq in the form of a single conditional PDF:

ptestpxtq “ ppxt|yt “ 1q , (4.4)

prefpxtq “ ppxt|yt “ 0q . (4.5)
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Using Bayes’ rule and the above definition and assuming the two classes with equal
a priori marginal class probabilities, according to Theorem 1 in [Cranmer 2015],
equation (4.1) can be written as:

rpxtq “
ppxt|yt “ 1q

ppxt|yt “ 0q
“
ppyt “ 1|xtq

ppyt “ 0|xtq
“

ppyt “ 1|xtq

1 ´ ppyt “ 1|xtq
. (4.6)

In this way, the density-ratio between ptestpxtq and prefpxtq can be recovered by the
optimal binary classifier ppyt|xtq that distinguishes between samples from these two
distributions.

By concatenating the two datasets corresponding to the reference and test
windows as:

Dt “
␣

pxt, yt “ 0q : xt P X 1
t

(

ď

␣

pxt, yt “ 1q : xt P Xt

(

,

which leads the CPD problem to be formulated as learning a binary classifier at
each time t P N based on the training data Dt, also called as virtual classifier [Deso-
bry 2005, Yamada 2013]. We denote this learnable classifier by ppyt|xt,ϕtq, where ϕt

denotes a vector containing its parameters at each time instant. It has been shown
in [Menon 2016] that a wide range of losses used in binary classification are suitable
to perform density-ratio estimation.

It is popular to parameterize this classifier as ppyt “ 1|xtq “ σpfϕt
pxtqq, where

σp¨q is the logistic sigmoid function given by σpxq “ ex{pex ` 1q and fϕt
: Rd Ñ R is

a neural network parameterized by ϕt. When the classifier is trained using maximum
likelihood estimation, the optimal value for fϕt

is log rpxtq [Durkan 2020]. This yields
the proposed neural online density-ratio estimator (NODE):

rϕt
pxtq “ efϕt

pxtq , (4.7)

where the subscript ϕt emphasizes that rϕt
pxtq depends on the learned classifier.

CPD is then performed by comparing the test statistic | 1
N

ř

xPXt
prϕt

pxq ´ 1q| to a
given threshold ξ P R` since rϕt

pxtq (the ratio of the two posteriors) is biased from
1 when there is a changepoint. For a time series of d-dimensional vector-valued data
txtutPN, the the input and output dimensions of NODE are d and 1. The structure
of NODE is detailed in Section 4.3. Here we provide more details of the training and
test phases of our NODE:

Training phase: At each time instant t, all the samples of the reference and
test windows with labels from Dt are used to estimate ϕt;

Test phase: Only the samples of the test window X 1
t are used to estimate the

density ratio rϕt
pxtq and the average over Xt is used to obtain more stable detection.

A crucial consideration for the proper estimation of ppyt “ 1|xt,ϕtq is that
this classifier should avoid overfitting given the limited dataset Dt with N ` N 1

samples. This is particularly important since the window lengths directly impact the
performance of the algorithm: they need to be small to limit the detection delay, but
large in order to supply enough training data. This issue will be alleviated in the
following by considering an online continual learning strategy for NODE, in which
information from previous windows is leveraged when learning the current classifier.
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4.2.2 Continual learning strategy

As discussed above, we train a neural classifier and estimate its parameters ϕt

using samples in Dt at each time instant t with label yt “ 0 in the reference window
and label yt “ 1 in the test window. Since the overlapping part in training datasets
at neighboring time instants, e.g., Dt´1 and Dt, is relatively large, it is beneficial
to retain the knowledge acquired from D1:t´1 when training the classifier on Dt.
This is particularly important to benefit from past information and avoid overfitting
when the window length is small. To iteratively learn the classifier while retaining
the knowledge acquired from past iterations, we investigate a variational continual
learning (VCL) strategy [Nguyen 2018] in our CPD algorithm.

Given an independent input x, let us consider that the classifier returns a
probability distribution ppy|x,ϕtq of its label y, given its parameters ϕt. Note that
the classifier parameters are assumed to be random variables as this allows one to
account for their uncertainty, which can be important when training with small
amounts of data. In the continual learning setting, we aim to compute the distribution
of the parameters ϕt, given the dataset Dt. This is computed using Bayes’ rule:

ppϕt|Dtq 9 ppDt|ϕtqppϕtq , (4.8)

where ppϕtq is a properly selected prior for the parameters which captures the
information from the past data. To compute ppϕt|Dtq recursively, as in a Bayesian
filtering framework, the prior ppϕtq is selected as the posterior distribution of the
parameters computed at the previous iteration, ppϕt´1|Dt´1q.

However, the posterior distribution is intractable in general and needs to be
approximated. VCL [Nguyen 2018] approximates the posterior distribution by another
distribution q belonging to a tractable family Q. This is performed by finding the
distribution q P Q which minimizes the KL divergence to the true posterior:

qtpϕtq “ argmin
qPQ

KL
´

qpϕq

›

›

›

1

Zt
ppDt|ϕqqt´1pϕq

¯

, (4.9)

where qt´1pϕq is the approximate posterior that was computed at time t ´ 1, and
Zt is a normalizing constant (which will not be required in the optimization pro-
cess). The zeroth approximated posterior q0pϕq is defined as the prior distribution
of the parameters ppϕq, which is chosen to be a multivariate Gaussian distribu-
tion [Nguyen 2018]. Training the classifier using the variational inference in (4.9)
is equivalent to maximizing the evidence lower bound to the data log-likelihood
log ppDtq, which leads to the following cost function:

Ltpqtpϕqq “

N`N 1´1
ÿ

n“0

Eϕ„qtpϕq

␣

log ppyt´n|ϕ,xt´nq
(

´ ηKL
`

qtpϕq||qt´1pϕq
˘

. (4.10)

Here we introduce a hyperparameter η to trade-off between stability of the continual
learning strategy, and its ability to adapt in the presence of a changepoint.
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Algorithm 5 CPD with NODE
Input : txtu, parameter η, number of epochs M , threshold ξ.
Initialization : optimize (4.10) with η “ 0 for t “ 1.
for t “ 2, 3, ¨ ¨ ¨ do

Update data windows to build the dataset Dt.
Optimize cost function (4.10) for M epochs to estimate parameter ϕt at time t.
Compute the density-ratio using (4.7).
if | 1

N

ř

xPXt
prϕt

pxq ´ 1q| ą ξ then
Flag t as a changepoint.

We consider the variational family Q as the set of Gaussian distributions with
diagonal covariance matrices (i.e., a mean field assumption), which makes the learning
process more efficient since the KL divergence in (4.10) can be computed in closed
form. In this work, ppy|ϕt,xq is modeled as a Bernoulli distribution. The optimiza-
tion of Ltpqtpϕtqq is performed by using the Adam [Kingma 2014a] gradient-based
optimizer, where the reparametrization trick [Kingma 2014b] was used to tackle the
expectation with respect to qtpϕtq. At each time instant, (4.10) is maximized for
M epochs, with the parameters of the distribution qtpϕtq initialized with those of
qt´1pϕt´1q, obtained as the solution at t´ 1 (i.e., warm start). The proposed CPD
procedure is summarized in Algorithm 5.

4.3 Experiments

In this section, we validate the proposed online CPD method with NODE and
compare it with three baselines, namely, the kNN [Chen 2019], MA [Keriven 2020,
Ferrari 2022] and NOUGAT [Ferrari 2022]. For all experiments, fϕt

was a fully
connected network with three hidden layers, where each layer contained 16 units (32
units for real data) with Tanh activations. The reference and test window lengths were
both set to N “ N 1 “ 64 for all algorithms. The network was trained for 20 epochs
during initialization, then for M “ 1 epoch for t ą 1. We set η “ 20 for simulated
data and η “ 5 for real data. We applied empirical methods to determine the above
parameters. The codes are made available at www.github.com/xiuheng-wang/NODE_
release.

4.3.1 Monte Carlo validation

The simulated signals xt were sampled from mixtures of k d-dimensional Gaussian
distributions Ndpmq, q

´1Cqq with q “ 1, . . . , d. The weights αq of the mixture model
were generated from a flat Dirichlet distribution with concentration coefficient β. The
means mq and the covariance matrix Cq were sampled from Ndp0, Iq and a Wishart
distribution with the scaling matrix I and d` 2 degrees of freedom. We generated
700 samples and introduced a changepoint at tr “ 400. We set d “ 6, k “ 3, β “ 5,
and all parameters tmq, αq,Cqu were resampled at time t “ tr.

www.github.com/xiuheng-wang/NODE_release
www.github.com/xiuheng-wang/NODE_release
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5.1 Introduction

Research on CPD can be categorized into two primary branches: offline and
online. Offline CPD necessitates access to all received samples, as extensively covered
in the literature [Truong 2020]. In contrast, online CPD methods process data in
real-time and aim to detect changepoints with minimal delay after their occurrence.
In numerous real-world scenarios, the pursuit of non-parametric CPD is also highly
relevant since it can be challenging to possess prior knowledge of the data distribu-
tion. However, even with the longstanding history and continued interest in CPD
techniques, it is noteworthy that the overwhelming majority of existing algorithms
assume that the data resides in Euclidean spaces.
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Recent developments in statistical learning and signal processing have increasin-
gly confronted the analysis of data residing in non-Euclidean spaces. Among these
spaces, Riemannian manifolds have garnered attention due to their wide-ranging
applications, such as in diffusion tensor imaging [Pennec 2006b], pedestrian detec-
tion [Tuzel 2008], and human behavior understanding [Kacem 2018]. Consequently,
Riemannian optimization [Absil 2009, Boumal 2023a] has emerged as an area of
significant interest, offering essential and potent tools for handling data on manifolds,
especially with the recent advancements in Riemannian stochastic gradient descent
(R-SGD) algorithms [Bonnabel 2013, Zhang 2016b]. While the detection of change-
points in Euclidean spaces has been notably successful, it is noteworthy that only
a limited number of CPD methods have been specifically crafted for Riemannian
manifolds [Bouchard 2020, Dubey 2020, Wang 2023a], and these still lack theoretical
analyses or online operation. The main hurdles stem from the need to account for
the intrinsic non-linear geometry of these spaces and the absence of a vector space
structure in the data, making the adaptation of algorithms originally conceived for
Euclidean spaces a complex undertaking.

In response to the aforementioned challenges, the objective of this chapter is to
introduce a unified framework for non-parametric and online CPD on Riemannian
manifolds. Our contributions are as follows:

1. General non-parametric framework: We propose a comprehensive non-
parametric framework for CPD by monitoring central values within Rieman-
nian manifolds. Our framework places particular emphasis on the generalized
Karcher mean. We update two estimates of the generalized Karcher mean
using the R-SGD algorithm, each with distinct constant stepsizes. These
two estimates, one with longer memory and the other more adaptive, are
compared to construct an online CPD statistic.

2. Theoretical analyses: We provide theoretical analyses related to the pro-
posed CPD statistic. We establish non-asymptotic convergence results for
R-SGD with a curvature-dependent linear rate under the condition of constant
stepsize (Theorem 5.2.1). Additionally, in the absence of any change, we derive
an upper bound for the false alarm rate (Theorem 5.2.2). Furthermore, in
the presence of a change, we establish a lower bound for the detection rate
(Theorem 5.2.3).

3. Application to specific manifolds: We tailor our algorithm to suit two
common instances of Riemannian manifolds, specifically, the manifold of
symmetric positive definite (SPD) matrices and the Grassmann manifold. We
then provide empirical illustrations of the performance of our CPD algorithm
on these manifolds through numerical experiments on synthetic and real-world
datasets.

By introducing this framework and offering theoretical insights into its perfor-
mance, we aim to contribute to the advancement of non-parametric and online CPD
methods for data residing on Riemannian manifolds, which can impact a range of
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applications such as, e.g., voice activity detection, pedestrian detection and subspace
change detection.

5.1.1 Related work

In this section, we review related works on online changepoint detection and
Riemannian optimization which are connected to the proposed approach.

Online CPD: Online CPD methods can be broadly categorized into two main
groups: parametric and non-parametric, depending on whether prior knowledge
about the data distribution is available. Parametric CPD techniques, illustrated by
methods such as the cumulative sum (CUSUM) [Page 1954, Tartakovsky 2014] and
the generalized likelihood ratio test (GLRT) [Gustafsson 1996], assume that the data
distribution conforms to a known parametric family.

In many applications, prior knowledge of the data distribution cannot be gua-
ranteed, leading to the development of non-parametric methods. These approaches
encompass various techniques, including monitoring changes in the mean or variance
of a data stream, as seen in methods like the Exponentially Weighted Moving Average
(EWMA) [Costa 2006], and the use of kernel maximum mean discrepancy (MMD)
derived from the data stream [Gretton 2006]. Recent advancements in this field have
introduced innovative non-parametric methods. For instance, the NEWMA algo-
rithm [Keriven 2020] was introduced to detect changepoints without the necessity of
retaining historical data samples. This is achieved by comparing two EWMAs of data
stream statistics, each computed with distinct forgetting factors. The non-parametric
kernel MMD statistic initially introduced for hypothesis testing in [Gretton 2006]
has recently been widely employed in the context of kernel CPD with both of-
fline [Harchaoui 2008, Sinn 2012] as well as online algorithms [Gong 2012, Li 2019].
Kernel extensions of the CUSUM statistic have also been considered in [Madrid Pa-
dilla 2023, Arlot 2019, Wei 2022]. A computationally efficient approximation of the
kernel MMD based on the neural tangent kernel has also been proposed [Cheng 2021].
Another non-parametric online algorithm was developed in [Ferrari 2022], making
use of adaptive kernel density ratio estimation. The capabilities of neural networks
were explored in [Wang 2023b] to enhance the effectiveness of non-parametric online
CPD.

These algorithms, however, assume that the data belongs to an Euclidean space.
While some non-parametric online CPD algorithms have been extended to specific non-
Euclidean domains, such as graphs [Ferrari 2020a] and categorical data [Ienco 2014],
very few works have investigated scenarios where the data belongs to a Riemannian
manifold. In [Bouchard 2020], an online CPD algorithm was specifically designed
for the compound Gaussian distribution, which, however, is parametric and not
broadly applicable. For data lying on manifolds, a non-parametric offline algo-
rithm [Duan 2019] was developed to detect changepoints of rigid body motions in
the special Euclidean group. Another non-parametric technique, monitoring changes
in the Fréchet means and variances, was proposed in [Dubey 2020]. However, it can
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only detect a single changepoint and operates offline. A work extending NEWMA
to manifolds was introduced in [Wang 2023a], but the algorithm is not general and
does not have any theoretical analyses.

This chapter presents a general formulation for CPD on manifolds based on
the generalized Karcher mean, a discussion of its related existence and uniqueness
questions, theoretical results related to the convergence, false alarm, and detection
performance of the algorithm, and exemplifies its application to different manifolds
with challenging examples.

Riemannian optimization: Riemannian optimization has recently garnered si-
gnificant interest as it takes into account the geometry of data manifolds, which
is prevalent in many practical applications. Both the books [Absil 2009] and [Bou-
mal 2023a] provide detailed presentations on Riemannian optimization. Substantial
work has also been undertaken in order to extend optimization algorithms that were
originally developed in Euclidean spaces, such as steepest descent [Smith 1994] and
quasi-Newton [Huang 2015] algorithms, to Riemannian manifolds, as well as to study
their convergence behavior.

The R-SGD algorithm, as presented in [Bonnabel 2013], has gained significant
attention for its capability to handle noisy gradient estimates. Sophisticated variance
reduction techniques have been recently introduced to provide algorithms with
accelerated convergence rate [Zhang 2016a, Zhang 2018a, Zhou 2019]. While the
asymptotic convergence of the R-SGD was studied in [Bonnabel 2013] for diminishing
stepsizes, explicit convergence rates were not provided. Results on the sublinear
convergence rates of first-order Riemannian optimization on geodesically convex
problems were recently obtained in [Zhang 2016b]. However, these rates were derived
under the assumption of diminishing stepsizes or deterministic gradients.

5.1.2 Background

This section introduces some basic concepts of Riemannian geometry, focusing
on the essential tools for optimization on manifolds. Detailed presentations can be
found in [Absil 2009] and [Boumal 2023a].

A Riemannian manifold pM, gq is a constrained set M endowed with a Rie-
mannian metric gxp¨, ¨q : TxM ˆ TxM Ñ R, defined for every point x P M, with
TxM the so-called tangent space of M at x. A geodesic γ : r0, 1s Ñ M is the
curve of minimal length linking two points x,y P M such that x “ γp0q and
y “ γp1q, with v P TxM the velocity of γ at 0 denoted by 9γp0q. The geodesic
distance dMp¨ , ¨q : M ˆ M Ñ R is defined as the length of the geodesic linking two
points x,y P M. It satisfies all the conditions to be a metric.

The exponential map w “ expxpvq is defined as the point w P M located on
the unique geodesic γptq with endpoints x “ γp0q, w “ γp1q and velocity v “ 9γp0q.
Since calculating the exponential map can be computationally demanding, in practice
it is common to employ a retraction Rx : TxM Ñ M instead, defined at every
x P M, which consists of a second-order approximation to the exponential map,
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satisfying dMpRxptvq, expxptvqq “ Opt3q. Consider a smooth function f : M Ñ R.
The Riemannian gradient of f at x P M is defined as the unique tangent vector
∇fpxq P TxM satisfying d

dt

ˇ

ˇ

t“0
fpexpxptvqq “ x∇fpxq,vyx, for all v P TxM.

5.2 Proposed method

5.2.1 Problem Background

Consider a sequence of statistically independent samples xt belonging to a
Riemannian manifold M. The Riemannian CPD problem consists of estimating the
time index tr P N, referred to as the changepoint, at which the probability measure
of xt undergoes a change [Pennec 2004]:

t ă tr : xt „ P1pxq ,

t ě tr : xt „ P2pxq .
(5.1)

Here, P1pxq and P2pxq are probability measures on M, such that P1pxq ‰ P2pxq,
representing how xt is distributed before and after the changepoint, respectively.
Throughout this chapter, it is assumed that the difference between the generalized
Karcher means of P1pxq and P2pxq (see Section 5.2.2 for a definition) is sufficiently
large, to make this problem tractable.

While various CPD algorithms have been proposed for Euclidean spaces, the
constraint that the data xt belongs to a Riemannian manifold M, which typically
lacks a vector space structure, presents challenges for algorithm design.

5.2.2 The algorithm

In this study, we introduce a non-parametric CPD strategy designed for situations
where there is no prior knowledge about the probability measures of the data. In
Euclidean spaces, this has been accomplished in particular by monitoring changes
in either the mean or the variance [Costa 2006], or in a generalized statistics [Gret-
ton 2006] of the data stream. We propose to extend such strategies to Riemannian
manifolds by monitoring changes in a generalized moment of xt P M. This generali-
zed moment can include the Fréchet mean [Fréchet 1948], which extends the concept
of the Euclidean mean to metric spaces. In a broader sense, we consider a generalized
Fréchet mean of M, as defined in [Schötz 2019]:

m˚ P arg min
mPM

fpmq , (5.2)

where fpmq is given by:

fpmq “ Ex„P pxq

␣

cpx,mq
(

“

ż

cpx,mqdP pxq ,

with c : MˆM Ñ r0,`8q an appropriate cost function. This framework generalizes
several important central values on Riemannian manifolds, including the Fréchet
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mean by considering cpx,mq “ d2Mpx,mq where dMpx,mq denotes the geodesic
distance between x and m, and the median by setting cpx,mq “ dMpx,mq.

The existence and uniqueness of minimizers for (5.2) is not guaranteed in general,
even in the case of the Fréchet mean. When c “ d2M, the Karcher mean relaxes this
definition by considering the local optima of fpmq rather than only the global one.
This allows us to establish existence and uniqueness conditions [Kendall 1990] and
compute m by solving (5.2) locally using Riemannian optimization methods [Pen-
nec 2004]. In particular, if the support of P pxq is included in a regular geodesic ball
(see definition 5 in [Pennec 2006a]), then the Karcher mean exists and is unique
[Kendall 1990]. This condition is satisfied for connected manifolds with non-positive
curvature [Afsari 2011], referred to as Hadamard manifolds [Shiga 1984]. In this work,
we extend this concept by defining the generalized Karcher mean as the set of local
minimizers of (5.2) with various central values. Although our framework is considered
in a broader sense, we will focus on the case of Karcher mean in Section 5.2.3, as
discussed in [Wang 2023a], for the sake of convenience and to facilitate the theoretical
analysis.

The proposed CPD strategy on manifolds will be designed to monitor abrupt
changes in a generalized Karcher mean. An important requirement is that change-
points must be detected in an online manner, meaning that they are based only
on past data. Consequently, we will adopt stochastic Riemannian optimization to
estimate the generalized Karcher mean of the streaming data xt in an online manner.
This will constitute a fundamental component of our approach.

5.2.2.1 Online estimation

In a non-parametric setting, it is not possible to compute the solution to the
optimization problem in (5.2) explicitly because P pxq is unknown. Instead, we
assume that we have access to observations xt and can evaluate both the cost
function cpm,xtq and its Riemannian gradient for any parameter m and sample xt.
This enables us to construct a stochastic approximation of the gradient ∇fpmq using
the input xt. Consequently, we can utilize the R-SGD algorithm [Bonnabel 2013] to
compute an online solution to (5.2). An update of m can be computed on M as:

mt`1 “ expmt

`

´ αHpmt,xtq
˘

, (5.3)

with α ą 0 a constant stepsize. In this expression, expm denotes the exponential
map at m, and Hpm,xq is the stochastic Riemannian gradient, assumed to be an
unbiased estimate of the full gradient ∇fpmq,

Ex„P pxq

␣

Hpm,xq
(

“

ż

Hpm,xqdP pxq “ ∇fpmq .

The mathematical definitions of Hpm,xq for two specific manifolds are given in (5.53)
and (5.57) for examples. The exponential map in (5.3) can also be replaced by a
computationally simpler retraction Rmt . It is important to note that we are conside-
ring R-SGD in a non-standard setting. The estimates provided by this algorithm
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should be able to adapt to changes in the data distribution and, consequently, to the
underlying cost function fpmq. This necessitates the use of a constant (instead of
diminishing) stepsize α, which will impact the theoretical analysis in Section 5.2.3
since non-asymptotic convergence results will be required.

5.2.2.2 An adaptive CPD

Our goal is to detect changepoints by monitoring abrupt changes in the value of
m over time. In simpler terms, we label a time index t1 as a changepoint if there
is a sudden shift in the value of m at that time. This requires knowledge of two
quantities of interest, mbef and maft, which respectively represent the generalized
Karcher mean before and after a candidate changepoint t1. First, we propose an
approach to compute estimates of these quantities, denoted as xmbef and xmaft. Then,
a test statistic is designed to compare these two quantities using the Riemannian
distance, specifically dMpxmbef ,xmaftq. The larger the Riemannian distance between
the generalized Karcher mean estimates before and after time instant t1, the higher
the likelihood of identifying t1 as a changepoint.

The challenge is to find a computationally efficient online method for calculating
xmbef and xmaft. Previous work [Dubey 2020] proposed dividing a data stream txtu

N
t“1

with N samples into two segments, t1, . . . , t1 ´ 1u and tt1, . . . , Nu for every t1, and
testing for differences between their Karcher mean and variance. However, this
approach of comparing the values of the Karcher means estimated using samples
before and after the time instant t is not suitable for processing data streams on
the fly or detecting multiple changepoints. In [Keriven 2020], estimates of xmbef and
xmaft were computed considering the data xt to belong to a Euclidean space. This
was achieved using two Exponentially weighted Moving Averages (EWMAs) with
different forgetting factors: one adapting quickly to track xmaft after a changepoint,
and another adapting slowly to keep track of xmbef . However, this approach cannot be
directly applied to Riemannian manifolds due to its lack of accounting for manifold
geometry. Instead, we propose using two iterative estimates computed using R-SGD
algorithms, described in Section 5.2.2.1, with two different fixed stepsizes λ ă Λ.
The generalized Karcher mean estimates are updated according to (5.3) as:

mλ,t`1 “ expmλ,t

`

´ λHpmλ,t,xtq
˘

, (5.4)

mΛ,t`1 “ expmΛ,t

`

´ ΛHpmΛ,t,xtq
˘

, (5.5)

with initialization mλ,0 “ mΛ,0 “ x0. The convergence of the updates (5.4) and (5.5)
is directly influenced by λ and Λ, with a larger stepsize typically resulting in faster
convergence, as we will demonstrate in Theorem 5.2.1 in the next section. Therefore,
having 0 ă λ ă Λ means that mΛ,t is more likely to adapt to new data and
quickly approximate xmaft, while mλ,t has a longer memory and is better suited
for estimating xmbef . The motivation is similar to NEWMA [Keriven 2020] because
mΛ,t with a larger stepsize gives more importance to upcoming xt than mλ,t with a
smaller stepsize. Using constant stepsizes is crucial to allow the algorithm to adapt
to changes in the data distribution and detect multiple changepoints. In the limit,
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Algorithm 6 Online CPD on Riemannian manifolds
Input: txtu, stepsizes λ,Λ, threshold ξ.
Initialization: mλ,0 “ mΛ,0 “ x0.
for t “ 1, . . . do

Update the generalized Karcher mean estimates mλ,t and mΛ,t using (5.4) and
(5.5);
Compute the test statistic gt “ dMpmλ,t,mΛ,tq;

if gt ą ξ then
Flag t as a changepoint;

the estimates provided in (5.4) and (5.5) will converge to one Karcher mean under
the null hypothesis and converge to another Karcher mean after a changepoint.

Based on the estimates provided in (5.4) and (5.5), we can formulate an adap-
tive CPD statistic by calculating the difference between mλ,t and mΛ,t using the
Riemannian distance on M as follows:

gt “ dMpmλ,t,mΛ,tq . (5.6)

The CPD procedure involves comparing the statistic gt to a given threshold ξ. The
complete CPD procedure is outlined in Algorithm 6. It is important to note that the
selection of ξ directly impacts its average run length and detection delay, as will be
shown in Theorems 5.2.2 and 5.2.3, which give bounds on the probability of a false
alarm and of detecting a true changepoint. Moreover, as in (N)EWMA methods, the
time interval between changepoints must be sufficiently large so that the algorithms
converge to obtain adequate detection and false alarm performance.

5.2.3 Theoretical analysis

In this section, we will assess the performance of the proposed CPD algorithm in
two main aspects: i) the probability of a false alarm, which refers to the probability
of incorrectly identifying a time step as a changepoint, and ii) the probability of
correctly identifying a changepoint when there is a shift in the generalized Karcher
mean of the data stream. To achieve this, we will also need a supplementary outcome,
iii) the non-asymptotic convergence analysis of the R-SGD algorithm with a constant
stepsize.

For the sake of feasibility in our theoretical analysis, we will concentrate on the
Karcher mean with c “ d2M, and the R-SGD cost function fpmq “ E

␣

d2Mpm,xq
(

,
which corresponds to the Karcher variance, and is minimized using the iterative
updates in the from of (5.3). However, it is important to note that our convergence
analysis of R-SGD will not be limited to this particular cost function. We will also
focus on Hadamard manifolds as in [Zhang 2016b]. Before presenting the theoretical
results, let us introduce some definitions related to the cost function f and its
properties as follows.



5.2. Proposed method 85

Definition 1 (Geodesically strong convexity) A function f : M Ñ R is
geodesically µ-strongly convex if for any x,y P M, we have:

fpyq ě fpxq ` x∇fpxq, exp´1
x pyqy `

µ

2
} exp´1

x pyq}2 . (5.7)

Definition 2 (Lipschitz gradients) The gradient of a function f : M Ñ R is
said to be L-Lipschitz if, for any x,y P M in the domain of f , it satisfies:

›

›∇fpxq ´ Γx
y∇fpyq

›

› ď LdMpx,yq , (5.8)

where Γx
y denotes the parallel transport from y to x.

Definition 3 (Smoothness) Any differentiable function f : M Ñ R is geodesi-
cally L-smooth if its gradient is L-Lipschitz, i.e., for any x,y P M, it satisfyies:

fpyq ď fpxq ` x∇fpxq, exp´1
x pyqy `

L

2
} exp´1

x pyq}2 . (5.9)

5.2.3.1 Non-asymptotic convergence of R-SGD

The following theorem shows that the R-SGD algorithm (5.3) with a fixed stepsize
α ą 0 has a curvature-dependent linear rate of convergence for geodesically strongly
convex and smooth functions on Riemannian manifolds.

Theorem 5.2.1. Assuming that f : M Ñ R is geodesically µ-strongly convex with
geodesically L-Lipschitz gradient, the diameter of the domain is bounded by D, the sec-
tional curvature of the manifold is bounded below by κ, and the stochastic gradient is an
unbiased estimator of the gradient, namely, Ext

␣

Hpmt,xtq
(

“ ∇fpmtq with variance
Extt}∇fpmtq ´Hpmt,xtq}2u ď σ2 and magnitude bounded by }Hpmt,xtq} ă ρ. We
assume that the stepsize satisfies 0 ă α ď mint 1

2L ,
I
ρu, where I is the injectivity

radius of M. Then, for any s P N˚, the stochastic Riemannian gradient descent
algorithm satisfies:

Etfpmsq ´ fpm˚qu ď
p1 ´ εqps´1qD2

2α
`
ασ2

2ε
, (5.10)

with m˚ the optimum, ε “ mint 1
ζpκ,Dq

, αµu and ζpκ,Dq “

?
|κ|D

tanh p
?

|κ|Dq
.

Proof. Assume f is a geodesically L-smooth function, that is, its gradient is geo-
desically L-Lipschitz. As this property is related to deterministic gradient ∇fpxq,
we shall first reformulate it with respect to the stochastic gradient. Replacing
y “ mt`1, x “ mt in (5.9), denote ∆t “ fpmtq ´ fpm˚q, and considering the fact
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xa, by ď α
2 a

2 ` 1
2αb

2, we have:

∆t`1 ´ ∆t “ fpmt`1q ´ fpmtq

ď x∇fpmtq, exp
´1
mt

pmt`1qy `
L

2
} exp´1

mt
pmt`1q}2

“ xHpmt,xtq, exp
´1
mt

pmt`1qy ` x∇fpmtq ´Hpmt,xtq, exp
´1
mt

pmt`1qy

`
L

2
} exp´1

mt
pmt`1q}2

ď xHpmt,xtq, exp
´1
mt

pmt`1qy `
α

2
}∇fpmtq ´Hpmt,xtq}2

`

ˆ

L

2
`

1

2α

˙

} exp´1
mt

pmt`1q}2. (5.11)

Assuming }Hpmt,xtq} ă ρ and 0 ă α ď I
ρ where I is the injectivity radius of M,

we have }αHpmt,xtq} ă I. By Proposition 10.22 of [Boumal 2023a], exp´1
mt

pmt`1q “

exp´1
mt

pexpmt
p´αHpmt,xtqq “ ´αHpmt,xtq, taking the expectation w.r.t. txsuts“0,

one obtains:

E∆t`1 ´ E∆t ď ´αE}Hpmt,xtq}2 `
ασ2

2
`

ˆ

L

2
`

1

2α

˙

α2E}Hpmt,xtq}2

“
ασ2

2
`

´αL` 1

2
´ 1

¯

αE}Hpmt,xtq}2. (5.12)

Assuming 0 ď α ď 1
2L , we have:

E∆t`1 ´ E∆t ď
ασ2

2
´
α

4
E}Hpmt,xtq}2. (5.13)

Assume f is a geodesically µ-strongly convex function, replacing y “ m˚, x “ mt

in (5.7), we have:

fpmtq ´ fpm˚q ď x´∇fpmtq, exp
´1
mt

pm˚qy ´
µ

2
} exp´1

mt
pm˚q}2

“ x´∇fpmtq, exp
´1
mt

pm˚qy ´
µ

2
d2Mpmt,m

˚q . (5.14)

Assume the diameter of the domain is bounded above by D, and the sectional
curvature lower-bounded by κ ă 0, use the trigonometric distance bound, i.e.,
Corollary 8 in [Zhang 2016b], we have:

x´Hpmt,xtq, exp
´1
mt

pm˚qy ď
1

2α

`

d2Mpmt,m
˚q ´ d2Mpmt`1,m

˚q
˘

`
ζpκ,Dqα

2
}Hpmt,xtq}2. (5.15)

By taking the expectation of (5.15) w.r.t. xt and combining it with (5.14) by using
the fact Ext

␣

Hpmt,xtq
(

“ ∇fpmtq, and then taking expectation of the combined
result w.r.t. txsuts“0, we obtain:

E∆t “ Etfpmtq ´ fpm˚qu ď

´1 ´ αµ

2α

¯

Ed2Mpmt,m
˚q ´

1

2α
Ed2Mpmt`1,m

˚q

`
ζpκ,Dqα

2
E}Hpmt,xtq}2 .
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Multiplying (5.13) by 2ζpκ,Dq and adding to the previous inequality, we have:

2ζpκ,DqE∆t`1 ´ p2ζpκ,Dq ´ 1qE∆t ď

´1 ´ αµ

2α

¯

Ed2Mpmt,m
˚q

´
1

2α
Ed2Mpmt`1,m

˚q ` ασ2ζpκ,Dq .

(5.16)

Multiplying (5.16) by p1 ´ εq´t, we have:

2p1 ´ εq´tζpκ,DqE∆t`1 ´ 2p1 ´ εq´t
´

1 ´
1

2ζpκ,Dq

¯

ζpκ,DqE∆t

ď p1 ´ εq´t
`

1 ´ αµ
˘ 1

2α
Ed2Mpmt,m

˚q ´ p1 ´ εq´t 1

2α
Ed2Mpmt`1,m

˚q

` p1 ´ εq´tασ2ζpκ,Dq . (5.17)

We want to sum (5.17) from t “ 0 to t “ s´ 1. However, to simplify the summation,
we consider the case t “ 0 and t ě 1 separately, because in the latter case, we
can get a simpler upper bound. First, let us consider the case t ě 1. Let ε “

mint 1
2ζpκ,Dq

, αµu [Zhang 2016b], this implies ε ď 1
2ζpκ,Dq

and ε ď αµ. For t ě 1,
from (5.17) we have:

2p1 ´ εq´tζpκ,DqE∆t`1 ´ 2p1 ´ εq´pt´1qζpκ,DqE∆t ď p1 ´ εq´pt´1q 1

2α
Ed2Mpmt,m

˚q

´ p1 ´ εq´t 1

2α
Ed2Mpmt`1,m

˚q

` p1 ´ εq´tασ2ζpκ,Dq .

(5.18)

Now, let us consider the case t “ 0. This case is simple, directly from (5.17) we have:

2ζpκ,DqE∆1 ´ p2ζpκ,Dq ´ 1qE∆0 ď

´1 ´ αµ

2α

¯

Ed2Mpm0,m
˚q ´

1

2α
Ed2Mpm1,m

˚q

` ασ2ζpκ,Dq . (5.19)

Finally, summing (5.17) over t from t “ 0 to t “ s´1, and using the previous results,
we have:

2p1 ´ εq´ps´1qζpκ,DqE∆s ´ p2ζpκ,Dq ´ 1qE∆0 ď

´1 ´ αµ

2α

¯

Ed2Mpm0,m
˚q

´
p1 ´ εq´ps´1q

2α
Ed2Mpms,m

˚q

`

s´1
ÿ

t“0

p1 ´ εq´tασ2ζpκ,Dq

ď

´1 ´ αµ

2α

¯

Ed2Mpm0,m
˚q

`

s´1
ÿ

t“0

p1 ´ εq´tασ2ζpκ,Dq ,

(5.20)
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and plugging in dMpm0,m
˚q ď D (the diameter of the domain is bounded above

by D), we have:

2p1 ´ εq´ps´1qζpκ,DqE∆s ´ p2ζpκ,Dq ´ 1qE∆0 ď

´ 1

2α
´
µ

2

¯

D2

`

s´1
ÿ

t“0

p1 ´ εq´tασ2ζpκ,Dq

ď
D2

2α
`

s´1
ÿ

t“0

p1 ´ εq´tασ2ζpκ,Dq .

(5.21)

Replacing y “ m0, x “ m˚ in (5.9), considering an alternative definition of geo-
desic L-smoothness (Proposition 4.5 and 4.6. of [Boumal 2023a]) and plugging in
dMpm0,m

˚q ď D and ∇fpm˚q “ 0, we have:

∆0 “ fpm0q ´ fpm˚q ď x∇fpm˚q, exp´1
m˚pm0qy `

L

2
} exp´1

m˚pm0q}2

“ x∇fpm˚q, exp´1
m˚pm0qy `

L

2
d2Mpm0,m

˚q ď
LD2

2
.

(5.22)

This ensures E∆0 ď LD2

2 ď LD2 so that we have E∆0 ď D2

2α since 0 ď α ď 1
2L , one

can obtain from (5.21) that

E∆s “ Etfpmsq ´ fpm˚qu ď
p1 ´ εqps´1qD2

2α
`

s´1
ÿ

t“0

p1 ´ εqt
σ2

2

ď
p1 ´ εqps´1qD2

2α
`

8
ÿ

t“0

p1 ´ εqt
σ2

2

ď
p1 ´ εqps´1qD2

2α
`
ασ2

2ε
, (5.23)

as desired.

This proof is based on certain results in [Boumal 2023a] and the trigonometric
distance bound, specifically, Corollary 8 in [Zhang 2016b]. However, it is important
to note that Theorem 5.2.1 differs from Theorems 14 (diminishing stepsizes) and 15
(deterministic optimization) in [Zhang 2016b]. In our case, we consider a stochastic
optimization method with a constant stepsize to compute the CPD statistics gt. If f
is geodesically strongly convex and smooth and the manifold satisfies the conditions
in Theorem 5.2.1, convergence can be guaranteed for sufficiently small stepsizes α.

5.2.3.2 Performance guarantee

We now provide two performance guarantees of our CPD statistics gt as defined
in (5.6). These guarantees consist of an upper bound on the false alarm rate under
the null hypothesis (i.e., when no changepoint has occurred) and a lower bound on
the detection rate under the alternative hypothesis.
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Theorem 5.2.2. We assume that, under the null hypothesis H0, x0,x1, . . . ,xt´1

are drawn i.i.d. from P pxq with the Karcher mean m˚. We also assume that the
conditions in Theorem 5.2.1 on fpmq, Hpm,xtq, M and the stepsizes λ and Λ hold.
At a steady state (i.e., when t Ñ 8), the false alarm rate can be upper bounded by:

Ppg8 ě ξ|H0q ď
2

ξ

ˆ

fpm˚q `
pλ` Λqσ2

4ε

˙

1
2

, (5.24)

with ε “ min
␣

1
ζpκ,Dq

, λµ
(

and ξ the detection threshold.

Proof. Using Markov’s inequality with ξ ą 0,

Ppgt ě ξ|H0q ď
1

ξ
Etgt|H0u . (5.25)

Now, it remains to find an upper bound to Etgt|H0u. Let us ignore the conditioning
of the expectation on H0 to simplify the notation. The rest of the analysis is built
upon the triangle inequality and the definition of gt, which is,

gt “ dMpmλ,t,mΛ,tq ď dMpmλ,t,xq ` dMpmΛ,t,xq (5.26)

for any x P M. Take the expectation w.r.t. txsu
t´1
s“0, with Theorem 5.2.1, Jensen’s

inequality and the fact
´?

a`
?
b

2

¯2
ď a`b

2 for nonnegative a and b, we can upper
bound Etgtu as

Etgtu ď EtdMpmλ,t,xqu ` EtdMpmΛ,t,xqu (5.27)

ď Etd2Mpmλ,t,xqu
1
2 ` Etd2MpmΛ,t,xqu

1
2 (5.28)

“ pEtfpmλ,tquq
1
2 ` pEtfpmΛ,tquq

1
2 (5.29)

ď

ˆ

fpm˚q `
p1 ´ εqt´1D2

2λ
`
λσ2

2ε

˙

1
2

`

ˆ

fpm˚q `
p1 ´ ε1qt´1D2

2Λ
`

Λσ2

2ε1

˙

1
2

(5.30)

ď 2

ˆ

fpm˚q `
p1 ´ εqt´1pλ` ΛqD2

4λΛ
`

pλ` Λqσ2

4ε

˙

1
2

, (5.31)

with ε1 “ mint 1
ζpκ,Dq

,Λµu satisfying ε1 ě ε due to the stepsize condition λ ă Λ.
Taking the limit as t Ñ 8, we get the following bound for Etgtu at steady state:

lim
tÑ8

Etgtu ď 2

ˆ

fpm˚q `
pλ` Λqσ2

4ε

˙

1
2

. (5.32)

Combining this bound with (5.25) we obtain the desired result.

Theorem 5.2.2 shows that when no change occurs, a higher detection threshold ξ
leads to a lower upper bound on the false alarm rate. It is worth noting that the bound
on the false alarm rate is influenced by the Karcher variance term, which implies that
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the bound will be tighter when the data distribution has lower dispersion. Smaller
values of λ and Λ are also recommended for a tighter bound because they reduce
the impact of gradient noise captured by σ2. However, choosing larger detection
thresholds and smaller stepsizes also reduces the probability of detecting an actual
changepoint, as indicated by the following theorem.

Theorem 5.2.3. We assume that, under the alternative hypothesis H1, x0,x1, . . . ,

xt´B´1 are drawn i.i.d. from P1pxq with Karcher mean m˚
1 , and xt´B,xt´B`1, . . . ,

xt´1 are drawn i.i.d. from P2pxq with Karcher mean m˚
2 (m˚

1 ‰ m˚
2). We also

assume that the conditions in Theorem 5.2.1 on fpmq, Hpm,xtq, the manifold M
and the stepsizes λ and Λ hold, and that t is sufficiently large such that the algorithms
converged before the changepoint. Then, the detection rate can be lower bounded as:

Ppgt ą ξ|H1q ě
dMpm˚

1 ,m
˚
2q ´ ψpλq ´ ϕpΛq ´ ξ

D ´ ξ
, (5.33)

where ψpλq “

ˆ

2fbefpm
˚
1q `

λσ2

ε

˙
1
2

` λρB ,

ϕpΛq “

ˆ

2faftpm
˚
2q `

p1 ´ εqBD2

Λ
`

Λσ2

ε

˙
1
2

,

with ε “ min
␣

1
ζpκ,Dq

, λµ
(

, fbefpm˚
1q “ minmPM Ex„P1pxqtd

2
Mpm,xqu and faftpm˚

2q “

minmPM Ex„P2pxqtd
2
Mpm,xqu the Karcher variances of the data before and after the

changepoint.

Proof. Let us ignore the conditioning of the expectation on H1 to simplify the
notation. Since the diameter of the domain is bounded above by D, gt ď D, thus, we
can apply Markov’s inequality to the nonnegative random variable D ´ gt to obtain

PpD ´ gt ě D ´ ξq ď
D ´ Etgtu

D ´ ξ
, (5.34)

which leads to

Ppgt ą ξq ě
Etgtu ´ ξ

D ´ ξ
. (5.35)

We now have to lower bound Etgtu. Using the reverse triangle inequality:

Etgtu “ EtdMpmλ,t,mΛ,tqu ě EtdMpmλ,t,m
˚
2qu ´ EtdMpmΛ,t,m

˚
2qu , (5.36)

with m˚
2 being the Karcher mean after the changepoint.

Notice the procedure of optimizing the Karcher mean loss function faftpmq “

Ex„P2pxqtd
2
Mpm,xqu after the changepoint (i.e., where the expectation is defined

w.r.t. P2pxq), with solution m˚
2 , by the SGD algorithms (5.4) and (5.5) can be

recognized as started from xt´B . Let us take the expectation w.r.t. txsu
t´1
s“t´B in the

following steps.
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Now we can upper bound EtdMpmΛ,t,m
˚
2qu with Jensen’s inequality, Theo-

rem 5.2.1, and the fact
´?

a`
?
b

2

¯2
ď a`b

2 for nonnegative a and b, leading to

EtdMpmΛ,t,m
˚
2qu ď EtdMpmΛ,t,xqu ` EtdMpm˚

2 ,xqu (5.37)

ď Etd2MpmΛ,t,xqu
1
2 ` Etd2Mpm˚

2 ,xqu
1
2 (5.38)

ď

ˆ

faftpm
˚
2q `

p1 ´ ε1qBD2

2Λ
`

Λσ2

2ε1

˙

1
2

` pfaftpm
˚
2qq

1
2 (5.39)

ď

ˆ

faftpm
˚
2q `

p1 ´ εqBD2

2Λ
`

Λσ2

2ε

˙

1
2

` pfaftpm
˚
2qq

1
2 (5.40)

ď

ˆ

2faftpm
˚
2q `

p1 ´ εqBD2

Λ
`

Λσ2

ε

˙

1
2

, (5.41)

where x „ P2pxq, and ε1 “ mint 1
ζpκ,Dq

,Λµu satisfying ε1 ě ε due to the stepsize
condition λ ă Λ.

To lower bound EtdMpmλ,t,m
˚
2qu, we can use the reverse triangle inequality,

which gives us

EtdMpmλ,t,m
˚
2qu ě EtdMpmλ,t´1,m

˚
2qu ´ EtdMpmλ,t´1,mλ,tqu

ě EtdMpmλ,t´B´1,m
˚
2qu ´

t
ÿ

u“t´B

EtdMpmλ,u´1,mλ,uqu.

(5.42)

Using the stochastic gradient update equation, mλ,t “ expmλ,t´1
p´λHpmλ,t´1,xt´1qq,

we can express dMpmλ,u´1,mλ,uq as:

dMpmλ,u´1,mλ,uq “ dM
`

mλ,u´1, expmλ,u´1
p´λHpmλ,u´1,xu´1qq

˘

. (5.43)

Since the injectivity radius of the manifold is assumed to be globally bounded
above by I, the condition λ ď I

ρ implies that }λHpmλ,u´1,xu´1q} ă I. Thus, by
proposition 10.22 of [Boumal 2023a],

dM
`

mλ,u´1, expmλ,u´1
p´λHpmλ,u´1,xu´1qq

˘

“ λ}Hpmλ,u´1,xu´1q} (5.44)

ď ρλ . (5.45)

The term EtdMpmλ,t´B´1,m
˚
2qu can be lower bounded as

EtdMpmλ,t´B´1,m
˚
2qu ě dMpm˚

1 ,m
˚
2q ´ EtdMpmλ,t´B´1,m

˚
1qu , (5.46)

with m˚
1 being the Karcher mean of distribution P1pxq of the data before the

changepoint.
Knowing that the changepoint occurred at time t´B, and since the algorithms

are assumed to have asymptotically converged before the changepoint happened
(i.e., t´B ´ 1 is large), we can upper bound EtdMpmλ,t´B´1,m

˚
1qu in (5.46) using
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Jensen’s inequality, Theorem 5.2.1, and the fact
´?

a`
?
b

2

¯2
ď a`b

2 for nonnegative a
and b, which gives us

EtdMpmλ,t´B´1,m
˚
1qu ď Etd2Mpmλ,t´B´1,x

1qu
1
2 ` Etd2Mpm˚

1 ,x
1qu

1
2 (5.47)

ď

ˆ

fbefpm
˚
1q `

p1 ´ εqt´B´1D2

2λ
`
λσ2

2ε

˙

1
2

` pfbefpm
˚
1qq

1
2

(5.48)

ď

ˆ

2fbefpm
˚
1q `

λσ2

ε

˙

1
2

, (5.49)

where x1 „ P1pxq and the expectation above is now taken w.r.t. the distribution
P1pxq, before the changepoint; we used that fact p1 ´ εqt´B´1 Ñ 0 due to the
large t´B ´ 1, and fbefpmq “ Ex„P1pxqtd

2
Mpm,xqu denotes the Karcher mean loss

function before the changepoint (i.e., where the expectation is defined w.r.t. P1pxq),
with solution m˚

1 .
Combining the bounds in (5.42), (5.45), (5.46), (5.49) leads to the following lower

bound:

EtdMpmλ,t,m
˚
2qu ě dMpm˚

1 ,m
˚
2q ´

ˆ

2fbefpm
˚
1q `

λσ2

ε

˙

1
2

´ ρλB . (5.50)

Finally, combining the bounds (5.35), (5.36), (5.41) and (5.50), we obtain

Ppgt ą ξq ě
1

D ´ ξ

„

dMpm˚
1 ,m

˚
2q ´

ˆ

2fbefpm
˚
1q `

λσ2

ε

˙

1
2

´ ρλB

´

ˆ

2faftpm
˚
2q `

p1 ´ εqBD2

Λ
`

Λσ2

ε

˙

1
2

´ ξ

ȷ

, (5.51)

which is the desired result.

Theorem 5.2.3 shows that smaller values of ξ and larger values of dMpm˚
1 ,m

˚
2q

make the lower bound on the detection rate tighter when a changepoint occurs.
Moreover, the bound also gets tighter as λ gets smaller and Λ gets bigger, which is
intuitive since, when B is not too large, a small λ assures mλ,t will still be close to
the Karcher mean of the data before the changepoint, whereas a large Λ means that
mΛ,t will converge faster to the Karcher mean of the data after the changepoint, their
distance being thus more effective for change detection. However, one should note
that λ being too small can hurt the adaptability of the method and its capability
to detect multiple changepoints. Thus, the stepsizes should be selected to ensure a
sufficiently fast speed of convergence for the desired application.

The increase in the number of samples B after a changepoint has a twofold effect
on the lower bound to the detection rate in (5.33). On the one hand, the estimate of
the Karcher means before the changepoint from the “slow” algorithm gets polluted
by samples following the post-change distribution, causing the term ψpλq to increase
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Algorithm 7 Adaptive threshold selection
Input : tgtu, forgetting factor α, quantile q.
Initialization : βgt “ g1, γ

g
t “ g21.

for t “ 1, 2, 3, . . . do
βgt “ p1 ´ αqβgt´1 ` αgt;

γgt “ p1 ´ αqγgt´1 ` αg2t ;

ξ̂t “ βgt `
a

γgt ´ pβgt q2
?
2erf´1p2q ´ 1q;

with B. On the other hand, the “fast” algorithm will converge to the Karcher means
of the post-change data, causing the term ϕpΛq to decrease with B. The bound also
gets larger as the Karcher variances of the data, the gradient noise, and the bound
on the diameter of the domain decrease. Note that these quantities are the main
sources of stochasticity in the proposed algorithm, and as the uncertainty decreases
the theoretical detection performance of the algorithm improves. A similar behavior
is also observed for the upper bound to the false alarm rate in (5.24).

5.2.4 Adaptive threshold selection

One challenge in applying CPD algorithms is the selection of the detection thre-
shold ξ without prior knowledge of the data distribution. In real use cases, a simple
yet effective procedure is to adjust ξ so as to achieve some desired performance in the
absence of changepoints. A classical approach consists of adjusting ξ such that the
algorithm achieves some desired performance under the null hypothesis (i.e., in the
absence of changepoints), such as a given probability of false alarms [Keriven 2020].
For a false alarm rate of, e.g., 0.05, ξ can be set as the 95-th quantile of gt. The per-
formance of the algorithm under the null hypothesis can be computed using training
data or based on a theoretical analysis, such as the result given in Theorem 5.2.2.
However, threshold selection approaches based on theoretical analyses are hard to
apply in practice as they require strong prior knowledge of the statistical distribution
of the data, such as the Karcher variance fpmq and gradient noise σ2 in our case.

A more practical approach is to set ξ as an estimate of the q-th quantile of
gt obtained using a recursive algorithm. Although efficient algorithms have been
proposed for recursive quantile estimation [Chen 2023], we use a simpler alternative
by approximating gt by a Gaussian distribution (the validity of this hypothesis
illustrated empirically in FIGURE 5.3), as also done in [Keriven 2020]. This way,
computing only its first two moments is sufficient to compute the q-th quantile, which
is given by the mean plus the standard deviation multiplied by

?
2erf´1p2q ´ 1q,

where erf is the Gauss error function. A simple recursive implementation of this
strategy is shown in Algorithm 7, which is based on EWMAs of the first two moments
of gt. Experiments illustrating the validity of the Gaussian hypothesis over gt and
the performance of Algorithm 7 can be found in Subsection 5.4.1.
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5.3 Application to specific manifolds

In this section, we tailor Algorithm 6 to two common instances of Riemannian
manifolds for the case of the Karcher mean cost function c “ d2M, which will later
be illustrated through numerical experiments in Section 5.4. The first one is the
manifold of p ˆ p SPD matrices, denoted by S``

p . The second is the Grassmann
manifold, a set of k-dimensional linear subspaces of Rp, denoted by Gk

p . We refer
the interested reader to [Boumal 2023a, Collas 2022] for more details. Note that
although Gk

p is not a Hadamard manifold, Algorithm 6 still performs empirically
well as will be presented in Section 5.4. In practice, these manifolds can appear as
natural representations of the data (e.g., in diffusion tensor imaging) or as feature
embeddings thereof. For computational simplicity, we will replace the exponential
maps in the R-SGD updates (5.4) and (5.5) with approximate retractions Rmλ,t

and
RmΛ,t as in [Bonnabel 2013]. A systematic study of retraction to understand the
effect of this approximation on convergence rate and performance guarantees of our
method is an important topic for future research.

5.3.1 The manifold of SPD matrices

The manifold S``
p consists of the set of SPD matrices endowed with an appro-

priate metric. When considering the affine invariant metric, the geodesic distance
between two SPD matrices Σ and Σt P S``

p can be computed as [Pennec 2006b]:

dS``
p

pΣ,Σtq “
›

› logpΣ
´ 1

2
t ΣΣ

´ 1
2

t q
›

›

F
, (5.52)

where } ¨ }F denotes the Frobenius norm. In this case, the Riemannian gradient
HpΣ,Σtq of the loss function d2S``

p
pΣ,Σtq at Σ P S``

p is obtained by applying the

transformation 1
2Σ pGT ` GqΣ to its Euclidean gradient G [Bhatia 2009], which

gives us :
HpΣ,Σtq “ 2 logpΣΣ´1

t qΣ . (5.53)

Finally, a second-order retraction on S``
p is given by:

RΣ,S``
p

pξq “ Σ ` ξ `
1

2
ξΣ´1ξ . (5.54)

With tΣtutPN lying in S``
p and the metric defined in (5.52), the Karcher means were

estimated by minimizing the following objective function

fpΣq “ EΣt„P pΣq

␣›

› logpΣ
´ 1

2
t ΣΣ

´ 1
2

t q
›

›

2

F

(

, (5.55)

Note this cost function is known to be geodecially strong convex and smooth as
discussed in [Zhang 2016b]. The R-SGD algorithms in (5.4) and (5.5) with the
stochastic gradient (5.53) and the retraction (5.54) were used to compute the online
CPD statistic in (5.6).
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5.3.2 The Grassmann manifold

We consider the Grassmann manifold Gk
p endowed with the canonical metric.

The Grassmann manifold is typically characterized as a smooth quotient of the
Stiefel manifold Sk

p “ tU P Rpˆk : UTU “ Iku. This way, by defining the surjective
map π : Sk

p Ñ Gk
p as follows: πpUq “ tUO : O P Rkˆk,OTO “ Iku, every point

πpUq P Gk
p can be equivalently represented by the orthonormal matrix U whose

columns form its basis. We spare the reader of the technical details, which can be found
in [Absil 2009, Boumal 2023a]. To proceed, let us first denote by V 1DiagpθtqV

T
2

the singular value decomposition (SVD) of UTUt. The geodesic distance between
πpUq P Gk

p and πpUtq P Gk
p can be defined as [Edelman 1998]:

dGk
p

pU ,Utq “ } cos´1pθtq}2 . (5.56)

The Riemmanian gradient HpU ,Utq of the loss function d2Gk
p

pU ,Utq at πpUq P Gk
p

can be computed by applying the transformation pI ´ UUT qG to its Euclidean
gradient G. Using results from matrix calculus, this results in:

HpU ,Utq “ ´pI ´ UUT qU tV 2Diag
´

2
`

1 ´ θ2
t

˘´ 1
2

¯

V T
1 . (5.57)

Let ξ P TπpUqGk
p , and let XΥY “ U ` ξ be the thin SVD of U ` ξ P Rnˆp. A

second-order retraction on the Grassmann manifold is given by [Boumal 2023a]

RπpUqpξq “ π
`

XY T
˘

. (5.58)

With tπpUtqutPN lying in Gk
p and the metric defined in (5.56), the Karcher means

were estimated by minimizing the objective function

fpπpUqq “ EπpUtq„P pπpUqq

␣›

› cos´1pθtq}22

(

. (5.59)

Accordingly, the R-SGD algorithms in (5.4) and (5.5) with the stochastic gra-
dient (5.57) and the retraction (5.58) were used to compute the online CPD statistic
in (5.6).

5.4 Experiments

In this section, we present numerical experiments using the manifolds S``
p

and Gk
p discussed in Section 5.3. Our method was implemented in Python using

Pymanopt [Townsend 2016]. The selection of stepsizes based on theoretical analyses
is not trivial to apply in our approach as they require strong prior knowledge of the
statistical distribution of the data, such as the Karcher variance fpm˚q and gradient
noise σ2. Instead, we set the stepsizes of our method as λ “ 0.01 and Λ “ 0.02

with empirical evaluation. Open-source code to reproduce the results is publicly
available at https://github.com/xiuheng-wang/CPD_manifold_release. Here we
briefly describe the baselines and evaluation metrics.

https://github.com/xiuheng-wang/CPD_manifold_release
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5.4.2 Voice activity detection

We now present results on real data on both S``
p and Gk

p by considering the task
of voice activity detection on audio signals. We first added 4 seconds of real speech
extracted from the TIMIT database [Garofolo 1993] to 15 seconds of background
noises in real street environments from the QUT-NOISE database [Dean 2010], with
´3 dB Signal-to-Noise Ratio. The goal is to detect the speech segments in the noise
background. Then, we used the Short Time Fourier Transform (STFT) [Cohen 1995]
on a one-dimensional audio signal to extract on-the-fly frequency information and
form a d “ 128 dimensional time series st P Rd. The two methods with the best
performance in the experiments with synthetic data, Scan-B and NEWMA, were
used as baselines in this experiment. They were directly applied on st as they are
designed to operate on Euclidean spaces.

Manifold S``
p : We averaged the neighboring channels of st in the frequency

domain to obtain its down-sampled version with 16 channels. We then generated
data points Σt P S``

p with p “ 16 by computing the covariance matrices in sliding
windows, each with 32 samples. The proposed method on such covariance descriptors
is denoted as “Our-cov".

Manifold Gk
p : We also applied the truncated SVD with k “ 1 singular values to

the samples in the same sliding windows to obtain orthonormal matrices Ut defining
the subspaces πpUtq P Gk

p . We denote our method on these subspaces as “Our-sub".

Discussion: The ROCs and MDD as a function of ARL for all methods, averaged
over 104 Monte Carlo runs, are depicted in FIGURE 5.5. It is important to note
that the problem setting is challenging due to the complexity of real acoustic signals
and the non-i.i.d. nature of the extracted features. Nevertheless, one can observe
that the proposed strategy exhibits a higher detection rate for a given false alarm
rate and better performance on MDD versus ARL when compared to both Scan-B
and NEWMA, except for very small ARLs where Scan-B has a lower MDD. This
behavior occurs since both the covariance and subspace descriptors are computed
over a sliding window, which introduces a small detection delay in our method
when the ARL is small 1. However, its performance is significantly better for larger
ARLs. This illustrates the superior performance of our method. Furthermore, the
performance was slightly superior in the covariance descriptors on S``

p compared to
the subspace representations on Gk

p . In this application, the performance improvement
of our method is also due to the beneficial properties of the covariance matrix, which
reduces the impact of vertical noise when detecting changepoints in spectrograms.

1. Although a shorter sliding window is preferred to introduce a smaller delay, the window length
has to be long enough to provide enough samples for an accurate estimation of these statistical
descriptors.
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1) computation of the Riemannian gradient of the loss function, and 2) computing
the exponential or retraction to map the gradient back to the manifold.

The computational complexity involved with these steps depends on the choice of
the manifold as it affects both the loss function (and therefore the gradient) and the
retraction/exponential map. However, for many manifolds of great practical interest,
including the SPD and the Grassmann, computing these operations is relatively
efficient, and for these two manifolds, we can compute the complexity explicitly.

Complexity for the SPD manifold: The operations involved in implementing the
R-SGD on the manifold of pˆ p SPD matrices consist of five matrix multiplications,
a matrix inverse, and a matrix logarithm. Thus, the computational cost is given by
Opp3q operations.

Complexity for the Grassmann manifold: The operations involved in imple-
menting the R-SGD on the Grassmann manifold of k-dimensional subspaces in Rp

consists of two SVDs, five matrix products, and the evaluation of Opkq arithmetic
functions. Thus, the computational cost is given by Opp2kq.

Comparison to baselines: We briefly compare the complexity with respect to
the baselines F-CPD [Dubey 2020] and NEWMA [Keriven 2020]. F-CPD is an offline
method designed to operate on manifolds and detects a changepoint based on a
two-sample test. For every candidate changepoint, the test statistic is computed
as a function of the Karcher means and variances of the data before and after
the candidate changepoint, which is computationally very intensive to implement.
NEWMA, on the other hand, is an online method designed to operate on Euclidean
spaces, by comparing exponentially weighted moving averages of generalized moments
of the data computed based on the random features framework. Thus, the cost of
NEWMA is dominated by the cost of computing the random features [Keriven 2020].
For random Fourier features [Rahimi 2007], the computation complexity scales as
OpSdq operations, where d is the dimension of the input data, and S is the number
of random samples (the dimension of the feature space), which are sampled from a
probability measure related to the kernel. Thus, depending on the choice of kernel
and the feature dimension NEWMA can be efficient, although it does not take the
manifold geometry into account.

5.4.5 Additional results

In this subsection, we provide some supplementary results to enhance compre-
hension of the methodologies, though they are not necessarily required to validate
the performance.
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5.4.5.1 Mean and standard deviation of the test statistics

In FIGURE 5.7, we plot the mean and standard deviation of the test statistics
of all the compared algorithms for the examples with synthetic data. It can be seen
that for the synthetic example the test statistic of the proposed strategy required
approximately 200 samples to converge after a changepoint occurs. The algorithm
achieves good performance for detecting multiple changepoints as long as the interval
between them is sufficiently large compared to the time it requires to converge. By
comparison, we also plot in FIGURE 5.9 the test statistic for the compared methods
for the skeleton-based action recognition example, in which the parameters of the
algorithms had to be readjusted to achieve faster convergence since the number of
samples between changepoints is smaller. It can be observed that the algorithms
converge significantly faster (requiring only approximately 80 samples). However,
the variances of the test statistic, particularly after the changepoint, are also much
higher. This illustrates the trade-off between detection performance and adaptability
of the proposed method.

5.4.5.2 Comparisons between the histograms of the test statistics on
synthetic data

To get a deeper insight into the behavior of the ROC curves in the examples
with synthetic data (FIGUREs 4.2 and 5.2), where our method had an area under
curve close to one, we compared the histograms of the test statistics of all methods
under the null hypothesis and at their peak value after a changepoint. The result
can be seen in FIGURE 5.8. One can observe that different from the competing
methods, the histogram of the test statistic of our method under the null hypothesis
shows almost no overlap with its counterpart at peak value after a changepoint. This
explains the good detection performance of the proposed detector confirmed by ROC
curves.

5.5 Conclusion

This chapter presented a general approach for non-parametric online CPD on
Riemannian manifolds. An adaptive test statistic was computed using stochastic
Riemannian optimization to monitor the generalized Karcher mean of data streams.
Performance guarantees for detection and false alarm rates were established based
on a theoretical analysis of the non-asymptotic convergence of the R-SGD algorithm.
Experimental results on the manifold of SPD matrices and the Grassmann manifold
demonstrated the superiority of the proposed algorithm on synthetic and real-world
datasets. We also identify the main limitations of our work:

— The number of samples needs to be large enough for the “slow" algorithm to
converge to the Karcher mean of the data before a new changepoint occurs to
perform well. This is a limitation of our method and also of other recursive
algorithms.
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6.1 Introduction

CPD aims to identify time instants when the probability distribution of a sto-
chastic process or a time series changes. Recently, one trend that has been growing
in popularity is to detect changepoints in time series measured over the nodes of
a network while taking the network topology into account [Sharpnack 2013, Fer-
rari 2019, Ferrari 2020b]. This problem is of great interest for many applications as
diverse as network security, environmental monitoring and neuroimaging.

The changepoints in these problems often occur in groups of highly connected
nodes (i.e., communities) of networks, represented as graphs. Graph signal processing
tools, including spectral analysis [Ng 2001, Von Luxburg 2007] and filtering [Shu-
man 2011, Segarra 2015, Loukas 2015, Isufi 2017], are indicated to combine such graph
topology information with measurements collected at each node. In [Sharpnack 2013],
the authors introduce the Graph Fourier Scan Statistic (GFSS) and a low-pass filter
based on graph Fourier transform to detect anomalies over graph signals. The work
in [Ferrari 2019] proposes an online CPD algorithm with a fully distributed and
adaptive GFSS to monitor for changepoints in large-scale networks. This algorithm
was applied for CPD in multi-channel image sequences in [Borsoi 2021f]. An online
and distributed strategy based on likelihood ratio estimation with kernel machinery
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is also described in [Ferrari 2020b] to detect changepoints over graphs with few
assumptions on the data distribution.

All the distributed CPD frameworks listed above are limited to real- or vector-
valued time series in Euclidean spaces. To the best of our knowledge, there is no
generalization of CPD techniques over graphs where the streaming data collected at
each node belongs to a Riemannian manifold. A representative application is the
detection of changepoints in videos with a sequence of spatially localized covariance
descriptors [Wang 2023a]. In this application, the changes usually affect multiple
related regions in the image. However, this information is not taken into account
by algorithms that process each region separately. One possibility to leverage this
information is to design a graph that describes the relationship between regions,
and then perform the detection of changepoints cooperatively. To devise algorithms
for manifold-valued data, it is important to take the geometry of the data space
into account by exploiting, e.g., an appropriate Riemannian metric [Pennec 2006b,
Boumal 2023b].

This chapter introduces a distributed framework for detecting changepoints on
manifold-valued signals collected over a network. The proposed method is built
upon a test statistic derived for streaming data on a Riemannian manifold which
accounts for the geometry of the data, and a fully distributed graph filter that
exploits the network topology information to enhance the detection of anomalies
localized in unknown communities of nodes. Simulation results show that taking
manifold geometry and graph topology into account can significantly improve the
detection performance.

6.2 Problem formulation

We consider an undirected graph G “ tN , Eu with N vertices in N “ t1, . . . , Nu

and M edges in E Ă N ˆ N such that pi, jq P E iff nodes i and j are connected. The
graph G is associated with an N ˆ N weighted adjacency matrix W . Each entry
Wi,j ě 0 is the connection strength between nodes i and j, with non-zero value iff.
pi, jq P E . A community C Ă N in G is a subset of nodes that are densely connected.

At each time instant t P N, we observe a signal over the graph Xt “ txtpnquNn“1,
where xtpnq P M denotes the measurement collected at node n, that lies on a
Riemannian manifold pM, gq. In this chapter, the objective is to detect an abrupt
change in the graph signal Xt that might occur at an unknown time tr, called
a changepoint. In particular, we assume that the changes occur in an unknown
community C˚ of G, which means that :

t ă tr : xtpnq „ P0,n ,

t ě tr : xtpnq „ P1,n ,
(6.1)

with

@n P C˚, P0,n ‰ P1,n ,

@n R C˚, P0,n “ P1,n .
(6.2)
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where P0,n and P1,n denote probability measures on M that represent the distribution
of the signal xtpnq before and after the changepoint tr. For ease of notation, (6.1)
considers only a single changepoint. However, the algorithm presented hereafter can
handle multiple changepoints.

6.3 Methodology

Distributed CPD strategies [Sharpnack 2013, Ferrari 2019, Ferrari 2020b] initially
designed to handle time series signals in an Euclidean space cannot handle streaming
data that lies on a manifold. In this work, we aim to design a new framework to detect
changepoints in streaming manifold-valued signals over graphs. First, we consider
an online CPD strategy on Riemannian manifolds to take the data geometry into
account. Second, we leverage the graph topology by graph-filtering test statistics
computed at each node, without compromising the manifold interpretation of the
signals. Finally, the centralized graph filter is implemented in a fully distributed way,
to provide an efficient CPD method for large-scale networks.

6.3.1 CPD in streaming manifold-valued signals

Some recent algorithms have been investigated for detecting changepoints in
streaming manifold-valued data. For instance, an online and parametric CPD al-
gorithm in [Bouchard 2020] was specifically designed for the compound Gaussian
distribution. An offline and non-parametric technique can be found in [Dubey 2020].
In this subsection, we consider an online and non-parametric algorithm presented
in Chapter 5, which detects changepoints by monitoring for abrupt changes in the
Karcher means [Karcher 1977] of the streaming data. Consider a random signal x in
M distributed according to P . As already discussed in Chapter 5, its Karcher mean
is defined as:

m˚ “ argmin
mPM

"

fpmq fi

ż

d2Mpm,xq dP pxq

*

. (6.3)

Recall that the algorithm in Chapter 5 allows us to detect changepoints by compa-
ring two Karcher means estimated using two stochastic Riemannian optimization
methods, one rapidly approaching the information of new data, and another steadily
progressing to emphasize a long-term trend. This method can be applied to detect
changepoints in the distribution of xtpnq at each node n by estimating its Karcher
mean. Specifically, for each node n, using two Riemannian stochastic gradient descent
(SGD) algorithms [Bonnabel 2013] with two distinct stepsizes 0 ă λ ă Λ, two Karcher
means are estimated recursively as:

mλ,tpnq “ expmλ,t´1pnq

`

´ λHpmλ,t´1pnq,xtpnqq
˘

, (6.4)

mΛ,tpnq “ expmΛ,t´1pnq

`

´ ΛHpmΛ,t´1pnq,xtpnqq
˘

, (6.5)

where expm is the exponential map at m, and Hpm,xq denotes the Riemannian
gradient of the loss function fpmq. The convergence rates of (6.4) and (6.5) are
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Algorithm 8 CPD in streaming manifold-valued signals
Input: txtpnquNn“1, stepsizes λ,Λ, threshold ξ.

Initialize mλ,0pnq “ mΛ,0pnq “ x0pnq

for t “ 1, 2, 3, . . . do
for n “ 1, . . . , N do

Update mλ,tpnq and mΛ,tpnq using (6.4) and (6.5)
Compute dtpnq using (6.6)

if D n P N : dtpnq ą ξ then
Flag t as a changepoint

directly affected by λ and Λ. Constraint λ ă Λ implies that mΛ,tpnq is more adaptive
to new data while mλ,tpnq has a longer memory. The exponential maps in (6.4)
and (6.5) can also be replaced by a computationally simpler retraction Rmλ,t´1pnq

and mΛ,t´1pnq, respectively.
By assessing the disparity between mλ,tpnq and mΛ,tpnq through the geodesic

distance on M, an adaptive CPD statistic dtpnq for each node n can be computed
as:

dtpnq “ dM
`

mλ,tpnq,mΛ,tpnq
˘

. (6.6)

CPD at each node can then be performed by comparing dtpnq to a threshold ξ. The
corresponding CPD procedure on manifolds is summarized in Algorithm 8.

6.3.2 Community CPD over graphs

Consider dt “ rdtp1q, . . . , dtpNqsJ. The CPD statistic computed in (6.6) at each
node does not take into account the graph topology. To improve the localization of
the communities that might contain a changepoint, we consider the graph filter g

introduced in [Sharpnack 2013] for computing the GFSS. The GFSS aims to test
if a graph signal with scalar measurements at each node is zero-mean against the
hypothesis that there is a community of well-connected nodes where signals have
a mean that differs from zero. We propose to apply the GFSS to the node-level
test statistics dt defined in (6.6) rather than original signals xt to avoid loss of the
manifold interpretation of problem (6.1).

Let us denote the normalized graph Laplacian of G by L. Let un for n “ 1, . . . , N

be the set of orthonormal eigenvectors of L with µn being the associated eigenvalues.
Given the node-level test statistics dt, the GFSS is defined as:

tGFSSpdtq “ }gdt
}2 , (6.7)

gdt
“

N
ÿ

n“2

h˚pµnqpuJ
ndtqun , (6.8)

where gdt
is the graph-filtered statistics, and h˚pµq is the frequency response of the

filter defined as [Sharpnack 2013]:

h˚pµq “ min

"

1,

c

γ

µ

*

, µ ą 0 , (6.9)
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Algorithm 9 Distributed CPD in streaming manifold-valued signals over graphs
Input : tXtu, stepsizes λ,Λ, threshold ξ

Initialize yℓ,´1 “ 0

for t “ 1, 2, 3, . . . do
@n P N , compute dtpnq as in Algorithm 8
Set dt “ rdtp1q, . . . , dtpNqsJ

for ℓ “ 1, . . . ,K do
yℓ,t “ ψℓLyℓ,t´1 ` φℓdt

ĝdt
“
řK

ℓ“1 yℓ,t ` cdt

if Dn P N : ĝdt
pnq ą ξ then

Flag t as a changepoint

where γ ą 0 being a tuning parameter. Adjusting the parameter γ is crucial for the
GFSS performance, as γ controls the bandwidth of the low-pass graph filter. The
practical adjustment of γ is discussed in Section 6.4.

To get more insight into the filtering procedure in (6.8), let us recall the role of
the eigenvectors un of the graph Laplacian matrix L in spectral clustering [Ng 2001,
Von Luxburg 2007]. Consider the ideal case of a graph with 1 ă K ă N disconnected
clusters of densely connected nodes. We denote by Cn the set of nodes in cluster
n, with n “ 1, ¨ ¨ ¨ ,K. Each un is proportional to the indicator function of Cn, and
uJ
ndt is therefore proportional to the sum of the dtpnq’s in Cn. This means that

puJ
ndtqun in (6.8) assigns the average value of the dtpnq’s in Cn to each node in Cn.

As the number of communities K is unknown, the filter response in (6.9) is designed
to penalize large numbers of clusters in (6.8). This assumption is also a cornerstone
of spectral clustering methods [Ng 2001, Von Luxburg 2007].

6.3.3 Distributed implementation

The filtering operation as defined in (6.8) requires the eigen-decomposition of
the normalized graph Laplacian matrix L. This is computationally expensive and
hence cannot be scaled to large networks. A strategy to make our community CPD
algorithm scalable is to substitute the filter in (6.8)–(6.9) with a distributed filter
that can be implemented locally at each graph vertex [Shuman 2011, Segarra 2015].
In contrast to these finite impulse response filters, an autoregressive moving average
(ARMA) graph filter has been proposed in [Loukas 2015, Isufi 2017]. This filter
recursively aggregates signals in the neighborhood of each node, which therefore
requires low computation and memory costs.

In the context of online community CPD, we propose to apply the parallel
ARMAK graph filter [Isufi 2017], an approximation of the GFSS filter g defined
in (6.8), to the streaming statistics dt in (6.6), which leads to:

yℓ,t “ ψℓLyℓ,t´1 ` φℓdt, yℓ,´1 “ 0, @ℓ “ 1 . . .K , (6.10)

ĝdt
“

K
ÿ

ℓ“1

yℓ,t ` cdt . (6.11)



110 Chapter 6. Distributed CPD in manifold-valued signals over graphs

Figure 6.1 – Graph topology with colored communities Ci.

The operation Lyℓ,t´1 is a graph-shift which is performed locally at each node
n by linearly combining the statistics as follows:

ř

kPNp
Lp,k yℓ,t´1,k, where Np is

the neighborhood of node p, including p itself, yℓ,t´1,k is the k-th entry of yℓ,t´1

and Lp,k the pp, kq-th entry of L. This operation plays a central role in the fully
distributed graph-filtering procedure of streaming statistics dt as it only involves
the values of the neighboring nodes over graphs. Note that there exists a series of
appropriate parameters c and tpψℓ, φℓquℓ“1...K so that hpµq closely approximates
h˚pµq in (6.9). The practical computation problems of parameters c and pψℓ, φℓq

for ℓ “ 1, . . . ,K are discussed in Section 6.4. The fully distributed CPD procedure
for streaming manifold-valued signals over graphs is described in Algorithm 9. In
practice, the adaptive threshold selection strategy described in Section 5.2.4 can be
used to determine ξ in algorithms 8 and 9.

6.4 Simulations

We shall now illustrate the performance of the proposed approach using graph
signals xtpnq over the manifold of SPD matrices S``

p . The topology of the graph
G 1 used for simulations is illustrated in FIGURE. 6.1. It contains p “ 250 nodes
and m “ 2508 edges, and 8 communities. These communities Ci have been unfolded
using [Blondel 2008] and colored for visualization. We generated Xt as in (6.1) with a
changepoint in community C˚. Its nodes are colored in orange in FIGURE. 6.1. The
synthetic matrices Σt P S``

p with d “ 6 were sampled from a Wishart distribution
with the scaling matrix V and degrees of freedom d. We generated 800 independent
samples and inserted the changepoint at tr “ 500 in (6.1) where we randomly reset
V from one random matrix to another..

With tΣtutPN lying on S``
p and the metric defined in (5.52), the Karcher means

were estimated by minimizing the objective function (5.55) using the Riemannian
SGD algorithms in (6.4) and (6.5) with the stochastic gradient (5.53) and the
retraction (5.54). The empirical evaluation was used to find the optimal value of

1. The topology of the graph can be downloaded from https://github.com/andferrari/
icassp20.

https://github.com/andferrari/icassp20
https://github.com/andferrari/icassp20
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stepsizes as λ “ 0.01 and Λ “ 0.02 to compute the online statistic in (6.6). Given a
filter order K, as discussed in [Ferrari 2019], the filter parameters can be computed
by minimizing

Jpa, bq “
ÿ

i

rBpxiq ´ hpxiqApxiqs
2 (6.12)

w.r.t. pa, bq where Apxq “ 1`
řK

ℓ“1 apℓqxℓ “
śK

ℓ“1p1´ψℓxq, and Bpxq “
řK

ℓ“0 bpℓqxℓ,
over a uniform grid xi on the interval p0, 2q. According to [Ferrari 2019], this quadratic
problem must be solved by the following linear constraints w.r.t. a : |Apxiq| ă β

for all xi on the grid, with β a parameter to be set by the user. Finally, initial
variables c and tpϕℓ, ψℓqu were estimated from pa, bq by a partial fraction expansion
of Bpxq{Apxq. The empirical evaluation was used to set γ “ 0.03, K “ 4, and
β “ 0.1. Subsequently, the resulting filter h˚pµq was checked to be stable.

To compare the detection performance of these algorithms, Monte Carlo simula-
tions were performed to estimate the mean detection delay, average run length, and
false alarm rate for daGFSS, dt and ĝdt

. Considering ĝdt
for illustration purposes,

these metrics are defined as follows:

Tmdd “ inftt´ tr : ĝdt
pnq ą ξ |n P C˚u, (6.13)

T arl “ inftt : ĝdt
pnq ą ξ |n R C˚u, (6.14)

P fa “ P
`

ĝdt
pnq ą ξ | t ą tr, n R C˚

˘

. (6.15)
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Figure 6.2 – Average run lengths versus mean detection delays for all compared
algorithms (left). Mean detection delays versus false alarm rates for all compared
algorithms (Right). Algorithm 1: dt, Algorithm 2: ĝdt

.

To illustrate the advantage of exploiting both manifold geometry and graph
topology, we compared our Algorithm 9 to two baselines. The first baseline is
daGFSS [Ferrari 2019], originally designed for Euclidean data. We applied daGFSS to
the vectorization of the lower triangular and diagonal parts of Σt. The second baseline
is the Karcher means-based CPD method on manifolds detailed in Algorithm 8,
performed node-by-node without cooperation.

FIGURE. 6.2 (left) and FIGURE. 6.2 (right) show the mean detection delays
versus average run lengths and false alarm rates, respectively, of all detectors consi-
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7.1 Conclusions

This thesis investigated new approaches integrating both physical modeling
and machine learning strategies. The composition of these two methodologies has
attracted considerable attention during the past few years, since they provide clear
interpretation with specific domain knowledge and meanwhile achieve superior
performance with powerful learning ability. The work of this thesis explored problems
related to this composed methodology under two important signal processing contexts,
solving inverse problems in hyperspectral imaging and detecting changepoints in
time series.

The first part of the thesis concerned the joint modeling and learning approaches
for hyperspectral imaging and explored a novel idea to design Plug-and-Play methods
for two distinct inverse problems in hyperspectral imaging. In Chapter 2, we started
by introducing a tuning-free hypersepctral image deconvolution method utilizing
the Plug-and-Play framework. Instead of relying on manually crafted priors, we
developed a blind B3DDN denoiser leveraging deep learning to capture spectral-
spatial information from the data directly by substituting steps in an ADMM-based
optimizer. The hyperparameters are automatically learned using the B3DDN and
a measure of 3D residual whiteness. Chapter 3 investigated an unsupervised deep
learning method for hypersepctral and multispectral image deconvolution with inter-
image variability. Initially, we devised a novel imaging model incorporating both
joint and image-specific priors of the two latent high-resolution images. Inter-image
variability was characterized using a hyper-Laplacian distribution, while the image-
specific priors for the latent high-resolution images were implicitly learned through
deep denoising engines. To address the non-convex cost function, we explored an
iteratively reweighted scheme. A lightweight, image-specific CNN-based denoiser
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was designed with a zero-shot training strategy. During the optimization process,
the network parameters were iteratively updated to adapt to the variability of the
estimated high-resolution images as convergence was achieved. The proposed methods
in the first part of this thesis achieved superior experimental performance in both
the image deconvolution and fusion inverse problems in hyperspectral imaging when
compared to state-of-the-art approaches.

The second part of the thesis addressed the problem of detecting changepoints in
time series and investigated the use of machine learning techniques to learn objectives
supported by physics-based models. In Chapter 4, we proposed a novel strategy for
online changepoint detection that leverages the powerful learning ability of neural
networks to estimate density-ratio in a non-parametric manner. A continual learning
framework was exploited to devise an adaptive detection algorithm that retains
past information. Chapter 5 presented a general approach for non-parametric online
changepoint detection on Riemannian manifolds. We computed an adaptive test
statistic by employing stochastic Riemannian optimization to track the generalized
Karcher mean of data streams. By conducting a theoretical analysis of the non-
asymptotic convergence of the stochastic Riemannian gradient descent algorithm, we
established performance guarantees for both detection and false alarm rates and then
applied this method to two typical instances of manifolds. To extend this method
to detect changepoints in streaming manifold-valued signals within an unknown
community of a graph, Chapter 6 incorporated a local test statistic at each node
to handle the inherent geometry of data lying on a manifold, along with a fully
distributed graph filter that incorporates network topology information. Experimental
and simulation results validated the effectiveness of the methods proposed in the
second part of this thesis to detect changepoints in streaming Euclidean data, data
lying on Riemannian manifolds, and manifold-valued data over graphs.

7.2 Perspectives

This thesis proposed novel frameworks integrating both physics-based and ma-
chine learning approaches to problems in hyperspectral image and time series analysis.
There are several related problems which remain to be further investigated. We list
some of these future research directions below.

7.2.1 CPD in multi-temporal hyperspectral data

The increasing availability of multi-temporal hyperspectral devices allows for a
detailed analysis of the evolution of a scene over time [Borsoi 2021c]. In this thesis,
the problems of hyperspectral imaging and changepoint detection were studied in two
individual parts, one research direction with great potential is to investigate online
changepoint detection in multi-temporal hyperspectral data. This can potentially
benefit various applications, ranging from agricultural and forestry monitoring to
natural disaster and urban landscape analysis [Borsoi 2021f].
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In addition, it is also promising to develop an online changepoint detection
algorithm to process the hyperspectral data cubes acquired slice by slice in push-
broom imaging systems [Song 2019]. This can be compatible with real-time processing
in industrial applications of hyperspectral imaging.

7.2.2 CPD over graphs with neural networks

We considered a new online changepoint detection strategy based on neural
density-ratio estimation to process data in sliding windows in Chapter 4. An open
problem is how to extend this algorithm to detect changepoints in streaming data
over graphs. One may compute test statistics at each node, followed by leveraging
graph filtering techniques to aggregate node-level statistics, as discussed in Chapter 6.
However, this needs to implement neural networks at each node and design the graph
filter beforehand. A more efficient alternative is to design graph neural networks to
take graph topology into account and process the data in an end-to-end manner.

7.2.3 Distributed optimization on Riemannian manifolds

In Chapter 6, a distributed method was presented considering a graph filter to
process statistics proposed in Chapter 5 for streaming data on general manifolds,
but it was only designed for the changepoint detection task.

In a more general setting, distributed optimization recently gained considerable
attention. It aims to solve the multi-agent optimization problem considering consensus
on a Riemannian manifold M:

min
wPM

K
ÿ

k“1

Jkpwq (7.1)

with Jk : M Ñ R a local risk function defined for each agent as Jkpwq “

Exk

␣

Qpw;xkq
(

in terms of some loss function Qpw;xkq. The expectation is com-
puted over the unknown distribution of the data xk, which makes it necessary to
use a stochastic approximation based on the set of independent realizations xk,t,
observed sequentially over time. A wide range of applications in machine learning and
signal processing can be written in the form of (7.1), including dictionary learning,
principal component analysis, and low-rank matrix completion [Boumal 2023a].

To solve (7.1), an effective way is to develop distributed optimization on manifolds,
which directly operates on M by exploiting the inherent geometry. In the exploratory
work [Wang 2024b], we introduced two general Riemannian diffusion adaptation
strategies and considered an application for online distributed principal component
analysis. The theoretical behavior of this algorithm as well as its application to
different problems is an interesting direction to be further investigated.
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