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Abstract

Data reliability in wastewater system management is crucial because of the direct implications
on operations. However, current approaches to data validation are often costly and/or lack
objectivity. This thesis explores advances in artificial intelligence to establish robust validation.
The establishment of a human validation pool shows that the average F1 score between
experts remains at 0.81, highlighting the inevitable human bias. The models tested, namely
Matrix Profile, ResNet and the Autoencoder, show promising results, with an F1 score of 0.96
for the latter, indicating an ability to effectively detect abnormal sequences in the time series.
Matrix Profile excels in non-supervised, ideal for low failure sites, while ResNet is useful in
more problematic contexts, which can justify a manual validation phase a priori. These findings
open up prospects for improved management of wastewater networks, based on data made
more reliable thanks to Al.

Keywords: Wastewater networks, Artificial intelligence, Sensors, Time series, Validation,
Anomalies, Matrix Profile, ResNet, Autoencoder



Resumeé

La fiabilité des données dans la gestion des réseaux d'eaux usées est cruciale en raison des
implications directes sur les opérations. Cependant, les approches actuelles de validation des
données sont souvent colteuses et/ou manquent d'objectivité. Cette thése explore les
avanceées en intelligence artificielle pour instaurer une validation robuste. La mise en place
d'un pble de validation humaine montre que le F1 score moyen entre experts reste a 0.81,
soulignant l'inévitable biais humain. Les modéles testés, a savoir Matrix Profile, ResNet et
I'Autoencodeur, présentent des résultats prometteurs, avec un F1 score de 0.96 pour ce
dernier, indiquant une capacité a détecter efficacement les séquences anormales dans les
séries temporelles. Matrix Profile excelle en non-supervisé, idéal pour des sites a faible
défaillance, tandis que ResNet se montre utile dans des contextes plus problématiques,
pouvant justifier une phase de validation manuelle a priori. Ces conclusions ouvrent des
perspectives pour une gestion améliorée des réseaux d'eaux usées, basée sur des données

fiabilisées grace a I'lA.

Mots-clés : Assainissement, Intelligence artificielle, Capteurs, Séries temporelles, Validation,

Anomalies, Matrix Profile, ResNet, Autoencodeur
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General Introduction

Context and issues

Let's take a moment to envision the coastal town of Saint-Malo, France, which is featured in
this study for generously providing us with data. Picture this beautiful seaside town with its
medieval architecture and the soothing sound of waves. However, behind this picturesque
scene lies a different reality. When heavy rain hits, there's a real risk of flooding — rivers
overflow, and the town faces the threat of being swamped by the sea [1]. However, this is just
one facet of the threats that loom over Saint-Malo. In the heart of the city, a more insidious
danger emerges through the sewer systems. During heavy rain, the water levels within these
networks rise significantly, leading to overflows and surreptitious infiltration through low points
in the system, impacting infrastructure and residents' quality of life.

In response to this latent threat, the city has deployed an array of control infrastructure,
including valves, non-return valves, and retention basins, aimed at preserving residents' safety
during potential flooding events [2]. However, this challenge is not exclusive to Saint-Malo but
extends to all municipalities with combined sewer systems, as well as those with undersized
stormwater networks [3]. Once the peak of precipitation has passed, whether treated or
untreated, water must inevitably be returned to the natural environment. Treatment facilities
are not designed to process all rainwater due to its high flow rate and lower pollutant
concentration [4]. For swimmers, shellfish farmers, and aquatic ecosystem whose health and
livelihoods depend on the quality of the natural environment, these discharges of polluted water
pose a serious threat. In a global context marked by climate change and water scarcity,
preserving the quality of natural environments becomes critical, both for the sustainability of

our communities and the protection of biodiversity [5] - [6].

Thus, sewer networks serve a dual role, aiming to protect the population against flooding and
to reduce pollutants discharged into receiving environments, including during rainfall events.
This mission aligns with the ongoing revision of the European directives on wastewater (DERU)
of 1991, the Water Framework Directive (DCE) of 2000, and the decree of July 31, 2020 [7]
regarding overflow obligations and compliance criteria for combined sewer systems. According
to these regulations, either the volumes of urban discharges or the pollutant flows released
into the natural environment must be continuously monitored, not exceeding 5% of the total

annual production of a sewer system. It is likely that this threshold will be reduced in the future

[8].
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Introduction

In this context, the monitoring of sewer networks takes on crucial importance: how can we

monitor and assess the proper functioning of a sewer network, ensuring the safety of residents

while preserving the quality of natural environments? The answer to this complex question

starts with the use of ...

...sensors, aresearch area at the heart of this study.

Beyond the response to regulatory constraints and the production of quantitative data to

assess pollutant pressures on water bodies, the need for knowledge regarding the origins,

transfers, and flows of pollutants in urban hydrology unites various stakeholders in the field [9].

This quest for knowledge assumes multifaceted dimensions contingent upon the distinct

perspective of each participant (see Figure 0-1) [10]:

Regulatory Dimension for Local Authorities and Control Entities: Local authorities and
regulatory bodies are under the obligation of adhering to stringent directives governing
water management and pollution reduction. In order to ensure compliance with
environmental standards, they require precise data and insights into the sources and
distribution of pollutants within sewage systems. This, in turn, assists in the formulation
of appropriate policies and regulations aimed at safeguarding water bodies and public
health.

Operational and Financial Aspect for Network Managers: Network managers
overseeing wastewater systems face substantial operational and financial challenges.
Understanding the flows of pollutants is imperative for optimizing network maintenance,
reducing the risk of flooding, minimizing unauthorized discharges, and ensuring the
efficient use of resources. Enhanced management translates into significant financial
savings while maintaining network performance.

Technical Component for Specialized Consultancies: Specialized consulting firms are
often engaged in designing infrastructure enhancements geared towards improving
sewage network performance. To do so effectively, they must possess a
comprehensive understanding of hydraulic functioning of the structure and pollutant
flows. This technical knowledge is crucial for the design of appropriate infrastructure,
tailored to the specific conditions of each structure and network.

Scientific Dimension for Researchers: Researchers are focused on unraveling the
dynamics of hydrological phenomena and comprehending the impact of pollution on
aquatic ecosystems. Their quest for understanding extends beyond regulatory and
operational requisites. They delve into the underlying mechanisms, develop predictive

models, and contribute to advancing knowledge in the field of urban hydrology.
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Operational requirements: I ’

. Technical requirements:
- Real-time management

. - Investment scheduling
- Maintenance
management - Wastewater management

. Territorial collectivity / planning
- Annual operating report Project owner

Network Eﬂgflil:;e;lng
operator / Research
ikl laboratory
Financial requirements: Scientific requirements:
- Evaluation of operating and - Understindlng of hydraulic
investment costs phenomena
- Adaptation of pricing policy Water ageT.cv/Water - Evaluating facilities
pofice performance

Regulatory requirements:

- Overflow monitoring and
permanent diagnostic

- Sewer network compliance
Figure 0-1: Different stakeholders and measurement objectives in wastewater
networks. Note: In italics, requirements using real-time data. Others use data in

offline mode.

Understanding the hydraulic functioning of these networks hinges on a baseline approach: the
monitoring of key points (which may be completed by other approaches such as modelling).
Measurement systems within wastewater networks typically rely on a set of permanent
monitoring points [11]. This monitoring necessitates the acquisition of various data at relatively

fine time intervals (typically a few minutes), including [12]:

- Precipitation intensity
- Water level, flow velocity & flow rate
- Quality measurement (turbidity, SS, temperature, H»S, pH, conductivity, etc.).

- Operating times of specific equipment (pumps, weirs, etc.)

This diversity of sensors used in the monitoring of wastewater networks has given rise to a
complex measurement infrastructure. This complexity arises from the fact that even for the
measurement of a single parameter, various types of sensors can be deployed [13]. For
instance, the water level can be measured using ultrasonic probes, radar sensors, or

piezoelectric sensors. Each of these sensors presents specific advantages and drawbacks in
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terms of reliability, precision, measurement range, and cost. Furthermore, the installation
conditions of sensors vary significantly. While some sensors remain permanently submerged,
others are consistently above the water surface. Certain sensors exhibit a high degree of
sensitivity to the installation environment (temperature, bubbles, suspended solids, ...),
necessitating regular maintenance to ensure their proper functioning. This diversity in sensor
types and installation conditions presents an additional challenge in the management of the

measurement infrastructure.

The wastewater network: an environment unlike any other

Figure 0-2: Sensors installed in wastewater network.
© (left) Duke’s — (middle) Inside Water Magazine — (right) 3D EAU.

Wastewater networks present a notably harsh environment for sensors, giving rise to multiple

malfunctions and substantial challenges:

- Clogging: Sensor clogging stands out as one of the most frequent issues. Owing to the
presence of debris, sludge, grease, and other solid matter in wastewater, as well as
microbial activity developing on immersed surfaces, sensors, particularly immersed
ones, are prone to rapid obstruction.

- Corrosion: The sewage network environment is often highly corrosive due to the
presence of aggressive chemical substances. Immersed sensors are exposed to
waters with varying pH levels, chlorides, and other corrosive compounds, which can
lead to swift deterioration of sensor components.

- Electronic Failures: Wet atmosphere and hydrogen sulfide emanations caused by
bacterial activity generate challenging conditions for every equipment: internal
electronic components of sensors, such as printed circuits, chips, or temperature
sensors, can experience failures. Additionally, electrical, or mechanical connections
between the sensor and the data collection system may exhibit defects, causing

disruptions in data transmission.
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External Environment: Exposed sensors, placed in pumping stations or inspection
chambers, face exposure to weather conditions, temperature fluctuations, and extreme
climatic factors. These factors can impact sensor reliability and necessitate adequate

protection.

A defective sensor equals invalid data

Typically, sensors are devices designed to transduce a physical quantity into a signal format

interpretable by computer systems. They function as essential interfaces between a system

and its external environment, providing insights into the state and behavior of the ongoing

process. In the event of a defect, an inaccurate representation of the physical quantity being

measured results. Consequently, a failure in the measurement system leads to the generation

of imprecise and ineffective measured signals/data [14].

Among the types of invalid data, the following can be observed (see Figure 0-3):

Missing Data: Absent values when they are expected according to the recording
strategy represent a clear information loss which can compromise the integrity of data
if a constant frequency is required.

Noisy Data: Random fluctuations or interference that make the data challenging to
interpret.

Calibration Errors: Poorly calibrated sensors can provide inaccurate measurements,
introducing bias or offset.

Saturated/Clipped Data: Data points that reach the upper or lower limits of the sensor's
measurement ranges.

Drifting Data: Data that exhibits a gradual shift or change in values over time.

——Rawdata ====-Missing data - === Noisy data

Measure
-
s
l”
Measure

Time Time Time

----- Calibration error —=--=--Clipped data = === Drifting data

Measure
AN
N
Measure

Time Time Time

Figure 0-3: Graphical representation of widespread malfunctions
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Problems arising from invalid data

These types of data issues can significantly impact the reliability and accuracy of the

information collected by sensors in various applications, including those in the realm of

wastewater management and urban hydrology. Here are some concrete examples of data

defects and situations in which incorrect data can cause problems:

Inconsistent Flow Measurements: Incorrect flow data can lead to a flawed assessment
of the network's ability to manage stormwater, potentially resulting in overflows,
flooding, and unauthorized discharges into water bodies.

Erroneous Water Quality Evaluation: Incorrect measurement of parameters such as
turbidity, pollutant concentration, or pH can result in errors in water quality assessment.
This can have serious consequences for aquatic organisms and public health.
Unnecessary Overloads at Wastewater Treatment Plants: Incorrect data on the
pollutant load in wastewater can lead to a deterioration in water treatment quality as
well as unnecessary expenses for treatment at the wastewater treatment plant, with a
significant financial impact.

False Overflow Alarms or Lack Thereof: Overflow alarm sensors that trigger
unnecessarily due to incorrect data can lead to inefficient resource utilization.
Conversely, a sensor that fails to trigger during a potential overflow risk can

compromise the safety of structures and individuals.

These examples illustrate how incorrect data can disrupt the effective management of

wastewater networks, leading to additional costs, public health risks, and environmental

damage. Ensuring data reliability in these systems is essential to avoid such issues.

= Irrespective of the purpose behind data utilization, whether for regulatory, operational, or
scientific endeavors, the reliability of data is of paramount importance in the realm of
wastewater management. It's worth noting that this reliability is not a given in wastewater
networks due to the challenging nature of the installation environment, which can

significantly amplify malfunctions and compromise data quality.

The quest for reliable data in the wastewater field: what are the current means?

Prior to using the data for hydraulic studies, regulatory document production, overflow

monitoring, or modeling purposes, measurements must undergo a validation process aimed at

ensuring their reliability [15]. The objective is to identify and eliminate aberrant data.
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In most common cases, data validation procedures are carried out manually, using data
processing and visualization tools [16]. Various data analysis techniques, ranging from simple
statistical rules to more sophisticated methods, may be employed. Generally, two levels of
validation are distinguished: automatic validation (pre-validation) occurs at real-time or near
real-time supervision level (e.g., on a daily basis). It aims at detecting obvious faults by
considering the physical range of the measured parameter. For example, the selection of an
appropriate sensor can already filter out out-of-range measurements. Data loss can be easily
identified through relatively simple rules, provided that the acquisition strategy has a regular
data acquisition frequency. Moreover, measurement blocking or saturation can be identified
based on measurement stability over a given period and measurement accuracy. A sudden
variation is detected by evaluating the gradient between two measurements. These calculation
rules can be directly implemented in supervisory software to automate this validation [17].

However, the pre-validation does not identify all potential defects. Thus, it is generally
supplemented by manual validation performed by an operator, whose goal is to assess the
overall plausibility of the obtained results. The operator examines a series of data involving
multiple variables to understand the dynamics of phenomena and the context of each
measurement. The pre-validation and manual validation operations are time-consuming, often

requiring the involvement of a dedicated team or the use of an external service provider.

Given the high number of equipped points and the high data acquisition frequency in the
context of wastewater networks [18], these manual approaches quickly become tedious due
to the time required for repetitive work!. Moreover, fully eliminating subjectivity from the
validation process and the inherent human error can be challenging. It is therefore important
to develop new approaches that will facilitate the validation tasks carried out by the various
stakeholders involved (operators, engineers, researchers, etc.), enabling them to use their
expertise for more rewarding tasks. The aim is therefore to provide automatic or semi-

automatic data validation tools.
Data validation in the era of artificial intelligence

In the realm of Artificial Intelligence (Al), the issue of data validation is commonly referred to
as "anomaly detection”. Al has proven its efficacity in data validation across various disciplines.
Al-driven algorithms are employed for data validation in areas like cybersecurity and medicine,

where the volume of collected data is substantial, and the presence of anomalous data can

1 By experience feedback, it takes around a month of work to an operator to validate the previous year's

overflow monitoring data, issued from a wastewater system of around 10 000 EH
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have significant implications. In such contexts, automated validation often fails short and
manual validation would entail prohibitive time and cost. Being in a somewhat analogous
operational validation context, Al emerges as a lever of action and a path to explore within the
scope of this thesis.

According to the CNIL (Commision nationale de I'informatique et des libertés), Al is not a
technology in its own right, but rather a scientific field in which tools can be included if they
meet certain criteria. Al is a logical, automated process, generally based on algorithms,
capable of performing well-defined tasks close to those of human reasoning [19]. In the realm

of Al applications, it is common to distinguish three levels (see Figure 0-4).

* It uses explicit rules, symbolic representations and logical
.. » algorithms to model intelligence (expert systems).
Tra d It I 0 n a I AI * Creating these systems often involves manually
programming complex rules, making it laborious and
limiting the ability to process unstructured data.

® |t is a subset of Al in which computer systems learn from

- - data

M aCh l ne Lea rn I ng ( M I_) ¢ Instead of explicitly programming rules, ML algorithms use
data to train and enhance their performance in specific

tasks

s |t is a subcategory of ML that focuses on artificial neural

. networks
Deep Lea rn I ng (DI-) * Theses networks, inspired by the human brain’s

functioning, can learn patterns from vast and complex data

Figure 0-4: Levels of artificial intelligence

In the field of hydrology, there are several instances of data validation based on Al, especially
in assessing the quality of rivers and drinking water [20] - [21]. However, to the best of our
knowledge, these tools have not yet been evaluated for wastewater data at the urban network
scale. This thesis, as its title suggests, aims to explore Al tools, with an emphasis on both ML
and DL, to improve the data validation process in the context of wastewater networks. The

objective is to simplify the task of various stakeholders who utilize this data.

= Today, the main approaches used to validate data from wastewater networks combine
automatic validation based on statistics with manual validation carried out by an operator
at a later time. The former remains superficial in view of the range of potential faults. The
latter is reliable (though not infallible), but costly and time-consuming. Al tools aim to
streamline the process, making it more efficient for stakeholders. Although Al-driven data
validation is common in hydrology, it's yet to be fully evaluated in urban wastewater
networks.
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Objectives and thesis outline

The motivation for this thesis stems from the fact that the installation of sensors in wastewater
networks has become common practice to ensure rigorous management and direct
interpretation of ongoing phenomena. However, due to the substantial volumes of data
generated by these sensors, collected at variable time intervals, and acquired in harsh
environments, the resulting data often suffer from inaccuracies. In this context, data validation
becomes indispensable. The current landscape of deployed tools often highlights laborious

approaches based on statistical rules, supplemented by domain-specific analysis.

The contribution of this research lies in its focus on automated validation of measurement data
from a wastewater network. This approach explores Al techniques to detect sensor failures.
The primary objective is to guide decision-making and streamline the validation process,
making it more efficient. It is important to emphasize that this validation is exclusively carried
out post data collection, a decision justified by the prevalent data processing domains (see
Figure 0-1), which often operate with a time delay (e.g., regulatory document edition,
phenomenological analysis, research and development).

To implement and evaluate these tools, we used pollution data from the wastewater network
of Saint Malo Agglomeration (SMA). It is noteworthy that this type of data is hot commonly
encountered in wastewater networks. Typically, network managers focus on hydrometric
measurements (such as water level, velocity, and flow rate). Those who assess pollutant flows
rely on spot sampling or proportional sampling to the volume discharged. Nevertheless, the
use of continuous pollution monitoring is starting to gain ground, supported by research needs
where continuous pollution monitoring is frequently used. Over the past three decades,
numerous sensors, including turbidimeters, have been deployed and tested to gain insights
into pollution flows [11]. Hence, the choice of this data is motivated by two fundamental
reasons. Firstly, from an operational perspective, the data from SMA represent an easily
accessible database, for which a certain degree of "truthfulness" is guaranteed, rendering them
particularly suitable for this study. Additionally, from a scientific standpoint, pollution data
proves to be among the most challenging to validate due to their rapid and fluctuating
dynamics, particularly for turbidimeters. This study serves as a proof of concept with the

potential to extend to various measurements within wastewater networks.
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The entirety of the results obtained during this research is presented in this PhD manuscript.
Part I: Literature Review

This first section will provide an overview of the current state of research on data validation in
wastewater networks by covering the existing methodologies and approaches as well as the
associated challenges. In the first chapter, we will examine the data of urban wastewater
networks, highlighting the specific characteristics of these data and defects that may occur in
these systems. The second chapter will delve into existing data validation approaches,
focusing on data quality checks and different validation methods, whether manual, statistics or
based on hydraulic modelling. Finally, the third chapter will introduce a framework for data
validation enhanced by artificial intelligence, exploring existing anomaly detection models

using Al in urban hydrology.
Part 1l: Material and Methods

The material and methods section is the essential foundation for understanding the
implementation of our model evaluation. In chapter 4, we present the database used for the
development of the various tests and for the evaluation of our models, namely turbidity data
from the SMA wastewater system. We detail the process of data collection and acquisition,
before looking at their statistical analysis and understanding their dynamics. Subsequently, we
will develop an expert and manual data validation process that will be the baseline against
which the results of the Al models will be compared. We will also highlight one of the key
problems of this process namely human subjectivity, which drives us to organize a validation
pool. Chapter 5 constitutes our benchmark of the models to be evaluated by examining their
principles and how they are adapted to our case study, their architectures, and how each can
be used for anomaly detection and data validation, by providing an overview of the various
tests that will be conducted thereafter. Finally, in chapter 6, we dive into the metrics that will
evaluate the performance of Al models vis-a-vis the reference, as well as the metrics that will

evaluate the subjectivity among the different experts in our validation pool.
Part lll: Results and Analysis

The objective of this section is to present the results of the various tests, their implementation
conditions, and a critical analysis of the results. The seventh chapter is an in-depth exploration
of the concordance between the annotators via different metrics in order to evaluate their
agreement and estimate the bias related to their disagreement. This process makes it possible
to decide on the relevance of the manual approach of validation: does it have solid foundations

or is it a random and/ or trivial validation ? Chapters 8, 9 and 10 provide the results of the
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different tests using the three models of our benchmark, namely Matrix Profile, ResNet and
Autoencoder respectively. We begin with an exploration of the sensitivity of results to input
data, addressing aspects such as data preprocessing. Then, we focus on the fine-tuning of the
hyperparameters of each model. The analysis and diagnosis of the results make it possible to
identify the strengths and weaknesses of each model, leaving room for improvement strategies
whose purpose is to explore different approaches that may improve the results. Finally, we
evaluate generalization to other sites from the same agglomeration before investigating

multivariate approaches.

The final chapter of this section serves as an extension of the research scope, exploring data
from a different source, such as conductivity data from the wastewater network of Saint Malo
Agglomeration and the water level data from the wastewater network of Wallonia, Belgium. It
will detail the acquisition of this data, the validation methodologies applied, and the unique
challenges associated with this data type. This chapter provides a comparative dimension that
allows us to conclude on the potential of the developed tools with regards to a new type of
data.

Conclusion and Perspectives

The final chapter synthesizes the findings and insights from the previous chapters. It will draw
conclusions based on the results obtained, assessing the research objectives, and addressing
the research questions. Furthermore, this chapter will outline potential prospects for future
research, highlighting areas where the study can be expanded or refined. It will underscore the
scientific and practical implications of the research and its contributions to the field of

wastewater network management and data validation.

Context of the thesis

This PhD thesis was conducted within the company 3D EAU, supervised by the fluid
mechanics laboratory ENGEES-ICUBE in Strasbourg. This laboratory uniquely brings together

two scientific communities situated at the intersection of the digital and physical worlds.

3D EAU, as an engineering consulting firm, applies hydraulic modeling tailored to the specific
context of each project. This includes using these models during the project's design phase to
validate and optimize the proposed structure, in the diagnostic phase to analyze and enhance
existing structures, and during the instrumentation phase to determine the number, position,

and type of sensors to meet regulatory requirements.

With an ongoing commitment to innovation, supported by a strong collaboration with the ICUBE

laboratory, 3D EAU has supervised four theses in various disciplines, all related to hydraulics
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and the field of water. The acquisition of 3D EAU by Groupe Alcom in November 2022 has
strengthened the connection between the environment and artificial intelligence, placing this
thesis at the heart of the group's strategic development by establishing bridges between

different entities.

Scientific contributions

During this PhD, several contributions to the research field have been achieved. Two articles

as first author and three conferences proceeding have been published.

Conferences

e Congres ASTEE — Dunkerque 2022 — Comment l'intelligence artificielle peut simplifier
le processus de validation des données ?

e Journées Information Eaux 2022 - Développement de méthodologies et d’outils de
validation de données — Application aux données d’autosurveillance et de diagnostic
permanent des réseaux d’assainissement.

e Journées Doctorales en Hydrologie Urbaine 2022 - Utilisation de [lintelligence

artificielle pour la détection d’anomalies dans les mesures de pollution.

Scientific articles
e Techniques Science et Méthodes 2022 - Utilisation de l'intelligence artificielle pour la
validation des mesures en continu de la pollution des eaux usées.
https://doi.org/10.36904/tsm/202211039 (Prix des lecteurs de TSM 2022).

o Water science and technology 2023 - Validation of wastewater data using artificial

intelligence tools and the evaluation of their performance regarding annotator
agreement. https://doi.org/10.2166/wst.2023.174
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The objective of this section is to provide an in-depth overview of the current state of research
on data validation in urban wastewater networks, the existing methodologies and the

associated challenges by answering the following questions:

e What specific characteristics of urban wastewater system data should be
considered when validating data, and what types of defects may occur in these
systems?

o What are the current approaches to validate wastewater data, starting from
automatic pre-validation checks to validation methods, whether manual,

statistical or based on hydraulic modelling?

¢ How can artificial intelligence be integrated into a data validation framework, and

what are the existing Al-driven anomaly detection models in urban hydrology?
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In response to a diverse range of regulatory, technical, and scientific requirements (see Figure
0-1), it is becoming increasingly common to intensify the deployment of sensors within
wastewater networks. This intensification is referred to as a measurement network, which
consists of a series of sensors, their configuration being tailored to reflect the structure of the
wastewater network. So, sensors are placed at strategic locations (see Figure 1-1). A
measuring point can aggregate data collected from one or more sensors. Several types of

measuring point can be distinguished [22]:

e Transfer points: These points are designed to measure flows or concentrations of pollutants
along the sewer network, transferred from upstream to downstream. Sensors are thus
installed in transit pipes, pumping stations, storage basins, etc.

e Discharge points: These points, corresponding to storm overflows and overflows, are
designed to evaluate flows discharged into the environment without treatment.

e Treatment plant inlets and outlets: These measuring points, at wastewater treatment plants
(WWTPSs), are used to assess water quantities and pollution levels in order to adjust

treatment processes.

Urban wastewater network

Legend: "’, ] ‘ O .

Storm Overflow Wastewater collector Discharge pipe Flow direction Transfer points Discharge points WWTP inlet / outlet

Figure 1-1: Outline of urban wastewater network with the identification of

different measurement points
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Measurements cover a wide range of parameters. In wastewater networks, excluding
mechanical elements such as digital sensors, pump operations or inclinometer openings,
measurable parameters can be categorized into two main groups: hydrometry (flow) and
quality (pollution). The selection of parameters to be measured is closely tied to the chosen
measurement point and the underlying issues. This includes considerations such as
measurement conditions, costs and reliability. It should be noted that identical information can

be obtained by measuring different parameters [23].

Table 1: Examples of measurement probes in wastewater networks
Category Assessment methodology Probes used
Flow measurement Magnetic flow meter ...
Level probes (ultrasonic sensors,

Level to Flow conversion
pressure sensors, ...)

Hydrometry .
_ _ Level probes + Velocity probes
Level-Velocity-Flow conversion _
(doppler, profilometer, ...)
Tracing / Gauging Tracer injection and monitoring
Qualit Sampling campaign Spot sampling (SS, CDO, BDOs)
uali
U Correlations Turbidimeter, conductivity meter

Among the aforementioned measurements (see Table 1), those that are obtained directly and
continuously include water level, velocity, turbidity, and conductivity. However, once these
sensors are in place, they generate a substantial volume of data. The key challenge is to

integrate them into a harmonious and efficient data monitoring system.

1.1 Measurement network monitoring

Like any measurement system, the transition from sensor to data involves a measurement and
transmission chain that must be carefully designed, considering the specific characteristics of
the installation environment. These characteristics encompass the availability of electrical
power, the network coverage, the geographical location of the site (urban, rural), as well as
considerations related to investment and operational costs. This chain can be divided into three
distinct phases: data acquisition, transmission, and supervision (see Figure 1-2). For the
purposes of this study, the focus will be exclusively on the data acquisition and supervision
phases, while guidelines and best practices for data transmission are already available in the

specialized scientific literature [24] , [13].
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* Sensors ¢ Communication ¢ Archiving
* Frequency ¢ Centralization
* Filtering * Processing

Figure 1-2: Measurement chain

1.1.1 Data acquisition

The initial stage of the measurement process, i.e., data acquisition, is of fundamental

importance [25]. First and foremost, the appropriate choice of sensor is crucial to ensure

accurate measurement of the phenomenon of interest. This selection is based on an analysis

of the structure's configuration, leading to the identification of the appropriate sensor, the

required measurement range, considering any dead zones, and the optimal location, aimed at

reconciling the representativeness of the measurement and the accessibility of the device.

The second phase of the process involves configuring the sensor's frequency and acquisition

strategy. This configuration is based on two major concepts, which are programmed by means

of algorithms within the sensor itself:

Sampling frequency: This involves interrogating sensor transmitters and temporarily
storing one or more successive values before the final recording, which can be made
at a lower frequency. Sampling frequency plays a crucial role in the system's ability to
detect variations in measured values. Consequently, it must be adjusted according to
the speed of the phenomenon under observation. For example, for rapid phenomena
such as a discharge, a fine scanning frequency is required, whereas for slower
phenomena, such as water level variation in a storage basin, a lower scanning
frequency may be appropriate. Power consumption and battery capacity constraints

must also be considered, particularly in the case of remote devices.

Recording (or transmission) frequency: This frequency is constrained to prevent
unnecessary overloading of data storage, transfer, and processing capacity. It is, by
definition, equal to or lower than the sampling frequency. The recorded value is often
pre-processed data, typically the average or median of the scanned values. Typical
frequencies in wastewater management usually range from one minute to an hour.
Higher frequencies are commonly associated with monitoring or analyzing specific
phenomena, while lower frequencies are more suitable for the purposes of overall

assessment or system dimensioning.
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From an operational point of view, the recording frequency can be adapted according to the
occurrence of a specific phenomenon. Let's consider a scenario involving a water level or
velocity sensor in a discharge pipe. In the absence of rainfall events, this pipe is generally
inactive, and the sensor records mainly zero values. Consequently, we don't need a detailed
representation of the phenomenon. The recording of a few values to show that the sensor is
indeed operational is sufficient. But, when a rainfall event occurs, the pipe is put under stress,
and measurement becomes essential. Spills are often of short duration, which requires a fine

recording frequency.

To reconcile these two constraints, a non-constant recording frequency may be adopted,
which is based on a threshold value exceedance criterion. For example, the use of an overflow
detector (digital sensor) in the inlet pipe can trigger a change in recording frequency as soon
as the water level exceeds a predefined threshold. Typically, the recording frequency is
changed from approximately 15 minutes to intervals of 1 or 5 minutes. This strategy spares
data storage and processing, whereas a constant recording frequency makes the detection of

missing values much easier

Therefore, understanding the data acquisition strategy is of crucial importance before
beginning to process the information gathered. It is essential to know the origin of the data,
i.e., how it was collected, as well as the representativeness of the measurement. This prior
knowledge provides a foundation for correctly interpreting the data and drawing meaningful

conclusions.

1.1.2 Data management (supervision)

Once measurements are carried out, they are transferred to the supervision level, creating a
time chronicle, i.e., a continuous temporal sequence of data. In this context, it is essential to
retain the time stamp of each recorded value, associating a precise time indication with each
data point. This guarantees the chronological integrity of the information, which is essential for
subsequent analysis and for understanding the evolution of the measured phenomena over
time. In addition, it is important to maintain timestamps of missing data, as in many cases data
are sampled asynchronously, meaning that measurements are not taken at regular intervals,
and their frequency can vary according to circumstances. These data constitute a dynamic
database, which must be properly archived for future use. It is therefore essential to associate
each time sequence of data with its static characteristics, commonly referred to as metadata.
This metadata includes information such as the location of the measurement, the quantity
measured and its unit, as well as the data acquisition strategy. This association is achieved by
assigning a unique identification code to each time sequence. The aim is to ensure data

traceability.
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Subsequently, data from all sensors is aggregated into a centralized system, enabling large-
scale analysis and comparison of collected data. For this centralization and data processing,
supervision software, such as Topkapi or Eve'M for wastewater management domain, can be
used. These programs facilitate the management, storage, and visualization of data for macro-
analysis. In addition, it is worth noting that information on on-site interventions can also be
valuable, and their traceability is ensured by maintaining a logbook. The logbook is used to
record actions taken, adjustments and maintenance operations, thus helping to comment on
the collected data. This data is then processed according to specific objectives and needs.

This is generally the stage at which data validation takes place.
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Figure 1-3: Example of supervision software: Eve’M - © SIGT

1.2  Special features of data in wastewater networks

Compared to conventional temporal data, wastewater data has distinct characteristics. The
pattern of these data can vary considerably due to a number of factors, including weather
conditions, human behavior, and the intrinsic characteristics of the wastewater system itself.
In fact, the sewer network can be supplied by two main means: residential / industrial
wastewater pipes and rainwater evacuation drains. In combined sewer networks, the two flows
are mixed, and it is therefore imperative to consider the interactions between wastewater and

stormwater dynamics, in terms of data structure.

The first significant characteristic of these data is their seasonal nature, closely linked to the
succession of periods without precipitation (dry weather) and periods with rainy events (rainy
weather), as well as evapotranspiration and the conditioning of effective rainfall.
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In dry weather, combined sewer systems mainly used for wastewater collection present a
distinctive daily pattern. It is characterized by significant variations throughout the day (see
Figure 1-4). A daily flow peak occurs in the morning and early evening, corresponding to
periods of high domestic activity, when water consumption and wastewater generation are
high. It should be noted that flow peaks and this temporal profile during the weekdays differ
from those on weekends and holidays due to variations in residents' habits, such as waking up
late, for example. As a result, the structure of dry weather wastewater data shows a dual

seasonality, i.e., a day/night variation and a variation according to weekdays and holidays.

During the overnight, a drop in flow rate is observed due to the substantial reduction in
domestic activity. It should be noted, however, that this night-time drop is not null (see Figure
1-4). In fact, this is related to two main phenomena, namely the transit time in the wastewater
system and the inflow of parasitic clear water due to imperfectly sealed networks and non-
compliant connections [26]. For the former, transfer times from upstream to downstream can
be significant, extending over periods of 10 to 20 hours. As a result, daytime wastewater from
distant areas is superimposed on nighttime wastewater from nearby areas, maintaining a
continuous flow even during the night. On the other hand, inflow clear water is unpolluted water
that is continuously present in wastewater systems. Its origin can be attributed to a variety of
factors, such as water source intake, permanent groundwater drainage or drinking water leaks.
This superimposition of the two phenomena must therefore be taken into account for a better

understanding of hydraulic dynamics in wastewater systems.
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Figure 1-4: Example of a typical dry weather data pattern in a wastewater

network
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When rainy weather occurs, combined sewer networks undergo important changes in their
data structure. Two major phenomena are added to the dynamics observed in dry weather:

runoff and drainage.

Runoff occurs when rain falls on the impermeable surfaces of urban areas, such as roads and
roofs, and then flows towards the wastewater network via sewer drains. This runoff combines
with domestic wastewater, resulting in a sudden increase in flow. This rise may be short-term,
but can be very intense, creating considerable flow peaks in the data. It's also important to
note that not all rainfall events are the same. Indeed, depending on factors such as rainfall
intensity, the size of the watershed and the level of soil sealing, the impact on the wastewater
system may differ. Rainfall events are generally categorized according to their return period,
which is a statistical concept indicating the frequency with which a rainfall event of a certain
intensity can occur [27].

Drainage occurs during and after a rainy period when urban surfaces begin to dry out. It is
associated with a gradual decrease in flow through the network. The duration of this process
can vary according to the intensity of precipitation, extending over several hours or even days.

Thus, during rainy periods, the data structure is characterized by rapidly rising flow peaks of
varying amplitude, followed by a gradual decrease. Separating the components specific to
wastewater and stormwater under these conditions can be complex but their overlapping

should be considered in understanding the structure of the recorded data.

1.3 Defects in wastewater systems

As previously mentioned, the wastewater network represents a complex and challenging
measurement environment, increasing the risk of failures and highlighting the imperative of

implementing validation processes.

1.3.1. Defining invalid data

Invalid data in wastewater networks are observations that do not accurately reflect the
hydraulic behavior of the network at a given time. However, a distinction must be made

between two categories of invalid data [28] - [29]:

e Incorrect data
Incorrect data generally refers to data points that do not reflect what is happening in the
network. These are often described as errors or outliers and are generally attributable to
failures in the measurement chain. The most common malfunctions causing anomalies are as

follows:
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- Loss of contact between the measuring sensor and the phenomenon being measured, due
to problems such as fouling, clogging, or blockage.

- Mismatch between sensor output signal and measured variable, resulting from general
sensor failure or parameterization errors. Problems such as a faulty sensor, electrical
failure, acquisition electronics malfunctions, drifts, de-calibrations can cause these types of
errors.

- Time registration errors, due to clock drifts, incorrect time setting, or recording problems.

These problems can lead to a temporal shift in the data.

In other words, incorrect data in wastewater networks is often the result of various hardware

and sensor failures.

e Non-representative data
Non-representative data, as opposed to incorrect data, refers to observations that are different
or unprecedented. Unlike anomalies, these unusual data are not necessarily wrong. It is
possible to obtain accurate measurements, but these do not adequately reflect the
phenomenon of interest due to disturbing events that mask them. Non-representative data can

result from various situations, including:

- Sensor maintenance, involving operations such as on-site calibration or zero checking.

- Wastewater network maintenance, such as pipe cleaning.

- Changes in network configuration affecting wastewater flow, for example, when effluent is
diverted for construction work.

- Special hydrological events, such as extreme rainfall or exceptional tides.

- Downstream influence when it has not been considered when setting up the

instrumentation.

Although these events do not affect the accuracy of the data, they do not reflect the normal
operation of the sewer network. Consequently, their interpretation requires an approach
distinct from that applied to usual measurements. From an operational point of view, identifying
these data requires access to exogenous data, such as the logbook with information on
network management, meteorological conditions, the level of the receiving environment, and

other relevant factors.

In the context of this thesis, all forms of invalid data, including both incorrect and non-
representative data, will be collectively referred to as "anomalies." For admittedly
different reasons, both categories of invalid data encompass observations that do not
accurately represent the hydraulic behavior of the network, and it is therefore important to

isolate them for operational considerations. The central focus of this work is on the
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Chapter 1. Wastewater data in urban networks

identification of these anomalies during the validation process. Subsequent steps, such as
the removal of invalid data or their potential replacement, fall outside the scope of this
thesis. The aim here is to perform rigorous data validation and pinpoint defects, while

decisions on how to manage these anomalies are left to the discretion of the user and for future
works.

1.3.2. Categorizing anomalies

Anomalies in non-sequential data are often defined as data instances that significantly deviate
from the majority of instances. However, defining anomalies in time series data is challenging
due to temporal correlations among observations [30]. Existing studies often adopt outlier
definitions from non-sequential data. Specifically, they define outliers in sequential data
through behavior analysis and categorize them into point, contextual, and collective outliers

[29] - [31]. Figure 1-5 illustrates these three types of outliers that often serve as a de-facto
standard.
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Figure 1-5: Examples of different type of anomalies in red.
(Top left) Point outlier - (Top right) Contextual anomaly — (Below) Collective
anomaly

* Point outliers are individual instances that are anomalous with respect to the rest of the data.
Let's imagine water level data collected in a 500 mm diameter pipe by a US probe. In the
middle of the measurement chronicle, the water level suddenly rises to 600 mm, well above
the normal range and measurement capacity of the sensor. This single, significantly higher
measurement is an example of a point outlier.
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+ Contextual outliers are individual instances that are anomalous within a specific context.
Contextual outliers typically have relatively larger/smaller values within their specific context
but not globally. Some points may be normal in one context but detected as anomalies in
another. Let's take a look at the water level data collected in a sewer system. During a rainfall
event, the water level rises in line with the intensity of the rain and the response of the
hydrological basin, then gradually falls in response to network drainage. However, during a
rainy event, we can observe water level that drops sharply and can remain low for several
hours, while still being of the same order of magnitude as the dry weather pattern. In this
context, this drop is abnormal, as it does not correspond to the seasonal trend. However, if we
consider this sequence during the dry season, it may appear normal. This is an example of a

contextual outlier.

+ Collective outliers are defined as collections of related data instances that are anomalous in
relation to the entire dataset. Individual points within a collective outlier may not be anomalous
by themselves, but their co-occurrence constitutes an outlier. Collective outliers are common
in sequential data due to the often-strong dependencies among time points. There are cases
where individual points are not anomalous, but a sequence of points is labeled as an anomaly.
If wastewater level data in a sewer system show that every day for a week, the water level
rises slightly but steadily at a constant rate, this may seem normal at the individual level, since
each individual value falls within the usual measurement range. However, when we look at the
week as a whole, we realize that the sequence of constant rises is not expected and does not
correspond to habitual behavior. In this case, the sequence of constant rises over several days

is an example of a collective outlier.

While the above categorization covers both individual instances and sequential instances,
defining collective and contextual outliers can be complex due to context ambiguity [30]. For
simplicity, contextual and collective data will be collectively referred to as sequence
anomalies since they both involve outliers across multiple time points. Identifying the latter is
often considered more challenging than point outliers and is extensively explored in the
literature [32] - [33]. Having a priori knowledge of the type of anomaly in the data helps data
analysts select the appropriate detection method. Some approaches that can detect point
anomalies may fail to identify collective or contextual anomalies. The complexity of wastewater

data lies in the fact that it can exhibit both point outliers and anomalous subsequences.

1.4 Focus on turbidity data

Wastewater effluent quality can be characterized by numerous parameters. Usually, this

information is accessed via laboratory analysis, requiring on-site samples, which proves to be

Page 24 of 356



Chapter 1. Wastewater data in urban networks

a time-consuming, costly method, and not well suited to regular monitoring, particularly during
periods of heavy rainfall. Such analyses provide only a limited view of the phenomena, due to
their significant temporal variability. Hence, turbidity measurement proves to be the most
practical technique for obtaining continuous, real-time information on effluent quality over long
periods. Turbidity sensors installed at transit points, discharge points or at the inlet/outlet of a
WWTP provide data on the particulate load, the main vector of pollution in wastewater systems,
whether for raw effluent in dry or rainy weather. Continuous measurement of turbidity makes
it possible to effectively monitor these dynamics. The main advantage of turbidity lies in its
ability to be measured continuously, offering excellent temporal sampling, unlike traditional
parameters such as suspended solids (SS) and chemical oxygen demand (COD), which

require limited sampling [34].

e Turbidity measurement

Turbidity in effluent is mainly due to suspended solids (SS), which are particles larger than
0.45 ym. In wastewater effluent, turbidity values are closely related to SS concentrations.
Studies have shown that most turbidity in wastewater is due to particles in the 10 to 20 pm
range [35]. Technically, turbidimetry is based on measuring the transparency of a liquid,
without requiring the use of reagents. A turbidimeter evaluates the effluent's ability to absorb
or scatter light [36]. Two techniques commonly used in wastewater treatment are attenuation
and diffusion, and the value measured depends on the technology employed, hence the use
of distinct units such as Formazin Turbidity Units (FAU) and Nephelometric Turbidity Units
(FNU). In the wastewater domain, the recommended measurement ranges are 0 to 2000 FAU
for attenuation measurement, and 0 to 1000 FNU for diffusion measurement. In practice,
turbidity values are generally between 50 and 1000 FAU or between 25 and 500 FNU.

e Turbidimeter sensitivity
Nowadays, turbidimetry is proving to be a useful management tool for wastewater systems.
However, it is essential to note that its use requires constant maintenance and control, along
with budgetary resources. To guarantee reliable measurements, it is advisable to choose
locations with adequate effluent mixing (without any bubbles), thus ensuring representative
measurements, while remaining accessible to simplify maintenance operations. Turbidimeters,
specifically designed for wastewater treatment, can be equipped with automatic cleaning
systems, although they remain intrusive and require accurate installation and regular
maintenance to prevent macrofouling. In general, maintenance should be carried out 1 to 4
times a month, while verification/calibration operations can take place every 6 months to one

year.
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e Acquisition strategy

Optimizing measurement reliability involves an appropriate acquisition strategy, including
suitable signal processing. In many operational applications, it is not necessary to retain the
full dynamic range of the signal, and it is often sufficient to work with average values, possibly
weighted according to flow rates. To guarantee the reliability of these averages, real-time
processing of data collected from redundant sensors is recommended. In the absence of
redundancy, it is useful to record the standard deviation of the values that have contributed to
the average, thus facilitating the identification of suspect recordings, which can then be
invalidated. In this case, it is preferable to record data at a finer time step than is strictly
necessary for the application, thus creating a safety margin. In the absence of real-time
processing capabilities, it is advisable to record instantaneous values at a short time step,
enabling representative averages to be calculated at a later date. For example, a recording
with a time step of one minute is a minimum for calculating averages over periods of 5 to 10
minutes. Short time-step recordings are also suitable for research, enabling a detailed
understanding of the dynamics of the phenomena under study [37].

e Signal dynamics
In addition to the seasonal and periodic characteristics of wastewater data, the turbidity signal,
even in dry periods, exhibits rapid and significant fluctuations that reflect real variations in
effluent quality. This finding is supported by recordings from three redundant sensors, sampled
every 10 seconds (see Figure 1-6) [37]. It is important to note