
HAL Id: tel-04638666
https://theses.hal.science/tel-04638666

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-rank network models of neural computations
Adrian Valente

To cite this version:
Adrian Valente. Low-rank network models of neural computations. Neuroscience. Université Paris
sciences et lettres, 2022. English. �NNT : 2022UPSLE057�. �tel-04638666�

https://theses.hal.science/tel-04638666
https://hal.archives-ouvertes.fr

Préparée à l’École Normale Supérieure

Low-rank network models of neural computations

Soutenue par

Adrian VALENTE
Le 19 octobre 2022

École doctorale no158
Cerveau, Cognition,
Comportement

Spécialité
Neurosciences

Composition du jury :

Devika NARAIN
Erasmus Medical Center Rapporteur

(absente)
Henning SPREKELER
Technische Universität Berlin Rapporteur

Tatiana ENGEL
Cold Spring Harbor Laboratory Examinatrice

Jonathan PILLOW
Princeton University Membre invité

Peter NERI
École Normale Supérieure Président du jury

Srdjan OSTOJIC
École Normale Supérieure Directeur de thèse

i

Preface

The work that follows contains the outcome of what was both the most demanding and the
most gratifying journey I have underwent. It began in late 2019 when Srdjan Ostojic invited
me to spend a fascinating afternoon at his lab. Although, to be honest, it probably began a
few years earlier, when I started reading popular science books about brain function, hoping
to find answers and finding only question after question, pushing me to deepen the subject
by signing up on a master’s course, a master’s thesis in Paris, and eventually a whole PhD,
immersing me entirely in the field before I could realise what had happened. And if I am
to be fully honest, this journey really began in 1995, when my parents, additionally to life,
managed to instil in me a curiosity for the world around us and a passion for science which
stuck with me very strongly (much more strongly than the passion for River Plate, although
things can still change).

Pour cela, ainsi que pour votre soutien sans faille, je vous suis immensément reconnais-
sant. Cette passion m’apporte une satisfaction continue, celle d’apprendre tous les jours,
de partager et d’échanger des connaissances avec d’autres passionnés, et surtout, chose que
j’aurais cru impossible il y a encore peu, de contribuer à mon échelle à la construction de ce
vaste édifice du savoir commun. Je sais que cette joie de découvrir et d’apprendre me suivra
facilement où que j’aille, car elle ne requiert rien d’autre qu’un état d’esprit. Merci donc
d’avoir su partager cet état d’esprit avec moi.

But let us fast-forward a few years to 2019, when Srdjan Ostojic offered me a master’s
thesis subject, and ultimately a PhD subject, to explore jointly with Alexis Dubreuil, on a
research track opened by Francesca Mastrogiuseppe. I had little experience in neuroscience,
and could not immediately understand the subject, but I knew right away that if I was to
do research, this was what I wanted to study. It consisted in exploring questions I had been
wondering about for many years without ever being able to formulate them until then. I
hope the enjoyment I had in studying this subject will be reflected in the following pages
and will be shared with the reader.

As all those who have been in research know, the path to a PhD is an extremely strenuous
one. And like all theses prepared between the years 2020 and 2022, this one has been done
in spite of particularly unfavorable circumstances. Environmentally-induced anxiety had
to be managed, and many of the most pleasing aspects of research, that is conferences and
social exchanges, suddenly disappeared. Yet I have been extremely lucky in this path, in
terms of the supervisor, the colleagues and the friends I was gifted with, which all made the
good memories of the journey far outweigh the difficulties.

À mes amis donc, à ceux qui continuent de partager avec moi les passions les plus
ésotériques et les conversations les plus passionnantes et saugrenues, à ceux avec qui on s’est
évadés dans les endroits les plus inaccessibles qu’on ait trouvé, à ceux avec qui on a fait
travailler aussi dur les jambes que l’estomac, à ceux qui m’ont vu m’arracher les cheveux
sur du code ou des figures, à ceux qui sont toujours là pour prendre un verre, puis deux et
encore quelques autres, bref à tous ceux qui m’ont apporté de la joie pendant ces années:
vous êtes les meilleurs, merci beaucoup.

As this work focuses on the importance of collective activity in neural processes, I have
to underline how much it owes to the collective activity within our lab and to continuous
exchanges of ideas, and in particular to the following people: to my director Srdjan of course
who trusted in me from the beginning, who has always been a supportive and reassuring
presence, and managed to strike what I found was the perfect balance between precise advice
and scientific liberty ; to Alexis Dubreuil, who immediately took me under his wing and
taught me a sea of knowledge about neuroscience and the process of doing research, and with
whom a large part of this work was co-authored ; to Manuel Beiran with whom important
aspects of the theory were developed, and with whom conversations were always as varied as
stimulating ; to Francesca Mastrogiuseppe for opening such a captivating research direction
that I explored with constant delight, and for her continued support and advices on the

ii

most detailed aspects of my work ; and to Jonathan Pillow, a scientist whose rigorous and
creative approach to statistics and neuroscience I admire, and with whom I have been lucky
to pursue exciting collaborations whose first fruits are present in this thesis.

And as these are the figures who had the most direct impact on my work, it owes also
a lot to my dear friends and colleagues with whom I have been lucky to coincide in the
team, Giulio Bondanelli, Rupesh Kumar, Josef Ladenbauer, Friedrich Schuessler, Ljubica
Cimesa, João Barbosa, Yuxiu Shao, Othman Lahrach, Betsy Herbert, and of course Arianna
di Bernardo with whom I am happy to share the joys of her first discoveries. Conversations
with all of you have helped me tremendously in making my first steps in the wonderful
worlds of research and neuroscience, and I hope we will have numerous occasions to meet
again, and not only in scientific contexts.

I also have to thank all the other members of the Group for Neural Theory, and of
the Laboratoire de Neurosciences Cognitives et Computationnelles, too numerous to be all
mentioned, but who all have a contributed to making this lab such a pleasant place to work.
Thank you for maintaining such a reliably fun, friendly, light-hearted and good-humoured
atmosphere, for these are the perfect conditions under which a PhD should mature. I wish
these last years could have given us the opportunity to spend more time together, and I hope
that our paths will get to cross often. To be complete, it is indispensable for me to credit
all those I met in the broader community of systems neuroscience, a colorful, surprising
and welcoming family, and much particularly the students, faculty members, and organizers
of the exceptional Eresfjord summer school. Although I have no point of comparison, I
am pretty confident in that the neuroscientific community is rather unique in the world of
research, probably due to its interdisciplinarity, which makes the field so open to novelty
and original.

I wish to finish by encouraging the current and future members of the lab to keep this
spirit of constant exchange and good ambient. Science is indeed like a good meal, it is
always enjoyable but it tastes much better when it is shared. And as this was the most
French sentence with which I could end this appetizer, I shall give the floor to the plat de
résistance, not without thanking of course the jury members who kindly accepted to review
and evaluate this work.

Adrian Valente, Paris, August 2022.

Contents

I Introduction 1
I.1 Prologue . 1
I.2 From neurons to networks . 2
I.3 Computations in brains and machines . 8
I.4 Neural dynamics and the state-space approach 12
I.5 Outline of the work . 15

II Low-rank recurrent networks as a window on neural dynamics 19
II.1 Introduction . 19
II.2 Formalism . 20

II.2.1 Introducing low-rank recurrent neural networks 20
II.2.2 Biological interpretation of the models 21
II.2.3 Low-dimensional dynamics . 22
II.2.4 Collective dynamics in the mean-field limit 23
II.2.5 Dynamics in Gaussian-mixture low-rank networks 25
II.2.6 Effective circuit description of latent dynamics 26
II.2.7 Drivers and modulators of latent dynamics 27
II.2.8 Geometric interpretation . 28

II.3 Gaussian low-rank recurrent networks . 29
II.4 Gaussian-mixture low-rank recurrent networks 31
II.5 Training low-rank recurrent networks . 33

IIIThe role of population structure in computations through neural dynamics 37
III.1 Introduction . 37
III.2 Identifying non-random population structure in trained networks 38
III.3 Interpreting computations in terms of latent dynamics 41
III.4 Latent dynamics for fully random population structure 42
III.5 Representing non-random structure with multiple populations 45
III.6 Gain modulation of latent dynamics . 47
III.7 Predictions for neural selectivity and inactivations 50
III.8 Implications for multi-tasking . 53
III.9 Discussion . 54

IV Relationship between linear low-rank networks and linear latent dynam-
ical systems 61
IV.1 Introduction . 61
IV.2 Modeling frameworks . 62

IV.2.1 Latent LDS model . 62
IV.2.2 Low-Rank Linear RNN . 63
IV.2.3 Comparing the two models . 63

IV.3 Mapping from LDS models to linear low-rank RNNs 64
IV.3.1 Non-equivalence in the general case 64

iii

iv CONTENTS

IV.3.2 Matching the first-order marginals of an LDS model 65
IV.3.3 Cases of equivalence between LDS and RNN models 66

IV.4 Mapping low-rank linear RNNs onto latent LDS models 67
IV.4.1 Subsampled RNNs . 68

IV.5 Discussion . 69

V Extracting computational mechanisms from neural data using low-rank
RNNs 73
V.1 Introduction . 73
V.2 Approach . 74
V.3 Validation with synthetic data and effective aspects of connectivity 75
V.4 Application to reverse-engineering full-rank RNNs 76

V.4.1 Extracting low-dimensional dynamics through low-rank connectivity 77
V.4.2 Extracting computational mechanisms from inferred low-rank connec-

tivity . 78
V.5 Application to neural recordings . 80
V.6 Discussion . 81

VI Discussion 83

Bibliography 87

A Supplements for chapter III 103
A.1 Parametrization and collective dynamics for mixture of Gaussians connectivity

vectors . 103
A.2 Alternative implementation of the CDM task 104
A.3 Methods . 105

A.3.1 Recurrent Neural Networks . 105
A.3.2 Network training procedure . 106
A.3.3 Definition of individual tasks . 107
A.3.4 Regression analyses and selectivity space 109
A.3.5 ePAIRS analysis . 110
A.3.6 Resampling and clustering trained networks 111

A.4 Training low-rank RNNs: some tricks of the trade 111
A.5 Supplementary figures . 112

B Supplements for chapter IV 123
B.1 Kalman filtering equations . 123
B.2 Equivalence in the large network limit . 124
B.3 Derivation of the RNN to LDS mapping . 125
B.4 Addition of input terms . 126

C Supplements for chapter V 129
C.1 Cognitive tasks . 129
C.2 Training details and hyperparameters. 130
C.3 Delay Match-to-Sample full-rank network reverse-engineering 131
C.4 Supplementary figures . 132

Introduction I

La science remplace du visible compliqué par de l’invisible simple.1

Jean PERRIN

I.1 Prologue

The human brain contains 10 billion neurons, connected in an intricate network through
10,000 times more synapses, conspiring altogether to generate percepts, deliberations, mem-
ories, and all other aspects of cognition. Even the brains of simpler organisms like fruit
flies (Drosophila melanogaster), whose whole connectome is currently being mapped (176),
contain on the order of a hundred thousand neurons. This outstanding complexity leads to
a wide range of challenges, both experimental and theoretical.

Advances in experimental techniques now allow neuroscientists to probe the brain in very
extensive manners, for example by collecting simultaneous recordings of tens of thousands of
neurons in awake animals (199) or by reconstructing large-scale connectomes as mentioned
above. Such large datasets reflect the intrinsic complexity of neural circuits, and they
sometimes even challenge earlier beliefs about the functional organization of the brain (196).
They hence require the development of new analysis tools, as well as new theories able to
channel this complexity into simpler ideas.

A particularly recurrent observation in neural recordings is that cells exhibit certain
collective forms of correlated activity, known as low-dimensional activity patterns. These
collective patterns can be linked to many aspects of behavior, and seem to reflect fundamental
constraints on the structure of neural networks in the brain. Interestingly, similar patterns
are found in artificial neural networks, a broad class of models designed partly to loosely
imitate biological networks and partly as powerful artificial intelligence algorithms. These
low-dimensional patterns could thus form a basic organizational principle of computations
in complex networks.

In this work, we will explore several aspects of this idea, and will be particularly interested
in developing tools to discover low-dimensional activity patterns, and relate them to the
connectivity structure of neural networks. We will rely on several fundamental concepts
which are introduced hereafter.

1“Science replaces visible complexity by invisible simplicity”. Jean Perrin was a French physicist, former
student at ENS and professor at Paris university, recipient of the 1926 Nobel prize for his experiments
showing the reality of atoms.

1

I. Introduction

Figure I.1: Left: Golgi stained neurons from a monkey neocortex (reproduced from
ref. (185), credited to Kathy Rowland). Right: one of Ramón y Cajal’s numerous drawings
of intricate brain connectivity, here representing cells of the visual cortex of an infant (Fig. 4
of Comparative Study of the Sensory Areas of the Human Cortex (1899))

I.2 From neurons to networks

At the dawn of the twentieth century, the field of neuroscience was born in the midst of a
heated controversy between histologists Camillo Golgi and Santiago Ramón y Cajal (70).
The first one, observing brain slices with a stain of his invention, revealed a beautifully
intricate web-like structure (Fig. I.1a), which we now know to be composed of the axons and
dendrites connecting our neurons. Limited by the capacities of optical microscopes, he could
not observe the very narrow gaps separating neurons at synapses, and, like many of his peers,
believed this web was a single giant entity, called the “reticulum”. At about the same time, a
Spanish researcher interested in studying brain anatomy started using Golgi’s stain, carefully
recording his observations in drawings that were to become famous (Fig. I.1b). His extensive
work led him to maintain that the brain was not composed of a giant reticular web, but
of disjoint cells, termed neurons. This proposal relied on the hypothesis that neurons were
separated by very tight interstices, a remarkably bold hypothesis since it could not be verified
until the advent of electron microscopy, half a century later. Despite their disagreements, the
two scientists shared the 1906 physiology Nobel prize for their contributions, and Ramón y
Cajal’s neuron doctrine quickly started to prevail in the nascent community of neuroscientists.

The logical next step within this paradigm was to study the physiology of individual
neurons. A general understanding was achieved - through the works notably of Louis
Lapicque (107; 22), Charles Sherrington (188) and Edgar Adrian (2) among others - and
can be outlined as follows:

• each neuron communicates to its downstream neighbors by sending action potentials,
also known as spikes, small electrical impulses that can swiftly travel along its axon.

• Each neuron’s activity can be represented by the sequence of spikes it generates, a
sequence called the spike train. More specifically, and although this remains a debated
point (213), we will consider in this work that the information encoded by a neuron is
contained in the frequency at which it generates spikes at a particular moment, which
we term its firing rate.

• This firing rate is transmitted through synapses to downstream neurons, being multi-
plied in the process by a synaptic weight, which will be positive at excitatory synapses,
negative at inhibitory ones. The resulting number will be a contribution to the input
current of the downstream neuron.

2

I.2. From neurons to networks

to downstream
 neurons

x 1.4

x 3.2

x (-2.3)

input current

�ring rate & spikes

f-I curve

neuron 1

neuron 2

neuron 3

100 ms

20
 m

V

200 ms

dendrite

soma axon

200 ms

50
 m

V

200 ms

200 ms

200 ms

Figure I.2: Fundamentals of neural signalling (see text for explanations). For each
neuron represented here, a simulated spike train and the associated smoothed firing rate
are represented. Red and blue shadings represent respectively excitatory and inhibitory
synapses. Top left inset represents a single action potential recorded intracellularly (from a
cultured rat cell) and top right inset a real-life example of a spike train (recorded from an
electric fish Eigenmannia, both insets reproduced from ref. (39))

• the input current will finally be transformed into the firing rate by a non-linear mapping
(39) (known as the f-I, or frequency-input, curve). Spikes are thus generated randomly
at the resulting rate.

It is this simplified model of the neuron stripped to its most fundamental principles that
we will consider in this work, and we will see that despite the absence of numerous other
biological processes, it remains capable of generating many interesting and complex behaviors.

Once the fundamental properties of individual neurons had been revealed, neurosci-
entists aimed at understanding how they contributed to the different aspects of behavior
and cognition, and how they exchanged information in the circuits they formed. In this
endeavor, the neuron doctrine also shaped many of the initial studies, leading to a number of
foundational discoveries. One of the main approaches was that of the tuning curve, whereby
researchers recorded the electrical activity of an individual cell while submitting an animal
to diverse environmental stimulations, reporting the average firing rate obtained for each
stimulus (Fig. I.3a). Following this methodology, David Hubel and Torsten Wiesel famously
discovered cells in the visual cortex of cats that were responsive to specific orientations of
visual bars, and could form the first steps of a computational pathway aimed at recognizing
all sorts of shapes (84) (Fig. I.3b). Indeed, neurons that were receptive to particular aspects
of visual stimuli have been found throughout the hierarchy of visual cortices, leading up to
the discovery of neurons that were selective to particular faces in the IT cortex (209). In a
similar feat, O’Keefe and Dostrovsky discovered place cells, neurons in the hippocampus of
a rat that were active only when the animal was in a particular location (133) (Fig. I.3c).
This discovery started to unveil the abilities of brains to represent space, leading to the later
description of grid cells in the entorhinal cortex2 (62; 128) (Fig. I.3c). The individual cell

2Hubel and Wiesel obtained the 1981 physiology and medicine Nobel prize for their discoveries about

3

I. Introduction

a. b. c.

Figure I.3: a. Example of a tuning curve: firing rate of a cell in response to visual stimuli
of different orientations (simulated data, inspired on ref. (39)). b. Spike train responses of a
monkey striate cortex cell in response to visual stimuli of different orientations (reproduced
from ref. (85)). c. Firing events (red dots) for a hippocampal place cell (left) and a medial
enthorinal cortex grid cell (right), overlaid on the trajectory (black line) of an animal in a
box (reproduced from ref. (128)).

approach led to advances not only in the study of perception, but also in that of action, as
emphasized by the discovery of neurons that drove particular behaviors when stimulated (20).

Between perception and action lie a series of complex executive functions, sometimes
termed higher-order functions, which control our behavior in a more general sense, rendering
us able to integrate several sources of information, to recall the past, and to plan ahead.
These include for example deliberation, decision-making, working memory, context-dependent
computations, abstraction, and many more. Several brain areas have been linked to these
functions like the prefrontal cortex for mammals, and single-neuron studies in these areas
have been able to relate neural firing rates to cognitive variables like an upcoming decision
(94; 186; 71) or a memorized information (61; 100; 72). Let us consider an example in the
field of decision-making: in 1999, Jong-Nam Kim and Michael Shadlen submitted macaques
to random dots kinetograms (94), a class of visual stimuli composed of points moving
randomly, albeit with an average motion leaning towards the left or towards the right (the
coherence, Fig. I.4a). The monkey had to decide which way this average was pointing to and
perform an eye saccade towards a target in this direction. The researchers recorded single
neurons in the prefrontal cortex (PFC) of the monkeys while they were performing the task,
finding cells that encoded the perceived direction during stimulation and delay, and that
could hence be the support of this decision-making process (Fig I.4b). A broad corpus of
experimental and theoretical studies supported these observations, and proposed models of
competing cell populations that could integrate the available evidence and encode a decision
during a delay in order to perform such a task (186; 71; 220; 221).

This line of investigation quickly reached its limits however, and as larger recordings
were performed on more complex tasks, it became apparent that a vast majority of neurons
in these areas were mixed selective, meaning they encoded several variables at the same
time (113; 155; 60). This is apparent notably in multimodal tasks, in which the brain
has to mix different streams of information. A compelling example is provided by the
context-dependent decision-making task tested by Valerio Mante and colleagues in 2013
(118), in which macaques were submitted to random dots kinetograms similar to those used
by Kim and Shadlen, but that also varied along a color dimension, with a certain percentage
of dots being red and the others green (Fig. I.4c). A context cue at the beginning of each

cell tuning in the visual system. John O’Keefe shared the 2014 Nobel prize with May-Britt and Edvard
Moser for their respective discoveries of place cells and grid cells.

4

I.2. From neurons to networks

a. b.

esnopser
time after dots on (ms)

100 850

neuron 1 neuron 2 neuron 3 neuron 4 neuron 5 neuron 6

sort by
choice

all trials

sort by
motion & choice
motion context

sort by
colour & choice
colour context

sort by
context & choice

all trials

choice 1

choice 2

strong

weak

strong

colour

motion

weak

p<0.05

choice choice

choice motion

colour

txetnoc
txetnoc

txetnoc

noito
m

motion

ruoloc
ruoloc

r = 0.26
p = 2e−13

r = 0.15
p = 2e−05

r = −0.06
p = 8e−02

r = −0.06
p = 1e−01

r = 0.12
p = 6e−04

r = −0.13
p = 3e−04

0.1
0.1

monkey A

Motion coherence RightLeft

d2–d1–d3 d3d1–d2

(15)(–5)(–50) (50)(5)(–15)

Co
lo

ur
 c

oh
er

en
ce

Green

Red

(18)

(–6)

(–50)

(50)

(6)

(–18)

c2

c3

c1

–c1

–c2

–c3

c. d. e.

Figure I.4: a. Task design of reference (94): along different epochs of a trial, monkeys had
to fixate a central point, wait for the two decision targets to appear, observe the moving
dots stimulus, keep fixating the center during a delay and finally communicate its decision
by making an eye saccade to the target towards which most dots were moving. b. Activity
of an example neuron recorded in the prefrontal cortex of a macaque during the task. A
decision towards the receptive field of this neuron elicited higher firing rates than towards
the other direction, and this effect was stronger for higher motion coherences. c. Set of
stimulations used in reference (118), varying in average dot motion (x-axis) and average color
(y-axis). d. Time-dependent responses of 6 neurons recorded in this study, across different
task conditions. Green overlay on the x-axis represents significant selectivity towards the
represented conditions. e. Selectivity of individual cells recorded in this study with respect
to the four task variables (motion, color, choice and context), visualized in all 6 possible
pairwise point clouds. Correlation and the corresponding p-value are indicated for each
point cloud.

trial indicated the animal whether to pay attention to the motion or the color of the dots,
and it had to integrate only the cued information to form its decision while ignoring the
other. Electrophysiological recordings in the prefrontal cortex of tested monkeys showed
that the cells responses were complex and variable, certain cells seemingly encoding combina-
tions of variables or changing their selectivity depending on context (Fig. I.4d). Even more
surprisingly, visualizing the selectivities of individual cells to different variables showed that
all possible combinations of selectivities were represented in the recorded neurons (Fig. I.4e),
ruling out the hypothesis of specialized cells that each represent a single cognitive variable.

Understanding these complex and mixed representations required a fundamental change
of paradigm, and the last twenty years have seen neuroscientists gradually move from the

5

I. Introduction

single-neuron doctrine towards the population approach, where representations are assumed
to be represented across large populations of neurons (233; 66; 64; 52). In this view, the
fundamental computational and representational unit of the brain is not the individual
neural cell but a set of anatomically and functionally close cells that we can term a circuit
or network, and it would be meaningless to study separately each neuron of such a circuit.
Representations and computations would emerge spontaneously from the complex and
large-scale interactions that occur in such a circuit, in a similar fashion as the construc-
tion of a hive emerges from the interactions between a large population of bees3. It is
particularly challenging to define precisely at what scale such circuits should be defined, as
they could range from the cortical column to the whole brain, which is, as we mentioned,
a fully interconnected organ. Fortunately for us, the brain can be decomposed in clearly
separable and seemingly specialized areas4, and we will generally mean by “circuit” such a
small area, or even a small patch of one or a few millimeters in side on the surface of the cortex.

These theoretical transformations have been paralleled by the development of new ex-
perimental techniques that enabled researchers to track and record the activity of large
numbers of neurons simultaneously in behaving animals. Among those we can mention the
development of multi-electrode arrays which can record on the order of hundreds of cells in a
localized patch, and of calcium imaging which can record thousands of cells simultaneously,
or even the activity of the entire nervous system for small organisms like the zebrafish.
These new techniques change the nature of data that is obtained from experiments: in
the population view, the response to a environmental stimulation is not characterized by a
single time-varying neural firing rate r(t), but by the joint firing rates of the set of recorded
neurons, which can be assembled into a vector r(t) = (r1(t), . . . , rN (t)) if there are N
neurons. This vector can then be seen as an element of an N -dimensional abstract space,
which we will call the neural state-space or activity space, in which each axis represents a
single neuron. For a given stimulus the time-dependent activity of the network draws a
continuous trajectory (curved line) in this space (Fig. I.5b). Of course as soon as more than
3 neurons are studied, the state-space cannot be visualized or apprehended in any intuitive
way, but neuroscientists can now use the powerful tools of high-dimensional geometry and
statistics to reach conclusions at the population level. In particular, 2 families of statistical
methods are widely used in the analysis of high-dimensional data and will prove to be
relevant for neuroscience:

- dimensionality reduction algorithms: these methods aim at finding low-dimensional
subsets of a high-dimensional space that explain most of the variability of the studied data.
These methods can find linear subsets (mathematically called subspaces) of the original
space, or non-linear, curved ones (called manifolds) (36; 87). These can then be used for
visualization purposes or to better understand the structure of data. The application of these
techniques to neural recordings has been a very fruitful area of research, as it has been found
that numerous recordings of hundreds or even thousands of cells could be well summarized
by only a few dimensions (66) (yet, see (198) or (106) for more nuanced accounts) . We
will develop further these ideas, crucial in this work, in the section I.4 of the introduction.
For the moment, let us illustrate this idea with the example of the context-dependent
decision-making task mentioned earlier (118). As we explained, individual neurons seem to
encode mixtures of the diverse variables associated to the task (the average motion, average
color, context, and choice). However, a targeted dimensionality reduction algorithm can
identify one axis of the neural state-space corresponding to each of these variables, and
projecting the recorded population vectors on these axes reveals how information is encoded

3The concept of emergence, one of the main ideas in the study of complex systems, is well captured by
the aphorism: “The whole is more than the sum of its parts.”, attributed to Aristotle.

4Although recent brain-wide recordings have started to shake these established views (196; 199)

6

I.2. From neurons to networks

Choice
axis

Dots
on

Dots
Dots
off

Choice

M
ot

io
n

1.5

1

Choice 1

Strong Weak Strong

To choice 1 To choice 2

Motion

sort by
irrelevant

colour

Choice

C
ol

ou
r

Choice 2 Choice 1 Choice 2

Strong Weak Strong

To choice 1 To choice 2

Colour

Rotate &

a. b. c.

N4, N5, …

N1

N2

N3
mode 1

mode 2

Figure I.5: a. Schematic of a network of a few neurons, all exhibiting mixed selectivity
to two cognitive variables, a red and a turquoise one, to different degrees. b. The joint
time-dependent activity of those neurons can be conceptualized as a trajectory in a high-
dimensional state-space, whose axes correspond to the activity of each neuron of the network.
Here, only the projection on the first three axes can be visualized, other axes being left to
the reader’s imagination. A dimensionality reduction algorithm extracts a low-dimensional
subspace (grey plane) of this state-space on which the trajectory (blue line) lies. The axes of
this subspace correspond to the latent variables or neural modes encoded by the network,
and each neuron contributes to diverse degrees to each mode. c. Dimensionality reduction
applied to the context-dependent decision-making task of Mante and colleagues (118). Left:
activity in the motion context projected on the choice and motion axes identified by the
targeted dimensionality reduction algorithm. Each curve corresponds to the average over
trials that presented each level of motion coherence. Trajectories start at the center, at
stimulus onset. One can notice how network activity is first driven along the motion-encoding
axis before turning onto the choice axis. Right: Same trials, this time averaged over shared
color coherence and choice and projected onto the choice and color axes. This projection
shows that although it is irrelevant to the choice, the sensory evidence for color remains
encoded in another axis of the state-space.

and transformed in this network: for example, projecting the activity on the motion and
choice axes, during motion-context trials reveals that the population starts by encoding the
perceived motion as sensory information arrives to the prefrontal cortex, and then gradually
starts forming a choice, as manifested by the bend of collective activity along the choice axis.
Projecting population activity on the same axes during color-context trials reveals how the
sensory information about the motion of dots still arrives to the prefrontal cortex but does
not contribute to the choice as it is correctly ignored in this context. In summary, in this
view, variables are encoded in a distributed manner across the neural populations, and mate-
rialized by axes, also called modes of the neural state-space. The role of individual neurons
becomes diluted in the collective behavior, and neural computations are instead supported by
these shared, latent variables, which are entirely abstracted away from their cellular substrate.

- clustering methods: it is also natural when studying the activity of a large population
of neurons to ask if the studied cells are organized in specialized groups (subpopulations).
Neurons can be grouped by their response profiles to stimuli, for example by applying an
automatic clustering procedure to neural recordings, but they can also be grouped by their
physiological or genetic properties. Indeed, there is a wide heterogeneity of cells in the brain,
which vary in terms of the neurotransmitters they emit5, the connexions they can form6,

5In particular, Dale’s law, which implies that a neuron can form only excitatory or only inhibitory
synapses with its downstream neurons, but not both, remains a fundamental organizational principle of the
brain (39).

6Here, we can notably distinguish between interneurons, which form connexions only at a very local

7

I. Introduction

their cortical layer, their transcriptome and other aspects.

These are, in a very general sense, two of the main tools available to extract insights
from high-dimensional data. They also correspond to two deep organizational views of brain
circuits (6), a purely geometrical view on the one hand, in which information is multiplexed
randomly across neurons and encoded at an abstract collective level, and a more cell-driven
view, in which circuits are divided in groups of cells with specific, well-defined, roles. These
two views appear particularly difficult to reconcile, and a major focus of this work will be to
show how both are essential to explain different aspects of neural computations.

Hence, more than one century after the neuron doctrine was finally recognized by the
neuroscientific community, the functional relevance of single neurons is more questioned than
ever, and the importance of considering neurons as part of an indivisible network that bears
the burden of computation is becoming clearer. The development of powerful brain-inspired
computer algorithms that we will expose in the following section further strengthens this
case.

I.3 Computations in brains and machines

The physiological processes of neurons described in the previous chapter can be summarized
in a rather simple mathematical model, and implemented in algorithms that could then
imitate the computational abilities of biological brains. Since the foundational work of
Warren McCulloch and Walter Pitts in 1943 (124), this insight has proved to be particularly
fruitful, leading to the development of powerful artificial intelligence algorithms but also
reshaping our understanding of neural computations.

Artificial neural networks (ANNs) exist in a variety of forms, but to fix ideas we will
formalize them as follows: they consist of units akin to the biological neurons, that receive
several input signals u1(t), . . . , uP (t), either external or from other neurons, each multiplied
by a synaptic weight wi. The sum of those weighted signals forms the input current of the
unit, noted x(t), and is then passed through a non-linear activation function ϕ(·) to produce
a firing rate r(t) = ϕ(x(t)). This model thus assumes that neurons only use firing rates
to compute, and not the specific timing of spikes, and that the numerous other biological
details of neural tissue are not important to neural computations. Although the question
of which aspects of neural biology are relevant for computations is far from settled, and
although it is very likely that other processes play a crucial role there, this very simple
model is at least theoretically sufficient to implement any neural computation imaginable,
in a way that we will detail below.

An important aspect of these artificial networks is that their units are all identical, and
hence they can differ only in the way neurons are wired, that is in their architecture (which
units are connected to which), and in the strengths of their connexions (materialized by the
synaptic weights). In general, the architecture of a network is specified by the modeller in
order to achieve particular functionality, and the development of new, more or less brain-like,
network architectures has been an important factor of progress in this field. We can mention
for example the single-layer perceptron, developed by Frank Rosenblatt in 1958 (158), which
was the first trainable ANN ; the feedforward, or deep neural network (DNN) in which
several layers of neurons are stacked, each neuron receiving its inputs only from neurons
in the previous layer and transmitting its output only to the next layer ; the convolutional
neural network (CNN), a particular form of feedforward architecture in which the neurons

level, and are usually inhibitory, and pyramidal cells, whose axons can travel very long distances, and are
usually excitatory.

8

I.3. Computations in brains and machines

a. b. c.

Figure I.6: Different flavours of artificial neural networks. Red circles represent internal
and output units (characterized by a summation and a non-linear activation function), blue
circles represent input signal units. a. A single-layer perceptron (158), formally equivalent
to a single unit. b. A multi-layer feedforward network, here with two hidden layers and an
output unit. c. A recurrent neural network (RNN), with a single input signal and an output
unit.

are connected in order to perform convolutions on their inputs, which proves particularly
relevant for applications on images (58) ; the recurrent neural network (RNN), in which all
neurons of the network can be connected to each other, potentially forming cycles such that
computations unwind through time (Fig. I.6) ; or the more recent Transformer architecture,
based on artificial attention mechanisms and particularly suited for language processing (214).

Once a network is wired following a particular architecture, its synaptic weights have to
be set to precise values for it to perform a desired computation. The process of modifying the
weights in order to obtain a specific behavior is called training and can be performed using
diverse techniques. The first training algorithm proposed for ANNs was the perceptron algo-
rithm, also included in Rosenblatt’s 1958 work (158), and was based on a simple converging
recurrence. Although mathematically tractable, it could only be applied to the single-layer
perceptron architecture, which was limited to solving linearly separable decision problems7.
Ideas for algorithms that could train networks of any architecture have been proposed
throughout the following fifty years, revolving around classical non-convex optimization
methods like gradient descent or second-order optimization, and adapted to feedforward
networks with the backpropagation algorithm (162), and to recurrent networks with the
backpropagation-through-time extension (223). Scale and implementation challenges have
made their use unpractical for most applications until very recent years, but they are now
a cornerstone of artificial intelligence’s development and of its numerous feats. Finally, a
family of algorithms based on the recursive least-squares method has been proposed to train
recurrent neural networks, notoriously ill-behaved with respect to gradient-based methods8

(16; 38), leading to the development of reservoir computing (112; 86) and the FORCE
(204) and full-FORCE algorithms (40). ANNs can now be trained to perform tasks that
humans could never dream of programming by hand, whether it is solving the tridimensional
structure of a protein (208; 210), planning and choosing strategies in simulated game-like
environments (190; 215; 179), interacting with humans through natural language (21) and
many more.

7This observation famously led Marvin Minsky and Seymour Papert to question the relevance of artificial
neural networks in their 1969 book Perceptrons (125), and in general led the artificial intelligence research
community to delve most often into symbolic, non-neurally-inspired approaches for the remainder of the
twentieth century

8Although recent improvements of gradient-based methods for recurrent networks have made those very
practical, and we will use them throughout this thesis.

9

I. Introduction

Yet, although the process of wiring and training networks is now mastered for a wide range
of applications, a theoretical understanding of how and under which conditions sophisticated
behavior emerges from a network, and what its capabilities and limits are, remains elusive.
To computer scientists and theoretical neuroscientists alike, ANNs remain mysterious black
boxes, to which large “bags of tricks” found by trial-and-error can be applied in order to
enhance their function, but whose internal processes are unknown, and which can thus exhibit
unpredictable behaviors. The number of cases in which ANNs behave in ways unexpected
by our current theory is growing, ranging from adversarial attacks (207) to double descent
(13; 3) and lottery tickets (56) phenomenons. As ANNs are taking a leading role in many
critical aspects of our societies, the question of their interpretability is becoming unavoidable
(134). We hope that this work, at the crossroads of neuroscience and computer science re-
search, will also help in the efforts to lift the veil on the mysteries of artificial neural networks.

Indeed, if we mention this subject so extensively, it is not only because ANNs are
inspired from early neuroscientific research, but because their relation to neuroscience has
considerably deepened in recent years (9; 154; 229; 171; 228). As we mentioned, ANNs differ
in numerous ways from biological neural circuits, notably because the algorithms used to
train them are not inspired on biological processes, and are unlikely to be implemented in
real brains9. Instead, biological circuits likely rely on variants of Hebbian learning10, which,
at the moment of writing, and despite continued advances, are only capable of learning the
simplest tasks in an artificial setting, far from the performances of the other algorithms11

(14). This observation alone justifies that ANNs can not today claim to be accurate models
of brain circuitry. Despite that fact, they can illuminate many of their mysteries.

Indeed, a remarkable property of artificial neural networks is their universality: it has
been known since the 1980s that feedforward networks with at least two layers of neurons
could approximate with arbitrary precision any continuous function with finite support,
simply by adding enough neurons and setting the right synaptic weights (37). It has later
been shown that, just as feedforward networks were universal approximators of functions,
recurrent networks were universal approximators of dynamical systems (41). Since any
input-output mapping can be formalized as a function, and any computation (in the Turing-
Church sense) corresponds to a dynamical system, this means that ANNs are universal
computing devices, and can capture any functionality that the brain is implementing. Hence,
the first insight offered by artificial neural networks to neuroscience is the following: even if
they capture only a few physiological processes, these are theoretically sufficient to explain
how the brain can compute any function. Moreover, due to their structure, they justify
the connectionist tradition, that postulates that intelligent behavior can arise from the
interactions of many simple elements.

Inspired by these observations, neuroscientists have started to compare patterns of activity
recorded in animal brains performing certain tasks and in ANNs performing similar functions
finding startling parallelisms. For example, ANNs trained to perform image recognition
have been shown to exhibit similar neural responses as those found throughout the visual
processing pathways of primates (226) (Fig. I.7b). Similar observations have been raised
about auditory processing (91), or showed the emergence of grid cells in networks trained

9Although some proposals for biologically-plausible implementations of backpropagation have been put
forward (108; 164; 109).

10Summarized by what is probably the most famous punchline in the neuroscientific litterature: “Neurons
that fire together, wire together” (78).

11A noteworthy reason for these difficulties is that ANNs are usually trained to optimize very well specified
objective functions, whether they consist of reproducing a pre-defined input-output mapping contained in a
curated dataset, or of enhancing their performance at tasks in limited environments where rewards are easy
to identify. What general objectives a biological being could optimize throughout its lifetime, or whether
such objectives exist, remain vast open questions.

10

I.3. Computations in brains and machines

Dots
on Dots

off

Dots
off

Choice

M
ot

io
n

6

1

Choice 1 Choice 2

Strong Weak Strong

To choice 1 To choice 2

Motion

Attractor
Line

attractor
sort by

irrelevant
colour

Choice

C
ol

ou
r

Choice 1 Choice 2

Strong Weak Strong

To choice 1 To choice 2

Colour

Rotate &

a. b.

Figure I.7: Comparisons of activity in brains and artificial neural networks. a. Dimen-
sionality reduction algorithm applied to the neural state space of an artificial RNN trained
on a context-dependent decision making task, similar to that performed by macaques and
illustrated in figs. I.4, I.5, from the work (118). The same trials as in Fig. I.5c are illustrated,
on the same axes. Note that the similarity emerged spontaneously when requiring the
network to perform the task, since it was not required to approximate neural data. b.
Comparison of neural rates measured in a primate visual cortex (V4) neuron in response to
different types of images (naturalistic, synthetic), and of the firing rates predicted from the
activity of a deep feedforward network trained to do image recognition. Here, the activity of
the ANN was even used to generate “synthetic controller images” that were predicted to drive
even more strongly the recorded neuron, and indeed appeared to do so in the experiment
(red dots). Note that the ANN was again trained only to perform image classification and
was not required to reproduce recorded neural activity. Reproduced from ref. (10).

to perform spatial navigation tasks (35). Recurrent networks trained to generate motor
primitives exhibit activity patterns that are found in motor cortices of animals (206; 163)
and those trained on higher-order cognitive tasks exhibit similarities with prefrontal cortex
recordings (118; 27; 227; 153; 219). In their foundational study, Sussillo and Mante trained
an RNN to perform a context-dependent decision-making task similar in principle to that
performed by macaques (118). They discovered that neurons in the artificial network also
exhibited mixed selectivity to task variables, and after applying the same dimensionality
reduction algorithm they used on neural recordings to the activity of their artificial neurons,
observed strikingly similar low-dimensional trajectories (Fig. I.7a).

The interpretation of these results remains a delicate question, but they mostly provide a
remarkable opportunity for neuroscience by providing in silico models of observations similar
to biological ones. An outstanding question in neuroscience is that of relating network
structures to function, and although experimental techniques allow large-scale recordings
and tracing the connexions between neurons in the simplest organisms, access to the specific
synaptic weights connecting neurons on a large scale in an animal remains out of reach.
Artificial network models of neural computations are hence a practical simplified model
for tackling this question, by providing unlimited access to the activity and connectivity
and allowing us to test numerous hypotheses on the links between structure and function,
which can afterwards be verified in biological organisms through more specific experimental
procedures like optogenetic perturbations. Moreover, one could argue that understanding
ANNs constitutes an intermediate challenge for neural theorists in the tortuous path to a
theory of complex brains, helping them discover which tools and frameworks are most likely
to be useful in this endeavor.

11

I. Introduction

I.4 Neural dynamics and the state-space approach

As we mentioned in section I.2 of this introduction, a dominant approach in modern neuro-
science considers the simultaneous activity of the multiple neurons in a circuit as the basis
for neural computations. The instantaneous activity in a neural circuit - or an artificial
RNN - is formalized as a vector r(t) of its N -dimensional state-space, and the trajectories
shaped through time by this vector inform us on the computations performed by the circuit.
This raises the question of how these task-related trajectories arise from network circuitry.

A first part of the answer lies in the observation that a neural circuit or an RNN is
formally a dynamical system, that is a mathematical object whose evolution in time depends
on its current state and inputs (217; 23; 203; 216). In general, a dynamical system can be
described by a differential equation12, of the form:

dr(t)
dt

= F (r(t),u(t)) (I.1)

where u(t) is a vector of the external input signals fed to the circuit, and F a (potentially
complex) function that describes time evolutions within the circuit. Such a description falls
into the deterministic tradition of classical physical sciences, in which knowing the state of
a system at a certain instant and all external influences on it allows to predict the future
states of this system. Although this equation is deterministic, it is fairly straightforward to
add sources of randomness to it, like noisy fluctuations to the input currents of neurons,
rendering it able to reproduce trial-to-trial variability observed in neural recordings. We
will be interested in the characteristics of this noise in the fourth chapter of this thesis, but
for the most part will consider that, for any given condition, random fluctuations in our
circuit models will merely add some variability to trajectories around a reliable trial-averaged
trajectory that supports the underlying computations and will be the focus of our efforts.

Within this framework, the state-space can be viewed as a dynamical landscape where
for a given input, each point is associated to an arrow pointing in the direction in which the
state would evolve from there (a visualization which we formally call a phase portrait, see
Fig. I.8). This landscape is marked by landmark features which can be tied to the network’s
function (200): for example certain points of the state-space might be associated to a null
arrow, meaning once the network state reaches this point, it does not move anymore (unless
an external input perturbs it). Such a point is called a fixed point of the dynamics (Fig. I.8a),
and can serve, for example, as a substrate for memory, as proposed in John Hopfield’s
foundational work (83). Sometimes, one can find continuous families of such fixed points,
then termed manifold attractors, that can take the shape of lines (184; 118), rings, or more
complex structures. One such structure can be observed as the lines of red crosses illustrated
in Fig. I.7a, where Mante and Sussillo show how line attractors can implement an analog
memory of the integrated evidence in a decision-making task. Another example can be seen
from ring attractors (Fig. I.8c), circular collections of fixed points that have been found
within circuits of cells that track the orientation of an animal’s body (head-direction cells)
(96; 29). Even the grid cells, remarkable discovery of the single-cell approach, can be seen dy-
namically as circuits that collectively encode torus-shaped attractors (68) (Fig. I.8d). Other
illuminating features of those dynamical landscapes include limit cycles (Fig. I.8b), which
can form a substrate for oscillatory activity (206), or the more elusive chaotic attractors,
which can explain the seemingly random and erratic patterns of spontaneous brain activity
(194).

12or its discrete-time equivalent, the recurrence equation

12

I.4. Neural dynamics and the state-space approach

x1

x2

x3
x4, . . . , xN

x1

x2

x3
x4, . . . , xN

x1

x2

x3
x4, . . . , xN

0

5
Trajectory

time (s)

a. b. c. d.

Figure I.8: Some examples of neural dynamical systems. a-c. Some phase portraits on a
low-dimensional subspace of the neural state-space. In general, all points of the phase space
would be associated to a high-dimensional arrow in the phase portrait, but in many cases
low-dimensional dynamics will dominate (for example for low-rank networks, see chapter II).
a. A phase portrait exhibiting a single attractive fixed point (in black). b. A limit cycle,
notice how the center of the cycle is a fixed point, albeit unstable. c. A ring attractor. All
the points on the black circle are stable fixed points of the dynamics. d. A torus-shaped
collection of dynamical fixed points found in the state-space of a rat’s medial enthorinal
cortex, viewed from two angles (after a non-linear dimensionality reduction), with a spatial
trajectory of the rat overlaid as the colored line on the torus, and on a map of the experiment
box (bottom). Every point of the torus is dynamically stable if the rat doesn’t move, but as
it wanders through space, inputs induce a change of position on the torus, which can hence
encode the coordinates of the rat’s position. (Adapted from ref. (68))

The dynamical systems approach used in conjuction with dimensionality reduction pro-
vides a rich set of tools to dissect neural computations, in particular in artificial RNNs for
which the arrows at every point of the state-space can be mathematically computed, which
gives access to the complete set of dynamical fixed points, cycles, etc. In a pioneering work
in 2013, Omri Barak and David Sussillo have for example studied the dynamics in RNNs
trained to perform working memory or rhythmic tasks, showing the deep links between the
computations and the underlying dynamical landscapes (205). Moreover, numerous research
projects have exploited the similarities between trajectories in neural recordings and RNNs
by training RNNs on tasks similar to those performed by animals, and inferring dynami-
cal mechanisms from the more manipulable RNNs (118; 206; 27; 219; 153; 193; 127; 228).
Pushing forward this paradigm, some studies have even proposed to train RNNs to directly
reproduce the recorded neural trajectories, hence being sure to obtain networks whose
activity matches biological one (150; 33; 54; 143), a strategy we should review in more detail
in chapter V. And without necessarily resorting to artificial RNNs, a broad effort is being
undertaken by neuroscientists to develop new algorithms that discover low-dimensional
dynamics in neural data and are able to infer dynamical systems that could reproduce them
(231; 114; 144; 135; 47; 132; 110; 136; 44; 69; 63; 168; 169; 177; 105; 46), some of which,
described at an abstract statistical level, we will attempt to link back to neural connectivity
structure in the chapter IV of this thesis.

Yet this powerful toolset does not provide a complete understanding of the emergence
of neural computations. In particular, an essential remaining question is how the network
structure determines the activity dynamics. It is notably apparent that biological brains
are organized following very numerous architectural constraints, for example the separation
between excitatory and inhibitory cells (Dale’s law), separation in cortical layers, specific
patterns of inter-area projections and many more principles that have been shaped by
millions of years of evolutionary history. In stark contrast, artificial RNNs are often trained

13

I. Introduction

from a purely random and homogeneous blank state. Are then some of these organizational
principles needed from a purely computational point of view, to achieve certain functions?
Are they reflected in neural state-space dynamics? And does a similar kind of structure
emerge in RNNs during their training?

A field that is accustomed to predict dynamics from the structure of a system of many
interacting elements is that of statistical physics, whose tools have been profitably applied to
neuroscience. Thanks to the use of mean-field theory and energy-based methods, physicists
working at the intersection with neuroscience have characterized network structures that
lead to chaotic dynamics (194), to multistable attractor landscapes for encoding memories
(Hopfield networks) (83), or to attractors with ring-shaped (15; 236) or toroidal topology
(24; 73). It is notable that the initial state from which artificial networks are trained leads
to either trivial or chaotic dynamics, and yet that these chaotic dynamics can be channelled
into useful computations through the addition of inputs (149) and feedback loops (86), a
fact exploited by reservoir computing and the FORCE learning methods. The effect of
these feedback loops suggest that low-rank modifications to the connectivity of a recurrent
network could be sufficient to induce particular behaviors in that network. This insight
was more directly evidenced by the work of Francesca Mastrogiuseppe and Srdjan Ostojic
(122; 123; 202), which notably showed that networks whose connectivity consisted of a
random and a low-rank part exhibited low-dimensional patterns of activity that could be
directly predicted by examining the low-rank term of the connectivity alone. Low-rank
matrices are simpler mathematical objects than general, full-rank matrices, being defined
by less parameters and prone to useful decompositions. The fact that they capture essen-
tial aspects of neural dynamics holds the promise to untangle some of the intricate links
between network structure and function, and this is the direction that this thesis will explore.

Finally, let us note that through the use of the neural state space, the dynamical systems
approach treats all neuron as identical and interchangeable elements of a biological substrate
for computations defined as an abstract space. This paradigm hence does not as of today
contain the tools necessary to answer questions about network organization. These questions
are however well addressed by more cell-driven models, which posit for example competing
populations to support decision-making tasks (220), or circular patterns of connectivity that
can give rise to ring attractor dynamics (15; 236). The fundamental difference between
those models and artificial RNNs is that the former do not give rise to the mixed selectivity
phenomenon that we described above, characteristic of the state-space approach. Viewed
in the state-space, the dynamics of cell-driven models would be aligned to particular axes
corresponding to the specific group of neurons encoding each relevant variable. This stands
in contrast with the agnostic view of the state-space in which low-dimensional dynamics
traverse random subspaces of the state-space, which naturally leads every neuron to encode
random combinations of task variables. Some recent studies have aimed at closing the gap
between those apparently irreconciliable paradigms, by measuring quantitatively the degree
of randomness or organization of biological networks. In particular, in 2014, David Raposo,
Matthew Kaufman and Anne Churchland have found that the functional organization of
a posterior parietal cortex network was as random as expected by chance (152): in other
words, the low-dimensional axes that encoded task variables in the neural state-space crossed
it perfectly randomly. This could have closed the debate, but a more recent study with the
same analyses by Junya Hirokawa, Alexander Vaughan and colleagues at Adam Kepecs’ lab
reached the opposite conclusion on neurons recorded in the rat orbitofrontal cortex during a
reinforcement learning task (81). This contradiction brings to light the fact that the two
approaches, the cell-agnostic, random state-space one, and the cell-driven one, may cover
different aspects of neural computations, and may thus become apparent during different
tasks or in different areas of the encephalon. This discrepancy will be the main focus of the
third chapter of this thesis.

14

I.5. Outline of the work

I.5 Outline of the work

In this thesis, we will mostly be concerned in the two following questions: how does the
connectivity structure of a recurrent network determine its dynamical properties, and hence
its computational abilities? And can we determine the structural organization and predict
the dynamical behavior of a neural circuit from samples of its responses? We will adress
those questions by building upon the theory of low-rank recurrent neural networks outlined
in Mastrogiuseppe & Ostojic 2018 (122) and Beiran et al. 2021 (11) (to which the author
of this thesis has contributed). Most specifically, these references have characterized the
dynamical behaviors of low-rank networks whose connectivity was defined by the modeller,
following certain distributions. This led to a rather exhaustive characterization of the
behaviors of these networks, and in particular to the demonstration that they were universal
approximators of low-dimensional dynamical systems. We will now in this work explore the
capacities of low-rank networks to answer the two questions raised above.

• In chapter II, we will first review the mathematical properties of low-rank RNNs,
most of which are described in references (122) and (11), and give some intuitions
to the reader on the characteristics of these networks, and how they can be used to
reverse-engineer network solutions found by numerical optimization to cognitive tasks.

• In chapter III, we will use this framework to effectively reverse-engineer networks of
minimal rank trained to perform a range of cognitive tasks. We will be interested
in relating the connectivity found by the training algorithms to the low-dimensional
dynamics that appear to solve the tasks. This will reveal the fact that an organization
of the network in subpopulations is necessary for some, but not all, tasks, and will
allow us to build some bridges between the neural state-space and the cell-driven
paradigms.

• In chapter IV, we will start to approach the question of dynamical inference from
neural data by relating an important class of statistical inference models used in this
context, the linear latent dynamical systems and the Kalman filtering algorithm, to
our class of low-rank recurrent neural networks. This will allow us to characterize how
this purely statistical approach can be related to properties of the connectivity of the
neural circuits studied, and to reveal the blind spots of each model class.

• Finally, in chapter V, we will put into practice the use of low-rank RNNs to infer
dynamics as well as structural properties of neural circuits from their activity. We will
notably be interested in two use-cases of our method: reverse-engineering recurrent
neural networks that are full-rank (i.e. trained without constraints on their connectiv-
ity), hence making them more interpretable, and inferring low-dimensional dynamics
from a dataset of prefrontal cortex recordings in nonhuman primates.

15

Summary of Chapter 2

Low-dimensional dynamics appear to be a fundamental principle of neural computations, arising
in numerous contexts both in biological nervous systems and in artificial recurrent neural networks.
Investigating the dynamics in such systems reveals how dynamical features control their function, but
the sheer complexity of the structure of these networks hinders efforts to interpret those dynamics as
manifestations of the underlying connectivity. Here, we draw on the recently developed framework
of low-rank recurrent neural networks to build a theory expliciting the dynamics expressed by some
networks from statistical properties of their connectivity. In particular, we derive a mean-field theory
of dynamics in low-rank networks whose connectivity parameters follow a mixture-of-Gaussians
distribution, and show through diverse examples how this theory can be geometrically interpreted
and give rise to dynamics that illuminate underlying computations. Finally, we explain how such
constrained networks can be trained and analyzed.

This chapter is based on parts of the methods of the paper The role of population structure
in computations through neural dynamics, Alexis Dubreuil*, Adrian Valente*, Manuel Beiran,
Francesca Mastrogiuseppe, Srdjan Ostojic, Nature Neuroscience, 25, 783-794 (2022) (43) for its
sections 2 and 5, and summarizes some results presented in the paper Shaping dynamics with
multiple populations in low-rank recurrent networks, Manuel Beiran*, Alexis Dubreuil, Adrian
Valente, Francesca Mastrogiuseppe, Srdjan Ostojic, Neural Computation, 6 (33), 1572-1615 (2021)
(11) for its sections 3 and 4.

17

Low-rank recurrent networks as a window on neural
dynamics II

II.1 Introduction

Neural computations, particularly those involving time-dependent or complex multimodal
processes are often thought to arise from recurrent interactions between vast amounts of
neurons (233; 23; 217). As a consequence, the recurrent neural network (RNN) model
has become one of the cornerstones of computational neuroscience, proving able to tackle
numerous cognitive tasks, from memory retrieval (83) to decision-making (220), through
short-term memory (184; 15) and spatial navigation (24) or generation of motor instructions
(206). Even sensory processes, traditionally thought to unfold in a bottom-up, feedforward
fashion, appear to benefit from recurrent interactions (90; 93).

A traditional approach to model neural computations with recurrent networks involves
carefully tuned recurrent connections, for example between well-defined groups of neurons
(220; 221; 50) or with particular symmetries (83; 15; 184; 236; 24; 73), or even drawing on
specific analytic solutions (151; 49). This strategy presents the advantage of leading to deep
insights into the relationship between connectivity structure and computational outcomes,
but requires new solutions to be worked out for every problem, and can face difficulties in
modelling mixed selective patterns of activity in higher-order areas, in which neurons often
exhibit overlapping or context-dependent roles.

On the other hand, recent developments in optimization algorithms and deep learning
made it feasible to train general-purpose RNNs without a priori structure on any behavioral
task (223; 112; 86; 204), a strategy which has been applied extensively throughout systems
neuroscience (118; 206; 150; 7; 35; 227; 219; 193; 174; 54; 143; 33) and provided an invaluable
tool to probe how goal-directed computations can arise from a web of complex connections
between elementary neurons.

These learning algorithms are applied on an initial random connectivity substrate
(sometimes termed a random reservoir), which by itself leads to well-known behaviors
involving chaotic trajectories or non-normal transients (194; 65; 19). This initial random
substrate interacts with learned inputs and feedback loops in order to channel unstructured
dynamics towards a computational goal (149; 86; 204). Recent theoretical modelling suggests
that connectivity structures expressed as low-rank matrices are sufficient to induce desired
behaviors from a random reservoir (86; 204; 156; 122; 123; 180; 202), and even that these low-
rank structures can emerge on top of random connectivity during typical learning processes
(172; 181). These results open vast possibilities to understand how trained connectivity
relates to neural dynamics and ultimately to behavior, which we will explore throughout

19

II. Low-rank recurrent networks as a window on neural dynamics

this thesis.
More specifically, we build upon a recent study by Mastrogiuseppe & Ostojic (122), in

which authors showed that adding a low-rank connectivity structure above a random initial
connectivity could induce task-oriented low-dimensional behavior in a recurrent network.
Follow-up studies by Schuessler and colleagues (180; 181) characterized more precisely the
interactions between the random and structured parts of the connectivity during and after
learning, while Beiran and colleagues (11) sought to comprehensively describe the dynamical
landscapes that could arise from low-rank connectivity alone, and showed how a statistical
description of connectivity in terms of mixture-of-Gaussians distributions was sufficient to
relate connectivity and dynamics. In this work, we will focus on this latter line of work, and
apply the theoretical understanding of low-rank networks to mechanistically understand how
goal-directed artificial RNNs can perform cognitive tasks (chapter III), and how they can
be related to neural-data analysis methods (chapter IV) and applied to neural recordings
(chapter V).

In this chapter, we review the theory developed in references (122) and (11), while
adapting it to our use-cases of training RNNs constrained to be low-rank. This will allow us
to develop two insights which will be crucial to the rest of the thesis: the relationship between
a statistical description of the low-rank connectivity and the geometrical organization of
neural dynamics; and a gain-modulation mechanism based on the non-linear transfer function
at the individual neuron level, but able to flexibly adapt dynamics at the population level.

II.2 Formalism

II.2.1 Introducing low-rank recurrent neural networks

In this work, we consider recurrent neural networks (RNNs) of rate units as studied by
Mastrogiuseppe & Ostojic (122). In this framework, a network is composed of N units, each
unit i being characterized by an activation xi(t) which obeys to the ordinary differential
equation:

τ
dxi

dt
= −xi +

N∑
j=1

Jijϕ (xj) +
Nin∑
s=1

I
(s)
i us(t) + ηi(t) (II.1)

where τ corresponds to a membrane time constant, Jij to the connection from unit j to
unit i, ϕ is a non-linear transfer function (that we will take to be ϕ = tanh, the hyperbolic
tangent, unless stated otherwise), ηi(t) is a stochastic process introducing noise into unit i,
and the unit receives Nin input signals noted us(t) for s ∈ {1, . . . , Nin} through the weights
I

(s)
i . The non-linearly transformed activation ϕ(xi(t)) will be referred to as the firing rate

of each unit.
An output z(t) can also be produced by a linear readout of firing rates through a set of

weights wi:

z(t) =
N∑

i=1
wiϕ(xi(t)) (II.2)

Equations (II.1) and (II.2) can also be written in a vector form:

τ
dx

dt
= −x + Jϕ(x) + Winu(t) + η(t) (II.3)

z(t) = wT ϕ(x) (II.4)

where x(t) = {xi(t)}i∈{1,...,N} is called the state-space vector of the network, J ∈ RN×N

is the connectivity matrix, u(t) ∈ RNin is the input vector, Win ∈ RN×Nin are the input
weights and ϕ is here applied as an element-wise function to all vector coordinates.

20

II.2. Formalism

In (122), the connectivity is taken to be the sum of a random matrix and a low-rank
structure:

Jij = gχij + Pij (II.5)

where χij ∼ N (0, 1) and P is a matrix of rank R ≪ N , and can thus be written as a sum of
R outer products:

Pij = 1
N

R∑
k=1

m
(k)
i n

(k)
j (II.6)

It has been shown in (122) that if the quenched noise, scaled by g, is not too large,
the network dynamics are essentially equivalent to those of the network induced by the
low-rank component only. This enables us to focus on networks defined only by a low-rank
connectivity, and such that:

Jij = 1
N

R∑
k=1

m
(k)
i n

(k)
j (II.7)

or in vector form:
J = 1

N

(
n(1)m(1)⊤

+ · · · + m(R)n(R)⊤)
(II.8)

where the the vectors n(r) and m(r) are of dimension N . Note that this decomposition is not
unique, and we will consider a particular one by writing the singular value decomposition of
the J matrix:

J = USV⊤ (II.9)

where U, V ∈ RN×R are matrices with orthonormal columns and S ∈ RR×R is a diagonal
matrix containing the singular values of J in descending order, s1, dots, sR. We will take
m(r) = √

srU:,r and n(r) = √
srV:,r in order to obtain a low-rank connectivity decompo-

sition that is unique up to a change of sign in the m(r) and n(r) vectors. A particular
consequence of this decomposition is that all m(r) vectors are orthogonal to each other, and
similarly for the n(r) vectors.

Finally, in the case when J is not constrained to be of a certain rank R we will call the
network “full-rank”, since under most conceivable probability measures on matrices, the
probability of obtaining a non-full-rank matrix is nil.

II.2.2 Biological interpretation of the models
The networks described by Eq. (II.1) are classically called in neuroscience rate networks, and
are typically interpreted by mapping each unit to a single neuron and by associating xi(t) to
its input electrical current (as can be measured by the patch clamp technique). In that case,
ϕ(xi(t)) can be understood as the firing rate of unit i, ϕ representing the frequency-input
curve (or f-I curve, see Fig. I.2) that can be inferred from in vitro or in vivo experiments
(giving a wide range of possible transfer functions depending on the neuron class, brain area,
and measurement context).

The −xi term on the right-hand side of Eq. (II.1) can thus be interpreted as the current
leak through the neuron’s membrane, the connections Jij as the synaptic strengths between
the neurons of the network, the input weights I

(s)
i as the synaptic strengths of incoming

connections from other brain areas or from afferent nerves, while the noise ηi(t) models the
intrinsic randomness of physico-chemical processes inside neurons and synapses.

In this dissertation, we will however significantly depart from this interpretation since
we will often consider parameters that would not respect certain biological constraints: in
particular, our networks will exhibit negative firing rates, are not required to obey Dale’s
law (39), and are not required to have sparse connectivity. We shall thus prefer a rather

21

II. Low-rank recurrent networks as a window on neural dynamics

more abstract interpretation of equation (II.1), where ϕ(xi(t)) can represent some centered
measure of a neuron’s activity (like z-scored smoothed firing rates, or calcium imaging
fluorescence traces), or even where each so-called unit doesn’t need to map to a single
neuron. We will come back to the biological underpinnings of our model in the discussion of
this thesis, and for the time being will simply consider them as general abstract models of
recurrently connected non-linear simple units.

II.2.3 Low-dimensional dynamics
Let us consider a network driven by the dynamics (II.1) with a low-rank connectivity matrix
given by (II.7) and no noise. In that case, the network dynamics can be written as:

τ
dxi

dt
= −xi + 1

N

R∑
r=1

m
(r)
i

N∑
j=1

n
(r)
j ϕ(xj) +

Nin∑
s=1

I
(s)
i us(t). (II.10)

At any time t, the right-hand-side is confined to the linear subspace spanned by the
vectors m(r) and I(s). Indeed, due to the leak term in the dynamics, any component of
the vector x(t) that is outside of this subspace will decay exponentially fast, and after this
transient the dynamics of x(t) remain in the said subspace for all t. The activation vector
x(t) can therefore be decomposed on a basis formed by the vectors m(r) and I(s), defining
R internal collective variables κr(t), and Nin external collective variables vs(t):

x(t) =
R∑

r=1
κr(t)m(r) +

Nin∑
s=1

vs(t)I(s)
⊥ . (II.11)

where the I
(s)
⊥ are obtained by a Gram-Schmidt orthogonalization process of the m(r) and

I(s) vectors (and the m(r) are already orthogonal to each other given the chosen decomposi-
tion).

The first term on the right-hand side in Eq. (II.11) represents the component of the
activity on the recurrent space (219; 153) defined as the subspace spanned by the output
connectivity vectors m(r). The corresponding internal collective variables κr are defined as
projections of the activation vector x(t) on the m(r):

κr(t) = 1
∥m(r)∥2

N∑
j=1

m
(r)
j xj(t)

= m(r)⊤
x(t)

∥m(r)∥2 .

(II.12)

The second term on the right-hand side in Eq. (II.11) represents the component of the
activity on the input space defined as the subspace spanned by the I

(s)
⊥ vectors, the set of

input vectors orthogonalized with respect to the recurrent subspace. The corresponding
external collective variables vs are defined as projections of the activation vector x(t) on
I

(s)
⊥ :

vs(t) = 1
∥I(s)

⊥ ∥2

N∑
j=1

I
(s)
⊥,jxj(t)

=
I

(s)
⊥

⊤
x(t)

∥I(s)
⊥ ∥2

.

(II.13)

22

II.2. Formalism

The embedding dimensionality of the dynamics in state-space is thus given by the sum
of the dimension R of the recurrent subspace, i.e. the rank of the connectivity, and the
dimensionality Nin of the input space.

The dynamics of the internal variables κr are obtained by projecting Eq. (II.1) onto the
output connectivity vectors m(r):

τ
dκr

dt
= −κr(t) + κrec

r (t) + 1
∥m(r)∥2

N∑
j=1

m
(r)
j

Nin∑
s=1

Is
j us(t) (II.14)

where κrec
r represents the recurrent input to the r-th collective variable, defined as the

projection of the firing rate vector ϕ(x) onto the input-selection vector n(r):

κrec
r (t) = 1

N

N∑
j=1

n
(r)
j ϕ(xj(t)). (II.15)

Inserting Eq. (II.11) into κrec
r leads to a closed set of equations for the κr:

κrec
r (t) = 1

N

N∑
j=1

n
(r)
j ϕ

(
R∑

r′=1
κ′

r(t)m(r′)
j +

Nin∑
s=1

Is
⊥,jvs(t)

)
. (II.16)

The dynamics of the external variables vs are obtained by projecting Eq. (II.1) onto the
orthogonalized input vectors I

(s)
⊥ . They are given by external inputs us(t) filtered by the

single neurons time constant τ :

τ
dvs

dt
= −vs + us. (II.17)

Unless stated otherwise, in this work we assume for simplicity that the stimuli us vary on
a timescale slower than τ , and replace vs with us. We also assume throughout that input
vectors are orthogonal to the output connectivity vectors, ie. I(s) = I

(s)
⊥ for all s. Hence the

third term on the r.h.s. of equation (II.14) equals zero.
Finally, the readout value can be obtained by inserting Eq. (II.11) into Eq. (II.1), which
gives:

z(t) = 1
N

N∑
j=1

wjϕ

(
R∑

r=1
κr(t)m(r)

j +
Nin∑
s=1

Is
⊥,jvs(t)

)
. (II.18)

II.2.4 Collective dynamics in the mean-field limit
Equation (II.14) shows that the state-space dynamics can be summarized by an R-dynamical
system formed by the set of internal variables κ = {κr}r=1...R, formalized as:

d

dt
κ(t) = F (κ(t),u(t)) (II.19)

where F is a non-linear multivariate function that depends on the set of connectivity
parameters given by the entries of vectors m(r), n(r) and I(s). More precisely, each neuron
i is characterized by a set of 2R + Nin + 1 parameters:

{I
(1)
i , . . . , I

(Nin)
i , n

(1)
i , . . . , n

(R)
i , m

(1)
i , . . . , m

(R)
i }i=1...N (II.20)

23

II. Low-rank recurrent networks as a window on neural dynamics

Network

a.

Input Connectivity Readout

mI
n

w

n m w

I

n

m −2

0

2

I

b.

Connectivity statistics

Latent dynamics
Covariance

Activity state space

I n m w

σnI σmI σwI

σnm σnw

σmw

Connectivity space
ni wi

Ii

ni

mi

mi

neuron i

m

ne
ur
on

s

Figure II.1: Relationships between connectivity and activity in low-rank RNNs. (a) The
connectivity parameters in a low-rank RNN (left) can be grouped in a matrix where each
row contains the input, recurrent and output parameters (values illustrated in grayscale) of a
given neuron (right). (b) The connectivity can therefore be represented in two complementary
manners that together determine low-dimensional dynamics. Top-left: Columns of the matrix
in (a) define specific directions (illustrated as arrows) in the activity state space, where each
axis is the activity xi of neuron i. The connectivity constrains the trajectories of activity to
lie in a low-dimensional subspace spanned by input vectors I(s) and recurrent vectors m(r).
The activity trajectory (illustrated in blue) is parametrized along those directions by input
variables us and internal variables κr. Bottom left: Each row of the matrix in (a) defines a
point in the connectivity space (specific example in red), where each axis corresponds to
entries along each connectivity vector. The full network is described by the distribution
of the cloud of points. Here we illustrate a four-dimensional distribution by its pairwise
two-dimensional projections. Bottom right: a Gaussian distribution in connectivity space is
specified by its covariance matrix that describes the shape of the point cloud (regression
lines shown in bottom left). Top right: The latent dynamics can be reduced to an effective
circuit (Eq. (III.3)), in which each internal variable is represented as a unit that receives
external inputs, and interacts with itself (and other internal variables) through a set of
effective couplings determined by the connectivity covariances illustrated in the bottom-left
panel.

Each neuron can thus be represented as a point in a connectivity space of dimension
2R + Nin + 1, and the connectivity of the full network can therefore be described as a set of
N points in this space (Fig. II.1b, bottom left). Note that the right-hand-side of Eq. (II.16)
consists of a sum of N terms, where the term j contains only the connectivity parameters
of neuron j. The connectivity parameters of different neurons therefore do not interact in
κrec

r , so that the r.h.s of Eq. (II.16) can be interpreted as an average over the set of points
corresponding to all neurons in the connectivity space.

Our main assumption will be that in the limit of large networks (N → ∞), the set of
points in the connectivity space is described by a probability distribution
P (n(1), . . . , n(R), m(1), . . . , m(R), I(1), . . . , I(Nin), w) := P (n, m, I, w). In this mean-field
limit, the r.h.s. of Eq. (II.16) becomes:

κrec
r (t) =

∫
dm dn dI dw P (n, m, I, w) n(r)ϕ

(
R∑

r′=1
κr′(t)m(r′) +

Nin∑
s′=1

I
(s′)
⊥ vs′(t)

)
, (II.21)

where we have used the shorthand dm dn dI =
∏R

r′=1
∏Nin

s′=1

(
dm(r′)dn(r′)dI(s′)

)
. The col-

24

II.2. Formalism

lective dynamics are therefore fully specified by the single-neuron distribution of connectivity
parameters. Once this distribution is specified, any network generated by sampling from
it will have identical collective dynamics in the limit of a large number of neurons. In this
view, the vectors defining network connectivity, i.e. the I(s), n(r), m(r) and w vectors will
be assimilated to probabilistic connectivity parameters, which formally are random variables
in a shared probabilistic space, noted n(r), m(r), I(s), and w.
The joint distribution of connectivity parameters P (n, m, I, w) also determines the values of
the readout:

z(t) =
∫

dm dn dIdw P (n, m, I, w) wϕ

(
R∑

r′=1
κr′(t)m(r′) +

Nin∑
s′=1

I
(s′)
⊥ vs′(t)

)
. (II.22)

II.2.5 Dynamics in Gaussian-mixture low-rank networks
To approximate any arbitrary joint distribution of connectivity parameters P (n, m, I, w), we
use multivariate Gaussian mixture models (GMMs). This choice was based on the following
considerations: (i) GMMs are able to approximate an arbitrary multivariate distribution
(99); (ii) model parameters can be easily inferred from data using GMM clustering; (iii)
GMMs afford a natural interpretation in terms of sub-populations; (iv) GMMs allow for a
mathematically tractable and transparent analysis of the dynamics as shown below (11).

In a multivariate Gaussian mixture model, every neuron belongs to one of P sub-
populations. For a neuron in subpopulation p, the set of parameters {{n

(r)
i }r, {m

(r)
i }r, {I

(s)
i }s, wi}

is generated from a multivariate Gaussian distribution with mean µp and covariance Σp,
where µp is a vector of size 2R+Nin+1, and Σp is a covariance matrix of size (2R + Nin + 1)2.
The full distribution of connectivity parameters is therefore given by

P (n, m, I, w) =
P∑

p=1
αpN (µp,Σp) (II.23)

:=
P∑

p=1
αpPp(n, m, I, w) (II.24)

where the coefficients αp define the fraction of neurons belonging to each subpopulation.
Each subpopulation directly corresponds to a Gaussian cluster of points in the connectivity

space. The vector µp determines the center of the p-th cluster, while the covariance matrix
Σp determines its shape and orientation.

To characterize the covariance matrices, we write for any two connectivity parameters
a and b (being one of the n(r), m(r), I(s), or w parameters) their overlap or aggregated
covariance σab given by:

σab = 1
N

N∑
i=1

aibi. (II.25)

This overlap admits a probabilistic interpretation as the covariance between the parameters,
implying that it can be visualized as the slope of a linear regression on the normalized point
cloud representing the entries of each neuron on those two parameters (Fig. II.1b, bottom left).
Considering that in a network, these parameters are materialized as vectors in the neural
state-space a and b (Fig. II.1b, top left), the overlap σab can then be interpreted as a rescaled
scalar product, equal to cos(âb)∥a∥∥b∥, and can be visualized from the angle between those
two vectors. In particular, an overlap of 0 corresponds to probabilistic independence between
the parameters a and b, and is materialized by approximate orthogonality of the sampled

25

II. Low-rank recurrent networks as a window on neural dynamics

n m w

I

n

m

n m w

I

n

m −0.8

0.0

0.8

Population 1 Population 2

statistics

sub-populations

covariances
Connectivity space

ni mi wi

I
i

n
i

m

I n
m w

a. b. c.

Figure II.2: Method for representing a low-rank connectivity structure in terms of multiple
subpopulations. (a) The connectivity vectors are represented as a set of points in connectivity
space, each point corresponding to connectivity parameters of one neuron. (b) Illustration
of two-dimensional projections of the full distribution in connectivity space, which in this
example is four dimensional. Every neuron belongs to a subpopulation that corresponds
to a component of the mixture-of-Gaussian distribution of parameters in this connectivity
space. The green and purple colors denote the two subpopulations, which in this illustration
have identical centers but different shapes. (c) Each sub-population is therefore defined by a
different set of covariances, that correspond to overlaps between vectors shown in green and
purple colors in the left panel.

vectors a and b (if N is large enough). Higher overlaps correspond to strong correlation
between the variables, materialized by an alignment of the state-space vectors.

Note that because the output vectors m(r) (resp. input-selection vectors n(r)) are
mutually orthogonal, the covariances between the parameters {m(r))}r=1...R (respectively
{n(r)}r=1...R) vanish.

For the set of neurons i belonging to population p, we will write as σ
(p)
ab the covariance,

also called overlap between two connectivity parameters a and b over population p:

σ
(p)
ab = 1

αpN

∑
i∈pop. p

aibi, (II.26)

which are the elements of the covariance matrix Σp, defining the p-th component of the
Gaussian mixture (Fig. II.2c). Note that the previous global overlap is simply the weighted
average of population-wise covariances: σab =

∑
p αpσ

(p)
ab .

Since every neuron belongs to a single population, the r.h.s of Eq. (II.16) can be split into
P terms, each corresponding to an average over one population. As within each population
the distribution is a joint Gaussian, Eq. (II.21) becomes a sum of P Gaussian integrals

κrec
r (t) =

P∑
p=1

αp

∫
dmdndIdw Pp(n, m, I, w) n(r) ϕ

(
R∑

r′=1
κr′(t)m(r′) +

Nin∑
s′=1

I
(s′)
⊥ vs′(t)

)
.

(II.27)

II.2.6 Effective circuit description of latent dynamics
In the following, we focus on zero-mean multivariate Gaussian mixture distributions for the
connectivity parameters, and input vectors orthogonal to {m(r)}r=1...R, as distributions
with these assumptions will be sufficient for the present work. The more general case
of Gaussian mixtures with non-zero means is treated in (11). Using Stein’s lemma for
Gaussian distributions, the dynamics of the internal collective variables can be expressed as
a dynamical system (see Appendix A.1)

26

II.2. Formalism

dκr

dt
= −κr +

R∑
r′=1

σ̃n(r)m(r′)κr′ +
Nin∑
s=1

σ̃n(r)I(s)vs. (II.28)

In the next chapters, vs will be replaced by us which amounts to assume that inputs vary
slowly with respect to the single neuron time constant τ .
In Eq. (II.28), σ̃n(r)m(r) represents the effective self-feedback of the collective variable κr,
σ̃n(r)m(r′) sets the interaction between the collective variables κr and κr′ , and σ̃n(r)I(s) is the
effective coupling between the input us and κr. These effective interactions between the
internal variables are given by weighted averages over populations:

σ̃ab =
P∑

p=1
αpσ

(p)
ab ⟨Φ′⟩p, (II.29)

where σ
(p)
ab is the covariance between connectivity parameters a and b for population p

(Eq. (II.26)), and ⟨Φ′⟩p is the average gain of population p, defined as:

⟨Φ′⟩p = ⟨Φ′⟩(∆(p)), (II.30)

with

⟨Φ′⟩(∆) = 1√
2π

∫ +∞

−∞
dz e−z2/2ϕ′(∆z) (II.31)

and

∆(p) =

√√√√ R∑
r′=1

(σ(p)
m(r′))2κ2

r′ +
Nin∑
s=1

(σ(p)
I(s))2v2

s (II.32)

the standard deviation of activation variables in population p, where σ
(p)
a is the variance of

a vector a on population p.
In Eq. (II.28), the covariances σ

(p)
ab are set by the statistics of the connectivity and input

vectors, but the gain factors ⟨Φ′⟩p in general depend both on internal and external collective
variables κk and vj . As a consequence, the dynamics in Eq. (II.28) is non-linear, and in fact
it can be shown that given a sufficient number of sub-populations, the right-hand side in
Eq. (II.28) can approximate any arbitrary dynamical system (11).
In the special case of linear networks (i.e. Φ(x) = x), the gain is constant so that the
effective couplings σ̃ab in Eq. (II.29) are equal to the overlaps σab of vectors a and b over
the full population, as defined in Eq. (II.25). The population structure therefore only plays
a role for non-linear networks.
The value of the readout (Eq. (II.22)) can also be expressed in terms of effective interactions
as

z =
R∑

r′=1
σ̃m(r′)wκr′ +

Nin∑
s=1

σ̃I(s)w(k)vs. (II.33)

II.2.7 Drivers and modulators of latent dynamics
Eq. (II.28) shows that feed-forward inputs to the network can have two distinct effects on
the collective dynamics of internal variables κr. If the input vector I(s) overlaps with the
r-th input-selection vector n(r), i.e. the corresponding covariance σ

(p)
n(r)I(s) is non-zero for

population p, the input directly drives the latent dynamics, in the sense that vs acts as an
effective external input to the dynamics of κr in Eq. (II.28).

27

II. Low-rank recurrent networks as a window on neural dynamics

In contrast, when all covariances between the input vectors and the input selection
vectors are zero (i.e. σ

(p)
n(r)I(s) = 0 for all r, p), the corresponding input does not drive the

latent dynamics, but can still modulate them by modifying the gain through Eq. (II.32) if
the variance σ

(p)
I(s) of the input on some population p is non-zero.

The inputs can therefore play roles of drivers and modulators of latent dynamics,
depending on whether the corresponding input vectors overlap or not with the input
selection vectors n(r).

II.2.8 Geometric interpretation

Equations (II.11)-(II.17) provide a direct link between the connectivity of a low-rank recurrent
network and its dynamics without assuming any further constraints on the nonlinear transfer
function ϕ or on the connectivity weights. As such, a first interpretation of the different
vectors defining the connectivity can be outlined as follows:

• the I(s) vectors represent directions of the state-space on which the input signals are
directly encoded at the population level;

• the n(r) vectors represent selection axes of the state-space, which select which col-
lective variables signals encoded at the population level are incorporated into the
recurrent dynamics of the network, through the calculation of the corresponding latent
recurrently-generated variables κr;

• the m(r) vectors represent directions of the state-space on which the recurrently-
generated variables κr are encoded at the population level.

Hence, as explained earlier the autonomous dynamics remain confined to the subspace
spanned by the m(r) vectors, and input-driven dynamics to the subspace spanned by the
I(s) vectors. What the mean-field theory outlines, through equation (II.28), is that the key
factors in determining the dynamical system expressed by the network are the overlaps
between the n(r) vectors and respectively the m(r) vectors for recurrent dynamics, and the
I(s) vectors for input-driven dynamics. This overlaps admit a geometrical interpretation as
the alignment between those pairs of vectors. Hence, when interpreting low-rank RNNs, we
will pay a particular attention to the way in which the n(r) geometrically align with the
other vectors defining the connectivity.

For example, in a rank-one network, if a vectors n has a significant overlap with the I
vector, this means that external input can be moved within the internal recurrent variable
κ(t). In order for this variable to be integrated by the input however, one would need κ(t)
to exhibit self-sustaining dynamics, which can happen (following Eq. (II.28)) if the overlap
between n and n approaches one. Hence the simple description of single-variable integrator
in this framework: it requires the n vector to be aligned with both I and m, as detailed in
the next chapter and illustrated in Fig. III.2c. In this case, the input can be considered as a
driver of the dynamics following the definition of the previous paragraph.

In the special case where a constant tonic input is fed to the network, one consequence of
equations (II.11)-(II.17) is that the dynamics will quickly converge to an affine subspace of
the states-space, parallel to the subspace spanned by the m(r) vectors but shifted along an
axis corresponding to the input being fed. This phenomenon effectively drives a translation
of the dynamics to another parallel sector of the state-space, where the dynamical landscape
can be different than in the absence of inputs, explaining how inputs can play the role of
modulators of the dynamics.

28

II.3. Gaussian low-rank recurrent networks

II.3 Gaussian low-rank recurrent networks

Let us now explicit the kind of network dynamics that can be obtained when the connectivity
parameters are sampled from a Gaussian distribution (we will fix, in all that follows, that
ϕ = tanh). This corresponds to the situation presented in paragraphs II.2.5 and II.2.6, except
that we will assume there is a single population (P = 1). Consequently, the distribution in
equation (II.23) becomes:

P (n, m, I, w) = N (µ,Σ) (II.34)
and the effective overlap between two connectivity parameters a and b given by equation
(II.29) becomes:

σ̃ab = σab⟨Φ′⟩, (II.35)
with the overall gain factor

⟨Φ′⟩ = ⟨Φ′⟩(∆) = 1√
2π

∫ +∞

−∞
dz e−z2/2ϕ′(∆z), (II.36)

and

∆ =

√√√√ R∑
r′=1

σ2
m(r′)κ

2
r′ +

Nin∑
s=1

σ2
I(s)v2

s . (II.37)

It follows from these simplified equations that the effective overlaps that define the network
dynamics following equation (II.28) are in a Gaussian network all scaled together by a single
factor. This fact strongly limits the dynamics that can be expressed by such a network,
although an interesting diversity of solutions can still be obtained.

Rank-one Gaussian networks. Let us first express the range of dynamics that can be
obtained in rank-one Gaussian RNNs. Such a network is characterized by two connectivity
vectors n and m and eventually input vectors (we will look at the effect of a single one).
Equation (II.28) becomes:

dκ

dt
= −κ(t) + σnm⟨Φ′⟩κ(t) + σnI⟨Φ′⟩u(t). (II.38)

In the absence of inputs, dynamics remain confined on the line spanned by the m vector,
and can thus be visualized as a one-dimensional potential V (κ) such that dκ

dt = − dV
dκ . The

only parameter that can influence the autonomous dynamics is the overlap σnm. The overall
gain factor ⟨Φ′⟩(∆) is a function of κ when there is no input and can easily be visualized,
showing that it simply decreases as κ moves away from zero, which formalizes the fact that
neurons’ activity starts to saturate due to the non-linear transfer function and cannot diverge
indefinitely. Hence, the only two dynamics that can be obtained from equation (II.38) are:
(i) if σnm < 1, the presence of a single stable attractive fixed point at zero, materialized
by a single-well potential (Fig. II.3a), or (ii) if σnm > 1, the presence of an unstable fixed
point at zero and two stable fixed point, symmetrically arranged around it, materialized
by a double-well potential (Fig. II.3b). Hence, a strong enough overlap between vectors n
and m induces a self-sustaining recurrent loop of activity in the network, which due to the
symmetric non-linearity tanh, drives bistable dynamics in the network. Finally, note that
when σnm is very close to one, the fixed point at zero becomes marginally stable, and the
network thus approximates a line attractor around this point, as could be observed in tasks
requiring evidence integration (184; 118) (Fig. I.7a).

If an input Iu(t) is fed to the network, its effect depends on the overlap σnI . If that
overlap is non-zero, the input signal u(t) will enter the dynamics of κ(t), following Eq. (II.38).

29

II. Low-rank recurrent networks as a window on neural dynamics

For instance, for a positive overlap, and with a bistability induced by σmn > 1, the dynamics
are biased towards one of the stable fixed points under presence of an input (Fig. II.3c).
This allows to retrieve a decision-making behavior, in a way that will be detailed in the next
chapter. On the other hand, if σnI = 0, an input will simply contribute to Eq. (II.38) by
reducing the gain term, and hence the effective overlap σ̃mn(κ = 0). Note that this effective
overlap at zero really sets the broad dynamical landscape in a Gaussian network, and when
it decreases below zero the bistability disappears. Hence, for inputs orthogonal to n but
strong enough, the two stable fixed points collapse into a single one at zero (Fig. II.3d). Note
that here, the dynamics in presence of an input can still be considered as one-dimensional
and along m if the input is constant, and in the steady-state regime: indeed, after a
short transient along the I vector, the activity x(t) will then again be constrained to a
one-dimensional affine line, parallel to m and shifted from the origin along the I axis. This
enables us to interpret the effect of inputs as modifications on the autonomous dynamic
field.

Rank-two Gaussian networks. Let us now look at some interesting cases of rank-two
Gaussian networks, without proving the technical details (which can be found in ref. (11)). In
this case, four overlaps will fully determine the autonomous dynamics, and it is informative
to organize them in the following “effective Jacobian” matrix:

Jov =
(

σ11 σ12
σ21 σ22

)
, (II.39)

where we used the shortcut notation σkl = σmknl . Interestingly, the eigenvalues of J happen
to also be the eigenvalues of Jov, and those directly set the local (linearized) dynamics at
zero as can be readily seen from Eq. (II.28). But crucially, for Gaussian networks the local
behavior induce the broader dynamical landscape of the network. Here are the autonomous
dynamics that can be observed by manipulating those parameters (letting λ1 ≥ λ2 be the
two eigenvalues of Jov if they are real, λ1 and λ1 if they are complex conjugate):

(i) if λ1 < 1, a single stable fixed point exists at 0;

(ii) if λ2 < 1 < λ1, the fixed point at 0 becomes unstable (effectively a two-dimensional
saddle point) and two stable fixed points appear symmetrically around it, along the
eigenvector associated with λ1, the networks is thus bistable (Fig. II.3e);

(iii) if 1 < λ2 < λ1, several phenomena can occur: if the network is “sufficiently symmetric”
(that is, if the eigenvalues of Jov are real), the two stable fixed points along the eigen-
vector associated to λ1 are complemented by two saddle points along the eigenvector
associated to λ2, while zero becomes unstable in both directions (Fig. II.3f); if the
eigenvalues of Jov become imaginary however, all the non-zero fixed points disappear
(in saddle-node bifurcations) to leave a limit cycle around the 0 unstable fixed point
(Fig. II.3h);

(iv) finally, if 1 < λ1 = λ2, a ring attractor appears around 0 (Fig. II.3g).

The above enumeration exhibits a range of interesting and useful behaviors, but also lacks a
wide range of imaginable dynamics: for example the cohabitation of two pairs of stable fixed
points on the two directions spanned by the main eigenvectors is impossible with a Gaussian
low-rank network, unless it is when the whole ring is stable. Similarly, for all networks
with a rank higher than 2, an analysis based on the eigenvalues of Jov can be performed,
and it can be observed that the eigenvector associated to the largest eigenvalue “wins” and
becomes associated with the two only stable fixed points, unless several eigenvalues are equal
in which case stable hyperspheres can be obtained.

30

II.4. Gaussian-mixture low-rank recurrent networks

slow
fast

a. b. c. d.

e. f. g. h.

Figure II.3: a-d. Example dynamics for Gaussian rank-one networks. Top: nullclines
of the r.h.s. of Eq. (II.38), including the y = κ line (red dashed) and y = σ̃nmκ + ñIu(t)
curve (blue). The intersection points are thus stable points of the dynamics. Bottom:
corresponding potential function of the one-dimensional dynamics (mathematical primitive
of the 1D field). All plots illustrate a realization with N = 500 neurons. a. Case with
σmn = 0.8, b. with σmn = 2, c. with σmn = 2, σnI = 1, σI2 = 1 and in presence of a
constant input of strength u(t) = 2, d. same with σnI = 0. e-f. Example dynamics for
Gaussian rank-two networks (simulations with N = 2048). e. Example of case λ1 > 1 > λ2.
f. Case λ1 > λ2 > 1. g. Case λ1 = λ2 > 1, implementing a ring attractor. Notice that
we can still observe only two authentic stable fixed points on this ring, and a slow drift
ohterwise along it, due to finite size effects. h. Case where λ1 and λ2 are complex conjugate,
implementing a limit cycle.

The effect of inputs on rank-two Gaussian networks is similar to that explained for
rank-one networks, with inputs that overlap with n(1) or n(2) inducing a bias in a certain
direction, and orthogonal inputs tending to shrink the dynamical landscape towards zero.

II.4 Gaussian-mixture low-rank recurrent networks

All dynamical landscapes cannot be obtained with a simple Gaussian-parametrized low-rank
network, and in order to obtained more varied behaviors we have to allow more flexibility
on parameter sampling. One possibility is to parametrize the connectivity space with for
example a mixture-of-Gaussians distribution, following Eq. (II.23). It turns out that, as
demonstrated in reference (11), such a parametrization is sufficient to approximate any
dynamical landscape (with particular conditions at infinity), including the effect of inputs
on dynamics, provided a sufficiently large number of components P in the mixture. This is
particularly fortunate for us since the dynamics remain tractable in the mean-field limit for
these networks, which hence stay interpretable while becoming extremely flexible.

A typical example of the more varied dynamics that can be obtained with Gaussian-
mixture low-rank networks are phase portraits that would exhibit more than two stable
fixed points without implementing an entire stable hypersphere (as those were the only
two cases given by Gaussian networks). For instance, cohabitation of two pairs of fixed
points in two orthogonal directions, as illustrated in Fig. II.4 becomes possible. This example
would actually require components with a non-zero mean, which we did not include in our

31

II. Low-rank recurrent networks as a window on neural dynamics

formalism in this thesis, and for which further details can be found in reference (11).

Figure II.4: Example of complex dynamical land-
scape obtained with rank-2 mixture-of-Gaussians
connectivity. Here the connectivity is sampled
from 4 populations (colored in the bottom, slice
m1 − m2 of the connectivity space), leading to 4
stable fixed points, separated by 4 saddle points,
and with an unstable source at 0 (top). This setup
is reminiscent of a Hopfield network (see ref. (11)
for more details)

Another interesting feature of Gaussian-
mixture low-rank networks are that they
enable a finer control of internal dynam-
ics via “modulator” inputs, as explained
in section II.2.7. Indeed, Eqs. (II.28)
and (II.29) show that the dynamical sys-
tem implemented by the network can be
modified if each effective overlap can be
tuned separately. As we have seen, for
Gaussian networks, gains and effective
overlaps are all modulated together, and
an input orthogonal to the m(r) and n(r)

vectors can only “shrink” the dynamical
landscape as illustrated for example in
Fig. II.3d. In the mixture-of-Gaussians
case, the gain of each population is an
independent variable, and each can thus
be modified by different inputs. Hence,
a modulator input could for instance in-
crease a certain effective overlap by cancelling the contribution of one single population to
it, hence enriching considerably the range of input-induced dynamics in a single network. A
practical rank-one example is given in the next chapter, let us for the moment illustrate this
phenomenon with a rank-two situation that will prove useful later.

Let us consider the network with 2 populations p ∈ {1, 2}, and the following overlaps:
σ

(p)
11 = 3, σ

(p)
22 = 2.5, σ

(p)
12 = 1 for p = 1, 2, and σ

(1)
21 = 1, σ

(2)
21 = −1. Hence, the two

populations differ only in terms of the correlation betwen their parameters m(2) and n(1),
forming two clouds of points in connectivity space that can be visualized on the plane
combining these two parameters. An “effective Jacobian” matrix at the origin can be
calculated as in Eq. (II.39), and will here be:

Jov =
(

3 1
0 2.5

)
(II.40)

The autonomous dynamics of this network can be visualized, and show a bistable behavior,
slight variant of that exhibited in Fig. II.3f, only with fixed points that are not aligned with
the m(1) and m(2) vectors because of the extra-diagonal term in this effective Jacobian.
Now, let us add a modulator input, i.e. with no overlap with any of the m(r) and n(r)

vector, but targeting only cells of the first population: more precisely, Ii is sampled with
a standard deviation of 10 for cells of the first population, and 0 for cells of the second
population. When a tonic input signal u(t) = 1 is fed to the network through this input
vector, it differentially modulates the gains of each population, strongly decreasing that of
population 1 (setting ⟨Φ′⟩1 = 0) without affecting that of population 2 (⟨Φ′⟩2 = 1). This in
turn affects the effective overlap σ̃21 by cancelling the contribution of population 1 to it:

σ̃21 = 0.5σ
(1)
21 ⟨Φ′⟩1 + 0.5σ

(2)
21 ⟨Φ′⟩2 ≈ 0.5σ

(2)
21 = −0.5, (II.41)

while other effective overlaps are simply reduced by half since contributions of both popula-
tions were equal. Overall, in the steady tonic input regime and with no recurrent contribution
(for now κ1 = κ2 = 0), we obtain the following effective Jacobian:

J̃ov ≈
(

1.5 0.5
−0.5 1.25

)
(II.42)

32

II.5. Training low-rank recurrent networks

m1

m2

Iu(t) = 0 u(t) = 1
a. b. c. d.

Figure II.5: Example of input-mediated modulation of dynamics in a Gaussian-mixture
rank-2 network (see text for its characteristics). a. In the absence of external input, the
dynamical landscape exhibits two stable fixed points (filled white dots), separated by two
saddle points and a central unstable source. b. In the presence of a constant external input,
neural activity evolves along an affine plane, parallel to vectors m(1) and m(2). On this
affine plane, the dynamical landscape is now changed and exhibits no stable fixed points,
and a limit cycle instead. c. Connectivity parameters of each neuron of the network on the
m(1) and n(2) vectors. For each population (in green and orange), a linear regression line is
superimposed. d. Illustration of the linear subspace on which autonomous dynamics unfold
(along vectors m(1) and m(2) and of the affine subspace along which they unfold when a
steady input is fed to the network (shifted along the I axis).

which can be verified with simulations. This asymmetric effective Jacobian now resembles
the one which was used to induce a limit cycle in a Gaussian network (Fig. II.3h), and
appears to indeed induce a cycle in the affine plane of the input-driven dynamics of our
network. This example hence illustrates how mixture-of-Gaussians low-rank networks allow
finely tuned inputs to completely reshape their internal dynamics, allowing them to shift
between dynamical primitives depending on circumstances. We will in particular see in the
next chapter how the rank-two network that we presented provides a solution to the delayed
match-to-sample task.

II.5 Training low-rank recurrent networks

One of the main aims of this work is to train low-rank RNNs, either on cognitive tasks
(chapter III) or directly on neural data (chapter V) in order to reverse-engineer the obtained
solutions. For this, we define trainable low-rank RNNs as follows: first, we discretize Eq. (II.1)
with the Euler method and a timestep ∆t = 20 ms, implementing the equation:

xt+1 = xt + α (−xt + Jϕ (xt) + Iut) + σηt, (II.43)

where α = ∆t
τ = 0.2 and ηt is i.i.d. Gaussian white noise applied to each neuron. To

force the connectivity matrix J to be low-rank, we parametrize it as a product of low-rank
matrices:

J = 1
N

MN⊤, (II.44)

where M, N ∈ RN×R with R chosen by the modeller1. During training, backpropagation-
through-time can be applied in order to train the weights of each of the matrices M, N,
I, not necessarily at the same time (we will in general train only M and N and leave I
as random weights, although it is sometimes insightful to train the input weights as well).
Finally a random linear readout is generated from the network activity:

1Other solutions could have been chosen: for example certain regularization schemes are known to induce
low-rank biases to connectivity matrices by minimizing the nuclear norm. However, we chose the above
solution in order to precisely control the obtained rank.

33

II. Low-rank recurrent networks as a window on neural dynamics

zt = w⊤xt, (II.45)

to compute the loss:

L =
∑
k,t

Mt(zk,t − z∗
k,t)2 (II.46)

where z∗
k,t represents the desired output for trial k and timestep t, and the Mt weights are

{0, 1} masks marking which at which timesteps the readout is constrained to a target value.
During training, the rank of J is constrained to be at most R by the parametrization (II.44),
but this parametrization presents the disadvantage of inducing a degeneracy: if an invertible
linear transformation is applied to the columns of N and its inverse to the columns of M
(that is, if an isomorphic transformation is applied to the R-dimensional latent space), the
same matrix J is obtained. This can complicate analyses and comparisons of networks. As
stated in equation (II.9), a particular definition of M and N can be obtained from J by its
singular value decomposition, for example by posing M = U

√
S and N = V

√
S (where

√
S

has to be understood as the diagonal matrix containing the square roots of the diagonal
entries of S). To remove the degeneracy, we thus redefine M and N at the end of training,
from the SVD of the matrix M̂N̂⊤, where M̂ and N̂ are the results of training. Hence, the
vectors {m(r)} and {n(r)} used in the theoretical analyses are defined as the columns of
these final matrices, and are both sets of orthogonal vectors2.

Within this framework, methods to train low-rank networks do not pose further difficulties
and we will in the following chapter focus on reverse-engineering trained networks. The
reader interested in training procedures and tricks can however refer to appendix A.4.

2A degeneracy remains in two situations: first the vectors m(r) and n(r) are defined up to a multiplication
by −1 of both vectors at the same time. Second, if several singular values are identical, the associated
singular vectors can lie anywhere along a certain subspace (this situation appears for example in the ring
attractor networks, Fig. II.3g). This however does not impact the results of the analyses.

34

Summary of Chapter 3

Neural computations are currently investigated using two separate approaches: sorting neurons
into functional sub-populations, or examining the low-dimensional dynamics of collective activity.
Whether and how these two aspects interact to shape computations is currently unclear. Using
a novel approach to extract computational mechanisms from networks trained on neuroscience
tasks, here we show that the dimensionality of the dynamics and sub-population structure play
fundamentally complementary roles. While various tasks can be implemented by increasing the
dimensionality in networks with fully random population structure, flexible input-output mappings
instead require a non-random population structure that can be described in terms of multiple
sub-populations. Our analyses revealed that such a sub-population structure enables flexible
computations through a mechanism based on gain-controlled modulations that flexibly shape the
collective dynamics. Our results lead to task-specific predictions for the structure of neural selectivity,
inactivation experiments, and for the implication of different neurons in multi-tasking.

This chapter is based on the manuscript The role of population structure in computations through
neural dynamics, Alexis Dubreuil*, Adrian Valente*, Manuel Beiran, Francesca Mastrogiuseppe,
Srdjan Ostojic, Nature Neuroscience, 25, 783-794 (2022). Accompanying code is also available at
the address https://github.com/adrian-valente/populations_paper_code.

35

https://github.com/adrian-valente/populations_paper_code

The role of population structure in computations through
neural dynamics III

III.1 Introduction

The quest to understand the neural bases of cognition currently relies on two disjoint
paradigms (6). Classical works have sought to determine the computational role of individual
cells by sorting them into functional populations based on their responses to sensory and
behavioral variables (84; 129; 76). Fast developing tools for dissecting neural circuits have
opened the possibility of mapping such functional populations onto genetic and anatomic cell
types, and given a new momentum to this cell-category approach (1; 230; 101; 74; 145; 81; 82).
This viewpoint has however been challenged by observations that individual neurons often
represent seemingly random mixtures of sensory and behavioral variables, especially in higher
cortical areas (32; 113; 155; 118; 139), where sharply defined functional cell populations
are often not directly apparent (118; 152; 76). A newly emerging paradigm has therefore
proposed that neural computations need instead to be interpreted in terms of collective
dynamics in the state space of joint activity of all neurons (23; 155; 118; 64; 153; 173). This
computation-through-dynamics framework (217) hence posits that neural computations
are revealed by studying the geometry of low-dimensional trajectories of activity in state
space (118; 150; 27; 153; 219; 193), while remaining agnostic to the role of any underlying
population structure.

In view of the apparent antagonism between these two approaches, two works have sought
to precisely assess the presence of functional cell populations in the posterior parietal cortex
(PPC) (152) and prefrontal cortex (81). Rather than define cell populations by classical
methods such as thresholding the activity or selectivity of individual neurons, these studies
developed new statistical techniques to determine whether the distribution of selectivity
across neurons displayed a non-random population structure (76). Using analogous analyses,
but different behavioral tasks, the two studies reached opposite conclusions. Raposo et al
found no evidence for non-random population structure in selectivity, and argued that PPC
neurons fully multiplex information. Hirokawa et al also observed that individual neurons
responded to mixtures of task features, but in contrast to Raposo et al, they detected
important deviations from a fully random distribution of selectivity, a situation they termed
non-random mixed selectivity. By clustering neurons according to their response properties,
they defined separate, though mixed-selective populations that appeared to represent distinct
task variables and to reflect underlying connectivity. To resolve the apparent discrepancy,
Hirokawa et al conjectured that revealing non-random population structure in higher cortical
areas may require sufficiently complex behavioral tasks.

37

III. The role of population structure in computations through neural dynamics

These conflicting findings therefore raise a fundamental theoretical question: do specific
computational tasks require a non-random population structure, or alternatively can any task
in principle be implemented with a fully random population structure as in (152)? To address
this question, we trained recurrent neural networks on a range of systems neuroscience
tasks (203; 7; 227) and examined the population structure that emerged in both selectivity
and connectivity using identical methods as (152; 81). Starting from the premise that
computations are necessarily determined by the underlying connectivity (122), we then
developed a new approach for assessing the computational role of population structure in
connectivity for each task. Together, these analyses revealed that, while a fully random
population structure was sufficient to implement a range of tasks, specific tasks required
a non-random population structure in connectivity that could be described in terms of a
small number of statistically-defined subpopulations. This was in particular the case when a
flexible reconfiguration of input-output associations was needed, a common component of
many cognitive tasks (165) and more generally of multi-tasking (227; 45; 120). To extract the
mechanistic role of this population structure for computations-through-dynamics, we focused
on the class of low-rank models (122; 180; 181) that can be reduced to interpretable latent
dynamics characterized by a minimal intrinsic dimension and number of subpopulations (11).
We found that the subpopulation structure of the connectivity enables networks to implement
flexible computations through a mechanism based on gain modulations(187; 53) of effective
interactions between latent variables. Our results lead to task-specific predictions for the
statistical structure of single-neuron selectivity, for inactivations of specific subpopulations,
as well as for the implication of different neurons in multi-tasking.

III.2 Identifying non-random population structure in trained
networks

We trained recurrent neural networks (RNNs) on five systems neuroscience tasks (227; 229)
spanning a range of cognitive components: perceptual decision-making (DM) (71), parametric
working-memory (WM) (157), multi-sensory decision-making (MDM) (152), contextual
decision-making (CDM) (118) and delay-match-to-sample (DMS) (126). We then searched
for evidence of non-random population structure by comparing the selectivity, connectivity
and performance of the trained networks with randomized shuffles.

We first asked if training on each task led to the emergence of non-random structure
in selectivity. Following (Raposo et al. 2014) (152) and (Hirokawa et al 2019) (81), we
represented each neuron as a point in a selectivity space, where each axis was given by
the linear regression coefficient of neural firing rate with respect to a task variable such as
stimulus, decision or context (Fig. III.1a). The dimension of the selectivity space ranged
from 2 to 4 depending on the task (see Methods), and each trained network led to a
distribution of points in that space (Fig. III.1b). For each network, we used the ePAIRS
(152; 81) test to compare the obtained distribution with a randomized shuffle corresponding
to a multivariate Gaussian (Fig. III.1b,c). A non-significant outcome suggests an isotropic
distribution of single-neuron selectivity, a situation that has been denoted as non-categorical
mixed selectivity (152) and we refer to it asfully-random population structure. A statistically
significant outcome instead indicates that neurons tend to be clustered along multiple axes
of the selectivity space. Following (152; 81), we refer to this situation as non-random
mixed selectivity, or non-random population structure. The ePAIRS analysis revealed the
presence of non-random population structure for two out of the five tasks, the contextual
decision-making and delay-match-to-sample tasks (Fig. III.1d) (proportion of statistically
significant networks under the ePAIRS test, p < 0.05, Bonferroni corrected : DM 1/100,
WM 6/100, MDM 10/100, CDM 87/100, DMS 100/100, A.1). In particular, we found a clear
difference between the multi-sensory (152) and context-dependent (118) decision making
tasks, which had an identical input structure and therefore selectivity spaces of identical

38

III.2. Identifying non-random population structure in trained networks

dimensions, but required different mappings from inputs to outputs.
The selectivity in trained RNNs necessarily reflects the underlying connectivity (122).

We therefore next sought to determine the presence of non-random population structure
directly in the connectivity of trained networks by applying an analogous analysis in a
connectivity space. To define a connectivity space with a minimal number of parameters, we
focused on RNNs constrained to have recurrent connectivity matrices Jij of a fixed rank R,
a type of connectivity structure that typically emerges when training RNNs on simple tasks
(181). A matrix of rank R can be written as

Jij = m
(1)
i n

(1)
j + · · · + m

(R)
i n

(R)
j , (III.1)

so that neuron i is characterized by 2R recurrent connectivity parameters {m
(r)
i , n

(r)
i }r=1...R,

as well as Nin input weights I
(s)
i and a readout weight wi (see Methods). For each task, we

determined the minimal required rank R (A.3). We then represented the connectivity of
each neuron as a point in a (2R + Nin + 1)-dimensional connectivity space, and described
the connectivity of a full network as the corresponding distribution of points (Fig. III.1e,f).
Similarly to the selectivity analysis, we assessed the presence of non-random population
structure by comparing connectivity distributions of trained networks with randomized shuf-
fles corresponding to multivariate Gaussians with matching empirical means and covariances.
The results were consistent with the analysis of selectivity (Fig. III.1g,h), and showed a gap
between the same two groups of tasks (Fig. III.1h, number of networks with statistically
significant clustering for each task: DM 3/100; WM 5/100; MDM 1/100; CDM 100/100;
DMS 100/100; p < 0.05 with Bonferroni correction). In particular the MDM and CDM
tasks again led to opposite results although their connectivity spaces were identical.

The analyses of selectivity and connectivity are purely correlational, and do not allow us
to infer a causal role of the observed structure. To determine when non-random population
structure is computationally necessary, or conversely when random population structure is
computationally sufficient, we therefore developed a new resampling analysis. For each task,
we first generated new networks by sampling the connectivity parameters of each neuron
from the randomized distribution used to assess structure in Fig. III.1e-h, i.e. a multivariate
Gaussian distribution with mean and covariance matching the trained low-rank RNNs. This
procedure preserved the rank of the connectivity (Fig. III.1e), and the overall correlation
structure of connectivity parameters, but scrambled any non-random population structure
(Fig. III.1j,k). We then quantified the performance of each randomly resampled network on
the original task. This key analysis revealed that the randomly resampled networks led to a
near perfect accuracy for the DM, WM and MDM tasks, but not for the CDM and DMS
tasks (Fig. III.1l). This demonstrates that, on one hand, random population structure is
sufficient to implement the DM, WM and MDM tasks, while on the other hand non-random
population structure is necessary for CDM and DMS tasks. These results held independently
of the constraints on the rank of the connectivity, and in particular for unconstrained,
full-rank networks in which only the learned part of the connectivity was resampled (A.4).

It is important to stress that the performance of resampled networks is a much more
direct assessment of the computational role of the non-random population structure than
the analyses of selectivity and connectivity through the ePAIRS test. Indeed, the ePAIRS
analyses can lead to false positives in which statistically significant non-random structure
is found in both selectivity and connectivity although resampled networks with a single
Gaussian still match the performance of the trained network (Sup Fig. A.2). As an illustration,
networks trained on the DM task sometimes exhibited two diametrically opposed clusters
in the connectivity space, suggesting two concurrent pools of self-excitatory populations,
reminiscent of solutions previously found for this task (220; 224; 175). Generating resampled
networks scrambled that structure, but still led to functioning networks, which showed that
in the DM task the population structure does not bear an essential computational role, and

39

III. The role of population structure in computations through neural dynamics

mn wI

u(t)

Resampled Low-Rank RNNsTrained Low-Rank RNNsTrained Full-Rank RNNs

z(t)

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

βA
i

βB
i

βB
i

βA
i

IctxBi
IctxBi

IctxAi IctxAi IctxAi IctxAi

IctxBi
IctxBi

u(t) z(t)

Multisensory DM Contextual DM

Firing ratesInputs

Linear regression

Selectivity space

ePAIRS test

Connectivity space

ePAIRS test

Resample

ePAIRS test

Network performance

uA(t)

uB(t)

βA
i

βB
i

Input Connectivity Readout

Multisensory DM Contextual DM

Multisensory DM Contextual DM

neuron i

Task Task Task

Connectivity space

mn wI

u(t) z(t)

n.s. n.s. n.s. n.s.

Figure III.1: Identifying non-random population structure in selectivity, connectivity and
computations. (a) Recurrent neural networks (RNNs) were trained separately on five tasks.
For each task, and each trained RNN, selectivity was first quantified by computing linear
regression coefficients βvar

i for each neuron i with respect to task-defined variables such
as stimulus features or decision (see Methods A.3.4). Each neuron was then represented
as a point in a selectivity space where each axis corresponds to the regression coefficient
with respect to one variable. For each network, we then compared the resulting distribution
of points with a random shuffle corresponding to a multivariate Gaussian with matching
empirical covariance. (b) Illustration of the distribution of regression coefficients in selectivity
space for two networks trained on respectively the multi-sensory (MDM) and context-
dependent decision-making (CDM) tasks which received identical inputs (two stimuli A and
B and two contextual cues) but required different outputs. The full selectivity space was
four dimensional. The plots show two-dimensional projections of the selectivity distribution
onto the plane defined by regression coefficients with respect to stimuli A and B. Gray
ellipses correspond to the 1 s.d. ellipse of a Gaussian distribution with matching mean
and covariance. (c) Distribution of angles between each point and its nearest neighbor in
the selectivity space illustrated in panel b (colored histograms), compared with that of a
matching multivariate Gaussian (null distribution, black line). The mismatch between the
two distributions was quantified using the ePAIRS test (152; 81) (two-sided, see Methods
A.3.5). The mismatch was significant for the CDM task (p = 3 × 10−25, effect size c = 0.58
n = 512 neurons; ***: p < 0.001), but not for the MDM task (p = 0.61, c = 0.01, n = 512).

40

III.3. Interpreting computations in terms of latent dynamics

Figure III.1 (previous page): (d) Population structure in the selectivity space across networks
and tasks: effect size of the ePAIRS test on the selectivity space for 100 networks trained
on each of the tasks (see A.1 for p-values). Black bars represent 95% confidence intervals
for null distributions, centered around mean null effect size. (e) To assess for population
structure in connectivity, we focused on low-rank networks, where connectivity is fully
specified by vectors over neurons (122). Each neuron is characterized by one parameter on
each vector (illustrated in grayscale, entries for a specific neuron are outlined in red), and
can be represented as a point in a connectivity space where each axis corresponds to the
parameters on one vector. We assessed the presence of non-random population structure in
that space using a procedure identical to the analysis of selectivity (c-d). (f) Illustration
of the distribution of parameters in connectivity space for the two networks trained on
respectively the MDM and CDM tasks. For these tasks, minimal trained networks were
of rank R = 1 (A.3), so that the connectivity space was of dimension 7 (four inputs, two
recurrent vectors and one readout). The plots show two-dimensional projections of the full
connectivity distribution onto the plane defined by input parameters of contextual cues
A and B. (g) Comparison of nearest-neighbor angle distributions in connectivity space
for trained networks and the randomized shuffles as in c. The difference is significant for
the CDM task (p = 2 × 10−142, c = 1.89, n = 512), but not for the MDM task (p = 0.72,
c = 0.005, n = 512). (h) Population structure in the connectivity space across networks
and tasks: effect size of the ePAIRS test on the connectivity space for 100 networks trained
on each of the five studied tasks (see A.1 for p-values). (i) To identify the causal role of
population structure on computations, we randomly generated new networks by resampling
from the null distribution in connectivity space that preserved the mean and covariance
structure but scrambled any non-random population structure. (j-k) In randomly resampled
networks, the statistics of connectivity are by design identical to shuffles used for the ePAIRS
test (MDM: p = 0.08, c = 0.05, n = 512 ; CDM: p = 0.68, c = −0.01, n = 512). (l)
Performance of each randomly resampled network on its corresponding task as measured by
accuracy.

might be an artifact of specific training parameters. Spurious structure can also appear in
selectivity when the non-linearity is strongly engaged (Sup Fig. A.2).

In summary, our analyses of trained recurrent neural networks revealed that certain tasks
can be implemented with a fully-random population structure in both connectivity and
selectivity, while others appeared to require additional organization in the connectivity that
led to non-random structure in selectivity. We next sought to understand the mechanisms
by which the population structure of connectivity determines the dynamics and the resulting
computations. In a first step, we examined the situation in which the population structure
is fully random. In a second step, we asked whether non-random population structure in
the connectivity space could be represented in terms of separate clusters or subpopulations,
and how this additional organization expands the computational capabilities of the network.

III.3 Interpreting computations in terms of latent dynamics

To unravel the mechanisms by which population structure impacts computations, we devel-
oped a method for interpreting low-rank networks in terms of underlying low-dimensional
dynamics (217; 11). Here we first outline this general model reduction approach (Fig. II.1),
and next apply it to trained recurrent networks.

In line with methods for analyzing large-scale neural activity (23; 36; 64; 173), we
represented the dynamics as trajectories x(t) = {xi(t)}i=1...N in the activity state space,
where each dimension corresponds to the activation of one neuron (Fig. II.1b). As in
dimensionality reduction analyses, we then parametrized these trajectories by a small

41

III. The role of population structure in computations through neural dynamics

number of latent variables (36; 64). Crucially, for low-rank networks this dimensionality
reduction is exact, because the connectivity structure directly restricts the dynamics to
lie in a low-dimensional subspace (11). Specifically, x(t) can be decomposed into a set of
internal variables κr(t) and inputs us(t) that respectively quantify activity along recurrent
and input-driven directions m(r) and I(s) in state-space (219), where m(r) and I(s) are
connectivity and input vectors obtained by grouping connectivity parameters across neurons
(see Fig. II.1b and Eq. II.11). A mathematical analysis of network dynamics then shows
that the set of internal variables κ = {κr}r=1...R forms a dynamical system driven by inputs
u = {us}s=1...Nin

, with a temporal evolution given by

d

dt
κ(t) = F (κ(t),u(t)) (III.2)

where F is a non-linear function that determines the amount of change of κ at every time
step. In the limit of large networks, the precise shape of F is set by the statistics of the
connectivity parameters across neurons (Eq. II.21), i.e. precisely the distribution of points
in the connectivity space that we previously examined in Fig. III.1f. The connectivity can
therefore be interpreted in two complementary ways, either in terms of directions in the
activity state-space (Fig. II.1b top left) or in terms of distributions in the connectivity space
(Fig. II.1b bottom left) and these two representations together determine the low-dimensional
latent dynamics.

In summary, in line with the computation-through-dynamics framework (153; 217),
low-rank networks can be exactly reduced to low-dimensional, non-linear latent dynamical
systems which determine the performed computations. We next examined how the population
structure in trained recurrent networks impacts the resulting latent dynamical system.

III.4 Latent dynamics for fully random population structure

Our resampling analyses of trained RNNs revealed that a range of tasks could be performed
by networks in which the population structure was fully random in connectivity space
(Fig. III.1l). We therefore first examined the latent dynamics underlying computations in
that situation. Crucially, a fully random population structure limits the available parameter
space, and strongly constrains the set of achievable latent dynamics independently of their
dimensionality (11) (see Chapter II). We start by specifying these constraints on the dynamics,
and show they nevertheless allow networks with random population structure to implement
a range of tasks of increasing complexity by increasing the rank of the connectivity and
therefore the dimensionality of the dynamics.

Networks with fully random population structure were defined in Fig. III.1i-l as having
distributions of connectivity parameters computationally equivalent to a Gaussian distri-
bution. In such networks, the statistics of connectivity are fully characterized by a set of
covariances between connectivity parameters, each of which can be directly interpreted as the
alignment, or overlap between two connectivity vectors (Fig. II.1b bottom left, see Eq. II.25).
For this type of connectivity, a mean-field analysis shows that the latent low-dimensional
dynamics can be directly reduced to an effective latent circuit, where internal variables κr

integrate external inputs us, and interact with each other through effective couplings set by
the overlaps between connectivity vectors multiplied by a common, activity-dependent gain
factor (11). In such reduced models, the role of individual parameters can then be analyzed
in detail.

As a concrete example, a unit-rank network (R = 1) with connectivity vectors m and n
and a single feed-forward input vector I (Nin = 1) leads to two-dimensional activity, fully
described by a single internal variable κ(t) and a single external variable u(t) (Fig. II.1b).
The latent dynamics of κ(t) are given by

42

III.4. Latent dynamics for fully random population structure

τ
dκ

dt
= −κ + σ̃nmκ + σ̃nIu(t), (III.3)

where σ̃nm and σ̃nI are effective couplings defined as σ̃nm = ⟨Φ′⟩σnm and σ̃nI = ⟨Φ′⟩σnI ,
where σnm (resp. σnI) is the fixed overlap between the vector n and the vector m (resp.
I). The connectivity vector n therefore selects inputs to the latent dynamics (122): the
overlap between n and I controls how strongly the latent dynamics integrate feed-forward
inputs, while the overlap between n and m controls the strength of positive feedback in
the latent dynamics. Crucially, all the effective couplings are scaled by the same factor ⟨Φ′⟩
that represents the average gain of all neurons in the network. This gain depends on the
activity in the network (see Eq. II.30), which makes the dynamics in Eq. III.3 non-linear.
The fact that all the effective couplings are scaled by the same factor however implies that, in
networks with a fully random population structure, the overall form of the effective circuit is
fixed by the connectivity overlaps, and this strongly limits the range of possible dynamics for
the internal variables (11). Tasks for which a fully random population structure is sufficient
are therefore those that can be implemented by a fixed effective circuit at the level of latent
dynamics.

We first applied our model reduction framework (Fig.II.1b) to the perceptual decision
making task, where a network received a noisy scalar stimulus u(t) along a random input
vector, and was trained to report the sign of its temporal average along a random readout
vector (Fig. III.2a). Minimizing the rank of the trained recurrent connectivity matrix,
we found that a unit-rank network was sufficient to solve the task (Sup Fig. A.3). The
network connectivity was fully characterized by four connectivity vectors: the input vector
I, recurrent connectivity vectors n and m, and the readout vector w (Fig. III.2a). As
a result, the activity x(t) evolved in a two-dimensional plane spanned by I and m, and
was fully described by two corresponding collective variables u(t) and κ(t) (Fig. III.2c).
The resampling analysis in Fig. III.1l showed that trained networks were fully specified
by the overlaps, or covariances between connectivity vectors, as generating new networks
by sampling connectivity from a Gaussian distribution with identical covariances led to
identical performance. The latent dynamics of κ(t) could then be reduced to a simple
effective circuit (Fig. III.2d, Eq. III.3). Inspecting the values of covariances in the trained
networks (Fig. III.2b, Sup Fig. A.7) and analyzing the effective circuit revealed that the
latent dynamics relied on a strong overlap σnI to integrate inputs, and an overlap σnm ≈ 1
to generate a long integration timescale via positive feedback. The internal variable κ(t)
therefore represented integrated evidence along a direction in state space determined by the
connectivity vector m (Fig. III.2c,d). The readout vector w was aligned with m, so that the
output directly corresponded to integrated evidence κ(t). Controlling only three parameters
in the latent dynamics was sufficient to reproduce the psychometric input-output curve of
the full trained network (Fig. III.2e). Note that this network implementation is very similar
to the implementation that has been proposed in previous work without making use of a
learning algorithm (122). The findings from the perceptual decision task directly extended
to the multi-sensory decision-making task (152), in which the latent dynamics were identical,
but integrated two inputs corresponding to two different stimulus features.

We next turned to the parametric working memory task (157), where two scalar stimuli
f1 and f2 were successively presented along an identical input vector I, and the network was
trained to report the difference f1 − f2 between the values of the two stimuli (Fig. III.2f). We
found that this task required rank R = 2 recurrent connectivity (Sup Fig. A.3), so that the
activity was constrained to the three-dimensional space spanned by I and the connectivity
vectors m(1) and m(2). The low-dimensional dynamics could therefore be described by
two internal variables κ1(t) and κ2(t) that represented activity along m(1) and m(2), and
formed a two-dimensional dynamical system that integrated the input u(t) received along
I. The resampling analysis indicated that in this case also the trained connectivity was
fully specified by covariances between connectivity vectors (Fig. III.1i-l). Inspecting the

43

III. The role of population structure in computations through neural dynamics

Parametric Working Memory

Perceptual Decision Making

f1

f 2

f1 0

1

f1

a. b.

c.

d.

f. i.

h.

trained reduced positive
choices

200 ms 200 ms

Input Output

J = mnT

I w

f2

200 ms

Input Output

200 ms

I w

J = m(1)n(1)T

+m(2)n(2)T

mi

ni ni

Ii

e.

m
(1)
i

n
(1)
i n

(2)
i

m
(2)
i

Stim. 1 Stim. 2

10 Hz

34 Hz

Stimulus
frequency

200 ms

0

0

f1 f1 f2

g.

j.

−2 0 2

input

0.0

0.5

1.0

p
os

it
iv

e
ch

oi
ce

s

trained

resamp.

I
m
n

Input
+0.6

+0.2

-0.2

-0.6

z(t) = κ1 − 2κ2

Figure III.2: Low-dimensional latent dynamics in networks with a random population
structure. (a)-(e) Perceptual decision making task. (a) A rank-one network was trained to
output the sign of the mean of a noisy input signal. Two example trials for a positive (red)
and a negative (blue) input mean. (b) Two two-dimensional projections of the obtained
four-dimensional connectivity space. Each point represents the connectivity parameters
of one neuron. (c) Low-dimensional trajectories in the two-dimensional subspace spanned
by vectors m and I for four trials. (d) The latent dynamics are equivalent to an effective
circuit governed by 2 effective couplings (Eq. III.3), which are determined by the overlaps
σnI and σnm of the vector n with I and m (see vectors in panel c). The readout from the
network is set by the overlap σmw between the vectors m and w. (e) Psychometric function
showing the fraction of positive outputs for the trained network, and for a reduced network
generated by controlling only three parameters corresponding to the effective couplings in
f (see Supplementary Note 2.1). (f)-(j) Parametric working memory task. (f) A rank-two
network was trained to compute the difference between two stimuli f1 and f2 separated by
a variable delay. (g) Two projections of the obtained six-dimensional connectivity space.
(h) Since the network is rank-two, the recurrent activity is parametrized by two internal
variables, κ1 and κ2 that correspond to activity along connectivity vectors m(1) and m(2).
The variable κ1 acts as an integrator that encodes the stimuli persistently: it encodes
f1 following the first stimulus, and f1 + f2 following the second one. The variable κ2
responds transiently to each stimulus, and therefore encodes f2 at the decision time. (i)
The latent dynamics are described by an effective circuit where the two internal variables
evolve independently, with different amounts of positive feedback. (j) Psychometric response
matrix for the trained network, and a reduced network generated by controlling only six
parameters corresponding to the effective couplings in i (see Supplementary Note 2.2). Each
matrix displays the fraction of positive responses for each combination of stimuli f1 and f2.

44

III.5. Representing non-random structure with multiple populations

connectivity distribution (Fig. III.2g, Sup Fig. A.7) revealed that the two internal variables
κ1 and κ2 did not directly interact, but instead independently integrated stimuli through
dynamics given by Eq. III.3 (Fig. III.2i). For κ1, a strong overlap σn(1)m(1) led to strong
positive feedback that generated a persistent representation of the intensity f1 of the first
stimulus along the direction of state space set by the connectivity vector m(1) (Fig. III.2h
top). For κ2, the overlap σn(2)m(2) , and therefore the positive feedback, was weaker, leading
to a transient response that encoded the most recent stimulus along the direction m(2) in
the state space (Fig. III.2h bottom). The readout vector w was aligned with both m(1)

and m(2), but with overlaps of opposite signs, so that the output of the network in the
decision period corresponded to the difference between κ1 and 2κ2, and therefore effectively
f2 − f1 (Fig. III.2i). Controlling only five parameters in the latent dynamics was therefore
sufficient to reproduce the psychometric matrix describing the input-output mapping of the
full trained network (Fig. III.2j).

In summary, networks with random population structure can perform tasks of increasing
complexity by relying on the dimensionality of recurrent dynamics to represent an increasing
number of task-relevant latent variables. The random population structure however limits
ways in which these latent variables can be combined by fixing the shape of the equivalent
circuit. As a consequence, for more complex tasks a fully random population structure was
not sufficient. We next sought to further elucidate this aspect.

III.5 Representing non-random structure with multiple
populations

The resampling analysis in Fig. III.1l indicated that tasks such as context-dependent decision-
making and delayed-match-to-sample relied on a population structure in connectivity that
was not fully random. To better understand the underlying structure and its computational
role, we further examined RNNs trained on these two tasks, and asked whether their
connectivity could be represented in terms of multiple populations. We first examined
whether a multi-population connectivity structure is sufficient to implement the two tasks,
and in a second step examined how such a structure modifies latent dynamics and expands
their computational capacity.

To identify computationally-relevant populations, we took inspiration from (81), and
first performed clustering analyses in the connectivity space where non-random population
structure was found (Fig. II.2a). Applying a Gaussian mixture clustering algorithm on the
cloud of points formed by each trained network, we partitioned the neurons into separate
subpopulations. In the trained networks, all clusters were centered close to the origin,
but each had a different shape and orientation that corresponded to multiple peaks in the
distribution detected by the ePAIRS analysis (Fig. III.1f-g). Each population was therefore
characterized by a different set of covariances, or overlaps, between input, recurrent, and
output connectivity vectors. We then extended our resampling approach from Fig. III.1i-l,
and generated new networks by first randomly assigning each neuron to a population, and
then sampling its connectivity parameters from a Gaussian distribution with the fitted
covariance structure. Finally, we inspected the performance of these randomly generated
networks, and compared them with fully trained ones. By progressively increasing the
number of fitted clusters, we determined the minimal number of populations needed to
implement the task (see Methods). Within this approach, networks with a fully random
population structure such as those described in Fig. III.2 correspond to a single overall
population in connectivity space.

We first considered context-dependent decision making, where stimuli consisted of a
combination of two scalar features that fluctuated in time (118). Depending on a contextual
cue, only one of the two features needed to be integrated (Fig. III.3a), so that the same
stimulus could require opposite responses, a hallmark of flexible input-output transformations

45

III. The role of population structure in computations through neural dynamics

in
p.

B

trained 1 pop. 2 pop.

inp. A

in
p.

B

inp. A inp. A

0

1

Context-dependent Decision Making

Input A

Input B

Ctx A Ctx B

Output

200 ms

200 ms

Ctx A

Ctx B

a. b. c.

Ctx A
Ctx B

J = mnT

inp. A inp. A inp. A

inp. A/B

po
si

tiv
e

ch
oi

ce
s

0

1

0

1

positive
choices

inp. A/B inp. A/B

inp. A/B inp. A/B inp. A/Bpo
si

tiv
e

ch
oi

ce
s

0 5-5 0 5-5 0 5-5

0
5

-5
0

5
-5

0 5-5 0 5-5 0 5-5

Output

200 ms

Trial A-A
Trial B-A

d. e. f.

200 ms

positive
choices

Input A

Input B

stim.1 stim.2

J = m(1)n(1)T

+m(2)n(2)T

Delay Match-to-Sample

Figure III.3: Multi-population connectivity structure captures the computational require-
ments for context-dependent tasks. (a)-(c) Application to the context-dependent decision
making task. (a) Networks received stimulus inputs consisting of two noisy features along
two different input vectors, together with one of two contextual cues in each trial. Unit-rank
networks were trained to output the sign of the mean of the cued feature. Here we illustrate
two example trials sharing the same stimulus inputs and opposite contextual cues (context
A activated in dark red, context B in pale brown), leading to opposite outputs. (b) Psycho-
metric functions and response matrices. Each psychometric matrix displays the fraction of
positive responses for each combination of stimulus features. Each psychometric function
represents the fraction of positive responses for the value of one feature, averaging over the
other. The two rows show psychometric functions and matrices in different contexts, for a
trained network (left column), and for networks generated by resampling connectivity from
a single population (middle column) or two subpopulations (right column). (c) Average
accuracy of a trained network and for 10 draws of resampled single-population and two-
population networks (line: median, box: quartiles, whiskers: range, in the limit of median
± 1.5 interquartile range, points: outliers). (d)-(f) Application to networks performing the
delayed match-to-sample (DMS) task. (d) Networks received a sequence of two stimuli
during two stimulation periods (in light gray) separated by a delay. Each stimulus belonged
to one out two categories (A or B), each represented by a different input vector. Rank-two
networks were trained to produce an output during a response period (in light orange) with
a positive value if the two stimuli were identical, and a negative value otherwise. Here
we illustrate two trials with stimuli A-A and B-A respectively. (e) Psychometric response
matrices. Fraction of positive responses for each combination of first and second stimuli, for
a trained network (left) and for networks generated by resampling connectivity from a single
population (middle) or two populations (right). (f) Average accuracy of a trained network
and for 10 draws of resampled single-population and two-population networks.

46

III.6. Gain modulation of latent dynamics

(60). We found that unit-rank connectivity was sufficient (Sup Fig. A.3), and focused on
such networks. The analysis in Fig. III.1l showed that generating networks by resampling
connectivity from a single, fully-random population led to a strong degradation of the
performance, although it remained above chance. A closer inspection of psychometric matri-
ces representing input-output transforms in different contexts revealed that the resampled
single-population networks in fact generated correct responses for stimuli requiring identical
outputs in the two contexts, but failed for incongruent stimuli, for which responses needed to
be flipped according to context (Fig. III.3b). This observation was not specific to unit-rank
networks, as randomizing population structure in higher-rank (Sup Fig. A.5) and full-rank
networks (Sup Fig. A.4) led to a similar reduction in performance. We therefore performed a
clustering analysis in the connectivity space. The number of clusters varied across networks
(Sup Fig. A.6 and appendix A.2), but the minimal required number was two. For such
minimal networks, we found that randomly resampling from the corresponding Gaussian
mixture distribution led to an accuracy close to the original trained connectivity (Fig. III.3c).
In particular, the randomly generated networks correctly switched their response to incon-
gruent stimuli across contexts, in contrast to networks with a single population (Fig. III.3b).
This indicated that connectivity based on a structure in two populations was sufficient to
implement the context-dependent decision-making task.

We next turned to the delayed-match-to-sample task (126; 50; 27), where two stimuli were
interleaved by a variable delay period, and the network was trained to indicate in each trial
whether the two stimuli were identical or different (Fig. III.3d). This task involved flexible
stimulus processing analogous to the context-dependent decision-making task because an
identical stimulus presented in the second position required opposite responses depending
on the stimulus presented in the first position. We found that this task required a rank
two connectivity (Sup Fig. A.3), but, similarly to the context-dependent decision making
task, a fully random population structure was not sufficient to perform the task, as networks
generated by randomizing connectivity parameters reduced the output to chance level
(Fig. III.1l, III.3e,f). Fitting instead two clusters in the connectivity space showed that two
subpopulations were sufficient, as sampling connectivity based on a two-population structure
led to networks with a performance close to that of the fully trained network (Fig. III.3f).

Altogether, our analyses based on clustering connectivity parameters, and randomly
generating networks from the obtained multi-population distributions, indicated that connec-
tivity distributions described by a small number of populations were sufficient to implement
tasks requiring flexible input-output mappings. To identify the mechanistic role of this multi-
population structure, we next examined how it impacted the latent dynamics implemented
by trained networks.

III.6 Gain modulation of latent dynamics

To unveil the mechanisms underlying flexible input-output mappings in networks with
connectivity based on multiple populations, we examined how such a structure impacts
the latent dynamics of internal variables. Here we first describe how, in contrast to a
single-population, a multi-population structure allows external inputs to flexibly modulate
the overall form of the circuit describing latent dynamics. We then show how this general
principle applies specifically to the two flexible tasks (Fig. III.3). We focus here on networks
with minimal rank and minimal number of populations, and show in the next section that
the inferred predictions hold more generally.

In Fig. III.3 we defined subpopulations as subsets of neurons characterized by different
overlaps between input, recurrent and output connectivity vectors in a network of fixed
rank. In a network with a multi-population structure, the number of internal variables
describing low-dimensional dynamics is determined by the rank of the recurrent connectivity,
as in networks without population structure (Fig. II.1a). Remarkably, a mean-field analysis

47

III. The role of population structure in computations through neural dynamics

(11) (see previous chapter) shows that the latent low-dimensional dynamics can still be
represented in terms of an effective circuit where internal variables κr integrate inputs
and interact with each other through effective couplings (Fig. III.4a). The key effect of
the multi-population structure is however to modify the form of the effective couplings
and endow them with much greater flexibility than in the case of a single, fully random
population. Indeed, in a network with a single population, the effective couplings were
given by connectivity overlaps multiplied by a single, global gain factor, and modulating the
gain therefore scaled all effective couplings together. In contrast, in networks with multiple
populations, each population is described by its own set of overlaps between connectivity
sub-vectors (Fig. III.3a), and, importantly, by its own gain, which corresponds to the average
slope ϕ′(xi) on the input-output nonlinearity of neurons in the population. The effective
couplings between inputs and internal variables are then given by a sum over populations of
connectivity overlaps each weighted by the gain of the corresponding population (Eq. (II.29)).
As an illustration, in the case of two populations, the effective coupling between the input
and the internal variable becomes

σ̃nI = σ
(1)
nI ⟨Φ′⟩1 + σ

(2)
nI ⟨Φ′⟩2 (III.4)

where σ
(1)
nI and σ

(2)
nI are the overlaps for each population between the input vector I and

the input-selection vector n, while ⟨Φ′⟩1 and ⟨Φ′⟩2 are the gains of the two populations,
that depend implicitly both on inputs and the values of internal variables. Crucially,
additional inputs restricted to a given population can modulate its gain independently of
other populations by shifting the position of neurons on the non-linear input-output function.
Depending on the geometry between input vectors and input-selection vectors, different
sets of inputs can play distinct roles of drivers and modulators (187), allowing the network
to flexibly remodel the effective circuit formed by collective variables in different trials or
epochs according to the demands of the task.

We applied this model-reduction analysis to the context-dependent decision-making task,
for which the minimal trained networks were of unit rank and consisted of two subpopulations
(Fig. III.3a). Analyzing the statistics of input and connectivity vectors for each population,
we found that the input vectors IA and IB corresponding to the two stimulus features
uA and uB had different overlaps with the input-selection vector n in the two populations
(Fig. III.4b right) so that the two stimulus features uA and uB acted as drivers of latent
dynamics. The contextual input vectors IctxA and IctxB in contrast had weak overlaps with
the input-selection vector n (Sup Fig. A.7), but strongly different amplitudes on the two
populations (Fig. III.4b left). They therefore modified the gains of the two populations in
an opposite manner (Fig. III.4c bottom), and played the role of modulators that changed
the form of the effective circuit describing latent dynamics in each context (Fig. III.4c top).
More specifically, the latent dynamics of the internal variable κ could be approximated by
(Methods and Sup Fig. S4):

τ
dκ

dt
= −κ + σ̃mnκ + σ

(1)
nIA⟨Φ′⟩1uA(t) + σ

(2)
nIB ⟨Φ′⟩2uB(t) (III.5)

where ⟨Φ′⟩1 and ⟨Φ′⟩2 are the average gains of the two populations, σ
(1)
nIA the overlap for

the first population between the input vector for stimulus feature A and the input-selection
vector n, and σ

(2)
nIB the overlap for the second population between n and the input vector

for stimulus feature B. By modulating the gains of the two populations in a differential
manner between the two contexts (Fig. III.4c bottom), the contextual cues controlled the
effective couplings between stimulus inputs and the internal variable κ, and determined
which feature was integrated by the internal variable in each context (Fig. III.4d). This
mechanism implemented an effective input gating, but only at the level of the latent dynamics
of the internal variable κ that integrated relevant evidence. Importantly, as observed in
experimental data (118), on the level of the full network, the two stimulus features were

48

III.6. Gain modulation of latent dynamics

uA(t)

uB(t)

σ̃nIA

σ̃nIB

σ̃nm

uctxB(t)

uctxA(t)

Context A Context B

uA(t)

uB(t)

σ̃nm

uctxA(t)

uA(t)

uB(t)

σ̃nm

uctxB(t)

pop. 1 pop. 2
0

1

ga
in

Φ
(x

i)

pop. 1 pop. 2
0

1

ga
in

Φ
(x

i)

Context-dependent Decision Making

IctxAi

IctxBi

ni

ni

IAi

IBi

a.

b.

c.

d.

200 ms 200 ms

uA(t)
uB(t)

uA(t)
uB(t)

κ(t)
κ(t) κ(t)

Figure III.4: Mechanisms of computations based on a multi-population connectivity, for the
context-dependent decision-making task. (a) Circuit diagram representing latent dynamics
in the reduced model of context-dependent decision-making task (Eq. III.5). The internal
variable κ is represented as a unit that integrates the two stimulus features uA and uB

through effective couplings σ̃nIA and σ̃nIB . Contextual inputs uctxA and uctxB modulate the
gains of the two populations and therefore the effective couplings that govern which stimulus
feature is integrated. Lines with round ends represent effective couplings, lines with straight
ends represent gain modulation. (b) Projections of the six-dimensional connectivity space
for a network trained on the task. Each point represents the parameters of one neuron, with
the color shade indicating the probability that it belongs to each subpopulation, as found by
the clustering procedure (Methods). For the remaining analysis, the two subpopulations are
defined by a hard threshold at 0.5 on this probability. Left: plane defined by components
of the contextual-cue vectors IctxA and IctxB ; right: two planes defined by components on
the input-selection vector n and the two stimulus feature vectors IA and IB (lines show
linear regressions for each population). (c) Effective circuits in each context (top) and
corresponding gains of neurons in each population (bottom). For each neuron i, the gain is
defined as the slope of ϕ(xi) during stimulation period. Violin plots show the distribution of
gains for all neurons in each population (pop. 1: n = 2028, pop. 2: n = 2068) in context A
(left) and B (right). In context A, the average gain of neurons in population 1 (green) is
lower than population 2 (purple), which decreases the effective connectivity between input
feature B and the latent variable (top left circuit). The opposite happens in context B (top
right circuit). (d) Effective inputs to the latent variable κ in the two contexts (bottom)
in response to the same stimulus input (top). Solid lines show inputs mediated by each
population (Eq. (II.27)), the dashed line shows the total input, which changes signs between
the two contexts, leading to opposite responses.

49

III. The role of population structure in computations through neural dynamics

instead equally represented in both contexts, but along directions in state space orthogonal
to the direction that encoded internal collective variable (Sup Fig. A.8).

For the delayed-match-to-sample task, we found that the multi-population structure
also led to a modulation of latent dynamics, but across task epochs rather than across
trials. Fig. III.5e-j describes an example minimal network implementing this task, where one
of the stimuli played the role of a modulatory input, and transiently modified the latent
dynamics when presented (Fig. III.5e,h,j). More specifically, the network was of rank two,
so that the latent dynamics were described by effective interactions between two internal
variables κ1 and κ2 (Fig. III.5e), and could be visualised in terms of a flow in a dynamical
landscape in the κ1 − κ2 plane (Fig. III.5f). The minimal connectivity moreover consisted
of two populations (Fig. III.5g). Stimulus A modulated the gain of the first population
(Fig. III.5i), and therefore, when presented, modified the effective couplings in the latent
dynamics and the dynamical landscape (Fig. III.5j and Sup Fig. A.9)). The main effect of
the inputs was therefore to shape the trajectories of internal variables by modulating the
dynamical landscape at different trial epochs (Fig. III.5j and Sup Fig. A.9). In particular,
stimulus A strongly enhanced negative feedback (Fig. III.5h), which led to a limit-cycle in
the dynamics that opened a fast transient channel that could flip neural activity in the
κ1 − κ2 plane (27). The four trials in the task therefore corresponded to different sequences
of dynamical landscapes (Fig. III.5j) leading to different neural trajectories and final states
determining the correct behavioral outputs (Sup Fig. A.9).

III.7 Predictions for neural selectivity and inactivations

Analyzing networks of minimal rank and minimal number of subpopulations allowed us to
identify the mechanisms underlying computations based on a multi-population structure
in connectivity. We next sought to generate predictions of the identified mechanisms that
are experimentally testable without access to details of the connectivity. We then tested
these predictions on networks with a higher number of subpopulations or higher rank,
obtained by varying the constraints used during training. We focus here specifically on
the context-dependent decision-making (CDM) task, and contrast it with the multi-sensory
decision-making (MDM) task, for which networks received an identical input structure, but
were required to produce an output independent of context.

For the CDM task, reducing the trained networks to effective circuits revealed that the
key computations relied on a differential gain modulation of separate subpopulations by
contextual inputs. For each neuron, contextual cues set its functioning point on its non-
linearity, and thus the gain of its response to incoming stimuli. A direct implication is that
neurons more strongly modulated by contextual cues change more strongly their gain across
contexts, and thereby the amplitude of their responses to stimulus features (Fig. III.6a).
An ensuing prediction at the level of selectivity of individual neurons is therefore that the
pre-stimulus selectivity to context should be correlated with the change across contexts
of regression coefficients to stimulus features (Fig. III.6b). Our analyses therefore predict
a specific form of multiplicative interactions, or non-linear mixed selectivity to stimulus
features and context cues (155), but also imply that the two subpopulations can be identified
based on their selectivity to context (Fig. III.6b).

The multiplicative interaction between context and stimulus selectivity is a necessary,
but not a sufficient condition for implementing context-dependent responding. A second,
necessary component of the computational mechanism is that each subpopulation integrates
dominantly one of the two features into the latent dynamics, as seen from the overlaps
between the input vectors and the input-selection vectors (Fig. III.4b right). This leads to
a specific prediction for inactivation experiments: inactivating separately subpopulations
defined by their selectivity to context disrupts performance in one context, while leaving the
other intact (Fig. III.6c-d). In contrast, inactivating a random subset of neurons leads only

50

III.7. Predictions for neural selectivity and inactivations

κ1

κ
2

A-A

A-B

B-A

B-B

0.1

0.9

sp
eed

pop 1 pop 2
0

1

ga
in

Φ
(x

i)
pop 1 pop 2

0

1

pop 1 pop 2
0

1

No input Input A Input B

κ1 κ2 κ1 κ2

κ1

κ
2

κ1 κ1

a.

b.

d.

e.

f.

κ1 κ2

κ2(t)

uA(t)

κ1(t)

IAi

IBi n
(1)
i

m
(2)
i

c.

Figure III.5: Low-dimensional latent dynamics in networks performing the delayed match-
to-sample (DMS) task. (a) Circuit diagram representing latent dynamics for a minimal
network trained on the DMS task. The network was of rank two, so that the latent dynamics
were described by two internal variables κ1 and κ2. Input A acts as a modulator on the
recurrent interactions between the two internal variables. (b) Dynamical landscape for the
autonomous latent dynamics in the κ1 − κ2 plane (ie. the m(1)-m(2) plane). Colored lines
depict trajectories corresponding to the 4 types of trials in the task (see Sup Fig. A.9 for
details of trajectories). Background color and white lines encode the speed and direction
of the dynamics in absence of inputs. (c) Two 2d projections of the seven-dimensional
connectivity space, with colors indicating the two subpopulations and lines corresponding
to linear regressions for each of them on the right panel. (d) Effective circuit diagrams in
absence of inputs (left), and when input A (middle) or input B (right) are present. Filled
circles denote positive coupling, open circles negative coupling. Input A in particular induces
a negative feedback from κ2 to κ1. (e) Distribution of neural gains for each populations
(pop. 1: n = 3050, pop. 2: n = 1046), in the three situations described above. The gain of
population 1 (green) is specifically modulated by input A. (f) Dynamical landscapes in the
3 situations described above (see Methods). Filled and empty circles indicate respectively
stable and unstable fixed points. The negative feedback induced by input A causes a limit
cycle to appear in the latent dynamics.

51

III. The role of population structure in computations through neural dynamics

feature A
0

0.2

0.4

0

0.05

context selectivity

Ctx A

Ctx B

a.

st
im

. r
es

po
ns

e

b.

0.5

0.75

1

0.5

0.75

1

inp. A

in
p.

B

inp. A

-.025

0

.025

context selectivity
− 0.25 0 0.25

− 0 05

inp. A

Inactivating
random
neurons

c.

e.

f.

0

0.05

− 0.05

− 0.5 0 0.5

− 0.5 0 0.5
context selectivity

Ctx A

Ctx B

d.

co
nt

ex
t d

ep
en

de
nt

pe
rf

or
m

an
ce

co
nt

ex
t d

ep
en

de
nt

pe
rf

or
m

an
ce

co
nt

ex
t d

ep
en

de
nt

pe
rf

or
m

an
ce

0

1

positive
choices

0

200 ms

�r
in

g
ra

te

0.5

0.75

1

0 10

selectivity
to context A

selectivity
to context B

co
nt

ex
t d

ep
en

de
nt

pe
rf

or
m

an
ce

0.5

0.75

1

− 0.1 0 0.1
context selectivity

0

0. 025

-0. 025

g.

Ra
nd

om

se
le

ct
iv

ity
to

 c
tx

 A

se
le

ct
iv

ity
to

 c
tx

 B

Ra
nd

om

se
le

ct
iv

ity
to

 c
tx

 A

se
le

ct
iv

ity
to

 c
tx

 B

Ra
nd

om

se
le

ct
iv

ity
to

 c
tx

 A

se
le

ct
iv

ity
to

 c
tx

 B

Ra
nd

om

se
le

ct
iv

ity
to

 c
tx

 A

se
le

ct
iv

ity
to

 c
tx

 B

Inactivating
Ctx A selective

neurons

Inactivating
Ctx B selective

neurons

stim.
response

context
response

neuron clustered in pop. 1
pop. 2

r=-0.83

r=-0.80

r=-0.82 r=-0.01

performance for
Ctx A trials
Ctx B trials

inp. A

0
5

-5

0 5-5

in
p.

B
0

5
-5

0 5-5 0 5-5

Figure III.6: Figure 6. Predictions for neural selectivity and inactivations. (a-d)
Predictions for the context-dependent decision-making task based on the minimal unit-rank,
two-populations network (Fig. III.4a). (a) Context-dependent stimulus response for an
example neuron. Top: response to an identical stimulus in two contexts (gray box: stimulus-
presentation period). The context response was defined as the change of pre-stimulus
baseline across contexts (orange arrow). The stimulus response was defined in each context
as the deviation from the pre-stimulus baseline (red arrows). Bottom: context-dependent
responses of the same neuron to stimuli with increasing strength of feature A. In each
context, we computed the regression coefficient with respect to feature strength (dashed
lines), and the corresponding change in stimulus selectivity ∆ctxβstim (Methods Eq. (A.23)).
(b) Interaction between context selectivity and the change in stimulus selectivity across
neurons. Each point shows the change in stimulus selectivity versus selectivity to context for
one neuron (see Methods Eq. (A.22)). Dot color corresponds to population determined from
clustering procedure (Fig. III.4). Red dot: example neuron in (a). (c) Inactivations based
on context selectivity lead to specific performance deficits. Psychometric response matrices
when inactivating the 256 out of 1024 neurons with highest positive context selectivity
(left), highest negative context selectivity (middle) or randomly chosen across the whole
network (right). (d) Summary of the effects of inactivations: average performance over
incongruent stimuli corresponding to colored squares of the psychometric matrix in (c). Each
dot represents an inactivation of a random subset of 256 out of 1024 neurons. Inactivated
neurons are chosen randomly among the neurons with either positive context selectivity (left
column), negative context selectivity (middle column) or without constraint (right column).
(e-g) Tests of the predictions for selectivity (left panels) and inactivations (right panels)
on: (e) a unit-rank network consisting of three populations (A.6); (f) a network trained
without a rank constraint; (g) a network trained on the multi-sensory decision-making
(MDM) task.

52

III.8. Implications for multi-tasking

to an overall decrease in performance independently of the context (Fig. III.6c-d).
We first tested the two predictions on networks constrained to be of minimal, unit rank,

but in which clustering analyses in connectivity space revealed more than two subpopulations
(Sup Fig. A.6), as in Yang et al. (227). The two predictions for selectivity and inactivations
were therefore directly borne out for such networks (Fig. III.6e). We next turned to networks
trained without rank constraint, and tested the two predictions without analyzing connec-
tivity, as would be the case in experimental studies. The two predictions were again borne
out (Fig. III.6f), confirming that key aspects of the computational mechanisms extend to
networks in which the connectivity was of higher rank, and the dynamics higher dimensional.

Finally, we examined unit-rank networks trained on the MDM task. Such networks
received an input structure identical to the CDM task, consisting of two stimulus features
and two context cues. In contrast to the CDM task, the networks were trained to average
the two stimulus features, and contextual cues were irrelevant, so that a fully random
population structure was sufficient to perform the task (Fig. III.1l). We therefore expected
that the two predictions made for the CDM task do not necessarily hold in this case. We
indeed found that training networks on the MDM task led to weaker selectivity to context,
and weaker correlation between context selectivity and the change in stimulus selectivity
(Fig. III.6g). Specific neurons still exhibited selectivity to contextual cues, but inactivating
them led to changes in performance similar to inactivating a random subset of neurons
(Fig. III.6g). Importantly, this finding was unchanged when we matched the strength of
context selectivity between MDM and CDM task by increasing the amplitude of contextual
inputs (Sup Fig. A.10).

Altogether, identical context selectivity therefore led to opposite effects of inactivations
across tasks, as predicted by our minimal-rank models.

III.8 Implications for multi-tasking

A recent study reported that multiple populations emerge in networks trained simultaneously
on multiple tasks, and can be repurposed across tasks (227). Our results more specifically
suggest that a multi-population structure in connectivity is needed only when an identical
stimulus requires different outputs depending on the context set by the performed task. While
this is the case in many multi-tasking situations, concurrent tasks are alternatively often based
on different sets of stimuli (34; 57; 48). Here we show that the reduced models developed by
analyzing networks trained on individual tasks can be used to build networks that perform
multiple tasks in parallel (Fig. III.7). More specifically, multiple tasks on an identical set of
stimuli can be performed by combining and repurposing multiple subpopulations, while in
contrast multiple tasks on separate sets of stimuli can be performed with a single population
by relying on dynamics in orthogonal subspaces (45; 235). As a result, when identical stimuli
are processed, some individual neurons exhibit task-specialisation, while for separate sets
of stimuli all neurons are multi-taskers, and contribute to multiple tasks in parallel. These
findings are in direct agreement with the activity of neurons in the prefrontal cortex during
flexible categorisation, which show specialisation when identical stimuli are processed (160),
and multi-tasking when separate stimuli sets are used (34).

To illustrate task-specialization, we first consider a network that receives stimuli composed
of two sensory features, and depending on a rule cue performs one out of three different
tasks on them : perceptual decision-making on the first stimulus feature, perceptual decision-
making on the second stimulus feature, or integration of the two features as in the multi-
sensory decision making task (Fig. III.7a). This multi-tasking setup is in fact a direct
extension of context-dependent decision-making, and we implemented it using a simplified
network based on the CDM task, consisting of unit-rank connectivity with three separate
subpopulations (Sup Fig. A.6). In that network, each subpopulation has a well defined
computational role. One of them plays the role of an evidence integrator, by endowing the

53

III. The role of population structure in computations through neural dynamics

latent dynamics with a long timescale through strong positive feedback. That population
is repurposed across all tasks (Fig. III.7c orange neuron), and inactivating it leads to
performance degradation on all three tasks (Fig. III.7b). The other two populations relay
separately the two sensory features into the latent dynamics, as in the CDM task (Fig. III.4b-
d). Each of them participates in only two of the three tasks, as corroborated by changes in
task performance after selective inactivations (Fig. III.7b). Neurons belonging to these two
populations are therefore specialised for specific tasks, as seen in their task-specific responses
to stimuli (Fig. III.7c green and purple neurons).

We next illustrate multi-tasking in a network that performs two tasks on distinct sets of
stimuli, the perceptual decision-making (DM) and the parametric working-memory (WM)
tasks (Fig. III.7d). Such a network can be obtained by directly superposing the connectivity
matrices JDM and JW M of two minimal networks of rank-one and two that perform the
individual tasks with random population structure (Fig. III.2). The resulting connectivity
J = JDM +JW M is of rank three, and has a random population structure. The corresponding
latent dynamics are based on a recurrent sub-space of dimension three, and the two tasks rely
on two orthogonal subspaces with one dimension implementing the DM task, and the other
two implementing the WM task (Fig. III.7e). Because of the random population structure,
each neuron is a random combination of collective variables corresponding to different tasks,
so that all neurons display multi-tasking activity (Fig. III.7f).

III.9 Discussion

The goal of this study was to determine whether and when a non-random population
structure is necessary for networks to perform a specific computation based on recurrent
dynamics. To address this question, we first trained recurrent neural networks on a range of
standard systems neuroscience tasks, and examined the emerging population structure in the
selectivity and connectivity, and its relationship with the computations. We then identified
underlying mechanisms by extracting the latent low-dimensional dynamics. Although a
number of tasks could be implemented with random population structure in connectivity,
we found that tasks based on flexible input-output mappings instead appeared to require an
additional structure that could be accurately approximated in terms of a small number of
subpopulations which played functionally distinct roles.

The starting motivation of this work was the apparent discrepancy between the experi-
mental results of Ref. (152) and Ref. (81) (see also (82)). Analyzing neural activity in the
rat posterior parietal cortex during a multi-sensory decision-making task, Ref. (152) found
no evidence for non-random population structure in selectivity. Applying identical analyses
to the prefrontal cortex, Ref. (81) instead identified population structure in activity during
a more complex task that combined perceptual and value-guided decisions. Our results
suggest that the difference between tasks provides a possible explanation for these diverging
conclusions. Examining networks trained on an abstracted version of the multi-sensory
integration task of Ref. (152), we found that a non-random population structure was not
needed. Implementing a full version of the task used in Ref. (81) would have required
reinforcement learning that falls beyond the scope of the supervised methods for training
networks used here. The core component of that task was however a flexible weighing of
two sensory features depending on the context set by reward history. That requirement of
context-dependent weighing of input streams is in fact identical to the context-dependent
decision-making task, in which all-or-none weights were assigned to the two stimulus features
depending on the contextual cues. The gain-modulation mechanism underlying networks
that performed the CDM task can more generally assign graded weights to each feature as
required for the task of Ref. (81). This mechanism requires multiple populations, so that
our analyses predict that a non-random population structure is needed for the task used in
Ref. (81).

54

III.9. Discussion

0

0.5

1

po
p

1

po
p

2

po
p

3

− 10− 8− 6− 4− 20

0

1

2

3

4

0

2

4

6

8

10

Task 1: DM Task 2: WM

Task 3: MDMTask 1: DM1 Task 2: DM2

Ru
le

in
pu

ts
ne

ur
on

 1
ne

ur
on

 2
ne

ur
on

 3

a.

b.

c.

d.

e.

f.

ne
ur

on
 2

ne
ur

on
 1

200 ms

200 ms

ta
sk

 p
er

fo
rm

an
ce

DM1 DM2 MDM

DM
WM

Sensory inputs

Rule inputs

Sensory inputs

+
+

Outputs

Output

Figure III.7: Figure 7. Implications of multi-population structure for multi-
tasking. (a) A network performing three different tasks on the same set of stimuli consisting
of two features uA and uB : decision-making based on uA (DM1), decision-making based on
uB (DM2), decision-making based on integrating uA and uB (MDM). The model is obtained
from the unit-rank network performing the CDM task based on three populations indicated
in color. (b) Effects on the performance of individual tasks when specific populations are
inactivated. In each case one third of the neurons in the network is inactivated, corresponding
to one of the three populations. (c) Illustration of task specialization of different populations.
The orange population plays the role of an integrator, and participates to all tasks. Green
and purple populations respectively relay uA and uB. Different columns correspond to
different tasks. Top three rows display stimulus and rule inputs. Bottom three rows display
single unit activities of three selected neurons (one in each population) in two trials of
each task. (d) A network performing two different tasks on distinct sets of stimuli, the
decision-making (DM) task on uDM , and the working-memory task on uW M . This network
is obtained by superposing the low-rank recurrent connectivity matrices corresponding to the
two tasks (illustrated at the bottom). (e) The two tasks rely on neural activity in orthogonal
subspaces of the state space. Each subspace is determined by the input connectivity vectors
of the corresponding task. (f) Illustration of multi-tasking of two example neurons.

55

III. The role of population structure in computations through neural dynamics

We found that in trained networks relying on a non-random population structure, connec-
tivity could be accurately described by a small number of subpopulations. Mechanistically,
the role of such a subpopulation structure can be understood from two perspectives. From the
neural state-space perspective, the collective dynamics explore a low-dimensional recurrent
subspace, and the subpopulation structure shapes the non-linear dynamical landscape of the
activity in that subspace (205). Specifically, different inputs differentially activate different
subpopulations, and shift the recurrent subspace into different regions of the state-space
with different non-linear dynamical landscapes. A complementary picture emerges from the
perspective of the effective circuits which describe the low-dimensional latent dynamics in
terms of interactions between collective variables through effective couplings (Fig. III.4). In
that picture, the subpopulation structure allows inputs to control the effective couplings by
modulating the average gain of different subpopulations. The computations then rely on
two functionally distinct types of additive inputs: drivers that directly entrain the collective
variables, and modulators that shape the gains of the different subpopulations, and thereby
the interactions between collective variables. Interestingly, gain modulation has long been
posited as a mechanism underlying selective attention (148), a type of processing closely
related to flexible input-output tasks considered here. While patterns of gain modulation
(167; 53; 201), and the distinction between drivers and modulators (187) are fundamentally
physiological concepts, here we found that an analogous mechanism emerges in abstract
trained networks at the collective level of latent dynamics.

To focus on the functional role of population structure, before training we initialized
our networks with fully unstructured connectivity, and in particular did not include any
explicit anatomical constraints such as Dale’s law. Our analyses nevertheless show that the
non-random population structure that emerges through training can be accurately described
in terms of abstract sub-populations, defined as clusters in the connectivity space. What
could be the physiological counter-parts of the different functional sub-populations that
we identified? There are at least two distinct possibilities. In the network trained on the
context-dependent decision-making task, we found that the two sub-populations differed only
in the relationship of their connectivity with respect to feed-forward and contextual inputs.
Such sub-populations therefore bear an analogy with input- and output-defined cortical
populations such as for instance defined by inputs from the thalamus (77; 178) or outputs
to the striatum (237). In the network trained on the delayed-match-to sample task, the
two sub-populations instead differed at the level of recurrent connectivity: one population
implemented positive, and the other negative feedback, the two being in general balanced
(Sup Fig. A.7). This situation is reminiscent of excitatory and inhibitory sub-populations,
which effectively implement positive and negative feedback in biological networks. Note
that we do not mean to suggest that such population structure emerges biologically over
the course of learning a task. Here we used artificial network training protocols to identify
computational constraints, and we did not assume that they correspond to biological task-
learning mediated by synaptic plasticity. The population wiring structure that emerges
through network training could for instance be interpreted as the result of evolutionary
selection leading to anatomic structure encoded at the genetic or developmental level (234).

Previous studies have reported that when training networks on a given task, some
aspects of the solutions are invariant (117) while others depend on the details of the
implementation (227; 45; 55). Our analyses confirmed these observations. Our main result
for the computational requirement of non-random population structure in connectivity
(Fig.III.1l) held independently of the details of the training, and in particular in absence of
constraints on the rank of the network (Sup Fig. A.4). For tasks requiring a non-random
population structure, the number of subpopulations needed to approximate connectivity
however varied across networks (Sup Fig. A.6). For those tasks, our results show that a
single global population is insufficient and that fundamental computational mechanisms
are conserved across a range of different networks (Fig. III.6). Our analyses however do
not predict the specific dimensionality or number of populations to be expected. More

56

III.9. Discussion

systematic model selection could for instance be performed by further constraining recurrent
neural networks based on recorded neural activity (150; 4).

The fact that neurons are selective to mixtures of task variables rather than individual
features has emerged as one of the defining properties of representations in higher order
areas of the mammalian cortex (60). Moving beyond a simple dichotomy between pure
and mixed selectivity, recent studies argued that mixed selectivity does not necessarily
preclude the presence of a population structure, and introduced the notion of non-random
mixed selectivity (152; 81). Our results predict that the expected type of structure and
mixed selectivity depends on the complexity of the performed task. In particular, for
tasks requiring flexible input-output associations, we predict the presence of non-random
population structure. The resulting non-random mixed-selectivity however becomes apparent
only in response to specific combinations of variables, while selectivity to other variables
can remain fully random (Fig. III.6). Ultimately, as the task complexity is increased,
identifying the signatures of computational mechanisms in the neural activity requires a
careful comparison with computational models on a task-by-task basis.

57

Summary of Chapter 4

A large body of work has suggested that neural populations exhibit low-dimensional dynamics
during behavior. However, there are a variety of different approaches for modeling low-dimensional
neural population activity. One approach involves latent linear dynamical system (LDS) models,
in which population activity is described by a projection of low-dimensional latent variables with
linear dynamics. A second approach involves low-rank recurrent neural networks (RNNs), in which
population activity arises directly from a low-dimensional projection of past activity. Although
these two modeling approaches have strong similarities, they arise in different contexts and tend to
have different domains of application. Here we examine the precise relationship between latent LDS
models and linear low-rank RNNs. When can one model class be converted to the other, and vice
versa? We show that latent LDS models can only be converted to RNNs in specific limit cases, due
to the non-Markovian property of latent LDS models. Conversely, we show that linear RNNs can
be mapped onto LDS models, with latent dimensionality at most twice the rank of the RNN. A
surprising consequence of our results is that a partially-observed RNN is better represented by an
LDS model than by an RNN consisting of only observed units.

This chapter is based on the manuscript Probing the relationship between latent linear dynamical
systems and low-rank recurrent neural network models, Adrian Valente, Srdjan Ostojic, Jonathan
W. Pillow Neural Computation, 34(9), p. 1871–1892 (2022).

59

Relationship between linear low-rank networks and linear
latent dynamical systems IV

IV.1 Introduction

Recent work on large-scale neural population recordings has suggested that neural activity is
often confined to a low-dimensional space, with fewer dimensions than the number of neurons
in a population (31; 66; 64; 173; 87). To describe this activity, modellers have at their
disposal a wide array of tools that give rise to different forms of low-dimensional activity (36).
Two classes of modeling approaches that have generated a large following in the literature
are: (i) descriptive statistical models; and (ii) mechanistic models. Broadly speaking,
descriptive statistical models aim to identify a probability distribution that captures the
statistical properties of an observed neural dataset, while remaining agnostic about the
mechanisms that gave rise to it. Mechanistic models, by contrast, aim to reproduce certain
characteristics of observed data using biologically-inspired mechanisms, but often with less
attention to a full statistical description. Although these two classes of models often have
similar mathematical underpinnings, there remain a variety of important gaps between
them. Here we focus on reconciling the gaps between two simple but powerful models of
low-dimensional neural activity: latent linear dynamical systems (LDS) and linear low-rank
recurrent neural networks (RNNs).

The latent LDS model with Gaussian noise is a popular statistical model for low-
dimensional neural activity in both systems neuroscience (191; 182) and brain-machine
interface settings (95). This model has a long history in electrical engineering, where the
problem of inferring latents from past observations has an analytical solution known as
the Kalman filter (88). In neuroscience settings, this model has been used to describe
high-dimensional neural population activity in terms of linear projections of low-dimensional
latent variables. Although the basic form of the model includes only linear dynamics, recent
extensions have produced state-of-the-art models for high-dimensional spike train data
(231; 95; 144; 114; 135; 5; 44; 238; 69; 192).

Recurrent neural networks, by contrast, have emerged as a powerful framework for
building mechanistic models of neural computations underlying cognitive tasks (203; 7; 118),
and have more recently been used to reproduce recorded neural data (150; 33; 54; 143).
While randomly-connected RNN models typically have high-dimensional activity (194; 102),
recent work has shown that RNNs with low-rank connectivity provide a rich theoretical
framework for modeling low-dimensional neural dynamics and the resulting computations
(122; 103; 142; 180; 11; 43; 18; 104). In these low-rank RNNs, the structure of low-dimensional
dynamics bears direct commonalities with latent LDS models, yet the precise relationship

61

IV. Relationship with LDS models

between the two classes of models remains to be clarified. Understanding this relationship
would open the door to applying to low-rank RNNs probabilistic inference techniques
developed for LDS models, and conversely could provide mechanistic interpretations of latent
LDS models fitted to data.

In this chapter, we examine the mathematical relationship between latent LDS and low-
rank RNN models. We focus on linear RNNs, which are less expressive but simpler to analyze
than their non-linear counterparts, while still leading to rich dynamics (79; 89; 18). We
show that even if both LDS models and linear low-rank RNNs produce Gaussian distributed
activity patterns with low-dimensional linear dynamics, the two model classes have different
statistical structure and are therefore not in general equivalent. More specifically, in latent
LDS models, the output sequence has non-Markovian statistics, meaning that the activity in
a single timestep is not independent of its history given the activity on the previous timestep.
This stands in contrast to linear RNNs, which are Markovian regardless of the rank of their
connectivity. A linear low-rank RNN can nevertheless provide a first-order approximation to
the distribution over neural activity generated by a latent LDS model, and we show that this
approximation becomes exact in several cases of interest, and in particular in the limit where
the number of neurons is large compared to the latent dimensionality. Conversely, we show
that any linear low-rank RNN can be converted to a latent LDS, although the dimensionality
of the latent space depends on the overlap between the subspaces spanned by left and right
singular vectors of the RNN connectivity matrix, and may be as high as twice the rank of
this matrix. The two model classes are thus closely related, with linear low-rank RNNs
comprising a subset of the broader class of latent LDS models. An interesting implication of
our analyses is that the activity of an RNN in which only a subset of neurons are observed
is better fit by a latent LDS model than by an RNN consisting only of observed units.

IV.2 Modeling frameworks

We start with a formal description of the two model classes in question, both of which
describe the time-varying activity of a population of n neurons.

IV.2.1 Latent LDS model

The latent linear dynamical system (LDS) model, also known as a linear-Gaussian state-space
model, describes neural population activity as a noisy linear projection of a low-dimensional
latent variable governed by linear dynamics with Gaussian noise (88; 159) (See schematic,
Fig. IV.1A). The model is characterized by the equations:

xt+1 = Axt + wt, wt ∼ N (0, Q) (IV.1)
yt = Cxt + vt, vt ∼ N (0, R). (IV.2)

Here, xt is a d-dimensional latent (or "unobserved") vector that follows discrete-time linear
dynamics specified by a d × d matrix A, and is corrupted on each timestep by a zero-mean
Gaussian noise vector wt ∈ Rd with covariance Q. The vector of neural activity yt arises
from a linear transformation of xt via the n × d observation (or “emissions”) matrix C,
corrupted by zero-mean Gaussian noise vector vt ∈ Rn with covariance R. Generally we
assume d < n, so that the high-dimensional observations yt are explained by the lower-
dimensional dynamics of the latent vector xt. For clarity, in the main text we focus on LDS
models without external inputs, and study their effect in the Appendix B.4.

The complete model also contains a specification of the distribution of the initial latent
vector x0, which is commmonly assumed to have a zero-mean Gaussian distribution with
covariance Σ0:

x0 ∼ N (0,Σ0). (IV.3)

62

IV.2. Modeling frameworks

The complete parameters of the model are thus θLDS = {A, C, Q, R,Σ0}. Note that this
parametrization of an LDS is not unique: any invertible linear transformation of the latent
space leads to an equivalent model if the appropriate transformations are applied to matrices
A, C, Q, and Σ0.

IV.2.2 Low-Rank Linear RNN
A linear RNN, also known as an auto-regressive (AR) model, represents observed neural
activity as a noisy linear projection of the activity at the previous timestep. We can write
the model as (Fig. IV.1B):

yt+1 = Jyt + ϵt, ϵt ∼ N (0, P), (IV.4)

where J is an n × n recurrent weight matrix, and ϵt ∈ Rn is a Gaussian noise vector with
mean zero and covariance P. We moreover assume that the initial condition is drawn from
a zero-mean distribution with covariance Vy

0:

y0 ∼ N (0, Vy
0). (IV.5)

A low-rank RNN model is obtained by constraining the rank of the recurrent weight
matrix J to be r ≪ n. In this case the recurrence matrix can be factorized as

J = MN⊤, (IV.6)

where M and N are both n × r matrices of rank r.
Note that this factorization is not unique, but a particular factorization can be obtained

from a low-rank J matrix using the truncated singular value decomposition: J = USV⊤,
where U and V are semi-orthogonal n × r matrices of left and right singular vectors,
respectively, and S is an r × r diagonal matrix containing the largest singular values. We
can then set M = U and N = SV⊤.

The model parameters of the low-rank linear RNN are therefore given by
θRNN = {M, N, P, Vy

0}.

IV.2.3 Comparing the two models
Both models described above exhibit low-dimensional dynamics embedded in a high-
dimensional observation space. In the following, we examine the probability distributions
P (y1, . . . ,yT) over time series (y1, . . . ,yT) generated by the two models. We show that in
general, the two models give rise to different distributions, such that the family of probability
distributions generated by the LDS model cannot all be captured with low-rank linear RNNs.
Specifically, RNN models are constrained to purely Markovian distributions, which is not
the case for LDS models. However, the two model classes can be shown to be equivalent
when the observations yt contain exact information about the latent state xt, which is in
particular the case if the observation noise is orthogonal to the latent subspace, or in the
limit of a large number of neurons n ≫ d. Conversely, a low-rank linear RNN can in general
be mapped to a latent LDS with a dimensionality of the latent state at most twice the rank
of the RNN.

63

IV. Relationship with LDS models

......observations
(neural data)

linear dynamics

A Blatent linear dynamical systems (LDS) low-rank linear recurrent neural network (RNN)

neural noise

......

latent noise

observation
noise

linear
dynamics

linear
obs.

observations
(neural data)

latent state

dynamics
equation

observation
equation

= +

= +

parameters: parameters:

low rank

= +
recurrent
network

equation {

wt ∼ N (0,Q)

xt−1 xt xt+1
A A A

C C C

yt−1 yt yt+1

vt ∼ N (0,R)

A xtxt+1 wt

Cyt

xt

vt

yt−1 yt yt+1

t ∼ N (0,P)

J J J

J

M

N

ytyt+1 t

{A,C,Q,R,Σ0} {M,N,P,Vy
0}

Figure IV.1: A Schematic representation of the latent linear dynamical system model, as
defined by (eqs. IV.1-IV.3). B Schematic representation of the low-rank linear RNN, as
defined by (eqs. IV.4-IV.5).

IV.3 Mapping from LDS models to linear low-rank RNNs

IV.3.1 Non-equivalence in the general case
Let us consider a latent LDS described by (eqs. IV.1-IV.3) and a low-rank linear RNN
defined by (eqs. IV.4-IV.5). We start by comparing the properties of the joint distribution
P (y0, . . . ,yT) for any value of T for the two models. For both models, the joint distribution
can be factored under the form:

P (y0, . . . ,yT) = P (y0)
T∏

t=1
P (yt | yt−1, . . . ,y0), (IV.7)

where each term in the product is the distribution of neural population activity at a single
time point given all previous activity (see Appendix B.1 for details). More specifically, each
of the conditional distributions in (IV.7) is Gaussian, and for the LDS we can parametrize
these distributions as:

P (xt|yt−1, . . . ,y0) := N (x̂t, Vt) (IV.8)
P (yt|yt−1, . . . ,y0) = N (Cx̂t, CVtC⊤ + R), (IV.9)

where x̂t is the mean of the conditional distribution over the latent at timestep t, given
observations until timestep t − 1. It obeys the recurrence equation:

x̂t+1 = A(x̂t + Kt(yt − Cx̂t)), (IV.10)

where Kt is the Kalman gain given by

Kt = VtC⊤(CVtC⊤ + R)−1. (IV.11)

and Vt represents a covariance matrix, which is independent of the observations and follows
a recurrence equation detailed in Appendix B.1.

Iterating equation (Eq. IV.10) over multiple timesteps, one can see that x̂t+1 depends
not only on the last observation yt, but on the full history of observations (y0, . . . ,yt), which

64

IV.3. Mapping from LDS models to linear low-rank RNNs

therefore affects the distribution at any given timestep. The process (y0, . . . ,yt) generated
by the LDS model is hence non-Markovian.

Conversely, for the linear RNN, the observations (y0, . . . ,yt) instead do form a Markov
process, meaning that observations are conditionally independent of their history given the
activity from the previous timestep:

P (yt | yt−1, . . . ,y0) = P (yt | yt−1). (IV.12)

The fact that this property does not in general hold for the latent LDS shows that the two
model classes are not equivalent. Due to this fundamental constraint, the RNN can only
approximate the complex distribution (Eq. IV.7) parametrized by an LDS, as detailed in
the following section and illustrated in figure IV.2.

IV.3.2 Matching the first-order marginals of an LDS model
We can obtain a Markovian approximation of the LDS-generated sequence of observations
(y0, . . . ,yt) by deriving the conditional distribution P (yt+1 | yt) under the LDS model, and
matching it with a low-rank RNN (135). This type of first-order approximation will preserve
exactly the one-timestep-difference marginal distributions P (yt+1,yt) although structure
across longer timescales might not be captured correctly.

First, let us note that we can express both yt and yt+1 as noisy linear projections of xt:

yt = Cxt + vt, (IV.13)
yt+1 = C(Axt + wt) + vt+1, (IV.14)

which follows from (Eq. IV.1).
Let N (0,Σt) denote the Gaussian marginal distribution over the latent vector xt at time

t. Then we can use standard identities for linear transformations of Gaussian variables to
derive the joint distribution over yt and yt+1:[

yt

yt+1

]
∼ N

([
0
0

]
,

[
CΣtC⊤ + R CΣtA⊤C⊤

CAΣtC⊤ C(AΣtA⊤ + Q)C⊤ + R

])
. (IV.15)

We can then apply the formula for conditioning of multivariate Gaussians (see (17) equations
(2.81) - (2.82)) to obtain:

yt+1 | yt ∼ N (Jtyt, Pt) (IV.16)

where

Jt = CAΣtC⊤(CΣtC⊤ + R)−1 (IV.17)
Pt = C(AΣtA⊤ + Q)C⊤ + R − CAΣtC⊤(CΣtC⊤ + R)−1CΣtA⊤C⊤. (IV.18)

In contrast, from (Eq. IV.4), for a low-rank RNN the first-order marginal is given by

yt+1 | yt ∼ N (Jyt, P) . (IV.19)

Comparing equations (IV.16) and (IV.19), we see for the LDS model, the effective weights
Jt and the covariance Pt depend on time through Σt, the marginal covariance of the latent
at time t, while for the RNN they do not. Note however that Σt follows the recurrence
relation

Σt+1 = AΣtA⊤ + Q (IV.20)

which converges towards a fixed point Σ∞ that obeys the discrete Lyapunov equation

Σ∞ = AΣ∞A⊤ + Q, (IV.21)

65

IV. Relationship with LDS models

provided all eigenvalues of A have absolute value less than 1.
The LDS can therefore be approximated by an RNN with constant weights when the

initial covariance Σ0 is equal to the asymptotic covariance Σ∞, as noted previously (135).
Note that even if this condition does not hold at time 0, Σ∞ will in general be a good
approximation of the latent covariance after an initial transient. In this case we obtain the
fixed recurrence weights:

J = CAΣ∞C⊤(CΣ∞C⊤ + R)−1 := MN⊤ (IV.22)

where we define M = C which has shape n × d and N⊤ = AΣ∞C⊤(CΣ∞C⊤ + R)−1 which
has shape d × n, so that J is a rank r matrix with r = d.

IV.3.3 Cases of equivalence between LDS and RNN models
Although latent LDS and low-rank linear RNN models are not equivalent in general, we
can show that the first-order Markovian approximation introduced above becomes exact in
two limit cases of interest: (i) for observation noise orthogonal to the latent subspace, and
(ii) in the limit n ≫ d, with coefficients of the observation matrix generated randomly and
independently.

Our key observation is that if KtC = I in (IV.10) with I the identity matrix, we have
x̂t+1 = AKtyt, so that the dependence on the observations before timestep t disappears,
and the LDS therefore becomes Markovian. Interestingly, this condition KtC = I also
implies that the latent state can be inferred from the current observation yt alone (see (B.7)
in Appendix B.1) and that this inference is exact, since the variance of the distribution
P (xt|yt) is then equal to 0 as seen from (B.8). We next examine two cases where this
condition is satisfied.

We first consider the situation where the observation noise vanishes, ie. R = 0. Then, as
shown in Appendix B.1, the Kalman gain is Kt = (C⊤C)−1C⊤, so that KtC = I. In that
case, the approximation of the LDS by the RNN defined in the section 3.2 is exact, with
equations (IV.17) and (IV.18) becoming:

J = CA(C⊤C)−1C⊤ (IV.23)
P = CQC⊤. (IV.24)

More generally, this result remains valid when the observation noise is orthogonal to the
latent subspace spanned by the columns of the observation matrix C (in which case the
recurrence noise given by (IV.24) becomes P = CQC⊤ + R).

A second case in which we can obtain KtC ≈ I is in the limit of many neurons, n ≫ d,
assuming that coefficients of the observation matrix are generated randomly and indepen-
dently. Indeed, under these hypotheses the Kalman gain given by (IV.11) is dominated
by the term CVtC⊤, so that the observation covariance R becomes negligible, as shown
formally in Appendix B.2. Intuitively this means that the information about the latent
state x̂t is distributed over a large enough population of neurons for the Kalman filter to
average out the observation noise and estimate it optimally without making use of previous
observations. Ultimately, this makes the LDS asymptotically Markovian in the case where
we have an arbitrarily large neural population relative to the number of latent dimensions.

To illustrate the convergence of the low-rank RNN approximation to the target latent LDS
in the large n limit, in figure IV.2 we consider a simple example with a one-dimensional latent
space and observation spaces of increasing dimensionality. To visualize the difference between
the LDS and its low-rank RNN approximation, we plot the trace of the autocorrelation
matrix of observations yt in the stationary regime, ρ(δ) = Tr(E[yty

T
t+δ]). Since the RNNs

are constructed to capture the marginal distributions of observations separated by at most
one timestep, the two curves match exactly for a lag δ ∈ {−1, 0, 1}, but dependencies at

66

IV.4. Mapping low-rank linear RNNs onto latent LDS models

−10 −5 0 5 10

time difference

0.00

0.25

0.50

0.75

1.00

m
ea

n
au

to
co

rr
el

at
io

n

n=100

LDS

RNN

−10 −5 0 5 10

time difference

0.00

0.25

0.50

0.75

1.00

m
ea

n
au

to
co

rr
el

at
io

n

n=20

LDS

RNN

−10 −5 0 5 10

time difference

0.00

0.25

0.50

0.75

1.00

m
ea

n
au

to
co

rr
el

at
io

n

n=3

LDS

RNN

A B C

Figure IV.2: Mean autocorrelation of observations yt from latent LDS processes compared
with their first-order RNN approximations. The latent space is one-dimensional (d = 1), and
the dimension n of the observation space is increased from left to right: a. n = 3, b. n = 20,
c. n = 100. The parameters of the latent state processes are fixed scalars (A = (0.97),
Q = (0.1)), while the elements of the observation matrices C are drawn randomly and
independently from a centered Gaussian distribution of variance 1. The observation noise
has covariance R = σ2

vIn with σ2
v = 2. Note that we have chosen observation noise to largely

dominate over latent state noise in order to obtain a large difference between models at low
n. Dots and shaded areas indicate respectively mean and standard deviation of different
estimations of the mean autocorrelation done on 10 independent folds of 100 trials each
(where C was identical across trials).

longer timescales cannot be accurately captured by an RNN due to its Markov property
(Fig. IV.2a). However, these differences vanish as the dimensionality of the observation
space becomes much larger than that of the latent space (Fig. IV.2b-c), which illustrates
that the latent LDS converges to a process equivalent to a low-rank RNN.

IV.4 Mapping low-rank linear RNNs onto latent LDS models

We now turn to the reverse question: under what conditions can a low-rank linear RNN be
expressed as a latent LDS model? We start with an intuitive mapping for the deterministic
case (i.e., when noise covariance P = 0), and then extend it to a more general mapping
valid in the presence of noise.

We first consider a deterministic linear low-rank RNN obeying:

yt+1 = MN⊤yt. (IV.25)

Since M is an n × r matrix, it is immediately apparent that for all t, yt is confined to a
linear subspace of dimension r, spanned by the columns of M. Hence, we can define the
r-dimensional latent state as

xt = M+yt (IV.26)

where M+ is the pseudoinverse of M defined as M+ = (M⊤M)−1M⊤ (well defined since
M is of rank r), so that we retrieve yt as:

yt = Mxt. (IV.27)

We then obtain a recurrence equation for the latent state :

xt+1 = M+yt+1

= M+MN⊤yt

= N⊤Mxt

:= Axt (IV.28)

67

IV. Relationship with LDS models

which with A = N⊤M describes the dynamics of a latent LDS with d = r. A key insight
from (IV.28) is that the overlap between the columns of N and M determine the part of the
activity that is integrated by the recurrent dynamics (122; 180; 11; 43).

In presence of noise ϵt, yt is no longer confined to the column space of M. Part of this
noise is integrated into the recurrent dynamics and can contribute to the activity accross
many time steps. This integration of noise can occur in an LDS at the level of latent
dynamics through wt, but not at the level of observation noise vt, which is independent
accross timesteps. As noted above, recurrent dynamics only integrate the activity present in
the column space of N. In the presence of noise, this part of state space therefore needs to
be included into the latent variables. More importantly, a similar observation can be made
about external inputs when they are added to the RNN dynamics (see Appendix B.4).

A full mapping from a noisy low-rank RNN to an LDS model can therefore be built by
extending the latent space to the linear subspace F of Rn spanned by the columns of M
and N (see Appendix B.3), which has dimension d with r ≤ d ≤ 2r. Let C be a matrix
whose columns form an orthogonal basis for this subspace (which can be obtained via the
Gram-Schmidt algorithm). In that case we can define the latent vector as :

xt = C⊤yt, (IV.29)

and the latent dynamics are given by

xt+1 = Axt + wt, (IV.30)

where the recurrence matrix is A = C⊤JC, and the latent dynamics noise is wt ∼ N (0, Q)
with Q = C⊤PC. Introducing vt = yt − Cxt, under a specific condition on the noise
covariance P we obtain a normal random variable independent of the other sources of noise
in the process (Appendix B.3), so that yt can be described as a noisy observation of the
latent state xt as in the LDS model:

yt = Cxt + vt. (IV.31)

IV.4.1 Subsampled RNNs
Experimental recordings typically access only the activity of a small fraction of neurons in
the local network. An important question for interpreting neural data concerns the statistics
of activity when only a random subset of k neurons in an RNN are observed. This situation
can be formalized by introducing the set of observed activities ot:

yt+1 = Jyt + ϵt

ot = yt[: k] = Dyt.
(IV.32)

Here [: k] symbolizes the selection of the first k values of a vector and D is the corresponding
projection matrix on the subspace spanned by the first k neurons. The system described by
(IV.32) is exactly an LDS, but with latent state yt and observations ot. In contrast to the
regime considered in the previous sections, the latents have a higher dimensionality than
observations. However, assuming as before that J is low-rank, this model can be mapped
onto an equivalent LDS following the steps in appendix B.3:

xt+1 = Axt + wt

ot = DCxt + Dvt.
(IV.33)

This LDS is equivalent to (IV.32), but with latent dynamics xt of dimension r < d < 2r
where r is the rank of J. The dynamics of the latent state xt are identical to those of the
fully-observed low-rank RNN (IV.30), but the observations are generated from a subsampled
observation matrix DC.

68

IV.5. Discussion

−10 −5 0 5 10

time difference

0.00

0.25

0.50

0.75

1.00

m
ea

n
au

to
co

rr
.

partial obs.

rematch to RNN

Figure IV.3: Mean autocorrelation of k neurons subsampled from an n-dimesional rank-one
RNN, compared with a k-dimensional RNN built to match the first-order marginals of partial
observations. Formally, we first built an LDS equivalent to the partial observations as in
(IV.33), and then the corresponding RNN as in section IV.3.2. The rank-one RNN contains
n = 20 neurons, of which only k = 3 are observed. The mismatch occurs because the
long-term correlations present in the partial observations are caused by the larger size of the
original RNN with 20 neurons, and can not be reproduced by an RNN with only 3 neurons.

Interestingly, this mapping highlights the fact that the activity statistics of the k
subsampled neurons are in general not Markovian, in contrast to the full activity yt of the n
neurons in the underlying RNN. In particular, for that reason the statistics of ot cannot
be exactly reproduced by a smaller RNN consisting of k units (Fig. 3). Remarkably, when
considering the subsampled activity of an RNN, a latent LDS is therefore a more accurate
model than a smaller RNN containing only the observed units.

IV.5 Discussion

In this chapter we have examined the relationship between two simple yet powerful classes
of models of low-dimensional activity: latent linear dynamical systems (LDS) and low-rank
linear recurrent neural networks (RNN). We have focused on these tractable linear models
with additive Gaussian noise to highlight their mathematical similarities and differences.
Although both models induce a jointly Gaussian distribution over neural population activity,
generic latent LDS models can exhibit long-range, non-Markovian temporal dependencies
that cannot be captured by low-rank linear RNNs, which describe neural population activity
with a first-order Markov process. Conversely, we showed that generic low-rank linear
RNNs can be captured by an equivalent latent LDS model. However, we have shown that
the two classes of models are effectively equivalent in limit cases of practical interest for
neuroscience, in particular when the number of sampled neurons is much higher than the
latent dimensionality.

Although these two model classes can generate similar sets of neural trajectories, different
approaches are typically used for fitting them to neural data: parameters of LDS models are
in general inferred by variants of the expectation-maximization algorithm (231; 135; 132; 47),
which include the Kalman smoothing equations (159), while RNNs are often fitted with
variants of linear regression (150; 49; 147; 18) or backpropagation-through-time (43). The
relationship uncovered here therefore opens the door to comparing different fitting approaches
more directly, and in particular to developing probabilistic methods for inferring RNN
parameters from data.

We have considered here only linear RNN and latent LDS models. Non-linear low-
rank RNNs without noise can be directly reduced to non-linear latent dynamics with
linear observations following the same mapping as in Section 4 (122; 180; 11; 43), and

69

IV. Relationship with LDS models

therefore define a natural class of non-linear LDS models. A variety of other non-linear
generalizations of LDS models have been considered in the literature. One line of work has
examined linear latent dynamics with a non-linear observation model (231) or non-linear
latent dynamics (231; 47; 44; 136; 95). Another line of work has focused on switching LDS
models (110; 69) for which the system undergoes different linear dynamics depending on a
hidden discrete state, thus combining elements of latent LDS and hidden Markov models.
Both non-linear low-rank RNNs and switching LDS models are universal approximators of
low-dimensional dynamical systems (59; 30; 11). Relating switching LDS models to local
linear approximations of non-linear low-rank RNNs (11; 43) is therefore an interesting avenue
for future investigations.

70

Summary of Chapter 5

An influential framework within systems neuroscience posits that neural computations can be
understood in terms of low-dimensional dynamics in recurrent circuits. A number of methods have
thus been developed to extract latent dynamical systems from neural recordings, but inferring
models that are both predictive and interpretable remains a difficult challenge. Here we propose a
new method called Low-rank Inference from Neural Trajectories (LINT), based on a class of low-rank
recurrent neural networks (lrRNNs) for which a link between connectivity and dynamics has been
previously demonstrated. By fitting such networks to trajectories of neural activity, LINT yields
a mechanistic model of latent dynamics, as well as a set of axes for dimensionality reduction and
verifiable predictions for inactivations of specific populations of neurons. Here, we first demonstrate
the consistency of our method and apply it to two use cases: (i) we reverse-engineer "black-box"
vanilla RNNs trained to perform cognitive tasks, and (ii) we infer latent dynamics and neural
contributions from electrophysiological recordings of nonhuman primates performing a similar task.

This chapter is based on the manuscript Extracting computational mechanisms from neural data
using low-rank RNNs, Adrian Valente, Jonathan W. Pillow, Srdjan Ostojic, submitted at NeurIPS
2022.

71

Extracting computational mechanisms from neural data
using low-rank RNNs V

V.1 Introduction

As large-scale neural recordings in behaving animals are becoming commonplace, a pressing
question is how computational principles can be extracted from the electrical activity of
thousands of cells. An influential framework posits that neural computations rely on latent
low-dimensional dynamics (203; 217) distributed across populations of neurons (233; 173).
In line with this proposal, a number of data-analysis methods have been developed to infer
latent dynamics from neural recordings (231; 114; 144; 135; 47; 132; 110; 136; 44; 69; 63;
168; 169; 177; 105) (reviewed in (46)). While these statistical approaches often provide
compelling descriptions of the recorded data, they generally lack a mechanistic interpretation
that would, for instance, allow them to make predictions for responses to novel interventions
on the underlying neural circuits. How to identify mechanistic, predictive models from
neural data currently remains an important challenge.

Recurrent neural networks (RNNs) have emerged as key models for studying neural
computations in this framework (229). Indeed, RNNs can be trained to solve numerous
cognitive tasks, exhibiting surprisingly similar dynamical mechanisms as those observed in
neural recordings (118; 206; 27; 219; 153), and have also successfully been trained to reproduce
the activity of neurons recorded in vivo (150; 33; 54; 143). While potentially predictive,
the obtained networks are however typically challenging to understand mechanistically
(205; 117; 116; 115; 227; 211), and ongoing research directions aim at reducing them to
simplified, interpretable models, for example through the use of linearized dynamical systems
(47; 69; 192) or through "network distillation" methods (175; 105).

Here, we exploit a particular class of interpretable RNNs, namely low-rank RNNs
(lrRNNs) (122; 11; 43; 180; 181; 212), to develop a new method that extracts mechanistic
and predictive low-dimensional models from observed neural activity, which can be applied to
both artificial and biological neural networks. Our method, Low-rank Inference from Neural
Trajectories (LINT) infers a minimal rank lrRNN from a dataset and exploits the theory
of low-rank networks to relate the obtained connectivity with low-dimensional dynamics
and computations. It produces three outputs: a set of axes for dimensionality reduction of
the trajectories, an effective connectivity that implements a latent dynamical system, and
predictions for interventions on specific subsets of recorded neurons (Fig. V.1a).

Our contributions can be summarized in three steps: first, we verify the consistency of
LINT by applying it to data simulated from lrRNNs, and show that it recovers the effective
part of the connectivity that reproduces the dynamics and computations. Second, we apply

73

V. Inferring low-rank networks from data

LINT to data generated from full-rank RNNs trained on cognitive tasks, and demonstrate
that the resulting lrRNNs can capture their dynamics and offer mechanistic insights into how
they function. Notably, we identify a novel population-based mechanism enabling context-
dependent switching in a vanilla RNN, and verify it by targeted inactivation experiments.
Finally, we apply LINT to electrophysiological recordings in nonhuman primates performing
a context-dependent decision making task (118); this reveals that a rank-one network can
capture most aspects of the dynamics present in the data, and that computations in this
neural circuit appear to be supported by a small proportion of all recorded neurons.

V.2 Approach

Here we describe our method for extracting an interpretable low-dimensional projection and
dynamical model from neural trajectories by fitting a low-rank recurrent network to data.

Low-rank RNNs (lrRNNs). We start from rate-based recurrent neural networks of
N units, each characterized by an activation variable xi which follows the dynamics:

τ
dxi

dt
= −xi +

N∑
j=1

Jijϕ (xj) +
Nin∑
s=1

I
(s)
i us(t) + ηi(t). (V.1)

Here J represents the network connectivity matrix and ϕ is a nonlinear transfer function
defining the neural firing rate ϕ(xi), which we take here to be tanh. Each network also
receives Nin input signals us(t) via a set of weights I(s) that we refer to as input vectors.

Low-rank RNNs represent a subclass of models in which the connectivity matrix is
constrained to be of finite rank R ≪ N (122; 11; 43). In this case, J can be written as a
sum of outer products of connectivity vectors n(r) and m(r):

Jij = 1
N

R∑
r=1

m
(r)
i n

(r)
j . (V.2)

To define a unique representation, we take as m(r) the left singular vectors of the connectivity
matrix, and as n(r) the right singular vectors multiplied by the corresponding singular value.

Network inference. We infer lrRNNs from data by training the connectivity param-
eters to reproduce recorded neural trajectories (either single-trial or condition-averaged
trajectories). Specifically, we use back-propagation on connectivity vector parameters n

(r)
i

and m
(r)
i and input parameters I

(s)
i to minimize the squared difference between target and

reproduced trajectories:

L =
C∑

c=1

N∑
i=1

T∑
t=1

(ϕ(x(c)
i (t)) − ϕ(x̃(c)

i (t)))2 (V.3)

where x̃i,t,c represents the target trajectory in condition c, for neuron i and timestep t and
xi,t,c the corresponding trajectory produced by the model.

Dimensionality reduction. One property of lrRNNs is that they constrain the activity
vector x(t) to evolve in a low-dimensional subspace spanned by the R connectivity vectors
m(r) and the Nin input vectors I(s) (11). The trajectories therefore explore at most R + Nin

dimensions and can therefore be parametrized as:

x(t) =
R∑

r=1
κr(t)m(r) +

Nin∑
s=1

vs(t)I(s), (V.4)

where vs(t) are the low-pass filtered input signals us(t) and κr are a set of latent variables
generated by recurrent activity. Thus, lrRNNs provide by design a reduction of N -dimensional

74

V.3. Validation with synthetic data and effective aspects of connectivity

Neural data Low-rank RNN

Infer

a. b. c.

Jij

Ĵ
ij

J = mnT

r1
r2

r3 Low-d
dynamics

E�ective
connectivity

& mechanism
Jeff
ij

Ĵ
e
f
f

ij

Figure V.1: a. LINT pipeline: Low-rank RNNs are fitted to either simulated or recorded
neural trajectories. The obtained lrRNNs provide interpretable low-dimensional dynamics
as well as a computational mechanism based on an effective connectivity structure. b-c.
LINT tested on trajectories simulated from a rank-one lrRNN trained to perform the CDM
task (see Table 1 for results across tasks). b. For each pair of neurons, relationship between
the original (Jij) and inferred (Ĵij) synaptic connectivity (5122 pairs, r = 0.57). c. For the
same networks, relationship between the original effective connectivity (Jeff

ij , see text) and
the inferred one (Ĵeff

ij , r = 0.99)

neural activity to at most R + Nin dimensions that can be directly interpreted in terms of
components on a recurrent subspace spanned by the connectivity vectors m(r) and on an
input subspace spanned by inputs vectors I(s) (219).

Latent dynamics. In lrRNNs, the latent variables κr(t) form a non-linear low-
dimensional dynamical system, described by:

d

dt
κ(t) = F (κ(t),u(t)) (V.5)

where κ(t) = {κr(t)}r=1..R is an R-dimensional vector representing the activity on the
recurrent subspace, u(t) represents the input signals, and F is a non-linear function that
can be directly determined from network connectivity parameters (11; 43). Moreover, it can
be shown that rank-R networks are universal approximators of R-dimensional dynamical
systems (11), and thus that the function F can approximate any non-linear mapping in R
dimensions.

Task-optimized RNNs. We applied our method first to trajectories produced by
task-optimized RNNs, which produce an output signal z(t) from the recurrent dynamics
(V.1) via a linear readout:

z(t) =
N∑

i=1
wiϕ(xi(t)) (V.6)

In task-optimized networks, the parameters are trained with backpropagation through
time to minimize the squared error between the output z(t) and a target z∗(t). In this
work, we consider four cognitive tasks: Decision Making (DM), Working Memory (WM),
Context-Dependent Decision Making (CDM, Fig. V.2a) and Delayed Match-to-Sample (DMS)
(see Appendix C.1 for task definitions). We then generate neural trajectories from both
low-rank (in section 3.1) or full-rank (see section 3.2) task-optimized RNNs. All networks
are implemented in pytorch (140), and training details can be found in Appendix C.2.

V.3 Validation with synthetic data and effective aspects of
connectivity

We first validated the capacity of the LINT method to recover low-rank connectivity features
and reproduce neural trajectories on data simulated from lrRNNs trained on cognitive

75

V. Inferring low-rank networks from data

Table V.1: Synthetic data validation results for LINT
(CC: connectivity correlation, ECC: effective connectivity correlation)

Task Rank Trajectory R2 CC ECC
Decision Making (DM) 1 0.97 0.50 0.99
Working Memory 2 0.96 0.43 0.93
Context-dependent DM 1 0.91 0.57 0.99
Delayed Match-to-Sample 2 0.98 0.39 0.63

tasks. For this, we first train lrRNNs with 512 neurons to produce a correct behavioral
output on four systems neuroscience tasks, each time retaining the minimal rank solution
(43) (see Table 1). For each task-optimized lrRNN, we then generate simulated trajectories
corresponding to trials in the trained task, and apply our method to fit these trajectories
using equivalent models with the same rank and number of neurons. We found that the
inferred networks were able to reliably reproduce the original trajectories when fed with
the same inputs, as quantified by the R2 scores between original and fitted trajectories.
Although the inferred networks were not explicitly trained on behavioral outputs, they were
able to perform their task accurately when plugged to the original readout vector, implying
that they also captured behavioral aspects of the original networks.

LINT provides an inferred low-rank connectivity that we could compare with the original
one. We noted that the inferred connectivity weights are not identical to the original ones,
although a certain degree of correlation is present (Fig. V.1b and Table 1, column CC for
connectivity correlation). However, from a theoretical point of view, a range of different
connectivity matrices can lead to identical dynamics (147; 49; 11). The low-rank framework
allows for a precise characterization of the relevant part of the connectivity, and in particular
allows us to define an effective connectivity matrix Jeff that captures the minimal features
required to obtain certain dynamics (keeping only the components of the n(r) vectors that
overlap with the m(r) and I(s) vectors, see chapter II). Our results on the synthetic data
show that indeed there is a very high degree of similarity between original and inferred
effective connectivities, demonstrating that LINT retrieves the relevant aspects of the neural
connectivity (Table 1, ECC for Effective Connectivity Correlation, and Fig. V.1c).

In conclusion, our method is able to accurately fit neural trajectories generated by low-
rank RNNs, and infers networks that give rise to similar trajectories, behavioral performance,
and retrieve the essential connectivity features of the original ones.

V.4 Application to reverse-engineering full-rank RNNs

We next ask to which extent our method can infer computational mechanisms from activity
generated by unconstrained, full-rank networks. Indeed, RNNs trained on simple tasks
without a rank constraint often exhibit low-dimensional dynamics that can be related to the
way computations unfold in the network (203; 117; 116; 115; 211). Any such low-dimensional
dynamics can in principle be reproduced with low-rank networks due to their universal
approximation properties (11). Yet the best approach for inferring the corresponding
low-rank connectivity remains to be determined. Here we show that our method vastly
outperforms a direct low-rank approximation of the connectivity matrix based on truncating
the SVD (181). We then demonstrate how the inferred low-rank models can be used to
interpret the computational mechanisms in the original full-rank networks.

76

V.4. Application to reverse-engineering full-rank RNNs

neural
trajectories

task
output

uctxA(t)

uctxB(t)

uB(t)

uA(t)

a. b. c.

d. e. f.

Figure V.2: LINT applied to full-rank task-optimized RNNs. a. Description of the CDM
task inputs and outputs. Neural trajectories correspond to the neural firing rates, choice
output from a linear readout as in eq. V.6. b. For the CDM task, similarity between
trajectories produced by the original full-rank network and a series of fitted networks of
increasing ranks (red), or low-rank networks obtained by truncating the original connectivity
matrix (grey). c. Task accuracy of the same networks when associated with the original task
readout. d-e. Same as b-c. for the DMS task. f. For the CDM task, similarities between
trajectories of the original and fitted networks of rank one (blue) or full-rank (orange), when
networks are fitted only to a random subsample of neurons of the original network. Error
bars: mean ± std over 10 random subsamples for each ratio value.

V.4.1 Extracting low-dimensional dynamics through low-rank
connectivity

We consider full-rank, vanilla RNNs trained on two complex systems neuroscience tasks, re-
spectively context-dependent decision-making(118) (CDM) and delayed match-to-sample(27)
(DMS). The full-rank RNNs reach a 100% accuracy on each task, and as expected exhibit
low-dimensional dynamics. From these RNNs, we generate trajectories corresponding to
trials in the trained tasks, and then use LINT to infer lrRNNs of increasing rank.

In the CDM task, a network receives two signal inputs which vary randomly around
a positive or negative mean, as well as two binary context cues, one of which is set to 1
in each trial. The network has to output the average sign of the signal indicated by the
active context, while ignoring the other signal (Fig. V.2a, see Appendix C.1 for task details).
Applying LINT, we found that rank-one networks are sufficient to reproduce the original
trajectories with a high goodness of fit. Increasing the rank improved only marginally
the fit (Fig. V.2b). In contrast, low-rank networks obtained by truncating the SVD of the
trained full-rank connectivity matrix required a rank of at least 9 to reach a comparable
fit (Fig. V.2b). This shows that LINT captures a simplified connectivity structure that
could not be trivially extracted from the original connectivity. Moreover, even though not
explicitly trained on the behavioral outputs, the inferred rank-one networks performed the
task correctly when plugged onto the original readout, implying that they captured well the
task-related dynamics (Fig. V.2c).

For the DMS task, we similarly found that rank-two networks were able both to capture
the dynamics of the original unconstrained network and to accurately perform the task, with
no notable improvement when the rank is increased (Fig. V.2d-e). As for the CDM task,

77

V. Inferring low-rank networks from data

LINT vastly outperformed direct truncation of the original connectivity matrix. Finally,
reproducing the experiment over a larger number of unconstrained RNNs, trained with
diverse hyperparameters and random seeds leads to similar results (Sup. Fig. C.1).

Subsampling. We then investigated the robustness of LINT to the subsampling of
neural data. Indeed, in a biological setting, one cannot expect to have access to all units
of a network. It is thus important to assess whether we can still recover the relevant
low-dimensional dynamics and information from only a handful of neurons of the original
network. We considered a full-rank network trained on the CDM task, and fitted networks
to its trajectories, either without constraining their rank or by fixing it to one. Without
subsampling, the inferred full-rank networks have a very slight advantage over rank-one
networks in reproducing the original trajectories. Yet when considering subsamples of
neurons, rank-one networks appear to be more robust than unconstrained ones, keeping a
good performance until subsampling ratios as low as 1% of original neurons (Fig. V.2f).

V.4.2 Extracting computational mechanisms from inferred low-rank
connectivity

Low-rank models of behavioral tasks open the door to mechanistic interpretations of the
underlying dynamics (122; 43). Here we show how LINT allows us to extract computational
mechanisms from full-rank networks performing the CDM task.

signal B coh.
signal A

 coh.-

+

-

+

Context BContext A

Figure V.3: Low-dimensional projections
produced by LINT. Trial-averaged trajectories
for different task conditions, in the original
full-rank network (full lines) and the inferred
low-rank network (dashed lines), projected on
axes obtained from the fitted lrRNN connec-
tivity: input A and B axes, and the output
axis of the rank-one recurrent connectivity m,
which encodes choice. All trajectories start at
center.

A first output of LINT is a set of inter-
pretable axes defining a task-related sub-
space for dimensionality reduction. The
inferred rank-one model of the CDM task
specifically yields five axes that correspond
to the two stimulus inputs, the two con-
text inputs and an internal latent variable,
generated by recurrent connectivity, which
represents integrated evidence and there-
fore choice. Projecting the activity of the
full-rank network along these axes shows
how low-dimensional dynamics transform
inputs into the choice output (Fig. V.3). In
this case, the axes determined by LINT are
closely related to those obtained by standard
targeted dimensionality reduction (TDR,
Sup. Fig. C.2) (118). However, in contrast
with TDR, the axes inferred by LINT corre-
spond to connectivity features causing the
low-dimensional dynamics, and provide a
method for an unsupervised discovery of
recurrently-generated latent variables. In
particular, we did not a priori specify that
the recurrent loop output m should encode
choice, but rather observed that choice was
generated through this recurrent mechanism.

Going beyond dimensionality reduction, LINT extracts an effective low-dimensional
model of the task. For the CDM task, the inferred model is a one-dimensional, non-linear
latent dynamical system, where the latent variable integrates the relevant evidence. To
understand how context-dependent selection of the evidence was performed, we analyzed the
connectivity parameters of the inferred rank-one RNN. Indeed, recent work has introduced a
clustering method for analyzing low-rank connectivity, and has showed that in trained lrRNNs,
context-dependent integration relies on a gain-modulation of latent dynamics mediated

78

V.4. Application to reverse-engineering full-rank RNNs

a. c.

IctxAi

IctxBi

Ra
nk

-o
ne

 (i
nf

er
re

d)
Fu

ll-
ra

nk

(r
es

ul
t)

b. Ctx A Ctx B

IctxAi

IctxBi

unperturbed No pop. BNo pop. A

pop. A
pop. B

Figure V.4: Extracting mechanisms and testing predictions from a low-rank network
(top) inferred from a full-rank network trained on the CDM task (bottom). a. Three
populations of neurons (grey, green and purple) are identified by clustering connectivity
parameters in the fitted rank-one network (top). Here, we plot the same populations in
joint distributions of contextual input vectors in the rank-one (top) vs full-rank (bottom)
networks. The populations are not directly identifiable from input parameters in the original
network (bottom). b. Neural transfer function (tanh) and smoothed distributions of mean
neural activity for populations A and B in the inferred rank-one network (top) and the
full-rank network (bottom). c. Inactivation experiments: task performance on each context
for unperturbed networks and after inactivating populations A and B in the fitted rank-one
network (top) and inactivating the same neurons in the original unconstrained network
(bottom). Red dots: chance level.

by two distinct populations of neurons (43). Applying a similar clustering approach to
rank-one networks inferred by LINT leads to a comparable mechanism. Specifically, this
method identifies two populations distinguished by strong values of the fitted weights for
the context-cue inputs (Fig. V.4a top and Sup. Fig. C.2). In each context, these context-cue
inputs place the neurons belonging to the two populations at different positions on the
non-linear transform function ϕ(x) (Fig. V.4b top), thereby modulating in opposite ways
their gains (defined for each neuron as the local slope ϕ′(x)). Combined with different
statistics of the connectivity parameters on each of the populations, this modulation is
sufficient to implement the desired context-switching behavior of the network (see details
in Chapter III). The same pattern of gain modulation was found in the original full-rank
network, indicating that it is using a similar mechanism (Fig. V.4b bottom).

The computational mechanism extracted using LINT produces predictions for inactiva-
tions that can be directly tested in the original full-rank model. The analysis described above
assigns neurons to different populations that have specific computational roles. Specifically,
in the inferred rank-one network, inactivating separately each population leads to a specific
loss of performance in a single context, but not the other one (Fig. V.4c top and Sup. Fig. C.2
for detailed error patterns). Since individual neurons in the original networks directly
correspond to neurons in the rank-one network on a one-to-one basis, one can map those
populations back onto the original network and reproduce the inactivation experiment. The
predicted effects of inactivations on context-dependent performance are directly reproduced
in the full-rank network, demonstrating that it relies on the identified computational mecha-
nism (Fig. V.4c bottom and Sup. Fig. C.2). One can note that although the two identified
populations clearly stand out in the inferred rank-one connectivity, they are not directly
apparent in the original full-rank connectivity (Fig. V.4a bottom), showing that although
the mechanism extracted by LINT applies to the full-rank network, using an lrRNN was a

79

V. Inferring low-rank networks from data

necessary step in this process.

V.5 Application to neural recordings

We next apply our method to in vivo recordings. We consider here electrophysiological
recordings from non-human primates performing a context-dependent decision-making task
similar to that studied in previous sections (118). More specifically, two macaques (designed
by A and F) were presented with random dots stimuli that varied along two dimensions: the
overall motion direction of the dots, and their overall color, ranging from two extremes with
a set of intermediary coherences in between. At the beginning of each trial, a cue indicated
a context for the trial, ordering the subject to report either the average motion or color
with an eye saccade, while ignoring the irrelevant evidence. Non-simultaneous recordings
were performed in the frontal eye field (FEF) an area of the macaque prefrontal cortex, with
respectively 727 neurons for monkey A and 574 neurons for monkey F recorded in all 72
conditions the task presented (ignoring error trials).

For the analysis, we start by binning (5 ms) and smoothing (50 ms std Gaussian window)
spike train data, and then compute the trial-averaged response of every neuron in each of the
task conditions, forming a pseudo-population tensor of size N × T × 72 with N the number
of neurons in each monkey and T = 150 the number of discrete time steps. We denoise
this tensor by projecting its first axis on the subspace spanned by the top 12 principal
components of the pseudo-population activity, and then project back to the high-dimensional
space spanned by all neurons (118). Finally, in order to consider only task-related neural
activity, we subtract from each neuron’s trajectory its condition-averaged mean. We denote
the entries of the final obtained tensor by x̃i,t,c.

We apply LINT to the obtained trajectories, training thestrict recorded activity to the
output range of our activation function, here taken to be tanh. Importantly, the inferred
networks receive inputs following the same structure than in the CDM task of previous
sections, that is two noisy signal inputs and two contextual cue inputs (Fig. V.2a), and are
left unconstrained for the first 350 ms of each trial while receiving only contextual cues,
to account for the original task procedure. In particular, we make the implicit hypothesis
that choice signals are generated by the recurrent activity of the network from received
inputs. The quality of fits is quantified by leaving out a random subset of 8 conditions during
network inference, and evaluating the R2 of fitted networks on these left-out conditions.

We find that for both monkeys the neural activity is well reproduced by a rank-one
network, with minimal improvements when the rank is increased (Fig. V.5a and Sup. Fig. C.5,
R2 = 0.66 for monkey A, and R2 = 0.57 for monkey F). Moreover, when simulated
independently, the inferred rank-one networks are able to perform the task by adding a
linear readout (accuracy curves in Fig. V.5a, Sup. Fig. C.5). This is the case even though the
recurrent and input connections were not trained on task performance, demonstrating that
the reproduced trajectories contain information about the choice made by the monkey. The
activity of both original and reproduced trajectories can moreover be projected on the axes
identified by LINT, providing a geometrical picture of task execution (Fig. V.5c). These axes
are closely related to those found by targeted dimensionality reduction: notably the context,
motion, and color axes identified by TDR closely match the corresponding input axes in the
inferred network, while the choice TDR axis can be identified to the m axis of the rank-one
recurrent connectivity (Sup. figs. C.4,C.5). The projections of the original activity on the
connectivity axes (full lines on Fig. V.5b) therefore shows how inferred connectivity explains
the geometry of recorded data.

A closer look at the distribution of inferred connectivity weights provides more information
on the neural mechanisms at play (Sup. figs. C.6, C.7). In contrast to the fits of task-optimized
networks, we observed for both monkeys a clearly non-normal, heavy-tailed distribution
of inferred connectivity parameters (Fisher’s kurtosis between 4.9 and 62.7 for different

80

V.6. Discussion

a.

b.

c. Context BContext A
color coh.

m
otion coh.-

+

-

+

Figure V.5: LINT applied to neural recordings from a non-human primate performing a
context-dependent task (monkey A) (118). a. Global R2 of model trajectories with respect
to original ones, and task accuracy of inferred networks of increasing ranks. b. For the
rank-one inferred network, R2 of each recorded neuron plotted against its average data firing
rate, median R2 in red, with marginal box-plot of R2 values. 14 neurons with an R2 < −1
are not shown, all with a mean firing rate < 2.2 (see Sup. Fig. C.4). c. Trial-averaged
trajectories in the recorded data (full lines) and for the rank-one model (dashed lines), for
different task conditions (only one coherence value for each coherence sign is plotted here),
projected on axes identified by LINT (motion and color input axes and the output axis m
of the rank-one recurrent matrix). Trajectories start at the center.

connectivity parameters), echoing some past observations on biological synaptic weights
(195; 25). Separating with a clustering algorithm (GMM) large and small-weight neurons
shows that the latter can be inactivated without affecting the task performance of the
network in a significant way (Sup. Figs. C.6, C.7), even though they represent a majority of
neurons in the circuit (570/727 neurons in monkey A, 389/574 in monkey F). This suggests
that a minority of neurons with large connectivity supports the computation performed
by the network. Among these essential neurons, we identified some neurons that exhibited
strong firing rates in the original data, but also a few neurons with small firing rates, which
were poorly fit by LINT (with R2 < 0, there are 20/727 such neurons in monkey A, 18/574
in monkey F). Further experiments will be needed to distinguish whether the recorded FEF
circuit relies on a few very active neurons to tackle the computational requirements of the
task, or whether it relies on an external choice input fed by non-recorded neurons, which
LINT would generate by assigning some neurons to a role of "hidden units".

V.6 Discussion

In this paper, we introduced LINT, a new method for inferring a latent dynamical system from
neural recordings based on the theory of low-rank RNNs. This method yields a mechanistic,
interpretable and predictive model from neural trajectories, and bridges different levels of
analysis, from state-space geometry to neural connectivity.

After verifying the consistency of our method, we demonstrated its potential to extract
the mechanisms used by "black-box" vanilla RNNs trained to perform cognitive tasks. In
particular, we found that low-rank RNNs could reproduce the dynamics of vanilla RNNs
trained to perform diverse tasks, across a range of hyperparameters. Moreover, the obtained
lrRNNs provided interpretable low-dimensional projections of the fitted activity, as well as

81

V. Inferring low-rank networks from data

predictions for the effects of inactivations of specific populations of neurons. These predictions
were verified in the original network, validating computational mechanisms derived from
low-rank connectivity weights. These results pave the way for a better understanding of
how RNNs generate their outputs, which we believe is a very relevant endeavour given
the increasing importance of RNNs and related classes of networks across sciences and
engineering.

Finally, we applied LINT to electrophysiological recordings in the prefrontal cortex of
nonhuman primates performing a context-dependent decision-making task. LINT was able
to infer rank-one networks that reproduced both neural activity and task performance, from
which low-dimensional projections and interpretable connectivity could be extracted.

It is worth noting that other statistical methods as mTDR (4) can provide a better fit
to this data although it does not provide a dynamical system generating the trajectories.
Our method is unique in that it bridges that standard state-space geometrical approach of
methods like mTDR with a predictive model of the dynamics that methods like LFADS
(136) can offer, as well as understanding at the neural connectivity level of how the exhibited
dynamics emerge from recurrent interactions.

Methods for inferring latent dynamics from biological data often rely on non-obvious
hypotheses about the inputs received by a circuit, and here we hypothesized that choice was
recurrently generated within the recorded area. This raises the question of disentangling
whether a latent variable is recurrently generated or externally fed to a circuit, which is a
particularly important challenge in systems neuroscience, although methods have recently
been proposed to address this issue (63; 177; 170). LINT potentially provides a new
approach for tackling this question, by comparing inferences made with different possible
input structures, by exploiting the potential of single-trial simultaneous recordings which we
have not used here, or by building multi-area models from wide-scale recordings that are
increasingly available nowadays (189; 183; 197; 143).

82

Discussion VI

In this work, we have investigated the properties of recurrent networks of rate neurons with
low-rank connectivity. We have demonstrated how these particular networks are amenable
to mathematical analysis and geometrical interpretation, how they lead to dynamical pat-
terns similar to those found in recorded neural activity, and how they illuminate neural
computations by relating them to the network connectivity structure. Numerous questions
naturally remain open, and here we will expose some thoughts and ideas that complete this
work or are in our opinion relevant for future exploration.

Relation between low-rank networks and biology. The low-rank rate networks
that have been studied throughout this work may seem to the biologist a rather implausible
abstraction, due to the absence of a large number of physiological constraints. Let us first
recall that the main reason why we departed from biology in this thesis was that we were
aiming at finding the simplest models able to capture certain properties of neural activity,
in particular its computational abilities through distributed, low-dimensional dynamics. As
such, it can be understood in its current form more as a study on the structure of non-linear
high-dimensional dynamical systems than in biological nervous nets. However, as pointed to
by the last chapter, we hope that our theory can lead to insights on the function of biological
systems, and this will be a major focus of future work.

A first reason why we believe this is that even if the mathematical functions capturing
interactions between neurons are different between models and living beings, both are at
their core dynamical systems with computational abilities, and can thus be studied and
compared at that more abstract level. Some of the facts outlined in chapter III, such as
input-driven reshaping of dynamics, the presence of specialized modules that are activated
or de-activated through gain modulation mechanisms, or the presence of feedback loops that
integrate evidence remain relevant independently of the implementation details, and could
be found in other types of artificial architectures or in biological systems.

A second reason why low-rank networks could prove useful in biological studies is that
many of the known physiological constraints can be added to them while maintaining the
core effects of low-rank connectivity. For instance, sparsity of recurrent connections is known
to immediately render a connectivity matrix full-rank, but can nevertheless be applied on
top of a low-rank connectivity while maintaining its low-dimensional induced dynamics
(80). Similarly, preliminary results suggest that low-rank networks functioning with spikes
instead of rates would exhibit similar properties (for details concerning realistic transfer
functions, see the last paragraph of this discussion). Other preliminary results suggest
that Dale’s law can also be superimposed to a network with low-rank connectivity without
affecting its core dynamics. On this subject, the biological existence of specialized excitatory

83

VI. Discussion

or inhibitory neurons, and even of multiple inhibitory classes with specific genetic and
functional properties might suggest a parallel with the presence of cell populations we found
in artificially trained networks in chapter III. Although tempting, this is a parallel we are
not willing to make, for our results suggest more the presence of modules with different
connectivity statistics but similar units, rather than modules with different types of units.
Moreover, the separation between excitatory and inhibitory neurons could be, in our opinion,
more fruitfully mapped to the role of gain modulation at the canonical circuit level (see the
last paragraph of this discussion).

Our results could be however mapped to the presence of functionally specialized modules
that is assessed in biological experiments, and seems to manifest itself notably in condi-
tions were flexible input-output mappings are required (81; 146; 82) (although see (51)).
The relationship between those computationally-required modules, and the role of gain
modulation in selecting them aligns well with current research into multitasking networks
(227; 146; 119; 42), and could be easily expanded into broader ranges of tasks with more
complex modular architectures. Moreover, recent results suggest that networks whose design
combines interpretable low-rank connectivity with multiple areas can be fruitfully analyzed
and mapped to neural data (8), opening the door for more varied applications of those ideas.

Potential for the study of more complex networks and tasks. Results from
the last chapter suggest that low-rank networks can provide insights into the mechanisms
implemented by full-rank networks, generalizing the theory of low-rank RNNs to a more
practical use-case. This method opens a vast range of applications, as it can be directly
applied to full-rank, vanilla RNNs trained on other tasks, but also to RNNs with gated
architectures such as LSTMs and GRUs, which are more often used in the field of artificial
intelligence, and which seem to share numerous functional similarities with vanilla RNNs
(117).

The study of more intricate, higher-dimensional tasks remains a key challenge for
the application of low-rank networks. The results exposed in chapter III concerning the
multitasking capabilities of low-rank networks (see Fig. III.7) show that they can be readily
applied to tasks that can be decomposed in multiple primitives. Research in multitasking
networks often leverages or observes an organization of networks in modules which are
activated by contextual cues (227; 119; 120; 146; 42), or rather focuses on task-specialization
within orthogonal subspaces activated by the presence of their corresponding inputs (45;
28; 130; 131). These two strategies occur in those distinct situations (contextual switching
between tasks, or non-competing processing of distinct inputs), aligning with our findings.
They are also incidentally two of the main strategies explored to tackle catastrophic forgetting
in ANNs, suggesting very practical applications of these questions. Training networks to
perform hierarchically complex tasks, or designing them using insights from low-rank networks
would be an interesting next step.

Numerous other tasks are fertile terrains to which the theory of low-rank networks can
be applied: the study of timing tasks has in this manner been prolifically studied, leading to
new hypotheses about the relationship between neural geometry and generalization (12). In
another context, relationships between manifold attractor networks and low-rank networks is
established (121), and opens the way to studies of network structures implementing spatial
navigation and related hippocampal functionality such as episodic memory. Numerous other
tasks rely on low-dimensional activity manifolds, and could thus be prone to similar analyses,
for instance Bayesian inference (193) or sequence learning tasks (137; 225). However, it is
to be noted that these tasks, like a vast number of those studied in systems neuroscience are
intrinsically low-dimensional, and could thus not reflect the full breadth of possibilities of a
neural circuit (67). Tackling richer tasks like the interpretation of language seems a more
distant goal, although possibly attainable through the study of lower-dimensional primitives.

Gain modulation and the neural transfer function. Here, we used the tanh

84

non-linear transfer function for individual neurons, which presents interesting mathematical
properties but leads to unrealistic negative firing rates. Experimental evidence generally
suggests that neurons in in vivo circuits are better characterized by a rectified linear (ReLU)
transfer function. When using ReLU, symmetry around 0 is lost, although preliminary
results indicate that variability above or below a baseline firing rate could form a basis for
geometric computations that still revolve around a central resting state, as is observed in
numerous neural recordings. More concerning is the fact that with non-bounded transfer
functions like ReLU, the stability of the network is not guaranteed anymore mathematically,
and activity could theoretically diverge towards non-physiological regimes. This does not
seem to happen, neither in biological circuits nor in artificial RNNs. A simple mechanism
that could explain this control of divergent activity patterns in biological circuits is the
presence of inhibition, and what is more, of detailed excitatory-inhibitory balance. One
could thus interpret the saturation at high firing rates in our networks as a way to encompass
the presence of local inhibition directly at the level of single units, each of them being then
comparable to a pyramidal cell with its inhibitory entourage. Here, we wish to emphasize
the parallel between the gain modulation mechanism found in our work, that arises from the
saturating non-linearity in our models, and proposed mechanisms of gain modulation through
inhibitory activity in biological networks. In our case, we were pleasantly surprised to find
that multiplicative gain modulation could arise simply from standard additive synaptic
interactions, and without any built-in mechanism to multiply firing rates, a possibility that
has rarely been described computationally (see (166) for an example). Knowing whether
this phenomenon is also found in EI networks with non-bounded transfer functions would
thus be of major interest. More generally, understanding the role of inhibitory cells within
abstractions such as canonical circuits has often been a prolific idea (26; 75) and we expect
further links to non-linear response profiles at the circuit level and gain modulation to be
promising future avenues.

On a more technical note, it is straightforward that within ReLU networks, our proposed
mechanism of context-switching through gain modulation remains possible, albeit only at
the low end of the transfer function. The presence of similar populations with specific
computational roles has nevertheless been reported in networks of ReLU units for several
tasks including context-dependent decision-making (such mechanisms have been evidenced
in, for example, (227; 55)), and seems to suggest a role of the transfer function that would
directly extend our mechanism. Understanding how artificial ReLU networks build internal
mechanisms to avoid activity divergence remains an interesting direction for mathematical
research.

Finally, the mechanism we have outlined empirically demonstrates the essential com-
putational role of gain modulation in neural computations, a primitive that has long been
hypothesized to be at the core of many cognitive functions including attention and executive
control (53; 148). Here, we showed that gain modulation naturally emerges as the main
factor driving performance in our simplified low-rank networks, but also in unconstrained
full-rank networks, and although it is considerably more challenging to confirm it in a
biological setting recent results show that it could explain in a compelling way some puzzling
properties of multi-area neural recordings in a context-dependent task (8). It could in a
similar manner explain other intriguing properties of attention, such as the fact that it
can increase noise or sometimes decrease firing rates in pyramidal cells (161). Hence, the
understanding of contextual control mechanisms in ANNs that we have developed in our
work could be extended into the following working hypotheses for similar mechanisms in
biological networks: a possibility is that contextual inputs to a circuit, from areas such
as the thalamus which have been shown to modify dynamics and response properties of
cortical networks (178; 138; 111), could be a mechanism for the brain to select a course
of action among several possible ones (at the executive and motor level) and to select the
focus of attention (at the sensory level); we expect these contextual inputs to increase the
gain of certain clusters of neurons that implement computational primitives relevant to

85

VI. Discussion

the task at hand, to the detriment of other clusters of neurons which would see their gain
decrease; neurons which see their gain decrease can however see their activity increase, a
seemingly paradoxical property; these clusters of neurons could be distinguished from their
selectivity properties, although sometimes complex non-linear mixing of several response
properties would be needed to differentiate them (see Fig. III.6); finally, we expect this
gain modulation mechanism to arise through purely additive interactions, possibly via the
mediation of local inhibition. Investigating whether these hypotheses hold, in biological
or in more biologically-realistic networks, remains a vast program that we hope to lead to
interesting results.

To paraphrase Santiago Ramón y Cajal, there are no problems exhausted by humans,
only humans exhausted by problems. With this, and although the number of remaining
questions to solve could keep growing, it is time for the author and readers to call this
exploration to a rest. We hope this work has convinced them at least of how much potential
rests in the recurrent connections and continued dialogue between disciplines, as was the
case here between computer science, algebra, statistics, physics and biology, a potential that
the author would be more than happy to discuss over a good drink with the reader who has
made it to this final point.

86

Bibliography VI

[1] H. Adesnik, W. Bruns, H. Taniguchi, Z. J. Huang, and M. Scanziani. A neural circuit
for spatial summation in visual cortex. Nature, 490(7419):226–231, 2012.

[2] E. D. Adrian. The basis of sensation. 1928.

[3] M. S. Advani, A. M. Saxe, and H. Sompolinsky. High-dimensional dynamics of
generalization error in neural networks. Neural Networks, 132:428–446, 2020.

[4] M. C. Aoi, V. Mante, and J. W. Pillow. Prefrontal cortex exhibits multidimensional
dynamic encoding during decision-making. Nature neuroscience, 23(11):1410–1420,
2020.

[5] E. W. Archer, U. Koster, J. W. Pillow, and J. H. Macke. Low-dimensional models of
neural population activity in sensory cortical circuits. Advances in neural information
processing systems, 27, 2014.

[6] D. L. Barack and J. W. Krakauer. Two views on the cognitive brain. Nature Reviews
Neuroscience, pages 1–13, 2021.

[7] O. Barak. Recurrent neural networks as versatile tools of neuroscience research.
Current opinion in neurobiology, 46:1–6, 2017.

[8] J. Barbosa, R. Proville, C. C. Rodgers, S. Ostojic, and Y. Boubenec. Flexible selection
of task-relevant features through across-area population gating. bioRxiv, 2022.

[9] D. G. Barrett, A. S. Morcos, and J. H. Macke. Analyzing biological and artificial neural
networks: challenges with opportunities for synergy? Current opinion in neurobiology,
55:55–64, 2019.

[10] P. Bashivan, K. Kar, and J. J. DiCarlo. Neural population control via deep image
synthesis. Science, 364(6439):eaav9436, 2019.

[11] M. Beiran, A. Dubreuil, A. Valente, F. Mastrogiuseppe, and S. Ostojic. Shaping dy-
namics with multiple populations in low-rank recurrent networks. Neural Computation,
33(6):1572–1615, 2021.

[12] M. Beiran, N. Meirhaeghe, H. Sohn, M. Jazayeri, and S. Ostojic. Parametric control
of flexible timing through low-dimensional neural manifolds. bioRxiv, 2021.

87

Bibliography

[13] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

[14] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass.
A solution to the learning dilemma for recurrent networks of spiking neurons. Nature
communications, 11(1):1–15, 2020.

[15] R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky. Theory of orientation tuning in
visual cortex. Proceedings of the National Academy of Sciences, 92(9):3844–3848, 1995.

[16] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[17] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[18] G. Bondanelli, T. Deneux, B. Bathellier, and S. Ostojic. Network dynamics underlying
off responses in the auditory cortex. Elife, 10:e53151, 2021.

[19] G. Bondanelli and S. Ostojic. Coding with transient trajectories in recurrent neural
networks. PLoS computational biology, 16(2):e1007655, 2020.

[20] M. Brecht, M. Schneider, B. Sakmann, and T. W. Margrie. Whisker movements evoked
by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976):704–710,
2004.

[21] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[22] N. Brunel and M. C. Van Rossum. Lapicque’s 1907 paper: from frogs to integrate-
and-fire. Biological cybernetics, 97(5):337–339, 2007.

[23] D. V. Buonomano and W. Maass. State-dependent computations: spatiotemporal
processing in cortical networks. Nature Reviews Neuroscience, 10(2):113–125, 2009.

[24] Y. Burak and I. R. Fiete. Accurate path integration in continuous attractor network
models of grid cells. PLoS computational biology, 5(2):e1000291, 2009.

[25] G. Buzsáki and K. Mizuseki. The log-dynamic brain: how skewed distributions affect
network operations. Nature Reviews Neuroscience, 15(4):264–278, 2014.

[26] M. Carandini and D. J. Heeger. Normalization as a canonical neural computation.
Nature Reviews Neuroscience, 13(1):51–62, 2012.

[27] W. Chaisangmongkon, S. K. Swaminathan, D. J. Freedman, and X.-J. Wang. Com-
puting by robust transience: how the fronto-parietal network performs sequential,
category-based decisions. Neuron, 93(6):1504–1517, 2017.

[28] A. Chaudhry, N. Khan, P. Dokania, and P. Torr. Continual learning in low-rank
orthogonal subspaces. Advances in Neural Information Processing Systems, 33:9900–
9911, 2020.

[29] R. Chaudhuri, B. Gerçek, B. Pandey, A. Peyrache, and I. Fiete. The intrinsic attractor
manifold and population dynamics of a canonical cognitive circuit across waking and
sleep. Nature neuroscience, 22(9):1512–1520, 2019.

88

Bibliography

[30] T. W. Chow and X.-D. Li. Modeling of continuous time dynamical systems with
input by recurrent neural networks. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 47(4):575–578, 2000.

[31] M. M. Churchland, M. Y. Byron, M. Sahani, and K. V. Shenoy. Techniques for
extracting single-trial activity patterns from large-scale neural recordings. Current
opinion in neurobiology, 17(5):609–618, 2007.

[32] M. M. Churchland and K. V. Shenoy. Temporal complexity and heterogeneity of
single-neuron activity in premotor and motor cortex. Journal of neurophysiology,
97(6):4235–4257, 2007.

[33] Z. Cohen, B. DePasquale, M. C. Aoi, and J. W. Pillow. Recurrent dynamics of
prefrontal cortex during context-dependent decision-making. bioRxiv, 2020.

[34] J. A. Cromer, J. E. Roy, and E. K. Miller. Representation of multiple, independent
categories in the primate prefrontal cortex. Neuron, 66(5):796–807, 2010.

[35] C. J. Cueva and X.-X. Wei. Emergence of grid-like representations by training recurrent
neural networks to perform spatial localization. arXiv preprint arXiv:1803.07770,
2018.

[36] J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale neural
recordings. Nature neuroscience, 17(11):1500–1509, 2014.

[37] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[38] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization.
Advances in neural information processing systems, 27, 2014.

[39] P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical
modeling of neural systems. MIT press, 2005.

[40] B. DePasquale, C. J. Cueva, K. Rajan, G. S. Escola, and L. Abbott. full-force: A
target-based method for training recurrent networks. PloS one, 13(2):e0191527, 2018.

[41] K. Doya. Universality of fully connected recurrent neural networks. Dept. of Biology,
UCSD, Tech. Rep, 1993.

[42] L. Driscoll, K. Shenoy, and D. Sussillo. Flexible multitask computation in recurrent
networks utilizes shared dynamical motifs. bioRxiv, 2022.

[43] A. Dubreuil, A. Valente, M. Beiran, F. Mastrogiuseppe, and S. Ostojic. The role of
population structure in computations through neural dynamics. Nature Neuroscience,
25(6):783–794, 2022.

[44] L. Duncker, G. Bohner, J. Boussard, and M. Sahani. Learning interpretable continuous-
time models of latent stochastic dynamical systems. In International Conference on
Machine Learning, pages 1726–1734. PMLR, 2019.

[45] L. Duncker, L. Driscoll, K. V. Shenoy, M. Sahani, and D. Sussillo. Organizing recurrent
network dynamics by task-computation to enable continual learning. Advances in
Neural Information Processing Systems, 33, 2020.

[46] L. Duncker and M. Sahani. Dynamics on the manifold: Identifying computational
dynamical activity from neural population recordings. Current opinion in neurobiology,
70:163–170, 2021.

89

Bibliography

[47] D. Durstewitz. A state space approach for piecewise-linear recurrent neural networks for
identifying computational dynamics from neural measurements. PLoS computational
biology, 13(6):e1005542, 2017.

[48] D. Elgueda, D. Duque, S. Radtke-Schuller, P. Yin, S. V. David, S. A. Shamma, and
J. B. Fritz. State-dependent encoding of sound and behavioral meaning in a tertiary
region of the ferret auditory cortex. Nature neuroscience, 22(3):447–459, 2019.

[49] C. Eliasmith and C. H. Anderson. Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT press, 2003.

[50] T. A. Engel and X.-J. Wang. Same or different? a neural circuit mechanism of
similarity-based pattern match decision making. Journal of Neuroscience, 31(19):6982–
6996, 2011.

[51] B. Engelhard, J. Finkelstein, J. Cox, W. Fleming, H. J. Jang, S. Ornelas, S. A. Koay,
S. Y. Thiberge, N. D. Daw, D. W. Tank, et al. Specialized coding of sensory, motor
and cognitive variables in vta dopamine neurons. Nature, 570(7762):509–513, 2019.

[52] A. Fairhall. The receptive field is dead. long live the receptive field? Current opinion
in neurobiology, 25:ix–xii, 2014.

[53] K. A. Ferguson and J. A. Cardin. Mechanisms underlying gain modulation in the
cortex. Nature Reviews Neuroscience, 21(2):80–92, 2020.

[54] A. Finkelstein, L. Fontolan, M. N. Economo, N. Li, S. Romani, and K. Svoboda.
Attractor dynamics gate cortical information flow during decision-making. Nature
Neuroscience, 24(6):843–850, 2021.

[55] T. Flesch, K. Juechems, T. Dumbalska, A. Saxe, and C. Summerfield. Orthogonal
representations for robust context-dependent task performance in brains and neural
networks. Neuron, 110(7):1258–1270, 2022.

[56] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[57] J. B. Fritz, S. V. David, S. Radtke-Schuller, P. Yin, and S. A. Shamma. Adaptive,
behaviorally gated, persistent encoding of task-relevant auditory information in ferret
frontal cortex. Nature neuroscience, 13(8):1011, 2010.

[58] K. Fukushima and N. Wake. Handwritten alphanumeric character recognition by the
neocognitron. IEEE transactions on Neural Networks, 2(3):355–365, 1991.

[59] K.-i. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous
time recurrent neural networks. 6(6):801–806, 1993.

[60] S. Fusi, E. K. Miller, and M. Rigotti. Why neurons mix: high dimensionality for higher
cognition. Current opinion in neurobiology, 37:66–74, 2016.

[61] J. M. Fuster and G. E. Alexander. Neuron activity related to short-term memory.
Science, 173(3997):652–654, 1971.

[62] M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, and M.-B. Moser. Spatial representation
in the entorhinal cortex. Science, 2004.

[63] A. R. Galgali, M. Sahani, and V. Mante. Residual dynamics resolves recurrent
contributions to neural computation. bioRxiv, 2021.

90

Bibliography

[64] J. A. Gallego, M. G. Perich, L. E. Miller, and S. A. Solla. Neural manifolds for the
control of movement. Neuron, 94(5):978–984, 2017.

[65] S. Ganguli, D. Huh, and H. Sompolinsky. Memory traces in dynamical systems.
Proceedings of the National Academy of Sciences, 105(48):18970–18975, 2008.

[66] P. Gao and S. Ganguli. On simplicity and complexity in the brave new world of
large-scale neuroscience. Current opinion in neurobiology, 32:148–155, 2015.

[67] P. Gao, E. Trautmann, B. Yu, G. Santhanam, S. Ryu, K. Shenoy, and S. Ganguli. A
theory of multineuronal dimensionality, dynamics and measurement. BioRxiv, page
214262, 2017.

[68] R. J. Gardner, E. Hermansen, M. Pachitariu, Y. Burak, N. A. Baas, B. A. Dunn, M.-B.
Moser, and E. I. Moser. Toroidal topology of population activity in grid cells. Nature,
602(7895):123–128, 2022.

[69] J. Glaser, M. Whiteway, J. P. Cunningham, L. Paninski, and S. Linderman. Recur-
rent switching dynamical systems models for multiple interacting neural populations.
Advances in neural information processing systems, 33:14867–14878, 2020.

[70] M. Glickstein. Golgi and cajal: The neuron doctrine and the 100th anniversary of the
1906 nobel prize. Current Biology, 16(5):R147–R151, 2006.

[71] J. I. Gold, M. N. Shadlen, et al. The neural basis of decision making. Annual review
of neuroscience, 30(1):535–574, 2007.

[72] P. S. Goldman-Rakic. Cellular basis of working memory. Neuron, 14(3):477–485, 1995.

[73] A. Guanella, D. Kiper, and P. Verschure. A model of grid cells based on a twisted
torus topology. International journal of neural systems, 17(04):231–240, 2007.

[74] B. Hangya, H.-J. Pi, D. Kvitsiani, S. P. Ranade, and A. Kepecs. From circuit motifs
to computations: mapping the behavioral repertoire of cortical interneurons. Current
opinion in neurobiology, 26:117–124, 2014.

[75] B. Hangya, H.-J. Pi, D. Kvitsiani, S. P. Ranade, and A. Kepecs. From circuit motifs
to computations: mapping the behavioral repertoire of cortical interneurons. Current
opinion in neurobiology, 26:117–124, 2014.

[76] K. Hardcastle, N. Maheswaranathan, S. Ganguli, and L. M. Giocomo. A multiplexed,
heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron,
94(2):375–387, 2017.

[77] K. D. Harris and T. D. Mrsic-Flogel. Cortical connectivity and sensory coding. Nature,
503(7474):51–58, 2013.

[78] D. O. Hebb. The organization of behavior. Wiley, New York, 1949.

[79] G. Hennequin, T. P. Vogels, and W. Gerstner. Optimal control of transient dynamics
in balanced networks supports generation of complex movements. Neuron, 82(6):1394–
1406, 2014.

[80] E. Herbert and S. Ostojic. The impact of sparsity in low-rank recurrent neural networks.
bioRxiv, 2022.

[81] J. Hirokawa, A. Vaughan, P. Masset, T. Ott, and A. Kepecs. Frontal cortex neuron
types categorically encode single decision variables. Nature, 576(7787):446–451, 2019.

91

Bibliography

[82] D. L. Hocker, C. D. Brody, C. Savin, and C. M. Constantinople. Subpopulations of
neurons in lofc encode previous and current rewards at time of choice. eLife, 10:e70129,
2021.

[83] J. J. Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the national academy of sciences, 79(8):2554–2558,
1982.

[84] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148(3):574, 1959.

[85] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey
striate cortex. The Journal of physiology, 195(1):215–243, 1968.

[86] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. science, 304(5667):78–80, 2004.

[87] M. Jazayeri and S. Ostojic. Interpreting neural computations by examining intrinsic
and embedding dimensionality of neural activity. Current opinion in neurobiology,
70:113–120, 2021.

[88] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, 82:35–45, 1960.

[89] T.-C. Kao, M. S. Sadabadi, and G. Hennequin. Optimal anticipatory control as a theory
of motor preparation: A thalamo-cortical circuit model. Neuron, 109(9):1567–1581,
2021.

[90] K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo. Evidence that recurrent
circuits are critical to the ventral stream’s execution of core object recognition behavior.
Nature neuroscience, 22(6):974–983, 2019.

[91] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H. McDermott.
A task-optimized neural network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy. Neuron, 98(3):630–644, 2018.

[92] D. R. Kepple, R. Engelken, and K. Rajan. Curriculum learning as a tool to uncover
learning principles in the brain. In International Conference on Learning Representa-
tions, 2021.

[93] T. C. Kietzmann, C. J. Spoerer, L. K. Sörensen, R. M. Cichy, O. Hauk, and
N. Kriegeskorte. Recurrence is required to capture the representational dynam-
ics of the human visual system. Proceedings of the National Academy of Sciences,
116(43):21854–21863, 2019.

[94] J.-N. Kim and M. N. Shadlen. Neural correlates of a decision in the dorsolateral
prefrontal cortex of the macaque. Nature neuroscience, 2(2):176–185, 1999.

[95] S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black. Neural
control of computer cursor velocity by decoding motor cortical spiking activity in
humans with tetraplegia. Journal of neural engineering, 5(4):455, 2008.

[96] S. S. Kim, H. Rouault, S. Druckmann, and V. Jayaraman. Ring attractor dynamics in
the drosophila central brain. Science, 356(6340):849–853, 2017.

[97] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

92

Bibliography

[98] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[99] N. Kostantinos. Gaussian mixtures and their applications to signal processing. Advanced
signal processing handbook: theory and implementation for radar, sonar, and medical
imaging real time systems, pages 3–1, 2000.

[100] K. Kubota and H. Niki. Prefrontal cortical unit activity and delayed alternation
performance in monkeys. Journal of neurophysiology, 34(3):337–347, 1971.

[101] D. Kvitsiani, S. Ranade, B. Hangya, H. Taniguchi, J. Huang, and A. Kepecs. Distinct
behavioural and network correlates of two interneuron types in prefrontal cortex.
Nature, 498(7454):363–366, 2013.

[102] R. Laje and D. V. Buonomano. Robust timing and motor patterns by taming chaos in
recurrent neural networks. Nature neuroscience, 16(7):925–933, 2013.

[103] I. D. Landau and H. Sompolinsky. Coherent chaos in a recurrent neural network with
structured connectivity. PLoS computational biology, 14(12):e1006309, 2018.

[104] I. D. Landau and H. Sompolinsky. Macroscopic fluctuations emerge in balanced
networks with incomplete recurrent alignment. Physical Review Research, 3(2):023171,
2021.

[105] C. Langdon and T. A. Engel. Latent circuit inference from heterogeneous neural
responses during cognitive tasks. bioRxiv, 2022.

[106] F. Lanore, N. A. Cayco-Gajic, H. Gurnani, D. Coyle, and R. A. Silver. Cerebellar
granule cell axons support high-dimensional representations. Nature Neuroscience,
24(8):1142–1150, 2021.

[107] L. Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs traitée
comme une polarisation. Journal of Physiology and Pathololgy, 9:620–635, 1907.

[108] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feed-
back weights support error backpropagation for deep learning. Nature communications,
7(1):1–10, 2016.

[109] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation
and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

[110] S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and L. Paninski. Bayesian
learning and inference in recurrent switching linear dynamical systems. In Artificial
Intelligence and Statistics, pages 914–922. PMLR, 2017.

[111] L. Logiaco, L. Abbott, and S. Escola. Thalamic control of cortical dynamics in a
model of flexible motor sequencing. Cell reports, 35(9):109090, 2021.

[112] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
computation, 14(11):2531–2560, 2002.

[113] C. K. Machens, R. Romo, and C. D. Brody. Functional, but not anatomical, separation
of “what” and “when” in prefrontal cortex. Journal of Neuroscience, 30(1):350–360,
2010.

[114] J. H. Macke, L. Buesing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani.
Empirical models of spiking in neural populations. Advances in neural information
processing systems, 24, 2011.

93

Bibliography

[115] N. Maheswaranathan and D. Sussillo. How recurrent networks implement contextual
processing in sentiment analysis. arXiv preprint arXiv:2004.08013, 2020.

[116] N. Maheswaranathan, A. Williams, M. Golub, S. Ganguli, and D. Sussillo. Reverse en-
gineering recurrent networks for sentiment classification reveals line attractor dynamics.
Advances in neural information processing systems, 32, 2019.

[117] N. Maheswaranathan, A. H. Williams, M. D. Golub, S. Ganguli, and D. Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent
networks. Advances in neural information processing systems, 2019:15629, 2019.

[118] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84,
2013.

[119] C. D. Marton, G. Lajoie, and K. Rajan. Efficient and robust multi-task learning in
the brain with modular task primitives. arXiv preprint arXiv:2105.14108, 2021.

[120] N. Y. Masse, G. D. Grant, and D. J. Freedman. Alleviating catastrophic forgetting
using context-dependent gating and synaptic stabilization. Proceedings of the National
Academy of Sciences, 115(44):E10467–E10475, 2018.

[121] F. Mastrogiuseppe. Shaping slow activity manifolds with low-rank recurrent networks.
In Cosyne 2019 Workshops, 2019.

[122] F. Mastrogiuseppe and S. Ostojic. Linking connectivity, dynamics, and computations
in low-rank recurrent neural networks. Neuron, 99(3):609–623, 2018.

[123] F. Mastrogiuseppe and S. Ostojic. A geometrical analysis of global stability in trained
feedback networks. Neural computation, 31(6):1139–1182, 2019.

[124] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[125] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry.
Cambridge tiass., HIT, 479:480, 1969.

[126] Y. Miyashita. Neuronal correlate of visual associative long-term memory in the primate
temporal cortex. Nature, 335(6193):817–820, 1988.

[127] M. Molano-Mazon, D. Duque, G. R. Yang, and J. de la Rocha. Pre-training rnns on
ecologically relevant tasks explains sub-optimal behavioral reset. bioRxiv, 2021.

[128] E. I. Moser, E. Kropff, M.-B. Moser, et al. Place cells, grid cells, and the brain’s
spatial representation system. Annual review of neuroscience, 31(1):69–89, 2008.

[129] E. I. Moser, M.-B. Moser, and B. L. McNaughton. Spatial representation in the
hippocampal formation: a history. Nature neuroscience, 20(11):1448, 2017.

[130] L. B. Naumann, J. Keijser, and H. Sprekeler. Invariant neural subspaces maintained
by feedback modulation. Elife, 11:e76096, 2022.

[131] R. Nogueira, C. C. Rodgers, R. M. Bruno, and S. Fusi. The geometry of cortical
representations of touch in rodents. bioRxiv, pages 2021–02, 2021.

[132] M. Nonnenmacher, S. C. Turaga, and J. H. Macke. Extracting low-dimensional
dynamics from multiple large-scale neural population recordings by learning to predict
correlations. Advances in Neural Information Processing Systems, 30, 2017.

94

Bibliography

[133] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map: Preliminary
evidence from unit activity in the freely-moving rat. Brain research, 1971.

[134] C. O’Neil. Weapons of math destruction: How big data increases inequality and
threatens democracy. Broadway books, 2016.

[135] M. Pachitariu, B. Petreska, and M. Sahani. Recurrent linear models of simultaneously-
recorded neural populations. Advances in neural information processing systems, 26,
2013.

[136] C. Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J. C. Kao,
E. M. Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg, et al. Inferring single-
trial neural population dynamics using sequential auto-encoders. Nature methods,
15(10):805–815, 2018.

[137] M. F. Panichello and T. J. Buschman. Shared mechanisms underlie the control of
working memory and attention. Nature, 592(7855):601–605, 2021.

[138] M. B. Pardi, J. Vogenstahl, T. Dalmay, T. Spanò, D.-L. Pu, L. B. Naumann,
F. Kretschmer, H. Sprekeler, and J. J. Letzkus. A thalamocortical top-down cir-
cuit for associative memory. Science, 370(6518):844–848, 2020.

[139] I. M. Park, M. L. Meister, A. C. Huk, and J. W. Pillow. Encoding and decoding in
parietal cortex during sensorimotor decision-making. Nature neuroscience, 17(10):1395,
2014.

[140] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[141] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python.
the Journal of machine Learning research, 12:2825–2830, 2011.

[142] U. Pereira and N. Brunel. Attractor dynamics in networks with learning rules inferred
from in vivo data. Neuron, 99(1):227–238, 2018.

[143] M. G. Perich, C. Arlt, S. Soares, M. E. Young, C. P. Mosher, J. Minxha, E. Carter,
U. Rutishauser, P. H. Rudebeck, C. D. Harvey, et al. Inferring brain-wide interactions
using data-constrained recurrent neural network models. BioRxiv, pages 2020–12,
2021.

[144] B. Petreska, B. M. Yu, J. P. Cunningham, G. Santhanam, S. Ryu, K. V. Shenoy,
and M. Sahani. Dynamical segmentation of single trials from population neural data.
Advances in neural information processing systems, 24, 2011.

[145] L. Pinto and Y. Dan. Cell-type-specific activity in prefrontal cortex during goal-directed
behavior. Neuron, 87(2):437–450, 2015.

[146] L. Pinto, K. Rajan, B. DePasquale, S. Y. Thiberge, D. W. Tank, and C. D. Brody.
Task-dependent changes in the large-scale dynamics and necessity of cortical regions.
Neuron, 104(4):810–824, 2019.

[147] E. Pollock and M. Jazayeri. Engineering recurrent neural networks from task-relevant
manifolds and dynamics. PLoS computational biology, 16(8):e1008128, 2020.

[148] N. C. Rabinowitz, R. L. Goris, M. Cohen, and E. P. Simoncelli. Attention stabilizes
the shared gain of v4 populations. Elife, 4:e08998, 2015.

95

Bibliography

[149] K. Rajan, L. Abbott, and H. Sompolinsky. Stimulus-dependent suppression of chaos
in recurrent neural networks. Physical review e, 82(1):011903, 2010.

[150] K. Rajan, C. D. Harvey, and D. W. Tank. Recurrent network models of sequence
generation and memory. Neuron, 90(1):128–142, 2016.

[151] R. P. Rao. Bayesian computation in recurrent neural circuits. Neural computation,
16(1):1–38, 2004.

[152] D. Raposo, M. T. Kaufman, and A. K. Churchland. A category-free neural population
supports evolving demands during decision-making. Nature neuroscience, 17(12):1784,
2014.

[153] E. D. Remington, D. Narain, E. A. Hosseini, and M. Jazayeri. Flexible sensorimotor
computations through rapid reconfiguration of cortical dynamics. Neuron, 98(5):1005–
1019, 2018.

[154] B. A. Richards, T. P. Lillicrap, P. Beaudoin, Y. Bengio, R. Bogacz, A. Christensen,
C. Clopath, R. P. Costa, A. de Berker, S. Ganguli, et al. A deep learning framework
for neuroscience. Nature neuroscience, 22(11):1761–1770, 2019.

[155] M. Rigotti, O. Barak, M. R. Warden, X.-J. Wang, N. D. Daw, E. K. Miller, and
S. Fusi. The importance of mixed selectivity in complex cognitive tasks. Nature,
497(7451):585–590, 2013.

[156] A. Rivkind and O. Barak. Local dynamics in trained recurrent neural networks.
Physical review letters, 118(25):258101, 2017.

[157] R. Romo, C. D. Brody, A. Hernández, and L. Lemus. Neuronal correlates of parametric
working memory in the prefrontal cortex. Nature, 399(6735):470–473, 1999.

[158] F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[159] S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural
computation, 11(2):305–345, 1999.

[160] J. E. Roy, M. Riesenhuber, T. Poggio, and E. K. Miller. Prefrontal cortex activity
during flexible categorization. Journal of Neuroscience, 30(25):8519–8528, 2010.

[161] D. A. Ruff and M. R. Cohen. Attention can either increase or decrease spike count
correlations in visual cortex. Nature neuroscience, 17(11):1591–1597, 2014.

[162] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[163] A. A. Russo, S. R. Bittner, S. M. Perkins, J. S. Seely, B. M. London, A. H. Lara,
A. Miri, N. J. Marshall, A. Kohn, T. M. Jessell, et al. Motor cortex embeds muscle-like
commands in an untangled population response. Neuron, 97(4):953–966, 2018.

[164] J. Sacramento, R. Ponte Costa, Y. Bengio, and W. Senn. Dendritic cortical microcir-
cuits approximate the backpropagation algorithm. Advances in neural information
processing systems, 31, 2018.

[165] K. Sakai. Task set and prefrontal cortex. Annu. Rev. Neurosci., 31:219–245, 2008.

[166] E. Salinas. Context-dependent selection of visuomotor maps. BMC neuroscience,
5(1):1–22, 2004.

96

Bibliography

[167] E. Salinas and P. Thier. Gain modulation: a major computational principle of the
central nervous system. Neuron, 27(1):15–21, 2000.

[168] O. G. Sani, H. Abbaspourazad, Y. T. Wong, B. Pesaran, and M. M. Shanechi. Modeling
behaviorally relevant neural dynamics enabled by preferential subspace identification.
Nature Neuroscience, 24(1):140–149, 2021.

[169] O. G. Sani, B. Pesaran, and M. M. Shanechi. Where is all the nonlinearity: flexible
nonlinear modeling of behaviorally relevant neural dynamics using recurrent neural
networks. bioRxiv, 2021.

[170] B. A. Sauerbrei, J.-Z. Guo, J. D. Cohen, M. Mischiati, W. Guo, M. Kabra, N. Verma,
B. Mensh, K. Branson, and A. W. Hantman. Cortical pattern generation during
dexterous movement is input-driven. Nature, 577(7790):386–391, 2020.

[171] A. Saxe, S. Nelli, and C. Summerfield. If deep learning is the answer, what is the
question? Nature Reviews Neuroscience, 22(1):55–67, 2021.

[172] A. M. Saxe, J. L. McClelland, and S. Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences,
116(23):11537–11546, 2019.

[173] S. Saxena and J. P. Cunningham. Towards the neural population doctrine. Current
opinion in neurobiology, 55:103–111, 2019.

[174] S. Saxena, A. A. Russo, J. Cunningham, and M. M. Churchland. Motor cortex activity
across movement speeds is predicted by network-level strategies for generating muscle
activity. Elife, 11:e67620, 2022.

[175] R. Schaeffer, M. Khona, L. Meshulam, I. Fiete, et al. Reverse-engineering recurrent
neural network solutions to a hierarchical inference task for mice. Advances in Neural
Information Processing Systems, 33, 2020.

[176] L. K. Scheffer, C. S. Xu, M. Januszewski, Z. Lu, S.-y. Takemura, K. J. Hayworth,
G. B. Huang, K. Shinomiya, J. Maitlin-Shepard, S. Berg, et al. A connectome and
analysis of the adult drosophila central brain. Elife, 9:e57443, 2020.

[177] M. Schimel, T.-C. Kao, K. T. Jensen, and G. Hennequin. ilqr-vae: control-based
learning of input-driven dynamics with applications to neural data. bioRxiv, 2021.

[178] L. I. Schmitt, R. D. Wimmer, M. Nakajima, M. Happ, S. Mofakham, and M. M.
Halassa. Thalamic amplification of cortical connectivity sustains attentional control.
Nature, 545(7653):219–223, 2017.

[179] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by
planning with a learned model. Nature, 588(7839):604–609, 2020.

[180] F. Schuessler, A. Dubreuil, F. Mastrogiuseppe, S. Ostojic, and O. Barak. Dynamics
of random recurrent networks with correlated low-rank structure. Physical Review
Research, 2(1):013111, 2020.

[181] F. Schuessler, F. Mastrogiuseppe, A. Dubreuil, S. Ostojic, and O. Barak. The interplay
between randomness and structure during learning in rnns, 2020.

[182] J. Semedo, A. Zandvakili, A. Kohn, C. K. Machens, and B. M. Yu. Extracting latent
structure from multiple interacting neural populations. Advances in neural information
processing systems, 27, 2014.

97

Bibliography

[183] J. D. Semedo, A. Zandvakili, C. K. Machens, M. Y. Byron, and A. Kohn. Cortical
areas interact through a communication subspace. Neuron, 102(1):249–259, 2019.

[184] H. S. Seung. How the brain keeps the eyes still. Proceedings of the National Academy
of Sciences, 93(23):13339–13344, 1996.

[185] S. Seung. Connectome: How the brain’s wiring makes us who we are. HMH, 2012.

[186] M. N. Shadlen and W. T. Newsome. Neural basis of a perceptual decision in the parietal
cortex (area lip) of the rhesus monkey. Journal of neurophysiology, 86(4):1916–1936,
2001.

[187] S. M. Sherman and R. Guillery. On the actions that one nerve cell can have on another:
distinguishing “drivers” from “modulators”. Proceedings of the National Academy of
Sciences, 95(12):7121–7126, 1998.

[188] C. Sherrington. The integrative action of the nervous system. CUP Archive, 1906.

[189] M. Siegel, T. J. Buschman, and E. K. Miller. Cortical information flow during flexible
sensorimotor decisions. Science, 348(6241):1352–1355, 2015.

[190] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144,
2018.

[191] A. C. Smith and E. N. Brown. Estimating a state-space model from point process
observations. Neural computation, 15(5):965–991, 2003.

[192] J. Smith, S. Linderman, and D. Sussillo. Reverse engineering recurrent neural networks
with jacobian switching linear dynamical systems. Advances in Neural Information
Processing Systems, 34:16700–16713, 2021.

[193] H. Sohn, D. Narain, N. Meirhaeghe, and M. Jazayeri. Bayesian computation through
cortical latent dynamics. Neuron, 103(5):934–947, 2019.

[194] H. Sompolinsky, A. Crisanti, and H.-J. Sommers. Chaos in random neural networks.
Physical review letters, 61(3):259, 1988.

[195] S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B. Chklovskii. Highly nonrandom
features of synaptic connectivity in local cortical circuits. PLoS biology, 3(3):e68, 2005.

[196] N. A. Steinmetz, P. Zatka-Haas, M. Carandini, and K. D. Harris. Distributed coding
of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273,
2019.

[197] N. A. Steinmetz, P. Zatka-Haas, M. Carandini, and K. D. Harris. Distributed coding
of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273,
2019.

[198] C. Stringer, M. Pachitariu, N. Steinmetz, M. Carandini, and K. D. Harris. High-
dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–
365, 2019.

[199] C. Stringer, M. Pachitariu, N. Steinmetz, C. B. Reddy, M. Carandini, and K. D.
Harris. Spontaneous behaviors drive multidimensional, brainwide activity. Science,
364(6437):eaav7893, 2019.

98

Bibliography

[200] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. CRC press, 2018.

[201] J. P. Stroud, M. A. Porter, G. Hennequin, and T. P. Vogels. Motor primitives in space
and time via targeted gain modulation in cortical networks. Nature neuroscience,
21(12):1774–1783, 2018.

[202] L. Susman, F. Mastrogiuseppe, N. Brenner, and O. Barak. Quality of internal
representation shapes learning performance in feedback neural networks. Physical
Review Research, 3(1):013176, 2021.

[203] D. Sussillo. Neural circuits as computational dynamical systems. Current opinion in
neurobiology, 25:156–163, 2014.

[204] D. Sussillo and L. F. Abbott. Generating coherent patterns of activity from chaotic
neural networks. Neuron, 63(4):544–557, 2009.

[205] D. Sussillo and O. Barak. Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural computation, 25(3):626–649, 2013.

[206] D. Sussillo, M. M. Churchland, M. T. Kaufman, and K. V. Shenoy. A neural net-
work that finds a naturalistic solution for the production of muscle activity. Nature
neuroscience, 18(7):1025–1033, 2015.

[207] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[208] R. J. Townshend, S. Eismann, A. M. Watkins, R. Rangan, M. Karelina, R. Das, and
R. O. Dror. Geometric deep learning of rna structure. Science, 373(6558):1047–1051,
2021.

[209] D. Y. Tsao and M. S. Livingstone. Mechanisms of face perception. Annual review of
neuroscience, 31:411, 2008.

[210] K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek, A. Bridgland,
A. Cowie, C. Meyer, A. Laydon, et al. Highly accurate protein structure prediction for
the human proteome. Nature, 596(7873):590–596, 2021.

[211] E. Turner, K. V. Dabholkar, and O. Barak. Charting and navigating the space of
solutions for recurrent neural networks. Advances in Neural Information Processing
Systems, 34:25320–25333, 2021.

[212] A. Valente, S. Ostojic, and J. Pillow. Probing the relationship between linear dynamical
systems and low-rank recurrent neural network models. Neural Computation, 2022.

[213] J. L. Van Hemmen and T. J. Sejnowski. 23 problems in systems neuroscience. Oxford
University Press, 2005.

[214] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[215] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[216] T. P. Vogels, K. Rajan, L. F. Abbott, et al. Neural network dynamics. Annual review
of neuroscience, 28:357, 2005.

99

Bibliography

[217] S. Vyas, M. D. Golub, D. Sussillo, and K. V. Shenoy. Computation through neural
population dynamics. Annual Review of Neuroscience, 43:249–275, 2020.

[218] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge
University Press, 2019.

[219] J. Wang, D. Narain, E. A. Hosseini, and M. Jazayeri. Flexible timing by temporal
scaling of cortical responses. Nature neuroscience, 21(1):102–110, 2018.

[220] X.-J. Wang. Probabilistic decision making by slow reverberation in cortical circuits.
Neuron, 36(5):955–968, 2002.

[221] X.-J. Wang. Decision making in recurrent neuronal circuits. Neuron, 60(2):215–234,
2008.

[222] M. Welling. The kalman filter. Lecture Note, pages 92–117, 2010.

[223] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

[224] A. H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy, M. Schnitzer,
T. G. Kolda, and S. Ganguli. Unsupervised discovery of demixed, low-dimensional
neural dynamics across multiple timescales through tensor component analysis. Neuron,
98(6):1099–1115, 2018.

[225] Y. Xie, P. Hu, J. Li, J. Chen, W. Song, X.-J. Wang, T. Yang, S. Dehaene, S. Tang,
B. Min, et al. Geometry of sequence working memory in macaque prefrontal cortex.
Science, 375(6581):632–639, 2022.

[226] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

[227] G. R. Yang, M. R. Joglekar, H. F. Song, W. T. Newsome, and X.-J. Wang. Task
representations in neural networks trained to perform many cognitive tasks. Nature
neuroscience, 22(2):297–306, 2019.

[228] G. R. Yang and M. Molano-Mazón. Towards the next generation of recurrent network
models for cognitive neuroscience. Current Opinion in Neurobiology, 70:182–192, 2021.

[229] G. R. Yang and X.-J. Wang. Artificial neural networks for neuroscientists: A primer.
Neuron, 107(6):1048–1070, 2020.

[230] L. Ye, W. E. Allen, K. R. Thompson, Q. Tian, B. Hsueh, C. Ramakrishnan, A.-C.
Wang, J. H. Jennings, A. Adhikari, C. H. Halpern, et al. Wiring and molecular features
of prefrontal ensembles representing distinct experiences. Cell, 165(7):1776–1788, 2016.

[231] B. M. Yu, A. Afshar, G. Santhanam, S. Ryu, K. V. Shenoy, and M. Sahani. Extracting
dynamical structure embedded in neural activity. Advances in neural information
processing systems, 18, 2005.

[232] B. M. Yu, K. V. Shenoy, and M. Sahani. Derivation of kalman filtering and smoothing
equations. In Technical report. Stanford University, 2004.

[233] R. Yuste. From the neuron doctrine to neural networks. Nature reviews neuroscience,
16(8):487–497, 2015.

[234] A. M. Zador. A critique of pure learning and what artificial neural networks can learn
from animal brains. Nature communications, 10(1):1–7, 2019.

100

Bibliography

[235] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence.
International Conference on Machine Learning, pages 3987–3995, 2017.

[236] K. Zhang. Representation of spatial orientation by the intrinsic dynamics of the
head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6):2112–2126,
1996.

[237] P. Znamenskiy and A. M. Zador. Corticostriatal neurons in auditory cortex drive
decisions during auditory discrimination. Nature, 497(7450):482–485, 2013.

[238] D. Zoltowski, J. Pillow, and S. Linderman. A general recurrent state space framework
for modeling neural dynamics during decision-making. In International Conference on
Machine Learning, pages 11680–11691. PMLR, 2020.

101

Supplements for chapter III A

A.1 Parametrization and collective dynamics for mixture of
Gaussians connectivity vectors

In this section we show how connectivity vectors with entries drawn from mixtures of
multivariate Gaussians can be constructed from independent Gaussians, as mentioned in
Eq. (A.25). We then derive the dynamics of the internal collective variables (Eq. (II.28)) in
this setting.

We considered distributions of connectivity parameters characterized by P covariance
matrices Σp, and zero means µp = 0, p = 1, . . . , P . For a neuron i belonging to population
p, each vector entry ai ∈ {n

(r)
i , m

(r)
i , I

(s)
i , wi} is constructed as a linear transformation of

the same set of values {X
(d)
i }d=1...Nin+2R+1

ai =
Nin+2R+1∑

d=1
b

(p)
a,dX

(d)
i . (A.1)

Here the X
(d)
i are drawn from N (0, 1), independently for each i and d. The linear coefficients

{ba,d}d=1...Nin+2R+1 are different for each connectivity vector a ∈ {n(r), m(r), I(s), w}, but
identical across neurons within a given population. These sets of coefficients therefore deter-
mine the covariance σ

(p)
ab between entries of connectivity vectors within a given population

p:

σ
(p)
ab =

D∑
d=1

b
(p)
a,db

(p)
b,d = (b(p)

a)
T
b

(p)
b (A.2)

The row-vectors b
(p)
a

T
in fact correspond to the rows of the Cholesky factorization of the

covariance matrix.
We next turn to the derivation of Eq. (II.28). With the parametrization for the entries of
connectivity vectors defined in Eq. (A.1), the recurrent inputs to the r-th internal collective
variable Eq. (II.21) can be written as

κrec
r =

P∑
p=1

αp

∫ (D∏
d=1

DX(d)

)
D∑

d=1
b

(p)
n(r),d

X(d)ϕ

(
R∑

r′=1
κr′

D∑
d=1

b
(p)
m(r′),d

X(d) +
Nin∑
s=1

vs

D∑
d=1

b
(p)
I(s),d

X(d)

)
(A.3)

103

A. Supplements for chapter III

with DX(d) = dX(d)
√

2π
e−(X(d))2/2. For a given p, we then compute each of the D integrals∫ (∏D

d=1 DX(d)
)

b
(p)
n(r),d

X(d)ϕ (. . .) applying successively Stein’s lemma∫
Dz zf(z) =

∫
Dzf ′(z), (A.4)

and using the fact that a sum of independent Gaussians is a Gaussian with variance given
by the sum of variances, so that∫

DxDy . . . f(αx + βy + . . .) =
∫

Dzf(
√

α2 + β2 + ...z). (A.5)

This leads to

κrec
r =

P∑
p=1

αp

D∑
d=1

b
(p)
n(r),d

(
R∑

r′=1
b

(p)
m(r′),d

κr′ +
Nin∑
s=1

b
(p)
I(s),d

vs

)∫
Dzϕ′

(
∆(p)z

)

=
P∑

p=1
αp

(
R∑

r′=1
σ

(p)
n(r)m(r′)κr′ +

Nin∑
s=1

σ
(p)
n(r)I(s)vs

)∫
Dzϕ′

(
∆(p)z

) (A.6)

with

∆(p) =

√√√√ R∑
r′=1

(σ(p)
m(r′)m(r′))2κ2

r′ +
Nin∑
s=1

(σ(p)
I(s)I(s))2u2

s. (A.7)

Inverting the sums on p and r′, s indices and assuming that input vectors I(s) are orthogonal
to the output vectors {m(r)}r=1,...,R (as in all the reduced models described in the section
below), we get the compact description in terms of effective couplings for the dynamics of
internal collective variables Eq. (II.28)

dκr

dt
= −κr +

R∑
r′=1

σ̃n(r)m(r′)κr′ +
Nin∑
s=1

σ̃n(r)I(s)vs (A.8)

with, for any two vectors a, b, the effective couplings

σ̃ab =
P∑

p=1
σ

(p)
ab ⟨Φ′⟩p (A.9)

and averaged gains

⟨Φ′⟩p =
∫

Dzϕ′(∆(p)z). (A.10)

A.2 Alternative implementation of the CDM task

The solution found by training a unit rank network illustrated in figures III.3 and III.4 is
not necessarily unique, and indeed when training rank one networks on the same task with
different hyperparameters or training procedures we found alternative implementations, all
relying on non-random population structure. Here, we detail an implementation based on
3 functional sub-populations, illustrated in A.6, reminiscent of implementations already
described in the literature (227), and used in the main text for testing predictions (Fig. III.6)
and describing a multi-tasking mechanism (Fig. III.7).

104

A.3. Methods

More specifically, for this network trained with fixed input weights and modifiable recur-
rent connectivity, 4 sub-populations were needed to explain the implemented computational
mechanism, in the sense that resampling networks from a Gaussian mixture model fitted
to the trained connectivity gave functioning networks with four sub-populations and not
with a lower number (Sup. Fig. A.6a). These sub-populations all had a zero mean in the
connectivity space but diverse covariance structures, as can be seen from projections of
the 7-dimensional connectivity space (Sup. Fig. A.6b) and the fitted covariance matrices
(Sup. Fig. A.6c). We observed that among the four sub-populations found by the clustering
procedure, the largest one (shown in grey) did not bear any computational role in this
task, and in particular inactivating it did not result in any performance loss (Sup. Fig. A.6e).
Sub-population 4 (illustrated in green) was characterized by strong entries on the m vector
and a positive covariance between its m and n entries, showing that it performed the
effective evidence integration. Sub-population 2 (in purple) presented strong entries on
the IctxB vector along with a positive covariance between its n and IA entries, showing it
transmitted the entry signal uA to the integratory feedback loop driven by the n-m loop
and supported by sub-population 4, unless it was driven to a low-gain regime by the strong
entries on IctxB. Note that the effective couplings between input and recurrence vectors
that drive the computation have to be computed at the level of the whole network (following
Eq. (III.5)), even though these couplings might be supported by covariance structures in
only one sub-population. In a complementary manner, sub-population 3 (in orange) had
strong entries on the IctxA vector and a positive overlap between its IB and n entries.

The mechanism can thus be understood as follows (Sup. Fig. A.6d): in context A, strong
weights on the IctxA drive sub-population 3 to a low-gain regime, preventing it from relaying
input signal B to the integratory feedback loop supported by sub-population 4. The opposite
phenomenon occurs in context B with sub-population 2 being driven to a low-gain regime
(Sup. Fig. A.6f). This interpretation of the implemented mechanism can be verified by
inactivating each sub-population (Sup. Fig. A.6e): without sub-population 2, the network is
unable to perform correctly in context A, but its performance in context B is unaffected,
while the converse is true without sub-population 3. Finally, without sub-population 4 the
network is unable to integrate any evidence and thus to perform the task in any context.

A.3 Methods

A.3.1 Recurrent Neural Networks
We considered networks of N rate units that evolve over time according to

τ
dxi

dt
= −xi +

N∑
j=1

Jijϕ(xj) + IF F
i (t) + ηi(t). (A.11)

Here xi represents the activation or total current received by the i-th unit, and ϕ(xi) =
tanh(xi) is its firing rate. Moreover, each neuron received a feed-forward input IF F

i and an
independent white-noise input ηi(t) specified below.
The recurrent connectivity is set by the connectivity matrix J = {Jij}i,j=1...N . For full-rank
networks, the coefficients Jij were treated as independent parameters. For low-rank networks
J was constrained to be of rank R, and parametrized as

Jij = 1
N

R∑
r=1

m
(r)
i n

(r)
j (A.12)

i.e. J was a sum of R outer-products of vectors m(r) = {m
(r)
i }i=1...N and n(r) = {n

(r)
i }i=1...N .

Throughout the text, we refer to the vectors m(r) and n(r) as the connectivity vectors, with
m(r) the r-th output vector, and n(r) the r-th input-selection vector. Without loss of

105

A. Supplements for chapter III

generality, we will assume that all the output vectors (and respectively all the input-selection
vectors) are mutually orthogonal. Such a representation is uniquely defined by the singular-
value decomposition of J by taking m(r) to be the left singular vectors, and n(r) the right
singular vectors multiplied by the corresponding singular values.
The feedforward inputs IF F

i (t) were generated by Nin temporally-varying scalar stimuli
us(t), each fed into the unit i through a set of weights I

(s)
i :

IF F
i (t) =

Nin∑
s=1

I
(s)
i us(t). (A.13)

We refer to I(s) = {I
(s)
i }i=1...N as the s-th input vector.

The output of the network was defined by a readout value

z = 1
N

N∑
j=1

wjϕ(xj), (A.14)

where w = {wi}i=1...N is the readout vector.
The time constant of neurons was τ = 100ms. For simulation and training, equation (A.11)
was discretized using Euler’s method with a time step ∆t = 20ms. The white noise ηi

was simulated by drawing at each time step a random number from a centered Gaussian
distribution of standard deviation 0.05.

A.3.2 Network training procedure
We used backpropagation through time (223) to train networks to minimize loss functions
corresponding to specific tasks. For each task (see details below), we specified the temporal
structure of trials and the desired mapping from combinations of stimulus inputs to target
readouts ẑ, and then stochastically generated trials. We minimized the mean squared error
loss function

L =
∑
k,t

Mt(zk,t − ẑk,t)2 (A.15)

where zk,t and ẑk,t are respectively the actual, and the target readout values and the indices
k, t respectively run over trials and time steps. The terms Mt are {0, 1} masks that were
non-zero only during a decision period at the end of each trial, when the readouts were
required to match their target values. For each task we also define a performance measure
called accuracy, defined as the fraction of test trials for which the network output has the
same sign as the expected output (i.e. sign(

∑
t Mtẑk,t) = sign(

∑
t Mtzk,t))

For full-rank networks (Figs. 1,6) the gradients were computed with respect to individual
entries Jij of the connectivity matrix. For results on full-rank networks in Fig. 1 (left column)
and A.4, matrices J were initialized with random independent Gaussian weights of mean 0
and variance ρ = 1/N . For the A.4, we also trained networks whose weights were initialized
with a variance ρ = 0.1/N , since these tend to be approximated more easily by low-rank
networks (181).
For low-rank networks, we specifically looked for solutions in the subspace of connectivity
matrices with rank R. The loss functions were therefore minimized by computing gradients
with respect to the elements of connectivity vectors {m(r)}r=1...R, {n(r)}r=1...R. Unless
specified otherwise in the description of individual tasks, we did not train the entries of input
vectors {I(s)}s=1...Nin

and the readout vectors {w} but only an overall amplitude factor for
each input and readout vector. All vectors were initialized with their entries drawn from
Gaussian distributions with zero mean and unit standard deviation, except for the readout
vector, for which the standard deviation was 4. The initial network state at the beginning of

106

A.3. Methods

each trial was always set to 0. We used the ADAM optimizer (97) in pytorch (140) with the
decay rates of the first and second moments of 0.9 and 0.999, and learning rates between
10−3 and 10−2.
To identify networks of minimal rank that performed each task, the number of pairs of
connectivity vectors R was treated as a hyper-parameter. We first trained full rank networks
(R = N) and determined the accuracy with which they solved the task. We then started
training rank R = 5 networks, and progressively decreased the rank until there was a sharp
decrease in accuracy (A.3). The minimal rank R∗ was defined for each task such that the
accuracy at R∗ was at least of 95%.
To ease the clustering and resampling procedure, and approach mean-field solutions, we
trained large networks (of sizes 512 neurons for the networks of figures III.1 and III.2, 4096
neurons for the context-dependent DM and DMS task networks of Figures III.4 and ??, and
1024 neurons in figure III.7).

A.3.3 Definition of individual tasks
A.3.3.1 Perceptual decision making (DM) task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a stimulation
epoch of duration Tstim = 800ms, a delay epoch of duration Tdelay = 100ms and a decision
epoch of duration Tdecision = 20ms.
Inputs and outputs. The feed-forward input to neuron i on trial k was

IF F
i (t) = Iiu

(k)(t) (A.16)

where, during the stimulation period, u(k)(t) = u(k) + ξ(k)(t), with ξ(k)(t) a zero-mean
Gaussian white noise with standard deviation σu = 0.1. The mean stimulus u(k) was drawn
uniformly from ±0.1 × {1, 2, 4} on each trial. The elements Ii of the input vector were
generated from a Gaussian distribution with zero mean and unit standard deviation, and
fixed during training.
During the decision epoch, the output z was evaluated through a readout vector w =
{wi}i=1...N , the elements wi of which were generated from a Gaussian distribution with zero
mean and standard deviation of 4, and fixed during the training. On trial k, the target
output value ẑk in the loss function (Eq. (A.15)) was defined as the sign of the mean input
u(k).

A.3.3.2 Parametric working memory (WM) task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a first
stimulation epoch of duration Tstim1 = 100ms, a delay epoch of duration Tdelay drawn from
a uniform distribution between 500 and 2000ms, a second stimulation epoch of duration
Tstim2 = 100ms and a decision epoch of duration Tdecision = 100ms.
Inputs and outputs. The feed-forward input to neuron i on trial k was

IF F
i (t) = Ii

(
u

(k)
1 (t) + u

(k)
2 (t)

)
(A.17)

where u
(k)
1 (t) and u

(k)
2 (t) were non-zero during the first and second stimulation epochs

respectively. On trial k and during the corresponding stimulation epoch, the values of these
inputs were u

(k)
1,2 = 1

fmax−fmin
(f (k)

1,2 − fmax+fmin

2), with f
(k)
1 and f

(k)
2 drawn uniformly from

{10, 11, . . . , 34}, and fmin = 10 and fmax = 34. The elements Ii of the input vector were
generated from a Gaussian distribution with zero mean and unit standard deviation, and
fixed during the training.
During the decision epoch, the output z was evaluated through a readout vector w =
{wi}i=1...N , the elements wi of which were generated from a Gaussian distribution with zero

107

A. Supplements for chapter III

mean and standard deviation of 4, and fixed during the training. On trial k, the target
output value ẑ(k) in the loss function (Eq. (A.15)) was defined as ẑ(k) = f

(k)
1 −f

(k)
2

fmax−fmin
.

A.3.3.3 Context-dependent decision making (CDM) task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a first
context-only epoch of duration Tctxt1 = 0ms for figure 1 and 350ms for Figs. III.3-III.6 plots,
followed by a stimulation epoch of duration Tstim = 800ms, a second context-only epoch of
Tctxt2 = 500ms, and a decision epoch of Tdecision = 20ms.
Stimuli and outputs. The feed-forward input to neuron i on trial k was

IF F
i (t) = u

(k)
A (t)IA

i + u
(k)
B (t)IB

i + u
(k)
ctxA(t)IctxA

i + u
(k)
ctxB(t)IctxB

i . (A.18)

Here u
(k)
ctxA and u

(k)
ctxB correspond to contextual cues. On each trial, during the context-only

and the stimulation epochs, one of the two cues took a value +0.1 (or +0.5 for Figs. III.3-
III.6), while the other was 0. The inputs u

(k)
A (t) and u

(k)
B (t) represent two sensory features

of the stimulus. They were non-zero only during the stimulation epoch, and took the same
form as in the perceptual decision-making task, with means u

(k)
A and u

(k)
B , and fluctuating

parts ξ
(k)
A (t) and ξ

(k)
B (t) drawn independently for each feature, on each trial. The elements

of the input vectors were generated from a Gaussian distribution with zero mean and unit
standard deviation on both populations. For the networks presented in the main text, input
vectors were trained, while for the networks reported in Supplementary Note 2.3 all the
input vectors were fixed throughout training.
During the decision epoch, on trial k the target ẑ(k) in the loss function (Eq. (A.15)) was
defined as the sign of the mean u

(k)
X of feature X = A or B for which the contextual cue

was activated, i. e. u
(k)
ctx = 1. The readout vector was fixed throughout training.

A.3.3.4 Multi-sensory decision making (MDM) task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a context-only
period of duration Tctx = 350ms, a stimulation epoch of duration Tstim = 800ms, a delay
epoch of duration Tdelay = 300ms and a decision epoch of duration Tdecision = 20ms.

Inputs and outputs. The feed-forward input to neuron i on trial k had the same structure
as for the context-dependent decision-making task, and was given by:

IF F
i (t) = u

(k)
A (t)IA

i + u
(k)
B (t)IB

i + u
(k)
ctxA(t)IctxA

i + u
(k)
ctxB(t)IctxB

i . (A.19)

where the two stimulus inputs u
(k)
A (t) and u

(k)
B (t) represent two sensory modalities, and u

(k)
ctxA

and u
(k)
ctxB are contextual inputs. In this task, the contextual inputs were irrelevant for the

output, and we included them as a control. The inputs u
(k)
A (t) and u

(k)
B (t) were generated as

for the CDM task, with the difference that on each trial the two inputs provided congruent
evidence for the output, i.e. their means were of the same sign.

Specifically in each trial a sign sk ∈ {−1, 1} is generated randomly, as well as a modality
that can be A, B, or AB. Then if the modality is A or AB, a mean u

(k)
A is chosen from

0.1 × sk × {1, 2, 4} and the signal u
(k)
A (t) during the stimulation period is set to that mean

plus a gaussian white noise as in the perceptual decision making task. A contextual input
signal u

(k)
ctxA(t) is set to 0.1 from the beginning of the contextual period to the end of the

trial. If the modality is B, then the signal u
(k)
A (t) is only equal to the zero-centered gaussian

108

A.3. Methods

white noise. The signals u
(k)
B (t) and u

(k)
ctxB(t) are set in a similar manner. During the decision

epoch, the target ẑ(k) is the underlying common sign sk.

The networks received input signals through input vectors IA, IB , IctxA and IctxB which
were trained, and output was read through a readout vector w which was fixed throughout
training.

A.3.3.5 Delayed-match-to-sample task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a first stimulus
epoch of duration Tstim1 = 500ms, a delay epoch of a duration drawn uniformly between
500ms and 3000ms, a second stimulus epoch of duration Tstim2 = 500ms, and a decision
epoch of duration Tdecision = 1000ms.

Stimuli and outputs. During each stimulus epoch, the network received one of two stimuli
A or B, which were randomly and independently chosen on each trial and stimulus epoch.
These two stimuli were represented by two input vectors IA and IB , so that the feed-forward
input to neuron i on trial k was:

IF F
i (t) = u

(k)
A (t)IA

i + u
(k)
B (t)IB

i (A.20)

where the inputs u
(k)
A (t) and u

(k)
B (t) were non-zero only when stimuli A or B are respectively

received, in which case they were equal to one.
During the decision epoch, the target output value ẑ in the loss function (Eq. (A.15)) was
equal to +1 if the same stimulus was received in both stimulation epochs and -1 otherwise.

A.3.4 Regression analyses and selectivity space

We used multivariate linear regression to predict time-averaged neural firing rates ri = ϕ(xi)
from task variables, using a linear model :

ri = Xβi + ϵi. (A.21)

Here ri = {ri,1, . . . , ri,K} is a vector containing the time-averaged firing rates of neuron i in
trials 1 to K, X is the design matrix where rows correspond to different trials and columns
correspond to D task variables such as stimulus, context and decision in each condition
(defined below for each task), βi is a D-by-1 vector of regression coefficients, and ϵi is a
K-by-1 vector of residuals.
The regression coefficients defined the selectivity space (Fig. 1a-d) of dimension D where
each axis corresponded to the regression coefficient with respect to one task variable, and
each neuron was represented as point βi.
The choice of task variables and window of time-averaging of firing rates depended on the
task:

• For the DM task, two regressions were performed on different time windows, leading
to D = 2 two coefficients per neuron: a regression of average firing rate during the
first 100ms of stimulation period against mean stimulus which defined the coefficient
βstim

i and a regression of average firing rate during the decision period against network
choice which defined the coefficient βchoice

i . This was done to avoid ill-conditioning
due to correlations between choice and stimulus.

• For the WM task, the mean firing rate during the decision period was regressed against
both f1 and f2, leading to D = 2 two coefficients per neuron.

109

A. Supplements for chapter III

• For the MDM task and the CDM task, the average firing rate during the stimulation
period was regressed against both mean stimulus features u

(k)
A and u

(k)
B and both

contextual input signals u
(k)
ctxA and u

(k)
ctxB, leading to D = 4 coefficients per neuron,

βA
i , βB

i , βctxA
i and βctxB

i . In Fig. III.6, the selectivity to context was characterized
by a single regression coefficient βctx

i obtained by regressing the absolute value of the
firing rate |ri|, averaged over the pre-stimulus period where only the contextual cues
are non-zeros, against a regressor X that takes the value +1 in context A and −1 in
context B. The context selectivity is extracted through the linear model for K trials

|ri| = Xβctx
i + ϵ (A.22)

In order to characterize the changes in selectivity with context, we substracted the
pre-stimulus firing rate to the firing rate averaged over the first 100ms of stimulus
presentation, and regressed this quantity against u

(k)
A and u

(k)
B separately in each

context to obtain the regression coefficients βA
ctxA,i, βB

ctxA,i, βA
ctxB,i, βB

ctxB,i. The change
in selectivity is then given by

∆ctxβ
A/B
i = |βA/B

ctxA,i| − |βA/B
ctxB,i| (A.23)

In Fig. III.6 the analysis is presented for feature A, similar results are obtained for
feature B (not shown).

• For the DMS task, the average firing rate during the decision period was regressed
against both first and second stimulus identity (with Xk,s = 1 if stimulus s is A in
trial k, 0 otherwise, s ∈ {0, 1}), leading to D = 2 regression coefficients per neuron.

A.3.5 ePAIRS analysis
To statistically assess the presence of non-random population structure in the selectivity
and connectivity spaces of trained networks, we implemented a version of the ePAIRS
statistical test (81), which is itself derived from the PAIRS test developed in (152). We
consider a point cloud X = (Xij)1≤i≤N,1≤j≤d, where the rows xi corresponds to different
points (here neurons) and columns correspond to different axes of the considered space
(regression coefficients to different variables in the selectivity space, entries of different input,
connectivity and readout vectors in the connectivity space), which is centered by removing
the mean (so that for each j,

∑
i Xij = 0). The ePAIRS test examines the directional

distribution of points, i.e. the empirical distribution of xi/∥xi∥, and determines whether it is
statistically distinguishable from the null distribution generated by a multivariate Gaussian
with a covariance matrix identical to the covariance of X. A significant outcome indicates
of the ePAIRS test that the empirical distribution presents multiple "preferred" directions
incompatible with a Gaussian.
More specifically, the analysis proceeds as follows:

1. For each point xi, we determine its l nearest neighbors in terms of the cosine metric
(ie. the l points for which cos(x̂ixj) = xT

i xj/(∥xi∥∥xj∥) are the highest, l being a
hyperparameter set to 3 in our case).

2. For each neuron, we compute the mean angle αi with its l nearest neighbors, defining
an empirical distribution p̂data(α).

3. To generate the corresponding null distribution, a multivariate Gaussian distribution
N (0,Σ) is fit to the cloud of points X, with Σ the empirical covariance of X, computed
as Σ = 1

N XT X. Then the steps 1-2 are applied on 500 samples of the multivariate
Gaussian with the same number N of data points to compute a Monte-Carlo null
distribution p̂null(α).

110

A.4. Training low-rank RNNs: some tricks of the trade

4. Finally, the difference between the data and the null distributions is assessed using a
two-sided Wilcoxon’s rank-sum test, giving a p-value, and the effect size c is computed
as

c = µnull − µdata

σnull
, (A.24)

where µ and σ represent the means and standard deviations of p̂null(α) and p̂data(α).
An effect size c > 0 indicates that angles between neighbors are smaller in the data
than in the resampled point clouds, meaning that points are more highly clustered than
expected. On the contrary, c < 0 indicates that points are more regularly dispersed
than expected from random.

A.3.6 Resampling and clustering trained networks
For a given trained network, we first fitted a single multivariate Gaussian to its connectivity
distribution by computing the empirical covariance matrix (matrix of size (Nin + 2R + 1)2).
We then generated networks by resampling connectivity parameters from this distribution,
and examined their performance (Fig. 1i and A.4). In all trained networks we examined, the
empirical means were close to zero, and we neglected them.

For the CDM and DMS tasks, we performed a clustering analysis in the connectivity
space by fitting multivariate mixtures of Gaussians with an increasing number of clusters,
and by resampling from the obtained distributions until we found networks that were able
to optimally perform the task, as defined by an accuracy higher than 95% for at least 95%
of the sampled networks. We used variational inference with a gaussian prior for the mean
with a precision equal to 105 to enforce a zero-mean constraint for all components of the mix-
tures, and a Dirichlet process prior for the weights with concentration 1 divided by number
of components, using the model BayesianGaussianMixture of the package scikit-learn (141).

Since the inference and resampling processes are susceptible to finite-size fluctuations, for
the DMS task in ?? we complemented the clustering with some retraining of the covariance
matrices found for each component. For this we developed a class of Gaussian mixture,
low-rank RNNs, in which the covariance structure of each population is trainable. Directly
training the covariance matrices is difficult given that they need to be symmetric definite
positive; we therefore used a trick akin to the reparametrization trick used in variational
auto-encoders (98): the set of input, connectivity and readout vectors were defined as a
linear transformation of a basis of i.i.d. normal vectors, such that for any connectivity vector
a:

ai = (b(p)
a)TXi, (A.25)

where p is the population index of neuron i (sampled from a categorical distribution with
weights {αp}p=1...P derived by the variational inference), Xi

i.i.d.∼ N (0,⊮) are random normal
vectors of dimension Nin +2R+1, and the vectors b(p)

a correspond to the rows of the Cholesky
factorization of the covariance matrix (such that σ

(p)
ab = (b(p)

a)T b
(p)
b see Supplementary Note

1 for more details). We then trained the vectors b
(p)
v , with the population indices being

sampled only once, and the Xi being resampled at each training epoch.

A.4 Training low-rank RNNs: some tricks of the trade

In this section, we aim to informally share some tips and tricks that in our experience
increase the chances of successfully training a low-rank network on a task, albeit we do not
necessarily have a justification for them.

111

A. Supplements for chapter III

• Propagation of gradients in vanilla RNNs is notoriously difficult, and strategies involving
careful tuning of initial weights as well as gradient clipping (38) can considerably ease
training. In particular, we often initialized the weights of M and N by i.i.d. samples
of the standard normal distribution, which with the 1/N factor in the definition of
recurrent connectivity allows for approximately stable dynamics to emerge and remain
over many timesteps (122). Another possibility is to parametrize J, not following
Eq. (II.44) but as J = MN⊤ instead (that is, without the 1/N factor), and initialize
the entries of M and N from a normal distribution with standard deviation 1/

√
N .

Depending on situations, one or the other definitions of connectivity might be easier
to use, although we do not have a clear explanation why this is the case (note in the
second definition the imbalance between the magnitudes of recurrent weights, which
are on the order of 1/

√
N , and input weights on the order of 1, if those are trained).

• A popular strategy to train animals as well as artificial networks is by shaping, also
known as curriculum learning. In our cases, it involves for example progressively
increasing the duration of tasks, and in particular the range of delay periods for all
tasks, or adding smaller coherences during the training process. An interesting subject
for discussion, which we did not explore is whether the shaping strategy modifies the
computational implemetation used for task, as suggested by several studies (92; 127).

• We generally found that it was easier to train full-rank networks on a given task than
low-rank networks (but for low-rank networks, increasing the rank does not in general
make the training faster or easier). An interesting strategy to obtain low-rank network
solutions of tasks is thus to first train a full-rank RNN on it, then initialize a low-rank
network from the truncated SVD of the trained full-rank RNN, and train it on the
task from this state. As illustrated in chapter V and (181), a full-rank RNN with
truncated SVD in general looses its ability to perform a task, even though it has
only learned low-rank structure (181). Nevertheless, the truncated SVD seems to
contain a certain amount of signal useful to retrieve the desired low-rank structure
faster than from an initial random connectivity. Note also that such a truncated SVD
might embed non-zero overlaps between the m(r) and n(r) vectors, while for random
initial connectivity these overlaps will be very small. It is possible that these are
taken advantage of by the low-rank RNN to propagate gradients and generate useful
dynamical features. As such, another strategy that proved to be efficient was simply
to initialize M and N so that the columns of N have a certain non-zero overlap with
those of M (that is m

(r)
i and n

(r)
i are correlated and not independent).

To conclude, these are strategies that appear to have worked for the authors in some
situations, sometimes when used jointly, sometimes independently. A precise characterization
of when and why they work remains lacking, as the training procedure was in this work a
means and not a goal of our research. Nevertheless, due to the considerable memory and
computation efficiency of low-rank networks compared to full-rank ones (at no point in the
training or usage of such networks is it required to compute a N2-parameter matrix), it is
possible that understanding how to train them better proves useful for practical applications.

A.5 Supplementary figures

112

A.5. Supplementary figures

b. c. d.a.

Figure A.1: Additional ePAIRS results. (a) p-values given by the ePAIRS test on selectivity
spaces for the full-rank networks displayed in Fig. 1d (two-sided ePAIRS test, 100 networks
per task, n = 512 neurons for each network). (b) p-values given by the ePAIRS test on
connectivity spaces for the low-rank networks displayed in Fig 1h (two-sided ePAIRS test,
100 networks per task, n = 512 neurons for each network). (c) ePAIRS effect sizes on the
selectivity space for the same low-rank networks (two-sided ePAIRS test, 100 networks per
task, n = 512 neurons for each network). (d) Corresponding ePAIRS p-values.

113

A. Supplements for chapter III

0 100 200 300 400 500
0

100

200

300

400

500

−10

0

10

−2 0 2

coherence

0.0

0.5

1.0

ch
oi

ce
s

to
ri
gh

t

trained

resamp.
I

m
n

coherence
+0.6

+0.2

-0.2

-0.6

mi

ni

a. b. c.

d. e.

*** J

J
ij

βA
i

βB
i

β
A i

IAi

f.

g. h. i.

j. k.

βA
i

βB
i

β
A i

IAi

E�ect of neural non-linearity

Non-functional populations

Normal
regime

Strong input
regime

n.s.

Figure A.2: This figure illustrates two situations in which the ePAIRS test leads to
false positives, and identified non-random population structure that is not computationally
relevant. (a)-(f) The activity in a single network trained on the MDM task and used in
Fig. 1 was compared in two conditions: (a-c) in response to inputs of the scale used for
training; (d-f) in response to inputs scaled by a factor 10. The corresponding regressor
spaces were then tested for non-random population structure via the ePAIRS test. No
evidence for population structure in selectivity or connectivity space is found for inputs in
the range used for training (a-c). Using stronger inputs however leads to positive ePairs in
the selectivity space, although the underlying connectivity is identical (d-f). (a) Slice of the
selectivity space for this network representing regression coefficients for each neuron with
respect to inputs A and B. (b) In this input regime, regression coefficients with respect to
inputs are linear functions of the components along the corresponding input vectors (each
point represents a neuron in the network). (c) An ePAIRS test on the selectivity space in
that case leads to a non-significant outcome (p = 0.48, c = 0.03, n = 512 neurons). (d) As
in (a), for the same network, but driven with inputs 10 times larger than those used for
training. The individual units are in this case driven to saturation so that the points in the
selectivity space are concentrated along the borders of a square.

114

A.5. Supplementary figures

Figure A.2 (previous page): (e) Same as (b) in the strong input regime. The relation between
the original input vector and the obtained regression coefficients reflects the underlying
non-linearity as neurons are driven to saturation. (f) ePairs on the square-like distribution
in selectivity space shown in (d) rejects the null hypothesis for random population structure
(p = 2 × 10−6, c = 0.30, n = 512). (g)-(k) An example network trained on the Perceptual
Decision Making task exhibiting spurious, computationally irrelevant population structure
detected by the ePAIRS test. This network was obtained by using a different scaling of
recurrent weights during training than in the rest of the work. For all networks in the
main text, the recurrent connectivity was defined as J = 1

N

∑
r m

(r)n(r)T with entries of
vectors m(r) and n(r) being of order 1 and the O(1/N) scaling of the connectivity matrix
being explicitly added in the network dynamics. For this example the recurrent connectivity
was instead defined as J =

∑
r m

(r)n(r)T with entries of the connectivity vectors being
of order O(1/

√
N), making the scaling of the connectivity matrix being implicit, which

led to different gradient descent dynamics and to significantly different solutions. Here a
rank-one network of 512 neurons is shown. (g) Scatter plot of the entries of each neuron on
the recurrent connectivity vectors m and n, showing two clusters symmetrical with respect
to the mean. Note that this cluster structure is very different from those seen in the rest
of the paper, which corresponded to zero-mean clusters with different covariance matrices,
while here two non-zero-mean clusters are visible. (h) The ePAIRS test detected evidence
for non-random population structure on the connectivity space (which is here 4-dimensional,
composed of vectors I, n, m and w. Here, p = 5 × 10−9, c = 0.35, n = 512). (i) The two
clusters seen in the scatter plot can also be made apparent in the connectivity matrix J if its
entries are properly ordered, here by ascending values of mi + ni. (j) State-space response
trajectories to different stimuli projected on the m-I plane are similar to those found for
the network shown in Fig. 2. (k) As for the network in Fig. 2, networks resampled from
a Gaussian distribution fit to the connectivity space of the trained network (black ellipse
in panel a) performed equally well as the trained network, showing that the population
structure found by the ePAIRS procedure was not computationally relevant, and might be
an artifact of learning.

115

A. Supplements for chapter III

Figure A.3: Determination of the minimal rank for each task. For each task and
each rank R between 1 and 5, ten rank-R networks were trained with different random
initial connectivity. For each task, a panel displays the performance of trained networks as
function of their rank.

116

A.5. Supplementary figures

a.

b.

c.

d.

ρ
=

1/
N

ρ
=

0
.1
/N

Figure A.4: Analysis of trained full-rank networks. (a)-(b) Analysis of full-rank
networks trained with initial connectivity weights of variance 1/N (100 networks for each
task). (a) Performance of truncated-rank networks. Following (181), we extract from
full-rank networks the learned part of the connectivity ∆J = J − J0 defined as the difference
between the final connectivity J and the initial connectivity J0. We then truncate ∆J
to a given rank via singular value decomposition, and add it back to J0. For each task,
a panel displays the performance of the obtained networks as function of the rank used
for the truncation. (b) Resampling analysis of truncated networks. Starting from the
truncated networks in (a) we fit multivariate Gaussians to the distribution of their ∆J in
the corresponding connectivity spaces. We then generate new networks by resampling from
this distribution, as done on the trained low-rank networks for Fig. 1i-l. For each task, a
panel displays the performance of the obtained resampled network as function of the rank
used for the truncation. (c)-(d) Same analyses as (a)-(b) for sets of networks trained with
initial connectivity weights of variance 0.1/N (100 networks for each task, for DMS 49/100
networks that had an accuracy < 95% after training and were ignored). Networks with
weaker initial connectivity are better approximated by their resampled low-rank connectivity.
This is due to the fact that larger initial connectivities induce correlations between ∆J and
J0 (181). The resampling destroys both this correlation and the population structure, leading
to performance impairments even when the population structure is potentially irrelevant.

117

A. Supplements for chapter III

tra
ine

d

1
po

p.

2
po

p.
0

.25

.5

.75

1

ac
cu

ra
cy

Rank 2

tra
ine

d

1
po

p.

2
po

p.
0

.25

.5

.75

1

ac
cu

ra
cy

Rank 3

tra
ine

d

1
po

p.

2
po

p.
0

.25

.5

.75

1
ac

cu
ra

cy

Rank 4

Figure A.5: Increasing the rank maintains the requirement for population
structure. For this figure we have trained low-rank networks with a rank higher than 1
on the CDM task, fitted a single Gaussian or a mixture of 2 Gaussians to the obtained
connectivity space, and retrained the obtained distribution (Methods A.3.6) to obtain
resampled networks with a performance as high as possible. Even with this additional layer
of retraining of the fitted distributions (which is only present in the main text for the DMS
task) the obtained single-population networks fell short of performing the CDM task with a
good accuracy. Here, 10 draws of a single network for each combination of rank and number
of populations are shown (line: median, box: quartiles, whiskers: range, in the limit of
median ± 1.5 interquartile range, points: outliers).

118

A.5. Supplementary figures

−10

0

10

IctxBIA IB n m w

IctxA

IctxB

IA

IB

n

m

IctxBIA IB n m w

IctxA

IctxB

IA

IB

n

m

IctxBIA IB n m w

IctxA

IctxB

IA

IB

n

m

IctxBIA IB n m w

IctxA

IctxB

IA

IB

n

m

1 2 3 4
0

1000

IAi

ni

ni ni

mi IctxAi

IctxBi

a

b

c

population
si

ze

Ctx A

Ctx B

inp. A inp. A inp. A inp. A inp. A

in
p.

 B
in

p.
 B

Full net pop. 1 inac. pop. 2 inac. pop. 3 inac. pop. 4 inac.

d

0

1

-1

IBi

e

Context A Context B
f

tra
ine

d
1
po

p

2
po

ps

3
po

ps

4
po

ps
0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

pos. choices

uA(t)

uB(t)

σ̃nIA

σ̃nIB

σ̃nm

uctxB(t)

uctxA(t)

κ(t)

Figure A.6: Alternative implementation of the CDM task. A network trained with
different hyperparameters offers an example of an alternative solution for the CDM task,
using 3 effective population and a fourth one accounting for neurons that are not involved
in the task (see Supplementary Text 3)). (a) Left: for each number of sub-populations, a
boxplot shows the performance of 10 networks with connectivity resampled from a Gaussian
Mixture Model (GMM) fitted to the trained network (line: median, box: quartiles, whiskers:
range, in the limit of median ± 1.5 interquartile range, points: outliers). Right: for the
GMM with four sub-populations, size of each component found by the clustering procedure.
(b) Four 2d projections of the 7-dimensional connectivity space. (c) Upper-right triangle of
the empirical covariance matrices for each of the four populations. (d) Illustration of the
mechanism used by the network at the level of latent dynamics. Populations 2 − 4 control
one effective coupling each, indicated by the matching color. (e) Psychometric matrices
similar to those shown in Fig. III.3 after inactivation of each sub-population. (f) Violin plots
showing the gain distributions of neurons in each of the four sub-populations in each context.

119

A. Supplements for chapter III

n m w

I

n

m −2

0

2

Perceptual Decision Makinga. b. Parametric Working Memory

n(1) n(2) m(1)m(2) w

I

n(1)

n(2)

m(1)

m(2) −1

0

1

c.

IB IcA IcB n m w

IA

IB

IcA

IcB

n

m
−1

0

1

IB IcA IcB n m w

IA

IB

IcA

IcB

n

m
−1

0

1

Context-dependent Decision Making

Population 1 Population 2

d.

IB n(1)n(2)m(1)m(2) w

IA

IB

n(1)

n(2)

m(1)

m(2) −1.5

0.0

1.5

IB n(1)n(2)m(1)m(2) w

IA

IB

n(1)

n(2)

m(1)

m(2)
−4

0

4

Population 1 Population 2

Delay Match-to-Sample

Figure A.7: Statistics of connectivity in trained networks. Upper left corner of
the empirical covariance matrix between connectivity vectors for networks trained on each
task, after clustering neurons in two populations for tasks CDM and DMS. These covariance
matrices are then used for resampling single-population and two-population networks that
successfully perform each task.

120

A.5. Supplementary figures

IA

m

IB

m

IB

m

IA

m

IA

m
IB

m

Context A

Context B

rotate reorder

by
B signal

rotatereorder

by
A signal

+0.5
+1

-0.5
-1

+0.5
+1

-0.5
-1

A signal strength B signal strength

Figure A.8: Context-dependent decision-making state-space dynamics. Here we
reproduce figures akin to those presented in (118) for the trained low-rank network used
in figures 4 and 5. We generate 32 conditions corresponding to different combinations of
context, signal A coherence and signal B coherence and then project condition-averaged
trajectories either on the plane spanned by the recurrent connectivity vector m (which
corresponds to the choice axis) and the input vector IA, or on the m − IB plane. Similarly
to what was observed in (118), signal A strength is encoded along the IA axis, even when it
is irrelevant (lower left corner), and signal B strength is encoded along the IB axis, even
when it is irrelevant (top right corner).

121

A. Supplements for chapter III

κ
2

Fix Stim 1 Delay Stim 2 Decision

κ
2

κ
2

κ1

κ
2

κ1 κ1 κ1 κ1

Trial A-A

Trial A-B

Trial B-A

Trial B-B

Figure A.9: Dynamics of the variables κ1 and κ2 for a rank 2 network trained on the
delay-match-to-sample task on 4 different trial types and for each epoch of the task. The
trajectories are superposed on the flow field of the network as visible on an affine plane of
the state space (see main figure 4i), dependent on the input present at each epoch. Dotted
lines indicate the parts of the trajectory from previous epochs.

R
an

d
o

m

se
le

ct
iv

it
y

to
 c

tx
 A

se
le

ct
iv

it
y

to
 c

tx
 Bco

nt
ex

t d
ep

en
de

nt
pe

rf
or

m
an

ce

0.5

0.75

1

context selectivity

0

0. 025

ch
an

ge
 in

 s
tim

ul
us

 s
el

ec
tiv

ity

-0. 025
− 0.25 0 0.25

r = -0.75

Figure A.10: Control for the strength of context cues in the MDM task. Here the
context input vectors have been multiplied by a factor five compared to the network analyzed
in Fig. III.6g. (a) Context cues are thus able to set the functioning point of some neurons
closer to the saturating part of the transfer function, leading to the observation of non-linear
mixed-selectivity between context and changes in sensory representation with context. (b) As
opposed to the CDM task, this particular feature of selectivity is not functional as revealed
by specifically inactivating neurons with a high selectivity to context A or B, showing a
similar decrease in behavioral performance as for randomly selected neurons.

122

Supplements for chapter IV B

B.1 Kalman filtering equations

We reproduce in this appendix the recurrence equations followed by the conditional distribu-
tions in equation (IV.7) for both the latent LDS and the linear RNN models.

For the latent LDS model, the conditional distributions are Gaussians and their form is
given by the Kalman filter equations (88; 232; 222). Following (232), we observe that for any
two timesteps τ ≤ t the conditional distributions P (yt+1|yτ , . . . ,y0) and P (xt+1|yτ , . . . ,y0)
are Gaussian, and we introduce the notations :

P (yt|yτ , . . . ,y0) := N (ŷτ
t , Wτ

t) (B.1)
P (xt|yτ , . . . ,y0) := N (x̂τ

t , Vτ
t) (B.2)

In particular, we are interested in expressing ŷt
t+1 and x̂t

t+1, which are the predicted future
observation and latent state, but also in x̂t

t which represents the latent state inferred from
the history of observations until timestep t included. To lighten notations, in the main text
we remove the exponent when it has one timestep difference with the index, by writing x̂t+1,
ŷt+1, Wt+1 and Vt+1 instead of respectively x̂t

t+1, ŷt
t+1, Wt

t+1 and Vt
t+1.

First, note that we have the natural relationships:

x̂t
t+1 = Ax̂t

t (B.3)
ŷt

t+1 = Cx̂t
t+1 (B.4)

Vt
t+1 = AVt

tA⊤ + Q (B.5)
Wt

t+1 = CVt
t+1C⊤ + R (B.6)

so that it is sufficient to find expressions for x̂t
t and Vt

t. After calculations detailed in (232)
or (222), we obtain:

x̂t
t = x̂t−1

t + Kt(yt − Cx̂t−1
t) (B.7)

Vt
t = (I − KtC)Vt−1

t (B.8)

where Kt is the Kalman gain given by:

Kt = Vt−1
t C⊤(CVt−1

t C⊤ + R)−1. (B.9)

123

B. Supplements for chapter IV

These equations form a closed recurrent system, as can be seen by combining (B.3) and
(B.7), and (B.5) and (B.8) to obtain a self-consistent set of recurrence equations for the
predicted latent state and its variance:

x̂t
t+1 = A(x̂t−1

t + Kt(yt − Cx̂t−1
t)) (B.10)

Vt
t+1 = A(I − KtC)Vt−1

t A⊤ + Q
= A(I − Vt−1

t C⊤(CVt−1
t C⊤ + R)−1C)Vt−1

t A⊤ + Q
(B.11)

From (B.10) we see that the predicted state at time t + 1, and thus the predicted
observation, depends on observations at timesteps τ ≤ t − 1 through the term x̂t, making
the system non-Markovian. Also note that equations for the variances don’t involve any of
the observations yt, showing these are exact values and not estimations.

This derivation however is not valid in the limit case R = 0, since Kt is then undefined.
In that case however, we can observe that yt lies in the linear subspace spanned by the
columns of C, so that one can simply replace (B.7) by:

x̂t
t = C+yt = xt, (B.12)

where C+ = (C⊤C)−1C⊤ is the pseudoinverse of C. Since this equation is deterministic, the
variance of the estimated latent state is equal to 0, so that equation (B.8) becomes Vt

t = 0.
This case can be encompassed by equations (B.3) - (B.8) if we rewrite the Kalman gain as:

Kt = C+ = (C⊤C)−1C⊤. (B.13)

Finally, for the linear RNN, the conditional distribution of equation (B.1) is directly
given by :

P (yt+1|yt, . . . ,y0) = N (Jyt, P) (B.14)

which shows that the predicted observation only depends on the last one, making the system
Markovian.

B.2 Equivalence in the large network limit

Here we make the assumption that the coefficients of the observation matrix are generated
randomly and independently. We show that in the limit of large n with d fixed, one obtains
KtC → I so that the LDS is asymptotically Markovian and can therefore be exactly mapped
to an RNN.

We start by considering a latent LDS whose conditional distributions obey equations
(B.1) - (B.11), with the Kalman gain obeying (B.9). To simplify (B.9), we focus on the
steady state where variance Vt has reached its stationary limit V in (B.11).

Without loss of generality, we reparametrize the LDS by applying a change of basis to
the latent states such that V = I. We also apply a change of basis to the observation space
such that R = I in the new basis (this transformation does not impact the conditional
dependencies between the yt at different timesteps, and it can also be shown that it cancels
out in the expression KtC). The equation (B.9) then becomes:

KtC = C⊤(I + CC⊤)−1C. (B.15)

Applying the matrix inversion lemma gives (I + CC⊤)−1 = I − C(I + C⊤C)−1C⊤, from
which we get:

KtC = C⊤C − C⊤C(I + C⊤C)−1C⊤C.

124

B.3. Derivation of the RNN to LDS mapping

Using a Taylor expansion we then write:

(I + C⊤C)−1 = (I + (C⊤C)−1)−1(C⊤C)−1

= (
∞∑

k=0
(−(C⊤C)−1)k)(C⊤C)−1

≈ (C⊤C)−1 − ((C⊤C)−1)2 + ((C⊤C)−1)3,

which gives:

KtC ≈ C⊤C − C⊤C(C⊤C)−1C⊤C + C⊤C((C⊤C)−1)2C⊤C − C⊤C((C⊤C)−1)3C⊤C
≈ C⊤C − C⊤C + I − (C⊤C)−1.

Assuming the coefficients of the observation matrix are iid. with zero mean and unit
variance, for n large we obtain C⊤C = nI + O(

√
n) from the central limit theorem, so that

(C⊤C)−1 = O(1/n) (which can again be proven with a Taylor expansion). This finally leads
to KtC = I + O(1/n).

An alternative proof takes advantage of the spectral theorem applied to C⊤C. Indeed,
since it is a symmetric matrix, it can be decomposed as C⊤C = UDU⊤ where U is an
orthonormal matrix and D the diagonal matrix of eigenvalues. Starting from (B.15) we
derive:

KtC = C⊤C − C⊤C(I + C⊤C)−1C⊤C
= UDU⊤ − UDU⊤(I + UDU⊤)−1UDU⊤

= UDU⊤ − UDU⊤(U(D + I)U⊤)−1UDU⊤

= UDU⊤ − UDU⊤U(D + I)−1U⊤UDU⊤

= UDU⊤ − UD2(D + I)−1U⊤

= U(D − I/(D + I))U⊤

= U(D/(D + I))U⊤

= U(I − I/(D + I))U⊤

= I − U(I/(D + I))U⊤

Assuming as before that the coefficients of C are iid. Gaussian with zero mean and unit
variance, C⊤C is then the empirical covariance of iid. samples of a Gaussian ensemble with
identity matrix covariance. The matrix C⊤C = UDU⊤ then follows the (I, n)-Wishart
distribution, and for n large its eigenvalues are all greater than

√
n (using for example the

tail bounds of (218), Theorem 6.1). This shows that (I/(D + I)) = O(1/
√

n)I, completing
the proof.

B.3 Derivation of the RNN to LDS mapping

As mentioned in section IV.4, we consider an RNN defined by (IV.4), with J = MN⊤ and
note C an orthonormal matrix whose columns form a basis of F , the linear subspace spanned
by the columns of M and N. Note that CC⊤ is an orthogonal projector onto the subspace
F , and that since all columns of M and N belong to this subspace we have CC⊤M = M
and CC⊤N = N. Hence, we have:

CC⊤JCC⊤ = J. (B.16)

125

B. Supplements for chapter IV

We thus define the latent vector as xt = C⊤yt, and we can then write:

xt+1 = C⊤yt+1

= C⊤Jyt + C⊤ϵt

= C⊤CC⊤JCC⊤yt + C⊤ϵt (by (B.16))
= C⊤JCC⊤yt + C⊤ϵt (because C⊤C = I)
= Axt + wt,

where we have defined the recurrence matrix A = C⊤JC and the latent dynamics noise
wt = C⊤ϵt which follows wt ∼ N (0, Q) with Q = C⊤PC.

Let us define vt = yt − Cxt = (I − CC⊤)yt. We need to determine the conditions under
which vt is (i) normally distributed, and (ii) independent of yt−1 and xt. For this, we write:

Cxt = CAxt−1 + Cwt−1

= CC⊤JCxt−1 + Cwt−1

= CC⊤JCC⊤yt−1 + Cwt−1

= Jyt−1 + Cwt−1,

and hence:

vt = ϵt−1 − Cwt−1

= (I − CC⊤)ϵt−1,

which is independent of yt−1 and has a marginal distribution vt ∼ N (0, R) with
R = P − CC⊤PCC⊤, but is not in general independent of wt−1. A sufficient and necessary
condition for the independence of wt−1 and vt is that the RNN noise covariance P has
all its eigenvectors either aligned with or orthogonal to the subspace F (in this case, the
covariance R is degenerate and has F as a null space, which implies that observation noise
is completely orthogonal to F). If that is not the case, the reparametrization stays valid up
to the fact that the observation noise vt and the latent dynamics noise wt can be correlated.

B.4 Addition of input terms

Let us consider an extension of both the latent LDS and the linear RNN models to take into
account inputs. More specifically we will consider adding to both model classes an input
under the form of a time-varying signal ut fed to the network through a constant set of
input weights. In the latent LDS model, the input is fed directly to the latent variable and
equations (IV.1)-(IV.2) become :

xt = Axt−1 + But + wt, wt ∼ N (0, Q) (B.17)
yt = Cxt + vt, vt ∼ N (0, R), (B.18)

The linear RNN equation (IV.4) becomes :

yt = Jyt−1 + Winut + ϵt, ϵt ∼ N (0, P), (B.19)

so that we will represent by B a low-dimensional input projection, and Win a high-
dimensional one.

For the LDS to RNN mapping, we can directly adapt the derivations of section IV.3.2,
which lead to :

yt+1 | yt ∼ N (CBut + Jtyt, Pt) (B.20)

126

B.4. Addition of input terms

with the same expressions for Jt and Pt, given in equations (IV.17)-(IV.18).
For the RNN to LDS mapping, assuming again that J is low-rank and written as

J = MN⊤, we can define:

xt = C⊤yt

where C is a matrix whose columns form an orthonormal basis for the subspace F
spanned by the columns of M, N and Win. This latent vector then follows the dynamics:

xt+1 = CJC⊤xt + C⊤Winut + C⊤ϵt (B.21)

which corresponds to equation (B.17), and it is straightforward to show that it leads to
equation (B.18), with the technical condition that the covariance of ϵt should have its
eigenvectors aligned with the subspace F to avoid correlations between observation and
recurrent noises.

127

Supplements for chapter V C

C.1 Cognitive tasks

Here we describe the input and output structure for the four cognitive tasks used in this study.
In all tasks we use the notations from section 2, considering Nin input signals us(t) and one
target output z∗(t), that can be defined only at specific timepoints of a trial. Durations are
given in an abstract time mapping, but tasks are implemented in a discretized time with
timestep dt = 20ms

Decision-making task (DM). The network receives one input signal us(t), equal to
Gaussian white noise with standard deviation 0.1 (as for subsequent tasks), added to a mean
coherence u drawn uniformly from ±0.1 × {1, 2, 4}. The target output z∗ is defined only
at the final timestep of the trial, and is equal to the sign of the trial coherence. Each trial
starts with a 100ms fixation period with no input, followed by an 800ms stimulus epoch, a
300ms delay epoch and a decision timestep.

Working memory task (WM). This task is inspired on the traditional parametric
working memory and comparison experimental paradigm. The network receives one input
signal, equal to:

u(t) = f1δ1(t) + f2δ2(t) + ξ(t)
where f1 is randomly sampled in [10, .., 34], f2−f1 is randomly sampled in {−24, −16, −8, 8, 16, 24}

with the constraint that 10 ≤ f2 ≤ 34 and ξ(t) is white Gaussian noise. The target output
z∗(t) is defined only at the final timestep and equal to the exact value f2 − f1. Each trial
starts with a 100ms fixation period with no input, followed by a 100ms stimulus 1 epoch
(where δ1(t) = 1), followed by a 500ms delay epoch, followed by a 100ms stimulus 2 epoch
(where δ2(t) = 1) and a decision timestep.

Context-dependent decision-making (CDM). This task aims at modelling the
experimental work of (Mante, Sussillo et al., 2013) (118). The network receives four inputs,
two noisy input signals uA(t) and uB(t) defined as for the DM task with independently
drawn coherences and noise, and two contextual inputs uctxA(t) and uctxB(t) defined as a
one-hot encoding of the trial context. The target output during the final task epoch is set
to the sign of the coherence of the input indicated by the active contextual cue.

For the application of LINT to a full-rank network, the task was defined in five epochs: a
100ms fixation epoch with no inputs, a 350ms epoch with only contextual inputs, an 800ms
stimulus epoch, with both noisy stimuli and contextual inputs, a 100 ms delay epoch and a
20ms decision epoch which is the only one where the target output z∗(t) was defined.

For the application of LINT to electrophysiological recordings, four epochs were used:
a 350ms epoch where only contextual inputs were active, a 650ms stimulation epoch, an

129

C. Supplements for chapter V

80ms delay epoch and a 20ms decision epoch (used for computing task accuracy on the
fitted networks). The trained networks were constrained to reproduce neural activity only
during the last three epochs. The coherences used in this part of the work were sampled
from ±{0.047, 0.15, 0.5} for monkey A, ±{0.07, 0.19, 0.54} for monkey F.

Delay Match-to-Sample (DMS). This task reproduces a paradigm where two consec-
utive stimuli each either of type A or B are presented, and the subject distinguishes between
matches (both stimuli of the same type) and non-matches (stimuli of different types). In
our models, the stimuli are given through two input signals uA(t) and uB(t), with Gaussian
white noise centered around 0 or 1 while the corresponding stimulus is active. The task
comprises five epochs, a fixation epoch of duration 100ms, a first stimulation epoch of 500ms,
a delay epoch of variable duration between 500 and 3000ms, a second stimulation epoch of
500ms and a decision epoch of 1000ms. During each stimulation epoch a single type between
A and B is sampled and the corresponding input signal is set to a mean of 1. The target
output z∗(t) during the decision epoch is equal to 1 for a match, -1 for a non-match.

C.2 Training details and hyperparameters.

Task-optimized lrRNNs. The full-rank RNNs were defined following a discretized version
of equation (V.1):

xt+1 = xt + ∆t

τ

(
−xt + Jϕ(xt) +

Nin∑
s=1

I(s)us,t + ηt

)
, (C.1)

with ηt a random normal vector with independent entries and standard deviation 0.05 on
each entry, and ∆t = 20ms, τ = 100ms. All networks were defined in pytorch (140) and
trained using the ADAM optimizer. We trained networks on 800 random trials, for a certain
number of epochs being divided in 25 batches of 32 trials. We considered networks with
N = 512 units for this part of the work.

For the low-rank RNNs (section V.3), we trained the m(r) and n(r) vectors. For each
task, we found the minimal rank by training networks of increasing rank until they performed
the task with more than 95% accuracy. For the DM and CDM tasks, the weights were all
initialized following a random Gaussian distribution of standard deviation 1, and 4 for the
readout weights wi. For the WM task, the rank-two networks were initialized from the
SVD of the connectivity matrix of a full-rank RNN previously trained on the task. For the
DMS task, this initialization trick was also used, as well as the following shaping procedure:
rank-two networks were first trained on trials with a maximal delay of 700ms, then 1000ms,
and finally 4000ms. The learning rates used were of 0.01 for all low-rank networks, and on
the order of 10−4 for full-rank networks.

For the full-rank RNNs (section V.4), we trained the connectivity matrix J. The initial
weights were sampled from centered Gaussian distributions with a standard deviation of 1
for input and readout weights, and ρ/

√
N for connectivity coefficients Jij . The values of ρ

used in the main text were 0.1 for the CDM task, and 0.8 for the DMS task, with results for
other values displayed in Sup. Fig. ??.

LINT on data from task-optimized lrRNNs. For the application of LINT to
synthetic data generated from the task-optimized lrRNNs, we generated 800 trials for
each task, simulated the trajectories displayed by the task-optimized networks on these
trials, and trained identical RNNs, all initialized with random weights, to reproduce these
trajectories. The networks were then tested on 800 newly sampled trajectories to obtain the
reported values of R2. Given trials k ∈ {1, . . . , K}, timesteps t ∈ {1, . . . , T} and neurons
i ∈ {1, . . . , N}, the global R2 is computed as:

130

C.3. Delay Match-to-Sample full-rank network reverse-engineering

R2 = 1 −

∑
k

∑
t

∑
i

(
x

(k)
i (t) − x̃

(k)
i (t)

)2

∑
k

∑
t

∑
i

(
x̃

(k)
i (t) − ⟨x̃(k)

i (t)⟩k,t,i

)2 (C.2)

following the notations of section V.2.
LINT on data from task-optimized vanilla RNNs. For this application of LINT,

synthetic data was generated from task-optimized full-rank RNNs by simulating their
responses to 800 trials for each of the two tasks. Inferred low-rank networks were trained
for 500 epochs on those trials, and then tested on 800 newly generated trials. Reported R2

values were computed with equation (C.2).
LINT on electrophysiological data. Low-rank networks trained to reproduce trajec-

tories were trained on a set of 64 random conditions out of 72, and tested on the remaining 8
conditions to compute reported R2. To compute the task accuracy, a linear decoder w was
trained on the decision epoch of the task to report the correct choice on all 72 conditions,
and the obtained accuracy was reported.

C.3 Delay Match-to-Sample full-rank network reverse-engineering

To display another example of how LINT can be exploited to reverse-engineer mechanisms
used by a “black-box” full-rank RNN, we apply it to the networks trained on another task.
Here we consider the DMS task, where the network receives two consecutive stimuli chosen
among two possible classes A and B, separated by a delay period, and has to output during
its response period a positive value if the stimuli were of the same class ("match"), a negative
value otherwise ("non-match", see full details in appendix C.1).

When training full-rank RNNs on this task, it appeared that they could be well approxi-
mated by lrRNNs of a rank usually equal to two (Fig. V.2), irrespective of their training
hyperparameters (Sup. Fig. C.1). Here, we focus on a full-rank RNN trained with an ini-
tial connectivity of standard deviation equal to 0.8/

√
N and N = 512 units, which was

well approximated by a rank-two lrRNN (R2 fit qualities for individual neurons shown
in Sup. Fig. C.3a). Indeed, this network, although trained without any constraint on its
connectivity, exhibited low-dimensional trajectories as can be seen by performing a PCA
(Sup. Fig. C.3b). An idea of how neural geometry enables the networks to perform the
task can be obtained by observing projections of the trajectories on spaces spanned by
the first principal components. Typically, observing projections on the top 3 components
(Sup. Fig. C.3c), it becomes apparent that the network relies on four fixed points, one for
remembering that the first stimulus is A during the delay period (middle right), one for
remembering that the first stimulus is B (at the left), also used to indicate a match, one
to indicate a non-match (at the right) and finally one to indicate only a match A-A (at
the right). Stimulus inputs seem to drive activity through transient tunnels from one fixed
point to another. This picture provides a certain grasp of phenomena happening in the
network, but does not illuminate how dynamics enable activity to correctly jump between
fixed points, nor how connectivity enables this dynamical picture to emerge.

The rank-two network inferred by LINT has its activity constrained by design to a
four-dimensional subspace of the neural state-space, spanned by the two input vectors of
the network IA and IB as well as the two output vectors of the recurrent connectivity m(1)

and m(2). These four vectors indeed have a significant overlap with the top four principal
components (Sup. Fig. C.3d), with the difference that they disentangle input from recurrent
contributions to neural activity. The rank-two connectivity is also characterized by two
input-selection vectors of the recurrent connectivity n(1) and n(2), which will be a key driver
of the network dynamics, as well as a task readout w.

Projecting the neural trajectories on the subspace spanned by the two output recurrent
vectors shows indeed that the activity of the rank-two network reproduces well that of the

131

C. Supplements for chapter V

original network, and that both networks rely on four fixed points to perform the task in
the manner outlined above (Sup. Fig. C.3e). In the absence of inputs, the neural dynamics
of the rank-two network stay confined to the two-dimensional m(1)-m(2) space, so that the
full autonomous dynamics can be visualized as a vector field, illuminating the dynamical
inner workings of such networks (Sup. Fig. C.3f). This reveals the existence of the four stable
fixed points in the dynamical landscape, as well as an unstable fixed point at the origin and
four saddle points. Moreover, while tonic inputs are received, which is the case during each
stimulation period, the dynamics shift to a two-dimensional affine subspace of the neural
state space, parallel to the m(1)-m(2) plane but shifted along the received input vector. The
dynamics while a tonic input is received can thus also be visualized as a two-dimensional
vector field (Sup. Fig. C.3g), explaining how inputs drive transitions from one fixed point to
another. More specifically, only the two stable fixed point on the lower part of the plane
are kept during a stimulation by input A, while dynamics have a slight clockwise rotational
component. Hence, if input A is received during a short stimulation period, they are driven
towards the lower right part of the plane, where they can stay in a fixed point during the
delay period (red and orange trajectories), and if a second input A is received, they will
be driven towards the lower left fixed point. Conversely, under input B stimulation, only
the two fixed points on the top of the plane are kept, with a very slight counterclockwise
rotational component on this plane (at least under the vicinity of the origin, although not
very visible in the plotted field). Hence, if stimulus B is received first, the network will be
driven to the top left fixed point. If a second stimulus B is received, the network will stay in
that state, whereas if a second input A is received it will be driven towards the top right
fixed point (non-match).

These full dynamical landscapes provide us with a step-by-step decomposition of the
task trials, and can also lead to predictions for trials taht do not appear in the task (for
example we could predict the network behavior if three stimulations are received, or with
longer or shorter stimulations). Moreover, the rank-two connectivity can illuminate how
this dynamical behavior emerges from the learned synaptic weights (? ?). A detailed
account would go beyond the scope of this text, but some insights can be extracted easily:
first, looking at the distribution of the weights of all neurons on vectors m(1) and m(2)

(Sup. Fig. C.3h), it appears that they separate in four clusters, each scattered around a
different mean forming a quadrilateral on this plane. This type of population structure
has been shown to enable the apparition of polygons of stable fixed points in the neural
state space (see notably (?)). The way in which inputs modify dynamics can also be
explained by connectivity features: more specifically, inputs A and B seem to modify the
gains of different groups of neurons, as was the case for the contextual cues in the CDM
task. Importantly, the neurons that are driven to a low-gain regime by input A (defined as
the set of neurons i such that |IA

i | > 1) are characterized by a negative correlation between
vectors n(1) and m(2), and neurons driven to a high-gain regime by the same input exhibit
a different correlation between these two vectors. Due to this differential distribution, while
input A is received the effective coupling between the two latent variables κ1 and κ2 is
modified. A converse situation happens with input B, explaining how input A generates this
slight clockwise rotational component in the dynamics, and input B generates an opposite
rotation. These local rotations, coupled with correlations between inputs and the recurrent
vectors lead to the apparition of the plotted dynamical landscapes. These analyses could
be verified by examining gains of neurons and performing ablation studies in the full-rank
network, as has been done for the CDM task.

C.4 Supplementary figures

132

C.4. Supplementary figures

ρ = 0.1 ρ = 0.5 ρ = 1

ρ = 0.5 ρ = 0.8 ρ = 1.2

CD
M

 ta
sk

D
M

S
ta

sk

Figure C.1: For different values of ρ, where the standard deviation of initial recurrent
weights is ρ/

√
N , we train 10 unconstrained networks, and either fit low-rank networks to

their trajectories with increasing ranks or truncate their connectivity matrices to the same
rank. The obtained R2 similarity between original and fitted trajectories and task accuracy
when plugging low-rank networks to the original readout are illustrated with a different line
for each original unconstrained network. Top 2 rows: experiments on Context-dependent
decision making task. Bottow 2 rows: experiments on the Delay Match-to-Sample task.
Note that with higher initial random recurrent weights, unconstrained networks tend to go
to what has been termed as the “lazy” training regime, with potentially higher dimensional
trajectories with respect to the the “rich” training regimes for smaller initial weights (55).
This is visible through the poor performance of truncated connectivity matrices, but does
not harm the effectiveness of our method.

133

C. Supplements for chapter V

stim
. B coh.

stim
. A

 coh.

-

+

-

+

Context BContext Aa.

b.

correlation

c.

d.

ni

ni

IAi

IBi
in

p.
 B

in
p.

 B

in
p.

 B

All cells

Ct
x

A
Ct

x
B

inp. A inp. A

in
p.

 B

No pop. B No pop. A

inp. A

e.

inp. A inp. Ainp. A

All cells No pop. B No pop. A

Rank-one (inferred) Full-rank (result)

proportion
positive
choices

Figure C.2: Additional figures on LINT applied to a full-rank network performing the
CDM task (exhibited in figs. V.3 and V.4). a. Low-dimensional projections of trial-averaged
population trajectories for several combinations of context, stimuli A and B and choice, as
in Fig. V.3 in the original full-rank network (full lines) and the inferred rank-one network
(dashed lines), projected on axes found by targeted dimensionality reduction (TDR) (118)
applied to the full-rank network. b. Correlation between the four axes found by TDR
on the full-rank network and the connectivity axes inferred by LINT. c. Number of units
assigned to each of the three populations used for the reverse-engineering. Here, we manually
defined population A as the 100 units with the strongest absolute context A input weight
in the rank-one network (see Fig. V.3a top), and population B as the 100 units with the
strongest context B input weight not in pop. A. Applying Bayesian GMM clustering with
3 components and a strong mean precision prior gives very similar results. d. For the
inferred rank-one network, joint distributions of connectivity weights on the input vector IA

and n, as well as on IB and n. For each population, linear regression lines are plotted. e.
Psychometric response matrices in each context for all combination of stimulus coherences,
for the inferred and original network when they are left unperturbed or after lesioning
populations A and B. Unperturbed matrices indicate expected behavior. One can observe
that inactivation of population B leads the networks to always behave as if in context A
(losing its capacity to perform in context B), whereas the opposite phenomenon happens
when population A is inactivated.

134

C.4. Supplementary figures

R2

principal component

cu
m

. e
xp

. v
ar

. r
at

io

PC 1 PC 2
PC 3

PC
 a

xe
s

LINT axes

m(1)rec. vector

m
(2

)
re

c.
 v

ec
to

r

m(1)rec. vector

m
(2

)
re

c.
 v

ec
to

r

m
(2

)

m
(2

)

m
(2

)

m(1) m(1) m(1)

m
(2)
i

m
(1)
i

no input input A input B

m
(2)
i m

(2)
i

n
(1)
i

n
(1)
i

a.

b.

c.

d.

e. f.

g.

h. i. j.

correlation

Figure C.3: LINT applied to a full-rank RNN trained on the DMS task. A rank-two
network was inferred and is analyzed in this figure (see Appendix C.3 for details). a. Boxplot
representing the distribution of R2 fitting values for individual neurons. b. Cumulative
explained variance ratio for top 10 principal components of a PCA applied to trajectories of
the full-rank network. c. Trajectories in the four possible task conditions in the original
full-rank network, projected on the top 3 principal components (squares: delay period, stars:
end of trial). d. Correlation between axes inferred by a PCA on the full-rank trajectories and
connectivity axes of the inferred rank-two network. e. Trajectories of the full-rank network
(full lines) and the rank-two model (dashed lines) in the four task conditions, projected
on the two recurrent connectivity output vectors m(1) and m(2) (same colors as in c). f.
Same trajectories, superposed on the vector field representing autonomous dynamics in the
rank-two RNN. Colors indicate speed of the dynamics (blue: slow, yellow:fast). g. Vector
fields representing the dynamics on the m(1)-m(2) plane. h-j. Connectivity parameter
distributions on the rank-two models... h. on the two recurrent output vectors m(1) and m(2)

- four populations can be identified by GMM clustering. i. on the connectivity vectors m(2)

and n(1) - low-gain neurons while input A is received in red, others in green with overlaid
linear regressions for both groups. j. on the same vectors, with low-gain neurons while input
B is received in red, others in green.

135

C. Supplements for chapter V

Context BContext A
a.

negative motion, positive color, motion context

positive motion, negative color, motion context

positive motion, negative color, color context

negative motion, positive color, color context

b.

c.

correlation

color coh.
m

otion coh.

-

+

-

+

Figure C.4: Additional illustrations of LINT applied to electrophysiological recordings
in monkey A. a. Two-dimensional projections of trial-averaged population trajectories for
several combinations of context, choice, and motion or color coherence (indicated by the
color code), as in Fig. V.5c, in the recorded data (full lines) and the rank-one model (dashed
lines), projected on axes inferred by TDR. b. Correlation coefficients between axes identified
by TDR and LINT connectivity axes. c. Pre-processed data responses and rank-one model
responses for individual neurons to 4 different task conditions (uniquely identified by a
context, a color coherence, and a motion coherence. Strongest coherences displayed here).
Top row: four best fitted neurons. Middle row: four worse fitted neurons. Bottom row: four
randomly selected neurons.

136

C.4. Supplementary figures

Context BContext Aa.

b.

c.

d.

m
otion coh.-

+

color coh.

-

+

Figure C.5: LINT applied to electrophysiological recordings of a second monkey (monkey
F) performing the same task. a-c. Same as Fig. V.5 for monkey F data. For panel b, 13
neurons for which R2 < −1 do not appear, all having a mean firing rate of less than 3.8 Hz.
d. Same as Sup. Fig. C.4 for monkey F, with the 4 best fitted neurons, the 4 worse fitted
neurons, and 4 randomly selected neurons.

137

C. Supplements for chapter V

a. b.

IAi

IAi

IBi

IBi

IctxAi

IctxAi

IctxBi

IctxBi

mi

mi

ni

ni

Figure C.6: Distribution of learned connectivity parameters for monkey A. a. Full
six-dimensional distribution of the inferred weights on the input and recurrent connectiv-
ity vectors of the rank-one model, plotted through two-dimensional and one-dimensional
marginals. GMM clustering can identify two groups of neurons: large-weight neurons
(orange) and small-weight neurons (blue). Inactivating the blue population does not affect
task performance of the network. b. Same clusters visualized in the mean firing-rate - R2

point cloud (Fig. V.5a).

138

C.4. Supplementary figures

a. b.

IAi

IAi

IBi

IBi IctxAi

IctxBi

IctxBi

mi

mi

ni

ni

IctxAi

Figure C.7: Same as Sup. Fig. C.6

139

MOTS CLÉS

réseaux de neurones récurrents, dynamique de réseaux, neurosciences computationnelles, réduction de
dimensionalité, codage neuronal

RÉSUMÉ

À tout instant, des myriades de neurones coopèrent au sein d’un système nerveux, produisant des motifs d’activité
collectifs qui forment un substrat biologique pour la perception, la cognition, et le comportement. Les enregistrements in
vivo de centaines voire milliers de neurones chez l’animal suggèrent que ces motifs d’activité s’organisent souvent selon
des géométries particulières, dites à basse dimensionnalité, à partir desquelles les représentations mentales peuvent
être extraites. Ainsi, un paradigme actuel influent en neurosciences postule que les fonctions cognitives émergent à partir
des dynamiques de réseaux de neurones dont l’activité forme des motifs de basse dimensionnalité.
Une question essentielle qui demeure est de comprendre comment la structure d’un réseau neuronal génère ces dy-
namiques particulières de l’activité collective liées à sa fonction. Une voie prometteuse pour éclairer cette question con-
siste à étudier des réseaux récurrents dont les connexions sont organisées dans une matrice de bas-rang. Il a été montré
précédemment que cette propriété mathématique du réseau y induit naturellement des dynamiques de basse dimension-
nalité qui encodent des représentations utiles, telles qu’observées dans les expériences sur réseaux biologiques et artifi-
ciels. De tels réseaux de bas-rang peuvent-ils alors nous permettre d’ouvrir la « boîte noire » des réseaux récurrents, et
de comprendre comment leur fonctionnalité émerge de leur structure ? Et peuvent-ils s’appliquer à des enregistrements
de neurones biologiques, afin d’en extraire des hypothèses sur la structure sous-jacente des réseaux observés ? Cette
thèse vise à répondre à ces questions, à travers de nouvelles méthodes pour entraîner les réseaux de bas-rang, ainsi
qu’à travers une nouvelle théorie qui relie une description statistique de ces réseaux à leurs dynamiques et leur fonction.
Nous allons dans un premier temps exposer notre théorie et nos méthodes, expliquant comment les matrices de bas-rang
nous permettent de relier structure et fonction dans un réseau récurrent. Nous allons ensuite étudier des réseaux en-
traînés à réaliser de nombreuses tâches cognitives, construisant une compréhension systémique de leur fonctionnement.
Ces réseaux de bas-rang seront ensuite reliés à une classe de méthodes statistiques communes dans l’interprétation
d’enregistrements neuronaux, les systèmes dynamiques latents. Pour terminer, nous démontrerons les capacités des
réseaux de bas-rang pour disséquer le fonctionnement de réseaux artificiels récurrents non-contraints, ainsi que pour
interpréter des enregistrements corticaux in vivo.

ABSTRACT

At every instant, myriads of neurons collaborate in a nervous system, generating collective patterns of activity that form a
biological substrate for perception, cognition, and behavior. Recent in vivo recordings of hundreds or thousands of neu-
rons in awake animals suggest that this activity patterns form specific geometries, known as low-dimensional, from which
mental representations can be extracted. Hence, an influential contemporary paradigm in systems neuroscience posits
that neural computations emerge from the collective dynamics of networks of neurons which generate low-dimensional
activity patterns visible at the population level.
Understanding how the structure of a network impacts its dynamics and ultimately its function remains an important open
question, both for artificial and biological neural systems. A promising direction to illuminate this question is to study
recurrent networks whose connectivity is constrained to be low-rank. This particular mathematical property has been
previously shown to directly induce low-dimensional dynamics in a network, as those observed in artificial and biological
systems. Can thus low-rank networks help us “open the black-box” of recurrent computations? Can they reveal the links
between network structure and function? Can they generate hypotheses and insights from neural recordings? This thesis
aims at answering those questions, by developing new methods to train low-rank RNNs, and a new theory that links a
statistical description of network structure to its dynamics and function.
We will start by exposing our theory and methods, showing how low-rank matrices link structure and computations in a
recurrent network. We will then dissect low-rank networks trained to perform a range of cognitive tasks, obtaining mecha-
nistic insights from their trained connectivity. We will then relate the low-rank RNN model class to a set of methods widely
used to interpret neural recordings, the latent dynamical system models. Finally, we will demonstrate the capabilities of
low-rank RNNs to probe the computational mechanisms in unconstrained, full-rank RNNs, and to interpret in vivo cortical
recordings.

KEYWORDS

recurrent neural networks, network dynamics, computational neuroscience, dimensionality reduction, popula-
tion coding

	Introduction
	Prologue
	From neurons to networks
	Computations in brains and machines
	Neural dynamics and the state-space approach
	Outline of the work

	Low-rank recurrent networks as a window on neural dynamics
	Introduction
	Formalism
	Introducing low-rank recurrent neural networks
	Biological interpretation of the models
	Low-dimensional dynamics
	Collective dynamics in the mean-field limit
	Dynamics in Gaussian-mixture low-rank networks
	Effective circuit description of latent dynamics
	Drivers and modulators of latent dynamics
	Geometric interpretation

	Gaussian low-rank recurrent networks
	Gaussian-mixture low-rank recurrent networks
	Training low-rank recurrent networks

	The role of population structure in computations through neural dynamics
	Introduction
	Identifying non-random population structure in trained networks
	Interpreting computations in terms of latent dynamics
	Latent dynamics for fully random population structure
	Representing non-random structure with multiple populations
	Gain modulation of latent dynamics
	Predictions for neural selectivity and inactivations
	Implications for multi-tasking
	Discussion

	Relationship between linear low-rank networks and linear latent dynamical systems
	Introduction
	Modeling frameworks
	Latent LDS model
	Low-Rank Linear RNN
	Comparing the two models

	Mapping from LDS models to linear low-rank RNNs
	Non-equivalence in the general case
	Matching the first-order marginals of an LDS model
	Cases of equivalence between LDS and RNN models

	Mapping low-rank linear RNNs onto latent LDS models
	Subsampled RNNs

	Discussion

	Extracting computational mechanisms from neural data using low-rank RNNs
	Introduction
	Approach
	Validation with synthetic data and effective aspects of connectivity
	Application to reverse-engineering full-rank RNNs
	Extracting low-dimensional dynamics through low-rank connectivity
	Extracting computational mechanisms from inferred low-rank connectivity

	Application to neural recordings
	Discussion

	Discussion
	Bibliography
	Supplements for chapter III
	Parametrization and collective dynamics for mixture of Gaussians connectivity vectors
	Alternative implementation of the CDM task
	Methods
	Recurrent Neural Networks
	Network training procedure
	Definition of individual tasks
	Regression analyses and selectivity space
	ePAIRS analysis
	Resampling and clustering trained networks

	Training low-rank RNNs: some tricks of the trade
	Supplementary figures

	Supplements for chapter IV
	Kalman filtering equations
	Equivalence in the large network limit
	Derivation of the RNN to LDS mapping
	Addition of input terms

	Supplements for chapter V
	Cognitive tasks
	Training details and hyperparameters.
	Delay Match-to-Sample full-rank network reverse-engineering
	Supplementary figures

