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Titre : Gestion d’interférence topologique dans les réseaux ad hoc clusterisésMots clés : Gestion d’interférence, réseau ad hoc, ordonnancement, théorie de l’estimation ap-prentissage automatique, optimisation convexe et non-convexe.
Résumé : Cette thèse traite le problème de lagestion distribuée d’interférences dans les ré-seaux ad hoc clusterisés dans des canaux aléa-toires. On suppose qu’un chef de cluster (CH)est sélectionné dans chaque groupe pour su-perviser les transmissions, l’allocation des res-sources et des slots temporels.Pour opérer un réseau ad hoc clusterisé, ilfaut attribuer une bande de fréquence (FB enanglais) à chaque cluster. Lorsque le nombrede FBs disponibles est supérieur ou égal aunombre de cluster, il est facile d’effectuer uneattribution orthogonale de FB, même de ma-nière distribuée. Toutefois, pour les déploie-ments importants dans la pratique, en parti-culier dans les environnements militaires, lenombre de clusters est souvent beaucoup plusélevé que le nombre de FBs disponibles. Bienque la réutilisation spatiale des FBs puisse êtreutilisée dans ce cas, si la topologie du réseaule permet, une telle solution peut ne pas four-nir des performances satisfaisantes dans cer-tains scénarios (par exemple, une forte densitéde clusters), et d’autres mécanismes sont alorsnécessaires.Dans cette thèse, nous considérons que lesclusters adjacents peuvent interférer entre euxet nous proposons d’utiliser une technique degestion des interférences basée sur l’approchede la gestion des interférences topologiques(TIM en anglais). La méthode TIM classique né-cessite la connaissance du graphe d’interfé-rence du réseau, c’est-à-dire qu’il faut déter-miner pour chaque récepteur si l’interférenceinduité par chaque autre nœud est faible ouforte dans des canaux déterministes. Des tra-vaux antérieurs ont proposé d’étendre la mé-thode TIM aux canaux aléatoires en incorpo-

rant des informations statistiques sur l’état ducanal (SCSI en anglais) dans l’algorithme.
Toutefois, ces solutions présentent des per-formances mauvaises car elles sont moins per-formantes en termes de débit global et d’équitéque l’accès multiple par répartition temporelle(TDMA en anglais). Par conséquent, dans cecontexte, la première contribution de cettethèse est d’améliorer l’état de l’art en propo-sant une autre extension du TIM, qui est ap-pelée enhanced TIM (eTIM) dans cette thèse.Pour ce faire, nous fournissons une nouvelleméthode de gestion des interférences qui com-bine l’eTIM avec les accès TDMA et améliore à lafois le débit global et l’équité des débits.
Pour appliquer cette solution, nous devonsestimer le SCSI lié à chaque lien des grappes as-sociées. Une solution triviale consiste à appli-quer le TDMA, où chaque nœud transmet l’unaprès l’autre. Afin de réduire la durée de sen-sing, nous proposons deux nouvelles solutionsd’ordonnancement qui utilisent des émissionssimultanées et qui sont plus performantes quele TDMA. Cela constitue la deuxième contri-bution de cette thèse.
Après la phase d’estimation, chaque noeudconnaît le SCSI lié aux liens de tous les autresnœuds. Pour mettre en œuvre l’eTIM, les SCSIdoivent être partagés entre les deux clusters.Nous avons donc étudié plusieursméthodes deréduction de dimension, telles que l’analyse encomposantes principales (linéaire) et l’autoen-codeur (non linéaire), appliquées à la matricedes SCSI afin de réduire la quantité d’échangesde signalisation entre les clusters. Cela corres-pond à la troisième contribution de cettethèse.



Title : Topological interference management in clustered ad hoc networksKeywords : Interferencemanagement, ad hoc network, scheduling optimization, estimation theory,deep learning, convex and non-convex optimization.
Abstract : This thesis addresses the problemofdistributed interference management in clus-tered ad hoc networks under random fadingchannels. We assume that a cluster head (CH)is selected in each cluster to oversee transmis-sions, resource, and time slot allocation.To operate a clustered ad hoc network, oneneeds to allocate a frequency band (FB) to eachcluster. When the number of available FBs isgreater or equal to the number of clusters, wecan easily perform an orthogonal FB alloca-tion, even in a distributed manner. However,for large deployments in practice, especially inmilitary environments, the number of clustersis often much larger than the number of avai-lable FBs. While spatial FB reuse can be used inthis case, if the network topology allows it, sucha solution may not provide satisfactory perfor-mance in various scenarios (e.g. high clusterdensity), and other mechanisms are necessary.In this thesis, we consider that adjacentclusters can interfere with each other, and wepropose to use an interference managementtechnique based on the topological interfe-rence management (TIM) approach. The origi-nal TIM requires the knowledge of the interfe-rence graph of the network, i.e. determining foreach receiver whether the interference causedby each other node is weak or strong in de-terministic channels. Existing works have pro-posed to extend TIM in random channels byincorporating statistical channel state informa-tion (SCSI) in the algorithm.However, these solutions lead to poor per-formance since they achieve lower perfor-mance in terms of both sum rate and fair-ness than time-divisionmultiple access (TDMA).

Hence, in this context, the contribution of thisthesis is threefold. The first contribution ofthis thesis is to improve the state-of-the-artby proposing an extension of TIM, which isreferred to as enhanced TIM (eTIM) in thisthesis. In this method, the precoders and de-coders are designed by optimizing an approxi-mated expression of the average sum rate thatdepends on the SCSI in the network. In addition,we provide a second extension of TIM by stra-tegically combining eTIM with TDMA access insuch a way to improve both the sum rate andthe fairness among the users.To apply this solution, we need before-hand to estimate the SCSI related to each linkof the associated clusters. One trivial solutionconsists of applying TDMA, where each nodetransmits one after the other. To reduce thesensing duration, we propose two new schedu-ling solutions that use simultaneous transmis-sions and outperform TDMA. This constitutesthe second contribution of this thesis.After the estimation phase, each nodeknows the SCSI related to the links from allthe other nodes. To implement eTIM, the SCSIneed to be shared between the two clusters.Thus, we investigated several dimensionalityreduction (DR) methods, such as principal com-ponent analysis (linear) and autoencoder (non-linear), applied to the SCSI matrix in orderto reduce the amount of signaling exchangesbetween clusters. Both DR methods achieve acompression rate of up to 45-50%, while main-taining only a 1% loss in the sum rate and mi-nimum rate per link compared to the solutionwithout DR. This corresponds to the thirdcontribution of this thesis.
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General Introduction

Problem statement/Context

In wireless communications, ad hoc networks have been a useful paradigm for a while for
a wide range of applications such as disaster management, military operations, and com-
mercial environments [75, Section 1.3]. Ad hoc networks present the advantages of being
decentralized, self-organized and fast to deploy without any fixed infrastructure. In such
networks, each node is mobile and capable of transmitting, receiving, and forwarding
data packets without the need for a central controller, e.g. a base station, contrarily to
cellular networks. The dynamic changes that occur in ad hoc networks due to the nodes’
mobility and the channel time-varying fluctuations make tasks such as resource allocation
and interference management challenging. To address these challenges, several works
have studied clustering techniques, in which nodes are grouped statically or dynamically
into clusters [81]. In each cluster, a cluster head (CH) is selected among the nodes to over-
see transmissions, resources, and time slot allocation within the cluster. This approach
can improve the network performance by reducing the signaling exchanges and reduc-
ing the energy consumption of the nodes compared to conventional ad hoc networks.
Clustered ad hoc networks have become increasingly popular in recent years since their
applications include 5G networks, vehicular networks, and tactical networks [42, 129].

For an ad hoc network to operate, each cluster needs to be allocated a frequency
band (FB). When there are more FBs than clusters, a basic solution is to allocate the
FBs orthogonally, which can efficiently be performed in a distributed way. However,
in practical scenarios with large deployments, particularly in military environments, it
is common for the number of clusters to exceed the number of available FBs. To deal
with this issue, alternative methods allow for spatial reuse of the FBs and can allocate
a lower number of FBs than the clusters’, but it creates interference. Existing solutions
that we call coloring allow us to allocate, if necessary, and if the network topology allows
it, the same FBs to different clusters while ensuring that the interference created does
not negatively impact the network’s proper functioning. One such solution is the Trial
and Error Learning (TEL) method, which involves allocating channels in a distributed
and dynamic way based on a criterion of maximization of a utility function based on the
received interference level [34, 98]. The TEL algorithm converges to solutions that enable
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FBs reuse to "distant" clusters, thus minimizing the impact of endogenous interference.
Nevertheless, relying solely on this solution may not provide satisfactory performance in
various scenarios, such as high cluster density. In such cases, adjacent clusters may end
up using the same FB, resulting in interference that can negatively affect the network’s
performance.

In this context, lowering the number of clusters, thus increasing the ratio between
the number of FBs and the number of clusters, should make the spatial frequency reuse
work. One approach could consist in performing a new clustering with a larger cluster
size. However, in this work, we assume to keep the clusters fixed by configuration and
thus, we sought another approach. We propose to that end to associate two adjacent
clusters using the same FB while dealing with the interference between them.

One naive solution would consist of applying time-division multiple access (TDMA)
between both clusters, whose drawback is to divide the data rate by two. Instead, we
propose to manage the interference using the topological interference management (TIM)
method [50]. The original TIM technique relies on knowing the interference graph of the
network, which indicates whether the strength of interference from each node to each
receiver in deterministic channels is weak or strong. However, as we will see in the
following chapters, the TIM scheme has the drawback of providing poor performance in
terms of both sum rate and fairness, compared to traditional schemes like TDMA in ad
hoc networks. Existing works have proposed an extension of TIM for random channels
by incorporating statistical channel state information (CSI) into the procedure, but it also
presents worse performance than TDMA in terms of sum rate and fairness [47, 124]. The
first objective of this thesis is thus to improve the state-of-the-art (SOTA) by proposing
a novel TIM solution that incorporates the statistical CSI (SCSI) and outperforms
TDMA in terms of both sum rate and fairness in ad hoc networks.

To apply this solution, we need to estimate the statistical CSI (SCSI) related to each
link of the associated clusters. CSIs have the drawback of having an overhead from
the nodes to the CH which is slower than the channel dynamics. As a result, the CH
may have outdated CSI samples for performing interference management. In contrast,
SCSIs have a longer validity period and are better suited for the constraints of ad hoc
networks, where a direct return path for signaling may not exist. To describe the random
fluctuations of the propagation channel, we consider a frequency-flat Rayleigh fading
channel which is parametrized by the average channel power and is used in the literature
to model communications without line-of-sight between the transmitter and the receiver.
To estimate the SCSI, one trivial solution consists of applying TDMA, where each node
transmits a reference signal one after the other. To reduce the sensing duration, the
second objective of this thesis is to develop new methods for estimating the SCSI in a
frequency-flat Rayleigh fading channel, which outperforms TDMA.

Finally, after the estimation phase, each node obtains the SCSI regarding the links from
all other nodes and send them to the CH of their cluster. To implement our enhanced
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TIM solution, the SCSI need to be shared between the CHs of the two clusters. For the
sake of efficiency, we aim to minimize the overhead communication between the clusters.
Therefore, the third contribution of this thesis is to develop methods to reduce the
amount of signaling exchanges between the CHs of the clusters.

Outlines and contributions

This thesis is composed of five chapters. We present different interference management
approaches in Chapter 1, whereas the original contributions are gathered in Chapters 2, 3,
and 4. Conclusion and perspective for future works are provided in Chapter 5.

In Chapter 1, we provide a brief overview of several interference management meth-
ods assuming a single antenna at both transmitters and receivers. To have practical
implementations, we focus on solutions based on linear precoders and decoders, such as
interference alignment (IA) in Section 1.2 and TIM in Section 1.3.

In Chapter 2, we investigate the application of TIM in two associated adjacent clusters
operating under a frequency-flat Rayleigh fading channel and SCSI assumption. When
only one frequency band is available, we propose a new centralized interference man-
agement scheme. For that, we provide an approximation of the expected sum rate that
only depends on the SCSI. We then formulate an enhanced framework of TIM, called
enhanced TIM (eTIM), where the precoders and decoders are obtained by maximizing
the approximated sum rate. To further improve the sum rate performance and fairness
among the users, we propose a novel scheme, called eTIM-hybrid, that combines eTIM
with TDMA access. This scheme provides higher a sum rate while guaranteeing a min-
imum rate per link. Furthermore, when two frequency bands are available, we propose
a centralized method called joint frequency allocation eTIM-hybrid (JFA-eTIM-hy) that
combines a frequency band allocation technique with eTIM-hybrid. Through extensive
simulations, we show that both proposed solutions outperform existing methods in terms
of average sum rate while maintaining an average minimum user rate for each link in
both clusters.

In Chapter 3, we propose two approaches to address the problem of channel statistics
estimation under frequency-flat Rayleigh fading and time-division duplex (TDD) mode
assumption. The first approach uses a scheduling solution allowing two simultaneous
transmissions and introduces two new estimators based on the maximum likelihood es-
timator (MLE) and the method of moments (MoM) to estimate the direct and interfering
channels’ magnitude mean power at each receiver. We also derive the Cramer-Rao lower
bound (CRLB) associated with this estimation problem and propose an efficient computa-
tion of it. The second approach describes another scheduling method using simultaneous
transmissions and orthogonal sequences to remove interference. Both approaches out-
perform TDMA in terms of sensing duration, at the expense of energy consumption.

In Chapter 4, we consider the problem of signaling exchange reduction between the
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clusters. We propose linear and non-linear dimensionality reduction (DR) methods to
compress the channel statistics that are communicated between clusters. The suitability
of the proposed DR methods for interference management is evaluated in terms of average
sum rate and minimum user rate per link when using the previously proposed eTIM-
hybrid.

In Chapter 5, we provide concluding remarks and outline some future directions of
research.
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Chapter 1

Linear interference management
overview

This chapter aims to review the literature about existing interference management ap-
proaches in clustered ad hoc networks. In Section 1.1, we introduce the interference man-
agement context. In Section 1.2, we cover IA’s usage in single-input single-output (SISO)
and provide the relevant literature. In Section 1.3, we discuss the application of TIM in
SISO and review the related state-of-the-art. In Section 1.4, we provide an overview of
hybrid interference management techniques combining TIM and other approaches.

1.1 Introduction

Information theory tells us [114, Section 6.1] that orthogonal multiple access (OMA)
schemes such as TDMA, frequency-division multiple access (FDMA), and code-division
multiple access (CDMA), are less efficient than non-orthogonal multiple access (NOMA)
ones with proper interference mitigation procedures.

Several interference management techniques have recently emerged and been studied
to improve the data rate of a network [70]. Examples include treating interference as noise
(TIN) [23, 35] and interference neutralization [88]. However, these methods have only
been studied in small topologies and present poor performance in the presence of more
and stronger interference. NOMA combined with successive interference cancellation
(SIC) has presented promising results [16, 51, 127], but requires a high amount of signaling
exchanges and CSI knowledge which is impractical for ad hoc networks.

Therefore, for practical implementations, linear interference management strategies
are needed. In this regard, we describe different classes of such techniques, namely, IA
and TIM.
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1.2 Interference alignment

IA is an interference management technique that aims to align the received interference
by projecting them in a separate space so that the desired signal can be decoded. To this
end, the precoders and decoders used by the transmitters and receivers, respectively, are
carefully designed to remove interference and increase the capacity of the network.

1.2.1 Interference alignment in SISO

In [17], Cadambe and Jafar introduced an IA technique that we refer to as conventional
IA. This scheme can align a large number of interfering signals, which resulted in the
conclusion that wireless networks are not always limited by interference. The authors
have proved that in conventional IA it is theoretically possible to limit interference at
each receiver to about half of the received signal space, leaving the other half free of the
interference for the desired signal. In an interference channel with K users, each node
with a single antenna can achieve a degree-of-freedom (DoF) of 1/2, resulting in a total
DoF of K/2, where the DoF represents the maximum number of independent data streams
that can be transmitted over a wireless network. This is an improvement over orthogonal
access schemes such as TDMA, where the DoF is limited to 1/K per node, resulting in a
total DoF of 1.

Propagation
channel

Direct signal

Interfering signal

Figure 1.1: IA example for N = 3 links with a single antenna at each node.

To have a better understanding of IA, we consider a network composed of N links
in SISO communicating on the same logical channel, where a link is referred to as a pair
of transmitter-receivers. Each transmitter Txi uses a precoder vi ∈ R

1×r to transmit sivi,
with si the information symbol, to their corresponding receiver Rxi. This transmission
can be seen as a temporal spreading of the symbol of r. A representation of this network
for N = 3 links is illustrated in Fig. 1.1. When assuming that the propagation channel is
constant over the transmissions of sivi, i = 1, ...,N, i.e. over r channel uses, the received
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signal at Rxi can be written as:

yi =
√

PihiisivT
i +

N∑
j=1
j,i

√
P jhi js jvT

j + ni, (1.1)

where P j is the transmit power of Tx j, hi j ∼ CN(0, γi j) is the Rayleigh fading coefficient
from transmitter Tx j to receiver Rxi, and CN(µ,Γ) stands for the complex Gaussian
distribution with mean µ and variance Γ, γi j is the channel gain, ni ∼ CN(0,PnIr) is the
additive white Gaussian noise (AWGN) where In stands for the identity matrix of size n,
Pn = N0Wb is the noise power where N0 is the thermal noise density and Wb is the signal
bandwidth.

Each receiver Rxi uses a decoder ui ∈ R
1×r to estimate the symbol which can be

expressed as:

ŝi =
√

PihiisiuivT
i︸         ︷︷         ︸

desired signal

+

N∑
j=1
j,i

√
P jhi js juivT

j

︸               ︷︷               ︸
interfering signals

+uini. (1.2)

To decode the intended signal si, conventional IA imposes the constraints that all the
interference terms are removed and the desired signal is preserved over r channel uses.
Therefore, the coders ui,vi are designed for all links i with the following constraints:

uivT
j =

1 if i = j,

0 otherwise.
(1.3)

Let us define the precoders and decoders matrices U := (u1, ...,uN)T and V := (v1, ...,vN)T.
The conventional IA aims at finding U,V with the following constraint:

UVT = IN, (1.4)

which provides a full rank matrix and can only be respected for r = N. One solution is to
use the canonical basis, which is the same as performing TDMA.

Since we consider a single data stream and SISO systems, the DoF can be computed
with the following [29, 47]:

DoF =
1
r
. (1.5)

As a consequence, conventional IA which perfectly aligns the interference provides the
same performance in terms of DoF as TDMA. To improve the DoF, multiple studies
have proposed other types of IA schemes to design the coders U,V without perfect
interference alignment, which decreases the coders’ size r. In the following, we provide
the state-of-the-art of such IA solutions.
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1.2.2 Types of IA and related work

Several studies have emerged following the promising results of the DoF in IA techniques.
Some works have focused on the theoretical aspect of IA by analyzing DoF theoretical
bounds [15, 65, 96], while others have proposed various approaches to design IA precoders
and decoders. Instead of completely removing the interference, multiple authors have
proposed optimizing different objective functions such as interference leakage [40, 93], in-
terference mean square error (MSE) [102], Signal-to-Interference-plus-Noise ratio (SINR)
[24, 40], sum rate [48, 100, 113], or pairwise error probability [82]. All the previously men-
tioned IA methods require the knowledge of CSI. Some studies have explored IA schemes
with more realistic settings such as imperfect CSI at the transmitter (CSIT) [5, 6, 65] or
distributed IA using an autoencoder to design the coders [86]. While joint power control
and IA solutions have been proposed using clustered IA in [131] and deep reinforcement
learning in [118], a joint channel allocation and IA using graph theory is provided in [76].

Although the proposed IA schemes reduce the coders’ size to increase the DoF, they re-
quire extensive CSI overhead. Such significant signaling exchanges overload the network,
which is not desirable. To deal with this issue, we propose to use an interference man-
agement technique based on the topological interference management (TIM) approach,
which we describe in the next section.

1.3 Topological interference management

TIM is a scheme for interference management that only considers the interference graph,
i.e. determining for each receiver whether the interference caused by each other node
is weak or strong. This approach can also be seen as a more general framework than
traditional OMA techniques, which can be considered as special cases of TIM in some
singular cases. By optimizing transmission scheduling based on topology, TIM has the
potential to significantly improve the capacity and efficiency of wireless networks.

In this section, we outline the principles and limitations of conventional TIM. We
then present eTIM, an enhanced version of TIM that assumes SCSI knowledge to better
manage the interference.

1.3.1 Conventional TIM

TIM [50], sometimes called topological IA (TIA) [47]1, is a new approach that exploits
IA principles under realistic assumptions on CSIT. Instead of starting with perfect CSIT
knowledge like in IA and decreasing it incrementally, TIM starts with no CSIT assumption
and gradually increases the available CSIT knowledge as illustrated in Fig 1.2. In this
section, we study conventional TIM which only requires knowing the interference graph,

1I am thankful to Babak Hassibi, Kishore Jaganathan, and Christos Thramboulidis for sharing the code
related to this research project.
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Prior perspective: IA New perspective: TIM

Perfect CSIT No CSIT

Figure 1.2: Motivation behind TIM from [4]. In the prior perspective, we consider IA with
perfect CSIT and we incrementally decrease CSIT knowledge. In the new perspective, we
assume no CSIT and we incrementally increase CSIT knowledge.

which is sometimes referred to in the literature as network topology [55] or interference
topology [62].

1.3.1.1 TIM description

Ultimately, the objective behind TIM is to find a compromise between practical CSIT set-
tings and network performance. In the TIM framework, the interference channel strength
is represented with only one bit of CSIT, which significantly reduces the communication
overhead. The interfering links are categorized into "weak" or "strong" based on criteria,
which can depend on the received signal magnitude, pathloss, or link quality. Details on
how to learn the interference graph are provided later in Section 1.3.1.3. In the following,
we assume that the interference graph is already known whenever TIM is used.

Propagation
channel

Direct signal

Interfering signal

Weak interference

Figure 1.3: TIM example for N = 3 links with a single antenna at each node. The weak
interference can be neglected.

Figs. 1.3 illustrates a TIM system with N = 3 links, where the links Tx1-Rx3 and Tx3-
Rx1 are assumed to be weak interference. In the TIM framework, precoders and decoders
are designed to remove strong interference while accepting weak interference from the
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receivers. Formally, the coders for all links i are constructed to satisfy the following
constraints:

uivT
j =


1 if i = j,

0 if (i, j) ∈ S,

× otherwise,

(1.6)

where S is the set of strong interference links and "×" represents an arbitrary value. The
notation "×" used in [26, 47] indicates that the interfering link (i, j) is weak and is not
subjected to any constraint during the optimization of the coders U,V.

With this scheme, it becomes possible to construct coders U and V that satisfy the
constraints (1.6) with smaller sizes, i.e., lower values of r. This results in a higher DoF
compared to conventional IA with knowledge of the interference graph only. Following
these results, many works in the literature have studied the DoF in TIM through a
theoretical approach in various scenarios with partial connectivity such as the fast-fading
scenarios [90], transmitter cooperation [126], alternating connectivity [7, 38] or under
adversarial topology perturbation [74]. However, the works previously mentioned have
not proposed schemes to design the coders U and V in TIM. One designed solution is to
formulate a low-rank matrix completion (LRMC) problem from the constraints provided
in (1.6).

1.3.1.2 TIM as a low-rank matrix completion problem

To maximize the DoF in TIM, the coders’ length r needs to be minimized. One approach
to achieve this is to set a matrix variable X = UVT of rank r, namely TIM adjacency matrix,
and then formulate an optimization problem minimizing the rank of X while satisfying
the constraints from (1.6). Thus, TIM can be viewed as an LRMC problem which can be
written as follows:

Problem 1.1.

X∗ = arg min
X∈RN×N

rank(X) (1.7)

s.t. Xi j =

1 if i = j,

0 if (i, j) ∈ S,
(1.8)

where the optimal values U,V are then obtained from X∗ with matrix factorization tech-
niques such as singular value decomposition (SVD) or QR decomposition.

Since the rank minimization problem is known to be NP-hard [18], several methods
have been proposed in the literature to solve it. One such method involves minimizing
the nuclear norm or trace instead of the rank function [19], but does not apply to TIM
due to the structure of the adjacency matrix X which requires ones on its diagonal and
would return the identity matrix as the optimal solution. Other techniques to solve this
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problem include alternating minimization [46, 55], Riemannian optimization [107, 123],
semi-definite programming [27, 97], combining TIM with clustering [29, 56], and low-
rank tensor completion in time-varying topology networks [57]. Another solution is to
solve Problem 1.1 for a fixed value of r like in [47, 108, 123]. Therefore, Problem 1.1 can
be formulated for r ∈ {2, ...,N − 1} as the following:

Problem 1.2.

find X ∈ RN×N (1.9)

s.t. Xi j =

1 if i = j,

0 if (i, j) ∈ S,
(1.10)

rank(X) = r. (1.11)

Using the notations with U,V, the TIM problem for a given r can thus be written as:

Problem 1.3.

U∗,V∗ = arg min
U,V∈RN×r

N∑
i=1

(uivi
T
− 1)2 +

∑
(i, j)∈S

(uiv j
T)2 (1.12)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}, (1.13)

with ∥.∥2 standing for the Euclidean norm. The norm constraints are added for power
control. In practice, Problem 1.3 is solved iteratively for r ∈ {2, ...,N − 1} using techniques
such as alternating minimization.

Now that we have formulated the TIM problem, we provide in the next section a new
method to construct the interference graph.

1.3.1.3 New criteria for interference graph

In this section, we propose a new method to learn the interference graph, which distin-
guishes the strong and weak interference.

A common approach in the literature is to apply a threshold on the received power
from the undesired links. In [50], the interfering links are considered weak if their
collective contribution is below the noise power. However, in certain scenarios, such as
high-density clusters or when the noise power is low, the influence of interference can be
stronger than that of the noise, resulting in the classification of all interference as strong.
This, in turn, reduces the DoF. Moreover, [50] did not propose an efficient implementation
of the interference graph, which would involve comparing all possible combinations of
interference sums with the noise power. Another limitation of this approach is that it
classifies all the interference as weak or strong, regardless of the magnitude of the direct
transmission.
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To have a better representation of the link quality, [62] has incorporated the Signal-
to-Noise ratio (SNR) in the interference strength criteria. Other works have computed
the instantaneous SINR to decide whether the induced interference is strong or weak
[20, 21, 128]. Nevertheless, in random channels, the SNR and the SINR are both random
variables since both the useful and interfering signals are subject to random fluctuations.
In some contexts such as vehicular-to-vehicular (V2V) [73] or device-to-device (D2D)
[119] networks, the SINR feedback from the receiver to the transmitter is slower than the
channel dynamics, and thus, only outdated SINR values are available at the transmitter.
Consequently, it seems more relevant to decide whether an interference is strong or weak
based on a probabilistic criterion on the SINR. To do this, it is necessary to compute the
probability density of the SINR, which requires estimating the statistical parameters of
the channel of all pairs of links.

Since we consider a statistical approach, establishing the probabilistic criterion on the
SINR mentioned above requires knowing the probability density of the SINR. To do
so, we define a new probabilistic criterion of the interference graph based on the outage
probability of the SINR to discriminate strong interference from weak interference. The
main advantage is that for any transmission topology, the outage probability of the SINR
can be calculated immediately from the channel statistics. The new interference graph is
defined as follows:

– Edge: for a transmission j → i, the interfering link k → i corresponds to strong
interference if P(SINR j→i,k > Γ0) < τthres, otherwise the interference is weak and the
link is not represented, where Γ0 is a threshold for SINR, τthres a threshold for the
probability and the SINR can be expressed as:

SINR j→i,k =
P j|hi j|

2

Pn + Pk|hik|
2 . (1.14)

– Weight: for a transmission j→ i, the interfering link k to i has a weight defined as:

wik := P(SINR j→i,k < Γ0) (1.15)

Since we assume that the channel follows a Rayleigh distribution, it can be shown
using the same calculations for the SINR probability density function (pdf) provided in
[33] that the outage probability of SINR can be written after simplifications in our context
as follows:

P(SINR j→i,k > Γ0) =
exp

(
−
Γ0Pn

P jγi j

)
1 + Γ0

Pkγik

P jγi j

. (1.16)

1.3.1.4 TIM’s limits

While all of the TIM approaches in Section 1.3.1.2 have been proposed to optimize the
DoF in TIM, using DoF as a performance metric has some limitations. Optimizing DoF
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involves removing strong interference while tolerating weak interference. However, this
neglects the fact that weak interference may not be as insignificant as assumed. The inter-
ference graph proposed in the previous section assesses the strength of the interference by
considering their individual contribution, whereas the collective contributions of weak
interference can become strong. This can result in significant signal deterioration and
thus, reduces the sum rate. Even though [50] has proposed a threshold criterion on the
sum of interfering links power, its approach cannot be applied to high-density clusters,
as we mentioned earlier.

While TIM may achieve high DoF, its performance in terms of the sum rate is of-
ten poor. In fact, according to [47], TIM in SISO yields lower sum rates compared to
orthogonal schemes such as TDMA when applied to hexagonal cellular arrays and ad
hoc networks. Therefore, relying on TIM with only knowledge of the interference graph
does not provide satisfactory results in terms of sum rate. Remaining in the TIM philos-
ophy, we assume that we have more information on the channel and we extend TIM by
incorporating SCSI in the procedure.

1.3.2 Extension of TIM

In this section, we consider an extension of the TIM procedure by integrating SCSI, and
we refer to this existing extension as TIM-SCSI in this thesis. SCSI is particularly useful
in practical settings of ad hoc networks where instantaneous CSI may not be available.
To address the weak interference issue discussed in the previous section, [47] and [124]
proposed adding a regularization term to the weak interference. As a result, the TIM-SCSI
optimization problem can be formulated for r ∈ {2, ...,N − 1} as follows:

Problem 1.4.

U∗,V∗ = arg min
U,V∈RN×r

N∑
i=1

(uivi
T
− 1)2 +

∑
(i, j)∈S

(uiv j
T)2 +

∑
(i, j)∈S̄

λi(uiv j
T)2 (1.17)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}, (1.18)

with S̄ the set of weak interference links and λi =
1

max
{ j|(i, j)∈S̄}E[|hi j|2]

. This optimiza-

tion problem has been solved using alternating minimization in [47] and Riemannian
optimization in [124].

However, the proposed TIM-SCSI in [47, 124] provides a sum rate similar to TDMA.
Furthermore, the implementation of TIM-SCSI in ad hoc networks in [47] assumes that
transmitters and receivers are close to each other (less than 1 km), which is not practical
in our clustered ad hoc network context. In [28], another TIM-SCSI technique that uses
semi-definite programming to minimize the rank of the TIM-SCSI adjacency matrix is
proposed. Nevertheless, this approach has limitations since it optimizes the DoF metric,
which does not represent well the actual sum rate performance, as explained earlier.
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Since the above TIM-SCSI methods exhibit poor performance in terms of sum rate
and fairness, we propose in the next section other schemes using on hybrid interference
management.

1.4 Hybrid interference management

To improve network performance, several works have explored the use of hybrid interfer-
ence management methods that combine multiple techniques, such as TIM with TDMA.
The goal is to identify scenarios where the network can benefit from TIM and use TDMA
in cases where it may not be effective, to achieve better performance than either method
alone.

The authors in [36] proposed a hybrid TIM-TIN solution for a 5-user network with
quantized channel strength knowledge. However, this approach has limitations. First, it
does not consider fairness in terms of data rate. Second, although quantized CSIT is more
practical than perfect CSIT, it is still difficult to implement due to channel fluctuations.
In [63], a hybrid TIM-NOMA solution was proposed for a 5-user network to improve its
performance. Nevertheless, it does not take fairness into account as well and requires
perfect CSIT knowledge for NOMA, which may not always be available in practice.
Moreover, the length of the TIM coders in this solution was equal to the number of users,
which is the same as performing TDMA.

Therefore, a novel approach that optimizes link grouping while ensuring fairness in
terms of data rate is needed, especially in the SCSI context. A detailed solution that
combines eTIM and TDMA in the SCSI context is presented in Chapter 2 to address this
challenge.

1.5 Conclusion

This chapter provides an overview of the linear interference management schemes IA and
TIM and their limitations in ad hoc networks. The choice of these solutions is motivated
by their practical implementation, contrary to other non-linear interference management
methods. Several types of IA algorithms have been proposed in the literature to improve
the sum rate compared to TDMA, but require extensive CSI overhead. To avoid significant
signaling exchanges in the network, we have proposed the use of the TIM since it only
assumes knowing the interference graph, which indicates whether the interference is
weak or strong. Multiple works have formulated TIM as an LRMC problem and have
shown improvements in terms of DoF. However, it has been shown that despite a reduced
DoF, TIM presents a lower or similar sum rate as TDMA due to underestimation of the
influence of the weak interference. Therefore, we assume that we have SCSI information
and consider eTIM which is an extension of TIM. Since it also provides poor performance
in terms of sum rate and fairness compared to TDMA, we examine hybrid interference
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management schemes in this thesis. This study is performed on a system composed of
two adjacent clusters and under the assumption of frequency-flat Rayleigh fading channel
and TDD mode.

In Chapter 2, we describe the proposed hybrid interference management solution
which combines eTIM with TDMA access in an ad hoc network in the SCSI context. In
Chapter 3, we propose two new scheduling procedures to estimate the channel statistics.
In Chapter 4, we present a DR solution that reduces the signaling exchanges between
clusters to communicate the channel statistics between the CHs.
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Chapter 2

Enhanced topological interference
management

2.1 Introduction

2.1.1 Context and state-of-the-art

In this chapter, we address the first goal of this thesis, which is to design interference
management solutions based on TIM in an ad hoc network in the SCSI context.

To avoid the idealistic assumption requiring perfect instantaneous channel coeffi-
cients, we choose to focus on a statistical approach that we will refer to as the SCSI
context. In this approach, we assume that the transmitters have access to the statistics of
the channel, which corresponds to the channel’s average power. We recall that we will
propose solutions in Chapter 3 to estimate these channel magnitudes under flat Rayleigh
fading. Furthermore, the SCSI context has the benefit of finding a balance between i)
the idealistic perfect CSIT knowledge assumption, and ii) the no CSIT and 1-bit CSIT
assumptions which provide poor performance in terms of sum rate. SCSI is more suitable
for practical settings such as in ad hoc networks where it may not be possible to have
instantaneous CSI. In a SCSI context, only a few works have implemented TIM in small
topologies [47, 124], but not in ad hoc networks. Moreover, these solutions have the
drawbacks of providing a similar sum rate to TDMA and having fairness issues.

Therefore, new solutions using TIM in the SCSI context are required to improve the
sum rate while dealing with the fairness issues. In the rest of this chapter, we propose
new schemes using the TIM framework in the SCSI context, which we refer to as eTIM,
to manage the interference between the clusters.

2.1.2 Contributions

The contributions of this chapter are provided as follows.
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• We propose an eTIM solution that uses the maximum sum-rate IA (MSR-IA) algo-
rithm [100], which typically requires perfect CSIT. However, we adapt this method
by providing an approximation of the objective function that only requires SCSI
to be optimized. To the best of our knowledge, this is the first work using this
approach. In addition, since maximizing the total sum rate can suffer from a lack of
fairness, we also implement two techniques from the literature to deal with fairness:
i) the proportional fairness optimization and ii) by introducing a per link minimum
rate constraint in the eTIM optimization problem. We provide simulation results to
assess the performance of these methods and compare them with the TDMA.

• Due to the unsatisfactory performance of the previous fairness schemes in terms
of sum rate, we propose a novel approach that combines TDMA and eTIM. The
main idea is to partition the links into two groups: in the first group, we use eTIM
whereas TDMA is used in the second group. Its implementation is divided into two
main stages:

1. Links partition: the links are separated into "good links" on which we ap-
ply eTIM and "bad links" on which TDMA is used. We propose an iterative
algorithm to perform this step.

2. Scheduling optimization: we optimize the time allocation for each link within
a given frame. Our proposed approach involves allocating a portion of time to
the "good links" using eTIM and to the "bad links" using TDMA.

• Finally, we consider the case when two frequency bands are available and develop
a joint frequency band allocation and eTIM-hybrid scheme. Our proposed scheme
consists of creating two groups of links from both clusters and allocating the FBs to
them. We call this scheme JFA-eTIM-hy and show through numerical simulations
that it outperforms the standard orthogonal frequency allocation that assigns a
different frequency band to each cluster.

2.1.3 Chapter organization

The chapter is organized as follows. In Section 3.2.1, we describe the system model. In
Section 2.3, we describe the eTIM methods using an approximation of the objective
function in the SCSI context. Then, in Section 2.4, we present the new scheme we
propose that we call eTIM-hybrid. Afterward, in Section 2.5, we provide the proposed
interference management method JFA-eTIM-hy in the context of two available frequency
bands. Finally, in Section 3.4, we draw some conclusions.
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Figure 2.1: Representation of two associated clusters C1 and C2 with nC1 = nC2 = 3 links
per cluster communicating on the same frequency band. Link i is represented as a pair
Txi-Rxi.

2.2 Preliminaries

In this section, we introduce the system model as well as the hypothesis and notations
related to this chapter.

2.2.1 System model

We consider two adjacent clusters C1 and C2 communicating on the same frequency band,
which creates interference. Each cluster Ck contains nCk links, where link i is defined as a
pair of transmitter-receiver Txi-Rxi. Thus, the whole network composed of both clusters
contains N := nC1 +nC2 links. In Fig. 2.1, we represent an example of two adjacent clusters
with nC1 = nC2 = 3 links per cluster with the direct and interfering links.

Each received signal is corrupted by intra-cluster (from interfering transmitters in
the same cluster) and inter-cluster (from interfering transmitters in the other cluster)
interference. Like in Section 1.2.1, transmitter Txi uses a precoder vi ∈ R

1×r to send the
information symbol si, from which we can derive the following received signal at Rxi:

yi =

N∑
j=1

vT
j

√
P jγi jh̃i js j + ni, (2.1)

where P j is the transmit power of Tx j, γi j is the channel gain, h̃i j ∼ CN(0, 1) is the
Rayleigh fading coefficient from transmitter Tx j to receiver Rxi, ni ∼ CN(0,PnIr) is the
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Figure 2.2: Representation of N = 2 links for L = 3 slots. The physical rates Rφ1 ,R
φ
2 are

related to the physical layer. The user rates which are related to the protocol layer are

provided as: Ru
TDMA,1 =

2
3

Rφ1 and Ru
TDMA,2 =

1
3

Rφ2 .

AWGN, Pn = N0Wb is the noise power, N0 is the thermal noise density and Wb is the
signal bandwidth.

Then, after applying the decoder ui at receiver Rxi, the estimated symbol can be
expressed as:

ŝi = uiyi, (2.2)

which can be rewritten by plugging (2.1) in (2.2) as:

ŝi = uivT
i

√
Piγiih̃iisi +

N∑
j=1
j,i

uivT
j

√
P jγi jh̃i js j + uini. (2.3)

In the SCSI context, we assume that the channel magnitude γi j is perfectly known. In
addition, we also suppose that the noise power Pn and the transmit powers are known.

2.2.2 Rate expressions

In this section, we describe how to calculate the sum rate of the overall network composed
of the links of both clusters C1 and C2, to assess the performance of our interference
management methods. In the following, we provide the rates expression when applying
TIM and TDMA framework.

2.2.2.1 Rate expression for TDMA framework

We first consider the TDMA framework where transmissions are performed without
interference. The physical rate is defined as the rate related to the physical layer, which
can be written at receiver Rxi as:

Rφi :=Wb log2(1 + SNRi), (2.4)

where the SNR at Rxi can be expressed as:

SNRi :=
Piγii|h̃ii|

2

Pn
, (2.5)
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with := is the notation for defining a variable. Let us define the user rate which is related
to the protocol layer and is equal to the physical rate multiplied by the proportion of time
allocated to each link for transmission. We consider a frame containing L time slots that
we refer to as a "frame of length L". The term slot represents the shortest time interval of
the frame and we aim at optimizing its allocation to the links of the network. Then, we
define ni as the number of transmissions for each link i ∈ {1, ...,N} of the network where
each transmission has a duration of one slot. We assume L ≥ N so that every link can be
allocated at least one transmission. The user rate at receiver Rxi on frame of length L can
thus be written as:

Ru
TDMA,i :=

ni

L
Rφi . (2.6)

Fig. 2.2 represents an example of a communication on L = 3 slots and N = 2 links to
distinguish physical and user rates.

In addition, the sum rate of the network is defined as the sum of the user rates of each
receiver of the network. When applying the TDMA scheme, the sum rate can be written
as:

RTDMA
sum :=

N∑
i=1

Ru
TDMA,i. (2.7)

Then, we respectively define the average physical/user/sum rate as:

R̄φi := E
[
Rφi

]
, (2.8a)

R̄u
TDMA,i := E

[
Ru

TDMA,i

]
, (2.8b)

R̄TDMA
sum := E

[
RTDMA

sum

]
, (2.8c)

where the expected value is estimated using Monte-Carlo simulations on several channel
realizations. It is worth mentioning that what we call "average sum rate" is sometimes
referred to as the "ergodic capacity" in the literature [79, 112].

Moreover, we consider in the TDMA framework a scheme using the round-robin
algorithm which consists of allocating portions of time to each link in equal portions and
circular order, i.e. the nodes transmit successively one after each other in a loop [67]. This
method is referred to as "round-robin TDMA". When using round-robin TDMA on a long
frame, i.e. when L is high, we can state the following approximation:

ni ≈
L
N
, ∀i ∈ {1, ...,N}, (2.9)

from which we can deduce the asymptotic user rate at receiver Rxi for high values of L
which can be written as:

Ru
RR-TDMA,i :=

Rφi
N
. (2.10)

We define the average user rate when using round-robin TDMA which can be written as:

R̄u
RR-TDMA,i :=

R̄φi
N
, (2.11)

with R̄φi defined in (2.8a).
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2.2.3 Rate expression for TIM framework

When using the TIM scheme, simultaneous transmissions are performed for r slots which
generates interference between nodes. The physical rate at receiver Rxi can be written as:

RφTIM,i :=Wb log2(1 + SINRi), (2.12)

where the SINR at Rxi can be expressed as:

SINRi =
Piγii|h̃ii|

2
∣∣∣uivT

i

∣∣∣2
Pn∥ui∥2 +

∑
j,i P jγi j|h̃i j|2

∣∣∣∣uivT
j

∣∣∣∣2 . (2.13)

The user rate is defined as the physical rate divided by the number of slots required to
apply eTIM which is r. Formally, it can be written as:

Ru
TIM,i :=

1
r

RφTIM,i. (2.14)

In addition, the sum rate of the network can be expressed as:

RTIM
sum :=

N∑
i=1

Ru
TIM,i. (2.15)

The average physical/user/sum rate can be written as:

R̄φTIM,i := E
[
RφTIM,i

]
, (2.16a)

R̄u
TIM,i := E

[
Ru

TIM,i

]
, (2.16b)

R̄TIM
sum := E

[
RTIM

sum

]
, (2.16c)

which can be estimated using Monte-Carlo simulations.

2.3 Enhanced topological interference management

In this section, we propose several interference management methods to improve the
network sum rate compared to TDMA in the SCSI context. To do so, we propose to
combine the MSR-IA algorithm [100, 113] which aims at maximizing the sum rate of the
network assuming perfect CSIT, and the "hardening bound" approximation [80] to lower
the complexity of the optimization problem. This method will be referred to as maximum
sum-rate eTIM (MSR-eTIM). Moreover, since maximum sum rate algorithms are known
for lacking fairness between users, we extend the proposed eTIM solution to deal with
fairness. To this end, we implement state-of-the-art algorithms and show the limit of
these schemes through numerical simulations.

This section is organized as follows. First, we present the hardening bound approxi-
mation, before using it to formulate the MSR-eTIM optimization problem and detail how
to solve it. Then, we describe the eTIM solutions dealing with fairness that we have
implemented. Finally, numerical simulations are provided to assess the performance of
each method.
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2.3.1 Hardening bound approximation

We consider the MSR-IA algorithm by optimizing the ergodic capacity instead of the sum
rate since we assume the SCSI context. For a given coders’ length r, the optimization
problem to solve can be written as:

Problem 2.1.

U∗eTIM,V
∗

eTIM = arg max
U,V∈RN×r

R̄eTIM
sum (2.17)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}, (2.18)

where R̄eTIM
sum :=

∑N
i=1 R̄u

eTIM,i and R̄u
eTIM,i is defined using (2.16b), U := (u1, ...,uN)T, V :=

(v1, ...,vN)T and ∥·∥2 corresponds to the Euclidean norm.

This optimization problem presents two complexity issues:

– A numerical complexity issue: in the objective function, because of the expected
value term, the rates R̄u

TIM,i are evaluated using a numerical procedure like with the
Monte-Carlo method or a numerical integration scheme. This estimation is required
at each iteration when using an iterative framework for Problem 2.1, leading to high
numerical complexity and computational inefficiencies.

– An algorithmic complexity issue: although no formal proof is provided, it is stated
in [100, 113] that Problem 2.1 is neither convex nor concave with respect to U or V.

To deal with the numerical complexity issue, we propose to use the "hardening bound"
approximation from [80, Section 3.2]. Usually, this approximation is applied in massive
multi-input multi-output (MIMO) systems in the presence of the phenomenon called
channel hardening where the small-scale fading effects disappear for a large number of
antennas. However, it has been shown in [85] that this approximation performs well
even in the absence of channel hardening. Although this approximation is suboptimal
when applied in SISO, we will show through numerical simulations that it provides good
results. Since the "hardening bound" approximation consists of neglecting the effects
of small-scale fading, in the SINR expression in (2.13), we replace the terms |h̃i j|

2 by its
expected value which is equal to 1. In the objective function, the term R̄u

TIM,i is thus
approximated by the hardening bound which can be written as:

R̄hard
eTIM,i := log2(1 + SINRhard

i ), (2.19)

where the approximation SINRhard
i can be expressed as:

SINRhard
i :=

Piγii
∣∣∣uivT

i

∣∣∣2
Pn∥ui∥

2
2 +

∑N
j=1
j,i

P jγi j

∣∣∣∣uivT
j

∣∣∣∣2 . (2.20)
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Thanks to the hardening bound approximation, we can avoid using Monte-Carlo methods
to estimate (2.16b), which solves the numerical complexity issue. Using this approxima-
tion, in the next section, we propose a framework to deal with the algorithmic complexity
issue.

2.3.2 Max sum rate eTIM

2.3.2.1 Optimization problem formulation

It is worth noticing that when using the hardening bound approximation described
previously, the objective function to optimize is an approximation of the average sum
rate instead of the average sum rate itself. Yet, with an abuse of notations, we refer to this
method as MSR-eTIM. The related optimization problem for a given coders’ length r can
be written as:

Problem 2.2.

U∗eTIM,V
∗

eTIM = arg max
U,V∈RN×r

R̄hard
sum (2.21)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}, (2.22)

with R̄hard
sum :=

∑N
i=1 R̄hard

eTIM,i and R̄hard
eTIM,i is defined in (2.19).

As reminded in Chapter 1, Problem 2.2 is solved for a given coders’ length r. To find
the optimal value of r, a brute-force approach has been implemented, which consists of
solving Problem 2.2 for each r = 2, ...,N, where the case r = N leads to a suboptimal
solution of round-robin TDMA. Then, we choose the coders’ length r giving the highest
average sum rate by using Monte-Carlo simulations. This procedure is described in
Algorithm 2.1 for any optimization problem based on eTIM.

Algorithm 2.1: Procedure to find the best coders’ length r∗ with eTIM for N links

for r = 2, ...,N do
Find the solutions U∗eTIM,V

∗

eTIM ∈ R
N×r of the eTIM problem, e.g. Problem 2.1

or 2.2.
Get R̄TIM

sum(r) from (2.16) with NMC Monte-Carlo simulations.
end
Return r∗ = arg maxr∈{2,...,N} R̄

TIM
sum(r).

Like Problem 2.1, Problem 2.2 has a similar objective function to the one in [100, 113]
which states that Problem 2.2 is neither convex nor concave with respect to U or V.
Hence, to deal with this algorithmic complexity issue, we implement a suboptimal method
combining alternating optimization (AO) and gradient descent like in [100, 113].

To simplify the notations, during the AO, the term R̄hard
sum (u1, ...,uN,v1, ...,vN) designates

R̄hard
sum (U,V).
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2.3.2.2 Alternating optimization

AO is an iterative procedure that optimizes alternately between the optimization vari-
ables until convergence is reached, but cannot guarantee the optimality of the conver-
gence point. Like in [113]’s AO implementation, we choose to alternate between the
optimization variables u1, ...,uN,v1, ...,vN. To maximize ReTIM

sum , at iteration t, we execute
the following procedure:

We first formulate the optimization problem alternately between the decoders, which
can be expressed for all k ∈ {1, ...,N} as:

Problem 2.3.

u(t)
k = arg max

uk∈R1×r
R̄hard

sum (u(t)
1 , ...,u

(t)
k−1,uk, ,u

(t−1)
k+1 , ...,u

(t−1)
N ,v(t−1)

1 , ...,v(t−1)
N ) (2.23)

s.t. ∥uk∥
2
2 = 1, (2.24)

where u(t)
1 , ...,u

(t)
k−1,u

(t−1)
k+1 , ...,u

(t−1)
N ,v(t−1)

1 , ...,v(t−1)
N are fixed.

Then, we formulate the optimization problem alternately between the precoders,
which can be written for all k ∈ {1, ...,N} as:

Problem 2.4.

v(t)
k = arg max

vk∈R1×r
R̄hard

sum (u(t)
1 , ...,u

(t)
N ,v

(t)
1 , ...,v

(t)
k−1,vk,v

(t−1)
k+1 , ...,v

(t−1)
N )

s.t. ∥vk∥
2
2 = 1,

(2.25)

where u(t)
1 , ...,u

(t)
N ,v

(t)
1 , ...,v

(t)
k−1,v

(t−1)
k+1 , ...,v

(t−1)
N are fixed.

2.3.2.3 Gradient descent methods

Now that we have formulated the proposed AO procedure, we propose to use a numerical
procedure based on gradient descent to solve Problems 2.3 and 2.4. In [113], similar
optimization problems were formulated to determine the linear precoders in the context
of IA. In the following, we adapt these methods to obtain both the precoders and the
decoders.

Let us first explain our optimization method for Problem 2.3.

2.3.2.3.1 Optimization method for Problem 2.3

Since applying gradient descent is easier on an unconstrained optimization problem,
we remove the norm constraint in Problem 2.3 by performing the following change of

variables: uk =
ũk

∥ũk∥2
for k ∈ {1, ...,N} in Problem 2.3.

After applying the change of variables at iteration t, Problem 2.3 can be equivalently
rewritten as:
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Problem 2.5.

ũ(t)
k = arg max

ũk∈R1×r
R̄hard

sum,V(ũ(t)
1 , ..., ũ

(t)
k−1, ũk, ũ

(t−1)
k+1 , ..., ũ

(t−1)
N ), (2.26)

where R̄hard
sum,V :=

∑N
i=1 R̄hard

V,i and R̄hard
V,i is defined as:

R̄hard
V,i := log2

1 +
βV,ii

∣∣∣ũivT
i

∣∣∣2
Pn +

∑N
j=1
j,i

βV,i j

∣∣∣∣ũivT
j

∣∣∣∣2
 , (2.27)

with βV,i j :=
P jγi j

∥ũi∥
2
2

and Ũ := (ũ1, ..., ũN)T.

Afterward, we apply a gradient descent algorithm to Problem 2.5 until convergence.
To this end, after several calculations, we compute the partial derivative of R̄eTIM

sum,V with
respect to ũk and provide its expression in Appendix A.6. The gradient descent algorithm
is performed with a controlled step to obtain ũ∗k, the details of its implementation are
provided in Algorithm 2.2. Finally, the solution u∗k of Problem 2.3 is obtained after

applying the change of variables u∗k =
ũ∗k∥∥∥ũ∗k
∥∥∥

2

.

Algorithm 2.2: Gradient descent with step control to solve arg maxx∈Rr f (x) [14]
Set ϵg > 0.
Initialize x(0).
while ∥∇ f (x)∥22 > ϵg do

Initialize α(p) = 1.
while f (x(p+1)) ≤ f (x(p)

− α(p)
∇ f (x(p))) do

Update x(p+1) = x(p)
− α(p)

∇ f (x(p)).
Update α(p) = α(p)/2.

end
Increment p = p + 1.

end
Return x(p+1)

Now, let us describe the optimization method for Problem 2.4.

2.3.2.3.2 Optimization method for Problem 2.4

Similarly, as the previous section, we perform the change of variables vk =
ṽk

∥ṽk∥2
for

k ∈ {1, ...,N} in Problem 2.4 and formulate the equivalent unconstrained optimization
problem:
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Problem 2.6.
ṽ(t)

k = arg max
ṽk∈R1×r

R̄hard
sum,U(ṽ(t)

1 , ..., ṽ
(t)
k−1, ṽk, ṽ

(t−1)
k+1 , ..., ṽ

(t−1)
N ), (2.28)

with R̄hard
sum,U :=

∑N
i=1 R̄hard

U,i and where R̄hard
U,i is defined as:

R̄hard
U,i := log2

1 +
βU,ii

∣∣∣uiṽT
i

∣∣∣2
Pn +

∑N
j=1
j,i

βU,i j

∣∣∣∣uiṽT
j

∣∣∣∣2
 , (2.29)

with βU,i j :=
P jγi j

∥ṽ j∥
2
2

and Ṽ := (ṽ1, ..., ṽN)T.

Afterward, the expression of the partial derivative of R̄hard
sum,U with respect to ṽk to

compute the gradient descent algorithm is derived in Appendix 2.6. To implement it, we
apply the gradient descent algorithm described in Algorithm 2.2 to Problem 2.6, and we

get ṽ∗k. Finally, the solution of Problem 2.4 is v∗k =
ṽ∗k∥∥∥ṽ∗k
∥∥∥

2

.

2.3.2.4 Analysis of AO’s implementation

It is worth mentioning that we have initially implemented three procedures for Prob-
lem 2.2 and that we have only presented in the previous section the one providing the
best performance in terms of sum rate and convergence speed. The two alternatives are
described as follows:

• Use of a global gradient descent approach without any alternating optimization
step. Although it provides a similar sum rate as the proposed AO implementation,
we have observed through simulations that the implemented gradient algorithm
was much slower in this case, especially in the last steps.

• Use of a gradient descent approach and optimize alternately between two terms: U
and V. Nevertheless, we have observed through simulations that it would lead to
poorer performance in terms of sum rate.

In the end, the details of our AO-based algorithm are summarized in Algorithm 2.3.

2.3.3 Implementation of fair solutions

Since max sum-rate (MSR) algorithms are known to lack in terms of fairness, we extend
the MSR-eTIM optimization problem to deal with fairness. To this end, we implement
two state-of-the-art approaches which are often used in the literature:

• the proportional fairness optimization [44].

• the MSR under minimum rate constraints which consists of adding a minimum rate
constraint per user in the MSR-eTIM optimization problem [61].
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Algorithm 2.3: AO procedure for MSR-eTIM, i.e. for Problem 2.2
Set ϵAO > 0, t = 1,∆AO = ϵAO + 1.
Randomly initialize Uinit,Vinit

∈ RN×r.
Set for all i, u(0) = uinit/∥uinit

∥2 and v(0) = vinit/∥vinit
∥2.

while ∆AO > ϵAO do
for k = 1, ...,N do

Apply Algorithm 2.2 to Problem 2.5 and get ũ(t)
k .

Apply the change of variables u(t)
k =

ũ(t)
k∥∥∥∥ũ(t)

k

∥∥∥∥
2

.

end
for k = 1, ...,N do

Apply Algorithm 2.2 to Problem 2.6 and get ṽ(t)
k .

Apply the change of variables v(t)
k =

ṽ(t)
k∥∥∥∥ṽ(t)

k

∥∥∥∥
2

end
Compute R̄hard

sum (U(t),V(t)) =
∑N

i=1 R̄hard
eTIM,i(U

(t),V(t)) with R̄hard
eTIM,i defined in (2.19).

Set ∆AO =
∣∣∣R̄hard

sum (U(t),V(t)) − R̄hard
sum (U(t−1),V(t−1))

∣∣∣.
Increment t = t + 1.

end
return U(t+1),V(t+1)

2.3.3.1 Proportional fairness

The proportional fairness problem consists in maximizing the product of the rates, instead
of the sum of the rates like in Problem 2.2. With this approach, the algorithm avoids
allocating rates close to 0 since the product of the rates strongly decreases otherwise.

Since the logarithm function is strictly increasing, the proportional fairness optimiza-
tion problem can be written as:

Problem 2.7.

U∗PFeTIM,V
∗

PFeTIM = arg max
U,V∈RN×r

N∑
i=1

log R̄hard
eTIM,i (2.30)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}. (2.31)

In addition, using the partial derivatives of log R̄eTIM
eTIM,iwhose expression can be written
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as:

∂ log R̄hard
eTIM,i

∂ũk
=

1
R̄hard

eTIM,i

∂R̄hard
eTIM,i

∂ũk

∂ log R̄hard
eTIM,i

∂ṽk
=

1
R̄hard

eTIM,i

∂R̄hard
eTIM,i

∂ṽk
,

(2.32)

we can perform an AO and gradient descent like in Section 2.3.2 to solve this Problem 2.7.
This method is referred to as proportional fairness eTIM (PF-eTIM).

2.3.3.2 eTIM Max sum rate with minimum rate constraint

To overcome the fairness issue of MSR-eTIM, one conventional approach is to add a
minimum user rate constraint for every link while maximizing the sum rate. Hence, in
this section, we formulate the corresponding optimization problem and propose to solve
it using the subgradient method.

After adding minimum rate constraints to Problem 2.2, the optimization problem is
formulated as follows:

Problem 2.8.

U∗CeTIM,V
∗

CeTIM = arg max
U,V∈RN×r

R̄hard
sum (2.33)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}, (2.34)

R̄hard
eTIM,i

r
≥ Ru

0 , ∀i ∈ {1, ...,N}, (2.35)

where Ru
0 is the minimum user rate constraint for every link that can be set by the system

designer to meet users’ rate needs.

To solve Problem 2.8, we develop a solution called constrained MSR-eTIM (CMSR-eTIM)
which combines AO and the subgradient method. The details of its implementation are
provided in Appendix A.2.

2.3.4 Numerical results

In this section, we present numerical simulations to assess the performance of the solutions
described in Sections 2.3.2 and 2.3.3 in terms of average sum rate and minimum user rate
per link. The goal is to compare the performance of these methods with TDMA.

2.3.4.1 Setup

We assume two square clusters of side L1 separated by a distance δ and we define
dsize :=

√
2L1 as the length of the diagonal of the cluster. In each cluster, we uniformly

generate nC transmitter nodes and nC receiver nodes in the L1 × L1 square. It is worth



30 2. Enhanced topological interference management

Figure 2.3: Wireless ad hoc clustered network with K = 2 clusters composed of nC = 5 links
per cluster separated, both clusters are separated from δ = 0 m and with dsize = 10 km.
Each node is uniformly distributed in an L1 × L1 square.

mentioning that [24, 47, 130] work under the assumption the receivers are randomly
placed close to the corresponding transmitter (≤ 1 km). This assumption is not realistic
when implementing ad hoc networks since the nodes can be anywhere in the cluster.
Moreover, the works [36, 40, 93, 100, 113] have only considered small topologies (less
than 5 links), whereas we implement our solutions for nC = [5, 10, 15, 20] links per cluster
which are more realistic for real-world communication scenarios, such as military or 5G
networks. An example of a randomly generated link topology in the clusters is illustrated
in Fig. 2.3. All transmit powers are equal, i.e. ∀i,Pi = PTx. Parameters are listed in
Table 2.1.

Moreover, in the simulations, the solutions calculating precoders and decoders U,V
are run 10 times with different random initializations and we keep the one providing the
highest average sum rate. The average sum rates and minimum user rates are estimated
with Monte-Carlo methods on 105 random channel realizations. In the figures, the sum
rate and minimum use rate per link are averaged over 100 random topologies where in
each simulation, the nodes’ position is different.

2.3.4.1.1 Channel model

To model the propagation channel, we set a distance drange such that a transmitter and a
receiver separated by drange provide a fixed given average SNR, denoted as SNRrange, that
we refer to as the target average SNR. Moreover, in our simulations, the channel average
gain γi j is computed with a three-slope model which can be written as:

γi j = Ad−2
i j

(
1 +

di j

100

)−1 (
1 +

di j

1000

)−1

, (2.36)



2.3. Enhanced topological interference management 31

Table 2.1: Simulation parameters values

PTx 1 W WB 1 MHz Pn 4.05 10−15 drange 10 km
δ 0 m kB 1.38 10−23 WK−1s dsize 10 km
L1 7.07 km T 293 K SNRrange 10 dB

where di j is the distance in meters between Tx j and Rxi, A is set such that the target
SNRrange is achieved when di j = drange. The target average SNR is defined as:

SNRrange := E

PTxγrange|h̃|2

Pn

 , (2.37)

which is equal to:

SNRrange :=
PTxγrange

Pn
, (2.38)

with γrange computed using (2.36) for di j = drange and h̃ ∼ CN(0, 1).

2.3.4.1.2 Minimum user rate constraint

In this paragraph, we set the minimum user rate constraint for every link Ru
0 to ensure that

the problem is feasible, i.e. we can find TIM coders U,V guaranteeing this rate constraint.
In our simulations, we choose to set Ru

0 as the worst user rate receivers can get when
applying round-robin TDMA defined in Section 2.2.2.1, i.e. without interference. In other
words, Ru

0 is equal to the average of the physical rate corresponding to a transmitter and
receiver separated from a distance dsize divided by the total number of links N, which can
be written as:

Ru
0 :=

Wb

N
E[log2(1 + SNRworst)], (2.39)

where SNRu
worst can be expressed as:

SNRworst :=
PTxγworst|h̃|2

Pn
, (2.40)

with γworst computed using (2.36) for di j = dsize and h̃ ∼ CN(0, 1).
As a consequence, the following statement holds:

R̄u
RR-TDMA,i ≥ Ru

0 , ∀i ∈ {1, ...,N}, (2.41)

with R̄u
RR-TDMA,i defined in (2.11).

2.3.4.2 Performance analysis

In this section, we evaluate the performance of described methods through two criteria: i)
the average sum rate, and ii) the average minimum user rate per link among all the links.
The sum rate assesses the global network performance whereas the minimum user rate
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Figure 2.4: Comparison of interference management methods in SCSI context versus the
number of links per cluster nC for dsize = 10 km and δ = 0 m.

per link is provided to assess the fairness of the solutions. The implemented methods are
the following:

• The round-robin TDMA: round-robin TDMA is applied within each cluster and
between the clusters. Moreover, the resulting rates can be approximated for long
frames using (2.10).

• TDMA intra-cluster: each cluster applies round-robin TDMA independently from
the other cluster. Thus, at each time, there is one transmission for each cluster,
which means that every receiver is subjected to a single inter-cluster interference.

• TIM: we implement the conventional TIM described in the previous chapter which
solves Problem 1.3 with an AO procedure and which uses the interference graph
designed in Section 1.3.1.3.

• MSR-eTIM: described in Section 2.3.2.

• PF-eTIM: described in Section 2.3.3.1.

• CMSR-eTIM: described in Section 2.3.3.2.

We study the influence of the number of links per cluster nC by plotting the average
sum rate in Fig. 2.4a and the average minimum user rate per link in Fig. 2.4b. In terms
of sum rate, we observe in Fig. 2.4a that for an increasing value of number of links per
cluster, all the methods have a steady sum rate, except for MSR-eTIM’s sum rate which
increases. Moreover, we can observe that the fair solutions PF-eTIM and CMSR-eTIM
provide a similar, if not worse sum rate than the TDMA-based solutions. CMSR-eTIM
performance can be explained as follows: to respect the minimum user rate constraint,
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Figure 2.5: Comparison between MSR-eTIM and round-robin TDMA in terms of average
user rate per link, versus the number of links per cluster nC for dsize = 10 km and δ = 0 m.

CMSR-eTIM needs to provide longer coders, i.e. r increases, which degrades the sum
rate. Besides, among these solutions, MSR-eTIM provides higher average sum rate than
all the others.

However, Fig. 2.4b shows that MSR-eTIM suffers from fairness issues since its aver-
age minimum user rate is close to 0. Round-robin TDMA shows a minimum user rate
higher than the rate constraint Ru

0 , which is due to the choice of Ru
0 as round-robin TDMA

worst case in terms of average user rate per link. Besides, among the other solutions,
none of them has a minimum user rate higher than Ru

0 at each value of nC. The result
for CMSR-eTIM is also surprising since the constraint in Problem 2.8 does not seem to
be respected. This can be explained as follows: the use of hardening bound approx-
imation has led our estimated rates to be slightly below the real ones, which explains
why CMSR-eTIM’s average minimum user rate is slightly below Ru

0 (around 0.04 Mbits/s
difference for nC ≥ 10). Hence, implementing a solution based on CMSR-eTIM while
respecting the constraint requires solving Problem 2.1 which is hardly treatable in terms
of complexity.

To conclude, although the proposed state-of-the-art fair solutions show better fairness
than MSR-eTIM, they do not perform well in terms of average sum rate compared to
conventional solutions like TDMA. Since using standard approaches is not sufficient to
provide a higher sum rate than TDMA while guaranteeing a minimum user rate per link,
a new perspective is required to implement a method achieving these requirements.
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2.3.5 Analysis of MSR-eTIM

Our simulations have confirmed that despite its high average sum rate, MSR-eTIM pro-
vides several links with an average user rate close to 0, which is also illustrated in Fig. 2.5
and confirms a significant flaw of MSR-eTIM in practice. Besides, Fig. 2.5 compares the
average user rate per link when using TDMA and MSR-eTIM. This representation high-
lights an interesting property of MSR-eTIM: we can observe that for some links (3, 5, 9, 10),
MSR-eTIM provides much higher average user rates than for round-robin TDMA (more
than 2.5 Mbits/s). For other links (1, 4, 6, 7, 8), MSR-eTIM shows average user rates close
to 0, while round-robin TDMA shows average user rates between 0.45 and 1.3 Mbits/s.
Therefore, when using MSR-eTIM, it is possible to distinguish links having a high aver-
age user rate and links having a low one, compared to round-robin TDMA’s. In the next
section, we propose to exploit this property MSR-eTIM to develop our proposed solution
called eTIM-hybrid.

2.4 Proposed method: eTIM-hybrid

This section presents one of the main contributions of this thesis. We have previously
seen that in the SCSI context, multiple solutions based on eTIM are limited since they
reveal either a lower average sum rate than TDMA-based ones or fairness issues. Hence,
we propose a new method that we call eTIM-hybrid which enables us to achieve a higher
average sum rate than TDMA while guaranteeing a chosen minimum user rate constraint.
The hybrid procedure is composed of the following two phases:

1. We partition the links into two groups: i) a set of "good links" in which an eTIM-
based method is applied, and ii) a set of "bad links" in which TDMA is used.

2. We optimize the scheduling between the links which consists in allocating the slots
in the frame to the links using eTIM, and other slots to the links using TDMA, to
maximize the sum rate.

This section is organized as follows. In Section 2.4.1, we describe the iterative algo-
rithm to partition the links into two specific groups of links. In Section 2.4.2, we formulate
and solve our scheduling optimization between the links of both partitions to maximize
the sum rate of the network while guaranteeing a minimal user rate for each link. In Sec-
tion 2.4.3, we summarize the implementation of the proposed solution eTIM-hybrid and
explain how to apply it in real-traffic simulations. In Section 2.4.4, we provide numerical
simulations to assess the performance of eTIM-hybrid in terms of average sum rate and
minimum user rate per link.
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2.4.1 Links partition

In this section, we explain how to partition the links into two groups. We define Te and
Td as the sets of "good links" and "bad links", respectively (more technical details are
provided in what follows). Te andTd are computed such that we haveTe∪Td = {1, ...,N}.
Let NTe := |Te| and NTd := |Td| be the number of links in Te and Td, respectively.

While Te and Td can be computed using various eTIM and TDMA techniques, in this
chapter, we opt to compute them using MSR-eTIM and round-robin TDMA. This selec-
tion is motivated by the earlier analysis of MSR-eTIM, which demonstrated significant
differences in user rates between the links compared to round-robin TDMA. Therefore,
Te and Td respectively correspond to the set of links having higher and lower user rate at
the receiver when applying MSR-eTIM compared to round-robin TDMA. Formally, their
expression can be written as:

Te := {i | R̄u
eTIM,i > R̄u

TDMA,i}, (2.42a)

Td := {i | R̄u
eTIM,i ≤ R̄u

TDMA,i}. (2.42b)

Now, let us present the different steps of the proposed links partition solution. This
procedure is illustrated in Fig. 2.6 and is later described in Algorithm 2.4.

1. We initialize Te = {1, ...,N} and Td = ∅.

2. We apply MSR-eTIM restricted on Te, which corresponds to solving for a given
r = 2, ...,M, the following optimization problem:

Problem 2.9.

UTe
eTIM,V

Te
eTIM = arg max

U,V∈RM×r
R̄hard

sum,Te
(2.43)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ Te, (2.44)

with R̄hard
sum,Te

:=
∑

i∈Te
R̄hard,Te

eTIM,i and where R̄hard,Te
eTIM,i is computed using (2.19). Algo-

rithms 2.3 is used on Problem 2.9 to compute UTe
eTIM,V

Te
eTIM and Algorithm 2.1 is

performed to find its corresponding optimal coders’ length denoted as rTe .

3. Since applying MSR-eTIM on Te could lead to new "bad links" in Te, we propose to
move them from Te to Td. The set of new "bad links" Te,bad can be computed as:

Te,bad := {i | R̄u,Te
eTIM,i ≤ R̄u

TDMA,i}, (2.45)

with R̄u,Te
eTIM,i computed by injecting UTe

eTIM,V
Te
eTIM into (2.16b) and with Monte-Carlo

simulations. Then, we update Te and Td as the following:

Te = Te\Te,bad

Td = Td ∪ Te,bad.
(2.46)
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Figure 2.6: Links partition using Algorithm 2.4. Interference is dealt with using eTIM-
based method, such as MSR-eTIM in our implementation, on the links inTe and a TDMA-
based technique on the links in Td. The interference links have been omitted for clarity.

4. We continue Steps 2 and 3 until Te and Td converge.

In Step 4, applying MSR-eTIM on Te can lead to "bad links" in Te since the MSR
algorithm could help increase the rate of certain links at the cost of others to increase the
sum rate in Te. In our study, we propose two solutions to deal with these "bad links".
The first solution is an iterative solution described in the above procedure and consists
of removing the "bad links" from Te to Td as formulated in (2.46). In practice, we iterate
Steps 2 and 3 until Te and Td converge. The second solution involves adding a minimum
user rate constraint for each link in Problem 2.9 by solving the following optimization
problem:

Problem 2.10.

UTe
CeTIM,V

Te
CeTIM = arg max

U,V∈RM×r
R̄eTIM

sum,Te
(2.47a)

s.t. ∥ui∥
2
2 = ∥vi∥

2
2 = 1, ∀i ∈ {1, ...,N}, (2.47b)

R̄u,Te
eTIM,i ≥ R̄u

TDMA,i, ∀i ∈ {1, ...,N}, (2.47c)

where R̄eTIM
sum,Te

:=
∑

i∈Te
R̄u,Te

eTIM,i and R̄u,Te
eTIM,i is computed using (2.16b).

Contrarily to CMSR-eTIM, we do not use the hardening bound approximation in the
constraint (2.47c) since we have concluded in Section 2.3.4.2 that it could not respect the
user rate constraint. Therefore, this constraint is computed with the average user rate
R̄u,Te

eTIM,i, which requires Monte-Carlo simulations to evaluate it at each iteration of the
optimization problem and thus, makes Problem 2.10 become numerically complex.
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As a consequence, we use the first solution to deal with the "bad links" in the proposed
procedure and we show in the following that it is guaranteed to converge.

Result 2.1. The iterative procedure to partition the links described in Section 2.4.1 converges. In
the end, we have either Te,bad = ∅ or NTe = 1.

Proof. The proposed iterative algorithm moves bad links from Te to Td until one of the
following statement is reached:

– There is no bad link anymore, i.e. Te,bad = ∅, so Te and Td converge since they stop
being updated.

– Every link has moved from Te to Td until there is only a single element left in Te,
i.e. NTe = 1. Hence, the transmission in Te is not subjected to any interference. This
partition is considered the worst case and is the same as applying TDMA.

□

The links partition algorithm is detailed in Algorithm 2.4. Once the links have been

Algorithm 2.4: Links partition algorithm for eTIM-hybrid
Set channel statistics γi j, NMC.
Compute U(r),V(r) by solving Problem 2.2 using Algorithm 2.3 with r computed
using Algorithm 2.1.

For all i ∈ {1, ...,N}, compute R̄u
eTIM,i using U(r),V(r) in (2.16) and R̄u

TDMA,i using
(2.8) with NMC Monte-Carlo simulations.

Compute Te and Td using (2.42).
if M = 1 then

Set stay_loop = false.
else

Set stay_loop = true.
while stay_loop do

Compute UTe(rTe),V
Te(rTe) by solving Problem 2.9 with Algorithm 2.3 and

compute rTe using Algorithm 2.1.
For all i ∈ Te, compute R̄u,Te

eTIM,i using UTe(rTe),VTe(rTe) in (2.16) with NMC

Monte-Carlo simulations.
if ∀i ∈ Te, R̄u,Te

eTIM,i > R̄u
TDMA,i or M = 1 then

Set stay_loop = false.
else

Update Te and Td using (2.46).
end
Return Te,Td,UTe ,VTe

partitioned, the next phase to implement eTIM-hybrid is to optimize the slots in the frame
to allocate to the links using MSR-eTIM and to the links using TDMA.
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2.4.2 Scheduling optimization

In this section, we expose the second phase of eTIM-hybrid procedure, which consists of
finding the best portions of time to allocate to each link. We consider a frame of length L
as defined in Section 2.2.2.1, and the goal of this section is to optimize the number of slots
to allocate to each link to maximize the sum rate while guaranteeing a minimum user rate
for each link of the network. This task will be referred to as "scheduling optimization".
Furthermore, since the average sum rate of the network is also influenced by the frame
length L, the optimization of this parameter will be considered as a second step in the
scheduling optimization.

This section is organized as follows. In Section 2.4.2.1, we formulate the scheduling
optimization problem for a given frame of length L and provide closed form expressions
to assess its feasibility and to solve it optimally. Then, in Section 2.4.2.2, we formulate the
joint scheduling and frame length optimization problem and provide its optimal solution.

2.4.2.1 Optimization for given frame length

Figure 2.7: Example of scheduling optimization problem on a frame of length L = 10,
N = 6 links, Te = {1, 2, 3}, Td = {4, 5, 6} and r = 2 slots.

Let us define nk as the number of transmissions for each link k ∈ Td and neTIM as the
number of transmissions of MSR-eTIM during the frame of length L. In this part, we
formulate the scheduling optimization problem, which consists in optimizing nk, k ∈ Td

and neTIM to maximize the average sum rate. In Fig. 2.7, the scheduling optimization
problem is illustrated for a frame of length L = 10 and where eTIM is applied for r = 2 slots.
Since L is the total number of slots to allocate for each link, nk and neTIM are constrained
by the following equality: ∑

k∈Td

nk + neTIMr = L. (2.48)

It is worth mentioning that the constraint in (2.48) is equality since the strict inequality∑
k∈Td

nk + neTIMr < L corresponds to the presence of empty slots in the frame, i.e. slots
where there is not any transmission, which reduces the average sum rate. Besides, when
using eTIM-hybrid framework, the average sum rate on a frame of length L is defined as:

R̄eTIM-hy
sum :=

∑
j∈Te

R̄u,Te
eTIM, j +

∑
k∈Td

R̄u
TDMA,k, (2.49)
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where the average user rate is defined as follows:

R̄u,Te
eTIM, j :=

neTIM

L
R̄φeTIM, j, (2.50)

R̄u
TDMA,k :=

nk

L
R̄φk . (2.51)

R̄φk can be computed using (2.8a) with Monte-Carlo simulations, whereas R̄φeTIM, j is com-

puted by injecting UTe(rTe),VTe(rTe) into (2.16a) with Monte-Carlo simulations, where
UTe(rTe),VTe(rTe) are computed using Algorithm 2.4.

Since our objective is to maximize the average sum rate while respecting the mini-
mum average user rate constraints, the optimization problem we need to solve can be
formulated as:

Problem 2.11.

(n∗k1
, ...,n∗kQ

,n∗eTIM) = arg max
(nk1 ,...,nkQ ,neTIM)∈N∗

R̄eTIM-hy
sum (2.52a)

s.t. R̄u
TDMA,k ≥ Ru

0 , ∀k ∈ Td, (2.52b)

R̄u
eTIM,min ≥ Ru

0 , (2.52c)∑
k∈Td

nk + neTIMr = L. (2.52d)

with nkm the number of transmissions of link km ∈ Td and eTIM’s average rate defined as
follows:

R̄u
eTIM,min :=

neTIM

L
R̄φeTIM,min, (2.53)

R̄φeTIM,min := min
{
R̄φeTIM, j

}
j∈Te

. (2.54)

Constraints (2.52b) represent the minimum user rate constraints for all the links in
Td, i.e. when using TDMA, whereas constraint (2.52c) corresponds to the minimum user
rate constraint for the links in Te, i.e. for the links using MSR-eTIM. Since the number of
transmissions neTIM for the links in Te is the same for every link, we can only focus on the
link with the lowest user rate R̄φeTIM,min, which guarantees that all user rate constraints in
Te are satisfied. Constraint (2.52d) is the same as (2.48).

2.4.2.1.1 Optimization problem feasibility definition

Before solving Problem 2.11, we provide a few definitions of optimization problems by
considering the following problem:

Problem 2.12.

min
x

f (x) (2.55a)

s.t. gk(x) ≤ 0, k = 1, ...,m, (2.55b)

hk(x) = 0, k = 1, ...,m, (2.55c)
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where f : Rp
→ R is the objective function of Problem 2.12 and for all k = 1, ...,m, gk : Rp

→

R and hk : Rp
→ R are respectively the inequality and equality constraints functions.

A feasible point of Problem 2.12 is defined as a point satisfying Problem 2.12’s con-
straints. The feasible set F of Problem 2.12 is defined as the set of all feasible points.
Formally, it can be defined as:

F := {x ∈ Rp such that: ∀k ∈ {1, ...,m}, gk(x) ≤ 0}. (2.56)

Problem 2.12 is said to be feasible if there exists at least one feasible point, i.e. F is not
empty.

2.4.2.1.2 Closed form solution of the scheduling optimization problem

In this section, we solve Problem 2.11 for a given frame length L by stating two results. In
Result 2.2, whose proof is provided in Appendix A.3.1, we provide a condition to assess
the feasibility of Problem 2.11. In Result 2.3, whose proof is provided in Appendix A.3.2,
we provide the optimal solution of Problem 2.11 in closed form.

Result 2.2. Problem 2.11 is feasible if and only if the following condition is fulfilled:∑
k∈Td

nmin
k + nmin

eTIMr ≤ L, (2.57)

where nmin
k and nmin

eTIM are defined as:
nmin

k :=

LRu
0

R̄φk

 , ∀k ∈ Td,

nmin
eTIM :=

 LRu
0

R̄φeTIM,min

 ,
(2.58a)

(2.58b)

where ⌈.⌉ represents the ceiling function which maps to the nearest integer up.

nmin
k and neTIM are the minimum number of transmissions to allocate to the links in

Td and Te, respectively, to satisfy the constraints (2.52c) and (2.52d) from Problem 2.11.
The proof of Result 2.2 is obtained by rewriting the constraints equations (2.52c) and
(2.52d). Moreover, this result provides a closed form expression to immediately assess
the feasibility of Problem 2.11.

Now, before stating the next result, we define kmax as the link index corresponding to
the highest average physical rate in Td, i.e. kmax := arg maxk∈Td

{R̄φk }. Moreover, we define
R̄φsum,Te

as the sum of the average physical rates corresponding to the links in Te, which
can be written as:

R̄φsum,Te
:=

∑
j∈Te

R̄φeTIM, j. (2.59)
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Moreover, let us define Lres as the number of the remaining slots to allocate in the frame
of length L after allocating the minimal number of time slots to each link that ensures
feasibility. Formally, Lres can be expressed as:

Lres := L −
∑
k∈Td

nmin
k − nmin

eTIMr, (2.60)

which is positive if Problem 2.11 is feasible according to Result 2.2.

The following result, whose proof is provided in Appendix A.3.2, gives the closed
form optimal solution of Problem 2.11.

Result 2.3. The optimal solution of Problem 2.11 depends on the difference between R̄φsum,Te
and

rR̄φkmax
, which can be written as follows:

If R̄φsum,Te
≤ rR̄φkmax

, the optimal solution of Problem 2.11 can be written as:
n∗k = nmin

k , ∀k ∈ Td\{kmax},

n∗eTIM = nmin
eTIM

n∗kmax
= nmin

kmax
+ Lres

(2.61)

If R̄φsum,Te
> rR̄φkmax

, the optimal transmissions allocation per link is
n∗k = nmin

k , ∀k ∈ Td\{kmax},

n∗eTIM = nmin
eTIM +

⌊Lres

r

⌋
n∗kmax

= nmin
kmax
+ Lres −

⌊Lres

r

⌋
r,

(2.62)

with nmin
eTIM,n

min
k defined in (2.58) and ⌊.⌋ represents the floor function which maps to the nearest

integer down.

The optimal allocation provided by Result 2.3 consists in first allocating the required
slots nmin

k ,nmin
eTIM to satisfy Problem 2.11’s constraints. Then, it involves performing a

greedy allocation, i.e. we allocate the Lres remaining slots to the links providing the
highest average rates. The two possible allocations are to allocate the Lres slots to either
the link in Td with the highest rate, which is kmax, or to the links in Te. To choose the
option providing the highest average sum rate, we compare over r slots the average sum
rate in Te, which is R̄φsum,Te

, and the average sum rate in Td with all the slots allocated to
kmax, which is rR̄φkmax

. Then, the allocation is proceeded as the following:

– If R̄φsum,Te
≤ rR̄φkmax

, we allocate the Lres slots to kmax.

– If R̄φsum,Te
> rR̄φkmax

, we allocate the Lres slots to the links in Te. If Lres is not a multiple

of r, there will remain Lres −

⌊Lres

r

⌋
r slots to allocate to kmax.
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2.4.2.1.3 Influence of the frame length

In the previous section, we have derived the condition and optimal solutions of the
scheduling optimization Problem 2.11 for a fixed frame length L. In this section, we
illustrate the impact of the parameter L with a numerical example, where the feasibility
and the optimal solution of Problem 2.11 vary depending on L. Indeed, a bad choice
of L can lead to lower performance in terms of average sum rate, and may even render
Problem 2.11 infeasible.

Example 1. We consider a network with the following parameters: N = 6 links, Te = {1, 2, 3},
Td = {4, 5, 6}, r = 2, and the average physical rates are provided in Table 2.2. On Te, we perform
the MSR-eTIM method with an optimal coders’ length as r = 2 and the minimum rate constraint
for every link is Ru

0 = 1 Mbits/s. Table 2.3 shows the feasibility and the performance of the
eTIM-hybrid average sum rate for various values of L. We can see that Problem 2.11 is feasible for
L = 8, 10, 11 since Lres ≥ 0 whereas for L = 9, the problem is not feasible since Lres < 0. Moreover,
after computing the average sum rate R̄eTIM-hy

sum with the optimal allocation from Result 2.3, we
can see that its value varies depending on L and that among the feasible solutions, the maximum
average sum rate is obtained for L = 10. Therefore, finding the optimal value of L which both
maximizes the average sum rate and verifies Problem 2.11 feasibility is of particular interest.

Table 2.2: Example of average physical rates for N = 6, Te = {1, 2, 3}, Td = {4, 5, 6} and
r = 2.

R̄φeTIM,1 R̄φeTIM,2 R̄φeTIM,3 R̄φ4 R̄φ5 R̄φ6
10 9 8 8 7 6

Table 2.3: Feasibility and average sum rate study of Problem 2.11 for different values of L.
The associated average physical rates are provided in Table 2.2. If Lres < 0, the problem is
not feasible like for L = 9.

L nmin
eTIM nmin

4 nmin
5 nmin

6 Lres R̄eTIM-hy
sum

8 1 1 2 2 1 8.625
9 2 2 2 2 −1 10.67
10 2 2 2 2 0 9.6
11 2 2 2 2 1 9.455

Since frame length L has an impact on the optimization problem, we propose in the
next section to jointly optimize frame length L with the scheduling parameters neTIM and
nk for k ∈ Td.
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2.4.2.2 Joint scheduling and frame length optimization

In the previous section, we have shown that the frame length influences both the average
sum rate and the feasibility of the scheduling problem and can thus be optimized. More-
over, it is worth mentioning that reducing frame length is also of interest since it allows
low-latency communications. Multiple works have searched for ways to determine the
shortest length frame satisfying given traffic demands [10, 60] in the TDMA framework.
Thus, if multiple values of L are optimal, we prefer choosing the lowest possible value.

The joint scheduling and frame length optimization problem can be formulated as:

Problem 2.13.

(n∗k1
, ...,n∗kQ

,n∗eTIM,L
∗) = arg max

(nk1 ,...,nkQ ,neTIM,L)∈N∗
R̄eTIM-hy

sum (2.63a)

s.t. R̄u
TDMA,k ≥ Ru

0 , ∀k ∈ Td, (2.63b)

R̄u
eTIM,min ≥ Ru

0 , (2.63c)∑
k∈Td

nk + neTIMr = L. (2.63d)

Since Result 2.3 provides the optimal values n∗k,n
∗

eTIM for all L ∈N∗, Problem 2.13 can
be formulated as an optimization problem which only depends on the variable L:

Problem 2.14.

L∗ = arg max
L∈N∗

R̄eTIM-hy
sum,opt (L) (2.64a)

s.t. R̄u
TDMA,k ≥ Ru

0 , ∀k ∈ Td, (2.64b)

R̄u
eTIM,min ≥ Ru

0 , (2.64c)∑
k∈Td

n∗k + n∗eTIMr = L. (2.64d)

with n∗k, n∗eTIM respectively defined in (2.61), (2.62) and where R̄eTIM-hy
sum,opt expression is

obtained by injecting (2.61) and (2.62) into (2.49). After several derivations provided in
Appendix A.3.3, R̄eTIM-hy

sum,opt can be expressed as:

ReTIM-hy
sum,opt (L) =



1
L

(
nmin

eTIM

(
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td

nmin
k (R̄φk − R̄φkmax

)
)
+ R̄φkmax

if R̄φsum,Te
≤ rR̄φkmax

,
1
L

((
nmin

eTIM +
⌊Lres

r

⌋) (
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td

nmin
k (R̄φk − R̄φkmax

)
)
+ R̄φkmax

if R̄φsum,Te
> rR̄φkmax

.
(2.65)
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2.4.2.2.1 Scheduling optimization problem: results on its feasibility

Let us define the positive values xk := Ru
0/R̄

φ
k ,∀k ∈ Td and xeTIM := Ru

0/R̄
φ
eTIM,min. Using

these notations, the feasibility equation (2.57) from Result 2.2 can be expressed as:

1
L

∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉

 ≤ 1. (2.66)

In the following, we provide two results: one result to assess Problem 2.14’s feasibility
independently from L, and another one to solve it analytically. We first deliver two useful
lemmas for proving the first result, namely Result 2.4, on Problem 2.13’s feasibility before
presenting it. In Lemma 2.1, we find a condition where Problem 2.13 is feasible and we
express the closed form expression of its feasible set. Lemma 2.2 provides conditions to
find feasible solutions to Problem 2.13 and shows that its feasible set is infinite. Their
proof is respectively given in Appendix A.3.4 and A.3.5, respectively.

Lemma 2.1. If
∑

k∈Td
xk + rxeTIM = 1 and if xeTIM and xk are rational positive values, then there

exist multiple feasible solutions L ∈N∗+ to Problem 2.14.

Lemma 2.2. If
∑

k∈Td
xk + rxeTIM < 1, then there exists L0 ∈ N∗+ such that for all L ≥ L0, L is a

feasible solution to Problem (2.14).

Lemma 2.1 shows that if we have
∑

k∈Td
xk + rxeTIM = 1, then the feasible set of Prob-

lem (2.14) can be formulated in closed form using (A.49), assuming xeTIM and xk are
rational positive values. When assuming that we have

∑
k∈Td

xk + rxeTIM = 1, Lemma 2.2
proves that any L high enough is in the feasible set of Problem (2.14). Moreover, with
the same assumptions as Lemma 2.1, a corollary characterizing the feasible set of Prob-
lem (2.14) is provided in Appendix A.3.4.

Using Lemmas 2.1 and 2.2, we can state the following result which provides the closed
form expression assessing the feasibility of Problem 2.14. Result 2.4’s proof is provided
in Appendix A.3.6 and can be stated as:

Result 2.4. Problem 2.14 is feasible if and only if one of the following statements is true:

1.
∑

k∈Td
xk + rxeTIM < 1

2.
∑

k∈Td
xk + rxeTIM = 1 and (xk)k∈Td , xeTIM are positive rational numbers.

The implication of Result 2.4 is proved using the ceiling function bounding properties,
whereas the reciprocal is proved using Lemmas 2.1 and 2.2. Result 2.4 is useful in practice
since it provides a closed form expression to assess the feasibility of Problem 2.14 before
running any optimization method. Moreover, the rationality requirements are easily met
since the rates are usually rational or can be approximated with a close rational number.
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2.4.2.2.2 Scheduling optimization problem: results on its optimal solution

Now, we first deliver a useful lemma for proving Result 2.5, which gives the analytical
expression of an upper bound of the average sum rate, which does not depend on L.
Then, we provide the optimal solution of Problem 2.14 in Result 2.5. Lemma 2.3 and
Result 2.5’s proof are given in Appendices A.3.7 and Appendix A.3.8, respectively.

Lemma 2.3. R̄eTIM-hy
sum,opt (L)’s upper bound can be expressed as:

∀L ∈N∗, ReTIM-hy
sum,opt (L) ≤ Rsup, (2.67)

with Rsup defined as:

Rsup :=



xeTIM

(
R̄φsum,Te

− rR̄φkmax

)
+NTdRu

0 + R̄φkmax

(
1 −

∑
k∈Td

xk

)
,

if R̄φsum,Te
≤ rR̄φkmax

,(
1 −

∑
k∈Td

xk

)
r

(
R̄φsum,Te

− rR̄φkmax

)
+NTdRu

0 + R̄φkmax

(
1 −

∑
k∈Td

xk

)
,

if R̄φsum,Te
> rR̄φkmax

.

(2.68)

In Lemma 2.3, we prove by using the flooring and ceiling function inequalities that
the average sum rate R̄eTIM-hy

sum,opt (L) is upper bounded by a value which does not depend on
L. Furthermore, a corollary stating that this upper bound is also its limit when L→ +∞ is
given in Appendix A.3.7. Then, using this inequality, we express in the following result
the set of the optimal solutions of Problem 2.14 which corresponds to the set of L ∈ N∗

where R̄eTIM-hy
sum,opt (L) is equal to its upper bound Rsup.

Result 2.5. We suppose that for all k ∈ Td, the physical rates R̄φk , R̄φeTIM,min and Ru
0 are positive

rational numbers. The following statement holds:

∃L ∈N∗ : R̄eTIM-hy
sum,opt (L) = Rsup, (2.69)

with Rsup defined in (2.68).
Moreover, using rational numbers definition, we can write the following:

∀k ∈ Td, ∃pk, qk ∈N
∗ : xk =

pk

qk

∃peTIM, qeTIM ∈N
∗ : xeTIM =

peTIM

qeTIM
,

(2.70)

with gcd(peTIM, qeTIM) = 1 and ∀k ∈ Td,gcd(pk, qk) = 1, where gcd(a, b) stands for greatest com-
mon divisor between a and b. qk and qeTIM are respectively referred to as the smallest denominators
of xk and xeTIM.

Then, we provide the following statements:

• If R̄φsum,Te
≤ rR̄φkmax

, the solutions of the equation in (2.69) are the set of L ∈N∗ such that the
following conditions are satisfied:
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1. L is a multiplier of qk for all k ∈ Td\Kmax.

2. If R̄φsum,Te
, rR̄φkmax

, L is a multiplier of qeTIM. Otherwise, only the first condition is
required.

withKmax :=
{
k|R̄φk = R̄φkmax

}
. Formally, the set of these solutions can be written as:

Lopt :=

L ∈N∗ | such that

(∃m0 ∈N∗ : L = m0qeTIM) ∨
(
R̄φsum,Te

= rR̄φkmax

)
∃mk ∈N

∗ : L = mkqk, ∀k ∈ Td\Kmax.

 .
(2.71)

• If R̄φsum,Te
> rR̄φkmax

, we first define (p0, q0) as follows:

∃p0, q0 ∈N
∗ :

1 −
∑

k∈Td
xk

r
=

p0

q0
, (2.72)

with gcd(p0, q0) = 1. Then, we state that the solutions of the equation in (2.69) are the set
of L ∈N∗ such that the following conditions are satisfied:

1. ∀k ∈ Td, L is a multiplier of qk.

2. L is a multiplier of q0.

Formally, the set of these solutions can be written as:

Lopt :=

L ∈N∗ | such that

∃m0 ∈N∗ : L = m0q0

∃mk ∈N
∗ : L = mkqk, ∀k ∈ Td.

 . (2.73)

Corollary 2.4. The optimal solution of Problem 2.14 is the set Lopt defined in (2.71) and (2.73).

In Result 2.5, we solve the equation defined in (2.69) and deduce that the set of its
solutions provided in (2.71) and (2.73) is infinite. Therefore, using Corollary 2.4, we can
deduce that Problem 2.14 admits an infinite number of optimal solutions. Among them,
we choose to keep the smallest value L in our implementations since it reduces the latency
of the communications and we refer to this value as Lopt.

In Figs. 2.8a et 2.8b, we represent the average sum rate R̄eTIM-hy
sum,opt versus frame length L

for the case R̄φsum,Te
≤ rR̄φkmax

with the physical rates provided in Table 2.4 whereas the case
R̄φsum,Te

> rR̄φkmax
with the physical rates given in Table 2.5 is provided in Figs. 2.9a and

2.9b. Figs. 2.8a, 2.8b 2.9a and 2.9b also highlight the multiplicity of optimal solutions L of
Problem 2.14 and the chosen value Lopt, in the end, is in green. Finally, we can observe
that when L → +∞, R̄eTIM-hy

sum,opt tends to its upper bound value as expected according to
Corollary A.2.

Finally, a summary of the results and lemmas, regarding the feasibility and the optimal
solution of the scheduling optimization problem in eTIM-hybrid, are given in Table 2.6.
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Table 2.4: Example of average physical rates for N = 6, Te = {1, 2, 3}, Td = {4, 5, 6}, r = 2.
We have R̄φsum,Te

≤ rR̄φkmax
and R̄eTIM-hy

sum,opt (L) is represented in Fig. 2.8.

R̄φeTIM,1 R̄φeTIM,2 R̄φeTIM,3 R̄φ4 R̄φ5 R̄φ6 rR̄φ4 R̄φsum,Te

7 6 5 9.5 7 6 19 18

Table 2.5: Example of average physical rates for N = 6, Te = {1, 2, 3}, Td = {4, 5, 6} and
r = 2. We have R̄φsum,Te

> rR̄φkmax
and R̄eTIM-hy

sum,opt (L) is represented in Fig. 2.9.

R̄φeTIM,1 R̄φeTIM,2 R̄φeTIM,3 R̄φ4 R̄φ5 R̄φ6 rR̄φ4 R̄φsum,Te

7 6 5 8 7 5 16 18

2.4.2.3 Frame length choice in practice

Unfortunately, although the proposed solution provides the optimal value of frame length,
we have observed that in practice, Lopt’s value can be very high and is thus not desired
since it increases the latency. For example, in Figs 2.9a and 2.9b, we have Lopt = 560,
which is acceptable since it corresponds to 0.56 seconds with a sampling frequency of
1000 Hz. However, we have found cases by simulations where Lopt was higher than 1010.
To overcome this issue, we propose to set a maximum value Lmax for L and we numerically
solve the following optimization problem:

Problem 2.15.

L∗ = arg max
L∈{1,...,Lmax}

R̄eTIM-hy
sum,opt (L)

s.t.


∀k ∈ Td, R̄u

TDMA,k ≥ Ru
0

R̄u
eTIM,min ≥ Ru

0∑
k∈Td

nk + neTIMr = L,

(2.74)

Before describing the procedure to solve Problem 2.14, we set a few notations: lcm(a, b, c, ...)
stands for least common multiple between a, b, c, ..., lcm(A) is referred to as the least com-
mon multiple between all the elements in the setA, and finally, we define the following

Table 2.6: Summary of the results and the lemmas, regarding the feasibility and the
optimal solution of the scheduling optimization problem in eTIM-hybrid

Results and lemmas Feasibility Optimal solution

Given frame length L Result 2.2 Result 2.3
Optimization of L Lemmas 2.1, 2.2, Result 2.4 Lemma 2.3, Result 2.5
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Figure 2.8: Example of eTIM-hybrid average sum rate defined in (2.49) for case R̄φsum,Te
≤

rR̄φkmax
, versus frame length L. We have Ru

0 = 1 Mbits/s and the other parameters are in
Table 2.5.

sets:

Q1 := {qk | k ∈ Td\Kmax} ∪ {qeTIM}, (2.75a)

Q2 := {qk | k ∈ Td} ∪ {q0}. (2.75b)

We propose a procedure provided in Algorithm 2.5 to optimally solve Problem 2.15.
We first assess Problem 2.15’s feasibility using Result 2.4. Then, after computing and
comparing R̄φsum,Te

and rR̄kmax , we find the multiplicity conditions on L using Result 2.5
to find its optimal values (since there are several of them). Then, using the rationality
properties of the input parameters, we find the required smallest denominators for the
multiplicity requirements as described in Result 2.5. Since there are several optimal
solutions respecting Result 2.5’s requirements, we choose the smallest value L among them
by performing a lcm operation. Finally, we ensure that the optimal frame length value
Lopt is not higher than the upper bounding value Lmax that we set. If it is, Problem 2.14 is
numerically solved. It is worth mentioning that the smallest admissible solution of L is
higher than Lmax. In that case, Problem 2.15 is not feasible and we can either reduce the
rate constraint Ru

0 or increase Lmax to solve it.

2.4.2.4 Special case: optimized TDMA

We describe the joint frame length scheduling optimization applied to the special case
where the links partition iterative algorithm from Section 2.4.1 has led to the following
links partition: Te is a singleton, i.e. NTe = 1, and Td has the rest of the elements, i.e.
NTd = N − 1. The problem is thus reduced to a frame length scheduling optimization
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Figure 2.9: Example of eTIM-hybrid average sum rate defined in (2.49) for case R̄φsum,Te
>

rR̄φkmax
, versus frame length L. We have Ru

0 = 1 Mbits/s and the other parameters are in
Table 2.5.

in TDMA framework. Keeping the same notations as in Section 2.4.2, the scheduling
optimization problem to solve for optimized TDMA can be formulated as:

Problem 2.16.
(n∗1, ...,n

∗

N,L
∗) = arg max

(n1,...,nN ,L)∈N∗
R̄TDMA-opt

sum

s.t.


∀k ∈ {1, ...,N}, R̄u

TDMA,k ≥ Ru
0

N∑
k=1

nk = L.

(2.76)

Since this problem is a special case of Problem 2.13, this problem can be solved using
Algorithm 2.5. In the rest of this chapter, this method will be referred to as "optimized
TDMA".

Remark 2.1. Like the methods based on eTIM, optimized TDMA also requires SCSI to calculate
its average rates to perform the scheduling optimization, contrarily to round-robin TDMA.

2.4.3 eTIM-hybrid implementation

In this section, we provide a summary of eTIM-hybrid implementation and describe it in
Algorithm 2.6. Then, we explain how to implement it in real-traffic simulations.

2.4.3.1 eTIM-hybrid algorithm

We first apply the links partition algorithm to compute the sets Te,Td, the users’ indices
who are in Te and the coders UTe ,VTe on Te. Then, after computing the physical rates in
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Algorithm 2.5: Scheduling optimization for eTIM-hybrid

Set ∀ j ∈ Te, R̄
φ
eTIM, j, and ∀k ∈ Td, R̄

φ
k , Lmax.

Assert Problem 2.14 feasibility using Result 2.4.
Compute R̄φsum,Te

using (2.59) and kmax = arg maxk∈Td
{R̄φk }.

if R̄φsum,Te
≤ rR̄kmax then

SetKmax = {k|R̄
φ
k = R̄φkmax

}.
Find (pk, qk) for all k ∈ Td\Kmax and (peTIM, qeTIM) defined in Lemma 2.1.
Lopt = lcm(Q1) with Q1 defined in (2.75a).

else
Find (pk, qk) for all k ∈ Td defined in Lemma 2.1 and (p0, q0) defined in (2.72)
from Result 2.5.

Lopt = lcm(Q2) with Q2 defined in (2.75b).
if Lopt > Lmax then

Numerically solve Problem 2.15 and compute the new Lopt.
Compute neTIM and nk for all k ∈ Td using Result 2.3.
Return Lopt,neTIM, (nk)k∈Td

Te and Td, we use the scheduling optimization Algorithm 2.5 to get the slots allocation
neTIM, (nk)k∈Td and the frame length Lopt. It is worth reminding that in the case where Te

is a singleton, optimized TDMA will be used as the scheduling optimization phase.

Algorithm 2.6: eTIM-hybrid implementation
Set NMC.
Compute Te,Td,UTe ,VTe , R̄φk for k ∈ {1, ...,N} defined in (2.8) and R̄φeTIM, j for j ∈ Te

defined in (2.16) with NMC Monte-Carlo simulations, using Algorithm 2.4.
Compute Lopt,neTIM, (nk)k∈Td using Algorithm 2.5.
Return Te, UTe ,VTe , Lopt,neTIM, (nk)k∈Td

Remark 2.2. The implementation of the proposed eTIM-hybrid aims at increasing the sum rate
of the network. Although we have not implemented it in our work, it is worth mentioning that the
proposed scheme can easily be adapted if the main goal is to maximize the weighted sum rate which
is useful for prioritizing different user rates. Indeed, first, the adapted MSR-eTIM optimization
problem with the weighted sum rate would be similarly handled since the gradient expressions for
gradient descent are similar by the linearity of the derivative. Then, after performing the links
partition phase, the scheduling optimization would also be dealt with similarly by performing the
following change of variables: R̄φeTIM,w j

= w jR̄
φ
eTIM, j for j ∈ Te and R̄φwk

= wkR̄φk for k ∈ Td, where
w1, ...,wN are the weight coefficients of the weighted sum rate optimization.
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2.4.3.2 Real-traffic simulations

eTIM-hybrid algorithm computes the following parameters: UTe ,VTe ∈ RM×rTe for the
links in Te, the number of slots to allocate to each transmission (nk)k∈Td ,neTIM and the
optimized frame length Lopt. The transmissions take place as follows. On the one hand,
each link in Td transmits its symbol using TDMA, that is in an interference-free commu-
nication. On a frame of length Lopt, the number of slots allocated to each link k in Td is
(nk)k∈Td . On the other hand, the links in Te communicate using eTIM, i.e. before sending
their respective symbol, the transmitters in Te perform a temporal spread of rTe slots
using their respective precoders vi. Then, all the links in Te simultaneously transmit their
spread symbol to their corresponding receiver. On a frame of length Lopt, the number of
slots allocated to the links in Te is neTIMrTe since each repetition of eTIM lasts for rTe slots.
Furthermore, we remind that when implementing an eTIM-based solution in a real-traffic
simulation, the channel is assumed to be constant over r slots.

It is worth noticing that the formulated scheduling optimization only provides the
number of slots per transmission, without any slots arrangement requirement. As a con-
sequence, the centralized entity performing the whole interference management process
plans the scheduling arrangement taking the slot allocation into account, and then, sends
it to the links of both clusters. Furthermore, since we consider two associated clusters in
an ad hoc network, we can consider that eTIM-hybrid and the scheduling arrangement
are computed by the cluster heads and are then sent to the links of their respective cluster.

Remark 2.3. While the scheduling optimization resolution uses closed form expressions, the links
partition algorithm performs a gradient descent method, which makes it the most complex step of
eTIM-hybrid implementation.

2.4.4 Numerical results

In this section, we provide numerical results to assess the performance of the newly
proposed solution eTIM-hybrid. To this end, we use the same setup as in Section 2.3.4
and we study the influence of three parameters by varying them: the number of links per
cluster nC, the distance between the clusters δ, and the clusters’ size dsize. A topology of
the ad hoc clustered network used in the simulations after applying the links grouping
algorithm is illustrated in Fig. 2.10. An example of the extreme cases δ = 0,−5000, 5000 m
for is represented in Fig. 2.11.

In this part, we compare the sum rate and the minimum rate per link of our pro-
posed approach eTIM-hybrid with similar methods as in Section 2.3.4, that is round-robin
TDMA, TDMA-intra, MSR-eTIM. We also implement optimized TDMA (TDMA-opt)
described in Section 2.4.2.4 to have a fairer comparison with our solution eTIM-hybrid.
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Figure 2.10: Links partition with Algorithm 2.4 applied to the links in Fig. 2.3 with 2
clusters and nC = 5 links per cluster. The links in Te are in green whereas the links in Td

are in red. The interference links have been omitted for clarity.

(a) δ = 0 m. (b) δ = −5000 m.

(c) δ = 5000 m.

Figure 2.11: Wireless ad hoc clustered network with K = 2 clusters composed of nC =

5 links per cluster, dsize = 10 km and δ = 0,−5000, 5000 m. The interference links have
been omitted for clarity.
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2.4.4.1 Performance analysis

In this part, we evaluate the performance of the eTIM-hybrid method through the average
sum rate and the average minimum user rate per link, like in the simulations from
Section 2.3.4.

In Fig. 2.12, we study the influence of the number of links per cluster nC by plotting
the average sum rate in Fig. 2.12a and the average minimum rate per link in Fig. 2.12b.
In terms of sum rate, we observe in Fig. 2.12a that for increasing values of the number
of links per cluster, eTIM-hybrid, MSR-eTIM, and optimized TDMA’s sum rate increase,
whereas the other methods’ sum rates are steady. Moreover, eTIM-hybrid and MSR-eTIM
show similar sum rates which are both higher average sum rates than the other for
nC > 10 links per cluster. In addition, in terms of minimum rate per link, Fig. 2.12a shows
that eTIM-hybrid and optimized TDMA’s average minimum user rate per link is the same
as the rate constraint Ru

0 , which is expected due to the greedy behavior of our scheduling
optimization (detailed in Section 2.4.2) which will maximize the sum rate after strictly
respecting the average minimum user rate constraint. As shown previously, MSR-eTIM’s
minimum rate is close to 0.
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Figure 2.12: Performance comparison of eTIM-hybrid with other implemented methods
versus the number of links per cluster for dsize = 10 km and δ = 0 m.

In Fig. 2.13, we study the influence of the distance δ between the clusters by plotting
the average sum rate in Fig. 2.13a and the average minimum user rate per link in Fig. 2.13b.
Negative values of δ correspond to the situation where both clusters are intertwined. in
terms of average sum rate, we observe that eTIM-hybrid, MSR-eTIM and TDMA-intra
have increasing average sum rate for increasing value of δ since inter-cluster interference
decreases. Moreover, we can see that round-robin TDMA and optimized TDMA provide
steady performance since these methods avoid inter-cluster interference, which makes
them independent from δ in terms of sum rate and minimum rate. Furthermore, we
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observe that for δ ≥ 0 m, eTIM-hybrid and MSR-eTIM give higher average sum rates. This
result shows our solution eTIM-hybrid is not restrained to adjacent clusters and can be
applied to more distant clusters. However, when δ is negative, inter-cluster interference is
increased and degrades eTIM methods performance since they will require longer codes,
i.e. r increases, thus the average sum rate decreases. When interference becomes too
strong, dealing with interference with eTIM gives lower performance than using TDMA,
which explains why optimized TDMA has a higher average sum rate than eTIM-hybrid
for negative δ. In addition, in terms of the average minimum user rate per link, MSR-eTIM
shows an average minimum user rate close to 0, which is the same conclusion as we said
previously. Likewise, eTIM-hybrid and optimized TDMA’s average minimum user rate
per link is the same as the rate constraint Ru

0 . Besides, for high values of δ, TDMA-intra
shows better performance than optimized TDMA in terms of average sum rate while
respecting the minimum rate constraint. Indeed, when δ becomes high, both clusters are
far enough to neglect inter-cluster interference.
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Figure 2.13: Performance comparison of eTIM-hybrid with other implemented methods
versus the distance between the clusters δ for nC = 10 links per cluster and dsize = 10 km.

In Fig. 2.14, we study the influence of the size of the clusters dsize by plotting the
average sum rate in Fig. 2.14a and the average minimum user rate per link in Fig. 2.14b.
In terms of average sum rate, we observe that for increasing values of dsize, all the
implemented methods have decreasing average sum rate and average minimum user
rate. Indeed, the influence of cluster size can be seen as the invert of the influence of
transmit power (supposing the same power for every link). Smaller clusters correspond
to increasing transmit power, and vice versa. In addition, we observe that our proposed
method eTIM-hybrid shows the highest sum rate when dsize is higher than 10 km. When
we have dsize ≤ 10 km, optimized TDMA’s average sum rate becomes higher. Indeed,
when clusters are too small, inter-cluster interference becomes strong and eTIM requires
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longer coders to deal with them. In addition, in terms of the minimum rate per link,
MSR-eTIM has a minimum rate close to 0, which is the same conclusion as we said
previously. Likewise, eTIM-hybrid and optimized TDMA’s average minimum user rate
per link is the same as the rate constraint Ru

0 .
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Figure 2.14: Performance comparison of eTIM-hybrid with other implemented methods
versus clusters size dsize for nC = 10 links per cluster and δ = 0 m.

Remark 2.4. In this section, we have proposed our solution eTIM-hybrid when considering two
adjacent clusters. Although we have not performed simulations to display it, this scheme can be
extended to more than two clusters. This would result in a partition of the links of all the clusters
into two groupsTe andTd. Then, the scheduling optimization algorithm would be applied to these
sets of links.

2.5 Case two available frequency bands

In the work done so far, we have always assumed that two adjacent clusters have only
access to a single frequency band which might be due to spectrum scarcity. In this
section, we consider the case where two adjacent clusters have access to two frequency
bands, instead of sharing the same frequency band. In this context, we develop a novel
joint frequency and eTIM-hybrid scheme that consists of associating two clusters and
allocating the frequency bands to both clusters in a non-orthogonal way. To be more
precise, the channels are now allocated to the set of links Te and Td, which have been
described in the previous section, and both sets can contain links that can belong to
either of the two clusters. This method is called joint frequency allocation eTIM-hybrid
(JFA-eTIM-hy). In the following, we first describe its implementation. Then, we show
through numerical simulations that the proposed scheme JFA-eTIM-hy outperforms the
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standard orthogonal frequency allocation that assigns a different frequency band to each
cluster while respecting the minimum user rate constraint.

2.5.1 Proposed interference management method with two frequency bands

When two frequency bands are available, one conventional approach consists of or-
thogonally allocating the frequency bands to both clusters and applying interference
management methods in each cluster independently. For example, the links in cluster
C1 are allocated the frequency band f1 and use an eTIM-hybrid to deal with interference.
Similarly, the links in C2 communicate on f2 and use eTIM-hybrid, independently from
C1.

However, there is a better way to allocate the frequency bands by considering the
problem globally. One could allocate the first frequency band f1 to some links which
can be from both clusters, and the second frequency band f2 to the other links. In this
section, we present the new solution JFA-eTIM-hy which combines a new frequency band
allocation and eTIM-hybrid solution. The main idea is to allocate the first frequency band
f1 to some links that use eTIM, and the second one f2 to the other links that use TDMA.
To this end, we consider the links of both clusters and we partition them by applying the
same links partition in eTIM-hybrid using Algorithm 2.4. The three phases to implement
JFA-eTIM-hy are described as follows:

1. We compute the links partition algorithm from Section 2.4 described in Algo-
rithm 2.4. This results in getting the group of "good links" Te and the group of
"bad links" Td.

2. We allocate the frequency band f1 to the links in Te and the frequency band f2 to the
links in Td.

3. On f1, we perform MSR-eTIM on the links in Te. On f2, we apply optimized TDMA
on the links in Td.

The proposed solution is inspired by eTIM-hybrid since it combines eTIM and TDMA in
specific partition links: MSR-eTIM is used on Te to improve the global average sum rate
and optimized TDMA is applied on Td to both improve the global average sum rate and
guarantee the minimum user rate per link in Td. Moreover, the user rates in Te when
using MSR-eTIM are greater or equal to the user rates when using round-robin TDMA
since we use the links partition algorithm from Algorithm 2.4. A comparison of the
methods employed in one or two available frequency bands is illustrated in Figs. 2.15 and
2.16 in terms of slot allocation. Finally, an implementation of JFA-eTIM-hy is depicted in
Algorithm 2.7.

Remark 2.5. In practice, we can imagine a scenario where for both of our clusters, the number
of available frequency bands alternate between one and two. For example, the adjacent clusters
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Figure 2.15: Use of links partition method from Algorithm 2.4 in the cases of one and two
available frequency bands. We allocate band f1 to the links in blue and frequency band
f2 to the links in yellow. The interference links have been omitted for clarity.

could first have access to a single frequency band. Then, after a certain amount of time, a second
frequency band would be available, before becoming unavailable again after a certain amount of
time etc.

It is worth noticing that one main advantage of our schemes eTIM-hybrid and JFA-eTIM-hy
is that they require the same links partition Te and Td. Therefore, when alternating between both
methods according to the availability of the frequency bands, we will only be required to compute
Te and Td once, which corresponds to the most complex step.

2.5.2 Numerical results

2.5.2.1 Simulations parameters and implemented methods

In this part, we provide numerical results to assess the performance of the proposed
solution JFA-eTIM-hy in terms of average sum rate and minimum user rate per link. To
this end, we use the same setup as in Sections 2.3.4 and 2.4.4 and we study the influence
of three parameters by varying them: the number of links per cluster nC, the distance
between the clusters δ, and the clusters size dsize.

For clarity, we refer to allocating a frequency band f1 to the links in cluster C1 and
the other frequency band f2 to the links in cluster C2 as orthogonal frequency band
allocation. Moreover, we describe the implemented interference management methods
in the following:

• OFA-TDMA: orthogonal channel allocation with round-robin TDMA in cluster C1

on frequency band f1 and round-robin TDMA in cluster C2 on frequency band f2.

• JFA-TDMA-opt: joint channel allocation and optimized TDMA scheme where the
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(a) One available frequency: eTIM-hybrid

(b) Two available frequencies: JFA-eTIM-hy.

Figure 2.16: Comparison of JFA-eTIM-hy with other implemented methods versus the
number of links per cluster for dsize = 10 km and δ = 0 m. JFA-eTIM-hy requires clusters
association and shows higher performance in terms of average sum rate.

performed channel allocation is the same as in JFA-eTIM-hy, and where optimized
TDMA is applied to both the links inTe on f1 and the links inTd on f2, independently.

• OFA-MSR-eTIM: orthogonal channel allocation with MSR-eTIM applied in C1 on
f1 and MSR-eTIM applied in C2 on f2.

• OFA-eTIM-hybrid: orthogonal channel allocation with eTIM-hybrid used in C1 on
f1 and eTIM-hybrid used in C2 on f2.

• JFA-eTIM-hy: the proposed solution.

2.5.2.2 Simulation results

In Fig. 2.17, we study the influence of the number of links per cluster by plotting the
average sum rate in Fig. 2.17a and the average minimum user rate per link in Fig. 2.17b
when two frequency bands are available. In terms of average sum rate, Fig. 2.17a shows
that for increasing values of the number of links per cluster, OFA-TDMA and OFA-
MSR-eTIM have a steady average sum rate while the other methods have an increasing
average sum rate. We can also observe that our proposed method JFA-eTIM-hy has a
higher average sum rate than the other implemented solutions, including OFA-eTIM-
hybrid. This result highlights the benefit of performing clusters association when two
frequency bands are available. Moreover, this gap increases with higher values of the
number of links per cluster: around 0.4 Mbits/s for nC = 5, 1.5 Mbits/s for nC = 10,
around 3 − 4 Mbits/s for nC = 15, 20 links per cluster. Moreover, Fig. 2.17b shows that
OFA-MSR-eTIM has an average minimum user rate close to 0 for more than 10 links per
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Algorithm 2.7: JFA-eTIM-hy implementation
Set channel statistics γi j, transmit powers Pi, noise power Pn and NMC.
Compute Te,Td,UTe ,VTe using Algorithm 2.4, with M = |Te|.
For k ∈ {1, ...,N}, compute R̄φk defined in (2.8) using NMC Monte-Carlo simulations.
For j ∈ Te, compute R̄φeTIM, j defined in (2.16) using UTe ,VTe and NMC Monte-Carlo
simulations.

Compute Lopt,Td , (nk)k∈Td using optimized TDMA on Td.
if

∑
j∈Te

R̄φeTIM, j ≤
∑

j∈Te
R̄φj then

Return Te, UTe ,VTe , Lopt,Td , (nk)k∈Td .
else

Compute Lopt,Te , (n j) j∈Te using optimized TDMA on Te.
Return Te,Lopt,Te ,Lopt,Td ,n1, ...,nN.

cluster, which confirms the fairness issue of this method. On the other hand, all the other
implemented methods respect the minimum user rate constraint. Furthermore, we can
observe that JFA-eTIM-hy and JFA-TDMA-opt present the same average minimum user
rate per link as the user rate constraint, which is expected since the use of optimized
TDMA includes a scheduling optimization algorithm that will set multiple user rates at
the minimum user rate constraint.
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Figure 2.17: Comparison of JFA-eTIM-hy with other implemented methods versus the
number of links per cluster for dsize = 10 km and δ = 0 m. JFA-eTIM-hy requires clusters
association and shows higher performance in terms of average sum rate.

In Fig. 2.18, we study the influence of the distance δ between the clusters by plotting
the average sum rate in Fig. 2.18a and the average minimum user rate per link in Fig. 2.18b
when two frequency bands are available. In terms of the average sum rate, we observe
in Fig. 2.18a that JFA-eTIM-hy has an increasing value of the average sum rate when δ
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increases which is due to the decrease of inter-cluster interference. On the contrary, when
δ increases, JFA-TDMA-opt’s average sum rate slightly decreases. Indeed, the decreas-
ing behavior of JFA-TDMA-opt’s average sum rate when δ increases can be explained
by the following steps: i) for low δ, inter-cluster interference becomes stronger, ii) the
performance of MSR-eTIM on the links of both clusters to partition the links into Te and
Td decrease compared to round-robin TDMA, which leads to iii) a decreasing number of
"good links" M inTe and finally, iv) when M decreases, the M best links inTe will transmit
more often which will increase the overall network’s average sum rate. Furthermore, we
observe that our proposed solution JFA-eTIM-hy shows a higher average sum rate than
the other methods for δ ≥ 0 m. The difference with OFA-eTIM-hybrid is 1.5 Mbits/s for
δ = 0, 2.9 Mbits/s for δ = 2000 m and keeps increasing for increasing value of δ. However,
for δ < 0, the intertwining of both clusters creates stronger inter-cluster interference which
makes eTIM solutions have trouble dealing with this strong interference, compared to
TDMA techniques. In addition, Fig. 2.18a shows that the methods based on orthogonal
frequency band allocation in dotted line have steady performance in terms of average
sum rate and average minimum user rate per link, which is expected since interference
management is performed independently for both clusters. Fig. 2.18b confirms that each
method respects the average minimum user rate constraint, except OFA-MSR-eTIM as
previously said.
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Figure 2.18: Comparison of JFA-eTIM-hy with other implemented methods versus δ for
nC = 10 links per cluster and for dsize = 10 km. JFA-eTIM-hy requires clusters association
and shows higher performance in terms of average sum rate.

In Fig. 2.19, we study the influence of the size of the clusters dsize by plotting the average
sum rate in Fig. 2.19a and the average minimum user rate per link in Fig. 2.19b. We observe
that the implemented methods have a decreasing average sum rate and minimum user
rate with for increasing dsize. This can be explained by the fact that with smaller clusters,
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i.e. decreasing dsize, the proximity between the transmitter and receiver of the direct links
increases. Besides, Fig. 2.19a shows that our proposed method JFA-eTIM-hy presents the
highest average sum rate for dsize ≥ 10 km. The difference between OFA-eTIM-hybrid is
1.5 Mbits/s for dsize = 10 km and 2.6 Mbits/s for dsize = 20 km. However, when we have
dsize ≤ 5 km, both JFA-eTIM-hy and OFA-eTIM-hybrid average sum rate become similar
as JFA-TDMA-opt. Indeed, as said previously, when clusters are too small, inter-cluster
interference becomes stronger and using eTIM provides similar if not lower performance
than with round-robin TDMA in terms of sum rate. Fig. 2.19b confirms that each method
respects the minimum rate constraint, except orthogonal eTIM as previously said.
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Figure 2.19: Comparison of JFA-eTIM-hy with other implemented methods versus δ for
nC = 10 links per cluster and δ = 0 m. JFA-eTIM-hy requires clusters association and
shows higher performance in terms of average sum rate.

2.6 Conclusion

In this chapter, we have addressed the TIM problem under frequency-flat Rayleigh fading
channel with SCSI assumption. When a single frequency band is available, we have
implemented several approaches that presented issues in either average sum rate or
minimum user rate. We have proposed a new interference management scheme, called
eTIM-hybrid, which combines eTIM with TDMA access. The scheme consists of two
steps. First, the links are divided into two groups, with either eTIM or TDMA applied to
each group. To do so, an iterative procedure based on rate criteria is performed. Second,
we allocate the best slots to each link in a given frame. To this end, we formulate the
scheduling problem and provide an optimal closed form solution. Through numerical
simulations, we have shown that eTIM-hybrid outperforms the other solutions in most
scenarios in terms of average sum rate while guaranteeing an average minimum user rate
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for every link of both clusters. The comparison of our implemented solutions in terms of
average sum rate and minimum user rate is summarized in Table 2.7.

Table 2.7: Comparison of the proposed solutions for one available frequency band.

Implemented solutions Average sum rate Average minimum user rate

MSR-eTIM Section 2.3.2 Better than TDMA Some average user rates close to 0.
CMSR-eTIM Section 2.3.3.2 Similar to TDMA Min. user rate guaranteed

PF-eTIM Section 2.3.3.1 Similar to TDMA Min. user rate guaranteed
eTIM-hybrid Better than TDMA Min. user rate guaranteed

Furthermore, we have also considered another context when two frequency bands are
available. One naive approach is to perform an orthogonal allocation of the frequency
bands to both clusters and apply interference management methods. In this chapter,
we have proposed a new scheme called JFA-eTIM-hy which combines a new frequency
band allocation and eTIM-hybrid using the same links partition algorithm for eTIM-
hybrid. We show through numerical simulations that JFA-eTIM-hy outperforms the
standard orthogonal frequency allocation solutions, including when using eTIM-hybrid,
in terms of average sum rate while guaranteeing the minimum user rate constraint.
Our implemented solutions comparison when two frequency bands is summarized in
Table 2.8.

Table 2.8: Comparison of the proposed solutions for two available frequency bands, all
of their average sum rate are higher than TDMA’s

Implemented solutions Average sum rate Average minimum user rate

OFA-MSR-eTIM 4th Some average user rates close to 0
OFA-eTIM-hy 2nd Min. user rate guaranteed

JFA-TDMA-opt 3rd Min. user rate guaranteed
JFA-eTIM-hy 1st Min. user rate guaranteed

Results from this chapter have been published in [53].
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Chapter 3

Rayleigh channel statistics estimation

3.1 Introduction

3.1.1 Context and state-of-the-art

In this chapter, we address the estimation of the propagation channel statistics under
frequency-flat Rayleigh fading in an ad hoc network. This estimation is motivated by the
implementation of the interference management methods presented in Chapter 2. We
remind that these solutions require the use of channel statistics to avoid the idealistic
assumption requiring perfect instantaneous channel coefficients. Therefore, we choose to
focus on the SCSI context like in the previous chapter.

When considering Rayleigh fading, the statistical parameters of the channel are re-
duced to their variance and can therefore be estimated by taking the empirical variance
of the estimated samples of the channel. These samples can be estimated using channel
estimation techniques such as least-square (LS) or minimum mean-square error (MMSE)
estimators [101]. For the Rice channel, a method to estimate its statistical parameters
from noisy samples of the channel is proposed in [71] and from noisy samples and under
Nakagami-m shadowing in [72]. For the Nakagami-m fading channel, an implementation
to estimate its statistical parameters is proposed in [68]. However, these methods do not
provide procedures to estimate the channel statistics of all pairs of nodes of the network.

In this chapter, we consider a network that can for example correspond to the nodes
of a cluster or a group of clusters as mentioned in Chapter 1. The goal of this chapter
is to estimate the channel statistics of all pairs of nodes of the network assuming TDD
systems. To this end, one solution is to use TDMA where each node successively transmits
to the other nodes until the channel statistics of all pairs of nodes of the network that
we consider have been estimated. With this method, the receivers can perform channel
statistics estimation methods without any interference. An alternative solution is to allow
the nodes to transmit simultaneously which decreases the sensing duration compared to
TDMA. Such an approach requires the use of scheduling schemes to estimate the channel
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statistics of all pairs of links because of the TDD mode assumption. An alternative solution
is to allow the nodes to transmit simultaneously which decreases the sensing duration
compared to TDMA. Because of the TDD mode assumption, such an approach requires
combining simultaneous transmissions with the use of scheduling schemes to estimate
the channel statistics of all pairs of links. Multiple works have aimed at optimizing
the scheduling in a multi-user network. In [58, 69], the scheduling is optimized under
the TDD assumption to satisfy certain traffic demands. [69] also aims at minimizing the
length of the scheduling to decrease the duration of the transmissions. Nevertheless, these
solutions describe scheduling methods assuming the nodes send different transmissions
for each receiver. Since in our context, each transmitter sends the same sequences to the
other nodes, the scheduling solutions proposed in [58, 69] are not adapted to our systems
and would even present lower performance than TDMA.

Another issue with simultaneous transmissions is the occurrence of interference which
can degrade the channel estimation performance. To deal with that, we propose to reduce
the sensing duration of the channel statistics estimation of the network pairs of nodes,
while dealing with the resulting interference. To this end, we describe two scheduling
approaches which are described as follows:

• The first approach consists of allowing two nodes to transmit simultaneously which
decreases the number of steps required to estimate the channel statistics of all pairs
of nodes of the network, and thus decreases the sensing duration compared to
TDMA. Since this method results in the occurrence of a single interference, the
channel statistics estimation problem is equivalent for each receiver to estimate two
scalar parameters: the direct and the interfering channels’ magnitude mean power.
To that purpose, the estimation is performed in a frequency-flat Rayleigh channel
in the presence of a single interferer assuming that we collect a set of SINR values
from the receiver.

• In the second approach, we propose a scheme allowing simultaneous transmissions
from multiple nodes, i.e. more than two nodes. to deal with the interference created
by several transmitters, we use a procedure using orthogonal sequences to remove
that. Under the assumption of TDD mode systems, we perform a transmission
scheduling optimization to outperform TDMA in terms of sensing duration while
estimating the channel statistics of all pairs of nodes of the network.

We show in the following that the second scheduling approach outperforms the first
one in terms of sensing duration. The first scheduling method can be performed if a
procedure with orthogonal sequences cannot be used and under the assumption that
receivers have only access to a set of SINR samples.

3.1.2 Contributions

The contributions are summarized as follows.
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3.1.2.1 Rayleigh channel statistics estimation using SINR samples under single inter-
ference

The first approach for the channel statistics estimation of the pairs of nodes of the network
consists of allowing two nodes to transmit simultaneously. The estimation problem is
thus equivalent to estimating the direct and interfering channels’ magnitude average
power under single interference. The contributions to this problem are described in the
following:

• The first contribution is a scheduling method to reach all users within less amount
of time than TDMA.

• Assuming a set of SINR samples is available at the receiver and under flat Rayleigh
fading, the second contribution is the derivation of two estimators: the first one
based on MLE, and the other one based on the MoM. The performance of these
estimators is compared in terms of bias and variance through numerical simulations.

• The third contribution of this approach is the derivation of the CRLB of the estima-
tion problem in closed form. It is then numerically computed and compared with
the other estimators’ variance.

3.1.2.2 Scheduling optimization with simultaneous transmissions for channel statis-
tics estimation

In the second approach to estimate the channel statistics, simultaneous transmissions from
multiple nodes are allowed. The contribution is stated as follows: assuming TDD systems,
we propose a scheduling solution using orthogonal sequences with a lower sensing
duration for the channel statistics estimation of all pairs of nodes of the network. The
complexity and performance of the proposed scheduling are analyzed through numerical
simulations.

3.1.3 Chapter organization

The rest of the chapter is organized as follows. In Section 3.2, we describe the scheduling
approach with two simultaneous transmissions to estimate the channel statistics of all the
links of the network and formulate the equivalent estimation problem. Assuming the use
of SINR samples under single interference, two estimators and the CRLB of the estimation
problem are derived. In Section 3.3, we provide the second scheduling approach which
allows simultaneous transmissions from multiple nodes to estimate the channel statistics
of the links of the network. A novel optimized scheduling using orthogonal sequences is
derived and we show that it outperforms TDMA in terms of sensing duration. Section 3.4
concludes the chapter.
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3.2 Channel statistics estimation using SINR samples under sin-
gle interference and Rayleigh fading

In this section, we describe the first approach to estimate the channel statistics of all pairs of
nodes of the network with simultaneous transmissions. To decrease the sensing duration
compared to TDMA, two nodes are allowed to simultaneously transmit to the others,
which reduces the time to take the measure of all pairs of nodes. Since this scheduling
results in the occurrence of a single interference, the channel statistics estimation problem
amounts for each receiver to estimate two scalar parameters: the direct and the interfering
channels’ magnitude mean power.

Moreover, we also assume that the receiver considered in this work gives only access
to a set of estimated SINR samples. The goal of this section is thus to estimate the direct
and interfering statistical parameters from the available SINR samples. The authors
of [89] have proposed a maximum likelihood estimator (MLE) of the SINR statistical
parameters in the context of shadowing effects, by approximating the distribution of the
SINR samples using a log-normal distribution. Unfortunately, such an approximation
should present a lower performance than an estimator assuming the true distribution of
the SINR. Notice that other works use the SINR samples by directly feeding them into a
neural network to predict the SINR distribution [21]. However, our solution is performed
without using the SINR statistical parameters, which are the values we want to estimate.

This approach aims to investigate at each receiver the estimation of the direct and
interfering channels statistics without approximating the SINR distribution using a log-
normal distribution as in [89] . We tackle this problem under flat Rayleigh fading with a
single interferer assuming that we collect a set of SINRs’ values from the receiver. To do
so, we propose two new estimators:

• the MLE which is more accurate but requires careful initialization.

• the MoM estimator which is less complex but also less accurate.

For both estimators, we provide derivations to the schemes along with a numerical im-
plementation based on Newton’s algorithm. In addition, we derive the CRLB associated
with this estimation problem and propose an efficient computation of it. We provide
simulations to assess the performance and compare the complexity of the proposed esti-
mators.

This section is organized as follows. Section 3.2.1 describes the system model and
the proposed scheduling solution with two simultaneous transmissions, then formulates
the equivalent estimation problem for the channel statistics. Section 3.2.2 shows how
to derive the proposed estimators and their computation. Section 3.2.3 is dedicated to
the derivation of the CRLB. Section 3.2.4 provides numerical results and performance
comparison of the proposed estimators.
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3.2.1 System model and scheduling solutions

In this chapter, we consider a network composed of N nodes which can correspond to
the nodes of a cluster or a group of clusters. Note that this differs from Chapters 2 and
4 where we consider a network composed of N links. The systems are assumed to be in
TDD mode, i.e. each node can either operate as a transmitter or a receiver. Moreover,
we refer to a link as a pair of transmitter-receiver, i.e. the link is directed, as opposed to
a pair of nodes that is not directed. In this context, the channel statistics γi j of all pairs
of nodes (i, j) are supposed unknown and constant, and our goal is to estimate them.
It is worth noting that unlike in Chapters 2 and 4, the notations γi j correspond to the
channel statistics from node j to node i. With these notations, the channel average power
symmetry leads to the equality γi j = γ ji and γii is not defined.

In the following, we introduce a few definitions and describe the scheduling with
TDMA.

3.2.1.1 Definitions and scheduling with TDMA

We first introduce definitions to compare different transmission scheduling solutions for
channel statistics estimation.

Definition 3.1. We define a cycle as the total time required to estimate the channel statistics of
all pairs of nodes of the network.

Definition 3.2. We define a step as the time during which the nodes transmit and the receivers
estimate the channel statistics from the received signals.

Definition 3.3. We define the length of a scheduling as the total number of steps of the scheduling.

Definition 3.4. We define a successful scheduling as a scheduling leading to the estimation of
the channel statistics of all pairs of nodes of the network.

To estimate the channel statistics of all pairs of nodes of the network, one solution
is to use TDMA, i.e. the nodes transmit successively one after each other, and when a
node is transmitting, all other nodes will be in receiver mode. This continues until all
pairs of nodes are reached. This method is illustrated in Fig. 3.1 where node 1 first sends
transmission to the other nodes, then node 2, and so on. Using these definitions, TDMA is
considered a successful scheduling with a length of N− 1 steps since it allows to estimate
γi j for all pairs of nodes (i, j) of the network, using the symmetry γi j = γ ji.

We propose an alternative solution that allows two nodes to transmit simultaneously
to decrease the sensing duration. This approach results in two issues:

• Because of the TDD assumption, it requires the use of scheduling techniques to both
estimate the channel statistics of all pairs of nodes and perform better than TDMA
in terms of the number of steps.
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Figure 3.1: Example of scheduling with TDMA for N = 8 nodes. The channel statistics of
all links are estimated in 7 steps.

• It leads to the occurrence of a single interference at receivers which can decrease the
performance of the channel statistics estimation.

In the next section, we provide the proposed scheduling with two simultaneous
transmissions.

3.2.1.2 Proposed scheduling solution

In this section, we describe the proposed scheduling solution with two nodes simulta-
neously transmitting at each step until all pairs of nodes of the network are reached. Its
procedure is composed of the following phases:

1. Two adjacent nodes successively transmit until the (N − 2)th node is reached. In
other words, nodes 1, 2 transmit at step 1, nodes 3, 4 at step 2, etc., until node (N−2)
transmits.

2. Two adjacent odd numbers successively transmit until the remaining channel statis-
tics are estimated. In other words, nodes 1, 3 transmit at step (L(1)

2S + 1), nodes 5, 7 at
step (L(1)

2S + 2), etc., until all the γi j are estimated.

An example of this scheduling method applied to a network composed of N = 8 nodes is
represented in Fig. 3.2, where the scheduling is successful in 5 steps. The first phase of the
scheduling takes around half the time of TDMA since two nodes successively transmit.
However, because of the TDD mode assumption, some channel statistics are not estimated
in the first phase. Indeed, when two nodes i and j transmit at the same step, γi j is not
estimated and either node i or j is required to transmit again. Therefore, in the second
phase, only one out of two nodes transmit a second time.
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Figure 3.2: Example of scheduling with two simultaneous transmissions for N = 8 nodes
performed in 5 steps.

Without providing any analytical expression, we can conjecture that the proposed
scheduling with two simultaneous transmissions seems to outperform TDMA in terms
of scheduling length, and thus, in terms of sensing duration.

In the next section, to handle the resulting interference, we formulate at each receiver
the estimation problem for the channel statistics with a single interferer. This procedure
is applied at each receiver to estimate the channel statistics of all pairs of nodes. The
estimation is performed under flat Rayleigh fading assuming that we collect a set of SINR
values from the receiver.

3.2.1.3 Formulation of the equivalent estimation problem

We have previously considered a procedure with two simultaneous transmissions for
channel statistics estimation. In this section, we considered this estimation problem at
each receiver. To that purpose, we consider a network illustrated in Fig. 3.3 and composed
of three nodes: a transmitter Tx1 communicating with its receiver Rx1 and an interfering
transmitter Tx2 communicating on the same channel. As a consequence, Tx2 creates
interference at the receiver Rx1. In this case, the received signal at Rx1 can be written as:

y1 =
√

P1γ1 h̃1s1 +
√

P2γ2 h̃2s2 + n1, (3.1)

where si is the transmitted symbol from Txi, Pi is the transmit power of Txi, h̃ j ∼

CN(0, 1), j = 1, 2 are the Rayleigh flat fading coefficients from transmitter Tx j to re-
ceiver Rx1, γ1 and γ2 are the direct and interfering channels’ magnitude respectively and
correspond to pathloss values, and n1 ∼ CN(0,Pn) is the AWGN at receiver Rx1. In this
chapter, we assume that the noise power Pn is perfectly known.

The goal of this section is to estimate γ1 and γ2 which are supposed unknown and
constant. As in [20, 21, 43, 89], we assume that receiver Rx1 delivers instantaneous SINR
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Figure 3.3: Representation of a transmission from Tx1 to Rx1 with the interferer Tx2.

estimated values. The instantaneous SINR is defined as S := P1γ1|h̃11|
2/(Pn + P2γ2|h̃12|

2),
which can be reexpressed as:

S =
aγ1α1

1 + bγ2α2
, (3.2)

with a := P1/Pn, b := P2/Pn, α1 := |h̃11|
2, α2 := |h̃12|

2.

With these notations, we define the instantaneous SNR as SNRinst := aγ1α1 and the
instantaneous Interference-to-Noise ratio (INR) as INRinst := bγ2α2. In the following, for
the sake of clarity, the terms "SNR" and "INR" will refer to the expected value of SNRinst

and INRinst, which are equal to aγ1 and bγ2 respectively.

Since we assume that h̃i ∼ CN(0, 1), i = 1, 2, the fading coefficients α1 and α2 follow
an exponential distribution with parameter λ = 1 [94, Section 2.3]. In [32], the pdf of S is
derived and can be written as follows

pS(x;γ) = exp
(
−

x
aγ1

)
aγ1 + bγ2x + aγ1bγ2(

aγ1 + bγ2x
)2 , (3.3)

with γ := (γ1, γ2).

In the following, we assume that we have access to NS independent and identically
distributed (i.i.d.) samples of SINR denoted by S := (S1, ...,SNS) to perform the estimation
of γ1 and γ2.

3.2.2 Proposed estimators

In this section, we derive two different algorithms to estimate γ1 and γ2 from S. We
remind that this estimation procedure can be performed at each receiver of the network
considered in Section 3.2.1 to estimate the channel statistics of all pairs of nodes. The
proposed estimation solutions are the following: one is based on the maximum likelihood
approach and the other one is on the MoM. For both estimators, we provide derivation of
the estimators along with a numerical implementation based on Newton’s method. The
MoM estimator is less complex but also less accurate, whereas the MLE is more accurate
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but requires careful initialization. Thus, we also propose to use the MoM’s estimates to
initialize the MLE algorithm, which results in an MLE with lower complexity.

3.2.2.1 Maximum likelihood estimator

The MLE is one of the most popular estimators since it has the asymptotic properties of
being i) consistent, i.e. it converges in probability to the true parameters, and ii) efficient,
that is when NS → +∞, it achieves the CRLB [64, Chapter 7]. In our problem, the MLE of
γ is obtained by maximizing the log-likelihood function of S denoted by ℓS(γ).

Since the elements of S are independent and identically distributed (i.i.d), the log-
likelihood ℓS(γ) can be expressed as:

ℓS(γ) = log

 NS∏
i=1

pS(Si;γ)

 . (3.4)

Plugging (3.3) into (3.4) yields to the following expression for the log-likelihood:

ℓS(γ) =
NS∑
i=1

[
−
Si

aγ1
+ log (aγ1 + bγ2Si + abγ1γ2) − 2 log (aγ1 + bγ2Si)

]
. (3.5)

One possibility to maximize ℓ(S;γ) with respect to γ is to perform a grid search over a
finite interval with a small grid step to have a good precision of the maximum likelihood
estimates. However, its implementation is complex because it requires the evaluation of
the log-likelihood on each point of a grid which must be accurate enough to ensure a
good estimation precision.

Another possibility to maximize ℓS(γ) with respect to γ is to find its stationary points,
i.e. to find γMLE such that

Result 3.1 (Maximum likelihood estimator). The MLE estimates are provided by solving the
following equation:

∇ℓS(γMLE) = [0, 0]T, (3.6)

where ∇ℓS(γ) := [ ∂
∂γ1
ℓS(γ), ∂

∂γ2
ℓS(γ)]T is the gradient vector of ℓS(γ) with respect to γ and

∂
∂γi
ℓS(γ) is the partial derivative of ℓS(γ) with respect to γi, and to select the one maximizing

ℓS(γ) among the stationary points.

After some algebra, we obtain the log-likelihood partial derivatives with respect to γ1

and γ2:

∂
∂γ1

ℓS(γ) =
NS∑
i=1

 Si

aγ2
1

+
a(1 + bγ2)

aγ1 + bγ2Si + abγ1γ2
−

2a
aγ1 + bγ2Si


∂
∂γ2

ℓS(γ) =
NS∑
i=1

(
b(Si + aγ1)

aγ1 + bγ2Si + abγ1γ2
−

2bSi

aγ1 + bγ2Si

) (3.7)

Without being able to prove it formally, we provide after a numerical study of ℓS(γ)
the following conjecture.
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Conjecture 1. The function ℓS(γ) has the following two properties:

1. it has a unique stationary point.

2. it is quasi-concave.

We deduce from 1. that the identification of a stationary point of ℓS(γ) by any optimiza-
tion method is the global optimum, whereas property 2. indicates that the initialization
of the optimization method must be done carefully to guarantee the convergence of the
used optimization algorithm.

We thus propose to use a descent method based on Newton’s algorithm [31] to solve
∇ℓS(γMLE) = [0, 0]T. The descent vector is −H−1

ℓ ∇ℓS(γ) where Hℓ is the Hessian matrix of
ℓS(γ) whose expression is detailed in Appendix B.1.1 and the Newton’s iteration step can
be expressed as:

γ(t+1) = γ(t)
−H−1

∇ℓ(x,γ(t)). (3.8)

It is worth noticing that since Hℓ is a 2×2 matrix, we can find the closed-form expressions of
its inverse H−1

ℓ . Moreover, it is known that the condition to guarantee the convergence of
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Figure 3.4: Log-likelihood ℓS(γ) for γ2 = 10, versus γ1. The interval in yellow corresponds
to negative definite Hessian Hℓ. Hence, the initialization of γ1 for Newton’s method for
γ2 = 10 requires to be in this interval.

Newton’s algorithm is that Hℓ is negative definite [14]. Therefore, a careful initialization
point respecting this condition is required. A representation of ℓS(γ) with the region
where Hℓ is negative definite is illustrated in Fig. 3.4.

We propose two alternatives for the initialization of the Newton’s method.

i) An initialization based on a random trial and error search is described in the rest of
this section.
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ii) An initialization using MoM estimates which are provided in Section 3.2.2.2.

The first possibility is described in Algorithm 3.1 and consists in initializing Newton’s
method through a random trial and error search until we find a point such that Hℓ is
negative definite. To this end, we define a region set Θγ1,γ2 from which we randomly
draw our initial points γ(0). This region can be written as:

Θγ1,γ2 := {(γ1, γ2) | γ1 ∈ [γ1,min, γ1,max] and γ2 ∈ [γ2,min, γ2,max]}, (3.9)

where γi,min, γi,max are γi minimal and maximum values to set, with i = 1, 2.
When γ2 is close to 0, its influence is smaller when facing a stronger noise power

and its estimation becomes more difficult. In those cases, we struggle to find a suitable
initialization point for Newton’s method, i.e. such that the Hessian matrix is negative.
Therefore, in practice, we set a maximum number of random initializations Ninit,MLE. If the
Ninit,MLE initializations are reached without a negative Hessian matrix, we set γ2,MLE = 0.
Given the properties of ℓS(γ), this condition guarantees the convergence of the Newton’s

Algorithm 3.1: Newton’s method implementation for MLE
Set S, ϵg, ϵα,Θγ1,γ2 , γMoM.
Randomly initialize γ(0) in Θγ1,γ2 .
while Hℓ(γ(0)) ⊀ 0 do

Randomly initialize γ(0) in Θγ1,γ2 .
end
while ∥∇ℓS(γ(n))∥ > ϵg or n < Nmax do

Initialize α = 1.
Update γ

(n+1)
α = γ(n)

− αH−1
ℓ (γ(n))gℓ(γ(n)).

while
(
ℓ(γ(n+1)

α ) < ℓ(γ(n)) or Hℓ(γ
(n+1)
α ) ⊀ 0

)
and α > ϵα do

Update α = α/2 and set γ(n+1)
α .

end
Set γ(n+1) = γ

(n+1)
α .

Increment n = n + 1.
end
Return γ(n+1)

algorithm with a controlled step. The step is initialized to 1 and successively divided by
2 until the following two conditions are met:

i) ℓS(γ) increases.

ii) Hℓ is negative definite.

We have observed that the trial-and-error step is numerically complex since i) it
requires multiple trials, and ii) each trial requires to compute Hℓ whose components
are computationally high. Therefore, we propose a second possibility which consists of
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initializing Newton’s method with the MoM estimates. With these estimates, if Hℓ is
not negative definite, Newton’s method is initialized through the random trial and error
search as described above. This procedure is illustrated in the block diagram in Fig. 3.5.
We provide the MoM estimates in the next section.

Random initialization 

 ?

Step control 

Newton's iteration

NO

YES

and 

MoM estimates

Figure 3.5: Illustration of MLE implementation initialized with MoM estimates.

3.2.2.2 Method of moments estimator

In this section, we derive an alternative estimator to the MLE one based on the MoM.
The MoM is an estimator based on the solution of the equations matching the theoretical
and empirical moments. It has the advantage of being asymptotically consistent [64,
Chapter 9], but contrarily to the MLE, its asymptotic efficiency is not guaranteed. The
MoM estimator is a conventional alternative to the MLE estimator when the later is
complex to implement. In this chapter, we will show through a complexity analysis
that the complexity of the MoM implementation is much lower than the one of the MLE
estimator. In addition, if its performance is not satisfying enough, the MoM estimator can
be used to initialize the MLE through Newton’s method. In the next section, we derive a
MoM estimator of the SINR distribution parameters γ1 and γ2 from S.

3.2.2.2.1 Estimator derivation

Since there are two parameters to estimate and because the variance of the MoM estimator
generally increases with the order [64], i.e. the number of moments, we choose to use
the first and second moments. To match the first and second theoretical and empirical
moments, let M1 := (1/N)

∑N
n=1Sn and M2 := (1/N)

∑N
n=1S

2
n be the first and second-

order empirical moments of the received samples, and let ϕ1(γ) := E[S], ϕ2(γ) := E[S2]
be the first and second-order theoretical moments. Thus, the MoM estimates γMoM =
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(γ1,MoM, γ2,MoM) are the solutions of the following system:ϕ1(γMoM) =M1

ϕ2(γMoM) =M2.
(3.10)

Even though the theoretical moments ϕ1(γ) and ϕ2(γ) have been computed in [109],
for the sake of completeness, we detail their derivations in Appendix B.1.2.1 using the
notations of this thesis and provide their expression in the following:ϕ1(γ) = aγ1ωeωE1(ω)

ϕ2(γ) = 2(aγ1)2ω (1 − ωeωE1(ω)) ,
(3.11)

with ω := 1/(bγ2) and E1(z) =
∫ +∞

z (e−t/t)dt the exponential integral function. For the sake
of completeness, we provide the derivations of ϕ1(γ) and ϕ2(γ) in Appendix B.1.2.1 using
the notations of this thesis.

Defining

ρ :=
M2

(M1)2 , (3.12)

we derive in Appendix B.1.2.2 the following result

Result 3.2 (Method of moment estimators). The MoM estimators γ1,MoM and γ2,MoM are the
solutions of the system


fMoM(γ2,MoM) = 0

γ1,MoM =
M1

2a

(
1 +

√
1 + 2bργ2,MoM

)
,

(3.13a)

(3.13b)

where fMoM is defined as

fMoM(z) :=
1 +

√
1 + 2bρz
2bz

exp (1/bz) E1 (1/bz) − 1. (3.14)

The solution of the system provided in (3.13) is done by first computing γ2,MoM

by solving (3.13a), and then by inserting this value in (3.13b) to deduce γ1,MoM. To
characterize the solutions of (3.13a), we need to study the properties of the function
fMoM(z), which is not straightforward.

3.2.2.2.2 Function fMoM behavior study

This section aims to study the function fMoM to find an adequate method to find its roots,
i.e. the solutions of (3.13a). To this end, we study the intervals where fMoM is increasing
or decreasing by computing the derivative of fMoM denoted as f ′MoM and by calculating
fMoM’s limits. After some derivations provided in Appendix B.1.2.3, the expression of
f ′MoM can be expressed as follows:

f ′MoM(z) =
1

2bz

(
g′2(z)g34(z) +

g2(z)
z

(
1 −

g34(z)
bz

(1 + bz)
))
, (3.15)
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with g2(z) := 1 +
√

1 + 2bρz, g34(z) := exp(1/bz)E1(1/bz) and g′2(z) = bρ(1 + 2bρz)−1/2.
Since we were not able to find f ′MoM’s sign on R+ because of its complex expression,

we were able to compute its limit in 0+. Let us define f (0+) := limz→0+ f (z) and f ′(0+) :=
limz→0+ f ′(z) when the limits exist. We were able to find the following limits, whose
proofs are provided in Appendix B.1.2.4.

Result 3.3. Let fMoM be defined in (3.14) and f
′

MoM defined in (3.15). The following properties
hold:

p1) fMoM(0+) = 0,

p2) limz→+∞ fMoM(z) = −1,

p3) f ′MoM(0+) = b(ρ/2 − 1).

From p3 in Result 3.3, we can deduce the following corollary which provides a condi-
tion on the sign of f ′MoM(0+) that only depends on the empirical moment ratio ρ.

Corollary 3.1. From p3, we deduce that the sign of f ′MoM(0+) only depends on the ratio ρ, and
thus we have the following statement:

∀ρ > 2, f ′MoM(0+) > 0

∀ρ ≤ 2, f ′MoM(0+) ≤ 0.
(3.16)

Next, we have also observed numerically that the function in (3.14) has the following
properties (which we conjecture):

Conjecture 2. We conjecture the following properties on fMoM and f ′MoM:

p4) f ′MoM(0+) ≤ 0⇒ ∀z > 0, fMoM(z) < 0

p5) f ′MoM(0+) > 0⇒ ∃! z1 > 0 such that fMoM(z1) = 0.

p6) f ′MoM(0+) > 0⇒ ∃! z2 > 0 such that f ′MoM(z2) = 0.

Using the properties from Result 3.3 and Conjecture 2, we can distinguish two behav-
iors of fMoM as illustrated in Fig. 3.6. First, from p1, p2 and p4, we can deduce that if
f ′MoM(0+) ≤ 0, function fMoM(z) behaves as follows: it is always negative and goes to −1
when z → +∞. In this case, fMoM does not have any root. Otherwise, if f ′MoM(0+) > 0,
then (3.14) has a unique strictly positive root z1 according to property p5, and γ2,MoM is
estimated by finding the unique non-zero root of fMoM in (3.13a). Moreover, we deduce
from properties p1, p2, p5 and p6 that function fMoM(z) behaves as illustrated in Fig. 3.6
when INR = 10 dB: it is first positive and increasing, passes through a maximum and
then decreases. It intersects the z axis at z = z1, then becomes negative and goes to −1
when z→ +∞.

From Corollary 3.1 and Conjecture 2, we deduce the link between the value of ρ and
the existence of fMoM’s non-zero root through the following Corollary:
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Figure 3.6: Examples of fMoM defined in (3.14) with one non-zero root for INR=10 dB and
without any non-zero root for INR=-10 dB.

Corollary 3.2. Let ρ > 0.

– If ρ > 2, fMoM has a unique non-zero root.

– Else, if ρ ≤ 2, fMoM does not have any non-zero root.

3.2.2.3 Proposed implementation of the estimators

3.2.2.3.1 General approach

From Corollary 3.2, we propose to take into account ρ’s value in the estimators imple-
mentation detailed in the following result:

Result 3.4 (Estimators implementation).

• When ρ > 2, we estimate γ2 and then γ1 using the MoM estimators described in Result 3.2
and the MLE described in Result 3.1.

• When ρ ≤ 2, since fMoM does not have any non-zero root, we estimate γ2 by setting
γ2,MoM = γ2,MLE = 0. In this case, when γ2,MoM = 0 or γ2,MLE = 0, both γ1’s estimators
drop down to γ1,MoM = γ1,MLE =

M1
a .

This implementation choice is motivated by the following analysis.

1. We remind that INR = bγ2 which, using the definition of b (provided below (3.2)),
writes INR = P2

γ2
Pn

. Thus, when the INR goes to 0, since P2 and Pn are constant,
γ2 goes to 0. In this context, the interference is dominated by the noise power, i.e.
γ2 ≪ Pn. Thus, it is very likely that γ2’s estimation is inaccurate (and thus γ1 as well
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Figure 3.7: Pr(ρ ≤ 2), versus INR for NS = 1000 samples and SNR=10 dB.

due to the sequential estimation), hence the proposal to set the MoM and the MLE
estimators as γ2,MoM, γ2,MLE = 0.

2. In order to apply the proposed estimators, one needs to know when the interference
is dominated by the noise power. We have observed through extensive simulations
that the probability of having ρ ≤ 2 is a function of the INR, as illustrated in Fig. 3.7
for NS = 1000 samples and SNR=10 dB. We can see that at low INR the value of
Pr(ρ ≤ 2) is close to 1 (and thus it is likely that fMoM does not have any non-zero
root), whereas at high INR, the value of Pr(ρ ≤ 2) is close to 0 (and thus it is likely
that fMoM has a non-zero root). Hence the decision to base the proposed estimators
depending on ρ’s value.

As we will see in Section 3.2.4, the proposed estimators implementation design is
validated by the performance evaluation results achieving a lower variance than the
CRLB.

In the next section, we propose a numerical procedure to determine (3.14)’s non-zero
root when ρ > 2.

3.2.2.3.2 Root-finding algorithm implementation

We focus here on the case ρ > 2, and our purpose is to find the unique strictly positive
solution of (3.13a). Since we were not able to provide an analytical solution for (3.13a),
we propose an iterative algorithm to find it. The proposed algorithm is provided in
Algorithm 3.2. We first assess whether we have ρ > 2 to assess if fMoM admits a unique
non-zero root. If yes, we propose to find it using a combination of the bisection method
during its early iterations to properly initialize Newton’s method, which fastens the
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convergence.
The initialization of Newton’s algorithm must be done carefully and close enough to

the root z = z1 to avoid the algorithm’s divergence. We therefore propose in the first
step to find a proper initialization for Newton’s method using the bisection method, with
the value smaller than the root zg < z1 verifying fMoM(zg) > 0 and the value greater
than the root zd > z1 verifying fMoM(zd) < 0. One way to determine the first value of
one of the bounds of the bisection is to set a value z0 = 1 and then apply the following
rule: if fMoM(z0) < 0, then we set zd = z0 and we determine zg by successively dividing
zg by two until we find fMoM(zg) > 0. Otherwise, if fMoM(z0) > 0, then we set zg = z0

and we determine zd by successively multiplying zd by two until we find fMoM(zd) < 0.
Once the initial values are found, we apply the bisection method iteratively until the
root found is accurate enough to start Newton’s algorithm. To this end, we propose to
initialize Newton’s method in the decreasing part of fMoM. Moreover, we compute the
first Newton’s iterates if initialized by zg and zd, which can respectively be expressed as:

z(1) = z −
fMoM(z)
f ′MoM(z)

, z = zg, zd, (3.17)

are close enough. Therefore, we propose the following two conditions as stopping criteria
for the bisection: 1) f ′MoM(zg) < 0, and 2) the absolute difference between the first Newton’s
iterates initialized by zg and zd is less than a given threshold, which can be expressed as:∣∣∣∣∣∣zg −

fMoM(zg)
f ′MoM(zg)

− zd +
fMoM(zd)
f ′MoM(zd)

∣∣∣∣∣∣ < ε. (3.18)

An illustration of fMoM with high INR when the first and second conditions are not
respected in Figs. 3.8a and 3.8b, respectively, and when both conditions are respected in
Fig. 3.8c. When both conditions are verified, then Newton’s algorithm is initialized to the
value (zg + zd)/2.

Although both MoM and MLE are obtained using iterative procedures, we provide
a complexity analysis of these two estimators in Section 3.2.2.4 that shows that the com-
plexity of MoM is much lower than the one of MLE.

3.2.2.4 Complexity analysis

We study the complexity of the proposed estimators in terms of the number of elementary
operations. Since the complexity of the estimators is dominated by the number of samples
NS, we formulate the complexity expression as a linear function αNS + β where α and β
are numerical values to compute.

Let us define NE1 as the number of elementary operations to compute the exponential
integral function E1(z). Since the complexity of the MoM is dominated by the computation
of M1 and M2, its complexity is given by

CMoMNS + O(NE1), (3.19)
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(a) Case zg = 1 and zg = 15 where f ′MoM(zg) < 0.
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(b) Case zg = 1.33 and zg = 15 where the first
Newton’s iterates are too far.

0 2 4 6 8 10 12 14 16

z

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

STOP BISECTION

Root

(c) Case zg = 3 and zg = 15, the stopping criteria
conditions are met.

Figure 3.8: Representation of fMoM for INR = 10 dB for cases where the bisection stopping
conditions are met or not.

where CMoMNS is the number of elementary operations to compute M1 and M2 and CMoM

is equal to 3. The complexity of the MLE is also linear with NS, but is higher than
the one of the MoM because Newton’s method in the MLE requires to compute at each
Newton’s step the Hessian matrix whose components are computationally much more
expensive than M1 and M2. Let us define Irand as the number of initializations performed
by random search in the MLE initialized by trial-and-error search and IL

Ntn as the number
of iterations of the Newton’s method procedure. The MLE initialized by trial-and-error
search complexity is given by

CL
TENS + O(Irand + IL

Ntn), (3.20)

where CL
TE is the complexity term that depends on Irand and IL

Ntn. CL
TE’s numerical value is

provided in Table 3.1. For the MLE initialized with MoM estimates, it is worth mentioning
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Algorithm 3.2: Root-finding algorithm for solving (3.13a).
Set ρ, ϵ, ϵ f ′MoM

, b.

if ρ ≤ 2 then
γ2,MoM = 0

else
Initialize bisection method z0 = 1.
if f (z0) < 0 then

zg, zd = z0 and iterate zg = zg/2 until fMoM(zg) > 0
else

zg, zd = z0 and iterate zd = 2zd until f (zd) < 0
while |(zg − fMoM(zg)/ f ′MoM(zg)) − (zd − fMoM(zd)/ f ′MoM(zd))| < ϵ and

f ′MoM(zg), f ′MoM(zd) < 0 do
Apply the bisection method on fMoM between zg and zd

end
Initialize Newton’s method with z(0) = (zg + zd)/2.
while | f ′MoM(z(n))| < ϵ f ′MoM

do
z(n+1) = z(n)

− fMoM(z(n))/ f ′MoM(z(n))
end
Set γ2,MoM = z(n+1).

Return γ2,MoM

that Irand is significantly lower than without MoM estimates since the trial-and-error
search is only performed when the MoM estimate initialization provides a non-negative
Hessian matrix. The MLE initialized with MoM estimates complexity is given by

CL
MoMNS + O(Irand + IL

Ntn +NE1), (3.21)

where CL
MoM is the complexity term which depends on Irand and IL

Ntn. It is worth mention-
ing that the MLE initialized with MoM estimates complexity is computed by including the
cases where MoM initializations fail and then trial-and-error initialization is performed,
instead of only considering the cases with successful MoM initializations. Its numeri-
cal value is provided in Table 3.1. The numerical values of the terms involved in the
complexity expressions are provided in Table 3.1, where each value is averaged through
106 Monte-Carlo simulations. We have observed through numerical simulations that the
terms NE1 , Irand and IL

Ntn do not depend on the number of samples NS.

Table 3.1: Estimators’ complexity (number of elementary operations)

CMoM CL
TE CL

MoM NE1 Irand IL
Ntn

MoM 3 - - 333 - -
MLE initialized by TE - 835 - - 143.74 7.83

MLE with MoM - - 506 - 1.01 5.70
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Figure 3.9: Estimators complexity comparison of the proposed estimators.

Fig. 3.9a represents the complexity in terms of the number of elementary operations, of
the proposed estimators, versus the number of samples NS. The complexity of the MoM
estimator is much lower, i.e. more than 100 times less complex for NS ≥= 100 samples,
than the MLE when it is initialized by trial-and-error or with MoM estimates. Moreover,
Fig. 3.9b shows that the complexity of the MLE initialized with MoM estimates is 1.6 lower
than the MLE initialized with trial-and-error for NS ≥ 200 samples. This result highlights
the interest in initializing with MoM estimates to decrease the MLE implementation
complexity.

3.2.3 Cramer-Rao Lower Bound

In this section, we derive the CRLB related to the estimation of the parameters γ = (γ1, γ2)
using SINR samples S = (S1, ...,SNS). The CRLB is a lower bound on the variance of any
unbiased estimator [64, Chapter 3]. In practice, it indicates if an estimator is optimal in
terms of variance.

The CRLB is defined as
CRLB(γ) = I−1(γ), (3.22)

where I(γ) is the Fischer information whose (i, j)-th entry can be expressed as

[I(γ)]i j := −E
[
∂2ℓS(γ)
∂γi∂γ j

]
, i, j = 1, 2, (3.23)

where ℓ(S,γ) is the joint log-likelihood defined in (3.5) and whose second-order partial
derivatives expression are provided in (B.6).

After some derivations detailed in Appendix B.1.3.1, we obtain the CRLB provided in
the following result.
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Result 3.5. The CRLB related to the estimation of γ can be written as follows

CRLB(γ) =
1

NSθ

−I2 I3

I3 −(A1 + A2 + I1)

 (3.24)

where θ = I2(A1 + A2 + I1) − (I3)2 with

A1 = −
2ω
γ2

1

eωE1(ω),

A2 =
2

3γ2
1

(
ω3eωE1(ω) − ω2 + ω + 1

)
,

(3.25)

and

I1 = −
ω(ω + 1)2

γ2
1

∫ +∞

0

e−t

(ω + t)2(ω + t + 1)
dt,

I2 = b2ω3
∫ +∞

0

2t2(ω + t + 1)2
− (t + 1)2(ω + t)2

(ω + t)4(ω + t + 1)
e−tdt,

I3 =
bω3

γ1

∫ +∞

0

(ω + t + 1)2 + 2t + 2ω + 1
(ω + t)4(ω + t + 1)

te−tdt.

(3.26)

The generalized exponential integral function involved in A1 and A2 can be easily
computed using for instance [115]. The integrals involved in I1, I2 and I3 may present
some integrable singularities and thus require using numerical methods. Integral ap-
proximation methods based on Gaussian quadrature are provided in Appendix B.1.3.2 to
implement CRLB’s terms.

3.2.4 Numerical results

3.2.4.1 MLE-MoM estimator performance

In this section, we study the performance of the proposed MLE (initialized with the MoM)
and of the MoM estimators in terms of both normalized bias magnitude and normalized
MSE (NMSE), defined for a given estimator γ̂ j as:

bias = E
[∣∣∣∣∣∣ γ̂ j − γ j

γ j

∣∣∣∣∣∣
]
, (3.27)

NMSE = E

( γ̂ j − γ j

γ j

)2 , (3.28)

respectively, for j = 1, 2. In the following, for clarity, the normalized bias magnitude
is referred to as the bias magnitude. We also study the performance of these estimators
by computing the mean integrated squared error (MISE) which is defined as MISE :=
E

∫ ∣∣∣p(x) − p̂(x)
∣∣∣2 dx, with p := x 7→ pS(x;γ) and p̂ := x 7→ pS(x; γ̂), where γ are the true

parameters and γ̂ a given estimator. We study the influence of the number of samples
NS and each result is averaged over 106 Monte-Carlo trials. In the following figures, the
CRLB has been normalized by γ2

j .
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The parameters are set as follows: P1 = P2 = Pn = 1 W, leading to a = b = 1, and
Ninit,MLE = 106. In the MLE initialized with the MoM implementation, we remind that if
the MoM estimates do not provide a negative Hessian matrix, the trial-and-search method
is performed to find an adequate initialization. In that case, the region set Θγ1,γ2 is set
such that γ1,min = 0.1, γ1,max = 100, γ2,min = 0.1 and γ2,max = 100, i.e. such that the SNR
and INR are between −10 and 20 dB. In root-finding Algorithm 3.2, we set ϵ = 0.1 and
ϵ f ′ = 10−8.

3.2.4.1.1 Influence of the number of samples NS

In this section, we set γ1 = 100 to obtain SNR = 20 dB and γ2 = 10 to have INR =
10 dB. Fig. 3.10a and 3.10b represent the bias magnitude and NMSE of the proposed
estimators, respectively, versus the number of samples NS which varies between 50 and
4000. Fig. 3.10b also shows the CRLB whose implementation is detailed in Section 3.2.3.
We can draw the following observations: i) the bias magnitude of the MLE and the MoM
estimators converge to zero as NS increases, ii) the NMSE of the proposed estimators
decrease with increasing NS, iii) as expected, the MLE is optimal in terms of NMSE since
it achieves the CRLB whereas the NMSE of the MoM is higher. Moreover, we can observe
that while the MLE bias magnitude is similar to the MoM estimator’s for γ1 estimation, it
is surprisingly a bit higher for γ2 estimation.
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(a) Normalized bias magnitude.
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Figure 3.10: Performance of γ1,MoM, γ2,MoM and γ1,MLE, γ2,MLE and corresponding CRLB
versus NS, for SNR = 20 dB and INR = 10 dB. The biases of the MLE and the MoM
estimators converge to zero as NS increases. The MLE is close to optimal in terms of
NMSE since it achieves the CRLB.

Fig. 3.11 represents the MISE between the pdf of the SINR using the true parameters
γ, and the pdf of the SINR using the parameters γMLE and γMoM estimated using the
MLE and the MoM, respectively. The MISE of both the MLE and the MoM estimators
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Figure 3.11: MISE versus NS for MLE and MoM estimators, for SNR = 20 dB and INR = 10
dB.

decreases as NS increases (both of them are below 10−2 for NS > 100 samples). Besides,
the MLE outperforms the MoM estimation in terms of MISE, which was expected thanks
to the MLE optimality in terms of NMSE already observed in Fig. 3.10b.

3.2.4.1.2 Influence of SNR
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(a) Normalized bias magnitude.
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Figure 3.12: Performance of γ1,MoM, γ2,MoM and γ1,MLE, γ2,MLE and corresponding CRLB
versus SNR, for NS = 1000 samples and INR = 10 dB. The bias magnitudes and the NMSE
of the MLE and the MoM estimators are steady for various SNRs.

In this section, we set NS = 1000 samples and γ2 = 10 to have INR = 10 dB. Fig. 3.12a
represents the bias magnitude of both estimators for the two parameters γ1, γ2, versus
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the SNR which varies between −10 and 18 dB. Fig. 3.12b represents their NMSE and
the CRLB, versus the SNR between −10 and 18 dB. We remind that the SNR expression
is defined in Section 3.2.1 and that it is proportional to γ1. From these figures, we can
observe that both the bias magnitude and the NMSE of the MLE and the MoM estimators
are steady for various SNR. The NMSE of the MLE is lower than the MoM estimators’.
Furthermore, the bias magnitude of both estimators is similar for γ1 estimation whereas
the MLE’s is lower than the MoM estimator’s for γ2 estimation. Fig. 3.13 represents the
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Figure 3.13: MISE versus SNR for MLE and MoM estimators, for NS = 1000 samples and
INR = 10 dB.

MISE between the pdf of the SINR using the true parameters γ, and the pdf of the SINR
using γMLE and γMoM, respectively, for various SNR. As in Section 3.2.4.1.1, the MLE
outperforms MoM estimation in terms of the MISE. While the bias magnitude and NMSE
of both estimators for various SNR values, the MISE of both estimators has multiple
increasing and decreasing variations for increasing values of SNR, which we were not
able to analyze.

3.2.4.1.3 Influence of INR

In this section, we set NS = 1000 samples and γ1 = 100 to have SNR = 20 dB. Fig. 3.14a
and 3.14b represent the bias magnitude and the NMSE of the estimators, respectively,
versus the INR, with the CRLB illustrated in Fig. 3.14b. The INR varies between −5
and 18 dB in Fig. 3.14a and between −10 and 18 dB in Fig. 3.14b. We remind that
the INR expression is defined in Section 3.2.1 and that it is proportional to γ2. For γ2

estimation, when INR increases, the bias magnitudes of the MLE and the MoM estimator
decrease for respectively INR between −10 and −7, and between −10 and −2. The case
INR = −2 dB corresponds to γ2 ≈ 0.63, which is less than the noise power Pn = 1. This
is due to the decreasing influence of γ2 when facing a stronger noise power which makes
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its estimation more difficult. We can observe that for γ1 estimation, for increasing INR,
the bias magnitude of the MLE decreases for INR between −5 and 3 dB, then increases for
INR between 3 and 18 dB. For the MoM, the bias magnitude decreases for INR between
−5 and 5 dB, then increases for INR between 5 and 18 dB. We remind that for lower
values of the INR, we set γ2,MLE = 0 and γ2,MoM = 0 when no solution is found, some
irregularities can appear in the bias magnitude which is illustrated by the presence of
"peaks" for INR between −10 and 0 dB, which corresponds to the cases where γ1 is lower
than the noise power. This can also explain the peak for γ2 estimation for both estimators
for INR between −10 and −5 dB since γ2 estimate depends on γ1 estimate.

Concerning the NMSE of the MLE and the MoM estimator for INR < 5 dB which
corresponds to γ2 ≲ 3.16.

Furthermore, we can observe in Fig. 3.14b that the NMSE of both estimators decreases
for increasing INR between −10 and 5 dB for γ1 estimation, which is due to a more
difficult estimation of γ1 for low INR. For γ1 estimation, the NMSE of both estimators
also decreases between −4 and 5 dB since γ1 estimate depends on γ2. For INR between
−10 and −3 dB, the NMSE of both γ1’s estimators are similar, which is explained by the
fact that for lower INR values, we set γ2,MLE = 0 and γ2,MoM = 0 when ρ ≤ 2 Moreover,
we observe that both the bias magnitude and the NMSE of both estimators increase for
increasing values of the INR when INR > 10 dB.
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(a) Normalized bias magnitude.
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Figure 3.14: Performance of γ1,MoM, γ2,MoM and γ1,MLE, γ2,MLE and corresponding CRLB
versus INR, for NS = 1000 samples and SNR = 20 dB. The biases and the NMSE of the
MLE and the MoM estimators decrease, and then increase.

Fig. 3.15 represents the MISE between the pdf of the SINR using the true parameters γ,
and the pdf of the SINR using γMLE and γMoM, respectively, for various INR. We observe
that MLE outperforms MoM estimation in terms of estimating the SINR pdf, which was
expected thanks to the MLE lower NMSE already observed in Fig. 3.14b and that for
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Figure 3.15: MISE versus NS for MLE and MoM estimators, for SNR = 20 dB and INR = 10
dB.

decreasing values of the INR, MLE and MoM estimation provide similar performance in
terms of MISE.

3.2.4.1.4 Analysis of the CRLB in Fig. 3.14b

In Fig. 3.14b, we can observe that for INR values between −10 and −3 dB, the NMSE of
both γ1 and γ2 estimators become lower than the CRLB, which may look surprising. This
can be explained as follows.

On the one hand, as discussed in Section 3.2.2.3, estimating γ2 is difficult when the
INR value is low, yielding a difficult estimation of γ1 as well, which can be observed
in Fig. 3.14b since the CRLB of both estimation variables increases for decreasing INR
values, when INR ≤ 0 dB.

On the other hand, the proposed estimators in Result 3.4 set γ2 to 0 at low INR
according to the distribution in Fig. 3.7. As a consequence, one can explain the fact
that we achieve better performance than the CRLB by the following reasons: i) The
implemented estimators are biased when ρ ≤ 2, therefore the CRLB in Fig 3.14b does
not apply to these estimators. ii) Setting γ2 = 0 for low INR prevents from having noisy
estimates of γ2, and consequently of γ1, leading to lower NMSE than the CRLB. This
validates the proposed estimators design.

3.2.5 Conclusion of Section 3.2

To summarize our observations, we have provided a scheduling method to estimate the
channel statistics of all pairs of nodes of a network. We have shown that this scheduling
solution which allows two simultaneous transmissions outperforms TDMA in terms of
scheduling length. Moreover, to deal with the resulting interference, we have formulated
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an equivalent estimation problem for channel statistics at each receiver in a frequency-
flat Rayleigh channel in the presence of a single interferer using a set of SINR samples.
This problem consists of estimating for each receiver the direct and interfering channels’
magnitude. To that purpose, we have introduced two new estimators based on MLE and
MoM which both have the property of being consistent. We have implemented them
using Newton’s method and we have provided initialization procedures to ensure the
convergence of both algorithms. We have evaluated the performance of these estimators
through simulations and found that the variance of the MLE is close to the CRLB, while the
variance of the MoM is slightly higher. However, the MoM estimator has the advantage
of being less complex than the MLE. Furthermore, the MLE can be initialized with the
MoM’s estimates, which reduces its complexity compared to random initialization.

3.3 Scheduling optimization with simultaneous transmissions
for channel statistics estimation

In this section, we consider a second scheduling approach with simultaneous trans-
missions to decrease the sensing duration for channel statistics estimation compared to
TDMA. This scheduling solution differs from the previous one described in Section 3.2
for the following reasons:

• More than two nodes are allowed to transmit simultaneously at each step.

• The receivers have access to additional information beyond just SINR samples
to estimate the channel statistics, such as measurements of the received signal
magnitude or estimated channel samples that could help in the estimation process.
For example, the channel statistics can be estimated by taking the variance of the
estimated samples of the channel which can be obtained with channel estimation
techniques such as LS or MMSE methods.

Since simultaneous transmissions result in the presence of interference from multiple
transmitters, we propose to use orthogonal sequences to remove them before applying
channel statistics estimation techniques. Hence, the remaining challenging issue is to find
a suitable transmission scheduling with the following requirements:

• It asserts the estimation of the channel statistics of all pairs of links of the network.
Although this verification is immediate when using TDMA, it is not so simple with
a scheduling method allowing simultaneous transmissions in TDD mode.

• It performs better than TDMA in terms of the number of steps.

Therefore, we focus on deriving optimized scheduling solutions with the requirements
we have just mentioned.
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This section is organized as follows. In Section 3.3.1, we describe the system model
and the criteria to choose the required orthogonal codes. In Section 3.3.2, we provide
the proposed scheduling solutions for the channel statistics estimation and show that it
outperforms TDMA in terms of scheduling length.

3.3.1 System model and orthogonal sequences

3.3.1.1 System model

We consider a similar system model as in Section 3.2, i.e. a network composed of N
nodes in TDD mode with symmetric channel statistics γi j = γ ji. We assume that a central
entity (CE) computes the scheduling which is then transmitted to the individual nodes
in the network. Moreover, we remind that the proposed scheduling solution allows
simultaneous transmissions, which generates interference between nodes. To remove
them, we propose to use orthogonal sequences which means in other words that at each
step t, every transmitting node j sends a sequence x j(t) ∈ RM to a receiving node k with
the following conditions:

xk(t)Tx j(t) = 1, if j = k,
xk(t)Tx j(t) = 0, otherwise.

(3.29)

The temporal dependency of the sequence x j(t) indicates that different sequences can
be used at each step. Indeed, the transmitting would rather send shorter sequences to
decrease the sensing duration as long as all interference is removed.

Let j1, ..., jm be the nodes that transmit at step t where each transmitting node j sends
a sequence x j(t) ∈ RM. In this case, the received signal at node k < { j1, ..., jm} at step t can
be written as:

yk(t) =
∑

j∈{ j1,..., jm}

√
P jhkj(t)x j(t) + nk(t), (3.30)

where P j is the transmit power of node j, hkj ∼ CN(0, γkj) are the Rayleigh flat fading
coefficients from transmitter j to receiver k, γkj is the pathloss values and corresponds to
the channel statistics from j to k, nk(t) ∈ RM is the AWGN at receiver k at step t where we
have for each of its elements nki(t) ∼ CN(0,Pn) with Pn the noise power. We assume that
P j, j = 1, ...,N, and Pn are perfectly known.

From the received signal expressed in (3.30), node k recovers the signal from node j
by removing the interference which can be written as:

x j(t)Tyk(t) =
√

P jhkj(t) + x j(t)Tnk(t), (3.31)

where x j(t)Tnk(t) follows a complex Gaussian distribution by linearity of the Gaussian
distribution.

When considering a transmission from node j to node k, it is necessary for node k
to receive multiple packets from the sending node j to estimate the propagation channel
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hkj(t) reliably enough. The channel samples can be estimated using channel estimation
techniques on (3.31) such as LS or MMSE estimators [101]. Then, after repeating this
operation nstat times to get nstat channel coefficients, an estimator of the channel statistics
using the collected samples can be computed to obtain γkj.

In the following, we provide orthogonal sequences to remove the interference in our
context.

3.3.1.2 Choice of the orthogonal sequences

One common choice for orthogonal codes in wireless communications is to use the Walsh-
Hadamard codes. These codes can be implemented using N codes of size N × 1 which
follows the conditions in (3.29) [37]. However, this method has a limitation as it can only
create N codes if N is a power of two. If N is not a power of two, this method may
require a sequence size that is much larger than N to respect (3.29), which increases the
sensing duration. An alternative approach is to use Zadoff-Chu sequences which have the
useful property of having a null auto-correlation with its shifted version [30]. The rows
of the following matrix can be used to create the orthogonal sequences for Zadoff-Chu
sequences:

XZC =


xu(1) xu(2) . . . xu(NZC)

xu(NZC) xu(1) . . . xu(NZC − 1)
...

...
. . .

...

xu(2) . . . xu(NZC) xu(1)

 , (3.32)

with xu(n) expressed as:

xu(n) =
1
√

NZC
exp

(
− j
πun(n + 1)

NZC

)
, (3.33)

with NZC the length of the sequence, 0 < n ≤ NZC, 0 < u < NZC and gcd(NZC,u) = 1 with
gcd standing for greatest common divisor operation.

In practice, each node receives the transmission scheduling that we describe later.
Therefore, the number of transmissions at each step m(t) is known and the Zadoff-Chu
sequence can be computed at each step t by setting NZC = m(t). It is worth mentioning that
during the orthogonal sequences study, we did not take into account the synchronization
issues.

In what follows, we focus on scheduling methods to estimate the channel statistics.

3.3.2 Scheduling methods for channel statistics estimation

In this section, we focus on scheduling methods using simultaneous transmissions to
decrease the sensing duration of the channel statistics estimation. Before giving the
proposed solutions, we provide a few definitions and assumptions and then, formulate
the combinatorial optimization problem to solve.
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3.3.2.1 Assumptions and definitions

Unlike the scheduling solutions described in Section 3.2, the scheduling methods pro-
posed in this section can estimate the channel statistics of all pairs of links of the network
which corresponds to all the γi j for i, j = 1, ...,N. Because of the symmetry γi j = γ ji, these
scheduling techniques provide two measures of γi j estimation for i, j = 1, ...,N. Therefore,
to have a fair comparison, the scheduling solutions proposed in this section are compared
with a scheduling method using TDMA which also estimates two measures of γi j. This
comparison is different from the scheduling solutions in Section 3.2 since our proposed
scheduling method could not estimate γi j for i, j = 1, ...,N, and thus obtain two measures
of γi j. It is worth mentioning that the proposed scheduling schemes described in the
following can also be used in fully distributed systems where each receiver knows the
channel gain of the other nodes.

In the following, for clarity, we refer to this scheduling scheme estimating γi j twice
based on TDMA as TDMA. The number of steps of such a TDMA solution is thus N steps.
Moreover, the definition of successful scheduling provided in Section 3.2.1.1 is modified in
this section and refers to a scheduling leading to the estimation of the channel statistics of
all pairs of links of the network, instead of the pairs of nodes previously. Before describing
the proposed scheduling solutions, we provide the following definition:

Definition 3.5. We define an optimal scheduling as a successful scheduling whose length
is optimal, i.e. the length of the optimal scheduling is the minimum among all the successful
schedulings.

We represent in Fig 3.16 an example of optimal scheduling computed by exhaustive
search where the channel statistics of all pairs of links have been estimated in 5 steps
under TDD assumption, which reduces the probing time needed to estimate all the
channel statistics.

Even though it is possible to provide better solutions by optimizing the scheduling
method which estimates either γi j or γ ji, in the following, we propose scheduling tech-
niques that estimate both γi j and γ ji. We show that even though the proposed scheduling
methods are suboptimal, they outperform TDMA in terms of scheduling length.

Furthermore, although assessing that TDMA is a successful scheduling is simple, it is
not obvious in the case of multiple transmissions. Moreover, it can be shown that in TDD
mode, the transmission scheduling optimization reduces to a combinatorial optimization
problem. Therefore, in the next section, we formalize the combinatorial optimization
problem and provide a practical visualization method to verify whether a scheduling is
successful or not.
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Figure 3.16: Example of an optimized scheduling requiring 5 steps applied to a network
composed of N = 8 nodes.

3.3.2.2 Combinatorial optimization problem

3.3.2.2.1 Notations

Let S = (α1, ..., αL) be a scheduling with L := LS(N) and where LS(N) is the length of
the scheduling S applied to a network composed of N nodes. Let αt = ( j1, ..., jm) is the
uplet composed of the index of the nodes j1, ..., jm which transmit simultaneously at step
t. For example, α1 = (1, 3) means that at step t = 1, the nodes 1 and 3 transmit at the
same time. Moreover, we represent the progress of the channel statistics estimation of
a given scheduling with a matrix at each step t during a cycle. To that purpose, let
Ω(t) ∈ {0, 1}N×N be such a matrix where its (i, j)th element is denoted asΩi j(t) and is equal
to 1 if the channel statistics γi j have been estimated at step t and to 0 otherwise. For each
scheduling, this matrix is initialized as Ω(0) = IN, which is the identity matrix of size
N ×N, since we do not estimate the γii, i = 1, ...,N.

Using these notations, when subjected to the transmissions αt = ( j1, ..., jm) at step t,
Ω(t) updates as the following:

∀ j ∈ { j1, ..., jm}, ∀i ∈ {1, ...,N}\{ j1, ..., jm}, Ωi j(t) = 1. (3.34)

In other words, for such a transmission αt, for each j = j1, ..., jm, all the receivers i, with
i different from j1, ..., jm, have estimated γi j. For instance, for N = 8 and for a given
scheduling with the transmissions α1 = (1, 3), the progress matrix at step 1 is expressed
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as follows:

Ω(1) =



1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 1


, (3.35)

where the 1st and 3rd columns have been changed to 1, except for Ω13(1) and Ω31(1)
because of the TDD assumption. With these notations, a scheduling S of length L is
successful if and only if we have Ω(L) = 1N.

Let STDMA be the TDMA scheduling described above, which can be written as the
following:

STDMA = {(1), (2), (3), (4), (5), (6), (7), (8)}, (3.36)

whose length is LSTDMA(8) = 8. The optimal scheduling represented in Fig. 3.16 can be
written as:

Sopt = {(1, 2, 3, 4), (1, 5, 6, 7), (2, 5, 8), (3, 6, 8), (4, 7)}, (3.37)

whose length is LSopt(8) = 5.
Moreover, the scheduling optimization problem can be formulated as follows:

Problem 3.1.
arg min

S
LS(N)

s.t. Ω(LS(N)) = 1N.
(3.38)

3.3.2.2.2 Graphical representation

In this section, we describe a visualization method that we refer to as a grid of squares to
illustrate the combinatorial optimization problem and assess the success of a scheduling
method. To that purpose, we model an N × N grid whose elements are squares that
can be colored. This grid represents the progress of the channel statistics estimation of a
scheduling at each step like the matrixΩ(t). At step t, the (i, j)th square is white ifΩ(t) = 0,
i.e. γi j has not been estimated during this cycle, and green otherwise. The diagonal of the
grid is always black to illustrate that the values γii do not need to be estimated. Like Ω’s
initialization which isΩ(0) = IN, the grid is initialized with white squares only except for
the diagonal in black. Then, during the scheduling, multiple transmissions occur, which
colors the grid with green squares. When a transmission is only performed by node j, all
the nodes i , j are in receiver mode and estimate γi j, which then colors the jth column in
green. In Fig. 3.17, when the nodes 1 and 3 transmit, the columns 1 and 3 become green
except for the squares (1, 3) and (3, 1) because of the TDD mode assumption.
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Figure 3.17: Representation with the grid of squares for N = 8 nodes of the scheduling
S = {α1, α2}with α1 = (1, 3) and α2 = (4, 5). The channel statistic γi j has been estimated as
the (i, j)th square is green. If not, the square is white.

3.3.2.2.3 Complexity of the combinatorial problem

In the scheduling problem, at every step t, each node has two possibilities of actions: to
either transmit or receive. Hence, each step of a scheduling S contains 2N possibilities,
and thus, for a given scheduling length L, the number of possible scheduling is 2LN.
For example, for N = 8 nodes, the number of possible scheduling in 5 steps is 240. The
problem of finding the optimal scheduling is of great complexity, which makes it difficult
to determine analytically the minimum number of steps for a scheduling to be successful.

We have only performed numerical simulations to find the optimal scheduling by
exhaustive search up to N = 8 since for N > 8, the computation time is too high.

3.3.2.3 Proposed scheduling solution

In this section, we first propose two suboptimal scheduling solutions to Problem 3.1
and we theoretically prove that their length is lower than TDMA’s. Then, we derive a
third suboptimal scheduling solution which consists of combining those two scheduling
strategies and we show that it outperforms the previous schemes.

3.3.2.3.1 Divide-in-2 scheduling

The first scheduling strategy to deal with Problem 3.1 is a greedy approach that we
refer to as the divide-in-2 strategy. This method has been used in [106] in a different
context with directional antenna systems which tend to be very inefficient for broadcasting
information. The greedy strategy consists of estimating as many γi j as possible at each
step, i.e. coloring as many squares in green as possible at each step. To this end, let
Sdiv = {α1, ..., αLSdiv

(N)} be the divide-in-2 scheduling with LSdiv the length of the scheduling
and let Ωdiv be the corresponding progression matrix. In the following, we describe and
analyze the first iterations of the divide-in-2 scheduling procedure.

After initializing the progression matrix as Ωdiv(0) = IN, the transmissions α1 =

(1, ..., ⌈N/2⌉) and α2 = (⌈N/2⌉+1, ...,N) are performed in steps 1 and 2, which updatesΩdiv
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as follows:

Ωdiv(1) =

 I⌈N/2⌉ 0⌈N/2⌉,⌊N/2⌋
1⌊N/2⌋,⌈N/2⌉ I⌊N/2⌋

 , (3.39)

Ωdiv(2) =

 I⌈N/2⌉ 1⌈N/2⌉,⌊N/2⌋
1⌊N/2⌋,⌈N/2⌉ I⌊N/2⌋

 , (3.40)

which can also be written as:

Ωdiv(2) =

 Ωle f t(0) 1⌈N/2⌉,⌊N/2⌋
1⌊N/2⌋,⌈N/2⌉ Ωright(0)

 , (3.41)

with Ωle f t(0) = I⌈N/2⌉ and Ωright(0) = I⌊N/2⌋, and where Ωle f t and Ωright are the progres-
sion matrices of the subnetworks respectively composed of the nodes 1, ..., ⌈N/2⌉ and
⌊N/2⌋, ...,N.

From this point, estimating the remaining γi j is equivalent to independently solving
the scheduling problems for both subnetworks in parallel. Since the transmissions have
been performed during two steps and we need to solve the scheduling optimization prob-
lem to a subnetwork composed of ⌈N/2⌉ nodes, we can deduce the following recurrence
equation which can be expressed as:

LSdiv(N) = Ldiv(⌈N/2⌉) + 2. (3.42)

At steps 3 and 4, after using the divide-in-2 strategy to both subnetworks, the pro-
gression matrices update as follows:.

Ωle f t(2) =

 I⌈N/4⌉ 1⌈N/4⌉,⌊⌈N/2⌉/2⌋
1⌊⌈N/2⌉/2⌋,⌈N/4⌉ I⌊⌈N/2⌉/2⌋

 , (3.43)

and

Ωright(2) =

 I⌈⌊N/2⌋/2⌉ 1⌈⌊N/2⌋/2⌉,⌊N/4⌋
1⌊N/4⌋,⌈⌊N/2⌋/2⌉ I⌊N/4⌋

 , (3.44)

from which we can update the progression matrix Ωdiv as the following:

Ωdiv(4) =


I⌈N/4⌉ 1⌈N/4⌉,⌊⌈N/2⌉/2⌋

1⌊⌈N/2⌉/2⌋,⌈N/4⌉ I⌊⌈N/2⌉/2⌋
1⌈N/2⌉,⌊N/2⌋

1⌊N/2⌋,⌈N/2⌉
I⌈⌊N/2⌋/2⌉ 1⌈⌊N/2⌋/2⌉,⌊N/4⌋

1⌊N/4⌋,⌈⌊N/2⌋/2⌉ I⌊N/4⌋

 , (3.45)

The divide-in-2 scheduling is iteratively applied to the resulting four subnetworks re-
spectively composed of the following nodes:

– 1, ..., ⌈N/4⌉,

– ⌈N/4⌉ + 1, ..., ⌈N/2⌉,

– ⌈N/2⌉ + 1, ..., ⌈N/2⌉ + ⌊N/4⌋
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– ⌈N/2⌉ + ⌊N/4⌋, ...,N.

Finally, the divide-in-2 approach is graphically represented by the grid of squares in
Fig. 3.18 for N = 8 nodes. In this figure, we can observe that after applying the trans-

Figure 3.18: divide-in-2 scheduling strategy graphic illustrated with the grid of squares
for N = 8 nodes.

missions α1 and α2, the remaining squares to color are two 4 × 4 squares that can be
treated independently and in parallel. This corresponds to estimate the remaining chan-
nel statistics in subnetworks composed of 4 nodes which can be solved independently
and in parallel.

Furthermore, using the recurrence equation provided in (3.42), we can derive the
theoretical length of the divide-in-2 scheduling. Before giving this result, we provide two
useful lemmas.

Lemma 3.3. For N ≤ 4, the length of the optimal scheduling Sopt can be expressed as:

LSopt(N) = N. (3.46)

Proof. This lemma can be proved after performing an exhaustive search of all the possible
schedulings for N ≤ 4, which we have done numerically. □

Lemma 3.3 implies that for N ≤ 4, TDMA is an optimal scheduling. The following
lemma provides equality of the length of divide-in-2 scheduling between an odd and
even number of nodes N, and is proved in Appendix B.2.1.

Lemma 3.4.
∀p ∈N∗, LSdiv(2p − 1) = LSdiv(2p). (3.47)

The following result provides the theoretical number of steps of the divide-in-2
scheduling and its proof is provided in Appendix B.2.2

Result 3.6. Let Nmin ∈N
∗ such that Nmin ≥ 4. The following statement holds:

∀N ≥ Nmin, LSdiv(N) = 2q + r, (3.48)

with q :=
⌈
log2

( N
Nmin

)⌉
, r :=

⌈N
2q

⌉
and r < Nmin.
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In (3.48), q corresponds to the number of times we "divide the square in two" which
corresponds for example to apply the transmissions α1, α2 in Fig. 3.18. Nmin is the mini-
mum number of nodes required to perform the divide-in-2 strategy, i.e. we stop "dividing
the squares in two" for the subnetworks composed of several nodes smaller than Nmin.
After stopping the square dividing, we need to solve the scheduling optimization prob-
lems for the resulting subnetworks which are composed of r nodes at most. We propose
to solve the remaining scheduling optimization problems with TDMA. Moreover, since
TDMA is an optimal scheduling for N ≤ 4 according to Lemma 3.3, we set Nmin = 5 in
practice. Therefore, to summarize, the divide-in-2 scheduling is performed as follows:

– For N ≥ Nmin, the divide-in-2 strategy, i.e. "divide the square in two", is applied
until a resulting subnetwork is composed of strictly less than Nmin nodes.

– For any network or subnetwork with less than Nmin nodes, TDMA is used.

With this solution, the channel statistics of all pairs of links in a network of 8 nodes can
be estimated in 6 steps which is lower than with TDMA.

In Algorithm 3.3, an implementation of this method is provided. The algorithm

Algorithm 3.3: divide-in-2 scheduling
Initialize Sdiv = {} and nindex = 0.
Update Sdiv = divide(Sdiv,N,nindex) with the function divide defined below.
Function divide(Sdiv,N,nindex)
if N ≤ 4 then
Sdiv = Sdiv ∪ {αi}with αi = (i + nindex), for i = 1, ...,Nmin.

else
Set α1 = (1, ..., ⌈N/2⌉) ⊕ nindex and α2 = (⌈N/2⌉ + 1, ...,N) ⊕ nindex.
Sdiv = Sdiv ∪ {α1, α2}.
Sdiv = divide(Sdiv, ⌈N/2⌉,nindex)
Sdiv = divide(Sdiv, ⌊N/2⌋,nindex + ⌈N/2⌉)

Return Sdiv.

initializes an empty scheduling Sdiv = {} and updates it using the recursive function
divide. The function divide has two other input parameters N and nindex which means
that the divide-in-2 method is applied to a network composed of the nodes nindex +

1, ...,nindex + N. We also define the operator ⊕ which performs the following operation:
(i, j) ⊕ n = (i + n, j + n). For N ≤ 4, TDMA is applied since its scheduling is optimal. For
N > 4, the recursion is first applied on the first half of the transmissions, then on the
second half.

This scheduling method implementation presents two advantages over TDMA for
N > 4:

– its complexity of implementation is in O(log N) which is much lower than the
exhaustive search approach. Indeed, this is due to the recursive function whose
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recursion is applied to a network with a size twice smaller, i.e. ⌈N/2⌉ or ⌊N/2⌋
nodes.

– its scheduling length is in O(log N) according to Result 3.6 which is lower than
TDMA.

In the next section, we present another scheduling solution whose length is also lower
than TDMA to solve Problem 3.1.

3.3.2.3.2 2-transmission scheduling

In this section, we propose a novel scheduling method that we call 2-transmission schedul-
ing whose length is lower than TDMA. This scheduling method allows the estimation
of the channel statistics γi j for all pairs of links (i, j) of the network. The idea of this
technique is to make each node transmit at most twice during the cycle. This approach is
motivated by the following:

• If simultaneous transmissions occur at each step of a scheduling method, each node
is required to transmit exactly twice in a cycle to estimate γi j for all pairs (i, j).
Indeed, let us consider an example with two nodes i and j. When they transmit
at the same time, the channel statistics γi j and γ ji are not estimated because of the
TDD mode constraint, which leads to the necessity of the nodes i and j to transmit
again in the same cycle at different steps.

• By limiting the overall number of transmissions in the cycle, we hope to decrease
the number of steps of this scheduling method.

This technique should not be mistaken with the scheduling solution proposed in Sec-
tion 3.2 where two nodes transmit during the same step whereas in the 2-transmission
scheduling, each node transmits twice during a cycle.

Formally, let us define S2TX = {β1, ..., βLS2TX
} as the 2-transmission scheduling with

βt the transmissions at step t and LS2TX the length of the scheduling. Now, let us define
m < N as the maximum number of simultaneous transmissions during a step in the whole
cycle. We will show later how to determine the value m. The 2-transmission scheduling
is constructed as the following:

– We compute the transmissions from step 1 as follows: β1 = (1, ...,m).

– Since nodes 1, ...,m need to transmit again at different steps from each other, node 1
transmits again at step 2, node 2 at step 3, ..., and node m at step m + 1.

– At step 2, since there are m − 1 remaining slots, the nodes m + 1, ..., 2m − 1 transmit
at this step which leads to β2 = (1,m + 1, ..., 2m − 1).
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– Similarly, the nodes m + 1, ..., 2m − 1 need to transmit again at different steps from
each other, so node m + 1 transmits again at step 3, m + 2 at step 4,...,2m − 1 at
step m + 1.

– The previous steps are iteratively performed until each node has transmitted twice
during the cycle.

An example of this procedure is illustrated in Fig. 3.19 for N = 8 nodes and m = 4.
In this example, the 2-transmission method provides a scheduling method in 5 steps,
which is lower than the divide-in-2 scheduling and TDMA. Moreover, its graphical
representation with the grid of squares is provided in Fig. 3.20.

Figure 3.19: 2-transmission scheduling for N = 8 nodes and m = 4. At step 1, the
transmissions β1 = (1, 2, 3, 4) are performed, hence the nodes 1, 2, 3, 4 need to transmit
again at steps 2, 3, 4, 5, respectively. Then, at step 2, the transmissions β2 = (1, 5, 6, 7) are
performed, so the nodes 5, 6, 7 transmit again at steps 3, 4, 5, and so on.

For this scheduling to be successful, m needs to be chosen high enough. Before
deriving the optimal value of m, we provide the following properties.

Result 3.7. Let m be the maximum number of simultaneous transmissions in a step. The following
properties hold:

p1) LS2TX = m + 1.

p2) m(m + 1) ≥ 2N.

Proof. p1 and p2 can be proved as the following:

p1 : After nodes 1, ...,m have transmitted at step 1, these m nodes are required to transmit
again at different steps from each other. Therefore, we have LS2TX = m + 1.

p2 : On the one hand, the total number of transmissions from all the nodes in the cycle
is 2N since each node transmits twice. On the other hand, since m is set as the
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Figure 3.20: 2-transmission scheduling graphic representation with squares for N =

8 nodes, this method is performed in 5 steps.

maximum number of simultaneous transmissions in the cycle and LS2TX the length
of the scheduling, the upper bound of the total number of transmissions from all the
nodes in the cycle is mLS2TX , which is equal to m(m+ 1) using p1. As a consequence,
the inequality m(m + 1) ≥ 2N holds.

□

Next, we provide a result computing the theoretical optimal value of m, i.e. the lowest
value m such that 2-transmission scheduling is successful. Once computed, the length
of 2-transmission scheduling can directly be deduced from m. The proof is given in
Appendix B.2.3.

Result 3.8. Considering a network composed of N > 4 nodes, the optimal value of m, i.e. the
smallest value of m ≥ 2 such that 2-transmission scheduling is successful, is given as follows:

m =
⌈ √

8N + 1 − 1
2

⌉
. (3.49)

Using this value of m, the length of the 2-transmission scheduling can be expressed as:

LS2TX =

⌈ √
8N + 1 + 1

2

⌉
. (3.50)

Result 3.8 is proved by taking the smallest value m such that the inequality provided
in p2 from Result 3.7 is respected.

We describe the procedure of the 2-transmission scheduling in Algorithm 3.4. After
computing the theoretical values of m and L2TX, the transmissions are updated at each
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Algorithm 3.4: 2-transmission scheduling
Compute m from (3.49) and LS2TX = m + 1.
Set nlast = 0.
for t = 1, ...,L2TX do

Update βt = (βt,nlast ⊕ (1, ...,m − t + 1)).
Update βt+i = (βt+i,nlast + i), for i = 1, ...,m − t + 1.
Update nlast = nlast +m − t + 1.

end
Return S2TX = {β1, ..., βL2TX}.

step t. The index nlast is used to deal with the transmissions at each iteration of the algo-
rithm. In Fig. 3.19, we can see that during the first iteration, we compute the transmissions
(1, 2, 3, 4), then the transmissions (5, 6, 7) during the second iteration, and so on. At each
iteration, the transmissions βt and βt+i for i = 1, ...,m − t + 1 are updated.

This scheduling method implementation presents two advantages:

– its complexity of implementation is much lower than the exhaustive search ap-
proach.

– its length is in O(
√

N) according to Result 3.8 which is lower than TDMA.

For high value of N, the divide-in-2 scheduling in O(log N) has better performance than
the 2-transmission scheduling in O(

√
N) in terms of scheduling length. However, we

show that it is the opposite when N is below a specific value. In the next section, we
determine this value and propose another scheduling solution combining the divide-in-2
and 2-transmission scheduling methods.

3.3.2.3.3 Mixed scheduling

In this section, we describe another scheduling technique that we call mixed schedul-
ing which consists of combining the two previous scheduling methods. Since the 2-
transmission scheduling is better for lower values of N and than the divide-in-2 for
higher values of N, the mixed scheduling consists of first using the divide-in-2 approach
if the number of nodes N is high enough, before applying the 2-transmission scheduling
technique. To be more precise, since "dividing the square in two" results in creating
several subnetworks, the 2-transmission method can then be applied to each of these
subnetworks independently and in parallel. An example of the application of the mixed
scheduling is illustrated with the grid of squares in Fig. 3.21. During the two first steps,
the divide-in-2 method is performed which results in two independent squares. Then,
the 2-transmission scheduling technique is used in both squares in parallel.

Now, the remaining issue is to determine the moment when to switch from the divide-
in-2 to the 2-transmission strategy. To do so, we propose to apply the divide-in-2 strategy
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Figure 3.21: Mixed scheduling graphic representation with squares for N = 20 nodes
performed in 7 steps. In the first two steps, the divide-in-2 strategy is performed. Then,
in each square is applied in parallel the 2-transmission strategy.

until the resulting subnetworks size becomes below a threshold value Nlimit and then, the
2-transmission strategy is performed. In the following, we provide a result to determine
the theoretical length of the mixed scheduling and the optimal value of Nlimit. The proofs
are given in Appendix B.2.4.

Result 3.9. Considering a network composed of N > 4 nodes, the mixed scheduling number of
steps can be expressed as:

Lmix = 2qmix +

⌈ √
8rmix + 1 + 1

2

⌉
, (3.51)

with

qmix =

⌈
log2

(
N

Nlimit

)⌉
, (3.52)

rmix =
⌈ N

2qmix

⌉
. (3.53)

Moreover, there are multiple optimal values of Nlimit and can be expressed as:

Nlimit ∈ {21, ..., 28}. (3.54)

The expression of the number of steps for the mixed scheduling is provided in (3.51)
with qmix corresponding to the number of times the divide-in-2 strategy is applied, Nlimit

is the limit size of the subnetworks obtained after the divide-in-2 scheduling under
which the method is changed to the 2-transmission one, and rmix ≤ Nlimit is the real
size of the subnetworks. It is worth mentioning that for N ≤ Nlimit, we have qmix = 0 and
rmix = N which means that only the 2-transmission scheduling is performed. Furthermore,
the optimal value of Nlimit has been found numerically with an exhaustive search for
Nlimit = 5, ..., 1000. In Fig. 3.22, the number of steps of the three proposed scheduling
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for various numbers of nodes N is compared. The mixed scheduling implemented for
Nlimit = 21 has the same performance as the 2-transmission scheduling for N ≤ 28,
then outperforms the two other methods. It is worth noticing that although one could
intuitively think that the divide-in-2 method becomes better than the 2-transmission
method from N ≥ Nlimit, in reality, it is the case from N ≥ 78.
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Figure 3.22: Comparison of the divide-in-2, 2-transmission, and mixed schedulings in
terms of scheduling length, versus the number of nodes N.

After proposing and analyzing multiple scheduling methods to optimize the time to
estimate all the channel statistics, we describe in the next section how to choose adequate
orthogonal sequences.

3.3.2.4 Study of each scheduling performance

Now that we have described optimized scheduling solutions that outperforms TDMA in
terms of scheduling length, in this section, we study and compare the performance of the
proposed scheduling in terms of sensing time and energy consumption.

3.3.2.4.1 Sensing duration

Even though the length of the proposed scheduling is lower than TDMA’s, the sensing
duration is not necessarily lower because of the use of orthogonal sequences which
extends the duration. Therefore, in this section, we compare the sensing duration of both
solutions.

Let m be the maximum number of simultaneous transmissions during a cycle. In the
mixed scheduling, we set the length of the codes at step t as NZC(t) ≤ m. To have a fair
comparison in terms of channel estimation quality between the mixed scheduling and
TDMA, we set the length of the orthogonal sequences as NZC(t) = m,∀t and we assume
that when using TDMA, each node transmits m samples at each step. Therefore, on the
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one hand, the sensing duration for TDMA can be expressed as:

TTDMA = mN. (3.55)

On the other hand, the sensing duration of the mixed scheduling can be written as:

Tmixed =

L∑
t=1

NZC(t), (3.56)

with L the length of the mixed scheduling. After plugging the equality NZC(t) = m into
(3.56), the following equality holds:

Tmixed = mL. (3.57)

Since it has been proved that L is lower than N for N ≥ 5, we can conclude that the sensing
duration of the mixed scheduling is lower than TDMA.

3.3.2.4.2 Energy consumption

In this section, we provide a study of the energy consumption of TDMA, the divide-
in-2 and the 2-transmission scheduling methods. To this end, we define the energy
consumption of a scheduling method as the total number of transmissions from all the
nodes of the network during a cycle.

For the divide-in-2 scheduling, energy consumption can be approximated by assuming
that at each step, N/2 simultaneous transmissions occur while in reality, this number is
a little lower. Moreover, its scheduling length is in O(log N) according to Result 3.6, the
energy consumption can be expressed as:

Ediv = O(N log N). (3.58)

For the 2-transmission scheduling, the energy consumption can be written as:

E2TX = 2N, (3.59)

which is optimal among the scheduling solutions with at least two simultaneous trans-
missions at each step.

The energy consumption for TDMA can be expressed as:

ETDMA = N, (3.60)

which is optimal among all the scheduling methods.
Although the proposed scheduling methods using the divide-in-2 or the 2-transmission

approaches present lower sensing duration, their energy consumption is higher than
TDMA’s. Therefore, a trade-off between the sensing duration and the energy consump-
tion is required depending on the needs of the systems.
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3.3.3 Conclusion of Section 3.3

In this section, we have proposed a novel scheduling solution that outperforms TDMA in
terms of scheduling length. This method allowing simultaneous transmissions requires
the use of orthogonal sequences to remove the interference. Moreover, it combines
two scheduling techniques: the divide-in-2 and the 2-transmission approaches. The
scheduling lengths have been derived for both approaches and the mixed scheduling
solution analytically. Finally, to complete the study, the proposed scheduling solutions
are also compared with TDMA in terms of sensing duration and energy consumption.

3.4 Conclusion

In this chapter, we propose two approaches, to decrease the sensing duration as compared
to TDMA, for estimating the channel statistics of all pairs of nodes of the network under
TDD mode assumption. In the case where orthogonal sequences cannot be used and
receivers give only access to SINR samples, the first scheduling approach is performed
for channel statistics estimation. Otherwise, we apply the second approach which uses
orthogonal sequences since it presents better performance than the first one in terms of
scheduling length.

In the first approach, we have described a scheduling solution allowing two simulta-
neous transmissions that outperforms TDMA in terms of sensing duration. Then, we have
formulated the channel statistics estimation problem and have shown that it is equivalent
to solving the estimation problem at each receiver under a single interference. Each re-
ceiver needs to estimate the direct and the interfering channels’ magnitude mean power
and the estimation is performed in a frequency-flat Rayleigh channel using a set of SINR
samples. To do so, we introduce two new estimators based on the MLE and the MoM
and implement them using Newton’s method for which we have proposed initialization
procedures guaranteeing the convergence of both algorithms. The performance of the
estimators has been studied through simulations and has shown that the variance of the
MLE is close to the CRLB, while the variance of the MoM is slightly higher. However, the
estimator has the advantage of being less complex than that of the MLE. The MLE can
be initialized with MoM’s estimates, which is less complex than if it had been randomly
initialized.

In the second approach, we have proposed another scheduling method using si-
multaneous transmissions to estimate the channel statistics of all pairs of nodes of the
network. To remove the occurring interference, a procedure using orthogonal sequences
is performed. We show that the proposed scheduling solutions, i.e. the divide-in-2, 2-
transmission, and mixed scheduling, outperform TDMA in terms of scheduling length.
Moreover, their respective lengths of scheduling are derived. Finally, we show that al-
though the proposed scheduling schemes have a lower sensing duration than TDMA,
their energy consumption is higher.
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Results from Section 3.2 have been published in [52] and results from Section 3.3 have
been patented in [54].
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Chapter 4

Channel statistics dimensionality
reduction

4.1 Introduction

4.1.1 Context and state-of-the-art

Until now, we have worked under the assumption that a central entity has access to the
channel statistics related to all the links of the associated clusters at stake to compute cen-
tralized schemes such as eTIM-hybrid or JFA-eTIM-hy described in Chapter 2. However,
in practice, since only local channel statistics are known by the CH of each cluster, com-
munications overhead between the CHs are required to apply the centralized interference
management solutions. Because of the high quantity of channel statistics to transmit, a
large amount of signaling exchanges between the CH is needed which results in reducing
the user data rate and increasing latency and complexity. In this chapter, we address the
issue of compressing the channel statistics to transmit between clusters, while ensuring
their effectiveness for the proposed interference management schemes.

To tackle this challenge, we propose to use data compression techniques on the chan-
nel statistics before transmitting them. In our context, data compression is defined as the
operation of reducing the size of signaling data while preserving the essential information.
Compression can be either lossless or lossy. While lossless compression allows a perfect re-
construction of the original data, lossy compression approximates the reconstruction and
has usually a greater compression rate. On the one hand, several works have used lossless
compression methods such as Huffman, arithmetic, and Lempel-Ziv-Welch (LZW) cod-
ing for CSI feedback compression in MIMO systems in [122], [87] and [91], respectively.
Lossy compression techniques, such as discrete wavelet transform (DWT) [45] or discrete
cosine transform (DCT) [2], have been mainly used for image compression, including the
widely used JPEG format. However, since these compression schemes only exploit the
spatial redundancies in the data, such as repetitive patterns or similar color values in
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neighboring pixels, to reduce the size of the data, they do not provide the most efficient
solutions.

Among the lossy compression schemes, DR consists of reducing the size of the input
variables using a training dataset. By capturing the relationships between several data,
DR methods can result in higher performance than conventional compression techniques.
Several other DR techniques are described in [117]. Among these schemes, t-distributed
stochastic neighbor embedding (t-SNE) for channel propagation measures [95] and hybrid
principal components analysis (PCA) with Huffman coding for image compression [116],
have been proposed. Nevertheless, while t-SNE is not easily reversible from the encoded
data, techniques for image compression cannot be used in our context since it exploits
the spatial correlation contained in the image, which we cannot do. Besides, many works
have applied DR methods to CSI feedback compression in MIMO systems such as PCA
[59] or neural network structures like autoencoders [121], recurrent neural networks
[77] or convolutional neural networks [125]. However, all these methods also make
use of the spatial correlation contained in the CSI feedback in MIMO systems and can
thus not be exploited for the channel statistics we wish to transmit. The most relevant
work in this area appears to be [11], which uses autoencoders to encode CSI feedback
in D2D communication networks in SISO systems. However, their model is limited as
it is trained with channel gain samples that assume only small-scale fading and do not
consider large-scale fading. As a result, this approach is not suitable for handling varying
network topologies, as the model is not trained to adapt to such variations.

To the best of our knowledge, there is no prior work on channel statistics compression
in a clustered ad hoc network in SISO. In this chapter, we aim at finding a solution based
on DR which reduces the size of the channel statistics for any links topology.

4.1.2 Contributions

The contributions of this chapter can be summarized as follows:

• We provide a procedure to train methods reducing the channel statistics dimension
which can be applied to any links topology.

• We implement multiple DR methods and compare them with compression tech-
niques, i.e. without using any training data, through numerical simulations. We
also compute the eTIM-hybrid method using the channel statistics values estimated
with the DR schemes to assess their performance in terms of average sum rate and
minimum user rate per link.

4.2 System model

The system model is identical to the one described in Chapter 2.2.1, i.e. we consider
the association of two clusters C1 and C2 composed of nC1 and nC2 links, respectively,
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Figure 4.1: Representation of two associated clusters C1 and C2 with nC1 = nC2 = 2 links per
cluster communicating on the same frequency band. γi j represents the channel statistics
from Tx j to Rxi.

with nC1 + nC2 = N. It is important to note that in this chapter, we are using a system
model that considers a specific number of links within each cluster, as was the case in
Chapter 2, rather than considering the number of nodes within each cluster as we did in
Chapter 3. Moreover, the notation γi j refers in this chapter to the channel statistics from
Tx j to Rxi. An illustration of two adjacent clusters with nC1 = nC2 = 2 links per cluster
and the corresponding channel statistics γi j are represented in Fig. 4.1.

We assume that in each cluster Ck, k = 1, 2, each node i have estimated the channel
statistics γi j from all the possible transmitters j = 1, ...i − 1, i + 1, ...,N and have sent it to
its CH. Thus, the CH of C1 and C2 have access to the matrices ΓC1 and ΓC2 , respectively,
which can be expressed as:

ΓC1 =


γ1,1 . . . γ1,N
...

...

γnC1 ,1
. . . γnC1 ,N

 , (4.1)

and

ΓC2 =


γnC1+1,1 . . . γnC1+1,N

...
...

γN,1 . . . γN,N

 . (4.2)

To apply the interference management methods described in Chapter 3, each CH needs
to know the following matrix:

Γ =

ΓC1

ΓC2

 . (4.3)
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As a consequence each CH has to send its locally known channel statistics matrix to the
CH of the other cluster. Such a transmission may induce a significant signaling overhead
(especially for large values of N) and thus we propose to use compression methods to
reduce this overhead.

The general idea of the proposed signaling reduction procedure is the following one:
each CH, for instance, the CH of C1, first uses a technique to reduce the size of ΓC1 into
a smaller representation y ∈ R1×d, with d < nC1N, before transmitting it to the CH of C2.
Then, C2 reconstructs ΓC1 from the received y and forms the estimated channel statistics
matrix as:

Γ̃ =

Γ̃C1

ΓC2

 , (4.4)

where Γ̃C1 is the estimated channel statistics matrix from C1. Afterward, the CH of C2

uses an interference management technique such as eTIM-hybrid or JFA-eTIM-hy using
Γ̃. Fig. 4.2 illustrates the transmission of ΓC1 using an encoder at C1 and a decoder at C2.

Encoder Decoder

Figure 4.2: Representation of cluster C1 encoding the channel statistics ΓC1 into y ∈ R1×d,
with d < nCN, before transmitting it to C2. After receiving y in C2, reconstruction with
the decoder is done to get Γ̃C1 .

In this context, the channel statistics matrix ΓCi , i = 1, 2 is supposed constant during
the encoding, transmission, and decoding process. Our goal is to find efficient methods
to reduce its size while minimizing the information loss. Although multiple lossless and
lossy compression schemes exist, in the following, we propose to use a DR approach
to decrease the signaling exchanges between the CHs. This procedure has the benefit of
using several samples, referred to as training data, and exploiting the relationships between
them to obtain a better encoding version of the channel statistics matrix to transmit. DR
methods usually provide higher performance than conventional compression techniques,
at the cost of higher memory storage since it requires each CH to store the parameters of
the trained DR model.
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4.3 Dimensionality reduction

In what follows, we first formulate the DR problem and how to preprocess the data,
before presenting several DR methods that we have implemented.

4.3.1 Problem formulation

We remind that the objective is to transmit the channel statistics matrix ΓCi from the CH
of the cluster Ci, i = 1, 2 to the CH of the other cluster C j, j , i. To simplify the notations,
we consider the transmission of ΓC1 from C1 to C2 since dealing with the reciprocal
transmission can be proceeded similarly. To formulate the problem of DR in this context,
let x ∈ R1×p be the vector representation of the flattened matrix ΓC1 such that:

x :=
(
ΓC1(1, 1), ...,ΓC1(1,N),ΓC1(2, 1), ...,ΓC1(2,N), ...,ΓCi(nC1 ,N)

)
, (4.5)

where p := nC1N and ΓC1(i, j) is the (i, j)th element of ΓCi . Our goal is to find the encoder φ
which maps the input data x to a compressed representation y := φ(x) ∈ R1×d with d < p
and the decoder ψ which reconstructs the corresponding input x̃ := ψ(y) ∈ R1×p.

We aim to create a DR technique that can efficiently encode ΓC1 for various link
topologies. The goal is to avoid the need for multiple training phases, which can be
computationally expensive. To this end, the training data is generated by collecting
several i.i.d samples where each sample corresponds to a random topology of the links.
The different steps to train the DR solution are the following:

1. We generate Ntrain random topology and for each topology n we compute the re-
sulting channel statistics matrix ΓC1

n . From all these topologies, we form X :=
(x1, ..., xNtrain)T, where xn is the flattened representation of ΓC1

n .

2. The training data X are preprocessed to have values between 0 and 1, which is
expected to improve the performance of the DR methods [3]. Since the input data
xi have values that span several orders of magnitude, it is first converted in dB and
then, normalized using min-max scaling:

∀n ∈ {1, ...,Ntrain}, ∀m ∈ {1, ..., p}, xscale,n(m) =
xn(m) − xmin

xmax − xmin
, (4.6)

where xn(m) is the mth element of xn and xmin and xmax are set according to the
simulation parameters (the details are provided in Section 4.4.1).

3. At each CH, the DR solution is trained with the same preprocessed dataset Xscale :=
(xscale,1, ..., xscale,Ntrain)T, with xscale,n := (xscale,n(1), ..., xscale,n(p)),∀n ∈ {1, ...,Ntrain}.

In practice, after performing the offline training, the parameters of the trained model
are stored at the CH of each cluster.

Then, considering testing data ΓC1 to transmit from C1 to C2, which is independent of
the training dataset, the different steps to compress and send it are:
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1. The input data is flattened at the CH of C1 into a vector x ∈ R1×p and is then
preprocessed like in the second step of the training phase (4.6), i.e. converted in dB
and scaled like in (4.6) to get xstd.

2. Using the trained DR solution, xstd is encoded into a vector y ∈ R1×d with d < p and
sent to the CH of C2.

3. At the CH of the other cluster C2, the received data y is decoded into the estimated
x̃ ∈1×p, from which we get the estimated channel statistics matrix Γ̃C1 .

Afterward, considering the flattened channel statistics matrix to send x ∈ R1×p from
the CH of C1, x is encoded into c ∈ R1×d instead of x, with d < p, and sent to the CH
of C2 where it will be decoded using the common DR model to x̃ ∈1×p. The value of d
is set by the system designer to achieve a desired trade-off between the compression of
the signaling and the information loss, indeed, the higher the value of d, the lower the
information loss, but also the lower the compression of the signaling. Simulation results
enabling the study of this trade-off are provided in Section 4.4.

We describe different DR methods in the next sections.

4.3.2 Linear and non-linear DR techniques: a comparison of PCA and kernel
PCA

Among the DR methods, PCA and kernel PCA (KPCA) are often used in many fields of
applications usually including computer vision [25] and MIMO channel [78].

4.3.2.1 Principal components analysis

Linear DR methods are convex techniques where the optimization problem is linear. PCA
[92] is one of the most popular techniques among the linear methods for reducing the
dimensionality of data. The goal of PCA is to find the best projection of data into a linear
subspace of lower dimensionality by maximizing the variance of the projected data. Let
us notice that this "variance" we wish to maximize measures how well the data is spread
in the directions of the projected subspace and differs from the "variance of an estimator"
like in Chapter 2, which measures the uncertainty of an estimate.

Formally, an implementation procedure of the PCA is provided in [104, Section 23.1.2]
and we provide a summary of this method. Let us consider a dataset X = (x1, ..., xNtrain)T,
with xi ∈ R

1×p, and center it, which consists in performing the following operation:

x̄i := xi −
1

Ntrain

Ntrain∑
i=1

xi, ∀i = 1, ...,Ntrain. (4.7)

where 01×p is the 1 × p vector only composed of 0 and we define X̄ = (x̄1, ..., x̄Ntrain)T.
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Then, the orthogonal projection of x ∈ R1×p onto a direction w ∈ Rp×1, denoted by the
function hw : R1×p

→ R, can be computed as:

hw(x) = x
w
∥w∥2

. (4.8)

The goal of the procedure is to maximize the empirical variance captured by hw, which is
denoted by Var(hw) and is defined as:

Var(hw) :=
1

Ntrain

Ntrain∑
i=1

hw(x̄i)2, (4.9)

which can be rewritten as:

Var(hw) =
1

Ntrain

wTX̄TX̄w
wTw

. (4.10)

The optimization problem that we wish to solve consists of finding the ith principal
directions wi, i = 1, ..., d by maximizing the variance, which can be written as follows:

wi = arg max
w⊥{w1,...,wi−1}

wTX̄TX̄w, s.t. ∥w∥2 = 1, (4.11)

whose solutions can be proved to be the successive eigenvectors of X̄TX̄, ranked by
decreasing eigenvalues [104]. After computing the d eigenvectors corresponding to the
d highest eigenvalues denoted as Wd = (w1, ...,wd), we can compute the d principal
components which can be written as Td := XWd.

The PCA training computation in our context can be summarized as follows:

1. The training data Xstd is computed by collecting and preprocessing i.i.d samples as
described in Section 4.3.1, before centering it as the following:

yi := xscale,i − µ, (4.12)

with µ defined as:

µ :=
1

Ntrain

Ntrain∑
i=1

xscale,i. (4.13)

2. Compute the d eigenvectors Wd = (w1, ...,wd) corresponding to the d highest eigen-
values of the covariance matrix YTY, with Y := (y1, ...,yNtrain).

For the testing phase of PCA, we consider the channel statistics matrix ΓC1 that we
wish to transmit from C1 to C2 and which is a different one from the training dataset.
Then, we proceed with the DR scheme with PCA according to the following phases:

1. At the CH of C1, considering the channel statistics matrix ΓC1 to send, compute xscale

by flattening and normalizing ΓC1 as in (4.6). Then, center it as the following:

y = xscale − µ, (4.14)

with µ defined in 4.13.
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2. Compress y using the following encoding procedure:

yenc = yWd, (4.15)

before sending it from the CH of C1 to the CH of C2.

3. At the CH of C2, reconstruct the original data as the following:

x̃std = yencWT
d + µ, (4.16)

which assumes that the received signal at C2 is obtained without measurement
noise.

4. Reverse the normalization to get the reconstructed flattened vector x̃ := (x̃(1), ..., x̃(p))
which can be written as:

x̃(m) = x̃std(m)(xmax − xmin) + xmin, ∀m ∈ {1, ..., p}. (4.17)

Remark 4.1. It can be shown that among the linear DR methods, PCA minimizes the total squared
reconstruction error [104, Section 23.1]. In other words, let us consider the following optimization
problem:

Problem 4.1.

arg min
We,Wd∈Rp×d

Ntrain∑
i=1

∥∥∥x̄i − x̄iWencWdec
T
∥∥∥2

2 , (4.18)

with x̄i defined in (4.7) and with the encoding and decoding matrices Wenc,Wdec ∈ R
p×d.

It can be proved that the optimal solution of Problem 4.1 can be provided with PCA, i.e. the
solution which consists of setting Wenc as the matrix whose columns are the d eigenvectors of the
matrix X̄TX̄ corresponding to its d highest eigenvalues and setting Wdec =Wenc.

Remark 4.2. SVD is a known and easy-implemented linear technique for DR and it can be proved
that it is equivalent to applying the PCA method [104, Section 23.6]. Indeed, let us consider the
SVD decomposition of a centered matrix X ∈ RNtrain×p which can be written as:

X = UsvdSVT
svd, (4.19)

where Usvd and Vsvd are real orthogonal matrices. The covariance matrix XTX can be expressed
as:

XTX = VsvdS2VT
svd, (4.20)

with S2 := SS whose elements are the square of S’s elements since S is a diagonal matrix.
(4.20) means that Vsvd ∈ R

p×p is the matrix composed of the eigenvectors of XTX, and thus
the p principal directions, denoted as wi in the PCA.

Remark 4.3. Although in the machine learning community PCA/SVD are usually performed
with training data, they can also be used for image compression by considering the image as a
matrix [83]. As a consequence, the matrix ΓC1 can be compressed without training data by directly
applying either PCA or SVD to it. We implement this solution in the numerical simulations to
compare it with the other DR methods.
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4.3.2.2 Kernel PCA

KPCA [103] is a convex DR method which is a non-linear extension of the conventional
PCA method. This technique uses the kernel trick, which consists of projecting the data
onto a higher dimensional space, feature space, where the data points are more separable.
This allows for a linear separation of the data points in the higher-dimensional space,
even if they were not linearly separable in the original space.

Let us consider a non-linear transformation of a data point x ∈ R1×p given by ϕ(x).
Although performing standard PCA in the feature space is possible, this is typically
avoided due to the high dimensionality of the feature space. To this end, we use kernel
methods which are an alternative approach for comparing data points by defining a
function called a kernel function. The kernel function measures the similarity between
two data points and outputs a similarity score. By using kernel functions, we can avoid
computing an arbitrary function ϕ explicitly in very high-dimensional feature spaces,
which can be computationally expensive. Instead, we can compare data points in the
feature space using their similarity scores. This simplifies computations and makes it
easier to compare data points.

To this end, we consider the kernel matrix K whose (i, j)th components can be written
as:

Ki, j = κ(xi, x j), (4.21)

with κ(xi, x j) := ϕ(xi)Tϕ(x j). It is worth noticing that using the linear kernel function
κ(x,y) = xTy means applying the standard PCA.

The Gaussian kernel is commonly used in practice. It can be written as:

κ(x,y) = exp
(
−∥x − y∥2

2σ2

)
, (4.22)

with σ a parameter to set.
The optimization problem to solve for the ith principal directions, i = 1, ..., d, is pro-

vided in [120] and can be formulated as:

αi = arg max
α∈RNtrain

αTK̃2α, s.t.

 αi
TKα j = 0,

αi
TKαi = 1,

(4.23)

for a centered kernel matrix K, which is detailed in the following procedure.
The implementation of KPCA is provided in [120] and can be described as follows:

1. Compute the kernel matrix K ∈ RNtrain×Ntrain using (4.21).

2. If the projected dataset (ϕ(x1), ..., ϕ(xNtrain)) is not centered, center it using the follow-
ing substitution [12]:

K̃ = K −
1
N

1NK −
1
N

K1N +
1

N2 1NK1N, (4.24)

where 1N is the N ×N matrix with all elements equal to 1.
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3. The optimization problem that we wish to solve consists of finding the ith principal
directions wi, i = 1, ..., d by maximizing the variance, which can be written as follows:

Solve the optimization problem provided in (4.23) by computing and sorting the d
eigenvalues and eigenvectors (λi, ai), i = 1, ..., d of K̃ and normalize the eigenvectors
as follows:

αi =
1
√
λi

ai, ∀i = 1, ..., d. (4.25)

The projections of the points onto the ith eigenvector are given by K̃αi.

While KPCA has the advantage of handling non-linear relationships between the
data points, contrarily to standard PCA, it has the drawback of using for reconstruction
an approximation which usually has both high reconstruction error and computational
complexity [9].

After implementing both PCA and KPCA methods, we have observed through numer-
ical simulations that the reconstructed channel statistics Γ̃C1 can contain negative terms.
As a consequence, before using this estimated parameter in interference management
methods, the positive part function x+ := max(x, 0) is applied.

In the next section, we consider a non-convex and non-linear technique for DR based
on autoencoders.

4.3.3 Non-linear DR with autoencoders

In this section, we consider using autoencoder [99] which is a conventional method for
non-linear DR. We first recall its principle before analyzing the choice of its structures
and hyperparameters.

4.3.3.1 Description of an autoencoder

An autoencoder is a type of neural network where the output layer has the same number
of neurons as the input layer. Its goal consists of minimizing the difference between the
input and the output data.

Its structure is composed of two components:

• an encoder which is a neural network compressing the input into a compressed
representation in a reduced dimension called latent space.

• a decoder which is also a neural network that takes the latent representation as
input and tries to reconstruct the original data as output.

In the case where the encoder and decoder consist of a single hidden layer without any
non-linear activation functions, i.e., both apply a linear transformation, the autoencoder
produces a latent representation that is equivalent to the optimal linear dimensionality
reduction scheme in terms of reconstruction error, which is PCA[13].
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In the next section, we detail the parameters and architecture of the autoencoder that
we implement.

4.3.3.2 Autoencoder architecture

First of all, the input and output layer of the autoencoder is composed of p neurons
since it corresponds to the dimension of each data. Moreover, we only consider two
structures of symmetric autoencoder, i.e. with the same number of layers and neurons
in the encoder and decoder, and illustrate them in Figs. 4.3 and 4.4. The first structure
represented in Fig. 4.3 contains hidden layers composed of the same number of neurons
as the input and output layers which is p and is referred to as constant number of neurons
autoencoder (CstNeu-AE). The second structure, illustrated in Fig. 4.4, consists of hidden
layers with varying numbers of neurons. Let us set the parameter Neumax > p as the
maximum number of neurons in the layers of this autoencoder. In the encoder, while the
first hidden layer contains p neurons, the number of neurons of the next hidden layers
linearly increases until it reaches Neumax, then it linearly decreases until the last layer of
the encoder which has p neurons. Similarly for the decoder, the number of neurons in the
hidden layers starts from d, then increases until Neumax, and decreases until the output
layer which contains p neurons. For example, for p = 50, Neumax = 80, and 5 layers, the
number of neurons per layer in the encoder and the decoder would be 50, 65, 80, 65, 50.

Linear
+

ReLU

Linear
+

ReLU

Latent
space

Input layer of 
 neurons

Hidden layers of
 neurons

Input  Linear
+
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Output Linear Linear

Output layer of
 neurons

 neurons
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+
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... ...

Hidden layers of
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Figure 4.3: Constant number of neurons autoencoder (CstNeu-AE).

Most studies use autoencoders with a "funnel structure" towards the latent space, i.e.
composed of an encoder with a decreasing number of neurons and a decoder with an
increasing number of neurons. In our simulations, we did not use the funnel structure
in our simulations because we varied the latent space dimension d, and using a funnel
structure would require modifying the number of neurons and layers for each value of d,
making the study unstable

The networks used in our study consist of a linear layer followed by a ReLU activation
function, except for the last layers of the encoder and decoder. Through simulations, we
found that adding a ReLU at these points slightly degraded performance, so we only
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Figure 4.4: Increasing and decreasing number of neurons autoencoder (IncDecNeu-AE).

applied the ReLU function at the final layer after training. This involves applying the
positive part function x+ = max(x, 0) before using interference management methods, as
with PCA.

Finally, the neural network’s encoder and decoder parameters are trained through
the MSE loss function between the output of the decoder and the target value, which is
the original input data. After computing the MSE, the Adam optimizer [66] is used for
optimizing the weights of the autoencoder since it provides a good trade-off between
robustness, computation, and performance in a wide range of non-convex optimization
problems in the field of deep learning. Furthermore, we define an epoch which represents
a complete cycle composed of one forward pass and one backward pass of all the training
samples through the neural network. The training exit criteria is the following one: either
the maximum number of epochs is reached, or the loss has converged in the last mAE = 100
epochs, which can be written as:∣∣∣∣∑mAE/2−1

i=0 MSE(t − i) −
∑mAE−1

i=mAE/2
MSE(t − i)

∣∣∣∣∑mAE/2−1
i=0 MSE(t − i)

< ϵAE, (4.26)

where t > mAE is the current epoch number, MSE(t) is the loss function at epoch t and
ϵAE is a parameter to set. The exit criteria are met if the loss function does not improve
for mAE consecutive epochs. Moreover, the minimum number of epochs of the training
process is mAE.

In the next section, we provide numerical results showing the influence of hyperpa-
rameters such as the number of layers and the training learning rate, and also compare the
performance of the different DR techniques in terms of MSE and when using interference
management methods.
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4.4 Numerical results

In this section, we first present numerical simulations to compare the performance of the
implemented DR techniques in terms of average NMSE, and then in terms of sum rate
and minimum user rate per link when applying the eTIM-hybrid method described in
Chapter 2 with compressed and reconstructed channel statistics. The average NMSE is
defined as:

NMSE(Γ̃) :=
1

nCN

nC∑
i=1

N∑
j=1

(
γ̃i j − γi j

γi j

)2

, (4.27)

with Γ̃ defined as the estimated Γ after the reconstruction of the DR method, γ̃i j and γi j

are respectively Γ̃ and Γ’s (i, j)th element.

4.4.1 Setup

To assess the performance of the proposed solutions, the same setup as in Section 2.3.4
is employed, i.e. two adjacent clusters composed of nC links each. The simulations are
performed for nC = 5 and 10 links per cluster and use the parameters listed in Table 2.1.
Moreover, the channel is modeled such that γi j is expressed in (2.36).

To train and evaluate the DR methods, 10000 i.i.d samples of channel statistics are
collected where each sample corresponds to a random topology of the links in the clus-
ters. Among these samples, we set Ntrain = 8000, Nval = 1000, and Ntest = 1000 which
corresponds to the number of samples of the training, validation, and testing datasets,
respectively. While the training and validation datasets are used for training the DR
solutions, the testing dataset is utilized for evaluating them. Then, when the data are nor-
malized using (4.6), xmin and xmax are computed using (2.36) with the highest and smallest
distance values, which are respectively di j = dsize and di j = dmin. We set dmin = 100 m to
avoid the presence of links with huge rates because of the transmitter-receiver proximity.

Besides, in the following figures, each value of NMSE is averaged over the Ntest

random topologies.

4.4.2 Compression and DR methods performance

In this section, we first assess the performance of the autoencoders for various hyperpa-
rameters values in terms of NMSE versus the number of parameters we need to transmit,
which corresponds to the dimensionality reduction parameter d and is related the com-
pression rate with the following:

ρC := 1 −
d
p
. (4.28)

Then, after choosing the optimal values of the hyperparameters, we compare the NMSE
of several DR methods, versus the number of transmitted parameters.
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4.4.2.1 Study of the autoencoder hyperparameters influence

For the autoencoder parameters, we set a high value of the maximum number of epochs
nepochs = 10000 to ensure that the neural network’s loss converges, mAE = 100 epochs and
ϵAE = 10−4. During the training phase, we compute at each epoch the training loss and
the validation loss, i.e. the MSE computed with the training data and the validation data,
respectively. At the end of the training, the saved model corresponds to the one with the
smallest validation loss. In the optimizer, the batch size is set to 32. Furthermore, when
implementing the IncDecNeu-AE structure, the maximum number of neurons is set as
Neumax = 80 for nC = 5 links and 300 for nC = 10 links.

In the following, we study the influence of the learning rate of the autoencoder training
phase, the number of layers in the encoder and decoder each, and the autoencoder archi-
tecture. We remind that the number of transmitted parameters without DR techniques is
p = 50 for nC = 5 links and p = 200 for nC = 10 links.

4.4.2.1.1 Influence of the learning rate α
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(a) Case nC = 5 links. The best is α = 10−4.
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(b) Case nC = 10 links. The best is α = 10−5.

Figure 4.5: Study of the learning rate influence with CstNeu-AE structure with 3 layers.
Without DR methods, the number of transmitted parameters is 50 for nC = 5 and 200 for
nC = 10.

In Figs. 4.5a, 4.5b, 4.6a and 4.6b, we study the influence of the learning rate by plotting
the autoencoder reconstruction NMSE applied to the training, validation and testing
datasets, versus d, for nC = 5, 10 links per cluster. Figs. 4.5a and 4.5b illustrate the
performance of CstNeu-AE structure with 3 layers for nC = 5 and 10 links, respectively,
whereas Figs 4.6a and 4.6b display the case with IncDecNeu-AE structure with 2 layers
for nC = 5 and 10 links, respectively.

In Fig. 4.5a, we can see that the NMSE decreases between 5 and 25 for α = 10−3,



4.4. Numerical results 123

between 5 and 40 for α = 10−4, between 5 and 45 for α = 10−5 and between 5 and 30 for
α = 10−6, while it is steady for α = 10−2. We can observe that the lowest NMSE is obtained
for α = 10−4, 10−5, while the highest are for α = 10−2, 10−6. This can be explained by the
fact that choosing a large learning rate that is too high results in convergence issues since
it oscillates around the convergence point while selecting a low learning rate can lead to
a slow convergence with a premature ending of the training process before reaching the
desired convergence if it reaches the maximum number of epochs. Moreover, we can see
that the NMSE is the lowest for α = 10−4 for d between 5 and 40, but is higher than the
case α = 10−5 for d = 45. This outlier shows some convergence issues with the CstNeu-AE
structure that we can also observe for the case 10−6 for d = 40. The reason why a very low
learning rate such as α = 10−6 provides higher NMSE can be due to the loss function being
trapped in a local minimum during the optimization. Besides, the NMSE corresponding
to the training, validation and testing datasets are identical, which shows the absence of
overfitting and underfitting of the autoencoder.

In Fig. 4.5b, we can see that the NMSE decreases between 20 and 60 for α = 10−3,
between 20 and 140 for α = 10−4, between 20 and 150 for α = 10−5, and between 20
and 110 for α = 10−6, while it is steady for α = 10−2. The NMSE for α = 10−4 is the
lowest for d between 20 and 90, whereas for α = 10−5, the NMSE is the lowest for d ≥ 110.
Furthermore, we can observe the presence of overfitting for α = 10−4, 10−5 since the NMSE
computed with the training dataset is lower than with the validation and testing datasets.
This overfitting can be caused by the fact that the number of layers in the autoencoder is
3, which can be too high. However, we show in the next section that reducing the number
of layers of the autoencoder with the CstNeu-AE structure provides similar or even lower
performance in terms of NMSE.
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(a) Case nC = 5 links. The best is α = 10−4.
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(b) Case nC = 10 links. The best is α = 10−5.

Figure 4.6: Study of the learning rate influence with IncDecNeu-AE structure with 2
layers. Without DR methods, the number of transmitted parameters is 50 for nC = 5 and
200 for nC = 10.
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In Fig. 4.6a, we can see that the NMSE decreases between 5 and 45 forα = 10−3, 10−4, 10−5,
or 10−6, while it is steady for α = 10−2. The NMSE for α = 10−4 is the lowest when d > 20
and is similar to the others for d ≤ 20, which makes it the best setting in this context. In
Fig. 4.6b, we can see that the NMSE decreases between 20 and 60 for α = 10−3, between
20 and 150 for α = 10−4, between 20 and 180 for α = 10−5, and between 20 and 150 for
α = 10−6, while it is steady for α = 10−2. The NMSE for α = 10−5 is the lowest when
d > 110 and is similar or lower to the others for d ≤ 110, which makes it the best setting in
this context. Moreover, in both figures, the NMSE computed with the training, validation
and testing datasets are similar. This can be explained by the fact that the autoencoder
contains 2 layers, which is lower than in Figs. 4.5a and 4.5b and thus, decreases the overfit-
ting. Moreover, unlike with CstNeu-AE structure, these figures do not present any outlier,
which underlines that the IncDecNeu-AE structure is more stable than CstNeu-AE’s.

4.4.2.1.2 Influence of the number of layers

In this section, we study the influence of the number of layers in the encoder and the
decoder each for nC = 5, 10 links and for both structures CstNeu-AE and IncDecNeu-AE.
To this end, we plot in Figs 4.7a, 4.7b, 4.8a, and 4.8b the autoencoder reconstruction NMSE
applied to the testing dataset, versus the number of transmitted parameters, which is d.
The learning rate α is set with the best ones that we have previously determined.
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(a) nC = 5. The best are 2, 3 or 4 layers.
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(b) nC = 10. The best is 3 layers.

Figure 4.7: Study of the number of layers influence for CstNeu-AE structure with α = 10−4

for nC = 5 and α = 10−5 for nC = 10.

In Fig 4.7a, we can see that the NMSE decreases between 5 and 30 for 2 layers, between
5 and 40 for 3 layers, and between 5 and 45 for 4 layers. In this situation, choosing the
right number of layers is hard since there is not any clear choice of a number of layers
where the NMSE is always lower. Indeed, the lowest NMSE for d = 30 is reached with
2 layers, for d = 40, it is reached with 3 layers and for d = 45, with 4 layers. This can be
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explained by the fact that increasing the number of layers in the autoencoder can make its
training more stable, at the expense of higher overfitting as seen in the previous section.
In Fig 4.7b, we can see that the NMSE decreases between 20 and 170 for 2 layers, between
20 and 150 for 3 layers, and between 20 and 110 for 4 layers. However, the choice of the
number of layers is easier since the lowest NMSE is always reached for 3 layers.
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(a) nC = 5. The best are 2 and 3 layers.
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(b) nC = 10. The best is 2 layers.

Figure 4.8: Study of the influence of the number of layers for IncDecNeu-AE structure
with α = 10−4 for nC = 5 and α = 10−5 for nC = 10.

Regarding IncDecNeu-AE structure, Figs 4.8a and 4.8b show that we should choose
an autoencoder with 2 layers since the NMSE for 2 layers is similar or lower than with
the other number of layers, except for one point which is d = 25 for nC = 5 and d = 110
for nC = 10. This easier choice of a number of layers emphasizes the greater stability of
the IncDecNeu-AE structure over CstNeu-AE’s.

4.4.2.1.3 Influence of the structure of the autoencoder

In Figs 4.9a and 4.9b, we study the influence of the autoencoder structure by plotting
the autoencoder reconstruction NMSE, versus the number of transmitted parameters, of
three architectures:

• CstNeu-AE with 3 layers and α = 10−4.

• IncDecNeu-AE with 2 layers and α = 10−4.

• IncDecNeu-AE without ReLU with 2 layers and α = 10−5: this corresponds to the
same structure as IncDecNeu-AE by removing the non-linear activation function
ReLU.

It is worth mentioning that to compute IncDecNeu-AE without ReLU, we have chosen
to set the best learning rate and number of layers. Besides, removing the non-linear
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activation function in IncDecNeu-AE without ReLU structure is equivalent to applying a
linear DR method.
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(b) nC = 10.

Figure 4.9: Study of the autoencoder structure for nC = 5 and for nC = 10. IncDecNeu-AE
structure has the lowest NMSE.

Moreover, we can observe in the figures that IncDecNeu-AE shows the lowest NMSE
for nC = 5 and 10. Indeed, for nC = 5, its NMSE is lower than IncDecNeu-AE without
ReLU’s by around 3.10−4 for d between 20 and 30, and than CstNeu-AE by more than 10−4

for d ≥ 40. For nC = 10, while the gap between IncDecNeu-AE and CstNeu-AE is around
2.10−4 for d ≥ 120, the one between IncDecNeu-AE with and without ReLU is smaller
and is around 10−5 for d between 80 and 90, and between 140 and 150. As a consequence,
in addition to having shown previously its greater stability, IncDecNeu-AE shows better
performance than the other structures in terms of NMSE.

4.4.2.2 Compression and DR methods performance comparison

4.4.2.2.1 Performance analysis in terms of NMSE

In this section, we assess the performance of compression and DR techniques in terms
of NMSE, versus the number of transmitted parameters which is d. The implemented
methods are the following:

• Compression with SVD: the input matrix ΓCi is decomposed using SVD into a
product of two matrices which are both transmitted to the receiving cluster. It does
not require any other data.

• DR with PCA described in Section 4.3.2.1: although it is the same as the DR method
with SVD, it differs from the compression with SVD since the dimension reduction
is applied using several training points.



4.4. Numerical results 127

• DR with KPCA described in Section 4.3.2.2 using the Gaussian kernel expressed in
(4.22) with σ = 0.01.

• IncDecNeu-AE with 2 layers and α = 10−4.

• IncDecNeu-AE without ReLU with 2 layers and α = 10−5
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(b) nC = 10.

Figure 4.10: Comparison of compression and DR methods in terms of NMSE, versus the
number of transmitted parameters. IncDecNeu-AE structure shows the lowest NMSE.

In Figs. 4.10a and 4.10b, we plot the reconstruction NMSE of various DR techniques
for various number of transmitted parameters. We can observe that for decreasing com-
pression, i.e. the number of transmitted parameters increases, every solution’s NMSE
decreases, except for KPCA whose NMSE is steady. This can be explained by the fact that
the NMSE is dominated by KPCA’s reconstruction error as explained in Section 4.3.2.2.
Moreover, the compression with SVD presents higher NMSE than the other techniques.
This result is expected since compression methods do not use any training data and have
thus lower performance compared to DR schemes. Another expected outcome is the
DR techniques with PCA and IncDecNeu-AE without ReLU having similar performance
since they are both linear DR methods. Finally, IncDecNeu-AE presents the lowest NMSE
compared to the others even though they can be close to the linear DR schemes’ which
can be much less numerically complex to implement with PCA or SVD.

4.4.2.2.2 Performance analysis by applying eTIM-hybrid in terms of average sum rate
and minimum user rate per link

In this section, we assess the performance of the proposed compression and DR methods
by using the estimated channel statistics matrix to compute the eTIM-hybrid scheme
described previously in Section 2.4. Like in the numerical simulations from Section 2.4.4,
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the average sum rates and minimum user rates are estimated with 105 Monte-Carlo
simulations of channel realizations, and in the following figures, each of these values are
averaged over 100 random topologies of links in the clusters.
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Figure 4.11: Performance comparison of eTIM-hybrid with other implemented methods
versus the number of links per cluster for nC = 5 links per cluster, dsize = 10 km and
δ = 0 m.

In Figs 4.11a and 4.11b, we respectively plot the average sum rate and minimum user
rate per link for nC = 5 links when using eTIM-hybrid with SVD compression, IncDecNeu-
AE, PCA and KPCA, as long as with the channel statistics true values that we refer to as
Centralized eTIM-hy. We can observe in Fig 4.11a that the performance of IncDecNeu-AE
is much higher than SVD compression and KPCA in terms of average sum rate, but only
slightly higher than PCA by around 0.1-0.2 Mbits/s regardless of the compression rate.
Moreover, the average sum rate difference between IncDecNeu-AE and the centralized
eTIM-hybrid is less than 0.1 Mbits/s for d > 25 parameters to transmit, which corresponds
to a signaling reduction of 50%, whereas for PCA it is the case for around d > 30 which
corresponds to 40% of compression rate. KPCA presents a lower average sum rate than
even SVD compression, which is likely to be caused by the high error reconstruction
from KPCA. In terms of average minimum user rate per link, IncDecNeu-AE and PCA
minimum user rate per link are only higher than SVD compression’s for d ≥ 30 and
is almost identical to the centralized method’s one for d ≥ 40, which corresponds to a
signaling reduction of 20%. While IncDecNeu-AE and PCA minimum user rate per link
are always similar except for d = 20, KPCA’s is lower than the others.

In Figs 4.12a and 4.12b, we perform the same plots as previously but for nC = 10.
Like for nC = 5 links, Fig 4.12a shows a lower average sum rate for SVD compression
and KPCA than for IncDecNeu-AE and PCA, which are very close. The gap between
IncDecNeu-AE and PCA average sum rate and centralized eTIM-hybrid is lower than
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Figure 4.12: Performance comparison of eTIM-hybrid with other implemented methods
versus the number of links per cluster for nC = 10 links per cluster, dsize = 10 km and
δ = 0 m.

0.1 Mbits/s for d ≥ 110, which corresponds to a compression rate of 45%. In terms
of average minimum user rate, we can observe in Fig. 4.12b that IncDecNeu-AE and
PCA’s are higher than when using SVD compression for d > 110 and almost the same as
centralized eTIM-hybrid’s one for d ≥ 120, which corresponds to a signaling reduction of
40%. KPCA has again a lower minimum user rate per link than the others.

Remark 4.4. We can observe that PCA has a close performance to the autoencoder’s, which can
be explained by the fact that in the simulations, the channel statistics, i.e. γi j, may be a "simple"
function of the distance di j, since it is a deterministic fraction of polynomials. With more complex
data, e.g. with random fluctuations or with shadowing, the performance gap between autoencoder
and PCA can be higher.

4.5 Conclusion

In this chapter, we have first proposed a procedure reducing the channel statistics ex-
changes between clusters by compressing them using DR techniques. Specifically, we
introduce a DR-based encoding and decoding procedure for channel statistics that can
be applied to any link topology. Since many studies in the literature evaluate their DR
solutions only using MSE, we performed numerical simulations to assess several DR
methods using not only MSE but also other metrics such as the average sum rate and the
minimum user rate per link. We computed these metrics using the previously proposed
interference management scheme eTIM-hybrid. Both autoencoder and PCA achieve a
high compression rate of up to 45-50%, with only a 1% loss in the average sum rate and
minimum user rate per link compared to the centralized solution. While our results show
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that Autoencoder performs slightly better than PCA, it should be noted that PCA has the
advantage of being much less complex.
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Summary of contributions

In this thesis, we addressed the problem of interference management in clustered ad
hoc networks, assuming SCSI knowledge, a frequency-flat Rayleigh channel, and SISO
systems. To achieve this objective, we have formulated three intermediate sub-problems:

1. Proposing an interference management solution with good performance in terms
of sum rate and minimum rate per link that relies solely on SCSI.

2. Developing a procedure for estimating the statistical CSI.

3. Devising a framework that compresses the channel statistics between the CH to
reduce the signaling exchanges between clusters.

In Chapter 2, we addressed the first sub-problem assuming we had two adjacent
clusters that share the same frequency band because of a shortage of frequencies. We
considered the TIM problem in a frequency-flat Rayleigh channel with statistical CSI
knowledge using a hybrid approach combining eTIM and TDMA access, called eTIM-
hybrid. This scheme involves two steps: a grouping procedure based on rate criteria,
with either eTIM or TDMA and a scheduling optimization for slot allocation, for which
we presented the optimal closed-form solution. The performance of various interfer-
ence management techniques were compared through numerical simulations in different
cluster configurations. Our results showed that eTIM-hybrid outperforms conventional
techniques such as TDMA in terms of average sum rate while guaranteeing an aver-
age minimum user rate for every link. We also extended the proposed solution to the
case when there are two available FBs for both clusters and proposed a novel method,
JFA-eTIM-hy, that jointly optimizes the FB and eTIM-hybrid. Simulations showed that
JFA-eTIM-hy outperformed the standard orthogonal channel allocation solutions, even
when combined with eTIM-hybrid.

In Chapter 3, we tackled the second sub-problem by proposing two approaches, to
reduce the sensing duration, for estimating the channel statistics of all pairs of nodes in
the network, under the TDD mode assumption. In the first approach, we introduced a
scheduling solution that enables two simultaneous transmissions, outperforming TDMA
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in terms of sensing duration. Next, we formulated the channel statistics estimation
problem for each receiver which consists of estimating the average power of the direct
and interfering channels, under a single interference and using a set of SINR samples.
We then introduced two new estimators based on the MLE and the MoM, implemented
using Newton’s method, for which we proposed initialization procedures to ensure the
convergence of both algorithms. Simulation results indicate that while the MLE variance
is close to the CRLB, the MoM estimator has a slightly higher variance but is less complex
than the MLE. Additionally, we demonstrated that the MLE can be initialized with
the MoM’s estimates, which is less complex than random initialization. In the second
approach, we presented an alternative scheduling method that enables simultaneous
transmissions to estimate the channel statistics of all pairs of nodes in the network. While
this scheduling solution offers improved performance over the first approach in terms
of sensing duration, it is only feasible when orthogonal sequences can be utilized to
eliminate interference. Our analysis demonstrates that the divide-in-2, 2-transmission
and mixed scheduling solutions outperform TDMA in terms of the scheduling length,
and we provided closed-form expressions for their respective lengths. However, we also
note that the energy consumption of these proposed schemes is higher than that of TDMA,
despite their reduced sensing duration.

In Chapter 4, we dealt with the third sub-problem by reducing the dimensionality
of the channel statistics, thus decreasing the signaling exchanges between the CHs. To
this end, we proposed two methods: a linear DR scheme and an autoencoder-based ap-
proach that both encode and decode channel statistics for any links topology. Numerical
simulations evaluated these solutions in terms of NMSE, average sum rate, and mini-
mum user rate per link using the previously proposed interference management method
eTIM-hybrid. Results showed that compressing channel statistics by up to 45%, using
the linear DR and autoencoder methods, achieved at least a 99% average sum rate of the
centralized performance, while guaranteeing a minimum user rate per link. Although
the autoencoder method performed slightly better, the linear DR has the advantage of
being less complex.

Perspectives

To conclude, we will share some possible future directions of research based on the work
carried out in this thesis.

System design

1. As future directions, it would be interesting to extend the current work to include
different types of propagation channels, such as Rician or Nakagami-m, as well as
frequency-selective and time-correlated channels, to assess the performance of the
proposed techniques under these scenarios.
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2. Another possible extension is to explore the use of MIMO systems instead of SISO,
which can potentially increase the system’s capacity and robustness to interference.

Enhanced topological interference management

1. Possible future directions include extending the proposed interference management
solutions to more clusters and frequency bands by combining them with coloring
algorithms, e.g. TEL, to improve channel allocation in ad hoc networks.

2. Although our system model assumed a predefined set of communication links, in
practice, nodes can communicate with any other nodes in the cluster. One possible
future work is to extend the proposed eTIM solution that can handle varying com-
munication links between deployed nodes, where the connections between nodes
may change depending on the traffic.

3. Moreover, to speed up the computation of the proposed eTIM solution, it would
be worth exploring other optimization techniques, instead of the AO which is
suboptimal, such as geometric programming.

4. Additionally, the TIM model can be improved to accommodate mobile nodes, by
devising an online solution that has faster computation, as shown in [28]. Alterna-
tively, an offline training approach can also be used with neural networks to design
coders U and V for any node and link topology. However, the primary challenge in
this case would be to consider the variable size of output neural networks since the
length of the coders r also needs to be optimized.

5. Another possibility is to extend the interference management problem by, for in-
stance, jointly optimizing interference management and power allocation, or mod-
ifying the objective function to incorporate a fairness metric.

Channel statistics estimation

1. In the estimation problem formulated from the first scheduling approach, one pos-
sible extension of the first scheduling approach is to handle an arbitrary number of
interferers, as it is currently designed for a single interference scenario.

2. In the first approach, another perspective is to explore the use of neural network
techniques to avoid prior knowledge on the channel.

Decreasing signaling exchanges using dimensionality reduction

1. Other compression schemes than the linear DR and the autoencoder can be consid-
ered, such as uniform manifold approximation and projection (UMAP), which has
shown promising results in reducing the dimensionality of high-dimensional data.
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Another possibility is to investigate the use of quantization with neural networks,
as has been done in recent research [22].

2. Additionally, it would be interesting to train a model that considers a varying
number of links in the network since in practice, some links may go off while new
links may appear.
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Appendix A

Appendix related to Chapter 2

A.1 Derivative expressions in Section 2.3.2

In this Appendix, we derive the necessary partial derivative expression to compute gra-
dient descent. Most of the calculations are inspired from [113].

A.1.1 Partial derivation expression of R̄hard
sum,V for Problem 2.5

In this part, we derive the partial derivatives of R̄hard
sum,V with respect to ũk. We remind that

we have R̄hard
sum,V =

∑N
i=1 R̄hard

V,i with R̄hard
sum,V defined in (2.27). After some manipulations,

R̄hard
V,i can be expressed as:

R̄eTIM
V,i =

1
ln 2

(lnΦV,i − lnΠV,i), (A.1)

where ΦV,i and ΠV,i are defined as the following:

ΦV,i :=
N∑

j=1

βV,i j(ũivT
j )2 + Pn

ΠV,i :=
N∑

j=1
j,i

βV,i j(ũivT
j )2 + Pn.

(A.2)

Besides, we use the linearity of the derivation to express R̄hard
sum,V derivative as follows:

∂R̄hard
sum,V(Ũ)

∂ũk
=

N∑
i=1

∂R̄hard
V,i (Ũ)

∂ũk
(A.3)

We define δi,k as the Kronecker symbol which can be expressed as:

δi,k =

1, if i = k,

0, else.
(A.4)
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Then, we compute the partial derivative of R̄hard
sum,V expression as:

∂R̄hard
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∂ũk
=

1
ln 2

(
∂ lnΦV,i

∂ũk
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(A.5)

with ΦV,k and ΠV,k defined in (A.2).

Finally, by injecting (A.5) into (A.3), we obtain the partial derivative of R̄hard
sum,V which

can be expressed as:
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A.1.2 Partial derivation expression of R̄hard
sum,U for Problem 2.6

In this section, we derive the partial derivatives of R̄hard
sum,U where R̄hard

sum,U =
∑N

i=1 R̄hard
U,i and

R̄hard
U,i is defined in (2.29) with respect to ṽk. Using similar derivations as in the previous

section, R̄hard
U,i can be expressed as:

R̄hard
U,i =

1
ln 2

(lnΦU,i − lnΠU,i), (A.7)

with ΦU,i and ΠU,i defined as the following:

ΦU,k :=
N∑

j=1

βU,kj(ukṽT
j )2 + Pn∥uk∥

2
2

ΠU,k :=
N∑

j=1
j,k

βU,kj(ukṽT
j )2 + Pn∥uk∥

2
2

(A.8)
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Then, the partial derivative of R̄eTIM
U,i is given by

∂R̄hard
U,i (Ṽ)

∂ṽk
=

1
ln 2

(
∂ lnΦU,i

∂ṽk
−
∂ lnΠU,i

∂ṽk

)
=

1
ln 2

Φ−1
U,i

2βU,ik(uiṽT
k )ui −

2βU,ik(uiṽT
k )2

∥ṽk∥
2
2

ṽk


−(1 − δi,k)Π−1

U,i

2βU,ik(uiṽT
k )ui −

2βU,ik(uiṽT
k )2

∥ṽk∥
2
2

ṽk

 ,
(A.9)

withΦU,k andΠU,k defined in (A.8). Thus, using the linearity of the derivation, the partial
derivative of R̄eTIM

sum,U with respect to ṽk can be expressed as:

∂R̄hard
sum,U(Ṽ)

∂ṽk
=

1
ln 2

 N∑
i=1

Φ−1
U,i

2βU,ik(uiṽT
k )ui −

2βU,ik(uiṽT
k )2

∥ṽk∥
2
2

ṽk


−

N∑
i=1
i,k

Π−1
U,i

2βU,ik(ũkvT
j )ui −

2βU,ik(uiṽT
k )2

∥ṽk∥
2
2

ṽk




(A.10)

In the end, its final expression can be written as:

∂R̄hard
sum,U(Ṽ)

∂ṽk
=

2
ln 2

 N∑
i=1

βU,ik(Φ−1
U,i −Π

−1
U,i)

uT
i ui −

(uiṽT
k )2

∥ṽk∥
2
2

Ir


+Π−1

U,kβU,kk

uT
k uk −

(ukṽT
k )2

∥ṽk∥
2
2

Ir

 ṽk.

(A.11)

A.2 Implementation of eTIM max sum rate with minimum rate
constraint

A.2.1 AO procedure

Similarly to Problem 2.2, we solve Problem 2.8 by using an AO framework combined
with gradient descent methods. Moreover, we apply the same change of variables as for
Problem 2.3 to remove the norm constraint on ui,vi. Hence, to optimize Problem 2.8, we
execute at iteration t the following procedure:

First, we formulate the optimization problem alternately between the decoders, which
can be written for all k ∈ {1, ...,N} as:

Problem A.1.

ũ(t)
k = arg max

ũk∈R1×r
R̄hard

sum,V(ũ(t)
1 , ..., ũ

(t)
k−1, ũk, ũ

(t−1)
k+1 , ..., ũ

(t−1)
N ) (A.12)

s.t.
R̄hard

V,k

r
≥ Ru

0 . (A.13)

with fixed ũ(t)
1 , ..., ũ

(t)
k−1, ũ

(t−1)
k+1 , ..., ũ

(t−1)
N , ṽ(t−1)

1 , ..., ṽ(t−1)
N .
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Then, we formulate the optimization problem alternately between the precoders,
which can be expressed for all k ∈ {1, ...,N} as:

Problem A.2.

ṽ(t)
k = arg max

ṽk∈R1×r
R̄hard

sum,U(ṽ(t)
1 , ..., ṽ

(t)
k−1, ṽk, ṽ

(t−1)
k+1 , ..., ṽ

(t−1)
N ) (A.14)

s.t.
R̄hard

U,i

r
≥ Ru

0 , ∀i ∈ {1, ...,N}, (A.15)

with fixed ũ(t)
1 , ..., ũ

(t)
N , ṽ

(t)
1 , ..., ṽ

(t)
k−1, ṽ

(t−1)
k+1 , ..., ṽ

(t−1)
N , and with R̄hard

V,k and R̄hard
U,i defined in (2.27)

and (2.29), respectively.

A.2.2 Gradient descent and subgradient method

Since Problems A.1 and A.2 are constrained optimization problems, we optimize them
by considering their associated Lagrangian function. The Lagrangian multipliers are
optimized using the subgradient method [110].

A.2.2.1 Problem A.1 resolution

We first consider Problem A.1, we define its associated Lagrangian function and the
Lagrangian derivative function which can be written as:

LV,k(ũk, λk) :=R̄hard
sum,V(ũk) − λk(rRu

0 − R̄hard
V,k (ũk)) (A.16a)

∂LV,k(ũk, λk)
∂ũk

=(1 + λk)
∂R̄hard

V,k (ũk)

∂ũk
, (A.16b)

with the Lagrange multiplier λk ≥ 0 and ∂R̄hard
V,k /∂ũk defined in (A.5).

Then, Problem A.1’s equivalent optimization problem can be formulated as maximiz-
ing its Lagrangian function:

Problem A.3.
ũ(t)(m)

k = arg max
ũk∈R1×r

LV,k(ũk, λ
(m)
k ), (A.17)

which we solve with a gradient descent algorithm using (A.16b).

Then, the Lagrangian multiplier λk is optimized using the subgradient method. To
this end, we consider the following function that we want to maximize:

gV(λk) := max
ũk∈R1×r

LV,k(ũk, λk). (A.18)

Since gV is non-differentiable, we need to compute its subgradient function instead of its
gradient function to maximize it. Moreover, when optimizing the Lagrangian multipliers
with the subgradient method, it can be proved that the constraint has the same direction as
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the subgradient function [110]. Therefore, instead of computing gV subgradient function,
we can maximize gV by updating λ at iteration m as the following:

λ(m+1)
k =

[
λ(m)

k + α(m)
k (rRu

0 − R̄hard
V,k (ũ(t)(m)

k ))
]+
, (A.19)

with the step size at iteration m set as α(m)
k =

1
m + 1

and (.)+ defined as (x)+ = max(0, x).
This operator is used to guarantee the positivity of the Lagrangian multipliers.

In summary, the constraint optimization is described in Algorithm A.1 and is pro-
vided by repeating the following two-stage procedure until the constraint R̄hard

V,k ≥ rRu
0 is

respected:

1. we use a gradient descent algorithm on Problem A.3 using (A.16b) until conver-
gence.

2. we update the Lagrangian multiplier λk using (A.19).

Since there are cases when the constraints cannot be verified, this procedure is not
guaranteed to converge toward the optimal solution.

Algorithm A.1: Subgradient method for solving Problem A.1

Solve ũ(t)(0)
k = arg maxũk∈R1×r L(ũk, λ

(0)
k ) using gradient descent in Algorithm 2.2,

with L(ũk, λ
(0)
k ) defined in (A.16).

while (rRu
0 − R̄eTIM

V,k ) > 0 do

Solve ũ(t)(m+1)
k = arg maxũk∈R1×r L(ũk, λ

(m)
k ) using gradient descent in

Algorithm 2.2.
λ(m+1)

k = λ(m)
k + α(m)(rRu

0 − R̄eTIM
V,k ).

Increment m = m + 1
end

A.2.2.2 Problem A.2 resolution

Similarly to Problem A.1, Problem A.2 is optimized by maximizing its associated La-
grangian function and the Lagrangian multipliers are optimized using the subgradient
method. The Lagrangian function and its derivative expressions can be written as:

LU,k(ṽk,µ) :=R̄hard
sum,U(ṽk) −

N∑
i=1

µi(Ru
0 − R̄hard

U,i (ṽk)), (A.20a)

∂LU,k(ṽk,µ)
∂ṽk

=

N∑
i=1

(1 + µi)
∂R̄eTIM

U,i (ṽk)

∂ṽk
, (A.20b)

with the Lagrange multipliers ∀i ∈ {1, ...,N}, µi ≥ 0 and ∂R̄eTIM
U,k /∂ṽk defined in (A.9).

Using the Lagrangian function, Problem A.1’s equivalent optimization problem can
be formulated as:
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Problem A.4.

ṽ(t)(m)
k = arg max

ṽk∈R1×r
LU,k(ṽk,µ

(m)
k ), (A.21)

Then, the Lagrangian multipliers µk are optimized using the subgradient method. To
this end, we consider the following function that we want to maximize:

gU(µk) := max
ṽk∈R1×r

LU,k(ṽk,µk). (A.22)

Since gU is non-differentiable, its subgradient is required to maximize it. As said in
Section 2.3.3.2, it can be proved that the constraint (Ru

0 − R̄eTIM
U,i (ṽ(t)(m)

k )) is in the same
direction as gU’s subgradient function, we can maximize gU by updating λ at iteration m
as:

µ(m+1)
k (i) =

[
µ(m)

k (i) + α(m)
k (Ru

0 − R̄eTIM
U,i (ṽ(t)(m)

k ))
]+
, ∀i ∈ {1, ...,N}, (A.23)

with the step size at iteration m set as α(m)
k =

1
m + 1

.
In summary, the constraint optimization is described in the following two-stage pro-

cedure whose implementation can be obtained by adapting Algorithm A.1:

1. we use a gradient descent algorithm on Problem A.4 using (A.20b) until conver-
gence.

2. we update the Lagrangian multipliers µk using (A.23).

Stages 1 and 2 are repeated until the constraint R̄eTIM
U,k ≥ rRu

0 is respected.

A.3 Scheduling optimization proofs in Section 2.4.2

A.3.1 Proof of Result 2.2

Proof. We want to show that Problem 2.11 is feasible if and only if we have the following
inequality: ∑

k∈Td

nmin
k + nmin

eTIMr ≤ L, (A.24)

with nmin
k ,nmin

eTIM defined in (2.58).
Before proving this equivalence, we start by simplifying the constraints of Problem 2.11

into a simpler expression to manipulate, we remind that these constraints can be written
as:

R̄u
TDMA,k ≥ Ru

0 , ∀k ∈ Td, (A.25)

R̄u
eTIM,min ≥ Ru

0 , (A.26)∑
k∈Td

nk + neTIMr = L. (A.27)
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Inserting (2.51) into (A.25) and (2.53) into (A.26) yields:
nk ≥

LRu
0

R̄φk
, ∀k ∈ Td,

neTIM ≥
LRu

0

R̄φeTIM,min

.

(A.28a)

(A.28b)

Let us define nmin
k and nmin

eTIM as the following:

nmin
k :=

LRu
0

R̄φk

 , (A.29)

nmin
eTIM :=

 LRu
0

R̄φeTIM,min

 . (A.30)

nmin
k and nmin

eTIM are the smallest integer values verifying (A.28a) and (A.28b), respectively.
The constraint equations (A.25), (A.26) and (A.27) can thus be written as:

nk ≥ nmin
k ∀k ∈ Td,

neTIM ≥ nmin
eTIM,∑

k∈Td

nk + neTIMr = L.

(A.31a)

(A.31b)

(A.31c)

Now, let us prove the equivalence between the feasibility of Problem 2.11 and the inequa-
tion (A.24) by proving the equivalence between the system (A.31a), (A.31b), (A.31c) and
the inequation (A.24).

Suppose Problem 2.11 is feasible. Then, there exist (nk)k∈Td ,neTIM ∈N
∗ such that the

constraint equations (A.31a), (A.31b), (A.31c) are satisfied. We set nk = nmin
k and neTIM =

nmin
eTIM with nmin

k and nmin
eTIM defined in (A.29) and (A.30), which verifies the constraints

(A.31a) and (A.31b), respectively. By injecting them into (A.31c), we get the inequality
from (A.24) which concludes the direct proposition proof.

Suppose (A.24) holds for all L ∈ N∗. We want to prove that there exists a feasible
solution satisfying the constraints (A.31a), (A.31b), (A.31c).

If we set nk = nmin
k and neTIM = nmin

eTIM, the constraint (A.31c) is not necessarily verified
since we could have

∑
k∈Td

nk + neTIMr < L, which means that there are remaining slots
to allocate. A feasible solution is thus to allocate the minimum number of slots nmin

k and
nmin

eTIM, and then to allocate the remaining slots to any link.
Let us define Lres := L −

∑
k∈Td

nmin
k + neTIMr as those remaining slots to allocate after

allocating the minimum number of transmissions to the links Te and Td and k0 ∈ Td the
link which receives the remaining Lres slots. A feasible solution can be expressed as the
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following: 
nk = nmin

k ∀k ∈ Td\{k0},

nk0 = nmin
k0
− Lres,

neTIM = nmin
eTIM,

(A.32a)

(A.32b)

(A.32c)

which satisfies constraint (A.31c).
□

A.3.2 Proof of Result 2.3

Proof. In this proof, we provide the optimal solution of Problem 2.11. This solution is
composed of two steps: i) a step where the slots are allocated so that each link satisfies its
constraint, and ii) a greedy step where the remaining slots are allocated to the best links.

1. Asserting Problem 2.11’s feasibility: we first allocate the required slots, i.e. nmin
eTIM

and nmin
k for all k ∈ Td using (2.58a) and (2.58b), to ensure that the constraints are

satisfied.

2. Greedy allocation: once the required slots to guarantee the constraints are allocated,
we proceed to a greedy allocation, i.e. we allocate the slots to the links with the
highest rates. To maximize the average sum rate, we allocate the Lres remaining
slots, with Lres defined in (2.60), to either kmax in Td or the links in Te which apply
MSR-eTIM. To this end, we compare the sum of average physical rates on r slots
restrained to Te, namely R̄φsum,Te

, and the highest possible sum of physical rates on
r slots in Td, which is rR̄φkmax

.

• For case R̄φsum,Te
≤ rR̄φkmax

, allocating slots to the links in Te would provide
a lower gain than allocating slots to kmax. Therefore, we allocate the Lres

remaining slots to link kmax in Td, which can be expressed as:

nkmax = nmin
kmax
+ Lres. (A.33)

• For case R̄φsum,Te
> rR̄φkmax

, we allocate the remaining slots to Te. Since each
repetition of MSR-eTIM lasts r slots, the new allocation for the links in Te is:

neTIM = nmin
eTIM +

⌊Lres

r

⌋
. (A.34)

Since some slots can remain (strictly less than r), we allocate the rest of them
to link kmax and its allocation can be written as:

nkmax = nmin
kmax
+ Lres −

⌊Lres

r

⌋
r. (A.35)

Therefore, the proof for the optimal allocation is concluded. □
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A.3.3 Derivations leading to (2.65)

Since Result 2.3 provides the optimal solutions n∗k,n
∗

eTIM as a function of L, we can ex-

press R̄eTIM-hy
sum using (2.49) with the optimal transmissions allocation to have a function

depending on L only. We call it ReTIM-hy
sum,opt and express it as:

ReTIM-hy
sum,opt (L) :=

n∗eTIM

L
R̄φsum,Te

+
∑
k∈Td

n∗k
L

R̄φk . (A.36)

Since n∗k,n
∗

eTIM depends on the cases whether R̄φsum,Te
is lower or higher than rR̄φkmax

, we

calculate ReTIM-hy
sum,opt for both cases.

Case 1: R̄φsum,Te
≤ rR̄φkmax

. Plugging (2.61) into (A.36), we obtain:

ReTIM-hy
sum,opt (L) =

1
L

nmin
eTIMR̄φsum,Te

+
∑

k∈Td\{kmax}

nmin
k R̄φk + (nmin

kmax
+ Lres)R̄

φ
kmax

 (A.37)

Plugging (2.60) into (A.37), we can obtain:

ReTIM-hy
sum,opt (L) =

1
L

nmin
eTIMR̄φsum,Te

+
∑

k∈Td\{kmax}

nmin
k R̄φk +

nmin
kmax
+ L −

∑
k∈Td

nmin
k − nmin

eTIMr

 R̄φkmax

 ,
(A.38)

which can be computed after simplifications as:

ReTIM-hy
sum,opt (L) =

1
L

nmin
eTIM

(
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td\{kmax}

nmin
k (R̄φk − R̄φkmax

)

 + R̄φkmax
. (A.39)

Case 2: R̄φsum,Te
> rR̄φkmax

. Plugging (2.62) into (A.36), we obtain:

ReTIM-hy
sum,opt (L) =

1
L

(nmin
eTIM +

⌊Lres

r

⌋)
R̄φsum,Te

+
∑

k∈Td\{kmax}

nmin
k R̄φk + (nmin

kmax
+ Lres −

⌊Lres

r

⌋
)R̄φkmax

 .
(A.40)

which can be computed after plugging (2.60) into (A.40)simplifications as:

ReTIM-hy
sum,opt (L) =

1
L

(nmin
eTIM +

⌊Lres

r

⌋) (
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td\{kmax}

nmin
k (R̄φk − R̄φkmax

)

 + R̄φkmax
.

(A.41)

A.3.4 Proof of Lemma 2.1

Proof. We suppose that: ∀L ∈N∗,
∑

k∈Td
xk+rxeTIM = 1. We want to show that Problem 2.14

is feasible.
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We remind that the feasible set of Problem 2.14 is the set of values L verifying the
inequality (2.66). Moreover, using the known inequality x ≤ ⌈x⌉, we can obtain:∑

k∈Td

xk + rxeTIM︸            ︷︷            ︸
=1

≤
1
L

(
∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉)︸                         ︷︷                         ︸
≤1

, (A.42)

from which we can deduce the following equations:

1
L

(
∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉) = 1,

⇐⇒
1
L

(
∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉) =
∑
k∈Td

xk + rxeTIM,

⇐⇒

∑
k∈Td

(⌈Lxk⌉ − Lxk) + r(⌈LxeTIM⌉ − LxeTIM) = 0.

(A.43)

Since we have a sum of positive terms which is equal to 0, each of these terms equals 0.
Thus, (A.43) enables us to deduce that:⌈Lxk⌉ = Lxk, ∀k ∈ Td,

⌈LxeTIM⌉ = LxeTIM.
(A.44)

Since we have L ∈N∗, (A.44) is equivalent to the following system:Lxk ∈N, ∀k ∈ Td,

LxeTIM ∈N.
(A.45)

To find values of L verifying (A.45), we use the assumption that (xk)k∈Td and xeTIM are
rational, which enables us to state the following:

∀k ∈ Td, ∃pk, qk ∈N
∗ : xk =

pk

qk

∃peTIM, qeTIM ∈N
∗ : xeTIM =

peTIM

qeTIM
,

(A.46)

with gcd(peTIM, qeTIM) = 1 and ∀k ∈ Td,gcd(pk, qk) = 1, where gcd(a, b) stands for greatest
common divisor between a and b. qk and qeTIM are respectively referred to as the smallest
denominators of xk and xeTIM. By injecting (A.46) into (A.45), we can deduce that the
values of L verifying (A.45) are the ones such that L is a multiplier of qeTIM and qk for all
k ∈ Td, with qeTIM and qk. One solution is thus to choose:

L = lcm(Qfeas), (A.47)

with lcm(a, b, c, ...) standing for least common multiple between a, b, c, ... andQfeas defined
as follows:

Qfeas := {qk | k ∈ Td} ∪ {qeTIM}. (A.48)

□
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In the following, we deliver a corollary of Lemma 2.1 which characterizes the feasible
set of Problem 2.14. Its proof can be obtained using (A.46) and (A.45).

Corollary A.1. Let
∑

k∈Td
xk + rxeTIM = 1 and let assume that xeTIM and xk are rational positive

values.
In this case, the feasible set of Problem (2.14) is the set of values L ∈ N∗ such that L is a

multiplier of qeTIM and qk for all k ∈ Td, which are defined in (A.46). In other words, the feasible
set of Problem (2.14) is equal to F0, where F0 can be expressed as:

F0 := {L ∈N∗ such that : ∃m0 ∈N
∗ : L = m0qeTIM and ∀k ∈ Td,∃mk ∈N

∗ : L = mkqk}.

(A.49)

A.3.5 Proof of Lemma 2.2

Proof. We suppose that: ∀L ∈N∗,
∑

k∈Td
xk + rxeTIM < 1. We want to show that there exists

a value L0 ∈N∗ such that for all L ≥ L0, L is a feasible solution of Problem 2.14. Formally,
we want to prove the following statement:

∃L0 ∈N
∗ : ∀L ≥ L0, g(L) ≤ 1, (A.50)

with g(L) :=
1
L

(∑
k∈Td
⌈Lxk⌉ + r⌈LxeTIM⌉

)
.

Let us define η such that
∑

k∈Td
xk+ rxeTIM+η = 1. After applying the following ceiling

function bounding on ⌈Lxk⌉ and ⌈LxeTIM⌉:

∀z ∈ R, z ≤ ⌈z⌉ < z + 1, (A.51)

we obtain the following inequalities:∑
k∈Td

xk + rxeTIM︸            ︷︷            ︸
=1−η

≤ g(L) <
∑
k∈Td

xk + rxeTIM︸            ︷︷            ︸
=1−η

+
Q + r

L
. (A.52)

Since the upper bound limit can be expressed as:

lim
L→+∞

∑
k∈Td

xk + rxeTIM +
Q + r

L

 = 1 − η, (A.53)

we can deduce the following limit expression:

lim
L→+∞

g(L) = 1 − η, (A.54)

which is strictly inferior to 1 according to the initial assumption.
The main idea to prove the infinite number of feasible solutions of Problem 2.14 is

the following. On the one hand, L is a feasible solution if g(L) ≤ 1. On the other hand,
g(L) tends to a value strictly lower than 1 when L tends to +∞. Therefore, for increasing
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values of L, g(L) will get closer to its limit which is strictly lower than 1. Then, when L is
high enough, g(L) will always be lower than 1 which means that all these high values of
L are feasible solutions of Problem 2.14.

The formal proof based on this idea is obtained by expressing the formal definition of
the limit for (A.54) which can be written as:

∀ϵ > 0,∃L0 ∈N
∗ : ∀L ≥ L0, |g(L) − 1 + η| ≤ ϵ, (A.55)

whose absolute value can be removed according to (A.52), which provides the following
result:

∀ϵ > 0,∃L0 ∈N
∗ : ∀L ≥ L0, g(L) ≤ 1 + ϵ − η. (A.56)

Since (A.56) is true for all ϵ > 0, we choose it such that ϵ ≤ η, which shows the following
statement:

∃L0 ∈N
∗ : ∀L ≥ L0, g(L) ≤ 1, (A.57)

which concludes the proof. □

A.3.6 Proof of Result 2.4

Since we need to prove an equivalence statement, we first prove the direct statement,
then we prove its converse.

Suppose Problem 2.14 is feasible. We want to prove that we have either 1.
∑

k∈Td
xk+

rxeTIM < 1 or 2.
∑

k∈Td
xk + rxeTIM = 1 with (xk)k∈Td , xeTIM rational positive numbers.

Since Problem 2.14 has at least one feasible solution L ∈ N∗, we have the following
feasibility inequality from (2.66):

1
L

∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉

 ≤ 1. (A.58)

By using the ceiling function bounding provided in (A.51) on ⌈Lxk⌉ and ⌈LxeTIM⌉, we can
deduce the following inequality:

∑
k∈Td

xk + rxeTIM ≤
1
L

∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉

 , (A.59)

and thus, using (A.58), we equivalently have the following:∑
k∈Td

xk + rxeTIM ≤ 1. (A.60)

Now that we have obtained the desired inequality, we only need to prove that the case
where there is an equality in (A.60) necessarily leads to rational values of (xk)k∈Td and
xeTIM.
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Since we have the following inequalities:

∑
k∈Td

xk + rxeTIM ≤
1
L

∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉

 ≤ 1, (A.61)

the following implications hold:

∑
k∈Td

xk + rxeTIM = 1 =⇒
1
L

∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉

 = 1,

=⇒
1
L

∑
k∈Td

⌈Lxk⌉ + r⌈LxeTIM⌉

 = ∑
k∈Td

xk + rxeTIM,

=⇒
∑
k∈Td

(⌈Lxk⌉ − Lxk) + r(⌈LxeTIM⌉ − LxeTIM) = 0,

=⇒

∀k ∈ Td, ⌈Lxk⌉ = Lxk,

⌈LxeTIM⌉ = LxeTIM,

=⇒

∀k ∈ Td,Lxk ∈N
∗,

LxeTIM ∈N
∗.

(A.62)

The third implication is justified by the fact that when a sum of positive terms is equal to
0, each of these terms equals 0.

Finally, as stated in Lemma 2.1, the last system requires the rationality of the terms
xk, xeTIM so that Lxk and LxeTIM can be integer values, which concludes the first implication
of the proof.

Suppose either
∑

k∈Td
xk + rxeTIM < 1 or

∑
k∈Td

xk + rxeTIM = 1 with (xk)k∈Td , xeTIM

rational positive numbers. We want to prove that Problem 2.14 is feasible.

• We suppose that
∑

k∈Td
xk + rxeTIM < 1 is true. Lemma 2.2 shows that Problem 2.14

has an infinite number of feasible solutions, so it is feasible.

• We suppose that
∑

k∈Td
xk + rxeTIM = 1 and (xk)k∈Td , xeTIM are rational positive num-

bers. Using Lemma 2.1, we show that Problem 2.14’s feasible set is F0 defined in
(A.49), which is not empty and thus, proves Problem 2.14’s feasibility.

A.3.7 Proof of Lemma 2.3

We first use the ceiling function inequalities defined in (A.51) on (2.58a) and (2.58b) and
we obtain the following inequalities:

Lxk ≤ nmin
k < Lxk + 1, ∀k ∈ Td, (A.63)

LxeTIM ≤ nmin
eTIM < LxeTIM + 1. (A.64)

Now, we inject these inequalities into ReTIM-hy
sum,opt (L) expression.
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Case 1: R̄φsum,Te
≤ rR̄φkmax

. Plugging (A.63) and (A.64) into (2.65) yields:

1
L

(LxeTIM + 1)
(
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td

(Lxk + 1)(R̄φk − R̄φkmax
)

 + R̄φkmax

< ReTIM-hy
sum,opt (L)

≤
1
L

LxeTIM

(
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td

Lxk(R̄φk − R̄φkmax
)

 + R̄φkmax
,

(A.65)

whose inequalities have been reverse since the terms (R̄φk −R̄φkmax
) and (

∑
j∈Te

R̄φeTIM, j−rR̄φkmax
)

are negative.
After simplifications, (A.65) can be computed as:

Rinf(L) < ReTIM-hy
sum,opt (L) ≤ Rsup, (A.66)

where Rsup and Rin f (L) are defined for R̄φsum,Te
≤ rR̄φkmax

as:

Rsup := xeTIM

(
R̄φsum,Te

− rR̄φkmax

)
+NTdRu

0 + R̄φkmax

1 −
∑
k∈Td

xk

 , (A.67)

Rinf(L) := Rsup +
1
L

∑
k∈Td

R̄φk + R̄φsum,Te
− (NTd + r)R̄φkmax

 . (A.68)

It is worth mentioning that the upper bound Rsup does not depend on L. This concludes
Lemma 2.3’s proof for the case R̄φsum,Te

≤ rR̄φkmax
.

Case 2: R̄φsum,Te
> rR̄φkmax

. Using the floor function inequality: x − 1 < ⌊x⌋ ≤ x, we
obtain the following inequalities:

Lres

r
− 1 <

⌊Lres

r

⌋
≤

Lres

r
, (A.69)

which can be computed by adding the term nmin
eTIM and injecting (2.60) into (A.69) as:

L
(
1 −

∑
k∈Td

xk

)
r

− 1 < nmin
eTIM +

⌊Lres

r

⌋
≤

L
(
1 −

∑
k∈Td

xk

)
r

. (A.70)

After injecting (A.63) and (A.70) into (2.65), we obtain the following inequalities:

1
L


L

(
1 −

∑
k∈Td

xk

)
r

− 1

 (R̄φsum,Te
− rR̄φkmax

)
+

∑
k∈Td

(Lxk + 1)(R̄φk − R̄φkmax
)

 + R̄φkmax

< ReTIM-hy
sum,opt (L)

≤
1
L

L
(
1 −

∑
k∈Td

xk

)
r

(
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td

Lxk(R̄φk − R̄φkmax
)

 + R̄φkmax
,

(A.71)
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which can be simplified as:

Rinf(L) < ReTIM-hy
sum,opt (L) ≤ Rsup, (A.72)

where Rsup and Rinf(L) are defined for R̄φsum,Te
> rR̄φkmax

as:

Rsup :=

(
1 −

∑
k∈Td

xk

)
r

(
R̄φsum,Te

− rR̄φkmax

)
+QRu

0 + R̄φkmax

1 −
∑
k∈Td

xk

 , (A.73)

Rinf(L) := Rsup +
1
L

∑
k∈Td

R̄φk − R̄φsum,Te
− (Q − r)R̄φkmax

 . (A.74)

Similarly, in this case, the upper bound Rsup does not depend on L. This concludes
Lemma 2.3’s proof for the case R̄φsum,Te

> rR̄φkmax
.

Corollary A.2. Rsup is R̄eTIM-hy
sum,opt (L)’s limit when L→ +∞, which can formally be written as:

lim
L→+∞

ReTIM-hy
sum,opt (L) = Rsup. (A.75)

Proof. Case 1: R̄φsum,Te
≤ rR̄φkmax

.
Using Rsup and Rinf’expression defined in (A.67) and (A.68), respectively, we can derive
the following:

lim
L→+∞

Rinf(L) = Rsup, (A.76)

from which we can thus deduce that:

lim
L→+∞

ReTIM-hy
sum,opt (L) = Rsup. (A.77)

Case 2: R̄φsum,Te
> rR̄φkmax

.
Using Rsup and Rinf’s expression defined in (A.73) and (A.74), respectively, we can derive
the following:

lim
L→+∞

Rinf(L) = Rsup, (A.78)

from which we can thus deduce that:

lim
L→+∞

ReTIM-hy
sum,opt (L) = Rsup. (A.79)

□

A.3.8 Proof of Result 2.5

In this proof, we want to find the solutions of the following equation:

ReTIM-hy
sum,opt (L) = Rsup, (A.80)

with ReTIM-hy
sum,opt (L) and Rsup defined in (2.65) and (2.68), respectively.
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Case 1: R̄φsum,Te
≤ rR̄φkmax

. (A.80) can be rewritten as:

Rsup − ReTIM-hy
sum,opt (L) = 0. (A.81)

Plugging (2.65) and (2.68) into (A.81), we obtain:

neTIM

L

(
R̄φsum,Te

− rR̄φkmax

)
− xeTIM

(
R̄φsum,Te

− rR̄φkmax

)
+QRu

0 + R̄φkmax

1 −
∑
k∈Td

xk


−

1
L

∑
k∈Td

nmin
k

(
R̄φk − R̄φkmax

)
− R̄φkmax

= 0.

(A.82)

Using the following equalities:

QRu
0 − R̄φkmax

∑
k∈Td

xk =
∑
k∈Td

Ru
0 − R̄φkmax

∑
k∈Td

xk

=
∑
k∈Td

R̄φk xk − R̄φkmax

∑
k∈Td

xk

=
∑
k∈Td

xk

(
R̄φk − R̄φkmax

)
,

(A.83)

we inject (A.83) into (A.82) and we obtain the following:

(neTIM − LxeTIM)
(
rR̄φkmax

− R̄φsum,Te

)
+

∑
k∈Td

(
nmin

k − Lxk

)
(R̄φkmax

− R̄φk ) = 0. (A.84)

Then, by plugging (2.58a) and (2.58b) into (A.84), we equivalently obtain:

(⌈LxeTIM⌉ − LxeTIM)
(
rR̄φkmax

− R̄φsum,Te

)
+

∑
k∈Td

(⌈Lxk⌉ − Lxk) (R̄φkmax
− R̄φk ) = 0. (A.85)

Since this is a sum of positive terms which is equal to 0, each of these terms equals 0.
Thus, we can deduce the conditions on the solutions of (A.80) which can be written as:⌈Lxk⌉ = Lxk, ∀k ∈ Td\Kmax,

(⌈LxeTIM⌉ = LxeTIM) ∨
(
R̄φsum,Te

= rR̄φkmax

)
,

(A.86)

withKmax = {k|R̄
φ
k = R̄φkmax

}. We can then write the following conditions:Lxk ∈N
∗, ∀k ∈ Td\Kmax,

(LxeTIM ∈N
∗) ∨

(
R̄φsum,Te

= rR̄φkmax

)
,

(A.87)

Similarly, since we started our reasoning from (A.80), the conditions we have found in
(A.97) are necessary ones. However, as we have only used equivalence to find them, these
conditions are also sufficient.

Then, using the rates rationality assumption, we compute (peTIM, qeTIM) and (pk, qk),∀k ∈
Td using (2.70) and we deduce that the solutions of (A.80) are the set L ∈N∗ such that the
following conditions are satisfied:
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1. ∀k ∈ Td\Kmax, L is a multiplier of qk.

2. Either L is a multiplier of qeTIM or we have R̄φsum,Te
= rR̄φkmax

,

which concludes the proof for R̄φsum,Te
≤ rR̄φkmax

.

Case 2: R̄φsum,Te
> rR̄φkmax

.
After injecting (2.65) and (2.68) into (A.81) and after similar derivations as in the first

case, (A.81) can equivalently be expressed as:L
(
1 −

∑
k∈Td

Lxk

)
r

− neTIM −

⌊Lres

r

⌋ (R̄φsum,Te
− rR̄φkmax

)
+

∑
k∈Td

(⌈Lxk⌉ − Lxk)
(
R̄φkmax

− R̄φk
)
= 0,

(A.88)
from which we can derive the following equation:(

L −
∑

k∈Td
Lxk − neTIMr
r

−

⌊Lres

r

⌋) (
R̄φsum,Te

− rR̄φkmax

)
+

∑
k∈Td

(⌈Lxk⌉ − Lxk)
(
R̄φkmax

− R̄φk
)
= 0.

(A.89)
On the one hand, using the ceiling function inequality x ≤ ⌈x⌉, on nmin

k and neTIM, we can
deduce the following inequality:

L −
∑
k∈Td

Lxk − neTIMr ≥ Lres. (A.90)

On the other hand, using the flooring function inequality ⌊x⌋ ≤ x, on
⌊Lres

r

⌋
, we can deduce

the following inequality: ⌊Lres

r

⌋
≤

Lres

r
, (A.91)

Thus, using (A.90) and (A.91), we can deduce the positivity of the following term:(
L −

∑
k∈Td

Lxk − neTIMr
r

−

⌊Lres

r

⌋)
≥ 0. (A.92)

Therefore, we can deduce that (A.89) corresponds to a sum of positive terms which is
equal to 0. Thus, we can deduce the conditions on the solutions of (A.80) which can be
written as: 

⌈Lxk⌉ = Lxk ∀k ∈ Td\Kmax,

L −
∑

k∈Td
Lxk − neTIMr
r

=
⌊Lres

r

⌋
.

(A.93a)

(A.93b)

We solve the last equation of the system (A.93b) and we express the following equivalences
to find the conditions on the solutions of (A.80):

L −
∑

k∈Td
Lxk − neTIMr
r

=
⌊Lres

r

⌋
, (A.94)
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which is equivalent to the following:
L −

∑
k∈Td

Lxk − neTIMr
r

∈N∗,

L −
∑

k∈Td
Lxk − neTIMr
r

=
Lres

r
,

(A.95a)

(A.95b)

from which we equivalently deduce the following conditions:


⌈Lxk⌉ = Lxk, ∀k ∈ Td,

L
(

1 −
∑

k∈Td
xk

r

)
∈N∗.

(A.96a)

(A.96b)

Since the conditions in (A.93a) are included in the conditions in (A.96a), the conditions to
solve (A.80) can be written as:


Lxk ∈N

∗, ∀k ∈ Td,

L
(

1 −
∑

k∈Td
xk

r

)
∈N∗.

(A.97a)

(A.97b)

Similarly, since we started our reasoning from (A.80), the conditions we have found in
(A.97) are necessary. However, as we have only used equivalence to find them, these
conditions are also sufficient.

Then, using the rates rationality assumption, we compute (pk, qk),∀k ∈ Td using (2.70)
and (p0, q0) (2.72). Thus, we deduce that the solutions of (A.80) are the set L ∈ N∗ such
that the following conditions are satisfied:

1. ∀k ∈ Td, L is a multiplier of qk.

2. L is a multiplier of q0.

which concludes the proof for R̄φsum,Te
> rR̄φkmax

.
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Appendix related to Chapter 3

B.1 Scheduling with two simultaneous transmissions

B.1.1 Maximum likelihood estimation: Hessian matrix expression

Given samples S = (S1, ...,SN), the log-likelihood partial derivatives of ℓ(S;γ) defined in
(3.5), we calculate ℓ(S;γ)’s Hessian matrix Hℓ, whose (i, j)-th entry can be written as

[Hℓ]i j :=
∂2ℓ(S;γ)
∂γi∂γ j

, i, j = 1, 2, (B.1)

with ∂2ℓ(S;γ)
∂γ1∂γ2

=
∂2ℓ(S;γ)
∂γ2∂γ1

according to Schwarz’s theorem since ℓ(S;γ) is of class C2.

In the following, we provide the following second-order partial derivatives ∂2ℓ(S;γ)
∂γ2

1

and ∂2ℓ(S;γ)
∂γ2

2
which can be written as:

∂2ℓ(S;γ)
∂γ2

1

=

NS∑
i=1

−2Si

aγ3
1

−

(
a(1 + bγ2)

aγ1 + bγ2Si + abγ1γ2

)2

+ 2
(

a
aγ1 + bγ2Si

)2
∂2ℓ(S;γ)
∂γ2

2

= b2

2
NS∑
i=1

(
Si

aγ1 + bγ2Si

)2

−

NS∑
i=1

(
Si + aγ1

aγ1 + bγ2Si + abγ1γ2

)2


(B.2)

In the following, we derive the expression of ∂2ℓ(S;γ)
∂γ1∂γ2

. To do so, we first differentiate
∂ℓ(S;γ)
∂γ2

with respect to γ1 and we obtain the second-order partial cross-derivative of the
log-likelihood function which can be expressed as:

∂2ℓ(S;γ)
∂γ1∂γ2

=

NS∑
i=1

q′(γ1) +
2abSi(

aγ1 + bγ2Si
)2

 , (B.3)

with

q(γ1) :=
b(Si + aγ1)

aγ1 + bγ2Si + abγ1γ2
. (B.4)
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Differentiating (B.4) leads to q′(γ1) expression which can be written as:

q′(γ1) =
ab(aγ1 + bγ2Si + abγ1γ2) − b(Si + aγ1)a(1 + bγ2)

(aγ1 + bγ2Si + abγ1γ2)2

= −
abSi

(aγ1 + bγ2Si + abγ1γ2)2

(B.5)

Therefore, the second-order partial cross-derivative can be written as the following:

∂2ℓ(S;γ)
∂γ1∂γ2

=
∂2ℓ(S;γ)
∂γ2∂γ1

= ab
NS∑
i=1

Si

− 1(
aγ1 + bγ2Si + abγ1γ2

)2 +
2(

aγ1 + bγ2Si
)2

 (B.6)

Therefore, the Hessian matrix term expressions are provided in (B.2) and (B.6).

B.1.2 Method of moments

B.1.2.1 Theoretical moments derivation

The first and second-order theoretical moments ϕ1(γ) := E[S], ϕ2(γ) := E[S2] have been
computed in [109]. In this part, we detail how to derive them step by step using our
notations.

B.1.2.1.1 First-order moment of S

Using S definition in (3.2) and the expected value property, we obtain:

ϕ1(γ) =
"
R2
+

aγ1x1

1 + bγ2x2
e−x1e−x2 dx1 dx2

= aγ1

∫ +∞

0
x1e−x1 dx1︸             ︷︷             ︸
=1

∫ +∞

0

e−x2

1 + bγ2x2
dx2

(B.7)

Making the substitution t = x2 + 1/bγ2 yields:

ϕ1(γ) = aγ1
exp

(
1/bγ2

)
bγ2

E1(1/bγ2), (B.8)

with E1 the exponential integral function defined as E1(z) =
∫ +∞

z
e−t

t
dt.

Using the change of notations y = 1/(bγ2), we get the expression provided in (3.11).
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B.1.2.1.2 Second-order moment of S

Using S definition in (3.2) and the law of the unconscious statistician (LOTUS), ϕ2(γ)’s
expression can be written as:

ϕ2(γ) =
"
R2
+

(
aγ1x1

1 + bγ2x2

)2

e−x1e−x2 dx1 dx2

= (aγ1)2
∫ +∞

0
x2

1e−x1 dx1︸             ︷︷             ︸
=2

∫ +∞

0

e−x2

(1 + bγ2x2)2 dx2.
(B.9)

Making the substitution t = x2 + 1/bγ2, ϕ2(γ) can be expressed as:

ϕ2(γ) = 2(aγ1)2 e1/bγ2

(bγ2)2

∫ +∞

1/bγ2

e−t

t2 dt, (B.10)

which can be written after performing an integration by parts as the following:

ϕ2(γ) =
2(aγ1)2

bγ2

(
1 −

exp(1/bγ2)
bγ2

E1(1/bγ2)
)
, (B.11)

which corresponds to the expression in (3.11) when using the change of notations y =
1/(bγ2).

B.1.2.2 Proof of Result 3.2

Hereafter, we provide the derivations to get the MoM estimates γMoM = (γ1,MoM, γ2,MoM)
by solving (3.10). For the purpose of clarity, we simplify the notations in this part by
replacing γMoM = (γ1,MoM, γ2,MoM) by γ = (γ1, γ2).

Plugging (3.11) into (3.10) yields the following system to solve:
aγ1

exp
(
1/bγ2

)
bγ2

E1(1/bγ2) =M1

2(aγ1)2

bγ2

(
1 −

exp(1/bγ2)
bγ2

E1(1/bγ2)
)
=M2.

(B.12a)

(B.12b)

Next, we inject (B.12a) into (B.12b) and we obtain the following system:
aγ1

exp
(
1/bγ2

)
bγ2

E1(1/bγ2) =M1

2(aγ1)2

bγ2
−

2aγ1

bγ2
M1 =M2

(B.13)


aγ1

exp
(
1/bγ2

)
bγ2

E1(1/bγ2) =M1

γ2
1 −

M1

a
γ1 −

M2bγ2

2a2 = 0.

(B.14a)

(B.14b)
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We solve (B.14b) which is a second-order polynomial and we get γ1’s two possible
roots:

γ1 =
M1

2a

(
1 ±

√
1 + 2bγ2

M2

(M1)2

)
. (B.15)

Since γ1 is a positive value, its expression is provided by the positive solution from (B.15),
which can be written as:

γ1 =
M1

2a

(
1 +

√
1 + 2bγ2

M2

(M1)2

)
. (B.16)

Then, plugging (B.16) into (B.14a) yields to the following system:
γ1 =

M1

2a

(
1 +

√
1 + 2bγ2

M2

(M1)2

)
1 +

√
1 + 2bγ2M2/(M1)2

2
exp

(
1/bγ2

)
bγ2

E1(1/bγ2) − 1 = 0,

(B.17)

which corresponds to the system provided in (3.13) by setting ρ := M2/(M1)2 and fMoM

as defined in (3.14).

B.1.2.3 Function fMoM derivative

In this part, we provide the expression of f ′MoM which corresponds to the derivative of
fMoM. We remind that fMoM is defined in (3.14) and can be expressed as:

fMoM(z) = g1(z)g2(z)g3(z)g4(z) − 1 (B.18)

with g1(z) = 1/(2bz), g2(z) = 1 +
√

1 + 2bρz, g3(z) = exp(1/bz) and g4(z) = E1(1/bz).
Therefore, f ′MoM expression can be written as:

f ′MoM(z) =
4∑

i=1

g′i (z)
4∏

j=1 j,i

g j(z) (B.19)

with g′1(z) = −1/(2bz2), g′2(z) = bρ(1 + 2bρz)−1/2, g′3(z) = − exp(1/bz)/(bz2) and g′4(z) =
exp(−1/bz)/z.

Let us define g34(z) as the following:

g34(z) = g3(z)g4(z) = e1/bzE1

( 1
bz

)
(B.20)

After tedious calculations, we get f ′MoM expression which can be written as:

f ′MoM(z) = g1(z)
(
g′2(z)g34(z) +

g2(z)
z

(
1 −

g34(z)
bz

(1 + bz)
))
. (B.21)

Remark B.1. The notation g34(z) is defined to make the integral exponential computation easier.
Indeed, by taking the continued fraction formula approximation from [1, Chapter 5] to implement
the exponential integral, we notice that the product eyE1(y) is easier to implement than separately.
Moreover, for high values of y, computing the term ey can result in an infinite term which leads to
eyE1(y) being indefinite. In reality, the term eyE1(y) is well defined and equals 0 when y tends to
+∞.
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B.1.2.4 Proof of Result 3.3

B.1.2.4.1 Proofs of p1

The goal of this part is to find the limits of fMoM in 0+ whose expression is reminded in
the following:

fMoM(z) =
1 +

√
1 + 2bρz
2bz

exp (1/bz) E1 (1/bz) − 1, (B.22)

which can be written as:

fMoM(z) =
1 +

√
1 + 2bρz
2

J
( 1
bz

)
− 1, (B.23)

with J defined as the following:

J : R+ → R+

y 7→ yeyE1(y).
(B.24)

Using [49, Inequation (75)], we have the following inequality on J:

∀y > 0,
y

y + 1
< J(y) < 1, (B.25)

from which we deduce that limy→+∞ J(y) = 1. Therefore, using the limit of J(y) and
fMoM(z)’s expression from (B.23), we deduce p1 stating that:

lim
z→0+

fMoM(z) = 0. (B.26)

B.1.2.4.2 Proofs of p2

We consider function J defined in (B.24) and we perform the following change of variables:
t = s + y, yielding:

∀y ∈ R∗+, J(y) =
∫ +∞

y

yey−t

t
dt =

∫ +∞

0

ye−s

s + y
ds. (B.27)

Since the function (s, y) 7→
ye−s

s + y
converges simply to s 7→ 0 when y→ 0+ and is dominated

by the integrable function s 7→ e−s on R∗+, we can use the particular case of Lebesgue’s
dominated convergence theorem to get J’s limit in 0+ which states that the limit and
integral operator can be swapped:

lim
y→0+

J(y) =
∫ +∞

0
0ds = 0. (B.28)

Therefore, we deduce p2 stating that

lim
z→+∞

fMoM(z) = −1. (B.29)



158 B. Appendix related to Chapter 3

B.1.2.4.3 Proofs of p3

The aim of this part is to express f ′(0) which corresponds to limz→0+ f ′MoM(z) with f ′MoM
defined in (3.15). To do so, let us define G1 and G2 such that:

∀z > 0, f ′(z) = G1(z) + G2(z), (B.30)

with G1(z) and G2(z) defined as:

G1(z) :=
g′2(z)g34(z)

2bz
, (B.31)

G2(z) :=
g2(z)
2bz2

(
1 −

g34(z)
bz

(1 + bz)
)
. (B.32)

In the following, we will calculate G1 and G2’s limit in 0+ to find f ′MoM limit in 0+.

Limit of G1 Plugging the expressions of g′2(z) and g34(z) into (B.31) yields:

G1(z) =
bρ

2
√

1 + 2bρz
J
( 1
bz

)
(B.33)

Since we have limy→+∞ J(y) = 1, we can deduce that:

lim
z→0+

G1(z) =
bρ
2
. (B.34)

Limit of G2 Starting from E1, we integrate by parts three times to have the following
expression for all z > 0:

E1(y) =
e−y

y
−

e−y

y2 +
2e−y

y3 − 3
∫ +∞

y

e−t

t4
dt

=
e−y

y

(
1 −

1
y
+

2
y2 + q3(y)

)
,

(B.35)

with q3(z) = −3yey
∫ +∞

y
e−t

t4
dt.

In addition, we prove that q3(y) is dominated by
1
y2 with the following:

y2
|q3(y)| ≤ 3y3e−y

∫ +∞

y

e−t

y4
dt

≤
3
y
,

(B.36)

which tends to 0 when y→ +∞. Thus, q3(y) is dominated by
1
y2 which can be written as

follows using the Bachmann–Landau notation:

q3(y) = o
y→+∞

(
1
y2

)
. (B.37)
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Then, by plugging (B.35) and (B.37) into (B.24) yields:

J
( 1
bz

)
= 1 − bz + 2(bz)2 + o

z→0+
(z2), (B.38)

Finally, we plug (B.38) into (B.32) and we obtain after simplifications:

∀z > 0,G2(z) =
g2(z)

2

(
−b + o

z→0+
(1)

)
. (B.39)

Since we have lim
z→0+

g2(z) = 2, (B.39) can thus be written as:

lim
z→0+

G2(z) = −b. (B.40)

Finally, we deduce p3 which is:

lim
z→0+

f ′MoM(z) = b
(ρ

2
− 1

)
. (B.41)

B.1.3 Cramer-Rao lower bound

In this appendix, we derive the CRLB expression by providing the Fischer information
matrix components defined in equation (3.23). To do so, we determine the expected value
of the partial second derivatives of ℓ(S;γ) detailed in (B.6). In the following we calculate
Fischer information matrix components [I(γ)]11 , [I(γ)]12 , [I(γ)]21 , [I(γ)]22.

B.1.3.1 Deriving Cramer-Rao lower bound expression

B.1.3.1.1 Computing [I(γ)]11

By plugging (B.6) into (3.23), we can compute the first term [I(γ)]11 which can be written
as:

[I(γ)]11 := −E

∂2ℓ(S;γ)
∂γ2

1


= −NSE

−2S1

aγ3
1

−

(
a(1 + bγ2)

aγ1 + bγ2S1 + abγ1γ2

)2

+ 2
(

a
aγ1 + bγ2S1

)2
= −NS(A1 + I1 + A2),

(B.42)

where A1 := −
2

aγ3
1

E [S1],I1 := E

− (
a(1 + bγ2)

aγ1 + bγ2S1 + abγ1γ2

)2 and A2 := E

2 (
a

aγ1 + bγ2S1

)2.
Let us first express A1. By using the first order moment expression in (B.8), A1 can be

written as:

A1 = −
2

bγ2
1γ2

exp
(
1/bγ2

)
E1

(
1/bγ2

)
. (B.43)
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Second, let us express express I1. After applying the LOTUS, I1 can be expressed as:

I1 =

∫ +∞

0
−

a2(1 + bγ2)2

(aγ1 + bγ2y)2(aγ1 + bγ2y + abγ1γ2)
exp

(
−

y
aγ1

)
dy

=

∫ +∞

0
−

(1 + bγ2)2e−t

γ2
1(1 + bγ2t)2(1 + bγ2(t + 1))

dt, (change of variables: t = y/aγ1),
(B.44)

which is a non-closed form expression and requires a numerical integration.

Finally, A3 is computed by using the LOTUS and can be written as:

A2 =

∫ +∞

0

2a2(aγ1 + bγ2y + abγ1γ2)(
aγ1 + bγ2x

)4
exp

(
−

y
aγ1

)
dy

=
2
γ2

1

∫ +∞

0

1 + bγ2(t + 1)(
1 + bγ2t

)4
e−tdt, (change of variables: t = y/aγ1),

=
2
γ2

1

∫ +∞

0

e−t(
1 + bγ2t

)3 dt +
∫ +∞

0

bγ2e−t(
1 + bγ2t

)4
dt


=

2
γ2

1


∫ +∞

1

exp
(
−

u − 1
bγ2

)
bγ2u3 du +

∫ +∞

1

exp
(
−

u − 1
bγ2

)
u4

du


=

2 exp
(
1/bγ2

)
γ2

1

(∫ +∞

1

exp
(
u/bγ2

)
bγ2u3 du +

∫ +∞

1

exp
(
u/bγ2

)
u4

du
)

=
2 exp

(
1/bγ2

)
γ2

1

(
E3

(
1/bγ2

)
bγ2

+ E4
(
1/bγ2

))
,

(B.45)

where En(x) :=
∫ +∞

1
ext

tn dt is defined as the generalized exponential integral and follows
the following recurrence [1]:

∀n ≥ 1, En+1(x) =
1
n

(
e−x
− xEn(x)

)
. (B.46)

Let us define y := 1/bγ2. When using the recurrence (B.46), A2’s expression can be
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simplified as the following:

A2 =
2ey

γ2
1

(
yE3(y) + E4

(
y
))

=
2ey

γ2
1

(
yE3(y) +

1
3
(
e−y
− yE3(y)

))
using recurrence for E4

=
2

3γ2
1

(
2yeyE3(y) + 1

)
=

2
3γ2

1

(
2yey 1

2
(
e−y
− yE2(y)

)
+ 1

)
using recurrence for E3

=
2

3γ2
1

(
−y2eyE2(y) + y + 1

)
=

2
3γ2

1

(
−y2ey (

e−y
− yE1(y)

)
+ y + 1

)
using recurrence for E2

=
2

3γ2
1

(
y3eyE1(y) − y2 + y + 1

)
.

(B.47)

Thus, A2 expression can be written as:

A2 =
2

3γ2
1

exp
(
1/bγ2

)(
bγ2

)3 −
1(

bγ2
)2 +

1
bγ2
+ 1

 . (B.48)

Thus, [I(γ)]11 = −NS(A1 + I1 + A2).

B.1.3.1.2 Computing [I(γ)]22

Plugging (B.6) into (3.23) yields the expression of [I(γ)]22 which can be written as:

[I(γ)]22 := −E

∂2ℓ(S;γ)
∂γ2

2


= −NS(B1 + B2),

(B.49)

with B1 := E

− (
b(S1 + aγ1)

aγ1 + bγ2S1 + abγ1γ2

)2 and B2 := E

2 (
bS1

aγ1 + bγ2S1

)2.
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We simplify B1 and B2

B1 =

∫ +∞

0
−

(
b(y + aγ1)

aγ1 + bγ2y + abγ1γ2

)2 (aγ1 + bγ2y + abγ1γ2)
(aγ1 + bγ2y)2 exp

(
−

y
aγ1

)
dy

=

∫ +∞

0
−

b2(y + aγ1)2

(aγ1 + bγ2y + abγ1γ2)(aγ1 + bγ2y)2 exp
(
−

y
aγ1

)
dy

= b2
∫ +∞

0
−

(t + 1)2e−t

(1 + bγ2(t + 1))(1 + bγ2t)2 dt

B2 =

∫ +∞

0
2
(

by
aγ1 + bγ2y

)2 (aγ1 + bγ2y + abγ1γ2)
(aγ1 + bγ2y)2 exp

(
−

y
aγ1

)
dy

=

∫ +∞

0

(by)2(aγ1 + bγ2y + abγ1γ2)
(aγ1 + bγ2y)4

exp
(
−

y
aγ1

)
dy

= 2b2
∫ +∞

0

t2(1 + bγ2(t + 1))e−t

(1 + bγ2t)4
dt, (change of variables: t = y/aγ1).

(B.50)

Hence, we have

[I(γ)]22 = −NSI2, (B.51)

where

I2 := (B1 + B2)

=

∫ +∞

0
b2

(
−

(t + 1)2

(1 + bγ2(t + 1))(1 + bγ2t)2 +
2y2(1 + bγ2(t + 1))

(1 + bγ2t)4

)
e−tdt,

(B.52)

which is not a closed-form expression and, like (B.44), requires a numerical integration.

B.1.3.1.3 Computing [I(γ)]12 and [I(γ)]21

Plugging (B.6) into (3.23), we can compute [I(γ)]12 which is equal to [I(γ)]21. [I(γ)]21 can
be written as:

[I(γ)]21 = [I(γ)]12

= −E

[
∂2ℓ(S;γ)
∂γ1∂γ2

]
= NS(C1 + C2),

(B.53)

where C1 := E
[
−

abS1

(aγ1 + bγ2S1 + abγ1γ2)2

]
and C2 := E

 2abS1(
aγ1 + bγ2S1

)2

.
We simplify C1 and C2 by performing the change of variables t = y/aγ1 and obtain the
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following expressions:

C1 =

∫ +∞

0
−

aby
(aγ1 + bγ2y + abγ1γ2)(aγ1 + bγ2y)2 exp

(
−

y
aγ1

)
dy

=

∫ +∞

0
−

bte−t

γ1(1 + bγ2(t + 1))(1 + bγ2y)2 dt, (change of variables: t = y/aγ1),

C2 =

∫ +∞

0

2aby(aγ1 + bγ2y + abγ1γ2)(
aγ1 + bγ2t

)4
exp

(
−

y
aγ1

)
dy

=

∫ +∞

0

2bt(1 + bγ2(t + 1))e−t

γ1(1 + bγ2t)4
dt, (change of variables: t = y/aγ1).

(B.54)

Thus, [I(γ)]12 and [I(γ)]21 expression can be written as:

[I(γ)]12 = [I(γ)]21

= −E

[
∂2ℓ(S;γ)
∂γ1∂γ2

]
= −NSI3,

(B.55)

where

I3 := C1 + C2

=

∫ +∞

0

bt
γ1

(
−

1
(1 + bγ2(t + 1))(1 + bγ2y)2 +

2(1 + bγ2(t + 1))
(1 + bγ2t)4

)
e−tdt,

(B.56)

which also requires a numerical integration method.

B.1.3.2 Integral approximation with Gaussian quadrature

In this section, we describe integral approximation methods based on Gaussian quadra-
ture to implement the CRLB expressed in (3.24). First, the Gauss-Laguerre quadrature
and its limitations are provided, and then the Gauss-Kronrod quadrature, which is im-
plemented in the simulations, is described.

B.1.3.2.1 Gauss-Laguerre quadrature

In this section, we describe a technique that aims at approximating the integrals involved
in I1, I2 and I3 using Gauss-Laguerre quadrature (GLQ), which performs the following
integral approximation: ∫ +∞

0
e−x fI(x)dx ≈

NGLQ∑
i=1

wi fI(χi), (B.57)

where NGLQ is the GLQ order and, for i = 1, ...,NGLQ, χi is the ith root of Laguerre
polynomials LNGLQ(x) and the weights are given by wi =

χi

(NGLQ + 1)2LNGLQ+1(χi)2 [1]. It is

worth mentioning that the nodes χ1, ..., χNGLQ are chosen such that the approximation in
(B.57) is exact if fI(x) is a polynomial of degree 2NGLQ − 1 or less on [0,+∞].
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(a) fI2 for INR = 20 dB.
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(b) fI2 for INR = 30 dB.

Figure B.1: Integral approximation using a NGLQ = 1000 order GLQ.

Among the numerous types of Gaussian quadrature, GLQ seems to be the appropriate
choice since the integrals involved in I1, I2 and I3 contain the product of e−t and a
given function. However, static quadrature rules like GLQ fail to approximate integrals
when the integrand function contains integrable singularities. In Fig. B.1a and B.1b, we
respectively represent the following integrand function:

fI2 :=
2t2(ω + t + 1)2

− (t + 1)2(ω + t)2

(ω + t)4(ω + t + 1)
, (B.58)

which is used in (3.26) for INR = 20 and INR = 30 dB, and use the GLQ approximation
with order NGLQ = 1000. The first roots of the GLQ of the Laguerre polynomials with order
NGLQ = 1000 are given as follows: χ1 = 0.001445, χ2 = 0.007614 and χ3 = 0.01871. As
represented in Figs B.1a and B.1b, we can observe that for increasing INR, the peak of fI2(z)
moves to lower values of z. When the peak is located at the left of the first GLQ root χ1 =

0.001445 as illustrated in Fig. B.1b, its integral approximation using GLQ thus provides
poor performance. To deal with this issue, one naive solution is to increase the already
high order of the GLQ. Even though the complexity of the quadrature implementation
increases, it can be computed by using the efficient Golub and Welsch algorithm to
calculate Gauss-Laguerre roots [39]. Nevertheless, this scheme presents a scalability issue
since the maximum value that the INR can reach is unknown, which makes it difficult to
set the order NGLQ. Another solution is to implement adaptive quadrature which only
increases the number of interpolation points in specific subintervals which requires an
increased precision. In the next section, we describe an example of adaptive quadrature.
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B.1.3.2.2 Adaptive quadrature and Gauss-Kronrod quadrature

Adaptive quadrature is a numerical integration technique that consists in computing
adaptive refined intervals and applying a quadrature rule to them. Each interval is re-
cursively subdivided in subintervals until the integral error estimation is below a chosen
threshold. In the end, the intervals containing singularities are allocated more interpola-
tion points (higher Gaussian quadrature order), whereas the other intervals have fewer
interpolation points (lower Gaussian quadrature order). Although its implementation is
provided in [84], we described it in Algorithm B.1 for the sake of completeness.

Algorithm B.1: Adaptive quadrature algorithm [84].
procedure integrate( fI, a, b, ϵ).
Compute Q ≈

∫ b
a e−x fI(x)dx.

Compute ϵQ =
∣∣∣∣Q − ∫ b

a e−x fI(x)dx
∣∣∣∣.

if ϵQ > ϵ then

Compute m =
a + b

2
.

Update Q = integrate( fI, a, m, ϵ/2) + integrate( fI, m, b, ϵ/2).
Return Q.

Adaptive quadrature methods have the drawback of requiring to compute the error
estimation ϵQ defined as the following:

ϵQ =

∣∣∣∣∣∣Q −
∫ b

a
e−x fI(x)dx

∣∣∣∣∣∣ , (B.59)

with Q the proposed quadrature and fI the integrand function. Stoer and Burlisch [111]
have shown that the quadrature error to integrate fI requires computing the 2NGLQth
order partial derivative of fI. Since this term is very complex to calculate in our case, we
propose to use the Gauss-Kronrod quadrature (GKQ) which is an extension of the regular
Gaussian quadrature.

GKQ is a numerical integration that combines the Gaussian quadrature and the adap-
tive quadrature methods to achieve higher accuracy while being robust to integrable
singularities. To implement it, we first compute the Gaussian quadrature QGQ with or-
der NGQ which is obtained after computing its roots χ1, ..., χNGQ like in (B.57). Then,
the GKQ is initialized by using the nodes from the Gaussian quadrature and adding
NGQ + 1 additional nodes ζ1, ..., ζNGQ+1 to the same set, which leads to the quadrature
QGKQ. These additional nodes are chosen in such a way that the resulting quadrature can
exactly integrate polynomials of degree as high as possible. In other words, the resulting
quadrature QGKQ is of higher order than QGQ which means its approximation is of higher
performance. To that purpose, it can be proved that the additional nodes ζ1, ..., ζNGQ+1 to
compute GKQ are the roots of the Stieltjes polynomials [8]. Afterwards, to compute the
adaptive quadrature procedure from Algorithm B.1, the quadrature error is approximated
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as the following:
ϵGKQ =

∣∣∣QGKQ
−QGQ

∣∣∣ (B.60)

Many works have shown the efficiency of using such an error approximation using
properties on Stieltjes polynomials [41]. With this approximation error, an adaptive
quadrature method can be implemented as proposed in [105] which provides a Matlab
implementation of the GKQ by using the function integral. Its performance is illustrated
by comparing the integration using GLQ with NGLQ = 1000 nodes in Fig B.2a with the
one using GKQ in Fig. B.2b with NGKQ = 30 nodes which is much lower than with GLQ.
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(a) GLQ approximation, NGLQ = 1000 roots.
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(b) GKQ approximation, NGKQ = 30 roots.

Figure B.2: Comparison of integral approximation between GLQ and GKQ approximation
for a = 1, b = 1, SNR = 30 dB and INR = 30 dB.

B.2 Scheduling optimization with simultaneous transmissions

B.2.1 Proof of Lemma 3.4

Let p ∈N∗ and let us consider the networksG2p−1 andG′2p composed of 2p−1 and 2p nodes,
respectively. After applying the "divide-in-2" strategy on G2p−1, i.e. the transmissions
α1 =

(
1, ..., p

)
and α2 =

(
p + 1, ..., 2p − 1

)
, we obtain the following equalities:

Ldiv(2p − 1) = Ldiv(p), (B.61)

which is equal to L(Sdiv(2p)).

B.2.2 Proof of Result 3.6

In this section, we want to prove the following statement that we refer to as P(N):

∀N ≥ Nmin, Ldiv(N) = 2q + r, (B.62)
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where q :=
⌈
log2

( N
Nmin

)⌉
and r :=

⌈N
2q

⌉
.

To this end, we distinguish the cases when N is even or odd.

B.2.2.1 Case N is even.

In the following, we prove P(N) by strong induction, i.e. we first prove that the re-
sult is true for N = Nmin, i.e. P(Nmin), and then, after assuming that the propositions
P(Nmin), ...,P(N − 1), we prove it for P(N).

First, for proving P(Nmin), we obtain for N = Nmin the following: q = 0 and r = N,
which corresponds to the linear method that we use when N ≤ Nmin.

Second, to prove the induction step, we assume that P(m) holds for all m ∈ {Nmin, ...,N−
1} and we prove it for m = N. Using the assumption that N is even, the number of steps
of the "divide-in-2" scheduling applied to a network of N nodes can be expressed as:

Ldiv(N) = Ldiv(N/2) + 2. (B.63)

Using the induction hypothesis, (B.63) can then be written as:

Ldiv(N) = 2(q + 1) + r, (B.64)

with q =
⌈
log2

( N/2
Nmin

)⌉
and r =

⌈ N
2q+1

⌉
. Moreover, using the following equality:

q + 1 =
⌈
log2

( N/2
Nmin

)⌉
+ 1, (B.65)

which can be written after simplification as:

q + 1 =
⌈
log2

( N
Nmin

)⌉
, (B.66)

which proves the induction for N.

B.2.2.2 Case N is odd.

Since N is odd, there exists a value p ∈N∗ such that N = 2p − 1 with p ≥ 3 since Nmin ≥ 5.
According to Lemma 3.3, the following statement holds:

Ldiv(2p − 1) = Ldiv(2p). (B.67)

Plugging (3.48) into (B.67) yields the number of steps expression in the odd case which
can be written as:

Ldiv(2p − 1) = 2q + r, (B.68)

with q =
⌈
log2

(
2p

Nmin

)⌉
and r =

⌈
2p
2q

⌉
.
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Let q′ =
⌈
log2

(
2p − 1
Nmin

)⌉
and r′ =

⌈
2p − 1

2q

⌉
. On the one hand, we have q′ ≤ q. On the

other hand, we have:
q − 1 =

⌈
log2

( p
Nmin

)⌉
, (B.69)

which is strictly lower than q′ for p ≥ 3. Since q is an integer, then we can deduce that
q′ = q.

Similarly for r and r′, we have on the one hand r′ ≤ r, and on the other hand, we have:

r − 1 =
⌈

2p
2q

⌉
− 1, (B.70)

which can be reexpressed as:

r − 1 =
⌈

2p − 2q

2q

⌉
, (B.71)

which is strictly lower than r′ for q ≥ 1, which is the case for N ≥ Nmin.
As a consequence, since we have proved that q = q′ and r = r′, the statement in (B.67)

is proved.

B.2.3 Proof of Result 3.8

To have a successful scheduling method, all the nodes need to transmit exactly twice
during the cycle of m + 1 steps, while at maximum m nodes are allowed to transmit
simultaneously. This condition can be formulated as respecting the following inequality:

m(m + 1) ≥ 2N. (B.72)

Solving (B.72) leads to the following inequality:

m ≥
√

8N + 1 − 1
2

, (B.73)

from which we deduce the smallest value of m respecting (B.72), which can be expressed
as:

m ≥
⌈ √

8N + 1 − 1
2

⌉
. (B.74)

Since we have: L(S2TX) = m + 1, we deduce the number of steps of the "2-emission"
scheduling, which can be written as:

L2TX =

⌈ √
8N + 1 + 1

2

⌉
. (B.75)

B.2.4 Proof of Result 3.9

Since for N ≥ Nlimit, the "divide-in-2" method is applied, we can deduce from Result 3.6
that the number of steps for the mixed scheduling can be expressed as:

Lmix = 2qmix + L2TX(rmix), (B.76)
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with

qmix =

⌈
log2

(
N

Nlimit

)⌉
, (B.77)

rmix =
⌈ N

2qmix

⌉
. (B.78)

where Nlimit is the value such that if the resulting subnetworks size is lower than Nlimit,
we stop applying the "divide-in-2" method to the subnetworks. Thus, the size of the
largest subnetwork is rmix and is then treated with the "2-transmission" method. Hence,
the number of steps L2TX(rmix) can be computed using (3.50), which proves the result
provided in (3.51).

Moreover, the optimal value of Nlimit provided in (3.52) has been found numerically
with an exhaustive search for Nlimit = 5, ..., 1000. For each value of Nlimit, we have
computed the function N 7→ Lmix(N,Nlimit) for N = 5, ..., 1000. In the end, we have
numerically found that for Nlimit ∈ {21, ..., 28}, N 7→ Lmix(N,Nlimit) for N = 5, ..., 1000 is
always below the other functions Lmix(N,N′limit) for N′limit < {21, ..., 28}.
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