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Résumé Long (French summary)

❏ Chapitre 1 : introduction
Le 21ème siècle a été le témoin d’avancées significatives, en particulier dans le domaine

de la robotique, alimentées par l’évolution continue de l’électronique et des capacités in-
formatiques. Les véhicules aériens sans pilote (UAV) sont devenus des acteurs essentiels
dans les environnements où l’intervention humaine est difficile, répétitive ou dangereuse.
Les UAVs sont largement utilisés dans divers domaines tels que la sécurité [Lee+21],
l’inspection et la photogrammétrie [Gha+21], la cartographie ou les opérations de vidéo-
surveillance [Mal+21], l’agriculture [Rad+20], les opérations internes de nombreux en-
trepôts et plateformes logistiques [Che+20], les missions de recherche et de sauvetage
[AKY21], les missions militaires [CAM20], etc. En particulier, les UAVs se sont révélés
être des outils polyvalents pour relever les défis posés par la crise du coronavirus [Res22].

Cependant, compte tenu du contexte géographique du financement de la thèse, un
accent particulier a été mis sur les missions situées dans l’environnement maritime. De
plus, l’aspect coopératif de l’utilisation des drones maritimes s’étend à des rôles innovants,
tels que l’utilisation de drones maritimes en tant que bateaux-mères. Ces bateaux-mères
peuvent servir de stations pour recharger les UAVs lorsque leurs batteries sont faibles,
prolongeant ainsi leur autonomie opérationnelle.

Néanmoins, dans le cadre de l’exécution de ces missions, l’accent géographique intro-
duit des défis distincts. Un exemple notable est la vulnérabilité d’un composant critique
(par exemple, le GPS) aux défaillances. Ces défaillances peuvent être dues à des facteurs
tels qu’une couverture satellitaire inadéquate ou des interférences délibérées par le biais
d’attaques de spoofing ou de jamming.

Pour relever ces défis, il est nécessaire de mener des recherches scientifiques perma-
nentes et de réaliser des avancées technologiques afin de renforcer ces systèmes aériens et
de garantir leur adaptabilité et leurs performances dans le cadre de missions maritimes
complexes. Cette approche interdisciplinaire est essentielle pour faire évoluer les capacités
des UAVs aériens et optimiser leur contribution à l’exploration maritime et aux efforts de
résolution des problèmes.
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❏ Positionnement scientifique
Les travaux de thèse de Chabha Hireche [Cha19] ont exploré les modèles de décision

utilisés dans le cadre d’une mission de drone. Ils ont confirmé que les modèles probabilistes,
en particulier les Processus de Décision Markoviens (MDP), sont largement adoptés pour
la prise de décision sous incertitude en robotique.

Pour compléter cet axe, la première problématique de cette thèse part de cette con-
statation et répond à la question suivante : quelle est la méthode la plus adaptée
pour résoudre un problème de décision sous incertitudes en fonction du con-
texte d’une mission dans le cadre embarqué ?

Cependant, dans diverses applications, les limitations énergétiques, de capacité infor-
matique et d’exécution rendent souvent un seul drone (UAV) inadéquat pour une couver-
ture étendue. Les systèmes multi-drones (UAV), tels que les essaims, visent à obtenir une
couverture plus large, une surveillance améliorée et une exécution plus efficace des missions
par une action coopérative pour recueillir rapidement et précisément des informations.

La figure 1 schématise les autres problématiques scientifiques auxquelles cette thèse se
propose d’apporter des réponses.

Figure 1 – Mission collaborative entre drones aériens et maritimes.

Au sein d’un système multi-UAV, les décisions peuvent être en conflit et s’écarter
des objectifs de la mission, nécessitant ainsi un mécanisme de gestion des conflits. Cette
observation nous amène à une deuxième problématique : quels sont ces conflits et
comment les résoudre dans un cadre d’une mission multi-UAV modélisé à
l’aide de MDPs ?

Enfin, dans le cadre des missions collaboratives avec des systèmes multi-UAV, une
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troisième et dernière problématique se pose qui est la suivante : comment peut-on
s’assurer qu’un drone peut réaliser sa mission en complète autonomie ? com-
ment mettre en œuvre la résolution de conflits au sein d’un système multi-UAV
tout en minimisant les communications via le cloud et en réduisant le volume
de données à transmettre de façon à favoriser au maximum l’autonomie des
drones ?

Avant d’entamer l’exploration détaillée de la résolution de conflits dans un cadre d’une
mission multi-UAV, un état des lieux approfondi de la prise de décision distribuée pour
les systèmes de véhicules aériens multi-UAV sous incertitudes est présenté.

❏ Chapitre 2 : état des lieux de la prise de déci-
sion distribuée pour les systèmes de véhicules aériens
multi-UAV sous incertitudes

Dans la première partie de ce chapitre, nous avons présenté une vue d’ensemble des
drones, les classifiant en fonction de leur poids, altitude et endurance. La deuxième partie
a principalement énuméré les avantages de l’utilisation d’un système multi-UAV, com-
prenant notamment la parallélisme, la rentabilité, l’efficacité temporelle, l’efficacité én-
ergétique, la complémentarité et la scalabilité. La troisième partie a approfondi cet aspect
en explorant les applications des systèmes multi-drones utilisés au cours de la dernière
décennie. Cela a conduit à une expansion significative des missions des drones vers des
domaines diversifiés, englobant la surveillance vidéo, l’inspection et le suivi, les réseaux, la
photogrammétrie et la SLAM, ainsi que la recherche et le sauvetage. Cette diversification
témoigne de l’ampleur des opportunités offertes par ces systèmes. La quatrième partie
propose d’abord une taxonomie pour ces systèmes, puis présente une revue de l’état de
l’art des modèles probabilistes de prise de décision utilisés dans les systèmes multi-drones.
Ces travaux sont ensuite comparés en fonction de caractéristiques essentielles telles que
les études de cas, l’organisation collective, l’homogénéité, le type de contrôle de mission,
le type de communication, les données partagées, l’interdépendance entre les membres
du système, le modèle de prise de décision, le type de tâches, l’environnement de vali-
dation, l’extensibilité du système et les critères utilisés pour mesurer la pertinence des
publications.

En examinant les questions ouvertes dans ce domaine, nous avons identifié plusieurs
points cruciaux :

• les conflits potentiels de gestion entre les membres du système multi-UAV deviennent
une préoccupation croissante. Nous avons noté que les conflits peuvent être internes
à chaque membre en raison du non-respect des contraintes externes, ou ils peuvent
survenir au niveau du système multi-UAV. Les conflits internes peuvent résulter
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d’actions incompatibles (par exemple, lorsqu’un UAV1 pénètre dans une zone non
autorisée alors qu’un UAV2 a accès à cette zone), etc. Les conflits au niveau du
système multi-UAV peuvent apparaître lorsque les contraintes de mission ne sont
pas respectées, par exemple, le nombre d’UAV exécutant la tâche est dépassé, etc.

• les modèles de prise de décision doivent intégrer pannes matérielles et logicielles des
systèmes embarqués (capteurs, autopilote, processeur embarqué).

• afin de favoriser l’autonomie des drones, il est important de réduire les interactions
entre les UAV au niveau du système multi-UAV en échangeant le moins possible de
données. Cette réduction des données transmises peut réduire, en même temps, le
risque potentiel de transmission incorrecte ainsi que le nombre de ressources et la
consommation d’énergie due à la communication.

Pour finir, il est suggéré dans ce chapitre qu’une solution future pourrait consister à
gérer une mission avec un modèle décisionnel probabiliste distribué pour un système multi-
UAV, alimenté par des modèles de prédiction de défaillance et de détection des cyber-
menaces et pouvant interagir les différents acteurs de la mission. Un échange minimal
de données (signal de défaillance du capteur, signal d’une cyber-menace, cible verrouillée
pour le suivi, tâche prise, etc.) peut permettre une bonne adaptation et synchronisation
entre les membres du système multi-UAV, réduisant ainsi la consommation de ressources
matérielles et énergétiques pendant les missions.

❏ Chapitre 3 : contribution 1 - comparaison des
méthodes fondamentales de planification de mission

Dans la littérature, il existe plusieurs modèles probabilistes pour la prise de décision
sous incertitudes, tels que les processus de décision de Markov (MDP) [HDB20; Han+19],
les processus de décision de Markov partiellement observable (POMDP) [CMO16], les
langages de diagramme d’influence dynamique relationnel (RDDL) [YWW20], les réseaux
de Petri (PN) [RCB15], etc. La description sous la forme de MDPs est généralement
adopté en robotique pour la prise de décision et la planification sous incertitudes.

Ce travail s’est concentré sur l’approche MDP et ses méthodes de résolution. Il existe
trois classes fondamentales de méthodes pour la résolution de problèmes de décision de
Markov finis [SB98] qui sont la programmation dynamique (DP), les méthodes de Monte
Carlo (MC) et l’apprentissage par différence temporelle (TD). Chacune de ces classes a
ses avantages et ses inconvénients.

Les méthodes de Programmation Dynamique (DP) sont bien développées sur le plan
mathématiques mais nécessitent un modèle complet de l’environnement [Bel66]. Les méth-
odes de Monte Carlo (MC) sont conceptuellement plus simples et ne nécessitent pas de
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modèle complet de l’environnement. Cependant, elles ne conviennent pas pour une estima-
tion de politique précise et efficace en raison de leur approche non incrémentale [MU49].
Enfin, les méthodes d’apprentissage par différence temporelle (TD) ne nécessitent pas de
modèle. Elles sont entièrement incrémentales mais sont plus complexes à analyser et à
ajuster. Les approches diffèrent également sur plusieurs aspects concernant leur efficac-
ité et leur vitesse de convergence [Tes95]. Les méthodes de Monte Carlo (MC) ne sont
pas très utiles en robotique car, théoriquement, elles ne nécessitent que de l’expérience
(sous forme d’épisodes d’échantillons) des états, des actions et des récompenses résultant
d’une interaction réelle avec un environnement. Ainsi, la politique apprise à partir de
l’expérience réelle ne peut pas prendre en compte les décisions futures de l’agent.

Après un rappel sur les modèles de probabilistes utilisé dans la prise de décision, une
analyse des méthodes de résolution en termes de complexité est présentée.

❖ Processus de décision de Markov

Un processus de décision de Markov (MDP) discret [Put14] modélise un processus
dynamique, l’agent observant l’environnement à chaque étape. Il choisit une action, exé-
cute l’action choisie (qui modifie l’environnement), et l’agent reçoit une récompense en
fonction du changement. Un MDP est formellement défini comme un tuple ⟨S,A, T ,R⟩
où S représente un ensemble fini d’états, A est un ensemble fini d’actions, T (s, a, s′) est la
probabilité [0,1] entre deux états, et R(s, a) correspond à la récompense immédiate reçue
après l’exécution de l’action a1 dans l’état s

❖ Une politique π S × N 7→ A (où N représente le nombre d’états) est une solution
d’un MDP et constitue un plan de décision qui détermine pour un agent à chaque état s

de S, l’action a de A qui doit être effectuée.

La politique optimale (π∗) est généralement celle qui maximise les récompenses cu-
mulées attendues, Vπ, de manière à satisfaire l’équation de Bellman[Bel58], définie par
:

π∗ = arg max
π

Vπ(s), ∀s ∈ S. (1)

Vπ(s) = max
a
{R(s, a) + γ

∑
s′∈S
T (s, a, s′)Vπ(s′)} (2)

La fonction optimale Q-function Q∗(s, a) est la récompense totale attendue par un
agent qui commence en s et qui choisit une action a se comportera de manière optimale
par la suite, définie par :

Q∗(s, a) = R(s, a) + γ
∑
s′∈S
T (s, a, s′)V ∗(s′). (3)
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Il est donc possible de calculer la politique la plus efficace par l’équation suivante:

π∗ = arg max
a

Q∗(s, a) ∀s ∈ S. (4)

❖ Comparaison de complexité des trois méthodes
Le Tableau 1 résume les données d’entrée des trois méthodes et présente leur com-

paraison de complexité.

Méthode
Valeur Policy Q-Learning

Iteration Iteration

Données
d’entrée

Matrice T -
Matrice R

γ
α - -
ϵ -

ϵdecay - -
Itermax

Opérateur de la boucle interne Bellman* Bellman* Max
Nombre de boucles 1 1 2

Condition iter = itermax

d’arrêt Convergence -

Table 1 – Résumé des données d’entrée et comparaison de complexité pour les trois méth-
odes [Ham+21].

Tous ces paramètres et données d’entrée influent sur les performances et le temps de
résolution de chaque méthode. De plus, il n’existe aucune méthode permettant de trouver
facilement les meilleures valeurs pour ajuster ces paramètres pour une application donnée.

❖ Résumé de la comparaison des trois méthodes
Comme le montrent les deux figures 2-a et 2-b, la recherche d’une politique optimale

globale (version 1) pour un problème est plus pratique en utilisant les méthodes DP
(méthode Value Iteration ou méthode Policy Iteration). La méthode Q-Learning est inef-
ficace en termes de temps d’exécution car elle nécessite beaucoup de temps pour explorer
l’espace d’état et d’action avant de converger. Ainsi, pour ce type de scénario simple,
la méthode Policy Iteration est le meilleur candidat pour trouver le meilleur ensemble
d’actions permettant d’atteindre l’état cible à partir de n’importe quel état.

Comme me montre la figure 2-c, la méthode Q-Learning est plus efficace que les méth-
odes Dynamic Programming (méthode Value Iteration ou méthode Policy Iteration) pour
trouver un chemin entre l’état de départ et l’état cible.

❖ Les travaux de ce chapitre se sont principalement focalisés sur trois méthodes de
résolution des MDPs : Les méthodes Value Iteration, Value Iteration (DP) et la méthode
Q-Learning (TD). nous proposons de nouveaux critères pour adapter la méthode de prise
de décision au problème d’application , soulignant que cette adaptation est particulière-
ment pertinente dans le contexte de l’embarqué. A travers des expériences expérimentales,
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Figure 2 – Comparaison de Value Iteration, Policy Iteration et du Q-Learning [Ham+21].
(a) temps d’exécution en version 1-a pour une taille de 4×4 à 55×55. (b) temps d’exécution
en version 1-b pour une taille de 4× 4 à 55× 55. (c) Comparaison version 2.

ce travail démontre que la méthode Q-Learning est intéressante dans les cas simples et
réguliers et démontre que dans les cas irréguliers, les méthodes classiques de résolution de
MDP sont plus appropriées à mettre en œuvre sur des systèmes critiques.

Cette contribution a fait l’objet d’une publication à la conférence IEEE ICUAS 2021
[Ham+21].

❏ Chapitre 4 : contribution 2 - réglage des récom-
penses pour l’auto-adaptation de politiques dans la
planification de missions

L’approche MDP est l’un des meilleurs candidats pour gérer la prise de décision et la
planification en situation d’incertitude, ce qui est courant dans l’environnement des UAVs.
Elle se compose d’un agent et d’un environnement. L’agent interagit avec l’environnement
en observant les transitions des états et en recevant des récompenses pour avoir trouvé
une action optimale dans chaque état. Un changement dans la situation de l’agent ou
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dans l’environnement entraîne des modifications dans les probabilités de transition et/ou
les récompenses associées aux actions. Ces modifications impactent l’action optimale, qui
n’est pas immédiatement prise en compte dans d’autres approches d’apprentissage par
renforcement. Cela est dû au fait que l’action optimale nécessite un temps d’apprentissage
pour s’ajuster aux nouvelles conditions. En revanche, les MDP utilisent les probabilités
pour accélérer la résolution des problèmes en anticipant et en incorporant ces changements
dans leur modèle. En outre, les MDP peuvent inclure des contraintes physiques dans leur
modèle. Ils prennent en compte les exigences de sécurité de la mission, ajoutant ainsi une
dimension cruciale à la planification des actions. La résolution de conflits est également
intégrée dans le moteur de prise de décision des MDP. Cette approche globale améliore
la sécurité, la précision et l’efficacité des missions en permettant au système d’ajuster
dynamiquement ses actions en fonction de diverses contraintes et exigences spécifiques.

L’objectif consiste à exploiter les paramètres intrinsèques définissant le MDP, en met-
tant l’accent sur les récompenses associées aux actions. L’expérimentation a révélé que
l’ajustement des récompenses associées aux actions au niveau de l’état a un impact signi-
ficatif sur la politique résultante du problème modélisé. En conséquence, cette adaptation
des récompenses permet de mieux aligner la mission sur les contraintes physiques, les exi-
gences de sécurité et la résolution de conflits intégrées dans le moteur de prise de décision
des MDP. Ainsi, en optimisant les récompenses, le système peut supprimer efficacement
les conflits et améliorer la performance globale de la mission.

La méthode proposée peut s’appliquer à deux contextes, le contexte multi-UAV (2-a)
et le contexte d’un seul UAV, comme suit.

1. Contribution 2-a : application de la méthode dans un contexte multi-UAV

L’un des défis du développement des véhicules autonomes est de définir un moteur
décisionnel approprié capable de traiter une variété de problèmes de contrôle [EMA20;
AK20; Wan+20; FC18; Bar19] afin d’augmenter leur niveau d’autonomie et de sécurité.

Pour surmonter les défis inhérents à la gestion des véhicules autonomes au sein d’un
système multi-UAV, nous avons développé une nouvelle approche. Cette approche vise
à résoudre les conflits émergents dans un environnement où plusieurs MDP sont simul-
tanément en cours d’exécution. La résolution des conflits se fait par des ajustements dy-
namiques des plans de mission individuels des UAVs, notamment en modifiant les récom-
penses associées aux actions conflictuelles du système multi-UAV. De plus, notre approche
propose une méthode systématique en ligne permettant une adaptation dynamique des ré-
compenses en temps réel, avec un partage minimal des données entre les UAVs. En outre,
elle intègre une dimension énergétique, où les actions des UAVs prennent en compte leur
niveau d’énergie, considéré comme une contrainte interne pouvant influencer le déroule-
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ment des actions à entreprendre par un UAV. Ces innovations contribuent à optimiser la
coordination et la performance du système multi-UAV, tout en garantissant la réalisation
des objectifs de la mission.

1.1. Détection des conflits et des violations de contraintes
(a) Conflits et contraintes
Pour aborder les défis complexes inhérents à la gestion des véhicules autonomes au

sein d’un système multi-UAV, notre approche novatrice se concentre sur la résolution des
conflits et l’adaptation dynamique des récompenses, tout en prenant en compte des aspects
pratiques. Un aspect crucial de cette approche est la détection proactive des conflits et
des violations de contraintes au sein de l’essaim de UAVs.

Lorsqu’une prise de décision distribuée est effectuée entre les membres de l’essaim, des
conflits peuvent émerger en raison du non-respect des contraintes, que ce soit au niveau
individuel ou au niveau de l’essaim dans son ensemble. Ces conflits peuvent être variés,
comprenant des défaillances matérielles, des limitations de performance, des conflits de
trajectoire, des conflits externes et des conflits de mission. Par exemple, des défaillances
matérielles peuvent conduire à des divergences entre les plans de mission, tandis que des
limitations de performance peuvent générer des conflits liés à la capacité de réaliser cer-
taines tâches. De même, des conflits externes peuvent survenir en raison d’interactions
avec des entités extérieures au système multi-UAV. Ces scénarios détaillés dans la Section
4.1.1 du chapitre 4 illustrent la complexité des situations rencontrées dans un environ-
nement multi-UAV.

(b) Priorité entre les UAVs
Pour gérer efficacement les conflits, il est essentiel d’identifier les agents (UAVs) qui

peuvent maintenir leur plan de mission et ceux qui doivent en changer. Pour ce faire, nous
pouvons définir une priorité entre les UAVs de l’essaim. Nous pouvons distinguer deux
types de priorité. La priorité statique, définie hors ligne par l’expert, reste constante pen-
dant la mission. En revanche, la priorité dynamique permet des ajustements en fonction
de seuils définis par l’expert sur des probabilités de transition ou d’autres paramètres.
Les membres de l’essaim échangent des données pendant la mission pour déterminer la
priorité de chaque MDP selon des critères spécifiques.

Dans des missions opérationnelles réelles, l’utilisation de la priorité dynamique des
UAVs devient particulièrement pertinente en raison des disparités de performances entre
les membres de l’essaim. Au fil de l’évolution de la mission, ces performances peuvent
subir des changements aléatoires, influencés par les aléas de l’environnement extérieur.
Ainsi, la prise en compte de cette priorité dynamique permet d’ajuster efficacement la
répartition des responsabilités au sein de l’essaim.

(c) Gestion des conflits (Check_Conflicts)
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Les conflits sont vérifiés à deux niveaux : la vérification des conflits internes à UAV et
la vérification des conflits au niveau de l’essaim. Le premier type de gestion des conflits
permet à UAV de se gérer lui-même sans intervention humaine pendant sa mission. Le
deuxième type de gestion des conflits permet à l’UAV de se comporter de manière ap-
propriée dans une situation qui survient dans l’essaim. Dans ce cas, le conflit est résolu
en attribuant de nouvelles priorités aux actions des UAVs. Nous supposons ici qu’une
autorité centrale attribue des priorités dans le cloud.

Chaque UAV calcule sa politique et vérifie périodiquement les conflits, comme illustré
dans la Figure 3. Si le conflit est interne à UAV, ce dernier adaptera sa mission pour le

Figure 3 – Diagramme de l’auto-adaptation de politique entre les UAVs de l’essaim
[Ham+21].

résoudre. Si le conflit concerne l’un des membres de l’essaim et que celui-ci est incapable
de le résoudre, il transmettra la priorité à l’un des membres qui prendra le relais pour
accomplir la mission.

1.2. Résolution des conflits et des violations de contraintes
Après avoir identifié les contraintes/conflits, une priorité est attribuée à l’UAV. Nous

pouvons sélectionner le MDP dont la politique doit être modifiée en fonction de cette
priorité.

(a) Principes d’adaptation des récompenses
Cette méthode oblige le MDP à modifier sa politique en raison des conflits d’action.

Comme chaque valeur de la matrice Q est calculée à l’aide de l’équation (3), la valeur Q
de l’action prioritaire est augmentée. Par conséquent, la politique est modifiée pour éviter
les violations de contraintes, et certaines actions sont prioritaires par rapport à d’autres.

La politique est obtenue à partir de la matrice Q∗ en utilisant l’équation (4)

Q∗ =


Qs1,a1 Qs1,a2 . . Qs1,am

. . Qsi,aσ . .

Qsn,a1 . . . Qsn,am

.
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En cas de conflit avec l’action aσ associée à l’état si, l’expert choisit l’action aϕ comme
alternative, parmi les actions possibles de cet état. Cette substitution respecte les con-
traintes du système sans générer de nouveaux conflits.

En utilisant l’equation (3), nous avons dérivé l’équation permettant de calculer la
nouvelle récompense comme suit :

R(si, aϕ) > Q∗
si,aσ
− γ

∑
s′∈S
T (si, aϕ, s′)V ∗(s′),

R(si, aϕ) = ⌈Q∗
si,aσ
− γ

∑
s′∈S
T (si, aϕ, s′)V ∗(s′)⌉.

(5)

La méthode systématique d’ajustement des récompenses proposée est employée pour ex-
aminer tous les états d’une politique. En cas de découverte d’un état conflictuel, une
nouvelle récompense est calculée. Enfin, la nouvelle politique est recalculée en utilisant la
nouvelle récompense.

(b) Auto-adaptation
La méthode d’auto-adaptation est utilisée pour adapter la mission ou la tâche de

l’UAV afin de supprimer le conflit entre ce UAV et l’autre membre de l’essaim. Il existe
plusieurs scénarios pour résoudre ce conflit.

Les états conflictuels sont marqués dans chaque scénario en fonction de l’action alter-
native et des paramètres du scénario. Ensuite, l’action alternative , le MDP et ses états
conflictuels sont transmis en tant que paramètres à la méthode de résolution de conflit
basé sur l’adaptation de récompenses. En cas de conflit, la méthode utilisera la priorité
(si reçue) et la tâche alternative fournie par le cloud pour adapter automatiquement la
mission de l’UAV à la mission de l’essaim. En l’absence de réception de la priorité, la
méthode utilisera la tâche alternative locale pour adapter automatiquement la mission de
l’UAV à la mission de l’essaim.

Cette contribution a fait l’objet d’une publication lors de la conférence IEEE ICUAS
2023 [Ham+23].

2. Contribution 2-b : application de la méthode dans un contexte d’un seul
UAV

Dans le contexte d’une mission individuelle d’un seul UAV, face à l’accroissement de la
complexité des missions, il peut etre intéressant d’exprimer le problème de mission en util-
isant plusieurs MDP fonctionnant en parallèle [Hir+18]. Cette décomposition implique la
prise de décisions simultanées entre différents agents à l’intérieur du même UAV. Cepen-
dant, l’exécution d’actions concurrentes peut générer des conflits potentiels. De plus, la
survenue de problèmes liés aux défaillances du système et des capteurs durant la mission
peut entraîner des conséquences négatives, telles que le crash de l’UAV causé par une
défaillance de la batterie.
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On peut appliquer la méthode d’adaptation des récompenses de la manière suivante.
2.1. Détection des conflits au cours d’une mission d’un seul UAV gérée au

moyen de plusieurs MDP parallèles
La gestion d’une mission individuelle d’un UAV à travers plusieurs MDP parallèles

souligne l’importance de déceler d’éventuels conflits. Ainsi, la prochaine phase de notre
étude approfondira la compréhension des challenges liés à cette gestion complexe, se pen-
chant particulièrement sur la nature des conflits, des contraintes et de la priorité entre
politiques susceptibles de se manifester.

Conflits et contraintes
On peut distinguer deux types de contraintes : la contrainte associée au conflit de

comportement résultant d’actions antagonistes qui ne peuvent se produire simultanément,
et la contrainte liée à l’état de santé du système ou d’un capteur.

Priorité entre politiques
Il est nécessaire de déterminer quel agent conserve sa politique et lequel doit la modi-

fier. Nous avons établi une priorité entre les politiques des MDPs, où le MDP ayant la plus
haute priorité conserve sa politique. Il existe deux types de priorité : statique, définie hors
ligne par l’expert, et dynamique, ajustée en ligne en fonction de seuils fixés par l’expert.

2.2. Résolution de conflits dans un seul UAV géré par plusieurs MDP par-
allèles Dans le cas de plusieurs MDP, nous proposons les étapes suivantes :

• Étape 1 : nous calculons la politique pour chaque MDP (par exemple, en utilisant
la méthode Policy Iteration).

• Étape 2 : nous vérifions si la contrainte est respectée ou s’il y a un conflit entre
les politiques (voir l’algorithme 8 de la sous-section 4.2.2). Cet algorithme renvoie
les variables booléennes indiquant les politiques des MDP contenant des actions en
conflit et les états impliqués.

• Étape 3 : si la contrainte est respectée ou si des conflits sont détectés à l’étape 2,
nous résolvons les conflits en modifiant une ou plusieurs politiques en fonction de leur
priorité (voir l’algorithme 7). Cet algorithme utilise l’algorithme 5 pour augmenter
la récompense de l’action souhaitée exécuter dans la politique ayant la priorité la
plus basse.

Cette contribution a fait l’objet d’une publication dans un workshop de la conférence
IEEE/IFIP DSN-W 2020 [HDB20].

3. Simulation sur la plate-forme logicielle de simulation de robot Cop-
peliasim et MATLAB.

Pour démontrer l’efficacité de la méthode d’adaptation des récompenses pour la ges-
tion des contraintes, nous avons effectué une simulation sur CoppeliaSim et MATLAB.
CoppeliaSim offre un environnement complet pour la conception, la simulation et le test

16



de systèmes robotiques. Les utilisateurs peuvent implémenter le contrôle via des scripts
intégrés, des plugins, des nœuds ROS ou des clients API distants. Nous avons décidé de
modéliser la mission considérée dans cette partie en utilisant Matlab, car tous nos algo-
rithmes et évaluations sont écrits en Matlab. La simulation Matlab reçoit des données de
CoppeliaSim via des fonctions API distantes.

❖ Interface GUI Matlab
Une interface à été conçue pour faciliter la gestion des missions d’inspection des bâti-

ments. L’interface comprend deux boutons distincts permettant de sélectionner les types
de simulation, en particulier les simulations impliquant une défaillance de la batterie et
celles sans défaillance.

L’interface comprend deux tables, chacune correspondant aux politiques des UAVs
individuels. Les tables se mettent à jour dynamiquement. Lors du lancement de la mis-
sion, les modifications en temps réel des politiques des UAVs sont reflétées dans les tables
affichées, fournissant une représentation en direct de l’évolution de la mission et des événe-
ments pertinents.

❖ Scène CoppeliaSim
Une mission d’inspection de bâtiments avec deux UAVs a été mise en place dans

CoppeliaSim. Chaque UAV a une application distincte qui influence la méthodologie
d’inspection. Les bâtiments à inspecter varient en dimensions.

Deux scénarios sont envisagés :
UAVs sans panne : les UAVs suivent un chemin prédéfini, surmontant des obstacles

comme des arbres et des poteaux. UAV avec panne : ce scénario explore une panne de
batterie. L’UAV affecté ajuste sa mission et signale à son voisin de prendre le relais
de l’inspection. L’UAV voisin s’adapte en incorporant les coordonnées transmises et les
fonctions d’inspection pour le bâtiment prioritaire. L’inspection du bâtiment initialement
prévu peut être accommodée en fonction des ressources énergétiques restantes.

❖ Les travaux de ce chapitre présentent une méthode de résolution de conflits pour
les systèmes multi-UAV. La méthode d’auto-adaptation intégrée ajuste dynamiquement
les valeurs de récompense, évitant les conflits potentiels. Elle est efficace, avec une latence
minimale et une faible consommation d’énergie. L’étude de cas démontre sa capacité à
identifier et résoudre les conflits comportementaux, améliorant la robustesse de la planifi-
cation de mission. L’évaluation complète des méthodes de planification de mission basées
sur MDP pour les UAVs souligne la robustesse et la résilience de l’approche proposée.

Pour répondre à la nécessité d’adapter la méthode de résolution de conflits présentée
dans le chapitre 4 aux systèmes multi-UAV, il devient impératif de considérer les défis
liés à la communication entre les UAVs. Ces échanges d’information sont inévitablement
sujets à des défaillances potentielles. Afin de minimiser la dépendance des UAVs à des
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communications externes, privilégiant autant que possible la communication locale, et de
ne recourir aux communications via le cloud qu’en cas de nécessité pour résoudre des
conflits, l’introduction d’un module prédictif d’autonomie des UAVs s’avère essentielle.
Ce module permet de prédire avec précision l’autonomie des UAVs, déterminant ainsi le
mode de communication nécessaire pour accomplir la mission de manière optimale.

❏ Chapitre 5 : contribution 3 - adaptation avec coopéra-
tion via le réseau local / le cloud

Dans le cadre d’une mission distribuée impliquant un système collaboratif multi-UAV
opérant dans des environnements incertains, les UAVs sont confrontés à des défaillances
potentielles et à des cyber-menaces. Les travaux précédents ont proposé un système adap-
tatif pour relever ces défis. Cependant, il est essentiel d’établir un système qui améliore la
gestion de la collaboration entre les différents membres du système multi-UAV. L’approche
proposée repose sur un mécanisme intégrant des réseaux Bayésiens. Cette approche per-
met d’estimer la sûreté des UAVs et facilite la communication directe avec les UAVs
voisins afin de promouvoir l’adaptation interne. En cas de compromission des communi-
cations locales, le processus d’adaptation peut être transféré de manière transparente vers
le cloud. En conséquence, cette approche contribue à une diminution du volume de don-
nées transmises par le système, ce qui se traduit par une réduction de la consommation
d’énergie au niveau global du système multi-UAV.

❖ Auto-adaptation de politique en mode local et hybride
Le choix entre les modes local et hybride implique des compromis en termes de contrôle,

d’utilisation des données, de détermination des actions alternatives et de priorité des
UAVs. Le mode local utilise un contrôle décentralisé et des informations locales pour la
prise de décision. Le mode hybride combine le contrôle décentralisé et centralisé, exploitant
les données locales et du cloud.

Le choix du mode dépend des exigences de l’application et du compromis entre l’autonomie
locale et l’assistance du cloud. Le mode local offre simplicité et autonomie, tandis que le
mode hybride fournit une approche plus adaptable et riche en informations.

❖ Réseaux de communication des UAV
Il existe plusieurs moyens de communication entre les UAVs d’un système multi-

UAV, notamment l’architecture de système multi-UAV basée sur l’infrastructure [NAL21]
; l’architecture Flying Ad Hoc Network (FANET) [Jos+22] ; le réseau maillé sans fil
[Cui+17] ; les réseaux cellulaires [LTW+22]; les communications par satellite [Lee+22] ;
les communications via le cloud [Jun+21].

❖ Prédiction de l’autonomie du drone et mode de communication nécessaire
(mode local / hybride)

Un module de commutation de mode local/hybride sera intégré dans chaque UAV, et
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il sera utilisé pour estimer le degré d’autonomie de chacun. En analysant le comportement
du système UAV en situation d’incertitude, en tenant compte des données des capteurs
et des données de réseau des voisins locaux, ce module peut estimer le meilleur choix de
mode de fonctionnement, comme le montre la figure 4.

Figure 4 – Diagramme de commutation de mode.

1. Données d’entrée et mesures de performance
Les données d’entrée du module de commutation se divisent en deux catégories prin-

cipales :
a. Données de l’UAV : incluent des informations sur la santé du système embarqué

provenant de l’autopilote, des capteurs et de la batterie.
b. Données réseau : pour évaluer les performances globales de la Qualité de Service

(QoS) des communications, deux types de communications sont distingués :
Communications Locales : impliquent l’échange de données et d’informations entre les

UAVs au sein du système multi-UAV.
Communications via le cloud : utilisent des services et des plateformes basés sur le cloud
pour la communication entre les UAVs.

Pour déterminer les performances des deux types de communication, nous analysons
et comparons principalement les mesures les plus couramment utilisées dans les commu-
nications dans un système multi-UAV [PPB19; Sha+19; Sin+19; YL19; Yog21]. L’examen
de la littérature existante nous a permet de sélectionner trois principales mesures de per-
formance le taux de livraison des paquets (PDR), le délai de bout en bout (E2E) et le
débit (Thp).

2. Principes de la prédiction du mode de fonctionnement
La méthode de prédiction de l’autonomie du drone vise à trouver et à adapter le

mode de fonctionnement des UAVs en ligne. Sur la base de l’analyse des données des
capteurs de l’UAV, des données du réseau local (communications inter-UAVs directes du
système multi-UAV) et des données du réseau avec le cloud, la méthode estimera le bon
fonctionnement et de l’autonomie de l’UAV.

La probabilité de l’autonomie de l’UAV est calculée en combinant les différentes
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métriques les plus utilisées dans les communication de systèmes multi-UAV. Nous avons
construit le réseau bayésien (BN) suivant:

Figure 5 – Mode switching modeled with BN.

La circulation de l’information au sein de ce réseau bayésien permet de tirer des con-
clusions ou à faire des prédictions sur les variables incertaines du réseau, dans notre cas
estimer le degré d’autonomie d’un UAV, et donc de commuter sur le bon mode de fonc-
tionnement permettant d’optimiser la mission.

❖ Les travaux de ce chapitre introduisent un module pemettant d’améliorer les ca-
pacités d’adaptation des systèmes multi-UAV collaboratifs par le biais d’une adaptation
du mode de fonctionnement basée sur un réseau bayésien. L’accent est mis sur l’auto-
adaptation des politiques en mode local et hybride (via le cloud), ainsi que sur l’exploration
des réseaux de communication des UAVs afin d’optimiser la planification des missions pour
les UAVs. À travers cette contribution, nous avons proposé une approche pour prédire
le degré d’autonomie des drones pour définir le mode de communication le plus adapté
(réseau local ou hybride).

❏ Chapitre 6 : conclusion générale et perspectives
Dans cette thèse, on s’est intéressé particulièrement aux problèmes de la prise de

décision distribuée dans un système multi-UAV dans un environnement incertain. En effet,
dans diverses applications et dans des environnements de mission en évolution, les limites
d’un système avec UAV unique, telles que les contraintes énergétiques, la capacité de
calcul, la capacité d’exécution et la capacité de service, entravent la couverture d’une zone
étendue. Les systèmes multi-UAV sont censés remédier à ces limitations en permettant
une action coopérative pour recueillir des informations complètes de manière efficace et
précise. Toutefois, les décisions prises au niveau du système multi-UAV peuvent entrer
en conflit avec les objectifs de la mission, ce qui nécessite un mécanisme de gestion des
conflits au sein du système multi-UAV.
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À travers cette thèse, nous avons pu :

(a) faire une comparaison des méthodes fondamentales de planification des missions en
introduisant de nouveaux critères pour adapter le choix de la méthode de résolution
d’un problème.

(b) proposer une nouvelle approche pour la résolution de conflits avec adaptation de
récompenses (rewards) associé à des actions dans le cadre d’un système collaboratif
multi-UAV.

(c) enfin, proposer un nouveau module utilisant des réseaux Bayésiens pour estimer
la sécurité des UAVs et de leur communications. Ce module permet de favoriser
l’utilisation les données locales (via les communications local) pour résoudre les
conflits sans passer via le cloud. Dans le cas échéant, les communications via cloud
sont alors utilisée pour résoudre les conflits et améliorer la collaboration entre les
UAVs du système.

Dans les perspectives de travail, voici quelques idées qui peuvent être proposées pour
améliorer et étendre l’approche actuelle.

1. Court-termes

(a) Intégration de la prédiction du mode de fonctionnement à la planifi-
cation de mission : fusionner prédiction de l’autonomie du drone et mode de
communication nécessaire basée sur un réseau bayésien (BN) avec le processus
de décision Markovien (MDP) pour la planification de missions, en évaluant
leur fonctionnement synergique via des simulations.

(b) Raffinement de la prédiction de l’autonomie du drone et mode de
communication : affiner la prédiction de l’autonomie du drone basé sur BN
en définissant des estimateurs de Qualité de Service (QoS) pour UAV, commu-
nication locale et cloud, renforçant la gestion de l’auto-adaptation.

(c) Développement d’outils informatiques facilitant la spécification, la génération
et l’intégration des estimateurs QoS au niveau des UAV ou des systèmes multi-
UAV.

(d) Exploration des supports matériels : examiner les options CPU, GPU,
FPGA pour mettre en œuvre efficace des moniteurs et organes de décision,
optimisant la performance et l’efficacité énergétique dans les applications UAV.

2. Moyen à plus long termes

(a) Coopération entre drones hétérogènes : étendre la collaboration à des
drones hétérogènes (aériens/terrestres/marins) pour améliorer l’efficacité et la
performance des missions dans divers scénarios opérationnels.
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(b) Étude du Federated Learning (FL) : explorer le paradigme d’apprentissage
machine collaboratif "Federated Learning (FL)", améliorant la prise de décision
décentralisée des drones tout en préservant la confidentialité des données.
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Abstract

Unmanned Aerial Vehicle (UAV)s thrive in complex, repetitive, and hazardous environ-
ments, enhancing mission quality, productivity, and safety. Operating in non-deterministic
environments with unpredictable events, these autonomous vehicles face challenges neces-
sitating independent and real-time decision-making for effective mission management.

This research focuses on the decision-making on multi-UAV system in case of collabo-
rative mission. Three aspects are mainly covered: 1) the choice of the method for mission
planning according to specific criteria, 2) the self-adaptation of policies based on rewards
tuning for mission planning, 3) Bayesian Network (BN)-based operating mode adaptation
for policy self-adaptation in a collaborative multi-UAV system. For mission planning, a
focus on the Markov Decision Process (MDP) framework and a comparative study of
the three fundamental MDP resolution methods are proposed to facilitate the choice of
a resolution method according to the criteria of the problem to be solved. Using MDP-
based decision engines at the multi-UAV system level can lead to conflicts. The conflict
management mechanism based on the rewards adaptation approach proposed shows how
to detect conflicting member UAVs by the embedded edge devices and how UAV adjusts
its mission plan to avoid conflicts in the multi-UAV system and resolve conflicts. Finally,
we explore a local and hybrid mode switching mechanism based on BN to enable the
self-adaptation of policies. This adaptation will be driven by continuous Quality of Ser-
vice (QoS) monitoring of both the UAV and communication networks, aiming to optimize
mission planning for achieving total drone autonomy. This work makes it possible to draw
up an assessment and some perspectives.

Keywords: Mission Planning, Decision-Making, Markov Decision Process,
Self-adaptation, Bayesian Networks, Autonomous Vehicles.
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Abstract (in French)

Les véhicules aériens sans pilote (UAV) prospèrent dans des environnements com-
plexes, répétitifs et dangereux, améliorant ainsi la qualité, la productivité et la sécurité
des missions. Opérant dans des contextes non déterministes avec des événements imprévis-
ibles, ces véhicules autonomes sont confrontés à des défis nécessitant une prise de décision
indépendante et en temps réel pour une gestion de mission efficace.
Cette recherche porte sur la prise de décision sur un système multi-UAV en cas de mission
collaborative. Trois aspects sont principalement abordés : 1) le choix de la méthode de
planification de mission selon des critères spécifiques, 2) l’auto-adaptation des politiques
basées sur le réglage des récompenses pour la planification de mission, 3) l’adaptation
du mode de fonctionnement basé sur BN pour auto-adaptation des politiques dans un
système collaboratif multi-UAV. Pour la planification de mission, un accent sur le cadre
du Processus de Décision Markovien (MDP) et une étude comparative des trois méthodes
fondamentales de résolution de MDP est proposée pour faciliter le choix d’une méth-
ode de résolution selon les critères du problème à résoudre. L’utilisation de moteurs de
décision basés sur MDP au niveau du système multi-UAV peut conduire à des conflits.
Le mécanisme de gestion des conflits basé sur l’approche d’adaptation des récompenses
proposée montre comment détecter les UAV membres en conflit par les dispositifs de pé-
riphérie intégrés et comment un UAV ajuste son plan de mission pour éviter les conflits
dans le système multi-UAV et résoudre les conflits. Enfin, nous explorons un mécanisme
de commutation de mode local et hybride basé sur un réseau Bayésien pour permet-
tre l’auto-adaptation des politiques. Cette adaptation sera pilotée par une surveillance
continue Quality of Service (QoS) du UAV et des réseaux de communication, visant à
optimiser la planification des missions pour atteindre une autonomie totale des drones.

Mots clés : Planification de mission, Prise de décision, Processus de décision de
Markov, Auto-adaptation, Réseaux Bayésiens, Véhicules autonomes.
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1.1 General context

The 21st century has witnessed significant advancements, particularly in robotics, fu-
eled by the continuous evolution of electronics and computing capabilities. This progress
has paved the way for developing more precise, faster, and autonomous robots, strength-
ening the reliability and accuracy of on-board intelligence systems. Unmanned Aerial
Vehicle (UAV) have emerged as pivotal players in environments where human interven-
tion is challenging, repetitive, or dangerous. UAVs are being widely used in various fields
such as security [Lee+21], inspection and photogrammetry [Gha+21], mapping or video
surveillance operations [Mal+21], agriculture [Rad+20], internal operations of many ware-
houses and logistics platforms [Che+20], search and rescue missions [AKY21], military
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missions [CAM20] and etc. Notably, UAVs have proven to be versatile tools in addressing
the challenges posed by the coronavirus crisis [Res22]. Their applications include detecting
and responding to abnormal situations, such as unauthorized gatherings, using features
like thermal imaging cameras. Furthermore, UAVs mitigate human interaction by dissem-
inating health advisories through drone-mounted loudspeakers, delivering COVID tests,
and executing various tasks while maintaining social distancing.

However, considering the geographical context of the thesis funding, particular empha-
sis has been directed toward missions situated within the maritime environment. Within
this maritime domain, aerial drones manifest as indispensable instruments, offering a
supplementary perspective alongside traditional maritime vehicles. Collaboration with
singular or multiple aerial drones presents clear advantages for maritime missions (Figure
1.1), especially in researching and identifying specific objects or individuals, detecting sea
and coastal pollution, surveillance of port areas, and reconstructing 3D images of floating
structures or lost objects.

Figure 1.1 – Collaborative mission between areal and maritime drones.

Moreover, the cooperative aspect of maritime drone usage extends to innovative roles,
such as employing maritime drones as motherships. These motherships can serve as sta-
tions for recharging UAVs when their batteries are low, thereby extending the operational
endurance of the UAV fleet. This cooperative strategy not only optimizes mission duration
but also enhances the overall effectiveness of the aerial drone fleet in maritime exploration.

Nevertheless, within the execution of these missions, the maritime environment in-
troduces distinct challenges and presents inherent complexities, including unpredictable
weather conditions, potential communication interference, and the need for resilient nav-
igation systems to overcome adversities. For instance, the precise identification of objects
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or individuals may be restricted by factors such as poor visibility due to fog or adverse
weather conditions. A notable example is the vulnerability of a critical component (e.g.,
the Global Positioning System (GPS)) to failure. These failures can be caused by factors
such as inadequate satellite coverage or deliberate interference via spoofing or jamming
attacks.

Addressing these challenges highlights the necessity for ongoing scientific research and
technological advancements to strengthen these aerial systems, ensuring adaptability and
robust performance in maritime mission complexity. This interdisciplinary approach is
crucial to advancing the capabilities of aerial drones and optimizing their contribution to
maritime exploration and problem-solving efforts.

1.2 Drone projects in Brittany

In 2010, the concept of "maritime informatics" (marétique) emerged in Brittany, inte-
grating computer systems for managing maritime operations [DA19]. This concept aligns
with the region’s commitment to sustainable development and leverages historical digital
expertise [DA19].

The convergence of the maritime sector with digital technologies offers opportunities
such as understanding marine ecosystems, facilitating the energy transition, and optimiz-
ing land-sea communications.

The Regional Economic, Social, and Environmental Council (Conseil économique, so-
cial et environnemental régional (CESER)) is exploring the role of maritime informatics
in specific Brittany use cases:

➥ Marine ecosystem management: understand, monitor, and protect marine ecosys-
tems, including the exploitation of marine food resources;

➥ Maritime engineering and operations: design, produce, maintain ships, and navigate
for maritime activities;

➥ Integrated coastal development: manage the flow of people and goods at the land-sea
interface, produce and distribute renewable marine energies, and engage in maritime
activities while transmitting maritime culture.

The different projects conducted within the CESER in Brittany related to the thesis
are:

❖ SMD MAR project:
Autonomous underwater robots demonstrate continuous, high-quality measurements
in the ocean. The Multi-Drone Systems in Multiple Environments Applied
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to the Maritime Domain (Systèmes Multi-Drones multi-milieux appliqués au do-
maine MARitime (SMD MAR)) project is a CPER project (2015-2022) co-financed
by the French State and Brittany region aims to boost robotic resources by adopt-
ing a global and cooperative approach. The system includes underwater robots,
surface and aerial drones, and a deployable control/command platform for land or
ship use. This investment project made it possible to purchase drones and on-board
equipment used during the thesis.
The objective of this project is to increase the level of autonomy of drones by
significantly:

1. Enhancing drone autonomy by incorporating on-board computing power for
demanding tasks (e.g., target detection, obstacle avoidance, navigation) with-
out increasing energy consumption, volume, or weight.

2. Embedding the necessary intelligence (e.g., Neural Networks (NN), Markov
Decision Process (MDP), Dynamic Bayesian Networks (DBN)) for autonomous
decision-making in complex missions and optimal hardware configuration.

❖ SAMM project:
Like Unmanned Ground Vehicles (UGVs), autonomous ships are getting much atten-
tion, especially in Nordic countries. France must remain caught up to stay abreast of
this significant trend impacting maritime transportation and other sectors. The Brit-
tany Region supports the research program "Autonomous Systems in Maritime En-
vironments" (Systèmes autonomes en Milieu Maritime (SAMM)), including different
Brest establishments (ENSTA -École nationale supérieure de techniques avancées,
IMT Atlantique - Institut Mines-Télécom Business school, UBO - Université de Bre-
tagne Occidentale, ...) aiming to develop an excellent industry in Information and
Communication Technologies (ICTs) specifically for maritime drones. It involves
sustained regional support across five domains: intelligence, sensors and algorithms,
embedded systems, data mining, and human-machine interactions.

❖ MoTie project:
The Monitoring of mobile Things with Intelligent and embedded adaptations for se-
cure services (MoTie) is an international cooperation project with Brazil established
within the research collaboration framework with USP (University of Sao Paulo),
providing a practical context to the thesis regarding the security of autonomous ve-
hicle services. It aligns with the regional SAMM project (Doctoral Research Grants -
ARED) on drones in the maritime domain, focusing primarily on embedded and au-
tonomous systems. The objective is to propose a contextual adaptation and onboard
implementation of intelligent monitoring systems for the security of autonomous ve-
hicle services to counter the various hazards of the missions. This can be done with
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permanent monitoring of possible attacks or failures at the level of the multi-UAV
system of drones by setting up intelligent monitoring systems capable of estimating
the state of the on-board system and on-board applications and ordering communi-
cations by considering the context of the mission. These devices will be integrated
into a drone decision-making engine.

This thesis receives 50% of its funding from the Brittany Region through the regional
SAMM project, with the remaining support secured through a Doctoral Establishment
Contract (CDE) from UBO (Université de Bretagne Occidentale).

1.3 Problem statement

Chabha Hireche’s thesis work [Cha19] explored decision models used in the context
of a drone mission. It confirmed that probabilistic models, particularly Markov Decision
Processes (MDP), are widely adopted for decision-making under uncertainty in robotics.

To complete this axis, the first problem of this thesis starts from this observation and
answers the following question: what is the most suitable method for solving a
decision problem under uncertainty of the context of a drone mission in an
embedded context?

However, in various applications, energy, computing capacity, and execution limita-
tions often make a single (UAV) unsuitable for extensive coverage. Multi-drone systems
(UAV), such as swarms, aim to achieve wider coverage, improved surveillance, and more
efficient mission execution through cooperative action to gather information quickly and
accurately.

Figure 1.1 illustrates the other scientific issues this thesis aims to address.

Within a multi-UAV system, decisions may conflict and deviate from the mission
objectives, necessitating a conflict management mechanism. This observation leads to
a second issue: what are these conflicts, and how can they be resolved in a
distributed multi-UAV framework modeled using MDP?

Finally, in the context of collaborative missions with multi-drone systems, a third and
final problem arises: how can we guarantee that a drone can carry out its mission
in total autonomy? how can we implement conflict resolution within a multi-
UAV system while minimizing communications via the cloud and reducing the
volume of data to be transmitted to maximize drone autonomy?
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1.4 Contributions

1.4.1 Contribution 1: comparison of fundamental methods for
mission planning

In the literature, there are several probabilistic models for decision-making under un-
certainty, such as Markov Decision Process (MDP) [HDB20; Han+19], Partially Observ-
able Markov Decision Process (POMDP) [CMO16], Relational Dynamic influence Dia-
gram Language (RDDL) [YWW20], Petri Net (PN) [RCB15], etc. One of the most com-
mon frameworks for decision-making and planning under uncertainty in robotics is to
use MDPs, leveraging their capacity to model sequential decision problems and incorpo-
rate uncertainty, thus providing a structured framework for optimal decision strategies in
dynamic environments.

This work focused on the MDP framework and its resolution methods. Three funda-
mental classes of methods for solving finite Markov decision problems [SB98] are Dynamic
Programming, Monte Carlo methods, and Temporal Difference learning. Each class of
methods has its strengths and weaknesses.

Dynamic Programming (DP) methods are well-developed mathematically but require a
complete and definite model of the environment [Bel66]. In contrast, conceptually straight-
forward and model-free, Monte Carlo (MC) methods encounter challenges in efficiently
estimating policies due to their non-incremental nature [MU49]. On the other hand, TD
methods do not require a model and offer full incrementality, although their analysis and
tuning are more complex. These approaches diverge in terms of efficiency and convergence
speed [Tes95]. It’s worth noting that Monte Carlo (MC) methods may be less practical in
robotics, as they theoretically rely solely on past experiences (sample episodes) without
accounting for an agent’s future decisions. This limitation restricts the policy learned from
real-world interactions.

This work mainly focused on three methods for solving MDPs: Value Iteration and
Policy Iteration methods (DP) and the Q-Learning method (TD). It proposes new criteria
to adapt the decision-making method to the application problem, highlighting that this
adaptation is particularly relevant in the embedded context. Through experimental expe-
riences, this work demonstrates that the Q-Learning method is interesting in simple and
regular cases and demonstrates that in irregular cases, classical MDP resolution methods
are more reasonable to implement in critical systems.

This contribution was the subject of a publication at the IEEE ICUAS 2021 conference
[Ham+21].
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1.4.2 Contribution 2: self-adaptation based rewards tuning for
mission planning

The MDP approach is one of the best candidates for handling decision-making and
planning under uncertainty, which is common in the UAV environment. It consists of an
agent and an environment. The agent interacts with the environment by observing the
transitions of states and receiving rewards for finding an optimal action in each state. A
change in the agent’s situation or the environment will lead to a change in the transition
probabilities and/or the rewards of the actions, which in turn leads to a change in the
optimal action, which is not immediately considered in other decision-making approaches
because it requires learning time, whereas MDPs use probabilities to accelerate problem-
solving. Moreover, MDP can also include physical constraints, mission safety requirements,
and conflict resolution in the decision-making engine, thereby improving mission safety,
accuracy, and efficiency.

The objective is to utilize parameters characterizing the MDP, primarily the rewards
associated with actions. It has been determined through experimentation that tuning the
rewards associated with actions at the state level leads to modifying the resulting policy
of the modeled problem, therefore adapting the mission by removing the conflicts.

The proposed method can be applied to the multi-UAV context (2-a) and the single-
UAV context.

❖ Contribution 2-a: application to multi-UAV context
One challenge in the development of autonomous vehicles is to define an appropri-
ate decision-making engine that can handle a variety of control problems [EMA20;
AK20; Wan+20; FC18; Bar19] to increase their autonomy level and safety. How-
ever, at the multi-UAV level, each UAV has its own MDP, and the decisions they
make are unique and optimal at their level. However, the decisions made at the
multi-UAV level may be contradictory and may not meet the mission objectives.
A conflict management mechanism, therefore, is proposed within the multi-UAV
system.
We introduced a new approach that allows:

➥ Conflicts resolution: in a multi-UAV system or team of UAVs where multiple
MDPs are being executed concurrently, conflicts may arise. To resolve them, the
mission plans of the individual UAVs are adjusted (by modifying the rewards
of the conflicting multi-UAV system actions).

➥ Dynamic reward shaping: a systematic online method is proposed to adapt
rewards in real-time with minimal data sharing between UAVs in the multi-
UAV system.
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➥ Energy-aware strategies: UAV actions are aware of their energy level. The en-
ergy level is perceived as an internal constraint and can alter the actions per-
formed by a UAV.

This contribution was the subject of a publication at the IEEE ICUAS 2023 con-
ference [Ham+23].

❖ Contribution 2-b: application to UAV context
With the increased complexity of missions, decomposing an MDP into several sub-
MDPs becomes necessary. The decomposition involves parallel decisions between
different agents inside the same UAV, but the execution of concurrent actions can
lead to conflicts. In addition, problems due to the system and sensor failures may
appear during the mission that can lead to negative consequences (e.g., a crash
of a UAV caused by a drop in battery charge). We present a new method to pre-
vent behavior conflicts that can appear within distributed decision-making and to
emphasize the action selection if needed to ensure the system’s safety and various
requirements. This method considers the different constraints due to antagonist ac-
tions and some thresholds on transition functions to promote specific actions that
guarantee the system’s safety. Then, it automatically computes the rewards of the
different MDPs related to the mission to establish safe planning.
This contribution was the subject of a publication at the IEEE/IFIP DSN-W 2020
conference workshops [HDB20].

1.4.3 Contribution 3: adaptation with cooperation through the
cloud/the local network

In the context of a distributed mission involving a collaborative multi-UAV system
operating in uncertain environments, UAVs face potential failures and cyber threats. The
previous work proposed an adaptive system to address these challenges. However, it is
essential to establish a system that enhances the management of collaboration among
the various members of the multi-UAV system. The suggested approach involves the
utilization of Bayesian Networks. This approach makes it possible to estimate the safety
of UAVs and facilitates direct communication with neighboring UAVs to promote internal
adaptation. The goal is to maintain autonomy while fostering effective collaboration.
In case of compromised local communications, the adaptation process can seamlessly
transition to the cloud. This operational model has the advantage of reducing inter-
drone communication, thereby enhancing the efficiency of the multi-UAV system during
missions. Additionally, it contributes to a decrease in the volume of data transmitted
through the system, resulting in reduced energy consumption.
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1.5. Organisation of the document

This contribution is currently being written for submission to a conference.

1.5 Organisation of the document

This document is organized as follows:

✍ Chapter 2 defines the general concepts we will need throughout this manuscript and
outlines distributed decision-making approaches by introducing the state-of-the-art
on distributed decision-making and the challenges and open questions that need to
be addressed.

✍ Chapter 3 describes Contribution 1. Focusing on decision-making models, we com-
pare the three fundamental methods for solving MDPs. Theoretically and experi-
mentally, via numerical simulation, we give new criteria to adapt the decision-making
method to the application problem, with the parameters’ explanations.

✍ Chapter 4 concerns Contribution 2, which involves detecting and resolving conflicts
with the self-adaptation of policies. We have identified the conflicts that can appear
during UAV missions or in multi-UAV systems. This chapter is, therefore, structured
to address these problems.

✍ Chapter 5 concerns Contribution 3, which involves adapting the operational mode
for policy self-adaptation in multi-UAV systems. We aim to enable drones to resolve
conflicts autonomously and communicate through the cloud only when no direct
connection alternative exists.

✍ Chapter 6 concludes this thesis and proposes some research perspectives from this
work.

1.6 Publications

International conferences and Workshops

1. M. Hamadouche, C. Dezan, D. Espes and K. Branco, "Online reward adapta-
tion for MDP-based distributed missions" 2023 International Conference on
Unmanned Aircraft Systems (ICUAS), Warsaw, Poland. [Ham+23]

2. M. Hamadouche, C. Dezan, D. Espes and K. Branco, "Comparison of Value Iter-
ation, Policy Iteration and Q-Learning for solving Decision-Making prob-
lems" 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
Athens, Greece. [Ham+21]
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3. M. Hamadouche, C. Dezan and K. R. L. J. C. Branco, "Reward Tuning for self-
adaptive Policy in MDP based Distributed Decision-Making to ensure
a Safe Mission Planning" 2020 50th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops (DSN-W), Valencia, Spain.
[HDB20]

National conferences

1. M. Hamadouche, C. Dezan, D. Espes and K. Branco, "Prise de décision dis-
tribuée et embarquée dans les systèmes autonomes multi-UAV pour une
sécurité des services d’engins autonomes" Conféerence d’informatique en Par-
allélisme, Architecture et Système (ComPAS’ 23), Annecy, juillet 2023.

2. M. Hsaini, M. Hamadouche and C. Dezan, "Classifieur embarqué pour la dé-
tection d’intrusions dans le contexte des véhicules autonomes" Conféerence
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2021.
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Introduction

This chapter comprehensively introduces multi-UAV systems, covering foundational
aspects, advancements, challenges, and prospects. Section 2.1 provides a multi-Unmanned
Aerial Vehicle (UAV) systems overview, starting with an outline of UAVs and their op-
erational characteristics. It details the advantages of multi-UAV systems, showcasing en-
hanced efficiency through collaboration, highlights their diverse applications, and proposes
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a taxonomy of multi-UAV systems offering a structured classification. Section 2.2 summa-
rizes the state-of-the-art in distributed and probabilistic decision-making for multi-UAV
systems. Section 2.3 addresses challenges, open issues, and future directions in this field.
Section 2.4 summarizes key points and suggests potential future research directions.

2.1 Multi-Unmanned Aerial Vehicle (UAV) system

2.1.1 Unmanned Aerial Vehicle

Unmanned Aerial Vehicle (UAV) (or uncrewed aerial vehicle [Hig+16]) and drone
are among the different terms used in UAV fields. These additional terms are generally
derived from other specifications and concepts depending on their uses and research areas
[SRZ15].
For the remainder of the article, UAV is defined as an aircraft (or aerial vehicle) without
a human pilot on board [VV15], incorporating an embedded system (computer) platform
that makes it possible to be controlled remotely and/or to execute high-performance
programs that allow it to make decisions autonomously.

UAV Weight (kg) Altitude (km) Endurance (h)

Micro 0.1 0.25 1
Mini <30 0.15–0.3 <2

Short range 200 3 2–4
Medium range 150–500 3–5 30–70

Long range - 5 6–13
Endurance 500–1500 5–8 12–24

Medium altitude, 1000–1500 5–8 24–48
long endurance
High altitude, 2500–12,500 15–50 24–48

long endurance

Table 2.1 – Unmanned Aerial Vehicles UAVs classification. Adapted from the work in
[SRZ15].

UAVs can be classified according to their weight, altitude, and endurance [SRZ15] as
shown in Table 2.1. The UAV shown in Figure 2.1 is a mini UAV DJI FPV, according to
the classification in Table 2.1. This mini-UAV weighs around 7.95 kg (including batteries
and propellers), has a flight time of 20 minutes and a range of 6 km.

2.1.2 Advantages of using a multi-UAV system

A multi-UAV system is an autonomous system inspired by the self-organized mecha-
nism of biological groups (e.g., insects, bees, and ants), which has a lot of advantages.

Some of the advantages of using a multi-UAV system are discussed in many papers
[Chu+18; SBS20]. The retained advantages of using a multi-UAVs system instead of a
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Figure 2.1 – DJI FPV, a mini-UAV weighing around 7.95 kg (including batteries and
propellers), with a flight time of 20 minutes and a range of 6 km [Dà-].

single UAV are outlined in Figure 2.2. The main advantages are:

❖ Parallelism: for large-scale tasks that are distributed over a wide area in the envi-
ronment, the multi-UAV system can deal with multiple targets in one task, e.g., in
search or tracking of multiple targets missions.

❖ Cost: in some cases, having a complex single UAV could be an expensive solution.
To perform adequately in a large or complicated area, the UAV has to embed heavy
and costly sensors. In some cases, multiple UAVs could be cheaper due to the lower
manufacturing and maintenance costs.

❖ Time efficiency: in tasks such as target search, exploration, etc., the duration of
the missions can be drastically reduced with the use of multiple UAVs.

❖ Energy efficiency: since the members of a multi-UAV system are smaller and more
straightforward than a complex single UAV, their power consumption is reduced in
the way that they can use a small battery. As the missions are solved quickly, a
multi-UAV system’s energy consumption is smaller than a single, complex UAV
solution.

❖ Complementary: in some tasks that require different types of sensors, each mem-
ber of the multi-UAV system will have a specific set of these sensors. The cooperation
between the UAVs during a mission would complement each of them.

❖ Scalablity: the interaction between members of the multi-UAVs system is done
locally. New members can join the multi-UAV system anytime to support other
members to finish their mission. Entering or leaving the multi-UAV system does not
interrupt the general mission. So, the multi-UAV system can adapt to the change
using dynamic task re-allocating schemes.
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Figure 2.2 – Advantages of using a multi-UAV system.

2.1.3 Applications of the multi-UAV system

Currently, the use of UAVs (as multi-UAV system) is growing faster. They inspire and
motivate developments and other innovations in various places. Multiple applications are
already listed, new ones keep appearing, and precisely anticipating their development is
challenging. The line between actual and potential applications is changing rapidly. With
advancements in camera technologies and other types of remote sensing equipment, drone
missions have expanded into consequential areas, including:

❖ Video surveillance, Inspection & Tracking
There are several proposals for using multiple drone systems. Most of the works are
focused on the audiovisual field, particularly with the shots used in most television
shows (documentaries, magazines, sporting events, etc.) [Mad+19]. These systems
are also used for monitoring and inspecting infrastructures (e.g., railways, power
lines, etc.) [Hoa+18; Liu+19], locating and tracking targets in military applications
[Gu+18], etc.

❖ Network
In specific complex missions, a multi-UAV system is used to form a communication
architecture to offer connectivity in large areas where the infrastructure is either
down due to an emergency (e.g., natural disasters, terrorist attacks, and others) or
inexistent for special events (e.g., concerts) [Hon+20; Raj+20].

❖ Photogrammetry & SLAM
Photogrammetry is the science of extracting reliable quantitative data from physical
objects by measuring and interpreting photographic images. It is often used by
surveyors, architects, or even engineers to create topographic maps, meshes, point
clouds, or drawings based on the real world by making measurements in a scene
through images acquired (using UAVs in this case) according to different points of
view [Aue+18].
Simultaneous Localization and Mapping (SLAM) is a process used for building or
updating a map of an unknown environment and locating the robot in that map
simultaneously. Mainly, it is used for a single UAV, but more and more research is
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being done to use it with multiple UAVs [SC17].
❖ Search and Rescue

Search and rescue operations using a single UAV are not a new concept in the
literature, but the use of a multi-UAV system remains a branch of research not fully
explored [AAK19] and can significantly improve these operations due to the benefits
of these systems (see Section 2.1.2).

2.1.4 Taxonomy of the multi-UAV system

There are different ways in which these systems can be classified. For example, they
can be classified based on the number of members in the system, mission control type,
autonomy level, or coordination. After reviewing the publications on multi-UAV systems,
we propose a taxonomy of these systems according to the most relevant characteristics
and attributes. The retained taxonomy is outlined in Figure. 2.3.

Taxonomy
multi-UAV
system

Homogeneity

Identical

Homogene-
ous

Heteroge-
neous

Interdepend-
ency

Coordinat-
ion

Cooperat-
ion

Mission
Control

Centralized

Decentrali-
zed

Hybrid

Tasks

Functional

Cross-
functional

Collective
organizationTeam

Formation

Swarm

Figure 2.3 – Proposed Taxonomy for multi-UAV systems.

1. Collective organization
In [Chu+18], the authors have classified these systems based on the number of agents
and their interaction to teams, formations, or swarms.

➥ In a team, the members are less than ten UAVs, and each member seeks to
optimize individual and independent objectives. In some cases, the interaction
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between the agents can be done competitively to maximize local rewards ex-
clusively. Conversely, in certain cases, the interaction can be cooperative since
the locally optimal behaviors align with approximately maximizing overall re-
wards. Such cooperative relationships are often modeled using game theory
methods and auction algorithms.

➥ A formation has also less than ten UAVs, and each UAV has a specific task.
Contrary to a teams, a formation nearly always consists of cooperative inter-
actions, and the interdependence between the states of the agents is greatly
specified for objectives such as energy efficiency.

➥ The largest one is the swarm that has more than ten UAVs. Each member
interacts with each other competitively or cooperatively depending on the type
of mission.

2. Homogeneity
In [SBS20], the authors have taken over the classification given in [Dud+96]: iden-
tical, homogeneous and heterogeneous UAVs.

➥ Identical UAVs: the UAVs of the system are of the same type (fixed-wing,
multi-rotor, etc.) and have the same type of payloads and sensors (e.g., cameras,
sniffers, meteorological sensors, etc.) and the same applications for different
payloads. For example, in [VR04], they propose a framework for a cooperative
strategy for multiple agents whose aim is to search for moving and evading
targets in a hazardous environment using identical UAVs.

➥ Homogeneous UAVs: the UAVs of the system are of the same type and
can have different usages for the payloads and sensors. For example, in [PL06],
they investigate the use of a self-organization (SO) framework for evolving
UAV swarm behavior. Employing a genetic algorithm (GA) within this frame-
work enables the swarm to locate and neutralize stationary targets efficiently.
The homogeneous nature of the UAVs promotes seamless coordination, making
them highly responsive to dynamic scenarios. This cohesion enhances their col-
lective capabilities, making them well-suited for tasks that require synchronized
and concerted efforts.

➥ Heterogeneous UAVs: the UAVs of the system are not of the same type,
and they have different sensors and execute various applications. In [FFG19],
heterogeneous UAVs coexist within the same swarm, showcasing the flexibility
of swarm behavior. With its diverse capabilities, the collective swarm is expert
at searching for targets in a given area. Upon identifying new targets, tasks
are intelligently assigned to individual UAVs based on their specific resources.
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This inherent diversity allows for a fine and custom approach to mission tasks,
making heterogeneous UAV swarms highly adaptable and effective in complex
environments.

According to our literature review, the homogeneity of a UAV system depends on the
specific objectives of the mission for which it is being used. For missions in the same
geographical area, the UAVs tend to present greater homogeneity or heterogeneity.
Conversely, the dominant trend in missions covering different geographical regions
is towards deploying a uniformly identical set of UAVs. This variation in UAV
homogeneity is closely linked to the geographical context and strategic requirements
of the missions undertaken.

3. Mission control and monitoring
A distinctive feature of classifying multi-UAV systems is how to control the UAVs
belonging to the system. We distinguish:

➥ Centralized: the Ground Control Station (GCS) or a vehicle having sufficient
computing resources (UAV or ground robot) in the multi-UAV system receives
all the important data (e.g., location information such as longitude, latitude,
and height, flying status such as speed, acceleration, and angles) from all the
agents and then manages the flight parameters and the path of all UAVs.

➥ Decentralized: each UAV is assumed to be an agent that manages its flight
parameters and path and makes decisions independently from the others, i.e.,
the decision is only taken according to its data.

➥ Hybrid: GCS and UAVs are used to manage the flight parameters of the path
and make decisions. For example, in [Yan+18], the GCS notifies the center
control agent that determines the search area after receiving an alarm. Then,
each UAV goes into this area to search for a target.

4. Interdependency
Mainly, interdependence is the interaction between the members of the multi-UAV
system and the environment in which they operate. We distinguish two types of
interaction introduced in [Maz+15]:

➥ Coordination: it is when all members of the system share resources (e.g.,
when a UAV plays the role of a radio re-transmitter from/to other UAVs and
the central station) or operate in the same place in a safe manner (e.g., for the
surveillance at different altitudes or from different viewpoints of the same ob-
ject). For example, drones can be synchronized and perform a light show, such
as the 1,218 drones used during the opening ceremony of the 2018 Olympics
[Inta] that performed different patterns such as Olympic rings, a snowboarding
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athlete, etc., or the 300 drones that were used during the light show of Su-
per Bowl in 2017 [Intb]. In May 2021, 5,164 UAVs were used simultaneously,
breaking the dazzling record in Shenzhen for the largest swarm of UAV [Gui].

➥ Cooperation: it is when all the system members execute a set of tasks and
make decisions collaboratively to achieve a common behavior and overall goal,
to receive a common reward finally. For example, in [Spy+21], multirotor UAVs
were equipped with received signal strength indicator (RSSI) sensors and or-
ganized in a swarm. They cooperate between them to approximate and trail a
moving target.

5. Tasks:
Generally, a mission is composed of several tasks. When a multi-UAV system is
considered for doing a mission, it is important to know the characteristics of the
tasks. In [SBS20], they classified them into two types:

➥ Functional: when all UAVs of the multi-UAV system perform a similar task.

➥ Cross-functional: when the UAVs of the multi-UAV system perform dissim-
ilar tasks.

2.2 State-of-the-art on distributed and probabilistic
decision-making

We evaluated 708 publications from three digital libraries (ACM, IEEE, and Scopus) in
a systematic mapping review carried out between 2019 and 2023. However, most of these
articles were not relevant enough regarding the main topic of this thesis. After analyzing
the remaining articles, we only found 13 articles presenting decision-making methods. The
filtering parameters used to limit the number of articles are:

1. non-English publications. Some publications in other languages were found, al-
though the searches were carried out with English keywords. We have kept only
those that were written in English so that we can analyze them in depth;

2. papers that are not downloadable online or those that have content that is not fully
accessible;

3. publications that are not related to distributed decision-making, probabilistic model,
or UAVs as defined in this work (i.e., UAV-related papers that address other research
fields);

4. papers focusing on distributed decision-making other than based on the probabilistic
model applied to a multi-UAV system.
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Figure 2.4 – Keywords graph and occurrence mapping for the articles selected in this
review.

Figure 2.4 presents a keywords graph and occurrence mapping for the articles selected
in this review. We consider keywords with at least two occurrences and at least one link
to other keywords. Thereby, the keyword mapping consists of 23 keywords in total. In
Figure 2.4, it is possible to note many links with the UAV and decision-making keywords.
However, although the keywords related to diagnosis, safety, and security are present in
Figure 2.4, there are few links correlating them to multi-robot/multi-agent systems.

To measure how each selected publication is relevant regarding the area of research on
probabilistic-based distributed decision-making methods, we analyze each paper regarding
the following aspects (criteria):

1. the work presents a theoretical analysis (C1);

2. the work presents real-world results (C2);

3. the work involves decision-making for UAVs in the distributed multi-UAV systems
(C3);

4. the work is centered on decision-making for UAVs, considering diagnosis, safety and
security threats, or/and the countermeasures (C4).

Each aspect is analyzed for each publication and classified according to the taxonomy
proposed in Section 2.1.4.

Instead of solving a joint multi-UAV Partially Observable Markov Decision Process
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(POMDP), Capitan et al. [CMO16] propose to split the original problem into simpler
ones. UAV behaviors are auctioned during the mission. Firstly, they solve one policy for
factored POMDP, where one UAV tracks one target. Then, the factored policy is used to
emulate different behaviors allocated dynamically to the UAVs. They use a data fusion
system to maintain a belief in the joint factored state.

In [Han+19], Han et al. propose different Reinforcement Learning (RL) algorithms
to avoid random dynamic obstacles automatically. These algorithms are based on the
experience shared between multi-UAVs. First, the obstacle avoidance problem is modeled
as a Markov Decision Process (MDP). They introduce an Actor-Critic (AC) algorithm
that combines Q-Learning and Policy Gradients and an Advantage Actor-Critic (A2C)
algorithm that shares the experience between UAVs to solve this problem.

Ong et al. [OK15] propose several algorithms for conflict avoidance systems for Un-
manned Aircraft Traffic (UTM). They formulate the conflict resolution problem as a
stochastic problem in a large MDP and decompose it into computationally tractable
subproblems (pairwise encounters). They solve these encounters offline, then iteratively
combine them online to produce a locally optimal coordination solution.

Wang et al. [Wan+18] present a decentralized approach for multi-UAVs real-time
conflict resolution based on pre-order flight information. They assume that each UAV
can get historical flight information and current position information of UAVs within a
given detectable radius when the distance of recent locations between two UAVs is smaller
than a collision radius. First, they use a game theory approach to compute the safety and
efficiency payoffs (reward) of the safety level strategy (actions corresponding to speed and
heading adjustments) they can carry out. After that, they compute the efficiency that
reflects goal achievement according to the flight mission of each maneuver strategy for
collision avoidance. Then, according to the pre-order flight information, a UAV builds a
memory pool and obtains the most rewarding collision avoidance strategy to be executed.

Cook et al. [CCK16] propose a fuzzy logic approach to mitigate the risk of collision
between two UAVs in a congested low altitude airspace that uses a UTM system. They
develop two controllers. The first one aims to solve potential collisions between two UAVs
that are close to each other. Each UAV uses a robust sensing system that helps them
to make a decision based only on local state information. This avoiding system is totally
independent from the other UAVs and does not require any communication or coordinated
maneuver. The second controller is in charge of the control of an UAV End-to-End path.
It guarantees that a minimal distance between two UAVs is respected all along their paths
and chooses which UAV has to change its path to keep this distance.

Shen et al. [She+18] propose a distributed resolution scheme for multiple connected
autonomous vehicles to make on-ramp merge maneuvers and plan longitudinal trajecto-
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ries. They use heuristics that minimize the cost of time spent on planning and finding the
optimal lane change maneuver. In the beginning, a free-time algorithm is used to guess
the initial time to merge the vehicles. Then, a cost of time (COT) algorithm optimizes
the scheduling of the vehicles in the lane and decides which vehicle has to change lanes.

Nie et al. [Nie+16] propose a decentralized cooperative lane-changing decision-making
framework for connected autonomous vehicles (CAV). The framework is composed of three
core modules. The state prediction module employs a cooperative car-following model
to predict the following state (represented by the positions, accelerations, and speeds
of CAV and its surrounding interacting vehicles) of related vehicles. In the candidate
decision generation module, the candidate decision (i.e., lane-changing or lane-keeping) is
determined to optimize the advantage of the subject vehicle (if it executes the candidate
decision). Once the candidate decision is generated, the candidate decision is broadcast to
the surrounding interacting vehicles. After receiving a candidate decision, the candidate
decision coordination module makes a final decision and publishes it to the neighbor
vehicles.

Ebert et al. [Ebe+20] introduce a decentralized Bayesian algorithm for robot swarms to
identify and cartography different features of an environment. The robots use a go/no-go
decision model to map areas with different colors. Each robot performs a pseudo-random
walk to cover the environment without any localization system and behaves as a Bayesian
estimator while exchanging and integrating observations from nearby robots.

Dai et al. [Dai+19] propose an autonomous flocking control scheme to help a swarm of
UAVs keep the same topology during a flying mission. This scheme guarantees the quality
of service and communication between them and improves the overall energy consumption
of the swarm. Each UAV follows another UAV that acts as a leader. This pattern avoids
any collision that could occur between two UAVs.

In [LWW18], Lin et al. propose to form a cooperative formation based on an obstacle
avoidance algorithm for a multi-UAV system. All UAVs are part of the same formation
and are controlled as a whole. Inside the system, a communication topology is set up.
They use a consensus algorithm to maintain the shape during the mission and avoid
collisions. They use an improved artificial potential field method outside the system to
avoid obstacles.

Yang et al. [Yan+18] use an improved Ant colony optimization (ACO) algorithm for
search and rescue missions. Heavy computational tasks are distributed on each UAV of the
swarm to reach a target in sea rescue and search missions. The system uses edge computing
to complete calculation tasks such as the positioning of the UAVs in the environment and
UAVs path determination according to the information shared between UAVs.

Adamey et al. [AOÖ17] present a collaborative multi-sensor agent and multi-target
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tracking and surveillance approach. It is developed in conjunction with the Bayesian
tracking framework (as the decision-making procedure relies on the belief space). The
approach is based on decomposing the entire bounded environment into separate regions.
Then, these regions are allocated to individual mobile sensor agents to be explored. The
approach utilizes a data structure called a region allocation tree, which encodes all the
candidate regions, organizes them in accordance with their subset/superset relationships,
and keeps track of their exploration utilities.

In [Gen+16], Gentilini et al. focus on a path-planning strategy for multiple Unmanned
Aircraft during surveillance missions. The objective is to find the set of commands for the
aircraft network to minimize a cost function (depending on the relative position between
the aircraft and the target). First, they developed a target tracking algorithm to provide
information on target and drone motion in the surveillance area using a Kalman Filter
and Bayesian network. Then, they define the objective functions as the relative position
between the aircraft and the target. Finally, they use a heuristic approach to find the set
of commands for the UAV that maximize the utility function.

Based on the discussion mentioned above, a side-by-side comparison in terms of case
studies, collective organization, homogeneity, mission control type, communication type,
data shared inside the swarm, interdependency between the members of the swarm,
decision-making model used, tasks type, validation environment, scalability of the sys-
tem, criteria C1 to C4 are given in Table 2.2 for the different decision-making approaches
that were presented previously. The abbreviations used in this table are:

☞ N.sp ➡ Not specified,

☞ L.I. ➡ Location information (longitude, latitude, and height),

☞ F.I ➡ Flying information (speed, acceleration, and angles),

☞ SIMFC ➡ Swarm Intelligence-inspired Multi-layer Clocking Control,
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Through this comparative table of the reviewed works, very few works have been able
to go as far as presenting real-world results, even though they have all given theoretical
results. Moreover, no work has focused on distributed decision-making in a multi-UAV sys-
tem considering diagnosis, safety, and security threats. Very few works that have tried to
include safety and security aspects have only considered detecting and avoiding obstacles.

2.3 Challenges, open issues, and future directions

With the emergence of new technologies in robotics, UAVs are becoming more and
more autonomous, fast, and robust. A multi-UAV system (swarm or team of UAVs)
is usually used to achieve goals faster and more precisely and improve the efficiency
of missions for complex scenarios. New approaches to utilizing multi-UAV systems in
complex missions still do not benefit from the current technological advancements, mainly
due to the dynamic structure of the network of the multi-UAV systems.

As shown in Section 2.2, although there is much work on decision-making in multi-UAV
systems, only a small part is handled with probabilistic decision models.

As highlighted in the preceding section, there is a growing trend among academic,
industrial, and military organizations to adopt heterogeneous multi-UAV systems, driven
by their various advantages in mission execution. This is particularly evident in critical
missions where resource optimization and precision are critical.

The open issues are:

➥ the potential management conflicts between members of the multi-UAV system
become an increasing need. Conflicts can be internal to each member due to the
non-respect of external constraints, or conflicts can be at the multi-UAV system
level. Internal conflicts can result from incompatible actions (e.g., when a UAV1

has to do the mission with insufficient battery power), etc. Conflicts at the multi-
UAV system level can appear when the mission constraints are not respected; for
example, the number of UAVs executing the task is exceeded (e.g., during a search
mission, a target T1 is detected and only one or even two UAVs are needed to follow
it, the other UAVs will continue searching for other targets), etc.

➥ the decision-making models should consider the faults, including hardware failures
in embedded systems such as sensors, autopilots, and embedded processors, as well
as potential cyber threats. Implementing diagnostic capabilities during the mission
presents an invaluable opportunity to mitigate system failures and avert potential
disasters, including those that may impact human lives.

➥ the interactions between UAVs in a multi-UAV system should be reduced by ex-
changing the least possible volume of data. This reduction of transmitted data can
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reduce, at the same time, the potential risk of miss transmission as well as the
number of resources and the energy consumption due to the communication.

A future solution could be to manage a mission with a distributed and shared proba-
bilistic decision model for a multi-UAV system. This model can be fed by failure predic-
tion and cyber-attack detection models. A minimalist data exchange (sensor failure signal,
cyber-attack signal, target locked for tracking, task taken, etc.) can allow good adapta-
tion and synchronization between the members of the multi-UAV system and reduce the
consumption of material and energy resources during missions.

2.4 Final consideration

In the first part of this chapter, an overview of UAVs and their classification according
to their weight, altitude, and endurance is presented. In the second part, we have mainly
listed the applications of the multi-UAV systems used in the last decade. In the third part,
firstly, we propose a taxonomy for these systems and then present a review of the state-of-
the-art on probabilistic decision-making models used in multi-UAV systems. Afterward,
these works are compared based on the essential features such as case studies, collective
organization, homogeneity, mission control type, communication type, data shared inside
the multi-UAV system, interdependency between the members of the multi-UAV system,
decision-making model used, tasks type, validation environment, scalability of the system,
and criteria used for measuring the pertinence of the publications. Finally, the open issues
and the uncovered or insufficiently covered items are identified, allowing a road map and
a starting point for future research projects.
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Introduction

This chapter explores the fundamental concepts of Machine Learning (ML) and decision-
making, specifically focusing on Markov Decision Processes (MDP). The Section 3.1 intro-
duces ML, outlining its basic principles and categorizing it into supervised, unsupervised,
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and Reinforcement Learning (RL). Reinforcement learning is examined as a dynamic
iteration in which agents adapt their decisions through a feedback loop of rewards and
penalties. Subsequently, in Section 3.2, the focus extends further into MDP-based decision-
making, presenting MDPs as a robust framework for modeling decisions in stochastic en-
vironments. The concept of policy, serving as a guiding strategy for an agent’s actions,
is defined, followed by a practical example involving a racing UAV. Section 3.3 explores
in-depth MDP solution methods, such as Dynamic Programming (DP) and Temporal
Difference (TD), emphasizing computational complexities. In Section 3.4, experimental
insights are provided, including case studies of robot navigation in a grid and mission
planning for a drone. These experiments provide insight into the application and adapt-
ability of MDPs in real-world scenarios, with a detailed comparison of solution methods.
The Section 3.5 concludes by summarizing key concepts and drawing conclusions from
the experimental results.

3.1 General concepts related to Machine Learning

3.1.1 Introduction to Machine Learning

Definition 1. Machine Learning (ML) Machine learning is the domain of study that
provides computers the ability to learn without being explicitly programmed to perform the
desired action, which means a program that improves its performance at some task through
experience without programming the modifications [Mit97].

In other words, a learning algorithm aims to learn in an interactive environment,
through experience E, to perform tasks T or solve a problem efficiently. Image recognition
is one of the most significant applications of Machine Learning used to classify and identify
objects or elements within digital images. Task T is classifying and identifying objects,
and Experience E is the database images (with their class) used to train the model.

3.1.2 Types of Machine Learning

In the literature, the ML algorithms are based on the learning style, model training,
and according to the input data (data-set) characteristics (presence /or not of labels in
the data set representing the information we want to predict) on which they act.

❖ Supervised learning: In supervised learning, the model is trained on a labeled data
set, where each input data point (observation) is associated with a corresponding
target or output. The goal is to learn a mapping from inputs to outputs so the
model can make predictions or classifications on new, unseen data. The supervised
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learning algorithm measures its accuracy through the loss function, adjusting it until
the error has been sufficiently minimized [Nas17].
Supervised learning can be classified into two types of problems in data mining: clas-
sification and regression. In classification, the label is discrete, while in regression,
the label is continuous.

➥ Classification: map the input space into predefined classes. The Common clas-
sification algorithms are linear classifiers, Support Vector Machines (SVMs),
Decision Trees (DTs), and Random forests,

➥ Regression: map the input space into a real-value domain. It is used to un-
derstand the relationship between dependent and independent variables. The
common regression algorithms are Linear regression and Logistic regression.

❖ Unsupervised learning: unlike supervised learning, data observations (data-set
outputs) are not labeled in unsupervised learning, and algorithms must autonomously
extract relationships between them by finding patterns, structure, or relationships
within the data [Gha03].
Unsupervised learning is often used for data exploration, anomaly detection, clus-
tering, dimensionality reduction, and generative modeling.

❖ Reinforcement Learning: focuses on developing computational algorithms and
models for autonomous agents to learn to make sequences of decisions in an envi-
ronment to maximize a cumulative reward signal [Glo00].

3.1.3 Reinforcement Learning

Definition 2. Reinforcement Learning (RL) constitutes a comprehensive category
of learning problems intrinsic to autonomous agents interacting in an environmental con-
text. These problems manifest as sequential decision-making scenarios wherein rewards
are subject to delay. Reinforcement learning algorithms are designed to learn a policy, de-
noting a mapping from states to actions, aiming to maximize the cumulative reward over
time [SW11].

RL involves the agent’s ability to learn through trial and error, explore different strate-
gies, and optimize actions to achieve a specific goal or objectives in a constantly dynamic
and uncertain environment.

Otherwise formulated, reinforcement learning is learning what to do, i.e., how to map
situations to actions to maximize a numerical reward signal. In this approach, the learner
is not receiving explicit instructions on which actions to choose; instead, it must explore
and experiment to determine which actions lead to the highest rewards.
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3.2 Decision Making based on MDPs

3.2.1 Markov Decision Process for decision-making

A discrete Markov Decision Process (MDP) [Put14] models a dynamic process, with
the agent observing the environment in each step. It selects an action, performs the se-
lected action (which modifies the environment), and the agent receives a reward depending
upon the change. An MDP is formally defined as a tuple ⟨S,A, T ,R⟩ where:

— S is a finite set of states s1,s2,s3,. . . ,sn.

— A is a finite set of actions a1,a2,a3,. . . ,am.

— T (s, a, s′) is the probability [0,1] of moving to state s′ when action a is executed in
state s.

— R(s, a) is the immediate reward received after taking action a in state s.

3.2.2 Policy

Policy π : S ×N 7→ A (N representing the number of states) is a solution of an MDP
and is a decision plan that can be invoked at any time within the decision-making process.
It determines for an agent at each state s in S, the action a in A that should be carried
out.

The optimal policy π∗ is the policy that corresponds to the optimal value function, as
in:

π∗ = arg max
π

Vπ(s), ∀s ∈ S. (3.1)

The optimal policy (π∗) is usually the one that maximizes the expected accumulated
rewards, Vπ, such that it satisfies Bellman’s Equation[Bel58], as in:

Vπ(s) = max
a
{R(s, a) + γ

∑
s′∈S
T (s, a, s′)Vπ(s′)} (3.2)

In order to determine the optimal actions and corresponding values, two common
algorithms are used: Policy Iteration (PI) and Value Iteration (VI) [Put14].

These algorithms introduce another function, the state-action pair Q function.
The optimal Q-function Q∗(s, a) means that the expected total reward received by an
agent starting in s and which picks an action a will behave optimally afterward, as in:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S
T (s, a, s′)V ∗(s′). (3.3)

Since V ∗(s) is the maximum expected total reward when starting from state s, V ∗(s)
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becomes:
V ∗(s) = max

a
Q∗(s, a) ∀s ∈ S. (3.4)

Thus, utilizing Equation (3.1), it is possible to compute the most efficient strategy, as in:

π∗ = arg max
a

Q∗(s, a) ∀s ∈ S. (3.5)

3.2.3 Example of decision making with MDP (racing UAV)

To illustrate the properties mentioned above and the modeling of a decision-making
process with MDPs (see Figure 3.1), the control of a racing UAV is given as an example.

Figure 3.1 – MDP racing UAV control [Ham+21].

The racing UAV has two goals: 1) fly far (to finish the race) and 2) fly quickly (to
win the race). It can take three states corresponding to its health state: s1: Normal, s2:
Unstable s3: Crash.

The racing UAV is controlled by two actions: a1: fly Slowly or a2: fly Faster. There is
a probability ω that a wind poses a risk to the UAV after taking an action. Let’s get ω =
0.5, the probability of wind occurrence during a period.

In each period, an action is decided and carried out. If there is wind at the end of
a period and the chosen action is to fly Faster, the racing UAV will be in a dangerous
state (i.e., unstable or crashing), and the state at the beginning of the next period will
be min(si+1; s3). The other courses of action will be safe.

The transition matrix T (s, a, s′) for this problem can then be defined as follows:

Taslow
=


1 0 0

1− ω ω 0
0 0 1

, TaF aster
=


1− ω ω 0

0 0 1
0 0 1

.
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The reward matrix R(s, a) is defined as follows:

Rs,a =


Rs1,a1 = 1 Rs1,a2 = 2
Rs2,a1 = 1 Rs2,a2 = −10
Rs3,a1 = 0 Rs3,a2 = 0

.

The racing UAV must find a policy to finish the Fastest in the race. The policy must
maximize the γ-discounted reward. Let us assume that γ = 0.95. Usually, two algorithms
are used to solve a problem: policy Iteration or Value Iteration algorithms. The policy
Iteration method is usually more efficient than the Value Iteration method because it
takes fewer iterations to converge toward the optimal solution. Therefore, it is applied
here.

After the convergence of the algorithm, the result of the Q-function Q∗(si, ai) is:

Q∗
si,ai

=


Q∗

s1,a1 = 14.95 Q∗
s1,a2 = 15.50

Q∗
s2,a1 = 14.50 Q∗

s2,a2 = 2.0
Q∗

s3,a1 = 0.0 Q∗
s3,a2 = −10.0

.

By using Equation (3.4),

V ∗(s) =


V∗

s1

V∗
s2

V∗
s3

 =


15.50
14.50

0

.

From Equation (3.5), the policy that corresponds to the optimal Q-function is:

π∗ =


a2

a1

.

. The agent cannot perform an optimal action in state s3 because the UAV is

in a crashed state.
We note that any change in the transition matrix T (s, a, s′) does not affect the policy,

which remains unchanged. If the wind is weak, it will not strongly affect the drone’s travel
speed. Changing the immediate reward of an action affects the decision-making process
and the final policy.

Although rewards are typically randomized, finding a systematic approach for adjust-
ing them remains challenging.

3.3 MDP resolution methods

This Section presents and compares the three most used methods for solving fi-
nite Markov Decision Problems based on Dynamic Programming (DP) and Temporal-
Difference Learning methods.

It is important to be clear that itermax used in the three methods is the “episodes”
and is sometimes called “trials” in the literature.
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3.3.1 Dynamic Programming

Dynamic Programming (DP) references a collection of algorithms that can be used to
compute optimal policies given a perfect environment model as an MDP. The concept of
DP is the use of the Value function (formula (3.2) described in Section 3.2) to organize
and structure the search for good policies.

1. Value Iteration
Value Iteration consists of improving the Value Function calculated iteratively using
the Bellman equation (3.2) until it converges. The Value Iteration algorithm is shown
in Algorithm 1.

Algorithm 1: Value Iteration
Data: Transition and Reward matrices, γ, itermax, ϵ
Result: Optimal policy π∗

1 Initialization V ∈ R arbitrarily for all s ∈ S (e.g., V (s) = 0 for all s)
2 iter ←− 0
3 repeat
4 ∆←− 0
5 Compute new_V using the Bellman operator (and the next policy new_π)
6 ∆←− max(∆, new_V − V )
7 iter ←− iter + 1
8 until ((∆ < ϵ) Or (iter = itermax));

Where itermax is the maximum number of iterations and ϵ is the precision factor
that defines the difference between two values function computed in two successive
iterations.
Theoretically, Value iteration requires infinite iterations to converge exactly to V ∗.
In practice, we stop once the value function changes by only a small amount ∆ < ϵ

or after a sufficiently large iteration number itermax for which the method must give
a decision-making policy.

2. Policy Iteration
Policy Iteration consists of evaluating and improving a policy calculated iteratively
using the Bellman equation until it converges. The Policy Iteration algorithm is
shown in Algorithm 2.
As for Value Iteration, theoretically, Policy iteration requires infinite iterations to
converge exactly to π∗. In practice, we stop once the two successive resulting policies
are equal (new_π ≈ π) or after a sufficiently large iteration number itermax for
which the method must give a decision-making policy.

75



CHAPTER 3 – Comparison of fundamental methods for mission planning

Algorithm 2: Policy Iteration
Data: Transition and Reward matrices, γ, itermax

Result: Optimal policy π∗

1 Initialization V ∈ R and π(s) arbitrarily for all s ∈ S
2 iter ←− 0
3 repeat
4 Policy Evaluation (Compute of Transition T’ and Reward R’ matrices of π,

Then Compute Vπ with the new matrices T’ and R’)
5 Policy Improvement (Compute of the next policy new_π) and Compute of

the new_V using Bellman operator
6 iter ←− iter + 1
7 until ((new_π ≈ π) Or (iter = itermax));

3.3.2 Temporal-Difference learning

Temporal Difference (TD) methods can learn directly from raw experience without a
model of the environment’s dynamics (model-free). They update estimates based on other
learned estimates without waiting for the final result.

1. Q-Learning is an off-policy TD control algorithm, which means the state-action
values function Q converges to the optimal state-action values function Q∗ what-
ever the policy followed. This method was developed by Watkins [WD92], and the
recursively form of Q(s, a) is defined by:

Q(s, a)←− Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)−Q(s, a)] (3.6)

where α is the learning rate, which determines how Fast the new experience replaces
the old ones (or how the agent abandons the previous Q-value in the Q-table for a
given state-action pair for the new Q-value). ϵ-greedy is the policy that allows us to
set the exploration and exploitation rate for the agent.
The Q-learning algorithm is shown in Algorithm 3.
Notice that the terminalstate means the state s is terminal and has no action to take
from it to go to another state s’.
By Watkin [WD92], it has been proven that Q-Learning converges to the optimal
policy given "sufficient" updates for each state-action pair, decreasing the learning
rate. It means that if each action is executed in each state an infinite number of
times on an unlimited run and the learning rate α is decayed appropriately, the Q

values will converge to Q∗. To get this balance between exploitation and exploration,
we use what is called an ϵ-greedy strategy to find the trade-off. For convergence to
occur, the agent must use exploitation while engaging in exploration to avoid being
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Algorithm 3: Q-Learning
Data: Reward matrix, α, γ, itermax, ϵ-greedy policy (ϵ and ϵdecay)
Result: Optimal policy π∗

1 Initialization Q(s, a) ∈ R, ∀s ∈ S, ∀a ∈ A(s) arbitrarily and
(Q(terminalstate, .) = 0)

2 iter ←− 0
3 repeat
4 Initialize s
5 repeat
6 Choose a from s using policy derived from Q (e.g., ϵ-greedy policy)
7 Take action a, observe R, s’
8 Q(s, a)←− Q(s, a) + α[R(s, a) + γ max

a′
Q(s′, a′)−Q(s, a)]

9 s ←− s’
10 until (s = terminalstate);
11 iter ←− iter + 1
12 until (iter = itermax);

trapped in local optima.
With this strategy, we define an exploration rate ϵ(= 0.99) initially (99% the agent
will start by exploring the environment). This exploration rate is the probability
that our agent will explore the environment rather than exploit it. As the agent
learns more about the environment, at the start of each new iteration (episode), ϵ

will decay by ϵdecay (= 0,001). So, the exploration likelihood becomes less and less
probable as the agent learns. Once the agent has explored and learned, it will use
its knowledge.
To determine whether the agent will choose exploration or exploitation at each time
step, we generate a random number between 0 and 1. If this number exceeds ϵ, the
agent will choose its next action via exploitation (i.e., the action with the highest
Q-value for its current state from the Q-table). Otherwise, its next action will be
chosen via exploration, i.e., randomly choosing its action (i.e., exploring).

3.3.3 Complexity comparison

Table 3.1 resumes the input data of the three methods and shows their complexity
comparison.

Notes:

☞ The Bellman*: contains two elementary functions: a Max and a Sum function.

☞ itermax: Number max of iteration is different between them.

All these parameters and data inputs influence each method’s performance and res-
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Method
Value Policy Q-Learning

Iteration Iteration

Input
data

T matrix -
R matrix

γ
α - -
ϵ -

ϵdecay - -
Itermax

Inner loop operator Bellman* Bellman* Max
Number of loops 1 1 2

Stop iter = itermax

condition Convergence -

Table 3.1 – Summary of input data and complexity comparison for the three methods
[Ham+21].

olution time. Moreover, there is no method to easily find the best values to tune these
parameters for a given application. We see that both methods, Value Iteration and Policy
Iteration, have the same input data except the ϵ parameter. However, the Q-Learning
method is the most complex; it contains more input data, which are the main parameters.

In Section 3.4.1, we study the effect of these parameters on a scalable case study. In the
first part, we used the Matlab MDP toolbox v3.0 [Cha+05] to perform the calculations.

3.4 Experimental experiences

This Section focuses on the case study used to compare the three methods. It shows
the effect of the parameters listed in Table 3.1 on a scalable case study. It begins by
describing the case study and then gives the evaluation results and their analysis.

3.4.1 Case study 1: moving of a robot in a grid

All the policies presented here are obtained by solving each grid’s corresponding MDP.
The experiments were conducted with a computer with 2 processors, Intel Xeon Gold 5122
CPU @ (3.60 GHz and 3.59 GHz) and 64 GB of RAM.

1. Grid for robot navigation

(a) Generic regular grid
In this case, to quantify the number of iterations and the execution time of
each method, also to determine the most efficient one, we implement in Mat-
lab the decision-making problem which generates the grid (Figure 3.2) of size
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s×s squares where s ∈ [4, 55]. So, the number of states ranges from 16 to 3025.

Figure 3.2 – Generic grid of size S = s× s [Ham+21].

(b) Irregular grid
In this case, the number of actions in each state is increased in a synthetic way
to see the effect of dissimilarity of actions in the decision-making process. We
consider a grid with 16 cases (states) and then create five action classes. In
each class, we found the four actions needed to move in the grid (Up, Down,
Left, and Right) and other miscellaneous actions as mentioned in Figure 3.3.
As shown in Figure 3.4, each state randomly assigns a class.

Figure 3.3 – Actions classes for the irregular case with miscellaneous actions (the proba-
bility of transition in red, the rewards in blue) [Ham+21].

2. Experiments setup and parameters tuning

(a) Selection of the optimal ε-value:
Unlike Policy Iteration, Value Iteration has one more parameter: ϵ. As it is used
in the stop condition of this algorithm, it has to be chosen carefully. The best
candidate is a value for which the best policy is found with the lowest number
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Figure 3.4 – Classes assignments to grid states [Ham+21].

of iterations. To find this value, we perform tests on the generic regular grid
for three ϵ-values: ϵ = 0.01, ϵ = 0.1, and ϵ = 0.5 to evaluate the best solution
in terms of execution time as shown in Figure 3.5.
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Figure 3.5 – Comparison Value Iteration and Policy Iteration [Ham+21]. (a) The number
of iterations for size 4 × 4 to 55 × 55. (b) Execution time for size 4 × 4 to 55 × 55. (c)
Speed up of Value Iteration / Policy Iteration.
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In Figure 3.5a, the number of iterations of the Value Iteration method decreases
slightly by increasing the value of the ϵ parameter e.g., for the size 55× 55 the
number of iteration is 174 for (ϵ = 0.01), 168 for (ϵ = 0.1) then 162 for (ϵ = 0.5).
Also, as shown in Figure 3.5b, the higher the ϵ-value is, the lower the execution
time is. For a 55 × 55 grid, the execution time is 20 seconds (resp. 19.42 and
18.62 seconds) for an ϵ-value equals 0.5 (resp. 0.1 and 0.01). So, the increase of
the ϵ parameter reduces the number of iterations needed to find the best policy
and its execution time (about ≈ 6% of decrease). This reduction in the number
of iterations of the method implies a loss of precision in the Value functions of
the values table, which means that the Value Iteration method may converge
towards a non-optimal policy. As all the ϵ-values are very low regarding the
value of the rewards, the risk that the algorithm does not return the best policy
is also very low. In the rest of the document, we consider (ϵ = 0.01) for more
precision in resolving the problems using the Value Iteration method.
Speed up between the two DP methods
The curves of the speed up in Figure 3.5c are obtained by calculating the aver-
age of five executions of the resolution of the problems modeled with the grids
(size 4 × 4 to 55 × 55). We solve each grid’s corresponding MDP five times
using Value Iteration and Policy Iteration. Then, we compute the average time
needed to solve the MDP. Finally, to evaluate the speed up, we divide the
Exec_time_V alueIteration (average of execution time using Value Iteration)
by Exec_time_PolicyIteration (average of execution time using Value Iter-
ation), then we plot the result. We can notice that the speed-up is strictly
greater than 1, and almost 70% of the time, the speed-up is greater than 1.5,
and 20% of the time, it is greater than 2, this confirms that Policy Iteration is
the most efficient.

(b) Variants of the DP/TD methods
To compare the three methods, the maximum number of iterations for each
one of them is set to 1,000,000, i.e., itermax = 1, 000, 000. As the goal to
achieve is known, the convergence condition of the Q-Learning algorithm can
be modified to stop when the goal state is reached, as shown in Table 3.2. This
new version of the Q-Learning algorithm may not return the best policy, but
it will significantly improve its search time.
Two stop conditions will be studied:

i. Version 1: Value Iteration and Policy Iteration methods find the optimal
policy that guarantees a path from any system state to the Goal state. For
the Q-Learning method, the stop condition cc1 is added to the algorithm.
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A. Version 1-a initializes the first state of the search to the Start state
(square(1,1) of the grid),

B. Version 1-b randomly selects the first state of the search.

ii. Version 2: to find a path from the the Start state to the Goal state, we
added the condition cc2 to the three methods.

In brief, all the parameters used during the experiments are presented in Table
3.2.

Method
Value Policy Q-Learning

Iteration Iteration

Generic regular
grid

Ver. 1-a - - cc1, Inits

Ver. 1-b - - cc1, Initr

Ver. 2 cc2 cc2 cc2, Inits

Irregular
grid

Ver. 1-a - - cc1, Inits

Ver. 1-b - - cc1, Initr

Ver. 2 cc2 cc2 cc2, Inits

Table 3.2 – Summary of the parameters to tune in the three methods comparison
[Ham+21].

Notes:
☞ Ver. ⇒ version.
☞ cc1 (condition of the convergence 1)⇒ Find a path from any state s

of the grid to the Goal state.

☞ cc2 (condition of the convergence 2)⇒ Find a path from Start state
(square(1,1)) of the grid to the Goal state.

☞ Inits⇒ Initialization of the initial state (1st instruction) to the start state
(square(1,1) of the grid).

☞ Initr⇒ Initialization of the initial state (1st instruction) randomly.
3. Comparison between the DP and TD methods

(a) Generic regular grid

i. Version 1: in this version we solve MDPs using three methods. The results
are shown in figures 3.6 and 3.7. We can notice that:

☞ Policy Iteration method is more efficient than Value Iteration for any
version 1 (Versions 1-a or 1-b).

☞ For version 1-a (see Figure 3.6a), the Q-Learning method fails to con-
verge over the size S = 8 × 8 = 64 states and reaches the itermax =
1, 000, 000 iterations. Its execution time increases exponentially.
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☞ For version 1-b, the Q-Learning method fails to converge in most sizes
and reaches the itermax = 1, 000, 000 iterations due to the random ini-
tialization of the state s (see Figure 3.7a). Its execution time increases
exponentially in the same way as in version 1-a.
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Figure 3.6 – Comparison version 1-a. (a) Number of iterations for size 4 × 4 to 55 × 55.
(b) Execution time for size 4× 4 to 55× 55. (c) Number of different actions between VI
and Q-l for size 4× 4 to 55× 55.

We conclude that the search for a global optimal policy for a problem is
more practical using the DP methods (Value Iteration method or Policy
Iteration method). The Q-Learning method is inefficient in terms of exe-
cution time because it needs a lot of time to explore the state and action
space before converging. So, for this type of simple scenario, Policy Itera-
tion is the best candidate to find the best set of actions to reach the goal
state.
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Figure 3.7 – Comparison version 1-b [Ham+21]. (a) Number of iterations for size 4× 4 to
55× 55. (b) Execution time for size 4× 4 to 55× 55. (c) Number of different actions for
size 4× 4 to 55× 55.
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ii. Version 2: in this version, a condition of the convergence cc2 is added to
Value Iteration, Policy Iteration and Q-Learning methods. We solve the
MDPs using the three methods; the results are shown in Figure 3.8.
We can notice that:

☞ The number of iterations of the Q-Learning method increases expo-
nentially and exceeds that of the Value Iteration method and Policy
Iteration method (Figure 3.8a).

☞ Concerning the execution time (see Figure 3.8b), if the size of the
problem is less than S = 11 × 11 = 121 states, their efficiency is
approximately the same, their execution times are at 1.5 millisecond
scale ± 0.5 millisecond. Beyond this size up to the size S = 39× 39 =
1521 states, Q-Learning and Policy Iteration have the same efficiency
and are better than Value Iteration. Beyond this size (S = 39× 39 =
1521), the Q-Learning method is the best.

We conclude that the Q-Learning method is more efficient than Dynamic
Programming methods (Value Iteration method or Policy Iteration method)
to find a path from the Start state to the Goal state. This fast convergence
of Q-Learning is attributed to its intrinsic balance between exploration and
exploitation during learning. By initiating the initialization of the initial
state (the first instruction of the algorithm) at the starting state (square
(1,1) of the grid), it converges more rapidly. On the other hand, DP meth-
ods cannot incorporate the initialization of a state into their algorithms.

Speed up of MDP methods for generic regular grids
The speed-up comparison curves between Q-Learning and Value Iteration ( or
Policy Iteration) in Figure 3.9 are obtained with the same methodology used
to obtain the speed-up between Value Iteration and Policy Iteration in Figure
3.5c. In Figure 3.9a and Figure 3.9b, the speed-up of Q-Learning compared to
Policy Iteration is notably higher than the speed-up of Q-Learning compared
to Value Iteration. Additionally, it is strictly greater than 1, affirming that
Policy Iteration is the more efficient method. In Figure 3.9c, the speed-up of
Q-Learning compared to Policy Iteration exceeds 1 when the problem size is
less than 40×40. For these smaller grids, the time required to solve the problem
(search for a path) is very brief, typically in the order of a few milliseconds.
Hence, their efficiency is almost the same. When the size of grids is greater than
this size, the curve is under 1; this means that, in that case, the Q-Learning
is the better one. Thus, we can conclude that the Q-learning method is more
efficient for searching a path.
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Figure 3.8 – Comparison version 2 [Ham+21]. (a) Number of Iterations for size 4 × 4 to
55× 55. (b) Execution time for size 4× 4 to 55× 55. (c) Number of different actions for
size 4× 4 to 55× 55.
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Figure 3.9 – Speed up between the methods for regular grids [Ham+21]. (a) Version 1-a.
(b) Version 1-b. (c) Version 2.
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(b) Irregular grid
To see the effect of non-similarity (irregularity) of actions in each state, a grid
with 16 states is considered. Each state is assigned a class of actions (shown in
Figure 3.3). The result of 100 executions of the three methods for each version
to solve the problem described in this Section is resumed in the following tables
(Table 3.3, Table 3.4).

Version 1-a Version 1-b
100 Executions Value Policy Q-Learn. Value Policy Q-Learn.

Iteration Iteration Iteration Iteration

Iterations Iter_min 1,375 3 1,000,000 1,375 3 6
Iter_max 1,375 3 1,000,000 1,375 3 1,000,000

Average_Iter 1,375 3 1,000,000 1,375 3 890,009

Time
Exec_time_min 0.03433 0.00050 11.21280 0.03444 0.00032 0.00012
Exec_time_max 0.07609 0.16397 14.00078 0.05924 0.01831 10.42652

Average_Exec_time 0.03608 0.00232 11.48608 0.03676 0.00081 7.25192
Speed up Q-l. / MDP Methods 318 4951 1 197 8953 1

Version 2
100 Executions Value Policy Q-Learn.

Iteration Iteration

Iterations Iter_min 1,375 3 11
Iter_max 1,375 3 1,000,000

Average_Iter 1,375 3 855,015

Time
Exec_time_min 0.03474 0.00032 0.00029
Exec_time_max 0.05743 0.02480 10.35899

Average_Exec_time 0.03801 0.00091 7.36136
Speed up Q-l. / MDP Methods 194 8089 1

Table 3.3 – Summary of 100 executions of the three methods of each version to solve the
irregular grid [Ham+21].

100 executions Version 1-a Version 1-b Version 2

Number of
different ac-
tions over 13
states/actions

VI Vs. PI
Min 0
Max 0

Average 0

(VI / PI) Vs.
Q-l

Min 7
Max 7 13

Average 7 7.47 8.03

Table 3.4 – Summary of 100 executions of the three methods of each version to solve the
irregular grid (suite) [Ham+21].

We notice that the Q-Learning method often fails to converge even for the
size itermax = 1, 000, 000 iterations in each version. So, its execution time is
very long compared to DP methods. With DP, the problem is solved in a few
milliseconds. With Q-Learning, the problem is solved in 7 seconds in versions
1-b and 2 and 11 seconds in version 1-a.
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Following this illustration with the irregular grid, it can be figured that the ef-
ficacy of the Q-Learning method decreases in scenarios characterized by highly
irregular state-action pairings.
The examples shown in this Section were explored using the context of a ground
vehicle. The Q-learning method was evaluated for an irregular number of ac-
tions per state for a grid. In the next section, we present a mission plan for an
aerial vehicle, representing a concrete set of irregular actions by the state for
the decision-making method in the navigation system in the UAV. This sce-
nario brings new challenges and allows a better comparison and understanding
of the studied methods.

3.4.2 Case study 2: mission planning of a UAV

Navigation is the foundation of mobile robots. In order to plan its path and successfully
move in the environment, a robot must know its position in it. Most applications for mobile
robots depend on correct localization for path planning and navigation. The navigation
system usually obtains the UAV position and altitude, which uses data from a range of
sensors, like Inertial Measurement Unit (IMU), Global Positioning System (GPS), and
others. Because of complementary characteristics, this information can be improved when
sensor data are fused, especially from IMU and GPS.

Path-following is one of the most important vehicle navigation tasks, allowing the
aircraft to follow a predefined path. Several approaches were created to solve this problem,
usually based on geometric and control techniques [SSS14].

In this case study, we consider the tracking mission of [Hir+18; HDB20] as a scenario
where the UAV follows a predefined trajectory (set of Way-points). Upon arrival at the
search area, the UAV tracks the potential target when it is detected. The tracking mis-
sion is defined by means of three main MDPs (Navigation, Landing, and Tracking) that
guarantee the success of the tracking mission. In the MDP Navigation (Figure 3.10a), we
find the actions of navigation and safety. We find the actions required for landing in the
MDP Landing (Figure 3.10b). In the MDP Tracking (Figure 3.10c), we find the actions
for the tracking mission related to different algorithmic versions of the tracking applica-
tion. The actions (A) are briefly described in Figure 3.10. These three MDP problems
are resolved using value iteration, policy iteration, and Q-Learning to compare the most
efficient methods to solve complex MDP problems.

In the previous part 4.1.3, we added a convergence condition to the Q-Learning method
because we know the state of arrival. But in this specific case study, the MDPs have several
states of arrival (stop), and the fact of being in a state depends on several probabilities
(transition probabilities), which are related to the environment. Also, the actions are not
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(a) MDP Navigation. (b) MDP Landing.

(c) MDP Tracking. (d) -1- Optimal policies of the three MDPs
computed using DP Methods . -2- Policies
of the MDP Navigation computed using the
Q-Learning method.

Figure 3.10 – MDPs that constitute the tracking mission of a UAV and their optimal
policies using DP/TD Methods [Ham+21].
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similar in each state. So, we cannot specify the future states according to the current
state and the action. However, we need the probabilities, which is a big challenge com-
pared to the previous case study of grids dealing with ground vehicles. We take here the
probabilities defined in [HDB20] and briefly shown in Figure 3.10.

The resolution of the three MDPs of the tracking mission using the DP methods
(Value Iteration or Policy Iteration) and the TD method (Q-Learning) gives us these
three policies as shown in Figure 3.10d. Since the time of resolution varies from one
execution to another, we decided to execute the resolution 300 times for each method and
to calculate their averages. These averages are given in Table 3.5.

Execution time in seconds Speed up V.I./DP Method

Using V.I. Average(T_P arallel) 0.0045 1
Average(T_Sequential) 0.0069 1

Using P.I. Average(T_P arallel) 0.00041 11
Average(T_Sequential) 0.00078 9

Table 3.5 – Summary of 300 executions of the Dynamic Programming methods to solve
the decision-making problem of a UAV mission planning [Ham+21].

where:
T_P arallel = max(T_Nav, T_Land, T_T rack), i.e., the time needed for resolution parallel exe-
cution of the tree MDPs,
T_Sequential = (T_Nav + T_Land + T_T rack), i.e., the time needed for resolution in sequential
execution of the tree MDPs,
T_Nav is the time needed for resolution of the MDP Navigation,
T_Land is the time needed for resolution of the MDP Landing,
T_T rack is the time needed for resolution of the MDP Tracking.

Execution time in seconds Speed up Q-l. / MDP Method

Using V.I. Average(T_Nav) 0.0018 7.8
1052

Using P.I. Average(T_Nav) 0.00019 73.7
9967

Using Q-l

Average(T_Nav) 0.0140 1
itermax = 1, 000
Average(T_Nav) 1.8937 1

itermax = 100, 000

Table 3.6 – Summary of 300 executions of the Dynamic Programming methods and the
Q-Learning method to solve the decision-making problem of a UAV mission planning
(MDP Navigation only) [Ham+21].

In the Table 3.5, we can notice that:
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☞ If we solve the three MDPs sequentially in average we need T_Sequential ≈ 0.0069 s ≈
7 ms using Value Iteration method or T_Sequential ≈ 0.000 78 s ≈ 0.8 ms using Policy
Iteration method.

☞ But if we solve the three MDPs simultaneously in average we need T_P arallel ≈
0.0045 s = 4.5 ms using Value Iteration method or T_P arallel ≈ 0.000 41 s ≈ 0.0004 s
= 0.4 ms using Policy Iteration method.

In Table 3.6 concerning the resolution of the mission planning problem using the
Q-Learning method and, as we said previously, we cannot add another condition of con-
vergence for the MDPs. For this, we choose the complex one only (the MDP Navigation).

Firstly, we apply the native Q-Learning method to the MDPs navigation. The policies
found are unrealistic (e.g., the optimal action associated with the state S_base is A4:
"obstacle avoidance action", which cannot be executed if the UAV is not flying). The
solution is to restrict the choice of possible actions from a given state (instruction 6 of
the algorithm 3). After adding the restriction to the Q-Learning method, we apply it to
the MDP Navigation in two ways, using 1,000 and 100,000 iterations.
We can notice that:

☞ When we solve the MDP Navigation using the Q-Learning method where itermax =
1, 000 iterations, in average, we need T_Nav ≈ 0.0142 s ≈ 14.2 ms. When we solve
the MDP Navigation using Q-Learning method where itermax = 100, 000 iterations,
in average we need T_Nav ≈ 1.8937 s ≈ 1894 ms.

☞ We can see in Figure 3.10d-2- even if we restrict the possible actions in each state,
using (itermax = 1, 000) iterations or itermax = 100, 000 iterations, sometimes the
method converges to the right optimal policy. Sometimes, the policy found by the
Q-Learning method is different in a state-action that does not converge towards the
optimal policy (found using DP methods). Even with the restriction for selecting
the actions in each state and the fact that the rewards are given, the Q-Learning
method fails to converge. Thus, Q-Learning needs more iterations to explore the
state and action spaces. Since the Q-Learning method takes 9967 times longer than
the Policy Iteration method with itermax = 100, 000 iterations, we have stopped the
simulations at itermax = 100, 000.

We conclude that:

☞ If the three MDPs are solved sequentially, the Value Iteration method’s resolution
time is ∼= 9× the resolution time using the Policy Iteration method.

☞ If the three MDPs are solved simultaneously, the Value Iteration method’s resolution
time is ∼= 11× the resolution time using the Policy Iteration method.
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☞ If the MDP navigation is only solved using the Q-Learning method with itermax =
1, 000, its resolution time is ∼= 8× (resp. is ∼= 74×) the resolution time using Value
Iteration method (resp. Policy Iteration method).

☞ If the MDP navigation is only solved using the Q-Learning method with itermax =
100, 000, its resolution time is ∼= 1052× (resp. is ∼= 9967×) the resolution time using
Value Iteration method (resp. Policy Iteration method).

As mobile robot missions, especially those of UAVs, contain very irregular actions,
they depend on the state where the robots are at a given time. Also, it contains uncertain
events related to the probability that can alter the mission from one moment to another;
the MDPs are much more interesting for this type of mission with irregular actions.

3.5 Final consideration

As robots should be more autonomous during this century, they must be able to
perceive their environment and make decisions under uncertainty. This chapter focuses
on the MDP framework and on the three fundamental methods for solving it, which are
Value Iteration and Policy Iteration, which are DP methods, and Q-Learning, which is a
temporal-difference method. We give some parameters to choose a particular method to
solve a given decision-making problem. As we can observe in the case study focused on
ground vehicles, when the actions are similar in each state of the problem, and the problem
is searching a path from point A to point B, the Q-Learning method is more efficient than
the DP methods. As we can observe in the case of mission planning, using aerial vehicles,
which are more sophisticated and irregular states, when actions are non-similar in each
state of the problem, it is more difficult to set up the Q-Learning method, so DP methods
are more efficient. We have shown that the regularity of actions by step of decision can be
an element of consideration for choosing the resolution method. Depending on the type
of actions of the mission planning and the number of states of a mission, we will choose
one method over the others, particularly for on-board critical decision-making.
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Introduction

This chapter explores applying rewards adaptation techniques to address multi-UAV
mission planning constraints and self-adaptation of each UAV in a collaborative mission.
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The research applied to two levels of adaptation: the multi-UAV level and the individual
UAV level. In Section 4.1, the examination at the multi-UAV level focuses on identifying
and resolving conflicts and constraint violations within the mission planning framework.
This investigation sets the stage for evaluating the proposed rewards adaptation approach
through a case study involving a UAV mission, and the ensuing results are subsequently
presented. Section 4.2 further addresses the mission of an individual UAV by employing
multiple MDPs. This approach is beneficial for managing complex missions by decom-
posing the problem into subproblems. The resolution of these subproblems involves the
execution of several MDPs in parallel, enhancing the adaptability and efficiency of the
overall mission strategy. A case study involving the mission planning of an individual
UAV is presented, and the corresponding results are discussed. In Section 4.3, simulations
are conducted using the Coppeliasim robot simulation platform and MATLAB to validate
the proposed methodology. Section 3.5 summarizes the chapter’s key findings, highlight-
ing the potential improvements in multi-UAV mission planning achieved through rewards
adaptation for constraints management.

4.1 Rewards adaptation for constraints management
at multi-UAV level

In a swarm, multiple MDPs are executed. Each UAV has its own MDP to decide its
best course of action. As the UAV decision is independent of the others, conflicts can
arise at the swarm level, and the chosen actions can contradict the mission objectives.
This results in the need for a method to solve these conflicts. In the first subsection, we
introduce the conflicts and constraint violations, the priority assignment when conflicts
occur in distributed decision-making based on MDP at a swarm level, and finally, the
method to detect these conflicts. In the second subsection, we present the core of the
reward adaptation method, the method for resolving conflicts at swarm levels, and the
mission management plan.

In our study, “experts” associated with the central authority refers to the decision-
makers (operational monitoring systems experienced in the missions under consideration)
who express their preferences via different priorities, parameter thresholds, and actions
that can resolve conflicts.

4.1.1 Detection of conflicts and constraint violations

As multiple UAVs within a swarm execute individual MDPs, their independent decision-
making processes may lead to conflicts at the swarm level, potentially contradicting mis-
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sion objectives. This subsection introduces conflicts and constraint violations, describes
the prioritization of UAV-related decisions in distributed decision-making, and explains
the method used for conflict detection. Finally, we end this subsection by implementing
a conflict management mechanism.

1. Conflicts and constraints
When decision-making is distributed between UAVs of the swarm, conflicts may

arise among the UAVs. These can occur within each member due to non-compliance
with external constraints or at the swarm level.

➥ Hardware failure conflicts
UAVs can be subject to hardware failures (network malfunction and loss of
communications, system/autopilot malfunction, component failure) that can
lead to conflicts with other UAVs in the swarm. This can occur when the UAV
with hardware failures has specific and relevant functionality in the swarm. For
example, cameras with temperature sensors are expensive; they are integrated
only in some swarm UAVs. When the UAV with this camera breaks down, it
will influence the swarm’s performance.

➥ Conflicts related to performance limitations
UAVs can suffer from performance limitations, such as speed, range, and flight
duration, leading to conflicts when trying to accomplish similar tasks. For
example, in a search and rescue mission, one of the UAVs is more efficient than
the others according to one or more criteria such as energy self-sufficiency, wind
resistance, and a more interesting payload to carry.

➥ Trajectory conflicts
Trajectory conflicts arise when multiple UAVs navigate similar routes or inter-
sect paths, depicted as nodes and links in the control network. It is essential
to avoid scenarios where multiple UAVs are concurrently tracking a target to
prevent collisions within the swarm and optimize resource utilization. Such
situations may lead to overlapping trajectories, increasing collision risk and
compromising the expected benefits of efficient swarm coordination.

➥ External conflicts
Sometimes, conflicts can happen when UAVs break the rules of where they’re
allowed to fly. For example, if a UAV goes into an area it’s not supposed to or
flies too high, it can create a conflict. This might happen because the UAV’s
navigation system isn’t accurate or it doesn’t have the latest information about
flying rules. Conflicts can also arise due to external factors like bad weather
conditions or fog, making it challenging for UAVs to navigate safely.
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➥ Mission conflicts
These conflicts may arise when mission constraints are violated. For example,
exceeding the designated number of UAVs for a specific task or surpassing the
allocated number of UAVs for a particular region during the mission can lead
to mission conflicts.

2. UAV priority
To effectively deal with conflicts, identifying which agents (UAVs) can maintain

their mission plan policy and which ones must change them is essential. For this
purpose, we can define a priority between the UAVs in the swarm. We can discern
two types of priority:

➥ Static UAV priority
In this case, the expert defines a UAV priority between the UAVs of the swarm;
this priority is determined offline and remains stable throughout the mission.

➥ Dynamic UAV priority
In this case, the expert defines thresholds on some probabilities for the tran-
sition function or thresholds on other parameters, which makes it possible to
adapt the UAV priority in the swarm. During the mission, the members ex-
change data between them, which will be used to determine the priority of each
MDP according to specific criteria.

In real missions, it is more interesting to use the dynamic UAV priority because
the performances of the swarm members are different. As the mission evolves, these
performances change randomly according to the hazards of the external environment
that influences it.

3. Conflicts management (Check_Conflicts)
The conflicts are checked at two levels: checking the internal conflicts of the UAV
and checking the conflicts at the swarm level. The first type of conflict management
allows the UAV to manage itself without human intervention during the mission.
The second type of conflict management allows the UAV to behave adequately in a
situation that arises in the swarm. In such a case, the conflict is solved by allocating
new priorities to the actions of the UAVs. We assume here that a central authority
assigns the priorities in the cloud. The decision to choose these priorities is out of
the scope of this thesis.
Each UAV computes its policy and checks the conflicts periodically, as shown in
Figure 4.1. If the conflict is internal to the UAV, the latter will adapt its mission
to resolve it. If the conflict is at the level of one of the members of the swarm, and
this one is unable to solve it, it will send the priority to one of the members who
will take the relay to achieve the mission.
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Figure 4.1 – Diagram of self-adaptation between UAVs of the swarm [Ham+23].

Algorithm 4: Check_Conflicts
Input: π : UAV policy, conflicts: table of the constraints (ci) with the

corresponding probabilities P (ci)
Output: BoolConf : Boolean indicating conflicts, STConf : conflicting states tables

1 Initialize to empty STConf ;
2 Initialize to false BoolConf ;
3 foreach (si, ck) ∈ SA × conflicts do
4 if π(si) = ack1 then
5 STConf (i) ← true;
6 BoolConf ← true;

The Check_Conflicts() method (see Algorithm 4) assigns a label if there are con-
flicts on the MDP and defines the corresponding states. This method uses a table
of possible conflicting actions (called a conflicts Table). This method compares each
pair of state si actions from the ‘conflicts’ Table. If so, a Boolean label BoolConf

is used to identify these MDP and the corresponding tables STConf and is fulfilled
with conflicting states for subsequent resolution. The complexity of this method is
O(nsnc), where ns and nc are the number of states of the MDP and the number of
conflicts in the conflicts Table, respectively.

Depending on the mission context (system probabilities/different sensor data) de-
fined as conflicts, this MDP and the conflicts are used to identify its conflicting
states.

4.1.2 Solving conflicts and constraint violations

After identifying the constraints/conflicts, a priority is assigned to the UAV. We can
select the MDP whose policy should be modified based on this priority. In this Section ,
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we describe the method for tuning the rewards.

1. Rewards adaptation principles (Core of the method)

This method forces the MDP to change its policy due to action conflicts. As each
value of the matrix Q is calculated using Equation (3.3), the Q value of the action
with the highest priority is increased. Therefore, the policy is changed to avoid
constraint violations, and some actions are prioritized over others.
The policy is obtained from the matrix Q∗ using the Equation (3.5).

Q∗ =


Qs1,a1 Qs1,a2 . . Qs1,am

. . Qsi,aσ . .

Qsn,a1 . . . Qsn,am

.

Let’s assume that the action aσ is associated with the state si and that this action
is conflicting. In this case, the expert determines and selects the action aϕ (among
the possible actions from the associated state) that can be executed instead of the
action aσ. Such a principle does not violate the system’s constraints or lead to
another conflict.
We have:
V ∗

si
= max

a
(Q∗

si,a1 , ..,Q∗
si,aϕ

, ..,Q∗
si,aσ

, ..,Q∗
si,am

)
If V∗

si
= Q∗

si,aσ
in case of a conflict, this one can be resolved if V∗

si
= Q∗

si,aϕ

i.e. Q∗
si,aϕ

> Q∗
si,aσ

.

Using Equation (3.3):

R(si, aϕ) + γ
∑

s′∈S T (si, aϕ, s′)V ∗(s′) > Q∗
si,aσ

,

The equation that allows the calculation of the new reward of the Algorithm 5 is:

R(si, aϕ) > Q∗
si,aσ
− γ

∑
s′∈S
T (si, aϕ, s′)V ∗(s′),

R(si, aϕ) = ⌈Q∗
si,aσ
− γ

∑
s′∈S
T (si, aϕ, s′)V ∗(s′)⌉.

(4.1)

If [Q∗
si,aσ
− γ

∑
s′∈S T (si, aϕ, s′)V ∗(s′)] is an integer

R(si, aϕ) = ⌈Q∗
si,aσ
− γ

∑
s′∈S
T (si, aϕ, s′)V ∗(s′)⌉+ 1. (4.2)

100



4.1. Rewards adaptation for constraints management at multi-UAV level

Algorithm 5: Resolve_Conflicts
Input: π, Q, R, T , STConf , aϕ

Output: π*, Q*, R′

1 V ← max
a

(Q);
2 R′ ← R;
3 foreach si ∈ S do
4 if STConf (si) = True then
5 aexec ← π(si);
6 R′(si, aϕ) = ⌈Q∗

si,aexec
− γ

∑
s′∈S T (si, aϕ, s′)V ∗(s′)⌉ ; // Equation 4.1

7 π*, Q* ← Compute the optimal Policy using the reward matrix R′ ;

The systematic rewards tuning algorithm is given in the Algorithm 5. aexec is the
executed action and aϕ is the action expected to solve the conflicts.

The Resolve_Conflicts method is used to check all states of a policy. If a state
is found to be a conflicting state (STConf (si) = True), a new reward is calculated
(line 6). Finally, the new policy is recalculated using the new reward (line 7).

In [Ye10], the authors show that the simple Policy Iteration method is indeed a
strongly polynomial algorithm for the discounted MDP with a fixed discount rate
of 0 ≤ γ < 1. The number of its iterations is bounded by O(n2(m−1)

1−γ
.log( n2

1−γ
)) and

each iteration requires at mostO(n2m) arithmetic operations, where n and m are the
number of states and the maximum number of actions per state, respectively. Thus,
the complexity of the method shown in Algorithm 5 is O(n)+O(n2(m−1)

1−γ
.log( n2

1−γ
)).

2. Self-adaption
The Self_Adapt method presented in the Algorithm 6 is used to adapt the
mission or the task of the UAV to remove the conflict between this UAV and the
other member of the swarm. There are several scenarios to resolve this conflict.

The conflicting states are marked in each scenario according to the alternative action
aϕ and based on the scenario’s parameters. Then, the alternative action aϕ, the
MDP and its conflicting states are passed as parameters to the Resolve_Conflicts
method (see Algorithm 5).

If there is conflict, the method will use the parameter priority (if received) and the
provided alternative task Alttask received to auto-adapt the mission of the UAV to
the swarm mission. In the case of not reception of the priority, the method will use
the local alternative task Localtask to auto-adapt the mission of the UAV to the
swarm mission.

The complexity of this method is O(n) +O(n2(m−1)
1−γ

.log( n2

1−γ
)).
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Algorithm 6: Self_Adapt
Input: Internal: π: UAV policy, Q Q-function table, R matrix, T matrix of the

MDP,
From the swarm: priority, Alttask

Result: π∗ policy without conflicts
1 (BoolConf , STConf ) ← Check_Conflicts (π, conflicts); // see Algorithm 4
2 π* ← π;
3 if BoolConf = True then
4 if priority = True then
5 π* ← Resolve_Conflicts (π, Q, R, T , STConf , Alttask); // see

Algorithm 5
6 else
7 π* ← Resolve_Conflicts (π, Q, R, T , STConf , Localtask); // see

Algorithm 5

4.1.3 Case study with a collaborative mission planning

In the case study (Figure 4.2), a swarm of UAVs follows a predefined trajectory that
searches for targets (with a visual recognition system) upon arrival at the search area. It
tracks the potential target(s) when it(they) is(are) detected.

Figure 4.2 – The Scenario of a swarm of UAVs searching and tracking targets [Ham+23].

1. Case study description
The tracking mission is modeled with an MDP. This mission has 22 states and 16
actions, including 5 for safe navigation, 6 for activating different algorithmic versions
of the tracking application, and 4 for ensuring a successful search of a landing area.
Each UAV in the swarm contains the MDP illustrated in Figure 4.3).
The parameters of the MDP, in particular, the probabilities of transitions, are pro-
duced and updated online by Health Management (HM) blocks [Hir+18]. These
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Figure 4.3 – The Scenario of a swarm of UAVs searching and tracking targets [Ham+23].
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HM modules are diagnostic blocks that use Bayesian Networks for the real-time
evaluation of health states of the on-board system, on-board applications, and com-
munication network, taking into account the context of the mission.

2. Conflicts description and management
To manage the conflicts/constraints between the UAVs of the swarm, we proceed
as follows:

➥ Enumerate the conflicts/constraints at the swarm level that can occur between
these UAVs, such as:
— C1: The UAVi follows Targett, and one of its sensors fails, e.g. Camera or

GPS.

— C2: the UAV with the smallest distance to target Targett is the only one
to track it.

— C3: The UAVi follows Targett and its speed is lower than of the Targett.

— C4: The UAVi follows Targett which enters an unauthorized area for the
follower.

— C5: The UAVi follows Targett and does not have enough energy to continue
the mission and has to make an RTH (return to home/base).

➥ By taking the constraints/conflicts mentioned above, we can identify the con-
flicting state in the MDP where conflicts occur.
For example, let’s assume that UAVi, which tracks Targett, receives the signal
to stop the tracking and leaves the task to another UAV. It has to modify its
mission plan and execute an alternative action.

➥ Finally, alternative actions to resolve constraints/conflicts are identified.

In this study, constraint/conflict management consists of the self-adaptation of each
UAV in the swarm to avoid constraint violation. The priorities of the conflicts are
evaluated offline depending on the context of the mission and the mission’s strategy,
‘safety’ or ‘mission first’.
Priorities between UAVs are evaluated in the cloud according to the mission context
and the system constraints of each UAV.

3. Validation on scenario
To validate the method with the tracking mission, we elaborate on the following
scenario:

➥ Scenario 1
UAVi follows Targett, and one of its sensors fails, e.g., Camera or GPS. A
conflict arises, i.e., either continuing the mission or returning home. For mission
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failure avoidance and as the priority to continue the mission is the highest, the
cloud sends an alternative action to UAVi that will increase the priority to
the return to home action. So, UAVi will adapt its mission plan and return to
its home station (RTH). The rest of the swarm will autonomously adapt its
mission plan and not require that the cloud intervene. The closest UAV to the
target will take action and follow Targett.

4.1.4 Results

The results of our experiments for the scenario are presented here. The initial policy
of the UAV without conflict (i.e., the system functions properly) is shown in Figure 4.4.

Figure 4.4 – Initial policy of the UAV without conflict (computed with Policy Iteration).

The update of the GPS health probability will affect the health probability of the
system and the different applications that use it. So, when the GPS fails, the resolution
of the MDP for the tracking mission gives us the policy as shown in Figure 4.5.

Figure 4.5 – UAV Policy in the case of GPS failure [Ham+23].

We can notice that some actions are not the same as in the case of a good system
functioning. However, we must consider that the UAV is tracking a target in this scenario.
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The UAV is in one of the states related to the tracking (from S7 to S12, which are the
different algorithmic versions of the tracking application). When the GPS fails, the system
tries to execute another version of the tracking application (a5: Version 5), as shown in
Figure 4.5.

The check_conflict method was able to detect this conflict. The self-adapt method then
recalculates the rewards of the actions related to the conflicting states. The calculation
of this new reward favors the execution of the alternative action (i.e., action a5) that
will allow the UAV to adapt itself to the swarm and avoid conflicts. Figure 4.6 shows the
resulting policy after solving the conflicts.

Figure 4.6 – UAV Policy in the case of GPS failure after resolving the conflicts with the
auto-adapt method [Ham+23].

4.2 Rewards adaptation at UAV level

This Section illustrates UAV-level reward adaptation, tackling conflict detection dy-
namics in a singular UAV mission managed by multiple parallel MDPs. We then delve
into conflict resolution within distributed MDPs, emphasizing a specific case study with
a single UAV’s mission managed through multiple parallel MDPs. Finally, we conclude
by analyzing the results obtained.

4.2.1 Detection of conflicts within a mission of a single UAV
managed through multiple parallel MDPs

Decomposition methods are the most common for reducing the complexity of MDP
models. They split the problem into several smaller and simpler sub-problems. Each sub-
problem is represented, treated as a distinct sub-MDP, and solved independently. Conflicts
arise when decision-making is distributed between agents due to inconsistent actions or
events that violate constraints.
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1. Conflicts and constraints
We can distinguish two types of constraints:

➥ Constraint associated with the behavior conflict: the existence of a conflict
during the parallel execution of some antagonistic actions. The constraint
expresses that the antagonist cannot occur simultaneously; for example, the
Return To Home and the Tracking actions are antagonist actions. They can-
not be executed on a UAV simultaneously.

➥ Constraint on system or sensor health: The existence of a critical probability
of the transition function can lead to a failure if it goes below a threshold;
for instance, suppose the probability of detecting an obstacle is higher than a
threshold fixed by an expert according to the speed of the UAV. In that case,
we prefer the Avoidance/Obstacles action over other actions.

Then, we introduce the policy priority between MDPs.

2. Policy priority
In addition to the behavior conflicts, we need to know which agent can keep their
policy and which must change it. For that, we define a priority between the policies
of the MDPs. The MDP with the highest priority keeps its policy, unlike the other
MDPs. To modify the policies, we adapt the rewards. We can distinguish two kinds
of priority:

➥ Static policy priority:
In this case, the expert defines a policy priority between the MDPs; this priority
is determined offline and remains stable throughout the decision process.

➥ Dynamic policy priority (e.g., mission planning of a UAV in Section 4.1.3):
In this case, the expert defines a threshold on some probability of the transition
function. This will make it possible to adapt the policy priority of the MDPs
according to this threshold.

The dynamic policy priority is helpful for an online adoption of the local policies.

4.2.2 Solving conflicts in a single UAV managed through mul-
tiple parallel MDPs

In the case of multiple MDPs, we propose the following steps:

☞ Step 1: we compute the policy for each MDP (e.g., using Policy Iteration).

☞ Step 2: we check if the constraint is verified or if there is a conflict between policies
(see Algorithm 8). This Algorithm returns the Boolean variables that point out the
MDP policies containing any actions in conflict and the states involved.
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☞ Step 3: if the constraint is verified or conflicts are detected in Step 2, we solve the
conflicts by modifying one or more policies according to their priority (see Algorithm
7). This Algorithm uses Algorithm 5 to increase the reward of the action aϕ in the
policy having the lower priority.

Algorithm 7: Solving_Policies_Conflicts ( )
Input: Internal: πα, πβ, αinconflicts, βinconflicts, statesinconflictsα , statesinconflictsβ

Result: παwithoutConflict, πβwithoutConflict

1 if αinconflicts = True then
2 παwithoutC = Resolve_Conflicts(πα, Qα, Rα, Tα, statesinconflictsα)
3 else
4 παwithoutConflict = πα

5 if βinconflicts = True then
6 πβwithoutC = Resolve_Conflicts(πβ, Qβ, Rβ, Tβ, statesinconflictsβ

)
7 else
8 πβwithoutConflict = πβ

Algorithm 8: Check conflicts(πα, πβ, order, constraints)
Input: Internal: πα, πβ, order, constraints
Result: αinconflicts, βinconflicts, statesinconflictsα , statesinconflictsβ

1 statesinconflictsα = NULL;
2 statesinconflictsβ

= NULL;
3 foreach (si, sj) ∈ SA × Sβ do
4 if πα(si) = aσ and πβ(sj) = aσ then
5 if order(πα) > order(πβ) then
6 if βinconflicts = False then
7 βinconflicts = True

8 statesinconflictsβ
(j) = True

9 else
10 if αinconflicts = False then
11 αinconflicts = True

12 statesinconflictsα(i) = True

4.2.3 Case study of a mission of a single UAV managed through
multiple parallel MDPs

1. Case study description
The tracking mission considers a UAV following a predefined trajectory (set of Way-
points). Once the designated search area is reached, the UAV initiates tracking of
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a potential target upon detection. This mission is defined using three main MDPs
(Navigation, Landing, and Tracking). These distinct MDPs collectively ensure the
successful execution of the tracking mission.

❖ MDP navigation (Figure 4.7): in this MDP, we find the actions of navigation
and safety. In addition to the common states which we list below, there are

Figure 4.7 – MDP Navigation [Ham+23].

also specific states:

➥ obstacle_detected: an obstacle is detected by the LIDAR or fusion appli-
cation.

➥ S_fusion: represents the detection obstacle state using a fusion of multiple
short/long range infra-red (IR) and ultrasonic (US) sensors.

➥ WP_avoid: way-point resulting from obstacle avoidance.

➥ S_collision: collision state with the obstacle.

❖ MDP landing (Figure 4.8): in this MDP, we find the actions required for
landing. These actions also correspond to safety actions. In addition to the
common states, there are also specific states:

➥ Zone_I‘T’_Ok: a ‘T’ intermediate zone is found.

➥ Zone_‘T’_Ok: a ‘T’ zone is found.

➥ Zone_‘T’_Nok: the ‘T’ zone is not found.
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Figure 4.8 – MDP Landing [Ham+23].

➥ Zone_Ok: an emergency area is found to land.

➥ Zone_Nok: the emergency area is not found.

➥ S_crash: crash state.

❖ MDP Tracking (Figure 4.9): in this MDP, we find the tracking mission
with different algorithmic versions of the tracking application. In addition to

Figure 4.9 – MDP Tracking [Ham+23].
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the common states, there are also the following specific states:

➥ S_target: represents the target detection state.

➥ S_Vi: represents all states corresponding to the different versions of the
tracking application.

Some common states are defined for the synchronization of the MDPs; they
are below:

➥ S_WP1: first way-point of the trajectory (in flight).

➥ S_WPI: intermediate way-points of trajectory.

➥ S_WPF: final way-point of trajectory corresponding to the tracking area.

➥ S_WPJ: way-points of the UAV after the S_WPF.

➥ S_landing: landing state.

2. Constraint description and management

To manage the conflicts between the three MDPs, we proceed as follows:

❖ we enumerate the behavior conflicts that can occur between these MDPs

➥ Obstacle Avoidance & Tracking (V0, V1, . . . .,V5). [A4 & A12,...,A17]

➥ Obstacle Avoidance & (Re−planning and landing). [A4 & A8]

➥ Obstacle Avoidance & Landing. [A4 & A7]

➥ Obstacle Avoidance & GO_Next_WP. [A4 & A2]

➥ Landing & Tracking (V0, V1, . . . .,V5). [A7 & A12,...,A17]

➥ RTH (return to home) & tracking (V0, V1, . . . .,V5). [A10 & A12,...,A17]

➥ GO_Next_WP & Tracking (V0, V1, . . . .,V5). [A2 & A12,...,A17]

➥ ...etc

❖ we identify the conflicting states by taking the abovementioned antagonistic
actions.

❖ we add the ‘NOP’ action, allowing us to execute it on one or more of the MDPs
containing a previously identified behavioral conflict.

In addition, we consider two constraints for this mission that can lead to its failure.
The first one is associated with the probability of system failure. The second one
considers the presence of an obstacle on the UAV’s trajectory. We propose to define
the policy priority according to two parameters:

➥ P_sys: probability of good health of the system.
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Highest priority MDP Proba_det_Obst
< β ≥ β

P_sys < α Landing Landing
≥ α Tracking Navigation

Table 4.1 – Highest priority MDP according to Proba_det_Obst and P_sys [Ham+23].

➥ Proba_detect_obs: the probability of good obstacle detection, which repre-
sents the maximum probability of detection by LIDAR and by fusion (IR, US)
Proba_det_Obst = max(P_Obs_OK, P_Obs_Fus)

The priority is evaluated dynamically depending on the context of the mission and
the system constraints mentioned before.

3. Validation on scenarios

To validate the method with the tracking mission, we elaborate three scenarios as
follows:

➥ Scenario 1: functional system without obstacle detection. [P_sys (=90%) > α

and Proba_det_Obst(= 30%) < β].

➥ Scenario 2: functional system with obstacle detection. [P_sys (=90%) > α

and Proba_det_Obst(= 85%) > β]

➥ Scenario 3: system error with a drop in the battery charge. [P_sys (=29%)].

The two factors α and β can be modifiable by the user according to the criticality
of the autonomous system and its speed. For instance, we set α to 30% (if the
probability of the system is less than 30%, we prefer the landing over the others)
and β to 70% (if the likelihood of obstacle detection is more than 70%, we prefer
choosing the action associated with collision avoidance over the others).
In Figure 4.10, we show the Diagram of the resolution of the MDPs to obtain policies
after solving the possible conflicts.

Our Algorithm periodically scans all three policies and the control variables (P_sys

and Proba_detect_obs) used to assign priority to the MDPs. When one of them
is modified (policies) or the threshold values α and/or β of the two variables are
reached, the Algorithm recalculates the policies and solves conflicts.

4.2.4 Results

Results of our experiments for the different scenarios validation described in Matlab
are presented.
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Figure 4.10 – Resolution diagram.

Figure 4.11 – Policies computed with Policy Iteration [Ham+23].
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The resolution of the three MDPs of the tracking mission using the Policy Iteration
Algorithm gives us these three policies as shown in Figure 4.11.

1. Scenario 1
In the first scenario, we represent the case of the proper functioning of the system
without obstacles on the trajectory. With the probabilities given in Table 4.2, we
compute the policies of the different MDPs. If we ignore the potential conflicts, we
obtain the policies given in Figure 4.11.

Probability Value Probability Value
P_sys 0.9 P_SF 0.6
P_Obs_OK 0.3 P_SI 1 - P_SF
P_Obs_Fus 0.1 P_land 1
P_app_T 0.5 P_app_Z 0.5
P_V0 0.8 P_V1 0.72
P_V2 0.7 P_V3 0.3
P_V4 0.1 P_V5 0.6
P_Det 0.3 P_NOP 0.1

Table 4.2 – Probabilities used in scenario 1 to compute policies and resolve conflicts
[Ham+23].

Figure 4.12 – Policies after solving conflicts (scenario 1) [Ham+23].

In Figure 4.12, we give the resulting policies after solving the conflicts. We can notice
that the check_Conflicts Algorithm can detect conflicts according to P_sys and
Proba_detect_obs. The MDP Navigation receives the highest priority according to
the Table 4.1.
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2. Scenario 2

In the second scenario, we represent the case of an obstacle appearing on the trajec-
tory. So we change the probability of obstacle detection with Lidar to P_Obs_OK =
85% initially P_Obs_OK = 30%. We solve the MDPs, ignoring first the constraints,
and we find again the policies depicted via Figure 4.11.

Figure 4.13 – Policies after solving conflicts (scenario 2) [Ham+23].

Figure 4.13 illustrates the result of solving conflicts using the probabilities of this
scenario. We can notice that the check_Conflicts Algorithm can detect conflicts.
According to the values of P_sys and Proba_detect_obs, the MDP Tracking re-
ceives the highest priority (see Table 4.1).

3. Scenario 3

In the third scenario, we consider the system degrading, e.g., battery malfunction.
So we change the probability of good health of the system to P_sys = 29% initially
P_sys = 90% (the other probabilities are the values given in Table. 4.2). We solved
the MDPs and determined that the policies correspond to the default policies, as
illustrated in Figure 4.11.

Figure 4.14 illustrates the result after solving the conflicts. We can notice that the
check_Conflicts Algorithm can detect conflicts. According to the values of P_sys

and Proba_detect_obs, the MDP Landing receives the highest priority (see Table
4.1).

This Section exhibits three potential conflicts between the three concurrent MDPs of
the UAV mission. Our method allows us to avoid conflict while executing several MDPs
and adapting to different context changes.
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Figure 4.14 – Policies after solving conflicts (scenario 3) [Ham+23].

4.3 Simulation on Coppeliasim robot simulation plat-
form and MATLAB

To demonstrate the effectiveness of the rewards adaptation methodology for con-
straints management, we conduct simulations on the CoppeliaSim robot simulation plat-
form [RSF13] and MATLAB.

CoppeliaSim, formerly known as Virtual Robot Experimentation Platform (V-REP),
provides a comprehensive environment for designing, simulating, and testing robotic sys-
tems. The CoppeliaSim platform offers distinctive features, making it a versatile tool for
various applications. It employs a distributed control architecture, allowing individual
control of each object or model. Users can implement control through embedded scripts,
plugins, Robot Operating System (ROS) nodes, or remote Application Programming In-
terface (API) clients, providing flexibility in the development process. This platform is
useful for rapid algorithm development, simulations in factory automation, and quick pro-
totyping and verification. Its functionality and API can be readily extended through plug-
ins and modules, offering a customizable and adaptable environment. Noteworthy existing
modules include support for physics, kinematics, path planning, custom user interfaces,
openCV integration, and more, making it versatile and ideal for multi-robot applications.
Controllers can be written in C/C++, Python, Java, Lua, Matlab, or Octave.

We decided to model the mission considered in this part using Matlab since all our
algorithms and evaluations are written in Matlab. The Matlab simulation receives data
from CoppeliaSim through remote API functions.

1. GUI Matlab interface:
We have engineered an interface to facilitate the administration of building in-
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Figure 4.15 – Initial interface of the Matlab
GUI used to control the simulation.
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Figure 4.16 – Matlab GUI during the simu-
lation.

spection missions. Illustrated in Figure 4.15, the interface incorporates two distinct
buttons enabling the selection of simulation types—specifically, simulations involv-
ing battery failure and those without failure. Additionally, it features initiation and
termination buttons for launching and concluding missions, respectively.
The foundational segment of the interface comprises two tables, each corresponding
to the policies of individual UAVs. The tables dynamically update in a manner
exemplified in Figure 4.16. Upon launching the mission, real-time modifications to
the UAV policies are reflected in the displayed tables, providing a live representation
of the evolving mission status and pertinent events.

2. CoppeliaSim scene:
We have engineered a scene in CoppeliaSim as shown in Figure 4.17. The illus-
trated scenario evolves within the context of a building inspection, featuring two
UAVs positioned initially at the top of the building. Each UAV is equipped with
a distinct application, influencing the methodology employed during the inspection
process. For the sake of simplicity, these applications are differentiated based on
their movement patterns— a zigzag trajectory characterizes one, while the other
enables vertical movement only.
Significantly, the buildings under scrutiny differ in dimensions, height, and width.
Notably, priority is given to the two-story building over the three-story one.
The complexity of the inspection task is further compounded by strategically placed
obstacles, namely trees and poles, intentionally positioned along the predetermined
flight path of the UAVs.
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Figure 4.17 – Scene view of the considered buildings inspection mission in CoppeliaSim.

The envisioned scenarios unfold in two distinct cases:
(a) UAVs without failure:

In this scenario, the UAVs navigate through their assigned missions, following
a predefined path represented by a sequence of GPS points. They encounter
and successfully overcome obstacles such as trees and poles along their des-
ignated paths. Each UAV executes its mission, demonstrating the efficacy of
the MDP-based mission planning. This dynamic evaluation considers not only
the fulfillment of individual tasks but also the ability of the UAVs to au-
tonomously navigate complex environments and return to the base, serving
as a foundational benchmark for assessing the efficiency of the MDP-based
mission planning for UAVs.

(b) UAV with failure (e.g., battery exhausted in this case):
This scenario explores the implications of a failure event illustrated by an ex-
hausted battery. The analysis investigates how the UAVs adapt or respond
to unexpected hazards, particularly those affected by the failure. The investi-
gation contains considerations such as re-routing strategies, emergency proce-
dures, and the overall impact on the inspection process. The mission develops
similarly to the first scenario (without failure). While UAVA UAV inspects
the two-story priority building, at a specific time, its battery unexpectedly
exhausts. The battery monitoring system promptly detects this failure, imme-
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diately updating probabilities within MDP. The affected UAVA quickly adjusts
its mission, transmitting a signal to its neighboring UAVB before beginning a
landing.
Upon receiving the signal, the neighboring UAVB adapts to the situation, in-
corporating the transmitted coordinates and specific inspection functions for
the priority building. The adapted UAVB inspects the two-story priority build-
ing and returns to its base. The inspection of the initially planned three-story
building may be accommodated depending on the remaining energy resources.

4.4 Final consideration

This chapter introduces a sophisticated conflict resolution method for mitigating con-
flicts arising from the parallel execution of multiple MDPs within a multi-UAV system.
The embedded, low-overhead self-adaptation method dynamically adjusts reward values,
considering internal and collaborative constraints, thus averting potential conflicts at the
multi-UAV system. By leveraging cloud capabilities, UAVs can favor alternative actions
to resolve conflicts stemming from contradictory mission objectives and states.

The proposed method is distinguished by its efficiency, exhibiting minimal latency
and energy consumption. The case study demonstrates its ability to identify and resolve
behavioral conflicts during the parallel execution of MDPs, enhancing mission planning
robustness. Notably, the method can be systematically employed for dynamic updates to
adhere to safety rules, providing adaptability in response to evolving scenarios, including
potential cyber-attacks where new security rules may be introduced.

This approach is applied to a particular case where a single UAV is managed by several
MDPs in a complex mission. For example, one MDP may suggest increasing altitude to
avoid an obstacle, while another may recommend landing. Our conflict resolution method
enables the UAV to make a balanced decision by dynamically adjusting reward values
according to internal mission constraints to establish safe planning.

As presented in this chapter, the comprehensive evaluation of MDP-based mission
planning methods for UAVs underscores the robustness and resilience of the proposed
approach under diverse conditions. The systematic conflict resolution and dynamic adap-
tation contribute to the overall effectiveness of UAV mission planning, showcasing the
potential for broader applications and advancements in autonomous systems.
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Introduction

This chapter introduces a novel approach to enhance the adaptive capabilities of collab-
orative multi-UAV systems through Bayesian Network (BN)-based operating mode adap-
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tation. The focus is on local and cloud-based policy self-adaptation, combined with exam-
ination into drone communication networks, to optimize mission planning for UAVs. Sec-
tion 5.1 begins by presenting the differences in applying the self-adapting policy method
in both local and Cloud modes.

Section 5.2 starts by presenting the existing communications networks used in a
multi-UAV system, addressing associated issues. These networks primarily involve local
(UAV-UAV) and cloud-based communications. In Section 5.3 extensively explores the lo-
cal/hybrid mode-switching mechanism in detail, including the consideration of data used
to estimate the performance of the communications. Section 5.4 outlines different scenar-
ios, detailing the selection criteria for both local and hybrid modes. In Section 5.5, a case
study involving collaborative mission planning is presented, illustrating the application
of the self-adapting policy method associated with the local and hybrid modes switching
in a multi-UAV system searching for targets. The analysis includes scenarios where local
communications are secure and effective and situations where potential risks or vulnera-
bilities in local communications are identified. Section 5.6 summarizes the effectiveness of
the self-adaptation policy method and its impact on mission planning.

5.1 Self-adapting policy method in local and hybrid
mode

The self-adaptation process for policies within the collaborative multi-UAV system
offers flexibility through two distinct modes: local adaptation utilizing the UAV’s internal
data and a hybrid approach exploiting cloud data. The subtle distinctions between these
modes are thoughtfully outlined in the Table 5.1, providing a comprehensive comparison
between the local (UAV + neighbors) and hybrid (cloud-assisted) modes when employing
the self-adaptation policy method.

We notice that choosing between these modes entails trade-offs in control, data uti-
lization, alternative action determination, and UAV priority.

The local mode relies on decentralized control, using internal context from the UAV
and its neighbors for decision-making. In this mode, alternative actions are determined
based on local information, and UAV priorities are defined offline, with online adaptability.
In contrast, the hybrid mode combines decentralized and centralized control, exploiting
both local and cloud-based data sources. This allows for a more comprehensive under-
standing of the multi-UAV system context, enabling alternative actions to be determined
locally and received from the cloud through aggregating local and central data. The UAV
priorities in hybrid mode are dynamic, being updated with cloud-provided information.

The mode choice depends on specific application requirements, objectives, and the
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Mode Local (UAV + neighbors) Hybrid (use the cloud)

Type of control Use decentralized control Use the both decentralized and
centralized control if needed

Context (data)
used

Use the internal context of the
UAV (and the internal context of
its neighbors if available)

Use the internal context of the
UAV (and the internal context of
its neighbors if available) and the
context of the multi-UAV system

Alternative
action

Alternative action determined
with the local information

Alternative action can be deter-
mined locally or received by the
cloud or can be the aggregation
of local and central (depending
on the objectives/risks)

Priority of the
UAVs

Priority of the UAV is defined
locally offline (depending on the
characteristic of the UAV) and
can be adapted online

Priority of the UAV can be de-
fined locally and updated with
the priority provided by the
cloud depending on the new in-
formation of the cloud

Table 5.1 – Differences between using the self-adapting policy method in local and cloud
mode

trade-off between local autonomy and cloud assistance. The local mode offers simplicity
and autonomy, while the hybrid mode provides a more adaptable approach with a wide
volume of data. The decision should align with the system’s goals, emphasizing the need
for decentralized control and local data in the local mode or the advantages of enhanced
context awareness and dynamic adaptation with cloud assistance in the hybrid mode.

5.2 UAV Communication networks

A single UAV concept was long considered the default choice for mission perfor-
mance. But nowadays, using a multi-UAV system offers many advantages. However,
there are several ways for communications between UAVs in multi-UAV system, includ-
ing Infrastructure-based multi-UAV system architecture [NAL21]; Flying Ad Hoc Net-
work (FANET) architecture [Jos+22]; Wireless Mesh Network [Cui+17]; cellular networks
[LTW+22]; satellite communications [Lee+22]; cloud communications [Jun+21].

5.2.1 Local (UAV-UAV) communications and its issues

In many scenarios, the UAV communications network operates by forming a multi-
UAV system to accomplish a specific mission in a large geographic area. However, unlike
many other wireless networks (e.g., MANET (Mobile Ad hoc Network) and VANET (Ve-
hicular Ad-hoc Network)), the topology of UAV networks remains highly dynamic, with
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the number of nodes and links changing, as like the relative positions of the nodes. This
would cause an increase in the risk of link failures affecting communication.

➥ Issues:
However, many issues affect the performance of the communications between UAVs
of the multi-UAV system and can negatively impact the performance of the network,
including:

➙ Routing issues: finding the most efficient route that allows the network scaling
and reducing the End-to-End latency,

➙ Mobility issues: the connection of the UAV in a multi-UAV system with the
other members should remain stable even if the UAV moves.

➙ Scalability issues: the increase in the number of drones in the network leads to
an increase in latency and a reduction in network throughput, which leads to
network congestion,

➙ Reliability issues: due to frequent link failure;

➙ Power consumption issues: when the number of UAVs in a network increases,
the network’s energy consumption also increases.

➙ Limited onboard energy of UAVs, etc.

5.2.2 Cloud communications and its issues

Cloud communications involve using cloud-based services and platforms to communi-
cate between devices, applications, and users. Cloud communications enable communica-
tions between multiple UAVs in a network. Cloud communications provide a wide range
of services, such as data sharing, collaboration tools, and a centralized control system for
a multi-UAV system that maintains UAVs’ coordination and mission objectives.

➥ Issues:
However, many issues affect the performance of the communications between members
of the multi-UAV system and can negatively impact the performance of the network,
including:

➙ Latency issues: delays in cloud communication can impact real-time decision-making,
mission execution, and coordination among UAVs.

➙ Bandwidth limitations: limited data transfer capacity can lead to congestion, slowing
communication, and impacting the efficiency of information exchange.

➙ Reliability issues: dependence on cloud services introduces vulnerability to outages
or service disruptions, which in turn disrupt the coordination and control of the
multi-UAV system.

124



5.3. Local/hybrid mode switching

➙ Security and privacy issues: transmitting sensitive data increases concerns about
unauthorized access and breaches. This may compromise mission-critical informa-
tion and network integrity.

➙ Dependency on internet connectivity: dependence on the cloud in areas with unre-
liable internet connectivity creates difficulties in communicating with UAVs.

➙ Scalability challenges: the limited ability of the cloud to scale efficiently affects
coordination as UAV numbers grow, causing resource constraints.

➙ Data synchronization issues: maintaining consistent information among UAVs presents
essential synchronization challenges for the efficient operation of the multi-UAV sys-
tem.

5.3 Local/hybrid mode switching

A local/hybrid mode switching module will be integrated into each UAV, and it will
be used to estimate the degree of autonomy of each one.

This module analyzes the behavior of the UAV system under uncertainty by consid-
ering sensor and network data from local neighbors. Using this information, the module
can estimate the best choice of operating mode, as illustrated in Figure 5.1.

Figure 5.1 – Mode switching diagram.

5.3.1 Input data and performance metrics

The input data of the switching mode module that are used are grouped into two
categories:

❖ UAV data:
The UAV data are the health data of the onboard system, which come from the
autopilot, sensors, battery, etc. For simplicity reasons, in this work, all these data
are collected and processed by software monitoring systems integrated into the UAV.
These data are then grouped into a new variable that describes the percentage of
the health status of the UAV to make decisions.
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❖ Network data:
To measure the overall performance of the communications Quality of Service (QoS),
two types of communications have been distinguished: local communications and
cloud communications:

➥ Local communications:
Local or inter-UAV communications designate exchanging data and informa-
tion from a UAV and neighboring ones.

➥ Cloud communications:
Cloud communications use cloud-based services and platforms to communicate
between devices, applications, and users. Cloud communications can enable
communications between multiple UAVs in a network. Cloud communications
can offer a wide range of services, such as data sharing and collaboration tools
and a centralized control system for a multi-UAV system that maintains UAVs’
coordination and mission objectives.

To determine the performance of both types of communication, we mainly analyze and
compare the most commonly used metrics in UAV communications [PPB19; Sha+19;
Sin+19; YL19; Yog21].

The metrics used are :

☞ Packet Delivery Ratio (PDR): defined as the number of packets accepted by
the destination node and the number of packets transmitted by the source. Its
calculation formula is

Packet Delivery Ratio (PDR) =
∑

DeliveryData∑
TransmitData

(5.1)

☞ Packet delivery rate: shows how successfully a protocol delivers packets from
source to destination. It can be characterized as

Packet Delivery Rate =
∑

DeliveryData∑
TransmitData

∗ 100 (5.2)

where ∑
DeliveryData is the total packets successfully received, and ∑

TransmitData

is the total packets sent.

☞ End-to-End (E2E) delay: is calculated as the time elapsed between its trans-
mission and its reception. It also carries time elapsed in buffering and processing for
the data packet transmission. The End to end delay is calculated by the formula:

E2E Delay =
∑

(Timeend_packet − Timestart_packet) (5.3)
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where: Timeend_packet is the time when the last packet is received, Timestart_packet is
the time when the first packet is sent. the multiplication by 8 is a conversion factor
used to convert the data size from bits to bytes.
The Average End to end delay is calculated by the formula:

Average E2E Delay =
∑(Timeend_packet − Timestart_packet)∑

TotalP ackets

(5.4)

☞ Throughput (Thp): the average throughput is the number of bits successfully
arrived per second (kb/s) at the destination node. This is used to measure the
protocol’s reliability under different conditions; hence, the average throughput in
the network needs to be as high as possible [Gar+18]. Mathematically, it can be
defined as,

Throughput(Thp) =
∑

TotalP ackets ∗ Packetsize ∗ 8
Timeend_packet − Timestart_packet

(5.5)

☞ Jitter : is the variation in the arrival times of consecutive data packets. In the
Mobile Ad-hoc Networks (RFC5148) context, minimal variability in packet arrival
times is essential for optimal performance. The jitter value, calculated according to
RFC 3550, represents the degree of fluctuation in packet arrival times and is often
measured in milliseconds (ms). The Jitter for the ith packet is denoted as Ji and is
calculated by the formula:

Ji = Ji−1 + |Di−1| − Ji−1

16 (5.6)

Where the gain parameter 1/16 is considered optimal, providing a good noise re-
duction ratio while maintaining a reasonable convergence rate, as Schulzrinne et al.
[Sch+03] suggested. Di represents the deviation from the expected arrival time for
the ith packet, calculated using the formula:

Di = (Ri −Ri−1)− (Si − Si−1) (5.7)

where R is the arrival time in UDP time tags, and S is the UDP time tag received
from the packet.

☞ Reliability: is the ability of a system to consistently and dependably deliver data
with minimal or no loss or errors. It quantifies a system’s ability to ensure unchanged
and timely transmission, with the demanded level varying based on application
criticality. High reliability is vital for applications intolerant to packet loss, while
others with tolerance for occasional loss accept medium or low reliability. The is
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reliability is calculated using the formula:

Reliability =
∑

TransmitData∑
DeliveryData

∗ 100 (5.8)

☞ Packet loss: is the percentage of data packets that do not successfully reach their
destination within a given transmission. Lower packet loss is generally desirable,
indicating more robust and reliable communications performance. The formula cal-
culates it:

Packet loss rate = Number of lost packets

Total number of sent packets
∗ 100 (5.9)

☞ Average energy consumption: refers to the mean amount of energy utilized by
the network nodes, typically UAV, within a FANET over a given duration. It is
computed by dividing the total energy consumed by all nodes during that period
by the duration of the observation.

Average Energy Consumption = Total Energy consumed by all Nodes

Duration
(5.10)

☞ Routing overheads: are all control messages (cumulative routing overhead) in
bytes (for each routing protocol) divided by the simulation period (time):

Routing overhead ratio = Total Routing overhead

Total transmission time
(5.11)

where Total Routing Overhead is the cumulative routing overhead (cost or resources
expended on routing-related activities) incurred during the specified time period,
and the Total Transmission Time is the overall duration of network operation or
communication.

☞ Traffic Received: represents the total amount of the total traffic (or data) received
in bits per second by all traffic destinations (Nodes) in the entire network.

Total Traffic received =
n∑

i=1
Traffici (5.12)

where n is the total number of traffic destinations (Nodes or sources), and Traffici

is the traffic (or data) received from the i-th source or destination in bits per second.
☞ Data dropped: indicates total higher layer data traffic (in bits/sec) dropped by

all the WLAN MACs. This occurs due to persistent retransmission failures, where
higher-layer packets are dropped because the MAC fails to receive acknowledgments
(ACKs) for (re)transmissions or their fragments. A lower data dropped value reflects
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an improved transmission path capability and stability.

Data Dropped =
n∑

i=1
Droppedi (5.13)

where n is the total number of traffic destinations (Nodes or aircraft), and Droppedi

represents the data dropped by the i-th node or aircraft in bits per second.

Table 5.2 presents all selected publications in this review with the performance metrics
cited before.
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Garcia et al. [Gar+18]
Hassan et al. [Has+20]

He et al. [HSS20]
Kaur et al. [KSG20]
Leonov et al. [LL18]
Lin et al. [Lin+19]
Pires et al.[PPB19]

Singal et al. [Sin+19]
Singh et al. [SV14]
Singh et al. [SV15]
Tan et al. [Tan+20]
Yang et al. [YL19]

Table 5.2 – Performance metrics used to evaluate the performance of network communi-
cation
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We notice that some metrics seem almost similar, e.g., Packet Delivery Ratio (PDR)
and Packet Delivery Rate.

In our case study on network communications quality, the selection of the three key
performance metrics — Packet Delivery Ratio (PDR), End-to-End (E2E) delay, and
Throughput (Thp) — is based on the review of existing literature, as evidenced by Table
5.2. These metrics emerge as the most prevalent and widely acknowledged indicators in
assessing different aspects of network performance. Packet Delivery Ratio (PDR) provides
a fundamental measure of reliability, indicating the percentage of successfully delivered
packets. End-to-End (E2E) delay captures the responsiveness of the network by quan-
tifying the time taken for packet traversal. Throughput (Thp) offers insights into the
network’s capacity and efficiency by measuring the throughput or data transfer rate.
Focusing our study on these metrics ensures a comprehensive evaluation, aligning with
established practices and facilitating meaningful comparisons with existing research.

5.3.2 Mode switching (Core of the method)

The “Mode switching” method aims to find and adapt the UAVs’ operating mode
online. Based on the UAV sensor data analysis, the local network data (direct inter-drone
communications of the multi-UAV system), and the network data with the cloud, the
method will estimate the UAV’s autonomy (good functioning).

1. Definition of a Bayesian network

Bayesian Network (BN) is used to perform a diagnostic reasoning and root cause
analysis [Sch+15; Zer+17], leveraging its capability as a multivariate probability
distribution that facilitates reasoning and learning under uncertainty [Pea88; Dar09].
In a BN, random variables are represented as nodes within a Directed Acyclic Graph
(DAG), where the edges in the DAG [Cow+07] induce conditional dependencies
and independencies between variables. Figure 5.2 illustrates a straightforward BN
example. A BN’s graphical structure often reflects a domain’s causal relationships
and generally serves as a concise representation of a conditional probability table.
Each BN node is linked to a corresponding conditional probability table (CPT),
capturing its causal links to parents and children in the DAG.

Figure 5.2 – Simple Bayesian network [Sch+15].
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Considering the BN [Sch+15] in Figure 5.2, it consists of four different types of
interconnected nodes, namely command node C, health node H, sensor node S, and
status node U. The health node H has subtypes HS for a sensor node and HU for a
status node.
In this BN, the observed values of S on the sensors enable the assessment of the
health state of the system Hu. This is made possible through Bayesian reasoning by
inference based on observations made on the system.

2. Inference in Bayesian Network
Inference in Bayesian networks is a process that involves drawing conclusions or
making predictions about the uncertain variables within the network, given ob-
served evidence or information. Bayesian networks, also known as belief networks or
probabilistic graphical models, employ Bayes’ theorem to update probabilities and
model dependencies among variables.

Bayes’ theorem, named after Thomas Bayes, is a fundamental con-
cept in probability theory and statistics. It calculates the probabil-
ity of an event by incorporating prior knowledge of conditions that
may be associated with the event.
Bayes’ theorem is stated mathematically as the following equation
[SKO94]:

P (A|B) = P (B|A)P (A)
P (B) (5.14)

where A and B are events and P (B) ̸= 0.
• P (A|B) is a conditional probability: the probability of event

A occurring given that B is true. It is also called the posterior
probability of A given B.

• P (B|A) is also a conditional probability: the probability of
event B occurring given that A is true. It can also be in-
terpreted as the likelihood of A given a fixed B because
P (B|A) = L(A|B).

• A and B are the probabilities of observing A and B, respec-
tively, without any given conditions; they are known as the
prior probability and marginal probability.

Bayes’ theorem

3. Construction of the BN for mode switching
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The probability of the autonomy of the UAV is calculated by combining the different
metrics most used in multi-UAV communication; considering the example in Figure
5.2, we have built the following Bayesian Network (BN) in Figure 5.3.

Figure 5.3 – Mode switching modeled with BN.

4. Construction of the BN
The systematic process used in the construction of the Bayesian Network (BN)
facilitating the determination of the appropriate operating mode follows these steps:

(a) Definition of all the variables and their states: identify and define the
variables (nodes) of the Bayesian Network along with all possible states for
each variable.
Our Bayesian Network is made of several nodes like the following:

❖ The root node "operating mode" is the BN’s estimation node of the
conflict resolution module. Depending on this node, we will privilege one
operating mode rather than another.

❖ The leaf nodes “QoS UAV”, “QoS Local communication”, and “QoS
Cloud communication” are the leaf nodes of the BN computed and
evaluated with health estimation modules.

☞ “QoS UAV” node: serves as a robust indicator for assessing the
overall health status of the UAV, focusing particularly on its hard-
ware components. This node contains various aspects, including data
processing within the UAV system, onboard processing, processors,
memory, and the health status of essential sensors like GPS, IMU,
and cameras. It also considers the condition of the batteries sustaining
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the UAV’s power supply, along with the health of applications run-
ning on the UAV. This comprehensive metric evaluates the robustness
and efficiency of both the hardware elements and the associated soft-
ware, contributing to a holistic assessment of the UAV’s operational
well-being.

☞ “QoS Local communication” node: serves as a strong indicator for
evaluating the overall health status of the local communications within
the UAV and its neighboring nodes. This node uses various metrics to
estimate the reliability and safety of communications between a UAV
and its neighbors. Specifically, it utilizes the three key metrics identi-
fied in Section 5.3.1: Packet Delivery Ratio (PDR), End-to-End (E2E)
delay, and Throughput (Thp). These metrics provide a comprehensive
communications quality assessment, addressing crucial aspects such as
packet delivery, End-to-End delay, and data transfer efficiency.

☞ “QoS Cloud communication” node: serves as a robust indicator for
assessing the overall health status of the cloud-based communications
within the members of the multi-UAV system. The “QoS Cloud com-
munication” uses the same metrics to estimate reliability and safety for
the “QoS Local communication” node. Specifically, it utilizes the three
key metrics identified in Section 5.3.1: Packet Delivery Ratio (PDR),
End-to-End (E2E) delay, and Throughput (Thp).

❖ The “Local table” node depends on two intermediate nodes, which in
turn are dependent on two leaf nodes, namely, S: UAV” and “S: Local com-
munications”. This table facilitates information sharing among the UAVs
within the system, providing a comprehensive overview of the mission.
UAVs share information with their direct neighbors through local com-
munications. In cases where conflicts within this local communication re-
main unresolved, the “Local table” is updated with additional information
sourced from other UAVs within the multi-UAV system, facilitated through
cloud communication. This adaptive mechanism ensures continuous in-
formation refinement, fostering effective communication and collaboration
among the UAVs.
The observation made in the mission context is captured by the leaf nodes
of the Bayesian network in the form of evidence according to the observed
state of the node.

(b) Definition of the BN structure: establishes conditional dependency links
among the various nodes in the network. Notably, a BN is inherently an acyclic
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graph, prohibiting the presence of loops. Ensuring the smooth circulation of
information among the nodes is essential to facilitate adequate reasoning and
root cause analysis within the BN framework. D-separation rules govern this
adherence to information flow principles [Pat+07], emphasizing the importance
of maintaining proper connectivity while avoiding cycles in the graph.
The three cases in Table 5.3 cover all types of connections in a causal network.

Graph Information circulation rule

V1 −→ V2 ←− V3
Type: convergent connection

Information flows from V1 to V3
if only if V2 is known

V1 ←− V2 −→ V3
Type: divergent connection

Information flows from V1 to V3
if only if V2 is not known

V1 −→ V2 −→ V3
Type: serial connection

Information flows from V1 to V3
if only if V2 is not known

Table 5.3 – Circulation of information according to the type of connection in a BN.

Connections are established in the switching estimation mode based on the
guidelines specified in Table 5.3. An example is provided below:
— Node ‘U: UAV’ to node ‘U: Local table’ ➛ poor QoS of the UAV causes

unreliable data in the “Local table”,

— Node ‘U: Local communications’ to node ‘U: Local table’ ➛ poor
QoS of the local communications link causes unreliable data in the “Local
table”,

— etc.
The nodes ‘U: UAV’, ‘U: Local table’, and ‘U: Local communications’
form a convergent connection. The nodes ‘U: Local table’, ‘U: UAV’, and
‘S: QOS UAV’ form a divergent connection. The nodes ‘S: QOS UAV’, ‘U:
UAV’, and ‘U: Autonomous decisions’ form a serial connection

(c) Definition of Bayesian Network (BN) parameters is crucial for quanti-
fying the probability values associated with each node, reflecting the likelihood
of observing State 0 or State 1. For the root nodes of the BN (those without
parents), these probabilities are known as a priori probabilities. These values
represent the inherent likelihood of each possible state without being influenced
by other nodes in the network. In contrast, for child nodes (nodes with parent
or causal nodes), these parameters take the form of conditional probabilities,
reflecting the probability of a particular state given the states of their parent
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nodes. This distinction underscores the foundational role of BN parameters in
encapsulating both prior knowledge and conditional dependencies within the
network, facilitating accurate probabilistic modeling and reasoning
For each node of our BN, we set a conditional probability table (CPT), which
contains the initial probability values as shown in Figure 5.4.

Figure 5.4 – Mode switching modeled with BN showing the conditional probability table
(CPT).
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5.4 Operating mode selection scenarios

This Section explores various scenarios for selecting operating modes within the Bayesian
network framework. Specifically, we delve into selecting the Local mode in subsection 5.4.1
and the Hybrid mode in subsection 5.4.2. The Bayesian network can dynamically deter-
mine the most suitable mode based on different conditions and events. Each case within
these sections outlines distinct conditions and reasoning processes that guide the Bayesian
network in making optimal decisions for selecting either the Local or Hybrid operating
modes. Let’s examine the different cases within each mode selection to gain insights into
the adaptive decision-making capabilities of the Bayesian network.

5.4.1 Selection of the Local mode

In the context of selecting the Local mode, the Bayesian network demonstrates its
capacity to opt for the local operating mode in these various scenarios:

➥ Case 1: QoS UAV, QoS Local communication, and QoS cloud communi-
cations are OK, as shown in Figure 5.5.
In this scenario, the three estimators provide insights into the proper functioning of
the UAV, local, and cloud communications. The circulation of information within
this Bayesian network reinforces reliability, particularly on the Local Communica-
tion node, which is shared among UAVs.

Figure 5.5 – QoS UAV, QoS local communi-
cation, and QoS Cloud communications are
OK.

Figure 5.6 – QoS UAV and QoS local com-
munications are OK, and QoS Cloud com-
munications are not OK.

➥ Case 2: QoS UAV and QoS local communications are OK, and QoS Cloud
communications are not OK, as shown in Figure 5.6
In this case, as illustrated in Figure 5.6, the QoS UAV and QoS Local communica-
tions are determined to be satisfactory. In contrast, the QoS Cloud communications
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are flagged as unsatisfactory. The QoS UAV and QoS Local communications estima-
tors offer insights into the proper functioning of the drone and local communications.
Conversely, the cloud communications estimator signals a compromise in commu-
nications through the cloud. The circulation of information within this Bayesian
network enhances reliability, particularly emphasizing the shared local communica-
tions node among the drones.

➥ Case 3: QoS UAV and QoS Cloud communications are not OK, and QoS
local communications are OK, as depicted in Figure 5.7.
In this situation, the QoS local communications estimator provides insight into
whether the UAV’s local communications are functioning properly. The QoS UAV
estimators indicate reduced confidence in the UAV due to issues that may be linked
to sensors, battery, or autopilot malfunctions. Simultaneously, QoS cloud commu-
nications suggest compromised communications through the cloud.
The circulation of information within this Bayesian network reduces the drone’s
decision-making reliability and affects the shared table at the drone level. Despite
good local communication, the Bayesian Network may delegate tasks to a direct
neighbor, bypassing the cloud, to maintain operational efficiency.

Figure 5.7 – QoS UAV and QoS Cloud com-
munications are not OK, and QoS local
communications are OK.

Figure 5.8 – QoS UAV is OK, and QoS
Cloud communications and QoS local com-
munications are not OK.

➥ Case 4: QoS UAV is OK, and QoS Cloud communications and QoS local
communications are not OK; is shown in Figure 5.8
In this scenario, the QoS UAV estimator, along with the QoS Local Communication,
offers valuable insights into the proper functioning of the UAV and its local com-
munications with direct neighbors. Concurrently, the QoS cloud Communications
estimator indicates a cloud communications threat. The circulation of information
within the Bayesian network reduces the reliability of both types of communication.
However, despite both types of communication being compromised, the Bayesian
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Network has no choice other than to delegate the task to a local neighbor since
neither cloud nor local communications are dependable.

5.4.2 Selection of the Hybrid mode

Turning our attention to the Hybrid mode selection, the Bayesian network demon-
strates its capability to choose the Hybrid operating mode in these cases:

➥ Case 5: QoS UAV is not OK, and QoS local communications and QoS
Cloud communications are OK; is shown in Figure 5.9
In this scenario, the QoS UAV estimator indicates a malfunction in the UAV, reduc-
ing its capacity to make safe decisions. Concurrently, the QoS cloud communications
and QoS Local communications estimators indicate that direct communications
with neighbors are robust, and cloud communications are functional and secure.
The circulation of information within the Bayesian network decreases the reliability
of the shared “Local table”, impacting the effectiveness of local communications
with neighbors. However, given the assurance of good cloud communications, the
Bayesian Network will delegate the task to another UAV within the system through
the cloud, operating in Hybrid mode.

Figure 5.9 – QoS UAV is not OK, and QoS
local communications and QoS Cloud com-
munications are OK.

Figure 5.10 – QoS UAV and QoS Cloud
communications are OK, and QoS local
communications are not OK.

➥ Case 6: QoS UAV and QoS Cloud communications are OK, and QoS local
communications are not OK; is shown in Figure 5.10
In this scenario, the QoS UAV and QoS cloud Communications estimators offer
valuable insights into the proper operation of the UAV and cloud communications.
Simultaneously, the QoS Local Communication estimator indicates that direct com-
munications with neighbors are compromised and unsafe, while communications
via the cloud are functional and secure. The circulation of information within the
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Bayesian network reduces the reliability of the shared “Local table”, impacting the
effectiveness of direct communications with neighbors. Nonetheless, given the relia-
bility of cloud communications and the unsatisfactory state of local communications,
the Bayesian Network delegates the task to another UAV within the system via the
cloud, operating in Hybrid mode.

➥ Case 7: QoS UAV and QoS local communications are not OK, and QoS
Cloud communications are OK, is shown in Figure 5.11.
In this scenario, the QoS UAV and QoS Local communications estimators provide
crucial insights into the malfunction of the UAV and the poor, unsafe state of local
communications with neighbors. Conversely, the QoS cloud communications esti-
mator indicates that communications via the cloud are operational and secure. The
circulation of information within the Bayesian network reduces the reliability of
the shared “Local table”, affecting the effectiveness of local communications with
neighbors. Nevertheless, given the reliability of cloud communications and the com-
promised state of local communications, the Bayesian Network chooses to delegate
the task to another UAV within the system via the cloud, operating in Hybrid mode.

Figure 5.11 – QoS UAV and QoS local com-
munications are not OK, and QoS Cloud
communications are OK

Figure 5.12 – QoS UAV, QoS local commu-
nication, and QoS Cloud communications
are not OK

➥ Case 8: QoS UAV, QoS local communication, and QoS Cloud communi-
cations are not OK, is shown in Figure 5.12.
In this exceptional scenario, the estimators of QoS UAV, QoS Local communication,
and QoS cloud communications are all malfunctioning. Given the UAV’s inability
to make decisions and the unsafe state of local communications, the circulation of
information within the Bayesian network reduces the reliability of the “Local table”,
impacting both local and cloud communications.
Despite the poor state of communications via the cloud, the Bayesian Network has
only one option that is to delegate the task to one of the system’s UAVs via the cloud,
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operating in Hybrid mode. This decision is driven by the compromised functionalities
of both the UAV and local communications, emphasizing the adaptability of the
Bayesian Network in responding to diverse scenarios.

5.5 Case study with a collaborative mission planning

These are some examples of conflicts/constraints at the multi-UAV level:

☞ Constraint 1: The UAV with the smallest distance to target Targett is the only
one to track it.

☞ Constraint 2: The UAVi follows Targett, and the speed of the UAV follower <
speed of the Targett

☞ Constraint 3: The UAVi follows Targett, and one of its sensors fails, e.g., GPS

☞ Constraint 4: The UAVi follows Targett and will not have enough energy resources
to continue the mission or make RTH (return to base).

☞ Constraint 5: The UAVi follows Targett, which enters an unauthorized area for
the follower.

The tracking mission described in Section 4.1.3 is assigned to a multi-UAV system.
We have used three UAVs for simplicity’s sake. As shown in Figure 5.13, the UAVs in this
system will track a target (e.g., the red UAV).

Figure 5.13 – Tracking mission with multi-UAV system

5.5.1 Multi-UAV system searching target process

In multi-UAV system searching targets, UAVs must reach a consensus on a target to
follow, which can be a complex task requiring effective coordination. Here are the general
steps involved in reaching a consensus between these UAVs:
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1. Communication and coordination: UAVs must be able to communicate with
each other. This can be achieved via radio links, ad hoc communications networks,
direct, local UAV-UAV communication, or through the cloud.

2. Data collection: Each UAV must collect information about the potential target,
such as its position, speed, heading, etc. On-board sensors, such as cameras or
radars, can be used for this purpose.

3. Data exchange: UAVs share the data they have collected on the target with other
group members. The communications can be centralized or decentralized, depending
on the control architecture.

4. Data fusion: information shared by UAVs is fused to estimate the target better.
Data fusion techniques, such as Bayesian data fusion, can be employed to achieve a
more comprehensive understanding of the situation

5. Decision-making: UAVs use the merged data to decide which target to follow and
which UAV will do it. The decision-making may involve an assessment of priorities
or pre-defined decision criteria.

6. Repeating the process: steps 2 to 5 are repeated periodically to update the
decision on the target to follow as the situation evolves. This reiteration may be
necessary due to target movements or the arrival of new information.

7. Consensus: is reached when the majority of UAVs converge on a common decision
about which target to track and which UAV will track it. This may require voting
mechanisms or other decision-making protocols.

8. Target tracking: once consensus has been reached, especially in the case of UAV
target tracking, the UAVs collaboratively coordinate their movements to follow the
chosen target precisely. They adjust their trajectories, ensuring seamless coordina-
tion while maintaining constant surveillance. In the case of individual tracking, the
UAV selected from the consensus will dynamically change its trajectory to track the
target effectively.

In this process, UAVs must be equipped with advanced navigation systems, quality sen-
sors, and control software to implement this consensus process effectively. In addition,
mission planning, resource management, and allocating roles within the UAV team are
also crucial to the success of the target-tracking mission.

Among the conflicts and constraints listed above, we have chosen to take the 1st
constraint as a case study to demonstrate the effectiveness of our method.

5.5.2 Local communications are safe and functioning effectively

In the case of the good functioning of local communications (UAV-UAV),
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➥ A team of UAVs are deployed to the search area, and they establish a local commu-
nications network among themselves. This network enables real-time data sharing
and coordination.

➥ We assume that the UAVs are programmed to autonomously search for targets in
the search area using a combination of high-resolution cameras, thermal imaging,
and LIDAR sensors.

➥ When a UAV detects a potential target using its sensors, it constructs an internal
table with the collected data, as shown in Figure 5.14. Its table is periodically
shared with its neighbors. After processing the Bayesian Network with various UAV
data and communication safety data, it concludes that local communications are
safely detected by the monitoring system in the UAV, and the “Local Table” data is
not compromised. This increases the probability of operating autonomously, and as
this information propagates towards the root node of the BN, the system’s health
promotes a preference for local operating mode.

➥ Conflicting UAV relays the information to other UAVs via the local communications
network, as shown in Figure 5.15. The UAVs collectively analyze the data to confirm
the presence of a target and classify the target according to the pre-defined factors
and criteria.

Figure 5.14 – Detection of a target and construction of an internal table.

➥ UAVs engaged in the search shares their findings, and the group reaches a consen-
sus on the priority of targets based on factors such as proximity, condition, and
accessibility.

➥ The drones work together to assign tasks, so in this case study, the tracking task.

➥ The UAV assigned to track the target follows the target. The UAV maintains com-
munications with the other system members.

The UAVs continue to share data and update the data in each member’s internal table
and with the central command center. This data includes the location and velocity of the
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Figure 5.15 – Mission data exchange and fusion.

target, any additional threats, and the overall progress of the tracking mission.
✍ Note that this case study concerns Case 1 (see subsection 5.4.1) among several

instances of local operating mode selection scenarios. This is because communications are
secure, and neighboring UAVs trust the data from their “Local table”. This trust enables
the system to operate locally, bypassing the need to rely on cloud services for conflict
resolution.

5.5.3 Local communications are under potential risks or vulner-
abilities

In the event of potential risks or vulnerabilities in local communications among UAVs
during a mission, as shown in Figure 5.16, the management of this mission will be done
as follows:

Figure 5.16 – Detection of a target, construction of an internal table for each UAV, and
appearance of potential local communications vulnerabilities.

➥ A team of UAVs is deployed to the search area. The UAVs start their search op-
erations with an awareness of the communications challenges because of concerns
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about potential communications vulnerabilities. However, they maintain connectiv-
ity through the cloud.

➥ We assume that the UAVs are programmed to autonomously search for targets in
the search area using a combination of high-resolution cameras, thermal imaging,
and LIDAR sensors.

➥ When a UAV detects a potential target using its sensors, it constructs an internal
table with the collected data as shown in Figure 5.14. Its table is periodically shared
with its neighbors. After processing the Bayesian Network with these data, it de-
termines that local communications are not secure, and the data in the Local table
is also deemed unsafe and may be compromised. This reduction in the probability
of autonomous operation propagates this information to the root node of the BN,
indicating that the overall system health does not support relying only on direct
neighbors. Therefore, there is a need to favor a mode of operation via the cloud.

➥ The UAVs use the cloud as a reliable communications channel to exchange data
and coordinate their search and rescue efforts. This ensures that they can maintain
connectivity even if local communications are intermittent.

➥ While local communications remains unreliable, UAVs adapt their decision-making
processes. They can still collaborate in real-time and make coordinated decisions
based on cloud-shared information, as shown in Figure 5.17.

Figure 5.17 – Mission data exchange and fusion through the cloud-based communication.

UAVs engage in consensus-building processes to agree on which targets to prioritize
and how to coordinate their efforts. Cloud-based communications support effective
decision-making.

➥ The tracking task is centrally assigned based on the consensus reached through
cloud communication, ensuring efficient allocation of resources.
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✍ Note that this case study corresponds to the Case 7 (see subsection 5.4.2) of selecting
Hybrid operating mode. This is because UAV data and local communications are not
securely detected by the monitoring system in the UAV. As a result, UAVs no longer
trust the data in their “Local table”. This reduces confidence in the system to operate
locally, thus leading to the need to rely on cloud services for conflict resolution.

Although cloud communications are available as a backup, UAVs can utilize offline
storage capabilities for critical data. Also, UAVs will periodically attempt to restore local
communications but maintain cloud connectivity as their primary means of communica-
tion.

5.6 Final consideration

In conclusion, this chapter underscores the indispensable role of communication in
achieving mission objectives, particularly in distributed and cooperative missions within
multi-UAV systems. We introduced a sophisticated module to enhance the adaptive ca-
pabilities of collaborative multi-UAV systems through a Bayesian Network (BN)-based
operating mode adaptation. The focus is on policy self-adaptation in local and hybrid
modes (via the cloud) and exploiting drone communication networks to optimize drone
mission planning.

The chapter describes the disparities in applying the self-adapting policy method in
local and cloud modes. It begins by elucidating the existing communication networks used
for multi-UAV system communication, primarily local (UAV-UAV) and cloud-based com-
munications while addressing associated issues. When local communications face potential
vulnerabilities, alternative communication channels, such as cloud-based communication,
are key in enhancing mission efficiency.

We propose an autonomous local/hybrid mode-switching approach, considering UAV
and communication data to predict drone autonomy and required communication mode
(local/hybrid mode). This prediction is made by analyzing the UAV system’s behavior
under uncertainty and considering sensor data and network data from local neighbors.
Based on this analysis, the module can estimate the optimal operating mode. Finally, we
outline scenarios for both local and hybrid utilization modes, demonstrating the effective-
ness of applying the self-adapting policy method combined with local and hybrid mode
switching in a collaborative mission with a multi-UAV target search system.

The subsequent chapter provides a comprehensive summary of the work conducted in
this thesis and outlines potential avenues for future research.
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CHAPTER6
Conclusion and perspectives

This thesis focuses on distributed decision-making in multi-UAV systems in uncer-
tain environments. This chapter briefly presents the context of this thesis, highlights our
contributions, and then outlines prospects for future research.
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6.1 Conclusion

6.1.1 Context of the thesis

Nowadays, robots have invaded almost all fields: industrial (e.g., assembly robot in
a production line), agricultural (e.g., analysis of fertilizer needs), environmental (e.g.,
monitoring of natural disasters), commercial and transportation (e.g., delivery), security
sectors (e.g., forest fire detection), military missions, etc. The production and use of drones
have increased and require improved decision-making, safety, security, and knowledge of
relevant areas. They must continually adapt to accomplish missions facing unpredictable
problems.

With a focus on missions in the maritime environment, aerial drones are essential.
UAVs complement traditional maritime vehicles, providing advantages in tasks such as
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searching, identifying objects or individuals, detecting pollution, monitoring ports, and
reconstructing 3D images. Collaboration of maritime vehicles with drones extends to
innovative roles, such as using them as motherships to recharge drones, optimize mis-
sion duration, and improve overall efficiency. Despite these benefits, executing maritime
missions presents challenges due to unpredictable weather conditions, communications
interference, and the need for resilient navigation systems. Specific examples include poor
visibility and vulnerabilities such as GPS outages caused by factors such as inadequate
satellite coverage or deliberate interference. Addressing these challenges requires scientific
research and technological advancements to strengthen air systems, ensure adaptability
and robust performance in complex maritime missions, and emphasize an interdisciplinary
approach for optimal contribution to exploration and problem-solving efforts.

6.1.2 Problem statement

Chabha Hireche’s thesis work [Cha19] explored decision models used in the context
of a drone mission. It confirmed that probabilistic models, particularly Markov Decision
Processes (MDP), are widely adopted for decision-making under uncertainty in robotics.

In the course of this research, our primary goal was to determine the most suitable
solving method for a decision problem under uncertainty as a function of the context of
a mission in the embedded card.

In various applications, limitations in energy, computing capacity, and execution often
made a single Unmanned Aerial Vehicle (UAV) inadequate for extensive coverage. Multi-
UAV systems, such as swarms, aimed to achieve broader coverage, enhanced surveillance,
and more efficient mission execution through collaborative action for rapid and precise
information collection.

Within a multi-UAV system, we focused on uncovering potential conflicts and explor-
ing how they could be resolved in a distributed multi-UAV framework modeled using
MDP.

Finally, given our keen interest in collaborative missions involving multi-UAV systems,
the ultimate goal was twofold. First, we aimed to address how one can ensure that a
drone can carry out its mission autonomously. Second, we sought to implement conflict
resolution within a multi-UAV system. This involved minimizing cloud communications
and reducing the volume of transmitted data to maximize the autonomy of drones.

6.1.3 Contributions

This section briefly outlines key contributions, thoroughly examining three fundamen-
tal methods for MDP resolutions in mission planning. It introduces a novel approach

148



6.1. Conclusion

involving self-adaptation through rewards tuning in mission planning strategies. Finally,
it explores the adaptation of collaborative multi-UAV systems via a mode-switching adap-
tation based on a Bayesian network.

✍ Comparison of fundamental methods for mission planning:
The literature encompasses various probabilistic models for decision-making un-
der uncertainty, including Markov Decision Process (MDP), Partially Observable
Markov Decision Process (POMDP), Relational Dynamic influence Diagram Lan-
guage (RDDL), and Petri Net (PN). This study specifically focuses on the widely
adopted MDP framework in robotics, exploring its resolution methods. The three
fundamental classes for solving finite MDPs are Dynamic Programming (DP), Monte
Carlo (MC) methods, and Temporal Difference (TD) learning. Specifically, the re-
search delves into three methods for solving MDPs Value Iteration and Policy Iter-
ation methods (DP) and the Q-Learning method (TD). The study introduces new
criteria to adapt decision-making methods to specific application problems. Exper-
imental findings indicate that the Q-Learning method is effective in simple and
regular cases. In contrast, classical MDP resolution methods are more suitable for
irregular cases, especially in critical systems.

✍ Self-adaptation based rewards tuning for mission planning:
MDP is a robust approach for decision-making and planning in uncertain UAV
environments. It involves an agent interacting with the environment, adjusting ac-
tions based on state transitions and rewards. Unlike other reinforcement learning
approaches, MDPs use probabilities and/or rewards to expedite problem-solving,
incorporating factors such as physical constraints, mission safety, and conflict reso-
lution in decision-making. The focus is on tuning rewards associated with actions,
as experimentation reveals that modifying state-level rewards adapts the mission
by resolving conflicts. The application extends to multi-UAV contexts, addressing
challenges in autonomous vehicle development. At the multi-UAV system level, in-
dividual UAVs have unique MDPs, posing potential conflicts. The proposed con-
flict management mechanism involves adjusting mission plans, resolving conflicts,
dynamic reward shaping through systematic online methods, implementing energy-
aware strategies, and ensuring optimal decision-making, safety, and efficiency in
multi-UAV system missions.

✍ Adaptation with cooperation through the local network/the cloud:
Potential failures and cyber threats pose challenges in the context of a collaborative
multi-UAV system operating in uncertain environments. Previous work suggested an
adaptive system, but there’s a need to enhance collaboration management among
system members. The proposed approach utilizes Bayesian Networks to estimate
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UAV safety, enabling direct communication with neighboring UAVs for internal
adaptation. The goal is to maintain autonomy while fostering effective collabora-
tion. In the event of compromised local communications, the adaptation seamlessly
transitions to the cloud, reducing inter-drone communication and enhancing sys-
tem efficiency. This operational model also decreases the transmitted data volume,
reducing energy consumption in the multi-UAV system during missions.

6.2 Research perspectives

This Section presents some perspectives for future work, which we classify according
to their term.

6.2.1 Short-term perspectives

In this section, we give the possible improvements of the work presented in this thesis.

1. Mission planning: involves integrating the Bayesian Network (BN)-based operat-
ing mode adaptation into the Markov Decision Process (MDP)-based decision engine
within the context of mission planning. Up to this point, the validation of the two
proposed modules in chapters 4 and 5 has been conducted individually. The next
step is to pair these modules and synergistically assess their cohesive functioning.
Initial validation will be performed through simulation, focusing on scenarios involv-
ing challenges at the UAV level or attacks on communication systems. This iterative
approach thoroughly evaluates the integrated system’s robustness and effectiveness
in addressing complex real-world scenarios.

2. BN-based operating mode adaptation: as suggested in Chapter 5, the current
framework assumes that the BN nodes receive the probability of good functioning
from the UAV, local communication, and cloud communication from probabilistic
estimators. So, we propose first defining these Quality of Service (QoS) estimators
and subsequently integrating them into the proposed BN. This integration aims to
enhance self-adaptation management, providing a more comprehensive and refined
foundation for the decision-making processes within the system.

3. Definition of an IT method/tool to facilitate these estimators’ specification,
generation (in both software and hardware versions), and integration of estimators
within the UAV or multi-UAV system. This innovative method/tool is anticipated
to offer a systematic and precise approach to designing and implementing estimators
(system monitors).
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4. Exploration of various support options such as CPU, GPU, and FPGA for
implementing monitors is crucial to address real-time and energy constraints in
online UAV applications. This becomes particularly significant given the limited
flight duration of UAVs, often equipped with small batteries. By considering different
hardware support options, we aim to optimize the implementation to meet stringent
performance and energy efficiency requirements.

6.2.2 Medium to long-term perspectives

Regarding future prospects, the following are some ideas for improving and extending
the current approach.

1. Study of the cooperation between heterogeneous drones (aerial/terrestrial
/marine):
This thesis focuses on collaboration within a homogeneous multi-UAV system, wherein
multiple aerial UAVs execute the same decision model as a decision engine. How-
ever, we posit that extending the exploration to include heterogeneous UAVs could
potentially enhance the effectiveness of mission outcomes. Heterogeneous UAVs, ex-
ecuting diverse decision models, introduce a layer of complexity that may contribute
to improved mission adaptability and performance. Future research endeavors could
delve into the integration and coordination of such heterogeneous systems, provid-
ing a deeper understanding of their collective capabilities and potential advantages
in diverse operational scenarios.

2. Study of the collaborative ML paradigm “Federated Learning (FL)”:
Federated Learning (FL) provides another decentralized framework where drones
collectively improve their decentralized decision-making capabilities while respect-
ing data confidentiality. It enhances efficiency by minimizing communication with
a central server, ensuring failure resilience, and bolstering system robustness. Col-
laborative learning facilitates knowledge-sharing, strengthening mission resilience.
Federated Learning’s scalability makes it suitable for large-scale multi-UAV systems,
accommodating growing drone numbers efficiently.
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Titre : Prise de décision distribuée dans les systèmes multi-UAV : exploration des méthodes,
réglage des récompenses et adaptation du mode de fonctionnement

Mot clés : Planification de mission, Prise de décision, Processus de décision de Markov, Auto-

adaptation, Réseaux Bayésiens, Véhicules autonomes.

Résumé : Les véhicules aériens sans pilote
(UAV) prospèrent dans des environnements diffi-
ciles, améliorant la qualité des missions, la produc-
tivité et la sécurité. Opérer dans des contextes im-
prévisibles nécessite une prise de décision indé-
pendante en temps réel pour une gestion efficace
des missions.
Ce document se concentre sur les missions col-
laboratives multi-UAV, couvrant : 1) la sélection
d’une méthode de planification de mission basée
sur des critères spécifiques, 2) l’auto-adaptation
des politiques grâce à l’ajustement des récom-
penses, et 3) l’adaptation du mode opératoire ba-
sée sur un réseau bayésien dans un système col-
laboratif multi-UAV. Pour la planification de mis-
sion, un cadre de processus de décision de Markov

(MDP) est mis en avant, avec une étude compara-
tive de trois méthodes fondamentales de résolution
des MDP pour aider à la sélection de méthode en
fonction des critères du problème. L’utilisation de
moteurs de décision basés sur les MDP au niveau
du système multi-UAV peut entraîner des conflits,
et le mécanisme de gestion des conflits proposé,
basé sur l’adaptation des récompenses, aborde
la détection et la résolution des conflits parmi les
UAVs. Enfin, un mécanisme de commutation de
mode local et hybride basé sur un réseau bayé-
sien est exploré pour permettre l’auto-adaptation
des politiques, piloté par une surveillance continue
de la qualité de Service (QoS) pour optimiser la
planification des missions et atteindre une autono-
mie totale des drones.

Title: Distributed Decision-Making in Multi-UAV Systems: Exploring Methods, Rewards Tuning,
and Operating Mode Adaptation

Keywords: Mission Planning, Decision-Making, Markov Decision Process, Self-adaptation,

Bayesian Networks, Autonomous Vehicles.

Abstract: Unmanned Aerial Vehicle (UAV)s thrive
in challenging environments, improving mission
quality, productivity, and safety. Operating in un-
predictable settings requires independent real-
time decision-making for effective mission man-
agement.
This document focuses on multi-UAV collabora-
tive missions, covering: 1) selecting a mission
planning method based on specific criteria, 2)
self-adapting policies through reward tuning, and
3) Bayesian Network (BN)-based operating mode
adaptation in a collaborative multi-UAV system.
For mission planning, a Markov Decision Process
(MDP) framework is highlighted, with a compar-

ative study of three fundamental MDP resolution
methods to help in method selection based on
problem criteria. The use of MDP-based decision
engines at the multi-UAV system level may lead
to conflicts, and the proposed conflict manage-
ment mechanism, based on rewards adaptation,
addresses conflict detection and resolution among
member UAVs. Finally, a local and hybrid mode
switching mechanism based on BN is explored to
enable policy self-adaptation, driven by continuous
Quality of Service (QoS) monitoring for optimizing
mission planning and achieving total drone auton-
omy.
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