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General Introduction

The brain is a fascinating example of complex system. Several individual cells, the neurons,
interact among themselves by mean of electrical signals, giving rise to a rich variety of be-
haviors, with the ultimate goal of allowing the organism to survive in a likewise complex
environment. The interaction with such environment plays a central role: neurons encode
and process information about the external world, and they do so with remarkable precision
and efficiency, despite the high level of noise which characterize all biological systems. The
mechanisms that allow such computations have been subject of interest for scientists since
at least one hundred years. In the last decades, with the development of large-scale data
recording techniques, we started to get a more systematic understanding of collective be-
haviors in neural populations, and we began to ‘crack’ the neural code. The contemporary
explosive growth of the field of artificial intelligence gave further rise to a mutual exchange
of ideas, pushing both fields towards the current state of the art while also pointing out
fundamental differences between artificial and biological intelligence.

Besides the analysis of experimental data, the study of the neural code largely benefited
from more theoretical and normative approaches. The hypothesis that neural responses are
organized so as to optimize some utility function provides a rationale for the first principles
which govern information processing in the brain. Within this framework, simple theoretical
models, inspired by empirical observations, allow to isolate and study computational princi-
ples which might feature optimal neural representations, at the same time abstracting away
specific biological details. These models can be further extended and refined to take into
account biological details, and used to interpret and analyze data by identifying signatures
of optimality in the specific system.

The neural code can be studied from two, not neatly divided, perspectives. The en-
coding process refers to the way neurons modulate their responses to convey information
about external stimuli, starting from the transduction of physical quantities into neurons’
electrical activity, followed by the propagation of these signals across different areas of the
brain. The decoding process, instead, refers to the inverse map, applied in order to recover
relevant information about the stimulus from neural activity. This readout process can be
performed by an external observer, i.e., the scientist during an experiment, but it must also
be implemented by the organism itself, in order to perform an action or a choice in response
to external inputs.

Throughout this thesis, we investigate how optimality criteria for encoding and decod-
ing processes concur to shape neural representations of sensory stimuli. We derive coding
properties of models of neural systems through analytical calculations and numerical simu-
lations, in order to illustrate general computational principles. Then, we apply theoretical
frameworks to the analysis of neural recordings data to validate models and provide concrete
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examples of instantiation of such principles. Mathematically, we exploit tools from informa-
tion theory, statistical physics and machine learning. In particular, information theory is
the natural framework to study the problem of communication of signals, and it has been
applied to neuroscience, in the pioneering studies of Barlow and Attneave, few years afters
its formalization by Shannon. The framework of statistical physics is suited to describe how
the interactions among neurons give rise to computations and cognitive functions, similarly
to how macroscopic properties of the matter emerge from the complex interactions among
individual particles. As for machine learning, we employ artificial neural networks to model
the complexity and flexibility of biological systems, studying the patterns which emerge from
the artificial learning process.

The encoding process can be characterized through the relationship between features
of sensory stimuli and mean neural responses, the so-called ‘tuning curve’, along with the
stochastic deviations from the mean activity, the ‘neural noise’. In the first chapter, we inves-
tigate the coding properties of neurons which exhibit complex and irregular tuning curves.
A salient example is offered by grid cells in enthorinal cortex, whose experimental discovery
was awarded by the Nobel prize in 2014. Grid cells are periodically tuned to spatial coor-
dinates, and their joint activity defines a population code conveying information about the
position of the animal in the environment. The periodicity of grid cell tuning curves, as well
as their functional organization in modules, imparts the population code with an exponen-
tially large dynamic range, defined as the ratio between the range of represented stimuli and
resolution. Recently, multiple other examples of neurons with complex, but unstructured
tuning curves have been identified. These findings lead us to ask whether highly efficient
neural codes require fine organization, as in grid cells, or whether they can be realized with
more complex and irregular tuning curves. We approached this question with a benchmark
model: a shallow neural network in which irregular tuning curves emerge due to random
synaptic weights. The synapses project from a large population of sensory neurons with
unimodal tuning curves in response to a one-dimensional stimulus onto a smaller popula-
tion of ‘representation’ neurons. A trade-off is observed between two qualitatively different
types of readout errors: ‘local’ errors whereby two nearby stimuli are confused, and ‘global’
errors, causing complete loss of information about the stimulus. When balancing the two
error rates, we obtain an optimal solution in which a population code with irregular tuning
curves achieves exponentially large dynamic range. We argue that compression balancing
local and global errors takes place in the motor cortex, based on primate cortex recordings.
Our results show that highly efficient codes do not require finely tuned response properties,
and can emerge even in the presence of random synaptic connectivity.

The results of the first chapter, similarly to previous studies on population codes, are
obtained by quantifying the coding performance through an abstract ‘ideal’ decoder, which
has access to all the details of the encoding process and the statistics of the noise. In
practice, however, the decoding process requires neural resources, and such ideal decoder
might be hard to implement. In the second chapter, we address the problem of decoding the
information conveyed by complex and irregular neural responses through a non-ideal neural
architecture. We consider a supervised learning framework, in which the decoder learns the
correct association between neural responses and stimuli from a limited number of examples.
As we assume the decoder to be implemented in a downstream area of the brain, we model
it as a flexible architecture, parametrized as a two-layer neural network. We first show that,
by training the hidden layer to reproduce the correct posterior distribution over stimuli, we



obtain an approximation of the ideal decoder. We successively relax this strong assumption
about the nature of the representation in the hidden layer, by training a decoder on the
basis of the error of its final output. The gap between the ideal and non-ideal decoding
performance depends on the complexity of the architecture: the number of neurons in the
hidden layer, the non-linearity of their transfer function, and the regime in which it is trained.
Simple decoders are not able to take advantage of the high (ideal) local accuracy achieved
by irregular tuning curves, due to noise in the training examples. This results in a trade-
off between the ideal accuracy of a population code and the neural resources necessary to
extract the information. A non-ideal decoding process changes, in some cases dramatically,
optimality criteria of a neural code.

In the third chapter, we consider the problem of acquiring efficient neural representations
in unsupervised frameworks, through a joint optimization of the encoder and the decoder. It
has been postulated that the brain maintains internal models of the environment, in which
sensory stimuli are sampled from a distribution conditioned on a set of latent, elementary
features of interest. This model is then ‘inverted’ during sensory perception, to infer the
most probable features which gave rise to a given observation. We consider the optimization
of an encoder and a decoder, under the assumption that the latter is set so as to maintain an
internal model of the environment. Mathematically, such internal model is defined as a prob-
abilistic generative model which maps latent features, represented by neural activity patterns
and distributed according to some prior, to distributions over stimuli. To be optimal, the
generative distribution must match the true distribution of stimuli in the environment. The
optimization process is carried out by considering an encoder which performs the reverse
operation, mapping observed stimuli to distributions over neural activity patterns: such sys-
tem has the structure of a variational autoencoder. Formally, the proposed scheme implies
that the encoder should be set so as to maximize a lower bound to the information conveyed
by neural activity patterns, similarly to what postulated by the efficient coding hypothesis,
under a constraint on neural resources. The latter can be interpreted as the metabolic cost
of stimulus-evoked variations in the neural activity with respect to the spontaneous activ-
ity. We apply study a population coding model of noisy neurons with bell-shaped tuning
curves within this framework. As a function of the resources constraint, we obtain different
solutions which are characterized by equally satisfying generative models, but different ar-
rangement of tuning curves, coding performance and statistics of spontaneous activity. We
predict an optimal arrangement of coding resources as a function of the stimulus distribu-
tion. In weakly-constrained systems, such predictions are consistent with the ones obtained
in previous studies, while we observe different behaviors in highly-constrained systems, de-
pending on the interaction between the encoding and decoding distribution and the stimulus
distribution. We combine two normative assumptions about the relation between stimuli
and neural activity patterns to derive a family of efficient neural representations, which also
yield a statistically optimal internal model of the environment.





Chapter 1

Random Compressed Coding

The results of this Chapter have been submitted to a peer-review journal and they are
available as a preprint [1].

1.1 Introduction

Neurons convey information about the physical world by modulating their responses as
a function of parameters of sensory stimuli. Classically, the mean neural response to a
stimulus—referred to as the neuron’s ‘tuning curve’—is often described as a smooth function
of a stimulus parameter with a simple monotonic or unimodal form [2, 3, 4, 5, 6, 7]. The
deviation from the mean response—the ‘neural noise’—may lead to ambiguity in the identity
or strength of the encoded stimulus, and the coding performance of a population of neurons as
a whole is dictated by the forms of the tuning curves and the joint neural noise. In the study
of population codes, the efficient coding hypothesis has served as a theoretical organizing
principle. It posits that tuning curves are arranged in such a way as to achieve the most
accurate coding possible given a constraint on the neural resources engaged [8, 9, 10]. The
latter is often interpreted as a metabolic constraint on the maximum firing rate of a single
neuron or on the mean firing rate of the whole population [11, 12, 13].

In order to tackle this constrained optimization problem in practice, tuning curves are
parametrized, and the corresponding parameters are optimized. Here, the simplicity of the
form of tuning curves matters: only a few parameters need to be optimized. A large body
of literature addresses this constrained optimization problem, in particular in the perceptual
domain. For example, many studies model tuning curves as monotonic [14, 15, 16, 17, 18],
or bell-shaped (e.g., Gaussian) [11, 19, 20, 21, 22] functions, and obtain the values of their
parameters that minimize the ‘perceptual’ error committed when information is decoded from
the activity of a population of model neurons. In the resulting optimal populations, and if
noise among neurons is independent, the coding error typically scales like 1/

√
N , where N is

the number of model neurons [23]. This behavior can be intuited based on the observation
that the ‘signal’ in the neural population grows like N while the noise grows like

√
N , yielding

a signal-to-noise ratio that increases in proportion to the square root of the population size.
(In some models of population neural coding of a one-dimensional parameter, the width of
bell-shaped tuning curves can be further optimized to yield an additional factor of 1/

√
N ;

the error then scales like 1/N [24, 25].)
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Real neurons, however, can come with much more complex tuning curves than simple
Gaussian or bell-shaped ones. Grid cells recorded in the enthorinal cortex offer a salient
example [26, 27, 28, 29]; their tuning curves in two-dimensional, open field environments,
are multimodal and periodic as a function of spatial coordinates. It was noted early on that
such richer tuning curves can give rise to greatly enhanced codes. Given the periodicity of
their tuning curves, and provided that the neural population includes several modules made
up of cells with different periodicities [30, 31], grid cells can represent spatial location with
an accuracy that scales exponentially (rather than algebraically, as above) in the number of
neurons [32, 33, 34]. Thus, the richer structure of individual tuning curves can be traded
for a strong boost in the efficiency of the population code. Recent observations showed
that place cells can also exhibit complex tuning curves in the context of motion in three
dimensions, with multiple place fields that are irregular both in location and in size [35]. In
addition, [36, 37] found that during motion in three dimensional space, individual grid cells
also exhibit irregular firing fields. A number of other examples of neurons with complex, but
unstructured, tuning curves has also been identified in other cortical regions and in different
species [38, 39, 40, 41].

Here, we ask whether highly efficient codes must rely on finely-tuned properties, such as
the tuning curves’ periodicity or the arrangement of different modules in the population, or,
alternatively, arise generically and robustly in populations of neurons with complex tuning
curves, in the absence of any fine tuning. We approach the question by studying the bench-
mark case of a random neural code: a population code which relies on irregular tuning curves
that emerge from a simple, feedforward, shallow network with random synaptic weights. The
input layer in the network is made up of a large array of ‘sensory’ neurons with classical,
bell-shaped tuning curves; these neurons project onto a small array of ‘representation’ neu-
rons with complex tuning curves. We show that, in the resulting population code, the coding
error is suppressed exponentially with the number of neurons in this population, even in the
presence of high-variance noise.

In the context of this highly efficient code, it is not sufficient to consider a ‘typical
error’: efficiency results from the compression of the stimulus space into the activity of a
layer of neurons of comparatively small size; the price to pay for this compression is the
emergence of two qualitatively distinct types of error—‘local errors’, in which the encoding
of nearby stimuli is ambiguous, and ‘global (or catastrophic) errors’, in which the identity
of the stimulus is lost altogether. The efficient coding problem then translates into a trade-
off between these two types of errors. In turn, this trade-off yields an optimal width of
the tuning curves in the ‘sensory layer’: when stimulus information is compressed into a
‘representation layer’, tuning curves in the sensory layer have to be sufficiently wide as to
prevent a prohibitive rate of global errors.

We first develop the theory for a one-dimensional input (e.g., a spatial location along a
line or an angle), then generalize it to higher-dimensional inputs. The latter case is more
subtle because the sensory layer itself can be arranged in a number of ways (while still
operating with simple, classical tuning curves). This generalization allows us to apply our
model to data from monkey motor cortex, where cells display complex tuning curves. We fit
our model to the data and discuss the merit of a complex ‘representation code’. Overall, our
approach can be viewed as an application of the efficient coding principle to a framework that
includes a downstream (‘representation’) layer of neurons as well as a peripheral (’sensory’)
layer of neurons. Our study extends earlier theoretical work on grid cells and other ‘finely



designed’ codes by proposing that efficient compression of information can occur robustly
even in the case of a random network. We reach our results by considering the geometry of
population activity in a compressed, representation layer of neurons.

1.2 Results

We organize the description of our results as follows. First, we present, in geometric terms,
the qualitative difference between a code that uses simple, bell-shaped tuning curves and
one that uses more complex forms. Second, we introduce a simple model of a shallow,
feedforward network of neurons that can interpolate between simple and complex tuning
curves depending on the values of its parameters. Third, we characterize the accuracy of the
neural code in the limiting case of maximally irregular tuning curves. Fourth, we extend the
discussion to the more general case in which an optimal code is obtained from a trade-off
between local and global errors. All the above is done for the case of a one-dimensional
input space. Fifth, we generalize our approach to the case of a multi-dimensional stimulus.
This allows us, sixth, to apply our model to recordings of motor neurons in monkey, and
to analyze the nature of population coding in that system. Seventh, we give a quantitative
description of the geometry of the population response induced by our network as a function
of its parameters, through a measure of dimensionality. Finally, we extend our model to
include an additional source of noise—‘input noise’ in the sensory layer, in addition to the
‘output noise’ present in the representation layer; input noise gives rise to correlated noise
downstream, and we analyze its impact on the population code.

1.2.1 The geometry of neural coding with simple vs. complex tuning
curves

A neural code is a mapping that associates given stimuli to a probability distribution on
neural population activity; in particular, the code maps any given stimulus to a mean pop-
ulation activity. In the case of a continuous, one-dimensional stimulus space, the latter is
mapped into a curve in the N -dimensional space of the population activity, whose shape is
dictated by the form of the tuning curves of individual neurons. As an illustration, we com-
pare the cases of three neurons with Gaussian tuning curves and three neurons with periodic
(grid-cell-like) tuning curves with three different periods (Fig. 1.1A). Simple tuning curves
generate a smooth population response curve, implying that similar stimuli are mapped to
nearby responses; by contrast, more complex tuning curves give rise to a serpentine curve.
The latter makes better use of the space of possible population responses than the former,
and hence can be expected to yield higher-resolution coding. Indeed, when the population
response is corrupted by noise of a given magnitude, it will elicit a smaller local error in the
case of complex tuning than in the case of simple tuning: by ‘stretching’ the mean response
curve over a longer trajectory within the space of possible population activities, complex
tuning affords the code with higher resolution relative to the range of the encoded variable.
However, this argument does not capture in full the influence of noise on the nature of coding
errors. In the case of a winding and twisting mean response curve, two distant stimuli are
sometimes mapped to nearby activity patterns. In the presence of noise, this geometry gives
rise to global (or catastrophic) errors. The enhanced resolution of the neural code associated
with the occurrence of global errors was also noted in the context of grid-cell coding [42, 32].
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Fig. 1.1 (previous page) (A) Top: mean responses of three-neuron populations
encoding a one-dimensional stimulus. Left: population of neurons with Gaussian
tuning curves. Right: population of neurons with periodic tuning curves. Bot-
tom: mean activity in the neural populations, parametrized by the stimulus value
colored according to the legend, as one-dimensional curves in a three-dimensional
space. Unimodal tuning curves (left) evoke a single-loop curve, which preserves the
distances between stimuli in the evoked responses. Periodic tuning curves (right)
evoke a more complex curve in which two distant stimuli may be mapped to nearby
points in the joint-activity space; the curve is longer, and fills up a larger portion
of the activity space. (B) Feedforward neural network. An array of L sensory
neurons with Gaussian tuning curves (one highlighted in purple) encodes a one-
dimensional stimulus into a L-dimensional representation. These tuning curves
determine the mean response of the population for a given stimulus, x0 (dots).
This layer projects onto a smaller layer of N representation neurons with an all-
to-all random-connectivity matrix, W, generating irregular responses. We plot the
tuning curves of three sample neurons, highlighting their response to the stimulus
x0. (C) Examples of population activity (across the stimulus line, color indicates
stimulus value) for three sample representation neurons, for increasing values of σ.
When σ → 0 (left, σ = 0.001), neurons produce uncorrelated random responses to
different stimuli, generating a spiky curve made up by broken segments. As σ grows
(σ = 0.015, σ = 0.03) irregularities are smoothed out, and nearby stimuli evoke
increasingly correlated responses. Ultimately, for large values of σ (right, σ = 0.15)
we recover a scenario similar to that with unimodal tuning curves.

Because of this trade-off, whether a simple or complex coding scheme is preferable becomes
a quantitative question, which depends upon the details of the structure of the encoding.

1.2.2 Shallow feedforward neural network as a benchmark for efficient
coding

In order to address the problem mathematically, we examine the simplest possible model
that generates complex tuning curves, namely a two-layer feedforward model. An important
aspect of the model is that it does not rely on any finely-tuned architecture or parameter
tuning: complex tuning curves emerge solely because of the variability in synaptic weights;
thus, the model can be thought of as a benchmark for the analysis of population coding
in the presence of complex tuning curves. The architecture of the model network and the
symbols associated with its various parts are illustrated in Fig. 1.1B. In the first layer, a
large population of L sensory neurons encodes a one-dimensional stimulus, x, into a high-
dimensional representation. Throughout, we assume that x takes values between zero and
one, without loss of generality. (If the input covered an arbitrary range, say r, then the coding
error would be expressed in proportion to r. In other words, one cannot talk independently
of the range of the input and of the resolution of the code. We set the range to unity in
order to avoid any ambiguity.) Sensory neurons come with classical tuning curves: the mean
activity of neuron j in response to stimulus x is given by a Gaussian with center cj (the



preferred stimulus of that neurons) and width σ:

uj (x) = A exp
(
−(x− cj)2

2σ2

)
. (1.1)

Following a long line of models, we assume that the preferred stimuli in the population are
evenly spaced, so that cj = j/L. As a result, the response vector for a stimulus x0, u (x0),
can be represented as a Gaussian ‘bump’ of activity centered at x0.

Complex tuning curves appear in the second layer containing N representation neu-
rons; we shall be interested in instances with N ≪ L, in which efficient coding results in
compression of the stimulus information from a high-dimensional to a low-dimensional rep-
resentation. Each representation neuron receives random synapses from each of the sensory
neurons; specifically, the elements of the all-to-all synaptic matrix, W, are i.i.d. Gaussian
random weights with vanishing mean and variance equal to 1/L (Wij ∼ N (0, 1/L)). In the
simple, linear case that we consider, the mean activity of neuron i in the second layer is thus
given by

vi (x) =
L∑
j=1

Wijuj (x) . (1.2)

Since the weights Wij correspond to a given realization of a random process, they generate
tuning curves, vi (x), with irregular profiles. The parameter σ is important in that it controls
the smoothness of the tuning curves in the second layer: it defines the width of uj , which
in turn dictates the correlation between the values of the tuning curve vi for two different
stimuli. By the same token, the amplitude of the variations of vi with x depends upon the
value of σ. For a legitimate comparison of population codes in different networks, we set
this amplitude to a constant on average,〈∫ 1

0
dx

[
vi (x)−

∫ 1

0
dx′vi

(
x′)]2〉

W

= R, (1.3)

by calibrating the value of the prefactor in Eq. (1.1), A. Because of the averaging over
the synaptic weights, indicated by the brackets ⟨·⟩W , A does not depend upon a specific
realization of the synaptic weights. Equation (1.3) corresponds to the usual constraint of
‘resource limitation’ in efficient coding models; it amounts to setting a maximum to the
variance of the output over the stimulus space, as is commonly assumed in analyses of
efficient coding in sensory systems [9, 43, 44, 45].

Returning to our geometric picture, we observe that, by changing the value of σ, we can
interpolate between smooth and irregular tuning curves in the second layer (Fig. 1.1C). In
the limiting case of large σ, representation neurons come with smooth tuning curves akin
to classical ones; in the other limiting case of small σ, the mean population response curve
becomes infinitely tangled. Thus, as the value of σ is decreased, the mean response curve
‘stretches out’ and necessarily twists and turns, in such a way as to fit within the allowed
space of population responses defined by Eq. (1.3). A longer population response curve fills
the space of population responses more efficiently and represents the stimulus at a higher
resolution, but its twists and turns may result in greater susceptibility to noise.

To complete the definition of the model, we specify the nature of the noise in the neural
response. We assume that the activity of neuron i in the second layer is affected by noise,



which we denote by zi, such that its response at each trial (in which stimulus x is presented)
is given by ri = vi (x) + zi. For the sake of simplicity, we use Gaussian noise with vanishing
mean and variance equal to η2. In most of our analyses, we suppose that responses in the
first layer are noiseless and that the noise in the second layer is uncorrelated among neurons;
in the last subsection, however, we relax these assumptions, and discuss the implications of
noisy sensory neurons and correlated noise among representation neurons. (Our motivation
for considering noiseless sensory neurons is that we are primarily interested in analyzing the
compression of the representation of information between the first and the second layer of
neurons. By contrast, noise in sensory neurons affects the fidelity of encoding in the first
layer already.)

We quantify the performance of the code in the second layer through the mean squared
error (MSE) in the stimulus estimate as obtained from an ideal decoder, ‘ideal’ in the sense
that it minimizes the MSE. (Throughout, in heuristic arguments and analytical calculations,
we focus on the MSE. In a number figures, however, we plot its square root, the RMSE, so as
to allow for a direct comparison with the stimulus range. The figure captions specify which
of the two quantities is illustrated.) The use of an ideal decoder is an abstract device that
allows us to focus on the uncertainty inherent to encoding (rather than to imperfections in
decoding); it is nevertheless possible to obtain a close approximation to an ideal decoder in
a simple neural network with biologically plausible operations (see Methods).

1.2.3 Compressed coding in the limiting case of narrow sensory tuning

It is instructive to study the properties of coding in our model in the limiting case of neurons
with narrow tuning curves in the sensory layer (σ → 0), because this limit yields the most
irregular tuning curves in the representation layer of our network (Fig. 1.1C). As we shall
see, this limiting case also corresponds to that of a completely uncorrelated, random code,
for which the mathematical analysis simplifies. When the value of σ is much smaller than
1/L, neurons in the sensory layers respond only if the stimulus coincides with the preferred
stimulus of one of the neurons, and only that neuron is activated by the stimulus presentation;
stimulus values that lie in between the preferred stimuli of successive sensory neurons in the
first layer do not elicit any activity in the system. We can thus consider that any stimulus
of interest is effectively chosen within a discrete set of L stimuli with values xj = j/L, with
j = 1, . . . , L.

Each of these stimuli elicits a mean response

vi(xj) = ÃWij ∼ N (0, R) (1.4)

in neuron i of the second layer. Here, the value of Ã is chosen so as to set the amplitude of
the variations of vi to be equal to the constant R (analogously to Eq. (1.3) but for the case
of discrete stimuli). Geometrically, Eq. (1.4) represents a mapping from L stimulus values to
a set of uncorrelated, random locations in the space of the population activity (as illustrated
in Fig. 1.2A for a two-neuron population). In any given trial, however, the responses in
the representation layer are corrupted by noise (Fig. 1.2A). The ideal decoder interprets a
single-trial response as being elicited by the stimulus associated to the nearest possible mean
response (Fig. 1.2A). The outcome of this procedure can be twofold: either the correct or
an incorrect stimulus is decoded; in the latter case, because the possible mean responses are
arranged randomly in the space of population activity (Fig. 1.2A and Eq. (1.4)), errors
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Fig. 1.2 Probability of error for narrow tuning curves in the sensory
layer. (A) Joint mean responses of two neurons to L = 50 stimuli, colored accord-
ing to the legend in Fig. 1.1C. Noise is represented as a cloud of possible responses
(in grey) around the mean. An error occurs when the noisy response, r, falls closer
to a mean response corresponding to a stimulus, x̂, different from the true one, x0.
Since mean responses are uncorrelated, x̂ may be distant from x0. (B) Theoretical
(solid curves, Eq. (1.5)) and numerical (dots) results for the probability of error as a
function of the population size, for different values of L (η2 = 0.5). The probability
of error scales exponentially with the number of neurons, N , with a multiplicative
constant involving the number of stimuli, L. (C) Theoretical (solid curves) and
numerical (dots) results for the probability of error as a function of the population
size for different values of η2 (L = 500).

of all magnitudes are equiprobable. In other words, a model with narrow sensory tuning
curves results in a second-layer code that does not preserve distances among inputs, and,
consequently, the decoding error is either vanishing or, typically, on the order of the input
range (set to unity here). The mean error is then simply proportional to the probability with
which the ideal decoder makes a mistake, with a constant of proportionality of the order of
the stimulus range.

In Methods, we provide a derivation of this quantity. In the case of low-error coding,
which interests us, we obtain the dependence of the probability of a decoding error as a
function of the various model parameters, as

Perror ≈
L√
2πN

exp
(
−log

(
1 + R

2η2

)
N

2

)
. (1.5)

The main dependence to note, here, is the exponentially strong suppression as a function of
the number of neurons in the second layer (Fig. 1.2B). By contrast, the probability of error
scales merely linearly with the size of the stimulus space, L, as is expected in the low-error
limit. This result implies that it is possible to compress information highly efficiently in
a comparatively small representation layer (N ≪ L) even though the code is completely
random. The price to pay for the use of randomness is that any error is likely ‘catastrophic’
(on the order of the stimulus range), but these large errors happen prohibitively rarely. It
is also worth noting that the rate of exponential suppression depends on the variance of the
noise, η2, or, more precisely, on the single-neuron signal-to-noise ratio, R/η2 (where R is the
variance of the signal, Eq. (1.3)). In numerical simulations, we set R = 1 and we vary η2 to
explore different noise regimes. Interestingly, even when this signal-to-noise ratio becomes



A

C

B

D

=0.01

=0.03

=0.06

=0.09

E                                                     F

Fig. 1.3 Trade-off between local and global errors. continue to next page

small, i.e., when the noise in the activity of individual neurons is comparable to modulations
of their mean responses, the exponential suppression as a function of N of the probability of
error remains valid, with a rate approximately equal to R/4η2 .

1.2.4 Compressed coding with broad tuning curves: trade-off between
local and global errors

As we saw in the previous section, in the case of infinitely narrow tuning curves the coding
of a stimulus in a given trial is either perfect or indeterminate; that is, any error is typically
a global error, on the order of the entire stimulus range. In the more general case of sensory



Fig. 1.3 (previous page) (A) Different types of error in an irregular curve of
mean population activity (joint response of two neurons, colored according to the
legend in Fig. 1.1C). Here, rI and rII are two possible noisy responses to the same
stimulus, extracted from the Gaussian cloud surrounding the mean response, v(x0).
An ideal decoder outputs the stimulus corresponding to the closest point on the
curve. In one case, rI results in a local error, by selecting a point on the curve that
represents a nearby stimulus, x̂I . In the other case, rII is closer to a point on the
curve which represents a stimulus distant from the true one, x̂II , causing a global
error. (B) Normalized histogram of absolute error magnitudes, ∆x = |x̂−x|, made
by an ideal decoder, for different values of σ (N = 25). For better visualization, we
consider a stimulus with periodic boundary conditions. The contribution of the two
types of error varies with σ. For small σ, coding is precise locally (fast drop of the
purple curve for small errors), but many global errors occur (tail of the distribution
is high). For large σ (green curves) local accuracy is poorer but global errors are
suppressed. (C) Theoretical prediction for the two contributions to the MSE as a
function of σ (N = 30). The magnitude of local errors increases with larger σ (solid
curve), while the number of global errors decreases (dashed curve). (D) RMSE as
a function of σ: comparison between numerical simulations (dots) and theoretical
prediction of Eq. (1.6) (solid curve). (E) RMSE, as a function of σ for different
population sizes N (increasing from violet to yellow). The smallest RMSE occurs
at an optimal value of σ, σ∗(N) , which decreases with increasing N . (F) Same
data, but the error is displayed as a function of N , for a fixed value of σ. The
MSE decreases exponentially rapidly until global errors are suppressed, then the
local errors are linearly reduced. A smaller value of σ implies a larger value of N
at which the crossover occurs, as well as a smaller MSE at this crossover value.

neurons with arbitrary tuning width, the picture is more complicated: in addition to global
errors which result from the twisting and turning of the mean response curve, the population
code is also susceptible to local errors (Fig. 1.3A). This is because broad tuning curves
in the sensory layer partly preserve distances: locally, nearby stimuli are associated with
nearby points on the mean response curve; as a result, the coding of any given stimulus is
susceptible to local errors due to the response noise. As the tuning width in the sensory layer,
σ, decreases, two changes occur in the mean response curve: it becomes longer (it ‘stretches
out’) and it becomes more windy (Fig. 1.1C). Stretching increases the local resolution of the
code (because it allows for two nearby stimuli to be mapped to two more distant points in
the space of population activity), while windiness increases the probability of global errors.
This trade-off is apparent when we plot the histogram of error magnitudes as a function of
σ: for larger values of σ, global errors are less frequent, but local errors are boosted (Fig.
1.3B). Also noticeable, here, is that the large-error tails of the histograms are flat, consistent
with the observation that global errors of all sizes are equiprobable. (Strictly speaking, this
happens if the stimulus has periodic boundary conditions, such that, picking two random
points, the probability that they are at a given distance does not depend on the location of
one or the other point.)

For a more quantitative understanding, we carried out an approximate analytical calcu-



lation, in which (i) we approximated the mean response curve by a linear function locally
and (ii) we considered that the distance between two segments of the curve representing the
mean responses to two stimuli distant by more than σ is random and independent of the
stimulus values. Using these two assumptions, we obtained the MSE as a sum of two terms
(see Methods for mathematical details) corresponding to local and global errors, as

ε2 =
〈
E2
〉
W
≈ ε2

l + ε2
g ≈

2σ2η2

RN
+

ε̄2
g

σ
√

2πN
exp

(
− log

(
1 + R

2η2

)
N

2

)
, (1.6)

where ε̄2
g is a term of O (1) that depends upon the choice of stimulus boundary conditions

(see Methods). This expression quantifies the MSE for a ‘typical’ network, obtained by
averaging over possible choices of synaptic weights, as indicated by the brackets ⟨·⟩W . The
first term on the right-hand-side of Eq. (1.6) represents the contribution of local errors,
while the second term corresponds to global errors (Fig. 1.3C). Their form can be intuited
as follows. The magnitude of local errors is proportional to η2 and inversely proportional to
N , as in classical models of population coding with neurons with bell-shaped tuning curves
(see, e.g., [11]). Furthermore, decreasing σ stretches out the mean response curve, which
increases the local resolution of the code and explains the factor σ2 in Eq. (1.6). (The form
of this first term can also be understood as the inverse of the Fisher information [23, 46],
which bounds the variance of an unbiased stimulus estimator.) The second term on the
right-hand-side of Eq. (1.6) is obtained as an extension of Eq. (1.5): instead of considering
the probability that two mean response points are placed nearby, we consider the probability
that two segments of the mean response curve with size σ each fall nearby. There are 1/σ
such segments (since we have set the stimulus range to unity), and this explains why the
factor L in Eq. (1.5) is replaced by a factor 1/σ in Eq. (1.6). Importantly, the two terms in
Eq. (1.6) are modulated differently by the two parameters N and σ. Depending upon their
values, either local or global errors dominate (Fig. 1.3C).

We tested the validity of Eq. (1.6): it agrees closely with results from numerical simula-
tions, in which we computed the MSE using a Monte Carlo method and a network implemen-
tation of the ideal decoder (Fig. 1.3D, see Methods for details). The non-trivial dependence
is illustrated by the observation that the MSE may decrease or increase as a function of
σ, around a given value of σ, depending upon the value of N (Fig. 1.3E). Furthermore,
the strong (exponential) reduction in MSE with increasing N occurs only up to a crossover
value that depends on σ (Fig. 1.3F); beyond this value, global errors disappear, and the
error suppression is shallower (hyperbolic in N , due to improved local resolution). For small
values of σ, the crossover values of N are larger and occur at lower values of the MSE.

As is apparent from Figs. 1.3D and E, for any value of N there exists a specific value
of σ = σ∗ (N) that balances the two contributions to the MSE such as to minimize it. This
optimal width can be thought as the one that stretches out the mean response curve as much
as possible to increase local accuracy but that stops short of inducing too many catastrophic
errors. The MSE is asymmetric about the optimal width, σ∗: smaller values of σ cause a
rapid increase of the error due to an increased probability of global errors, while larger values
of σ mainly harm the code’s local accuracy, resulting in a milder effect. From Eq. (1.6), we
obtain the dependence of the optimal width upon the population size, as

σ∗ ≈

 ε̄2
g

4η2

√
N

2π

1/3

exp
(
− log

(
1 + R

2η2

)
N

6

)
, (1.7)
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Fig. 1.4 Scaling of the optimal width and the optimal MSE as a function
of population size and signal-to-noise ratio. (A) The optimal σ∗ decreases
exponentially rapidly with the number of representation neurons, saturating the
lower bound imposed by the finite number of neurons of the first layer (correspond-
ing to the spacing of the preferred positions, 1/L). Simulations (dots) show good
agreement with analytical results (solid curve). (B) The optimal RMSE is sup-
pressed exponentially rapidly with N . Simulations (dots) agree with analytical
results (solid curve). (C,D) Optimal width (C) and RMSE (D) as a function of
the parameters N and η2. The color coding is in log scale, in order to highlight the
exponential scaling.

and the optimal MSE as a function of N, as

ε2∗ = ⟨E2(σ∗)⟩W ≈
(

ηε̄2
g√

2πN

)2/3

exp
(
− log

(
1 + R

2η2

)
N

3

)
. (1.8)

Both these analytical results agree closely with numerical simulations (Figs. 1.4A and B).
Equation (1.8) and Fig. 1.4B show that the optimal MSE is suppressed exponentially with
the number of representation neurons in the second layer. Thus, highly efficient compression



of information and exponentially strong coding also occurs when tuning curves in the sensory
layer are not infinitely narrow: furthermore, a degree of smoothness in the tuning of the
sensory neurons is advantageous. With the optimal choice of the sensory tuning width, the
rate of scaling with N of the argument within the exponential in Eq. (1.8) depends upon
the noise variance, η2; in Figs. 1.4C and D, we illustrate the dependence of σ∗ and ε∗ upon
N and η2.

1.2.5 Compressed coding of multi-dimensional stimuli

Real-world stimuli are multi-dimensional. Our model can be extended to the case of stim-
uli of dimensions higher than one, but particular attention should be given to the nature of
encoding in the first layer—because sensory neurons can be sensitive to one or several dimen-
sions of the stimulus. In one limiting case, a sensory neuron is sensitive to all dimensions of
the stimulus; for example, place cells respond as a function of the two- or three-dimensional
spatial location. Visual cells constitute another example of multi-dimensional sensitivity, as
they respond to several features of the visual world; for example, retinal direction-selective
cells are sensitive to the direction of motion, but also to speed and contrast. In the other
limiting case, sensory neurons are tuned to a single stimulus dimension, and insensitive to
others. We will refer to these two coding schemes as pure and conjunctive, following Ref.
[47] where they are examined in the context of head-direction neurons in bats. The authors
conclude that the relative advantage of a pure coding scheme—with neurons that encode
a single head-direction angle—with respect to a conjunctive coding scheme—with neurons
that encode two head-direction angles—depends on specific contingencies, such as the popu-
lation size or the decoding time window. Indeed, in a conjunctive coding scheme individual
neurons carry more information, but the population as a whole needs to include sufficiently
many neurons to cover the (multi-dimensional) stimulus space—a constraint which becomes
more restrictive as the number of dimensions increases.

We generalized our model to include the possibility of K-dimensional stimuli. For the
sake of simplicity, we consider here only the two limiting cases of pure and conjunctive coding
in the sensory layer of our model (i.e., we do not discuss intermediate cases, in which a given
sensory neuron is sensitive to several but not all stimulus dimensions, see Methods). In
the model, furthermore, neurons in the representation layer receive random inputs from all
sensory neurons; as such, the representation layer always embodies a conjunctive coding
scheme.

By extending the geometric picture (illustrated in Fig. 1.1 for the case of a one-
dimensional stimulus), we can analyze differences in coding properties between pure and
conjunctive coding schemes; in Fig. 1.5A, we illustrate the case of a two-dimensional stim-
ulus. In this case, the mean response of representation neurons corresponds to a mapping
from a two-dimensional stimulus space to a random ‘sheet’ (a two-dimensional surface) in
the N -dimensional space of the population activity. In the pure case, the activity of a given
sensory neuron is maximally modulated when the stimulus varies along a particular dimen-
sion, the one to which the neuron is sensitive. Variations of the stimulus along orthogonal
directions have no effect on the mean neural activity. Neurons in the representation layer
compute a linear sum of these responses, and therefore their activity can be decomposed
as a sum of one-dimensional functions. This implies that the ‘response sheet’ is maximally
curved along each of the stimulus dimensions; geometrically, this results in a ‘folded’ struc-
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Fig. 1.5 Compressed coding with multi-dimensional stimuli. We illustrate
the case of a three-dimensional stimulus, with L = 3375 , η2 = 1, R = 1. continue
to next page



Fig. 1.5 (previous page) (A) Mapping of a multi-dimensional stimulus space into
neural population activity as obtained from a two-layer coding scheme. Top: two-
dimensional stimulus space; colors serve as stimulus legend for subsequent plots.
Middle: mean activity (z-axis) of a sample sensory neuron, for two cases, as a func-
tion of the two stimulus coordinates (x- and y- axis). In the pure case (left), a
single sensory neuron ‘folds’ the two-dimensional sheet across a direction, specified
by its preferred position and dimension (here, x2). In the conjunctive case (right),
a sensory neuron creates a ‘bump’ in the sheet. Bottom: joint activity of three rep-
resentation neurons as a function of the stimulus. Each of these neurons randomly
sum the output of sensory neurons, producing a randomly ‘folded’ sheet in the pure
case (left) and a ‘crumpled’ sheet in the conjunctive case (right). (B) RMSE as
a function of σ for different population sizes N (increasing from violet to yellow),
when the first layer consists of pure (left) or conjunctive (right) cells. The optimal
σ, which decreases with N , optimizes the balance between local and global errors,
similarly to the one-dimensional case. In the conjunctive case, the rapid increase
of the RMSE below σ = 0.05 is due to the sensory neurons not tiling the stimulus
space, and it is independent of N . (C) Ratio of the RMSE in the two cases, εc/εp,
as a function of σ and N . The yellow (violet) region indicates an outperformance of
the pure (conjunctive) population. To aid visualization, the yellow region indicates
all the values greater than 2. This regime of small σ is characterized by a better
coverage of the pure population, independently of N . Values greater than one occur
also when N is small, due to the prefactor of the global error being lower in the
pure case. As soon as N is sufficiently large and σ is sufficiently large to allow
for coverage of the stimulus space, the conjunctive case outperforms the pure case.
This effect is stronger in the small-σ region, due to the slower scaling of the global
errors in the pure case. When σ is large, the ratio saturates at the value given by
the ratio of the local errors. (D,E) Optimal tuning width (D) and relative RMSE
(E), for pure (blue, red) and conjunctive (green, violet) cases. The global error
decreases more slowly in the pure case. For N ≳ 75 the optimal width in the con-
junctive case saturates, due to loss of stimulus coverage, while the pure population
does not suffer from this limitation. Thus, the RMSE in the conjunctive case stops
decreasing exponentially and starts decreasing only linearly with N .

ture, with creases along the directions of mild sensitivity. By contrast, in the conjunctive
case the activity of a sensory neuron is modulated by variations of the stimulus along any
direction. As a result, the ‘response sheet’ that represents the joint mean activity of neurons
in the second layer comes with (random) curvature equally along all stimulus dimensions:
rather than ‘folded’, it behaves like a ‘crumpled’ sheet (Fig. 1.5A).

This geometric picture offers an intuitive explanation of the behavior of the MSE in
the two coding schemes. (For the corresponding mathematical treatment, see Methods.)
The local error is determined by how much the ‘response sheet’ is stretched out; in turn,
the more the response sheet is stretched out, the more it has to fold (or crumple) to fit
in the allowed range of neural activity. Folding allows for a more modest stretching of
the sheet than crumpling, and as a result the pure scheme incurs a larger local error than



the conjunctive scheme (see Eqs. (1.69) and (1.74)). The behavior of the global error is
also different in the two coding schemes; there are two mechanisms at play, here. First,
in the pure scheme, for most realizations of the random tuning curves, global errors occur
primarily in a single stimulus dimension (see Methods for mathematical details); this is also
apparent in Fig. 1.5A: the ‘folded’ structure of the response sheet induces global errors in
a single stimulus dimension. By contrast, in the conjunctive scheme global errors occur in
an arbitrary number of stimulus dimensions. Second, the total variance of the tuning curve
across the stimulus space is fixed (and, in particular, set to the same value for the pure and
conjunctive schemes), but the signal-to-noise ratio which governs the rate of error suppression
with N scales differently as a function of K. Both mechanisms, in a regime in which N is
large enough to suppress the contribution of global errors, enhance the probability of global
error in the pure scheme as compared to the conjunctive scheme (compare Eq. (1.79) and
Eq. (1.81) in Methods). Intuitively, this is because a folded sheet has a larger surface area
of contact with itself than a crumpled sheet. Thus, for sufficiently large values of N , the
conjunctive scheme is more favorable than the pure one. The corresponding crossover value
of N , however, depends on K, and large values of K impose a stringent constraint in the
conjunctive case.

We illustrate these conclusions with numerical results in the case of a three-dimensional
stimulus (K = 3), relevant to the data analysis we present in the next section. In Fig. 1.5B,
we illustrate the behavior of the RMSE as a function of N and σ for the pure and conjunctive
coding schemes. In order to quantify the relative advantage of one scheme with respect to
the other, we plot the ratio of the RMSE in the two schemes as a function of N and σ (Fig.
1.5C). The resulting, relatively intricate pattern, can be understood by considering different
regimes. If the population size is small, the pure scheme slightly outperforms the conjunctive
one (not because of a different scaling with N , but instead because of a difference in the
prefactors that affect the probability of error in the two cases); in this regime, global errors
dominate and coding is poor overall. At larger values of N , the contribution of local errors
becomes non-negligible. If local errors dominate relative to global errors (which occurs for
large N and sufficiently large σ), then the conjunctive scheme outperforms the pure one,
and the ratio of the RMSEs approaches the ratio between local errors only (Eq. (1.75) for
K = 3, implies εl,c/ε1,p ≈ 1/

√
3). In the non-trivial regime in which local and global errors

are balanced (for large N and intermediate values of σ), the advantage of the conjunctive
scheme is further boosted. As explained above, this is due to a stronger suppression of
global errors as a function of N in the conjunctive case. Finally, if σ becomes smaller than a
crossover value that depends on the number of sensory neurons, the latter no longer cover the
stimulus space sufficiently densely, and the conjunctive scheme breaks down; in this regime,
thus, the pure scheme is favored.

As illustrated in Fig. 1.5B, similar to the one-dimensional case there exists in each
of the two coding schemes an optimal value of the tuning curve width, σ, which achieves
a balance between local and global errors, and it decreases with N . This dependence is
somewhat different in the two coding schemes (Fig. 1.5D), and contributes to the form of the
suppression of the RMSE in the two schemes (Fig. 1.5E). Both quantities, the optimal tuning
curve width and the RMSE, decrease more rapidly as a function of N in the conjunctive
scheme. This results from the fact that global errors are suppressed more strongly with N
in the conjunctive case (as explained above), and therefore a smaller σ, yielding a lower
local error, is preferable. At the same time, the requirement that sensory neurons cover the
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Fig. 1.6 Irregular vs. linear tuning. continue to next page

stimulus space yields a more stringent constraint on σ in the conjunctive scheme, yielding a
bound on the extent of the regime of exponential error suppression.

1.2.6 Compressed coding in monkey motor cortex

The activity of neurons in the primary motor cortex (M1) of monkey is correlated with the
location and movement of the limbs. Here, we consider spatial tuning in the context of a
‘static task’ [48]. In this task, the monkey is trained to keep its hand motionless during
a given delay after having placed it at one of a set of preselected positions on a three-
dimensional grid labeled by the vector x = (x1, x2, x3). Tuning curves of hand-position
selectivity can be extracted from recordings in M1 [48, 49], and it has been customary to
model these as a linear projection of the hand position onto a so-called ‘preferred vector’ or
‘positional gradient’, p, which thus points in the direction of maximal sensitivity [49]. The
tuning curve of neuron i is then written as

vi(x) = ai + p1,ix1 + p2,ix2 + p3,ix3 = ai + pi · x. (1.9)

A recent study [40] noted, however, that a model of tuning curves that includes a form of
irregularity yields an appreciably superior fit to the simple linear behavior of Eq. (1.9). This
more elaborate model bears similarity with our model of irregular tuning curves, and this
naturally led us to ask about potential coding advantages that a complex coding scheme



Fig. 1.6 (previous page) (A) Mean fractional improvement for irregular tuning as
compared to linear tuning, as a function of population size and tuning-curve width.
The black line indicates the critical values of N and σ at which the two coding
schemes perform equally well. In the region below (violet), global errors penalize
the irregular case, making a smoother code more efficient. With increasing N,
global errors become rarer while irregularities improve the local accuracy of the
code (yellow region). This advantage increases at smaller values of σ, but so does
the value of N required for the irregular case to be advantageous. (B) Mean
fractional improvement in the irregular case, generated with the data-fitted model,
compared to the linear one, as a function of N and noise variance, η2. At small
population sizes, irregular tuning curves produce global errors, and smoother tuning
curves perform better (violet region, ∆ε < 0 ). By increasing N , global errors are
suppressed and irregularities improve the local accuracy (yellow region, ∆ϵ > 0).
The black line marks the transition values. (C,D) Mean fractional improvement
(C) and RMSE (D) in the irregular case as a function of population size, for the
noise model extracted from data. A noise variance, η2, is assigned to each neuron
according to the distribution extracted from the data, showed in the inset of panel
(C). For small N , linear tuning yields a better coding performance. At N ∼ 40, the
higher local accuracy compensates for global errors, and the irregular code starts to
perform better, although the error is still substantial. The improvement saturates
to a finite value of ∼ 0.4 at a value of Nlocal ∼ 100, when global errors are fully
suppressed; the scaling of the error as a function of the population size is no longer
exponential, but only hyperbolic.

may afford M1.
To be more specific, one can interpret the first layer in our network featured with neurons

with three-dimensional Gaussian tuning curves, as representing neurons in the parietal reach
area (or premotor area), which are known to display spatially localized tuning properties
[50]. This population of neurons projects onto a smaller population of M1 neurons which
display spatially extended and irregular tuning profiles. In fitting our model to recordings
from M1 neurons [40], we considered the arrangement of stimuli used in the experiment,
namely 27 spatial locations arranged in a 3 × 3 × 3 grid fitting in a 40 cm-high cube. We
then followed a previous fitting method [40, 51]: given the diversity of the irregular tuning
curves in the population we did not aim at fitting individual tuning curves; instead, we
allowed for randomly distributed synaptic weights (as in our original model) and we fitted
a single parameter, the width of the tuning curves in the first layer, σ. The fit was aimed
at reproducing specific summary statistic of the data referred to as complexity measure (a
discrete version of the Lipschitz derivative that quantifies the degree of smoothness of a curve,
see Methods and [40]). The complexity measure varies from neuron to neuron, and we chose
σ so as to minimize the Kolmogorov-Smirnov distance (see Eq. (1.103) in Methods) between
the distribution implied by our model and the one extracted from the data. While our model
is somewhat simpler than a model of irregular M1 tuning curves employed previously [40],
it yields comparable fit.

With a neural response model in hand, we can evaluate the coding performance; to do so,



we consider a finer, 21×21×21 grid of spatial locations as our test stimuli. We quantify the
merit of a compressed code making use of irregular tuning curves by computing the MSE,
ε2

irr, and comparing the latter with the corresponding quantity in a coding scheme with the
smooth tuning curves defined in Eq. (1.9), ε2

lin. We plot our results in terms of the ‘mean
fractional improvement’, ∆ε ≡ (εlin − εirr) /εlin . ∆ε is positive when irregularities favor
coding, and is at most equal to unity (in the extreme case in which irregularities allow for
error-free coding).

We explore the performance of the two coding schemes for different values of the param-
eters N and σ, first in an ideal case in which all neurons have the same noise variance (Fig.
1.6A). We note the existence of a crossover value of N , N∗, defined as the population size
at which ∆ε = 0 and irregular and linear tuning curves yield the same coding performances.
When N < N∗, small values of σ induce prohibitively frequent global errors in the com-
pressed (irregular) coding scheme, and linear (smooth) tuning curves are more efficient. For
N > N∗, however, irregularities are always advantageous, and the more so the smaller the
value of σ. Because global errors are suppressed exponentially with N , N∗ typically takes a
moderate value which depends on the magnitude of the noise; the larger the noise, the larger
N∗. Figure 1.6B illustrates this noise-dependent behavior of the crossover population size,
for the best-fit value of σ (≈ 23).

Next, for a more realistic modeling of M1 neurons, we analyzed the performance of a
model in which each neuron’s noise variance is extracted from data (Figs. 1.6C and D).
For each recorded neuron, we computed the variance of the signal as the variance, across
different stimuli, of the mean firing rate (left hand side of Eq. (1.3)). Then, we estimated
the variance of the noise by averaging the trial-to-trial variability of responses to the same
stimulus. These two quantities allowed us to define a signal-to-noise ratio for each neuron of
the population (see Eq. (1.104) in Methods). As in simulations we set the variance of the
signal for each neuron to a constant value, we modeled the heterogeneity in the signal-to-
noise ratio as a heterogeneous noise variance; the resulting distribution is skewed, with an
appreciable fraction of neurons exhibiting low signal-to-noise ratios (Fig. 1.6C, inset). For
each value of N , we sampled eight different pools of N neurons from the population, and we
averaged the corresponding mean fractional improvement, ∆ε. We found, again, that the
relative merit of compressed coding (with irregular tuning curves) grows with the population
size; interestingly, when compressed coding becomes advantageous (∆ε > 0 in Fig. 1.6C),
the error magnitude is still appreciable (Fig. 1.6D). This means that even though local
and global errors are balanced, both contributions are substantial. ∆ε continues to grow
with N until global errors are suppressed; beyond this second crossover value, Nlocal, ∆ε
saturates because in both coding schemes (with irregular and linear tuning curves) local
errors dominate. Correspondingly, the MSE scales differently for N above or below Nlocal.
When N < Nlocal the MSE decreases exponentially with N , due to the suppression of global
errors, while when N > Nlocal, the suppression of the MSE is hyperbolic in N , reflecting the
behavior of local errors only (Fig. 1.6D). This second crossover occurs at Nlocal ≈ 100, a
figure comparable to the number of neurons that control individual muscles in this specific
task, as estimated from decoding EMG signals corresponding to individual muscles from
subsets of M1 neurons [40].



1.2.7 Dimensionality of a compressed neural code

We discussed a geometrical interpretation of a neural population code in terms of a map from
a set of stimuli to a set of points in the space of (mean) population activity. With smooth
tuning curves, a continuous K-dimensional stimulus is represented as a K-dimensional hy-
persurface embedded in the N -dimensional space of neural activity. This hypersurface is
often referred to as a ‘neural response manifold’ [52, 53] (which implicitly assumes a local
homeomorphism to a Euclidean space). In the previous sections, we analyzed the way in
which the geometrical properties of the response manifold affect the coding performance. In
this section, we relate the picture put forth by our model to recent work that quantified the
dimensionality of neural activity as a way to characterize its nature and to infer strategies
used by the brain to represent (sensory) information [54, 55].

While a K-dimensional stimulus space may correspond to a K-dimensional neural re-
sponse manifold, the latter’s complicated geometry—as in our model—may make its iden-
tification difficult. In practice, one is faced with a data set, namely a noisy sample from a
population of tuning curves, and from it one would like to make statements on the geometry
of the population activity. Fitting a low-dimensional manifold to a neural population data
set is not a trivial task, and is the focus of a large number of studies on dimensional reduction
[56]. A simple approach is to consider the eigenvalue spectrum of the covariance matrix of
the neural responses across the stimulus range or, equivalently, the variance carried by the
the different modes in a principal component analysis (PCA). If we apply this approach to
the population response in our model, for different values of σ, we find a spectrum that ex-
hibits a band-pass structure, which plateaus up to a cut-off value before a sharp suppression;
the cut-off value is larger for smaller values of σ (Fig. 1.7A). From this analysis one would
conclude that the population activity occupies a low-dimensional subspace embedded in the
N -dimensional space of neural activity, with dimensionality controlled by σ. As the value of
σ falls to zero, the population responses fill an increasingly large fraction of the N available
dimensions, until they fill the space entirely for σ → 0.

A quantification of the ‘intrinsic dimensionality’ of the population activity based on this
PCA analysis is offered by the participation ration, defined as d =

(∑N
i=1 λi

)2
/
∑N
i=1 λ

2
i ,

where λi denotes the ith eigenevalue of the covariance matrix of the neural responses across
the stimulus range [57]. Loosely speaking, the participation ratio measures the number of
eigenvalues (principal components) which are much larger than the others; for example, if
M eigenvalues are of comparable size and much larger than any others, then d ≈M .

In our model, while d is close to unity for large values of σ, it becomes larger for smaller
values of σ and approaches N when σ → 0 (Fig. 1.7B). It is interesting to examine the
behavior of this quantity in the vicinity of the optimal value of σ. In Fig. 1.7C, we display
the fractional dimensionality (i.e., the participation ratio divided by the number of neurons,
d/N) corresponding to the population activity at the optimal value of σ as a function of
the population size, for a fixed level of noise. As expected, d increases with N : larger
populations allow for more irregular tuning curves which benefit the local accuracy without
generating prohibitive global errors. Quantitatively, the value of d hovers around N/2. A
possible interpretation of this result is that it corresponds to the largest value beyond which
a random manifold embedded in N dimensions comes close to intersect itself; thus, this value
of d ensures that global errors do not proliferate. While a naive interpretation of the value of
the participation ratio would suggest that the neural population encodes an N/2-dimensional
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Fig. 1.7 Dimensionality of the neural code. (A) Spectrum of the eigenvalues
of the covariance matrix of neural responses in a population with N = 100 rep-
resentation neurons, for different tuning widths (decreasing from violet to yellow).
(B) Intrinsic dimensionality, defined as the participation ratio of the eigenvalues
of the covariance matrix, in a population with N = 100 representation neurons, as
a function of σ. Insets exhibit a typical response manifold in a three-dimensional
space. (C) Ratio of the intrinsic dimensionality at the optimal value of σ and pop-
ulation size, as a function of population size, for the networks illustrated in Fig.
1.3,1.4.

stimulus, in the context of our model it results from the efficient coding of a one-dimensional
stimulus. This points to the difficulty of using a simple criterion to define the dimensionality
of a manifold when the latter is highly non-linear.

1.2.8 Compressed coding with noisy sensory neurons

Until now, we have considered the presence of response noise only in second-layer neurons. In
this case, as long as sensory neurons are tiling the stimulus space (i.e., unless there are regions
in stimulus space in which sensory neurons are unresponsive), stimuli are encoded with
perfect accuracy in the activity of the first layer, and the MSE inferred from activity in the
second layer can be made arbitrarily small for sufficiently large N . If sensory neurons are also
noisy, then they represent stimuli only up to some degree of precision. Furthermore, because
of the (dense) projections from the first onto the second layer of neurons, independent noise
in sensory neurons induces correlated noise in representation neurons. If the independent
noise in sensory neurons is Gaussian with variance equal to ξ2, then the covariance of the
noise in the second layer becomes Σ = η2I + ξ2WWT. Thus, sensory noise affects the
nature of the noise in representation neurons, and it is natural to ask how this changes the
population coding properties.

As we shall show, in the compression regime (N ≪ L) on which we focus, the kind of
correlations generated by noise in the sensory layer has a negligible effect on the coding
performance. The presence of sensory noise degrades coding, so a comparison of noisy and
noiseless systems is not very telling. Instead, we compare population coding in the presence
of the full noise covariance matrix, Σ, and in the presence of a diagonal covariance matrix
(i.e., independent noise) with elements chosen as follows. Given the distribution of synaptic
weights, the matrix WWT is sampled from a Wishart distribution with mean given by the
identity matrix and fluctuations of order 1/L (see Methods); in the limit of L → ∞, the



covariance matrix becomes

Σind ≡ (η2 + ξ2)I = η̃2I, (1.10)

i.e., the population noise becomes independent, with single-neuron variance η̃ = η2 + ξ2.
Hereafter, we compare the two cases of populations with covariance matrices Σ and Σind.

In numerical studies, we observe, first, that the MSE depends only weakly on the noise
correlations, as a function of σ. This behavior obtains because noise correlations primarily
affect local errors, not global errors. (As noise correlations reduce the noise entropy—they
‘shrink the cloud of possible noisy responses’—with respect to the independent case, one
expects that correlations reduce the probability of occurrence of global errors. Numerical
simulations however indicate that this effect is quantitatively negligible.)

In general, local errors can be either suppressed or enhanced by correlated noise [58]. We
can show analytically that in our model, if noise correlations are due to independent noise
in the sensory layer, local errors are enhanced. By computing a correction to the diagonal
behavior of the covariance matrix in the limit L → ∞ through a perturbative expansion of
the inverse covariance matrix to second order in ξ2/η̃2 (see Methods), we obtain the local
contribution to the MSE as

ε2
l = ε2

l,ind

(
1 + Nξ2

Lη̃2 −
Nξ4

Lη̃4 + . . .

)
, (1.11)

where ε2
l,ind is the corresponding quantity calculated for the matrix Σind rather than the full

covariance matrix Σ. From Eq. (1.11), it appears that the effect of noise correlations on
the MSE is deleterious, but scales proportionally to the ratio between the two population
sizes, which we supposed to be small. We checked this behavior numerically (Fig. 1.8A),
and found a good match with the analytical result. We also compared the impact of different
values of ξ2, while keeping the effective noise variance, η̃2, fixed (i.e., varying the relative
contribution of input noise and output noise). Both Eq. (1.11) and Fig. 1.8B indicate that
there exists a regime in which increasing the relative contribution of input noise, ξ2, in fact
mitigates the deleterious effect of the correlated noise (this is seen in Eq. (1.11) as a partial
cancellation of the second- and fourth-order terms).

Finally, we ask whether the impact of the noise correlations results specifically from the
form with which sensory noise invests it. To answer this question, we examine a network with
noiseless sensory neurons, but in which representation neurons exhibit correlated Gaussian
noise, with a covariance matrix that has the same statistics as those of Σ, but in which the
form of correlations is not inherited from the network structure through the synaptic matrix
W; specifically, we consider a random covariance matrix, Σrand = η2I + ξ2XXT, where
Xij ∼ N (0, 1/L). In this case, noise correlations suppress the MSE as compared to the
independent case (with Σind), because the ‘cloud of possible noisy responses’ is reoriented
randomly with respect to the curve of mean responses. Analytically, the analog of Eq. (1.11)
for the case of a covariance matrix Σrand (instead of Σ) is similar, but skips the lowest-order,
deleterious term:

ε2
l,rand ≈ ε2

l,ind

(
1− Nξ4

Lη̃4

)
. (1.12)

This result, as well as numerical simulations (Fig. 1.8B), demonstrates that generically
coding is improved by random noise correlations, and that this improvement increases with
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Fig. 1.8 Effects of input and correlated noise on compressed coding. (A)
Ratio of MSE in the presence of correlated noise due to input noise and indepen-
dent noise of variance η̃2, as a function of N , theoretical prediction (solid curve, Eq.
(1.11)) and numerical simulations (dots) with σ = 0.045, η̃2 = 0.5 and small con-
tribution of input noise, ξ2 = 0.05. (B) Ratio of MSE in the presence of correlated
noise due to input noise and independent noise of variance η̃2 (solid curves) and
ratio of MSE in the presence of correlated noise with random covariance matrix and
independent noise of variance η̃2 (dashed curves) Different colors denote different
contributions coming from the off-diagonal terms ξ2, increasing from violet to yel-
low, and η̃2 = 0.5. When correlations come from input noise, the ratio is positive
(detrimental noise correlations). Their effect is non-linear in ξ2/η̃2, due to the com-
petition between the first-(positive) and second-order (negative) corrections. With
a random covariance matrix, correlations enhance coding precision.

N and also increases with the relative contribution of ξ2 with respect to η2. In sum, noise
correlations in representation neurons are deleterious if they are inherited from independent
noise in sensory neurons—yet, the effect is quantitatively modest.

1.3 Discussion

Summary. We analyzed the properties of a neural population encoding a one-dimensional,
continuous stimulus by means of irregular tuning curves, which emerge in a neural circuit
with random synaptic weights. This model can interpolate between an irregular coding
scheme, highly efficient but prone to catastrophic errors, and a smooth one, more robust
in the face of noise. Optimality is achieved at an intermediate level of irregularity, which
depends on the population size and on the variance of the noise. At optimality the mean
error is suppressed exponentially with population size; as a result, irregular neural codes
allow to compress the representation of a low-dimensional, continuous stimulus from a large,
first layer of neurons to a small, second layer. We extended these results to the case of multi-
dimensional, continuous stimuli, more intricate because sensory neurons can exhibit various
degrees of mixed selectivity; we considered in particular a pure coding scheme, in which
sensory neurons are sensitive to a single stimulus dimension, and a conjunctive coding scheme,



in which sensory neurons are sensitive to all stimulus dimensions. We examined the relative
advantage of one scheme with respect to the other, a question explored recently elsewhere
also [47, 59], and elucidated its dependence on the number of representation neurons and on
the tuning parameters. These analyses enabled us to revisit data from M1 neurons in monkey
[40] and to discuss the benefits of an irregular code in the context of the representation of
hand position. Finally, we broadened the picture of compressed coding by considering input
noise, in addition to output noise, and by relating our picture to analysis of the dimensionality
of population activity.

‘Exponentially strong’ neural population codes. Our results on the exponential
scaling of the mean error with population size are similar to results obtained in the context
of the representation of position by grid cells [30, 32, 33, 31]. According to the terminology
adopted in this literature, the random compressed coding presented here is an ‘exponentially
strong’ population code. Grid cell-tuning is a particular instance of exponentially strong
codes making use of periodicity; the model presented here offers another example, in which
tuning curves are random.

The notion of an exponentially strong code predates work in computational neuroscience:
Shannon introduced it in the context of communication systems and analog signals [60]. In
his framework, a sender maps a ‘message’ (a continuously varying quantity analogous to our
stimulus) into a ‘signal’ (a higher-dimensional continuous quantity analogous to the output
of our representation layer) which is transmitted over a noisy channel and then decoded by a
receiver. The specific illustration he provides is that of a one-dimensional message mapped
into a higher-dimensional signal (Fig. 4 in Ref. [60]), analogous to the mapping illustrated
in Fig. 1.1C; this mapping corresponds to a curve that wraps around in a higher-dimensional
space. Shannon argues that an efficient code is obtained by stretching this curve to make it
as long as possible up to the point at which the winding and twisting causes the curve to
pass too close to itself, thereby generating catastrophic errors.

Yet Shannon went further, and showed that such a code need not to be carefully designed.
His calculation corresponds, in our framework, to the case of infinitely narrow tuning curves
in the sensory layer (Fig. 1.2): he demonstrated that it is possible to send a discrete set
of messages, with an error suppressed exponentially in the dimensionality of the signal.
Our work proposes an extension of this ‘fully random’ scenario for the representation of
a continuous variable based on a smooth, but irregular, mapping in a higher dimensional
encoding space. By varying the width of tuning curves in sensory neurons, σ, one can
modulate the smoothness of the mapping and trade off global errors with local errors. In
this more general, ‘correlated random’ scenario, it is optimal to choose a non-vanishing value
of σ which depends on the population size and other model parameters.

Coding with complex tuning curves. A large body of literature has addressed the
problem of coding low-dimensional stimuli in populations of neurons with simple tuning
curves. The most common assumption is that of bell-shaped tuning curves; these are often
chosen to model sensory coding in peripheral neurons. Various studies set in this context
discussed the shape of optimal tuning curves as a function of population size and stimulus
dimensionality [11], stimulus geometry [61], and the time scale on which coding operates
[12, 20]. More recent work analyzed the influence of a (non-uniform) prior distribution
of stimuli on the optimal arrangement and shapes of tuning curves across a population
of neurons; a particular prediction is that the tuning-curve width is narrower for neurons
with a preferred stimulus over-represented in the prior [62, 21, 63]. A separate direction of



study focused on the effects of heterogeneity in the tuning-curve parameters on the coding
performance [64, 65, 22, 66].

Our study falls in this line of work, but it presents two important differences: (i) we
consider a family of irregular tuning curves (to be contrasted with simpler tuning curves,
such as bell-shaped or monotonic) and (ii) we consider downstream neurons rather than pe-
ripheral ones. To be more specific about point (i), we consider tuning curves resulting from
a feedforward network with random synaptic weights. The assumption of random connectiv-
ity yields a ‘benchmark model’; similar comparisons with benchmark random models have
been used previously in examining information processing among layers of neural networks
[67, 68, 69]. In our case, the irregularity of tuning curves makes the response of any single
neuron highly ambiguous; the resulting code is thus distributed, and the neural population
as a whole is viewed as the relevant unit of computation [70].

Distributed codes have been argued to come with high capacity. An early example was
developed in the context of face coding in the superior temporal sulcus of monkey [71]. Data
analysis indicated that single-neuron sensitivity was heterogeneous and uninformative, but
the number of distinguishable face stimuli grew exponentially with the population size. Our
work provides an example of a random distributed code for continuous stimuli, which exhibits
similar scaling properties. The main difference is that, in the case of continuous stimuli, the
precise identity of the stimulus cannot be recovered in presence of noise, and what matters
is the magnitude of the distance between the decoded stimulus and the true one, quantified
by an appropriate metric. In other words, both the probability of occurrence of an error and
its magnitude matter. The requirement of minimizing the mean squared error then yields a
particular coding scheme that balances small (local) and large (global) errors.

Regarding point (ii), in many ‘efficient coding’ models, optimality criteria in a neural
population are derived under constraints on the activity of the same population. Our results
differ in that they are obtained in a downstream (‘representation’) neural population, subject
to constraints on a upstream (‘sensory’) population.

Geometry and dimensionality of population responses. In the past decade, the
progress in experimental methods has allowed for the recording of neural populations on a
large scale [56, 70]. In an effort to interpret the way in which information is represented in
population activity, various approaches have been focusing on the geometric properties of
population responses to a battery of stimuli [54, 53, 72, 73]. Points in a high-dimensional
space, each corresponding to the neural population response to a stimulus, are often in-
terpreted as being located on a manifold which describes the space of possible population
activity. Quantifying the geometry, and more specifically the dimensionality of this manifold,
offers a characterization of neural population activity. This geometric element is eminently
relevant in our work, too, where we illustrate the dependence of the coding properties of
a neural population on the geometry of the representation, which in turns depends on the
tuning properties of a presynaptic population [74].

A specific geometrical question is that of the dimensionality of the population response
in the representation layer. We showed that the spectrum of the covariance of the popula-
tion activity in the representation layer, across the stimulus space, comes with a band-pass
structure; by decreasing the width of tuning curves in the sensory layer, the band-pass profile
acquires additional modes. [72] discussed a similar picture in analyzing recordings from a
large population of visual neurons responding to a large, but discrete, set of images. In their
case, the spectrum of the covariance matrix of population responses exhibits an algebraic



(power-law) tail, and the authors argue that this property allows for a high-dimensional
population activity while retaining smoothness of the code. Our work presents a different,
and more elementary, mechanism by which a large number of modes can be accommodated
by the population activity (while retaining smoothness). The non-trivial point, in our case,
is that it is not beneficial for coding to be poised in the limiting case in which the number
of modes is maximal but the code becomes singular (non-smooth), as, in this limit, global
errors proliferate. The optimal effective dimensionality of the response manifold, as defined
by the participation ratio, lies at an intermediate value at which intersections of the manifold
with itself are rare and local and global errors are balanced (Fig. 1.7).

Compressed sensing. We studied a network in which the information encoded in a
high-dimensional activity pattern is compressed into the activity of a comparatively small
number of neurons, a setting which exhibits analogies with the one of compressed sensing
[75]. Compressed Sensing is a signal-processing approach for reconstructing L-dimensional
signals, which are K-sparse in some basis (i.e., they can be expressed as vectors with only K
non-vanishing elements), from N linear, noisy measurements, with K ≪ L and N ≪ L [76].
In our study, the low dimensionality of the stimulus, x, implies sparsity of the L-dimensional
activity of the sensory layer, as long as the tuning curves in the sensory layer are not too
wide.

A central result in the field of compressed sensing is that random measurements can yield
near-optimal reconstructions. Furthermore, for near optimality to be achieved, the required
number of measurements scales approximately linearly in K and only logarithmically in the
dimensionality of the signal: N > O (K log (L/K)) [75, 77]. In effect, in our network the
representation layer operates a limited number of random measurements from the sensory
layer. And we obtain an analog scaling form by inverting Eq. (1.5): the number of random
projections, N , necessary to decode L different stimuli with negligible error scales logarith-
mically with the number of stimuli. We note, however, that our framework differs from that
of compressed sensing as the objective is to decode the identity of the stimulus rather than
a high-dimensional signal vector (in our case, the activity pattern of the sensory layer).

Encoding vs. decoding. We focused in this study exclusively on the properties of
encoding in a neural population. For this aim, throughout we assumed an ideal decoder;
in principle, this is not a limitation: we show in Methods that an ideal decoder can be
implemented by a simple, two-layer neural network. The first layer computes a discretized
approximation of the posterior distribution over stimuli, and the second layer computes the
mean of this distribution, in such a way as to minimize the MSE. Furthermore, all the
operations carried out by this two-layer network—linear filtering, non-linear transfer, and
normalization—are plausible biological operations [19, 78, 79]. The parameters involved,
however, have to be chosen with the knowledge of the tuning curves and noise model.

One can ask whether biologically plausible learning rules can result in a decoder that
approximates the ideal one. A closely related question has been examined by [80], who
analyzed how the generalization error in a deep neural network trained with gradient descent
depends on the number of training samples and on the structure of the decomposition of
a target function into a set of modes (e.g., Fourier modes). [81] find that learning the
high-frequency Fourier components of a target function requires a larger number of training
samples, as compared to learning its low-frequency components. Similarly, in the context of
our network one expects that learning a decoder in the case of narrow tuning curves in the
sensory layer is more laborious than in the case of broad tuning curves. Noise in the training



samples may also hamper learning severely in the presence of global errors. Furthermore, one
can ask how our results might be modified if decoding is carried out by a decoder different
from the ideal one, for example by a decoder obtained through adequately chosen learning
rules. We leave these questions for future work.



1.4 Methods
Throughout, we denote vectors by bold letters, e.g., r = (r1, r2, ..., rN ), and the L2 norm as
∥r∥22 = ∑

i r
2
i . Capital bold letters, e.g., W, refer to matrices. We denote the derivative of a

function as f ′(x) = ∂f/∂x.

1.4.1 Network model

Network model for one-dimensional stimuli and constraints on its parameters.
We consider a two-layer feedforward network. The first, sensory layer is made up of L
neurons, each responding to a continuous scalar stimulus, x ∈ [0, 1], according to a Gaussian
tuning curve. The mean activity of neuron j in response to a stimulus, x, is given by

uj(x) = A exp
(
−(x− cj)2

2σ2

)
, (1.13)

where cj is the preferred stimulus of neuron j, σ is the tuning-curve width, and A is a fixed
response amplitude. The preferred stimuli are evenly spaced, cj = j/L. Each neuron in the
first layer projects onto all N neurons in the second, representation layer. The transfer func-
tion is assumed to be linear, and the random synaptic weights are independent realizations
of a Gaussian random variable, Wij ∼ N (0, 1/L); hence, the mean activity of representation
neuron i can be written as

vi(x) =
L∑
j=1

Wijuj(x). (1.14)

The value of the amplitude, A, is chosen so as to set the ‘dynamic range’ of representation
neurons to a fixed value; more precisely, we choose the value of A so that the variance of
each neuron’s response across the stimulus range is invariant under variations in the other
parameter of the model, σ, on average over network realizations. This quantity is calculated
as

R =
〈∫ 1

0
dx

[
vi (x)−

∫ 1

0
dx′vi

(
x′)]2〉

W

=
〈∫ 1

0
dxvi(x)2 −

(∫ 1

0
dxvi(x)

)2〉
W

=
〈

L∑
j=1,j′=1

WijWij′

[(∫ 1

0
dxuj(x)uj′(x)

)
−
(∫ 1

0
dxuj(x)

)(∫ 1

0
dxuj′(x)

)]〉
W

=
∫ 1

0
dxuj (x)2 −

(∫ 1

0
dxuj (x)

)2
,

(1.15)

where ⟨·⟩W indicates an average over the distribution of synaptic weights. Here (and below),
we approximate Gaussian integrals on a bounded domain as∫ 1

0
dxuj(x) ≈

∫ ∞

−∞
dxuj(x) = A

√
2πσ2; (1.16)

this approximation is valid when σ is small with respect to the stimulus range and cj is
separated from the boundaries (0 and 1) by a distance that exceeds σ. As we will consider a



large number of neurons in the sensory layer and relatively small values of σ (up to 1/10th of
the stimulus range), errors introduced by this approximation will be negligible. By inserting
Eq. (1.16) and a similar approximation for

∫ 1
0 dxuj(x)2 into Eq. (1.3), we obtain A as a

function of σ, as
A2 = R√

πσ2 − 2πσ2
. (1.17)

Tuning curves as samples from a Gaussian process. The response of each neuron
in the second layer to a stimulus, x, is a sum of realizations of Gaussian random variables;
as a result, it is also a realization of a Gaussian random variable, with mean

⟨vi(x)⟩W =
L∑
j=1
⟨Wij⟩Wuj(x) = 0, (1.18)

and its covariance is calculated as

〈
vi(x)vi(x′)

〉
W =

L∑
j,j′=1

〈
WijWij′

〉
W uj(x)uj′(x′)

=
L∑
j=1

1
L
uj(x)uj(x′)

≈ A2
∫ 1

0
dcj exp

−
(
(x− cj)2 + (x′ − cj)2

)
2σ2


≈ A2

√
πσ2 exp

(
−∆x2

4σ2

)
,

(1.19)

where ∆x = x− x′. The first approximation is obtained by replacing a sum by an integral∑L
j=1

1
Lf(cj) ≈

∫ 1
0 f(cj)dcj and the second approximation consists in extending the integra-

tion domain to the entire real line. The first approximation is valid if the spacing between
the centers is small relatively to the width of the Gaussian, that is Lσ ≫ 1, while the second
is valid if the arithmetic mean of x and x′ is far from the stimulus boundaries. According
to Eqs. (1.18) and (1.19) each neuron’s tuning curve can be viewed as a sample from a
one-dimensional Gaussian process with vanishing mean and Gaussian kernel with standard
deviation equal to

√
2σ [82].

Network model for multi-dimensional stimuli. We denote by K the stimulus dimen-
sionality, such that the stimulus is a K-dimensional vector, x = {x1, x2, ..., xK}. Analogously
to the one-dimensional case, each stimulus dimension can assume values in a bounded in-
terval, xk ∈ [0, 1]. We consider the two cases of pure and conjunctive tuning for sensory
neurons. In both cases, the sensory layer is made up of L neurons, which project onto all
N representation neurons. Similarly to the one-dimensional case, synaptic weights are inde-
pendent realizations of a Gaussian random variable, Wij ∼ N (0, 1/L).

Sensory neurons with pure tuning. The L neurons are divided in K sub-populations of



Q = L/K neurons. Neurons in the sub-population k are sensitive to the single stimulus
dimension xk. The mean activity of neuron j assigned to sub-population k is given by the
one-dimensional Gaussian

upj,k(x) = upj,k(xk) = Ap exp

−
(
xk − ckj

)2

2σ2

 , (1.20)

with preferred stimuli evenly spaced, ckj = j/Q for j = 1, ..., Q. The mean activity of repre-
sentation neuron i can be written as a superposition of one-dimensional tuning curves,

vpi (x) =
K∑
k=1

Q∑
j=1

Wij,kuj,k(x)

=
K∑
k=1

vpi,k(xk).

(1.21)

Imposing the resource constraint, Eq. (1.3), we obtain A2
p = R/

((
πσ2)1/2 − 2πσ2

)
.

Sensory neurons with conjunctive tuning. Neurons are sensitive to all stimulus dimensions.
The mean activity of sensory neuron j is given by the multi-dimensional Gaussian function

ucj (x) = Ac exp
(
−
∥x− cj∥22

2σ2

)
, (1.22)

with preferred stimuli, cj , arranged on a K-dimensional square grid with mesh size L−1/K .
The mean activity of representation neuron i is obtained as

vci (x) =
L∑
j=1

Wiju
c
j(x). (1.23)

Imposing the resource constraint, Eq. (1.3), we obtain A2
c = R/

((
πσ2)K/2 − (2πσ2)K

)
.

1.4.2 Population coding and optimal decoder

Noise Model. We assume that the response of representation neurons is corrupted by noise.
The vector of responses to a given stimulus, x, is

r = v(x) + z, (1.24)

where z is a noise vector of independent Gaussian entries with vanishing mean and fixed
variance, zi ∼ N (0, η2). Here, v(x) = {v1(x), v2(x), ..., vN (x)} is the vector of mean responses
of second-layer neurons to a stimulus, x (see Eq. (1.2)). The probability density of a response
vector, r, given a stimulus, x, is written as

p (r|x) = 1
(2πη2)N/2 exp

(
−∥r− v(x)∥22

2η2

)
. (1.25)



Below, we will furthermore consider an extension that takes into account a generic noise
covariance matrix, Σ, resulting in the more general form

p (r|x) = 1
(2π)N/2 [det (Σ)]1/2 exp

(
−1

2 (r− v(x))T Σ−1 (r− v(x))
)
. (1.26)

Loss function and ideal decoder. We quantify the coding performance of the neural
population by the mean squared error (MSE) in the stimulus estimate [6], as obtained from
the ideal decoder, or estimator, x̂ = fdec(r), expressed as

E2 =
∫ 1

0
dx

∫
drp(r|x) (x̂− x)2 , (1.27)

where we have assumed a uniform prior over stimuli, p(x) ∼ U(0, 1). We consider the average
of this quantity over network realizations, ε2 ≡ ⟨E2⟩W ; in some figures, we plot the square
root of this quantity, the RMSE, ε ≡

√
⟨E2⟩W .

For multi-dimensional stimuli, the ideal decoder outputs a vector estimate of the stimulus,
x̂ = fdec(r). In this case, we define the MSE as the average squared norm of the difference
between the stimulus and the decoder output,

E2 =
∫
dx
∫
drp(r|x) ∥x̂− x∥22 , (1.28)

where ∥x̂− x∥22 = ∑K
k=1(x̂k − xk)2.

The estimator that minimizes the MSE (Minimum-MSE or MMSE) is given by the mean
of the posterior density. We can write the optimal estimator as

x̂MMSE =
∫ 1

0
dxp(x|r)x =

∫ 1

0
dxp(r|x)x∫ 1

0
dxp(r|x)

. (1.29)

We note that a simple neural network can output the MMSE estimate. Indeed, if we approx-
imate the integrals in Eq. (1.29) with a discrete sum over M values and we use Eq. (1.25),
we obtain

x̂MMSE ≈
∑M
m=1 xmp (r|xm) ∆xm∑M
m=1 p (r|xm) ∆xm

=
∑M
m=1 xm exp

(
− 1

2η2

(∑N
i=1 r

2
i +∑N

i=1 v
2
i (xm)− 2∑N

i=1 vi(xm)ri
))

∑M
m=1 exp

(
− 1

2η2

(∑N
i=1 r

2
i +∑N

i=1 v
2
i (xm)− 2∑N

i=1 vi(xm)ri
))

=
∑M
m=1 xm exp

(
1

2η2

(∑N
i=1 2vi(xm)ri −

∑N
i=1 v

2
i (xm)

))
∑M
m=1 exp

(
1

2η2

(∑N
i=1 2vi(xm)ri −

∑N
i=1 v

2
i (xm)

))
=

M∑
m=1

xmh̃m,

(1.30)

where the terms∑i r
2
i in both numerator and denominator cancel and we assumed a constant

spacing,



∆xm = ∆x0. The approximate estimate specified by Eq. (1.30) can be by produced by a
two-layer neural network: a first layer of M neurons, whose activities are given by

h̃m =
exp

(∑N
i=1 λmiri + bm

)
∑M
m′=1 exp

(∑N
i=1 λm′iri + bm′

) , (1.31)

computes a normalized, discrete approximation of the posterior, h̃m ≈ p(xm|r), such that∑M
m=1 h̃m = 1. The unnormalized activity of neuron m, hm = exp

(∑N
i=1 λmiri + bm

)
, is

obtained as a linear combination of the activities of the representation neurons plus a bias
term, transformed through an exponential non-linearity. The ‘synaptic weight’ from the ith
representation neuron to the mth decoder neuron is a function of the true mean response of
neuron i to stimulus xm and of the variance of the noise, λmi = vi(xm)/η2 . Similarly, the
bias term is obtained as bm = −∑i vi(xm)2/2η2 . Finally, to obtain the MMSE estimate, a
single output neuron weights the activity of these M neurons according to their ‘preferred
stimulus’, xm.

In what follows, we will also use the maximum a posteriori (MAP) estimator, defined as

x̂MAP = arg min
xm

∥r− v(xm)∥22 . (1.32)

It is equal to the maximum likelihood (ML) estimator given the uniformity of the stimulus
prior, and it has a simple geometric interpretation: it identifies the stimulus which corre-
sponds to the vector of mean responses closest to the noisy population output. In numerical
simulations, the MSEs calculated with the MMSE and the MAP estimators are very similar.

The MMSE estimator can be extended to the case of non-diagonal noise covariance
matrix, Σ, by combining Eqs. (1.26) and (1.29) . The decoder weights and biases are then
correlated, λm = vT (xm)Σ−1 and bm = vT (xm)Σ−1v(xm), where λm denotes the vector
with elements corresponding to the mth row of λ.

The MMSE estimator can also be extended to the case of multi-dimensional stimuli. In
this case, the integrals of Eq. (1.29) are K-dimensional and the output layer is made up by
K neurons, which compute a vector estimate of the stimulus, x̂.

Details of numerical simulations. In numerical simulations, we compute the MSE
with standard Monte Carlo methods. At each step, we sample a stimulus, we generate a
noisy population response and we decode it using the ideal decoder; the squared difference
between the stimulus and its estimate is used to update the MSE. This process is repeated
and the MSE estimate is updated until convergence, defined as the point for which the vari-
ance of the MSE estimates in the last 500 steps, after a burn-in period of 5000 steps, is less
than a tolerance threshold, set to 10−8. We set the number of decoder neurons equal to the
number of sensory neurons, M = L, with uniformly spaced preferred stimuli, xm = m/M .
Unless otherwise stated, L = 500, R = 1 and η2 = 0.5. The results are averaged over 8
network realizations and shaded regions corresponds to one s.d.

1.4.3 Analytical derivations

In the calculations that follow, we consider the limit of L→∞ and we assume N ≪ L.



Narrow tuning curves. In the limiting case with σ → 0, sensory neurons respond only to
their preferred stimulus. Therefore, we consider the case of L discrete stimuli corresponding
to the neurons’ preferred stimuli, xj = j/L. The mean activity of representation neuron i
is written as vi(xj) = ÃWij , with Ã2 = LR, such that vi(xj) ∼ N (0, R). The constant of
proportionality is computed with the analog of Eq. (1.3) for discrete stimuli, in the limit of
large L.

The MSE in the case of narrow tuning curves, ε2
n, is obtained as

ε2
n = ⟨E2⟩W =

〈
1
L

L∑
j=1

∫
drpe(r,W, xj) (x̂j − xj)2

〉
W

, (1.33)

where pe(r,W, xj) denotes the probability, given a synaptic matrix W and noise, of having
an incorrect estimate of xj , i.e., x̂j ̸= xj . For every choice of W and r, there are L − 1
equiprobable realizations of the synaptic matrix which correspond to permutations of the
identity of the decoded stimulus, such that x̂j = xj′ with j′ ̸= j. Therefore, the MSE can be
written as

ε2
n = ⟨P (E)⟩W

1
L(L− 1)

L∑
j=1

∑
j′ ̸=j

(
xj − xj′

)2
, (1.34)

where ⟨P (E)⟩W = ⟨
∫
drpe (r,W, xj)⟩W is the probability of error averaged over the noise

and the synaptic weights realizations. The MSE is the product of two terms: the mean
probability of error and the average squared magnitude of the error. We now compute these
two terms.

Error probability. An error occurs if there exists a j′ such that r is closer to v(xj′) than to
v(xj), where xj is the presented stimulus. We calculate the probability of error as a function
of the probability of the complementary event, as

P (E) = 1− P
(∥∥r− v(xj′)

∥∥2
2 > ∥r− v(xj)∥22 ∀j ̸= j′

)
, (1.35)

By averaging over different realizations of W, ⟨P (E)⟩W , the probabilities that an error is not
committed on the possible values of j′ are independent; thus, we can express the probability
of error, as a function of the mean responses, vi, and the noise, zi, as

⟨P (E)⟩W = 1−
(
1−

〈
P
(∥∥r− v(xj′)

∥∥2
2 < ∥r− v(xj)∥22

)〉
W

)L−1

≈ L
〈
P
(∥∥r− v(xj′)

∥∥2
2 < ∥r− v(xj)∥22

)〉
W

= L

〈
P

(
N∑
i=1

(
vi(xj)− vi(xj′)

)2 − N∑
i=1

2
(
vi(xj)− vi(xj′)

)
zi < 0

)〉
W

.

(1.36)

The approximation comes from the assumption that the probability of error is small, and
L− 1 ≈ L is large, while the last equality is obtained from the definition of noisy responses,
Eq. (1.24). The difference between the mean activity of the same neuron to two different
stimuli is sampled according to a Gaussian distribution, ṽi ≡ vi(xj) − vi(xj′) = Ã(Wij −
Wij′) ∼ N (0, 2R). The mean probability of error is calculated as



⟨P (E)⟩W ≈ L
∫ N∏

i=1
dṽi

N∏
i=1

dzip(ṽi)p(zi)Θ
(
−

N∑
i=1

ṽ2
i + 2

N∑
i=1

ṽizi

)
. (1.37)

This quantity is the probability that the random variable ρ = ∑N
i=1 ṽ

2
i −

∑N
i=1 2ṽizi, where

ṽi ∼ N (0, 2R) and zi ∼ N (0, η2), is negative. With ζ ≡
∑N
i=1 ṽ

2
i , the distribution of ρ

conditional on ζ is Gaussian with mean ζ and variance 4ζη2. Thus,

⟨P (E)⟩W ≈ L
∫ ∞

0
dζp(ζ)

∫ 0

−∞
dρp(ρ|ζ)

= L

2

∫ ∞

0
dζp(ζ) erfc

(√
ζ

8η2

)
,

(1.38)

where erfc is the complementray error function and

p(ζ) =

(
ζ

2R

)N/2−1
exp

(
− ζ

4R

)
2N/2+1Γ(N/2)

(1.39)

is the probability density function of a chi-squared distribution. Computing the integral, we
obtain

⟨P (E)⟩W ≈ L
( η2

2R) N
2 Γ(N)

Γ(N2 ) 2F̃1

(
N

2 ,
1 +N

2 ,
2 +N

2 ,−2η
2

R

)

= L

(
η2

2R

)N
2 Γ (N)

Γ
(
N
2

)
Γ
(

2+N
2

) ∞∑
n=0

(
N
2

)
n

(
N+1

2

)
n(

N+2
2

)
n
n!

(
−2η

2

R

)n
,

(1.40)

where 2F̃1(a, b, c, x) is the regularized 2F1 Hypergeometric function; we provide its definition
in the last equality. The Pochammer symbol can be defined through Gamma functions,
(x)n = Γ(x+n)

Γ(x) . By using the identity∑∞
n=0

(x)n

n! a
n = (1−a)−x and the Stirling approximation

for Gamma functions, we obtain the expression of the error probability that appears in the
main text, Eq. (1.5):

⟨P (E)⟩W ≈ L
(
η2

2R

)N
2 Γ(N)

Γ2
(
N
2

)
N
2

(
1 + 2η2

R

)N+1
2

≈ L√
2πN

exp
(
− log

(
1 + R

2η2

)
N

2

)
.

(1.41)

Average squared magnitude of error. We denote by ε̄2
n,g the second factor in Eq. (1.34),

which can be written as

ε̄2
n,g = 1

L(L− 1)

L∑
j=1

L∑
j′ ̸=j

(
j

L
− j′

L

)2

= 1
L(L− 1)

 L∑
j=1

∑
j′ ̸=j

j2

L2 +
L∑
j=1

L∑
j′ ̸=j

j′2

L2 − 2
L∑
j=1

L∑
j′=1

jj′

L2

 .
(1.42)



These sums can be computed through the identities for the sum of the first n squared
numbers,∑n
i=1 i

2 = n(n+ 1)(2n+ 1)/6, and for the sum of the first n numbers, ∑n
i=1 i = n(n+ 1)/2.

The first two sums in Eq. (1.42) are identical, and yield

L∑
j=1

L∑
j′ ̸=j

j2

L2 = (L− 1)L(L+ 1)(2L+ 1)
6L2 , (1.43)

while the last term is calculated as

1
L2

L∑
j=1

j
L∑

j′ ̸=j
j′ = 1

L2

L∑
j=1

j

(
L(L− 1)

2 − j
)

= L2(L− 1)2

4L2 − L(L+ 1)(2L+ 1)
6L2

= 3L3 − 10L2 − 3L− 2
12L .

(1.44)

Finally, combining Eqs. (1.43) and (1.44) into Eq. (1.42), we obtain

ε̄2
n,g = (L+ 1)(2L+ 1)

3L2 − 3L3 − 10L2 − 3L− 2
6L2(L− 1)

= 1
6

(
1 + 12

L− 1 + 1
L

)
.

(1.45)

This is a term of order 1, the size of the stimulus range, plus corrections of order 1/L.

Broad tuning curves. In the case of broad tuning curves, we consider the regime of
smooth response curves on the scale of the noise amplitude, such that the mean population
activity can be approximated locally by a linear function of the stimulus. This regime ob-
tains when the second-order term in the Taylor expansion is negligible with respect to the
first-order one:

1
4
∥∥v′′(x)

∥∥2
2 ∆x4 ≪

∥∥v′(x)
∥∥2

2 ∆x2, (1.46)

where ∆x2 ≈ η2. In order to express this condition in terms of model parameters, we impose
it on average over network realizations; we note that this leads to the same result as imposing
the condition on average over stimuli, but it requires a simpler calculation. From the identity
⟨WijWij′⟩W = 1

Lδjj′ , the average of the left-hand-side of Eq. (1.46) is obtained as

〈∥∥v′′(x)
∥∥2

2

〉
W

=
〈

N∑
i=1

L∑
j=1,j′=1

WijWij′u′′
j (x)u′′

j′(x)
〉
W

=
N∑
i=1

L∑
j=1

1
L
u′′
j (x)2

≈ 3
√
πNA2

4σ3 ,

(1.47)



where the approximations consists in replacing the sum with an integral and in extending
the integration domain to the real line. A similar calculation can be performed for the
right-hand-side of Eq. (1.46):

〈∥∥v′(x)
∥∥2

2

〉
W

=
N∑
i=1

L∑
j=1

1
L
u′
j(x)2

≈
√
πNA2

2σ .

(1.48)

By combining Eqs. (1.48) and (1.47), and substituting ∆x2 by the variance of the noise, η2,
in Eq. (1.46), we obtain the smoothness condition as

3η2

8σ2 ≪ 1. (1.49)

In the case of broad tuning curves the error can be of two qualitatively different types:
local or global (Fig. 1.3A). The width of the Gaussian kernel in Eq. (1.19) gives a measure
of the distance in the stimulus space at which population responses are correlated; we refer
to a global error when the distance between the stimulus and its estimate is greater than
this ‘correlation length’, σ. We write the MSE as

ε2 = ε2
l + ε2

g, (1.50)

and we compute these two terms.

Local error. According to the ML decoder, Eq. (1.32), the stimulus estimate corresponds
to the value x′ that minimizes the distance between v(x′) and r; if the error is local, this
is obtained by projecting the noise vector onto the curve of mean population activity. By
expanding the response curve around v(x), we obtain, to linear order,∥∥z · v̂′(x)

∥∥2
2 ≈ ∥v(x+ ∆x)− v(x)∥22 ≈

∥∥v′(x)
∥∥2

2 ∆x2, (1.51)

where v̂′(x) = v′(x)/ ∥v′(x)∥2. The local error can then be calculated as
∆x2 = (x̂− x)2 ≈ ∥z · v̂′(x)∥22 / ∥v′(x)∥22. By averaging over the noise and the synaptic
weights, we obtain the mean local error as

ε2
l =

〈∫ 1

0
dx

∫
dzp(z)∥z · v̂

′(x)∥22
∥v′(x)∥22

〉
W

=
〈∫ 1

0
dx

η2

∥v′(x)∥22

〉
W

.

(1.52)

The squared norm of the derivative of the tuning curves is the realization of the random
variable ∥∥v′(x)

∥∥2
2 =

N∑
i=1

 L∑
j=1

Wiju
′
j(x)

2

. (1.53)

The terms of the inner sum, Wiju
′
j(x), are realizations of independent Gaussian random

variables with variable variance; as a result, the outer sum is also the realization of a Gaussian



random variable with mean equal to the sum of the means of its terms and variance equal
to the sum of the variances. The sum of the variances can be calculated as

L∑
j=1

u′
j(x)2

L
≈
∫ ∞

−∞
dcju

′
j(x)2 =

√
πA2

2σ , (1.54)

where the approximation consists in replacing the sum with an integral and in extending the
integration domain to the real line. Therefore, the inner sum is distributed according to

W̄i ≡
L∑
j=1

Wiju
′
j(x) ∼ N

(
0,
√
πA2

2σ

)
. (1.55)

As a result, the quantity 1/ ∥v′(x)∥22 = 1/∑N
i=1 W̄

2
i is sampled according to a scaled inverse

chi-squared distribution, with mean given by〈
1∑N

i=1 W̄
2
i

〉
W

= 2σ√
π(N − 2)A2 ≈

2σ√
πNA2 . (1.56)

The local error is then obtained, from Eqs. (1.52) and (1.56), as

ε2
l = 2ση2
√
πNA2 . (1.57)

Finally, if we approximate the response amplitude for small σ by A2 ≈ R/
√
πσ2, we obtain

the expression that appears in the main text (first term of Eq. (1.6)). We note that this
expression is equal to the inverse of the Fisher information averaged over network realizations;
the Fisher information in case of neural responses corrupted by independent Gaussian noise
is given by

⟨J(x)⟩W =
〈
∥v′(x)∥22

η2

〉
W

=
√
πNA2

2ση2 . (1.58)

Global error. Here, we extend the calculation performed in the case of discrete stimuli.
The analog of Eq. (1.34) in the case of broad tuning curves is

ε2
g = ⟨Pb(E)⟩W ε̄2

g, (1.59)

where the two factors are the probability of a global error and the average squared magnitude
of a global error, respectively.

We approximate the probability of a global error by considering a division of the curve
of mean population activity into σ ‘segments’. These segments are roughly uncorrelated and
appear in random locations in the space of population activity; as a result, we can replace
L by the number of segments in Eq. (1.5) to obtain the probability of a global error, as

⟨Pb(E)⟩W ≈
1

σ
√

2πN
exp

(
− log

(
1 + R

2η2

)
N

2

)
. (1.60)

Similarly to the discrete case, when a global error occurs, the decoded stimulus is uni-
formly sampled from all the other stimuli belonging to incorrect segments. We illustrate the



calculation for the case x− σ > 0 and x+ σ < 1; similar results can be obtained for stimuli
close to the boundaries of the stimulus range. In this case, the output of the decoder is
distributed uniformly in the interval x̂ ∈ [0, x − σ] ∪ [x + σ, 1]. The average magnitude of
global errors is therefore

ε̄2
g =

〈∫ 1

0
dx (x̂− x)2

〉
W

≈
∫ 1

0
dx

1
(1− 2σ)

[∫ x−σ

0
dx̂(x̂− x)2 +

∫ 1

x+σ
dx̂(x̂− x)2

]
= 1

(
1− 4σ3)

6 (1− 2σ) ,

(1.61)

which is a term of the order 1, the size of the stimulus range, plus corrections of order σ.
We obtain the expression for the global error which appears in the main text (second term
of Eq. (1.6)), by combining Eqs. (1.59), (1.60) and (1.61).

Local and global errors in the case of multi-dimensional stimuli. The MSE for
multi-dimensional stimuli, Eq. (1.28), averaged over synaptic weights realizations, is defined
as the sum of the MSEs along each stimulus dimension,

ε2 =
K∑
k=1

ε2
k =

K∑
k=1

〈∫ 1

0
dxk

∫
drp(r|x) (x̂k − xk)2

〉
W
. (1.62)

The local error along stimulus dimension k can be calculated, similarly to Eq. (1.52), as

ε2
l,k =

〈∫
dzp(z) (x̂k − xk)2

〉
W

≈
〈∫

dzp(z)
∥z · v̂′

k(x)∥22
∥v′

k(x)∥22

〉
W

≈
〈

η2

∥v′
k(x)∥22

〉
W

,

(1.63)

where the noise is projected onto the direction parallel to the partial derivative of the mean
activity with respect to stimulus dimension k, v′

k(x) = ∂v(x)/∂xk

Local error—sensory neurons with pure tuning. The derivative of the tuning function with
respect to stimulus dimension k is given by

v′
i,k(x) = ∂vi(x)

∂xk
=

Q∑
j=1

Wijk

∂upj,k(xk)
∂xk

. (1.64)

Similarly to the one dimensional case, this is a sum of realizations of independent Gaussian
random variables. Dropping the superscript p for the sake of clarity, the sum of the variances
of these terms is calculated as

Q∑
j=1

1
L

(
∂uj,k(xk)
∂xk

)2
≈ 1
K

∫ ∞

−∞
dckj

(
∂uj,k(xk)
∂xk

)2
=
√
πA2

2Kσ , (1.65)



where the approximation consists in replacing the sum∑Q
j=1

K
L f(ckj ) with an integral

∫
dckj f(ckj ),

and in extending the integration domain to the real line. The sum is distibuted as

W̄ p
i,k ≡

Q∑
j=1

Wijk
∂uj,k(xk)
∂xk

∼ N
(

0,
√
πA2

p

2Kσ

)
. (1.66)

Finally, by calculating the mean of the scaled inverse chi-squared distribution,〈
1∑N

i (W̄ p
i,k)2

〉
W

≈ 2Kσ√
πNA2

p

, (1.67)

in Eq. (1.63), we obtain the local error along a single stimulus dimension, as

ε2
p,l,k = 2Kση2

√
πNA2

p

; (1.68)

the total local error is then obtained by summing over dimensions,

ε2
p,l =

K∑
k=1

ε2
p,l,k = 2K2ση2

√
πNA2

p

. (1.69)

Local error—sensory neurons with conjunctive tuning. The derivative of the tuning function
with respect to stimulus dimension k is given by

v′
i,k(x) = ∂vi(x)

∂xk
=

L∑
j=1

Wij

∂ucj(x)
∂xk

= −
L∑
j=1

Wij
(xk − cj,k)

σ2 ucj(x),
(1.70)

where cj,k is the kth component of the preferred stimulus of neuron j, cj . Similarly to the
previous calculations, this is a sum of realizations of independent Gaussian random variables
of different variances. Dropping the superscript c for the sake of clarity, the sum of the
variances of these terms is calculated as

L∑
j=1

(xk − cj,k)2

Lσ4 uj(x)2 ≈
∫
dcj

(xk − cj,k)2

σ4 uj(x)2

≈ πK/2A2
c

2σ(2−K) ,

(1.71)

where the approximation consists in replacing the sum∑L
j=1

1
Lf(cj) with a K-dimensional in-

tegral
∫
dcjf(cj), and in extending the integration domain. The sum is therefore distributed

as

W̄ c
i,k ≡

L∑
j=1

Wij
∂uj(x)
∂xk

∼ N
(

0, π
(K/2)A2

c

2σ(2−K)

)
. (1.72)



Finally, by calculating the mean of the scaled inverse chi-squared distribution,〈
1∑N

i (W̄ c
i,k)2

〉
W

≈ 2σ2−K

π(K−2)NA2
c

, (1.73)

in Eq. (1.63), and by summing over dimensions, we obtain the total local error as

ε2
c,l =

K∑
k=1

ε2
c,l,k = 2σ(2−K)η2

πK/2NA2
c

. (1.74)

If we approximates A2
c and A2

p for small values of σ, we obtain that the ratio of the local
errors in case of sensory neurons with pure and conjunctive tuning is

ϵ2c,l
ε2
p,l

≈ 1
K
. (1.75)

Global error—sensory neurons with pure tuning. In the case of sensory neurons with pure
tuning, the tuning function of a representation neuron is obtained as the superposition of
one-dimensional tuning curves (Eq. (1.21)). According to the ML decoder, Eq .(1.32), the
decoder output can be written as

x̂ = arg min
x′

∥∥v(x) + z− v(x′)
∥∥2

2

= arg min
x′

∥∥∥∥∥
K∑
k=1

(
vk(xk)− vk(x′

k) + zk
)∥∥∥∥∥

2

2

,
(1.76)

where zk is the projection of the noise vector onto the direction parallel to the partial
derivative of the mean activity with respect to stimulus dimension k. For most realizations
of the random tuning curves, if K ≪ N , the K vectors summed in Eq. (1.76) are likely
orthogonal. Thus, minimizing the squared norm of the sum is equivalent to minimizing the
sum of the squared norms of each of the vectors. This, in turn, the stimulus estimate can be
obtained independently for each stimulus dimension, as

x̂k = arg min
x′

k

∥∥vk(xk)− vk(x′
k) + zk

∥∥ . (1.77)

Therefore, a global error can occur in one or several stimulus dimensions; it requires that
|x̂k − xk| > σ for some k. If the probability of a global error on more than one stimulus
dimension is negligible, the total probability of a global error can be approximated as the
sum of probabilities over dimensions, ⟨P (Ep,g)⟩W ≈

∑K
k=1⟨P (Ek,g)⟩W . We calculated the

probability of a global error in the one-dimensional case in the previous section. In order to
extend the formula to this case, we have to take into account that the variance of the tuning
function along one stimulus dimension is〈∫ 1

0
dxk

[
vi(x)−

(∫ 1

0
dxkvi(x)

)]2〉
W

=
Q∑
j=1

1
L

(∫ 1

0
dxkuj,k(xk)2 −

(∫ 1

0
dxkuj,k(xk)

)2)

≈ R

K
.

(1.78)



This quantity is the signal variance which governs the rate of exponential suppression of the
probability of global error; replacing R by R/K in Eq. (1.60), multiplying by the average
squared magnitude of global errors and summing over dimensions, we obtain the global error
as

ε2
p,g ≈

Kε̄2
g

σ
√

2πN
exp

(
− log

(
1 + R

2Kη2

)
N

2

)
. (1.79)

Global error - sensory neurons with conjunctive tuning. The correlation of the responses
of neuron i to two stimuli, x and x′, reads

〈
vi(x)vi(x′)

〉
W ≈ A

2
c

(
πσ2

)K/2
exp

(
−∆x2

4σ2

)
, (1.80)

where ∆x2 = ∥x− x′∥22; it is exponentially suppressed if ∥x− x′∥2 > σ. By analogy to the
one-dimensional case, we divide the surface described by the population activity as a function
of the stimulus, v(x) = {v1(x), ..., vN (x)}, into 1/σK uncorrelated regions. We calculate the
global error by replacing L with the number of uncorrelated regions in Eq. (1.5), obtaining

ε2
c,g ≈

ε̄2
c,g

σK
√

2πN
exp

(
− log

(
1 + R

2η2

)
N

2

)
, (1.81)

where ε̄2
c,g is the average squared magnitude of a global error, a term of the order of the

stimulus range.

Influence of correlated output noise on population coding.

Correlated output noise due to independent noise in sensory neurons. We consider the
case in which the activity of sensory neurons is affected by independent Gaussian noise:
ũ(x) = u(x) + zu, with zui ∼ N (0, ξ2). This results in a multivariate Gaussian noise in
the responses of representation neurons, with covariance matrix Σ = η2I + ξ2WWT . The
matrix WWT is sampled according to a Wishart distribution, with mean I and variance of
the matrix elements of order 1/L [83]. We write the covariance matrix as the identity plus
a perturbation, as

Σ = η̃2I + ξ2(WWT − I)

= η̃2
(

I + ξ2

η̃2

(
WWT − I

))
,

(1.82)

where η̃2 = η2 + ξ2. In order to quantify the effect of input noise on the coding performance,
we calculate the inverse of the Fisher information (FI) as a lower bound to the MSE. The
FI is written as

J(x) = v′(x)TΣ−1v′(x)
= u′(x)TWTΣ−1Wu′(x).

(1.83)

We expand the inverse of the noise covariance matrix to second order in ξ2/η̃2, as

Σ−1 ≈ 1
η̃2

(
I− ξ2

η̃2

(
WWT − I

)
+ ξ2

η̃4

(
WWT − I

)2
)
. (1.84)



In this approximation, the FI becomes J(x) ≈ Jind(x) + δJ(x), with

Jind(x) = 1
η̃2 u′(x)TBu′(x), (1.85)

and

δJ(x) = 1
η̃2

(
− ξ

2

η̃2 u′(x)T
(
B2 −B

)
u′(x) + ξ4

η̃4 u′(x)T
(
B3 − 2B2 + B

)
u′(x)

)
, (1.86)

where B = WTW. The first term, Jind(x), is the FI for independent Gaussian output noise
with variance η̃2; by averaging over synaptic weights realizations, we obtain the expression
in Eq. (1.58),

⟨Jind(x)⟩W =
√
πNA2

2ση̃2 . (1.87)

The average of the second term, δJ(x), over network realizations depends on the mo-
ments of the matrix B, which can be computed using Wick’s theorem: from the identity
⟨WijWmn⟩W = 1

Lδimδjn, we obtain

⟨Bmn⟩W =
〈

N∑
j=1

WjmWjn

〉
W

= N

L
δmn, (1.88)

〈
B2
mn

〉
W

=
〈

L∑
i=1

N∑
j=1,j′=1

WjmWjiWj′iWj′n

〉
W

=
(
N

L
+ N2

L2 + N

L2

)
δmn, (1.89)

〈
B3
mn

〉
W

=
〈

L∑
i=1,i′=1

N∑
j=1,j′=1,j′′=1

WjmWjiWj′iWj′i′Wj′′i′Wj′′n

〉
W

=
(
N

L
+ 3N

2

L2 + 3N
L2 + N3

L3 + 3N
2

L3 + 4N
L3

)
δmn.

(1.90)

From now on, we consider the terms up to O(N2/L2); the mean of the perturbation term in
the FI becomes

⟨δJ(x)⟩W ≈
1
η̃2 u′(x)T Iu′(x)

(
−N

2ξ2

L2η̃2 + N2ξ4

L2η̃4

)
. (1.91)

Finally, we compute the first factor by approximating the discrete sum with the integral,
similarly to previous calculations, obtaining

1
η̃2 u′(x)T Iu′(x) = 1

η̃2

L∑
j=1

(x− cj)2

σ4 uj(x)2

≈ L

σ4η̃2

∫ ∞

−∞
dcj (x− cj)2 uj(x)2

=
√
πLA2

2ση̃2 .

(1.92)



This quantity is proportional to the mean of the FI in the case of independent noise, Eq.
(1.87), by a factor N/L. Combining Eqs. (1.87), (1.91) and (1.92), we obtain

⟨J(x)⟩W ≈
√
πNA2

2ση̃2

(
1− Nξ2

Lη̃2 + Nξ4

Lη̃4

)
. (1.93)

We approximate the local error as the inverse of the FI; including only corrections up to
O
(
Nξ4/Lη̃4), we obtain the expression that appears in the main text (Eq. (1.11)),

ε2
l ≈

1
⟨J(x)⟩W

≈ ε2
l,ind

(
1 + Nξ2

Lη̃2 −
Nξ4

Lη̃4

)
. (1.94)

Correlated output noise with random covariance structure. Similar calculations can be car-
ried out for a noise covariance matrix that obeys the same statistics as those of WWT , but
that does not derive from the structure of synaptic weights. We consider

Σrand = η2I + ξ2XXT , (1.95)

with Xij ∼ N (0, 1
L), such that ⟨XijWmn⟩W,X = 0 and ⟨XijXmn⟩X = 1

Lδimδjn. In this case,
by expanding the inverse of the covariance matrix to second order in ξ2/η̃2 in Eq. (1.83), we
obtain the perturbation term in the FI as

δJ(x) = 1
η̃2

(
− ξ

2

η̃2 u′(x)T
(
WTXXTW−B

)
u′(x)

+ ξ4

η̃4 u′(x)T
(

WT
(
XXT

)2
W− 2WTXXTW + B

)
u′(x)

)
.

(1.96)

We compute the mean of these matrices over realizations of the noise covariance matrix and
of the synaptic matrix using Wick’s theorem. We obtain

〈(
W TXXTW

)
mn

〉
W,X

=
〈

L∑
i=1

N∑
j=1,j′=1

XjiWjmXj′iWj′n

〉
W,X

= N

L
δmn, (1.97)

〈(
W T

(
XXT

)2
W

)
mn

〉
W,X

=
〈

L∑
i=1,i′=1

N∑
j=1,j′=1,j′′=1

WjmXjiXj′iXj′i′Xj′′i′Wj′′n

〉
W,X

=
(
N

L
+ N2

L2

)
δmn.

(1.98)

Therefore, the first order correction vanishes, and the FI is increased,

⟨J(x)⟩W,X ≈
√
πNA2

2ση̃2

(
1 + Nξ4

Lη̃4

)
, (1.99)

yielding a negative correction to the MSE (Eq. (1.12)).



1.4.4 Data analysis and model fitting

Description of the data and summary statistics. The data consist of the responses
(firing rates) of N ∼ 500 neurons, recorded during an arm posture ‘hold’ task including
27 different positions, with 2 hand orientations each, arranged in a virtual cube of size
40x40x40 cm. The response of each neuron for each hand position is recorded in several
trials (∼ 10 trials per hand position). Tuning curves are computed by averaging over trials.
In order to quantify the degree of irregularity of a tuning curve in a non-parametric form,
the authors used a ‘complexity measure’: for neuron i, it is defined as the standard deviation
of a discretized derivative of the mean response:

c(Dmin)i = std

∥vi(x)− vi(x + ∆x)∥√
∥∆x∥2

s.t. ∥∆x∥22 < Dmin

 , (1.100)

where vi(x) is the mean response, Dmin is the distance between two neighboring hand posi-
tions, and in the experiment is equal to 35. [40] evaluated also another summary statistics,
the distribution of R2 values resulting from a fit of the tuning curves with a linear model
(see Eq. (1.9), originally proposed by [48]):

R2
i = 1−

∑
x (vl(x)− v(x))2∑

x v(x)2 , (1.101)

where vl(x) is the response predicted by a linear regression of the data, and the sum is
over hand positions used in the experiment. The distribution of these two quantities across
neurons is a measure of the irregularity of the neural population response; if the population
were perfectly described by a linear model, the R2-distribution would be a constant for all
neurons and equal to 1, while the complexity measure would exhibit low values.

Model fitting and comparison between irregular and linear tuning curves. We
consider neurons responding with at least 5 spikes/s at more than two target positions and
we compute their tuning curves by averaging the firing rates over trials. Then, we shift and
normalize the tuning curves to cancel their means and set their variances across hand posi-
tions to unity. We use a version of our shallow network model to produce three-dimensional
mean-response profiles. The sensory layer is made up of L = 1003 neurons; the preferred
stimuli (here, hand positions) are arranged so as to cover a space of 100x100x100 cm, in
such a way that hand positions used in the experiment are placed far from the boundaries
of the stimulus space. To limit computation load, we choose W as a sparse random matrix,
with sparsity equal to 0.1, with Gaussian-distributed elements, similarly to the model of [40].
The sparsity of the matrix does not affect our results, as long a proper normalization of the
synaptic weights is taken into account and the representation neurons receive a sufficient
number of inputs from the sensory layer, i.e., as long as the matrix is not too sparse and the
tuning width is not too narrow. The tuning curves are normalized to have zero mean and
unit variance across hand positions. With respect to the model of [40], there are two main
differences: in their case the random weights were distributed according to a uniform distri-
bution, and a rectifying non-linear function was applied to the random sum of the activity of
first-layer neurons to enforce a positive activity of the representation neurons. Their model
thus had two tunable parameters: the tuning width of first-layer neurons, σ, and the the



threshold of the non-linear transfer function in the second layer. The only tunable parameter
in our model is σ.

In order to fit our model, we generate neural responses of a number of representation
neurons equal to the number of recorded neurons, using the same set of hand positions to
as used in the experiment. We then computed the distribution of the complexity measure
for different values of σ; we denote by σf the tuning-curve width which minimizes the
Kolmogorov-Smirnov (KS) distance between the distribution produced by the model and
that extracted from the data (Fig. S1.1A). The KS distance is a measure of discrepancy
between two probability distributions. We denote by Fdata/model(c) the empirical cumulative
distribution function of the complexity measure across data/model, that is, the empirical
probability of finding a neuron with complexity measure less than c,

Fdata/model(c) = # neurons in the data/model with complexity measure < c
N

, (1.102)

where N is the total number of neurons. The KS distance is defined as the maximum absolute
difference between the Fdata and Fmodel:

KS ≡ max
c
|Fdata(c)− Fmodel(c)|. (1.103)

Figure S1.1C compares the distribution of the complexity measure across neurons for our
model with σ = σf with the one found in data and the one calculated for a population
with linear tuning curves. For the sake of completeness, we also computed the KS distance
between the distributions of R2 corresponding to model and data (Fig. S1.1A, red line).
We mention that the model of [40] with two tunable parameters did not reproduce the
distributions of complexity measure and of R2, and only the complexity measure was taken
into account in the fitting procedure. A better fit can be obtained in a heterogeneous model,
at the cost of tracking many more parameters (two per neuron): see [51] for a more detailed
discussion of the fitting procedure in such a model.

We also extract a noise model from the data, as follows. We define the variance of the
mean response of neuron i across hand positions as the variance of the average responses
across hand positions, R̂i = ⟨(ṽi(x)− ⟨ṽi(x)⟩x)2⟩x, where ṽi(x) is the unnormalized tuning
curve. Similarly, we average the trial-to-trial variability across different stimuli to obtain the
variance of the noise, η̂2

i =
〈〈
rti − ṽi(x)

〉
t

〉
x, where rt is the response at trial t. In the model,

we set the variance of the signal to unity and we rescaled the noise variance correspondingly,
as

η2
i = η̂2

i

R̂i
. (1.104)

In principle, the noise may depend on the stimulus. To control for this effect, we pre-
process the data with a variance stabilizing transformation. We substitute ri(x) by

√
ri(x),

[84]), and we recalculated the variance of the noise accordingly. In this way, if the noise
were proportional to the mean, one would obtain a constant estimate of the variance of the
responses for different hand positions. The distribution of noise variances across neurons
calculated in this way does not differ substantially from the one obtained without this data
transformation.

For numerical simulations (Fig. 1.6), the tuning curves are computed at a finer scale than
in the data (cubic grid of 21x21x21 points instead of 3x3x3). We illustrate three examples



of tuning curves obtained with σ = σf , measured at these hand positions in Fig. S1.1D-F,
together with the prediction obtained from a linear regression (Eq. (1.9)). We note that
there are some neurons which are well described by the linear model while others are not
compatible with it. We generated the tuning curves for a number of neurons equal to the
number of neurons analyzed in the fitting procedure (Ntot = 400). Results for a given
population size, N , are obtained by averaging over 8 different pools of size N sampled with
replacement from Ntot. In Fig. 1.6A-C, we compare the MSE as obtained in a population
in which neurons respond according to the irregular tuning curves generated by our model
and a population in which the tuning curves are linear, Eq. (1.9). The latter are generated
according to Eq. (1.9), by sampling the preferred directions, pi, uniformly on the unit sphere;
the tuning curves are shifted and normalized to have zero mean and unit variance across hand
positions. The comparison is quantified through the mean fractional improvement, defined
as

∆ε ≡ εlin − εirr
εlin

, (1.105)

where εlin/irr is the RMSE as obtained in the population with linear/irregular tuning curves.



S1.5 Supplementary Information

S1.5.1 Supplementary figures
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Fig. S1.1 Model fitting and tuning curves. (A) Kolmogorov-Smirnov dis-
tances between the distributions of complexity measure (solid line) and R2 of fit-
ting across neurons (dashed line) for data and model, for different values of σ: σf is
chosen to be the value at which the minimum of the distance between complexity
distributions is attained, σf ∼ 22. (B) Normalized-histograms of the distribution
of complexity measure (arbitrary units) across the neurons in the data (red), with
irregular tuning with σ = σf (blue) and a linear tuning curves (green). The irreg-
ular model captures the bulk of the distribution for the data better than a linear
model. Nevertheless, the data present a broader distribution across the popula-
tion. (C) Normalized-histograms of the distribution of the R2 of linear fits across
neurons of the data and irregular tuning curves with σ = σf (red). (D-F) Three
examples of irregular tuning curves with σ = σf , showing a broad range of behav-
iors with respect to a linear fit. The tuning curves are plotted as a function of the
projection of the hand position onto a preferred direction, obtained by the fit with
Eq.(1.9) (green line). Some neurons are well described by the parametric function
(D), while others show consistent deviations (E); in a subset of neurons, a linear
fit fails altogether (F)





Chapter 2

Decoding Complex Neural
Responses

2.1 Introduction

The majority of neural populations receive information about the sensory world only through
the neural activity of other neural populations. In the search for optimality principles under-
lying organization of population codes, the efficient coding hypothesis [8] represents one of
the most influential theories. It posits that neural responses are arranged so as to maximize
the information about the sensory stimuli, given a constraint on the neural resources avail-
able. This normative approach has been successful in predicting response patterns evoked
by sensory features in different brain areas [9, 85, 86, 87]. In the majority of these stud-
ies, however, few assumptions are made about how the information encoded in the neural
activity is used in downstream brain areas.

The efficiency of a neural code is often measured through task-agnostic quantities, such as
the mutual information between the stimulus and neural activity patterns [88, 46, 89]. When
a decoding stage is considered, often within a stimulus-reconstruction task, the point of view
of a an ideal observer, which has access to the details of the encoding process and the statistics
of the noise, is adopted [19, 21]. Similarly, the Fisher information, whose inverse bounds the
variance of any unbiased estimator, is often used as a proxy for the minimum decoding error,
especially in fine-discrimination tasks where a small difference between stimuli has to be
detected from neural responses [90, 91, 22, 92].

In some cases, the assumption of unlimited decoding capacity may lead to paradoxical
predictions about the optimal arrangement of neural responses. As an example, we take the
model analyzed in Chapter 1: a population of neurons which exhibit complex tuning curves.
The optimal level of smoothness is dictated by a balance between two types of errors, and
depends on the size of the population and on the variance of the noise. If the population
size is large enough, the mean squared error of an ideal decoder is minimized when the
correlations between responses vanish, yielding non-smooth tuning curves (Fig. 1.2A). On
the other hand, experimental evidence shows that neurons are broadly tuned to parameters
of sensory stimuli, implying smooth neural representations [72].

Here, we address this apparent discrepancy by quantifying the coding performance of a
neural population belonging to the family described in Chapter 1, a fairly general model for
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neurons with smooth tuning curves, through the error in the stimulus estimate as obtained
from a non-ideal decoder. If the decoder is defined as a parametric function which maps
neural activity patterns to stimulus estimates, our task is to set these parameters optimally.
We assume a supervised learning framework, where the parameters are learned so as to
minimize a loss function defined on a set of training examples consisting in neural activity
patterns and the corresponding stimuli. The performance is then evaluated by measuring
the error on the whole distribution of stimuli neural responses, thereby testing the ability of
the decoder to generalize. More specifically, we parametrize our decoding function as a deep
neural network [93], as, theoretically, neural networks have the property of universal function
approximators [94]. Deep artificial neural networks are among state-of-the-art methods to
perform regression tasks and, despite their ‘artificiality’, in the last decade they have acquired
an important role as models in computational neuroscience [95].

By restricting ourselves to two-layer neural networks, we first analyze a specific archi-
tecture that can approximate an ideal decoder. We show that, by training the decoder to
reproduce an approximation of the posterior distribution in the hidden layer, the decoding
capacity of this non-ideal decoder approaches the ideal one. The training procedure of such
a network requires an assumption about the nature of the hidden-layer representation, and,
correspondingly, a particular choice for the loss function. We next relax these strong assump-
tions by considering a generic two-layer neural network trained to minimize an error-based
loss function. In a regime where the parameters of the neural networks vary negligibly during
the minimization of the loss, also called ‘lazy’ regime [96, 97], the decoding function exhibits
poor performance when the tuning curves are irregular, yielding a large gap between ideal
and non-ideal error. Instead, when the network learns rich ‘features’ from the data, it is able
to take advantage of the higher accuracy achieved by irregular tuning curves. By varying the
number of neurons in the hidden layer, we measure how many of these features are necessary
to efficiently decode the information contained in the input. We find this number to be
inversely proportional to the width of correlation between neural responses. This results in a
trade-off between the ideal accuracy of a population code, maximized when neurons possess
irregular tuning curves, and the ease of the decoding process, which is facilitated by neural
responses which vary smoothly.

Our results complement a growing literature that considers the efficiency of a neural code
from the point of view of a downstream area [98, 81, 99]. Here, the decoder’s performance
is limited by its access to a finite set of noisy examples; such limitation affects different
architectures in different ways. We discuss how these limitations and constraints on the
neural resources allocated to the decoding process can modify, and in some cases completely
reverse, optimality criteria of a neural code.

2.2 Results

2.2.1 Problem setting

We consider a neural population model with neurons with complex, possibly multimodal,
responses as a function of a continuous, one-dimensional, stimulus. In particular, we consider
a population of N ‘representation’ neurons in which the mean response function of neuron i
as a function of the stimulus, x, i.e., the tuning curve, is sampled from a Gaussian process
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Fig. 2.1 Non-ideal decoding architectures. From left to right: N representa-
tion neurons respond to a scalar stimulus, x, according to random tuning curves;
color indicates stimulus value. The scale of irregularity of the tuning curves is con-
trolled by the parameter σ (bottom inset). At each trial a noisy neural activity
pattern, ri (red dots), is sampled, and the decoding network returns an estimate of
the stimulus. Top: in a Bayesian decoder, the hidden layer reproduces the poste-
rior distribution over stimuli. Each node has a ‘preferred stimulus’ (color indicates
stimulus value), and the parameters are trained so as to maximize the activity of
the neuron corresponding to the correct stimulus. A final readout neuron output
stimulus estimate by weighting the activity of hidden-layer neurons according to
their preferred stimulus value. Bottom: in an error-based decoder, weights and
biases of the neural network are trained so as to minimize the error of the stimulus
estimate. The decoding performance is evaluated by calculating the MSE of the
optimized decoder over the joint distribution of stimuli and neural activity patterns.

with vanishing mean and Gaussian kernel of width equal to σ,

vi(·) ∼ GP
(
0, k̄ (·, ·)

)
, (2.1)

where k̄(x, x′) = exp
(
− (x−x′)2

4σ2

)
1 . This distribution of tuning curves might be generated

by a random linear combination of the activity of neurons with classical, bell-shaped tuning
curves (see Chapter 1). We will refer to the parameter σ as the tuning width, as it measures
the width of correlation of the Gaussian kernel and it controls the smoothness of the tuning
curves. By changing it, we can interpolate between the extreme case of neurons exhibiting

1In order to be consistent with the previous chapter, we keep the factor of 4 at the denominator.



random and uncorrelated responses as function of x, when σ → 0, and broad, monomodal
tuning curves, when σ is large (Fig. 1.1,2.1). At each trial, when stimulus x is shown, the
activity of the representation neurons deviates from the mean due to random noise. We
assume independent Gaussian noise with variance η2, such that the noisy activity pattern is
obtained as

r(x) = v(x) + z, (2.2)
where v(x) = (v1(x), ..., vN (x)), and z ∼ N (o, η2I); the dependence of r on x will be some-
times implicit in what follows. In Chapter 1, we quantified the mean squared error (MSE)
in the stimulus estimate as obtained from an ideal decoder (ideal error) as a function of
the population size, N , the noise variance, η2, and the smoothness of the tuning curves, σ.
In particular, we showed that in non-trivial regimes of population size and noise variance,
an optimal level of irregularity, controlled by σ, balances two qualitatively different contri-
butions to the error: local and global. When considered as a function of the population
size, the optimal width, σ∗, and the optimal error, ε2(σ∗) , decrease exponentially, yielding
a code which ‘compresses’ information from a high-dimensional to a low-dimensional repre-
sentation. Thus, if the population size is sufficiently large, the minimum-MSE is achieved
with extremely irregular tuning curves (σ small). Does this property hold when the stimulus
estimate is obtained from a non-ideal decoder, which does not have access to the details of
the encoding process?

We define a non-ideal decoder as a parametric function, x̂ = fθ (r), with θ denoting the
set of parameters. We consider a supervised setting, where we are given a training dataset
which consists in P pairs of stimuli and the corresponding evoked noisy activity patterns,
Dv = {ri, xi}Pi=1; the subscript v denotes the dependence of the dataset from the set of
tuning curves, {vi}. The parameters of the decoder are set so as to minimize a loss function
defined on the dataset,

θ̂ = arg min
θ
L(fθ,Dv). (2.3)

Once the parameters are learned, the decoding performance is defined as the MSE averaged
over the distribution of possible stimulus-response pairs, pv(r, x),

ε2(Dv) =
∫
drdxpv(r, x)

(
fθ̂(r)− x

)2 ; (2.4)

this quantity is known as generalization error, or test error. This quantity must then be
averaged over possible datasets and over the distribution of tuning curves, p({vi}), to obtain
the mean decoding performance, ε2 =

〈
ε2(Dv)

〉
Dv ,{vi}. We compare this quantity with the

ideal error, ε2
id, as obtained by an ideal decoder. In this work, we are primarily interested in

understanding how the noise in the training data affects the optimized decoding function. In
order to distinguish these effects from limitations imposed purely by the limited amount of
data, which is the subject of many studies [81, 99], we will consider the limit of large values
of P , such that the quantity in Eq. (2.4) does not depend on the specific realization of the
dataset.

We parametrize the decoder as a two-layer neural network. In the hidden layer, M
neurons compute a possibly non-linear combination of the activity of the N representation
neurons, while an output neuron produces an estimate of the stimulus. We distinguish
between two major classes of architectures on the basis of the loss function we use in the
training procedure, as follows (Fig. 2.1).



2.2.2 Bayesian decoder

The first architecture we consider is inspired by the ideal decoder. We train the hidden layer
of a two-layer neural network to reproduce the posterior distribution over stimuli, and the
output neuron computes the mean of this approximated posterior. If the approximation of
the posterior is exact, the stimulus estimate corresponds to the ideal one (see Methods in
Chapter 1, and Fig. 2.1, top). More specifically, we assume a discretization of the stimulus
space into M bins, and we assign to each of the M hidden-layer neurons a preferred stimulus,
xm, the midpoint of the m-th bin. The output of the m-th neuron is obtained as

hm(r) = S(u)m = exp(um)∑M
m′=1 expum′

, (2.5)

where S(·) is the softmax function [100]. We intepret the vector u as presynaptic currents,
which are obtained as a linear combination of the neural activity patterns, u = λr + b.
The softmax function ensures that the vector output of the hidden-layer neurons, h, sum to
1, allowing us to interpret it as a discrete approximation of a probability distribution over
stimuli, hm(ri) ≈ q(xm|ri).

The parameters of the network, θ = {λ,b}, are optimized with stochastic gradient de-
scent so as to minimize the following loss function (which can be interpreted as the cross
entropy between the output of the hidden layer and the correct stimulus distribution, in the
discretized space, represented as a one-hot vector),

θ̂ = arg min
θ

{
− 1
P

P∑
i=1

log
(
hm(i)(ri)

)}
, (2.6)

where the value of the index m(i) is chosen such that xi ∈ (xm−1/2M,xm+1/2M). The loss
function described in Eq. (2.6) is optimized when the output of the hidden-layer neurons
approximates the correct posterior distribution over stimuli, i.e., hm(ri) ≈ p(xm|ri) (see
Methods). Indeed, for this functional form of the decoder, there exists a set of weights and
biases such the decoder becomes ideal in the largeM limit (see Chapter 1). An approximation
of the mean of the posterior, corresponding to the minimum MSE estimator, is obtained
by weighting the ouptut of the hidden-layer neurons according to their preferred stimulus,
x̂ = ∑

m xmhm. We evaluate the decoding performance by measuring the MSE of the
stimulus estimate, Eq. (2.4). In order to allow a comparison between different population
sizes, we keep fixed the samples-to-parameters ratio, γ = P/NP , where Np = (M +1)N , and
we consider the regime with γ > 1 (also called underparametrized regime).

The decoding error for this architecture exhibits the same behavior as the ideal one,
with a non-trivial optimal value of σ that balances local and global errors and decreases
as a function of the population size (Fig. 2.2A, compare with Fig. 1.3). The non-ideal
error is between 2- and 5-fold larger than the ideal one, with this ratio increasing as the
tuning curves become more irregular (σ small, Fig. 2.2B). As a result, although the non-
ideal optimal σ decreases exponentially fast with the population size, just slightly slower
than in the ideal case (Fig. 2.2C, inset), the optimal error is one order of magnitude larger
than the ideal one (Fig. 2.2C). Finally, we compare the weights obtained by minimizing the
empirical loss function and the ideal ones, by measuring the Pearson correlation coefficient
between the column of the connectivity matrix, λ:,i and the ideal ones, which correspond to
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Fig. 2.2 Decoding performance of the Bayesian decoder. (A) Generaliza-
tion error, ε2, of Bayesian decoder as a function of σ for different population sizes,
N , colored according to the legend (M = 500, γ = 3)). (B) Ratio between general-
ization error of Bayesian decoder and ideal error, for different values of N , colored
according to the legend in panel A. (C) Optimal width (inset) and optimal error
as a function of the population size, as obtained with the Bayesian (blue) and ideal
(red) decoder. (D) Average Pearson correlation coefficient between the columns of
the learned synaptic matrix and the ones of the ideal synaptic matrix, for different
values of N , colored according to the legend in panel A (solid error bars). As com-
parison, the mean correlation between two randomly chosen columns from the two
matrices vanishes (dashed error bars).

a discretization of the tuning curves λid:,i = {vi(xm)
η2 }Mm=1. The two set of weights exhibit a

high correlation, which decreases with N , as learning become more difficult (Fig. 2.2D).

2.2.3 Error-based decoder

Learning an approximation of the optimal decoder requires to define the loss function on the
hidden-layer output, and a specific teaching signal which targets the neuron whose preferred
stimulus corresponds to the correct one. Such setting differs from the classical machine
learning regression setting, as well as from the more biological reinforcement learning setting,
in which typically an output error signal is provided. We consider a more plausible setting by



studying the decoding properties of a generic two-layer neural network (Fig. 2.1, bottom).
The stimulus estimate, x̂, given a neural activity pattern, r, is represented by the activity of
the output neuron,

x̂ = fθ(r) = wT
(1)f(0)

(
W(0)r + b(0)

)
+ b(1), (2.7)

with f(0) a generic (non-linear) function applied pointwise. For this decoder, the learnable
weights, θ, are the input-to-hidden layer weights and biases, W(0) and b(0), and the final
readout weights and biases, w(1) and b(1). The parameters of the network are optimized
with stochastic gradient descent so as to minimize the MSE on the dataset, Eq. (2.39).
We illustrate the relevance of the non-linearity of the transfer function, f(0), by examining
the trivial, but instructive, linear case, for which an approximate analytical analysis can be
carried out. In this case, the decoder output can be written as a linear combination of the
output of the N representation neurons, as

fθ(r) = wlinr + blin, (2.8)

with wlin = wT
(1)W(0) and blin = wT

(1)b(0) + b(1). We note, however, that solutions found
by optimizing the parameters in Eq. (2.7) through stochastic gradient descent might differ
from the optimal linear weights of Eq. (2.8) (which are a solution of a convex problem), as
a result of the non-linear training dynamics of deep neural networks [101, 102].

Linear decoder

We consider a linear decoder with a vanishing bias (see Methods),

fl(r) = 1√
N

wT r. (2.9)

The weights which minimize the MSE, ŵ, are obtained as

ŵ = (RRT )−1Rx̄, (2.10)

where R is the N × P matrix of neural responses in the training dataset, Rij = ri(xj)/
√
N ,

and (x̄)i = xi is the column vector of training stimuli.
In a recent study, Jacot et al. [103] considered a regression setting in which assumptions

on the statistics of the dataset also apply to our model (Sec. 2.2.1), and they obtained
analytical approximations and bounds for the generalization error. Here, we extend their
results, obtained in a noise-free setting, to obtain an approximation for the MSE in the noisy
case. The MSE can be written as a sum of three terms,

ε2 = ⟨B(x) + V1(x) + V2(x)⟩x. (2.11)

Here, B(x) is a bias term, which measures the systematic deviation of the decoder output
averaged over different neural responses to stimulus x. The terms V1(x) and V2(x) are
variance terms. In particular, V1(x) measures the variance across different datasets of the
decoder output averaged over different neural responses to stimulus x, while V2(x) measures
the variance of the decoder output across different neural responses to stimulus x. In the case
of noisy neural responses, r, and large number of samples, P , we argue that V2(x) yields the
dominant contribution to the MSE, as in the other terms the noise in the neural responses



is averaged out (see Methods). An analytical approximation of this term can be calculated
(see Methods for the derivation; the calculations are based on the results presented in Ref.
[103]). In order to illustrate the limitations introduced by the linear decoder, we write the
generalization error as

ε2
lin = ε2

loc,idε
2
corr, (2.12)

where ε2
loc,id = 2η2σ2/N is the ideal local error, as calculated in the previous chapter, first

term in Eq. (1.6), and

ε2
corr ≈

1

2σ2

(
1− 1

N

∑P
i=1

(
P d̄c

i +η2

P d̄c
i +η2+λ̃

)2
) P∑

i=1

(
P d̄ci + η2

)
w̄2
i(

P d̄ci + η2 + λ̃
)2 , (2.13)

is a multiplicative correction term introduced by the linear decoder. Here, d̄ci are the eigen-
values of the kernel integral operator, defined by∫

dx′p(x′)k̄(x, x′)ϕi(x′) = d̄ciϕi(x), (2.14)

w̄i are the set of weights in the decomposition of the target function, x = fl(r), as a super-
position of kernel eigenfunctions2, x = 1√

P

∑P
i=1 w̄iϕi(x), and λ̃ is an ‘effective regularizer,’

defined by the identity
P∑
i=1

P d̄ci + η2

P d̄ci + η2 + λ̃
= N. (2.15)

We emphasize that the expression for the generalization error depends only on the spectral
properties (i.e., the eigenvalues) of the noise-free kernel, k̄, and on the variance of the noise,
which are deterministic quantities.

The noise affects in a non trivial way the terms in Eq. (2.13), contributing explicitly both
to the numerator and the denominator, as well as implicitly, through the definition of the
effective regularizer. The tuning width, instead, determines the spectral properties of the
kernel, and the weights of the target function decomposition, {w̄i} (Fig. S2.1). Numerically,
we observe that, for a fixed noise variance, the effect of the correction term is to revert the
increasing behavior as a function of σ of the ideal error.

We check the validity of the analytical results with numerical simulations, by computing
the average MSE of the optimal linear decoder and by calculating numerically Eq. (2.13).
The linear decoder exhibits a poor performance when compared to the ideal one. In order to
illustrate the fundamental limitations imposed by the architecture, which are independent
on the size of the population and are due to the noise in the training set, we plot results
for large values of N and small values of the noise variance (η = 0.1). We compare different
population sizes by keeping fixed the samples-to-parameters ratio, γ = P/N , and we explore
the regime with γ > 1. As anticipated above, the MSE decreases as a function of σ, for all
values of N (Fig. 2.3A). Thus, the optimal value of σ is constant as a function of N , with
optimality achieved with broad tuning curves: the linear decoder is unable to exploit the high

2The decoder is a function of r, but its properties are defined as a function of the kernel in the space of
stimuli, x; in this space, the target function is simply the identity function. The eigenfunctions of the kernel
operator form an orthonormal basis for the space of L2 functions with respect to the measure p(x), thus such
decomposition is always achievable.



A B C

Fig. 2.3 Decoding performance of the linear decoder. (A) Generalization
error of the linear decoder (dots), and comparison with the analytical expression
in Eq. (2.13) (solid curves) as a function of σ, for different population sizes, N ,
colored according to the legend (γ = 5). The ideal error is not shown, as even
the best non-ideal decoding error for large population size (N = 200, ε2 ≈ 10−3.5)
is more than one order of magnitude larger than the worse ideal error for small
population size (N = 60, ε2

id ≈ 10−5) (B) Ratio between the contributions of the
first two terms in Eq. (2.11) and V2, as a function of σ for different values of N ,
colored according to the legend in panel A. The two terms are relevant only in the
low N - low σ regime. (C) Generalization error of the linear decoder (dots), and
comparison with the analytical expression in Eq. (2.13) (solid curves), for a fixed
value of σ = 0.11 (corresponding to the minimum value of the error), as a function
of the population size, for different values of the samples-to-parameters ratio, γ.

local (ideal) accuracy achieved with irregular tuning curves (σ small). By plotting the inverse
ratio between V2(x) and the two other terms in Eq. (2.11), averaged over the distirbution
of stimuli, we show that indeed V2 dominates the MSE, especially for large values of σ and
N (Fig. 2.3B). For a fixed σ, the error scales as an inverse function of the population size.
As we increase the size of the dataset, by increasing γ, we observe a saturation in the error
curves, suggesting that the limited performance is not due to a limited amount of data (Fig.
2.3C).

Non-linear neural networks

In order to overcome the limitations imposed by a linear decoder, we consider non-linear
transfer function in the hidden layer. Although non-linear neural networks represent the
state of the art for many tasks, a comprehensive theoretical understanding of their complex
learning dynamics is still lacking (despite the huge progresses coming from a broad range
of approaches [104, 105, 106]). A recent line of research has shown that, in some limits,
the output of deep neural networks trained with gradient descent can be well approximated
by a linear combination of a set of non-linear ‘features’ of the inputs, which are purely
determined by the value of the parameters at initialization [96, 97, 107]. As a result, the
network perform analogously to a kernel machine [108]. In this regime, roughly speaking (see
Methods for an informal overview), the parameters of the network change only negligibly
during the minimization of the loss, and therefore the regime is referred to as ‘lazy’. The
function learned by the network can then be written as the solution to a kernel regression
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Fig. 2.4 Decoding performance of the NTK decoder. (A), (B) Generaliza-
tion error of the NTK decoder (dots and dashed curves) and ideal error (diamonds
and solid curves) as a function of σ, for different population sizes, N , colored ac-
cording to the legend (P = 100N). Panel A and B illustrate results obtained in the
case of high and low noise variance, respectively. For the sake of clarity, in panel B
only results for large population sizes are shown. (C) Generalization error of the
NTK decoder (dots) and ideal error (diamonds) as a function of σ, for different
values of P (N = 50), in the regime of low noise variance. For the sake of clar-
ity, for large values of P only the intermediate values of σ, where the minimum is
achieved and becomes deeper, are shown; the rest of the curves coincides with the
ones obtained for low values of P .

problem (see Methods, Eq. (2.47)),

fNTK(r) = x̄TK−1
NTKkNTK(r), (2.16)

where (KNTK)ij = kNTK(ri, rj) is a kernel Gram matrix calculated for the response patterns
in the dataset, and (kNTK(r))i = kNTK(ri, r). Here, kNTK(·, ·) is the so-called neural
tangent kernel (NTK), see Eq. (2.87), which depends only on the value of the parameters at
initialization and on the choice of the non-linear function, f(0), and is fixed during the training
dynamic. The initialization of the weights is typically random, yet, for large networks, and
if the sampling distribution satisfies certain properties, it has been shown that the NTK
converges to a deterministic kernel. For some choices of the non-linear function, it is possible
to compute an analytical expression of the NTK [109]. Kernel methods are amenable to
analytic treatment, and therefore a series of results and generalization properties have been
obtained for neural networks trained in this regime [110, 111, 112, 80].

We test the decoding performance of the function defined in Eq. (2.16), with the NTK
obtained in the deterministic limit (see Methods). From the theory referred above, such a
function corresponds to the output of an infinitely wide (M → ∞) neural network trained
in the lazy regime. Empirically, we found the NTK corresponding to a network with Erf
(error function) non-linearity to perform slightly better for this problem, than the more
usual NTK with rectifiying linear units (ReLu); therefore, we will illustrate results for the
former choice. For a large value of the noise variance, we find a similar monotonic decrease
of the MSE as a function of σ, as obtained in the linear case (Fig. 2.4A). Quantitatively,
the ideal and non-ideal error are comparable in the regime of large σ, as opposed to a
worse performance in the linear case. Intuitively, this is because training a neural network
in the lazy regime is equivalent to perform a linear regression in a high-dimensional (with



dimension equal to the number of parameters) space of non-linear functions of the input
data (see Methods, Eq. (2.82)). When the variance of the noise is small, a minimum is
observed in the generalization error curves at a non-trivial value of the tuning width (albeit
shallow, Fig. 2.4B). In order to see if the non-trivial behavior of the generalization error as
a function of σ is not merely a result of a limited amount of data, we plot the error curves
for increasing values of P ; we observe a saturation beyond a given value of P (Fig. 2.4C).
(Kernel methods are typically computationally expensive, as they require the inversion of a
matrix which grows proportionally to the size of the dataset; for this reason, we were not
able to see if a minimum in the error curve was achieved also in the high signal-to-noise
regime for very large values of P . Instead, we show below that a neural network trained in
the rich regime outperforms a NTK decoder trained on the same amount of data.)

The results in Fig. 2.4A,B show that neural networks trained in the lazy regime take
only partial advantage of the higher local precision afforded by irregular tuning curves, and
they do so only in the regime of low noise variance. In order to check that this is indeed
a limitation of the training regime, we compare the performance of the NTK decoder with
that of a wide neural network trained in the rich regime (in what follows, network decoder)
on the same dataset (Fig. 2.5A). (As pointed out in [97, 113], the transition between the
two regimes is controlled by the variance of the values of the parameters at initialization; see
Methods for details on the training procedure employed here.) The network decoder achieves
a lower error for intermediate values of σ, while the two performances are comparable for
larger values of σ. Thus, a minimum in the generalization error curve is observed for non-
trivial values of the tuning width, suggesting that the rich training regime is more efficient in
extracting information when it is encoded in complex neural activity patterns. The decoding
performance can be further increased by increasing the size of the dataset, allowing for a
more accurate characterization of the statistics of the neural noise; the non-trivial optimal
value of σ, which decreases as a function of the population size, becomes more evident (Fig.
2.5B). The ratio between non-ideal and ideal generalization errors is large for irregular tuning
curves, and it becomes of order 1 as the tuning width increases (Fig. 2.5B, inset).

These results are obtained for neural networks with a wide hidden layer (M = 1000).
Given the remarkable ability of neural networks to extract useful features from inputs, we
ask how many of these features are necessary to achieve a good decoding performance. By
varying the number of hidden-layer neurons, we observe that, depending on the value of σ,
smaller networks can achieve similar performances as a wide one (Fig. 2.5C).

Figure 2.5D illustrates, as a function of σ, the crossover number of hidden-layer neurons,
Msat, such that a further increase in the size of the network causes a negligible increase in
the decoding performance. This number is inversely proportional to σ: it’s behavior can be
decribed well by fitting an hyperbolic function, Msat(σ) = a/σ + b (the exact coefficients
depend on the number of input neurons, N , on the noise variance and on the criterium
chosen for the performance saturation). The number of hidden-layer neurons corresponds to
the number of non-linear projections of the neural responses. By assuming that, in the rich
training regime, the network learns ‘meaningful’ projections, capturing the structure of the
underlying curve of population activity, the minimum number of them which is necessary
for an accurate readout is inversely proportional to the scale of irregularity of tuning curves
(see Fig. 2.6B and Discussion for a geometrical interpretation). More generally, this result
reveals a trade-off between the theoretical encoding capacity of the population code, which
increases with the complexity of neural responses, and the number of neural resources needed
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Fig. 2.5 Decoding performance of the network decoder trained in the
rich regime. In all simulations η = 0.3. (A) Generalization error of the NTK
decoder (blue curve), network decoder trained in the rich regime (green curve) and
ideal error (red curve) as a function of σ (N = 50). The decoders are trained on the
same dataset of size P = 10000. (B) Generalization error of the network decoder
(dots and dashed curves) and ideal error (diamonds and solid curves) as a function
of σ, for different population sizes, N , colored according to the legend in Fig. 2.4
(M = 1000, γ = 3). Inset: ratio between non-ideal and ideal error as a function of
σ. (C) Generalization error of the network decoder and ideal error with different
number of hidden-layer neurons, M , as a function of σ (N = 50). (D) Same data
of panel C. Number of hidden-layer neurons necessary to saturate the decoding
performance of the network decoder as a function of σ (blue curve) and numerical
fit with an hyperbolic function (red curve).

to decode the information conveyed by neural activity patterns.

2.3 Discussion
Efficiency as balance between coding and decoding. We quantified the coding prop-
erties of a neural population from the point of view of a non-ideal decoder. We considered
a fairly general coding scheme with neurons with complex neural responses, in which the
only constraint was the level of smoothness (i.e., the two points correlation) of the tuning
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Fig. 2.6 Geometrical perspective on different decoders. The axes represent
the neural activity of N = 3 samples neurons, As a function of the stimulus (colored
according to the legend), the mean population activity describes a curve in the 3-
dimensional space. (A) A linear decoder is the optimal vector in the space of neural
population activity (blue) such that the stimulus estimate can be read by projecting
the neural activity onto it. When σ is large, as in the figure, it is simple to align the
decoding vector to curve of mean population activity. (B) The curve of population
activity can be decomposed in ∼ 1/σ uncorrelated segments. As a neural network
computes M non-linear ‘features’ of the input, a possible decoding strategy could
be to learn a different ‘feature’ for each segment (blue segments) and then combine
these features to obtain a stimulus estimate. A curve with small σ (left) requires
a higher number of hidden neurons than a curve with large σ (right), as confirmed
by the results in Fig. 2.5.

curves. In the limit of large population sizes, the highest ideal accuracy is achieved when
neurons exhibit irregular and non-smooth tuning curves. Indeed, in a code which associates
stimuli to uncorrelated random points in a high-dimensional space, each stimulus can be
decoded unambiguously if the noise variance is smaller than a threshold [60]. More gener-
ally, in the high signal-to-noise ratio, maximizing the mutual information between stimuli
and neural responses corresponds to minimizing the redundancy and decorrelating neural
outputs [8, 114, 43, 115]. (Depending on the the level of the noise and on the constraints on
the neural resources, however, a certain degree of redundancy might be optimal [44, 116].)
Similarly, in a population of neurons with bell-shaped tuning curves, in the asymptotic limit
of large population sizes, the minimum coding error is achieved with infinitely narrow tuning
curves (and, thus, uncorrelated neural responses) [11, 12, 61, 25].

However, these theoretical predictions partially contrast with experimental evidence.
Neural activity vary smoothly as a function of features of external stimuli, and it has been
suggested that neural responses are confined to low-dimensional subspaces, or ‘manifolds’, in
the high-dimensional space of neural activity [117, 53, 118]. Theoretically, it is unclear the
role that such ‘smoothness’ plays in determining the coding performance of the population
[72, 119].

Recently, a line of theoretical studies showed that smooth and correlated neural responses,



achieved with broad tuning curves, confer a high ‘sample efficiency’ to a downstream linear
decoder [120, 81, 99]. Here, ‘sample efficiency’ is defined as the ability to learn a target
function in response to neural activity patterns from a limited set of input-output examples.
This can be explained through the properties of the kernel associated to the neural code, i.e.,
the covariance between neural responses to different stimuli, which in our case is determined
by k̄ in Eq. (2.1). As we showed, the generalization error of a linear decoder is determined
by the properties of this kernel. When tuning curves are broad, the kernel spectrum possess
a high amount of power in the first ‘modes’, i.e., the first eigenfunctions in Eq. (2.67) are
associated with larger eigenvalues (Fig. S2.1). In a regression task, the components of the
target function associated with these first modes (i.e., the coefficient w̄i in Eq. (2.73)) require
a smaller number of examples to be learned, as compared to the components associated to
higher modes [80]. Since to similar stimuli are often associated similar behavioral outputs,
behaviorally relevant target functions are supposed to be smooth [98], Thus, the spectral
properties of the kernel associated to the neural code and the characteristics of behaviorally
relevant target functions determine the capacity of the readout to learn quickly and generalize
well with a limited number of training samples [121, 81] .

These results were obtained in a noise-free setting. In this work, by studying a special
case of target function–the reconstruction of the input–we argue that correlated and smooth
neural codes facilitate learning in the presence of noise. Adding noise to training data is a
popular technique in machine learning to avoid overfitting and improve generalization [122].
Indeed, it can be shown that adding noise to inputs is equivalent to adding a regularization
which penalizes the Jacobian of the decoding function, effectively enforcing smoothness [123].
Our task, reconstructing the input from an intermediate representation, is analog to the one
of autoencoders, in which an encoder and a decoder are trained jointly to extract data
‘features’ in the intermediate representation [124]. In Refs. [125, 126] it has been suggested
that adding noise to the input results smoother features, and thus more robust to small
variations in the data, in the intermediate layer. Conversely, in this work we show that
smooth intermediate representations are more robust to noise when the decoding process is
non-ideal.

Despite these similarities, our framework differs from the classical machine learning set-
ting, in that we also test the network on noisy corrupted activity patterns (while, typically,
the test set is noise-free). This results in a balance between two instances. On one hand,
irregular tuning curves minimize the minimum error which is achieved through an ideal stim-
ulus estimate. On the other hand, noise in the training examples biases algorithms towards
learning smooth decoding functions, which do not take advantage of small-scale irregulari-
ties. Whether a smooth or an irregular neural code is preferable becomes thus a quantitative
question, which depends on the decoding architecture.

The role of different architectures. The structure of the Bayesian decoder have been
previously employed in Ref.[21] to obtain an approximation of the posterior distribution and,
consequently, of the minimum-MSE estimator. It has been named ‘Bayesian population vec-
tor’ due to the similarity of Eqs .(2.28)-(2.30) with the equation of the population vector
decoder defined in Ref. [127] as a readout for neurons with monomodal tuning curves with
preferred stimuli {xn}Nn=1,

x̂ =
∑N
n=1 xnrn∑N
n=1 rn

. (2.17)



Our results suggest a possible way to learn such decoder. Interesting, learning is successful
even in the presence of global errors, when the identity of the stimulus is ambiguous and
the true posterior distribution is multimodal (as in Fig. 2.1). The full posterior distribution
represented in the hidden layer might be useful in many other computations which require
to manipulate probabilities [128, 129] (see also next Chapter 3). However, given the partic-
ular assumption about the training loss, it is worth considering also architectures which are
optimized by minimizing an error-based loss function, as postulated by classical theories on
the mechanisms of supervised learning in the brain [130, 131].

Linear decoders, computing a weighted combination of neural activities, are diffused tools
in the analyses of neural codes, and a number of theoretical results on their performance
have been obtained [127, 23, 65, 132, 81]. In the case of neural responses affected by corre-
lated noise, a ‘local’ linear decoder saturates the lower bound to the MSE imposed by the
Fisher information [133, 92]. Here, ‘local’ means that it is trained to distinguish between
two nearby stimuli from the elicited neural responses, implying that, in general, the optimal
weights might be different for different regions of the stimulus space. Here, in turn, we in-
vestigated the properties of a global linear estimator, which operates on the whole range of
stimuli. We showed that such decoder achieves the worse performance when tuning curves
are highly irregular and it is unable to exploit the high ideal accuracy of complex tuning
curves. It is possible to get an intuitive understanding of this behavior from a geometric
picture, by representing the joint mean activity of the N neurons as a function of the stim-
ulus as a curve in a N -dimensional space. The weights of the decoder define the optimal
N -dimensional vector such that it is possible to read the stimulus estimate from the linear
projection of the neural activity onto it. In the case of broad tuning curves, the curve of
population activity is smoother and exhibits a lower intrinsic dimensionality (see Chapter 1,
Fig. 1.7), facilitating its alignment with the vector (Fig. 2.6A).

Linear decoders are often employed to show that sensory information is represented in the
neural activity in an easily decodable way, and sometimes optimality principles are derived
under the assumption that the readout is linear [54, 69, 134]. At the end of information
processing hierarchy, right before behavioral outputs, such as a choice or a motor command,
information must surely be represented in an explicit and easily accessible way. In other
regions, however, neural representations can be arranged according to other optimality prin-
ciples, such as the sparsity of neural activity or the compression of information, relying on
subsequent stages of the hierarchy to perform the decoding process. As an example, to read
the spatial information contained in the activity of grid cells one necessitates of a decoding
algorithm which hierarchically combines the information at different scales coming from dif-
ferent modules [135]. It is therefore important to investigate the properties of more complex
architectures. Deep neural networks, due to their (theoretical) capacity of approximate any
function [94], represent a good candidate to model flexible and powerful decoders [95].

In many cases, the performance of neural networks in the more tractable lazy regime
exhibits a large gap with the state-of-the-art, which depends on the data distribution and
on the target function [106]. In the task considered here, estimating the stimulus from a
noisy high-dimensional representation, although the input data are N -dimensional, there is
clearly a one-dimensional structure in the curve of population activity. The complexity of
this low-dimensional structure, defined by the tuning width, affects the complexity of the
target function, as irregular tuning curves also imply an irregular decoding function. A neu-
ral network trained in the lazy regime learns a function which is a linear combination of a



set of non-linear functions (features) of the input data which are defined by the parameters
at initialization, Eq. (2.82), and thus it does not learn new ‘features’ (see Ref. [111] for a
formal discussion). As these features are random and not adapted to the specific problem,
the decoding capacity is impaired when the input data possess a complex structure.

Recently, Damian et al. [136] showed that neural networks trained in the rich regime
outperform their associated kernel machine when the target function depends only on vari-
ations of the input data along a few number of relevant directions. This result gives an
intuitive explanation of the gap between lazy and rich regime in our context. Indeed, in the
latter we are able to discover the low-dimensional structure of the population activity even
in the presence of noise, as also observed empirically in Ref. [137]. An intuition about the
fact that the network decoder learns useful features of the data is given by the saturation
of its performance beyond a given number of hidden neurons, Msat, which scales empirically
as 1/σ; such scaling has a simple geometrical interpretation (Fig. 2.6,B). Indeed, we can
imagine to divide the curve of population activity in ∼ 1/σ correlated ‘segments’, as also
done in the calculations of Chapter 1 to compute the global error. A possible decoding
strategy, then, is to learn a local decoder for each of these segments in the hidden layer, and
combine their outputs to obtain a final estimate. The nature of the representation in the
hidden layer, corresponding to the features extracted by the network, is an interesting object
of investigation, which we leave for future research.



2.4 Methods
Throughout, we denote vectors by bold letters, e.g., r = (r1, ..., rN ), and matrices by capital
letters, e.g., W . We denote as ⟨f(z)⟩z the expectation of a function f of a random variable
z, distributed according to p(z), ⟨f(z)⟩z =

∫
dzp(z)f(z).

2.4.1 Data distribution

We consider a population of N neurons each responding to a continuous scalar stimulus, x,
sampled from a uniform distribution in the interval [−0.5, 0.5] 3. The tuning curve which
describes the mean response of neuron i as a function of the stimulus is sampled from a
Gaussian process,

vi(·) ∼ GP
(
0, k̄ (·, ·)

)
, (2.18)

with vanishing mean and Gaussian covariance function, or kernel,

k̄(x, x′) = a exp
(
−(x− x′)2

4σ2

)
. (2.19)

Here, σ is the tuning width, which controls the length scale of correlation in the process
and a is an amplitude coefficient. The notation in Eq. (2.18) indicates the following: the
mean responses of neuron i to a set of stimuli, {x1, ..., xn}, are distributed according to a
multivariate Gaussian, vi(x1)

...
vi(xn)

 ∼ N
0,


k̄(x1, x1) . . . k̄(xn, x1)

... . . .
k̄(x1, xn) . . . k̄(xn, xn)


 . (2.20)

In each trial, the responses of neurons are corrupted by independent Gaussian noise of
variance equal to η2; the neural activity pattern, given a stimulus, x, is obtained as

r(x) = v(x) + z, (2.21)

where zi ∼ N (0, η2) and v(x) = (v1(x), ..vN (x)). In what follows, we will often make implicit
the dependence of r on the stimulus, x. The value of the amplitude a is fixed to 1, such
that the signal-to-noise ratio, defined as the ratio between the variance of the responses (the
diagonal elements of the covariance matrix) and the noise variance, is constant as a function
of the tuning width and equal to 1/η2 4.

Given the statistics of the noise, the joint distribution of noisy neural responses as a
function of the stimulus can be viewed as a Gaussian process as well,

ri(·) ∼ GP (0, k(·, ·)) , (2.22)

with an effective covariance function,
3This choice, which differs from the 0-1 interval used in Chapter 1, simplifies some analyses, still preserving

the generality of the results.
4In the limit of σ ≪ 1 , this constraint and the constraint adopted in Chapter 1, by fixing the variance of

responses across the stimulus space, yield equal values of the gain and Eq. (1.19)-(2.19) become equivalent.



k(x, x′) = k̄(x, x′) + η2δ̃(x, x′), (2.23)

where, in this notation, δ̃(x, x′) is a white noise kernel, which is equal to 1 when x and x′ are
the same stimulus at the same trial. The noise therefore adds a constant term proportional
to η2, also called a ‘ridge’, to the diagonal elements of the covariance matrix, leading to the
joint distribution of noisy neural responses to a set of stimuliri(x1)

...
ri(xn)

 ∼ N (0, K̄ + η2I
)
, (2.24)

where K̄ij = k̄(xi, xj) as in Eq. (2.20).
Note that, although Eq. (2.22) describes correctly the statistics of noisy neural responses,

it does not distinguish between the stochasticity due to random tuning curves and the trial-
to-trial variability. In Chapter 1, the stochasticity of the tuning curves is the result of a set
of random synaptic weights, which we assume to be fixed for a given neural circuit. This
variability should be treated as a ‘quenched’ disorder, as opposed to the ‘annealed’ disorder
of the trial-to-trial variability. We make this difference explicit by denoting as pv(r, x) the
joint distribution of stimuli and neural responses given a realization of a set of random
tuning curves, {vi}. In practice, this probability distribution is obtained by first sampling N
tuning curves from Eq. (2.18) (i.e., sampling the mean neural responses to a set of stimuli
corresponding to a fine discretization of the stimulus space, {v(x1), ...,v(xn)}), and then
considering the conditional trial-to-trial variability, pv (r|xi) = N (v(xi), η2I) for i = 1, ..., n.

2.4.2 Learning from examples

We consider a non-ideal decoder as a function learned in a supervised setting. We generate
a dataset, Dv = {ri, xi}Pi=1, which consists in P pairs of stimulus-activity pattern sampled
independently from the joint distribution pv(r, x) = pv(r|x)p(x). The task consists in learn-
ing a parametric function which takes as input an activity pattern and outputs an estimate
of the stimulus, x̂ = fθ(r). The parameters of the decoder, θ, are set so as to minimize a
loss function defined on the dataset (a principle which is sometimes called Empirical Risk
Minimization [138]),

θ̂ = arg min
θ
L (fθ,Dv) . (2.25)

The decoding performance is measured by the squared error of the stimulus estimate averaged
over the joint distribution of stimuli-activity patterns, also called generalization error (or
MSE),

ε2(Dv) =
∫
drdxpv(r, x)

(
fθ̂ (r;Dv)− x

)2
, (2.26)

where {vi} denotes the dependence of this quantity on the specific realization of the set of
tuning curves. The coding performance of a decoder are measured by averaging this quantity
over the distribution of datasets and the possible realizations of tuning curves,

ε2 =
〈〈
ε2(Dv)

〉
Dv

〉
{vi}

. (2.27)



2.4.3 Bayesian decoder

Neural architecture. We consider a two-layer neural network with a hidden layer of size
M and a readout neuron which outputs the stimulus estimate. We mimic the structure of
the ideal decoder, see Methods of Chapter 1, by treating the hidden layer as a multi-class
classifier, returning the probability that the input pattern, r, belongs to one-out-of-M classes.
The output of the m-th hidden layer neuron is modeled as

hm(r) = S(u) = exp(um)∑M
m′=1 exp(um)

, (2.28)

where S(·) is the softmax function, commonly used in machine learning [100] in the final layer
of classifiers. The vector u, which can be interpreted as a vector of pre-synaptic currents, is
obtained as a biased linear combination of the activity patterns,

u = λr + b, (2.29)

with λ a M ×N matrix and b a vector of biases. We assume the M classes to represent a
discretization of the stimulus space into M bins, and we assign to each neuron of the hidden
layer the midpoint of the m-th bin, xm, as its ‘preferred stimulus.’ We then interpret the
output of the classifier, hm, as the probability with which the input pattern ri is elicited by
a stimulus belonging to the m-th bin, xi ∈ (xm − 1/2M,xm + 1/2M); the softmax function
ensures that these probabilities sum up to 1. We denote by q(xm|r) = hm(r) the resulting
discrete posterior distribution. By assuming that q(xm|r) is a good approximation of the
true (discretized) posterior distribution, p(xm|r), we can obtain the mean of the posterior,
which corresponds to the minimum-MSE estimate, by weighting the output of the M neurons
according to their preferred positions,

x̂ =
M∑
m=1

xmhm(r). (2.30)

Loss function. We assume the set of preferred stimuli, xm, to be fixed. The training
parameters of the network are the weights and biases in Eq. (2.29), θ = {λ,b}. Given the
interpretation of the hidden layer activity as a posterior distribution over stimuli, we train
the parameters to reproduce the correct posterior. We start by considering the approxima-
tion of the posterior distribution, q(x|r), obtained as M →∞, and we quantify its distance
from the true posterior, p(x|r) through the Kullback-Leibler divergence (KL),

KL (p(x|r)||q(x|r)) =
∫
dxpv(x|r) log

(
p(x|r)
q(x|r)

)
; (2.31)

by definition, this quantity is non-negative and vanishes only when the two distributions
are identical. We consider this quantity averaged over the distribution of neural activity
patterns,

⟨KL (p (x|r) ||q (x|r))⟩pv(r) = −
∫
drdxpv(r, x) log q(x|r)−H(x|r); (2.32)



the second term is the conditional entropy of the stimulus given the neural response, a
quantity which does not depend on the decoder parameters. By using the dataset, Dv =
{ri, xi}Pi=1, to approximate the integral, we obtain

−
∫
drdxpv(r, x) log q(x|r) ≈ − 1

P

P∑
i=1

log q(xi|ri)

≈ − 1
P

P∑
i=1

log q(xm(i)|ri)

= − 1
P

P∑
i=1

log
(
hm(i)(ri)

)
,

(2.33)

where the second approximation comes from the discretization of the posterior into m bins,
by defining m(i) = m : xi ∈ [xm−1/2M,xm+1/2M ]. The quantity which appears in the last
line is the loss function we wrote in the main text Eq. (2.6); thus, a neural network classifier
estimates the posterior probability [139]. Once the parameters are learned by minimizing
the loss function,

θ̂ = arg min
θ

{
− 1
P

P∑
i=1

log
(
hm(i)(ri)

)}
, (2.34)

we quantify the decoding performance by measuring the MSE, Eq. (2.26), given the stimulus
estimate as obtained in Eq. (2.30). The loss function yields a simple update rule for the
synaptic weights. The gradient of the loss calculated at a single input pattern, L(ri) =
− log

(
hm(i)(ri)

)
, with respect to the synaptic weight between the n-th input neuron and

the m-th hidden-layer neuron, is obtained as

∂L(ri)
∂λmn

=
{
rn(hm − 1) if m ≡ m(i)
rnhm otherwise

, (2.35)

leading to the gradient-based update rule (one-sample Stochastic Gradient Descent)

λt+1
mn = λmn − ηl

(
rn(hm − δm,m(i))

)
, (2.36)

where ηl is the learning rate.

2.4.4 Error-based decoder: general setting

We consider a two-layer neural network performing a regression task. Given an activity
pattern, r, as input, the stimulus estimate is obtained as

x̂ = fθ(r) = wT
(1)h(r) + b(1), (2.37)

where h is the vector output of the hidden-layer neurons,

h(r) = f(0)
(
W(0)r + b(0)

)
. (2.38)

Here, the training parameters are θ = {w(0),W(1),b(0), b(1)}, where W(0) is the M×N matrix
of synaptic weights from the N representation neurons to the M hidden-layer neurons, w(1)



the 1×M vector of weights from the M neurons to the readout neuron, b(1), b(0) are biases
and f(0) is a (non-linear) function applied pointwise. We set the parameters of the network
so as to minimize the MSE of the stimulus estimate on the dataset,

θ̂ = arg min
θ

{
1
P

P∑
i=1

(
fθ(ri)− xi

)2
}
, (2.39)

and we quantify the decoding performance by measuring the generalization error, Eq. (2.26).

2.4.5 Linear decoder

The general case reduces to the case of a linear decoder,

x̂ = fl(r) = 1√
N

wT r + b, (2.40)

when f(0) is the identity function, wT = wT
(1)W(0) and b = wT

(1)b(0) + b(1). In order to make
the problem analytically tractable, we consider the regularized minimization problem (ridge
regression),

ŵ = arg min
w

{
1
P

P∑
i=1

(wTri + b− xi)2 + λ ∥w∥22

}
, (2.41)

where a penalty on the magnitude of the weights is added; ultimately, we will consider the
limit λ→ 0. Equation (2.41) admits the solution

ŵ = R
(
RTR+ λI

)−1
x̄, (2.42)

and
b̂ = ŵT ⟨ri⟩ − ⟨xi⟩ (2.43)

in terms of the N × P data matrix, R, with elements Rij = 1√
N
rji = 1√

N
ri(xj), and the

P -dimensional vector of training stimuli, (x̄)i = xi. From now on, we ignore the bias term,
as the empirical averages of neural responses, ⟨ri⟩, and stimuli, ⟨xi⟩, vanish in the limit of
many samples. Thus, the optimal linear decoder is obtained as

fl(r) = 1√
N
x̄T
(
RTR+ λI

)−1
RT r. (2.44)

Based on this form, it is possible to study the generalization error of the linear decoder
by exploiting a connection with a machine learning approach for learning functions: kernel
methods [108].

Overview on kernel ridge regression. We provide a brief overview of kernel ridge
regression; we refer the reader to Ref. [108] for more details. The task of kernel regression is
to select a function which belongs to a specific space of functions, called Reproducing Kernel
Hilbert Space (RKHS), defined as follows. Given a Hilbert space of functions, H, equipped
with an inner product, ⟨·, ·⟩H, this space is a RKHS if there exists a function which maps
elements of a set, y ∈ Y, to functions in H, denoted as κ(·, y), such that their inner product



with a function f evaluates the function at y, ⟨κ(·, y), f⟩H = f(y). The reproducing kernel
for the space H is defined as the function Y × Y → R obtained as

κ(y, y′) = ⟨κ(·, y), κ(·, y′)⟩H. (2.45)

Conversely, a kernel κ(·, ·), if it is symmetric and positive definite, can be used to define a
unique RKHS (Moore–Aronszajn theorem).

These spaces of functions find numerous applications in machine learning and statistics:
here, we focus on the problem of regression. In kernel ridge regression, given a dataset,
D = {zi, yi}Pi=1, where z ∈ RI and y ∈ R, and given a RKHS, H, with kernel, κ, the task is
to select the function f ∈ H : RI → R that minimizes the regularized loss,

arg min
f∈H

{
1
P

P∑
i=1

(
f(zi)− xi

)2
+ λ ∥f∥2H

}
, (2.46)

where ∥f∥2H = ⟨f, f⟩H . This minimization problem is convex and the optimal function is
obtained in closed form as

f(z) = ȳT (K + λI)−1 k(z), (2.47)
where Kij = κ(zi, zj) is the kernel Gram matrix and k(z)i = κ(zi, z).

The N → ∞ limit. We now show that, in the limit N → ∞, the solution to the
linear regression problem, in which inputs are N -dimensional vectors, corresponds to the
solution to a kernel regression problem with the input defined in the one-dimensional stim-
ulus space. In this limit, the elements of the empirical covariance matrix in Eq. (2.42),
(RTR)ij = 1

N

∑N
l=1 rl(xi)rl(xj), converge, by definition of the Gaussian process, to the ele-

ments of the kernel Gram matrix, Kij = k(xi, xj), with k defined in Eq. (2.23). Analogously,
the product between the data matrix and a neural activity pattern, r, evoked by a stimu-
lus, x, 1√

N
(RT r)i = 1

N

∑N
l=1 rl(xi)rl(x), converges to k(x)i = k(xi, x). Thus, the decoding

function, Eq. (2.44), can be written as

fl (r) = fl (r) = 1√
N
x̄T
(
RTR+ λI

)−1
RT r(x)

≈ x̄T (K + λI)−1k(x).
(2.48)

The expression in Eq. (2.48) is equivalent to the solution of a kernel regression problem, Eq.
(2.47), with z = x , y = x and κ = k 5.

From the definition of k, Eq. (2.23), we can see that the noise results in adding a constant
term proportional to η2 to the regularization coefficient, λ, therefore making it non-vanishing
even when λ→ 0. Interestingly, the noise does not contribute to the term k(x), which rep-
resents the overlap between the activity patterns in the dataset and r. An intuitive reason
for this is that, in the limit N →∞, since the decoder is linear and the noise is independent
across neurons, the noise is averaged out. An analysis of how the properties of the kernel
(here, determined by the value of σ) and the regularization coefficient affect the the gener-
alization error as a function of the number of samples, P , is reported in Ref. [80]. Here,

5Linear regression can be seen as a particular case of kernel ridge regression when the kernel is a dot-
product kernel; here, due to our assumptions on r, the dot-product kernel defined on the space of neural
responses converges to the Gaussian kernel defined in the stimulus space, klin(ri, rj) ∝ (ri)T rj = k(xi, xj).



we focus on the non-trivial case in which N is finite, and the noise affects the generalization
error even in the limit of large P .

Implicit regularization due to neural noise and finite population size. The previous
calculations show that we can obtain an approximation of the kernel regression function in
the following way. First, we evaluate N independent Gaussian processes (‘features’) with co-
variance function equal to the kernel evaluated at the training points (which, in the previous
case, correspond to stimuli {x1, ..., xP }). Then, we compute the optimal linear coefficients, ŵ,
on the set of N -dimensional features, r(x1), ..., r(xP ). The linear function, f(r(x)) = ŵT r(x),
approximates the kernel regression solution in the limit N →∞. This example is a particu-
lar instance of a deeper connection between random functions and kernel methods. Indeed,
by relying on asymptotic behaviors of the type described above, random functions can be
used to approximate kernel methods and reduce their computational burden (kernel methods
require the inversion of a P × P matrix, while the computation of the optimal regression
coefficient requires the inversion of a N ×N matrix) [140, 141] . When the number of ran-
dom functions, N , is finite, differences from the asymptotic case emerge. Jacot et al. [103]
studied a model with assumptions on the distribution of the data which bear similarity to
our setting. Here, in order to obtain an analytical expression for the generalization error,
we first summarize their results and calculations; next, we adapt them to the case of noisy
neurons in the limit of many training samples.

Expression for the generalization error. In Ref. [103] the following setting is considered.
The set of stimulus samples, x̄, is assumed to be fixed, and the data matrix, R, is obtained
by sampling the rows from N realizations of a Gaussian process, Eq. (2.22), evaluated at P
stimulus values. This yields the same statistics of the data matrix as in our problem; as the
stimuli are kept fixed, the only source of stochasticity in the dataset, D = {R, x̄}, is in the
data matrix, R. In the asymptotic limit of large P , we can make a similar assumption also in
our case (the dimensionality of the stimulus space is much smaller than the dimensionality
of the neural activity space). During the test phase, to compute the generalization error,
neural responses, r to a stimulus, x, are sampled from the conditional Gaussian distributions,
obtained under the Gaussian process assumption, Eq.(2.24),

p(r|x) =
N∏
i=1

p(ri|x)

=
N∏
i=1
N (µn(x), σ2

n(x)),
(2.49)

where
µn(x) = Ri,:K

−1k(x), (2.50)
σ2
n(x) = k(x, x)− k(x)TK−1k(x), (2.51)

with Ri,: denoting the i-th row of the matrix R, Kij = k(xi, xj) and (k(x))i = k(xi, x) as
before. The generalization error is then computed by averaging the MSE over the distribution
of stimuli and neural responses, and over the stochasticity in the dataset,

ε2
g =

〈〈
(fl(r|R)− x)2

〉
r,x

〉
R
, (2.52)



with fl defined as in Eq. (2.44), and we made explicit its dependence on the data matrix,
R. We note that, with respect to the definition of ε2 in Eqs. (2.26)-(2.27), in this case, in
the dataset, we make no difference between the trial-to-trial variability due to noise and the
stochasticity due to random tuning curves. Moreover, in this formulation, the probability of
an activity pattern, r, given a stimulus, x, (i.e., the inner average in Eq. (2.52)) depends
on the whole dataset (which consists in noisy samples) and not only on the distribution of
tuning curves. However, as we show in Sec. S3.5, in the asymptotic limit of large P , the
average over activity patterns and stimuli calculated in this way becomes equivalent to the
average over their joint distribution for a given set of tuning curves, pv(r, x), as the noise
in the training set can be averaged out. Thus, by decomposing the average over the data
matrix as the average over different realizations of tuning curves and of the noisy responses in
the dataset, ⟨·⟩R ≈ ⟨·⟩Dv ,{v}, Equation (2.52) and Equations (2.26)-(2.27) become equivalent.

Decomposition of the generalization error. The generalization error, Eq. (2.52), can be
decomposed into the sum of three terms,

ε2 = ⟨B(x) + V1(x) + V2(x)⟩x . (2.53)

Here, the first term,

B(x) =
(
⟨fl (r|R)⟩r,R − x

)2
(2.54)

is the bias of the mean output of the decoding function (i.e., averaged over different neural
responses to stimulus x, r ≡ r(x), and over different realizations of the data matrix, R). The
second term,

V1(x) =
〈
⟨fl(r|R)⟩2r

〉
R
− ⟨⟨fl(r|R)⟩r⟩

2
R , (2.55)

is the variance, over different realizations of R, of output of the decoding function averaged
over different neural responses to stimulus x. The last term,

V2(x) =
〈〈
fl(r|R)2

〉
r
− ⟨fl(r|R)⟩2r

〉
R

= ⟨Var(fl (r|R)⟩R ,
(2.56)

is the mean variance (i.e., over different realizations of R) of the output of the decoding
function evaluated at responses to the stimulus, x. We argue that, among the three terms
in Eq. (2.53), in the case of noisy neural responses and if the number of samples is large,
the dominant one is V2(x). Indeed, in the asymptotic limit of large P we expect the mean
output of the decoder, averaged over different noisy responses to stimulus x, to be unbiased
and independent on the specific dataset. As a consequence, we expect B(x) and V1(x) to be
negligible as compared to V2(x), which quantifies the variability of the decoder output driven
by the noise in the responses, r, to stimulus x. We checked the validity of this assumption in
numerical simulations (Fig. 2.3B). We also note that, in general, V2(x) constitutes a lower
bound to the generalization error.

Calculation of V2(x). The decoder output, conditioned on the data matrix, R, is a weighted
sum of independent Gaussian-distributed random variables, Eqs. (2.40) and (2.42); as a



result, the variance is obtained as

Var (fl (r|R)) = 1
N

N∑
i=1

ŵ2
iVar (ri(x)|R)

= ∥ŵ∥
2

N
σ2
n(x),

(2.57)

where σ2
n(x) is the variance of a neural response, Eq. (2.51). To compute V2(x), we have to

average this quantity over different realizations of R,

⟨∥ŵ∥2⟩R =
〈
x̄T (RTR+ λI)−1RTR(RTR+ λI)−1x̄

〉
R

= x̄T
〈
RT (RRT + λI)−2R

〉
R
x̄,

(2.58)

where we used the push-through identity, (I+UV )−1U = U(I+V U)−1 [142]. Central to the
calculations developed in [103] are the properties of the so-called general Wishart matrices,
WΣW T , with Σ a N ×N symmetric covariance matrix (e.g., a kernel Gram matrix), and W
a P ×N matrix with independent realizations of standard Gaussian random variables. The
calculations are quite involved; hereafter, we provide a sketch of the reasoning which leads
to the final result.

First, we diagonalize the kernel Gram matrix as K = UDUT , and we denote by {di}Pi=1,
the eigenvalues of K which constitute the diagonal elements of D. According to the Kosambi-
Karhunen-Loeve theorem [143], the data matrix R, which contains independent samples
from Gaussian processes with kernel k, can be written as R = 1√

N
WK1/2 , where K1/2 =

UD1/2UT and Wij ∼ N (0, 1), such that ⟨RTR⟩W = K. This allows us to substitute the
average over the data matrix, R, with the average over the matrix W . We rewrite Eq. (2.58)
as

⟨∥ŵ∥2⟩R = x̄T
〈
d

dz
A(z)

∣∣∣∣
z=−λ

〉
W

x̄, (2.59)

with A(z) defined as

A(z) = 1
N
K1/2W T

(
WKW T − zI

)−1
WK1/2. (2.60)

We now work, without loss of generality, in the diagonal basis, such that K = D. A key
result of Ref. [103] is that, in this basis, the expected value of the matrix A(z) is a diagonal
matrix with elements 〈

A(z)ii|z=−λ

〉
W
≈ di

di + λ̃
, (2.61)

with λ̃ = λ̃(z)|z=−λ defined through the implicit equation

λ̃ = λ+ λ̃

N

P∑
i=1

di

di + λ̃
. (2.62)

Therefore,
〈
A(z)|z=−λ

〉
W

= K(K + λ̃)−1. A similar result holds for the derivative of the



matrix, for which we obtain that〈
d

dz
A(z)

〉
W
≈ d

dz
⟨A(z)⟩W

≈ −dλ̃(z)
dz

K
(
K + λ̃(z)

)−2
(2.63)

Finally, by inserting Eq. (2.63) into Eq. (2.59), we have that

⟨∥ŵ∥2⟩R = dλ̃

dλ
x̄TK

(
K + λ̃

)−2
x̄, (2.64)

and, by combining the result with Eqs. (2.57)-(2.56), we obtain

V2(x) ≈ dλ̃

dλ

x̄TMλ̃x̄

N
σ2
n(x), (2.65)

where Mλ̃ = K(K + λ̃)−2.

Approximations for large P . The expression above still depends on the specific choice of
the dataset, through the eigenvalues of the Gram matrix, K, the stimuli in the dataset, x,
and the posterior variance of neural responses, σ2

n(x). Here, we evaluate these quantities in
the the large-P limit, in which they depend exclusively upon the properties of the kernel
function, k.

First, we write the kernel Gram matrix as K = K̄ + η2I, where K̄ij = k̄(xi, xj) is the
noise-free kernel Gram matrix with k̄ as in Eq. (2.19). As a result, the eigenvalues of the
matrix K are obtained as di = d̄i + η2, with d̄i being an eigenvalue of K̄; the eigenvectors,
the columns of the matrix U , are the same for the two matrices. The matrix eigenvalue
problem,

K̄ui = d̄iui, (2.66)

with ui the i-th column of U , for P →∞ approaches an integral eigenvalue problem

d̄ciϕi(x) =
∫
d′xp(x′)k̄(x, x′)ϕi(x′)

≈ 1
P

P∑
l=1

k̄(x, xl)ϕi(xl),
(2.67)

where p(x) = U [−1
2 ,

1
2 ] is the distribution of stimuli [82]. The eigenvectors (eigenfunctions)

and eigenvalues, respectively, in the two formulations are related through
√
P (ui)j ≈ ϕi(xj) (2.68)

and
P d̄ci ≈ d̄i; (2.69)

the P -dependent factors arise due to the discretization and the different normalizations of
eigenfunctions and eigenvectors. Equation (2.67) is the integral eigenvalue problem for the
kernel operator associated with k̄, with respect to the probability density p(x); the eigenfunc-
tions ϕi(x) are orthonormal, i.e.,

∫
dxp(x)ϕi(x)ϕj(x′) = δij . Eigenfunctions and eigenvalues



play a central role in analyses of the properties of a RKHS; indeed, from Mercer’s theorem
[144]) it is possible to represent the elements of the kernel as a sum of its eigenfunctions, as

k̄(x, x′) =
P ′∑
i=1

d̄ciϕi(x)ϕi(x′), (2.70)

with P ′ the number of solutions to integral problem in Eq. (2.67), potentially infinite. We
note the matrix problem yields P eigenvalues, while P ′ can be infinite, in general. This
is indeed the case for a Gaussian kernel, but the eigenvalues are exponentially suppressed
after a threshold which depends on the value of σ. By ignoring boundary conditions and
assuming translational invariance, we have that d̄ci ∼ exp(−σ2i2), where i is the rank of the
eigenvalue [108, 72] (Fig. S2.1A). Thus, it is sufficient to choose P ≫ 1/σ to ensure that the
non negligible eigenvalues are well approximated.

By applying Mercer’s theorem, we can approximate the value of the kernel function at
at a stimulus x, (k̄(x))j = k̄(xj , x), as

k̄(xj , x) =
P ′∑
i=1

d̄ciϕj(xj)ϕj(x)

≈ 1√
P

P∑
j=1

d̄i(ui)jϕj(x),
(2.71)

where we used the approximations in Eqs. (2.68)-(2.69). Equation (2.71) can be written, in
vector form, as

k̄(x) = 1√
P
UD̄ϕ⃗(x), (2.72)

with ϕ⃗(x) = {ϕi(x)}Pi=1 and D̄ = diag(d̄1, ..., d̄P ); the approximation above goes by the name
of Nystrom method [145]. Finally, we note that, by definitions of k and k̄, we have that
k(x) = k̄(x).

We use the approximations derived above to obtain a closed-form expression of Eq.
(2.65). The kernel eigenfunctions form an orthonormal basis of functions which are L2 in
the stimulus space [108]. As a result, there exists a set of weights, {w̄i}Pi=1, such that we can
decompose the target function in this basis, x = 1√

P

∑P
i=1 w̄iϕi(x), with x ∈ [0.5, 0.5]. In

particular, for the vector of stimuli in the training set we have that we have that x̄T = w̄TUT .
These weights can be calculated as

w̄i =
√
P

∫
dxp(x)xϕi(x). (2.73)

Figure S2.1 illustrates the behavior of the kernel eigenvalues and eigenvectors, as well as
of the optimal weights, as a function of the value of σ. The decomposition of the target
function allows us to evaluate the numerator on the r.h.s. of Eq. (2.65), as

x̄TMλ̃x̄ ≈ w̄TUTK(K + λ̃I)−2Uw̄
= w̄TD(D + λ̃I)−2w̄

=
P∑
i=1

(P d̄ci + η2)w̄2
i(

P d̄ci + η2 + λ̃
)2 ,

(2.74)



where the first equality is obtained by substituting K = UDUT and exploiting the fact that
UUT = I, while in last equality we substituted di = d̄i+η2 = P d̄ci +η2. In this limit, we also
have that the posterior variance is dominated by the noise variance; indeed, we have that

σ2
n(x) = k(x, x)− k(x)TK−1k(x)

≈ k(x, x)− 1
P
ϕ⃗(x)D̄UT (UDUT )−1UD̄ϕ⃗(x)

≈ k(x, x)− 1
P

P∑
i=1

P 2d̄c
2
i

P d̄ci + η2ϕi(x)2,

(2.75)

where we exploited the fact that k(x) = k̄(x) and we substituted the Nystrom approximation,
Eq. (2.72). We now consider the terms up to an index i′ ≪ log(P )/σ, such that we have
P d̄ci ≫ η2 P . For these indices, we have that

P 2d̄c
2
i

P d̄ci + η2 ≈ P d̄
c
i , (2.76)

while the other indices correspond to terms which are exponentially small, as they scale as
P 2d̄c

2
i ∼ P 2 exp(−2i2σ2). Thus, by truncating the sum in Eq. (2.70) at index i′, we obtain

1
P

P∑
i=1

P 2d̄c
2
i

P d̄ci + η2ϕi(x)2 ≈ 1
P

i′∑
i=1

P d̄ciϕi(x)2 ≈ k̄(x, x), (2.77)

which results in the posterior variance equal to the noise variance,

σ2
n(x) ≈ k̄(x, x) + η2 − k̄(x, x) = η2. (2.78)

Finally, by evaluating dλ̃
dλ as

dλ̃

dλ
= 1 + 1

N

dλ̃

dλ

(
P∑
i=1

di

di + λ̃
−

P∑
i=1

λ̃

(di + λ̃)2

)

=
(

1− 1
N

P∑
i=1

d2
i

(di + λ̃)2

)−1 (2.79)

and combining Eqs.(2.65), (2.74) and (2.78), we obtain the expression which appears in the
main text, Eq. (2.13):

ε2 ≈ η2

N −
∑P
i=1

(
di

di+λ̃

)2

P∑
i=1

diw̄
2
i(

di + λ̃
)2 , (2.80)

with di = P d̄ci + η2. To complete the calculation, λ̃ must be evaluated in the limit λ→ 0, to
obtain the implicit Eq. (2.15),

P∑
i=1

di

di + λ̃
= N. (2.81)



2.4.6 Lazy regime

We provide a brief background on the so called ‘lazy regime,’ in which neural networks
‘behave like kernel methods’. By this we mean that the function learned by the network can
be expressed as the solution to a kernel regression problem, Eq. (2.47) with λ→ 0, with k a
kernel that depends exclusively on the parameters of the network at initialization. We refer
the reader to Refs. [96, 97] for a more rigorous treatment.

We start by considering the Taylor expansion of the output of the network around the
initialization parameters,

fθ(r) = fθ0(r) + (θ − θ0)T∇θfθ(r)|θ0 , (2.82)

where θ is the vector of all the parameters of the neural network, initialized at θ0, and
∇θfθ(r) is the gradient column vector of the network output with respect to the parameters
(Jacobian); as an example, in a two-layer neural network with M hidden neurons, the vector
θ has dimension Np = (N + 1)M +M + 1.

Equation (2.82) can be regarded as a linear combination of a set of non-linear ‘features’ of
the input defined through the gradient of the output function with respect to the parameters
of the network, ψ̄(r; θ) = ∇θf(r). Empirically, it has been observed that, in large neural
networks (with many parameters) and weights initialized according to a distribution with
sufficiently large variance, the network fits the training data remarkably well with minimal
variations in the parameters values. More precisely, the criterion for this ‘lazy’ training to
occur is formulated by imposing that the amount of change in the parameters, ∥θ − θ0∥,
required for a substantial decrease in the loss function, causes a negligible change in the
Jacobian of the network, ∇θfθ(r) (see [97]). As a result, the feature map defined above,
ψ̄(r; θ), is fixed during training, and equal to its form at initialization. We now consider the
loss function, Eq. (2.46), rewritten as

L = 1
2 ∥f − x̄∥

2 , (2.83)

where f = {f(ri)}Pi=1 and (x̄)i = xi; we added a factor of 1/2 for later convenience and we
dropped the divisive constant, P , for the sake of simplicity. When the weights are updated
according to the gradient of the loss function with respect to its parameters, and if we
consider the limiting case of a vanishing small learning rate, the parameters evolve according
to the gradient flow equation, as

dθ

dt
= −∇θL

= −∇θf(f − x̄),
(2.84)

where ∇θf is the Np × P matrix of derivatives

∇θf =


∂f(r1)
∂θ1

· · · ∂f(rP )
∂θ1... . . . ...

∂f(r1)
∂θNp

· · · ∂f(rP )
∂θNp

 . (2.85)



The vector output of the network then evolves according to the equation

df
dt

= ∇θfT
dθ

dt
= −KNTK(f − x̄),

(2.86)

where

(KNTK)ij = kNTK(ri, rj) =
Np∑
l=1

∂f
(
ri
)

∂θl

∂f
(
rj
)

∂θl
(2.87)

is the Gram matrix of the so-called neural tangent kernel (NTK), kNTK . In the lazy training
regime described above, the neural tangent kernel remains constant during training; more-
over, when the hidden layer size M →∞ and weights are initialized appropriately, the kernel
converges to a (deterministic) function which is independent of the values of the parameters
at initialization [96, 146, 97]. The gradient flow dynamic converges to the kernel regression
solution [96], and the final decoding function converges to

fNTK(r) = x̄T (KNTK)−1 kNTK(r), (2.88)

where (kNTK(r))i = kNTK(ri, r).
For a two-layer neural network with rectifying linear activation function (ReLu) in the

hidden layer, vanishing bias, and weights initialized as

(W(0))ij ∼ N (0, 1), (2.89)

(W(1))i ∼ N
(

0, 2
M

)
, (2.90)

the deterministic value of the neural tangent kernel in the infinite-M case can be calculated
explicitly [97, 110], as

KNTK,relu(r, r′) = ∥r∥ ∥r∥
(

2u
(

1− arccos(u)
π

)
+
√

1− u2

π

)
, (2.91)

where u = rT r′/ ∥r∥ ∥r∥ is the cosine of the angle between the two vectors, r and r′.
We found that the NTK associated with a similar architecture, but with an Erf (er-

ror) non-linear function performs slightly better empirically. In this case, the NTK can be
calculated [147] as

KNTK,Erf (r, r′) = arcsin

 rT r′√(
1 + ∥r∥2

) (
1 + ∥r′∥2

)
. (2.92)

2.4.7 Details of numerical simulations

Numerical simulations are carried out with custom codes written in Julia [148].

Bayesian decoder. We train a Bayesian decoder with M = 500 hidden-layer neurons
with preferred stimuli, xm, equally spaced in the stimulus space. For a given set of tuning



curves, {vi}, we generate a dataset composed by P = γNP , where Np = MN , samples
from the joint distribution pv(r, x). The results are obtained by averaging over 8 realizations
of the set of tuning curves. The parameters of the network, {λ,b}, are learned through
stochastic gradient descent on the loss on mini-batches of size 128 with Adam algorithm
[149], with learning rate equal to 10−3 and otherwise standard hyperparameters. The train-
ing is iterated over multiple passes over the data (epochs) with a maximum of 2000 epochs
and stopped when the training loss running average stays constant (with a tolerance of 10−5)
for 10 consecutive epochs. The decoder is then tested by calculating the generalization error
on a set of 106 samples from the joint distribution pv(r, x).

Linear decoder. For a given set of tuning curves, we generate a dataset composed by
P = γN samples from the joint distribution pv(r, x). We compute the optimal regression
coefficients as a function of the data matrix R, Eq. (2.42). We then test the decoder by
calculating the generalization error on a set of 106 samples; in order to calculate the different
terms in Eq. (2.53), we divide the test points into 106/P noisy responses to each stimulus
used in the training set. The results are averaged over 8 realizations of the set of tuning
curves. We calculate the analytical prediction by solving the Gram matrix eigenvalue prob-
lem and by solving numerically Eq. (2.15) to find the effective regularizer.

Lazy regime. We analyze the properties of the kernel regression solution obtained with the
deterministic limit of the neural tangent kernel. The decoding function is obtained as in Eq.
(2.47) with the NTK defined as in Eq. (2.92). Kernel methods are non-parametric methods,
thus we kept constant the ratio between the number of samples and the dimensionality of
the data, N . For a given set of tuning curves, we generate a dataset composed by P = γnN
samples from the joint distribution pv(r, x). We compute the P × P kernel Gram matrix to
obtain the decoding vector α = x̄T (KNTK)−1. We test the decoding function by computing
kNTK(r) on 106 samples and by calculating the generalization error. The results are aver-
aged over 8 realizations of the set of tuning curves.

Rich regime. As pointed out in [97], the transition between lazy and rich regime is con-
trolled by the variance of the weights at initialization. An intuition for this, is that, by
rescaling the weights, we can violate the condition necessary for the lazy training to occur,
namely that an appreciable change in the loss can be obtained by a negligible change in the
parameters. We trained a neural network with a hidden layer of size M in the rich regime
by initializing the biases to 0 and the weights as

(W(0))ij ∼ N (0, αs
M

), (2.93)

(W(1))i ∼ N
(

0, 2
M

)
, (2.94)

where αs = 10−3. For a given set of tuning curves, {vi}, we generate a dataset composed
by P = γNP , where Np = MN + 2M + 1, samples from the joint distribution pv(r, x).
The results are obtained by averaging over 8 realizations of the set of tuning curves. The
parameters of the network are learned through stochastic gradient descent on the MSE loss
on mini-batches of size 128 with Adam algorithm [149], with learning rate equal to 10−4

and otherwise standard hyperparameters. The training is iterated over multiple passes over



the data (epochs) with a maximum of 2000 epochs and stopped when the training loss
running average stays constant (with a tolerance of 10−7) for 10 consecutive epochs. The
decoder is then tested by calculating the generalization error on a set of 106 samples from
the joint distribution pv(r, x). The crossover value Msat is the value of M at which the
difference with the decoding performance of the widest network is smaller that the 10%
of the difference in decoding performances between the widest and the smallest network,
ε2(Msat)− ε2(Mmax) < ε2(Mmin)−ε2(Mmax)

10 .



S2.5 Supplementary Information

S2.5.1 Differences in the calculation of the generalization error

Here, we show that, in the asymptotic limit of large P , the expression for the generalization
error from Ref. [103] becomes equivalent to the generalization error that we want to compute,
Eqs. (2.26)-(2.27). The generalization error in Ref. [103], Eq. (2.95) is written explicitly as

ε2
g =

∫
dRp(R)

[∫
drdxp(x)p(r|x;R) (fl(r;R)− x)2

]
, (2.95)

where we made explicit the dependence of the conditional distribution of neural responses
given the stimulus on the data matrix, R. First, we note that, by sending P → ∞, we can
consider the set of training stimuli, x̄ = {xi}Pi=1, as an infinite discretization of the stimulus
space, and we can decompose the average over the data matrix as

p(R) = p(R|{vi})p({vi}). (2.96)

Here, {vi} = {vi(x1), ..., vi(xP )} is the set of tuning curves, distributed according to the
noise-free Gaussian process distribution, Eq. (2.20),vi(x1)

...
vi(xP )

 ∼ N
0,


k̄(x1, x1) . . . k̄(xP , x1)

... . . .
k̄(x1, xP ) . . . k̄(xP , xP )


 , (2.97)

and, as the noise is independent across neurons and across trials, we have that

p(R|{vi}) =
P∏
i=1

pv(ri|x) =
P∏
i=1
N
(
v(xi), η2

)
, (2.98)

where v(x) = (v1(x), ..vN (x)) ad ri are the columns of the matrix R. As we assumed P
large, R becomes independent on the specific set of training stimuli, and the stochasticity in
the dataset, Dv = {R, x̄}, depends only on the stochasticity in the neural responses, R, as
p(Dv) ≈ p(R|{vi}).

However, we p(r|x;R) depends on the noisy dataset R and not only on {vi}, as in
Eq. (2.26). We recall that the new activity patterns are distributed according to p(r|x) =∏N
i=1 p(ri|x) = ∏N

i=1N (µn(x), σ2
n(x)), with µn(x) and σ2

n(x) as in Eqs. (2.51)-(2.50) . In Eq.
(2.78) we showed that, in the asymptotic limit P → ∞, σ2

n(x) ≈ η2, independently on the
specific realization of the dataset, i.e., the variance of a neural response is only dictated by
the variance of the noise. As for the mean, by diagonalizing the kernel Gram matrix and
writing R = WUK1/2UT , we obtain

µn(x) = Ri,:K
−1k(x)

≈ 1√
PN

Wi,:UD
1/2UT (UDUT )−1UD̄ϕ⃗(x)

= 1√
PN

Wi,:U
P∑
i=1

P d̄ci

√
P d̄ci + η2

P d̄ci + η2 ϕi(x),

(2.99)



where the approximation comes from Eq. (2.72) and Wi,: denotes the i-th row of W . By
considering the limit of large P , similarly to the calculation of the posterior variance, we
have that P d̄c

i

√
P d̄c

i +η2

P d̄c
i +η2 ≈

√
P d̄ci , and we can write Eq. (2.99) in matrix form as

µn(x) = 1√
N
Wi,:UD̄

1/2ϕi(x); (2.100)

such expression does not depend on the variance of the noise, implying that the mean of the
posterior distribution is only determined by the distribution of the noise-free tuning curves.
As a result, the probability of a neural activity pattern, r, becomes independent on the
specific realization of the noise in the activity patterns in the dataset, and depends only on
the tuning curves, p(r|x;R) ≈ pv(r|x) = ∏N

i=1N (v(x), η2). An intuitive explanation for this
fact is that, if we have enough data samples, we can average out the noise in the responses
and obtain an estimate of the noise-free tuning curve, v(x), at any value of the stimulus.

Thus, we can rewrite Eq. (2.95) as

ε2
g =

∫ N∏
i=1

dvidRp(R|{vi})p({vi})
[∫

drdxp(x)p(r|x;R) (fl(r;R)− x)2
]
,

≈
∫ N∏

i=1
dvip({vi})

[∫
dDvp(Dv)

[∫
drdxp(x)pv(r|x) (fl(r;Dv)− x)2

]]
,

(2.101)

where ∏N
i=1 dvi = ∏N

i=1
∏P
j=1 dvi(xj), and the generalization error becomes equivalent to our

expression, Eqs. (2.26)-(2.27).



S2.5.2 Supplementary figures

A B C

Fig. S2.1 Kernel spectral properties. (A) Kernel eigenvalues, d̄ci , as obtained
by solving numerically Eq. (2.67), for different values of σ. (B) First three kernel
eigenfunctions, ϕi(x) (grey, shifted to aid visualization) and high-index eigenfunc-
tion (i = 30) for a kernel with small (blue, σ = 0.02) and large tuning width (red,
σ = 0.9). The low frequency eigenfunctions do not depend on the value of σ, and
are similar to Fourier modes, as expected from a translational invariant kernel.
However, at higher frequencies, the boundary effects become relevant and a differ-
ence as a function of σ emerge. (C) Optimal readout weights, w̄i, in the basis of
kernel eigenfunctions, as obtained by calculating Eq. (2.73), for different values of
σ. Since the target function is odd and kernel eigenfunctions are sine and cosine
functions, the weights corresponding to an even index vanish; for simplicity, only
non-vanishing weights are shown.





Chapter 3

Efficient Coding and Decoding: a
Variational Autoencoder
Framework

3.1 Introduction

Normative models in neuroscience offer a theoretical framework to understand the optimality
principles underlying information transmission and stimulus representation in the brain.
Among these, the efficient coding hypothesis [8] posits the neural responses are set so as
to maximize the information about external stimuli, under biological resource constraints.
Despite this minimal assumption, this hypothesis has been successful in predicting neural
responses to natural stimuli in various sensory areas [9, 150, 10]. The typical approach
consists in specifying an encoding model, as a stochastic map between stimuli and neural
responses. The parameters of this model are then chosen so as to optimize a function that
quantifies the coding performance, e.g., the mutual information between stimuli and neural
responses. This optimization is carried out under some metabolic cost proportional, e.g., to
the energy needed to emit a spike [151]. The decoding process is ideally carried out in a
Bayesian framework. Prior knowledge about the environment is combined with the sensory
evidence, the likelihood of observing neural response given the encoding model, to form a
posterior belief about the stimulus [21, 152].

The idea that the brain is capable of manipulating probabilities and uncertainty dates
back to Helmoltz’s view of perception as an inference process, in which the brain learns an
internal statistical model of sensory inputs [153]. Mathematically, such an internal model can
be formalized as a generative model which describes how external stimuli are generated by
sampling from a conditional distribution given a set of ‘latent,’ elementary features [154, 6].
These features might be chosen so as to allow for a semantic interpretation, such as oriented
edges or textures in generative models for natural images [155, 156], but this does not have
to be the case in general. It is then assumed that the role of sensory areas is to perform
statistical inference by computing the posterior distribution over the latent features which are
most likely to have generated the sensory observation, thereby ‘inverting’ the internal model.
Such posterior distribution is represented in the neural activity, and different representation
mechanisms have been proposed [157, 158, 159]. As opposed to the efficient coding approach,
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which prescribes a stochastic mapping from stimulus to neural activity, the generative model
approach prescribes a stochastic mapping from neural activity to stimulus. This mapping
implies a posterior distribution on neural activity, which can be read off from neural data.

Here, we consider an extended efficient coding approach: while, typically, only the sensory
encoding process is optimized, we consider jointly the decoding process. In addition to a class
of encoding transformations from stimuli to neural responses in a sensory area, we assume
a class of generative models implemented in the downstream area. These define maps from
neural activity patterns, corresponding to latent variables, to distributions over stimuli.
Optimality is achieved when the generative distribution matches the true distribution of
stimuli in the environment. If one assumes that the encoder and the decoder are jointly
optimized in this framework, the system has the structure of a variational autoencoder
(VAE) [160].

Similarly to the classical efficient coding framework, here the encoder is set so as to
maximize a variational approximation to the mutual information between stimuli and neural
responses under a constraint on the neural resources. However, an important aspect of this
formulation is that the constraint, rather than being imposed by hand, is a direct consequence
of the assumption of an optimal internal model. This constraint is obtained as the statistical
distance between the stimulus-evoked distribution and the prior distribution over neural
activity assumed by the generative model. The latter, in turn, can be interpreted as the
statistics of spontaneous neural activity [161]; the statistical constraint can thus be viewed
as the metabolic cost of stimulus-induced deviations from spontaneous neural activity.

We apply the theoretical framework to the study of a population coding model with
neurons with bell-shaped tuning curves. By capitalizing on recent advances in the VAE
literature, we solve the optimization problem as a function of the constraint on neural re-
sources: we obtain a family of solutions which yield equally satisfying generative models
[162]. However, these solutions make different predictions about the corresponding neural
representations, which correspond to different arrangements of tuning curves, statistics of
spontaneous neural activity, and coding performances. Related approaches have been ex-
plored in the literature, and predictions about the optimal allocation of coding resources,
i.e., the tuning curves, as a function of the stimulus distribution have been derived [46, 21].
We further illustrate how, in our framework, the optimal allocation of coding resources as
a function of the stimulus distribution varies as a function of the constraint. Despite the
differences in the objective function, our results are consistent with previous predictions
in a weakly constrained regime, while more complex behaviors are observed in a highly-
constrained regime. Our results illustrate how the interactions between the encoder and the
internal model shape neural representations of sensory stimuli.

3.2 Methods

In what follows, we denote vectors in bold font and scalars in regular font. We denote as
⟨f(z)⟩p(z) the expectation of a function f of a random variable z distributed according to
p(z), ⟨f(z)⟩p(z) =

∫
dzp(z)f(z).

Encoder (sensory representation). We consider a population of N neurons respond-
ing to a continuous scalar stimulus, x, distributed according to a prior distribution, p(x)
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Fig. 3.1 Model architecture. Left: encoder, or sensory representation. Neurons
emits spikes according to bell-shaped tuning curves in response to a stimulus, x,
drawn from the distribution p(x), and the population response consists in a neural
activity pattern, r. Right: decoder, or generative model. The generative model
maps neural activity patterns, sampled from the prior distribution (a Boltzmann
machine), qψ(r), to parameters, µ and σ, of a Gaussian distribution over stimuli,
qψ(x|r). When an activity pattern is observed, qψ(x|r) is used to obtain an estimate
of the stimulus which evoked it, as well as the associated uncertainty. The distortion
term drives the system to maximize the likelihood of the observed stimulus given
the generative distribution, while the rate term pushes the conditional encoding
distribution to match the distribution of spontaneous activity of the network.

(Fig. 3.1, left). In order to avoid confusion with the prior distribution over neural activity
patterns, q(r), defined below, we will refer to p(x) as the data, or stimulus, distribution.
We consider neural activity in the limit of short time intervals, such that each neuron either
emits a spike or is silent. The set of possible activity patterns is then the set of binary
vectors, r = (r1, r2, ..., rN ) where ri ∈ {0, 1}; in what follows, the sum ∑

r · denotes the sum
over these 2N binary patterns. The encoding distribution is the conditional probability dis-
tribution over neural activity patterns given the stimulus, pθ(r|x), where θ denotes the set of
parameters. We assume neurons to spike independently, such that pθ(r|x) = ∏N

i=1 pθ(ri|x).
We consider the limit of small time bins of the Poisson model for spiking neurons [163,

164], by taking into account only the first two terms of the Poisson distribution. With proper
normalization, the probability of spiking of a neurons is obtained as

pθ(ri = 1|x) = fi(x)
1 + fi(x) , (3.1)

where fi(x) is the neuron’s tuning curve. We parametrize tuning curves as Gaussian func-



tions, a shape widely observed in early sensory areas, as

fi(x) = Ai exp
(
−(x− ci)2

2w2
i

)
, (3.2)

with ci the preferred stimulus of neuron i, wi the tuning width, and Ai the amplitude.
Thus, the probability of spiking of a neuron can be written as pθ(ri = 1|x) = S(ηi(x)), with
ηi(x) = (x−ci)2

2w2
i
− logAi and S(y) = 1/(1 + exp(−y)), the logistic function. In the canonical

form of exponential families, the resulting multivariate Bernoulli distribution can be written
as

pθ(r|x) = exp
(

η(x)T r−
N∑
i=1

log
(
1 + eηi(x)

))
, (3.3)

with η(x) = (η1(x), ..., ηN (x)) the vector of natural parameters and θ = {Ai, ci, wi}Ni=1 the
set of parameters of the encoder.

Decoder (generative model). We define an internal model of the environment as a
generative model, by specifying a parametric joint probability of neural activity patterns
and sensory stimuli, qψ(r, x), where ψ denotes the set of parameters (Fig. 3.1, right). The
neural activity patterns are treated as latent variables, sampled from a prior distribution,
qψ(r), and mapped to a distribution over stimuli, qψ(x|r). As the prior distribution does not
depend on the stimulus, we interpret qψ(r) as describing the statistics of the spontaneous
neural activity. We model this distribution through a maximum-entropy distribution con-
strained by the first- and second-order statistics of neural activity, a model which has been
proposed as a model of the distribution of activity in neural systems, e.g., in retina and in
cortex [165]. In the case of binary patterns, this maximum-entropy distribution takes the
form of an Ising model, or Boltzmann machine,

qψ(r) = exp
(
hTr + rTJr− logZ

)
, (3.4)

where h is the vector of biases, J is the matrix of couplings (with our choice of parametriza-
tion, the diagonal elements of J vanish), and Z = ∑

r exp(hTr + rTJr) is a normalization
constant (also called partition function).

On the basis of experimental findings, it has been suggested that the brain encodes both
a stimulus estimate and the associated uncertainty [128, 166]. Thus, we model the generative
distribution as a Gaussian, whose mean (stimulus estimate) and variance (uncertainty) are
generic functions of neural activity patterns,

qψ(x|r) = N (µϕ(r), σϕ(r)) ; (3.5)

we parametrize these functions as two-layer neural networks, and we denote by ϕ the set
of weights and biases. The parameters of the generative distribution and of the prior,
ψ = {ϕ,h, J}, constitute the set of parameters of the generative model. In this frame-
work, while the encoding distribution and the prior of the generative model are defined on
the space neural activity patterns, the generative distribution is defined on the space of stim-
uli, which can be related to behavioral outputs (stimulus estimate). The neural network,
thus, is not intended to be interpreted as a biological neural circuit, but just as a flexible



model of the map between neural activity and behavioral output.

Training objective. The internal model is optimal when the output probability distri-
bution, qψ(x) = ∑

r qψ(x|r)qψ(r), matches the true distribution of stimuli, p(x). We achieve
this by setting the parameters of the generative model so as to minimize the Kullback-Leibler
(KL) divergence between the data and the generative distribution,

min
ψ

{
KL (p(x)||qψ(x)) = H(p)− ⟨log qψ(x)⟩p(x)

}
, (3.6)

where H(p), the stimulus entropy, does not depend on the parameters. In order to learn the
optimal parameters on the basis of a set of data points, we assume a two-stages encoding-
decoding process. The encoder maps a stimulus sample, x, to a neural activity pattern, r,
according to pθ(r|x). The activity pattern corresponds to a configuration of latent variables
in the generative model, and is mapped back (‘decoded’) to a distribution over stimuli
according to qψ(x|r). By including also the encoder, we can rewrite the second term on the
right-hand-side of Eq. (3.6) as the sum of three terms,

⟨log qψ(x)⟩p(x) =
〈

KL (pθ(r|x)||qψ(r|x)) +
∑

r
pθ(r|x) log qψ(x|r)−KL (pθ(r|x)||qψ(r))

〉
p(x)

.

(3.7)
The first term in the sum involves the posterior distribution over neural activity patterns,
qψ(r|x) = qψ(x|r)qψ(r)/qψ(x); calculating qψ(x) requires summing over all patterns of activ-
ity, r, which is computationally prohibitive. Instead, we use the fact that the KL divergence
is positive, and vanishes only when the two distributions are identical, to convert Eq. (3.7)
into an inequality,

⟨log qψ(x)⟩p(x) ≥
〈∑

r
pθ(r|x) log qψ(x|r)−KL (pθ(r|x)||qψ(r))

〉
p(x)

. (3.8)

Since the generative distribution, log qψ(x), is often referred to as the ‘evidence’ for a data
point, x, the quantity on the right hand side of Eq. (3.8) goes by the name of ‘evidence
lower bound’ (ELBO).

We can then address a variational approximation to the problem in Eq. (3.6) by maximiz-
ing the lower bound (ELBO). Equivalently, we optimize the encoder and decoder parameters
so as to the minimize the negative ELBO, written as the sum of two terms,

min
{ψ,θ}

{−ELBO = D +R} ; (3.9)

borrowing the nomenclature from rate-distortion theory, we define as distortion the quantity

D =
〈
−
∑

r
pθ(r|x) log qψ(x|r)

〉
p(x)

, (3.10)

equal to to the opposite on the right-hand-side of Eq. (3.8), which measures the average
log-probability of a stimulus, x, after the encoding-decoding process, and as rate the quantity

R = ⟨KL (pθ(r|x)||qψ(r))⟩p(x) =
〈∑

r
pθ(r|x) log

(
pθ(r|x)
qψ(r)

)〉
p(x)

, (3.11)



equal to the opposite of the second term, which measures the statistical distance between
the encoding distribution and the prior assumed by the generative model. This framework
goes by the name of variational autoencoder (VAE) [160]. As one typically does not have
access to the true data distribution, but only to a set of samples, the average over p(x) is
approximated by an empirical average over a set of P samples, ⟨f(x)⟩p(x) ≈

∑P
i=1 f(xi)/P .

We note that, due to the fact that the variance of the generative distribution depends on
the neural responses, the distortion differs from the more usual mean squared error (MSE)
loss function of classical autoencoders, also commonly employed to measure the performance
of neural codes. Indeed, here the distortion function is written as

D =
〈∑

r
p(r|x)

(
(µϕ (r)− x)2

2σ2
ϕ(r) + 1

2 log
(
2πσ2

ϕ(r)
))〉

p(x)
, (3.12)

while the MSE is obtained as

ε2 =
〈∑

r
p(r|x) (µϕ (r)− x)2

〉
p(x)

, (3.13)

where we have used the fact that the optimal estimator is given by the mean of the posterior.

Constrained optimization and connection with efficient coding. It is a known issue
in the VAE literature that, when the generative distribution is flexible enough as compared
to the data distribution (meaning that qψ(x|r) has enough degrees of freedom to approximate
complex distributions), the ELBO optimization problem exhibits multiple solutions. Opti-
mization algorithms based on stochastic gradient descent are biased towards solutions with
low rate and high distortion, a phenomenon which goes by the name of posterior collapse
[167, 162]. In the extreme case, the model relies entirely on the power of the decoder and
ignores the latent variables altogether: all realizations of the latent variables are mapped to
the data distribution, qψ(x|r) ≈ p(x), and, consequently, all stimuli are mapped to the same
representation, pθ(r|x) ≈ qψ(r).

We overcome this issue by addressing a related constrained optimization problem. We
minimize the distortion subject to a maximum value, or ‘target’, of the rate, R̄:

min
{θ,ψ}

D

subject to R ≤ R̄.
(3.14)

The set of parameters {θ, ψ} satisfying the constraint R ≤ R̄ is called feasible set. By writing
the associated Lagrangian function with multiplier β ≥ 0, we have that

max
β≥0

{
L(θ, ψ, β) = D + β(R− R̄)

}
=
{
D if {θ, ψ} is feasible
∞ otherwise.

(3.15)

Solutions of Eq. (3.14) can thus be found as solutions to the ‘minmax’ problem,
min{θ,ψ} maxβ L(θ, ψ, β), but this problem is numerically intractable1. Instead, we solve the

1Numerically, the optimization can be carried out by applying stochastic gradient descent on the loss
function. In order to respect the constraint, the gradient with respect to the parameters, {θ, ψ}, should be
projected on the feasible set. This implies finding the closest vector to the gradient which belongs to the
feasible set, and update the parameters according to such ‘projected gradient’. Typically, due to the high-
dimensionality of the parameters space and the non-linearity of the constraint, the projected gradient is hard
to calculate.



dual ‘maxmin’ problem, defined as

max
β≥0

min
{θ,ψ}

D + β(R− R̄). (3.16)

The solution of the dual problem yields a lower bound for the original (primal) problem, as
maxβ min{θ,ψ} L ≤ min{θ,ψ} maxβ L. If D and R are convex and the solution satisfies certain
conditions (Karush–Kuhn–Tucker conditions [168]) we have the so-called strong duality, and
the solutions to dual and primal problems are identical. In the dual problem, the constraint
β ≥ 0 is handled straightforwardly, and we can optimize the loss function with alternate
gradient descent/ascent (Arrow-Hurwicz algorithm). This framework was presented as an
extension to the classical VAE, with the objective of obtaining disentangled latent represen-
tations, in Refs. [169, 162]. By interpreting β as a global modulatory signal [170, 171], we
assume that {θ, ψ} and β evolve according to two different time scales, Alg.1. We denote
the optimal parameters by {θ∗, ψ∗, β∗}.

The two terms contributing to the ELBO are related to the mutual information between
stimuli and neural responses,

Ip(r, x) =
〈

log pθ(r, x)
p(x)pθ(r)

〉
pθ(r,x)

, (3.17)

through the bounds
H(p)−D ≤ Ip(r, x) ≤ R, (3.18)

where H(p) is the entropy of the stimulus distribution2[162]. The two inequalities arise,
respectively, because in the variational approximation the posterior over stimuli, qψ(x|r), re-
places pθ(x|r), and the prior over activity patterns, qψ(r), replaces pθ(r). Thus, constraining
the maximum value of the rate is equivalent to constraining an upper bound to the mutual
information between stimuli and neural responses.

Equation (3.18) has two important consequences. First, it allows us to interpret the
problem in Eq. (3.14) as an efficient coding problem, where the objective is to maximize a
lower bound to the mutual information, H−D , subject to a bound on the neural resources,
R̄. Contrary to the classical efficient coding literature, in which a metabolic constraint is
imposed by hand, here it results from the original formulation of the problem as optimization
of the ELBO, and it is affected by the assumptions made on the generative model (more
specifically, on the prior distribution).

Second, we note that the Lagrangian has a form similar to the negative ELBO (up to
an additive constant which does not depend on the parameters), with an additional β factor
multiplying the rate. For all β∗ ̸= 0, the constraint on the rate is satisfied as an equal-
ity, R|θ∗,ψ∗ = R̄. If the variational distributions, qψ(r) and qψ(x|r), are flexible enough to
approximate pθ(r) and pθ(x|r), the optimal solution achieves both equalities and we have
D|θ∗,ψ∗ = H(p) − R|θ∗,ψ∗ . Since we have dD

dR̄

∣∣∣
θ∗,ψ∗

= −β∗, the optimization problem in Eq.
(3.16) yields β∗ = 1 and the loss function coincides with the negative ELBO.

Numerical optimization and related computations. Numerical simulations are car-
ried out using PyTorch. We solve the optimization problem of Eq. (3.16) through stochastic

2We note that, since we are considering continuous stimuli, H is a differential entropy.



Algorithm 1 Two time-scales optimization algorithm.
1: Inputs: target rate R̄, dataset D
2: Initialize: β = 1, encoder/decoder parameters= {θi, ψi}
3: while convergence do
4: Define β-ELBO: Lβ = D + βR
5: for batch in D do
6: Update parameters: (θ, ψ)← Adam (∇θLβ(batch),∇ψLβ(batch))
7: end for
8: β → max{β + ηβ(R− R̄), 0}
9: end while

10: return

gradient descent on the loss on a dataset of P = 5000 samples from p(x), divided in mini-
batches of size 128, with the Adam optimizer [149] with learning rate equal to 10−4 and
otherwise standard hyperparameters. The learning rate for β, ηβ, is set to 0.1. The training
is iterated over multiple passes over the data (epochs) with a maximum of 5000 epochs and
it is stopped when the training loss running average stays constant (with a tolerance of 10−5)
for 100 consecutive epochs. The parameters are initialized as follows. The preferred posi-
tions, ci, are initialized as the centroids obtained by applying a k-means clustering algorithm
(with k = N) to the set of stimuli in the dataset. Tuning widths are initialized by setting
wi = |ci − cj |, with cj being the closest preferred position to ci, and the amplitude is set
equal to 1, corresponding to a maximum probability of spiking of 0.5. Random noise of small
variance is then applied to the initial value of the parameters. We illustrate results obtained
by averaging over different random initializations. An example of the evolution of D, R, and
β during training is illustrated in Fig. S3.1.

Here, we illustrate results in the case of N small enough so that it be possible to compute
explicitly the sums over activity patterns appearing in the loss function. This also allows us
to explore regimes in which the information is compressed in the activity of a small number
of neurons. To extend the model to larger populations, there are two numerical issues to
consider. The first one concerns the distortion term and the gradient with respect to the
parameters of the encoder. In order to obtain a low-variance estimate of the gradient, a
solution is to use the so-called reparametrization trick together with a continuous relaxation
of the discrete random variable (or Gumbel-softmax trick [172, 173]), and calculate the
gradient as

∇θD(x) = ∇θ ⟨log qψ(x|r)⟩pθ(r|x)

≈ ⟨∇θ log qψ(x|fθ(ξ, x))⟩p(ξ) ,
(3.19)

with p(ξ) = U(0, 1) and

fθ(ξ, x)) = S
(

ηθ(x) + S−1(ξ)
τ

)
(3.20)

depends deterministically on the parameters θ through the natural parameters of the encoder;
the hyperparameter τ controls the steepness of the logistic function, and consequently the
bias-variance trade-off for the gradient; simulations with values of τ = 10−2 yield results



comparable to the ones presented here. As for the rate, the expression can be simplified as

KL (pθ(r|x)||qψ(r)) =
〈
(η(x)− h) r− rTJr

〉
pθ(r|x)

−
N∑
i=1

log
(
1 + eηi(x)

)
+ logZ

= (η(x)− h) p(x)− pT (x)Jp(x)−
N∑
i=1

log
(
1 + eηi(x)

)
+ logZ,

(3.21)

where p(x) = S (η(x)) is the vector of mean parameters of the encoding distribution (i.e., the
probability of spiking of neurons). In the expectation of the quadratic form, ⟨rTJr⟩pθ(r|x) =
tr(KrrJ) + pT (x)Jp(x), we have that tr(KrrJ) = 0, as the covariance matrix of the activity
patterns, Krr, is proportional to the identity, and the diagonal elements of J vanish. Here,
the bottleneck is in computing the gradient of the log-partition function, logZ, which can
be done by Monte Carlo methods [174].

3.3 Results

We optimize jointly an encoder, a population of neurons with simple tuning curves which
stochastically maps stimuli to neural activity patterns, and a decoder, a neural network
which maps activity patterns, interpreted as latent variables, to distributions over stimuli.
The system is set so as to minimize a bound to the Kullback-Leibler (KL) divergence between
the generative distribution and the true distribution of stimuli (Fig. 3.1). By formulating
the training objective as a constrained optimization problem, we characterize the space of
optimal solutions as a function of the value of the constraint; we discuss the properties of
the encoder and of the decoder in the family of solutions.

3.3.1 Nature of the optimal representation

We begin by illustrating two alternative solutions of the ELBO optimization problem, Eq.
(3.9), characterized by different contributions of the two terms, D and R. We first consider
the simple, but instructive, case of a Gaussian distribution over stimuli, p(x) = N

(
µp, σ

2
p

)
.

In order to minimize the rate, a possible solution is to set the parameters of the encoder
so as to map all stimuli to the same distribution over neural activity patterns, which takes
a similar form as the prior distribution, pθ(r|x) ≈ qψ(r). This is achieved through neurons
with low selectivity, i.e., with broad and overlapping tuning curves (Fig. 3.2A, top). Despite
the non-informative neural representation, a perfect generative model is obtained (in this
special Gaussian case) by mapping all activity patterns to the parameters of the data distri-
bution, µψ(r) = µp and σ2

ψ(r) = σ2
p for all r; this way, the generative distribution becomes

independent from the neural activity, qψ(x|r) ≈ p(x) (Fig. 3.2A, bottom). The rate term is
then negligible and the distortion achieves its minimum possible value (given the inequality
in Eq. (3.18)) which corresponds to the stimulus entropy. The sum of the two terms there-
fore yields the optimal value of the ELBO; the neural representation, however, retains no
information about the stimulus.

At the opposite extreme, it is possible to minimize the distortion by learning an injective
encoding map which associates distinct stimuli to distinct activity patterns. The decoder
can then map each activity pattern to a narrow Gaussian distribution over stimuli. In our
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Fig. 3.2 Qualitatively different optimal configurations. In all simulations,
N = 10. Top row: probability of spiking of neurons. Bottom row: generative distri-
butions, q(x) = ∑

r q(x|r)q(r) (solid curve)„ compared to the stimulus distributions
(dashed curve). (A) High-distortion, low-rate solution in the case of a Gaussian
distribution of stimuli, p(x) = N (0, 5). (B) Low-distortion, high-rate solution for
the same Gaussian distribution over stimuli. (C),(D) Same as panels (A),(B), for
a log-normal distribution of stimuli, p(x) = Lognormal(1, 1).

framework, this is achieved through narrow and non-overlapping tuning curves, tiling the
stimulus space such that stimuli in a small interval activate a single neuron (Fig. 3.2B, top).
For a given encoding distribution, the optimal prior distribution which minimizes the rate,
Eq. (3.11), is equivalent to the marginal encoding distribution [175],

qψ∗(r) = ⟨pθ(r|x)⟩p(x) . (3.22)

If the encoding distribution is different for each stimulus, the rate term does not vanish, but
the parameters of the prior can still be set so as to approximate Eq. (3.22), achieving the
rightward equality in Eq. (3.18). As a consequence, the ELBO is optimized as well, and it
is possible to obtain a generative model that approximates closely the stimulus distribution,
though less smoothly (Fig. 3.2B, bottom). Indeed, the marginal distribution, qψ(x) =∑

r qψ(x|r)qψ(r), is a Gaussian mixture, which is a universal approximator of densities (i.e.,
a well-chosen Gaussian mixture can be used to approximate any smooth density function
[176, 177]).

Thus, although these two solutions yield comparable values of the ELBO and equally
satisfying generative models, the corresponding neural representations are utterly different.
This case is special and contrived, as the conditional generative distribution has the same
functional form as the stimulus distribution, and thus a perfect generative model is obtained
even when it ignores the latent variables. However, the reasoning extends to more complex
cases, and the choice of the forms of the decoding distribution and the prior determines
the ability of the system to optimize the ELBO in different ways [162]. In order to achieve
an optimal distortion at low rates, the generative distribution must be complex enough to



approximate the data distribution even when the latent variables carry no information about
the stimulus. Conversely, prior distributions which can fit marginal encoding distributions
in which each data point is mapped precisely to a realization of the latent variables, achieve
the optimal values of the rate at low values of the distortion (Eq. (3.22)). Indeed, we observe
the existence of multiple solutions to the ELBO optimization problem also for more complex
stimulus distributions (Fig. 3.2C,D, Fig. S3.2).

3.3.2 Analysis of the family of optimal solutions

We explore systematically the space of solutions which optimize the ELBO by minimizing
the distortion subject to a constraint on the maximum (‘target’) value of the rate, R̄, a
formulation which yields a generalized objective function (Eq. (3.16)) with a factor of β that
weighs the rate term (see Methods). The value of R̄ is an upper bound to the mutual infor-
mation between stimulus and neural response; it thereby imposes a degree of ‘compression’
of the information in the encoding process. We illustrate results for the simple, yet non-
trivial, choice of a log-normal stimulus distribution, but similar observations are valid for
other distributions as well (in Fig. S3.3 we illustrate the case of a more complex, multimodal
distribution).

Each solution is associated with a point (R̄,D) in the rate-distortion plane. By varying
the value of R̄, we trace the curve of the optimal distortion as a function of the target rate
(Fig. 3.3A). We focus on the range of values of R̄ resulting in β∗ = 1, in which R = R̄ and
the corresponding solutions also yield an optimal value of the ELBO. These solutions belong
to the line D = H(p) − R, with H(p) the stimulus entropy, and both inequalities in Eq.
(3.18) are achieved. (As the stimulus and the generative distribution do not belong to the
same parametric family, it is not possible to achieve an optimal distortion with R = 0.) As
a result, the mutual information is equal to R̄ (Fig. 3.3A, inset). Eventually, for sufficiently
large R̄, the distortion stops decreasing and saturates; this occurs when the tuning curves are
as narrow as possible while still tiling the stimulus space (Fig. 3.2B,D). The distortion can
be further decreased by increasing the number of available activity patterns, which depends
on the population size (Fig. S3.2).

Different values of R̄ result in different arrangements of the tuning curves (Fig. 3.3B).
For small values of R̄, tuning curves are broad and the spacing between preferred positions is
small, causing large overlaps; different stimuli are mapped to similar distributions over neural
activity patterns. Moreover, they are characterized by low amplitudes and, thus, higher
stochasticity; indeed stochastic neurons yield compressed representations [178]. Increasing
R̄ causes noise to be suppressed through an increase in the amplitude, and narrower and
more distributed tuning curves.

We also illustrate coding properties in terms of a common quantity used in perceptual ex-
periments and theoretical analyses: the mean squared error (MSE) in the stimulus estimate,
as obtained from the mean of the approximate decoding distribution, qψ(x|r). As expected
from the higher mutual information between stimuli and neural responses, the coding per-
formance of the encoder-decoder system increases as a function of R̄ (Fig. 3.3C). Although
this qualitative statement is obvious, it is worth examinining quantitatively. The MSE has
a slightly different functional form, which does not depend on the variance of the decoding
distribution (see Methods, Eq. (3.13)); it does not decrease linearly with R̄, but rather it
exhibits a rapid decrease followed by a slower one.
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Fig. 3.3 Characterization of the optimal solutions as a function of the
target rate. In all simulations, N = 10, p(x) = Lognormal(1, 1) and results are
averaged over 8 initializations of the parameters. (A) Solutions to the ELBO opti-
mization problem as a function of target rate, D(R̄) (blue curve), and theoretical
optimum, D = H(p) − R (black curve), in the rate-distortion plane. For all the
solutions, we have R = R̄. Solutions depart from the optimal line when the rate is
very low (poor generative model) or very high (saturated distortion). Inset: mutual
information between stimuli and neural responses as a function of R̄. (B) Optimal
tuning curves for different values of R̄. Each dot represents a neuron: the position
on the y-axis corresponds to its preferred stimulus, the size of the dot is propor-
tional to the tuning width, and the color refers to the amplitude (see legend). The
curve illustrates the data distribution, p(x). (C) MSE of the stimulus estimate
as a function of R̄. (D) KL divergence between the stimulus and the generative
distribution, as a function of R̄. (E) Entropy of the prior distribution over neural
activity as a function of R̄. Insets show two configurations of the coupling matri-
ces, with rows ordered according to the neurons’ preferred stimuli, and coupling
strengths colored according to the legend.



We now turn to the effect of the constraint on the generative model. As expected from
the value of the ELBO, the difference between the generative,qψ(x), and the stimulus distri-
bution, p(x), measured by the KL divergence, is negligible for all values of R̄ (Fig. 3.3D).
(We recall that the ELBO, up to a constant, is a lower bound to this quantity, and the gap
is quantified by the KL divergence between the true and the approximate posterior distribu-
tion, Eq. (3.7)). The U-shape is due to the jaggedness of the generative model at high values
of R̄. This suggests that intermediate representations, yielding a smooth approximation of
the stimulus distribution, yet achieving a low coding error, are preferred to representations
with extremely narrow tuning curves (Fig. 3.2B,D).

The solutions also differ in the amount of information about the stimulus embedded in the
structure of the prior over neural activity, qψ(r) (Fig. 3.3E, insets). In the regime in which the
decoder ignores the latent variables, i.e., qψ(x|r) ≈ qψ(x), the prior, qψ(r) is left unstructured
and the couplings, J , are weak. By contrast, when R̄ is large, the structure of the stimulus
distribution affects the coupling matrix in the prior, inducing coupling strengths that depend
on the distances between the neurons’ preferred positions. As the coupling strengths increase,
the entropy of the prior distribution decreases (Fig. 3.3E). In more complex distributions
where, even when the rate is low, a structure to the prior is imposed through the biases, h,
in order to obtain a satisfying generative model, the entropy can exhibit a non monotonic
behavior (Fig. S3.3E).

3.3.3 Optimal allocation of neural resources and coding performance

The classical efficient coding hypothesis prescribes an allocation of neural resources as a
function of the stimulus distribution: more frequently stimuli are represented with higher
precision, which, in turn, can explain perceptual accuracy and biases [62, 21, 179]. We
investigate, in our model, the relations between stimulus distribution, the use of neural
resources (tuning curves), and coding performance, and how each vary with R̄. We emphasize
that the functional form of the stimulus distribution affects these relations, through its
interplay with the functional form not only of the encoder (as in the classical efficient coding
framework), but also of the generative distribution. We illustrate this difference with results
on a stimulus distribution which belongs to the same parametric family as the generative
distribution (Gaussian), and one which has a different form (log-normal). In order to make
statements about the typical behavior of the system, we average our results over different
random initializations of the parameters; single solutions might deviate from the average
behavior due to the small number of neurons and the high dimensionality of the parameters
space. Our conclusions can be compared with results from previous studies. In particular,
we make use of the analytical results derived in Ref. [21] for a similar population coding
model; in Sec. S3.5, we provide an alternative derivation of these results and we comment
on the main differences with our model. Here, we note that our results are obtained by
considering regime of strong compression of the information (small population sizes), while
previous studies focused on the asymptotic regime N →∞.

As illustrated in Fig. 3.3B, the target rate affects the neural density, i.e., the number of
neurons with preferred stimuli within a given stimulus window. In previous work, maximizing
the mutual information required that the neural density be proportional to the stimulus
density, d(x) ∝ p(x) [46, 21]. In our case, the range of possible behaviors is richer, especially
when the stimulus distribution is non-trivial (i.e., it does not have the same functional form



G
a
u
ss
ia
n

lo
g
-n
o
rm

a
l

A B C
Neural density Tuning width Density vs width

Fig. 3.4 Optimal allocation of neural resources. In all simulations, N = 12
and results are averaged over 16 initializations of the parameters. Top row: Gaus-
sian distribution over stimuli, p(x) = N (0, 5). Bottom row: log-normal distribution
over stimuli, p(x) = Lognormal(1, 1). Results are illustrated for regions of the stim-
ulus space where the coding performance is sufficiently high, defined as the regions
where the MSE is lower than the variance of the stimulus distribution. (A) Left:
neural density as a function x (solid curves) and power-law fits (dashed curves), for
three values of R̄ (low, intermediate, and high); the grey curve illustrates the stim-
ulus distribution. The density is computed by applying kernel density estimation
to the set of the preferred positions of the neurons. Right: optimal exponent, γd,
as a function of R̄; large dots correspond to the examples shown in the left panels
and are colored accordingly. Only the points for which the fit accounts for more
than 70% of variance in data are shown. (B) Left: tuning width, wi as a function
of preferred stimuli, ci, and power-law fits (dashed curves) for three values of R̄;
the grey curve illustrates the stimulus distribution. Right: optimal exponent, γd,
as a function of R̄; large dots correspond to the examples shown in the left panels
and are colored accordingly. Only the points for which the fit accounts for more
than 70% of variance in data are shown. (C) Tuning width, wi, as a function of the
neural density, d(x), for three values of R̄; ρ indicates the corresponding Pearson
correlation coefficient.

as that of the generative distribution). At low rates, the location of maximum density might
be different from the mode of the stimulus distribution, depending on the interplay between
the generative and the stimulus distributions (Fig. 3.4A, left). The neural density becomes
more similar to the stimulus distribution for large values of R̄: a power law functional form,
d(x) = Adp(x)γd , yields a good agreement with our numerical results, with an optimal
exponent, γd, close to 1/2 (Fig. 3.4A, right).

In Ref. [21, 180], analytical results were obtained by constraining the neural density and
the tuning width relative to each other. This is equivalent to fixing the overlap between
tuning curves, by imposing w(x) ∝ d−1(x) ∝ p(x)−1 (see Sec. S3.5). In our case, the tuning
width and neural density vary independently of each other, and the distribution of widths
exhibits an intricate behavior at small values of R̄ (Fig. 3.3B, left). However, at large values
of R̄, the tuning width decreases for large values of the stimulus distribution, and its behavior
is well described by a power law, wi = Aw/p(ci)γw (Fig. 3.3B, right). As a result, we also



obtain an inverse relation between the neural density and the tuning width (Fig. 3.3C).
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Fig. 3.5 Optimal allocation of coding performance. Same numerical simu-
lations as in Fig. 3.4. Top row: Gaussian distribution over stimuli, p(x) = N (0, 5).
Bottom row: log-normal distribution over stimuli, p(x) = Lognormal(1, 1). (A)
Left: MSE as a function of x (solid curves) and power-law fits (dashed curves), for
three values of R̄. Right: optimal exponent, γe, as a function of R̄; the large dots
correspond to the examples shown in the left panels and are colored accordingly.
The fits account for more than 90% of variance in data. (B) MSE as a function of
the neural density (left) and tuning width (right), for three values of R̄; ρ indicates
the corresponding Pearson correlation coefficient.

A consequence of the heterogeneous allocation of neural resources is a non-uniform coding
performance across stimuli. Figure 3.5A shows that the MSE exhibits an inverse relation as a
function of the stimulus distribution, with more frequent stimuli encoded more precisely. This
is broadly consistent with previous studies [21, 89], which maximized the mutual information
to obtain the expression

ε2(x) ∝ 1
p2(x) . (3.23)

More precisely, this expression was derived using the Fisher information, whose inverse is a
lower bound to the variance of any unbiased estimator and which can be related to the mutual
information in some limits. Here, for all values of R̄, the error is well described by a power
law, ε2(x) = Ae/p(x)γe , with an exponent which tends to increase with the rate, but whose
precise behavior and numerical value are affected by the form of the stimulus distribution
(Fig. 3.5 A, right). Finally, we illustrate how the configuration of the tuning curves affects
the coding performance, by plotting the MSE as a function of the neural density and tuning
width. We observe a positive correlation between high coding performance and regions of
high neural density as well as with narrow tuning widths, for large values of R̄ (3.5B).

To summarize, given our choice of the loss function, which constrains the encoding stage
as a function of the decoding stage, we obtain a range of possible optimal neural representa-
tions. In weakly constrained systems (large values of R̄), we qualitatively recover previously
derived relationships between tuning curves, stimulus distribution, and coding performance.
(The difference in the numerical values of the exponents of the power laws can be explained



by the differences between the two models, see Sec. S3.5. We note that, in Ref. [21] the
numerical value of the exponents also change as a function of the form of the loss function.)
In systems with severe information compression (small values of R̄), the optimal resource
allocation exhibits a more intricate behavior, that depends on the interaction between the
stimulus distribution and the properties of the generative model.

3.4 Discussion

Summary. We studied neural representations that emerge in a framework in which neural
populations encode information about a continuous stimulus with simple tuning curves, but
with the additional assumption that the task of the decoder is to maintain a generative model
of the stimulus distribution. The consequence of this specific task imposed on the decoder
is that the encoder is set so as to maximize a bound to the mutual information between
stimulus and neural activity, as postulated by the efficient coding hypothesis, subject to a
constraint on the relative entropy between evoked and spontaneous activity. As a function
of this constraint, different optimal solutions are obtained, corresponding to equally efficient
generative models but qualitatively different neural representations of the stimulus (Fig.
3.3). These representations differ in the degree of compression of information in the neural
responses, reflected in encoding (neural) properties (Figs. 3.3 and 3.4), in the generative
model prior (the statistics of spontaneous neural activity, Fig. 3.3E) and in the coding
performance (Figs. 3.3 and 3.5).

Internal models and perception as inference. Our choice on the form of the decoder
stems from the assumption, motivated by behavioral evidence, that organisms interact with
the environment by constructing internal models. Internal models allow the individual to
make predictions and perform inference, but the neural basis underlying them is debated. In
previous studies [158, 159, 161, 181], internal models were defined by conditioning the prob-
ability of stimuli, x, on configurations of latent variables, z, through their joint distribution,
q(z, x) = q(x|z)q(z). In particular, no assumptions are made on how the latent variables are
related to a specific neural representation. Then, the task that sensory areas were assumed
to implement was the computation of the posterior distribution over the latent variables,
q(z|x). Only later the neural activity is invoked as a way to represent this posterior distri-
bution, either approximately through samples [159, 181], or through the use of a specified
parametric form and the assumption that the values of the parameters are encoded in neural
activity [157, 182].

Instead, we define the generative model directly as a joint distribution of two random
variables, q(r, x); r is assumed to represent the neural activity, while x is defined on the
space of stimuli. The neural activity plays the role of a latent representation of the stimulus,
but it is not set, a priori, to some interpretable feature, such as the presence or the intensity
of a Gabor filter in models involving natural images (as in Refs. [159, 181]). In order to
constrain sensory areas, we assume the generative model to be implemented in downstream
areas and we model its output with a flexible function, a neural network, which outputs a
point estimate and an uncertainty about the value of the stimulus [128, 166]. We don’t make
assumptions about the biological neural circuit implementing the generative model, but the
variable x, which corresponds to a perceptual representation of the stimulus in the brain,
can be related to behavioral outputs. Mathematically, the encoding distribution, pθ(r|x),



is obtained as a variational approximation of the posterior distribution of the generative
model, qψ(r|x), as in previous work. This distribution, however, is defined on the space of
neural activity patterns, and not on a set of abstract features. This choice has the drawback
of the absence of a simple semantic interpretation of the latent features, but presents the
advantage of a natural connection with an encoder based on properties of a neural system,
e.g., a set of tuning curves and a model of neural noise. In the case of flexible generative
models, different statistics of the latent variables turn out to be optimal. In this sense, the
choice of the encoder, as well as the prior of the generative model, is useful to impose a
structure on the characteristics of the neural representations.

Optimal tuning width. Our choice of encoding model allows us to compare our results
with those of earlier studies that considered the optimal arrangement of neurons with bell-
shaped tuning curves in the presence of non-uniform stimulus distributions [46, 21]. While
for higher values of the target rate we recover the previously derived allocation of neural
resources as a function of the stimulus distribution, the behavior for lower values of the target
rate is more varied, and depends on the form of the stimulus distribution. Thus, in our case,
the constraint on neural resources has a stronger impact on their optimal allocation than,
for example, in Ref. [21], where the bound on mean activity of the population merely acts as
a scaling factor, and the behavior of the tuning curves is more constrained. In particular, in
Ref. [21] the tuning width was fixed a priori to be inversely proportional to the neural density,
to enforce a fixed amount of overlap between tuning curves: it was not optimized. This choice
was made to avoid a common issue in this type of calculation: in the case of a one-dimensional
stimulus and in the asymptotic limit of infinitely many neurons, the maximization of the
mutual information yields the unbiological regime of infinitely narrow tuning curves [23, 11].
Metabolic constraints on the neural activity do not solve the issue, as narrow tuning curves
exhibit a low mean activity (as long as the amplitude does not diverge). In our framework,
instead, the optimal tuning width, as well the amount of overlap between tuning curves,
varies as a function of R̄. Moreover, a regime with intermediate values of the constraint, in
which tuning curves are broad, exhibits both a smooth generative model (low KL divergence)
and a low MSE (Fig. 3.3D). This suggests that broad tuning curves are beneficial to obtain
smooth generative models, while still allowing high for coding performance.

Interpretation of the resource constraint. The constraint in Eq. (3.14) consists
in the divergence between the evoked neural activity and its prior distribution according to
the generative model. This formulation is different from usual metabolic constraints which
take account for the energetic cost of neural activity [151], and one may ask whether such
a constraint, statistical in nature, also comes with a biological interpretation. Since the
prior distribution is defined independently from the value of the stimulus, we interpret it as
describing statistics of the spontaneous neural activity. The ELBO is optimized when the
prior distribution is set to be equal to the so-called ‘aggregated posterior’, Eq. (3.22) [175].
This is a direct consequence of the assumption of an optimal internal model, since in a well-
calibrated internal model the prior equals the average posterior [6]. This basic observation
was exploited by Berkes et al. [161] to argue for the evidence of an optimal internal model
in V1 for natural images, acquired progressively during development. By comparing the
average evoked activity to the spontaneous activity according to the KL divergence, the
authors showed that the two quantities become closer during development, and that this
phenomenology is specific to naturalistic stimuli.

As we showed, there are multiple ways to achieve a statistically optimal internal model



and to minimize the KL divergence between the two sides of Eq. (3.22), which differ in
the value of the rate. The latter instead measures the average KL divergence between the
evoked and the spontaneous activity. At low rates, Eq. (3.22) is approximated by relying
on the optimization of the encoder parameters which are set so as to make pθ(r|x) similar
to the prior for all stimuli; this then results in an unstructured coupling matrix in the prior
distribution (Fig. 3.3E, top). Conversely, at high rates, the encoder has a well defined
structure which achieves a low distortion, and Eq. (3.22) is approximated by optimizing the
parameters of the prior and embedding the structure of the average posterior distribution in
the connectivity matrix (Fig. 3.3E, bottom). The value of the target rate can therefore be
thought of as cost of imposing structure in spontaneous activity, presumably through circuit
properties. In principle, a direct comparison with couplings extracted from experimental data
on spontaneous activity is possible, and offers an alternative normative view (as compared,
e.g., to pure information maximization, as proposed in Ref. [183]).

Finally, we mention a recent result in statistical mechanics of out-of-equilibrium systems
which established a connection between the response of a system to an external perturbation
and concepts of information theory, and allows a concrete interpretation of the constraint in
terms of metabolic cost. The response of a system to a perturbation, e.g., the presentation of
a stimulus, is measured by the difference in the mean value of an observable, e.g., the mean
spike count, between the perturbed and unperturbed state. In physics, the fluctuation-
dissipation theorem relates the response of a system to the fluctuations (the variance) of the
same observable in the unperturbed state; in Ref. [184] the authors derived a generalized
version of this relationship. The latter takes the form of a bound to the response of a
system which involves the KL divergence between the probability distributions describing
the perturbed and unperturbed systems, in our case pθ(r|x) and qψ(r) respectively. Several
studies pointed out that neural circuits are endowed with homeostatic plasticity mechanisms
that set the average activity of the network at rest around a set point [185, 186, 187], and
it has also been argued that such point represents an energetic equilibrium [188]. If so, the
constraint on the rate represents the metabolic cost of changing the value of the firing rate
from its equilibrium set point in response to a sensory perturbation.

VAEs in neuroscience: related studies. VAEs are among the state of the art ap-
proaches to unsupervised learning, and in recent years they have been applied in different
contexts in neuroscience as models to characterize the neural representation of sensory stim-
uli. A series of papers have considered neuroscience-inspired VAEs, in which the generative
model is based on a decomposition of natural images into a sparse combination of linear
features [85]. The latter is the paired with a powerful encoder, which models the sensory
encoding process, and a specific prior distribution of the latent variables, to obtain represen-
tations similar to the ones observed in the early visual pathway (in V1 and V2) [189, 190, 156].
In these models, the simplicity of the generative distribution prevents posterior collapse. We
note that, in our case, we reverse this approach, by imposing a specific and simple form to
the encoder (a set of tuning curves), while we assume a flexible decoder. A more complex
generative model, instead, is needed to explain neural representations in higher visual areas
[191]; to overcome the issue of posterior collapse, the authors used a loss function akin to the
one in Eq. (3.16), but the value of β was chosen by hand. In doing so, the authors obtain
an empirical advantage in the semantic interpretability of the latent variables, at the cost of
abandoning the requirement that the loss function be a bound to the log-likelihood. This,
so-called, β-VAE approach was also employed in Ref. [192] to study optimal tuning curves



in a population coding model of spiking neurons similar to ours. In this study, however, the
population was constrained to emit one spike only, limiting the number of available activity
patterns to N (the number of neurons). Moreover, the encoder and the decoder shared the
same parameters; this choice prevented the emergence of multiple alternative neural repre-
sentations in the β = 1 case. By varying β, the authors obtained neural representations
which differ in the shape of the optimal tuning curves, but, as for β ̸= 1 the ELBO is not
optimized, they can result in a poorer fit of the generative model.



S3.5 Supplementary Information

S3.5.1 Optimal heterogeneous allocation of neural resources

We provide an alternative derivation, based on scaling arguments, of the results in Ref. [21].
We consider a population of N neurons, in which neuron i responds to a continuous scalar
stimulus, x, according to a bell-shaped tuning curve, fi(x). We consider a discretization of
the stimulus space, x = {xi}Li=1, and we denote by di the number of neurons whose preferred
stimulus is xi and by wi their tuning width (S3.4A). The number of neurons encoding
information about stimulus xi scales as

#neurons = Mi ∼ diwi (3.24)

as increasing the number of neurons and the tuning width (both of which, we assume,
vary sufficiently smoothly with position) each increases the ‘coverage’ of the stimulus. We
assume that neural responses, r, are corrupted by a noise of size η. Through a simple
geometric argument (Fig. S3.4B), we estimate the square of the difference between the
stimulus estimate based on the activity of neuron j and the true stimulus, i.e., the error, as

(x̂i − xi)2 ≡ ∆x2
i ∼

(
η

f ′
j(xi)

)2

, (3.25)

where f ′
j(x) denotes the slope of the tuning curves at xi. The derivative of a bell-shaped

tuning curve scales as f ′(x) ∼ f(x)/wi; if noise has a Poisson distribution, the variance of
the response is equal to the mean, and we have

∆x2
i ∼

(const
wi

)−2
∼ w2

i . (3.26)

As M independent neurons encode stimulus xi, we can average the single estimates of the
neurons to obtain a more faithful estimate. The variance of this population estimate, i.e.,
the MSE, for stimulus i, scales as

ε2
i = Var

 1
Mi

M∑
j=1

(∆xi)j

 = 1
M2

Mi∑
j=1

(∆x2
i )j

∼ w2
i

Mi

∼ wi
di
,

(3.27)

where in the last line we used Eq. (3.24). By taking the limit of an infinitely fine discretiza-
tion, L→∞, and assuming that the population size is large enough such that the quantities
di and wi vary smoothly, we can consider a continuum limit with

di → d(x), (3.28)

the neural density,
wi → w(x), (3.29)



the tuning width, and
Mi →M(x) (3.30)

Furthermore, we assume that neurons are arranged so as to ensure a uniform coverage across
stimuli, i.e., M(x) = constant, or

w(x) ∼ 1
d(x) . (3.31)

The efficient coding hypothesis posits that neurons are arranged so as to maximize the
mutual information between stimuli and neural responses. An approximation of the mutual
information in terms of the Fisher information, J(x), in the asymptotic limit, can be obtained
as [46]

I(r, x) =
∫
dxp(x) log (J(x)) + const, (3.32)

where p(x) is the distribution of stimuli and const denotes terms that don’t depend on the
neural responses. The Fisher information is a lower bound to the variance of any unbiased
estimator; if we assume that such bound is tight, we have that

J(x) ≈ 1
ε2(x) , (3.33)

where ε2(x) corresponds to the continuum limit of Eq. (3.27).
We now maximize the mutual information subject to a constraint on the neural resources–

here, merely, the number of neurons–by optimizing the sum of the two terms

max
d(x),w(x)

{∫
dxp(x) log

(
d(x)
w(x)

)
+ β

∫
dxd(x)

}
= max

d(x)

{∫
dxp(x) log

(
d(x)2

)
+ β

∫
dxd(x)

}
.

(3.34)
By taking a functional derivative with respect to d(x) and setting it to zero, we obtain

d(x) ∼ p(x), (3.35)

and, consequently„ the scaling of the MSE as

ε2(x) ∼ 1
p2(x) . (3.36)

S3.5.2 Main differences with our model

Our model is similar to the one presented above, but it exhibits some differences which
complicate analytical calculations and give rise to more complex behaviors.

• The first difference is in the noise model: we assume binary neurons, while these
calculations are carried out for Poisson neurons, an assumption which allows the sim-
plification in Eq. (3.26). When neurons are affected by Poisson noise, increasing the
tuning amplitude increases the variance of the noise, while, in our model, at large
amplitudes neurons become deterministic (p(ri = 1|x) ≈ 1, Fig. 3.2).

• The second difference is that, in our formulation, the tuning width and neural density
are free to vary independently, and we can achieve a non-uniform coverage across
stimuli.



• The third difference is that we assume a finite population size, rather than working in
the asymptotic N →∞ limit.

• Finally, our loss function is similar to that in Eq. (3.34) for what concerns the first
term, which represents the mutual information between stimuli and neural responses
(although in our case we have a lower bound, which depends also on the decoder), but
the constraint is more intricate due to its dependence on the generative model.

S3.5.3 Supplementary figures

B CA

Fig. S3.1 Example of training. (A) Evolution of the ELBO, D, and R with
training epochs. (B) Joint evolution of R and D in the rate-distortion plane, colored
according to the epoch (increasing from blue to yellow). (C) Evolution of β during
training.



Fig. S3.2 Dependence of the rate-distortion curve on the population size.
Curves of optimal solutions, D(R̄), for different population sizes, N , and theoretical
optimum (black curve), D = H(p)−R, in the rate-distortion plane.
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Fig. S3.3 Characterization of the optimal solutions as a function of the
target rate. Same as Fig. 3.3, but with p(x) a multimodal distribution: a mixture
of three Gaussians with means −4, 0, 2, variances 1, 0.5, 1 and mixture coefficients
0.3, 0.2, 0.5. Panel D illustrates, in the insets, an example of comparison between
the generative (solid curve) and the data (dashed curve) distribution.

A B

Fig. S3.4 Population coding model with bell-shaped tuning curves. (A)
A one-dimensional stimulus is encoded through bell-shaped tuning curves. The
number of neurons whose preferred positions are a given stimulus, xi, is denoted
by ni, while wi denotes the tuning width. (B) Approximate scaling of the error in
a stimulus estimate, ∆xi, when the response of a neuron, fj , is affected by a noise
of size η.



Broad Discussion

Evolution is a long and selective processes, and it is natural to expect that animals developed
strategies to interact with the surrounding environment in a way that optimizes their survival.
Among these strategies, we find a system dedicated to encode and process information by
means of noisy electrical signals. In this thesis, we discussed different optimality principles
which might underlie such information processing and shape neural representations of the
external world.

Highly structured neural codes typically require a finely tuned synaptic connectivity,
which must either be encoded in the genes or acquired through experience. Our results of
the first chapter suggest that, in some cases, irregular neural codes relying on randomness
might represent a valid alternative to finely structured ones, yet achieving a high coding
performance. There is currently experimental evidence supporting the idea that the brain
exploits this randomness, which is inherent to all biological processes, to forge efficient neural
representations [193, 40, 35]. Further, modeling techniques which incorporate irregularities
have been showed to yield better fits of data from neural recordings, discovering complex
selectivity patterns in neurons tuned to sensory stimuli [194, 195]. With an increasing ability
to measure and characterize the statistics of large neural populations, we expect a further
growth of observations of complex and irregular tuning curves: our work provides a theoret-
ical framework to explain implications of these observations for coding.

The capacity of conveying a high amount of information is not, however, the only char-
acteristic which a ‘good’ neural code must possess. As we show in the second chapter, it
exists a trade-off, in terms of irregularity, between the ideal accuracy of a code and the
ease of the decoding process, which depends upon the structure of the decoder itself. It is
hard to access to the exact readout schemes used by the brain, but a natural way to test
the decoding performance is to measure behavioral output. Recent studies showed that,
in a stimulus discrimination task, the accuracy afforded by sensory codes outperforms of
orders of magnitudes the behavioral accuracy, implying that the readout of information
is suboptimal [196]. Suboptimal readouts might benefit of stimulus and noise correlations
which, in principle, decrease the information conveyed, suggesting that information might
be encoded suboptimally to facilitate the subsequent decoding process [197]. By recording
neural activity in different areas at the same time, we can understand how these subsequent
encoding-decoding processes are implemented and what are the biological origins of readout
suboptimality and information loss across the hierarchy [198, 199]. Also in this case, large
scale recording techniques, as well as the capacity to manipulate artificially neural activity
through optogenetic, will improve our understanding of the intersection between informa-
tion encoding and decoding in neural populations. New theoretical tools will be needed to
analyze data and assess optimality criteria, combining normative approaches with empirical
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observations and, given the complexity of the systems involved, a possible approach consists
in the use of deep artificial neural networks as computational models [95].

Throughout the thesis, we mainly focused on using relatively simple artificial neural
networks for such computational models, and one might ask if this work also brings new
contributions to the field of artificial intelligence. We mention an interesting connection
between the balance between local and global errors, analyzed in the first chapter, and
the field of adversarial machine learning. Global errors can be thought of as the analog of
the so-called adversarial perturbations, small perturbations of the input data, e.g., small
noise added to an image, which cause a large error on the output of a machine learning
algorithm, e.g., a neural network classifier labeling a picture of a ‘dog’ as a ‘cat’. Biological
neural networks are much less sensible to this kind of errors than their artificial counterpart.
Recently, it has been showed that, by adding a regularization inspired by the structure of
the neural code in V1 [72], the adversarial robustness of artificial neural networks increases
[200]. It might be interesting to explore how other strategies employed by the brain to
form ‘compressed’ neural codes, still avoiding catastrophic errors, could be used to improve
artificial neural architectures.

More broadly, improving our understanding of the neural encoding-decoding processes
has relevant implications in engineering, where efficient decoding schemes are needed to build
brain-machine interfaces and prosthetics. On the clinical side, neural disorders strongly
impact the typical information processing system. As an example, in autism, the difficulty
in reading other people intentions from movement can be explained by a difference in the
internal model of behavior of autistic subjects with respect to typical subjects, but also
by a deficit in the readout mechanisms [201]. Understanding which specific stage of the
encoding-decoding process manifests anomalies is critical for a global understanding of the
disorder and to design target interventions. These applications are outside of the scope of
this thesis, which is mostly theoretical and abstracts from many biological details; however,
the advantage of abstraction is that "it allows the construction of a semantic level in which
one can be absolutely precise." 3

3Edsger Dijkstra, ACM Turing Lecture, 1972.



Résumé long en français

Le cerveau est un exemple fascinant de système complexe. Plusieurs cellules individuelles,
les neurones, interagissent entre elles au moyen de signaux électriques, donnant lieu à une
riche variété de comportements, dans le but ultime de permettre à l’organisme de survivre
dans un environnement tout aussi complexe. L’interaction avec cet environnement joue un
rôle central : les neurones codent et traitent des informations sur le monde extérieur, et
ils le font avec une précision et une efficacité remarquables, malgré le niveau élevé de bruit
qui caractérise tous les systèmes biologiques. Outre l’analyse des données expérimentales,
l’étude du code neuronal a largement bénéficié d’approches plus théoriques et normatives.
L’hypothèse selon laquelle les réponses neuronales sont organisées de manière à optimiser une
certaine fonction d’utilité permet de justifier les premiers principes qui régissent le traitement
de l’information dans le cerveau.

Le code neuronal peut être étudié sous deux angles différents. Le processus de encodage
se réfère à la manière dont les neurones modulent leurs réponses pour transmettre des in-
formations sur les stimuli externes, à partir de la transduction de quantités physiques en
activité électrique des neurones, suivie de la propagation de ces signaux à travers différentes
zones du cerveau. Le processus de décodage, au contraire, est appliquée afin de récupérer
des informations pertinentes sur le stimulus à partir de l’activité neuronale. Ce processus
de décodage peut être réalisé par un observateur externe, c’est-à-dire le scientifique lors
d’une expérience, mais il doit également être mis en œuvre par l’organisme lui-même, afin
d’effectuer une action ou un choix en réponse à des stimuli externes.

Au cours de cette thèse, nous étudions comment les critères d’optimalité des proces-
sus d’encodage et de décodage concourent à façonner les représentations neuronales des
stimuli sensoriels. Nous dérivons les propriétés de codage de modèles de systèmes neu-
ronaux par des calculs analytiques et des simulations numériques, afin d’illustrer les principes
généraux de calcul. Ensuite, nous appliquons les cadres théoriques à l’analyse des don-
nées d’enregistrements neuronaux pour valider les modèles et fournir des exemples concrets
d’instanciation de ces principes. Sur le plan mathématique, nous exploitons des outils issus
de la théorie de l’information, de la physique statistique et de l’apprentissage automatique.
En particulier, la théorie de l’information est le cadre naturel pour étudier le problème de
la communication des signaux, et elle a été appliquée aux neurosciences, dans les études
pionnières de Barlow et Attneave, quelques années après sa formalisation par Shannon. Le
cadre de la physique statistique est adapté pour décrire comment les interactions entre les
neurones donnent lieu à des calculs et à des fonctions cognitives, de la même manière que
les propriétés macroscopiques de la matière émergent des interactions complexes entre les
particules individuelles. En ce qui concerne l’apprentissage automatique, nous utilisons des
réseaux neuronaux artificiels pour modéliser la complexité et la flexibilité des systèmes bi-
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ologiques, en étudiant les modèles qui émergent du processus d’apprentissage artificiel.

A1.1 Codage compressive aléatoire

Les neurones transmettent des informations sur le monde extérieur en modulant leurs réponses
en fonction des stimuli sensoriels. La fonction décrivant la réponse moyenne des neurones
à un stimulus est appelée "courbe de réponse " du neurone [6]. Les écarts par rapport à
la réponse moyenne - le "bruit neuronal" - entraînent une ambiguïté quant à l’identité du
stimulus codé. Dans un modèle classique avec des neurones caractérisés par des courbes
de réponse simples, souvent paramétrées comme des fonctions gaussiennes ou en forme de
cloche, l’erreur dans l’estimation du stimulus est généralement inversement proportionnelle
à la taille de la population, N .

Cependant, les neurones peuvent présenter des courbes de réponse plus complexes. Dans
le cortex enthorinal, la périodicité des courbes de réponse des cellules de la grille, ainsi
que leur organisation fonctionnelle en modules, leur permet de représenter les coordonnées
spatiales avec une résolution exponentielle, plutôt qu’algébrique comme ci-dessus„ du nom-
bre de neurones [32]. Récemment, de nombreux autres exemples de neurones présentant
des courbes de réponse complexes et non structurées ont été identifiés. Ces résultats nous
amènent à nous demander si les codes neuronaux hautement efficaces nécessitent une organi-
sation fine, comme dans les cellules de la grille, ou s’ils peuvent être réalisés avec des courbes
de réponse complexes et irrégulières.

Nous abordons cette question en étudiant le cas d’un code neuronal "aléatoire": un
code de population qui compte sur des courbes de réponse échantillonnées à partir d’un
processus stochastique. La seule contrainte sur la forme des courbes de réponse est leur
‘lissage’, paramétrée par l’échelle de longueur des irrégularités du processus. Nous montrons
comment telles courbes d’accord irrégulières pourraient provenir de simples courbes en forme
de cloche, d’un réseau neuronal à deux couches avec des poids aléatoires. La largeur d’accord
des neurones de la première couche contrôle l’échelle de longueur des irrégularités de ceux
de la deuxième couche.

Nous considérons une interprétation géométrique d’un code neuronal, comme une appli-
cation entre l’espace des stimuli et une courbe dans l’espace à N dimensions de l’activité de
la population. Des courbes de réponse simples génèrent une courbe de réponse de la popu-
lation lisse, ce qui implique que des stimuli similaires correspondent à des réponses proches;
en revanche, des courbes de réponse plus complexes donnent lieu à une courbe en serpentin.
Cette dernière utilise mieux l’espace des réponses possibles de la population que la première,
et on peut donc s’attendre à un codage à plus haute résolution. En effet, lorsque la réponse
de la population est corrompue par un bruit d’une magnitude donnée, l’erreur locale sera
plus faible dans le cas d’un accord complexe que dans le cas d’un accord simple: en "étirant"
la courbe de réponse moyenne sur une trajectoire plus longue dans l’espace des activités
possibles de la population, l’accord complexe confère au code une résolution plus élevée par
rapport à la gamme de la variable codée. Cependant, dans le cas d’une courbe de réponse
moyenne sinueuse et tordue, deux stimuli éloignés sont parfois mis en correspondance avec
des modèles d’activité proches. En présence de bruit, cette géométrie donne lieu à des erreurs
globales (ou catastrophiques).

Nous avons effectué un calcul analytique approximatif de la contribution de ces deux



types d’erreurs en fonction du niveau d’irrégularité des courbes de réponse, de la taille de la
population et de la variance du bruit. Pour une irrégularité optimale des courbes de réponse,
lorsque les erreurs locales et globales s’équilibrent, la population neuronale comprime les in-
formations relatives à un stimulus continu dans une représentation à faible dimension, et le
code distribué qui en résulte atteint une précision exponentielle en fonction de la taille de
la population. Nous généralisons ensuite notre approche au cas d’un stimulus multidimen-
sionnel. Cela nous permet d’appliquer notre modèle à des enregistrements de motoneurones
chez le singe, et d’analyser la nature du codage de la population dans ce système [40].
Dans ce contexte, nous quantifions l’avantage relatif des courbes de réponse complexes et
irrégulières par rapport aux courbes simples et régulières. En adaptant notre modèle aux
données expérimentales, nous discutons des mérites d’un "code compressive" complexe. Dans
l’ensemble, notre étude prolonge les travaux théoriques antérieurs sur les cellules de grille et
d’autres codes "finement conçus" en proposant qu’une compression efficace de l’information
peut se produire de manière robuste même dans le cas de courbes de réponse complexes,
mais irrégulières.

A1.2 Décodage de réponses neuronales complexes

Les résultats du premier chapitre, à l’instar des études précédentes sur les codes de population
[19, 21], sont obtenus en quantifiant la performance du codage par un décodeur abstrait
"idéal", qui a accès à tous les détails du processus d’encodage et aux statistiques du bruit.
En pratique, cependant, le processus de décodage nécessite des ressources neuronales, et un
tel décodeur idéal peut être difficile à mettre en œuvre. Dans le deuxième chapitre, nous
abordons le problème du décodage de l’information véhiculée par des réponses neuronales
complexes et irrégulières à travers une architecture neuronale non idéale.

Nous paramétrons un décodeur comme un réseau neuronal à deux couches, une archi-
tecture flexible qui présente des propriétés remarquables d’approximation de fonctions [94].
Dans un cadre d’apprentissage supervisé, nous fixons ses paramètres de manière à min-
imiser l’erreur empirique sur un ensemble d’exemples d’entraînement, constitué de réponses
neuronales et des stimuli correspondants qui l’ont évoquée. Les performances sont ensuite
évaluées en mesurant l’erreur sur l’ensemble de la distribution des stimuli et des réponses
neuronales, ce qui permet de tester la capacité du décodeur à généraliser.

En nous limitant aux réseaux de neurones à deux couches, nous analysons d’abord une
architecture spécifique qui peut se rapprocher d’un décodeur idéal. Nous montrons qu’en
entraînant le décodeur à reproduire une approximation de la distribution postérieure dans
la couche cachée, la capacité de décodage de ce décodeur non-idéal se rapproche de l’idéal.
La procédure d’apprentissage d’un tel réseau nécessite une hypothèse sur la nature de la
représentation de la couche cachée et, par conséquent, un choix particulier pour la fonction
de perte. Nous relâchons ensuite ces hypothèses fortes en considérant un réseau neuronal
générique à deux couches formé pour minimiser une fonction de perte basée sur l’erreur. Dans
un régime où les paramètres des réseaux neuronaux varient de façon négligeable pendant la
minimisation de la perte, également appelé régime "paresseux" [96], la fonction de décodage
présente de mauvaises performances lorsque les courbes de réglage sont irrégulières, ce qui
entraîne un écart important entre l’erreur idéale et l’erreur non idéale. Au contraire, lorsque
le réseau apprend des "caractéristiques" riches à partir des données, il est capable de tirer



parti de la précision supérieure obtenue par des courbes d’accord irrégulières. En faisant
varier le nombre de neurones dans la couche cachée, nous mesurons combien de ces carac-
téristiques sont nécessaires pour décoder efficacement l’information contenue dans l’entrée.
Nous constatons que ce nombre est inversement proportionnel à la largeur de la corrélation
entre les réponses neuronales. Il en résulte un compromis entre la précision idéale d’un code
de population, maximisée lorsque les neurones possèdent des courbes d’accord irrégulières, et
la facilité du processus de décodage, qui est facilitée par des réponses neuronales qui varient
de façon régulière.

Nous montrons comment la performance du décodeur est limitée par son accès à un
ensemble fini d’exemples bruyants ; cette limitation affecte différentes architectures de dif-
férentes manières. Nous discutons comment ces limitations et contraintes sur les ressources
neuronales allouées au processus de décodage peuvent modifier, et dans certains cas inverser
complètement, les critères d’optimalité d’un code neuronal.

A1.3 Codage et décodage efficaces : un cadre de autoen-
codeur variationnel

L’hypothèse du codage efficace [8] postule que les réponses neuronales sont établies de
manière à maximiser l’information sur les stimuli externes, sous des contraintes de ressources
biologiques. Cette hypothèse a permis de prédire les réponses neuronales aux stimuli na-
turels dans diverses zones sensorielles. L’approche typique consiste à spécifier un modèle
d’encodage, comme une application stochastique entre les stimuli et les réponses neuronales.
Les paramètres de ce modèle sont ensuite choisis de manière à optimiser une fonction qui
quantifie la performance du codage, par exemple, l’information mutuelle entre les stimuli et
les réponses neuronales.

D’autre part, il a été postulé que le cerveau apprend et maintient un modèle interne
du monde extérieur, et que la perception sensorielle correspond à un processus d’inférence
[153]. Mathématiquement, un tel modèle interne peut être formalisé sous la forme d’un
modèle génératif qui décrit comment les stimuli externes sont générés par échantillonnage
à partir d’une distribution conditionnelle, compte tenu d’un ensemble de caractéristiques
élémentaires "latentes" [154].

Dans la troisième partie, nous considérons une approche de codage efficace étendue :
alors que, typiquement, seul le processus d’encodage sensoriel est optimisé, nous considérons
conjointement le processus de décodage. En plus d’une classe de transformations d’encodage
des stimuli en réponses neuronales dans une zone sensorielle, nous supposons une classe de
modèles génératifs mis en œuvre dans la zone en aval. Ceux-ci définissent des applications
à partir de modèles d’activité neuronale, correspondant à des variables latentes, vers des
distributions sur les stimuli. L’optimalité est atteinte lorsque la distribution générative
correspond à la distribution réelle des stimuli dans l’environnement. Si l’on suppose que
l’encodeur et le décodeur sont optimisés conjointement dans ce cadre, le système a la structure
d’un autoencodeur variationnel (VAE) [160].

Comme dans le cadre classique du codage efficace, le codeur est ici réglé de manière
à maximiser une approximation variationnelle de l’information mutuelle entre les stimuli
et les réponses neuronales sous une contrainte sur les ressources neuronales. Cependant,
un aspect important de cette formulation est que la contrainte, plutôt que d’être imposée



manuellement, est une conséquence directe de l’hypothèse d’un modèle interne optimal. Cette
contrainte est obtenue comme la distance statistique entre la distribution provoquée par le
stimulus et la distribution antérieure de l’activité neuronale supposée par le modèle génératif.
Cette dernière, à son tour, peut être interprétée comme la statistique de l’activité neuronale
spontanée ; la contrainte statistique peut donc être considérée comme le coût métabolique
des déviations induites par le stimulus par rapport à l’activité neuronale spontanée.

Nous appliquons le cadre théorique à l’étude d’un modèle de codage de population avec
des neurones présentant des courbes d’accord en forme de cloche. En capitalisant sur les
avancées récentes de la littérature VAE, nous résolvons le problème d’optimisation en fonc-
tion de la contrainte sur les ressources neuronales : nous obtenons une famille de solutions qui
donnent des modèles génératifs également satisfaisants [162]. Cependant, ces solutions font
des prédictions différentes sur les représentations neuronales correspondantes, qui correspon-
dent à des arrangements différents des courbes d’accord, des statistiques d’activité neuronale
spontanée et des performances de codage. Des approches connexes ont été explorées dans la
littérature, et des prédictions sur l’allocation optimale des ressources de codage, c’est-à-dire
les courbes d’accord, en fonction de la distribution du stimulus ont été dérivées [46, 21].
Dans notre cadre, l’allocation optimale des ressources de codage en fonction de la distribu-
tion des stimuli varie en fonction de la contrainte. Malgré les différences dans la fonction
objective, nos résultats sont conformes aux prédictions précédentes dans un régime faible-
ment contraint, tandis que des comportements plus complexes sont observés dans un régime
fortement contraint. Nos résultats illustrent comment les interactions entre l’encodeur et le
modèle interne façonnent les représentations neuronales des stimuli sensoriels.

Plus largement, l’amélioration de notre compréhension des processus d’encodage-décodage
neuronaux a des implications pertinentes en ingénierie, où des schémas de décodage efficaces
sont nécessaires pour construire des interfaces cerveau-machine et des prothèses. Sur le plan
clinique, les troubles neuronaux ont un impact important sur le système de traitement de
l’information typique. Comprendre quelle étape spécifique du processus d’encodage-décodage
présente des anomalies est essentiel pour une compréhension globale du trouble et pour con-
cevoir des interventions ciblées.
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MOTS CLÉS

Codage neural, codage efficace, reseaux de neurones, courbes de réponse, apprentissage supervisé, autoencodeur
variationnel, modèle génératif

RÉSUMÉ

Au cours de cette thèse, nous étudions les principes qui sous-tendent le codage optimal de l’information dans les sys-
tèmes neuronaux, en combinant des modèles de la issus de la théorie de l’information et de l’apprentissage machine et
l’analyse de données expérimentales. Une grande partie des travaux théoriques sur le codage efficace s’est concentrée
sur les neurones dont la réponse moyenne en fonction du stimulus–la courbe de réponse– peut être décrite par une fonc-
tion simple. Néanmoins, les neurones présentent souvent des courbes de réponse plus complexes: dans les cellules de
grille, par exemple, la périodicité des réponses confère au codage de la population une grande précision. Il n’est pas clair
si la haute précision résulte de la structure périodique des réponses ou s’obtient plus généralement dans les neurones
avec des courbes de réponse complexes.
Dans un premier projet, nous abordons cette question avec l’utilisation d’un modèle théorique: un réseau neuronal
dans lequel des courbes de réponse complexes et irrégulières émergent dans les neurones de la deuxième couche en
raison de poids synaptiques aléatoires. L’irrégularité améliore la résolution locale du code mais donne lieu à des erreurs
globales catastrophiques. Lors de l’équilibrage de ces deux erreurs, le code résultant atteint une précision exponentielle
en fonction de le nombre des neurones et le réseau comprime l’information d’une répresentation de haute dimension en
basse dimension. En analysant les enregistrements du cortex moteur du singe, nous fournissons un exemple d’un tel
code ‘compressé’. Nos résultats montrent que les codes efficaces n’ont peut-être pas besoin d’une structure finement
réglée, mais ils émergent de manière robuste du caractère aléatoire des réseaux de neurones.
Dans le premier chapitre, les propriétés de codage de la population sont calculées sous l’hypothèse d’un décodeur
idéal. Dans le deuxième chapitre, nous nous demandons comment les critères d’optimalité d’un tel code neuronal sont
affectés lorsque le circuit effectuant le dècodage n’est pas idéal. Nous considérons des décodeurs paramétrés comme
des réseaux de neurones, entraînés de manière supervisée sur un jeu de données limité d’exemples de paires stimulus-
réponse. En raison du bruit dans les données d’entraînement, le réseau est biaisé vers l’apprentissage de fonctions
lisses et régulières. Cela donne un écart de performances par rapport au décodeur idéal, qui obtient une erreur plus
faible en exploitant les irrégularités des courbes de réponse. Cet écart est réduit lorsque la complexité de l’architecture
de décodage est augmentée, révelant un compromis entre entre l’éfficacité de l’encodage et la facilité du décodage.
Dans un troisième projet, nous considérons les représentations neuronales qui émergent au cours de l’apprentisssage
non supervisé. Un encodeur, qui associe les stimuli aux réponses neuronales, et un décodeur, dont la tâche est de
maintenir un modèle génératif interne de l’environment, sont optimisés conjointement, dans un cadre d’auto-encodeur
variationnel. L’optimalité est atteinte lorsque l’encodeur est réglé de manière à maximiser une limite à l’information
mutuelle entre les stimuli et les réponses neuronales, comme postulé par l’hypothèse de codage efficace, sous réserve
d’une contrainte métabolique qui pénalise la différence entre l’activité neuronale induite par un stimulus et l’activité neu-
ronale spontanée. Nous calculons des réponses neuronales optimales dans un modèle conventionnel de codage de
population avec des courbes de réponse simples selon ce cadre. En faisant varier la contrainte, on obtient une famille de
solutions qui donnent des modèles génératifs tout aussi satisfaisants, mais des représentations neuronales qualitative-
ment différentes. Nos travaux illustrent comment l’interaction entre le processus d’encodage et de décodage façonne la
représentation neuronale du monde extérieur.

KEYWORDS

Neural coding, efficient coding, neural networks, tuning curves, supervised learning, Variational Autoencoder,
generative models

ABSTRACT

In this thesis, we investigate the principles which underlie optimal information coding in neural systems, by combining
models from information theory and machine learning with experimental data analysis. Much of the theoretical work on
efficient coding has focused on neurons whose mean response as a function of stimulus features–the neuron’s tuning
curve–can be described by a simple function. Real neurons, however, often exhibit more complex tuning curves: in grid
cells, for example, the periodicity of the responses imparts the population code with high accuracy. It is unclear if the
high accuracy results from the fine periodic structure of the responses or obtains more generally in neurons with complex
tuning curves.
In a first project, we address this question with the use of a benchmark model: a shallow neural network in which complex
and irregular tuning curves emerge in the second layer neurons due to random synaptic weights. Irregularity enhances
the local resolution of the code but gives rise to catastrophic, global errors. When balancing these two errors, the resulting
code achieves exponential accuracy as a function of the population size, and the network compresses information from
a high-dimensional to a low-dimensional representation. By analyzing recordings from monkey motor cortex, we provide
an example of such ‘compressed’ code. Our results show that efficient codes might not need a finely tuned design, but
they emerge robustly from randomness and irregularity.
In the first chapter, the population coding properties are derived under the assumption of an ‘ideal’ decoder, which has
access to details of the encoding process. In the second chapter we ask how optimality criteria of such a neural code are
affected when the system performing the decoding operation is non-ideal. We consider decoders parametrized as neural
networks, trained in a supervised setting on a dataset of pairs of stimuli and noisy responses. Due to the noise in the
training set, the decoder is biased towards learning smooth and regular functions. This yields a gap in the performance
as compared to the ideal decoder, which achieves a lower error by exploiting the irregularities of the tuning curves. This
gap is reduced when the complexity of the decoding architecture is increased, revealing a trade-off between the ideal
performance of a coding scheme and the ease of the decoding process.
In a third project, we consider the neural representations which emerge in an unsupervised learning setting. An encoder,
which maps stimuli to neural responses, and a decoder, whose task is to maintain an internal generative model of the
environment, are optimized jointly, in a variational autoencoder framework. Optimality is achieved when the encoder is
set so as to maximize a bound to the mutual information between stimuli and neural responses, as postulated by the
efficient coding hypothesis, subject to a metabolic constraint which penalizes the difference between stimulus-evoked and
spontaneous neural activity. We derive optimal neural responses in a conventional model of population coding with simple
tuning curves according to this framework. By varying the constraint, we obtain a family of solutions which yield equally
satisfying generative models, but qualitatively different neural representations. Our work illustrate how the interaction
between the encoding and the decoding process shape neural representation of the external world.
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