
HAL Id: tel-04639689
https://theses.hal.science/tel-04639689

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced data validation methods for wastewater
sensors using Artificial Intelligence

Imane Zidaoui

To cite this version:
Imane Zidaoui. Advanced data validation methods for wastewater sensors using Artificial Intel-
ligence. Fluids mechanics [physics.class-ph]. Université de Strasbourg, 2024. English. �NNT :
2024STRAD006�. �tel-04639689�

https://theses.hal.science/tel-04639689
https://hal.archives-ouvertes.fr


 

 

 

ÉCOLE DOCTORALE MATHÉMATIQUES, SCIENCES DE 
L’INFORMATION ET DE L’INGÉNIEUR 

Laboratoire des sciences de l’ingénieur, de l’informatique et de 
l’imagerie 

(ICube) – UMR 7357 

 

THÈSE présentée par : 

Imane ZIDAOUI 
 

soutenue le : 06 mai 2024 
 

 

pour obtenir le grade de : Docteur de l’Université de Strasbourg 

Discipline/ Spécialité : Hydraulique urbaine 

 

Advanced Data Validation Methods for 
Wastewater Sensors Using Artificial 

Intelligence 
 
 

THÈSE dirigée par: 
Pr. VAZQUEZ José   Professeur, ENGEES, Université de Strasbourg 

 
RAPPORTEURS: 

M. RODRIGUEZ Fabrice  Chercheur IDTPE, Université Gustave Eiffel 
Pr. COUTURIER Raphaël   Professeur, Université de Franche-Comté 
 

 
AUTRES MEMBRES DU JURY: 

Pr. FORESTIER Germain    Professeur, Université de Haute-Alsace 
Pr. WEMMERT Cédric   Professeur, Université de Strasbourg 
M. JOANNIS Claude   Consultant indépendant, CJ Conseil 
Mme. ISEL Sandra   Chef d’agence, 3D EAU Strasbourg 
M. WERTEL Jonathan   Directeur général, 3D EAU 

 

  

 

UNIVERSITÉ DE STRASBOURG 
 



ii 

 

 

  



iii 

 

Acknowledgments 
“If it doesn’t challenge you, it won’t change you” – Fred DeVito 

These words perfectly sum up the essence of my PhD journey. This adventure has not been 

without its difficulties, but each challenge I have encountered has enabled me to mature, both 

academically and personally. Before sharing with you the fruit of these three years of research 

work devoted to the use of artificial intelligence in the service of data validation, I would like to 

express my gratitude to all those who have contributed, directly or indirectly, to the 

achievement of this thesis. 

First of all, I would like to express my sincere thanks to 3D EAU for funding this thesis, and in 

particular to Jonathan Wertel, CEO of 3D EAU, for his confidence in allowing me to carry out 

this innovative research within his teams. 

I would also like to express my gratitude to all the members of the jury who agreed to assess 

my research work. My warmest thanks go to Professors Jean-Luc Bertrand Krajewski and 

Raphaël Couturier for taking the time to read and review this paper. I am also thankful to 

Professor Germain Forestier for agreeing to evaluate this work. 

Without the invaluable help of José Vazquez, this thesis would never have seen the light. He 

patiently guided me through my first steps in urban hydraulics as a first-year student at 

ENGEES and introduced me to the world of research. His support and confidence greatly 

influenced my choices of specialty and thesis. I am infinitely grateful to him for his guidance 

throughout these years. 

I would also like to express my gratitude to Matthieu Dufresne and Sandra Isel for their warm 

welcome to the Strasbourg team. Their kindness, attentive supervision and sound advice have 

greatly contributed to the quality of this research work. My special thanks go to Claude 

Joannis for his support in validating the data and his enlightened advice, which enriched my 

thinking and sharpened my critical mind. His high-quality feedback contributed greatly to the 

completion of this manuscript. My thanks also go to Cédric Wemmert for his guidance in 

learning artificial intelligence and programming. His availability and constant support have 

been invaluable throughout this work. I'm grateful to have had the opportunity to work with 

such a remarkable team, and I won't forget the constructive and stimulating exchanges we had 

during our monthly meetings. 

Special thanks to Saint Malo Agglomeration and SPGE of Wallonia for their invaluable 

contribution in making available measurement data from their wastewater systems. 



iv 

 

A PhD also relies heavily on moral support. So, I'd like to express my gratitude to those who 

have been there for me every day. Gabriel Guibu Pereira, thank you for our discussions over 

a cup of coffee. I look forward to tackling many R&D challenges together at 3D EAU. A big 

thank you also to Thibaud Maire for his constant support, good humor and attentive listening. 

Your new passion for AI is stimulating, and I can't wait to develop lots of things together. Finally, 

I can't forget Angel Manjarres, with whom I shared part of this adventure, our theses being 

practically synchronized. Thank you for our long conversations on the docks and for your 

unfailing support along the way. 

A sincere thank you also to my friends, both in Morocco and in France. Your support has been 

of paramount importance to me. I know I'm probably forgetting many people, but I want to 

assure you of my gratitude for your presence and for your contribution to the development of 

this work. 

، دعمكما غيرنادية وعبد الخالقأخيراً و ليس آخراً، أنا مدينة بالامتنان لعائلتي التي كانت مرساتي في هذه العاصفة.   

حسنة مها وبدر الدين والمشروط وتضحياتكما وإيمانكما الثابت بي طوال الوقت منحتني القوة للمثابرة. إلى إخوتي،  ، 

، أشكرك على كونك مشجعي وعلى تذكيري دائمًا بأننيأيوبإلى توأم روحي،    .أشكركم على وقوفكم الدائم إلى جانبي  

. لن أنسى أبداً جدي الذي ظل ينادينيلذكرى أجداديوأخيراً أود أن أهدي هذا العمل  .لست وحدي في هذه الرحلة  

ل هذا اللقب، وكأن الأمر كانبالدكتورة إيمان، وكنت أشرح له دائماً أنني أدرس الهندسة وليس الطب. وها أنا اليوم أحم  

 مقدراً. محبتكم لم تفارقني أبداً، وأعلم أنكم ترعونني أينما كنتم 

  



v 

 

Abstract 
Data reliability in wastewater system management is crucial because of the direct implications 

on operations. However, current approaches to data validation are often costly and/or lack 

objectivity. This thesis explores advances in artificial intelligence to establish robust validation. 

The establishment of a human validation pool shows that the average F1 score between 

experts remains at 0.81, highlighting the inevitable human bias. The models tested, namely 

Matrix Profile, ResNet and the Autoencoder, show promising results, with an F1 score of 0.96 

for the latter, indicating an ability to effectively detect abnormal sequences in the time series. 

Matrix Profile excels in non-supervised, ideal for low failure sites, while ResNet is useful in 

more problematic contexts, which can justify a manual validation phase a priori. These findings 

open up prospects for improved management of wastewater networks, based on data made 

more reliable thanks to AI.  

Keywords: Wastewater networks, Artificial intelligence, Sensors, Time series, Validation, 

Anomalies, Matrix Profile, ResNet, Autoencoder  
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Résumé 
La fiabilité des données dans la gestion des réseaux d'eaux usées est cruciale en raison des 

implications directes sur les opérations. Cependant, les approches actuelles de validation des 

données sont souvent coûteuses et/ou manquent d'objectivité. Cette thèse explore les 

avancées en intelligence artificielle pour instaurer une validation robuste. La mise en place 

d'un pôle de validation humaine montre que le F1 score moyen entre experts reste à 0.81, 

soulignant l'inévitable biais humain. Les modèles testés, à savoir Matrix Profile, ResNet et 

l'Autoencodeur, présentent des résultats prometteurs, avec un F1 score de 0.96 pour ce 

dernier, indiquant une capacité à détecter efficacement les séquences anormales dans les 

séries temporelles. Matrix Profile excelle en non-supervisé, idéal pour des sites à faible 

défaillance, tandis que ResNet se montre utile dans des contextes plus problématiques, 

pouvant justifier une phase de validation manuelle à priori. Ces conclusions ouvrent des 

perspectives pour une gestion améliorée des réseaux d'eaux usées, basée sur des données 

fiabilisées grâce à l'IA.  

Mots-clés : Assainissement, Intelligence artificielle, Capteurs, Séries temporelles, Validation, 

Anomalies, Matrix Profile, ResNet, Autoencodeur   
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General Introduction 
 

Context and issues 

Let's take a moment to envision the coastal town of Saint-Malo, France, which is featured in 

this study for generously providing us with data. Picture this beautiful seaside town with its 

medieval architecture and the soothing sound of waves. However, behind this picturesque 

scene lies a different reality. When heavy rain hits, there's a real risk of flooding – rivers 

overflow, and the town faces the threat of being swamped by the sea [1]. However, this is just 

one facet of the threats that loom over Saint-Malo. In the heart of the city, a more insidious 

danger emerges through the sewer systems. During heavy rain, the water levels within these 

networks rise significantly, leading to overflows and surreptitious infiltration through low points 

in the system, impacting infrastructure and residents' quality of life. 

In response to this latent threat, the city has deployed an array of control infrastructure, 

including valves, non-return valves, and retention basins, aimed at preserving residents' safety 

during potential flooding events [2]. However, this challenge is not exclusive to Saint-Malo but 

extends to all municipalities with combined sewer systems, as well as those with undersized 

stormwater networks [3]. Once the peak of precipitation has passed, whether treated or 

untreated, water must inevitably be returned to the natural environment. Treatment facilities 

are not designed to process all rainwater due to its high flow rate and lower pollutant 

concentration [4]. For swimmers, shellfish farmers, and aquatic ecosystem whose health and 

livelihoods depend on the quality of the natural environment, these discharges of polluted water 

pose a serious threat. In a global context marked by climate change and water scarcity, 

preserving the quality of natural environments becomes critical, both for the sustainability of 

our communities and the protection of biodiversity [5] - [6]. 

Thus, sewer networks serve a dual role, aiming to protect the population against flooding and 

to reduce pollutants discharged into receiving environments, including during rainfall events. 

This mission aligns with the ongoing revision of the European directives on wastewater (DERU) 

of 1991, the Water Framework Directive (DCE) of 2000, and the decree of July 31, 2020 [7] 

regarding overflow obligations and compliance criteria for combined sewer systems. According 

to these regulations, either the volumes of urban discharges or the pollutant flows released 

into the natural environment must be continuously monitored, not exceeding 5% of the total 

annual production of a sewer system. It is likely that this threshold will be reduced in the future 

[8]. 
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In this context, the monitoring of sewer networks takes on crucial importance: how can we 

monitor and assess the proper functioning of a sewer network, ensuring the safety of residents 

while preserving the quality of natural environments? The answer to this complex question 

starts with the use of … 

…sensors, a research area at the heart of this study. 

Beyond the response to regulatory constraints and the production of quantitative data to 

assess pollutant pressures on water bodies, the need for knowledge regarding the origins, 

transfers, and flows of pollutants in urban hydrology unites various stakeholders in the field [9]. 

This quest for knowledge assumes multifaceted dimensions contingent upon the distinct 

perspective of each participant (see Figure 0-1) [10]: 

• Regulatory Dimension for Local Authorities and Control Entities: Local authorities and 

regulatory bodies are under the obligation of adhering to stringent directives governing 

water management and pollution reduction. In order to ensure compliance with 

environmental standards, they require precise data and insights into the sources and 

distribution of pollutants within sewage systems. This, in turn, assists in the formulation 

of appropriate policies and regulations aimed at safeguarding water bodies and public 

health. 

• Operational and Financial Aspect for Network Managers: Network managers 

overseeing wastewater systems face substantial operational and financial challenges. 

Understanding the flows of pollutants is imperative for optimizing network maintenance, 

reducing the risk of flooding, minimizing unauthorized discharges, and ensuring the 

efficient use of resources. Enhanced management translates into significant financial 

savings while maintaining network performance. 

• Technical Component for Specialized Consultancies: Specialized consulting firms are 

often engaged in designing infrastructure enhancements geared towards improving 

sewage network performance. To do so effectively, they must possess a 

comprehensive understanding of hydraulic functioning of the structure and pollutant 

flows. This technical knowledge is crucial for the design of appropriate infrastructure, 

tailored to the specific conditions of each structure and network. 

• Scientific Dimension for Researchers: Researchers are focused on unraveling the 

dynamics of hydrological phenomena and comprehending the impact of pollution on 

aquatic ecosystems. Their quest for understanding extends beyond regulatory and 

operational requisites. They delve into the underlying mechanisms, develop predictive 

models, and contribute to advancing knowledge in the field of urban hydrology.  
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Figure 0-1: Different stakeholders and measurement objectives in wastewater 

networks. Note: In italics, requirements using real-time data. Others use data in 

offline mode. 

Understanding the hydraulic functioning of these networks hinges on a baseline approach: the 

monitoring of key points (which may be completed by other approaches such as modelling). 

Measurement systems within wastewater networks typically rely on a set of permanent 

monitoring points [11]. This monitoring necessitates the acquisition of various data at relatively 

fine time intervals (typically a few minutes), including [12]: 

- Precipitation intensity 

- Water level, flow velocity & flow rate  

- Quality measurement (turbidity, SS, temperature, H2S, pH, conductivity, etc.). 

- Operating times of specific equipment (pumps, weirs, etc.) 

This diversity of sensors used in the monitoring of wastewater networks has given rise to a 

complex measurement infrastructure. This complexity arises from the fact that even for the 

measurement of a single parameter, various types of sensors can be deployed [13]. For 

instance, the water level can be measured using ultrasonic probes, radar sensors, or 

piezoelectric sensors. Each of these sensors presents specific advantages and drawbacks in 
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terms of reliability, precision, measurement range, and cost. Furthermore, the installation 

conditions of sensors vary significantly. While some sensors remain permanently submerged, 

others are consistently above the water surface. Certain sensors exhibit a high degree of 

sensitivity to the installation environment (temperature, bubbles, suspended solids, …), 

necessitating regular maintenance to ensure their proper functioning. This diversity in sensor 

types and installation conditions presents an additional challenge in the management of the 

measurement infrastructure. 

The wastewater network: an environment unlike any other 

   

Figure 0-2: Sensors installed in wastewater network.  

© (left) Duke’s – (middle) Inside Water Magazine – (right) 3D EAU. 

Wastewater networks present a notably harsh environment for sensors, giving rise to multiple 

malfunctions and substantial challenges: 

- Clogging: Sensor clogging stands out as one of the most frequent issues. Owing to the 

presence of debris, sludge, grease, and other solid matter in wastewater, as well as 

microbial activity developing on immersed surfaces, sensors, particularly immersed 

ones, are prone to rapid obstruction. 

- Corrosion: The sewage network environment is often highly corrosive due to the 

presence of aggressive chemical substances. Immersed sensors are exposed to 

waters with varying pH levels, chlorides, and other corrosive compounds, which can 

lead to swift deterioration of sensor components. 

- Electronic Failures: Wet atmosphere and hydrogen sulfide emanations caused by 

bacterial activity generate challenging conditions for every equipment: internal 

electronic components of sensors, such as printed circuits, chips, or temperature 

sensors, can experience failures. Additionally, electrical, or mechanical connections 

between the sensor and the data collection system may exhibit defects, causing 

disruptions in data transmission. 
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- External Environment: Exposed sensors, placed in pumping stations or inspection 

chambers, face exposure to weather conditions, temperature fluctuations, and extreme 

climatic factors. These factors can impact sensor reliability and necessitate adequate 

protection. 

A defective sensor equals invalid data 

Typically, sensors are devices designed to transduce a physical quantity into a signal format 

interpretable by computer systems. They function as essential interfaces between a system 

and its external environment, providing insights into the state and behavior of the ongoing 

process. In the event of a defect, an inaccurate representation of the physical quantity being 

measured results. Consequently, a failure in the measurement system leads to the generation 

of imprecise and ineffective measured signals/data [14]. 

Among the types of invalid data, the following can be observed (see Figure 0-3): 

- Missing Data: Absent values when they are expected according to the recording 

strategy represent a clear information loss which can compromise the integrity of data 

if a constant frequency is required. 

- Noisy Data: Random fluctuations or interference that make the data challenging to 

interpret. 

- Calibration Errors: Poorly calibrated sensors can provide inaccurate measurements, 

introducing bias or offset. 

- Saturated/Clipped Data: Data points that reach the upper or lower limits of the sensor's 

measurement ranges. 

- Drifting Data: Data that exhibits a gradual shift or change in values over time. 

Figure 0-3: Graphical representation of widespread malfunctions 
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Problems arising from invalid data 

These types of data issues can significantly impact the reliability and accuracy of the 

information collected by sensors in various applications, including those in the realm of 

wastewater management and urban hydrology. Here are some concrete examples of data 

defects and situations in which incorrect data can cause problems: 

• Inconsistent Flow Measurements: Incorrect flow data can lead to a flawed assessment 

of the network's ability to manage stormwater, potentially resulting in overflows, 

flooding, and unauthorized discharges into water bodies. 

• Erroneous Water Quality Evaluation: Incorrect measurement of parameters such as 

turbidity, pollutant concentration, or pH can result in errors in water quality assessment. 

This can have serious consequences for aquatic organisms and public health. 

• Unnecessary Overloads at Wastewater Treatment Plants: Incorrect data on the 

pollutant load in wastewater can lead to a deterioration in water treatment quality as 

well as unnecessary expenses for treatment at the wastewater treatment plant, with a 

significant financial impact. 

• False Overflow Alarms or Lack Thereof: Overflow alarm sensors that trigger 

unnecessarily due to incorrect data can lead to inefficient resource utilization. 

Conversely, a sensor that fails to trigger during a potential overflow risk can 

compromise the safety of structures and individuals. 

These examples illustrate how incorrect data can disrupt the effective management of 

wastewater networks, leading to additional costs, public health risks, and environmental 

damage. Ensuring data reliability in these systems is essential to avoid such issues. 

 Irrespective of the purpose behind data utilization, whether for regulatory, operational, or 

scientific endeavors, the reliability of data is of paramount importance in the realm of 

wastewater management. It's worth noting that this reliability is not a given in wastewater 

networks due to the challenging nature of the installation environment, which can 

significantly amplify malfunctions and compromise data quality. 

 

The quest for reliable data in the wastewater field: what are the current means? 

Prior to using the data for hydraulic studies, regulatory document production, overflow 

monitoring, or modeling purposes, measurements must undergo a validation process aimed at 

ensuring their reliability [15]. The objective is to identify and eliminate aberrant data. 
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In most common cases, data validation procedures are carried out manually, using data 

processing and visualization tools [16]. Various data analysis techniques, ranging from simple 

statistical rules to more sophisticated methods, may be employed. Generally, two levels of 

validation are distinguished: automatic validation (pre-validation) occurs at real-time or near 

real-time supervision level (e.g., on a daily basis). It aims at detecting obvious faults by 

considering the physical range of the measured parameter. For example, the selection of an 

appropriate sensor can already filter out out-of-range measurements. Data loss can be easily 

identified through relatively simple rules, provided that the acquisition strategy has a regular 

data acquisition frequency. Moreover, measurement blocking or saturation can be identified 

based on measurement stability over a given period and measurement accuracy. A sudden 

variation is detected by evaluating the gradient between two measurements. These calculation 

rules can be directly implemented in supervisory software to automate this validation [17].  

However, the pre-validation does not identify all potential defects. Thus, it is generally 

supplemented by manual validation performed by an operator, whose goal is to assess the 

overall plausibility of the obtained results. The operator examines a series of data involving 

multiple variables to understand the dynamics of phenomena and the context of each 

measurement. The pre-validation and manual validation operations are time-consuming, often 

requiring the involvement of a dedicated team or the use of an external service provider. 

Given the high number of equipped points and the high data acquisition frequency in the 

context of wastewater networks [18], these manual approaches quickly become tedious due 

to the time required for repetitive work1. Moreover, fully eliminating subjectivity from the 

validation process and the inherent human error can be challenging. It is therefore important 

to develop new approaches that will facilitate the validation tasks carried out by the various 

stakeholders involved (operators, engineers, researchers, etc.), enabling them to use their 

expertise for more rewarding tasks. The aim is therefore to provide automatic or semi-

automatic data validation tools. 

Data validation in the era of artificial intelligence 

In the realm of Artificial Intelligence (AI), the issue of data validation is commonly referred to 

as "anomaly detection". AI has proven its efficacity in data validation across various disciplines. 

AI-driven algorithms are employed for data validation in areas like cybersecurity and medicine, 

where the volume of collected data is substantial, and the presence of anomalous data can 

 

1 By experience feedback, it takes around a month of work to an operator to validate the previous year's 

overflow monitoring data, issued from a wastewater system of around 10 000 EH 
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have significant implications. In such contexts, automated validation often fails short and 

manual validation would entail prohibitive time and cost. Being in a somewhat analogous 

operational validation context, AI emerges as a lever of action and a path to explore within the 

scope of this thesis. 

According to the CNIL (Commision nationale de l’informatique et des libertés), AI is not a 

technology in its own right, but rather a scientific field in which tools can be included if they 

meet certain criteria. AI is a logical, automated process, generally based on algorithms, 

capable of performing well-defined tasks close to those of human reasoning [19]. In the realm 

of AI applications, it is common to distinguish three levels (see Figure 0-4).  

 

Figure 0-4: Levels of artificial intelligence 

In the field of hydrology, there are several instances of data validation based on AI, especially 

in assessing the quality of rivers and drinking water [20] - [21]. However, to the best of our 

knowledge, these tools have not yet been evaluated for wastewater data at the urban network 

scale. This thesis, as its title suggests, aims to explore AI tools, with an emphasis on both ML 

and DL, to improve the data validation process in the context of wastewater networks. The 

objective is to simplify the task of various stakeholders who utilize this data. 

 Today, the main approaches used to validate data from wastewater networks combine 

automatic validation based on statistics with manual validation carried out by an operator 

at a later time. The former remains superficial in view of the range of potential faults. The 

latter is reliable (though not infallible), but costly and time-consuming. AI tools aim to 

streamline the process, making it more efficient for stakeholders. Although AI-driven data 

validation is common in hydrology, it's yet to be fully evaluated in urban wastewater 

networks. 
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Objectives and thesis outline 

The motivation for this thesis stems from the fact that the installation of sensors in wastewater 

networks has become common practice to ensure rigorous management and direct 

interpretation of ongoing phenomena. However, due to the substantial volumes of data 

generated by these sensors, collected at variable time intervals, and acquired in harsh 

environments, the resulting data often suffer from inaccuracies. In this context, data validation 

becomes indispensable. The current landscape of deployed tools often highlights laborious 

approaches based on statistical rules, supplemented by domain-specific analysis. 

The contribution of this research lies in its focus on automated validation of measurement data 

from a wastewater network. This approach explores AI techniques to detect sensor failures. 

The primary objective is to guide decision-making and streamline the validation process, 

making it more efficient. It is important to emphasize that this validation is exclusively carried 

out post data collection, a decision justified by the prevalent data processing domains (see 

Figure 0-1), which often operate with a time delay (e.g., regulatory document edition, 

phenomenological analysis, research and development). 

To implement and evaluate these tools, we used pollution data from the wastewater network 

of Saint Malo Agglomeration (SMA). It is noteworthy that this type of data is not commonly 

encountered in wastewater networks. Typically, network managers focus on hydrometric 

measurements (such as water level, velocity, and flow rate). Those who assess pollutant flows 

rely on spot sampling or proportional sampling to the volume discharged. Nevertheless, the 

use of continuous pollution monitoring is starting to gain ground, supported by research needs 

where continuous pollution monitoring is frequently used. Over the past three decades, 

numerous sensors, including turbidimeters, have been deployed and tested to gain insights 

into pollution flows [11]. Hence, the choice of this data is motivated by two fundamental 

reasons. Firstly, from an operational perspective, the data from SMA represent an easily 

accessible database, for which a certain degree of "truthfulness" is guaranteed, rendering them 

particularly suitable for this study. Additionally, from a scientific standpoint, pollution data 

proves to be among the most challenging to validate due to their rapid and fluctuating 

dynamics, particularly for turbidimeters. This study serves as a proof of concept with the 

potential to extend to various measurements within wastewater networks. 
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The entirety of the results obtained during this research is presented in this PhD manuscript. 

Part I: Literature Review 

This first section will provide an overview of the current state of research on data validation in 

wastewater networks by covering the existing methodologies and approaches as well as the 

associated challenges. In the first chapter, we will examine the data of urban wastewater 

networks, highlighting the specific characteristics of these data and defects that may occur in 

these systems. The second chapter will delve into existing data validation approaches, 

focusing on data quality checks and different validation methods, whether manual, statistics or 

based on hydraulic modelling. Finally, the third chapter will introduce a framework for data 

validation enhanced by artificial intelligence, exploring existing anomaly detection models 

using AI in urban hydrology.  

Part II: Material and Methods 

The material and methods section is the essential foundation for understanding the 

implementation of our model evaluation. In chapter 4, we present the database used for the 

development of the various tests and for the evaluation of our models, namely turbidity data 

from the SMA wastewater system. We detail the process of data collection and acquisition, 

before looking at their statistical analysis and understanding their dynamics. Subsequently, we 

will develop an expert and manual data validation process that will be the baseline against 

which the results of the AI models will be compared. We will also highlight one of the key 

problems of this process namely human subjectivity, which drives us to organize a validation 

pool. Chapter 5 constitutes our benchmark of the models to be evaluated by examining their 

principles and how they are adapted to our case study, their architectures, and how each can 

be used for anomaly detection and data validation, by providing an overview of the various 

tests that will be conducted thereafter. Finally, in chapter 6, we dive into the metrics that will 

evaluate the performance of AI models vis-à-vis the reference, as well as the metrics that will 

evaluate the subjectivity among the different experts in our validation pool. 

Part III: Results and Analysis 

The objective of this section is to present the results of the various tests, their implementation 

conditions, and a critical analysis of the results. The seventh chapter is an in-depth exploration 

of the concordance between the annotators via different metrics in order to evaluate their 

agreement and estimate the bias related to their disagreement. This process makes it possible 

to decide on the relevance of the manual approach of validation: does it have solid foundations 

or is it a random and/ or trivial validation ? Chapters 8, 9 and 10 provide the results of the 
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different tests using the three models of our benchmark, namely Matrix Profile, ResNet and 

Autoencoder respectively. We begin with an exploration of the sensitivity of results to input 

data, addressing aspects such as data preprocessing. Then, we focus on the fine-tuning of the 

hyperparameters of each model. The analysis and diagnosis of the results make it possible to 

identify the strengths and weaknesses of each model, leaving room for improvement strategies 

whose purpose is to explore different approaches that may improve the results. Finally, we 

evaluate generalization to other sites from the same agglomeration before investigating 

multivariate approaches. 

The final chapter of this section serves as an extension of the research scope, exploring data 

from a different source, such as conductivity data from the wastewater network of Saint Malo 

Agglomeration and the water level data from the wastewater network of Wallonia, Belgium. It 

will detail the acquisition of this data, the validation methodologies applied, and the unique 

challenges associated with this data type. This chapter provides a comparative dimension that 

allows us to conclude on the potential of the developed tools with regards to a new type of 

data. 

Conclusion and Perspectives 

The final chapter synthesizes the findings and insights from the previous chapters. It will draw 

conclusions based on the results obtained, assessing the research objectives, and addressing 

the research questions. Furthermore, this chapter will outline potential prospects for future 

research, highlighting areas where the study can be expanded or refined. It will underscore the 

scientific and practical implications of the research and its contributions to the field of 

wastewater network management and data validation. 

Context of the thesis 

This PhD thesis was conducted within the company 3D EAU, supervised by the fluid 

mechanics laboratory ENGEES-ICUBE in Strasbourg. This laboratory uniquely brings together 

two scientific communities situated at the intersection of the digital and physical worlds. 

3D EAU, as an engineering consulting firm, applies hydraulic modeling tailored to the specific 

context of each project. This includes using these models during the project's design phase to 

validate and optimize the proposed structure, in the diagnostic phase to analyze and enhance 

existing structures, and during the instrumentation phase to determine the number, position, 

and type of sensors to meet regulatory requirements. 

With an ongoing commitment to innovation, supported by a strong collaboration with the ICUBE 

laboratory, 3D EAU has supervised four theses in various disciplines, all related to hydraulics 
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and the field of water. The acquisition of 3D EAU by Groupe Alcom in November 2022 has 

strengthened the connection between the environment and artificial intelligence, placing this 

thesis at the heart of the group's strategic development by establishing bridges between 

different entities. 

Scientific contributions 

During this PhD, several contributions to the research field have been achieved. Two articles 

as first author and three conferences proceeding have been published. 

Conferences 

• Congrès ASTEE – Dunkerque 2022 – Comment l’intelligence artificielle peut simplifier 

le processus de validation des données ?  

• Journées Information Eaux 2022 - Développement de méthodologies et d’outils de 

validation de données – Application aux données d’autosurveillance et de diagnostic 

permanent des réseaux d’assainissement. 

• Journées Doctorales en Hydrologie Urbaine 2022 - Utilisation de l’intelligence 

artificielle pour la détection d’anomalies dans les mesures de pollution. 

Scientific articles 

• Techniques Science et Méthodes 2022 - Utilisation de l’intelligence artificielle pour la 

validation des mesures en continu de la pollution des eaux usées. 

https://doi.org/10.36904/tsm/202211039 (Prix des lecteurs de TSM 2022).  

• Water science and technology 2023 - Validation of wastewater data using artificial 

intelligence tools and the evaluation of their performance regarding annotator 

agreement. https://doi.org/10.2166/wst.2023.174 

https://doi.org/10.36904/tsm/202211039
https://doi.org/10.2166/wst.2023.174
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Introduction of Part I 

The objective of this section is to provide an in-depth overview of the current state of research 

on data validation in urban wastewater networks, the existing methodologies and the 

associated challenges by answering the following questions: 

• What specific characteristics of urban wastewater system data should be 

considered when validating data, and what types of defects may occur in these 

systems? 

 

• What are the current approaches to validate wastewater data, starting from 

automatic pre-validation checks to validation methods, whether manual, 

statistical or based on hydraulic modelling? 

 

• How can artificial intelligence be integrated into a data validation framework, and 

what are the existing AI-driven anomaly detection models in urban hydrology? 
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Chapter 1. Wastewater data in urban 
networks 

 

In response to a diverse range of regulatory, technical, and scientific requirements (see Figure 

0-1), it is becoming increasingly common to intensify the deployment of sensors within 

wastewater networks. This intensification is referred to as a measurement network, which 

consists of a series of sensors, their configuration being tailored to reflect the structure of the 

wastewater network. So, sensors are placed at strategic locations (see Figure 1-1). A 

measuring point can aggregate data collected from one or more sensors. Several types of 

measuring point can be distinguished [22]: 

• Transfer points: These points are designed to measure flows or concentrations of pollutants 

along the sewer network, transferred from upstream to downstream. Sensors are thus 

installed in transit pipes, pumping stations, storage basins, etc. 

• Discharge points: These points, corresponding to storm overflows and overflows, are 

designed to evaluate flows discharged into the environment without treatment. 

• Treatment plant inlets and outlets: These measuring points, at wastewater treatment plants 

(WWTPs), are used to assess water quantities and pollution levels in order to adjust 

treatment processes. 

  

Figure 1-1: Outline of urban wastewater network with the identification of 

different measurement points 
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Measurements cover a wide range of parameters. In wastewater networks, excluding 

mechanical elements such as digital sensors, pump operations or inclinometer openings, 

measurable parameters can be categorized into two main groups: hydrometry (flow) and 

quality (pollution). The selection of parameters to be measured is closely tied to the chosen 

measurement point and the underlying issues. This includes considerations such as 

measurement conditions, costs and reliability. It should be noted that identical information can 

be obtained by measuring different parameters [23]. 

Table 1: Examples of measurement probes in wastewater networks 

Category Assessment methodology Probes used 

Hydrometry 

Flow measurement Magnetic flow meter … 

Level to Flow conversion 
Level probes (ultrasonic sensors, 

pressure sensors, …) 

Level-Velocity-Flow conversion 
Level probes + Velocity probes 

(doppler, profilometer, …) 

Tracing / Gauging Tracer injection and monitoring 

Quality 
Sampling campaign Spot sampling (SS, CDO, BDO5) 

Correlations Turbidimeter, conductivity meter 

 

Among the aforementioned measurements (see Table 1), those that are obtained directly and 

continuously include water level, velocity, turbidity, and conductivity. However, once these 

sensors are in place, they generate a substantial volume of data. The key challenge is to 

integrate them into a harmonious and efficient data monitoring system. 

1.1 Measurement network monitoring 

Like any measurement system, the transition from sensor to data involves a measurement and 

transmission chain that must be carefully designed, considering the specific characteristics of 

the installation environment. These characteristics encompass the availability of electrical 

power, the network coverage, the geographical location of the site (urban, rural), as well as 

considerations related to investment and operational costs. This chain can be divided into three 

distinct phases: data acquisition, transmission, and supervision (see Figure 1-2). For the 

purposes of this study, the focus will be exclusively on the data acquisition and supervision 

phases, while guidelines and best practices for data transmission are already available in the 

specialized scientific literature [24] , [13]. 
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Figure 1-2: Measurement chain 

1.1.1 Data acquisition  

The initial stage of the measurement process, i.e., data acquisition, is of fundamental 

importance [25]. First and foremost, the appropriate choice of sensor is crucial to ensure 

accurate measurement of the phenomenon of interest. This selection is based on an analysis 

of the structure's configuration, leading to the identification of the appropriate sensor, the 

required measurement range, considering any dead zones, and the optimal location, aimed at 

reconciling the representativeness of the measurement and the accessibility of the device. 

The second phase of the process involves configuring the sensor's frequency and acquisition 

strategy. This configuration is based on two major concepts, which are programmed by means 

of algorithms within the sensor itself: 

• Sampling frequency: This involves interrogating sensor transmitters and temporarily 

storing one or more successive values before the final recording, which can be made 

at a lower frequency. Sampling frequency plays a crucial role in the system's ability to 

detect variations in measured values. Consequently, it must be adjusted according to 

the speed of the phenomenon under observation. For example, for rapid phenomena 

such as a discharge, a fine scanning frequency is required, whereas for slower 

phenomena, such as water level variation in a storage basin, a lower scanning 

frequency may be appropriate. Power consumption and battery capacity constraints 

must also be considered, particularly in the case of remote devices. 

• Recording (or transmission) frequency: This frequency is constrained to prevent 

unnecessary overloading of data storage, transfer, and processing capacity. It is, by 

definition, equal to or lower than the sampling frequency. The recorded value is often 

pre-processed data, typically the average or median of the scanned values. Typical 

frequencies in wastewater management usually range from one minute to an hour. 

Higher frequencies are commonly associated with monitoring or analyzing specific 

phenomena, while lower frequencies are more suitable for the purposes of overall 

assessment or system dimensioning. 
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From an operational point of view, the recording frequency can be adapted according to the 

occurrence of a specific phenomenon. Let's consider a scenario involving a water level or 

velocity sensor in a discharge pipe. In the absence of rainfall events, this pipe is generally 

inactive, and the sensor records mainly zero values. Consequently, we don't need a detailed 

representation of the phenomenon. The recording of a few values to show that the sensor is 

indeed operational is sufficient. But, when a rainfall event occurs, the pipe is put under stress, 

and measurement becomes essential. Spills are often of short duration, which requires a fine 

recording frequency. 

To reconcile these two constraints, a non-constant recording frequency may be adopted, 

which is based on a threshold value exceedance criterion. For example, the use of an overflow 

detector (digital sensor) in the inlet pipe can trigger a change in recording frequency as soon 

as the water level exceeds a predefined threshold. Typically, the recording frequency is 

changed from approximately 15 minutes to intervals of 1 or 5 minutes. This strategy spares 

data storage and processing, whereas a constant recording frequency makes the detection of 

missing values much easier 

Therefore, understanding the data acquisition strategy is of crucial importance before 

beginning to process the information gathered. It is essential to know the origin of the data, 

i.e., how it was collected, as well as the representativeness of the measurement. This prior 

knowledge provides a foundation for correctly interpreting the data and drawing meaningful 

conclusions. 

1.1.2 Data management (supervision)  

Once measurements are carried out, they are transferred to the supervision level, creating a 

time chronicle, i.e., a continuous temporal sequence of data. In this context, it is essential to 

retain the time stamp of each recorded value, associating a precise time indication with each 

data point. This guarantees the chronological integrity of the information, which is essential for 

subsequent analysis and for understanding the evolution of the measured phenomena over 

time. In addition, it is important to maintain timestamps of missing data, as in many cases data 

are sampled asynchronously, meaning that measurements are not taken at regular intervals, 

and their frequency can vary according to circumstances. These data constitute a dynamic 

database, which must be properly archived for future use. It is therefore essential to associate 

each time sequence of data with its static characteristics, commonly referred to as metadata. 

This metadata includes information such as the location of the measurement, the quantity 

measured and its unit, as well as the data acquisition strategy. This association is achieved by 

assigning a unique identification code to each time sequence. The aim is to ensure data 

traceability. 
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Subsequently, data from all sensors is aggregated into a centralized system, enabling large-

scale analysis and comparison of collected data. For this centralization and data processing, 

supervision software, such as Topkapi or Eve'M for wastewater management domain, can be 

used. These programs facilitate the management, storage, and visualization of data for macro-

analysis. In addition, it is worth noting that information on on-site interventions can also be 

valuable, and their traceability is ensured by maintaining a logbook. The logbook is used to 

record actions taken, adjustments and maintenance operations, thus helping to comment on 

the collected data. This data is then processed according to specific objectives and needs. 

This is generally the stage at which data validation takes place.  

 

Figure 1-3: Example of supervision software: Eve’M - © SIGT 

1.2 Special features of data in wastewater networks 

Compared to conventional temporal data, wastewater data has distinct characteristics. The 

pattern of these data can vary considerably due to a number of factors, including weather 

conditions, human behavior, and the intrinsic characteristics of the wastewater system itself. 

In fact, the sewer network can be supplied by two main means: residential / industrial 

wastewater pipes and rainwater evacuation drains. In combined sewer networks, the two flows 

are mixed, and it is therefore imperative to consider the interactions between wastewater and 

stormwater dynamics, in terms of data structure.  

The first significant characteristic of these data is their seasonal nature, closely linked to the 

succession of periods without precipitation (dry weather) and periods with rainy events (rainy 

weather), as well as evapotranspiration and the conditioning of effective rainfall. 
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In dry weather, combined sewer systems mainly used for wastewater collection present a 

distinctive daily pattern. It is characterized by significant variations throughout the day (see 

Figure 1-4). A daily flow peak occurs in the morning and early evening, corresponding to 

periods of high domestic activity, when water consumption and wastewater generation are 

high. It should be noted that flow peaks and this temporal profile during the weekdays differ 

from those on weekends and holidays due to variations in residents' habits, such as waking up 

late, for example. As a result, the structure of dry weather wastewater data shows a dual 

seasonality, i.e., a day/night variation and a variation according to weekdays and holidays. 

During the overnight, a drop in flow rate is observed due to the substantial reduction in 

domestic activity. It should be noted, however, that this night-time drop is not null (see Figure 

1-4). In fact, this is related to two main phenomena, namely the transit time in the wastewater 

system and the inflow of parasitic clear water due to imperfectly sealed networks and non-

compliant connections [26]. For the former, transfer times from upstream to downstream can 

be significant, extending over periods of 10 to 20 hours. As a result, daytime wastewater from 

distant areas is superimposed on nighttime wastewater from nearby areas, maintaining a 

continuous flow even during the night. On the other hand, inflow clear water is unpolluted water 

that is continuously present in wastewater systems. Its origin can be attributed to a variety of 

factors, such as water source intake, permanent groundwater drainage or drinking water leaks. 

This superimposition of the two phenomena must therefore be taken into account for a better 

understanding of hydraulic dynamics in wastewater systems. 

 

Figure 1-4: Example of a typical dry weather data pattern in a wastewater 

network 
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When rainy weather occurs, combined sewer networks undergo important changes in their 

data structure. Two major phenomena are added to the dynamics observed in dry weather: 

runoff and drainage. 

Runoff occurs when rain falls on the impermeable surfaces of urban areas, such as roads and 

roofs, and then flows towards the wastewater network via sewer drains. This runoff combines 

with domestic wastewater, resulting in a sudden increase in flow. This rise may be short-term, 

but can be very intense, creating considerable flow peaks in the data. It's also important to 

note that not all rainfall events are the same. Indeed, depending on factors such as rainfall 

intensity, the size of the watershed and the level of soil sealing, the impact on the wastewater 

system may differ. Rainfall events are generally categorized according to their return period, 

which is a statistical concept indicating the frequency with which a rainfall event of a certain 

intensity can occur [27].  

Drainage occurs during and after a rainy period when urban surfaces begin to dry out. It is 

associated with a gradual decrease in flow through the network. The duration of this process 

can vary according to the intensity of precipitation, extending over several hours or even days. 

Thus, during rainy periods, the data structure is characterized by rapidly rising flow peaks of 

varying amplitude, followed by a gradual decrease. Separating the components specific to 

wastewater and stormwater under these conditions can be complex but their overlapping 

should be considered in understanding the structure of the recorded data. 

1.3 Defects in wastewater systems 

As previously mentioned, the wastewater network represents a complex and challenging 

measurement environment, increasing the risk of failures and highlighting the imperative of 

implementing validation processes.  

1.3.1. Defining invalid data 

Invalid data in wastewater networks are observations that do not accurately reflect the 

hydraulic behavior of the network at a given time. However, a distinction must be made 

between two categories of invalid data [28] - [29]: 

• Incorrect data 

Incorrect data generally refers to data points that do not reflect what is happening in the 

network. These are often described as errors or outliers and are generally attributable to 

failures in the measurement chain. The most common malfunctions causing anomalies are as 

follows: 
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- Loss of contact between the measuring sensor and the phenomenon being measured, due 

to problems such as fouling, clogging, or blockage.  

- Mismatch between sensor output signal and measured variable, resulting from general 

sensor failure or parameterization errors. Problems such as a faulty sensor, electrical 

failure, acquisition electronics malfunctions, drifts, de-calibrations can cause these types of 

errors. 

- Time registration errors, due to clock drifts, incorrect time setting, or recording problems. 

These problems can lead to a temporal shift in the data. 

In other words, incorrect data in wastewater networks is often the result of various hardware 

and sensor failures. 

• Non-representative data 

Non-representative data, as opposed to incorrect data, refers to observations that are different 

or unprecedented. Unlike anomalies, these unusual data are not necessarily wrong. It is 

possible to obtain accurate measurements, but these do not adequately reflect the 

phenomenon of interest due to disturbing events that mask them. Non-representative data can 

result from various situations, including: 

- Sensor maintenance, involving operations such as on-site calibration or zero checking. 

- Wastewater network maintenance, such as pipe cleaning. 

- Changes in network configuration affecting wastewater flow, for example, when effluent is 

diverted for construction work. 

- Special hydrological events, such as extreme rainfall or exceptional tides. 

- Downstream influence when it has not been considered when setting up the 

instrumentation. 

Although these events do not affect the accuracy of the data, they do not reflect the normal 

operation of the sewer network. Consequently, their interpretation requires an approach 

distinct from that applied to usual measurements. From an operational point of view, identifying 

these data requires access to exogenous data, such as the logbook with information on 

network management, meteorological conditions, the level of the receiving environment, and 

other relevant factors. 

In the context of this thesis, all forms of invalid data, including both incorrect and non-

representative data, will be collectively referred to as "anomalies." For admittedly 

different reasons, both categories of invalid data encompass observations that do not 

accurately represent the hydraulic behavior of the network, and it is therefore important to 

isolate them for operational considerations. The central focus of this work is on the 
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identification of these anomalies during the validation process. Subsequent steps, such as 

the removal of invalid data or their potential replacement, fall outside the scope of this 

thesis. The aim here is to perform rigorous data validation and pinpoint defects, while 

decisions on how to manage these anomalies are left to the discretion of the user and for future 

works. 

1.3.2. Categorizing anomalies 

Anomalies in non-sequential data are often defined as data instances that significantly deviate 

from the majority of instances. However, defining anomalies in time series data is challenging 

due to temporal correlations among observations [30]. Existing studies often adopt outlier 

definitions from non-sequential data. Specifically, they define outliers in sequential data 

through behavior analysis and categorize them into point, contextual, and collective outliers 

[29] - [31]. Figure 1-5 illustrates these three types of outliers that often serve as a de-facto 

standard. 

 

Figure 1-5: Examples of different type of anomalies in red. 

(Top left) Point outlier - (Top right) Contextual anomaly – (Below) Collective 

anomaly 

• Point outliers are individual instances that are anomalous with respect to the rest of the data. 

Let's imagine water level data collected in a 500 mm diameter pipe by a US probe. In the 

middle of the measurement chronicle, the water level suddenly rises to 600 mm, well above 

the normal range and measurement capacity of the sensor. This single, significantly higher 

measurement is an example of a point outlier. 
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• Contextual outliers are individual instances that are anomalous within a specific context. 

Contextual outliers typically have relatively larger/smaller values within their specific context 

but not globally. Some points may be normal in one context but detected as anomalies in 

another. Let's take a look at the water level data collected in a sewer system. During a rainfall 

event, the water level rises in line with the intensity of the rain and the response of the 

hydrological basin, then gradually falls in response to network drainage. However, during a 

rainy event, we can observe water level that drops sharply and can remain low for several 

hours, while still being of the same order of magnitude as the dry weather pattern. In this 

context, this drop is abnormal, as it does not correspond to the seasonal trend. However, if we 

consider this sequence during the dry season, it may appear normal. This is an example of a 

contextual outlier. 

• Collective outliers are defined as collections of related data instances that are anomalous in 

relation to the entire dataset. Individual points within a collective outlier may not be anomalous 

by themselves, but their co-occurrence constitutes an outlier. Collective outliers are common 

in sequential data due to the often-strong dependencies among time points. There are cases 

where individual points are not anomalous, but a sequence of points is labeled as an anomaly. 

If wastewater level data in a sewer system show that every day for a week, the water level 

rises slightly but steadily at a constant rate, this may seem normal at the individual level, since 

each individual value falls within the usual measurement range. However, when we look at the 

week as a whole, we realize that the sequence of constant rises is not expected and does not 

correspond to habitual behavior. In this case, the sequence of constant rises over several days 

is an example of a collective outlier.  

While the above categorization covers both individual instances and sequential instances, 

defining collective and contextual outliers can be complex due to context ambiguity [30]. For 

simplicity, contextual and collective data will be collectively referred to as sequence 

anomalies since they both involve outliers across multiple time points. Identifying the latter is 

often considered more challenging than point outliers and is extensively explored in the 

literature [32] - [33]. Having a priori knowledge of the type of anomaly in the data helps data 

analysts select the appropriate detection method. Some approaches that can detect point 

anomalies may fail to identify collective or contextual anomalies. The complexity of wastewater 

data lies in the fact that it can exhibit both point outliers and anomalous subsequences. 

1.4 Focus on turbidity data 

Wastewater effluent quality can be characterized by numerous parameters. Usually, this 

information is accessed via laboratory analysis, requiring on-site samples, which proves to be 
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a time-consuming, costly method, and not well suited to regular monitoring, particularly during 

periods of heavy rainfall. Such analyses provide only a limited view of the phenomena, due to 

their significant temporal variability. Hence, turbidity measurement proves to be the most 

practical technique for obtaining continuous, real-time information on effluent quality over long 

periods. Turbidity sensors installed at transit points, discharge points or at the inlet/outlet of a 

WWTP provide data on the particulate load, the main vector of pollution in wastewater systems, 

whether for raw effluent in dry or rainy weather. Continuous measurement of turbidity makes 

it possible to effectively monitor these dynamics. The main advantage of turbidity lies in its 

ability to be measured continuously, offering excellent temporal sampling, unlike traditional 

parameters such as suspended solids (SS) and chemical oxygen demand (COD), which 

require limited sampling [34]. 

• Turbidity measurement 

Turbidity in effluent is mainly due to suspended solids (SS), which are particles larger than 

0.45 μm. In wastewater effluent, turbidity values are closely related to SS concentrations. 

Studies have shown that most turbidity in wastewater is due to particles in the 10 to 20 μm 

range [35]. Technically, turbidimetry is based on measuring the transparency of a liquid, 

without requiring the use of reagents. A turbidimeter evaluates the effluent's ability to absorb 

or scatter light [36]. Two techniques commonly used in wastewater treatment are attenuation 

and diffusion, and the value measured depends on the technology employed, hence the use 

of distinct units such as Formazin Turbidity Units (FAU) and Nephelometric Turbidity Units 

(FNU). In the wastewater domain, the recommended measurement ranges are 0 to 2000 FAU 

for attenuation measurement, and 0 to 1000 FNU for diffusion measurement. In practice, 

turbidity values are generally between 50 and 1000 FAU or between 25 and 500 FNU. 

• Turbidimeter sensitivity 

Nowadays, turbidimetry is proving to be a useful management tool for wastewater systems. 

However, it is essential to note that its use requires constant maintenance and control, along 

with budgetary resources. To guarantee reliable measurements, it is advisable to choose 

locations with adequate effluent mixing (without any bubbles), thus ensuring representative 

measurements, while remaining accessible to simplify maintenance operations. Turbidimeters, 

specifically designed for wastewater treatment, can be equipped with automatic cleaning 

systems, although they remain intrusive and require accurate installation and regular 

maintenance to prevent macrofouling. In general, maintenance should be carried out 1 to 4 

times a month, while verification/calibration operations can take place every 6 months to one 

year. 
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• Acquisition strategy 

Optimizing measurement reliability involves an appropriate acquisition strategy, including 

suitable signal processing. In many operational applications, it is not necessary to retain the 

full dynamic range of the signal, and it is often sufficient to work with average values, possibly 

weighted according to flow rates. To guarantee the reliability of these averages, real-time 

processing of data collected from redundant sensors is recommended. In the absence of 

redundancy, it is useful to record the standard deviation of the values that have contributed to 

the average, thus facilitating the identification of suspect recordings, which can then be 

invalidated. In this case, it is preferable to record data at a finer time step than is strictly 

necessary for the application, thus creating a safety margin. In the absence of real-time 

processing capabilities, it is advisable to record instantaneous values at a short time step, 

enabling representative averages to be calculated at a later date. For example, a recording 

with a time step of one minute is a minimum for calculating averages over periods of 5 to 10 

minutes. Short time-step recordings are also suitable for research, enabling a detailed 

understanding of the dynamics of the phenomena under study [37]. 

• Signal dynamics 

In addition to the seasonal and periodic characteristics of wastewater data, the turbidity signal, 

even in dry periods, exhibits rapid and significant fluctuations that reflect real variations in 

effluent quality. This finding is supported by recordings from three redundant sensors, sampled 

every 10 seconds (see Figure 1-6) [37]. It is important to note that the turbidity signal is highly 

variable and can show reproducible peaks on several redundant sensors. The challenge is to 

find a compromise that eliminates noise without eliminating the useful signal. This highlights 

the interest of having a sampling frequency that is fine enough - around one minute, or even 

less - to accurately capture these substantial variations. 
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Figure 1-6: Example of turbidity variations, recorded using three sensors. © 

IFSTTAR - Duchesse Anne site, Nantes. 

What's more, disturbances - considered background noise – can occur and alter the signal. In 

addition to the random, zero-mean residuals that contribute to experimental uncertainty, 

asymmetrical noise is frequently observed, comprising high-amplitude positive peaks. These 

peaks, generally of short duration but sometimes longer, appear to be due to measurement 

artifacts caused by the temporary occultation of the measurement beam by particles or 

filasses. The frequency of these peaks varies over time and depends on the details of the 

sensor installation, reinforcing their artificial character. To guarantee reliable measurements, 

a validation process is needed to exclude these peaks and mitigate their potentially bias. 

From an operational point of view, it is advisable to install redundant sensors to facilitate 

verification, at a reasonable additional cost in terms of investment and operation. Redundancy 

means installing two identical sensors in close proximity to ensure consistent measurement of 

the same effluents. This approach enhances measurement reliability in two ways. Firstly, when 

both sensors provide consistent values, there is a strong probability for them to describe a real 

phenomenon, even if the pattern may be somewhat unusual. Secondly, when sensors are not 

in agreement, at least one of them experiences a failure or displays an anomaly, usually the 

one with higher values. In this case, the other one may continue to provide relevant data. 

Redundancy should be considered where space constraints allow, provided that the sensors 

are similarly positioned in terms of transverse, longitudinal and depth to ensure consistent 

measurement. In addition, a conductivity meter is recommended to complement the 

information provided by turbidity, thus improving overall understanding of effluent quality. 
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1.5 Synthesis of Chapter 1 

The measured parameters in wastewater systems can generally be grouped into two main 

categories: hydrometry (flow) and quality (pollution). The choice of parameters to be measured 

depends on the specific measurement point and the associated considerations and issues. 

The resulting measured data has several distinctive features compared to temporal data. First, 

the measurement strategy may be based on pre-processed data rather than point 

measurements, and the frequency of these data may vary and not be constant. Due to the 

multiplicity of sensors used, data synchronization becomes crucial to enable accurate 

comparisons. In addition, these data are subject to significant and multiple seasonality, 

reflecting variations linked to dry weather, rainy periods, day or night, weekdays or weekends. 

Rainfall events also vary greatly in terms of intensity, making network dynamics more complex 

with different classes.  

Due to the installation environment, invalid data are highly probable within wastewater 

networks and comprise observations that fail to accurately represent the hydraulic behavior of 

the network at a specific time. These data can be further divided into two subtypes: incorrect 

data, which are outright errors, and non-representative data, which are unusual but not 

necessarily incorrect. It is therefore interesting to isolate and identify both types of invalid. 

Structurally, these anomalies can be classified as point, contextual, or collective outliers. The 

task of defining these anomalies can be complex due to temporal dependencies among 

observations and the ambiguity of the context. 

Considering wastewater quality measurement, traditional laboratory analysis is costly and 

time-consuming, particularly during heavy rainfall. Turbidity measurement offers then a 

practical solution, providing continuous, real-time data at key points within the wastewater 

system.  Ensuring accurate measurements, proper maintenance, and calibration of 

turbidimeters are essential. Redundancy is recommended for enhanced measurement 

reliability, along with the use of a conductivity meter, offering a better understanding of effluent 

quality. The acquisition strategy involves recording average values. In addition to the common 

features of wastewater data mentioned above, the turbidity signal exhibits rapid fluctuations, 

demanding a fine sampling frequency to capture variations accurately. Background noise can 

affect the signal, and a validation process is necessary to mitigate biases.  

Hence, what is being done today to validate data in wastewater networks? 
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Chapter 2. Exploring data validation 
pathways: State-of-art approaches 

 

“You can have all of the fancy tools, but if [your] data quality is not good, 

you're nowhere.” -- Veda Bawo, responsible of Data, Risk & Control at Silicon Valley 

Bank 

One of the most crucial tasks in data engineering is data validation and anomaly detection [38]. 

Anomaly detection methods are specific to the type of data being examined. For example, the 

algorithms used to detect anomalies in images differ from the approaches used for data 

streams [31]. This work focuses on methods for detecting anomalies in time series with an 

emphasis on urban hydrological data.  

Wastewater networks are no exception to the data quality requirement, given the objectives 

linked to the use of measurement data (see Chapter 1). The high sampling frequency enabled 

by on-line water measurement networks leads to the collection of vast datasets covering 

several chemical-physical parameters. Due to the intrinsic properties of wastewater systems, 

datasets describing different parameters are often autocorrelated, not normally distributed and 

noisy [39]. Hence, it is important to find an anomaly detection approach adapted to the 

operating conditions of this fast-dynamic system. Since 1972 [40], the detection of anomalies 

in time series has long been a subject of interest. Consequently, many previously published 

studies have tackled this issue. 

2.1 Data quality checkup: Pre-validation 

Once data is acquired at the supervision level, regardless of the used software, it becomes 

imperative to undertake a pre-validation step for the identification of trivial anomalies. The 

early detection of these anomalies makes it possible to exclude them automatically and to 

direct the operator’s efforts towards more subtle and complex anomalies. The pre-validation 

encompasses a range of standard checks, including but not limited to [41]: 

• Missing values [42]: These are defined as data values that are not stored for a variable 

when they are supposed to be present according to the recording strategy. In order to 

save storage capacity a variable sampling interval can be applied. However, incorrectly 

programmed sampling intervals causes missing measurements. Loss of data can also 

result from limited storage in the sensor, problems with telemetry, loss of power supply or 

malfunctioning of equipment.  
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• Out of range [16]: This criterion combines two essential facets: the "physical range" and 

the "locally realistic range”. This criterion establishes the boundaries within which valid 

measurements should fall, considering both the specific capabilities of the sensor and the 

characteristics of the measurement site. The physical range encapsulates values that, for 

physical reasons, cannot be exceeded by the sensor, typically aligned with the sensor's 

measuring capacity or the physical conditions of the environment. For example, a water 

level sensor with a measuring range of 0–2 meters cannot produce values that fall outside 

this prescribed interval. Water velocity in sewers cannot reasonably reach a value of 10 

m/s, even if the measuring range of a sensor is able to exceed this value.  Meanwhile, the 

locally realistic range narrows down this spectrum to encompass values commonly 

observed at the specific measurement site, shaped through available information and 

historical data. Any measurement falling outside this collective range is marked as a 

potential anomaly, necessitating further review and operator intervention.  

• Saturation / Blocking [43]: This anomaly occurs when the sensor reaches its operating 

limits. It usually occurs when the measured signal exceeds the sensor’s measuring range, 

pushing it to its upper or lower limit. Thus, saturation is closely related to the out-of-range 

anomaly. Similarly, a lock on a constant value may occur if the sensor is defective or 

exposed to extreme conditions that keep it at a single reading level. 

• Important gradient [16]: Detecting sudden or irregular shifts in data values and unusual 

gradients due to physical processes and local conditions is crucial. These changes often 

result from sensor faults or non-representative phenomena, generating pronounced 

gradients. While simple threshold-based methods were initially explored, more advanced 

techniques combining filtering algorithms [22] were developed. Applying filters like moving 

averages smooths high gradients, and the difference between the original and filtered 

signals indicates abrupt changes. Customizing threshold values and window widths for 

specific measurements is crucial, involving iterative adjustments based on background 

noise, measurement uncertainties, and typical values.  

In cases where a single site is equipped with two redundant sensors (e.g., two turbidimeters), 

a comparative analysis of their measurements and signal behavior can be conducted to identify 

unusual patterns or anomalies. When the difference between the two signals surpasses a 

predetermined limit, the associated data is questionable, necessitating further manual 

examination by an operator. 
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Figure 2-1: Example of pre-validation software - © Eve'M 

During this pre-validation phase, basic statistical analysis techniques and/or advanced 

algorithms can be employed to identify conspicuous irregularities, including outliers (out-of-

range), temporary data gaps (missing data), and significant deviations from anticipated 

theoretical patterns (important or no gradient). While these tests are usually already 

implemented in monitoring tools (see Figure 2-1), they represent the bare minimum before 

any operational considerations. The spectrum of possible defects is much broader, 

encompassing elements such as bias, drift, accuracy degradation, and other factors [44]. The 

complexity of these defects makes them more demanding and difficult to identify by 

conventional means. Hence, their detection requires more sophisticated and technically 

advanced approaches [45]. 

2.2 Validation phase 

The pre-validation focuses on the analysis of the coherence of the individual signals from each 

sensor. It can be, then, considered as a local evaluation of the measurements provided by a 

particular sensor, and can be performed in real time. During this phase, the main objective is 

to identify obvious and immediate anomalies. It is therefore important to complete it with a 

validation phase, which instead adopts a more global and multivariate perspective, and is 

better performed offline. This approach makes it possible to detect inconsistencies or unusual 

functioning that may not be apparent during the individual analysis of the signals of each 

sensor or that could not be decided during the pre-validation phase. In short, pre-validation 
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focuses on obvious local errors, while validation focuses on more subtle anomalies at a global 

scale to ensure the quality and reliability of the data collected. 

2.2.1. Manual Approach 

The data validation phase usually requires the intervention of a competent operator, with a 

thorough mastery of the data in question and sufficient expertise to conduct an informed 

analysis and interpretation. We will refer to this operator by the term "expert". 

****************************** 

A little sociology: What is an expert? 

Expertise consists in the production of action-oriented specialized knowledge, in a technical 

or professional setting. Recognized among his peers, the expert draws his competence both 

from the mastery of specific knowledge and his own experience [46]. 

***************************** 

The expert must have the necessary acuity to extract crucial information from data tables and 

charts presenting the complete chronicle. The ability to detect trends, breaks, seasonal 

patterns, or other important characteristics is essential for this task. The operator, through his 

analytical skills, examines the graphs to discern nuances and correlations. The expert can 

greatly benefit from the correlated nature of wastewater networks by using analytical 

redundancy in his validation process [47]. These correlated variable pairs can encompass 

either directly measured values, such as the water level and flow velocity within a specific 

sewer, or they can involve one measured value paired with a calculated or simulated value 

(see Section 2.2.3). An example of the latter would be the measured flow (using a flowmeter) 

paired with the flow estimated from water depth measurements (see Figure 2-2). It should be 

emphasized that throughout these comparative assessments, proper consideration must be 

given to the inherent measurement uncertainties associated with all relevant data [16]. 
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Figure 2-2: Example of graphical macro-analysis operated by an expert in order 

to validate flow measurement. 

Manual validation is a first step into data interpretation and conversion into information. 

However, while essential to ensure data quality, manual validation has some limitations that 

should be considered: 

• Need for expertise: Manual validation requires considerable expertise in the subject area, 

which may limit the availability of qualified operators. 

• Time and resource cost: Manual validation is often a time-consuming and laborious task. 

It can require considerable resources, especially when large amounts of data need to be 

analyzed. 

• Subjectivity: Data interpretation may vary from operator to operator, introducing a degree 

of subjectivity. This can make it difficult to achieve consistency in data validation. 

• Possibility of human errors: Operators may make errors during manual validation, such as 

typing errors, omissions, or misinterpretation, which may compromise the reliability of the 

results. 

• Limited detection of complex anomalies: Subtle or complex anomalies can escape manual 

detection, especially when data is multidimensional or interactions between variables are 

complex. 

• Volume limitation: Manual validation is feasible for relatively small amounts of data but 

becomes impractical when large data sets are involved. 

To overcome some of these limitations, automated approaches, such as the use of anomaly 

detection and validation models, are increasingly being adopted to complement or replace 

manual validation in some applications. They all rely on some kind of modelling (actually 

experts also rely on models, albeit implicit ones) and therefore the models to be deployed 

range from purely statistical models to complete hydrological and hydraulic models  [48]. 
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2.2.2. Statistical Tools 

A preliminary overview of the statistical methods used in time series and signal processing has 

revealed that there are numerous approaches to data validation and anomaly detection within 

data series. The fundamental principle governing any statistical anomaly detection method is 

encapsulated by the statement: "An anomaly is an observation suspected to be either partially 

or entirely irrelevant, as it does not conform to the underlying stochastic model" [49]. Statistical 

techniques entail the fitting of a statistical model, typically representing normal behavior, to the 

available dataset. Subsequently, a statistical inference test is employed to assess whether an 

unseen instance is consistent with this model. Instances exhibiting a low probability of being 

generated by the learned model, as determined by the applied statistical test statistic, are 

identified, and classified as anomalies [50]. 

The first technique assumes that data follow or can be transformed into a Gaussian 

distribution and estimates model parameters using maximum likelihood estimates (MLE) [51].  

The MLE is a statistical method used to determine the parameters of a probabilistic model, 

such as the mean and standard deviation in the case of a Gaussian distribution [52]. The aim 

of MLE is to find the parameter values that make the observed data most probable under the 

specified model. This method is based on the idea that normal data follow a specific pattern, 

and any observation that deviates significantly from this pattern is likely to be an anomaly. To 

assess whether a data item is an anomaly, the distance between it and the estimated model 

is calculated as an anomaly score. A threshold is then applied to these scores to determine 

which data instances are considered anomalies. Within this category, different techniques use 

various methods to calculate the distance to the mean and define the threshold. A common 

approach is to declare as anomalies all data lying more than 3σ from the distribution mean μ, 

where σ represents the standard deviation of the Gaussian distribution (see Figure 2-3). This 

range, μ ± 3σ, encompasses 99.7% of the data [53]. It should be noted that more complex 

methods, based on advanced statistical tests, have also been employed for anomaly detection, 

as discussed in references such as [54], [55], [56]. 
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Figure 2-3: Illustration of the principle of statistical anomaly detection on 

synthetic data. (Left): the MLE principle, with selected parameters framed in 

blue. (Right): anomaly identification using the 3-sigma rule (orange zone). 

Another frequently used statistical method for detecting anomalies in time series is based on 

the use of regression models [51]. The basic principle of the regression model-based 

anomaly detection techniques consists of two steps. In the first step, a regression model is 

fitted to the data. In the second step, for each test instance, the residual of that instance is 

used to evaluate the anomaly score. Here, we approach anomaly detection such as a 

forecasting task. Some of the well-researched regressive models suited to time-series are 

autoregressive models, and all their derivatives [31]. The autoregressive model stipulates that 

the output variable depends linearly on its own previous values and on a stochastic term. 

Consequently, this model takes the form of a stochastic difference equation (see Equation 1), 

where p is the preceding window length. The values of the coefficients a1, ..., ap, c can be 

approximated by using the training data and solving the corresponding linear equations with 

least-squared regression. The error values εt are considered to be uncorrelated and have a 

constant mean of zero and constant variance σ. In this model, they are used to determine the 

anomaly score [57]. However, this method assumes that the data is stationary, which is not 

always the case in practice. 

 

The ARIMA (Autoregressive Integrated Moving Average) model is an extension of 

autoregression (AR) that was developed to handle non-stationary data, i.e., data whose 

statistical properties, such as mean and variance, vary with time [58], [59]. However, ARIMA 

models still assume that data follow a normal distribution. These models are based on the 

𝑋𝑡 = ∑ 𝑎𝑖𝑋𝑡−1 + 𝑐 + 𝜀𝑡
𝑝
𝑖=1   

Equation 1: Autoregressive model equation 
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principle that the current value of a time series depends both on its previous values and on 

past variations and errors [60] - [61]. After fitting the ARIMA model, anomalies are detected by 

evaluating the deviation of the predicted point to the observed one. Nevertheless, a major 

drawback of ARIMA models is that it requires an important data pre-processing and tuning 

step. It is essential to check data for stationarity and autocorrelation, as well as to determine 

optimal parameter values, often through iterations or a systematic search approach. Presence 

of anomalies in the training data can influence the regression parameters and hence the 

regression model might not produce accurate results [51].  

In the field of urban hydrology, Table 2 summarizes some references covering statistical 

models for data validation, ranging from simple to sophisticated univariate and multivariate 

tests. In these cases, operating conditions are controlled and in some cases, anomalies are 

introduced synthetically. 

Table 2: Some references for urban hydrology data validation using statistical 

approaches. 

Reference Data Statistical approach 

[47] Hydrological data (precipitation, flow, water level) Filtering methods 

[62] Basin supply Autoregressive models 

[63] Wastewater flow Kalman Filter 

[64] Inflow in a reservoir Filtering methods 

If the assumptions regarding the underlying data distribution are valid, statistical techniques 

offer a justifiable approach for the detection of anomalies. The anomaly score produced by a 

statistical method is associated with a confidence interval, which can furnish supplementary 

information for decision-making regarding test instances. However, the principal limitation of 

statistical techniques lies in their reliance on the assumption that data is generated from a 

specific distribution, an assumption that frequently does not hold, especially in the context 

of high-dimensional real datasets [65]. In order to employ these methods securely, it is 

imperative to possess accurate and comprehensive information regarding the inherent 

characteristics of the system [66]. The application of pure statistical methodologies may 

encounter limitations, as not all system behaviors can be precisely encapsulated within 

statistical distributions [67]. The equations employed in these models often fail to capture the 

intricacies of time series data in practical scenarios. For instance, these models failed to 

detects anomalies in search response time data where the intrinsic structure has weekly 

periodicity but also daily periodicity, holidays and other factors [68]. The presence of 

unanticipated disturbances within the wastewater system renders the stochastic nature of 
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water quality parameters considerably uncertain, making it challenging to establish a 

singular model capable of fully characterizing system behavior [69]. In such cases, a 

combination of multiple detectors may be considered. Nonetheless, in the realm of water 

quality monitoring systems, determining the optimal number of potential models for system 

behavior becomes a complex undertaking. Moreover, the straightforward ensemble of these 

statistical detectors, such as majority voting [70] or normalization [71], proves to be ineffective 

according to [72]. 

When the statistical assumption can be reasonably justified, several hypothesis test statistics 

are available for anomaly detection, but the selection of the most suitable statistic is often 

a nontrivial task [73]. Consequently, individuals working with time series data must possess 

advanced statistical qualifications and make diligent efforts to select an appropriate algorithm 

and fine-tune hyperparameters for each specific time series. 

2.2.3. Hydraulic modelling 

To describe the complex dynamics in wastewater systems, a major effort has been made to 

develop mathematical models. This effort has been greatly aided by the development of IT 

resources. The aim of these models is to establish relationships, which enable output variables 

to be calculated as a function of input variables, and which also may involve other exogenous 

parameters. The validation of on-site measurements can be conducted by analyzing their 

consistency regarding the calculated output data based on the known input data. There 

are generally two types of models: specific 3D models which are local  and 1D network models 

which are more global. 

• 3D numerical modeling 

In recent years, the use of 3D numerical modeling for hydraulic engineering studies has 

intensified, thanks to the continuous improvement in computational capabilities and the 

development of user interfaces to facilitate the use of software [74]. There is numerous 

hydraulic modeling software on the market that exploit the rules of computational fluid 

mechanics (CFD), such as Open Foam, Flow 3D, Ansys Fluent, etc. They are based on the 

approximate resolution of the Navier-Stokes differential equations using the finite-difference 

method, based on a system of regular meshes representing the actual geometry of the 

structure. The position of the free surface is approximated by the finite volume method. The 

software enables dynamic calculation of the time step, so as to meet the criteria of numerical 

stability and convergence on the pressure calculation, at any point of calculation of the model 

provided boundary conditions are known. Defining these boundary conditions is rather 

challenging, but can harness the output of larger scale models, such as 1D network models.  
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Figure 2-4: Example of 3D modelling of a double storm overflow 

• 1D network modeling  

Unlike 3D models, which are generally limited to the scale of the individual structure and does 

not take into account variations in the hydraulic behavior of the network as a whole, the use of 

1D hydraulic modeling of wastewater systems provides a global view of how the system works, 

using software such as Canoe, MikeUrban, etc. The aim of a 1D hydrodynamic model is to 

describe all the phenomena occurring within a given system, using equations from the fields 

of mechanics, hydraulics, chemistry, and biology. It thus offers the possibility of representing 

variations in water level and flow at any point of the network. Dynamic methods can be used 

to simulate the entire water cycle, from the moment of precipitation to the moment the water 

leaves the system. This dynamic modeling involves three key stages: firstly, precipitation 

modeling, which can take the form of project rainfall characterized by its total duration and 

duration of intensity, or the use of actual recorded rainfall data. Secondly, hydrological 

modeling, which involves describing the transformation of rainfall into flow according to the 

watershed characteristics such as drained surface and average daily wastewater profiles. 

Finally, the third stage, hydraulic modeling, focuses on simulating water flows within the 

network, while taking into account all its specific characteristics, including its mesh, branches, 

storm overflows, retention basins and specific boundary conditions [75]. 
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Figure 2-5: Stages of hydrodynamic modelling 

Using model-based approaches, one can generate simulated data for the operational 

conditions of the structure. By comparing these simulated data with the actual measured data, 

discrepancies and inconsistencies can be identified, which may indicate anomalies or 

problems that require further validation. For instance, consider a scenario where a measure is 

established to evaluate the flow rate of a wastewater pipe using a radar sensor. 

Simultaneously, a 3D modeling approach is employed to evaluate the flow rate under the same 

boundary conditions of water level and velocity (see Figure 2-6). The comparison between the 

flow rate measured on-site and the flow rate simulated through 3D modeling reveals an 

interesting level of agreement, with an error rate of less than 15%. This level of accuracy is 

akin to the uncertainty associated with a well-maintained Doppler sensor deployed under ideal 

conditions. It is relevant to note that, due to the costs associated with modelling approaches 

and the technical expertise required, their use for data validation purposes remains uncommon 

in practice. 

 

Figure 2-6: Data validation: 3D modelled flow Vs on-site measurement 
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The use of these models, although providing methodical data validation perspectives, should 

not disregard their costs, especially since one simulation is equivalent to one unique 

boundary condition. Consequently, the validation of an extended chronicle with various 

conditions would require the multiplication of models. Moreover, the operation of these models 

requires a qualified operator to control the entered boundary conditions2.  

Deploying these models involves considering a number of technical problems, since all 

modeling is subject to errors arising from both the structure of the model itself and the data, as 

well as their interactions during the modeling process. These problems include : 

• Errors linked to the structure of the model, including theoretical limits and numerical 

approximations. 

• Data availability issues, encompassing metrological and methodological challenges 

and their suitability for the specific needs of the model [76]. 

• Model calibration and validation process. 

As far as hydraulic modeling is concerned, approaches such as the Barré de Saint Venant 

method and the Muskingum model are now commonplace in terms of development and testing. 

However, it should be noted that pollution modeling presents a distinct challenge. Pollution 

models remain largely underdeveloped.  

  

 

2 Generally, the use of these models leads to the subcontracting of specialized design offices. 
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2.3. Synthesis of Chapter 2 

Data validation in the wastewater field involves two essential stages. First, pre-validation aims 

to detect trivial anomalies by means of basic tests. These anomalies include missing data, 

out-of-range values, and sensor saturation. However, the context of sewer networks can 

present more subtle and complex faults, such as biases, noisy data, and drifts. To address 

these faults, a second stage of supervised validation by an expert is necessary.  

However, the manual approach carries inherent risks of subjectivity and human error, which 

become particularly worrying in the face of the massive volume of data generated by 

wastewater measurement networks. Consequently, the expert can opt for automated or semi-

automated decision-support tools.  

To validate data from these networks, statistical approaches can be used, offering real-time 

validation based on historical comparisons between predictions and measurements. 

Generally, these models focus on punctual anomalies (outliers). A distinction is made between 

simple statistical models, which are relatively ineffective at capturing the dynamics of 

wastewater data featuring non-stationary conditions, multiple seasonality patterns and partially 

autocorrelated time series. And on the other hand, there are more complex models, such as 

autoregressive models, which may be more suitable but are more difficult to implement due to 

their complexity and parameter sensitivity, which can lead to random / unstable performance.  

On the other hand, model-based approaches, either local (3D structure modeling) or global 

(1D network modeling) can detect contextual and collective anomalies using exogenous data. 

However, their validation is carried out off-time, due to the time required for their deployment. 

Although a simulation corresponds to a specific boundary condition, the underlying model can 

be reused to reduce implementation times. However, the quality of the results depends heavily 

on the proper setting of the boundary conditions and the quality of the input data, such as the 

representativeness of the meteorological data used in hydraulic models.  

Thus, data validation in the context of wastewater networks remains a challenge due to large 

plethora of defects (punctual vs sequential, erroneous vs non-representative, etc.). Both 

statistical and model-based approaches have been extensively studied and analyzed in the 

literature, our aim, through this research work, is therefore to use AI models and to test 

their ability to validate data issued from wastewater networks a posteriori. The aim is to 

be able to model implicit structures identifiable in the data, in a more flexible way (with fewer 

assumptions) than statistical or hydrological models. 
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Figure 2-7: Overview of data validation approaches and their limits in 

wastewater networks 
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Chapter 3. Artificial Intelligence - 
Enhanced Data Validation 

Framework 
 

A number to start with: 496 010!  

This is the number of publications on AI in the world in 20213. A value that doubled in 10 years, 

from 200,000 in 2010 to almost 500,000 in 2021 [77]. This volume is colossal, a veritable tide 

of information, which testifies to the place of AI in our world. It is therefore essential to start 

with an exploration of this field and a definition of its different concepts. 

3.1 AI Vocabulary & History: A Primer 

3.1.1. A timeline of artificial intelligence advancements 

While it may be challenging to precisely pinpoint, the origins of artificial intelligence likely date 

back to 1950 when Alan Turing published his seminal article "Computing Machinery and 

Intelligence," outlining how to create intelligent machines and, in particular, how to test their 

intelligence [78]. The Turing Test, which is still considered a benchmark for identifying the 

intelligence of an artificial system, was born from this work: "if a human interacts with another 

human and a machine and is unable to distinguish the machine from the human, then the 

machine is considered intelligent”. The term "Artificial Intelligence" was officially coined 

about six years later in 1956 when Marvin Minsky (co-founder of the MIT AI laboratory) and 

John McCarthy (a computer scientist at Stanford) organized the Dartmouth Summer Research 

Project [79]. This workshop brought together those who would later be recognized as the 

founding figures of AI. The Dartmouth Conference marked the start of nearly two decades of 

significant success in the field of AI. An early example is the well-known ELIZA computer 

program, created between 1964 and 1966 by Joseph Weizenbaum at MIT [80]. ELIZA was a 

natural language processing tool capable of simulating a conversation with a human and one 

of the first programs attempting to pass the Turing Test. As a result of these promising 

achievements, substantial funding was allocated to AI research, leading to an increasing 

number of projects [81]. In 1970, Marvin Minsky's interview with Life Magazine stated that “In 

from three to eight years we will have a machine with the general intelligence of an average 

human being”. Regrettably, AI researchers had failed to appreciate the difficulty of the 

 

3 Total number of English-language and Chinese-language AI publications, including journal articles, 

conference papers, repositories, and patents 
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problems they faced. Their immense hope had elevated expectations to an unattainable level, 

and when the anticipated outcomes did not materialize, AI funding vanished. This period 

marked the onset of the AI Winter [82]. In 1997, a major event reshaped the history of AI. IBM's 

Deep Blue chess-playing program managed to defeat the world champion, Gary Kasparov. 

For the first time, a machine had triumphed over a human. Deep Blue was reportedly capable 

of processing 200 million possible moves per second and determining the optimal next move 

by looking 20 moves ahead through a method called tree search [83].  

Since 2010, the development of artificial intelligence has been accelerated by big data, which 

refers to massive number of datasets requiring sophisticated processing software tools. 

Artificial neural networks made a resurgence in the form of Deep Learning when, in 2015, 

AlphaGo, a program developed by Google, was able to beat the world champion in the board 

game Go4 [84]. Deep learning algorithms have empowered computers to process and interpret 

complex data, leading to breakthroughs in fields like natural language processing and 

computer vision. The European Union has also recognized the importance of ethics in AI and 

established a 2024 deadline for companies to comply with new AI regulations [85]. In 2022, 

the release of ChatGPT, a large language model trained by OpenAI, marked a new milestone 

in the AI field [86].  

 

 

Figure 3-1: The history of artificial intelligence 

3.1.2. Learning approaches 

Today the term AI refers to a system's capacity to accurately comprehend external data, 

assimilate knowledge from this information, and subsequently apply these acquired insights to 

accomplish predefined objectives and tasks through adaptive methods. To achieve this, AI 

 

4 Go is considered to be more complex than chess, with 361 possible opening moves. 



Chapter 3. Artificial intelligence – enhanced data validation framework 

Page 45 of 356 

 

relies on three categories of learning processes, each with its unique characteristics and 

functionalities [87]: 

• Supervised learning, where AI systems are provided with a labelled dataset. These 

labels act as guides, enabling the system to make predictions or classifications based 

on the patterns and relationships it identifies within the data.  

• Unsupervised learning operates without labelled data. Instead, AI systems 

autonomously uncover hidden structures and patterns within the input data, grouping 

similar data points together.  

• Reinforcement learning involves an AI system that learns by receiving feedback in the 

form of rewards or penalties for its actions, adapting and refining its strategies to 

maximize its cumulative rewards. This learning approach is analogous to trial and error, 

where the AI system learns by experiencing the consequences of its decisions and 

actions in a dynamic environment. 

The choice of the learning approach in AI is closely tied to the nature of the problem at hand 

and the availability of input data. For instance, when it comes to classifying images of animals 

(see Figure 3-2), the supervised approach is often favored if a pre-labelled dataset is available. 

In this scenario, animal images come with labels indicating which animal is depicted in each 

image. The supervised learning algorithm utilizes these labels to learn how to identify 

distinctive features of each animal, thus enabling accurate classification of new images. We 

are talking about classification in this case. Conversely, if the dataset lacks labels, the 

unsupervised approach is more suitable. In this case, the model aims to discover similarities 

and groupings within the images without prior knowledge of animal categories. It can unveil 

underlying structures and allow the creation of groups of similar animals, albeit without specific 

labels. We refer to this task as clustering. 
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Figure 3-2: Distinction between supervised and unsupervised learning - © [88] 

3.1.3. Traditional AI, ML, DL 

The level of complexity of the model dictates the specific branch within AI at which we position 

it (see Figure 0-4). 

Traditional AI is rooted in the utilization of rule-based systems, which subsequently gave rise 

to expert systems, often referred to as knowledge-based systems [89]. These expert systems 

are designed to imitate the decision-making capabilities of humans by employing a collection 

of predefined rules and conditional logic. Nonetheless, the application of rule-based systems 

for decision-making can entail the incorporation of a multitude of rules [90]. Traditional AI 

encounters limitations primarily due to the extensive quantity of rules that are requisite even to 

define seemingly simple objects, which can become unmanageable and challenging to 

maintain as the complexity of the tasks increases. 

Machine Learning (ML), as a subfield of AI, encompasses a range of techniques where 

algorithms learn patterns and relationships within data to perform specific tasks. According to 

Arthur Samuel in 1959 (who first introduced this term), ML gives "computers the ability to learn 

without being explicitly programmed.” [91]. Therefore, ML delves into the examination and 

creation of algorithms capable of acquiring knowledge from data and generating predictions. 

These algorithms transcend the conventional reliance on static program instructions by 

deriving data-driven forecasts or decisions through the development of models based on input 
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samples [92]. Machine Learning frameworks enable researchers, data scientists, engineers, 

and analysts to generate consistent conclusions and results while revealing hidden insights by 

assimilating knowledge from past data relationships and trends [93]. 

An integral subdomain within the field of Machine Learning is Deep Learning (DL). Deep 

Learning architectures are fundamentally underpinned by the perceptron, serving as the 

foundational building block for neural networks, which frequently operate on extensive or 

substantial datasets [90]. The term "deep" in DL indicates that there are many layers involved 

in the data transformation process. Hence, each level learns to transform its input data into a 

more abstract and composite representation. Importantly, a DL system can figure out on its 

own which features should go into each level for the best results [94].  

3.1.4. From perceptron to neural networks 

• Perceptron 

In the 1950s and 1960s, scientist Frank Rosenblatt developed perceptrons, drawing inspiration 

from prior research by Warren McCulloch and Walter Pitts [95]. A perceptron is a 

computational unit that accepts multiple inputs, denoted as x1, x2, and so forth, and generates 

a single binary output. Frank Rosenblatt proposed a straightforward algorithm to calculate this 

output. In this method, weights (w1, w2, etc.) are introduced, representing real-valued 

coefficients that indicate the significance of the respective inputs in influencing the output. The 

decision regarding the neuron's output, which can be either 0 or 1, is contingent upon whether 

the weighted summation ∑wi.xi is less than or greater than a predefined threshold value. 

Similar to the weights, the threshold constitutes a real number and serves as a parameter of 

the neuron. It is common to move the threshold to the other side of the inequality, and to 

replace it by what will be referred to as perceptron’s bias b (see Figure 3-3).  
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Figure 3-3: Perceptron architecture 

Once the architecture of a perceptron has been established, the essential objective is to 

perform learning to adjust weights and bias so as to obtain a response corresponding to the 

model's expectations. However, this process can be tricky due to the inherent volatility of 

perceptrons. A slight change in weights can cause a sudden swing in results, making the model 

unstable and difficult to train consistently. This is where sigmoid neurons, also known as 

artificial neurons, come in. These processing units use a sigmoid activation function, 

enabling them to generate continuous, graded outputs (see Figure 3-4). The smoothness 

of the sigmoid function means that small changes in the weights and in the bias will produce a 

small change in the output. As a result, sigmoid neurons can model non-linear relationships 

more flexibly, making them more suited to solving complex problems [96]. This transition from 

perceptrons to sigmoid neurons has considerably improved the stability of neural network 

models. 

 

Figure 3-4: Artificial neuron architecture 
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• Neural networks 

Whether it’s the perceptron or the artificial neuron, they are both simplified versions of the 

human decision-making process. These models are limited in their ability to solve complex 

problems. To overcome this limitation, researchers developed artificial neural networks, 

which are hierarchical structures composed of multiple layers of interconnected neurons [97]. 

Each neuron performs a non-linear data transformation operation, enabling the network to 

capture complex, abstract relationships within the data (see Figure 3-5). 

 

Figure 3-5: Architecture of a neural network - © [98] 

The first layer, known as the input layer, receives raw data as input. Intermediate layers, known 

as hidden layers, progressively process this data, extracting increasingly abstract features as 

the information passes through the network. Finally, the output layer generates the network's 

final response or prediction. Each connection between neurons is associated with a weight 

that determines the relative importance of the information conveyed. The neurons integrate 

the incoming signals, apply an activation function to produce an output, and transmit this output 

to the neurons of the next layer. This layered structure enables neural networks to model 

complex relationships by learning hierarchical representations of data. This is the most basic 

neural network structure. In this presentation, we have mentioned the sigmoid and Heaviside 

(Boolean) functions, but we emphasize that there is a multitude of other activation functions, 

each adapted to specific contexts (see Appendix A). Similarly, when it comes to neural 

network architectures, there is a variety of configurations, each suited to particular tasks (see 

Appendix B). In this work, we will focus on those architectures and activation functions that 

are best suited to our research context. These choices will be thoroughly examined and 
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explained in detail in Part II dedicated to materials and methods, enabling a clear and justified 

understanding of the adopted approach for our study. 

• Learning of neural networks 

Learning is the process through which a neural network adapts and enhances its ability to 

perform a given task by assimilating insights from observed examples. It entails the fine-tuning 

of the network's connection weights and thresholds, with the aim of improving the accuracy of 

its outcomes (see Figure 3-6). This refinement is achieved by minimizing the errors 

encountered during the learning process. In cases of supervised learning, the network is 

compelled to converge towards a specific final state while being presented with corresponding 

patterns. In contrast, unsupervised learning allows the network to autonomously converge to 

various final states upon pattern presentation. Practically, this is implemented by defining a 

loss / cost function that is periodically evaluated during the learning process [99]. As long as 

the loss function's output consistently diminishes, the learning process persists5. Typically, the 

cost function is expressed as a statistic, such as Root Mean Square Error (RMSE) or Mean 

Squared Error (MSE). Backpropagation serves as a method to modify the connection weights 

in response to errors identified during learning. Technically, backpropagation calculates the 

gradient (i.e., derivative) of the loss function associated with a specific state concerning the 

network's weights. Weight updates can be executed using techniques like stochastic gradient 

descent (Appendix C). The learning rate plays a pivotal role in this process, determining the 

size of adjustments made by the model to rectify errors in each observation. A higher learning 

rate accelerates training but may result in lower ultimate accuracy, while a lower learning rate 

extends the training duration with the potential for higher accuracy. To manage this, 

optimizers are employed to dynamically adjust the learning rate as the learning process 

unfolds [100]. 

 

 

5 Learning can also be forced to stop after a number of iterations / epochs. 
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Figure 3-6: Learning process of a neural network - © [98] 

When designing a neural network, the judicious selection of hyperparameters is crucial to 

ensure efficient learning. Hyperparameters include the number of hidden layers, number of 

neurons in each layer, activation function, learning rate, optimizers, and many others. 

Commonly used techniques for hyperparameters tuning include Bayesian optimization, 

random search, and optimization algorithms such as Grid Search and Random Search, which 

efficiently traverse the hyperparameter space in search of optimal configurations [101]. 

Inadequate tuning of these hyperparameters can lead to inefficient learning and poor results. 

Among the challenges commonly encountered when tuning hyperparameters is the risk of 

overfitting. The latter occurs when the model adapts excessively to the training data, even 

capturing noise present in the data, to the detriment of its ability to generalize on new data 

[102]. This results in excellent performance on training data, but poor performance on unknown 

data. Another major challenge when training a neural network is the risk of convergence to a 

local minimum of the cost function. Neural networks are characterized by highly complex 

and non-linear cost functions, which means that there are many peaks, valleys, and troughs in 

the parameter search space (see Figure 3-7). Hence, it is possible for the optimization 

algorithm to converge on a local minimum, thus leading to poor performance. Several 

techniques are used to mitigate overfitting and local minima. Cross-validation can be useful 

for exploring various configurations and identifying robust models, by initializing the network 

weights differently at each run, thus allowing a better generalization. The use of advanced 

optimization algorithms can also help overcome problems of convergence to local minima 

[103]. 
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Figure 3-7: Example of loss function with a local minima that is different from 

the global one - © [104] 

3.2 Key Considerations Before Implementing AI: Questions to Ask 

Once the objective is set, the use or the development of AI models generally follows a three-

step process. First of all, input data is collected and prepared, to serve as a learning base for 

the AI model. Next, the model learning process is launched, during which the AI examines 

this input data to extract useful features and information. This learning phase can be 

supervised (with labelled data) or unsupervised (without prior labels). Finally, once the model 

has learned from the data, it is able to generate outputs or predictions (see Figure 3-8). 
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Figure 3-8: AI Implementation process 

Before diving into model selection and the technical phases of analysis and learning, it's 

imperative to take a step back and ask three fundamental questions: “What do we want to 

do?”, "What do we have as input?" and "What are we looking to produce as output?". A 

well-delimited objective is the cornerstone of any AI study. Moreover, a clear understanding of 

the available input data is essential to define the nature of the information available to the 

system. And similarly, having a clear vision of what output is required determines the purpose 

of the AI. These considerations then guide the choice of model, learning techniques, and the 

whole implementation process, ensuring that the AI is designed to respond effectively and 

relevantly to the specific needs of the task. 

3.2.1. What do we want to do? 

The aim of this study is to perform data validation and anomaly detection using AI models. Yet, 

anomaly detection constitutes a multifaceted field that has been extensively examined within 

the realm of AI. Numerous anomaly detection techniques have been purposefully developed 

to suit specific application domains, while others exhibit more generalized applicability [51]. 

The selection of an AI method primarily relies on the inherent characteristics of the input data. 

Input data can be broadly categorized into two distinct classes: sequential data, which 

encompasses voice, text, music, time series, and protein sequences, and non-sequential data, 

which includes images, tabular data, graph data and various other forms of data [105]. 

Researchers such as [51],  [106] and [107] have offered comprehensive insights into anomaly 

detection techniques in general. However, our focus here is predominantly on anomaly 

detection models specifically tailored for or adaptable to time series data. Here, we are 

focusing on the analysis of time series from wastewater networks, more specifically turbidity 

data. These time series represent continuous records of measurements, captured at 5-minute 

intervals. This sampling frequency was selected to ensure adequate temporal resolution to 

capture the dynamics of events, while taking into account operational imperatives relating to 
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data management and processing. Our focus is exclusively on time-delayed data validation, 

an essential approach for a variety of applications (see Figure 0-1), including operational 

model calibration and collection system performance evaluation. 

3.2.2. What do we have as input? 

As previously mentioned, this manuscript focuses primarily on the analysis of sequential data, 

in particular time series from wastewater networks. In this context, we may be dealing with 

monovariable time series, where each series corresponds to an individual sensor, or 

multivariable time series involving combinations of sensors, from a same location or even 

different locations.  

In the absence of precipitation, wastewater quality exhibits characteristic cycles on a daily and 

weekly scale. During rainy events, these cycles vary according to the intensity and duration of 

precipitation. Hence, the data must be pre-processed to enable the AI model to capture the 

inherent dependencies and patterns, which is made possible by segmenting the 

measurement chronicles into subsequences. However, determining the optimal sequence 

length poses a problem. By default, the dominant and basic seasonality in wastewater is 24 

hours. This window size is therefore considered the default input size. Nevertheless, it is 

imperative to experiment to determine the window size that best captures the dynamics of the 

data..   

Moreover, these input time series do contain inherent faults or anomalies, the second question 

is: Do we have prior information on the location of these anomalies? Do we have labels 

or annotations for these data? Labels are used as indicators to determine whether data falls 

within the normal behavior or is an anomaly. This implies a prior labelling process carried out 

by a human expert, following one of the approaches described in Chapter 2, with all its inherent 

constraints: subjectivity, human error, and considerable cost. In addition, it should be noted 

that obtaining labelled data that is both accurate and representative of all types of behavior is 

often prohibitively difficult due to the infrequent occurrences of anomalies [51]. Moreover, 

anomalies are often dynamic in nature, for example, new types of anomalies may emerge for 

which there is no labelled training data. In some cases, such as fraud or malware detection, 

perpetrators are using increasingly sophisticated techniques [108], while in the environmental 

field, exceptional events linked to climate change are likely to become more frequent and 

unpredictable. 

Hence, anomaly detection models can operate in one of three modes, depending on the 

availability of labels. In supervised deep anomaly detection, a supervised classifier is trained 

using labelled instances from both normal and anomalous categories. When faced with new 
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data, the model assigns it to one of these classes. However, supervised classifiers for anomaly 

detection may exhibit suboptimal performance due to class imbalance, with a significantly 

larger number of normal instances compared to anomalies. On the other hand, unsupervised 

anomaly detection techniques identify outliers solely based on inherent data properties. These 

methods are preferred when obtaining labelled data is challenging. A middle ground between 

the two is the use of semi-supervised approaches, which assume that the training data only 

includes labeled instances for the normal class. In this scenario, any deviation from the normal 

class is considered anomalous.  

It must be emphasized that in any case, labelled data are necessary to evaluate the 

performance of the model during the development phase in order to guide its tuning. Although 

unsupervised models don't explicitly use labels to guide their learning, labeled data is 

nevertheless used as a baseline to assess the performance and pertinence of the results 

obtained. On the other hand, once the model has been tuned and validated for the specific use 

case, its deployment no longer requires the use of labels, whatever the learning method 

employed (supervised or unsupervised). In this phase, inputs are supplied directly to the model 

and labels are generated as outputs. If the model is to be improved / updated for other contexts, 

it can be re-trained using new data. If the ability to transpose the model to other contexts has 

been confirmed during the development phase, this learning update will not require the use of 

labels in the case of an unsupervised approach. However, if the initial model was supervised, 

the use of labels will remain essential for this re-training. 

3.2.3. What are we looking to produce as output? 

Admittedly, the fundamental aim of anomaly detection models is to pinpoint anomalies within 

the data as output. However, a crucial question arises as to how these models express these 

results. Depending on the nature of the anomalies (see Section 1.3.2), whether isolated 

points or sequences, the objectives of the detection model can vary significantly. The majority 

of existing work in the literature focuses on the detection of anomalous points, where the 

emphasis is on identifying individual instances that stand out from the rest of the dataset [51]. 

However, it is essential to note that the identification of abnormal sequences proves to be a 

more complex task. From an operational standpoint, certain applications such as the 

establishment of performance assessments for the sewer system may suffice with daily-scale 

validation, whereas other applications such as the calibration of a hydrodynamic model require 

a finely validated database at smaller time intervals. Consequently, it is crucial to clearly 

delineate the scale at which faults are to be identified. Hence, the objective of AI models is 

twofold: to detect invalid data at the acquisition time step and to identify sequences exhibiting 

a significant anomaly rate. The process can vary depending on the chosen models: either 
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validation occurs at the sequential scale followed by scaling down to the time step level by 

invalidating part or all of the time steps constituting the sequence, or alternatively, validation 

occurs at the time step scale followed by scaling up to the sequence scale based on a 

predefined threshold, beyond which a sequence is considered to have a sufficiently high 

anomaly rate for invalidation. 

In general, the outputs produced by anomaly detection methods take the form of anomaly 

scores or binary labels. Anomaly scores are used to assess the probability of a data item 

being anomalous, providing a measure of the "degree of abnormality" of each instance. 

Consequently, the output from such techniques constitutes a ranked list of anomalies, from 

which an analyst can opt to examine the top anomalies or apply a predefined threshold to 

select anomalies. Conversely, binary labels offer a straightforward classification of data as 

normal or abnormal, without offering insights into the anomaly's severity. This approach can 

be valuable in scenarios where the key objective is to identify all anomalies rather than a 

predetermined subset.  

3.2.4. Major Problem Complexities 

By analyzing the various elements above, AI models for anomaly detection have to cope with 

some unique problem complexities [109] - [110]: 

- Unfamiliarity: Anomalies are closely linked to elements that are not yet encountered, such 

as instances displaying unfamiliar abrupt behaviors. They often remain unknown until 

they actually materialize.  

- Heterogeneous anomaly classes: Anomalies are inherently diverse, meaning that one 

category of anomalies may exhibit entirely distinct abnormal traits when compared to 

another category. For instance, in the domain of IoT-based environmental monitoring, 

anomalies related to air quality, humidity fluctuations, and temperature variations can 

each exhibit unique characteristics, necessitating specialized detection methods. 

- Rarity and class imbalance: Anomalies typically represent data instances that are rare 

when compared to the prevalent normal instances, which tend to dominate the dataset. 

As a result, it can be challenging, if not entirely infeasible, to amass a substantial volume 

of labelled abnormal instances. This scarcity of extensively labelled data is a common 

issue across many applications.  
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3.3 Anomaly detection using AI in urban hydrology 

Over the years, the detection of anomalies in time series has gained considerable 

importance in various fields, including cybersecurity [108], anti-fraud [111], and medical 

sciences [101]. However, the advent of the Internet of Things (IoT) has extended the scope of 

anomaly detection beyond these domains. With the prospect of "Smart Cities" and the 

proliferation of sensors to monitor the operation of water networks, time series analysis in the 

urban hydrology field has become an integral part of the IoT and can no longer escape its 

constraints [112]. Several major incidents, such as the compromise of the Maroochy water 

treatment system in Australia in 2000 [113], the direct terrorist attacks on US water supply 

networks [114], and the presence of Aeromonas in drinking water networks in Scotland and 

Turkey [115], have reinforced the need to use automated machine learning-based approaches 

for anomaly detection in urban network data series. These events have considerably 

stimulated research in this field, making it increasingly important to ensure the reliability of data 

from water management systems.  

Indeed, the literature review conducted in support of this work is initially based on a survey 

undertaken by Dogo et al. [20], which lists articles about anomaly detection using AI in the field 

of drinking water quality from 2002 to 2018. Nevertheless, in order to maintain at the forefront 

of this constantly evolving research field, we have extended this review up to the year 2023 

and expanded it to encompass the broader domain of urban hydrology, as delineated in 

Appendix D It should be noted that in this survey, only publications providing a detailed 

description of their methodology and data source are taken into consideration. 

With regard to the fields of application of these approaches, the analysis of the state of the 

art reveals a predominance of studies focused on monitoring water quality data in distribution 

systems, with an objective of detecting potential risks of contamination or intrusion. By contrast, 

wastewater-related studies account for a relatively modest 25% of the listed research, focusing 

mainly on data analysis within WWTPs. It is important to note that only one study [116], to the 

best of our knowledge, explored data from sewage networks, and even then, analysis was 

limited to data collected during the dry season. It is in this context that our research work finds 

its legitimacy and positions itself as a true contribution in this field. 

Furthermore, when examining the sources of data, it is crucial to note that some databases 

originate from prototypes or testbeds [21], [117], which differ considerably from real-world 

conditions. In the laboratory, data is generated in a strictly controlled environment, following 

rigorous protocols, and collected at regular, reproducible intervals. In contrast, data collected 

in the field reflect real-world conditions, with uncontrolled sources of variability. What's more, 
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even in a field context, the dynamics of data within a treatment plant [118], where operation is 

controlled and exhibits stable dynamics with fewer fluctuations, differs from that of network 

data [119]. Moreover, even within the latter case, there are differences in the dynamics 

between drinking water and wastewater data. For example, drinking water data may show 

peaks during the dry season / summer, while wastewater data may show a more dynamic 

seasonality, influenced by various exogenous parameters. This understanding of the diversity 

of data sources is essential for adapting analysis methods and models to the specificities of 

each context. 

Figure 3-9 summarizes the different models used in or more than two articles. The dominant 

approaches that emerge from this analysis can be classified as follows: classification using 

supervised approaches, unsupervised clustering approaches, and approaches using 

prediction.  

 

Figure 3-9: State-of-the-art AI approaches for anomaly detection in the urban 

hydrological field with their occurrence in Appendix D 

 

3.3.1. Anomaly Detection through Classification Approaches 

Supervised anomaly detection entails the process of learning a discriminating boundary from 

a set of labelled data instances during the training phase and subsequently employing this 

learned model to classify a test instance as either normal (often denoted as 0) or anomalous 

(often denoted as 1) during the testing phase. This approach falls within the category of 

classification-based anomaly detection techniques [120]. The underlying assumption in 

these methods is that, given a feature space, there is a rule capable of distinguishing 
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between normal and anomalous classes. Much research has investigated ML supervised 

models to improve the anomaly detection accuracy [121] , [122].  

• Traditional Machine Learning Models 

First of all, Support Vector Machine (SVM) stands as a state-of-the-art approach for 

classification tasks. Its fundamental principle lies in creating an optimal hyperplane, 

maximizing the margin between classes in a feature space, and categorizing data points based 

on their position relative to this hyperplane. In scenarios where the relationship between 

features and classes is not linear, SVM with kernel functions can be used. Kernels, such as 

the Radial Basis Function (RBF), Polynomial, and Sigmoid, transform the feature space to 

higher dimensions, enabling SVM to find complex decision boundaries that are capable of 

capturing non-linear patterns in the data [123]. [124] emphasized that the performance of a 

SVM kernel is contingent upon several factors, including feature selection and the nature of 

the dataset. When the input dataset exhibits linear separability, the linear SVM kernel tends to 

outperform other models.  

Another state-of-the-art approach in ML for anomaly detection is based on the use of decision 

trees, in particular the Random Forest (RF) model [125]. The fundamental principle behind 

RF lies in the creation of a set of decision trees, where each tree is randomly constructed from 

a subset of the training data. These trees are designed to solve a classification problem by 

recursively dividing the feature space into subregions, thus creating decision rules. A test 

instance that is not covered by any rule is considered as an anomaly [126]. [124] proposed a 

performance analysis of RF using a real dataset retrieved from the water treatment station 

"Ghadir El Golla" of Tunis. The experimentation results are encouraging. 

Last but not least, the k-Nearest Neighbors (k-NN) algorithm stands as another frequently 

employed supervised ML technique for addressing classification problems. At the core of the 

nearest-neighbor family lies the fundamental assumption that similar data points are close to 

each other, while outliers are typically far away from the group of similar data points. Data is 

presented as points in a multi-dimensional space, defined by the number of features used in 

the analysis. This allows to calculate distances between data points, usually using the 

Euclidean Distance. The dissimilarity between points depends on how far apart they are from 

each other [127]. In k-NN, we determine whether a data point is unusual by looking at its k-

nearest neighbors, where k is usually a small number, ranging from 3 to 10. However, it's 

important to note that as the number of data points and the number of features increase, the 

efficiency of this method in making predictions significantly decreases [128]. Various research 
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studies have compared this model with other supervised ML or DL methods, and it has 

generally been found to perform less well than the latter [129], [119], [130]. 

Such traditional supervised machine learning approaches for anomaly detection have the 

advantage of being well documented, providing a solid basis for their understanding and 

application. Nevertheless, there is much debate and controversy in the literature about 

the performance of these models, with results ranging from notable successes to major 

failures for identical models. For example, [131] and [132] have evaluated the SVM model 

on the same database, but the results obtained show considerable variation, ranging from a 

mediocre performance with an F1 score6 of 0.36 to a quasi-perfect performance with an F1 

score of 0.99. This disparity in results is largely attributable to an initial data pre-processing 

phase that differs in the two cases. It is therefore clear that the performance of this model is 

subject to substantial variability, and its effectiveness is highly dependent on the quality of the 

input data. Studies that have applied these models to carefully constructed public data sets 

tend to achieve the most satisfactory results. However, in practical contexts, achieving such 

precision in labelling can be challenging. In addition, classification algorithms require an 

adequate distribution of data, both normal and abnormal, i.e., the data must cover the whole 

distribution to allow generalization by the classifier. New data can then be correctly classified, 

as classification is restricted to a "known" distribution. However, a new example from a 

previously unobserved region of the distribution (a new form of anomaly) may not be classified 

correctly, unless the generalization capabilities of the underlying classification algorithm are 

robust. These models are often prone to over-fitting, a situation where the model overfits 

the training data, losing its ability to generalize effectively on new data. In response to 

these challenges, the scientific community has gradually turned to more sophisticated 

approaches that make use of neural networks, offering a richer and more flexible learning 

potential. 

• Deep Neural Networks  

The increasing adoption of deep neural networks (DNN) in the field of time-series analysis and 

forecasting is largely driven by their high performance in computer vision tasks, such as object 

detection, classification, and segmentation [133]. Unlike traditional ML approaches, neural 

networks do not require any prior assumptions about the underlying data generation 

process. Their growing popularity can be attributed to the compelling results they have already 

delivered in practical applications [31]. The fundamental process of supervised classification 

 

6 This metric will be explained later. In general, it ranges from 0, indicating no performance, to 1, 

signifying perfect performance. 
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using DNNs involves two key stages. Initially, the neural network is subjected to learning with 

the known input-output training dataset to acquire knowledge about distinct normal and 

abnormal classes. Subsequently, each test instance is introduced as an input to the neural 

network, which, in turn, yields a probability associated with each class or directly identifies the 

most probable class. In this review, we focus on two predominant DNN architectures employed 

for the task of anomaly detection in the urban hydrology field through the classification 

approach: the Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN). These 

specific architectures are emphasized due to their common use in DL models for time series 

classification, as widely recognized within the field [134]. 

The most fundamental deep neural network architecture is the Multi-Layer Perceptron (MLP) 

[38] which is a fully connected neural network, where each layer's neurons apply a non-linear 

transformation to the input data, and this transformation is determined by the weights and bias 

associated with each connection (see Figure 3-10).  

 

Figure 3-10: Example of MLP architecture for anomaly detection 

For time series classification, the final layer typically employs a SoftMax activation function 

(see Appendix A), allowing the network to produce a probability distribution over different 

classes (Class 0: normal / Class 1: anomaly). The MLP learning process follows the 

methodology described in Section 3.1.4. It begins with an initialization stage, in which the 

network's weights and biases are generally defined at random. Then, during the training phase, 

the network evaluates the loss function, which measures the deviation between the model's 

predictions and the true labels of the training data. Generally, for classification tasks, we use 

categorical cross-entropy as a loss function (see Appendix E). To minimize this loss and 

improve model performance, backpropagation is used in order to calculate the gradients with 

respect to network weights and biases, step by step, working backwards from the deepest 
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layers to the input layers. These gradients are then used to adjust the weights and biases 

according to available optimizers, such as SGD, Adam-based optimization or other 

optimization algorithms. This iterative process continues until the model achieves satisfactory 

performance on the training set. As a reminder, the number of layers and the number of 

neurons per layer are considered as hyperparameters. 

Numerous investigations have employed MLP for the task of anomaly detection in time series, 

yielding promising results [135], [136]. Other studies have compared MLP with other 

supervised machine learning approaches and demonstrated its superior performance [119]. 

This success has positioned MLP as a foundational model for this specific task. However, 

when considering the input of the MLP, it's crucial to acknowledge the fundamental distinction 

between classifying static patterns and time series data, which lies in the dimension of time. In 

static pattern classification, individual patterns are typically unrelated, allowing each one to be 

independently processed. However, this distinction poses a challenge when applying MLPs to 

time series data. In this case, each timestamp in a time series is assigned its weight, 

resulting in the loss of temporal information. Hence for time series classification, MLPs 

must be implemented using sliding windows [137]. In this approach, the window size aligns 

with the number of neurons in the MLP's input layer, facilitating the consideration of temporal 

dependencies.  

To overcome the challenge of capturing temporal dependencies in MLPs, Convolutional 

Neural Networks (CNN) have started to gain traction in anomaly detection within time series 

data, despite their initial development for image processing [138]. According to [134], CNN is 

the most frequently utilized architecture for time series classification problems, largely owing 

to its robustness and relatively shorter training time compared to alternative architectures. This 

is precisely where CNNs prove highly effective, as they excel in learning spatially invariant 

filters or features directly from the raw input time series [133]. Unlike MLPs that employ fully 

connected layers, CNNs use convolutional layers which have partial connectivity. This 

characteristic leads to a reduction in the number of parameters and allows CNNs to achieve 

deeper architectures with faster training. A key distinction between CNNs and MLPs is their 

emphasis on local patterns within the data [31]. 

CNNs operate by sliding filters over time series data, applying a convolution operation, and 

using non-linear activation functions like the Rectified Linear Unit (ReLU) (see Appendix A). 

This results in a filtered time series that can be interpreted as a new set of features. Unlike 

MLPs, which treat each time stamp independently, CNNs benefit from weight sharing, meaning 

the same filter is applied to all time stamps, capturing temporal dependencies. Local or global 

pooling operations can be applied to further aggregate data and aid in convergence [139]. A 
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final discriminative layer, often implemented with a SoftMax operation, provides class 

probabilities (see Figure 3-11). CNNs are trained through a feed-forward pass followed by 

backpropagation, similar to MLPs, allowing them to discover intricate temporal features. 

Hence, the architecture of a CNN, including the number of convolution and max-pooling layers, 

stands as a critical hyperparameter. The specific configuration of these layers may vary 

depending on the dataset being processed. 

Research in the field of urban hydrological anomaly detection has widely employed CNNs in 

combination with other predictive models such as autoencoders (AEs), variational 

autoencoders (VAEs) or long-term memory recurrent neural networks (LSTMs) (see Section 

3.3.3). This combination aims to evolve from a model designed for image processing to one 

adapted to time series analysis [140], [117], [116]. However, it should be noted that this 

approach is not imperative, and it is possible to directly use a CNN model for processing 

temporal data by resorting to 1D convolution layers [141] . 

 

 

Figure 3-11: Example of a Deep CNN for time series processing - © [141] 

 

3.3.2. Exploring Anomaly Detection in Unsupervised Mode 

When working with datasets for which access to labels is not available (which is often the case 

due to the costs and constraints associated with obtaining them), it is common to turn towards 

unsupervised approaches for anomaly detection. These anomaly detection methods seek to 

identify unusual patterns and structures within the raw data without relying on labelled data. 

The model analyses the data as a stationary distribution. It is assumed that anomalies are 

distinct from 'normal' data, resulting in their detection as outliers [107]. This approach is 

particularly valuable when obtaining labels is difficult, costly, or simply impossible, enabling 

anomaly detection to be carried out in an unbiased way and without relying on external 

supervision.  

In this context, various models have been developed and studied, which are mainly non-deep 

models. It is important to note that the scientific community is constantly active in this field, 
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which frequently leads to the emergence of variants of the same models or principles [142]. 

These variants aim to meet various challenges, such as adapting to more complex data or 

improving performance in terms of computation time. 

• Majority modeling 

In an unbalanced clustering approach, one can consider that temporal data are generally 

grouped into a majority cluster that represents normality and anomalies are seen as values 

that deviate significantly from this main cluster.  

A modification of the SVM algorithm was introduced to adapt it into an unsupervised learning 

algorithm, One Class Support Vector Machine (OCSVM) [143]. While the conventional 

supervised SVM algorithm aims to optimally separate two distinct classes of data in feature 

space using a hyperplane, OCSVM assumes that all training instances share a single class 

label and endeavors to separate the entire set of training data from the origin. In other words, 

it seeks to identify a small region where the majority of data points are concentrated and labels 

the data within this region as a single class, normal class. Any test instance that falls outside 

the learned boundary is designated as an anomaly (see Figure 3-12). The complexity of the 

models can be adjusted by employing different values for OCSVM parameters, such as the 

variance parameter of radial basis functions (RBFs) and the expected outlier rate. 

 

Figure 3-12: The principle of OCSVM 

The original OCSVM method was designed for detecting anomalies in sets of vectors rather 

than time-series data. Many research papers suggest a common practice of projecting time-

series data into a vector representation for effective anomaly detection using OCSVM. [144] 

adapted this model to temporal data via pre-processing steps and evaluate its performance on 

telecommunication network data. Moreover, several studies have adopted the OCSVM model 

for anomaly detection in urban hydrology, with notable results. For example, in [21], the 

OCSVM was shown to identify attacks within a drinking water consumption chronicle, while in 
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[145], it was used to detect anomalies in water level variations in springs. Nevertheless, it 

should be noted that, in the first case, the anomalies are simulated, which implies that they 

follow a predictable dynamic, unlike reality where anomalies manifest themselves more 

randomly. With regard to the second example, the dynamics of water levels within springs are 

characterized by a slow evolution, substantially different from that observed in a sewage 

network. 

On the other hand, the non-supervised variant of Random Forests is known as Isolation 

Forests (IForest). These forests are constructed using randomized decision trees without any 

predefined labels, and their primary objective is to isolate outliers within sparse clusters [146]. 

IForest was developed based on the assumption that anomalies represent "few and distinct" 

data points in a given dataset. When constructing these trees, the method recursively selects 

random features and random split values as tree nodes, aiming to isolate the samples in the 

leaves of the tree. The measure used for quantifying the isolation of a sample is expressed as 

the path length throughout the tree. As anomalous samples are typically easier to segregate 

than normal ones, they tend to be closer, on average, to the root of the tree and consequently 

have shorter path lengths. Hence, path lengths serve as indicators of the normality of samples, 

and their reciprocal values are translated into anomaly scores (see Figure 3-13). However, 

the creation of a single tree may not provide a precise overview of the entire dataset. Therefore, 

multiple trees are generated, and the degree of outlierness of an object is determined based 

on the average path length of that object across all the trees. Consequently, samples with the 

shortest average paths are more likely to be identified as outliers [147].  

 

Figure 3-13: Example of the IForest principle 

As with OCSVM, efforts have been made to adapt IForest to time series. [148] applied the 

sliding window methodology to segment time series data into subsequences. [130] highlights 

that, compared with other clustering approaches such as K-Means and k-NN, the IForest 
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algorithm is better suited to the characteristics of large hydrological time series, and ensures 

highly accurate anomaly detection. However, in the case of [149], the complexity of 

establishing a discrimination threshold between normal and anomalous data is highlighted. 

Both of these models (OCSVM and IForest) are categorized within the majority modelling 

approach, which operates on the assumption that normal data instances are tightly clustered 

in hyperspace [150]. This approach's objective is to delineate the decision boundary between 

outliers and normal data by characterizing the distribution of regular data [30]. However, this 

assumption might not hold true in the context of time series data. Time series data often 

exhibit temporal dependencies and variations that can lead to dispersed, less compact data 

distributions, especially when the data involves multiple variables or high dimensionality. As a 

result, OCSVM and IForest, originally designed for vector data, may not capture the temporal 

dynamics adequately. They could overlook properties related to temporal dependencies. 

These models may primarily detect global outliers, which tend to be located in sparsely 

distributed regions of the data. But they may not perform well in capturing local anomalies or 

anomalies influenced by high-dimensional features. Their effectiveness in identifying time 

series anomalies can be limited by the failure to consider the temporal aspect and high 

dimensionality. 

• Distance-based approaches 

Another approach is to use proximity-based methods, which rely on the distances between 

data measurements to distinguish abnormal from correct readings. Distance methods use 

specialized distance metrics to compare points or subsequences in a time series with each 

other. Abnormal subsequences are assumed to have greater distances to other subsequences 

than subsequences with normal behavior. For distance calculations, algorithms in this family 

can consider all other subsequences, only certain nearest neighbors, or certain cluster 

centroids as reference points for distances. A well-known proximity-based algorithm is the 

Local Outlier Factor (LOF) [151] . 

The LOF model operates under the assumption that anomalies tend to reside in low-density 

regions of the data. Therefore, it identifies outliers based on their local divergence from their 

neighboring data points. LOF calculates a density score for each data point by evaluating its 

proximity to a set of its k nearest neighbors. Data points with lower density scores are more 

likely to be classified as anomalies. To estimate the local density, LOF measures the typical 

distance at which a data point can be reached from its neighbors [152].  
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Consider a 2-dimensional dataset with two 

anomalies A1 and A2 as illustrated in 

Figure 3-14. The first is a global anomaly, 

as it belongs neither to cluster C1 nor to C2. 

A2 is a local anomaly, as shown by its 

distance from its nearest neighbor 

compared to the size of the nearest cluster, 

in this case C1. Yet its distance is still less 

than the distances that can be measured in 

cluster C2, made up of normal points. To 

address variations in data density, the LOF 

score of a specific data point is calculated 

as the ratio between the average local 

density of its k nearest neighbors and its own local density. If a data point is normal and located 

within a densely populated region, its local density will closely resemble that of its neighboring 

data points. Conversely, an anomalous data point will exhibit a lower local density in 

comparison to its nearest neighbors. Consequently, the anomalous data point will receive a 

higher LOF score. In the example, LOF successfully identifies both anomalies (A1 and A2) by 

considering the density of data points [17]. 

LOF was initially designed to detect anomalies on spatial data [151]. However, in subsequent 

work, researchers, such as [153], extended the approach to time-series data. A number of 

research studies have demonstrated the effectiveness of the LOF model in various contexts, 

including the analysis of drinking water consumption data [129] and data from water treatment 

plants [154]. Although these contexts differ from the conditions present in wastewater 

networks, it is important to note that existing studies cover a wide range of measurement 

frequencies, from 2 hours [155] to 1 minute [149]. This diversity of frequencies suggests that 

the LOF model could potentially be adapted to data with significant dynamics. However, it's 

worth noting that LOF's performance is contingent on careful parameter tuning.  

One notable benefit of proximity-based methods is their independence from any assumptions 

about the underlying data distribution, relying solely on the data itself. Nevertheless, these 

techniques may encounter challenges in cases where normal instances lack a sufficient 

number of nearby neighbors or where anomalies possess a considerable number of 

close neighbors, potentially leading to misclassification and thus overlooking certain 

anomalies.  

Figure 3-14: Example of local density for 

LOF model 
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3.3.3. Detecting Anomalies Using Prediction Models 

Another way to approach the anomaly detection problem in time series is through prediction. 

In this method, instead of looking for anomalies directly, one predicts what should be expected 

in a data set and compares these predictions with the actual data. If the predictions closely 

match the actual data, then the observations are considered valid. However, if the actual data 

diverge significantly from the predictions, this may indicate the presence of anomalies or 

anomalous events. This approach is based on the idea that anomalies are often values that 

differ significantly from expected trends or patterns [30]. Actually, this approach is similar to 

the use of statistical or hydrological models presented in Chapter 2, but the models used here 

for describing normal conditions do not imply any assumptions about underlying processes or 

distributions. 

• Recurrent neural networks 

Recurrent neural networks (RNNs) are emerging as a logical choice for tackling anomaly 

detection using prediction [156]. RNNs are a class of neural network architectures designed to 

handle sequential data, making them particularly suitable for modeling time series. They are 

able to learn temporal patterns and create predictions based on previous observations. This 

method exploits the ability of RNNs to maintain a memory of past observations and use this 

information to make real-time decisions. This makes it a suitable tool for anomaly detection in 

time-series applications, where anomalies are often hidden over time and require a detailed 

understanding of sequential dependencies to be identified. In contrast to MLP and CNN, where 

the data is just flowing forward, RNN networks have a feedback connection enabling them to 

use the output information for the next input of the sequence.  

 

Figure 3-15: A diagram for a one-unit recurrent neural network (RNN).  

From bottom to top: input state, hidden state, output state. U, V, W are the 

weights of the network. Compressed diagram on the left and the unfold version 

of it on the right. 
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Nonetheless, conventional RNNs found limited applications in time series classification, 

primarily because of two critical factors. Firstly, RNNs frequently encounter the vanishing 

gradient problem when trained on long time series data [157]. This problem arises when the 

gradients, which guide the weight updates, become exceedingly small as they are 

backpropagated through time. Second, RNNs are perceived as challenging to train and 

parallelize, discouraging researchers from their adoption due to computational constraints 

[158]. Hence, Long Short-Term Memory models (LSTMs) have been developed to overcome 

the problem of RNNs with long-term dependencies [159]. They introduce memory mechanisms 

that enable them to store information over longer sequences, making them particularly suitable 

for detecting anomalies in complex time series where unexpected events may occur after a 

long period. In [160], the use of LSTM neural network shows a stable classification behavior 

with a peak F1-Score of 80% and shows a superior performance compared to other models. 

• Autoencoders  

Autoencoders (AE) offer an interesting 

alternative to RNNs in the realm of 

anomaly detection within time series data 

[161].The notion of employing 

autoencoders for detecting outliers stems 

from the empirical observation that 

outliers pose a more significant challenge 

for representation in a reduced feature 

space, which is the fundamental principle 

of dimensionality reduction [162]. 

Autoencoders are designed to reconstruct 

normal or inlier data effectively, but they 

tend to struggle when reconstructing 

abnormal or outlier data. Consequently, 

when autoencoders encounter outliers, the reconstruction errors become conspicuous. This 

can be understood as autoencoders attempting to compress input data into a smaller feature 

space, referred to as the latent space, which retains correlations among variables but cannot 

perfectly reconstruct the entire dataset (see Figure 3-16). This is due to the presence of 

multiple hidden layers acting as an information bottleneck, ultimately limiting the feature space 

[163]. The underlying assumption is that normal and abnormal data exhibit substantial 

differences in this feature space. Thus, projecting back to the original space will accentuate 

dissimilarities in certain data points, effectively highlighting anomalous instances. 

Figure 3-16: Architecture of 

Autoencoders 
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Autoencoders are well-suited for anomaly detection, and can be applied to time series  [164], 

[165]. The flexibility of autoencoders allows for various architectural combinations to suit the 

data's inherent characteristics. Researchers have found that hybrid architectures, which 

integrate convolutional and LSTM layers with autoencoders, can be particularly effective in 

identifying anomalies within the dataset [105], [118]. 

On the other hand, Variational Autoencoders (VAE) are an extension of conventional 

autoencoders. VAEs are data generation models that can learn to probabilistically represent 

the characteristics of time series [166]. The main distinction between VAE and AE lies in the 

fact that the VAE is a stochastic generative model capable of providing calibrated probabilities, 

while the AE is a deterministic discriminative model with no probabilistic basis [167].  

VAE incorporates a probabilistic component through the distribution in the latent space (see 

Figure 3-17). In fact, this model has the ability to generate new realistic data by sampling in 

latent space, thus facilitating the identification of anomalies by comparing the observed data 

with those generated by the model. In addition, VAE models offer increased flexibility for 

anomaly detection as they are able to model various data distributions, including multimodal 

distributions. Several research papers have explored the combination of VAE and CNN 

demonstrating promising results [168], [117], by integrating the hierarchical representation 

capabilities of CNNs with probabilistic generation aspects of VAEs. 

 

Figure 3-17: The basic scheme of a variational autoencoder. The model receives 

x as input. The encoder compresses it into the latent space. The decoder 

receives as input the information sampled from the latent space and produces 

x’ as similar as possible to x. 

However, it is important to note that these models are often more complex to implement 

than standard AEs, which can make their use more demanding in terms of computational 



Chapter 3. Artificial intelligence – enhanced data validation framework 

Page 71 of 356 

 

resources and time. Due to their probabilistic nature, VAE results may be more difficult to 

interpret than AE results, which may complicate the understanding of detected anomalies. 

3.4 AI-Powered Anomaly Detection: A Broader Outlook 

In the field of anomaly detection within time series, many ML and DL models have been 

deployed to identify outlier data points / subsequences. We have looked at some of the most 

popular models in the field of urban hydrology, but it is essential to note that this field is 

evolving, and different models are emerging with more or less popular applications. Moreover, 

some models that have long been considered state-of-the-art for the detection of anomalies in 

time series have been abandoned to the detriment of other models. 

For example, one of the conventional clustering algorithms for anomaly detection is using K-

Means clustering [169]. K-Means is an algorithm that groups data into homogeneous clusters 

based on similarities, using the Euclidean distance (see Figure 3-18). For anomaly detection, 

the idea is to group normal data into k clusters, thereby isolating data points that don't fit into 

any cluster or are far removed from existing clusters. The main inherent challenge of this 

approach is specifying an appropriate value k.  

 

Figure 3-18: K-Means Principle - © adapted from [170] 

However, [171] have demonstrated in their research that clustering time series sequences 

lacks meaningful significance. They provided evidence that the cluster centers obtained from 

multiple runs of the K-means algorithm on the same dataset do not exhibit significantly greater 

similarity to one another than cluster centers from a dataset generated by random walks. 

Numerous researchers have made mathematical analyses of this phenomenon [172], [173], 

[174] and many attempts have been made to address this issue or, at the very least, to identify 

time-series patterns that could be effectively clustered using K-Means [175], [176]. 

Nonetheless, the fundamental problems largely remain unresolved [177]. 
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On the other hand, other models are now being used to detect anomalies in time series as a 

state-of-the-art approach, such as Matrix Profile (MP) [178]. This method focuses on 

identifying those parts of the data that have distinctly different characteristics from any other, 

making them potentially anomalous. The fundamental difference between Matrix Profile and 

many other anomaly detection approaches is that it has been specifically designed for time 

series data mining, incorporating an anomaly detection option from the outset. The MP 

algorithm was first developed in 2016 to address numerous time series data mining tasks such 

as anomaly detection and pattern identification [179]. Anomaly identification via MP is based 

on the matrix profile calculation, which annotates a time series with a vector of minimum 

Euclidean distances between each pair of subsequences in a time series. The subsequences 

with the greatest distances (framed in Figure 3-19) correspond to anomalies. 

 

Figure 3-19: Example of Matrix Profile for anomaly detection - © [180] 

In [181], the research conducts three distinct experiments under significantly varying conditions 

to illustrate the effectiveness of the MP approach. These experiments employ diverse datasets, 

including hydraulic simulations, power electronic converters, and cyber-security intrusion 

detection scenarios. Remarkably, the MP model demonstrates robust performance and high 

accuracy across these contexts with minimal parameter adjustments. In [182], the focus shifts 

to evaluating anomaly detection for abnormal heartbeats in ECG data. The results of this test 

are encouraging. Moreover, in [183], the study's findings suggest that, with straightforward 

parameter tuning, this detector delivers outstanding accuracy and performance across a 

spectrum of fault scenarios. To the best of our knowledge, this model has never been 

evaluated on urban hydrology chronicles, nor data from wastewater systems in particular. 
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The field of DL evolves even more with new models and architectures that emerge regularly. 

For example, different variants of DNN, CNN, AE and RNN models were confronted and 

validated on a different public dataset’s archives. When compared to seven deep learning 

architectures, and across a wide range of datasets comprising 98 different univariate and 

multivariate time series, the Residual Network (ResNet) model consistently outperforms the 

other methods [134]. This model belongs to the family of deep convolutional neural networks, 

that was introduced to solve the problem of "vanishing gradient". ResNets stand out for their 

innovative architecture that incorporates linear shortcut connections “skip connections” 

allowing information to cross layers more efficiently.  

 

Figure 3-20: A residual block of the ResNet model - © [184] 

Other approaches exist but are less frequently used for anomaly detection. For example, 

Generative Adversarial Networks (GANs) can serve this task, by generating synthetic data 

similar to real time series and identifying inconsistencies [185]. In addition to these methods, 

other innovative approaches are constantly emerging, including combinations of various 

models. It is therefore important to bear in mind that the field of time series anomaly detection 

is constantly evolving, with a wide range of methods to be explored to meet the specific needs 

of each application. 
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3.5 Synthesis of Chapter 3 

The process of validating time series, particularly data from wastewater networks, involves 

three main phases. Firstly, given the temporal dependency of the data and the collective or 

contextual nature of the defects, it is essential to segment the data into sequences using 

appropriate sizes to capture the dynamics and seasonality of the data. These sequences are 

then subjected to artificial intelligence models for processing. Finally, a validity or invalidity 

label is assigned to the input data according to various operational considerations, which can 

be achieved at time step and/or sequence scale. Whatever the form of the model's output 

(binary labeling or anomaly score), the aim is to be able to switch from the time-step scale to 

the sequence scale and vice versa, depending on the needs and relevance of the approach.  

The models used for data validation using AI in the field of urban hydrology can be categorized 

into three distinct classes: supervised classification, unsupervised learning, and 

predictive models. In the case of supervised classification, the scientific community 

increasingly favors DL models over ML models, because the latter are more demanding in 

terms of data quality and rigorous labelling. With respect to unsupervised learning, it appeared 

that the off-the-shelf models used in the field of urban hydrology may not be suitable for our 

case study due to the specificity of our data (highly dynamic and seasonal). However, new 

approaches such as Matrix Profile are emerging and may be of interest. Finally, in the last 

category, Recurrent Neural Networks and autoencoder models are used, although the latter 

are more popular, which may seem counter-intuitive in the processing of time series since the 

former are specific to this time of data. This preference is explained by the complexity and 

higher numerical needs of RNN compared to autoencoders.  
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Synthesis of Part I 

In the realm of wastewater systems, measured wastewater data diverges from typical temporal 

data due to factors such as significant dynamic and seasonal variations influenced by factors 

like weather conditions, time of day, and weekdays versus weekends. In addition to the unique 

characteristics of wastewater data, there is a multitude of potential defects, both in terms of 

significance (errors or non-representative data) and structure (point or sequential anomalies), 

especially regarding water quality measurement like turbidity. In addition, it is important to note 

that these defects remain by nature a minority and are scattered within a massive data stream. 

Nowadays, data validation in wastewater networks involves two stages: pre-validation, which 

detects basic anomalies, and supervised validation by an expert, which addresses complex 

issues. The manual approach carries the risk of subjectivity and human error, making 

automation a valuable alternative. Various automation methods have been examined in the 

literature, ranging from statistical models to model-based approaches, each with its own 

advantages and limitations. However, our aim here is to assess the effectiveness of AI-based 

models for carrying out this data validation task. A literature review of data validation using AI 

in urban hydrology categorizes models into three classes. In supervised classification, Deep 

Learning (DL) models are favored due to their higher accuracy compared to supervised ML 

models. For unsupervised learning, conventional models may not be suitable, but emerging 

approaches like Matrix Profile show promise. In the last category, autoencoder models are 

popular in time series processing.  

Table 3 proposes a comparison between the requirements related to the nature of the data to 

be processed and the capacity of each model to meet them. There are six such requirements, 

which can be formulated by answering the following questions:  

• Necessity of prior knowledge: 'To what extent does this model require prior knowledge or 

priori information to perform effective data validation? 

• Dealing with time series dynamics: "Is this model able to manage the complex temporal 

dynamics of the data and their different seasonality?" 

• Massive volume of data: 'Is this model capable of efficiently processing very large amounts 

of data, or is it limited in terms of capacity? 

• Sensitivity to unbalanced data: 'How sensitive is this model to unbalanced data, and how 

does it adjust its performance accordingly? 

• Assumptions on data distribution: "Does the model make assumptions about data 

distribution?" 

• Detection speed: "How fast is the model able to detect anomalies or defects in the data
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Table 3: Analysis grid for different data validation tools / models 
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Introduction of Part II 

The inherent complexity of wastewater data, related to the overlapping of several dynamics at 

different timescales and the influence of random rainfall events, creates unique challenges for 

validation. The previous section sheds light on the complexities arising from factors such as 

variable measurement frequency, dynamic seasonal variations and potential anomalies within 

the massive data stream. Aware of the limitations of manual validation and the shortcomings 

of traditional models (statistical and/or hydraulic), the adoption of automated solutions is 

reveals interesting. This section lays the foundations for this analysis. 

 

• In the absence of a public database, the first question is: What database did we 

collect? And how did we go about collecting it, by examining its statistics and 

dynamics?  

• Faced with the multitude of available models and limited material and time resources, 

which models were chosen for testing in this study? How do these models meet 

our key requirements, such as handling complex temporal dynamics, and what 

tests were carried out?  

• Finally, what performance measures are used for evaluating the effectiveness of 

the different models and comparing them? What elements, ranging from the 

programming language to the hardware used, lie behind the scenes of AI 

models? 
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Chapter 4. AI’s Backbone: 
Introducting our model evaluation 

database 
 

Before implementing AI models for data validation in the field of urban wastewater, we face a 

major challenge : unlike fields such as image classification or intrusion detection, it is difficult 

to obtain publicly available real-world datasets from urban wastewater utilities. This 

difficulty stems mainly from concerns about confidentiality and current legislation. Our first 

hurdle, therefore, is to build a reliable, robust, and comprehensive database on which to base 

our future work on validating and evaluating AI models. This milestone was made possible 

thanks to the valuable contribution of Saint Malo Agglomeration, which generously provided 

access to their database. This collaboration allowed access to real operating data. 

4.1. Introduction and background 

In terms of infrastructure, the wastewater system of 

the city of Saint-Malo represents more than half of 

the assets managed by Saint-Malo Agglomeration 

(SMA). This wastewater system knows a 

significant presence of a combined sewer system, 

resulting in the establishment of multiple storm 

overflows. Within the municipality, there are 

currently thirteen storm overflows where the flow 

exceeds 120 kg BOD5/day, a regulatory threshold 

in France that requires instrumentation for 

discharge flow estimation. These overflows are 

equipped with sensors designed to provide 

estimates of the discharged volumes. Through this 

initial assessment, it was revealed that a 

noteworthy ninety-five percent of these volumes 

are concentrated around six key "interceptors" . 

In light of this insight, SMA decided to embark on a more extensive instrumentation effort 

concerning these six primary storm overflows. This instrumentation aims to evaluate the 

discharged pollutant flows. The main objective of this system is to adhere to the flow criterion 

Figure 4-1: Saint Malo 

Agglomeration and number of 

inhabitants per municipality 
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stipulated by the regulatory guidelines, where compliance is defined as not exceeding five 

percent of the pollution discharged in comparison to the collected pollution.  

4.2. Sensors’ network and data availability 

4.2.1. Data collection process 

The instrumentation project of the Saint Malo interceptors started in tandem with the initiation 

of this thesis in February 2021. Consequently, data collection occurred in synchronization 

with the project's progression. Hence, the initial testing phases were limited by a smaller 

dataset spanning a minimum of 5 months. In contrast, the latter stages of evaluation benefited 

from a significantly larger dataset, encompassing up to 18 months of observations, starting 

from February 2021 and extending through August 2022. It's essential to acknowledge that the 

comparative analysis of the various algorithms carries a certain degree of bias due to the 

disparate input data used for evaluation. Initiating the tests with a limited dataset was 

imperative, given the impracticality of waiting for a complete database. For the sake of 

transparency and scientific rigor, we will explicitly specify the used dataset in all subsequent 

discussions related to the tested models. This practice ensures complete transparency 

regarding the data limitations and variations across the different testing phases. By clearly 

outlining the database's duration for each model, we aim to provide readers with a 

comprehensive understanding of the specific data conditions and constraints that influenced 

the model's performance and results. 

The data collection process was conducted concurrently across all six interceptors (see 

Figure 4-2). Data is systematically archived by a SCADA system, facilitating record-keeping 

and ensuring long-term availability of historical data. Furthermore, a detailed logbook is 

carefully maintained by the network operator to document any interventions or maintenance 

activities carried out on-site. Particularly during the initial stages of sensor installation, it is not 

uncommon to encounter challenges related to data transmission and sensor functioning. 

Regular inspections and maintenance checks are pivotal in addressing these issues and fine-

tuning the monitoring system's performance. This approach enables the adjustment of 

maintenance schedules based on the actual needs, ensuring that the data collection process 

remains reliable and uninterrupted.  
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Figure 4-2: The six main interceptors of Saint Malo Agglomeration  

4.2.2. An overview of sensors in place 

The sensor field in Saint Malo is very varied with water level sensors, overflow detectors, 

automatic samplers, rain gauges and others. Those of interest in this work are particularly 

the pollution sensors; namely turbidimeters and conductimeters. 

4.2.2.1 Turbidity 

The primary objective of turbidity measurement is to measure water transparency, or opacity. 

Under certain assumptions, an assessment of the concentration of particulate matter, and 

further of overall pollution parameters such as COD or BOD can be derived from this 

measurement. Typically, the turbidity signal exhibits significant dynamics, reflective of actual 

variations in effluent quality. Furthermore, measurement artifacts may perturb the signal, 

potentially resulting in an overestimation of the mean values (see Section 1.4). SMA has 

implemented turbidity redundancy as recommended in [37]. Redundancy enhances 

measurement reliability when both sensors provide consistent values and allows to question 

the accuracy of at least one of the probes (usually the one with higher values) in the case of 

disagreement. 

The turbidity sensors used are of the Solitax SC type, manufactured by HACH LANGE. The 

measurement principle relies on the scattering of light at 90° with dual beams. The 

measurement range spans from 0.001 to 4000 FNU, with an accuracy of less than 1% or 0.001 

FNU. Typically, in wastewater networks and due to operational constraints, point 

measurements are taken every 5 minutes. In the case of turbidity measurement, the recording 

frequency is set at 5 minutes, using a data acquisition strategy that computes average values 

over 5 minutes with a sampling interval of every 20 seconds. 

Turbidity sensors demand a high level of maintenance and pose a challenge in terms of 

measurement verification. Dealing with sensor fouling is particularly complex since sensor 
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behaviors vary based on their location and the nature of the effluent. Multiple control tests and 

calibration procedures have been conducted in a preliminary phase. For instance, at the 

“Antilles” interceptor, turbidity sensors were lowered to mitigate observed grease deposits, 

leading to an improvement in data availability. Additionally, investigations into the frequency of 

brush sweeps for the turbidity sensors have been considered, with the optimal frequency 

identified as one sweep per hour. When a fully operational state is achieved, regular 

maintenance interventions are implemented, the frequency of which is tailored to each 

particular site 

4.2.2.2 Conductivity 

Conductivity is a property that characterizes the capacity of a material or liquid to conduct 

electricity. It is linked to the concentration of ions present in the liquid. Variations in electrical 

conductivity serve as indicators of the overall concentration of mineral dissolved matter in the 

wastewater network and can be employed for the detection of the intrusion of clear water, 

rainwater, seawater, or process water within the network. 

The conductivity probes utilized in this system are HACH LANGE's 3798-S probes. These 

probes operate on the inductive measurement principle and offer a measurement range 

spanning from 250 µS/cm to 2.5 S/cm, with an associated uncertainty of ±1% or ±0.004 mS/cm. 

The technology employed in conductivity probes is deemed reliable enough to counter the 

need for sensor redundancy. Consequently, one probe will be installed in each of the six 

interceptors. To ensure the measurement data's representativeness, the measurements will 

be recorded using the same method as employed for turbidity, by calculating the average of 

values collected over 5 minutes with readings taken at 20-second intervals. In general, these 

conductivity probes exhibit robust performance and do not demand excessive maintenance. 

However, it should be noted that erroneous readings may occur in the event of incorrect 

temperature calibration. Therefore, periodic calibration is required. Hence, regular 

maintenance is also scheduled to guarantee the proper functioning of the probes. 

4.3. Data Exploration: Analyzing the Database 

4.3.1. Data acquisition 

Analyzing a measurement time sequence requires a structured approach, starting with an 

examination of the acquisition parameters. The first step is to identify the start and end dates 

of the database, delimiting the period covered by the measure. In our case, the sequence 

extends from February 1, 2021, to July 31, 2022, thus including a measurement period of 

significant duration (156 960 values per site). 
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The second crucial stage of the analysis focuses on frequency exploration. Although the 

theoretical frequency is set at 5 minutes, artifacts can occur. Among these, duplicates and non-

constant frequencies stand out. In our case, there were 225 duplicates and 430 measurements 

where the frequency was less than 5 minutes. Out of 10 measurements, the frequency exceeds 

5 minutes, half of which have intervals between 5 and 10 minutes, while the other half show 

more extended periods of lack, reaching up to an hour or even a full day (as on the 30th of June 

2021). It is essential to note that these higher-frequency observations are considered as 

missing data, distinguished from timestamps with NAN values. The latter remain below 1% of 

the total acquired database, underlining the generally high acquisition quality of the data 

despite these variations in frequency. Missing data can result from various scenarios, such as 

technical problems during acquisition or planned interruptions. In our case study, we observe 

that these acquisition failures generally occur simultaneously across all sites. This 

synchronicity in acquisition failures reinforces the hypothesis of a central technical problem 

affecting the entire network.  

Faced with these acquisition anomalies, measurement data requires some groundwork before 

it can be mapped by machine learning algorithms. The crucial issues are temporal regularity 

and dealing with missing data.  

First and foremost, duplicate data must be eliminated to avoid any distortion in subsequent 

analyses. Data resampling with a constant time step is essential to homogenize measurement 

frequency. Resampling is then an important technique to ensure a round-the-clock frequency 

[186]. In addition, data synchronization is crucial to ensure temporal consistency, enabling 

accurate interpretation of events across the entire network and between the different sites. 

Consequently, before any modelling, we align the time series to get fixed timestamps of 5 

minutes. Hence, the duplicated measures and the ones with a frequency less than 5 minutes 

are erased. On the other hand, the new fine-grained observations added during the 

disconnection period are filled in with zeros. These periods should be identified later as 

anomalies.  

Another fundamental step in the data processing concerns the imputation of missing values. 

AI tools often struggle to process temporal sequences with gaps, which can compromise the 

performance of models. Consequently, they need to be replaced with judiciously chosen 

values before fitting a model. There are multiple imputation algorithms in the literature [187]. 

The objective here is not to do data reconstruction, nor to drown the missing data in the data 

stream. But our aim is to replace it so that the algorithms that are sensitive to it can run but still 

identify it as an anomaly later on. Hence, in our case, missing data will be replaced by zeros. 

The use of zeros preserves temporal information while clearly indicating points where no 
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measurements have been recorded, as zero is out of the range of physically possible values 

in the case of turbidity data within wastewater networks. 

4.3.2. Understanding data statistics 

The analysis of data statistics provides an in-depth understanding of the characteristics and 

inherent trends in a data set. By examining metrics such as mean, median, standard deviation 

and quartiles, we can gain insights into the distribution of the recorded values.  

Table 4 contains a compilation of descriptive statistics for the T1 and T2 variables at the 

various study sites, whose names are specified at the top of the table.  

Table 4: Turbidity data statistics. The unit of all values is FNU 

 Antilles Cottage Découverte Goutte Hôpital Roosevelt 

 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 

Mean 171 171 99 115 71 66 151 138 29 23 135 151 

Std 285 284 107 150 141 133 257 232 97 78 97 129 

Min 0 0 0 0 0 0 0 0 0 0 0 0 

Max 6954 6224 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

25% 21 20 43 43 21 21 26 27 5 5 79 83 

50% 46 43 81 83 34 33 53 55 8 8 123 129 

75% 139 142 123 130 53 51 119 117 16 16 164 176 

The analysis of these descriptive statistics reveals some interesting trends in the collected 

data. In particular, the high standard deviation for the "Antilles" and "Goutte" sites indicates 

significant variability. For “Antilles”, outliers are observed at the maximum value, which is 

greater than 6000 FNU, given that the sensor's upper range is 4000 FNU. These outliers have 

a strong influence on the mean, but little impact on the median, which is much lower. For 

“Goutte”, the mean is also significantly higher than the median, which may indicate the 

presence of a number of extremely high values where the mean is greater than the 75th 

quantile. Turbidity measurements at the “Antilles” and “Goutte” interceptors posed several 

challenges during operation. The “Antilles” site was confronted with remote operating 

problems, leading to signal alterations between the probe displays and data transmission to 

the supervisory level. An update of the system solved these problems and ensured reliable 

data transmission. In addition, as previously mentioned, the “Antilles” interceptor was affected 

by grease deposits, requiring the probes to be repositioned. Furthermore, the “Goutte” 

interceptor regularly shows measurement alterations lasting 2 to 3 days (see Figure 4-3). 

These interruptions can be attributed, according to the logbook, to interventions for 
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construction work carried out at this level, thus explaining the dropouts and gaps observed in 

the data.  

The mean turbidity is very low at the “Hôpital” interceptor, at around 30 FNU, given that turbidity 

in sewage networks varies between 25 FNU and 500 FNU. Indeed, the hydraulic analysis 

conducted at this site reveals a predominant flow of clear spring water during dry periods with 

peaks of pollution originating from upstream collectors during rain events. Consequently, these 

peaks reach the upper limit of the sensor's range. 

 

Figure 4-3: Example of defects at the interceptor "Goutte" 

On the other hand, correlation analysis provides an overview of the linear relationships 

between the T1 and T2 variables at the different sites. The correlation coefficient used here is 

Pearson's coefficient. A value close to 1 indicates a strong positive correlation, while a value 

close to -1 indicates a strong negative correlation. A Pearson coefficient close to 0 suggests a 

weak linear correlation. 

Equation 2: Pearson Correlation Coefficient 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣 (𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

 

Where: X, Y are two variables with n individual sample points xi and yi respectively. �̅� is the 

sample mean of X, and analogously for �̅�. 

An analysis of the correlation matrix in Table 5 reveals several observations. Firstly, the 

strongest correlations are observed between variables T1 and T2 of the same site since both 

are supposed to measure the same phenomenon. However, it is interesting to note that this 

correlation is far from perfect. Indeed, slight differences between both sensors can arise from 

short range variations of water quality. Larger differences denote a failure of at least one 

sensor, hence the need for data validation, which is not excluded by hardware redundancy. 
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Table 5: Pearson Correlation Matrix 

 

As for the relationships between the various sites, some correlations stand out. For example, 

correlations close to zero between "Hôpital" and the other sites indicate weak or non-existent 

relationships. This confirms the particularity of this site, which does not carry the same type of 

effluent. Weak correlations are also observed between “Roosevelt” and the other sites. 

Statistical analysis of “Roosevelt” data suggests that we have the same effluent quality as the 

other sites. For example, average turbidity is almost equal to that at “Goutte”. But in fact, this 

weak correlation is due to the different dynamic of this site. In fact, there is a pumped discharge 

of seawater at this location, causing regular fluctuations throughout the day. These cycles 

determine the dynamics of the data, marked by regular oscillations (see Figure 4-4). Moreover, 

the site displays high conductivity, approaching that of seawater (50,000 μS/cm). This can be 

attributed to seawater intrusion, but does not clearly affect the dynamic pattern of turbidity. 



Chapter 4. IA’s backbone: Introducing our model evaluation database 

Page 87 of 356 

 

 

Figure 4-4: Data structure at the "Roosevelt" interceptor 

 

4.3.3. Understanding data dynamics 

Before using any time series dataset, it is important to explore it, analyze its pattern and identify 

its underlying process. Time series are likely to be characterized by commonly observed 

structures: 

• Trend is a gradual increase/decrease in data values as time passes starting from any 

point in time. A time series has a trend if its mean value is not constant but decreases or 

increases over time. The trend can be linear or not.  

• Seasonality is a periodic structure, which oscillates around the general trend in a regular 

manner. 

Decomposing a time series consists in separating its initial series into simpler subseries, each 

representing an essential aspect. A typical decomposition is the decomposition into 3 series: 

trend, periodic and residuals. The original series is found if we sum or multiply the 3-component 

series (see Appendix F). Figure 4-5 shows the decomposition of turbidity data at "Cottage". 

A similar pattern is observed for turbidity data from other sensors in different localities. The 

first observation reveals a non-constant, non-regular trend, with no absolute direction of 

increase or decrease. This feature suggests variability and irregularity in the overall evolution 

of the data over time, qualifying the trend as "non-monotonic". This non-monotonicity indicates 

a complexity in the underlying patterns of temporal data, with fluctuations, frequent changes 

of direction, and non-linear patterns that cannot easily be characterized by a simple trend. The 

seasonality graph is not very explicit due to the presence of different seasons in the same 

chronicle, both daily and seasonal. What's more, the residuals are not random. The presence 

of an irregular component in a time series generally suggests that certain influences or 

variations cannot be explained by the seasonal or trend components. Analysis of a non-
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monotonic trend and non-random residuals may require the use of advanced time series 

analysis techniques or more flexible models capable of capturing complex temporal patterns.  

 

Figure 4-5: Turbidity data decomposition 

A time series is considered stationary when its mean, standard deviation, and autocovariance 

remain constant, and there is an absence of seasonality. In our case, the series exhibits the 

presence of a significant trend and multiple seasonality, leading us to conclude that it is non-

stationary. We assume then that statistical models cannot be used to handle these time series 

since their basic hypothesis is not valid.  

4.4. Data validation 

In the vast panorama of literature devoted to wastewater data, it is striking to note a clear deficit 

in terms of formalization of pollution data validation, particularly in comparison with other fields 

such as air pollution [188]. This is the background of our work, whose first mission was to 

develop an expert validation methodology specifically dedicated to turbidity data. The major 

advantage lies in the possibility of exploiting physical redundancy, thus providing a basis for 

analyzing the reliability of information collected on site. Although the essence of this thesis lies 

in the application of AI to data validation, it remains crucial to establish a concrete baseline 

against which to assess the performance of the model thus developed. 

4.4.1. Manual data validation processus 

Each interceptor is equipped with 7 sensors, which are interrogated remotely by the LERNE 

supervisor. The LERNE supervisor records the raw instantaneous values every 20 seconds 

and calculates various derived quantities. These include the 5-minute averages of each 
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measured parameter, as well as quantities combining information from several sensors, such 

as the discharged flow rate (see Figure 4-6). In our study, we focus on four derived quantities: 

the 5-minute averages of turbidity measured by each sensor, conductivity, and spill flow. At 

the same time, data is collected from 6 rain gauges, although these were not used in the 

validation process. In fact, conductivity and overflow are direct indicators of the impact of 

rainfall events on network operation and were used to validate turbidity data. 

 

Figure 4-6: Data acquisition process for variables of interest 

Manual validation is carried out systematically every month, covering all data recorded the 

previous month. This procedure, which mobilizes an expert on average 2 hours per site each 

month7, focuses mainly on turbidity sensors. In fact, conductivity measures are generally very 

reliable, and their validation is limited to the identification of missing data, which is often 

consistent with turbidity data. Regarding overflow measurements, the calculation method has 

been validated by a specific study. Radar level sensors, which are a priori reliable, are subject 

to validation to identify missing data, which may be associated with spill periods. 

Parameterization errors, such as reverting to a previous configuration following a power failure, 

or the failure of a valve position sensor, can distort flow calculations, although the identification 

of spill periods remains intact. An overall check of the volumes discharged by each interceptor 

 

7 This is an average for a process that takes between 1 and 4 hours, depending on the required degree 

of traceability and precision. 
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each month enables us to detect such anomalies, which are corrected by recalculating the 

data. 

As turbidity data validation is concerned, three distinct stages are involved (see Figure 4-7):  

• Filtering: consists of automatic validation of consistent data by redundancy, 

accompanied by the identification of periods requiring manual validation. 

• Expertise: involves manual validation or invalidation of the lowest of the two since the 

majority of turbidity measurement disturbances are due to parasitic occultation of the 

light beam, resulting in increased turbidity 

• Automatic aggregation of neighboring faults to obtain continuous periods of 

malfunction rather than a succession of multiple faults interspersed with short periods 

of apparent good working order 

An Excel macro application has been developed to execute these three phases and synthesize 

the results. In the remainder of this manuscript, we will refer to this process as manual 

validation, although there is an automated part based on hardware redundancy. 

 

Figure 4-7: Organization of the validation process 

For the first phase, the consistency criterion used for automatic validation is defined as follows: 

Equation 3: Consistency criterion for turbidity validation based on redundancy 

| 𝑇1𝑚𝑒𝑎𝑛 (𝑖 − 6, 𝑖 + 6) − 𝑇2𝑚𝑒𝑎𝑛 (𝑖 − 6, 𝑖 + 6) |

< max (𝑆1 × min(𝑇1𝑚𝑒𝑎𝑛 (𝑖 − 6, 𝑖 + 6), 𝑇2𝑚𝑒𝑎𝑛 (𝑖 − 6, 𝑖 + 6)) , 𝑆2) 
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Where T1mean(i-6,i+6) represents the sliding average calculated over a window of 13-time steps 

(i.e., 65 minutes) centered on the time step i , applied to the measurements taken by sensor 

1. This inequality stipulates that the sliding averages from sensors 1 and 2 must satisfy the 

least restrictive of two criteria: a criterion expressed as a percentage of the smaller of the two 

measured values, defined by a threshold S1, or a criterion expressed in absolute values, 

defined by a threshold S2. By default, S1 is set to 10%, and S2 to 10 FNU, although these 

thresholds can be adjusted for each interceptor. If the inequality is satisfied, the central values 

of the 65-minute window T1(i)  and T2(i) are validated, and the reconstructed turbidity value 

T(i) is equal to the mean of  T1(i) and T2(i). If the inequality is not satisfied, for example if 

T1mean(i-6,i+6) - T2mean(i-6,i+6) > S2, the larger of the two measures, here T1(i) is invalidated, 

and the smaller, here T2 (i), is submitted to the expert for validation. The reconstructed value 

will be equal to the latter. 

For phase 2, the expert visually examines monthly chronicles (Turbidity 1, Turbidity 2, 

Reconstructed turbidity, Conductivity, Discharged overflow), zooming in systematically on a 

weekly and daily  basis. This examination can detect the following configurations:  

• Zero or "blocked" values (= no variations over several hours)  

• Non-consistent daily patterns during dry weather periods,  

• Excessive noise (short-term variability) compared with usual behavior  

• Unusual appearance and/or amplitude of rainy weather peaks  

• A qualitatively homogeneous behavior of the two sensors, even if the numerical 

consistency criteria are not met  

• A significant drop in turbidity, often following a rain event or a cleaning operation 

(identified through the logbook), which suggests that what precedes this drop is invalid 

For the third phase, two aggregation criteria are used: 

- For successive faults affecting the same sensor, a duration criterion is applied, set at 4 hours 

by default and adjustable for each interceptor and each period. Aggregation takes place 

simultaneously with detection, and it  therefore aggregates potential faults that are submitted 

for assessment. 

- For faults affecting the same sensor or not, post-processing of the results validated by 

expertise is based on a relative duration criterion: two faults are aggregated if the duration 

separating them is less than x% of the duration of the longer fault. By default,  x is set at 20%, 

but it is frequently adjusted according to the results obtained for a given interceptor and month 

chronicle. 
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At the end of this process, each turbidity value reconstructed at a 5-minute time step is 

assigned one of four attributes: Validated by redundancy (R) / Validated by expertise (V) /  

Invalid (I) / Missing (M). The label of the reconstructed turbidity depends on the labels of the 

raw turbidity values T1 and T2, with the potential combinations in Table 6. 

Table 6: Labels of the reconstructed turbidity T, considering the labels of T1 

and T2 

  T1 

  Redundancy Validated Invalidated Missing 

T2 

Redundancy Valid (R)    

Validated   Valid (V) Valid (V) 

Invalidated  Valid (V) Invalid (I) Invalid (I) 

Missing  Valid (V) Invalid (I) Invalid (M) 

This validation process presents a harmonious approach, using automation while preserving 

the essential role of human expertise. The automated part, integrating physical redundancy, 

enables substantial time savings. On the other hand, expert validation, although it quickly 

excludes trivial anomalies such as zero values, saturation, or out-of-limits, maintains a human 

dimension necessary to apprehend the diversity of the most frequent faults. Although certain 

steps could potentially be automated, the decision to submit them to the expert reflects a desire 

to benefit from his or her discernment in order to obtain a clear view of the spectrum of defects. 

However, it is important to note that the nature of defects such as bias, drift and lack of 

precision unquestionably requires human intervention and expertise. This phase, while 

essential, also exposes the process to potential human bias and error, particularly in the 

manual splitting of defect periods and the manual modification of their beginnings and/or ends.  

4.4.2. Anomalies qualification 

Figure 4-8 provides a visual representation of several crucial aspects of data quality in our 

database. Firstly, it highlights the proportion of consistent data, ranging from 38% to 72%, 

opposed to invalid data, ranging from 7-11%, to 20-25%, and up to 45%: the “Antilles” and 

“Goutte” localities show a higher percentage of invalid data. This trend can be attributed to 

recurring failures, as mentioned in Section 4.3, underlining the importance of expert validation 

to improve data reliability in these specific contexts. Secondly, Figure 4-8 shows the proportion 

of data recovered through manual validation, ranging from 17% to 33%, which is far from 

negligible. 

A crucial step in preparing the database for use by artificial intelligence models is to convert 

the various labels into a binary classification. In this way, each observation is categorized into 
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two distinct classes. Class 0 groups together valid data, without distinguishing between those 

validated by redundancy or expertise. Class 1, on the other hand, includes data that is invalid, 

either as an output of the validation process or due to its absence. 

 

Figure 4-8: Results of manual validation. 

When we examine the mean turbidity for both valid and invalid data (see Figure 4-9), we find 

a significant discrepancy between the two categories, with higher values associated with 

invalid data. This observation could be expected, as a main cause of failure is clogging, which 

results in less light collected by the receiving cell and an apparent increase of turbidity, and 

often saturation of the sensor. The discrepancy is particularly pronounced at the “Antilles” and 

“Goutte” sites, where there is a prevalence of outliers with large amplitudes. For the other sites, 

on the other hand, the deviation is more moderate, indicating that the anomalies are more 

structural in nature than in amplitude. These anomalies are therefore more subtle. In the 

ongoing study, the “Cottage” site was chosen as the reference site for the evaluation of 

the various models. This selection is explained by the fact that the site's hydraulics are typical, 

with a turbidity range in line with the average for sewer systems. In addition, the presence of 

various faults requires in-depth expertise to identify them, making Cottage a representative 
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and relevant choice for model analysis. Within this site, fault occurrences range from 10 

minutes to 7 days. The average fault duration is 17 hours, with a median of 4 hours. 

 

Figure 4-9: Average turbidity at different sites, differencing valid and invalid 

data. 

4.4.3. Mitigating subjectivity by organizing a validation pool 

Recognizing the inherent risks associated with subjectivity and human error, it has been 

imperative for us to quantify this bias in order to gauge its impact on the evaluation of AI 

models. This problem is not specific to wastewater network data. Indeed, annotators are rarely 

in complete agreement when expressing their opinion, and this disagreement can be 

characterized as bias, the tendency of an annotator to prefer one decision to another, and 

variance, the natural variation between one annotator and another (or themselves at a later 

date) [189]. In view of the cost and complexity of obtaining a gold standard (GT), it is 

commonly accepted that the opinion of one (or some) annotator(s) is close to this 

reference (GT) [190]. Nevertheless, it is important to ensure that this assumption is valid in 

our case. 

To address this, we have established a validation pool dedicated to validating turbidity data. 

This approach aims to enhance the transparency and reliability of our assessments, ensuring 

a robust understanding of the interplay between expert’s baseline validation and the 

performance of AI models. 

The validation pool relies on a diverse team of four experts, including a professional in 

turbidity data validation who contributed to the development of the reference guide [37], as well 

as two final-year interns from an engineering school specializing in water and environment. 



Chapter 4. IA’s backbone: Introducing our model evaluation database 

Page 95 of 356 

 

The latter underwent a month's training, raising their awareness of turbidity data dynamics and 

potential faults. I was also part of the team, bringing my experience in data validation from my 

previous work on the Saint Malo project and my thesis. Due to time constraints, the multi-

validation was carried out at four different sites over a six-month period, covering the whole 

year and its various seasons. The months selected were carefully chosen, avoiding the first 

months of installation to eliminate any bias linked to sensor optimization. All the experts work 

on the basis of the output of the Excel macro file filtering phase, intervening specifically during 

Phase 2 to bring their expertise to the validation of doubtful sequences. 

In setting up this validation pool, we assume that annotators are not malicious in producing 

their annotations, that they don't produce annotations randomly, and that they don't simply 

follow low-level cues, but are able to mobilize higher-level knowledge. This enables them to 

distinguish sequences belonging to the positive class (anomalies) [191]. The different 

approaches for comparing experts and their agreement rates will be studied later in this 

manuscript (see Chapter 7). 

4.5. Synthesis of Chapter 4 

In the absence of a reliable public database, this chapter focuses on the challenges and 

methodological approaches associated with data collection and validation in the field of urban 

wastewater, based here on instrumentation from Saint-Malo. The study database comprises 

six interception sites, each equipped with two turbidity sensors and one conductivity sensor. 

Instrumentation was initiated simultaneously with the launch of the thesis, enabling data to be 

collected gradually as the project progressed. Considerable effort has gone into the operational 

monitoring of these sites, including regular maintenance, both curative and preventive, to 

ensure the reliability of the data collected. The measurement period runs from February 1st , 

2021, to July 31st , 2022, with a frequency of 5 minutes. However, examination of the frequency 

reveals artifacts such as duplicates and irregular frequencies. To compensate for these 

anomalies, a data pre-processing step is set up to resample the data and fill in missing 

data with zeros so that it can be identified later. Statistical analysis of the data reveals the 

non-stationarity of the time series, characterized by an irregular trend and multiple 

seasonality. 

Secondly, to evaluate the performance of AI models effectively, it is crucial to have a baseline 

against which to compare the results of different models. Therefore, we begin by developing 

an expert methodology specifically designed for validating turbidity data. This data validation 

process consists of three distinct stages, from automatic filtering to expert validation and 

automatic aggregation of anomalies. This approach leverages the inherent physical 
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redundancy, and a consistency criterion is defined for automatic validation. Manual expertise 

focuses primarily on human intervention and expertise. This phase exposes the process to 

potential human bias and error. 

Aiming to evaluate subjectivity and human error risks in data validation, a quantitative 

assessment was deemed essential to evaluate the potential variability among different 

annotators. Acknowledging the complexity and cost of obtaining a gold standard, a validation 

pool was established, comprising four diverse experts. This approach was taken to 

enhance transparency and reliability, ensuring a robust understanding of the interplay between 

expert baseline validation. Multi-validation was conducted at four different sites over six 

months, covering various seasons, and experts worked based on the output of the filtering 

phase. Assumptions included annotators' non-malicious intent, non-random annotations, and 

the ability to mobilize higher-level knowledge for distinguishing between sequences belonging 

to the positive class. Future chapters will delve into different approaches for comparing experts 

and their agreement rates. 

 

Figure 4-10: Overview of database preparation for models’ evaluation 
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Chapter 5. Benchmarking Models for 
Data Validation and Anomaly Detection 

 

The main objective of this thesis is to leverage AI models for the validation of data from 

wastewater networks, focusing on turbidity chronicles at SMA interceptors. In this chapter, we 

delve into the conceptual fundamentals of the promising models which emerge from the 

literature review (see Chapter 3) and outline a testing methodology. This section serves to 

introduce these models, explain their core concepts, and articulate how they can be deployed 

to address the challenges inherent in our specific research problem. By providing a thorough 

understanding of the models and their potential applications, we pave the way for an 

exploration of their performance in subsequent sections. 

5.1 Does our data justify the use of AI approaches? 

In a context where AI is gaining ground and can be used for almost anything and everything, 

it becomes imperative, in the frame of this research, to question whether the deployment of AI 

tools is justified by the complexity of our test database. [192] has highlighted one of the flaws 

in public datasets, which is the simplicity of the task. Hence, it is crucial for us to examine 

whether our testing baseline (database + task) warrants the sophistication of AI tools. In this 

context, testing basic approaches such as 3-sigma allows to gauge how effectively we can 

address the intricacies of our problem (see Figure 5-1). This approach ensures that we do not 

succumb to the allure of complexity when simplicity might be the key to understanding and 

solving our challenges. 

 

Figure 5-1: Application of the 3-sigma rule to turbidity data in Cottage 

Table 7 summarizes the results obtained by invalidating all data exceeding the mean plus 3 

times the standard deviation for each respective site. This methodology eliminates a small 

number of outliers. A comparison between the first column, representing the actual ratio of 

invalid data, and the second column, illustrating the ratio of invalid data according to the 3-
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sigma rule, reveals a clear disparity. This could be expected, as the 3 sigma rule is designed 

to discard only 0.3% of data for a centered gaussian distribution, and 11% at maximum in any 

case (Bienaymé-Tchebychev inequality). What's more, in some cases, such as Cottage, 

Hôpital and Roosevelt, a significant proportion of invalidated data (issued from Column 2) 

corresponds to false alarms, meaning intrinsically valid data (Column 3). This observation is 

explained by the significant presence of drift faults and noisy data for these sites. It may be 

noted that our Cottage type-site is home to a substantial number of subtle defects which do 

not manifest themselves in an extreme manner.  By contrast, Antilles, for example, displays a 

predominance of saturation faults (non-gaussian distribution with many extremely high values). 

Table 7: Results of the 3-sigma rule for anomaly detection 

Site 
Real anomaly ratio in 

the database 

Anomaly ratio 
detected using the 3-

sigma rule 

Rate of false 
anomalies detected 
using the 3-sigma 

rule 

Cottage 7.9 % 1.1 % 56.7% 

Antilles 44.8% 5.6% 0.6% 

Découverte 21.2% 2.2% 5.6% 

Goutte 25.8% 4.1% 4.2% 

Hôpital 10.6% 1.0% 29.8% 

Roosevelt 6.9% 1.0% 68.1% 

 

It is therefore concluded that in our evaluation data set, the presence of defects is far from the 

trivial anomalies easily detected by a statistic based on the 3-sigma rule. This finding justifies 

the use of this database and the deployment of sophisticated tools, for instance AI models.  

5.2 Benchmark of models and tests 

The literature review (see Chapter 3) revealed several potentially interesting approaches for 

anomaly detection in wastewater network data. Due to time constraints, we selected few 

models we consider most promising beforehand, in order to explore them in detail. This 

selection is strategic, encompassing a variety of approaches, combining both Machine 

Learning, Deep Learning, supervised and unsupervised techniques. 

Supervised ML models, often sensitive to input data with learning limitations, have been largely 

replaced by their unsupervised counterparts according to the literature. Hence we will not 

investigate these models. However, we consider that they could be relevant in settings where 

dynamics are controlled (laboratory data, error simulation, …). So, within the framework of 
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supervised models, we are focusing on exploring neural networks, with particular attention paid 

to CNNs. According to a recent study [134], ResNet outperforms other CNN architectures, 

justifying our choice to explore it for our case study. 

However, in the wastewater domain, obtaining labels for training models is arduous, often 

limited and potentially biased by human subjectivity. Therefore, exploring unsupervised AI 

models is essential. Within the framework of traditional ML methods, we found that state-of-

the-art approaches proved unsuitable for our specific context [17]. This inadequacy stems from 

the absence of a clear majority class in our data and the complexity associated with defining a 

density in the presence of temporal correlations. However, among these methods, one model 

caught our attention, namely the Matrix Profile, recognized as a state-of-the-art approach to 

time series analysis and anomaly detection. Significantly, to the best of our knowledge, this 

model has never been applied to our specific field of study, which raises particular interest in 

its evaluation in our context. 

On the other hand, in the field of unsupervised neural networks for anomaly detection in time 

series, two main categories have emerged: recurrent networks, with their many variants, and 

autoencoders. We have chosen to focus on Autoencoders, which have shown promising 

results in the literature. While we recognize the potential interest of recurrent networks, their 

complex implementation and the significant risk of divergence led to their exclusion from our 

initial research due to time constraints. However, we consider that recurrent networks could 

be explored in future work, given their likely relevance to our field of study. 

In summary, our choice of models to test for data validation and anomaly detection in 

wastewater network time-series aims to ensure a comprehensive evaluation tailored to our 

specific context, while exploring different AI approaches (see Table 8). 

Table 8: Benchmark of the tested AI models 

 Machine Learning Deep Learning 

Supervised X ResNet 

Unsupervised Matrix Profile Autoencoder 

 

The experiments will be conducted using turbidity data from the Cottage site as a typical site. 

The various models are subjected to a pre-defined 6-step process, as illustrated in Figure 5-2. 
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Figure 5-2: Diagram of the different tests established for each model from our 

benchmark. 

In the initial phase, tests are conducted by evaluating the sensitivity to input data. This 

involves determining whether it is preferable to use the raw measured data from T1 and T2 or 

to consider the reconstructed turbidity output from the filtering stage. Moreover, time series 

data require some groundwork before it can be mapped by ML algorithms. The crucial issues 

are temporal regularity and filling in missing data. These challenges have already been 

leveraged in Section 4.3.1. 

However, one last preprocessing issue remains and concerns the scaling of time series. Many 

ML algorithms achieve better performance if the time series data has a consistent scale or 

distribution [193]. The two common techniques that can be used to consistently rescale time 

series data are normalization and standardization. These two terms are used quite loosely in 

different fields, but they are still different. 

Normalization is a rescaling of the data from the original range so that all values are within the 

range of 0 and 1, we can refer to also as the min-max scaling (see Equation 4). 
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Equation 4: Normalization formula 

𝑥𝑛𝑜𝑟𝑚
(𝑖) =

𝑥(𝑖) − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

where x(i) is a measured value, xmin is the smallest value in the dataset and xmax is the largest. 

Standardizing a dataset involves rescaling the distribution of values so that the mean of 

observed values is 0 and the standard deviation is 1. Standardization assumes that the data 

fits a Gaussian distribution (see Equation 5). 

Equation 5: Standardization formula 

𝑥𝑠𝑡𝑑
(𝑖) =

𝑥(𝑖) − 𝜇𝑥

𝜎𝑥
 

where x(i) is a measured value, μx is the mean of the dataset and σx the corresponding standard 

deviation. 

Therefore, tests will be conducted to determine the optimal strategy in this regard. Additionally, 

sensitivity tests will be performed on the input database, exploring whether to use the entire 

dataset, employ a pre-selection, or seek additional data to enhance the learning process. 

Hyperparameter tuning is required to 

identify the set of hyperparameters that 

results in the best performance of each 

model. In the case of our benchmark 

models and objective of data validation, 

input data consists of sequences, making 

the sequence size and stride the initial 

parameters to be calibrated. Following 

this, each model has specific 

hyperparameters that govern its operation, 

such as the number of layers and neurons 

per layer for neural networks. Therefore, 

prior to testing each model, we will define 

which hyperparameters will be fixed and which ones will undergo tuning. Different optimization 

algorithms can be operated, here we use a grid search [194]. It is a brute-force exhaustive 

search paradigm where we specify a list of values for different hyperparameters (see Figure 

5-3). For each combination, the model is tested and evaluated in order to identify the optimal 

combination. Grid search for hyperparameter tuning offers several significant advantages. 

Firstly, the implementation of this approach is relatively simple, with the results being 

Figure 5-3: Grid Search for 

hyperparameters tuning 
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reproducible (unlike a random search). Moreover, the ability to parallelize the process speeds 

up evaluations. 

Once the best model is identified, the aim of the results diagnosis phase is to analyze the 

results, compare them with the expert's findings and identify the strengths and limitations of 

each model. By using different visualization approaches, we aim to gain an in-depth 

understanding of how each model processes data and to distinguish the aspects in which it 

excels from those that require improvement. Further improvements will then be explored in 

order to leverage the identified limits. These will be specific to each model and will depend on 

the results of the diagnosis phase. This process will then allow us to assess the model's final 

performance on the complete database, so that models can be compared with each other. 

Furthermore, a multivariate approach will be adopted, taking advantage of the different on-

site sensors. Our aim is to provide the model, for each timestamp, with additional available 

data. Table 9 provides a nomenclature of the different multivariate configurations that will be 

evaluated. 

Table 9: Nomenclature for the evaluated multivariable approaches and their 

input data 

 

Finally, the generalization to other sites will consider the effectiveness of each model within 

its respective architecture when applied to new data sourced from various other sites. This 

evaluation aims to determine the adaptability and generalizability of the models, facilitating the 

understanding of their performance across diverse contexts and contributing valuable insights 

for broader applicability. 

5.3 Matrix Profile 

5.3.1 Introduction and Background 

Matrix profile is an algorithm for time series analysis, introduced in 2016 by Eamonn Keogh 

(University of California Riverside) and Abdullah Mueen (University of New Mexico). Its 

principle is to perform similarity join on time series. The basic problem statement for similarity 

join is: Given a collection of data objects, retrieve the nearest neighbor for every object [195]. 

https://www.cs.unm.edu/~mueen/
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This approach has been largely deployed in the text domain [196]. However, despite the 

analogies between text and time series processing algorithms [197], there has been little 

progress on time series similarity join. In fact, the application of this approach consists in 

comparing snippets of the time series against itself by computing the distance between each 

pair of snippets. The principle is easy to implement using a brute force algorithm with loops, 

however it may take months or years to receive an answer for a temperately sized time series. 

Considering a classic turbidity sensor in the wastewater network with an acquisition frequency 

of 5 minutes, after a year, the dataset length is 105120. An operator may wish to perform a 

similarity self-join on this data with a day-long subsequences (288). The nested loop algorithm 

requires 10 989 853 056 Euclidean distance computations. With an assumption that one 

calculation takes 10-5 seconds (using numpy8), the task will take approximatively 30 hours. 

Hence, the main advantage of matrix profile is to provide “an ultra-fast similarity search 

algorithm” and drastically reduce the computation time using an off-the-shelf desktop 

computer. 

 

Figure 5-4: Required calculation time depending on (left) Data Length (with an 

acquisition frequency of 5 min) and (right) Acquisition frequency (with data 

length of one year) 

Moreover, the Euclidean distance value is difficult to interpret even for a domain expert. Thus, 

the similarity between time series is evaluated within a user-supplied threshold. However, it is 

difficult to set an appropriate threshold without domain knowledge. Moreover, in some cases, 

the threshold must be precise to the 3rd decimal place to achieve satisfactory results, such is 

the case for [199]  where they had to set the threshold to 0.818. The strength of MP is that it 

does not require a threshold. Indeed, once the join is computed, the user can define his own 

 

8 We did not conduct these tests ourselves, but we relied on the estimates of [198] 
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rules and filters in post processing; for example, having the ten most obvious anomalies. In 

addition to the features stated above, MP is a domain agnostic model and can leverage 

hardware by being parallelizable, both on CPUs and GPUs [200]. 

5.3.2 Definitions and Notation 

Definition 1: A time series T is a sequence of real-valued numbers ti: T = t1, t2, ..., tn where n 

is the length of T. 

In order to identify anomalies, we are interested in the similarity between local subsequences 

rather than the global properties of a time series. 

Definition 2: A subsequence Ti,m of T is a continuous subset of values from T of length m 

starting from the ith position: Ti,m = ti, ti+1, …, ti+m-1 where 1 ≤ i ≤ n- m +1 

Definition 3: A distance profile Di of a subsequence Ti,m and a time series T is an ordered 

array that stores the distance between the query (Ti,m) and all the other subsequences from 

the same time series T: Di = dist(Ti,m , Tj,m) Ɐ j ꞓ [1, 2, .., n-m+1]. 

Distance is measured using the Euclidean distance between the normalized subsequences. 

By definition, the ith location of the distance profile Di is zero, and close to zero just before and 

after this location. Such matches are called trivial matches [197]. We avoid such matches by 

identifying an exclusion zone of m/2 before and after the location of Ti,m.  

The definitions presented above are illustrated in Figure 5-5. 

 

Figure 5-5: A subsequence Q extracted from a time series T is used as a query. 

D is the distance profile of Q. The grey area is the exclusion zone – © [179] 

In order to identify the anomalies, we are interested in finding the nearest neighbors of all 

subsequences in T by computing the matrix profile. 
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Definition 4: A matrix profile P of a time series T is a vector of the Euclidian distances between 

each subsequence and its nearest neighbor. Formally, P = [min(D1), min(D2), …, min (Dn-m+1)] 

where Di (1≤ i ≤ n-m+1) is the distance profile of time series T.  

 

Figure 5-6: A time series T, and its self-join matrix profile P - © [179] 

This vector is called matrix profile because one naïve way to compute it would be to compute 

the full distance matrix of all pairs of subsequences in a time series T and then evaluate the 

minimum value of each column. However, this brute force approach is not feasible considering 

both the computational complexity as well as the storage complexity. The process used to 

simplify the calculation is explained in Appendix G. 

 

 

 

Figure 5-7: Brute Force Matrix Profile: 

in red  time series with a subsequence 

length of m, in blue the matrix profile 

as defined below, the heat map is the 

distance matrix (Small distances are 

blue and large distances are red, dark 

stripe is the exclusion zone) – © UCR 

 

 

 

MP model has interesting properties that can be used to identify anomalies. In fact, the highest 

point on the profile corresponds to the time series discord [201]; meaning that even the nearest 

neighbor is far away compared to the other subsequences similarity join. On the other hand, 

the lowest points correspond to the locations of the best time series motif pair [197], but this is 

not of interest in this research work.  
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Figure 5-8: Examples of matrix profile interpretation: in red raw synthetic time 

series and in blue matrix profile. Top: anomaly detection & Bottom: Motif 

detection – © UCR 

 

However, the matrix profile does not reveal where the nearest neighbor is located. This 

information is stored in the matrix profile index. 

Definition 5: A matrix profile index I of time series T is a vector of integers: I = [I1, I2, …, In-m+1] 

where Ii = j if di,j = min(Di). 

In addition to the special case of a single time series, matrix profile generalizes and extends 

to multidimensional time series.  

Definition 6: A multidimensional time series T is a set of co-evolving time series T(i) of length 

n: T = [T(1), T(2), …, T(d)]T where d is the dimensionality of T and n is the length of T. 

Definition 7: A multidimensional subsequence Ti,m of a multidimensional time series T is a set 

of univariant subsequences from T of length m starting from the ith position. Formally, Ti,m = 

[Ti,m 
(1) ,Ti,m

(2) …, Ti,m
(d)]T.  

Multidimensional time series may have some irrelevant dimensions. Hence, in order to have 

meaningful results, we might select only a subset of all dimensions. We are talking about 

subdimensional subsequences. 
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Definition 8: A subdimensional subsequence Ti,m(X) is a multidimensional subsequence for 

which only a subset of dimension is selected. X is an indicator vector that shows which 

dimension is included and k is the number of dimensions included (i.e., ||X|| = k). 

The calculation of the distance between two multidimensional subsequences is done by 

looking at each of its subdimensional subsequences. 

Definition 9: The k-dimensional distance function dist(k) computes the distance between two 

dimensional subsequences by using only the “best” k out of d dimensions. Formally, dist (k) 

(Ti,m,Tj,m) = min dist(Ti,m(X), Tj,m(X)) where ||X|| = k. 

Definition 10: The k-dimensional distance profile D of a multidimensional time series T and a 

subsequence Ti,m is a vector that stores dist (k) (Ti,m,Tj,m) Ɐ j ꞓ [1,2,…,n-m+1]. 

Definition 11: The k-dimensional matrix profile P of a multidimensional time series T is a meta 

time series that stores the z-normalized Euclidean distance between each subsequence and 

its nearest neighbor (using k-dimensional distance). Formally, the ith position in P stores min 

(dist (k) (Ti,m,Tj,m)) Ɐ j ꞓ [1,2,…,n-m+1], where i ≠ j. 

The definitions above are difficult to understand for multidimensional time series. Thus, for 

better understanding, Figure 5-9 illustrates the full process.  

However, the k-dimensional matrix profile only reveals the location of the anomaly / motif but 

does not reveal which k dimensions are involved. To store this information, another meta time 

series is built. 

Definition 12: A k-dimensional matrix profile subspace S stores the selected k dimensions for 

each subsequence when computing the distance with others.  
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Figure 5-9: Matrix Profile for multidimensional time series: T a time series, Ti,m a 

multidimensional subsequence, D the k-dimensional distance profile and P the 

k-dimensional matrix profile 

5.3.3 Principle and algorithms 

There are handful of algorithms and different implementations for Matrix Profile (see Appendix 

G). The main time complexity of the MP approach comes from the calculation of the distance 

profile. In 2011, [202] introduced “The Fastest Similarity Search Algorithm for Time Series 

Subsequences under Euclidean Distance”, namely Mueen's Algorithm for similarity Search 

(MASS). The principle is to create the distance profile of a query to a long time series, exploiting 

the overlap between subsequences using the classic Fast Fourier Transform (FFT) algorithm. 

This algorithm represents the basis for the calculation of the matrix profile. Once the distance 

profile is calculated for each subsequence of a time series T, the matrix profile becomes a 

simple loop that extracts the minimum of each row. The algorithm that we used in this research 

is PYSCAMP9, which is a python implementation of MP [203], with high computational 

optimizations that are beyond the scope of this work [204]. For the multidimensional approach, 

we used the python implementation, publicly available in [205]. 

 

9 Source code accessible online https://scamp-docs.readthedocs.io/en/latest/pyscamp/intro.html  

https://scamp-docs.readthedocs.io/en/latest/pyscamp/intro.html
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5.3.4 Anomaly detection using Matrix Profile  

Once the matrix profile is calculated, additional algorithms must be used to extract information 

from it. In our study, we are only interested in the identification of anomalies and discords. For 

this, we use the discover.discords function developed by matrix profile foundation [206]. 

This algorithm finds the top K number of discords given a matrix profile.  

5.3.4.1 Sensitivity to input data 

The main tests carried out in this context concern sensitivity to the input data, by comparing 

raw and reconstructed turbidity. For the MP model, which uses normalized Euclidean distance, 

the data are already scaled, eliminating the need for any additional scaling step. However, we 

take advantage of the model's ability to operate even in the presence of missing data to validate 

our approach of imputing missing data with zeros. Subsampling and data smoothing tests will 

also be carried out to validate our acquisition and sampling strategy. 

5.3.4.2 Hyperparameters tuning 

According to [179], MP is a parameter free algorithm. In fact, [200] assumes that the window 

size w is not a real hyperparameter, but a user choice reflecting a prior knowledge of the 

domain. It corresponds to a typical duration of a motif or discord. Likewise, K in the mining 

algorithm introduced in Section 5.3.4, is the number of anomalies that the user wants to 

identify. However, in our use case, the objective of using MP is to identify all anomalies that 

are present in the time series without having a prior knowledge of the adequate window length, 

nor the number of anomalies. Hence, we consider two hyperparameters to tune: the window 

size w and the number of anomalies K. For this, we vary the window size w between 2 and 

72 hours with a time step of 2 hours and the anomaly ratio k10 is set between 5% and 20% with 

a step of 0.5%, using a grid search. 

5.3.4.3 Results diagnosis 

Analysis of Matrix Profile results begins with an examination of the model output in the form of 

a graph (Curve C in Figure 5-10) and heatmap (Graph B in Figure 5-10) describing the 

evolution of the matrix profile over the input dataset (Curve A in Figure 5-10). The matrix profile 

plot identifies the peaks associated with the anomalies, to which are added red stars 

representing the K top anomalies identified (here K= 3). Each star indicates the starting index 

of the anomalous sequence. A second representation of the matrix profile takes the form of a 

heatmap, offering a broader view of defects and a less sharp delineation of their extent. This 

 

10 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝐾 =  𝑡ℎ𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑟𝑎𝑡𝑖𝑜 𝑘 ×  𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ / 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 
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analysis is carried out by examining the color range around the invalid sequence, where red 

hues signal the presence of anomalies, while shades of blue correspond to normality. 

 

Figure 5-10: Example of output of the "Matrix Profile" model - © [206] 

Next, the analysis of the results involves a comparison between the model output and that of 

the manual validation process (filtering + expertise + aggregation). The two approaches are 

carried out at two levels: at sequence level and at 5-minute interval level. For expert validation, 

whose output is based on 5-minute intervals, a sequence is considered invalid if more than 

half of its timestamps are invalid. Furthermore, to adjust Matrix Profile to the 5-minute interval 

scale, if the latter invalidates a sequence, all its time intervals are considered invalid. The 

comparison takes the form of a Boolean graph comparing the two sets of results (see Figure 

5-11). A value of 1 or -1 indicates the presence of an anomaly, while 0 indicates normality. The 

subsequent aim is to analyze the convergences and divergences in order to identify the 

model's errors and successes. 

 

Figure 5-11: Comparison of the model results and those issued from the 

manual validation. A value of 1 indicates the presence of an anomaly 

 

A 

B 

C 
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5.3.4.4 Potential improvements 

The main problem using MP is the fixed length of anomalies using a window size w. However, 

in real-life scenarios, anomalies can be long-lasting (for example a sensor malfunction that 

requires on-site intervention) or temporary (such as deposits on the sensor which are naturally 

cleaned by the flow). Hence to tackle this heterogeneity in the discords, ensemble models 

have been tested.  

The goal of ensemble methods is to combine multiple models into a meta-model that has a 

better generalization performance than each individual model [193]. The outputs from the 

submodels are combined using different techniques to produce the output of the entire system 

[207]. One of the most popular techniques for ensemble learning in the context of classification 

/ clustering is majority voting. 

Majority voting (or plurality voting for multiclass classification) selects the class label that has 

been predicted by more than 50% of the votes as the final output of the meta-model. Figure 

5-12 illustrates the concept of using majority voting.  

 

Figure 5-12: Ensemble model using majority vote. 

Hence, to consider the different anomaly sizes and to potentially improve the performance of 

MP, we tested an ensemble model with MP using different window sizes w. We have limited 

the number of sub-models to three.  The choice of the different subsequence lengths was 

made by considering both the optimization of the hyperparameters as explained in Section 

5.3.4.2 and domain knowledge. The majority voting technique was considered. It allows us to 

identify “confirmed” anomalies. Moreover, we have adapted this approach to a minority vote to 

identify a maximum of anomalies.  
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5.3.4.5 Generalization to other sites 

Matrix Profile stands out as an unsupervised model with no traditional learning process. This 

technique for exploratory analysis of temporal data involves a systematic comparison of each 

sequence window with all other possible windows to measure similarity. Unlike a learning 

model, MP does not retain knowledge between different time series, meaning that the process 

has to be reinitialized when applied to a new site. Despite this limitation, in tests at other sites 

such as “Goutte” and “Roosevelt”, we are assessing Matrix Profile's adaptability to different 

anomaly rates. These tests also aim to determine the sensitivity of the pre-calibrated 

hyperparameters to these specific data characteristics. 

5.3.5 Conclusion 

Matrix profile is an algorithm based on the principle of similarity join, which makes it well suited 

to detect anomalies in time series. After calculating the matrix profile, specific functions can be 

used to extract the main discordances. The particularity of the MP model lies in its ability to 

operate without the need for a prior learning process. The predominant advantage of this 

algorithm is the ease of use and the interpretability of the results. The use of Matrix Profile for 

anomaly detection often involves visual analysis to identify peaks associated with anomalies.  

The tests applied to the MP model encompass several aspects crucial to assessing its 

effectiveness in detecting anomalies. Firstly, sensitivity to input data is assessed by comparing 

raw and reconstructed data, while exploring the model's ability to operate in the presence of 

missing data. Next, hyperparameter settings are addressed, notably window size (w) and 

number of anomalies (K). These tests are carried out via an exhaustive grid search, varying 

the window size between 2 and 72 hours and adjusting the anomaly ratio between 5% and 

20%. Results are analyzed using matrix profile graphs, heatmaps and a comparison with 

manual validation. In addition, the model is tested against anomaly scenarios of varying 

durations, using ensemble models with different window sizes. Finally, the generalization of 

the model to other sites is explored to assess its adaptability to different anomaly rates over 

varied time series. These collective tests provide a comprehensive assessment of the 

performance and capabilities of the Matrix Profile model in anomaly detection for wastewater 

network data. 
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Figure 5-13: Overview of tests related to Matrix Profile model 
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5.4 ResNet 

5.4.1 Introduction and background 

The ResNet model, developed by [208], played a significant role in the ImageNet project. 

ImageNet is an organization that created a massive database of annotated images for visual 

object recognition software research [209]. Between 2010 and 2017, the ImageNet project 

hosted an annual competition known as the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) [210]. The competition focused on accurately detecting and classifying 

objects and scenes in images using AI algorithms. The advancements in image processing 

during the 2010s were remarkable (see Figure 5-14). In 2011, the lowest classification error 

rates in the ILSVRC competition stood at approximately 25%. However, in 2012, the advent of 

deep learning revolutionized the field, reducing the error rate to 16%. Subsequently, over the 

next years, the error rate dropped significantly to just a few percent. In 2015, ResNet emerged 

as the winner of the competition [211]. 

Following the victory of AlexNet, a CNN-based 

architecture in the ImageNet 2012 competition, 

subsequent winning architectures have 

consistently employed deeper neural networks 

with an increased number of layers to decrease 

the error rate. While this approach proves 

effective with a limited number of layers, it 

introduces a common challenge in deep 

architectures known as the Vanishing / Exploding 

gradient problem when the number of layers is 

increased. This problem manifests itself when the 

gradients diminish as they flow backward through 

the network. Indeed, repeated multiplication may 

make the gradient infinitely small. As a result, the 

deeper the network goes, the more its 

performance becomes saturated or even starts 

rapidly degrading. ResNet, which was proposed 

in 2015 by researchers at Microsoft Research, 

remedies this problem by introducing a new 

architecture called Residual Network.  

 

Figure 5-14: Error rate history on 

ImageNet  
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5.4.2 Definitions and notation 

The ResNet model draws its essence from the fundamental structure of CNNs. Figure 5-15 

illustrates a typical CNN structure, highlighting the convolution and pooling layers that make 

up its core.  

 

Figure 5-15: Convolutional Neural Network Architecture 

Definition 1: Convolutional layers 

The convolutional layer serves as the fundamental building block within the CNN architecture. 

This layer executes a dot product operation between two matrices: one matrix represents the 

input of shape (input height × input width × input channels), while the other matrix is the kernel. 

Notably, the kernel is spatially smaller than the input. In the context of an RGB image with 

three channels, the kernel's height and width are compact, but its depth spans across all three 

channels. Throughout the forward pass, the kernel systematically traverses the height and 

width dimensions of the input, performing convolution operations. 

Following the passage through a convolutional layer, the input undergoes a transformation, 

resulting in the creation of a feature map, also referred to as an activation map. The derivation 

of this feature map relies on three crucial hyperparameters, which necessitate configuration 

prior to the neural network training. The first element is obviously the kernel size, while the 

other two hyperparameters are as follows (see Figure 5-16): 

• Stride, which is the step size of the kernel as it traverses the input image. Typically set 

to 1 by default, while adjusting the stride to a higher value can be employed for 

downsampling an image. 

• Zero-padding which dictates how the border of a sample is handled. Two main distinct 

types of padding exist: 

o Valid padding: Also known as no padding, this approach results in the exclusion 

of the last convolution if dimensions fail to align 
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o Same padding: This padding technique ensures that the output layer maintains 

the same size as the input layer by incorporating zeros. 

Post each convolution operation, a Rectified Linear Unit (ReLU) transformation is applied to 

the feature map within the CNN. This introduces nonlinearity to the model, enhancing its 

capacity to capture intricate patterns and relationships within the data. 

 

Figure 5-16: Different padding approaches (here the stride = 2) 

Definition 2: Pooling layers 

Pooling layers, also recognized as downsampling, execute dimensionality reduction, thereby 

diminishing the number of parameters in the input. Analogous to the convolutional layer, the 

pooling operation employs a filter that traverses the entire input yet diverges in that this filter 

lacks any weight. Instead, the kernel applies an aggregation function to the values within the 

receptive field, generating the output array. Two predominant types of pooling exist (see 

Figure 5-17): 

• Max pooling: During the filter's traversal across the input, it selects the pixel with the 

maximum value to transmit to the output array.  

• Average pooling: As the filter moves across the input, it computes the average value 

within the receptive field, which is then forwarded to the output array. 
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Figure 5-17: Pooling approaches 

While the pooling layer inevitably results in information loss, it confers several advantages to 

CNNs. It contributes to complexity reduction, enhances computational efficiency, and mitigates 

the risk of overfitting by fostering a more generalized representation of the input data. 

Definition 3: Residual connections 

The key idea behind ResNet is the introduction of residual connections, also known as skip 

connections or shortcut connections. In traditional deep neural networks, each layer learns a 

mapping from its input to its output. However, as the network becomes deeper, it becomes 

challenging for the network to learn and propagate gradients effectively. This can lead to the 

vanishing gradient problem. The skip connections enable ResNet to learn residual mappings 

instead of directly learning the desired underlying mappings. Residual connections allow 

information to bypass certain layers in the network, making it easier for the gradients to flow 

during backpropagation. This helps alleviate the vanishing gradient problem and enables the 

training of very deep networks with hundreds or even thousands of layers. 

Definition 4: Residual Blocks 

The ResNet architecture consists of a series of residual blocks. Each residual block typically 

contains multiple convolutional layers with batch normalization and non-linear activation 

functions, such as ReLU (Rectified Linear Unit). The residual connection skips one or more 

convolutional layers within the block, and the input is added to the output of the block using 

element-wise addition (see Figure 5-18). This residual connection ensures that the information 

from earlier layers can flow more easily to the deeper layers, facilitating gradient flow and 

improving the network's ability to learn. 
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Figure 5-18: Residual learning: a building block - © [208] 

The approach behind this network is instead of layers learning the underlying mapping H(x), 

the network will fit the residual mapping F(x) according to Equation 6:  

Equation 6: Residual mapping approach 

𝐹(𝑥) =  𝑜𝑢𝑡𝑝𝑢𝑡 –  𝑖𝑛𝑝𝑢𝑡 =  𝐻(𝑥)–  𝑥 → 𝐻(𝑥) = 𝐹(𝑥) + 𝑥  

Definition 5: Batch normalization 

Batch normalization is a fundamental technique in DL aimed at stabilizing and accelerating the 

training of neural networks. This method consists in normalizing the activations of a layer by 

adjusting their mean and standard deviation on a mini lot of data during training. Specifically, 

for each activation channel, batch normalization centers and resizes the values using the mean 

and standard deviation of the mini batch (see Figure 5-19). The introduction of batch 

normalization reduces covariance mismatch problems, stabilizing the optimization process. In 

addition to promoting faster model convergence, batch normalization acts as a regulator, 

reducing the risk of overfitting and enabling the use of higher learning rates.  
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Figure 5-19: Batch Normalization process - © [212] 

5.4.3 Model architecture 

ResNet architectures come in different variations, such as ResNet-18, ResNet-50 and ResNet-

152, which indicate the number of layers in the network. These architectures typically consist 

of several blocks, where each block contains multiple convolutional layers along with batch 

normalization and ReLU activation functions. The skip connections are added within each 

block, allowing the network to learn residual mappings at different depths. The model 

architecture utilized in this study follows the design proposed by [133] and illustrated in Figure 

5-20. 

 

Figure 5-20: Architecture of the used ResNet model - © [134] 

The network consists of three residual blocks, which are sequentially connected. Each 

residual block comprises three convolutions. The output of these convolutions is added to 

the input of the residual block and then passed to the subsequent block. The number of filters 

for convolutions of each block is {64, 128, 128}, and the ReLU activation function is applied 
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after a batch normalization operation. In each residual block, the lengths of the filters are set 

to 8, 5, and 3, respectively, for the first, second, and third convolutions.  

Following these residual blocks, there is a Global Average Pooling (GAP) layer, which is a 

pooling operation that computes the average value of each feature map across spatial 

dimensions. It reduces the spatial dimensions of the feature maps to a single value per 

channel. This process helps capture the most important information from each feature map 

and aggregates it into a compact representation (see Figure 5-21).  

 

Figure 5-21: Global Average Pooling principle 

The final layer of the model is a SoftMax classifier. SoftMax is a mathematical function that 

converts the output of the previous layers into a probability distribution over the classes in the 

dataset (see Appendix A). It assigns a probability value to each class, indicating the likelihood 

of the input belonging to that class. The class with the highest probability is selected as the 

predicted class label. 

5.4.4 Anomaly detection using ResNet 

Detecting anomalies in time series using ResNet models relies on the ability of these networks 

to learn deep and meaningful representations of temporal data. To implement this process, the 

architecture of the ResNet model is adapted to take as input a temporal sequence of 

predefined duration and have as output the label of the sequence: valid or invalid. 

5.4.4.1 Sensitivity to input data 

In the preprocessing step for input time series data in the ResNet model, a sub sequencing 

approach aims to divide the original time series into smaller subsequences of fixed length, 

allowing the model to capture temporal dependencies within a specific timeframe. Since the 

sequence itself contains sufficient temporal information, shuffling the subsequences is 

generally acceptable. Randomly shuffling the order of subsequences helps prevent any 
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inherent biases that may exist in the original dataset from affecting the model's learning 

process. 

Similar to the Matrix Profile, sensitivity tests to input data will be conducted for the ResNet 

model, comparing raw and reconstructed turbidity. However, being a deep and supervised 

neural network, it is crucial to examine the representativeness of the sequences. The primary 

issue that arises is class imbalance. Anomalies, by their definition, constitute a minority, and 

thus, it is essential to explore how this affects the learning process. Upon examining the 

Cottage turbidity database throughout the entire year, an anomaly rate of 8% is observed at 

the daily scale. In other words, the number of valid sequences is 11 times greater than the 

number of invalid sequences. Therefore, the utilization of data enhancement, with the aim of 

balancing the two classes, becomes pertinent in addressing this issue.  

Data enhancement can be achieved by downsampling or up-sampling (see Figure 5-22). 

Downsampling involves reducing the number of samples in the majority class (valid 

sequences), while up-sampling aims to increase the number of samples in the minority class 

(invalid sequences). Downsampling has the disadvantage of potentially losing useful 

information. Hence we favor up-sampling, by creating duplicates of the same sequences. For 

oversampling, we must set the sampling strategy in the enhanced database. When float, the 

value corresponds to the desired ratio between the number of samples in the minority class 

over the number of samples in the majority class after resampling. Otherwise, we can use 

‘minority’ to resample the minority class in order to equalize the number of samples between 

classes. 

 

Figure 5-22: Classic data enhancement strategies 

A second enhancement approach is to inject white noise into sequences already identified as 

invalid. The underlying assumption is that adding noise to an invalid sequence will keep it 

invalid. This method aims to introduce additional samples and variability into the training data. 
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In practice, we add noise using random samples from a normal Gaussian distribution with a 

mean equal to 0 and using a variable scale / width. 

Finally, a third approach is to adopt the concept of cost-sensitive learning. This approach takes 

into account the cost associated with each class when training the model (as a dictionary {class 

0 weight: class 1 weight}), which is particularly useful in cases of class imbalance. It allows 

classification errors to be given different weights depending on the class, thus favoring the 

accuracy of the minority class, in our case, invalid sequences (class 1).  

5.4.4.2 Hyperparameters tuning 

In this study, the focus will not be on optimizing the structure of the model, such as the number 

of hidden layers or other architectural aspects. The main modifications will be made to the 

input and output of the model. By keeping the underlying model architecture consistent, it will 

be possible to isolate and evaluate the effects of specific changes, providing insights into their 

individual contributions to the overall performance of the anomaly detection system.  

Sensitivity tests will be conducted to determine the optimal input window size, ensuring that 

the selected window adequately captures the relevant patterns and characteristics in the data. 

While the default window size is 24-hours, tests ranging from 2 hours to 72 hours will be 

conducted using a stride of 2. 

Regarding the output target, a transformation is performed to convert the labels from a time 

step-by-time step basis to a label per sequence basis. If more than 50% of a sequence is 

considered invalid, the entire sequence is labelled as invalid (indicating the presence of an 

anomaly). This simplification allows the model to focus on classifying the entire sequence 

rather than individual time steps. Finally, to represent the target classes, a one-hot encoding 

scheme is applied. This converts the two classes, valid (0) and invalid (1), into binary vectors, 

where each class is represented by a unique combination of zeros and ones. Hence one-hot 

encoding transforms the "valid" label into [1, 0] and the "invalid" label into [0, 1]. The main 

advantage of this approach lies in its ability to provide a clear, binary representation of classes, 

while eliminating any notion of order between classes. 

According to its definition, the final layer of the ResNet model comprises two neurons 

representing the valid and invalid classes, indicating the probability of belonging to each class. 

Consequently, the class with the highest probability is assigned to the analyzed sequence. 

Nevertheless, examinations of the appropriateness of the classification threshold will be 

undertaken. The question addressed is whether a probability exceeding 50% is the most 

effective way to determine the model output. To refine the results, different strategies will be 
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implemented. This involves assigning greater weight to invalid sequences on one hand and 

adjusting the classification threshold on the other. The aim is to explore variations in the 

model's output and assess the impact of different threshold levels on the overall performance 

of the ResNet model. 

5.4.4.3 Model training 

The ResNet model is trained using a K-fold cross-validation strategy to assess the model's 

generalization ability by training and evaluating it on different combinations of training and 

validation data. The principle of K-fold cross validation is to divide the data set into K folds (or 

subsets) of equal size. The model is then trained K times, each time using K-1 folds as the 

training set and the remaining fold as the validation set. This procedure is repeated K times, 

each fold being used once as a validation set. At each iteration, model performance is 

evaluated. K-fold cross-validation mitigates variations due to the arbitrary selection of training 

and validation sets, offering a more reliable assessment of model performance. Ultimately, 

average performance over K iterations is often used as the final measure of model 

performance, offering a more stable and representative estimate of its ability to generalize to 

new data. In our case study we used a 5-fold cross validation, hence ensuring an 80% ratio 

for training and 20% for validation (see Figure 5-23).  

 

Figure 5-23: K-fold cross validation strategy 

During training, several useful callbacks are employed to enhance the training process. 

Callbacks enable dynamic and real-time monitoring. TensorBoard, for example, offers a 

graphical visualization of the learning progress, enabling key metrics to be monitored over 

epochs. Initially, the number of epochs per fold can be set at a high value, such as 1000 in 

our case. However, by following the learning curves generated by TensorBoard, this number 
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can be adjusted according to model convergence, thus reconciling computation time and 

performance. 

 

Figure 5-24: TensorBoard: (in orange) the accuracy of training data, (in blue) 

the accuracy of validation data along different epochs during the training 

process 

On the other hand, the ModelCheckpoint callback allows saving the model with the best 

performance observed during training. This is essential to prevent overfitting and to ensure 

that the model version generalizes well to the validation data. If results deteriorate, or if signs 

of overfitting are detected, we can then revert to the model saved at best performance. This 

model presents an optimal generalization to the validation data and can be used directly for 

the test phase or for subsequent deployment. 

To diagnose ResNet model results, the use of Class Activation Maps (CAMs) makes it 

possible to visualize which specific parts of the time series have contributed most to the 

model's prediction (see Appendix H). In the context of anomaly detection, this provides 

essential transparency as to the temporal features taken into account by the neural network. 

By applying CAMs to the ResNet model, we can identify the particular temporal segments that 

led to the classification of a sequence as normal or anomalous. Figure 5-25 illustrates the 

application of CAM to the results of a 24-hour time sequence. The term "True label" represents 

the class assigned by the expert to this sequence, while "likelihood of label" indicates the 

probability, according to the model, that the sequence belongs to this true class. The blue 

curve corresponds to the raw time series, while the color palette, ranging from light yellow to 

dark red, illustrates the influence of each input point in the model's decision-making process. 



Chapter 5. Benchmarking models for data validation and anomaly detection 

Page 125 of 356 

 

 

Figure 5-25: Class Activation Map of a sequence 

5.4.4.4 Potential improvements 

The ResNet model, originally designed for classification tasks, has been adapted for the 

detection of anomalies in time series, as described above. In its classic form, the model outputs 

two neurons with respective probabilities of belonging to a valid or invalid class, resulting from 

a supervised binary classification. This process involves the results of the manual validation 

elaborated by an expert, who assigns labels at each time step. 

During the data pre-processing phase, we converted this labeling into a binary classification, 

using a threshold of 50% to declare a sequence valid or invalid. However, this condition 

seemed rather restrictive, as it considered a sequence to be valid even if 49% of its points 

were drifting. This led us to explore a multiclass classification approach with the aim of 

establishing less strict categories; valid, dubious and invalid. In this way, we will have 3 

neurons instead of two at the output of the model. The aim was for the intermediate class to 

encompass all sequences that gravitate around the 50% limit. However, even with this 

approach, we need to define thresholds to separate the classes, which motivated sensitivity 

testing in this direction. This reflection also prompted us to consider bypassing the 

classification problem by adopting a direct prediction approach of the anomaly rate in the 

sequence, using a regression approach. 

To implement this modification, the last layer of the model was adjusted. Rather than using a 

SoftMax function with two (or three) neurons as output, the model will be configured with a 

Sigmoid function and a single neuron as output. This transformation enables the model to 
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generate continuous predictions representing the level of anomaly in the sequence, offering a 

more nuanced and continuous approach than binary classification. These three approaches 

(see Figure 5-26) will be analyzed and compared as part of this research project. 

 

Figure 5-26: ResNet architectures used in this study 

5.4.4.5 Generalization to other sites 

Unlike Matrix Profile, ResNet operates on a learning principle that can be deployed directly in 

the evaluation phase. In this way, the generalization of the model to other sites can be 

assessed by directly testing the saved pre-trained model on their respective data. However, 

due to the specificities of the tests, this approach may sometimes prove insufficient, requiring 

a "re-tuning" of the model with data from new sites. This operation can be carried out in the 

traditional way, or using Transfer Learning, a technique which aims to exploit the knowledge 

acquired by a model on one task to improve its performance on a similar task, without starting 

from scratch. Globally, there are three main Transfer Learning strategies (see Figure 5-27): 

• Total fine-tuning: This approach involves taking a pre-trained model and completely re-

tuning it for the new task, replacing the output layer with a new one adapted to the 

target task, if necessary. Then, the whole model is trained on the new data, allowing 

full adaptation of the model to the specifics of the new task. 

• Feature extraction: In this strategy, the pre-trained model is used as a kind of feature 

extractor. We remove the output layer from the pre-trained model and freeze the 

weights of the other layers. In this way, the representations learned by the model on 

the first task can be used as inputs for the final layer that will be specifically trained for 

the target task. 
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• Partial fine-tuning: This strategy combines the two previous approaches. However, 

instead of freezing all layers, some layers of the pre-trained model are left to thaw, 

allowing partial adaptation of the model to the new data while preserving certain 

features learned during pre-training. This strategy is useful when the new task is similar 

to the initial task but has unique features. 

 

Figure 5-27: Transfer Learning strategies 

5.4.5 Conclusion 

The ResNet model was designed to overcome the problem of the gradient that disappears or 

explodes in deep architectures. It introduces residual connections, allowing the model to learn 

residual mappings instead of directly learning the underlying mappings. With regard to 

anomaly detection with ResNet, the model, originally developed for image processing, has 

been adapted to process time sequences as input.  

The tests conducted involve several key aspects. In terms of sensitivity to input data, a sub-

sequencing approach is applied during the preprocessing of time series data, dividing the 

original series into smaller fixed-length subsequences. Data enhancement techniques, such 

as up sampling, are employed to address class imbalance. Hyperparameter tuning focuses on 

optimizing the input window size and transforming labels from a probability to a label. Model 

training utilizes K-fold cross-validation for robust performance evaluation, while CAMs aid in 

interpreting results, visualizing which temporal segments contribute to the model's predictions. 

Potential improvements include exploring multiclass classification and a direct prediction 

approach of anomaly rates using regression. The ResNet model's adaptability to new sites is 

assessed, considering Transfer Learning strategies. These strategies allow the model to 

leverage previously acquired knowledge for improved performance on new tasks. 
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Figure 5-28: Overview of tests related to ResNet model 
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5.5 Autoencoder 

5.5.1 Introduction and background 

Autoencoders, originally introduced by Hinton in the 1980s [213], are well-known networks 

designed to reproduce their own inputs with minimal distortion. Addressing the challenge of 

"backpropagation without a teacher," autoencoders employ the input data as a form of self-

guided teacher. This conceptually simple yet powerful approach leverages Hebbian learning 

rules [214], providing a foundational framework for unsupervised learning [215]. 

 

Figure 5-29: Comparison of the results of dimensionality reduction using PCA 

and Autoencoder - © [216] 

Originally proposed as a nonlinear generalization of Principal Component Analysis (PCA) 

[217], autoencoders have since evolved to fulfil various purposes (see Figure 5-29) . The key 

idea behind autoencoders lies in their ability to encode information in a compressed manner 

and faithfully reconstruct the original data from this latent representation. This autoencoding 

process not only facilitates the exploration of underlying data structures but also enables the 

detection of significant patterns and features. Their versatility is demonstrated in applications 

such as noise reduction [218], data instance generation [219], and notably, anomaly detection 

[162]. The adaptability of autoencoders to anomaly detection stems from their capacity to 

capture normal data structures while remaining sensitive to unusual variations.  Furthermore, 

the concept of autoencoders has become widely utilized in the realm of generative model 

learning, extending their applicability to diverse fields [220]. The continuous development and 

application of autoencoders underscore their significance in DL, marking a substantial 

contribution to the evolution of unsupervised learning paradigms. 
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5.5.2 Definitions and notation 

Autoencoders, at the heart of unsupervised learning, are part of the quest to optimally 

represent complex data. Basically, an autoencoder seeks to generate an output as similar as 

possible to the input presented to it. This task is performed by a neural network which basic 

architecture is presented in Figure 5-30. 

 

Figure 5-30: Baseline of an autoencoder model 

Definition 1: Input and output 

The main objective of an AE is to minimize the divergence between its output and its input, 

thus seeking to accurately reconstruct the original data. In concrete terms, this translates into 

a goal where the output target is aligned with the input, meaning that the number of neurons 

in the input layer is equivalent to the number of neurons in the output layer. This neural 

matching is intended to ensure that the autoencoder learns an internal representation that best 

preserves the essential features of the input during compression and reconstruction. 

Definition 2: “Bottleneck” hidden layers 

Between input and output, hidden layers follow, usually smaller in size than the input layers. 

This particular design is known as a bottleneck architecture. The idea behind this architecture 

is to force the model to learn a condensed, informative representation of the input data. By 

reducing the dimensionality of the hidden layers, the autoencoder is forced to capture the most 

salient and significant aspects of the data, as it must represent the information in a lower-

dimensional space. However, this is not the unique possible architecture. There are different 

variations of autoencoders, including complete and sub-complete autoencoders. The former 
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maintains the same dimension for the hidden layer as for the input layer, while the latter 

reduces it. These layers can take different forms, ranging from fully connected layers to more 

complex architectures such as convolutional neural networks (CNN) or recurrent neural 

networks (LSTM). 

Definition 3: encoder 

The encoder is the first half of the autoencoder. Its function is to transform the original input 

into a compressed representation, also known as latent space. This transformation is achieved 

by a series of neural layers that reduce the size of the input. The encoder thus captures the 

most important features of the input data, forming a condensed representation. 

Definition 4: latent space (code) 

Latent space, also known as code, represents the hidden layer at the heart of the 

autoencoder. It is a representation of lower dimensionality than the input and is designed to 

encapsulate crucial information while reducing redundancy. The quality of this latent 

representation determines the autoencoder's ability to extract meaningful features from the 

data. 

Definition 5: Decoder 

The decoder is the second half of the autoencoder. It takes the latent representation generated 

by the encoder and attempts to reconstruct it into an output that should be as close as possible 

to the original input. Like the encoder, the decoder consists of a series of neural layers, but 

this time it performs an inverse operation of increasing dimension. 

During the learning process, all these components work in tandem in order to preserve as 

much information as possible between the input and the latent space. This preservation is 

crucial to enable the decoder to accurately reconstruct the original input.  

5.5.3 Model architecture 

Unlike tests on residual neural networks (ResNet), the use of autoencoders in our context has 

no typical framework that stands out when it comes to its use for anomaly detection in time 

series. The literature offers a variety of architectures for autoencoders, ranging from simple 

autoencoders (AE) to combined variants such as convolutional (CNN-AE) or recurrent (LSTM-

AE) autoencoders. In our project, due to time constraints and the need to ensure a variety of 

heterogeneous models, we have decided to exploit deep autoencoders (deep-AE) and exclude 

structures based on CNNs that may be close to ResNets in terms of their baseline, as well as 
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architectures using LSTMs in view of their complexity. Preliminary tests were carried out in this 

regard, validating our deliberate choice.  By opting for deep-AEs, we aim to maximize the 

model's ability to learn complex, hierarchical data representations, while simplifying 

architectural complexity for reasons of practicality and efficiency (see Figure 5-31). 

 

Figure 5-31: Deep autoencoder architecture for data validation 

The loss function measures the difference between the decoder output and the original input. 

It quantifies the reconstruction error and serves as a signal for adjusting the neural network 

weights during training. The aim is to minimize this loss function, enabling the AE to generate 

outputs close to the original input. The use of Mean Squared Error (MSE) or Root Mean 

Squared Error (RMSE) as a loss function for autoencoders in the context of anomaly detection 

is a commonly adopted approach. These measures quantify the mean or quadratic deviation 

between the output generated by the autoencoder and the original input. In the case of 

anomaly detection, a low value indicates that the reconstructed output is similar to the input, 

suggesting that the given example conforms to the learned model. Anomalies, being rare and 

unusual instances, often generate significantly higher reconstruction errors. So, when a new 

input produces an MSE or RMSE significantly higher than normal, this may indicate the 

presence of an anomaly in the data. The threshold for declaring an input as abnormal may 

need to be adjusted according to the specific characteristics of the dataset.  In our case study, 

MSE has been chosen as the main loss function of the model, while the RMSE is used as a 

tracking metric. 

Equation 7: Mean Squared Error (MSE) 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1
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Equation 8: Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

Where: n is the number of samples, 𝑦𝑖 is the input value and 𝑦�̂� is the predicted output. 

5.5.4 Anomaly detection using AE 

5.5.4.1 Sensitivity to input data 

Similar to the other models, sensitivity tests to input data will be conducted for the AE model, 

comparing raw and reconstructed turbidity. 

In the data pre-processing stage, a sub-sequencing approach is applied, breaking down the 

input time series into small 24-hour subsequences. In addition, tests for normalization or 

standardization techniques are applied to the subsequences to scale the data to a common 

range and ensure comparable magnitudes between features. As with ResNet, given that the 

sequences contain sufficient temporal information, random mixing of subsequences is 

generally considered appropriate. This random permutation helps to avoid any inherent bias 

in the original dataset that might influence the learning process of the autoencoder model 

dedicated to detecting anomalies in time series. 

Nevertheless, since AE is designed to reconstruct normal patterns, providing it with the entire 

set of input sequences might be inappropriate. Hence, we will assess its performance by 

comparing two scenarios: one involving the full dataset and another where only fully valid 

data sequences are used for training. The evaluation, on the other hand, will encompass all 

sequences to ascertain the model's ability to accurately identify anomalies.  

However, given the assumption that normality in sewer networks remains relatively stable in 

dry weather and that recurring patterns may be present in the input data, we will assess the 

sensitivity of the model to the size of the input base by reducing the number of samples used 

during training. This approach also aims to determine the number of additional sequences, if 

any, needed to improve learning. It is important to note that this approach is biased, as no pre-

processing related to the separation between dry and rainy weather was applied. Thus, 

sensitivity to database size is assessed by randomly removing a set percentage of data.  
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5.5.4.2 Hyperparameters tuning 

First of all, the segmentation of the input data into subsequences makes the window size a 

parameter to be tuned. Sensitivity tests will then be carried out to determine the optimal 

window size, guaranteeing adequate capture of significant patterns in the data. 

Moreover, in the absence of a defined typical structure, different architectures were explored 

in our approach. A varied set of 5 architectures was tested to determine which best suits the 

specific nature of our data and the objectives of our project (see Figure 5-32).  

 

Figure 5-32: Different architectures of AE tested in this study 

For each architecture, various models were tested with different characteristics, such as the 

number of layers and neurons per layer. Apart from the tests conducted on input data and 

normalization approaches, as well as those examining the activation function of the final layer, 

we trained and evaluated 21 different AE models (see Table 10). However, certain elements 

were kept constant, namely the optimizer for parameter updates, specifically Adam, and the 

activation functions for intermediate layers, which were set as Rectified Linear Units (ReLu). 
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Table 10: List of AE models evaluated in this study 

Architecture N° Model 

1 

1 

2 

3 

4 

5 

6 

Input → 4 → Output 

Input → 8 → Output 

Input → 16 → Output 

Input → 32 → Output 

Input → 64 → Output 

Input → 128 → Output 

2 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Input → [96 x 32 x 96] → Output 

Input → [128 x 64 x 128] → Output 

Input → [144 x 72 x 144] → Output 

Input → [192 x 128 x 192] → Output 

Input → [80 x 64 x 80] → Output 

Input → [96 x 64 x 96] → Output 

Input → [160 x 64 x 160] → Output 

Input → [192 x 64 x 192] → Output 

Input → [128 x 16 x 128] → Output 

Input → [128 x 32 x 128] → Output 

Input → [128 x 96 x 128] → Output 

Input → [128 x 112 x 128] → Output 

3 19 Input → [192 x 128 x 64 x 128 x 192] → Output 

4 20 Input → [192 x 128 x 92 x 64 x 92 x 128 x 192] → Output 

5 21 Input → [216 x 168 x 128 x 72 x 64 x 72 x 128 x 168 x 216] → Output 

5.5.4.3 Model training 

The AE model training process follows a similar approach to that of the ResNet model, with 

the consistent application of cross-validation and callbacks to optimize model performance.  

In the context of anomaly detection, the comparison between input and output of the 

autoencoder plays a central role. The autoencoder aims to reconstruct input data in such a 

way as to minimize information loss. By comparing the original input with its reconstructed 

output, we can assess the discrepancy between the expected representation and that 

generated by the model. Anomalies, being unusual or divergent occurrences, can manifest 

themselves as significant differences between the input and output of the autoencoder. Figure 

5-33 shows an example of a normal sequence and an invalid sequence, as well as their 

reconstruction using AE. 
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Figure 5-33: Example of output of the AE model. (Top) Valid sequence - 

(Bottom) Invalid saturation sequence. (Colors) in blue: raw data, in green: AE 

output, in red: anomalies 

In order to compare different AE models, we can evaluate their performance in terms of 

sequence reconstruction or classification to identify the best performing model. However, in 

some situations, two models may perform equally well. It then becomes crucial to determine 

whether they are performing the same task. One approach is to compare their output 

sequences, or to use a reduced-space representation, facilitating interpretation by projecting 

their code into a space of reduced dimensions. To this end, we use a dimension reduction 

method called t-Distributed Stochastic Neighbor Embedding (t-SNE) [221]. This dimension 

reduction technique is used to visualize complex, high-dimensional data in a space of reduced 

dimensions, facilitating the observation of underlying patterns or structures. Compared with 

standard PCA, t-SNE offers significant advantages by preserving non-linear structures and 

local relationships between data (see Appendix I). If the models are similar in their 

reconstruction task, we expect their t-SNE projections to show similarities in reduced space. 

On the other hand, significant discrepancies in the distribution of points may indicate 

differences in the way the models learn and represent the underlying structures of the data. 

This provides a visual and interpretable perspective on the similarity or divergence of 

autoencoding models (see Figure 5-34).  
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Figure 5-34: Latent space visualization of the same model at different epochs - 

[222] 

Unlike ResNet, where the task consists of classification, the autoencoder is intrinsically linked 

to the detection of anomalies in time series by evaluating the reconstruction error. Thus, the 

threshold plays a central role in decision-making. Different methods can be explored to 

establish an optimal threshold (see Figure 5-35).  

The first approach is rooted in the statistics of the reconstruction error, utilizing a 3-sigma rule: 

any sequence with an MSE greater than the mean MSE plus 3 times the standard deviation is 

deemed anomalous. Alternatively, we adopted an approach based on maximizing the 

classification score, with a specific focus in our case on the F1 score (refer to Section 6.1.1). 

The approach involves testing different decision thresholds and calculating the F1 score 

corresponding to each threshold. The optimal threshold is the one that produces the highest 

F1 score. Once this threshold has been determined, it is used to classify examples as normal 

or abnormal in the test phase. Consequently, the autoencoder training process goes beyond 

the simple optimization of network weights and involves a thorough understanding of the 

characteristics of reconstruction errors. This makes it possible to define a relevant threshold, 

thus making the test phase crucial for validating the effectiveness of the autoencoder approach 

in this specific context. 
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Figure 5-35: Classification approaches: (Left): 3-sigma rule - (Right): PR Curve 

approach 

5.5.4.4 Potential improvements 

Once the best autoencoder models have been identified, the possibilities for improvement 

focus mainly on exploiting their advantages by combining their outputs using an ensemble 

model, similar to the approach adopted for Matrix Profile. Two approaches are possible: firstly, 

to exploit the respective mean square errors (MSE) directly, calculating an average MSE of 

the different models to classify sequences as valid or invalid according to an adjusted 

threshold. Secondly, merge the models after classification using majority voting or consensus, 

which would mean invalidating a sequence only if all models invalidate it equally. 

Another area for improvement is to optimize the classifier output of the AE to ensure that the 

classification rules are appropriate. For example, the relevance of the 3-sigma threshold in 

this context may be questioned. In addition, the comparison between the model and the 

manual validation implicitly assigning a label to the sequence, generally the majority label with 

respect to the points that make it up, could be improved. Sensitivity tests to the threshold 

applied to the reference will therefore be carried out. 

A last technique for improving model results concerns the acquisition of new data. Although 

this is not possible in our case, if such acquisition were feasible, it would be interesting to 

assess whether we can estimate the amount of data needed to achieve optimal convergence 

of the autoencoder model. All these questions will be examined through in-depth sensitivity 

tests. 

5.5.4.5 Generalization to other sites 

A straightforward approach is to evaluate the model on data from other sites, thus measuring 

its performance in a variety of contexts. However, due to the specificities of each site, this 

approach can prove insufficient. To address this limitation, a complementary strategy would 
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be to re-train the model using all sites data. This process could allow the model to have a wider 

vision of normality, thus improving its adaptability. With this in mind, it might be worth 

considering the possibility of tuning site-specific models, taking into account the unique 

characteristics of their respective data.  

5.5.5 Conclusion 

The autoencoder (AE) is a type of unsupervised deep learning model that can be used to 

detect anomalies in time series. Its principle is based on learning a compressed representation 

of the input data, called a "latent code", and reconstructing the data from this code. The more 

typical the input data are, the better the reconstruction, so a bad reconstruction denotes 

atypical input data. 

Evaluation of anomaly detection using an AE involved various tests. Firstly, sensitivity analyses 

to input data will be assessed by comparing raw and reconstructed turbidity, considering two 

scenarios: one using all data and the other limited to sequences fully valid for training. Next, 

hyperparameter sensitivity tests will be carried out to determine the optimal size of the input 

window, guaranteeing adequate capture of significant patterns. Regarding the AE architecture, 

different configurations are explored, and 21 distinct AE models were evaluated. The AE model 

training process followed a similar approach to that of the ResNet model, with the consistent 

application of cross-validation and callbacks to optimize model performance. Finally, prospects 

for improvement will be explored, including the exploitation of AE model ensembles and the 

optimization of the classification threshold, raising questions about the relevance of the 3-

sigma threshold. The adaptability of the model to other sites will be assessed, with a view to 

direct evaluation and potential retraining with data from other sites to take account of their 

specific normality.  
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Figure 5-36: Overview of tests related to Autoencoder model 
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5.6 Synthesis of Chapter 5 

The benchmark section aims to introduce our three models to be tested, namely Matrix Profile, 

ResNet, and Autoencoders, for data validation and time series anomaly detection. 

Nevertheless, a first question merged, necessitating to explore the usefulness of traditional 

statistical approaches (3-sigma rule). This investigation calls into question the relevance of 

classical approaches to the complexity of temporal data. The results justified the use of more 

sophisticated approaches based on AI. 

Hence, the objective of this work is to look at the effectiveness of our selected models. The 

latter have demonstrated their usefulness in various fields, but their direct applicability to the 

detection of anomalies in wastewater networks time series requires in-depth evaluation. In this 

research work, a wide-ranging strategy was adopted to explore a spectrum of models using 

different approaches (see Figure 5-37). Given the complexity of obtaining a reliable reference 

for model training, particularly in terms of time, cost and subjectivity, the use of unsupervised 

approaches proved obvious. This is why we chose to test both a "simple" model, namely Matrix 

Profile, and a more sophisticated model based on a deep autoencoder. However, given that 

evaluating model performance inevitably requires a reliable reference, a fair investment has 

been made to obtain one. Consequently, it seems appropriate to take advantage of this 

reference by using a supervised anomaly detection model, in this case ResNet. 

Figure 5-37: Benchmark of the model tested for anomaly detection in turbidity data 
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Experiments will use turbidity data from the Cottage as a typical site. Sensitivity assessments 

are conducted to determine the optimal use of input data, considering raw measurements or 

reconstructed turbidity. Challenges related to temporal regularity, missing data, and time series 

scaling are addressed. Normalization and standardization techniques are explored, and 

sensitivity tests on the input database are performed, considering the entire dataset, pre-

selection, or acquiring additional data for improved learning. Hyperparameter tuning, crucial 

for optimal model performance, involves calibrating parameters such as sequence size and 

stride, along with model-specific parameters like the number of layers and neurons per layer. 

The optimization procedure, utilizing grid search, systematically explores the configuration 

space. Following model identification, the results diagnosis phase involves a thorough 

analysis, comparing model outcomes with expert findings to identify strengths and limitations. 

Visualization approaches are employed for a detailed understanding, leading to model-specific 

improvements. A multivariate approach, leveraging on-site sensors, is adopted to provide 

additional data for each timestamp. The generalization to other sites is systematically 

assessed to gauge adaptability and performance across diverse contexts, offering valuable 

insights for broader applicability. 

Table 11: Overview of different tests 
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Chapter 6. Beyond data and models: 
Performance Metrics and Hardware-

Software Configuration 
 

This chapter delves into the realm beyond the mere analysis of data and the construction of 

models. In this section, our focus expands to encompass performance metrics and hardware-

software configuration. Understanding the efficacy of data-driven models requires a nuanced 

exploration of the metrics that quantify their success. 

6.1 Model’s performance metrics 

The evaluation of AI models dedicated to anomaly detection allows measuring their 

performance and reliability in various contexts, whether supervised or unsupervised. Whatever 

the approach adopted, it is essential to compare the model's results with a reference, in this 

case obtained by manual validation (filtering + expertise + aggregation). This comparison 

enables us to assess the effectiveness of the model by distinguishing correctly identified 

anomaly cases from those that are neglected or incorrectly classified. In this evaluation 

context, several metrics may be considered. 

6.1.1 Confusion Matrix 

Even if it’s not a metric per se, the confusion matrix is one of the key concepts for binary 

classification. With a tabular visualization, it faces the model predictions to the ground truth 

labels. The latter is the result of the expert validation. The template for any binary confusion 

matrix is a 2×2 matrix with four kinds of results (see Table 12). 

Table 12: Confusion Matrix  

  Predicted Label 

 
Total population 

= P + N 
Positive (PP) Negative (PN) 

Actual Label 
Positive (P) True positive (TP) False negative (FN) 

Negative (N) False positive (FP) True negative (TN) 

The positive term means the feature that we are trying to extract from the data. Here, it 

corresponds to an anomaly / invalid data. The diagonal elements of this matrix denote the 

correct prediction for different classes, while the off-diagonal elements denote the samples 
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which are mis-classified.  Once the confusion matrix is established, different metrics can be 

calculated. 

6.1.1.1 Accuracy 

Accuracy is the simplest metric for binary classification. It represents the proportion of correct 

predictions (both true positives and true negatives) among the total population (see Equation 

9). However, for anomaly detection problems, we assume that discords are minority. Hence, 

even if the model does not detect any anomaly, accuracy would remain important. Thus, this 

metric was not used in this work due to the unbalanced nature of the problem. 

Equation 9: Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

6.1.1.2 Precision and recall 

 

Figure 6-1: Diagram representation of precision and recall - © [223] 

Precision is the fraction of true positive instances from all the positive instances that were 

retrieved by the model (see Equation 10). It evaluates, by complementarity, the rate of false 

alarms. 

Equation 10: Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

On the other hand, the recall (also called sensitivity) represents the fraction of positive 

instances identified by the model from all the real positive instances (see Equation 11). It 

evaluates, by complementarity, the rate of missed anomalies.  
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Equation 11: Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

A perfect model will provide answers with precision and recall equal to 1 (the model finds all 

relevant instances and makes no errors). In practice, classification algorithms have varying 

degrees of precision and recall. In borderline cases, a model that identify the whole dataset as 

abnormal will have a recall of 1 but poor precision, while a model that identify a unique discord 

period will have a precision of 1 for a very low recall. The value of a classifier is therefore not 

reduced to a good score in precision or recall, but both. 

6.1.1.3 F score 

The F1 score is a harmonic mean of the precision and the recall equally weighted (see 

Equation 12). In the case where false alarms or missed anomalies are not of equal interest, 

this score can be pondered using a predefined ratio β, such that recall is considered β times 

as important as precision. In our context, false positives (false alerts) and false negatives 

(misfires) are equally important. Thus, we mainly use the F1 score giving the same weight to 

these two variables. Tests were nevertheless carried out by varying this coefficient (see 

Section 9.2.2.1). 

Equation 12: Fβ Score 

𝐹𝛽 =
(1 + 𝛽2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

6.1.2 Matthew’s Correlation Coefficient 

The F1 score, despite its popularity, may produce optimistic results, particularly in the context 

of datasets with a positive class imbalance. Firstly, F1 exhibits variability upon interchanging 

class labels, such that the positive class being relabeled as negative and vice versa alters the 

score. Moreover, the F1 score remains unaffected by the accurate classification of samples as 

negative, since it does not account for the true negative (TN) in the confusion matrix. Recent 

investigations by various researchers have underscored limitations associated with the F1 

measure [224]. [225] asserts that alternative metrics should be employed due to fundamental 

conceptual flaws in the F1 score. 

Offering an alternative resilient to imbalanced datasets, the Matthews Correlation Coefficient 

(MCC) exploits the confusion matrix to calculate the Pearson product-moment correlation 

coefficient [226] between actual and predicted values. The MCC is expressed as follows in 

Equation 13. 
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Equation 13: Matthew's Correlation Coefficient 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃). (𝑇𝑃 + 𝐹𝑁). (𝑇𝑁 + 𝐹𝑃). (𝑇𝑁 + 𝐹𝑁)
 

The MCC serves as a binary classification metric that yields a high score only when the model 

correctly predicts the majority of positive and negative instances. Its range spans from -1 to 

+1, with extreme values indicating perfect misclassification (-1) and perfect classification (+1), 

while MCC=0 represents the expected value for a classifier akin to random coin tossing [227]. 

Although the Matthews Correlation Coefficient (MCC) offers significant advantages, the F1 

score remains the most widely used metric among researchers for classification tasks. 

However, a problem emerges, as there are many situations where the MCC and F1 score 

values diverge, making it difficult to draw correct conclusions about the behavior of the 

classifier under study. 

Similar to [225], we present a scatterplot illustrating the Matthews correlation coefficients 

(MCCs) and F1 scores across 2000 potential confusion matrices generated from a synthetic 

dataset comprising 1000 samples with varying anomaly ratios (see Figure 6-2). Our 

observation reveals a reasonable concordance between the two metrics; however, the 

scatterplot cloud exhibits significant width. This suggests that for each F1 score value, there 

exists a corresponding range of MCC values, and vice versa, albeit with varying widths. 

According to [228], for any given F1 value (F1=x), the MCC fluctuates within the interval [x−1, 

x], indicating a fixed width of variability (1) irrespective of the specific value of x. Conversely, 

when considering a fixed MCC value (MCC=y), the F1 score can span the range [0, y+1] if y ≤ 

0 and [y, 1] if y > 0. In this case, the width of the range is determined by the expression 1−|y|, 

signifying a dependence on the MCC value y. 
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Figure 6-2: Relationship between MCC and F1 score, depending on the anomaly 

ratio. 

In general, the F1 score and the Matthews correlation coefficient (MCC) exhibit consistent 

agreement in their scores for predictions that accurately classify both positive and negative 

instances (Quarter 1), as well as for predictions that inaccurately classify both positive and 

negative instances (Quarter 3). However, these metrics display divergent behaviors when the 

prediction excels in only one of the two binary classes. Specifically, when a prediction yields 

numerous true positives but few true negatives, the F1 score can be misleading (Quarter 4), 

whereas the MCC consistently produces results that accurately reflect the overall issues with 

the prediction. 

Indeed, [229] has claimed that the combined use of these two metrics "provides more realistic 

estimates of real-world model performance". Consequently, we calculated both metrics for all 

our tests: The F1 score allows us to focus on the task of interest, i.e. the identification of 

anomalies (positive instances), while the MCC allows us to assess the overall performance of 

the model, freeing us from any bias linked to the imbalance in class prediction. 
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6.1.3 Characteristic curves 

6.1.3.1 ROC Curve  

Similarly to the confusion matrix, the receiver operating characteristic curve (ROC Curve) is 

not a metric per se. In fact, it is a plot that shows the performance of a binary classifier as a 

function of its cut-off threshold. The ROC curve is created by plotting the true positive 

rate (TPR) against the false positive rate (FPR) at various threshold settings (see Equation 

14 & Equation 15) . This approach is only possible for probabilistic models where a score is 

calculated, indicating the probability to belong to a certain class. Then the model varies the 

threshold and computes the FP and TP according to the actual label. Each threshold is a point 

on the curve (see Figure 6-3).  

Equation 14: True Positive Rate 

𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 15: False Positive Rate 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

  

Figure 6-3: ROC Curve 

- In (0, 0) the classifier classifies all negative: there are no false positives, but also no true 

positives.  

- In (1, 1) the classifier classifies all positive: there is no true negative, but also no false 

negative.  

https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
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- A random classifier will draw a line from (0, 0) to (1, 1). 

- At (0, 1) the classifier has no false positives and no false negatives, and is therefore 

perfectly accurate, never being wrong. 

- In (1, 0) the classifier has no true negative and no true positive, and is therefore perfectly 

inaccurate, always being wrong. It is enough to invert its prediction to make it a perfectly 

exact classifier. 

6.1.3.2 PR Curve 

Another way of analyzing precision and recall simultaneously is by means of Precision-Recall 

curves (PR curve). This curve visualizes the relationship between precision (positive predictive 

value) and recall (sensitivity) at different classification thresholds. By analyzing this curve (see 

Figure 6-4), we can see how the model balances precision and recall by adjusting the decision 

thresholds. An ideal model would present a curve heading towards the top right-hand corner 

of the graph, reflecting an optimal balance between precision and recall. Several key 

observations regarding the curve: 

- Point 1 aligns with a threshold of 1. 

- Point 3 aligns with the threshold of 0. 

- Point 4 aligns with a threshold within the range of (0, 1). 

- Point 2 aligns with an ideal model. 

 

Figure 6-4: PR Curve 

The baseline of a Precision-Recall (PR) Curve is subject to variations with changes in class 

imbalance, unlike the Receiver Operating Characteristic (ROC) Curve. This distinction arises 

from the direct impact of class imbalance on the precision of a No-Skill model. A "No-skill 

model" is a term used to denote a basic model that only predicts the majority class. The PR 

curve of a "No-skill model" is generally represented by a straight horizontal line at the level of 
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the precision of the majority class in the data set, although in reality the performance of such 

a model corresponds more to point 3. In this case, precision is equal to the number of true 

positives divided by the total number of positive predictions. As we always predict the majority 

class, precision will be equal to the proportion of true positives in the data set, which is simply 

the frequency of the majority class. On the other hand, recall will be equal to the number of 

true positives divided by the total number of true positives in the data set. Since we always 

predict the majority class, the number of true positives will be equal to the total number of true 

positives in the data set. Consequently, recall will be equal to 1, as all true positives will be 

captured. 

Hence, the ROC curve is generally chosen (and indeed more commonly used) for an intuitive 

interpretation of the model's discriminative ability when compared to a random guessing model, 

while the PR curve is better suited to assessing performance on unbalanced datasets, focusing 

on the model's precision and recall. 

6.1.3.3 Area under curve (AUC) 

The area under the curve (AUC), is a metric that aggregates the measure of performance of a 

model on all possible threshold values. In practice, it calculates the area under the ROC curve 

or the PR Curve, where a higher value indicates a better ability of the model to discriminate 

between classes. The AUC of a classifier is equal to the probability that the classifier will rank 

a randomly chosen positive example higher than a randomly chosen negative example.  

6.2. Annotator agreement metrics 

The aim of this section is to assess the validation variance that exists among the multiple 

experts within the validation pool, along with an examination of their corresponding agreement 

rates. The evaluation of model performance often relies on the expertise and judgment of 

individuals within a validation pool, and understanding the degree of consensus or divergence 

among these experts is crucial for refining and optimizing the validation process. By quantifying 

the validation variance, we seek to uncover the extent to which interpretations and 

assessments may differ among experts, providing insights into the robustness and reliability of 

the validation outcomes. This analysis not only contributes to a comprehensive understanding 

of the validation dynamics but also lays the groundwork for interpretation of the overall process 

of the AI models, which takes the manual validation as a baseline. When evaluating annotators 

in the validation pool, different metrics can be employed, each offering a unique perspective 

on inter-annotator agreement.  
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6.2.1. Cohen’s kappa coefficient  

The most basic method for examining inter-annotator agreement involves calculating the 

observed proportion of instances where the raters concur. However, this approach is inherently 

flawed, as it does not account for the possibility that some level of agreement might occur 

purely by chance [230]. To address this limitation, [231] introduced a method for correcting the 

agreement between annotators by the likelihood of chance agreement. The resulting metric, 

known as Cohen's Kappa, is widely employed to assess agreement among evaluators in tasks 

involving subjective judgment. The formula for calculating this coefficient is as follows 

(Equation 16): 

Equation 16: Cohen's kappa coefficient 

𝜅 =  
𝑝𝑜 − 𝑝𝑒  

1 −  𝑝𝑒
 

where po is the relative observed agreement among raters, and pe is the hypothetical 

probability of chance agreement, using the observed data to calculate the probabilities of each 

observer randomly seeing each category. Considering the  confusion matrix for binary 

classifications, the Cohen's Kappa formula can be written as in Equation 17: 

Equation 17: Cohen's kappa coefficient for binary classification 

𝜅 =
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
 

However, there is considerable debate regarding the utility of kappa statistics for evaluating 

rater agreement. [232] assess that: 

• kappa should not be considered the unequivocal standard for quantifying agreement, 

• concerns arise from its controversial nature, 

• alternatives should be explored to make an informed choice. 

The application of Cohen's Kappa should be restricted to testing if the observed agreement 

is significantly greater than what might occur by chance through random guessing. 

When interpreting Cohen's Kappa values, general guidelines are often used to assess the level 

of agreement beyond chance [233]. 

 

 

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Binary_classification
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Table 13: Interpretation of Cohen's Kappa coefficient 

k Interpretation 

< 0 No agreement unless by chance 

0.00 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 1.00 Almost perfect agreement 

 

6.2.2. Pairwise F1 score 

As a continuation of the assessment of inter-annotator agreement, the comparison of 

experts can be assessed using the pairwise F1 score between experts (Fij). This is calculated 

in the same way as described in Section 6.1.1 , by pairing two experts at a time. To illustrate 

this calculation, let's take the example of the first matrix with the two experts, A and B. 

Depending on the reference considered, A or B, we have the following two confusion matrices: 

 

Figure 6-5: Confusion matrices based on the reference expert 

Recalling the formulas for calculating precision and recall, we observe an inversion between 

precision and recall depending on the reference considered.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ; 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

However, as the F1 score is an unweighted harmonic mean of the two metrics, it remains 

constant. So, for each pair of experts, an F1 score is calculated, providing a balanced harmonic 

measure between precision and recall, irrespective of the reference used. 

Furthermore, comparing experts using the pairwise F1 score involves identifying outliers to 

ensure the reliability of the annotations. For each annotator, the average difference in F1 score 

(calculated as 1 - Fij) between this annotator and all other experts is determined [190]. Then, 

annotators whose mean difference exceeds the overall mean plus one standard deviation are 

identified as outliers. The use of 1 - Fij instead of the F1 score directly is explained by the need 
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to accentuate differences. By inverting the F1 score, we give more weight to weak 

performances, highlighting situations where one annotator stands out significantly in terms of 

disagreement compared to the others.This statistical method offers an objective approach to 

identifying annotators whose performance deviates substantially from the consensus 

established by the expert group. If such cases arise, it would be wiser to exclude such experts 

in the ground truth assessment. 

6.2.3. Smyth’s coefficient 

Smyth's coefficient is a global metric used to assess agreement between a set of annotations. 

To do so, we compute the lower bound on the mean classification error rate relative to the 

‘true’ labels for binary classification and N annotators according to Equation 18 [234]: 

Equation 18: Error lower bound 

�̅� ≥  
1

𝑋 × 𝑁
× ∑ min (𝑁 − 𝐴(𝑖), 𝐴(𝑖))

𝑋

𝑖=0

 

Where: 

- N is the total number of annotators 

- X is the number of samples 

- A(i) is the number of annotators that invalidated the data i. 

The result of this calculation provides an approximation of the lower limit of error in annotations 

with respect to the unknown ground truth. In other words, it gives an idea of the disparity or 

disagreement that can be expected in the annotations compared to the real data. The concept 

of the method is closely linked to the entropy of annotators' decisions [190]. Entropy is a 

measure of uncertainty or randomness, and in this context reflects the degree of disagreement 

between annotators. More specifically, the entropy of annotators' decisions is related to the 

calculated error rate, providing an indicator of the reliability of annotations. If entropy is high, 

this suggests greater uncertainty and, consequently, greater discordance between annotators. 

Thus, Smyth's method offers an approach to assessing and interpreting annotation quality, 

taking into account the variability and consistency of annotators' decisions. 

If annotators disagree on all items, their mean lower bound will be 0.5, while it will be 0 if they 

agree on all items. In line with the work of [234], if the lower bound of e is greater than 10%, 

the validation is considered inaccurate, and the quality of the expert annotation process needs 

to be reassessed. 
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6.2.4. Dendrogramm 

The dendrogram represents a hierarchical clustering scheme that organizes data, in our case 

experts, into a tree-like structure based on their similarities [235]. The hierarchical clustering 

process begins by considering each object as its own group, then progressively combines 

similar groups to form larger ones, thus forming a hierarchy of clusters (see Figure 6-6). The 

dendrogram is a graphical representation of this hierarchy.  

 

Figure 6-6: Illustration of the principle of hierarchical clustering and the 

establishment of the corresponding dendrogram 

The fundamental aim of clustering the experts is to analyze the similarities between them, 

seeking to identify possible clusters linked to levels of expertise. In fact, the training of the 

experts took place in a cascading fashion, with expert A training expert C, who in turn trained 

experts B and D. This hierarchy gave rise to different levels of expertise, with A at senior level, 

C at confirmed level, and B and D at junior level. The central objective is to establish whether 

there is a distinction linked to level of expertise within the clusters formed. In addition, given 

the cascading nature of the training process, it is crucial to ensure that the trainer does not 

transmit his or her inherent bias and subjectivity to the learners, thus avoiding the creation of 

"clones". The aim is to have experts with their own subjectivity, while developing independent 

reasoning based on in-depth expertise and thorough analysis. This process ensures that data 

evaluation is based on critical thinking that goes beyond the obvious. In this way, dendrograms 

provide a graphic illustration of clusters, helping to answer these various questions and ensure 

diversity of perspective within the team of experts. 
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In the present study, hierarchical clustering is performed based on pairwise F1-score and 

using Ward’s minimum variance, which is a hierarchical clustering technique that seeks to 

minimize intra-cluster variance when forming groups. Ward's approach considers each object 

as an individual cluster at the outset, and iteratively merges the most similar clusters to form 

larger groups. The decision to merge two clusters is guided by the criterion of minimizing intra-

cluster variance, i.e., the merge is performed in such a way as to minimize the increase in 

variance within the resulting cluster. This method aims to create homogeneous clusters in 

terms of similarity, while preserving the internal consistency of each group. 

6.3. Behind the Scenes of AI Models: Hardware & Software 

Laying the groundwork for an effective development environment for AI models is a process 

that demands a thoughtful integration of both hardware and software elements to ensure 

optimal performance. 

6.3.1. Programming language 

The choice of programming language is of crucial importance in the development of AI models, 

and in our case, Python was the predominant choice. There are several reasons for this 

preference. Firstly, Python offers a clear and concise syntax, making code easier to read and 

speeding up the development process. Its vast community of developers has contributed to 

the creation of a plethora of libraries specialized in machine learning. 

6.3.2. Environment set-up 

As far as software is concerned, the choice of an integrated development environment (IDE) 

is of crucial importance in the creation, debugging and testing of AI models. With this in mind, 

we opted to use the PyCharm IDE, a Python distribution that facilitates package management 

and offers a user-friendly interface for the development of AI-based applications. 

Furthermore, the configuration of this development environment implies the use of dependency 

management tools such as Anaconda, thus ensuring efficient reproducibility of the 

environment. This choice guarantees consistency between the different stages of 

development, from initial experimentation to production. 

When it comes to developing AI models, the software arsenal encompasses a plethore of 

specialized libraries. Essential tools such as Pandas and NumPy are frequently used for data 

manipulation and pre-processing prior to model training. For graphical visualization, Matplotlib 

is integrated to create clear and informative visual representations. 
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For ML model development, scikit-learn emerges as an essential library, offering a variety of 

pre-implemented models and performance evaluation tools. In parallel, TensorFlow and 

Keras are proving to be wise choices for their power and flexibility, offering advanced features 

for the design, training and deployment of deep learning models. 

6.3.3. Hardware 

As far as hardware is concerned, selection is closely linked to the complexity of the model and 

the volume of data to be processed. Central processing units (CPUs) are commonly favored 

for their ability to run parallel calculations, offering an efficient solution for less processing 

power-intensive tasks. Meanwhile, graphics processing units (GPUs) are preferred for their 

ability to significantly accelerate deep learning operations thanks to their optimized parallel 

architecture. It should be noted that the specific choice of hardware used in our configuration 

is detailed in the Table 14, taking into account parameters such as computing power, GPU 

memory, and other relevant characteristics to ensure optimal performance according to the 

specific requirements of our AI models. 

Table 14: Hardware specification 

CPU model AMD EPYC 7502P 32-Core Processor 

RAM 16.4 GB 

GPU NVIDIA GeForce RTX 3090, 24 GB 

In short, setting up an AI development environment requires a balanced combination of high-

performance hardware, a suitable environment and specialized software, while taking into 

account the specific needs of the model. 
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6.4. Synthesis of Chapter 6 

This chapter explores beyond data analysis and model training, focusing on the critical 

dimensions of performance metrics (see Table 15) and hardware-software configuration. The 

evaluation of AI models dedicated to anomaly detection requires a nuanced exploration of the 

metrics quantifying their success. Model performance metrics are explored, highlighting the 

crucial role of F1 score, MCC and AUC in analyzing anomaly detection models. The confusion 

matrix, although not a metric, is essential for binary classification.  

On the other hand, annotator agreement metrics are crucial for assessing validation variance 

within the validation pool. Global metrics, such as Smyth's coefficient, and pairwise metrics, 

such as Cohen's Kappa coefficient and Fij score, are used to assess the reliability of annotators 

in the validation pool. 

Finally, the section on hardware and software highlights the behind-the-scenes aspects of the 

choice of programming language (Python), integrated development environment (PyCharm), 

and the use of open-access libraries such as Pandas, NumPy, scikit-learn, TensorFlow and 

Keras. The hardware selected includes 32 computing cores and a robust graphics card. 
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Table 15: Model performance and annotator agreement metrics 

 Metrics Interpretation Equation 

M
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l 
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a
n

c
e
 

Confusion 

Matrix 

Visually presents model predictions against ground 

truth labels 
Table 12 

Accuracy Represents the proportion of correct predictions. Equation 9 

Precision Evaluates false alarms Equation 10 

Recall Assesses missed anomalies Equation 11 

F1 score A harmonic mean of precision and recall Equation 12 

MCC 
Offers a balanced classification metric, considering 

both positive and negative instances. 
Equation 13 

ROC curve Visualize classifier performance at different 

thresholds. 

Figure 6-3 

PR curve Figure 6-4 

AUC 
Quantifies the overall discriminatory ability of the 

model across all threshold values. 
 

A
n

n
o

ta
to

r 
a

g
re

e
m

e
n

t 

Cohen’s Kappa Address chance agreement between annotators. Equation 17 

Smyth’s 

coefficient 

Estimates the lower bound of error in annotations, 

considering entropy for reliability. 
Equation 18 

Pairwise F1 

score 

Identifies outliers by assessing the average 

difference between an annotator and others. 
 

Dendrogram 
Utilizes hierarchical clustering based on pairwise F1 

scores to visually represent annotator similarities. 
Figure 6-6 
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Synthesis of Part II 

This section focuses on the challenges and methodological approaches involved in validating 

data in the field of urban wastewater, using turbidity data from the Saint-Malo Agglomeration. 

The instrumentation comprises six intercept sites with turbidity and conductivity sensors. 

Attention is paid to the validation of turbidity measurements, with major efforts to ensure data 

reliability. A data pre-processing phase compensates for frequency anomalies. Statistical 

analysis reveals non-stationarity in time series. An expert methodology dedicated to turbidity 

validation is developed, comprising three manual / semi-automated steps. A quantitative 

assessment is undertaken to understand the impact of human subjectivity on the evaluation of 

artificial intelligence models. A validation pool with four experts is established to compare the 

performance of annotators. Annotator agreement metrics, such as Cohen's Kappa coefficient 

and F1 score, are essential for assessing validation variance. 

The benchmark chapter introduces three models (Matrix Profile, ResNet and Autoencoders) 

for data validation and anomaly detection. Experiments use turbidity data from the Cottage 

site, assessing sensitivity to input data and testing semi-supervised approaches. 

Hyperparameter tuning, result visualization and enhancements such as ensemble models are 

explored. Evaluation includes tests on the full database, multivariate approach taking 

conductivity into account, and generalization to other sites with learning transfer tests. 

In addition, the chapter explores critical dimensions of model performance and hardware-

software configuration. Model performance metrics such as F1 score, Matthew’s correlation 

coefficient (MCC) and area under the curve (AUC) are examined for the analysis of anomaly 

detection models. Finally, hardware-software aspects, including the choice of Python as 

programming language, PyCharm as integrated development environment are presented. 
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Figure 6-7: Overview of section II: Materials and methods 
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Introduction of Part III 

In the upcoming chapters, a set of overarching questions will guide our exploration into the 

evaluation and improvement of anomaly detection model performance in the context of data 

validation.  

- First, how can we evaluate annotator agreement in our database ? 

- Then, what strategies can be employed to evaluate and enhance the performance 

of our benchmark models, namely Matrix Profile, ResNet and Autoencoder, taking 

into account factors such as sensitivity to input data, hyperparameter tuning and 

generalization ? 

- Finally, how can we assess the relationship between annotator agreement and 

model performance ?  And to what extent are the models tested to date on turbidity 

data suitable for other data from wastewater networks, such as conductivity and 

water level? 
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Chapter 7. Annotator Agreement 
 

It is widely acknowledged that annotators of an event of interest rarely meet in perfect 

agreement when expressing their opinions. To ensure effective learning in the case of a 

supervised approach, and to rigorously evaluate the performance of an algorithm in the case 

of a supervised and/or an unsupervised approach, the existence of a baseline, often called a 

"ground truth", is essential. However, in many cases, acquiring a reference test can be costly, 

if not impossible. In our case, there is no gold truth available (i.e. a true value of turbidity being 

measured), and we used a combination of redundancy and assessment by an expert as a 

reference. 

In order to assess the reliability of this reference and to verify the frequently adopted 

assumption that the opinion of one (or a few) annotator(s) approximates the reference truth, 

an experiment has been set up consisting in the constitution of a validation pool involving 

various experts to assess their agreement and variability. This validation pool is based on the 

opinions of four experts and on a sufficiently large database to reconcile the 

representativeness of annual variations and time constraints. Validation of a one-month 

chronicle takes an average of two hours. Taking into account the training time of the experts, 

who nonetheless have a solid background in the understanding of wastewater network 

operation, two trainees were hired for 3 months. The test conditions and hypotheses were 

detailed in Section 4.4.3. It should be noted that in this analysis, we compare the final 

validation result obtained through the combination of the filtering, expertise and aggregation 

phases. Although the filtering stage automatically validates many redundant sequences, which 

make up a large proportion of the valid data (see Figure 4-8), the expert may have to adjust 

the delimitation of certain non-redundant periods according to his expertise. Consequently, it 

was decided to compare the experts on the final result of the process rather than just on the 

expertise phase. This approach avoids the need for additional work to isolate expert 

intervention periods and take into account individual changes to their delimitation. 

The aim of this study is therefore to assess the noise11, if any, to be taken into account when 

evaluating AI models, depending on the target output considered for evaluation. This 

evaluation will be based on various aspects and will be carried out using several metrics, 

including the Pairwise F1 Score, which will determine the presence of atypical experts (see 

Section 7.1), the dendrogram, which will assess the validity of the test conditions as well as 

 

11 Noise being a flaw in Human Judgment as stated by [236] 
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the absence of a training bias (see Section 7.2), Cohen's Kappa, used to determine whether 

agreement between experts results from pure chance, and finally (see Section 7.3), Smyth's 

coefficient, which will assess whether the variability observed is suitable for evaluating a model 

(see Section 7.4). 

7.1. Identifying “Outlier” Experts with Pairwise F1 Score 

The comparison between experts begins with the creation of confusion matrices using a 

pairwise approach, first on a monthly basis and per site, then globally (see Appendix J). In 

some cases, the experts do not reject any time step, meaning that the month is fully validated. 

In these cases, the F1 score is not defined. By convention, it is replaced by 1, as in practice 

this indicates complete agreement between the experts. Figure 7-1 illustrates pairwise 

matrices, where for 4 experts, we have 6 matrices. 

 

Figure 7-1: Global pairwise confusion matrices issued from the validation pool 

The analysis of confusion matrices reveals that despite the use of a common database, the 

rates of invalid data identified by various experts show differences (see Figure 7-2). Indeed, a 

maximum standard deviation of around 3.3% is observed with regard to the average anomaly 

rate per site, indicating an overall consistency in the experts' ability to detect and classify invalid 

data. When we look specifically at our typical site, "Cottage", the standard deviation is even 

smaller, at just over 1%. This positive finding underlines the accuracy and consistency of the 

evaluations established by our validation pool. 
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Figure 7-2: Anomaly rate by site according to each expert on the basis of data 

used by the validation pool 

The second step in the process is to calculate the pairwise F1 score from the pairwise matrices 

(see Figure 7-3).  

 

Figure 7-3: Pairwise F1 scores among the validation pool 

The provided pairwise F1 score table reveals the agreement and discrepancies in anomaly 

detection assessments among the four experts: A, B, C, and D. For instance, the F1 score 

between Expert A and Expert D is the highest (F1 score A/D = 0.8573), suggesting a substantial 

level of agreement, though not perfect. Similarly, the F1 scores between different experts 

display varying degrees of concordance, but which remain above 0.75. The overall average 

F1 score is of 0.81. 

To assess the relevance of the results obtained, it is necessary to compare the F1 score values 

with reference thresholds. An F1 score close to 1 indicates a high agreement between experts' 

assessments. However, there is no minimum threshold at which an F1 score can be 

considered unsatisfactory in absolute terms. The definition of a minimum F1 score threshold 

will depend on the context and the issue. In our case, the latter is set to 0.5 since an F1 score 

below this limit suggests an imbalance between precision and recall. Therefore, we consider 

that the results obtained are rather satisafying.  
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Once the different expert assessments have been compared, it becomes useful to identify any 

"outlier" experts who stand out from the group. For example, Expert C's F1 score is significantly 

lower than that of the other experts (see Figure 7-3). The question is then whether Expert C 

can be qualified as an outlier. In the context of anomaly detection, an outlier among experts is 

defined as an annotator whose annotations deviate significantly from the general trend of the 

group. 

In this context, Section 6.2.2. proposed a methodical approach for evaluating experts using 

the average difference in F1 score between each annotator and all other experts. Annotators 

whose mean difference exceeds the overall mean plus one standard deviation (critical 

threshold) are identified as outliers.  

Table 16 summarizes the average F1 score differences for each expert, providing an overview 

of the discrepancies between the assessments of the different annotators. The critical 

threshold is set at 0.22 to identify possible expert outliers. Analysis of the results shows that, 

although expert C is close to this threshold, no expert exceeds it. In the case of looking for 

outliers in a small sample of data, the Student test offers a more robust approach than the 

simple rule of the average plus a standard deviation. It is a statistical tool that can be used to 

assess whether a value is an outlier in a given sample taking into account its reduced size. 

Considering a confidence interval of 68% in analogy with the rule of mean plus a standard 

deviation and a 95% confidence interval that is wider, we find that the upper/lower limits of the 

confidence interval are of (0.207/ 0.170) and (0.238/ 0.138) respectively. This evaluation allows 

us to conclude that, overall, no expert can be qualified as an outlier in our validation 

process. It should be noted that this assessment was also carried out at month and site level, 

and no outlier is identified in any case. This finding reinforces the consistency of the 

assessments provided by the group of experts.  

Table 16 : Mean F1 score differences for each expert 
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7.2. Clustering Experts using Dendrogram 

The fundamental aim of clustering the experts is to analyze the similarities between them, 

seeking to identify eventual clusters linked to levels of expertise. In addition, given the 

cascading nature of the training process, it is crucial to ensure that the trainer does not transmit 

his or her inherent bias and subjectivity to the learners, thus avoiding the creation of "clones" 

(see Section 4.4.3).  

In this way, dendrograms provide a graphic illustration of clusters, helping to answer these 

various questions and ensure diversity of perspective within the team of experts. 

 

Figure 7-4: Global Dendrogram 

Examination of the dendrogram (see Figure 7-4) reveals the presence of two distinct clusters 

among the assessed experts. Experts A and D cluster closely together, demonstrating a 

marked similarity, despite the fact that they have never been involved in mutual assessments. 

This proximity suggests a convergence of expertise and indicates that these two experts 

represent two distinct levels of expertise within the same group. On the other hand, experts B 

and C form another cluster with a distance that is not zero. This observation rules out any 

possibility that they are duplicates or clones, thus affirming that although experts share certain 

similarities, they retain individuality in their assessments. Cluster analysis within the 

dendrogram thus offers relevant insights into the dynamics of relationships between experts, 

highlighting both convergences and differences within the group of experts. 

By investigating site- and month-specific dendrograms, new architectures emerge, highlighting 

the absence of absolute similarities between sets of experts. Figure 7-5 illustrates one 
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particular dendrogram, where experts B, C, and D performed similar validations, while expert 

A stands out.  

 

Figure 7-5: Dendrogram of the validation of Cottage - March 

As a whole, March data at Cottage show overall validity, as attested by the consensus of the 

experts, with the exception of a sequence lasting about an hour on March 25th , 2022, around 

9:30 a.m. that was validated by expert A, while invalidated by experts B, C, and D. Notably, 

during this sequence (see Figure 7-6), a notable increase in turbidity is followed by a sudden 

drop to zero, characteristics that clearly correspond to an abnormal pattern. This scenario 

highlights the potential human error and underscores the complexity inherent in identifying 

short fault periods within large databases. The task becomes particularly daunting when we 

consider that we had to detect this single anomalous hour among the 744 hours of March. In 

reality, Expert A may have missed this anomaly by mistake, or on the contrary may have 

deliberately decided to validate it because of its short duration, reflecting his subjective 

judgment. It should be noted that there is no precise duration limit beyond which a defect must 

be invalidated, which leaves room for a degree of subjectivity in the assessment. 



Chapter 7. Annotator agreement 

Page 169 of 356 

 

 

Figure 7-6: Anomaly identified by experts B, C & D 

Furthermore, the dendrogram presented in Figure 7-7 reveals a cascading structure, where 

experts B and D share a proximity, followed by a similarity with expert A, then finally with expert 

C.  

 

Figure 7-7: Dendrogram of the validation of Cottage - July 

These observations underline the variable relationships between experts showing an 

unbiased relationship between different annotators. This variability in validation reinforces 

the idea that each expert brings a unique perspective to data evaluation, and that no rigid 

similarity prevails between different sets of experts. 

7.3. Assessing Beyond Chance Agreement with Cohen's Kappa 

The calculation of Cohen's Kappa coefficient shares similar numerical limitations to those of 

the F1 score. In particular, when both experts validate the entire chronicle, the Kappa is 

undefined. However, the Kappa presents an additional challenge, as this same configuration 

occurs even when both experts invalidate the entire chronicle. In this scenario, the F1 score is 
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equal to 1, while the Kappa remains undefined. In these cases of perfect agreement, where 

the two experts are in complete harmony, the Kappa is conventionally equal to 1. Another 

situation arises when one of the experts does not choose a specific class, validating or 

invalidating the whole chronicle, while the other expert provides a more nuanced result, if only 

for one time step. In this case, the Kappa is equal to 0, even if the disagreement concerns only 

a single time step.  Figure 7-8 summarizes the Kappa pairwise results between the different 

experts.  

 

Figure 7-8: Global Pairwise Cohen's Kappa 

If we consider the interpretation scale (see Table 13), we come to the conclusion that the 

results are highly satisfactory, testifying to significant agreement that is not purely by chance. 

More specifically, the comparisons Expert A vs Expert D, Expert B vs Expert C show high 

levels of consistency, demonstrating significant agreement in their respective evaluations, 

which is in line with the results of hierarchical clustering and those of the pairwise F1 score. 

Although some pairs show slightly lower consistency, such as Expert A vs. Expert C, these 

values remain within a range considered substantial.  Overall, Cohen’s Kappa results indicate 

a level of agreement that transcends mere chance agreement, reinforcing the credibility of 

the assessments provided by the team of experts in this study. 

Cohen's Kappa coefficient, while a valuable tool for measuring inter-rater agreement, has 

inherent limitations that need to be considered, mainly the interpretation of its value. Let's take 

the example of the validation of Roosevelt's data in November, where pairwise confusion 

matrices are illustrated in Figure 7-9.  
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Figure 7-9: Pairwise confusion matrices for Roosevelt - November 

When we calculate Cohen's Kappa coefficients in this scenario, values range from 0.81 to 0.25, 

illustrating considerable diversity in levels of agreement between expert peers, ranging from 

fair agreement to substantial agreement (see Figure 7-10).  

 

Figure 7-10: Pairwise Cohen's Kappa for Roosevelt – November 

When we analyze the validation results of Roosevelt - November, a period of significant 

anomaly clearly emerges around November 16 (see Figure 7-11). Although each expert 

identifies this period, discrepancies remain in the precise delimitation of the anomaly. 

Moreover, when comparing the validations carried out by expert A and expert C, both experts 

concur in identifying this particular defect despite some variations in the delimitation. 

Nevertheless, expert C identifies additional anomalies. This convergence in anomaly detection 

calls into question the idea that agreement between A and C could be the result of chance. On 

the contrary, this observation suggests intentional agreement in the recognition of defects, 

reinforcing the validity of their joint assessment. These results underline the importance of a 

nuanced assessment, taking into account not only differences in anomaly delineation but also 

overall consistency in defect identification between the experts.  
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Figure 7-11: Expert validation results of November chronicle - Roosevelt 
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Moreover, one of the main limitations concerns the sensitivity of Kappa to class distribution, 

particularly in the presence of a significant imbalance between the categories evaluated and/or 

when classes have a small number of occurrences. In such situations, a small fluctuation in 

the number of agreements or disagreements can lead to large variations in the coefficient, 

which can make interpretation of the results tricky. Taking the example of Roosevelt dataset 

in May highlights the extreme cases that can arise (see Figure 7-12).  

Figure 7-12: Pairwise confusion matrices for Roosevelt – May 

On one hand, Expert C invalidates significantly more data points than the other experts, 

resulting in negative Cohen's Kappa values, indicating a complete disagreement with the rest 

of the experts. On the other hand, Expert A invalidates only a single data point. In this scenario, 

the small sample size contributes to relatively low Cohen's Kappa values associated with this 

expert. Even a marginal increase in a few data points can cause an immediate shift to a 

moderate agreement (see Figure 7-13). Thus, this scenario with a reduced number of samples 

demonstrates the instability that can occur in Cohen's Kappa calculations, emphasizing the 

need for cautious interpretation in situations where sample sizes are constrained. 

 

Figure 7-13: Pairwise Cohen's Kappa for Roosevelt – May 
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In summary, it is essential to consider the limitations of Cohen’s Kappa coefficient, particularly 

in contexts where class imbalance is pronounced. In our particular study, and for site- or 

month-specific analyses, class imbalance may be a concern, and this impacts the 

interpretation of Cohen's Kappa coefficient. However, despite these considerations, we 

maintain that the overall result remains accurate, as the presence of a sufficient number of 

faults, albeit less frequent than valid data, allows us to ensure a robust and meaningful 

assessment. 

7.4. Smyth's Coefficient Analysis for Evaluating global annotator agreement 

Unlike metrics that focus on pairwise comparisons, the Smyth coefficient provides an overall 

assessment of the agreement between different experts. The lower error bound is essential 

derived from a parameter A(i), representing the number of experts who marked a timestamp i 

as abnormal. Firstly, we study the overall evolution of this parameter by examining the ratio of 

abnormal data identified by at least 1, 2, 3 experts, and finally those identified unanimously 

(see Figure 7-14). We observe a quasi-linear trend that results in a gradual reduction in the 

ratio of invalid data as agreement between experts increases. More precisely, between level 1 

(an expert identifying an anomaly) and level 2 (two experts agreeing on an anomaly), we note 

a loss of about 23% of anomalies. This means that the ratio of anomalies that were not 

consolidated by another expert opinion remains limited. This observation contrasts with the 

literature, where an exponential decrease in the agreement rate is often observed between the 

different levels, and where the maximum agreement rate is generally limited to a few percents 

[190].  

 

Figure 7-14: Ratio of timesteps having a minimum level of annotator agreement 
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Quantitatively, the results reveal that among the anomalies detected, an absolute agreement 

is reached for 50% of them, while for 23% + 11%, a consensus can be established (see Figure 

7-15). This category includes cases where a single expert marks the timestamp as abnormal, 

as well as cases where three experts share this assessment, suggesting that the opinion of 

the one who deviates from the group may be considered non-significant. However, in 15% of 

cases, two experts consider an anomaly, while the other two validate it. Thus, our observation 

suggests that the agreement between the experts in our study is relatively high, demonstrating 

a robustness in the detection of anomalies that goes beyond the trends observed in other 

contexts.  

 

Figure 7-15: Ratio of invalid timestamps following the level of agreement 

In order to ensure that these results are acceptable for experimental use, an estimate of the 

Smyth lower error limit, that is, the average error rate among annotators, was calculated and 

turned out to be 3.5%. This value is well within the recommended limit of 10% [234] and is of 

the same order of magnitude as those observed in the specialized literature [190]. This 

consistency with the recommended standards and trends observed in other studies reinforces 

the validity of the results obtained in our inter-expert assessment. The relatively low error 

rate indicates an appreciable reliability and consistency among the annotators, thus 

strengthening the credibility of the evaluations obtained as part of our experiment. 
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Table 17: Smyth's lower error bound for site and month- specific scenarios 

 Cottage Goutte Découverte Roosevelt Average 

July 0.018 0.039 0.045 0.001 0.026 

September 0.039 0.024 0.006 0.067 0.034 

November 0.001 0.002 0.074 0.013 0.023 

January 0.023 0.022 0.084 0.019 0.037 

March 0.001 0.018 0.162 0.057 0.059 

May 0.018 0.051 0.001 0.054 0.031 

Average 0.017 0.026 0.062 0.035 0.035 

 

However, the analysis of the Smyth coefficient specific to the different site and month scenarios 

reveals a “worrying” situation for the case of “Découverte” in March, where the coefficient 

exceeds the acceptable threshold (see Table 17). A thorough investigation of the experts’ 

validation results reveals that the main differences between the experts are related to the 

precise delineation of the defects (see Figure 7-16) . Overall, three fault periods stand out 

around March 14, 21 and 26. However, there are differences among experts regarding the 

delimitation of these periods. For example, Expert B groups the second and third default 

periods. On the other hand, other experts delimit periods of slightly larger anomalies, framing 

the abnormal sequence, as does expert C, while others limit themselves to snippets such as 

expert D. These discrepancies suggest that, although experts generally agree on the presence 

of anomalies, significant differences remain in the exact delimitation of these defects. This 

variation in anomaly identification can have significant implications for the overall performance 

of an anomaly detection model. These observations also highlight the complexity inherent in 

evaluating anomaly detection models, where subtle nuances can have a significant impact on 

performance evaluation. 
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Figure 7-16: Expert validation results of March chronicle – Découverte 
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7.5. Synthesis of Chapter 7 

This chapter stresses the challenges of acquiring a reference test, making the experiment with 

a validation pool necessary for  assessing the reference truth in the evaluation process. The 

main goal is to evaluate the bias and variance introduced by manual validation in AI models' 

evaluation.  

Pairwise F1 scores are calculated, revealing agreement and discrepancies among experts, 

with an overall average F1 score of 0.81. The results are considered satisfying, with no expert 

identified as deviating significantly from the group's consensus. The clustering of experts using 

dendrograms allows to analyze similarities and identify possible clusters between experts. The 

global dendrogram illustrates two distinct clusters among assessed experts, revealing mixity 

in expertise, with no “heritage” effect. Overall, the observations underscore the variable 

relationships between experts, emphasizing the unbiased nature of these relationships and 

the unique perspectives each expert brings to data evaluation. The global pairwise Cohen's 

Kappa results indicate highly satisfactory agreement, with Expert A vs. Expert D and Expert B 

vs. Expert C showing substantial consistency. These similarities are the same as exhibited by 

the clustering presented hereabove. Slightly lower consistency is observed in some pairs, but 

still fall within a considered substantial range. Cohen’s Kappa results affirm a level of 

agreement beyond chance, reinforcing the credibility of expert assessments. Finaly, the Smyth 

coefficient is employed to evaluate global annotator agreement, providing an overall 

assessment of agreement between different experts. The Smyth lower error limit is calculated 

at 3.5%, well within recommended limits. These low error rates reinforce the reliability and 

consistency of annotator evaluations, validating the results obtained in the experiment. 

In conclusion, all the analyses converge towards a robust and credible assessment of manual 

validation process (filtering using redundancy + expertise + aggregation). Despite the 

challenges inherent in the diversity of interpretations and nuances, the results highlight 

considerable consistency and reliability in the assessments. 
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Figure 7-17: Overview of Chapter 7 - Evaluation of annotator agreement among 

the validation pool 
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Chapter 8. Matrix Profile Evaluation 
 

Matrix Profile is trained using turbidity data collected at Cottage between February 2021 and 

September 2021. Performance evaluation of Matrix Profile differs from that of traditional 

supervised models. Rather than having separate sets of training and test data, MP generally 

exploits the full set of data available for learning. The aim is to identify underlying structures in 

the time series that may indicate abnormal events. As a result, the model is generally evaluated 

over the entire available time range. The absence of this distinction in the context of Matrix 

Profile is supported by the exploratory nature of the model: to discover unusual patterns or 

behaviors rather than to predict specific outcomes. 

The following sections, such as sensitivity to input data ( Section 8.1) with data preprocessing 

and input data selection, as well as hyperparameter optimization (Section 8.2), are key 

elements of the methodology. The learning and evaluation process is centered on the use of 

sliding sequences (sequence size being one of the model's hyperparameters), where a given 

timestamp can receive different labels. In order to interpret these results, postprocessing is 

performed, enabling all time steps constituting an invalid sequence to be instantly flagged as 

such. This eliminates the need to assign labels to sequences as a whole and directly exploit 

the results of manual validation (filtering + expertise + aggregation), although further testing is 

envisaged in Section 8.3.3. Other potential improvements to the results, discussed in Section 

8.3, include the use of ensemble models and pre-validation steps. The chapter goes on to 

explore broader aspects such as generalization to other sites (Section 8.4) and multivariate 

anomaly detection (Section 8.5). 

8.1. Sensitivity to input data 

The following tests delve into the evaluation of sensitivity to input data, focusing on various 

preprocessing steps essential for initiating Matrix Profile for anomaly detection. The 

experiments primarily revolve around imputation techniques for missing data, encompassing 

considerations such as sub-sampling and data smoothing. Moreover, we explore the sensitivity 

of Matrix Profile to different input data sources, focusing on raw turbidity data and 

reconstructed turbidity such as described in Section 4.4.1. The purpose is to define the type 

of data to be used as input, and the processing steps required before using the MP model. 

8.1.1. Preprocessing 

The first tests concern the pre-processing approaches to be implemented before using the 

model. Data scaling has not been implemented since it is implicitly established when using 
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MP. On the other hand, data segmentation with a constant time window is mandatory. This 

point will be handled during the training of the model since the window size is a hyperparameter 

of the model. Thus, the tests mainly concern the imputation techniques for missing data 

and the possibility of sub-sampling and the smoothing of the data. These experiments are 

conducted using a window-length of 576 (48 hours) and an anomaly ratio of 10%.  

8.1.1.1. Missing values imputation 

Although we have previously admitted that the adequate method for replacing missing data is 

to fill it with zeros so as to preserve its abnormality, it is important to test this hypothesis by 

taking advantage of Matrix Profile's distinctive advantage in this context. Unlike the other two 

evaluated models, MP demonstrates an ability to run even in the presence of data gaps. So, 

as part of our approach, we initiated tests to determine the best approach for imputing missing 

data. Table 18 synthesizes the results using different imputation techniques. 

Table 18: Missing values imputation techniques results 
 

Precision Recall F1 score MCC 

No filling 0.360 0.327 0.343 0.254 

Filling with 0 0.689 0.633 0.660 0.615 

Interpolation 0.661 0.626 0.643 0.594 

 

Looking at the table of results, it becomes clear that not replacing missing data generates the 

poorest performance. Despite Matrix Profile's ability to operate under such conditions, in 

practice the model ignores all sequences with missing data. With a window size equal to 48 

hours, one missing value is enough to neglect 96 hours of measurement (48 hours before and 

after the missing value included); this corresponds to 1152 subsequences. This statement 

explains the poor score obtained in the case where no imputation is set up.  

As for imputation with zeros and interpolation of missing data, the scores are equivalent with 

a slight advantage in the case of replacing missing data with zeros. Figure 8-1 illustrates a 

case where the latter approach is advantageous for MP. In this example, the sensor 

experiences several successive disconnections during which it does not transmit any 

measurement. In the meantime, the signal automatically recovers and sends measurement. In 

this configuration, the domain expert considers that there is no way to evaluate the reliability 

of these measured data and invalidates the whole period that includes these repetitive 

malfunctions. In the case of missing data interpolation, the algorithm does not see them 

anymore and has to deal with a chronicle that is rather consistent. On the other hand, replacing 

these data with zeros, injects MP with a chronicle with successive and abnormal falls to zero 
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for a turbidity pattern. This configuration allows the algorithm to select the period surrounding 

this pattern as abnormal. It should be noted, however, that the period following the peak 

appears consistent to the model and does not identify it as an anomaly, which illustrates a first 

case of false negatives.  

 

Figure 8-1: Results of different missing values imputation techniques.  

Bottom: (in black), the raw turbidity measurement, (in red) the interpolated 

turbidity. Top: the Boolean time series representing the data validation result 

according to the domain expert (in green) and the matrix profile algorithm using 

interpolation (in blue) and imputation with zeros (in yellow). 

Hence, if missing data is interpolated, this can lead to a false negative when evaluating the 

model. In other words, the model may fail to perceive any apparent problem in the sequence, 

as the interpolation masks the gaps, creating a biased and potentially underestimated 

assessment of model performance. We conclude that missing data imputation with zeros is 

the most convenient approach to fill in missing values in turbidity time series, as it reproduces 

the assessment performed by experts.  

Meanwhile, the detection of missing data can be efficiently performed using simple Boolean 

tests. With this in mind, a pre-validation step will be incorporated to identify and flag missing 

values in data sequences. 

8.1.1.2. Downsampling  

The acquisition strategy currently implemented by SMA consists of taking a measurement 

every 20 seconds and calculating an average value every 5 minutes. It is this last measurement 

that is recorded and exploited in this study. In a degraded operational scenario, there is 

consideration for initiating measurements only every X minute, maintaining the same 

acquisition strategy of averaging over the preceding 5 minutes. In practical terms, only 
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measurements aligning with the defined frequency are retained, and the remainder are 

discarded. The label assigned by the expert is retained based on the preserved timestamp.  

Table 19 synthesizes the results. Downsampling relatively degrades the performance of the 

model at 15 minutes and significantly deteriorates it at 30 minutes frequency.  

Table 19: Downsampling results 

Downsampling frequency X Precision Recall F1 score MCC 

Status quo 0.689 0.633 0.660 0.615 

15 min 0.643 0.594 0.618 0.563 

30 min 0.449 0.413 0.430 0.354 

Figure 8-2 shows the impact of downsampling at 30 minutes on anomaly detection. The same 

result is also observed using a downsampling frequency of 15 minutes. Indeed, the algorithm 

without downsampling (status quo) identifies the whole period from the 9th of June at 8:20 am 

to the 11th of June at 8:20 am (which corresponds to a 48-hour subsequence) as discord. 

Whereas the algorithm with an under sampled time series as input does not notice the anomaly 

at all. The downsampling relatively smoothens the measurement to the point where it is no 

longer aberrant and can be assimilated to a normal pattern of rainy weather.  

 

Figure 8-2: The results of downsampling on anomaly detection.  

Bottom: (in gray) the raw turbidity and (in red) the downsampled turbidity using 

a 30-minute frequency . Top: the Boolean time series representing the data 

validation result according to the domain expert (in green) and the matrix 

profile algorithm using raw data (in yellow) and downsampled data (in blue). 

These tests provide a general trend, but the results lack complete accuracy as the output target 

was not specifically defined for this database; instead, it was simply downsampled in alignment 

with the input time series. Nevertheless, it can be assumed that, for detecting rapid 
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disturbances in turbidity data, the 5-minute acquisition frequency appears to be the most 

relevant, and this is indeed recommended by the [37] guide.  

8.1.1.3. Data smoothing 

As already explained in Section 4.4.1, the strategy of manual data validation is mainly based 

on the calculation of the redundancy criterion using sliding centered average values on 13-

time steps (1/2 hour before and after each measure). This approach allows to get rid of useless 

noise, intrinsic to the measurement. Thus, it is interesting to assess the same approach using 

MP. In this work, we evaluated 3 different smoothing window lengths. The results described in 

Table 20 show that smoothing data degrades the results.  

Table 20: Data smoothing results 

Smoothing window Precision Recall F1 score MCC 

Status quo 0.689 0.633 0.660 0.615 

3-time steps 0.516 0.563 0.539 0.476 

13-time steps 0.477 0.439 0.457 0.384 

25-time steps 0.414 0.380 0.396 0.314 

This outcome is closely tied to the nature of anomalies recognized by the domain expert. In 

certain instances, the anomaly is specifically characterized by the presence of a significant 

noise in the measurement. The alert thresholds for the manual validation's filtering phase are 

triggered by the centered moving average of turbidity. However, this does not exempt the 

expert from examining the raw data during the expertise phase. In the MP model, using a 

univariate model and inputting only the smoothed data results in the algorithm losing access 

to the raw data. The smoothing process "absorbs" this noise, hindering the identification of 

defects. Consequently, the peaks can be likened to a rainy event. It is worth noting that in this 

case as well, there is a bias associated with the output target, which has not been adjusted to 

the smoothed input data but has been retained in its original form.  

8.1.1.4. Conclusion 

This section aimed to outline the preprocessing steps essential for initiating MP. Common to 

various anomaly detection algorithms for time series, resampling data to maintain a consistent 

time step and scaling data are crucial. Matrix profile inherently incorporates data 

standardization, eliminating the need for additional preprocessing. To ensure a complete data 

chronicle while preserving dropout phenomena resulting from data gaps, missing values were 

filled with zeros. For accurate anomaly identification, a sufficiently fine acquisition frequency is 

necessary. It is crucial not to smooth noise, as pronounced noise in turbidity measurements 
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within sewerage networks is considered an anomaly, potentially indicating probe malfunction. 

These preprocessing approaches will be applied universally across all our tests.  

8.1.2. Input data 

The objective of this section is to analyze the sensitivity of Matrix Profile to diverse input data. 

This involves two aspects: firstly, assessing the model's performance using unprocessed 

turbidity data from the two turbidimeters, and secondly, evaluating the model's performance 

using the reconstructed turbidity as detailed in Section 4.4.1. To achieve this, we use a 

sequence length of 48 hours and an anomaly rate of 10%. For raw data, the output target is 

directly derived from the expert-established validation result. In contrast, for reconstructed 

turbidity, the output target is a composite of individual labels obtained through combinations 

outlined in Table 6. 

Table 21 presents a comparison of data validation results, considering various input data while 

utilizing consistent hyperparameters.  

Table 21: Performance metrics for different input data using the same 

hyperparameters 

Input data Precision Recall F1 score MCC 

Turbidity 1 0.674 0.399 0.501 0.430 

Turbidity 2 0.645 0.359 0.462 0.383 

Reconstructed T 0.689 0.633 0.660 0.615 

The results reveal important nuances in the performance of the MP model according to the 

different input data sources. Firstly, when examining the performance metrics using raw data 

(Turbidity 1 and Turbidity 2), the model shows poor performance compared to that using the 

reconstructed turbidity. It is noteworthy that the main disparity between the various results lies 

in recall, representing the number of invalid sequences that the model failed to identify. Indeed, 

this problem can be directly attributed to the tuning of the hyperparameters. Analysis of the 

output target for each set of input data reveals that the raw turbidity logs have an anomaly rate 

around 20%, while the reconstructed turbidity logs have a lower anomaly rate of 12% 

approximately. Consequently, it is clear that the anomaly ratio k imposed on the model is more 

restrictive for raw data, resulting in the non-detection of many anomalous sequences, given 

that the number of anomalies to be reported has been conditioned. This problem will be 

assessed in Section 8.2, where we will fine-tune the hyperparameters specific to each input 

dataset. 
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In addition, overall observation reveals a precision around 0.65. In other words, if we use the 

model results as a pre-selection, the expert will have to examine 35% of additional sequences 

in order to spot the 65% actually invalid sequences. Thus, it is crucial to determine the 

comparative effectiveness of this approach versus the filtering tool that relies on turbidity 

redundancy. Ultimately, the precision of the latter is 0.39, indicating that the use of the Matrix 

Profile still represents an advantage in reducing the potential number of false alarms.  

8.2. Hyperparameters tuning 

As part of performance evaluation of the MP model, we have undertaken hyperparameters 

tuning tests. This process aims to identify, using a grid search, the optimum pair window-size 

/ anomaly ratio that maximizes the model's ability to effectively detect anomalies in wastewater 

network turbidity data (provided the reliability of the reference).  

In order to facilitate the understanding of the obtained results from these tests, we have 

adopted a visual approach using a heat map. This graphical representation provides a concise 

visualization of the variations in model performance as a function of the different 

hyperparameter combinations tested. A green cell corresponds to an F1 score higher than 0.5 

while a red cell has an F1 score lower than 0.5. The input data used in Figure 8-3 is the 

reconstructed turbidity at Cottage, however the same strategy was also implemented using 

raw turbidity data
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Figure 8-3: Grid Search Results to identify best hyperparameters for Cottage Dataset.  

A green cell corresponds to an F1 score higher than 0.5 while a red cell has an F1 score lower than 0.5. The framed cell 

correspond to the best hyperparameters pair.
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Therefore, the MP model in this case is rather overly sensitive to the window size than to the 

anomaly rate. Indeed, a variation of the rate of 1% adds hardly one abnormal subsequence for 

a window size equal to 48h and 5 subsequences for a window size equal to half a day. For 

small window sizes, the matrix profile is too noisy with a small range of variability; all 

subsequences are more or less similar. This configuration does not allow to identify peaks nor 

drops corresponding to anomalies and motifs (see Figure 8-4).  

 

Figure 8-4: Matrix profile for turbidity data with a window length of 2 hours and 

an anomaly ratio of 0.5%. Red stars point potential anomalies 

Table 22 summarizes the results and the optimal parameters issued from the different input 

data. 

Table 22: Performance results of MP using different input data 

Dataset 
Best hyperparameters Metrics 

Window size Anomaly rate Precision Recall F1 score MCC 

Turbidity 1 44 hours 15.5% 0.646 0.528 0.581 0.486 

Turbidity 2 28 hours 19% 0.555 0.511 0.532 0.404 

Reconstructed T 48 hours 9.5% 0.729 0.633 0.678 0.637 

As a result, the optimal parameters are different depending on the studied data. The best 

window length for the first turbidimeter is 44 hours while for the other one, the optimal window 

size is of 28 hours. Moreover, the first chronicle has an optimal anomaly rate of 15% whereas 

the second has a higher anomaly ratio of 19% approximately. A thorough check was 

undertaken to determine whether one sensor is more flawed than the other, however, no 

significant disparity was found. This result therefore suggests a potential complexity in 

calibrating a universal model if hyperparameters can vary even on a local scale. However, the 

results of window size calibration using raw data remain broadly consistent with the results of 

grid research applied to reconstructed turbidity, where two optimal window size ranges are 

identified for the model, at around 24 hours and 48 hours (see Figure 8-3). Thus, although the 
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hyperparameters may differ, they nevertheless appear to fall within a predefined range of 

optimal performance. 

Overall, the results obtained using raw turbidity remain lower than those obtained using 

reconstructed turbidity. This problem can be attributed to the filtering phase of manual 

validation, which sometimes invalidates the turbidimeter with the highest turbidity, even though 

its measurements are not necessarily outliers (see Figure 8-5). This introduces a bias into the 

raw data output target, which is avoided when using reconstructed turbidity, where an invalid 

label effectively corresponds to an outlier sequence identified by the domain expert. As a result, 

detected anomalies are more reliable when using reconstructed turbidity. 

In practice, abnormal sequences in the reconstructed turbidity chronicle correspond to periods 

when both turbidimeters fail simultaneously. Thus, one approach to improvement would be to 

merge the validation results of the two raw turbidities, identifying only common anomalies to 

both sensors. This point will be explored in Section 8.3.1. 

 

Figure 8-5: Example of manual invalid sequences and of the bias introduced by 

the filtering phase and the redundancy criterion 

At present, the aim is to analyze and diagnose the results obtained using reconstructed 

turbidity, which has demonstrated better performance. Figure 8-6 compares the results of the 

manual validation and the MP model. 
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Figure 8-6: Comparison of validation results by the domain expert (in Orange) 

and the algorithm (in Green) using Boolean time series. 

It is remarkable that the main mismatch between the model and the manual validation lies in 

the delimitation of defects. This discrepancy is attributable to one of the biases inherent in 

manual validation. Indeed, delimitation problems in the reference can arise from a variety of 

factors. One of the main aspects to consider is the subjective process. Individual interpretations 

and the complex nature of the data can make it difficult to delimit anomalies precisely, 

especially when they manifest themselves gradually, evolve slowly or have ambiguous 

characteristics. To illustrate this, a concrete example is shown in Figure 8-2. The discrepancy 

between the results of the model and those of manual validation highlights a lag in the 

identification of the start and the end of the abnormal sequence. 

Moreover, in some configurations, the fault aggregation phase merges consecutive anomalies 

according to the criteria described in Section 4.4.1.  This post-processing step is not 

implemented when using MP. As a result, some false negatives are linked to periods between 

two merged anomalies, even though they may actually be valid (see Figure 8-7).  

 

Figure 8-7: Example of anomalies fusion while the in-between subsequence is 

valid 
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In addition, the problem of fault delimitation is also linked to the fact that MP imposes a fixed 

sequence size. On the one hand, as soon as a sequence is invalid, all the time steps that 

make it up are considered invalid. However, sometimes the anomaly is truly local and does not 

extend across the entire sequence, thus leading to false positives when comparing the results 

with the output target from manual validation (see Figure 8-8-A). On the other hand, imposing 

a fixed sequence size makes it difficult to detect anomalies of shorter duration. In accordance 

with the principle of similarity join, the anomaly must be large enough when calculating the 

distance to invalidate the sequence as a whole. Consequently, if only a few points are 

erroneous, they will have little impact on the matrix profile and may result in false negatives. 

Figure 8-8-B shows an example with an anomaly that lasted 1 hour and 25 minutes and which 

was not identified by the algorithm. This observation highlights the fact that anomalies in 

sewerage networks vary in duration and amplitude. Consequently, using a fixed window size 

can lead to misclassification in both directions, generating both false positives and false 

negatives. It therefore becomes interesting to adopt a multi-window size approach in order to 

detect anomalies of various durations (see Section 8.3.2). 

 

Figure 8-8: Example of bias introduced by a fixed window size using Matrix 

Profile  
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Moreover, apart from defect delineation, we also observe that some anomalies are omitted by 

the MP model. The first reason, as mentioned above, is linked to the size of the window, which 

can be significantly larger than the defect, making the latter less detectable. Another aspect is 

linked to the imposition of a specific number of defects or rate of anomalies to be identified. As 

a result, the model selects only those anomalies that show the greatest divergence from their 

nearest neighbor. 

Figure 8-9 illustrates that increasing the anomaly rate for a given window size, here 48 hours, 

progressively improves recall. However, it is important to note that increasing the anomaly rate 

can lead to a decrease in precision. Thus, the challenge lies in establishing an optimal balance 

between recall and precision to guarantee effective anomaly detection.  

 

Figure 8-9: Recall of matrix profile according to the defined anomaly rate 

On the other hand, some false negatives are linked to the very definition of the anomaly. For 

example, Figure 8-10 shows that the model fails to identify the period of missing data as 

abnormal. This is because this type of sequence is not considered unique, and as a result, MP 

manages to find similarities in the chronicle, limiting its ability to identify these periods as 

abnormal. Unlike the example shown in Figure 8-8, the period of missing data is shorter here, 

and this type of fault occurs regularly. By contrast, in Figure 8-8, the missing data is spread 

over half a day, so it's rare to observe such a prolonged interruption. This highlights one of the 

limitations of Matrix Profile, which considers anomaly to be a sequence that is unique. 

Consequently, a defect that is repeated identically is no longer identifiable by the model. In 

general, turbidity data is so dynamic that it is difficult to find exactly repeated faults. So, while 

the use of Matrix Profile is not called into question, it is essential to add a pre-validation step 

to exclude all trivial anomalies (this point will be assessed in Section 8.3.3). 
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Figure 8-10: Example of trivial repetitive anomalies non-identified by the MP 

model 

Figure 8-11 highlights an intriguing case of false positives: during the manual validation 

process, we identified only the missing sequence as abnormal, while the MP model identified 

the entire period in blue as abnormal. One might assume that this is a problem of fault 

delineation, but with hindsight, the pattern nevertheless appears abnormal, characterized by 

fluctuating turbidity, a drop to 0, followed by smoother and lower turbidity values. 

 

Figure 8-11: Anomalies delimitation problem between the expert end the 

algorithm validation 

However, considering the two turbidities reveals that this sequence meets the redundancy 

criterion and was not even presented to the expert, suggesting that it is indeed valid despite 

its distinctive pattern. Specifically, upon examining the rainfall records (conductivity is also 

missing during this period), we note the occurrence of a rainfall event during the period of 

missing data (see Figure 8-12). This leads us to presume that the gap corresponds to the peak 

of the event, and consequently, the shift corresponds to the runoff effect typically observed 

after a rainy event, accompanied by a decrease in average turbidity. Thus, we come to realize 

that the Matrix Profile's monovariable approach may lead to misclassifications in the absence 
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of other exogenous data to support the validation process. This aspect will be thoroughly 

explored in Section 8.5, employing a multivariable approach.  

 

Figure 8-12: Rainfall history at Saint Malo - © Infoclimat 

Finally, we note a single period identified as a distinctive false positive by the algorithm around 

September 1st. Figure 8-13 shows the reconstructed turbidity chronicle for this period. We can 

clearly see a particular turbidity pattern with fluctuations. Using domain knowledge, this 

behavior can be viewed as a fault, suggesting that it could be an error on the part of the 

domain expert who failed to identify this period as abnormal. 

 

Figure 8-13: Example of a false positive subsequence.  

Conclusion 

To sum up, we observe that the MP model is sensitive to its hyperparameters. When utilizing 

a window size of 48 hours, the identification of shorter defects becomes challenging. Moreover, 

the delimitation of defects is rather imprecise. Consequently, exploring a multi-window 

approach to detect anomalies of various durations becomes intriguing. With a fixed anomaly 

rate, the algorithm is forced to prioritize the most prominent anomalies, which may not align 

with those identified by the expert. The disparity between MP and manual validation stems 

also from challenges in delimiting flaws and potential errors issued from the manual validation 
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process (filtering + expertise + aggregation). Another scenario arises when the expert validates 

a subsequence relying on additional exogenous data, such as redundancy. It is therefore 

interesting to explore matrix profiles as part of a multivariate approach. 

8.3. How can we improve the results ? 

Once we have adjusted the model's hyperparameters and evaluated its performance, obtaining 

an F1 score of 0.678 using reconstructed turbidity data, a 48-hour window and an anomaly 

rate of 9.5%, we note that the model shows promising results while facing challenges inherent 

to its principles. Consequently, this section aims to explore various avenues for improving 

performance. Firstly, we consider the potential benefits of combining results using raw data 

rather than going through reconstructed turbidity. Secondly, we examine the possibility of using 

an ensemble model to evaluate anomalies of different durations using multiple windows. 

Finally, we explore the integration of a pre-validation step to enhance the robustness of the 

model.  

8.3.1. Combining the results using raw data 

The first strategy discussed for improving results is to merge the results obtained by applying 

Matrix Profile to the raw turbidity data. In practice, abnormal sequences in the reconstructed 

turbidity chronicle correspond to periods when both turbidimeters are faulty simultaneously. 

We have therefore combined the validation results of the two raw turbidities, identifying only 

common anomalies between the two sensors. The output target in this case is that of 

reconstructed turbidity. Since their optimal hyperparameters differ, we tested two distinct 

approaches: 

• The first used the optimal hyperparameters for each data set independently (see Table 22). 

• The second used adjusted hyperparameters: a window size of 48 hours (corresponding to 

the ideal window size with reconstructed turbidity) and a mean anomaly rate of 0.17. 

The results are summarized in Table 23. 
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Table 23: Results of the combination of anomaly detection using raw data and 

selecting only common defects 

 Metrics T1 T2 Combined 

Optimal 

hyperparameters 

Precision 0.646 0.555 0.667 

Recall 0.528 0.511 0.489 

F1 score 0.581 0.532 0.564 

MCC 0.486 0.404 0.520 

Adjusted 

hyperparameters 

Precision 0.599 0.524 0.609 

Recall 0.525 0.435 0.488 

F1 score 0.560 0.475 0.542 

MCC 0.452 0.343 0.488 

 

Overall, the use of optimal hyperparameters leads to better results, in particular higher 

precision, i.e. the generation of fewer false alarms. However, in practice, this configuration is 

difficult to implement, as it requires hyperparameter tuning of each database, whereas in reality 

it involves the same type of sensor, in the same location and with the same configuration. 

Theoretically, there shouldn't be such a remarkable difference. What's more, comparing these 

results with those of reconstructed turbidity, which here has the same output target, we 

nonetheless observe inferior performance. Consequently, it is more interesting to use the 

reconstructed turbidity directly, but this requires the processing of the hardware redundancy 

using the filtering phase, as described in Section 4.4.1. 

8.3.2. Ensemble model 

The aim of this section is to present the outcomes of an ensemble model employing various 

window sizes to evaluate anomalies of diverse durations. We categorize the ensemble models 

into two types: majority voting and minority voting. The primary objective of the former is to 

improve anomaly detection, thus enhancing precision, while the latter focuses on maximizing 

discord identification, ultimately increasing recall. To achieve this, three distinct window sizes 

are employed: 12 hours, 24 hours, and 48 hours. The latter two lengths are identified through 

grid search (see Figure 8-3) as optimal window sizes. The selection of the first window size is 

intended for detecting shorter anomalies. However, a deliberate decision is made to maintain 

a uniform anomaly rate across different window sizes to avoid introducing domain knowledge 

related to the ratio of short vs. long anomalies and to avoid specific tuning for each window 

size. The determination of the common anomaly ratio involves varying it between 5% and 20%, 

using a 0.5% increment, and identifying the optimal ratio based on the F1 score within the 

ensemble model results. The ROC curves in Figure 8-14 validate the choice of the three 
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window sizes showing good AUC. For these various tests and in view of the conclusions drawn 

above, we use the reconstructed turbidity from Cottage (our test site). 

 

Figure 8-14: ROC Curves for the three window sizes used in ensemble model 

8.3.2.1. Majority voting 

The optimal anomaly ratio for majority voting is determined to be 0.16. Upon examining the 

sensitivity graph of the ensemble model to the anomaly rate (see Figure 8-15), we observe 

that the benefits of the majority vote are only apparent at low anomaly rates, where precision 

exceeds 80%. In other cases, the adoption of this approach does not contribute any additional 

value. 
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Figure 8-15: Sensitivity of the ensemble model with majority vote to the 

anomaly ratio 

Table 24 summarizes the results obtained. We find that the final result of the ensemble model 

is superior to that of the three sub-models, but inferior to that of our best model so far with a 

48-hour window and an anomaly rate of 0.095. Indeed, through majority voting with three 

window sizes, a fine analysis of the results reveals that it is typically the 24-hour window that 

acts as the balancing factor for the other two, occurring approximately 75% of the time.  

Table 24: Majority voting Results 

 Precision Recall F1 score  MCC 

Window size = 12 hours 0.465 0.630 0.535 0.464 

Window size = 24 hours 0.464 0.619 0.531 0.458 

Window size = 48 hours 0.557 0.766 0.645 0.595 

Ensemble Model 0.628 0.706 0.664 0.614 

  

8.3.2.2. Minority vote 

Figure 8-16 shows the sensitivity of the model to the anomaly rate. The optimum anomaly 

ratio in this case is 0.095. Table 25 summarizes the results obtained. 

 

Figure 8-16: Sensitivity of the ensemble model with minority voting to the 

anomaly ratio 

The F1 score of the ensemble model falls short of the individual scores achieved by each 

window size independently. Nevertheless, the minority voting model effectively fulfills its role 

with a recall of 0.85, signifying the ability to identify 85% of abnormal days in the dataset. 
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However, this accomplishment comes at the expense of an increased number of false alerts. 

The precision stands at approximately 55%, indicating that for nearly every genuine discord 

identified, a false alert is generated. This model may prove valuable in scenarios involving the 

pre-selection of defects, followed by expert review. Despite the higher rate of false alerts, the 

precision remains noteworthy when compared to the manual validation filtering phase, which 

stands at approximately 39%. This postulate assumes that we prefer to miss 15% of anomalies 

(accept a recall = 85%) to save time in the expertise phase (precision = 55% vs. 39% 

previously). 

Table 25: Minority voting results 

 Precision Recall F1 score  MCC 

Window size = 12 hours 0.539 0.450 0.491 0.427 

Window size = 24 hours 0.591 0.478 0.529 0.472 

Window size = 48 hours 0.729 0.633 0.678 0.637 

Ensemble Model 0.554 0.846 0.670 0.630 

  

In conclusion, the aim of this section was to present the results of an ensemble model with 

different window sizes, so as to be able to identify anomalies of different durations. However, 

the results show that the ensemble model does not outperform the individual model with a 

single 48-hour window and an anomaly rate of 9.5%. So, while each ensemble approach may 

have a particular utility (maximizing precision or recall), overall performance remains inferior 

to that of a single model with an optimal window and a specific anomaly rate. 

8.3.3. Pre-validation 

In this section, we implement a first pre-validation step for the model. The aim is to mitigate 

the model's inherent bias, which discards the repetition of certain common defects. These 

faults can be easily identified using simple rules but may escape the model due to the principle 

of “fault uniqueness”. This step automatically invalidates trivial anomalies such as missing 

data, data outside the range [1,1000], and blocking or saturation. Due to the sample size, these 

faults are not frequent in our case, and therefore, although this additional step is operationally 

necessary, it does not significantly improve the results: we move to an F1 score of 0.679 

instead of 0.678. 

What's more, up to now, we've assigned a label equivalent to that of the sequence for each 

time step that makes it up, with priority given to the invalid label due to overlapping sequences, 

this means that a single invalid sequence is enough to invalidate a time step. It's then 

interesting to transform the results to a daily scale, which is more practical and operational. 
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Thus, we re-sequence, a posteriori, the chronicle into non-overlapping daily sequences and 

invalidate a day if half of its constituent time steps are invalid, likewise for the results of the 

manual validation (reference) and those of the MP model. Figure 8-17 summarizes the results. 

We observe an F1 score of 0.759 and an MCC of 0.715. These results show that this approach 

allows better capacity to identify anomalies in a wider, day-long context.  

 

Figure 8-17: Validation results at the daily sequence level using our best 

monovariable MP model 

8.4. Generalization to other sites 

To extend the applicability of MP model, this section aims to assess the algorithm's sensitivity 

to its hyperparameters across various measurement points. To achieve this, we conducted 

evaluations at three different sites characterized by distinct real anomaly rates (see Table 26).  

Table 26: Inherent anomaly ratio of different database 

 Cottage Goutte Découverte Roosevelt 

Real anomaly ratio 11% 26% 30% 3% 

 

Here, we present heat maps depicting the behavior of each of the three sites based on different 

hyperparameters. Beginning with Goutte (see Figure 8-18), we note a similar pattern to 

Cottage, where there is a greater sensitivity to the window size compared to the anomaly rate. 

However, in this case, we observe a wide window length range around 24 hours. This range 

aligns with what was observed for Cottage, with similar performance metrics. 
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Figure 8-18: Grid search results to identify best hyperparameters for Goutte 

dataset 

Conversely, in the case of Découverte, MP proves ineffective (see Figure 8-19). The 

abundance of anomalies in this case study (namely 30%) heightens the likelihood of 

encountering defects that resemble each other (see Figure 8-20). This, in turn, introduces bias 

to the matrix profile's fundamental principle, which is to identify distinctive sub-sequences that 

differ from the rest. 

Figure 8-19: Grid search results to identify best hyperparameters for Découverte 

dataset. 
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Figure 8-20: Example of two different abnormal sequences of 24-hours in 

Découverte dataset 

The final test was carried out at Roosevelt (see Figure 8-21). It reveals a near-insensitivity to 

the window size, with a slight sensitivity to the anomaly rate. This observation aligns with the 

findings reported by [179], indicating that the matrix profile tends to be indifferent to the window 

size, while the choice of the anomaly rate remains a user-driven decision. Indeed, at Roosevelt, 

the anomaly rate closely resembles those studied by [179], [200] and  [237], leading us to draw 

similar conclusions. 

 

Figure 8-21: Grid search results to identify best hyperparameters for Roosevelt 

dataset.  

Table 27 provides a summary of these findings. In essence, MP proves effective for anomaly 

detection in datasets with a low anomaly prevalence (less than 5%) without the need for 

hyperparameter calibration. This aligns with Keogh's observations and is further validated by 

our experiments, resulting in satisfactory outcomes with F1 scores surpassing 80%. However, 
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in datasets featuring higher anomaly rates (between 5% and 25%), the model's performance 

becomes contingent on the window size. This parameter necessitates calibration based on 

domain knowledge regarding the intrinsic seasonality of the data and / or manual validation 

results. In the context of wastewater data, which typically exhibits 24-hour patterns, a similar 

value was identified at both Cottage and Goutte, with F1 scores ranging between 65% and 

70%. 

Nevertheless, when the anomaly rate exceeds approximately 25%, MP becomes inadequate 

and fails to effectively identify anomalies. This limitation arises from a fundamental conflict with 

the model’s principle, which relies on the uniqueness of defects. One option for reducing the 

global rate of anomalies in the database is to divide the chronicle into sub-chronicles, and to 

use MP on each sub-chronicle independently. However, this requires each sub-chronicle to be 

representative enough to autonomously define the various normal operating modes, by having 

an adequate number of dry weather patterns and varied rainfall events. In our situation, given 

the length of the chronicle (7 months), this approach proves ineffective. 

Table 27: Matrix profile generalization results to other sites 

Dataset 
Best hyperparameters Metrics 

Window size Anomaly rate Precision Recall F1 score 

Cottage 48 hours 9.5% 0.729 0.633 0.678 

Goutte 16 hours 17% 0.818 0.591 0.686 

Découverte 24 hours 30% 0.486 0.567 0.523 

Roosevelt 52 hours 4% 0.787 0.904 0.841 

8.5. Multivariable anomaly detection 

The first multivariate matrix profile tests are assessed using two variables in order to provide 

an interpretation of the results. To do so, we first use the turbidity redundancy by introducing 

the two raw turbidity chronicles as input. Then, we use the reconstructed turbidity combined 

with conductivity. The third test is conducted in a multivariate approach by integrating the three 

measured variables: namely redundant turbidity and conductivity. For this, we use the mstomp 

code developed by the UCR [205]. However, this code was initially introduced for motif 

identification and not for anomaly detection. Hence we adapted this code to identify the 

maximum distance. 
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8.5.1. Bivariate matrix profile 

8.5.1.1. Redundancy  

The multivariate matrix profile yields two distinct profiles, denoted as P1 and P2 (see Section 

5.3.2 – Definition 11). Consequently, the discords are identified, and various metrics are 

computed independently for each of these two profiles. We observe that the optimal 

hyperparameters differ between the two profiles. Table 28 summarizes the results with the 

best window size for each profile and its respective anomaly ratio. In addition, we also 

determined the best anomaly rate for each profile by considering the optimal window size of 

the opposite profile.  

Table 28: Matrix profile results using redundancy – The best results for each 

profile are in bold 

Profile 
Window 

size 

Anomaly 

ratio 
Precision Recall F1 score MCC 

P1 
44 0.11 0.602 0.598 0.600 0.543 

48 0.1 0.700 0.661 0.680 0.636 

P2 
44 0.08 0.807 0.606 0.692 0.664 

48 0.07 0.792 0.538 0.640 0.614 

 

Figure 8-22 presents a comparison of the anomalies' identification outcomes using the two 

profiles with a window size of 48 hours and an anomaly rate of 0.1. Various pairs of anomalies 

and valid data are observed.  

 

Figure 8-22: Comparison of anomaly detection using P1 and P2 (w = 48 hours 

and k = 0.1) 

Indeed, in order to understand the distinction between the two profiles, it is necessary to review 

the calculation principle underlying each of them. Figure 8-23 simplifies the process when two 

variables are involved. The calculation of P1 takes into account the "best" distance between 



Chapter 8. Matrix Profile evaluation 

Page 206 of 356 

 

the two dimensions. In the context of anomaly detection (as we've programmed it), best 

translates into minimum. In other words, we're interested in the least penalizing / least flawed 

between the two variables, which is similar to what we do with manual validation, where we 

exclude the strongest variable and focus on the weakest. 

 

Figure 8-23: Calculation of P1 and P2 for anomaly detection 

 Table 29 allows to analyze the different cases and their interpretations. 

Table 29: Interpretation of P1 and P2 results 

  P1 

  Valid Invalid 

P2 

Valid Both turbidity data are valid 

The sensor with the smallest distance is 

invalid with regard to its own chronicle => 

Although the average distance of the two 

turbidities is consistent with the rest of the 

chronicle, both turbidities remain deficient. 

Invalid 

The turbidity chronicle with 

the smallest distance is valid 

=> One of the two 

turbidimeters is deficient but 

the other one is reliable 

The turbidity chronicle with the smallest 

distance is invalid => Both turbidimeters 

are deficient 

Figure 8-24 illustrates a scenario where P1 identifies an anomaly while P2 validates it. This 

involves the sub-sequence spanning from the 9th to the 12th of June. It is evident that the 

turbidity data from the first sensor T1 exhibits abnormal behavior, moreover data from the 

second sensor T2 is quite noisy, leading to the invalidation of the data by P1. Furthermore, 

domain knowledge confirms the invalidity of this subsequence.  
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Figure 8-24: Data validation using the raw turbidities as input data 

The aim is to determine which of the two profiles is more suitable for anomaly detection. From 

a practical standpoint, an anomaly of interest typically corresponds to a period when both 

turbidimeters exhibit faults, making P1 more relevant in such instances. Combining the 

outcomes of both profiles by selecting only the shared discords leads to a degradation in 

results, with an associated F1 score of 0.60. Figure 8-25 illustrates the results of anomaly 

detection, utilizing P1 for achieving the best F1 score (window size = 48 hours and anomaly 

ratio = 10%). 

 

Figure 8-25: Anomaly detection using raw turbidity from the two sensors (T1 & 

T2) and P1 

In conclusion, the use of the multivariate matrix profile yields two profiles, namely P1 and P2. 

The objective is to select the profile that better captures the dynamics of the variable and 

facilitates optimal anomaly detection. Considering the usage context and the characteristics of 
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the two profiles, P1 aligns more closely with our requirements. P1 consistently prioritizes the 

sensor with the smallest distance, and if this sensor is deemed invalid, it implies the invalidity 

of the other sensor as well. This configuration, where both turbidimeters malfunction, is 

particularly pertinent to our anomaly detection needs. In terms of quantitative results, anomaly 

detection using P1 achieves an F1 score of 0.68. Remarkably, this score matches the 

performance obtained through the monovariable matrix profile approach using the 

reconstructed turbidity. Therefore, the bivariate approach reinforces the importance of 

redundancy, allowing us to bypass the preprocessing step for turbidity reconstruction by 

directly inputting the two raw chronicles into the model, while maintaining the same level of 

performance. 

8.5.1.2. Turbidity and conductivity  

After conducting the analysis above, our 

discussion centers on the results of the bivariate 

matrix profile using reconstructed turbidity and 

conductivity. Indeed, given the reliability of the 

conductivity data, P1 consistently chooses it as 

the data with the smallest distance. In the 

presence of a fixed anomaly rate, discords are 

identified in the conductivity, but these do not align 

with any meaningful physical reality. The likelihood 

that these identified subsequences correspond to 

a turbidity anomaly is essentially random, leading 

to results akin to random guessing (see Figure 

8-26). Consequently, we will focus our analysis on 

P2, assuming that since conductivity is generally 

reliable, its matrix profile is not very variable, and 

consequently an anomaly detected by P2 (average of conductivity and turbidity matrix profiles) 

would be more likely linked to a defect in the turbidity data. On the other hand, an apparent 

anomaly in conductivity would inhibit a synchronous anomaly in turbidity, since both could be 

due to a physical phenomenon, such as rain. 

Table 30 provides a summary of the obtained results. Notably, even with optimized 

hyperparameters, the F1 score and the MCC remain below 50%. We conclude that conductivity 

does not contribute value to the detection of anomalies in turbidity within a bivariate approach. 

 

Figure 8-26: ROC curve for 

bivariate matrix profile P1 

using reconstructed turbidity 

and conductivity 
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Table 30: Matrix Profile Results on turbidity and conductivity 

Profile Window size Anomaly ratio Precision Recall F1 score MCC 

P1 54 0.11 0.459 0.445 0.452 0.376 

8.5.2. Multivariate matrix profile  

The aim of this section is to assess the multivariate MP using the raw data from the three on-

site measurements: namely, the two turbidimeters and the conductometer. Table 31 provides 

a summary of the results obtained with a window size of 24 hours. This choice is based on the 

tuning of P3 (see Section 5.3.2 – Definition 11) , the only profile with an F1 score exceeding 

0.5 among the three calculated (see Figure 8-27). 

Table 31: Results of multivariate matrix profile for a window size of 24 hours 

 Window size Anomaly ratio Precision Recall F1 score MCC 

P1 

24 hours 

0.135 0.304 0.355 0.328 0.224 

P2 0.15 0.426 0.553 0.481 0.401 

P3 0.105 0.679 0.639 0.658 0.611 

 

 

Figure 8-27: F1 score using multivariate matrix profile depending on the 

window size 

Similar to the bivariate approach and following the same tuning strategy, the following 

conclusions emerge: 

- Optimal hyperparameters differ across various profiles. 

- Profile P1 exhibits performance akin to random guessing, as indicated by its ROC curve. 

- The performance metrics, including F1 score and MCC, for both P1 and P2 are below 0.5. 
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When contrasting these findings with the bivariate validation using both turbidimeters, a 

degradation in results is evident. We infer that the inclusion of conductivity data disrupts the 

model and does not contribute any added value. 

8.5.3. How can we improve the results ? 

8.5.3.1. Adjusted multivariate strategy 

The purpose of this section is to draw an analogy between the manual validation process 

carried out by an expert and the validation process established by the MP model. Given that 

defects of the turbidity sensors consistently moves towards higher values, an anomaly results 

in a substantial distance. As elucidated in Section 4.4.1, the expert initiates validation by 

comparing the two turbidities. If the anomaly threshold is triggered, the expert invalidates the 

stronger sequence and assesses the one with lower turbidity. This step aligns with the 

construction of the P1 profile using the bivariate matrix profile with redundancy. P1 compares 

the distance of the two subsequences based on their respective chronicles and selects the one 

with the lowest distance. If the weaker turbidimeter does not follow its expected dynamics, 

indicating an anomaly, the expert scrutinizes the pattern of the two turbidimeters to evaluate 

their inter-coherence. Naturally, if both measure approximately the same thing, the average 

distance is lower than if one of them deviates. If both deviate, the distance regarding the rest 

of the dataset remains significant. This step corresponds to the construction of the P2 profile, 

which calculates the distance of each turbidimeter from itself, averages the two distances, and 

compares the result to the rest of the dataset. Finally, if the two turbidimeters lack inter-

coherence, meaning P2 is invalid, the expert examines the conductivity to determine if it 

explains the turbidity pattern. To achieve this, we integrate the three variables by considering 

the profile P3, which exhibits the best score in a multivariate approach. Consequently, an 

anomaly identified by the expert leads to an invalid subsequence according to the three 

profiles: P1 and P2 from a bivariate validation using the two turbidimeters and P3 from a 

multivariate validation. This scenario corresponds to a unanimous vote. The hyperparameter 

tuning is carried out using the same approach as in Section 8.2. Table 32 summarizes the 

results obtained using this multivariate approach, adjusted in accordance with the domain 

expert's methodology. The overall performance of the model is weaker than the baseline 

bivariate model. Although the optimum hyperparameters differ, they still fall within a similar 

range. 
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Table 32: Results of adjusted multivariate matrix profile 

Window size Anomaly ratio Precision Recall F1 score MCC 

44 hours 0.16 0.776 0.474 0.589 0.566 

 

The advantage of this approach is that it can provide good precision. Figure 8-28 shows the 

evolution of the precision according to the anomaly ratio for a window size of 44 hours. 

Precision can be above 80%, i.e., very few false alarms are generated, and the anomalies 

identified are accurate. However, this is done at the expense of false negatives with an 

extremely low recall.  

 

Figure 8-28: Precision and recall using adjusted multivariate matrix profile 

depending on the anomaly ratio 

The anomaly rate of the final database is 7%, which is lower than the real rate of 12.5%, hence 

the substantial number of false negatives. Figure 8-29 shows the identified anomalies using 

this approach. 
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Figure 8-29: Anomalies such as identified on the three chronicles using the 

adjusted multivariate matrix profile 

This approach could be enhanced by determining the turbidimeter selected during the 

construction of P1 for each subsequence. Consequently, we could pinpoint the turbidimeter 

exhibiting the least deviation. Instead of employing P3 to integrate conductivity, we could 

leverage P2, taking into account both conductivity and the identified turbidimeter. The retrieval 

of these elements could be facilitated by identifying the subspaces of the matrix profile (see 

Section 5.3.2 – Definition 12) using the stumpy implementation. Regrettably, due to time 

constraints, this avenue has not been explored. 

8.5.3.2. Global model combining ensemble model and multivariate approach 

This section explores the combination of the multivariate approach (see Section 8.5.2) with 

the ensemble approach (see Section 8.3.2), aiming to harness their respective advantages. 

The first approach enhances anomaly detection by mitigating false positives, while the second, 

utilizing minority voting, minimizes false negatives, leading to improved anomaly identification. 

To achieve this, we integrate the multivariate approach discussed earlier with a multi-window 

analysis employing window sizes identical to those defined in Section 8.3.2, namely 12, 24, 

and 48 hours.  

Given that the window sizes are predetermined, it becomes essential to determine the anomaly 

rate. However, the optimal anomaly rate differs for the two approaches: the first necessitates 

an anomaly rate of 0.16, while the second requires a rate of 0.095. Consequently, we 

conducted an evaluation across varying anomaly rates between these two limits. Figure 8-30 

illustrates the results, indicating that the optimal anomaly rate in this case is approximately 

0.14, with an associated F1 score of 0.68. As the anomaly rate increases, the advantages of 

C 
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the adjusted multivariate model diminish, and precision declines, reaching standard scores 

akin to those calculated previously. 

 

Figure 8-30: Metrics using global model depending on the anomaly ratio 

In terms of quantitative metrics, the number of false positives is at most equal to the sum of 

the false positives identified by each sub-model. As for false negatives, they are maximized by 

considering the minimum count of false negatives across the sub-models. While this 

observation might suggest the possibility of identifying an absolute optimum between the two 

approaches, the number of true positives exhibits a broader range of variability, spanning from 

the minimum among different sub-models to their sum. 

Finding a compromise between the two approaches proves challenging, especially considering 

that the ensemble model relies on a minority vote applied to the multivariable model, which, in 

turn, is based on a unanimous vote. These two approaches are in competition, making it 

difficult to reach an optimum while retaining the advantages of each method. When setting an 

anomaly rate 'x' for the calculation, the results of each adjusted model for a given window size 

inherently have a lower anomaly rate due to the unanimity vote. Applying an ensemble 

approach with a minority vote to these results tends to increase this intrinsic anomaly rate of 
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the model. An example using an anomaly rate of 14% is illustrated in Figure 8-31. Since the 

final result aligns closely with the actual rate, there is no need to further increase 'k'. 

 

Figure 8-31: Illustration of the global model process and its impact on the 

anomaly rate – Note that the real anomaly ratio is of 12.5% 

Therefore, this approach does not yield an improved final result compared to a monovariable 

approach using the reconstructed turbidity or a bivariate approach with both turbidimeters. 

Considering the definition of the ensemble model and the adjusted multivariate model, 

achieving an optimum that effectively combines their advantages proves challenging. 

8.6. Synthesis of Chapter 8 

The aim of this section is the application and evaluation of the Matrix Profile for anomaly 

detection, on turbidity data collected at Cottage. The sensitivity of the model to input data is 

explored through various preprocessing steps, such as missing values imputation, 

downsampling, and data smoothing. The results indicate that imputing missing data with zeros 

performs better than other techniques, and downsampling degrades the model's performance. 

Additionally, data smoothing negatively affects the model's ability to identify anomalies, 

particularly when noise is one of the features of interest. The section highlights the model's 

sensitivity to different input data sources, suggesting better performance with reconstructed 

turbidity compared to raw data. 

Hyperparameter tuning tests are conducted using a grid search to find the best combination of 

window size and anomaly ratio. The results show that optimal hyperparameters vary 

depending on the input dataset. For example, the best window size for T1 is 44 hours, while 

for  the other, it is 28 hours. The anomaly rates also differ. The section delves into the 

challenges of defect delineation and biases in data validation, highlighting discrepancies 
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between the model and manual validation results. Issues such as anomalies merging during 

anomalies aggregation phase and the impact of a fixed window size on anomaly detection are 

discussed. The introduction of an ensemble model, combining different window sizes to detect 

anomalies of varying durations, is explored using minority and majority vote, revealing however 

that this approach does not match the performance of an individual model. Finally, a pre-

validation step is implemented to correct model biases linked to the repetition of common 

faults, leading to a modest improvement in results when evaluated on a daily scale.  

Furthermore, the generalization of the MP model to different measurement sites is explored to 

assess its sensitivity to hyperparameters. Evaluations are conducted at three distinct sites, 

each characterized by varying real anomaly rates. The results indicate that MP is effective for 

datasets with low anomaly prevalence without hyperparameter calibration. However, for 

datasets with higher anomaly rates, calibration becomes crucial, and beyond approximately 

25%, MP becomes inadequate.  

Finally, the focus shifts to multivariable anomaly detection using the Matrix Profile model, 

exploring bivariate and multivariate approaches with different combinations of turbidity and 

conductivity data. The analysis reveals that P1, prioritizing the sensor with the smallest 

distance, aligns more closely with anomaly detection needs, achieving an F1 score of 0.68. 

The bivariate approach with turbidity and conductivity, however, yields suboptimal results, 

indicating that the inclusion of conductivity disrupts the model. The multivariate matrix profile, 

integrating raw data from three variables, exhibits lower results. An adjusted multivariate 

strategy aligning with domain expert methodology is proposed, but the overall performance is 

weaker than the baseline bivariate model. A global model combining the multivariate and 

ensemble approaches is explored, aiming to leverage their respective advantages, but 

achieving an optimum proves challenging.  
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Figure 8-32: Overview of Matrix Profile tests and results for anomaly detection using turbidity data 
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Chapter 9. ResNet Evaluation 
 

In this section focusing on the ResNet model, we delve into its performance, considering 

various factors that impact its efficacy. The architectural foundation of ResNet, as detailed in 

Section 5.4.3, remains a fixed reference point throughout our evaluation. The dataset used is 

derived from the turbidity data at Cottage, spanning from February 2021 to January 2022. 

However, the database has undergone augmentation during testing, extending its coverage 

until July 2022. 

Our investigation starts with an exploration of the model's sensitivity to input data (see Section 

9.1). Within this domain, preprocessing techniques, data enhancement strategies, and the 

inherent characteristics of input data are analyzed. Then, in Section 9.2, we inspect the impact 

of hyperparameters on ResNet performance, considering factors such as the input window 

size and the transformation of probabilities into sequence labels. 

To enhance the model's validation capabilities, we consider various approaches (see Section 

9.3), such as pre-validation approaches, alongside with multiclass classification strategy. 

Additionally, we explore the potential benefits of predicting anomaly rates per sequence, 

contributing to an investigation of ResNet's capabilities for another, still related, task. 

Expanding our evaluation scope, we evaluate the generalization of the best ResNet identified 

from the previous tests across different sites. Direct evaluations, cross-site training 

methodologies, and site-specific tuning, with a particular focus on the Roosevelt site, offer 

insights into the model's adaptability to diverse environmental contexts (see Section 9.4). 

Finally, our evaluation extends to multivariable anomaly detection, exploring ResNet's ability 

to identify anomalies using multiple variables (see Section 9.5). 

9.1. Sensitivity to input data 

This section aims to assess the sensitivity of the ResNet model to input data and its pre-

processing. As a supervised model, it takes as input both sequential measurement data and 

its classification. A key question then arises: how long should the measurement sequences be 

to optimize the model's performance? Furthermore, how should we pre-process these 

sequences in addition to the basic steps mentioned in Section 8.1.1, including resampling and 

imputation of missing data? Furthermore, given that the manual validation provides labels on 

a time-step scale, it is essential to understand how to move from this scale to a per-sequence 

label. Sensitivity tests will be carried out in this respect. Hence, the question of the threshold 

is to be considered in this transition to ensure accurate sequence classification. 
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9.1.1. Preprocessing 

Input data pre-processing for the ResNet model is based mainly on standard practices and 

analogies with tests carried out using Matrix Profile. 24-hour sliding sequences are used, in 

line with what was used for MP, and which demonstrated good results reconciling numerical 

performance and operationality. Given the importance of data scaling for deep learning models 

[238], a standardization similar to [133] is applied to the input data.  

The tests focus on window size and stride. Initially, very high scores, with an F1 score in excess 

of 90%, were obtained when evaluating the model without prior tuning of the hyperparameters. 

In fact, the 5-Folds cross-validation learning strategy introduced a risk of overfitting, as similar 

sequences were found in different training and test sets. To overcome this bias, the stride 

parameter was adjusted to avoid overfitting, set at half the window size. This configuration 

reconciles data improvement with avoidance of overfitting. Tests on window size will be 

detailed in Section 9.2.1. 

As for the label assigned to each sequence, it has been decided that a sequence is considered 

invalid as soon as half of its time steps are invalid, whether consecutively or not, in analogy 

with the approach used for Matrix Profile evaluation. However, this parameter will also be the 

subject of sensitivity tests in Section 9.2.2.2. 

9.1.2. Data Enhancement 

When we examine the database of Cottage turbidity over the whole year, we find an anomaly 

rate of 8%. In other words, the number of valid sequences is 11 times greater than the number 

of invalid sequences. Given that training the model involves injecting samples from both 

classes, and that our main objective is to detect anomalies, i.e. to focus on invalid data, the 

imbalance between the classes poses a problem. This is why the use of data enhancement, 

aimed at balancing the two classes, becomes relevant. 

The results of this evaluation are summarized in Table 33. These different methods are 

evaluated independently (a cross in the table means that this strategy was not used for the 

test in question), then simultaneously by varying their parameters (see Section 5.4.4.1). This 

evaluation is based on the use of 2-hour time sequences with a half-window step, using 

reconstructed turbidity.   

Thus, we observe that an excessive oversampling of invalid samples has a negative impact 

on the results. This degradation is explained by the fact that the model may overlearn from 

these extra samples, compromising its ability to correctly assimilate the valid samples. The 

best ratio is at a moderate increase, from 8% initially to 25%, which leads to better 
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performance, notably an F1 score of 0.56. Similarly, the addition of noise should be measured, 

with a scaling factor of 0.05 producing promising results reaching 0.53. However, excessive 

noise addition leads to degraded results. The cost-sensitive approach stands out by improving 

results over the status quo, albeit modestly, with a maximum F1 score of 0.49. On the other 

hand, the combination of different approaches leads to a deterioration in results. Thus, we 

conclude that the model benefits from an increase in the number of invalid samples for better 

learning, but the addition of noise and/or sample duplicates presents limitations, underlining 

the need for a balanced approach to data enhancement. 

Table 33: Results of ResNet model for different enhancement approaches 

 

To remedy the above problem, one potential approach is to take advantage of available data 

from other sites, thus eliminating the need to artificially create data. Table 34 illustrates model 

performance when using reconstructed 24-hour turbidity sequences. Hence, there is no 

improvement in performance over the exclusive use of Cottage data.  

Table 34: Results of ResNet model using different sites as input 
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Although, Figure 9-1 shows that there is a reduction in standard deviation, indicating a 

stabilization of inter-fold results. This stability is directly attributable to the substantial increase 

in data volume, underlining the positive impact of using data from multiple sites for model 

training. 

 

Figure 9-1: Variation of the F1 score between different folds depending on the 

input database 

 To sum up, this paragraph highlights the challenges of class imbalance in the Cottage 

turbidity database, where anomaly represents only 8% of the data. Given the primary 

objective of detecting anomalies, this asymmetry poses a problem when training the 

model, which requires a balance between the two classes. To remedy this, several data 

improvement approaches are explored, such as oversampling, white noise addition, and 

cost-sensitive learning. Oversampling is preferred by increasing the minority class (invalid 

sequences), and results show that a moderate ratio (from 8% to 25%) leads to interesting 

performance, illustrated by an F1 score of 0.56. Another approach is to use data available 

from other sites, thus eliminating the need to artificially create data. The results show that 

this method does not lead to a significant improvement in performance over the exclusive 

use of Cottage data, apart from the stabilization of inter-fold performance. 

9.1.3. Input data 

The objective of this test is to assess the model's responsiveness to various inputs, specifically 

raw data and reconstructed turbidity. For this purpose, we establish the pre-processing 

framework, which includes standardization and a 24-hour window size, with a half-sequence 

stride. The sequence label corresponds to the majority, meaning it is deemed invalid only if 
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more than half of its constituent time points are invalid. Training is carried out utilizing the 

ResNet model described in Section 5.4.3 and using a 5-Fold cross-validation approach. Model 

evaluation, on the other hand, occurs on the complete database, considering non over-lapping 

sequences of 24 hours. The results obtained are summarized in Figure 9-2. 

 

Figure 9-2: Results for different input data using the ResNet model 

It can be seen that there are few notable distinctions between the use of the various inputs. A 

slight positive elevation is noted for Raw T2 considering the F1 score, with a 10% improvement 

over the reconstructed turbidity. However, this variation is minimal when the MCC is 

considered. This observation is directly associated with the disparity in anomaly rates in the 

database: 17% for T2 versus 8% for reconstructed turbidity. 

The highest precision, observed for Reconstructed T (0.9167), suggests that the model has an 

increased likelihood to minimize false positive predictions when applied to reconstructed data. 

This tendency can be attributed to the definition of the consistency threshold by redundancy, 

which automatically invalidates the highest turbidity (see Equation 3). It should be noted that 

the presence of high turbidity does not necessarily imply outlier data, as it could share the 

same structure as lower turbidity, which would be assessed by an expert. This scenario, 

illustrated in Figure 9-3, generates errors in the Raw T2 reference database, resulting in false 

negatives. These false negatives are eliminated when reconstructed turbidity is taken into 

account. Indeed, in this context, the invalidation of a sequence is justified by its structure and/or 

context, which contributes to greater precision in classification. 
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Figure 9-3: Example of False Negative, biased by the filtering criterion 

Across the various inputs, false-positive errors also stem from the threshold that determines 

whether a sequence is considered invalid. Figure 9-4 illustrates an obviously invalid sequence 

with significant saturation. Of this 24-hour temporal sequence (i.e. 288-time steps), the expert 

invalidated only 122-time steps (less than half), thus assigning a valid label to the sequence. 

On the other hand, the model invalidates this sequence with a probability of 98% (indicating a 

strong belief in its invalidity). This is a threshold issue for assigning a label to a sequence. This 

question will be the subject of further sensitivity tests. Nevertheless, these results highlight 

scenarios where the model outperforms the baseline. 

 

Figure 9-4: Example of False Positive sequence with saturation 

In general, recall shows a lower value, indicating a problem in defect identification, with a 

significant proportion of omitted anomalies. This is partly due to the difficulty of identifying trivial 

anomalies associated with null sequences. Indeed, sequences characterized by null data over 

the entire 24-hour time span are very rare, with only one day missing from the entire database 
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(30th June 2021). Consequently, if a null sequence is present in the test data, the network may 

find it difficult to generalize correctly, having not been exposed to such sequences during 

training. On the other hand, if exposed to such sequences during training, the multiplication of 

null values by the neural network weights will result in a null output for each neuron. This can 

lead to a significant loss of information, as the weights associated with such sequences will 

not contribute to updating the network parameters during training. This scenario also applies 

to sequences with a lot of missing data, which are replaced by zeros (see Figure 9-5). 

Detection of such anomalies can benefit from specific pre-validation processes to identify such 

sequences appropriately. 

 

Figure 9-5: Example of False Positive sequence with null data 

Problems related to the classification threshold at the output of the ResNet neural network can 

also be observed. Indeed, the output of the network consists of a probability of belonging to 

each respective class. The class considered predominant is the one whose probability exceeds 

0.5, and it is assigned to the input sequence. However, in certain borderline situations, we may 

end up with probabilities close to 50-50, forcing the model to make a decision based on a tiny 

difference in probability in favor of one class or the other (see Figure 9-6). The model's 

classification threshold will therefore be the subject of subsequent sensitivity tests in order to 

adjust this decision boundary and improve the stability of classifications in such circumstances. 
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Figure 9-6: Example of False Negative sequence 

Consequently, analysis of the results requires careful consideration of the reference database. 

The supervised nature of model learning implies the assimilation of certain biases present in 

the reference, which may lead to the reproduction of these biases in subsequent evaluations. 

Alternatively, the model may contradict the reference according to what it has learned 

elsewhere (from other sequences), thus generating false positives or false negatives likely to 

bias performance evaluation. It therefore becomes essential to conduct sensitivity tests on the 

classification thresholds applied to the reference and the model when analyzing input 

sequences, in order to better understand and mitigate these potential sources of bias in the 

results. 

Various tests have been implemented to neutralize the bias associated with the redundancy 

criterion and the classification threshold applied during manual validation. In order to bypass 

these issues, attention is focused exclusively on sequences that are either 100% valid or 100% 

invalid, derived from the raw data of T1 and T2. Figure 9-7 illustrates the distribution of 

sequences according to their anomaly rate. Thus, in this configuration (Test A in Table 35), 

training is carried out on a set of sequences totaling a maximum of (675 + 96). 



Chapter 9. ResNet evaluation 

Page 225 of 356 

 

 

Figure 9-7: Number of sequences according to their inherent anomaly rate 

In parallel, further tests are undertaken focusing on the sequences involved in the expertise 

process. The first test (Test B in Table 35) consists of including only those sequences where 

the expert has invalidated the submitted sequence, bearing in mind that the other sequence is 

already invalid according to the redundancy criterion. This avoids the bias introduced by the 

filtering phase. The second test (Test C in Table 35) examines cases of discrepancy between 

the labels of T1 and T2, giving priority in these situations to the invalidated turbidity (the 

highest), thus strengthening the anomaly database. The last test (Test D in Table 35), in the 

event of discrepancy , only takes into account sequences validated by the expert, thus avoiding 

false sequences that are invalid simply because they don't meet the redundancy criterion. 

Table 35 summarizes these different tests, specifying the number of valid and invalid 

sequences considered in each scenario. 

Table 35: List of tests applied to input data 

 

Table 36 summarizes the results obtained using the different inputs. The results show a slight 

superiority of Test C. Using an analysis of variance (ANOVA), as described in Appendix K, 

the aim is to assess the significance of the differences observed between the various tests. 

With a p-value significantly above the 0.05 threshold, we conclude that there is no statistically 

significant difference between the means of the tests considered. Nevertheless, it is important 
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to note that overall, our results are superior to those previously obtained with the full data set. 

Therefore, for subsequent steps, we adopt the conditions of test A to evaluate our ResNet 

model. This evaluation is carried out using the raw data from T1 and T2 to ensure a sufficiently 

representative database size. It is crucial to take into account the potential bias introduced by 

this approach, underlining the need for a thorough analysis of the results at each stage of the 

test. 

Table 36: Training results of ResNet using different inputs and a 5-folds cross 

validation 

 

 The objective of this section is to assess the responsiveness of ResNet model to various 

inputs. The first results indicate a few notable distinctions between the various inputs: raw 

and reconstructed turbidity, which are mainly associated with the disparity in anomaly 

rates in the database. The precision is higher for Reconstructed T, suggesting the model's 

increased likelihood to minimize false positive predictions when applied to these data. 

Sensitivity tests focusing on sequences with 100% validity or 100% invalidity are 

conducted to neutralize biases. The overall superiority of the results compared to the full 

dataset is acknowledged. For subsequent steps, the conditions of Test A are adopted to 

evaluate the ResNet model, using raw data from T1 and T2. 

9.2. Hyperparameters tuning 

During these tests, the database was extended to July 2022. With this in mind, tests were 

undertaken to corroborate the conclusions of the input data sensitivity phase. For the 

subsequent tests, we consider the following prerequisites: raw data from T1 and T2 over the 

18-month period, including only 100% valid or invalid sequences, standardized over a 24-hour 

window with a stride equal to half the window. 

By default, it has been decided not to alter the architecture of the ResNet model. Thus, the 

adjustment of hyperparameters will not concern the architecture itself, but rather other 

elements that impact the results. The first aspect taken into consideration concerns the use of 

a 24-hour sequence, hence the question of whether this is the optimum window size remains 

open. Furthermore, the second point of interest is the classification threshold. Although the 
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objective of the output is rather a sequence label, the model generates, for each sequence, a 

probability of belonging to each class. The final class is therefore determined by a probability 

in excess of 0.5. The relevance of this threshold is called into question.  

9.2.1. Sensitivity to the input window size 

The aim of this test is to evaluate the model's response to variable input sequence sizes. The 

results are summarized in Figure 9-8, while the window size refers to number of hours. The 

metrics Train_F1 and Val_F1 respectively represent the average F1 score between the 

different folds on the training and validation data, using the 5-folds cross-validation approach. 

Then, for each window size, the best model among the 5 folds is saved and evaluated on the 

complete data set (and not just on sequences with exclusively valid or invalid labels, used for 

training). The results of this evaluation are referred to as Eval_F1. 

Analyzing the graph of results, we can see that optimum performance is achieved with a 

window size of 36 hours, giving an F1 score of 0.65. However, for window sizes above this 

limit, the standard deviation of results between folds becomes very large, indicating significant 

instability. Looking at the 24-hour sequence size, we observe an F1 score of 0.52 on the 

evaluation data, with interesting stability. This window has the advantage of practical 

interpretation, whereas the decision to validate or invalidate a 36-hour window seems tricky. 

Given the absence of a clear trend or a window size that stands out significantly from the 

others, we are maintaining a window size of 24 hours for subsequent tests. 
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Figure 9-8: Results of sensitivity tests to the input sequence size 
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9.2.2. From probabilities to sequence label  

9.2.2.1. Adapting the classification metric  

The tracking metric used during the training of the ResNet model and that allows to select the 

best model is the F1 score on the validation set. However, in our context, while false positives 

(FPs) can be submitted to a subsequent expert opinion for revalidation, false negatives (FNs) 

risk being lumped in with valid sequences with no possibility of re-evaluation. A preliminary 

approach would therefore be to adjust the weight of FNs in relation to FPs by adjusting the 

beta parameter of the F score (see Equation 12). Table 37 summarizes the results obtained 

for different β values, where the latter is the weight attributed to the recall. 

Table 37: Evaluation results of ResNet model using F score as a loss function 

 Only 100% valid and invalid 

sequences 
All sequences 

β Fβ F1 Fβ F1 

1 - 0.760 - 0.571 

1.5 0.744 0.792 0.557 0.574 

2 0.659 0.747 0.499 0.560 

2.5 0.768 0.812 0.609 0.594 

3 0.688 0.771 0.536 0.555 

Analysis of the results reveals that focusing on the F2.5 score as a tracking metric improves the 

performance of sequences with only valid or invalid 100% tags. However, despite this 

improvement, overall performance remains modest. A comparison of the confusion matrices 

for both models, using respectively the F1 score and the F2.5 score, is presented in Figure 9-9. 

Hence, we observe that there is a reduction in false negatives (FN), but this improvement is 

accompanied by a significant increase in false positives (FP), the latter having more than 

doubled. 
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Figure 9-9: Classification results of all sequences using the model issued 

according to different loss functions 

9.2.2.2. Adjusting the classification threshold 

The best model is determined by taking into account the one that generates the best F1 score 

on the validation dataset, using 5-folds cross-validation. However, we consider it crucial to 

evaluate the model's performance on the complete data set. This is done using the ROC curve 

and/or the PR curve. Given our objective of maximizing the F1 score, we retroactively use the 

PR curve to identify the threshold for achieving the optimal F1 score over the entire training 

database. Thus, by applying a threshold of 0.4283 to the output of the ResNet model (which 

represents the probability of belonging to the class of interest, with a default threshold of 0.5), 

we manage to improve metric performance, as shown in Table 38. 

Table 38: Results obtained with the a posteriori adjusted threshold 

 Precision Recall F1 score 

Training database 0.8725 0.7355 0.7982 

Complete database 0.5867 0.6096 0.5979 
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Once this threshold has been defined, it is interesting to evaluate the model's response by 

replacing the default classification threshold with the adjusted threshold. In this approach, a 

sequence is considered invalid as soon as its probability of belonging to the invalid class 

exceeds the adjusted threshold. To achieve this, a new learning phase is initiated, taking this 

adjusted threshold into account. The results obtained are summarized in Table 39. We observe 

an improvement in the classification of sequences containing exclusively valid or invalid labels 

(the training database), while the impact on the whole database remains limited. 

Table 39: F1 score obtained with the adjusted threshold after re-training 

 Training phase Evaluation phase 

 
Average on training 

sets 

Average on test 

sets 

100% valid and 

invalid sequences 
All subsequences 

F1 score 0.813 0.779 0.839 0.597 

Furthermore, in these tests, the adjusted threshold is provided with a precision of up to four 

decimal places. Thus, we need to assess the sensitivity of the model's response to this 

threshold, and to determine whether such a high level of precision is necessary to improve 

results. Table 40 therefore proposes a sensitivity test to this threshold with a margin of +/- 10% 

and a threshold rounded to two decimal places. 

Table 40: F1 score obtained with approximated adjusted thresholds 

 Training phase Evaluation phase 

 
Average on 

training sets 

Average on test 

sets 

100% valid and 

invalid sequences 

All 

subsequences 

Adjusted threshold 0.813 (± 0.0212) 0.780 (± 0.0512) 0.839 0.597 

Threshold + 10% 0.811 0.805 0.798 0.605 

Threshold – 10% 0.825 0.808 0.738 0.545 

Rounded threshold 0.828 0.825 0.784 0.590 

We thus conclude that adjusting the classification threshold improves the results, particularly 

for sequences containing exclusively valid or invalid labels, without requiring great precision in 

its establishment. However, this approach requires a two-stage learning process: the first 

involves calibrating the model using the F1 score as an objective metric on the validation set. 

Next, this model is evaluated on the full data set, and the PR curve is analyzed to identify the 

score that maximizes the area under the curve, and hence the F1 score. Finally, new learning 

 

12 Refers to the standard deviation between the 5 folds during the training phase 
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is initiated by imposing this threshold as the classification threshold applied to the model 

output, which represents the probability of belonging to a particular class. 

9.2.2.3. Combining both approaches 

Thus, both strategies applied to the classification output show improved results. It is therefore 

legitimate to ask whether their combination could further benefit the model. To explore this 

possibility, we launch a training run using the F2.5 score as a tracking metric. Next, we exploit 

the PR curve on the whole data set, seeking to optimize the F1 score. Finally, we run a new 

training while maintaining the F2.5 score as the tracking metric. The final result on the training 

data is an F1 score of 0.759 and a score of 0.587 on the whole database. These results are 

less encouraging than those obtained with threshold adjustment alone. Thus, we conclude that 

the best approach remains the latter, even if it involves a tedious set-up with its two-phase 

learning. Nevertheless, this approach achieves an F1 score of 0.84, compared with the initial 

0.76. 

9.3. How can we improve the results ? 

After establishing the input database (raw data from T1 and T2 over an 18-month period, 

including only 100% valid or invalid sequences, standardized over a 24-hour window with a 

stride equal to half the window) and determining the best classification strategy (two learning 

phases with an adjustment of the classification threshold based on the analysis of the PR 

curve), it is now pertinent to consider potential enhancements in results through the exploration 

of new approaches. Three specific issues warrant careful consideration: How can we leverage 

the strengths of our model by implementing pre-validation processes? Is binary classification 

truly the most effective approach to address the problem in a supervised context? What should 

be done with intermediate sequences, and how can we capitalize on their presence in the 

database? Hence, the exploration of a multiclass classification approach becomes relevant. 

Furthermore, conventional classification approaches require defining a threshold beyond 

which a sequence is deemed valid or not. What if we were to dispense with this threshold and 

repurpose the ResNet model to tackle a regression problem, where the objective is to directly 

predict the anomaly rate per sequence? All these avenues will be explored in the following 

sections. 

9.3.1. Implementing pre-validation approaches 

In this section, we implement a first stage of pre-validation for the model. The aim is to provide 

a base identical to that submitted to the expert. This step automatically invalidates trivial 

anomalies such as missing data, data outside the range of [1,1000], blocking or saturation. On 

the other hand, it automatically validates sequences that meet the redundancy criterion (see 
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Equation 3). Unlike model validation, which takes place at the sequence level, pre-validation, 

as described above, takes place at the measurement time step level. The two approaches are 

combined a posteriori. Classification using a saved model is quite fast. We are therefore not 

seeking to optimize this calculation time by preselecting sequences in advance. Our main 

objective is to consolidate the final result. 

Once the ResNet classification has been carried out, we transform the labels at a time step of 

5 minutes, assigning the same label (that of the sequence) to all the points that make it up. 

Then, according to an order of priority, a final label is assigned to each measurement (see 

Figure 9-10). 

 

Figure 9-10: Synopsis of the classification task enhanced with pre-validation 

Figure 9-11 presents all the results. We already note that the expert invalidates several points 

that meet the redundancy criterion (FN of the pre-validation matrix). In practice, this results 

from the anomalies aggregation phase (see Section 4.4.1). Thus, even if data is valid 

according to the redundancy criterion, it can be invalidated depending on the context. 

Therefore, the presence of false negatives (FN) in the final result is to be anticipated. Hence, 

it is interesting to evaluate the outcome by implementing the same aggregation process (Row 

5 of the table in Figure 9-11). 

The ultimate outcome demonstrates mainly a decrease in the occurrence of false positives. 

These instances that were initially flagged as false positives by the ResNet model now align 

with the redundancy criterion, providing an opportunity to leverage the hardware redundancy 

that remains transparent for the ResNet model using a monovariate approach. Consequently, 

the final outcome enhances the ResNet model's performance, from an initial F1 score of 56% 

at the time step level to an F1 score of 64%. It should be noted that in this case, the subsequent 

merging of defects does not improve the results, and even degrades them by adding some 

false positives.  

Nevertheless, from a practical standpoint, the focus may shift towards a more operational 

validation approach, allowing for the determination of whether a day (a 24-hour sequence) is 

valid or not without delving into individual time steps. Figure 9-12 illustrates the results 

obtained based on the threshold applied to the global model outputs and the expert's results. 

It is observed that optimal performance is achieved with a threshold of 4.5 hours. In other 
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words, if the criterion is to invalidate a day with at least 4.5 hours of anomalies (either 

consecutive or not), an F1 score of 0.693 is attained. As indicated in Section 4.4.2, the average 

duration of observed anomalies is approximately 4 hours. Thus, our threshold aligns closely 

with this average. While this approach may result in overlooking some shorter anomalies, it 

ensures the identification of anomalies exceeding this threshold, which could potentially have 

a more significant impact on the quality of the database. On the other hand, a threshold equal 

to 9 hours provides a better balance between precision and recall without degrading the final 

MCC, which remains around 0.589, and a slightly lower F1 score of 0.674. 

 

Figure 9-11: Enhanced model results combining the ResNet and a pre-

validation phase 

To sum up, the implementation of a preliminary pre-validation indicates a notable reduction in 

false positives, improving the ResNet model's performance to an F1 score of 64% and an MCC 

of 56%. The focus on a daily validation approach achieves optimal performance with a 

threshold of 4.5 hours, leading to an F1 score of 0.69%. This aligns with the average duration 

of observed anomalies. 
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Figure 9-12: Performance metrics according to the classification threshold applied to the expert 5-minutes scale validation and 

the results of the enhanced ResNet model 
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9.3.2. Multiclass classification 

Based on tests carried out on the binary classification model using ResNet, it was found that 

the most effective method is to train with either fully valid or fully invalid sequences. Then, 

when the model is deployed (after the two training phases), a sequence is presented to the 

model. Depending on its probability of belonging to each of the two classes and the adjusted 

classification threshold, the sequence is assigned a label. However, this approach has marked 

disadvantages for sequences whose probability is around the threshold limit. Thus, it is 

relevant to evaluate performance in the context of a multiclass classification, including 

sequences that are clearly valid, clearly invalid, as well as intermediate sequences whose 

classification is uncertain and may require further expertise. We aim to have relatively high 

confidence in the first two classes. 

Figure 9-13 shows the results of classification using three classes, where: 

• Label 0: Valid class: sequences with an anomaly rate between 0% and 20%  

• Label 1: Intermediate class: sequences with an anomaly rate between 20% and 80%  

• Label 2: Invalid class: sequences with an anomaly rate between 80% and 100% 

 

Figure 9-13: Multiclass classification using ResNet and a threshold of 20% 

We observe that the F1 macro score in this scenario is 0.583. The score for class 1 is the 

lowest, as the model runs into difficulties with the intermediate sequences, which end up 

scattered across the three classes. What's more, the same problem is observed for the 

sequences of the invalid class. The model classifies a limited amount of data in this category 

(a total of 88), whereas the initial database contained 165 sequences in this class. Only the 

valid class presents consistent results, with a recall of 0.99%, where incorrectly classified 

sequences are grouped in the intermediate category. Consequently, the introduction of the 

third intermediate class seems to disrupt the learning process. So, instead of seeking to 

optimize the macro F1 score, which is the reference metric in multiclass classification, we will 
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guide the model by imposing the optimization of an adjusted F1 score equal to the average of 

the F1 scores of classes 0 and 2. The aim is to reduce the impact of the intermediate class by 

giving it less weight during training. The results are highlighted in Figure 9-14, showing a slight 

improvement of the performance metrics. 

 

Figure 9-14: Multiclass classification using an adjusted score 

Indeed, this approach presents a problem, as even when conditioning the F1 score, the 

number of intermediate sequences is significant, exceeding that of the class of interest 

(invalid). Consequently, we re-evaluated the model's performance by adjusting the threshold 

to 40%. The three classes are redefined as follows: 

• Label 0: Valid class: sequences with an anomaly rate between 0% and 40%. 

• Label 1: Intermediate class: sequences with an anomaly rate between 40% and 60%. 

• Label 2: Invalid class: sequences with an anomaly rate between 60% and 100%. 

Figure 9-15 summarizes the results obtained. Despite the increase in adjusted F1 score and 

accuracy, mainly attributed to an improvement in recall, it can be seen that the model does not 

classify any sequences in the intermediate class. Instead, it simply divides its sequences into 

valid and invalid classes. What's more, the model has difficulty in correctly identifying invalid 

sequences, with a recall of 0.615 (meaning it's missing 38.5%), in addition to the sequences it 

mistakenly invalidates. 

In the end, it appears that this approach does not significantly improve the results, introducing 

instead a bias linked to the definition of the intermediate class. Furthermore, it does not meet 

our initial hypothesis / will of having two clearly defined classes, i.e. valid and invalid. In this 

context, the predictions merge the classes, making it difficult to select sequences with an 

intermediate anomaly rate.  
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Figure 9-15: Multiclass classification using ResNet and a threshold of 40% 

9.3.3. Predicting the anomaly rate per sequence 

A third approach to investigating the use of the ResNet model involves modifying it to predict 

the anomaly rate of each input sequence, rather than providing a probability of being 

anomalous. The aim of this approach is to free ourselves from classification thresholds and 

the bias introduced by class definition when training the model. This modification is based on 

the model structure described in Section 5.4.4.4. 

Examination of the anomaly rates generated by the model reveals an inability to categorically 

predict sequences as either fully valid or invalid (see Figure 9-16). This observation suggests 

an ambiguity in the model's response. 

 

Figure 9-16: Histogram of anomaly rates predicted by the model versus true 

anomaly rates 
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Figure 9-17 shows the comparison between the anomaly rate predicted by the model and the 

actual anomaly rate of the sequences. Significant variability in results is observed, particularly 

for sequences with high anomaly rates. A tendency to overestimate the anomaly rate is 

identified for sequences with low anomaly rates, systematically for sequences with anomaly 

rate reaching up to 10% and on average for those around 25%. On the other hand, a quasi-

systematic underestimation is observed between 50% and 75%, with an average well below 

reality. This analysis highlights the complexity of accurately predicting anomaly rates for 

different sequence classes.  

 

Figure 9-17: Comparison of true anomaly rate per sequence and the predicted 

anomaly rate 

On the other hand, the prediction of an anomaly rate raises an additional problem: how can 

these anomalies be precisely located within the sequence itself? If a sequence has an anomaly 

rate of 25%, where exactly are these 25% invalid time points located? To resolve this question, 

we are exploring the Class Activation Maps (CAM) of the ResNet model. The principle behind 

this method is detailed in Appendix H for a more in-depth understanding. Figure 9-18 shows 

the CAM output in red, its average per sequence in green, and the anomaly rate identified by 

the expert in blue. 
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Figure 9-18: CAM results compared to true anomaly rate. the CAM output in red, 

its average per sequence in green, and the anomaly rate identified by the expert 

in blue 

Despite the seeming correlation between these different representations, evaluation of the 

correlation between CAM at the point scale and manual validation using the biserial point 

reveals a very low correlation coefficient, below 0.5. Even at the sequential scale, although the 

correlation coefficient reaches 0.7, it remains difficult to establish a bijective relationship 

between the CAM value and the actual anomaly rate of the sequence. This finding underlines 

the complexity of the task of assigning specific anomalies to precise locations in a sequence, 

despite the use of CAM as a visualization tool. 

A final exploratory approach using the regression model is to consider it as a preliminary to the 

classification problem, rather than directly exploiting the anomaly rate as the final result. Figure 

9-19 shows the F1 classification score for different thresholds applied to both the model output 

and the manual validation result. Overall, the best results are close to the diagonal up to an 

anomaly rate of 0.7, as identified by the model, showing a good correlation between the 

anomaly rate identified by the model and that resulting from manual validation (redundancy + 

expertise + aggregation).  Nevertheless, the best results are concentrated on low anomaly 

rates. In absolute terms, the best F1 score obtained is around 77% for an anomaly rate of 

about 10%. In other words, if we invalidate the days as soon as around 2.5 hours are identified 

as invalid, we obtain an F1 score of 0.77. This result surpasses the best score obtained with a 

binary classification approach, which was 0.69.  

This finding suggests that using the regression model as a preset for classification can offer a 

significant improvement in performance, even if it means invalidating the whole day without 

accurately identifying the fault location, as is already the case with classification approaches 

where a sequence is invalidated without necessarily knowing how abnormal it may be.
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Figure 9-19: From anomaly rate per sequence to classification: F1 score results according to the invalidation threshold 
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9.4. Generalization to other sites 

In this section, we'll look at various approaches to evaluate the best ResNet model assessed 

so far with a regression approach on other sites of SMA. We'll start by evaluating the 

performance of the best model on sites other than the one on which it was initially trained, 

namely Cottage. This analysis will enable us to determine to what extent the model is capable 

of generalizing its learning. We will then address the possibility of creating a generic model. 

This model, configured with the same parameters, will be trained on the dataset from all sites 

and evaluated both on the global dataset and individually for each site. Finally, we will explore 

the transfer learning strategy by building site-specific models. In doing so, we will assess how 

transfer learning can improve model performance by leveraging knowledge gained from other 

sites. 

9.4.1. Direct evaluation on other sites 

The aim of this phase is to directly evaluate the best model previously identified and saved for 

Cottage on turbidity data from other sites, without any prior adaptation, while maintaining the 

same pre-processing steps. These steps include the use of a 24-hour time window and data 

standardization. Table 41 shows the results of the F1 score and the MCC for each site.  

Table 41: Direct evaluation of ResNet on other sites of SMA 

 Precision Recall F1 score MCC 

Cottage 0.763 0.778 0.770 0.658 

Antilles 0.993 0.597 0.746 0.550 

Découverte 0.841 0.748 0.792 0.616 

Goutte 0.979 0.569 0.720 0.605 

Roosevelt 0.386 0.988 0.556 -0.085 

All sites 0.690 0.709 0.700 0.411 

Examining the performance metrics, we observe that “Antilles” and “Goutte” sites exhibit similar 

results with a high precision (an average of 0.986) but a low recall slightly surpassing 0.55. 

This result indicates that the model is very accurate when predicting the positive class. 

However, the recall means that the model lacks a number of truly positive instances. This can 

be interpreted as a tendency of the model to be too conservative in predicting the positive 

class, hesitant to declare certain instances as positive, even if they are. On the other hand, 

“Découverte” demonstrates a well-equilibrated performance with an F1 score of 0.792, which 

is close to the results of the training site "Cottage".  
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Furthermore, the “Roosevelt” site displays a challenging scenario with a low precision of 0.386 

and a high recall of 0.988, resulting in an F1 score of 0.556 and an MCC of -0.085. This pattern 

indicates that the model struggles to correctly identify positive instances while avoiding false 

positives. The low precision suggests that when it predicts a positive class, it tends to be 

incorrect in most cases. When we analyze the confusion matrix of this site, we can see that 

the model tends to predict almost a unique class; namely the invalid class (see Figure 9-20). 

This imbalance can be attributed to a variety of factors, such as site-specific features at 

“Roosevelt” that make it distinct from other sites and where the classification threshold seems 

very penalizing.  

 

Figure 9-20: Confusion Matrix of the ResNet model trained on Cottage and 

evaluated on Roosevelt 

In conclusion, the direct evaluation of the ResNet model on various sites within SMA presents 

a nuanced performance, revealing distinct patterns across different locations. In light of these 

findings, the next phase involves retraining the model using data from various sites, with a 

focus on addressing these specific challenges and enhancing overall performance. 

9.4.2. Training the best model using data from different sites 

9.4.2.1. Reinitiation the learning process 

This phase involves reinitiating the learning process by using 24-hour time window and 

standardized sequences from various sites. The objective is to facilitate the model in 

comprehending the diverse dynamics of normal operations across different locations. Notably, 

the “Roosevelt” site is excluded from this phase due to notable differences compared to the 

other interceptors, as elaborated in Section 4.3.3. Table 42 summarizes the performance 

results. 
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Table 42: Results using a ResNet model trained on the whole database from 

different sites 

 Precision Recall F1 score MCC 

All sites 0.599 0.950 0.734 0.372 

Antilles 0.750 0.979 0.849 0.379 

Cottage 0.360 0.986 0.528 0.211 

Découverte 0.620 0.884 0.729 0.396 

Goutte 0.683 0.950 0.795 0.530 

Analyzing the results, the model exhibits an overall commendable performance when 

considering all sites collectively. The precision of 0.6 suggests a relatively accurate 

identification of positive instances, while the recall of 0.95 indicates a high capacity to capture 

the majority of true positive instances. The F1 score corroborates the model's effectiveness in 

maintaining a balanced classification. But the MCC shows a low correlation between expert 

validation and model output. These results are better than those obtained by evaluating the 

Cottage-specific model on the other sites if we consider the gain on recall, but the latter causes 

a loss of 10% of the precision.  

Examining individual sites, we observe a general improvement of the recall, i.e., the capacity 

to detect most anomalies but the precisions tend to decrease globally. The "Cottage" site 

presents challenges, particularly with a notably lower precision of 0.36. This suggests that the 

model struggles with an increased number of false positives on the Cottage site.  

In summary, the reinitiation of the learning process with data from various sites yields a global 

improvement of performance results but a nuanced performance across different locations. 

The model excels in capturing the dynamics of normal operations, yet site-specific variations 

still influence its performance, highlighting the importance of tailored approaches for different 

operational contexts. 

9.4.2.2. Total fine-tuning of the learning process 

The aim of this phase is to exploit transfer learning approaches to improve and accelerate the 

learning process. The used technique is total fine-tuning, where the model is initialized with 

the best "Cottage" model, and learning is restarted for all layers using data from the other sites. 

Compared with the approach presented in Section 9.4.2.1, the only difference lies in the 

initialization of the initial weights, aimed primarily at optimizing computation time. Analysis of 

the learning curves for both approaches (see Figure 9-21) reveals that this technique does 

indeed allow us to start with a lower initial loss value. However, the speed of convergence is 

slightly slower, as the model approaches the tangent of the performance curve. Despite this, 
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at the end of the 600 epochs, the loss functions are lower, confirming the benefits of this 

technique. 

 

Figure 9-21: Comparison of the learning curves using different training 

strategies 

The model performance results, trained on the whole data set with this approach, are 

summarized in Table 43. The performance obtained is of the same order of magnitude as that 

obtained previously, with a slight improvement. However, it is important to note that it is not 

possible to state statistically that this improvement is significant.  

Table 43: Results using a total-fine tuning with data from all sites 

 Precision Recall F1 score MCC 

All sites 0.626 0.921 0.745 0.407 

Antilles 0.797 0.934 0.860 0.468 

Cottage 0.378 0.972 0.544 0.253 

Découverte 0.586 0.886 0.706 0.324 

Goutte 0.789 0.905 0.843 0.655 
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9.4.3. Tuning a specific model for Roosevelt 

The aim of this phase is to design a model specific to the “Roosevelt” site, whose hydraulic 

operation differs from that of the other sites. To this end, we adopt the same architecture as 

that of the best model described in Section 9.3, while applying preprocessing steps similar to 

those used for Cottage. However, we evaluate different relearning techniques.  

• Test 1: Reinitiate the learning process 

This approach aims to reboot the model from scratch, keeping the same architecture but 

allowing specific adaptation to the characteristics of “Roosevelt”. 

• Test 2: Feature extraction learning 

This technique involves using the model previously trained on Cottage to extract features 

relevant to Roosevelt, without completely readjusting the model weights. For this, only the 

weights of the last layer are adjusted while freezing the rest. 

• Test 3: Partial fine-tuning of the learning process 

This approach focuses on the selective readjustment of model layers, according to the 

particularities of Roosevelt station, while preserving the knowledge acquired on Cottage. 

Concretely, we freeze the first 50% layers and adjust only the weights of the last layers 

Table 44 synthesizes the results of the different approaches.  

Table 44: Results of Roosevelt data validation using a specific model and 

different learning strategies 

 Precision Recall F1 score MCC 

Test 1 0.643 0.781 0.706 0.493 

Test 2 0.362 0.753 0.489 -0.113 

Test 3 0.653 0.741 0.695 0.482 

For the first test, we observe relatively balanced precision and recall, which suggests that 

starting the learning process anew allows the model to better capture positive instances, 

resulting in an improved overall F1 score and MCC compared to other approaches. Idem, the 

last approach demonstrates a balanced trade-off between precision and recall, contributing to 

a competitive F1 score and MCC. While the second test exhibits challenges, with a lower 

precision and a negative MCC. This suggests that relying solely on feature extraction may not 

be sufficient to effectively capture the specificities of the Roosevelt site, leading to a suboptimal 

overall model performance. 
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In conclusion, the analysis of the results suggests that starting the learning process anew (Test 

1) and the partial fine-tuning (Test 3) are needed to capture the inherent data structure of 

“Roosevelt”. On the other hand, feature extraction learning (Test 2) exhibits limitations, 

indicating the importance of a more advanced training for optimizing model performance on 

site-specific dynamics. 

 In summary, the direct evaluation on various SMA sites reveals nuanced performance 

patterns. Retraining the model with data from different sites shows an overall improvement 

but with site-specific challenges. The overall performance is commendable, with improved 

recall but nuanced precision variations across sites. Transfer learning through total fine-

tuning exhibits potential benefits, although the significance requires further investigation. 

Tailoring the model to the Roosevelt site, which is hydraulicly different, demands careful 

consideration. The results indicate that rebooting the learning process and partial fine-

tuning are effective strategies for capturing the site-specific data structure, while feature 

extraction learning exhibits limitations. 

9.5. Multivariable anomaly detection 

The aim of this section is to evaluate a multivariate approach. So far, the training of the ResNet 

model has been done on a univariate basis, thus losing any link between the two turbidimeters. 

To remedy this, our aim is to provide the model with different measures as a whole. When the 

model identifies a sequence as abnormal, it also assigns this label to each of its variables, as 

illustrated in Figure 9-22. However, this approach can sometimes seem inappropriate, as the 

invalidity of one datum is often linked to a lack of concordance of the other variables, thus 

representing contextual anomalies. However, these contextual anomalies do not mean that all 

variables are invalid in themselves. Cases where all variables are invalid simultaneously are 

more likely to occur in the context of global faults, such as a connection problem or a power 

failure.  
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Figure 9-22: Data validation results of Cottage data using a multivariable 

approach 

Table 45 presents a summary of outcomes obtained through diverse approaches, 

incorporating distinct input data. The input sequences adhere to a 24-hour length with a half-

window stride, and data standardization is applied to each variable. The output encompasses 

both the actual anomaly rate of the sequence and the predicted anomaly rate. Sensitivity tests 

are conducted for both the expert classification threshold and the model classification 

threshold. In Appendix L, detailed results, depicted through heatmaps representing various 

combinations, are provided.  

With this in mind, the table provides, for each configuration, the thresholds for achieving the 

best performance, as well as the corresponding F1 score value. Despite variability from one 

test to another, a general trend emerges, indicating that optimum performance is generally 

obtained with a manual validation threshold (target) of 0.66 and a model threshold of 0.42 on 

average (see Section 9.3.3). It should be noted that the model threshold is lower than the 

expert threshold, suggesting that the model is potentially more tolerant than the expert. 

Therefore, with a threshold of 0.42, the sequence actually represents an anomaly rate of 0.66. 

Comparing the F1 scores of the different configurations, we see that "2TC" and "3TC" perform 

similarly, and slightly better than "2T" and "3T", suggesting that the introduction of conductivity 

has improved anomaly detection. These results, especially with the conductivity as input data, 

highlight an improvement of the classification scores compared to a monovariable approach.  

Table 45: Results of the multivariable approach according to the input data 

 2T 3T 2TC 3TC 

Prediction threshold 0.4 0.35 0.45 0.5 

Target threshold 0.65 0.6 0.7 0.7 

F1 score 0.800 0.722 0.832 0.830 
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9.6. Synthesis of Chapter 9 

The in-depth evaluation of the ResNet model, focusing on assessing its performance using 

Cottage turbidity dataset, has yielded several crucial results. Firstly, by looking at the model's 

sensitivity to input data, we highlighted the importance of carefully pre-processing this data, 

adjusting strides to avoid over-fitting. Data enhancement techniques, such as noise 

augmentation and up sampling, were explored to manage class imbalance. The use of data 

from several sites stabilized the results but did not lead to a significant improvement over the 

exclusive use of Cottage data. Sensitivity tests revealed nuances in model performance, 

notably increased accuracy with reconstructed turbidity data. 

Next, hyperparameters tuning was undertaken without modifying the ResNet model 

architecture. A key question was the optimal size of the time window, with tests showing that 

optimal performance was achieved with a 36-hour window, although stability problems were 

encountered with longer windows. Maintaining a 24-hour window was preferred for further 

testing, due to its stability and practical interpretation. With regard to sequences validation, 

adjustments were made to the classification threshold, calling into question the relevance of 

the default threshold of 0.5. The results showed that adjusting the weight of false negatives 

versus false positives using the F-score beta parameter improved performance, but with a 

trade-off between reducing false negatives and increasing false positives. Classification 

threshold adjustment was also explored using the PR curve, significantly improving metrics 

and demonstrating the positive impact of this approach. 

New approaches to improving results were also explored. The implementation of pre-validation 

showed promising results, reducing the ResNet model's false positives and improving its 

overall F1 score to 64%. The exploration of multiclass classification, while interesting, revealed 

challenges, particularly with the intermediate class. Finally, using the ResNet model to predict 

the anomaly rate per sequence showed encouraging results, even outperforming the 

classification model, with an F1 score of 77%. 

Tests were also carried out to generalize the best model to other sites within SMA, with multiple 

objectives. Firstly, to assess the generalizability of the ResNet model initially trained on the 

"Cottage" site, by testing it directly on other sites. The results revealed nuanced performance, 

with significant variations in precision and recall between different sites, underlining the 

challenges of generalization. Then, the exploration of site-specific transfer learning techniques, 

particularly for the "Roosevelt" site, demonstrated the need for custom strategies to capture 

site-specific data structures. Finally, the multivariate approach was introduced, showing an 

improvement in anomaly detection with the inclusion of conductivity. 
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Figure 9-23: Overview of ResNet tests and results for anomaly detection using turbidity data 
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Chapter 10. Autoencoder evaluation 
 

The operating principle of the autoencoder (as described in Section 5.5), involves feeding the 

model with input sequences and training it to reproduce the same sequence on output. The 

sequences used for this purpose are taken from turbidity data from Cottage from February 

2021 to July 2022. Further tests will be presented in terms of processing these sequences, 

their size and number (using the complete set of sequences or just a pre-selection) (Section 

10.1). Subsequently, the model output is compared with the input by calculating a mean square 

error (MSE) per sequence. However, to perform a sequence classification task, an output 

classifier is applied to establish a threshold beyond which a sequence is considered valid or 

invalid.  

The architecture of the model is not fixed at this stage and will be the subject of specific tests 

(Section 10.2). To guarantee the model's stability, several runs are launched, and an 

evaluation is carried out on the complete Cottage data set. The aim is to take account of model 

variability, which will be represented in the results graphs by error bars. For each run, the 

model producing the best results among the various folds is saved. In this way, when the model 

is deployed or subject to further improvements (Section 10.3), the best model is directly 

selected from all runs. In some cases, the confusion matrices illustrated, specific to a given 

model, may differ from the average performance, depending on the model's stability. The final 

tests, as with the other models, consist in evaluating the model's performance against data 

from other sites (Section 10.4) and then considering a multivariate approach (Section 10.5). 

10.1. Sensitivity to input data 

The aim of this section is to carry out input sensitivity tests on the AE model. Given the limited 

size of our dataset as previously highlighted during ResNet evaluation, all T1 and T2 

sequences will be used as input to create an enhanced database. The default sequence size 

is set at 24 hours, and sensitivity tests on this parameter will be carried out later in this 

manuscript (Section 10.2.3). A sequence will be considered abnormal as soon as a time step 

is abnormal, which represents a significant constraint. Adjustments to this parameter will also 

be examined later (Section 10.3.2). The architecture of the autoencoder is basic, with a single 

hidden layer representing a latent space of 64 neurons. The aim of these tests is to assess the 

model's sensitivity to different scaling approaches, such as normalization or standardization.  
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10.1.1. Preprocessing 

Within this framework, we conducted a series of varied tests to evaluate the performance of 

our autoencoder model under different input configurations (see Table 46). The tests include 

the use of the full input dataset with minmax normalization or standardization, as well as tests 

on the exclusive use of valid data. All these tests are carried out with a linear activation function. 

However, to complete the tests mentioned above, we have introduced an additional 

experiment designed to explore the model's sensitivity to the activation function. Thus, we 

included a combination of minmax normalization with sigmoid activation. It's important to note 

that sigmoid activation is incompatible with standardization, as the former constrains outputs 

between 0 and 1, while standardization has a wider evolution interval.  

Table 46: List of tests conducted to evaluate AE's sensitivity to input data 

preprocessing 

 Input Normalisation Activation 

1 All MinMax Linear 

2 All StandardScaler Linear 

3 Only valid StandardScaler Linear 

4 Only valid MinMax Linear 

5 Only valid MinMax Sigmoid 

To compare the results obtained in our experiments, we have exploited two distinct 

classification approaches: namely the 3-sigma rule and the PR curve approach. Table 47 

exhaustively summarizes the results obtained using these two approaches. 

Table 47: Results of input processing - autoencoder 

  Test 1 Test 2 Test 3 Test 4 Test 5 

PR 

Curve 

Precision 0.661 0.681 0.866 0.835 0.888 

Recall 0.943 0.910 0.877 0.810 0.735 

F1 score 0.777 0.779 0.872 0.823 0.804 

MCC 0.404 0.419 0.706 0.604 0.614 

3-

sigma 

rule 

Precision 0.892 0.872 0.761 0.820 0.794 

Recall 0.457 0.466 0.944 0.812 0.799 

F1 score 0.605 0.607 0.843 0.816 0.796 

MCC 0.424 0.410 0.612 0.584 0.535 

The results of Tests 1 and 2 highlight that using the complete set of sequences in the learning 

phase results in significantly lower scores. Although the F1 score does not seem to show a 
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significant difference between both tests, this is explained by the bias induced by the 

prevalence of abnormal sequences, here reaching 56%. The MCC review confirms this finding, 

pointing out that the very nature of the auto-encoder, focused on reconstruction by learning 

discriminatory elements, is hampered in the presence of anomalies in the training set. 

Generally, autoencoders excel in a semi-supervised approach. The use of the MSE distribution 

(3-sigma rule) in this configuration is also problematic, inducing a substantial gap of about 22% 

on the F1 score compared to PR curve results. Indeed, the presence of anomalies biases the 

mean and the standard deviation of the MSE, making the 3-sigmas rule inadequate. 

For the other tests, the disparity between the results of the PR curve and the rule of the 3-

sigmas is less marked. In particular, Test 3 stands out as the best performing, favoring the use 

of standardization. Tests 4 and 5, on the other hand, show no significant difference in terms of 

the impact of the activation function. This observation is corroborated by the comparison of 

ROC curves, where those of Tests 4 and 5 are similar, while that of Test 3 stands out more as 

the best model.  

 

Figure 10-1: ROC Curves for input sensitivity test on the autoencoder 

These conclusions make it possible to recommend the adoption of a semi-supervised 

approach, with the exclusive use of 100% valid sequences in the training phase, 

associated with scaling using standardization. Performance evaluation can be done using 

both approaches, with the PR Curve providing a maximum evaluation of performance to be 

reached after an adjustment of the x-sigma rule parameter, which can sometimes differ from 

3. 

Test 4 

Test 5 

Test 3 
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10.1.2. Input data 

The aim of this test is to evaluate the model's response to various inputs, namely raw data and 

reconstructed turbidity. To this end, we fix the test hypotheses by applying the same pre-

processing (standardization + linear) and training exclusively on fully valid sequences. In terms 

of architecture, a basic autoencoder (AE) is used, with a code composed of 64 neurons. An 

initial observation concerns the disparity in the size of the input databases, given that using 

raw data generates twice as much data. However, when focusing on 100% valid sequences, 

sample sizes are almost equivalent, with 480 samples for raw data and 461 for reconstructed 

data. The training databases are therefore considered equivalent in terms of size. The results 

of this test are compared in Table 48.  

Table 48: Results for different input data using the PR approach 

 Precision Recall F1 score MCC 

Raw data 0.866 0.877 0.872 0.706 

Reconstructed data 0.739 0.729 0.733 0.685 

We observe that performance deteriorates when reconstructed data is used (see Figure 10-2). 

This can be explained by the fact that the number of invalid samples remains limited, and 

consequently the slightest error can have a significant impact on performance metrics. 

Although the number of false positives and negatives is lower in the case of reconstructed 

data, they represent an important ratio regarding the number of invalid samples.  
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Figure 10-2: Confusion matrix and performances depending on the input data – 

Left: reconstructed data, Right: raw data 

10.1.3. Size of the input database 

The objective of this test is to assess the model’s ability to learn more effectively as the size of 

the training database varies. Given the limitation of our data set and its complete use in the 

learning phase, a question arises: is it possible to improve the performance of the model by 

having more data? To answer this question, we conducted tests by gradually reducing the size 

of the training database and evaluating the overall F1 score at each stage. In practice, for each 

sub-database resulting from the progressive reduction of the size of the training set, we 

repeated the tests several times. This approach aims to ensure the stability of the results13 and 

to overcome the random effect associated with the selection of the subset of data. The 

objective is to identify a potential trend in favor of improved performance with an increase in 

the size of the data. This exploratory approach aims to determine whether the model reaches 

a saturation threshold in terms of performance or whether it would actually benefit from an 

increase in the amount of data.  

 

13 The results provided are averages on the different runs 
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The analysis of the results reveals an interesting trend: the model seems to reach a 

performance plateau starting from a ratio of 0.7, indicating that using only 70% of our database 

is enough to stabilize the performance of the autoencoder model (see Figure 10-3).  

 

 

Figure 10-3: Performance metrics according to the ratio of input data used for 

training 

However, for lower data ratios, the MCC has a tendency to decrease significantly compared 

to the F1 score, while the latter remains relatively high. In order to elucidate this observation, 

let’s consider the validation confusion matrix issued from the model that was trained on 0.1 of 

the database and that was established using the PR Curve approach. The analysis of the 

confusion matrix for a ratio = 0.1 highlights a notable ability to effectively identify anomalies, 

thus contributing to the observed high F1 score. However, there is a significant gap in the 

classification of valid data. When examining the confusion matrix with a ratio equal to 0.1 

compared to that with a ratio = 1, the detection of valid sequences appears particularly 
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problematic, with the model assigning these sequences almost randomly between valid and 

invalid classes. This inefficiency in distinguishing valid sequences results in relatively low MCC. 

 

Figure 10-4: Confusion matrix and performances depending on the ratio of 

database 

In addition, the increasing gap between the two evaluation approaches (PR Curve and 3-

sigmas), especially when MCC is taken as a reference, highlights an important challenge in 

the evaluation of the performance of the AE model. In fact, the decrease in the number of 

samples in the use of reduced percentages of the training database makes the establishment 

of an average MSE and a standard deviation less reliable, resulting in larger error bars for 

lower ratios. This challenge results in problems in establishing a precise and reliable threshold 

for classification, explaining the poor results with a significant deviation from the optimal 

performance obtained with the PR curve approach. This deviation tends to decrease as the 

database size increases, allowing a better statistical representativeness of the 3-sigma rule.  

10.2. Hyperparameters tuning 

The judicious choice of the number of neurons and layers forms the backbone of neural 

network design, representing essential hyperparameters that shape its power and complexity. 

The number of neurons per layer influences the model's ability to capture complex patterns in 
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the data, while the number of layers determines the depth of the network, enabling abstract 

hierarchical features to be extracted. A network with a large number of neurons may be able 

to model complex relationships, but this can also lead to over-fitting problems, while a network 

with too few neurons may lack representational capacity. Similarly, an architecture with multiple 

layers enables the model to learn more abstract representations, but this may require a larger 

dataset to be effective. So, the delicate balance between the number of neurons and layers is 

crucial to optimizing the performance of a neural network and achieving an ideal match with 

the underlying complexity of the data. 

10.2.1. Sensitivity to the feature size 

In the process of tuning hyperparameters for an AE, we start with a basic architecture that 

consists solely of latent space as a hidden layer (see Architecture 1 in Table 10). Using latent 

space as the only hidden layer initially simplifies the network structure, enabling the sensitivity 

of the model to this fundamental parameter to be explored. The size of the latent space, which 

represents the compression of data into a more compact representation, determines the 

autoencoder's ability to reconstruct inputs in a meaningful way. By progressively adjusting the 

size of the latent space, we can assess how the model reacts to different dimensions, thus 

determining the best configuration for the specific task. Having input sequences of 24 hours, 

i.e., an input shape = 288, and in order to respect the bottleneck configuration of the 

autoencoder, the size of the latent space is varied between 4 and 128. 

The analysis of performance metrics such as precision, recall, F1 score and MCC as a function 

of latent space dimension reveals significant trends (see Figure 10-5). Using an approach 

based on the 3-sigma rule, the increasing of the latent space dimension is positively correlated 

with improved performance, particularly with regard to F1 score and MCC. The 3-sigma rule, 

here, demonstrates that higher latent space dimensions translate into higher performance, with 

an F1 score approaching 0.9 and an MCC of 0.75 for a latent space of 128 neurons. However, 

an interesting observation emerges: although recall increases, indicating an enhanced ability 

to identify anomalies, precision remains relatively stable. This stability suggests that increasing 

the size of the latent space enables more effective anomaly detection without generating a 

disproportionate number of false positives. Then, the question is: can we achieve even more 

interesting performances? Performance metrics using the PR curve approach are then 

analyzed. 
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Figure 10-5: Results of sensitivity to the latent space size using the 3-sigma 

rule 

The results based on the PR curve as a function of latent space size within the autoencoder 

framework reveal significant trends. Model performance confirms a substantial improvement 

with increasing latent space size. In contrast to the results of the 3-sigma rule, precision 

exhibits continuous growth, rising from 0.695 to 0.935, indicating an increased ability to 

minimize false positives. Although recall shows a less regular variation, an overall increase is 

observed, rising from 0.843 to 0.948 as the dimension of the latent space increases. This 

observation suggests that the model becomes more effective in identifying anomalies. 

Consistently, the F1 score, representing the balance between precision and recall, follows a 

significant upward trajectory, rising from 0.778 to 0.942. Finally, the MCC shows a notable 

improvement, up to 0.866. These results are better than the 3-sigma approach, which suggests 

that further improvements can be achieved by optimizing the anomaly detection threshold. 
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Figure 10-6: Results of sensitivity to the latent space size using the PR curve 

approach 

The analysis of the ROC curves of the different models consolidates these results (see Figure 

10-7). In particular, the ROC curves of models with latent space dimensions of 4, 8, and 16 

have marked similarities, all displaying AUCs around 0.8. These results suggest a relatively 

equivalent discrimination capacity between normal and abnormal classes for these three 

models. In contrast, the model with a latent space dimension of 128 stands out significantly, 

exhibiting a remarkable AUC of 0.97. The ROC curve of this model is considerably closer to 

the perfect model, indicating an exceptional ability to discriminate between the two classes. 

This disparity in performance between models can be attributed to the increased capacity of 

the model with a latent space dimension of 128 to capture subtle features in the data, thus 

reinforcing its ability to perform accurate classification.  
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Figure 10-7: ROC Curves for the different models of architecture 1 

With such remarkable performances, it is natural to question the occurrence of over-fitting, a 

condition that could compromise the generalization of the model to new data.  

To do this, we differentiate two types of overfittings. The first is related to the number of epochs 

during learning. It occurs when the model continues to learn on the training data even after the 

performance on the validation data has reached an optimum and begun to deteriorate. This 

configuration can lead the model to memorize the inherent noise in the training data. The 

identification of this kind of overfitting can be carried out by examining the learning curves of 

the model. These curves provide a visualization of the evolution of model performance on 

training and validation sets over time. In case of overfitting related to the number of epochs, 

while performance on the training set may continue to improve (the MSE decrease), 

performance on the validation set may degrade. In our case, the model’s learning is followed 

using callbacks in order to overcome this type of problem (see Section 5.4.4.3). Figure 10-8 

shows the learning curves for a latent space of 128. We observe that there is no degradation 

of the results on the validation data, even if the performances stabilize starting from 500 

epochs. 
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Figure 10-8: Learning curves for the model n°6 

On the other hand, the second type of overfitting is related to the model architecture and can 

be caused by excessive complexity compared to the amount of data available. If the neural 

network has a large number of neurons for example, it can adjust too closely to the training 

data, even if they contain noise. Overfitting linked to the model architecture could be 

manifested by continuous improvement on the training set, but with stagnation or deterioration 

of performance on the validation set as a function of the model’s complexity. By observing 

these trends (see Figure 10-9), it can be stated that our best model, with a feature size of 128 

and with the best performance, is not overfitting on the training data and that our results are 

accurate. 

 

Figure 10-9: Tests of overfitting based on model's complexity 

10.2.2. Testing different architectures 

Figure 10-10 illustrates the evolution of the MCC for the various models described in Table 

10, distinguishing the different architectures. The MCC results are obtained using the 

precision-recall (PR) curve approach, and a similar trend is observed for the F1 score results. 

It is notable that, beyond the use of three layers (Architecture n° 2), the model performances 
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exhibit degradation and instability, with a significant increase in the standard deviation between 

runs. This observation leads to conclude that this specific type of architecture is not adapted 

to our application context. There are several reasons for these results, including the excessive 

complexity of the model in relation to the amount of data available, potentially leading to 

overfitting or increased sensitivity to random variations in training data. Thus, we will rather 

focus on the analysis of architecture models with 3 hidden layers. 

 

Figure 10-10: MCC results of Deep-AE architectures following the total number 

of neurons 

Figure 10-11 provides an analysis of architectures n°2, highlighting the MCC as a function of 

the number of neurons in hidden layers and the size of the latent code. Each point on the graph 

represents a unique combination of these two parameters, with the MCC value indicated by 

the label and the size of each point visually reflecting this value. The aim of this visualization 

is to complement the observation made in  

Figure 10-10, which indicates an improvement in performance as the total number of neurons 

increases. It thus becomes essential to observe whether there is a predominant direction 

between the size of the latent code and that of the adjacent hidden layers, in order to determine 

which parameter has the greatest impact on model performance. The aim of this analysis is to 

gain a more nuanced understanding of the dynamics between these two key components of 

the architecture. 
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Figure 10-11: MCC results of AE models with 3 hidden layers 

We observe that increasing the number of neurons in the hidden layers is generally associated 

with improved performance, as evidenced by the models 11, 12, 8, 13 and 14, which display 

MCCs ranging from 0.75 to 0.86. This suggests that the addition of neurons in the hidden 

layers contributes positively to the model's ability to reconstruct input data. In a similar way, 

we observe an improvement in performance with increasing latent code size. For example, the 

models 16, 8 and 17 have MCCs of 0.76, 0.82 and 0.84 respectively, demonstrating a positive 

relationship between latent code size and reconstruction quality. 

Trend analysis considering a fixed code size (64) and a fixed hidden layer size (128) reveals 

significant observations. The stronger slope associated with a fixed hidden layer size suggests 

a potentially stronger impact on model performance. However, this assessment needs to be 

qualified by the fact that each neuron added to the first hidden layer is duplicated in the third 

layer. From this perspective, the slope linked to the size of the latent code becomes more 

important. Moreover, it remains crucial to consider both parameters simultaneously, as 

illustrated by the comparison of models 7 and 11, which show equivalent performance for an 

identical total number of neurons (224). It's important to stress that the generalizability of these 

findings is limited by the small number of evaluations. However, above a certain threshold, 

increasing the number of neurons does not guarantee improved results, as illustrated by 

models 17 vs. 18 and 14 vs. 10, where doubling the number of neurons in the code does not 

translate any improvement. This observation highlights the need to assess the risk of overfitting 

in such situations, where increasing the model's complexity does not translate into better 

performance. 
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Calculating the complexity of a model, here a deep-AE, is based on the number of network 

parameters. In the context of dense layers, each neuron is connected to all neurons in the 

previous and next layers. Thus, the number of parameters in a dense layer is determined by 

multiplying the number of neurons in the previous layer by the number of neurons in the current 

layer, plus the number of biases, one per neuron in the current layer. Generally, the complexity 

of the model is directly proportional to the total number of parameters, which is the sum of the 

parameters of all the layers. Adding additional layers or increasing the number of neurons in 

each layer increases the complexity of the model, which can lead to higher representational 

capacity, but also increases the risk of overfitting. For an equivalent total number of neurons, 

models can have different complexities: this is the case for models 7 and 11 for example. 

Figure 10-12 shows that there is no overfitting in our case, as the loss function continues to 

decrease on both training and validation data, with a less significant curve for the latter. It 

should be noted that there are various points that deviate from the overall trend. These include 

models 7, 15 and 16, which have a reduced latent space size of no more than 32 neurons.  

 

Figure 10-12: Learning curves depending on the model's complexity 

After excluding models with small code sizes and focusing specifically on those with an MCC 

greater than 0.8, we aim  to assess the additional impact of hidden layers compared with the 

basic architecture evaluated previously (Section 10.2.1). To do this, a comparison will be 

made between models with the same code size, enabling the contribution of hidden layers to 

be specifically isolated. Thus, we will examine model 5 in relation to model 8, as well as model 

6 in relation to model 10, in order to quantify and analyze the added value provided by hidden 

layers in these specific configurations.  
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Figure 10-13: ROC curves comparing models with the same code size but 

different architectures 

A closer look at the ROC curves reveals a significant improvement for models with a code 

dimension equal to 64, while this improvement is virtually absent for those with a code 

dimension equal to 128 (see Figure 10-13). This observation is corroborated by Figure 10-14, 

where an improvement in metrics such as F1 score and MCC is clearly perceptible on one 

side, but not on the other. In this context, the legitimate question that arises is whether models 

6 and 10 are equivalent, especially as tests have been taken to exclude the possibility of an 

overfitting configuration. 

 

Figure 10-14: Performance metrics for models with the same code size but 

different architectures 
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To compare Models 6 and 10, we examine the reconstruction of the sequences generated by 

these models. Two illustrative examples are shown in Figure 10-15, where both models 

validate the input sequence but produce distinct reconstructions. It is also important to note 

that neither model generates noise systematically. This feature may be present in the 

reconstructions of both models independently. 

 

Figure 10-15: Reconstruction of valid sequence n°121 and valid sequence n° 

119 using the models 6 and 10 

However, specific sequences exist where the two models achieve a reconstruction in complete 

agreement. In addition, an analysis of invalid sequences reveals that the two models make 

errors separately and are mistaken differently (see Figure 10-16). Hence, it becomes clear 

that the two models do not produce exactly the same output for a given input sequence. So, 

although these models show similar performance, it is clear that they focus on different 

features, underlining the diversity in their approaches to sequence reconstruction. 
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Figure 10-16: Reconstruction of valid sequence n°122 and invalid sequence n° 

129 using the models 6 and 10 

To sum up, following the various comparison tests between models and the assessment of the 

risks of over-fitting according to model complexity, it seems superfluous to exceed 3 hidden 

layers, given the limited number of examples and features available. Thus, the best-performing 

architectures are 1 and 2 (see Table 10), excluding models with a reduced code size of 32 or 

less. Best models in absolute terms include Model 6, characterized by a code consisting of just 

128 neurons (subsequently referred to as Model A), as well as Models 10 and 14, which 

display equivalent performance with a 3-layers structure, where the first and third layers each 

comprise 192 neurons. In terms of code size, both sizes (64 and 128 neurons) deliver 

equivalent performance. Considering that the performance of a model is also linked to its 

complexity, which impacts training time, Model 14 is judged to be the second-best architecture 

(subsequently referred to as Model B). 
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10.2.3. Window size 

Since the start of the experiments, the size of the input sequences has been fixed at 24 hours 

in order to maintain an operational sequence characterized by well-structured dynamics, 

particularly under dry weather conditions with regular patterns. This sequence has also shown 

numerical promise in comparative evaluation with other models such as Matrix Profile and 

ResNet. 

However, it is imperative to assess the sensitivity of the AE to this variable. For this, we will  

particularly consider shorter sequences. In fact, the use of excessively long sequences in 

dense models can generate problems linked to the curse of dimensionality. In general, it is 

recommended to have a number of samples significantly higher than the number of features. 

This favors better generalization of the model to new data, thus reducing the risk of overfitting. 

According to the literature, a rule of thumb suggests maintaining a ratio of 10 times more 

samples than features [239]. For classification problems, this ratio needs to be adjusted 

according to the number of classes. 

However, it is important to note that this rule is not absolute. Determining the size of the 

database required must be the subject of specific tests, taking into account the model in place 

and overfitting evaluations. For some models, it may be possible to manage a large number of 

features with a consequent number of samples, depending on the nature of the problem and 

the quality of the data. Still, in our context, exceeding the 24-housr duration seems tricky given 

the limited number of samples available (1092). Thus, the tests on the window size mainly 

concern sequences with the following sizes: [1 hour - 2 hours - 6 hours - 12 hours and 24 

hours]. 

Consequently, Figure 10-17 presents classification results using the F1 score as a 

performance metric for different sequence sizes, using the two best models as stated in 

Section 10.2.2. The graphs provide a comparison between the two approaches, namely the 

PR curve and the 3-sigma rule. 
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Figure 10-17: F1 score for different window sizes according to the trained 

model and the classification approach 

This result confirms equivalent performance between Model A and Model B when the window 

size is set to 24 hours. However, a discrepancy becomes apparent for smaller window sizes, 

with an outperformance of Model B. It should be noted that Model B stands out for its more 

stable results, characterized by a lower standard deviation between different runs. The use of 

Model B provides almost identical results between the two comparison approaches, which 

represents a significant advantage in the absence of manual validation to establish the PR 

curves.  

As far as window sizes are concerned, performance improves as the input sequence size 

increases. Indeed, it is believed that the autoencoder requires large sequences to identify its 

distinctive features, thus promoting better sequence reconstruction. From a sequence size of 

6 hours onwards, interesting results are observed, albeit slightly lower than the maximum 

obtained with 24-hour sequences. Moreover, given the constraint of invalidating a sequence 

as soon as a time step is invalidated, this sequence size may prove interesting as it is less 

constraining in absolute terms. Overall, the optimum sequence size lies between 6 hours and 

24 hours, enabling us to reconcile operationality while maximizing model performance. 

Another assessment in this context is to analyze the sensitivity of the model to the value of the 

stride applied to the input data. So far, non-overlapping sequences have been considered, a 

choice that can be limiting, given that an invalid time step leads to the exclusion of 287 valid 

data that could contribute to model learning. This approach aims to increase the size of the 

input database by a mechanism similar to up-sampling, although the sequences are not 

identically duplicated, but rather partially superimposed. 

Using model B with a window size set at w = 24 hours, five different strides were tested, 

corresponding to the following ratios: w/2, w/4, w/8, w/16, and w/32. Figure 10-18 illustrates 
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the performance obtained using both the PR curve approach and the 3-sigma rule for 

classification. An apparent stability between the two approaches is observed, although 

simultaneously, a degradation of results is observed with increasing X, despite the effective 

increase in the volume of training data. Indeed, in certain situations, which seems to be the 

case here, data duplication can introduce redundancy, limiting the diversity of information 

relevant to learning. This redundancy compromises the autoencoder's ability to extract 

significant features, thus explaining the gradual degradation in performance observed. 

 

Figure 10-18: Performance metrics for different strides using Model B 

However, the use of the overlay creates an additional problem related to the classification at 

the scale of each point. Indeed, each point can have X labels corresponding to the X 

sequences to which it belongs. In the case of divergent labels, the question arises as to the 

allocation of the appropriate label for the measure. Two approaches were examined: 

consensus and majority voting. Testing reveals an overall performance degradation, with a 

slight optimum achieved using the w/4 stride. The use of consensus focuses on consolidated 

anomalies, eliminating any ambiguity of interpretation. 
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Figure 10-19: Performance metrics at the measure scale for different strides 

using Model B 

10.3. How can we improve the model’s performance ? 

Having defined the pre-processing steps (standardization) and identified the best architecture 

(Model A and Model B), with a non-overlapping 24-hour input window size, it's opportune at 

this stage to consider the potential improvement in results by adjusting the classification rules. 

Two issues deserve particular consideration: the relevance of the number 3 in the 3-sigma 

rule, and the judiciousness of the rule invalidating a sequence from an invalid time step. It is 

also possible to explore improvement approaches by merging the strengths of the best models 

and implementing pre-validation processes. 

10.3.1. Increasing database size 

One of the first ways of improving our results is to increase the size of our database. 

Preliminary tests have revealed that the limitation of our database is particularly apparent when 

only 100% valid sequences are considered. Up-sampling approaches, using a different stride, 

do not lead to improved results and cause additional problems related to the final labels of 

point measurements. So, the question is, how much should we enhance our database, and 

what performance can we expect in this case? We have shown that the model with a single 

hidden layer, representing the code, reaches saturation, and therefore increasing the data will 

bring no benefit. However, the performance of the 3-layers model showed satisfactory results. 

To assess the impact of increasing the size of the database on this model, we adopt the same 

technique as presented in Section 10.1.3, consisting of progressively reducing the size of the 



Chapter 10. Autoencoder evaluation 

Page 273 of 356 

 

training database and evaluating the overall F1 score at each stage. Specifically, for each sub-

database resulting from the progressive reduction in the size of the training set, we repeat the 

tests several times. Figure 10-20 illustrates the results obtained. 

 

Figure 10-20: Performance metrics according to the database size 

In contrast to the previous case, we do not observe a plateau, indicating the absence of training 

saturation. In fact, the increase in the database contributes to the improvement in results. 

Regarding the evolution of the performance metrics as a function of the size of the input data, 

we estimate that with a ratio of 1.30 (i.e. increasing the database by 30%), we could achieve 

maximum performance with an MCC of 0.90 and an F1 score of 0.96. However, it is crucial to 

ensure that the added data is relevant to guarantee such improvement. 

10.3.2. Adjusting classification rules 

Once the autoencoder model has been trained on sequences considered 100% valid, in 

accordance with its learning principle, the sequence classification phase is based on the 
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imposition of a threshold on the MSE of the reconstruction. This threshold determines from 

which MSE level a sequence is considered invalid. So far, two approaches have been explored 

for this purpose: the rule of 3-sigmas and the approach based on the PR curve. However, the 

objective here is to improve the latter and also to explore other potential methods for this 

classification. 

10.3.2.1. Three-sigma rule 

The first method involves thresholding the MSE by considering a statistical basis determined 

by the mean plus three times the standard deviation. However, analyses show that this 

approach, based on the 3-sigma rule, does not always enable maximum model performance 

to be achieved. Table 49 shows the x-sigma required to obtain the best performance for the 

two best models. It can be seen that the threshold defined by the 3-sigma rule is exceeded. 

By comparison, the threshold of the PR curve is higher. Consequently, the approach based on 

the 3-sigma rule may lead to excessive invalidation at the expense of satisfactory recall. 

Table 49: Evaluation of the x sigma required to achieve the best performances 

Architecture mean MSE std MSE 3-sigmas threshold PR x-sigma ? 

Model A 2.34E-03 2.80E-04 0.003 0.007 17.00 

Model B  5.88E-03 6.70E-04 0.008 0.015 13.89 

 

The practical application of the 3-sigma rule approach raises important considerations in the 

context of the inherent difficulty of establishing the optimal value of x in an unsupervised 

approach. Indeed, the 3-sigma rule is widely used in classical statistical contexts where data 

follow a known normal distribution. However, in our context and in an unsupervised approach, 

the characteristics of the data may be less well defined. Figure 10-21 represents the 

distribution of MSE in training data, showing that we are moving away from a normal 

distribution. 
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Figure 10-21: Histogram of MSE on training data samples (in red) and the 

corresponding normal distribution (in blue) using Model B 

Thus, one of the difficulties lies in the intrinsically subjective nature of the choice of x. This 

subjectivity can be exacerbated by the absence of prior data labeling, limiting the ability to 

formally determine the appropriate threshold. As a result, the practical implementation of the 

3-sigma rule in a semi-supervised setting can prove very challenging. Investigative options 

could involve adjusting the threshold using a more suitable distribution, such as a lognormal 

distribution, with a probability of exceeding the MSE of 1% for example on valid data, but due 

to time constraints this possibility was not examined. 

10.3.2.2. Precision-Recall curve 

The second approach is based on the construction of the PR curve. However, to develop this 

curve, it is imperative to have a baseline, which compromises the semi-supervised nature of 

the AI model. In addition, it is necessary to convert the manual label developed at the time step 

scale into a sequence scale. So far, we have considered that a sequence is considered invalid 

as soon as a time step is, which is a significant constraint. To remedy this, we sought to 

evaluate the sensitivity of the model’s performance to this classification threshold in post-

processing. In other words, learning continues to be done with fully valid sequences, and it is 

the classification phase that is analyzed here. Figure 10-22 illustrates the results, where the 

x-axis represents the relative threshold, that is, a sequence is considered invalid if (x-axis * 

window size) points are invalid. The model used here is Model 5, chosen due to computation 

time constraints, given that it has demonstrated satisfactory performance. 
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Figure 10-22: Performance metrics according to the classification threshold as 

an anomaly ratio per sequence. 0 refers to an invalid sequence from one invalid 

time step 

As the tolerance threshold for invalidating a sequence increases, the model's performance 

measures decrease, indicating a decline in the accuracy of its classification of sequences as 

invalid. Optimal model performance is observed with the lowest threshold, where every 

sequence is invalidated as soon as a time step is considered abnormal. Conversely, the least 

satisfactory performance is obtained when only sequences that are 100% invalid are rejected. 

Indeed, the trained model has not learned tolerance, so invalidating sequences containing a 

few abnormal time steps generates false negatives and reduces model recall. Up to a threshold 

of 0.05, performance is considered satisfactory, enabling a precision of 0.75 (accepting 25% 

of false alarms) and a recall of 0.87 (omitting 13% of abnormal sequences), while limiting errors 

to those exceeding one hour. False alarms require the inclusion of a margin of error and/or the 

further intervention of an expert. However, false negatives are drowned into valid data, 

underlining the importance of characterizing them. With this in mind, a fine analysis is carried 

out to diagnose sequences misclassified by the model.  

Figure 10-23 represents the number of validated sequences among the abnormal sequences 

identified by the manual validation in relation to the number of invalid points per sequence. It 

is observed that the majority of errors occur for sequences with a low number of invalid points. 

More precisely, 70% of errors concern sequences with an anomaly rate of less than 17%, 

equivalent to 4 hours of anomalies. 
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Figure 10-23: Ratio of false negatives for different anomaly ratios such as 

identified by model 5 and using a classification threshold of 0.04 

However, a paradoxal situation arises in the case of sequences with an anomaly rate in excess 

of 90%, i.e. 23 hours of invalidity (framed in red in Figure 10-23). Of the 68 sequences in this 

category, the model manages to classify 65 correctly. These anomalies represent particularly 

complex anomaly detection challenges, as shown in Figure 10-24 and Figure 10-25, which 

presents two main examples, including very noisy saturations and drifts that are difficult to 

identify using simple rules, thus requiring the intervention of an expert. 

 

Figure 10-24: Noisy saturation sequence invalidated by the expert and the AE. 
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Figure 10-25: Drift sequence invalidated by the expert and the AE 

On the other hand, Figure 10-26 shows the error cases where the model validated sequences 

considered completely invalid by the expert. These cases include two examples of null data 

(initially missing and replaced by 0). Despite the simplicity of this error, AE, like the other ML 

models tested, fails to identify this type of anomaly. The introduction of a pre-validation step 

would indeed make it easy to isolate such sequences. The second case concerns a sequence 

with very little variability, which the model manages to reconstruct satisfactorily, thereby 

validating it. However, a retrospective analysis of the pattern of this sequence reveals that it 

could have been validated by the expert, since it doesn’t show any abnormal patterns. But in 

fact, this is an earlier sequence of two days of defects and the expert invalidated it for the sake 

of precise defect delimitation.  
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Figure 10-26: Invalid sequences according to the expert, validated by the AE 

model 

10.3.2.3. Correlation between MSE and anomaly 

An alternative approach is to examine the relationship between the MSE of the reconstruction 

and the anomaly rate per sequence. Analysis of the best model results (Model B) reveals weak 

correlations, measured by Pearson's coefficient, between these two variables. The scatterplot 

associated with this relationship is notably dispersed, making it difficult to establish a significant 

relationship between anomaly rate and MSE (see Figure 10-27). 
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Figure 10-27: Correlation between reconstruction error (MSE) and anomaly rate 

per sequence 

Another possibility would be to directly use the output of the AE, i.e. the reconstruction, and 

calculate the deviation from the step-by-step measurement. This would make it possible to 

assess whether the largest deviations are correlated with anomalies. For this purpose, the 

biserial point is used to measure the correlation between a continuous variable and a binary 

variable, here representing the validity or invalidity of the datapoint. To minimize the influence 

of extreme values, a normalized MSE is also calculated. However, the results obtained are 

relatively low. Consequently, it is concluded that there is no correlation between MSE and 

anomalies.  

10.3.3. Ensemble model using the best architectures 

The objective now is to compare the two best performing models in order to explore 

opportunities to combine them and take advantage of their respective advantages.  

By comparing the t-SNE visualizations of the codes generated by the two autoencoders (Model 

A and Model B), we can obtain indications of the similarity of the latent representations (codes) 

produced by these models. Observations of the graphical representations (see Figure 10-28) 

reveal differences in the t-SNE visualizations of the two codes, indicating that the two models 

capture distinct structures within the input data. Although the t-SNE shows some overlap 

between valid and invalid classes for both models, it is important to note that this does not 

necessarily imply a lack of informativeness of the latent codes, as confirmed by the 

performance metrics. It is plausible that the dimensions in which the classes overlap are not 
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of crucial importance for classification, and that the model has succeeded in learning 

discriminative features in other dimensions. The two dimensions shown in Figure 10-28 are 

chosen rather in response to comprehensive visualization constraints, not necessarily 

reflecting the entire latent space learned by the models. 

 

Figure 10-28: t-SNE visualization of the code of Model A and Model B 

Now that we can state that the two best models show differences and learn distinct patterns, 

it would be interesting to explore the possibility of combining them to assess possible 

improvement. Table 50 summarizes the results of models A and B using the two classification 

approaches, the PR curve and the 3-sigmas method. By adopting a strategy based on 

averaging the MSEs from the reconstruction of the two models, followed by applying the PR 

curve to find the optimal threshold, no significant improvement in results is observed. This 

approach therefore appears to have little relevance. 

Table 50: Ensemble model results using the average MSE combined to a PR 

curve approach 
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The second approach is to merge the results of the two classifications by consensus. Figure 

10-29 illustrates the evolution of the confusion matrices resulting from combining the results of 

the two models, using the PR curve as a reference. This shows a significant reduction in the 

number of false positives (FP) transformed into true negatives (TN), enabling a near-perfect 

precision of 0.99 to be achieved. Despite a slightly lower recall than the two models taken 

individually (0.95), the new model has a very advantageous MCC, equal to 0.93.  

 

Figure 10-29: Confusion matrices using consensus and based on the PR curve 

approach 

Analysis of the results using the 3-sigma rule reveals a considerable improvement, such that 

the overall model result approaches the optimum identified via the PR curve. The number of 

FNs remains very limited, and false positives represent only 6% of all anomalies detected. 

 

Figure 10-30: Results using the 3-sigmas rule (solid bars) compared to the 

results of the ensemble model using the PR approach (dotted bars) 
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Consequently, combining the results of the two models shows promise, particularly through a 

consensus based on the 3-sigma rule. This approach maintains a semi-supervised approach, 

eliminating the need for a comparison baseline while achieving remarkable performance with 

a very limited number of false negatives (avoiding fault omitting) and 6% false alarms. The 

latter could be identified later by an expert. 

10.3.4. Implementing pre-validation approaches 

In this section, we implement a first stage of pre-validation for the model, following the example 

of the other models evaluated. The aim is to provide a base identical to that submitted to the 

expert. This step automatically invalidates trivial anomalies such as missing data, data outside 

the range of [1,1000], blocking or saturation. On the other hand, it automatically validates 

sequences that meet the redundancy criterion (see Equation 3). Unlike AE validation, which 

takes place at the sequence level, pre-validation with our approach takes place at the 

measurement time step level. The two approaches are combined a posteriori. Classification 

using a saved model is fast, taking less than a minute for 1092 sequences. We are therefore 

not seeking to optimize this calculation time by preselecting sequences in advance. Our main 

objective is to consolidate the final result. 

Once the AE classification has been carried out, we transform the labels at a time step of 5 

minutes, assigning the same label (that of the sequence) to all the points that make it up. Then, 

according to an order of priority, a final label is assigned to each measurement (see Figure 

10-31). 

 

Figure 10-31: Synopsis of the classification task enhanced with pre-validation 

Figure 10-32 presents all the results. The final result remains interesting, with an improvement 

from an F1 score of 48% on the scale of the time step to an F1 score of 73%. 
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Figure 10-32: Enhanced model results combining the AE and a pre-validation 

phase 

However, in certain situations, the interest can be oriented towards validation on a more global 

scale, making it possible to determine practically whether a day is valid or not, without having 

to examine the different time steps. Figure 10-33 illustrates the results obtained as a function 

of the threshold applied to the model outputs, compared to that applied to the expert’s results. 

We find that the optimal performance is generally around the diagonal and with low thresholds. 

Indeed, the most satisfactory results are obtained by imposing invalidation from the slightest 

error. A threshold of 5% (equivalent to about 1h30) generates maximum performance, 

confirming that the AE model developed is not tolerant and reacts sensitively to the slightest 

error. This observation also suggests that it is difficult to fool the model, even by injecting subtle 

anomalies. 
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Figure 10-33: Heatmap of the F1 score according to the classification threshold applied to the expert 5-minutes scale validation and the 

results of the enhanced model 
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10.4. Generalization to other sites 

10.4.1. Direct evaluation of the best models 

The aim of this phase is to directly exploit the two best models previously saved and evaluate 

them on turbidity data from other sites, without any prior adaptation, while maintaining the 

same pre-processing steps. These steps include the use of a 24-hour time window and data 

standardization. 

Table 51 shows the results of the F1 score and the MCC as a function of site and model. The 

F1 score results are notably high, all exceeding 0.8. However, MCC results in this context 

remain relatively low, not exceeding 0.5. 

Table 51: Performance metric of direct evaluation of the best models on other 

sites data 

  Cottage Antilles Découverte Goutte Roosevelt 

Model A 
F1 score 0.948 0.930 0.865 0.859 0.815 

MCC 0.881 0.471 0.429 0.507 0.365 

Model B 
F1 score 0.950 0.929 0.859 0.854 0.812 

MCC 0.885 0.493 0.461 0.435 0.389 

 

As discussed in Section 6.1.2, it is important to highlight a potential bias between the F1 score 

and the MCC depending on the anomaly rate inherent in the database analyzed. Figure 10-34 

provides a visualization of each site's performance in a scatter plot corresponding to its 

anomaly rate. It can be seen that performance is relatively far from the minimum expected 

level (lower delimitation of the scatter plot corresponding to the relative anomaly rate of each 

site, illustrated by similar colors between the site (framed square in red) and its anomaly rate). 

Although the results are not optimal, they remain interesting given the anomaly rate present in 

the database studied.  

The application of the trained model on other sites effectively identifies a considerable number 

of anomalies, which results in a high F1 score. However, the model makes many errors on 

valid data, as evidenced by the low correlation between the model predictions and the expert, 

illustrated by the low MCC. This observation can be explained by the different dynamics of 

other sites, whose normal functioning differs from that of our reference site, the "Cottage". As 

a result, the model fails to recognize the normal patterns of these sites and tends to invalidate 

them if they do not have similarities with those observed at "Cottage". 
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Figure 10-34: Results at different sites and their comparison according to their 

anomaly rate 

10.4.2. Training Model B using data from different sites 

To remedy the above problem, a first approach is to reset the learning of the best architecture, 

in this case model B, because its higher number of neurons enables it to learn more. This reset 

is carried out using valid sequences from the different sites, with the aim of enabling the model 

to assimilate the different dynamics of normal operation. However, in this phase, the Roosevelt 

site is excluded due to its significant differences with other interceptors, as explained in 

Section 4.3.3. 

Figure 10-35 shows the results of the evaluation of this model on data from all sites, as well 

as on each site independently. Globally, out of a total of 3082 invalid sequences, the model 

manages to identify 2841 of them, while generating 140 false positives. Overall, results 

improved, particularly in terms of the MCC, which now exceeds 0.65. It should be noted that 

there is a slight decrease in performance for the "Cottage" site, which is to be expected, given 

that the model adopts a generic approach and does not focus specifically on its operation. On 

the contrary, it seeks to identify anomaly characteristics in a global and common way across 

the different sites. 
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Figure 10-35: Evaluation of the generic model on the whole dataset and on the 

specific data of each site 

10.4.3. Tuning a specific model for each site  

Another approach to evaluate the model on sites other than Cottage is to train specific models 

for each site, in particular for Roosevelt, whose atypical operation requires a distinct approach. 

In this method, we keep the same architecture (that of Model B) and re-train the model site by 

site, evaluating each model on the database of the site in question. Figure 10-36 shows the 

results obtained using an approach based on the PR curve, demonstrating a significant 

improvement in performance, with an F1 score approaching 0.95 and an MCC exceeding 0.8, 

as is the case for Cottage. We therefore conclude that the model's architecture is 

generalizable, although achieving scores similar to those of Cottage requires site-specific 

learning. 
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Figure 10-36: Performance metrics of specific models, evaluated on their site 

database using the PR curve approach 

On the other hand, performance evaluation using the 3-sigma rule reveals a deterioration in 

results, particularly for the Roosevelt site. The F1 score for Roosevelt in the hypothetical 

scenario where the model predicts a single class (precision equals the anomaly rate and recall 

equal to 1), we obtain an F1 score of 0.79. In comparison, the F1 score obtained by the model 

is 0.8. So, we can see how close we are to this no-skill mode of operation. The 3-sigma rule 

turns out to be very penalizing for this site, and it would therefore be necessary to calibrate an 

optimal threshold using the PR curve if we wish to achieve satisfactory performance, or we 

may find another optimal architecture. 

 

Figure 10-37: Performance metrics of specific models, evaluated on their site 

database using the 3-sigma rule 
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10.5. Multivariable approach for anomaly detection 

The aim of this section is to evaluate a multivariate approach. So far, the simultaneous injection 

of the T1 and T2 sequences into the model has been done successively, thus losing any link 

between them under a monovariable approach. To remedy this, our aim is to provide the model 

with both sequences as a whole. Thus, for each timestamp, the model will simultaneously have 

the corresponding T1 and T2 measurements. We are also exploring additional multivariate 

approaches by adding the reconstructed turbidity and/or conductivity.  

The autoencoder architecture used so far is mainly composed of dense layers. Using dense 

layers for a multidimensional input breaks the links between the input variables. Indeed, when 

a dense layer processes this input, it treats each element as a distinct feature, with an 

individually assigned weight. To treat the variables as a single set, it would be appropriate to 

turn to convolution layers. The latter uses filters sharing weights to detect similar patterns in 

different parts of the input, making the convolution layer very effective at extracting spatial 

features. We therefore carried out a sensitivity test to multivariate data using our base model 

(Model B) on the one hand, and the same architecture with convolution layers in place of dense 

layers on the other. To check the impact of the additional variables, we replaced each variable's 

data with white noise at each iteration. This allows us to assess the importance of each variable 

in the decision-making process, and to determine whether it actually brings a significant 

improvement. 

Figure 10-38 shows the results obtained using the model with dense layers. A first observation 

reveals that the model gives greater weight to the T1 variable, since deleting the latter leads 

to a significant degradation of the results. In contrast, the model with convolutional layers 

assigns relatively equivalent weights to the two variables T1 and T2, and the deleting of either 

leads to a similar degradation of results (see Figure 10-39). As for the model with dense layers, 

the best performance, albeit subtle, is observed in combinations with reconstructed turbidity. 

The addition of conductivity does not appear to bring any significant improvement. On the other 

hand, in the model with convolution layers, the best results are obtained when conductivity is 

included, while the addition of reconstructed turbidity tends to disrupt the model, as its removal 

does not noticeably affect the results. In conclusion, the two main variables carrying the most 

information are T1 and T2, while the impact of reconstructed turbidity and conductivity remains 

rather limited. Furthermore, comparison of these results with the monovariable approach 

highlights a deterioration in performance, leading to the assessment that this approach is not 

very promising in our case. 
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Figure 10-38: F1 score results using dense layers. T3 refers to the 

reconstructed turbidity 

 

 

Figure 10-39: F1 score results using convolutional layers. T3 refers to the 

reconstructed turbidity 
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10.6. Synthesis of Chapter 10 

The autoencoder is trained to reproduce input sequences, and its performance is assessed 

using MSE. Subsequent tests focus on sensitivity to input data, exploring preprocessing 

techniques, activation functions, and input variations. The results reveal that a semi-supervised 

approach with 100% valid sequences and standardization yields optimal performance. The 

impact of using raw versus reconstructed data is discussed, with a preference for raw data.  

The second phase consists of the optimization of hyperparameters, with particular emphasis 

on setting the adequate architecture. In the context of an AE, sensitivity to the size of the latent 

space is explored. By progressively adjusting the size of this space, a positive correlation is 

observed between increasing the latent space dimension and improving performance. We also 

compare different architectures, highlighting optimal performance with three hidden layers. 

Finally, the influence of input window size on model performance is examined. Tests show 

equivalent performance between two models (A and B) for a 24-hour window.  

In the quest to improve model performance, several strategies are explored. Firstly, increasing 

the size of the database reveals that a potential increase of 30% in the database size 

demonstrates optimal performance with an expected MCC of 0.9 and an F1 score of 0.96. 

Subsequently, attention is directed towards refining classification rules, with a critical 

evaluation of the 3-sigma rule and the Precision-Recall curve approach. While the former may 

lead to excessive invalidation, the latter involves converting manual labels and assessing the 

model's sensitivity to different classification thresholds. The analysis exposes challenges in 

handling sequences with high anomaly rates. Further enhancement is pursued through an 

ensemble model approach, combining the two best-performing models using consensus. This 

approach significantly reduces false positives, achieving a precision of 0.99. Lastly, the 

implementation of pre-validation approaches proves beneficial, automatically invalidating trivial 

anomalies and reducing false positives when combined with the autoencoder classification.  

In an effort to extend anomaly detection to various sites, the direct evaluation of the best 

models on different sites' turbidity data reveals high F1 scores but relatively low MCC results. 

The models struggle to adapt to dynamics beyond the reference site, leading to errors on valid 

data. A reset of training of Model B using valid sequences from diverse sites improves overall 

results, with an MCC exceeding 0.65. Training specific models for each site further enhances 

performance, with F1 scores nearing 0.95 and MCC surpassing 0.8. Exploring a multivariable 

approach indicates T1 and T2 variables carry the most information, while the impact of 

reconstructed turbidity and conductivity remains limited.  
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Figure 10-40: Overview of Autoencoder tests and results for anomaly detection using turbidity data 
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Chapter 11. Stretching Boundaries 
of Data Validation using AI 

 

So far, our evaluation strategy has been centered on turbidity data from Saint Malo 

Agglomeration, selected for practicality and availability reasons. To establish a baseline for 

model comparison and provide input data for supervised approaches, we implemented a 

manual validation process. The validation pool exhibited a certain degree of subjectivity, albeit 

within an acceptable range to uphold the assumption that a single expert approximates the 

ground truth. Throughout our evaluation, a sole expert was retained as the reference for 

assessing model performance. However, to gauge the impact of using a different expert as a 

reference, we re-evaluated the performance of our identified best model, namely the 

autoencoder (see Section 10.6), considering the validation pool database. The objective is to 

evaluate the range of variability of the final performance (Section 11.1). Furthermore, it is 

crucial to assess the model's extrapolation capability to a completely external chronicle, as 

demonstrated by evaluating turbidity data from Cottage spanning August 1, 2022, to July 31, 

2023 (Section 11.2). This aims to examine the model's stability over time and its potential use 

without requiring specific re-calibration. Expanding our focus beyond turbidity, the wide-

ranging need for data validation in wastewater networks encompasses various sensor types. 

To validate this concept, we aimed to conduct proof of concept on other data types. Acquiring 

manually validated data poses challenges, making it impractical to repeat a specific validation 

process given time constraints. Consequently, we turned to unsupervised approaches. In view 

of the unsuitability of our best autoencoder model, which necessitates pre-selection of normal 

sequences for training, we performed our proof of concept using the Matrix Profile model. This 

unsupervised model does not require prior knowledge or training. The data studied in this 

context includes conductivity data from Saint Malo Agglomeration (Section 11.3) in addition to 

water level data from the Public Water Management Company (SPGE) of the Walloon Region 

- Belgium (Section 11.4). 

11.1. Relation between annotator agreement and model’s performance 

After examining the characteristics of annotator agreement and considering their subjectivity, 

the next step involves exploring their relationship with the model's performance. Therefore, we 

evaluate our top-performing model, which is the pre-trained autoencoder in this context, using 

ground truths (GTs) provided by different experts. The central question addressed in this 

research is the extent of the impact of varying ground truths on the reported performance of 

an algorithm.  
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Analysis of the results presented in Figure 11-1 reveals two distinct performance classes, 

Expert B and D on the one hand, and Expert A and C on the other. This classification differs 

from that highlighted in Chapter 7 , where a stronger correlation was observed between 

Experts A and D, then between B and C. This discrepancy is directly linked to the rate of 

anomalies identified by each expert, which varies between 55% and 63%. For the experts with 

the lowest rates, namely B and D, who selected the fewest anomalies, the recall is remarkably 

high, exceeding 0.88. For the other two experts, on the other hand, recall is lower, indicating a 

problem in the selection of anomalies identified. Precision, in all cases, remains of the same 

order of magnitude and satisfactory overall. However, if we compare these results with those 

of the agreement between the different experts (see Figure 7-3), we can see that the variability 

of the F1 score between the model and the different experts is similar between the different 

expert peers, with a peer-to-peer F1 score varying from 0.76 to 0.86. So, even taking into 

account the variability of the results, the model remains very interesting, freeing us from human 

bias and the heavy workload associated with daunting tasks. It should be noted that the upper 

limit of the model exceeds that of inter-expert agreement, without however being attributed to 

overfitting, given that the model has never been exposed to the expertise of at least one of the 

two experts, in this case expert A.  

 

Figure 11-1: Results of the AE model using different baselines issued from 

different experts 

Multiple ground truths are also generated at increasing levels of agreement, where τ = 1/N, 

representing anomalies marked by any annotator; 2/4 and 3/4, denoting consensus among 

half of the annotators or a majority vote; and 4/4, indicating anomalies unanimously agreed 

upon by all annotators. The results for different rates of inter-annotator agreement are shown 

in Figure 11-2. An important observation is the predictable increase in model performance 
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with inter-annotator agreement, especially in the higher recall ranges. These results indicate 

that the model is able to effectively identify the majority of anomalies without significant 

difficulty (recall = 0.94% and precision = 0.89%). However, the consensus method can 

sometimes focus on evaluating a model against the most obvious anomalies, thus providing 

overly optimistic performance estimates. However, we find that even the use of majority voting 

gives similar results. With a discord of 14% on 65% of anomalies, representing a relative 

deviation of 22%, the variance on the model's reported F1 score is 5%, which is still very 

advantageous. 

Indeed, according to [190], one factor that stabilizes reported performance is low annotation 

variance. Here, we observe relatively low variation between annotations in terms of Smyth 

coefficient and pairwise F1 score, resulting in limited dispersion of performance curves. Thus, 

choosing any of the GTs to evaluate an algorithm would result in similar reported performance. 

 

Figure 11-2: Results of the AE model using different annotator agreement’s 

rates 

In summary, beyond evaluating an algorithm on a dataset with diverse samples, it is crucial to 

assess the algorithm using multiple ground truths. The observed variance in performance 

across these diverse ground truths can serve to quantify the confidence in the model’s 

performance. Therefore, it is advisable to evaluate the inherent uncertainties in annotator 

judgments prior to assessing detection algorithms, as measures of absolute performance may 

significantly differ based on the chosen ground truth. One approach to mitigate this bias is to 

have a reference with low variance. In our case, we evaluated this by employing a validation 

pool of multiple experts and assessing the model's performance across different experts and 

levels of annotator agreement. It appears that the variability in the model's performance is of 

a similar magnitude to what can be observed among experts, with the model exhibiting a closer 
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resemblance to certain experts than they do between each other. Moreover, we observe that 

the model's performance remains relatively stable across different annotator agreements, 

allowing for performance reporting with a precision of approximately 5%. It is worth noting that 

this configuration may not always be applicable and should undergo specific tests or include 

an error margin in the reported performances. 

11.2. Model’s extrapolation to new chronicle 

Once the performance of the AE model has been validated on data from our test site, it 

becomes crucial to examine the extrapolation of this model on new data from the same site. 

To this end, we are using the Cottage turbidity chronicle from August 1, 2022, to July 31, 2023, 

which we will refer to as New Cottage. Table 52 shows the evaluation results of the model 

trained with Cottage data (from February 1, 2021, to July 31, 2022) on New Cottage data. A 

significant deterioration in results is observed, particularly in the F1 score and the MCC. 

Indeed, the model has an increased likelihood of triggering a higher number of false alarms, 

indicating that it perceives certain situations as abnormal based on its training, whereas they 

are in fact normal.  

Table 52: Evaluation results of the Cottage-trained model on the Cottage and 

New Cottage databases 

 

Given that overfitting and generalization tests on the other sites have demonstrated that the 

model is not overtrained, a legitimate question arises at this stage of the study: is this a new 

"normality" that the model previously failed to recognize? With this in mind, we took the 

opposite approach, training the model with New Cottage data and evaluating it on Cottage 

(see Table 53). Nevertheless, the result remains the same, with a deterioration in MCC and 

precision in the same fashion as the last test.  

Table 53: Evaluation results of the New Cottage-trained model on the Cottage 

and New Cottage databases 
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Indeed, these results suggest a real disparity between the two chronicles. However, when we 

examine the average turbidity, whether for valid or invalid sequences, and the overall anomaly 

rate between the two, we observe similar orders of magnitude. No sensor or configuration 

changes were reported in the logbook, making this result particularly perplexing. When we 

explore the overall representation of data and anomalies in Figure 11-3, we identify a distinct 

dispersion of valid sequences throughout the entire database.  

 

Figure 11-3: Manual validation results of Cottage turbidity data 

Figure 11-4 depicts the ratio of fully normal sequences utilized for training both models (using 

Cottage and New Cottage databases respectively) across different months. Consequently, we 

observe that the majority of valid sequences for the first model are concentrated in the first 

quarter, whereas for the second model, they are more localized in the last quarter. Notably, 

these periods exhibit distinct seasonality, which could account for the decline in results as the 

learned normality differs between the two models. 
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Figure 11-4: Ratio of normal training sequences 

Learning with the full data set would free us from this bias. The results of this evaluation are 

presented in Figure 11-5, but in the absence of another validation set, we cannot state with 

certainty that the origin of the problem is indeed this one and that we can better generalize our 

model to new chronicles. So, although using 18 months of measurements as input, pre-

selecting only 100% valid sequences could introduce a bias by providing more sequences of 

a specific configuration. Tests in this direction would require a larger database in order to draw 

conclusions about the extrapolation of our model to a new chronicle in the absence of any 

change in hydraulic configuration.  

 

Figure 11-5: Evaluation results of the model trained on the complete Cottage 

database 
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11.3. Conductivity validation using Matrix Profile 

The use of the matrix profile on conductivity data serves as a qualitative assessment, aiming 

to evaluate the algorithm's performance on a different data type and to gauge the reliability of 

the measurements. Typically, measurements of conductivity in wastewater networks are 

deemed reliable, leading to a lack of domain validation for this specific data type. 

Consequently, the absence of a target output hinders the possibility of conducting a 

quantitative evaluation of the model. As a result, our analysis focuses on the model's ability to 

accurately capture and characterize the underlying patterns within the conductivity data. The 

choice of the window size is made considering a domain knowledge on the general dynamics 

of wastewater networks. Hence, two window lengths are evaluated; fixed at 12 and 24 hours. 

The anomaly ratio is evaluated at 5% since the chronicle is not supposed to have many 

discords (see Figure 11-6).  

 

Figure 11-6: Anomaly detection on conductivity data using matrix profile 
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A close look at the matrix profile heat map reveals the absence of any outstanding anomalies. 

The range of variability in the profile is significantly reduced, indicating similarity in the data. 

We note that, for smaller window sizes, we identify an increased number of sequences 

considered anomalous. This increase is to be expected, given the reduction in the window size 

and the unchanged rate of anomalies to be detected. However, a comparative analysis of the 

two tests reveals an interesting trend: abnormal sequences appear to be aligned in a similar 

way. This convergence suggests a certain stability in anomaly detection, irrespective of the 

size of the window chosen.  

Focusing on the sequences with the highest anomaly scores, we see that the day of June 30, 

2021, stands out as the most anomalous when a 24-hour sequence is considered, presenting 

missing data over the entire period. However, this same sequence shows a significantly lower 

score when using a 12-hour time window. The reason for this is quite simple: dividing the 

sequence in two produces two totally similar sequences, which then become each other's 

closest neighbors. et this sequence is indeed abnormal. 

A closer look at the largest anomaly detected with a 12-hour sequence, occurring around 

September 14, 2021 (also reported with a 24-hour sequence), reveals consecutive drops in 

data, with a significant drop at the start of the day (see Figure 11-7). This pattern is clearly 

anomalous, and the model makes the right decision in invalidating it. 

 

Figure 11-7: Zoom in on the most abnormal sequence in the conductivity 

dataset using a 12-hours sequence 

To assess the reliability of overall results, it is essential to understand the dynamics of 

conductivity. Conductivity peaks may be associated with exceptional flow, possible seawater 

intrusion or special valve management. Conversely, a drop in conductivity may be linked to 

dilution caused by a rainfall event. In the case of Saint-Malo, all these scenarios are plausible. 
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However, to confirm a particular scenario, it is necessary to consult the logbook on the one 

hand, and the rainfall data on the other. 

It's important to note that the anomalies identified by Matrix Profile are not all of the same type 

and may concern both peaks and drops in conductivity (see Figure 11-8). Furthermore, not all 

drops or peaks are systematically invalidated, suggesting an apparent pre-selection of faults 

rather than automatic invalidation. 

 

Figure 11-8: Overall validation of conductivity data using Matrix Profile 

The general pattern of conductivity during a rainy event is illustrated in Figure 11-9. There is 

a rapid drop at the start of the event, followed by a gradual recovery to normal levels. This 

dynamic aspect is characteristic of conductivity in wastewater networks during rainfall events. 

The July 24, 2021, event was marked by the occurrence of several rainy episodes (3.8 mm of 

rain in Saint-Malo), resulting in successive drops in conductivity. However, the process of 

returning to normal maintains a constant structure. On the other hand, the event of July 27, 

2021, corresponds to a rainfall of 2 mm, with a faster but gradual return to normal. 
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Figure 11-9: Typical conductivity pattern in wastewater networks during rainy 

events 

Figure 11-10 highlights one of the anomalies detected by the Matrix Profile model. This 

anomaly is characterized by a significant increase in conductivity, rising from 500 µS/cm to 

2000 µS/cm after a rainfall event. This behavior is considered abnormal by the model, which 

can also be the case hydraulically, provided that no exceptional event took place at that precise 

moment. In the absence of external information to confirm this point, it is nevertheless 

interesting that the model flags this situation as an anomaly, in line with our objective of 

detecting any deviation from the network's usual behavior.  

 

Figure 11-10: True anomaly identified by Matrix Profile 

However, we also note that the model invalidates sequences that are entirely normal, as 

illustrated in Figure 11-11. Analysis of this sequence reveals that it follows standard dry 

weather conductivity behavior, remaining relatively stable throughout the day. This false alarm 

problem is probably linked to the number of anomalies imposed, which most certainly exceeds 

the anomaly rate inherent in the database. These false alarms are observed several times, 
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while the rest correspond to real anomalies, generally sudden and temporary drops in 

conductivity. 

 

Figure 11-11: False anomaly identified by Matrix Profile 

Furthermore, unless we undertake a thorough manual validation of the database, it is not 

possible to definitively determine the presence or absence of omitted anomalies. However, we 

have taken care to check that visible and successive drops in conductivity, which may initially 

look like faults, do indeed correspond to rainfall events, although this check is not exhaustive. 

In conclusion, the application of MP model to the assessment of anomalies in wastewater 

network conductivity data offers promising prospects, while raising specific challenges. The 

qualitative nature of this assessment highlights the model's ability to detect unusual patterns. 

However, the absence of domain-specific validation for conductivity data limits the possibility 

of a quantitative assessment, but the model's performance in detecting real anomalies, such 

as sudden drops in conductivity, is encouraging. Although, the presence of false alarms 

underlines the need for thorough validation and suggests sensitivity to model parameters, 

particularly the anomaly rate. 

11.4. Water level validation using Matrix Profile 

The last adaptability tests have been carried out to detect anomalies in the processing of water 

level data. This data come from a storm overflow in the Waremme wastewater network, under 

the responsibility of the SPGE - Wallonia. The information collected includes water level 

measurements upstream and downstream of the spillway, obtained using two US sensors. The 

period covered by these data extends from May 7, 2021, to August 21, 2022. In the absence 

of manual validation by an expert, we opted to use the Matrix Profile model. Being 

unsupervised, this model dispenses with the need to pre-select sequences for training. 
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Figure 11-12: Spillway configuration with the localization of the US sensors - © 

SPGE 

The first step in the analysis is to examine the acquisition frequencies of the various sensors, 

revealing irregular patterns. Subsequently, a pre-processing step was implemented to 

resample the data at a regular frequency of 1 minute, thus aligning the two sensors. For fine 

data, a linear interpolation approach was used. 

Given the absence of the output target, the anomaly detection process involves exploring the 

hyperparameters of the Matrix Profile model via a grid-search. This search encompasses 

variations in the number of anomalies from 1 to 20, and in the window size from 2 hours to 72 

hours, with a step of 2 hours. The concatenation of results involves evaluating, for each 

measurement, the number of models that identify it as abnormal. This assessment is then 

visualized using a heat-map, where color shades ranging from blue representing normality to 

red signifying an anomaly confirmed by several models, allow visual interpretation of the 

results.  

Figure 11-13 shows the evolution of results as a function of the number of anomalies detected 

using data from Sensor 1. Overall, a satisfactory stability is observed from a number of 

anomalies equal to 10. The additional anomalies identified appear to be more related to fault 

limits or have relatively low scores, indicating that they are not frequently selected by the 

various models. Analysis of the newly added defects reveals that they are no longer accurate. 

According to domain expertise and hydraulic analysis, these sequences are quite normal. The 
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model identifies them only because of the constraint imposed to select a specific number of 

defects. 

 

Figure 11-13: Prioritization of anomalies by concatenating results from different 

window sizes 

Figure 11-14 shows the results for a number of anomalies set at 10. When these anomalies 

are examined in correlation with the logbook and exogenous data, it emerges that they are 

legitimately identified as anomalies. 

Figure 11-14: Concatenation of data validation of sensor 1 results using a multi-

window size approach and k = 10 
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Here's an in-depth look at two specific anomalies. On the one hand, Figure 11-15 highlights 

the most flagrant anomaly according to various models with different window sizes. The signal 

is quite noisy, making the dry weather structure difficult to perceive, and a slight downward 

trend is observed. This anomaly is particularly relevant in this context, as it is subtle and 

corresponds to anomalies that are difficult to identify combining progressive drift and a noisy 

signal. 

 

Figure 11-15: Zoom 1: The anomaly with the highest score using a multi-

window size approach 

Figure 11-16 shows the main anomaly detected during a rainy period. At first glance, the 

structure does not appear aberrant, especially when compared to that during rainfall. However, 

it refers to the floods that hit Belgium from July 13 to 16, 2021. This example illustrates an 

anomaly linked to the phenomenon measured, representing an event never observed before. 

Still, it's an interesting event to identify. 

 

Figure 11-16: Zoom 2: The main anomaly during the rainy weather using the 

multi-window size approach 

On the other hand, Figure 11-17 shows the result with k=10 for data from sensor 2. It can be 

seen that all the anomalies identified are located in areas with no spills, where water levels are 

zero. However, these sequences are not unique, which makes it curious that the model flags 

them as anomalies in view of its similarity join principle. 
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Figure 11-17: Concatenation of data validation of sensor 2 results using a multi-

window size approach and k = 10 

In fact, this situation is linked to the definition of the algorithm for calculating the distances 

between the various sequences using Pyscamp. In the case of flat subsequences, these 

regions have a mean-centered norm of 0, which means that their normalized Euclidean 

distances z are undefined. Totally flat regions do not correspond to any subsequence and will 

return NaN as the distance to the nearest neighbor. This constraint also applies to regions that 

are almost flat. Consequently, the application of Matrix Profile to this type of sequence is not 

suitable. Using this model on data with only zeros or constant values can be problematic. For 

example, for discharge data, it would make more sense to select only sequences during spills 

for analysis. However, in this particular case, a hydraulic and manual analysis of the 

downstream spill data indicates that the data are quite valid, which prevented us from putting 

this sequence pre-selection strategy into practice. 

In conclusion, the adaptability tests conducted for anomaly detection in water level data have 

provided valuable insights. The Matrix Profile model demonstrated stability in identifying 

anomalies. The approach of averaging the grid search results overcomes the bias of window 

size tuning. However, an important anomaly number k can involve additional non relevant 

anomalies, highlighting the importance of domain expertise in interpreting results and choosing 

this parameter. Moreover, the model's sensitivity to flat regions and the challenges associated 

with undefined distances in such cases were discussed. Finally, the Matrix Profile model 

presents a valuable tool for anomaly detection in water level data, offering insights into both 

subtle and significant deviations. While challenges exist in handling specific data patterns, the 

model's adaptability and interpretability make it a promising approach for monitoring and 

detecting anomalies in water level datasets.  



Chapter 11. Stretching boundaries of data validation using AI 

Page 310 of 356 

 

11.5. Synthesis of Chapter 11 

The aim of this chapter was to consolidate our best results, obtained with the AE model, by 

focusing on the reliability of the performance metrics and the transposability of the model over 

time. In the first part, we evaluate the impact of different ground truths provided by different 

experts on the performance of the pre-trained autoencoder model. Despite variations in the 

classification results, the model remains interesting for mitigating human bias and workload. 

Model performance improves with higher inter-annotator agreement, but precautions are 

needed due to the risk of over-optimistic estimates with consensus methods. Performance 

stability is linked to low annotation variance, and the use of an expert validation pool enables 

confidence in model performance to be quantified at around 5%. 

In addition, we examined the extrapolation of the pre-trained AE model to new data from the 

same site, noting a deterioration in results, particularly precision. Despite similarities between 

the input chronicles, the analysis reveals uncertainties, notably linked to the prior selection of 

100% valid sequences. More conclusive tests would require a larger database to assess the 

extrapolation of the model to new chronicles. 

We have also explored the adaptability of our models to other types of data, such as 

conductivity and water level. In the absence of references, we turn to unsupervised models, in 

particular the Matrix Profile model. This section highlights the promising prospects of MP in the 

assessment of conductivity anomalies, despite quantitative limitations due to the lack of 

domain-specific validation. MP's results on water level data indicate its stability in detecting 

anomalies, despite challenges related to sensitivity to flat regions and undefined distances in 

some cases. Hence, the MP model is considered a valuable tool for detecting anomalies in 

water level data, offering information on both subtle and significant deviations.  
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Synthesis of Part III 

This section offers concrete elements in response to our problem of validating wastewater data 

using models from our benchmark (see Section 5.2) . First, we focus on the challenges 

involved in obtaining a ground truth database and highlight the importance of a validation pool 

to assess the biases introduced by manual validation in artificial intelligence models. Pairwise 

F1 scores are calculated to assess agreement between experts, resulting in an overall mean 

F1 score of 0.81. 

Secondly, we examine the evaluation of the different models using the various tests described 

in Section 5.2. All three models performed well in specific contexts, but their strengths and 

weaknesses varied according to data characteristics and evaluation conditions (see Table 54). 

The autoencoder outperforms in anomaly detection compared to the two other models. But 

this does not prevent Matrix Profile from proving effective for data sets with a low anomalies 

rate, requiring less pre-processing and selection of input data. ResNet, using a regression 

approach, stands out for its accuracy in predicting anomaly rates, although adapting it to new 

sites remains a challenge, in addition to the difficulties associated with the practical 

interpretation of this result and the model's supervised approach, requiring rigorous validation. 

In conclusion, the final chapter consolidates the best results obtained with the autoencoder 

model. The impact of various ground truths on the model's performance is assessed, 

highlighting the model's ability to mitigate human biases. Model extrapolation to new data is 

examined, revealing challenges and uncertainties. Model adaptability to other data types, such 

as conductivity and water level, is explored using Matrix Profile, showing promising prospects 

for anomaly detection in wastewater datasets. 
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Table 54: Overview of model’s strengths and weaknesses for anomaly detection 

in wastewater data 
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Conclusion and perspectives 
 

Retracing steps : A comprehensive overview 

This thesis focused on the validation of wastewater network data and the detection of 

anomalies using artificial intelligence techniques. Although this discipline has been widely 

studied in other fields, to our knowledge, it has never been tackled in the context of data 

generated by a real sewer network. Thus, the first complexity inherent in this research lies in 

the creation of the database! 

Indeed, due to regulatory and confidentiality constraints, obtaining an open-access database 

for this type of structure is arduous. In this context, we used turbidity data from the SMA 

wastewater network (Chapter 4). This data were collected at the same time as the thesis 

progressed. The choice of this database is based on operational considerations such as 

regular sensor monitoring with operational feedback and physical redundancy, as well as 

scientific considerations, as turbidity data presents significant challenges due to its dynamics. 

However, to assess the performance of any model, it is crucial to compare it with the ground 

truth! 

To this end, it was essential to define a manual data validation approach based on domain 

expertise, given the absence of formalized guidelines in the literature for the specific validation 

of this type of data. Nevertheless, this validation task proves tedious, leading to validation 

errors and remaining subjective, depending on the expert's interpretation, despite our efforts 

to objectify a large part of the process through a filtering step. 

Given these constraints, how reliable is the labeling of a given expert? 

To answer this question, we set up a validation pool made up of four experts with solid 

experience in the operation of wastewater systems and trained in such a way as not to 

compromise their subjectivity (Chapter 7). The assessment of annotator agreement relies on 

addressing the following questions: 

- To what extent do the experts concur? 

- Does the agreement among experts transcend random chance? 

- Does disagreement among experts compromise the reliability of the reference? 

- Are there any expert outliers or expert duplication? 
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By obtaining positive answers to these inquiries through an analysis comparing agreement 

levels among different experts, it becomes plausible to assert that the outcome from a single 

expert aligns closely with the ground truth. This premise was maintained throughout the 

remainder of the study. Additional tests were conducted to assess the model's sensitivity to 

the chosen reference for evaluation, further substantiating these findings. Nonetheless, it is 

crucial to acknowledge that this evaluation is contingent upon a fundamental underlying 

assumption: the reference originates, at least from a part, from the expert domain analysis, 

serving as a cornerstone for the study's conclusions. 

Benchmarking models  

After collecting the data and its labeling, our focus shifted to the selection of models for 

evaluation. It should be noted that a wide range of anomaly detection models are listed in the 

literature. In this thesis, we have deliberately opted for an in-depth examination of three specific 

models. This selection was made with the aim of discerning and comparing the different 

validation approaches adopted for each of these models. 

 

Figure 1: Benchmark of the evaluated models 

Table 55 summarizes the optimal results obtained following a process of adjusting 

hyperparameters and implementing strategies to improve results, aimed at remedying the 

specific shortcomings of each model. The comparative study of anomaly detection models 

highlights some interesting results, while underlining the need to consider the specific context 

and issues associated with each approach. 
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Table 55: Best results of the evaluated models using 24-hours sequences 

Model Approach Precision Recall F1 score MCC 

Matrix Profile 
Reconstructed T with 

pre-validation 
0.81 0.71 0.76 0.71 

ResNet 
Regression with a 

threshold at 15% 
0.76 0.78 0.77 0.66 

Autoencoder 

Ensemble model 

invalidating a sequence 

at an invalid time step 

0.94 0.98 0.96 0.91 

Firstly, the autoencoder (AE) stands out for its promising performance, but its use requires a 

semi-supervised approach. This constraint imposes a pre-analysis of the sequences, to 

provide a sufficient sample of valid data. Exhaustivity (i.e. labelling each and every available 

data as either valid or invalid) is not necessary as invalid data are of no use for training 

purposes. Actually, this sample of valid data can be provided automatically in the case when 

redundant sensors are implemented. As the depth of the model increases, so does the learning 

capacity, requiring more input sequences. However, it should be noted that these results are 

bounded, and beyond a certain complexity (in our case, with three hidden layers) and a defined 

number of sequences, the model stops learning, or even risks overfitting. Constant vigilance 

with regard to this constraint is therefore necessary. As output, the autoencoder generates a 

reconstruction of the input sequence, but validation requires the establishment of a 

classification threshold. Crucially, the best results are obtained by invalidating a sequence as 

soon as an invalid time step is detected. However, this approach can be very penalizing in an 

operational context, underlining the importance of carefully considering these aspects when 

using the autoencoder in practical applications. 

In contrast, the use of the ResNet model is based on a fully supervised approach. This 

approach proves to be particularly demanding during the learning phase, requiring rigorous 

manual validation over a representative period. The quality of the model's output depends 

closely on that of the input, which means that the model learns all the biases and variances 

inherent in the reference. Due to its supervised nature, the ResNet model is sensitive to 

imbalance between the two classes. In order to optimize learning, it is necessary to have an 

enhanced database, thus ensuring equivalent weighting of the two classes during the learning 

process. However, this assumption can be complex to achieve in the context of anomaly 

detection, where defects are generally in the minority. Despite these challenges, when all the 

learning conditions are met, the ResNet model can produce interesting results, particularly with 

the application of a regression approach. This strategy bypasses the problems associated with 
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unbalanced classes by providing an anomaly rate per sequence. However, to move on to 

formal classification, it is necessary to define a classification threshold beyond which a 

sequence is considered abnormal. 

Furthermore, in a totally unsupervised approach, Matrix Profile offers the possibility of skipping 

the learning phase and selecting the most relevant sequences for this stage. However, this 

mode of operation has one major limitation: the absence of a pre-saved model that can be 

directly deployed for new data. Each time it is used, the model must revisit the chronicle (or 

possibly a representative period) to compare it with the new sequences. While this approach 

is effective, it loses accuracy as soon as the anomaly rate in the database becomes significant, 

or when repetitive defects appear. Despite these limitations, the Matrix Profile model remains 

interesting in terms of calculation time, especially in situations where no reference is available. 

What's more, its validity has been confirmed by tests on other types of data (conductivity and 

water level), reinforcing its usefulness in the field of wastewater network data validation. 

And what about the operational dimension? 

Let's review the operational context of this study: we are dealing with aggressive and loaded 

wastewater networks, equipped with multiple sensors. Here, we are focusing in particular on 

turbidimeters, with a data acquisition frequency of 5 minutes. Globally, wastewater quality 

varies considerably and rapidly. In the absence of precipitation, we observe characteristic 

patterns on a daily and weekly scale. During rainy events, these dynamics become more 

variable, depending on the intensity and duration of precipitation. 

On the other hand, the stakes and resources invested in this instrumentation are modest 

compared to other fields such as air quality or cybersecurity, resulting in a higher risk of failure 

and lower reliability of the data collected. Thus, we can observe a variety of faults, which can 

be either measurement errors or contaminated data not representative of the phenomenon of 

interest. 

Conversely, we distinguish between local anomalies, which are brief and often trivial, and 

sequential anomalies, which are more prolonged and subtle. In this study, models are 

evaluated to validate data post-hoc, taking into account the various possible anomalies. On 

the one hand, we seek to perform validation on the scale of each measurement (time step by 

time step), and on the other to explore validation by sequence, which is more relevant for 

detecting sequential anomalies. This approach may also be of interest from an operational 

point of view, particularly when it comes to carrying out daily validation, useful for drawing up 

compliance and operating reports, for example. 
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The three models evaluated operate by processing fixed-length sequences, enabling them to 

take into account the context of each measurement. This approach recognizes that faults in 

wastewater networks rarely manifest themselves as isolated values, but rather as a series of 

abnormal values. It should be noted that the length of these sequences can vary in practice. 

Thus, by globally invalidating sequences of fixed length, the models inevitably generate false 

positives at a time step of 5 minutes. 

To balance this constraint with operational objectives, the evaluation of the various models 

was based on daily sequences. However, it is important to point out that in some cases, the 

numerically optimal window size may differ. For all the implementations provided, the models 

are supported by a pre-validation step which identifies all trivial anomalies (missing data, out-

of-range and blocking). 

From an operational point of view, the process begins by dividing the data into 24-hours 

subsequences. The choice of the optimum model for validating turbidity data in a wastewater 

network depends on the issues at stake and the requirements: 

1. If the site operates in a standard way, like our typical site: 

a. If the aim is to use AI to pre-select faults to be submitted to the expert: 

i. MP can be used by setting a threshold to identify the number of invalid 

sequences according to the operator's time constraints. This enables 

defects to be prioritized. The operator can adjust the number of 

sequences as required until he finds that the sequences identified are 

no longer outliers. 

ii. However, if the site has a high rate of anomalies, the use of MP can be 

inaccurate and generate many false negatives. 

b. If the aim is to detect the slightest variation in the input data: 

i. AE can be used by applying a classification threshold based on MSE of 

the reconstruction established with the model trained on Cottage data. 

This threshold invalidates a sequence as soon as a time step is invalid. 

ii. The expert can re-examine these sequences to validate those that do 

not appear to be outliers and/or use hardware redundancy, where 

applicable, to validate the sequences consolidated by the two probes. 

c. If the objective is to have a an operational, yet accurate validation : 

i. ResNet can be used with a predictive approach to the anomaly rate per 

sequence. Switching to binary validation involves applying a threshold 

at which a sequence is considered invalid, generally around 4.5 hours, 

based on the results of Cottage data. 
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ii. ResNet validation can be supported by redundancy validation to reduce 

false positives. 

2. If the site operates atypically, model recalibration may be required: 

a. MP can be used to identify the most aberrant anomalies with subsequent 

prioritization and expert intervention. 

b. MP can also be used to identify sequences representing patterns in order to 

feed another model, such as AE. Manual validation by an operator or 

exploitation of hardware redundancy can also be used to select normal 

sequences representative of dry and rainy weather operation. A transfer 

learning can be performed to learn the new normal data, but this requires the 

establishment of a classification threshold. 

c. If exhaustive and reliable manual validation has been carried out over a 

representative period, a transfer learning using the ResNet model can be 

performed. 

For the validation of other types of data, further proofs of concept are required, particularly for 

the AE and ResNet models, although in theory they may work if the functioning and patterns 

are similar to those of turbidity. The differences will lie mainly in the classification threshold to 

be applied. MP has already been tested on water level and conductivity, showing that the limit 

of this model is generally the imposed anomaly rate, which must be determined by experience 

or assessed by an operator as they go along. 

Acknowledging the Study's Limitations 

At this point of this research work, it is imperative to recognize the limitations inherent in this 

study to ensure an informed interpretation of the results obtained. Firstly, the need to 

standardize the input dataset emerges as a crucial consideration for further comparison of 

anomaly detection models. Currently, the different sizes of the input dataset can introduce 

potential biases, making direct comparison of model performance complex. By homogenizing 

the data set, it will be possible to strengthen the validity of comparisons between models, 

offering more reliable insights into their relative effectiveness. However, each model requires 

a different selection of input data: Matrix Profile scans the entire input chronicle, while 

Autoencoders uses only valid sequences for training. Thus, it would be difficult to erase this 

bias if we want to benefit from the advantages of each model. So, standardization is more a 

question of the validation set.  

Another limitation to consider is the size of the database used, underlining the need for 

significant expansion, accompanied by a separate validation set. The size of the database has 

a direct impact on the generalizability of the results obtained. A larger dataset would enable a 
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more exhaustive exploration of model performance under a variety of conditions, thereby 

reinforcing the robustness of the conclusions drawn from this study. The introduction of a 

separate validation set would also help to mitigate the risks of over-fitting the models, ensuring 

a more accurate assessment of their ability to generalize to new data. 

Furthermore, the composition of the validation pool, characterized by an even number of 

experts, raises questions about consensual decision-making during the evaluation of annotator 

agreement. The use of an even number of experts can potentially lead to situations of 

indecision, as it accounts for 15% of the identified anomalies in our case study. It is noteworthy 

to highlight that having 4 experts remains more advantageous than having 3. These findings 

do not cast doubt on the reliability of the expert agreement evaluation process, especially since 

the results demonstrate that the database is highly exploitable in its current state by validating 

that the opinion of a single expert (which was used for evaluating various models) closely aligns 

with the unknown ground truth. Nevertheless, for enhanced precision, employing a higher and 

odd number of experts could be considered.  

Mapping future perspectives 

At this stage, three distinct avenues are envisaged in the context of data validation, which map 

out the landscape of future research. Each of these areas is of particular importance and has 

its own specific considerations. 

Exploring recurrent patterns:   

A significant advance in anomaly detection can result from an evaluation of recurrent neural 

networks (RNN) and recurrent autoencoders (AE-RNN).  This is of particular importance to 

ensure optimal adaptation of models to the intrinsic temporal nature of the data, thus promoting 

robust and adaptive performance in anomaly detection. 

Data augmentation models: 

In order to improve the robustness of anomaly detection techniques, a thorough exploration of 

data augmentation models is essential. The integration of these models offers the possibility 

of enriching limited data sets, thereby enhancing the performance of detection models. By 

including this dimension, the research aims to increase the generalizability of the models while 

guaranteeing their ability to handle scenarios where the available data is intrinsically restricted. 

Extension to other types of data, especially velocity: 

A major challenge is to extend the application of anomaly detection models to a variety of data 

types, including velocity, which is a particularly complex parameter in wastewater networks. 

Exploring this avenue offers the opportunity to broaden the scope of the models, subjecting 
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them to diversified challenges and thus fostering a deeper understanding of their adaptability. 

This approach will help strengthen the validity and relevance of detection models in real 

operational contexts. 

Once data validation has been thoroughly explored under various approaches, a crucial 

question arises regarding the management of invalid data. This opens up a new perspective 

on the field of: 

Data reconstruction: 

The challenge here lies in the ability to accurately and reliably restore data sequences 

identified as invalid or abnormal by validation models. Data reconstruction is positioned as an 

essential research field, involving the development of sophisticated methods to replace 

suspicious values with plausible data while preserving the overall integrity of the time series. 

This goes beyond the simple identification of anomalies, offering a proactive solution for 

optimal use of data in wastewater management systems. Future perspectives in this area 

involve the exploration of advanced reconstruction techniques, such as sequence generation 

models and deep learning approaches. The successful reconstruction of the data would be a 

significant step forward in improving the quality and usefulness of the information collected, 

thus consolidating the foundations for effective management of wastewater networks. 

 

In addition, it is imperative to recognize that wastewater systems are constantly evolving 

entities, characterized by the frequent addition of new connections and new control structures. 

These structural changes can have a significant impact on normal hydraulic operation, 

generating a constantly changing dynamic. Thus, the last crucial research track to explore is: 

Artificial intelligence adaptable to network evolutions: 

The prospect of adaptable artificial intelligence is an innovative and crucial area of research. 

The potential dynamics of a wastewater network, likely to evolve over time, require models 

capable of adjusting to new configurations. This concept underlines the need to explore 

methods for automatically adapting models to structural changes in the network. By 

anticipating and integrating this flexibility, the research aims to ensure the relevance and 

effectiveness of anomaly detection models in a constantly evolving operational context. 
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Résumé étendu 
 

1. Introduction 

1.1. Contexte et enjeux 

La surveillance et le suivi du fonctionnement des réseaux d'assainissement revêtent une 

importance cruciale. D’un point de vue environnemental, la gestion adéquate des eaux usées 

est essentielle pour prévenir la pollution des milieux naturels engendrée par les rejets urbains. 

Cet objectif est appuyé par le cadre réglementaire où le suivi des réseaux d'assainissement 

est exigé pour assurer la conformité aux normes environnementales. Les organismes de 

régulation (Agences et/ou Police de l’Eau en France par exemple) imposent des critères stricts 

pour garantir que les rejets d'eaux usées soient quantifiés et maîtrisés. Sur le plan 

opérationnel, le suivi des réseaux d'assainissement permet d'assurer un fonctionnement 

efficace des installations et du réseau de collecte. Tandis qu’en parallèle, ce suivi offre une 

base de données essentielle pour les études techniques et pour la recherche. En somme, 

suivre de près le fonctionnement des réseaux d'assainissement est une démarche 

multidimensionnelle qui concilie des préoccupations environnementales, réglementaires, 

opérationnelles et scientifiques pour garantir une gestion durable [10]. 

Ainsi, l'utilisation de capteurs joue un rôle central dans cette collecte d’information avec des 

données portant sur de nombreux paramètres tels que le niveau d'eau, la vitesse d'écoulement 

et la qualité de l'effluent [11]. Cependant, l'environnement chargé et agressif des réseaux 

d'assainissement peut poser des problèmes de dysfonctionnement, tels que le colmatage, la 

corrosion, les défaillances électroniques et autres. Ces défauts se répercutent ainsi sur la 

qualité des données collectées [14]. Les données invalides peuvent entraîner des 

conséquences significatives, impactant la fiabilité des informations utilisées dans les études 

hydrauliques, la conformité réglementaire et la gestion opérationnelle. Il est donc primordial 

de s’assurer de la fiabilité des données avant toute exploitation.  

Les moyens actuels de validation des données impliquent des processus de validation 

automatisés et/ou manuels. Les premiers sont certes rapides, mais restent généralement 

superficiels par rapport au panel des éventuelles anomalies, faisant appel principalement à 

des techniques de traitement de données (calcul de l’écart type, dépassement de seuils, 

analyse de l’étendue des mesures) [16]. Par ailleurs, la validation manuelle nécessite 

l’intervention d’un opérateur qualifié pour évaluer de manière globale la vraisemblance des 

résultats obtenus. Cette approche profite des compétences humaines de reconnaissance des 

motifs caractéristiques et de mémorisation des défauts passés. Cependant, elle hérite 
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également de ses carences qui sont la subjectivité de l’opérateur et l’erreur humaine. D’un 

point de vue opérationnel, cette approche s’avère lente et coûteuse : elle nécessite environ 

deux heures de temps homme pour la validation d’une chronique de turbidité d’un mois [17]. 

L’objectif de ce travail de recherche est d'explorer le domaine de l'intelligence artificielle (IA) 

pour améliorer le processus de validation des données dans les réseaux d'assainissement. Il 

s’agit d’une discipline d’exploration de données qui est largement étudiée et déployée dans 

différents domaines, tels que la détection d'intrusions, la détection de fraudes et autres. Elle 

consiste à identifier des éléments ou évènements qui différent significativement des données 

« normales » (habituelles). Alors que la validation des données par l'IA est courante en 

hydrologie (cf. Appendix D), l'application spécifique aux réseaux d'assainissement urbains est 

un domaine qui n'a pas encore été pleinement évalué. Cette thèse vise donc à explorer les 

outils d'IA pour affiner le processus de la validation des données dans le contexte des données 

issues d’un réseau d’assainissement. 

1.2. Objectifs et contenu de la thèse 

La motivation de ce travail de recherche découle du fait que l'installation de capteurs dans les 

réseaux d'assainissement est devenue une pratique en expansion pour assurer une gestion 

rigoureuse et une interprétation directe des phénomènes en cours. Cependant, en raison des 

volumes substantiels de données générées par ces capteurs, collectées à des intervalles de 

temps variables (allant de la minute à la journée) et acquises dans des environnements 

difficiles, les approches de validation classiques atteignent leurs limitations [18]. La 

contribution de cette thèse réside dans son accent sur la validation automatisée des données 

de mesure d'un réseau d'assainissement via des techniques d'IA. Il est important de souligner 

que cette validation est exclusivement réalisée à postériori, une décision justifiée par les 

besoins prévalents, qui s’opèrent souvent en temps différé. 

Pour mettre en œuvre et évaluer ces outils, nous avons utilisé des données de pollution du 

réseau d'assainissement de la Communauté d'Agglomération de Saint-Malo (SMA). Notre 

choix de ces données est motivé à la fois par une perspective opérationnelle, les données de 

SMA représentant une base de données accessible, et par une perspective scientifique, les 

données de pollution étant parmi les plus difficiles à valider en raison de leur dynamique rapide 

et fluctuante, en particulier pour les turbidimètres. 

La thèse est structurée en trois parties. L’état de l’art examine les méthodologies existantes, 

les défis et les perspectives de validation des données par l'intelligence artificielle. La section 

Matériel et méthodes présente la base de données utilisée et une gamme de modèles 

d'intelligence artificielle à évaluer pour la détection des anomalies. Tandis que la section 
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Résultats et analyses présente les résultats des tests, l'évaluation des modèles, et une analyse 

comparative des différentes approches. 

2. État de l’art  

2.1. La validation des données en assainissement 

La détection de défauts et la validation de données hydrométriques (pollution mais surtout 

débit) mesurées en continu14 font l’objet de nombreux travaux de recherche depuis une 

trentaine d’années [240], [44]. Ils mettent en œuvre des techniques statistiques plus ou moins 

élaborées, y compris des méthodes de prédiction (filtres de Kalman, ARMA) ou des modèles 

à base physique permettant de créer et d’exploiter une redondance virtuelle [39], [63], [64].  

La mise en œuvre de ces méthodes dans un cadre opérationnel de surveillance des réseaux 

de collecte reste encore limitée. En pratique, une validation automatique basée sur des 

caractéristiques locales du signal est utilisée en appliquant des critères assez simples, voire 

triviaux (valeurs hors gamme ou constantes). Cette (pré-)validation est souvent complétée par 

une analyse plus globale par un expert humain [16], [240], [241] permettant d’obtenir en temps 

différé un diagnostic plus poussé.  

Si les processus de validation ont été bien formalisés pour la surveillance de la qualité de l’air 

[188], ils restent encore empiriques dans le domaine de l’hydrométrie urbaine. 

2.1.1. Pré-validation des données 

L’étape de pré-validation est impérative pour identifier rapidement et automatiquement les 

anomalies triviales. Elle englobe une série de vérifications standards, notamment la recherche 

de valeurs manquantes [42], l'identification des mesures hors gamme [16], la détection des 

anomalies de saturation/blocage [43], et l'identification de gradients importants dans les 

données [16]. Ces vérifications doivent prendre en compte les capacités spécifiques du 

capteur en question et des conditions locales de fonctionnement. Dans le cas où un site est 

équipé avec deux capteurs redondants (par exemple, deux capteurs de turbidité), une analyse 

comparative de leurs mesures et de leurs comportements est effectuée pour identifier des 

éventuels divergences. Lorsque la différence dépasse une limite prédéterminée, les données 

associées sont considérées comme douteuses, nécessitant un examen manuel 

supplémentaire par un opérateur. 

 

14 A pas de temps courts et réguliers (en moyenne 5 minutes) 



Résumé étendu en français 

Page 328 of 356 

 

Le processus de pré-validation utilise des techniques d'analyse statistique de base et des 

algorithmes avancés pour identifier des irrégularités locales. Bien que ces tests soient souvent 

déjà mis en œuvre dans les outils de supervision, il est important de noter qu'ils représentent 

le strict minimum. La gamme des défauts possibles est bien plus large, incluant des éléments 

tels que le biais, la dérive, la dégradation de la précision, et d'autres facteurs. La complexité 

de ces défauts est substantielle, les rendant plus exigeants et difficiles à identifier par des 

moyens conventionnels. Détecter ces problèmes nécessite donc des approches plus 

sophistiquées et techniquement avancées [45]. En somme, le processus de pré-validation 

constitue une étape cruciale dans l'assurance de la qualité des données, préparant le terrain 

pour des considérations plus approfondies par un opérateur métier. 

2.1.2. Validation experte des données 

La phase de validation, qui succède à la pré-validation, se distingue par son approche plus 

globale par rapport à l'évaluation locale des signaux individuels des capteurs. La pré-validation 

se concentre sur l'analyse de la cohérence des signaux de chaque capteur, tandis que la 

validation adopte une perspective étendue, impliquant souvent plusieurs capteurs, afin 

d'identifier des anomalies subtiles et complexes qui pourraient ne pas être évidentes pendant 

la pré-validation.  

L'approche de validation manuelle implique un opérateur compétent, qualifié d'expert, chargé 

d'examiner les chroniques à la recherche de tendances, de ruptures et de motifs, garantissant 

ainsi une validation précise et rigoureuse des données. Cependant, la validation manuelle 

présente des limites, notamment le besoin d'expertise, les coûts en temps et ressources, la 

subjectivité, les erreurs humaines et la détection limitée des anomalies complexes, surtout 

dans le cas de grands ensembles de données. 

Pour surmonter ces limitations, des approches automatisées, peuvent être adoptées. Des 

outils statistiques, tels que les méthodes basées sur la distribution des données et les modèles 

de régression, sont couramment utilisés [48]. Les méthodes basées sur la distribution 

gaussienne ajustent un modèle statistique aux données, identifiant les anomalies comme des 

instances présentant une faible probabilité selon le modèle. Les modèles de régression 

évaluent les résidus pour déterminer les scores d'anomalie. Or, il convient de noter que ces 

méthodes sont rarement adaptées à la structure spécifique des données issues des réseaux 

d’assainissement, qui sont non-stationnaires avec des saisonnalité multiples et des séries 

temporelles partiellement auto-corrélées [66], [69], [73]. Par ailleurs, la modélisation 

hydraulique, qu'elle soit numérique en 3D (à l’échelle de l’ouvrage) ou 1D (à l’échelle du 

réseau), offre une compréhension approfondie de la dynamique du système d'assainissement. 

Les données simulées générées par ces modèles peuvent être comparées aux données 
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réellement mesurées pour la validation. Cependant, la modélisation présente des limites, 

notamment les coûts, le besoin d'expertise technique et les erreurs potentielles liées à la 

structure du modèle et à la définition des conditions aux limites. La modélisation de la pollution, 

en particulier, reste un défi [74], [75], [76].  

Ainsi, la validation des données dans le contexte des réseaux d'assainissement reste un défi 

complexe, nécessitant la recherche de nouvelles approches mieux adaptées au contexte 

opérationnel et qui permettent de vérifier la fiabilité des données tout en optimisant les 

ressources mis en œuvre.  

2.2. La détection des anomalies avec l’intelligence artificielle 

L'utilisation de l'intelligence artificielle (IA) pour la détection d'anomalies en hydrologie urbaine 

a été motivée par des incidents majeurs tels que la contamination bactériologique des réseaux 

d'eau potable en Écosse et en Turquie [115]. Ainsi, la revue de littérature se concentre 

principalement sur la surveillance de la qualité de l'eau en rivière et dans les réseaux de 

distribution, avec un accent sur la détection de risques de contamination (cf. Appendix D). Les 

études liées aux eaux usées représentent une part modeste, se concentrant principalement 

sur les stations de traitement des eaux usées. Les approches prédominantes dans la détection 

d'anomalies en hydrologie urbaine peuvent être classées en 3 sous-catégories : 

2.2.1. La classification supervisée 

Les approches de classification supervisée reposent sur l'apprentissage d'une frontière 

discriminante à partir de données étiquetées pendant la phase d'entraînement, puis sur 

l'utilisation de ce modèle pour classer une instance de test comme normale ou anormale 

pendant la phase de test. Des modèles traditionnels d'apprentissage supervisé, tels que les 

machines à vecteurs de support [123], les forêts aléatoires [124]  et le k-Nearest Neighbors 

[127], sont couramment utilisés pour cette tâche. Les modèles traditionnels sont bien 

documentés mais présentent des controverses quant à leur performance. Ils peuvent souffrir 

de surajustement et nécessitent une distribution connue des données pour une généralisation 

efficace [72]. Pour surmonter ces défis, la communauté scientifique se tourne vers des 

approches plus sophistiquées, comme les réseaux neuronaux profonds. 

Les DNN, tels que le perceptron multicouche (MLP) et les réseaux neuronaux convolutifs 

(CNN), sont de plus en plus adoptés en raison de leur performance. Le MLP est un réseau 

neuronal entièrement connecté, adapté à la classification temporelle avec l'utilisation de 

fenêtres glissantes pour maintenir les dépendances temporelles [135]. Les CNN, bien que 

développés pour le traitement d'images, sont efficaces pour capturer les dépendances 

temporelles dans les séries chronologiques [134]. 
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2.2.2. Les approches non supervisées de clustering  

Lorsqu'il n'est pas possible d'accéder à des étiquettes dans les ensembles de données, ce qui 

est souvent le cas en raison des coûts associés à leur obtention, les approches non 

supervisées pour la détection d'anomalies sont fréquemment utilisées. Ces algorithmes 

opèrent sans étiquettes préalables, identifiant des motifs inhabituels dans les données brutes. 

Les méthodes de détection d'anomalies non supervisées utilisent des modèles tels que One-

Class Support Vector Machine [144] et Isolation Forest [148] pour identifier des motifs 

anormaux. 

Ces approches, bien qu'efficaces dans de nombreux cas, peuvent ne pas capturer 

adéquatement les dépendances temporelles dans les séries chronologiques, limitant leur 

performance pour détecter des anomalies locales ou influencées par des caractéristiques de 

haute dimensionnalité [17]. 

2.2.3. Les approches de prédiction 

Pour aborder le problème de la détection d'anomalies dans les séries temporelles, une autre 

approche consiste à utiliser des modèles de prédiction. Au lieu de rechercher directement des 

anomalies, cette méthode prédit ce qui devrait être attendu dans un ensemble de données et 

compare ces prédictions avec les données réelles. Si les prédictions correspondent aux 

données réelles, les observations sont considérées comme valides. Cependant, si les 

données réelles divergent des prédictions, cela peut indiquer la présence d'anomalies ou 

d'événements anormaux. 

Les réseaux neuronaux récurrents (RNN) sont un choix logique pour cette approche, car ils 

sont conçus pour traiter des données séquentielles, ce qui les rend adaptés à la modélisation 

des séries temporelles. Les RNN peuvent prendre en compte la dépendance temporelle des 

données, essentielle pour détecter des anomalies dans les séquences [156]. Par ailleurs, les 

autoencodeurs (AE) offrent une alternative intéressante aux RNN pour la détection 

d'anomalies dans les données de séries temporelles [164]. Ils sont conçus pour reconstruire 

efficacement des données normales, mais présentent des difficultés pour la reconstruction des 

données anormales. Bien que ces approches présentent des performances compétitives, leur 

mise en œuvre peut être complexe et exigeante en termes de ressources de calcul.  

Finalement, en dehors du domaine de l’hydrologie urbaine, l'utilisation de modèles 

d'apprentissage automatique et d'apprentissage profond pour la détection d'anomalies dans 

les séries temporelles a évolué avec le temps. Certains modèles traditionnels, tels que 

l'algorithme de clustering K-Means, ont été abandonnés au profit de méthodes plus récentes 

[171]. D’autres modèles, tels que Matrix Profile (MP), ont été introduits spécifiquement pour 
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l'exploration de données temporelles. Ce modèle se concentre sur l'identification des parties 

des données ayant des caractéristiques nettement différentes des autres, les considérant 

comme potentiellement anormales [195].  

Dans le domaine de l'apprentissage profond, des architectures comme les réseaux résiduels 

(ResNet) ont émergé comme des choix performants pour la détection d'anomalies [134]. Les 

ResNets se distinguent par leur architecture innovante incorporant des connexions de 

raccourci linéaires, permettant à l'information de traverser les couches plus efficacement [208]. 

D'autres approches, comme les réseaux génératifs adverses (GAN), sont également 

explorées pour leur rôle potentiel dans la détection d'anomalies, en générant des données 

synthétiques similaires aux séries temporelles réelles et en identifiant les incohérences [185]. 

Il est important de noter que le domaine de la détection d'anomalies dans les séries 

temporelles continue d'évoluer, avec de nouvelles méthodes et architectures qui émergent 

régulièrement. Des combinaisons de différents modèles et approches sont constamment 

explorées pour répondre aux besoins spécifiques de chaque application. 

3. Matériel et méthodes 

Ayant identifié le besoin crucial de validation des données dans le domaine des eaux usées 

urbaines et démystifié les spécificités de ces données ainsi que les modèles potentiels 

montrant des performances prometteuses, ce travail de recherche s’intéresse à l’application 

et la comparaison de certains modèles d’IA à des données issues d’un réseau 

d’assainissement à l’échelle réelle.  

3.1. Construction de la base de données 

Contrairement à des domaines libre d’accès, il est difficile d'obtenir des ensembles de données 

provenant des services d'assainissement urbain en raison de préoccupations de confidentialité 

et de la législation en vigueur. Notre première étape consiste donc à construire une base de 

données fiable, robuste et complète sur laquelle baser nos futurs travaux de validation et 

d'évaluation des modèles d’IA. Cet objectif a été rendu possible grâce à la contribution de 

Saint-Malo Agglomération, qui nous a mis à disposition sa base de données, permettant ainsi 

l'accès à des données opérationnelles réelles. 

3.1.1. Réseau de capteurs et disponibilité des données 

Le processus de collecte de données a été mené simultanément sur six intercepteurs. Les 

données sont systématiquement archivées au niveau de la supervision, facilitant la 

conservation des enregistrements et assurant la disponibilité à long terme des données 
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historiques. Des inspections régulières et des vérifications de maintenance sont mises en 

œuvre pour ajuster les performances du système de surveillance. En maintenant ces pratiques 

de gestion des données et de maintenance, l'intégrité des informations enregistrées est 

préservée dans le temps, faisant de celles-ci une ressource inestimable pour nos recherches 

et analyses continues. 

Le champ des capteurs à Saint-Malo est très varié. Ceux d'intérêt dans ce travail sont 

particulièrement les capteurs de pollution ; à savoir les turbidimètres et les conductimètres. 

L'objectif principal de la mesure de turbidité est d'évaluer la concentration de la pollution 

particulaire. SMA a mis en place une redondance de turbidité comme recommandé dans [37]. 

La redondance améliore la fiabilité des mesures, en particulier en cas de défaillance d'un 

capteur ou d'anomalies. Elle facilite en outre la validation des données en permettant de 

valider automatiquement les valeurs fournies par les deux capteurs lorsqu’elles sont 

cohérentes. La conductivité, quant à elle, est une propriété qui caractérise la capacité d'un 

matériau ou d'un liquide à conduire l'électricité. Elle est directement liée à la concentration de 

particules substances dissoutes présentes dans le liquide. 

L'exploration approfondie de la base de données de turbidité provenant des intercepteurs de 

Saint Malo s'est déroulée sur une période étendue, de février 2021 à juillet 2023, avec une 

fréquence théorique de mesure toutes les 5 minutes. Cependant, des anomalies ont été 

constatées, telles que des doublons et des fréquences non constantes. Face à ces défis, des 

étapes de prétraitement ont été entreprises pour assurer la cohérence des données. Dans ce 

contexte, une élimination des doublons et un rééchantillonnage des données ont été réalisés 

afin d'homogénéiser la fréquence. De plus, les périodes de données manquantes ont été 

imputées par des zéros, une approche stratégique pour assurer la continuité des analyses tout 

en indiquant clairement les moments sans enregistrements (le zéro étant une valeur hors 

gamme pour la turbidité dans les réseaux d’assainissement). 

3.1.2. Validation experte des données 

Le processus de validation experte des données de turbidité mis en œuvre dans le cadre de 

ce travail de recherche se déroule en trois phases: filtrage automatique, expertise manuelle, 

et agrégation des défauts. Un critère de cohérence est défini pour la validation automatique 

en prenant en compte la redondance des capteurs de turbidité. La validation experte examine 

les chroniques mensuelles, détectant des configurations telles que des valeurs nulles, une 

non-reproductibilité des profils quotidiens par temps sec, un bruit excessif, des pics 

inhabituels, et une baisse significative de la turbidité. Cette validation combine automatisation 

et expertise humaine, assurant des gains de temps substantiels grâce à la redondance 
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physique. L'expertise humaine reste cruciale pour améliorer le taux de disponibilité des 

données, en validant des mesures identifiées comme douteuses par la validation automatique. 

La qualification des anomalies à la fin de ce processus attribue à chaque valeur de turbidité 

l'une des quatre étiquettes: validée par redondance (R), validée par expertise (V), invalide (I), 

ou manquante (M). En préparation pour l'utilisation des modèles d'intelligence artificielle, les 

labels des données sont convertis en une classification binaire. Les données valides et 

invalides sont regroupées en deux classes distinctes. La sélection du site "Cottage" comme 

site de référence dans l'étude en cours est motivée par son hydraulique standard et la 

représentativité des défauts, en faisant un choix pertinent pour l'analyse des modèles. 

3.1.3. Mise en place d’un pôle de validation 

Bien que la validation experte soit importante, les risques intrinsèques liés à la subjectivité et 

à l'erreur humaine nous ont poussés à évaluer quantitativement ce biais afin d’estimer son 

impact sur l'évaluation des modèles d'intelligence artificielle. Ce problème n'est pas spécifique 

aux données issues des réseaux d'eaux usées. En effet, les annotateurs sont rarement en 

parfait accord lorsqu'ils expriment leur opinion. Or, l'existence d'une référence de base, 

souvent appelée "ground truth" est cruciale pour l'apprentissage efficace dans une approche 

supervisée et pour évaluer rigoureusement les performances des algorithmes. Cependant, 

obtenir cette référence peut être coûteux, voire impossible. 

Pour se rapprocher de cette vérité de référence, une expérimentation a été mise en place, 

consistant en la constitution d'un pôle de validation impliquant plusieurs experts pour évaluer 

leur accord et leur variabilité. Cette approche vise à améliorer la transparence et la fiabilité de 

nos évaluations, en garantissant une compréhension solide de l'interaction entre la validation 

de base des experts et la performance des modèles d'intelligence artificielle. 

Le pôle de validation s'appuie sur une équipe diversifiée de quatre experts. En raison de 

contraintes budgétaires et temporelles, la multi-validation a été réalisée sur quatre sites 

différents sur une période de six mois, couvrant l'ensemble de l'année et ses différentes 

saisons. Les mois sélectionnés ont été choisis avec soin, en évitant les premiers mois 

d'installation afin d'éliminer tout biais lié à l'optimisation de l’instrumentation. Tous les experts 

travaillent sur la base des résultats de la phase de filtrage, intervenant spécifiquement lors de 

la phase d’expertise du processus de validation pour apporter leur expertise à la validation des 

séquences douteuses. 

Pour évaluer la variance de la validation entre les différents experts, diverses mesures sont 

utilisées pour quantifier l'accord ou le désaccord en considérant différents aspects : 
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• Coefficient de Kappa de Cohen évalue la concordance entre les annotateurs en tenant 

compte de la concordance fortuite.  

• Score F1 par paire compare les experts entre eux. Les valeurs aberrantes sont 

identifiées sur la base de la différence moyenne du score F1 entre chaque annotateur 

et tous les autres, ce qui contribue à l’évaluation de la cohérence et de la fiabilité du 

groupe d'experts. 

• Coefficient de Smyth fournit une approximation de la limite inférieure d'erreur dans les 

annotations par rapport à la vérité de base inconnue. 

• Dendrogramme représente un schéma de regroupement hiérarchique organisant les 

experts dans une structure arborescente. 

Ces mesures, à la fois globales et par paire, contribuent à une compréhension nuancée des 

résultats de la validation, garantissant une évaluation complète de la fiabilité des annotateurs 

au sein du groupe de validation. Il faut cependant souligner que cette expérimentation ne visait 

qu’à évaluer la fiabilité de l’expertise humaine, et que les données de référence labellisées 

utilisées pour l’apprentissage et l’évaluation des modèles d’IA n’ont été validées que par un 

expert pour le site type (assisté par la redondance). 

3.2. Benchmark des modèles et des tests 

Cette étude, axée sur la détection d'anomalies dans les données des réseaux d'eaux usées, 

implique une sélection stratégique de modèles d'apprentissage automatique (ML) et 

d'apprentissage profond (DL). Les modèles ML supervisés sont exclus en raison de leur 

sensibilité aux données d'entrée, tandis que l'attention est portée sur les réseaux neuronaux 

convolutifs (CNN), en particulier ResNet. Les modèles non supervisés sont considérés comme 

cruciaux, ce qui conduit à l'exploration du modèle Matrix Profile pour le ML traditionnel et des 

autoencodeurs pour le DL. 

3.2.1. Comment chaque modèle répond à notre objectif ? 

• Matrix Profile 

Introduit en 2016, Matrix Profile se distingue comme un algorithme de pointe pour l'analyse 

des séries temporelles. Son concept fondamental consiste à effectuer une recherche de 

similarité sur des données de séries temporelles. Plus précisément, l'algorithme permet 

d’extraire la sous-séquence  la plus semblable à chaque sous-séquence (de longueur fixe w) 

incluse dans une série temporelle [195]. En déplaçant la sous-séquence de référence le long 

de la série temporelle, on peut construire un profil des similitudes trouvées pour chaque sous-

séquence dans la série. Les points les plus élevés du profil correspondent à des sous-

séquences atypiques [201], dont même les sous-séquences les plus semblables restent 



Résumé étendu en français 

Page 335 of 356 

 

sensiblement différentes. En sélectionnant un nombre k prédéfini de ces maximums, on 

identifie les k sous-séquences les plus atypiques. 

Matrix Profile se distingue par sa capacité à fonctionner sans nécessiter de processus 

d'apprentissage préalable. Le principal avantage de cet algorithme réside dans l'interprétabilité 

de ses résultats. L'application de MP à la détection d'anomalies implique souvent une analyse 

visuelle des résultats à l'aide de graphiques, tels que les profils matriciels, et de 

représentations visuelles telles que les cartes thermiques, afin de repérer les pics associés 

aux anomalies. 

Selon [179], Matrix Profile est caractérisé comme un algorithme sans paramètre, même s’il y 

a deux paramètres à fixer à savoir la taille de fenêtre w et le nombre d’anomalies k. Selon 

[200], la taille de la fenêtre (w) est considérée comme un choix de l'utilisateur plutôt que comme 

un hyperparamètre, reflétant la connaissance préalable du domaine et indiquant la durée 

typique d'un motif ou d'une anomalie. De même, k représente le nombre d'anomalies que 

l'utilisateur souhaite identifier. Cependant, dans notre cas d'utilisation spécifique, l'objectif est 

d'identifier toutes les anomalies dans la série temporelle sans avoir de connaissance préalable 

de la longueur de fenêtre appropriée ou du nombre d'anomalies. Par conséquent, deux 

hyperparamètres doivent être ajustés : la taille de la fenêtre (w) et le nombre d'anomalies (k). 

Cependant, l’une des limites rencontrées lors de l'utilisation de Matrix Profile est la longueur 

fixe des anomalies déterminée par la taille de la fenêtre (w). Dans les scénarios réels, les 

anomalies peuvent avoir des durées variables, allant de problèmes durables nécessitant une 

intervention sur place (par exemple, dysfonctionnement d'un capteur) à des incidents 

temporaires (par exemple, dépôts sur un capteur nettoyés naturellement par le flux). Les 

modèles d'ensemble ont été étudiés pour tenir compte de l'hétérogénéité des durées de 

discordance. Les méthodes d'ensemble visent à combiner plusieurs modèles en un méta-

modèle pour améliorer les performances [193].  

• ResNet 

Le modèle ResNet, mis au point par [208], a joué un rôle central dans le projet ImageNet, en 

s'inspirant de la structure fondamentale des CNNs. Lorsqu'ils sont appliqués à la détection 

d'anomalies dans les séries temporelles, les modèles ResNet tirent parti de leur capacité à 

apprendre des représentations complexes et significatives des données temporelles. Pour 

mettre en œuvre ce processus, l'architecture du modèle ResNet est personnalisée afin 

d'accepter en entrée une séquence temporelle d'une durée prédéfinie et de produire en sortie 

l'étiquette de la séquence (valide ou invalide). L'architecture du modèle utilisée dans cette 

étude s'aligne sur la conception proposée par [133]. 
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Le maintien d’une architecture fixe permet d'isoler et d'évaluer des modifications spécifiques, 

ce qui donne un aperçu de leurs contributions individuelles à la performance globale du 

système de détection des anomalies. Des tests de sensibilité sont effectués pour déterminer 

la taille optimale de la fenêtre d'entrée, en veillant à ce que la fenêtre sélectionnée capture 

efficacement les modèles et les caractéristiques pertinents des données. 

En ce qui concerne la sortie du modèle, une transformation est mise en œuvre pour convertir 

les étiquettes par pas de temps en une étiquette par séquence. Si plus de 50 % d'une 

séquence est classé comme invalide, la séquence entière est étiquetée comme anormale. 

Cette simplification permet au modèle de se concentrer sur la classification de séquences 

entières plutôt que des pas de temps individuels. 

Lors de l'interprétation des résultats du modèle ResNet, l'utilisation des cartes d'activation de 

classe (CAM) s'avère efficace pour comprendre les résultats de la détection d'anomalies dans 

une série temporelle. Les CAM permettent de visualiser les segments spécifiques de la série 

temporelle qui ont contribué de manière significative à la prédiction du modèle, offrant une 

interprétation granulaire pour comprendre les décisions du modèle. 

Cependant l’une des limites du modèle apparaît lors du prétraitement des données. En effet, 

l'étiquetage initial est transformé en une classification binaire, utilisant un seuil de 50% pour 

déclarer une séquence valide ou invalide. Or, cette condition semble restrictive, considérant 

une séquence comme valide même si 49% de ses points ne le sont pas. Cela a conduit à 

l'exploration d'une approche de classification multi-classes, introduisant les catégories valide, 

intermédiaire et invalide. Néanmoins, la définition de seuils pour différencier les classes 

persiste encore. Cette réflexion a permis d'envisager de contourner le problème de la 

classification en adoptant une approche de prédiction directe du taux d'anomalie dans la 

séquence, à l'aide d'une approche de régression. 

• Autoencodeur 

Les autoencodeurs, initialement introduits par [213], sont des réseaux largement reconnus, 

conçus pour reproduire leurs entrées avec une distorsion minimale. Le concept fondamental 

des autoencodeurs réside dans leur capacité à encoder des informations de manière 

comprimée et à reconstruire avec précision les données originales à partir de cette 

représentation latente. Ce processus facilite non seulement l'exploration des structures de 

données sous-jacentes, mais permet également l'identification de caractéristiques 

significatives. L'adaptabilité des autoencodeurs à la détection des anomalies provient de leur 

capacité à capturer des structures de données normales tout en restant sensibles aux 

variations inhabituelles. 
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Diverses architectures d’autoencodeurs sont présentées dans la littérature, allant des simples 

autoencodeurs (AE) aux variantes hybrides telles que les autoencodeurs convolutifs (CNN-

AE) ou récurrents (LSTM-AE). Dans notre projet, nous avons choisi d'utiliser des 

autoencodeurs profonds (Deep-AE). Notre approche explore ainsi différentes architectures de 

Deep-AE. 

L'autoencodeur vise à reconstruire les données d'entrée afin de minimiser la perte 

d'information, en optimisant la reproduction fidèle des structures normales dans les séquences 

temporelles. En contrastant l'entrée originale avec sa sortie reconstruite, nous pouvons 

évaluer l'écart entre la représentation anticipée et celle générée par le modèle. Les anomalies, 

caractérisées par leur nature inhabituelle ou divergente, peuvent se manifester par des 

différences substantielles entre l'entrée et la sortie de l'autoencodeur.  

Cette approche basée sur le calcul de la fonction de perte, ici l’erreur quadratique moyenne, 

explore la capacité de l'autoencodeur à apprendre des représentations concises de données 

normales tout en restant sensible aux variations inhabituelles. Toutefois, il peut s'avérer 

nécessaire d'ajuster le seuil de classification d'une séquence comme anormale en fonction 

des caractéristiques spécifiques de l'ensemble de données. Par conséquent, le seuil joue un 

rôle central dans la prise de décision, ce qui met en évidence l'une des limites de ce modèle, 

à savoir le défi que représente le calage de ce seuil pour passer des valeurs d'erreur aux 

classifications de séquences. 

3.2.2. Phase d’entraînement et d’évaluation 

Les données de turbidité du site de Cottage sont utilisées pour l'expérimentation, soumettant 

les modèles à un processus défini en 6 étapes. Les phases initiales consistent à évaluer la 

sensibilité aux données d'entrée, en décidant d'utiliser les données brutes mesurées ou la 

turbidité reconstruite à partir de la redondance. Le prétraitement porte sur la régularité 

temporelle, les données manquantes et la mise à l'échelle des séries temporelles. En outre, 

des tests de sensibilité explorent l'utilisation de l'ensemble des données versus la présélection 

des données. 

Le réglage des hyperparamètres est effectué avec une exploration systématique de l'espace 

de configuration du modèle. Une fois le meilleur modèle identifié, la phase de diagnostic des 

résultats implique l'analyse et la comparaison de ces derniers avec les conclusions des 

experts. Cette phase guide des tests visant des potentielles améliorations des résultats.  Des 

approches multivariées sont ensuite explorées, utilisant les données des différents capteurs 

sur site. Finalement, la généralisation à d'autres sites est évaluée en termes d'adaptabilité et 

de généralisation, ce qui permet d'obtenir des informations pour une application plus large. 
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L'évaluation complète conduit à une bonne compréhension des performances de chaque 

modèle dans divers contextes. 

L'évaluation des modèles d'IA pour la détection des anomalies implique de comparer les 

résultats du modèle à la référence obtenue par la redondance complétée par la validation 

manuelle. Des mesures clés telles que la matrice de confusion et la courbe ROC sont 

essentielles pour évaluer les performances. La première fournit une vue détaillée des 

performances du modèle et permet de comprendre les erreurs de classification pour un seuil 

donné. En revanche, la courbe ROC évalue les performances du modèle à différents seuils de 

classification, permettant ainsi des potentiels recalages pour atteindre la meilleure 

performance du modèle. 

4. Résultats et discussion 

Une fois que la base de données a été établie et que le benchmark des modèles a été réalisé, 

les résultats des divers tests sont examinés dans cette section. L'accord entre les experts est 

d'abord évalué, en analysant la cohérence des annotations générées par des experts distincts. 

Ensuite, l'évaluation des modèles, à savoir Matrix Profile (MP), l'autoencodeur (AE), et ResNet 

dans la détection d'anomalies, est approfondie. Une comparaison détaillée des performances 

de chaque modèle est présentée, mettant en lumière leurs points forts, leurs limitations et les 

défis auxquels ils sont confrontés dans différents contextes. Enfin, la question de la 

généralisation est abordée, évaluant la capacité des modèles à maintenir des performances 

stables au-delà de leurs ensembles de données d'entraînement initiaux. L'objectif est de 

fournir une perspective complète et objective sur la pertinence et la fiabilité de ces modèles 

dans des scénarios d'application en contexte opérationnel. 

4.1. Évaluation de l’accord entre les experts (assistés par la redondance) 

Au vu de la subjectivité intrinsèque au processus de validation experte, il est important 

d'évaluer les biais éventuels à prendre en compte lors de l'évaluation des modèles 

d'intelligence artificielle (cf. §3.1.3). Dans le cadre de notre base de données test, des matrices 

de confusion sont créées à partir de comparaisons par paires, montrant des différences dans 

les taux d'identification des données invalides entre les experts, mais avec une cohérence 

générale. 

Le calcul du F1 Score par paire révèle des scores variant entre les experts, mais avec une 

moyenne globale de 0.81. En utilisant la différence moyenne dans le F1 Score, aucun expert 

ne dépasse le seuil critique de 0.22 (moyenne + écart-type des F1 scores), indiquant l'absence 
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d'experts « anormaux ». Dans l'ensemble, les résultats sont considérés comme satisfaisants, 

aucun expert n'étant identifié comme s'écartant significativement du consensus du groupe. 

En plus, l’analyse du dendrogramme offre des aperçus sur les dynamiques relationnelles entre 

les experts, mettant en évidence à la fois les convergences et les différences au sein du groupe 

d'experts, sans interférence de la phase d’apprentissage ou/et de différentiation liée au niveau 

d’expertise. 

Les résultats du coefficient de Kappa de Cohen entre différents experts montrent des scores 

élevés, indiquant un accord significatif qui est au-delà du hasard. Les résultats sont cohérents 

avec les analyses de regroupement hiérarchique et du score F1 pair à pair. Cependant, bien 

que le Kappa de Cohen soit un outil précieux pour mesurer l'accord inter-annotateurs, il 

présente des limitations inhérentes aux contextes de déséquilibre de classe et de petite taille 

d'échantillon.  

Enfin, l'analyse du coefficient de Smyth offre une évaluation globale de l'accord entre différents 

experts, se distinguant des mesures axées sur les comparaisons bilatérales. L'estimation de 

la limite inférieure d'erreur, à 3,5%, se situe bien en dessous de la limite recommandée de 

10%, renforçant la fiabilité et la cohérence des annotateurs. Ces faibles taux d'erreur indiquent 

une fiabilité appréciable et renforcent la crédibilité des évaluations obtenues dans le cadre de 

cette expérience. 

En conclusion, toutes les analyses convergent vers une évaluation robuste et crédible de la 

performance des experts en détection d'anomalies. Celle-ci peut en partie être attribuée au 

rôle de la redondance dans le processus de validation. Malgré les défis liés à la diversité des 

interprétations, les résultats mettent en évidence une cohérence et une fiabilité considérables 

dans les évaluations, renforçant la confiance dans la qualité du processus d'annotation et 

fournissant des perspectives enrichissantes pour le développement de modèles d'intelligence 

artificielle dans le cadre de cette étude. 

4.2. Évaluation du modèle Matrix Profile 

Matrix Profile est entraîné à l'aide des données de turbidité recueillies à Cottage entre février 

2021 et septembre 2021. L'évaluation des performances de MP diffère de celle des modèles 

traditionnels. Plutôt que d'avoir des ensembles distincts de données d’apprentissage et de 

test, MP exploite généralement l'ensemble des données disponibles pour l'apprentissage. 

L'objectif est d'identifier les structures sous-jacentes dans les séries temporelles qui peuvent 

indiquer des événements anormaux. Par conséquent, le modèle est généralement évalué sur 

l'ensemble de la période disponible. L'absence de cette distinction dans le contexte de Matrix 
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Profile s'explique par la nature exploratoire du modèle : il s'agit de découvrir des modèles ou 

des comportements inhabituels plutôt que de prédire des résultats spécifiques. 

Les tests suivants, telles que la sensibilité aux données d'entrée avec le prétraitement et la 

sélection des données d'entrée, ainsi que l'optimisation des hyperparamètres, sont des 

éléments cruciaux de la méthodologie. Le processus d'apprentissage et d'évaluation est centré 

sur l'utilisation de séquences glissantes (la taille de la séquence étant l'un des 

hyperparamètres du modèle), où un horodatage donné peut recevoir différentes étiquettes. 

Afin d'interpréter ces résultats, un post-traitement est effectué, permettant à tous les pas de 

temps constituant une séquence invalide d'être instantanément signalés comme tels. Il n'est 

donc plus nécessaire d'attribuer des étiquettes aux séquences à la référence et d'exploiter 

directement les résultats de la validation manuelle, bien que des tests supplémentaires soient 

envisagés. D'autres améliorations potentielles des résultats incluent l'utilisation de modèles 

d'ensemble et d'étapes de pré-validation. Cette section explore ensuite des aspects tels que 

la généralisation à d'autres sites et la détection d'anomalies multivariées. 

4.2.1. Sensibilité aux données d’entrée 

Les premiers tests concernant les données d'entrée exposent les étapes de prétraitement 

indispensables pour lancer Matrix Profile. Communes à divers algorithmes de détection 

d'anomalies pour les séries temporelles, la synchronisation des données pour maintenir un 

pas de temps constant et la normalisation des données sont cruciales. MP intègre 

naturellement la standardisation des données, éliminant ainsi le besoin de prétraitement 

supplémentaire. Afin de garantir une chronique complète des données tout en préservant les 

phénomènes de perte de données, les valeurs manquantes ont été comblées par des zéros. 

Pour une identification précise des anomalies, une fréquence d'acquisition suffisamment fine 

est nécessaire. Il est crucial de ne pas lisser le bruit, car un bruit prononcé dans les mesures 

de turbidité dans les réseaux d'assainissement est considéré comme une anomalie, indiquant 

potentiellement un dysfonctionnement de la sonde.  

Ensuite, l'objectif est d'analyser la sensibilité du modèle MP à diverses données d'entrée. Cela 

implique deux aspects : premièrement, évaluer la performance du modèle en utilisant les 

données brutes de turbidité provenant des deux turbidimètres, et deuxièmement, évaluer la 

performance du modèle en utilisant la turbidité reconstruite issue de la phase de filtrage et en 

exploitant la redondance lors de la validation manuelle. Avec des hyperparamètres fixes, les 

résultats révèlent d'importantes nuances dans la performance du modèle selon les différentes 

sources de données d'entrée. Tout d'abord, le modèle appliqué aux données brutes montre 

une plus faible performance par rapport à celui utilisant la turbidité reconstruite. Le réglage 

spécifique des hyperparamètres pour chaque jeu de données d'entrée montre des disparités 
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dans les meilleurs hyperparamètres mais confirme la surperformance en utilisant les données 

de turbidité reconstruites. En effet, la référence utilisée pour évaluer les résultats du modèle 

dans le cas des données brutes peut présenter un biais dans certaines situations. Cela se 

produit lorsque les données sont automatiquement invalidées lors de la phase de filtrage en 

raison du seuil de redondance établi, même si en réalité elles pourraient avoir une structure 

valide. L'utilisation des données reconstruites permet donc de s’affranchir de cette limite. 

4.2.2. Sensibilité aux hyperparamètres 

Dans le cadre de l'évaluation des performances du modèle Matrix Profile (MP), des tests de 

réglage des hyperparamètres ont été effectués. Cette phase vise à déterminer la combinaison 

optimale de la taille de la fenêtre et du taux d'anomalie qui maximisent la performance du 

modèle pour la détection d'anomalies dans les données de turbidité du réseau 

d'assainissement. 

Dans ce cas test, le modèle MP est plus sensible à la taille de la fenêtre qu'au taux d'anomalie. 

Avec des fenêtres de petite taille (quelques heures), le calcul du profil matriciel introduit un 

bruit excessif et une plage de variabilité limitée, où toutes les sous-séquences semblent plus 

ou moins similaires. Cette configuration entrave l'identification des pics ou des chutes 

correspondant aux anomalies et aux motifs. Les hyperparamètres optimaux, utilisant la 

turbidité reconstruite, sont déterminés comme étant w=48 heures et k=9,5%. 

De manière générale, le modèle MP est particulièrement sensible à ses hyperparamètres. 

Lorsque l'on utilise une fenêtre de 48 heures, l'identification de défauts plus courts devient 

difficile. Par conséquent, l'exploration d'une approche multifenêtres pour détecter des 

anomalies de durées variables devient une piste intéressante. Avec un taux d'anomalie fixe, 

l'algorithme est contraint de donner la priorité aux anomalies les plus importantes en 

amplitude, en s'écartant potentiellement de celles identifiées par l’expert. 

4.2.3. Analyse et diagnostic des résultats 

L’une des principales divergences entre le modèle Matrix Profile et la validation manuelle 

assistée par la redondance apparaît dans la délimitation des anomalies. Les biais inhérents à 

la validation manuelle, qui découlent de la subjectivité et de la nature complexe des données, 

rendent difficile la définition précise des anomalies, en particulier pour les défauts subtils et 

progressifs. En plus, la phase d’agrégation des défauts, absente du post-traitement du modèle 

MP, contribue aux faux négatifs, pendant les périodes d'anomalies fusionnées.  

Par ailleurs, la taille fixe des séquences imposée par Matrix Profile pose des problèmes, car 

des séquences entières sont considérées comme invalides alors que potentiellement seule 

une partie est défectueuse, ce qui peut donner lieu à des faux positifs. Les anomalies de courte 
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durée peuvent échapper à la détection en raison de l'exigence d'une taille d'anomalie 

importante. Ainsi, trouver un équilibre entre le rappel et la précision reste un défi, d’autant plus 

que la modification du taux d'anomalie à identifier affecte les deux mesures. 

Un cas intriguant concerne les faux positifs, lorsque le modèle identifie une période comme 

anormale, contrairement à la validation effectuée par l'expert. Selon sa définition, si Matrix 

Profile signale une sous-séquence comme anormale, cela implique une différence par rapport 

au reste de la chronique. Ainsi, la disparité entre la validation MP et la validation manuelle 

provient essentiellement du fait que l'expert valide une sous-séquence en s'appuyant sur des 

données exogènes supplémentaires, telles que la redondance. Cela souligne la nécessité 

d'une approche multivariable et de la prise en compte de données supplémentaires pour la 

validation. 

4.2.4. Pistes d’amélioration  

Après avoir affiné les hyperparamètres du modèle et obtenu un score F1 de 0,678 en utilisant 

des données de turbidité reconstruites, une fenêtre de 48 heures et un taux d'anomalie de 9,5 

%, le modèle présente des résultats prometteurs tout en étant confronté à des défis 

intrinsèques, notamment la taille fixe de la fenêtre et l'identification exclusive d'anomalies 

uniques. Cette section vise à explorer les possibilités d'amélioration des performances. 

Tout d'abord, il convient d’examiner les avantages potentiels de la combinaison des résultats 

à l'aide des données brutes redondantes au lieu de s'appuyer sur la turbidité reconstruite. En 

pratique, les séquences anormales dans la chronique de turbidité reconstruite correspondent 

à des périodes de défaillances simultanées dans les deux turbidimètres. En résultat, la 

combinaison des résultats de validation des deux turbidités brutes, en identifiant uniquement 

les anomalies communes, donne des résultats inférieurs à ceux obtenus en utilisant 

directement la turbidité reconstituée. Bien que cette dernière approche nécessite une phase 

de filtrage, elle s'avère plus efficace. 

Deuxièmement, un modèle d'ensemble est utilisé pour examiner des anomalies de durées 

variables en utilisant plusieurs fenêtres (12 heures, 24 heures et 48 heures). La recherche par 

grille a permis d'identifier les deux dernières tailles de fenêtre, tandis que la première est 

choisie pour pouvoir identifier des courtes anomalies. Le vote majoritaire du modèle 

d'ensemble surpasse les trois sous-modèles mais n'atteint pas le meilleur modèle individuel. 

Le vote minoritaire, tout en atteignant un rappel de 0,85, conduit à un nombre accru de fausses 

alertes. Ainsi, chacune des approches d'ensemble utilisées peut avoir une utilité spécifique, 

mais la performance globale reste inférieure à celle d'un modèle unique avec une fenêtre et 

un taux d'anomalie optimaux. 



Résumé étendu en français 

Page 343 of 356 

 

Enfin, une étape de pré-validation a été intégrée afin d'améliorer la robustesse du modèle en 

tenant compte des biais liés à la répétition de défauts courants. Des règles simples sont 

utilisées pour identifier et invalider les anomalies triviales telles que les données manquantes, 

les valeurs hors plage et le blocage ou la saturation. Bien que nécessaire d'un point de vue 

opérationnel, cette étape, tout en améliorant marginalement le score F1 de 0,678 à 0,679, 

n'améliore pas de manière significative les résultats globaux en raison de la rareté de ces 

défauts dans l'ensemble de données. 

4.2.5. Généralisation du modèle 

Afin d'élargir l'applicabilité du modèle MP, il convient d'évaluer la sensibilité de l'algorithme à 

ses hyperparamètres sur plusieurs points de mesure. Cette évaluation porte sur trois sites 

distincts caractérisés par des taux d'anomalie réels variables. 

Fondamentalement, le modèle MP se révèle efficace pour détecter les anomalies dans les 

ensembles de données présentant une faible prévalence d'anomalies (moins de 5%), avec 

des résultats satisfaisants et des scores F1 supérieurs à 80%, ce qui correspond aux 

observations de Keogh [179]. Dans ces cas, il n'est pas nécessaire de calibrer les 

hyperparamètres. 

Cependant, dans les ensembles de données présentant des taux d'anomalie plus élevés 

(entre 5% et 25%), les performances du modèle dépendent de la taille de la fenêtre, ce qui 

nécessite un calage basé sur la connaissance du domaine concernant la saisonnalité 

intrinsèque des données ou les résultats de la validation par des experts. Dans le contexte 

des données sur les eaux usées, connues pour leurs dynamiques typiques sur 24 heures, un 

ordre de grandeur similaire a été identifié à la fois sur Cottage et sur Goutte, entraînant des 

scores F1 compris entre 65% et 70%. 

Néanmoins, lorsque le taux d'anomalie dépasse environ 25%, la méthode MP s'avère 

inadéquate et ne permet pas d'identifier efficacement les anomalies. Cette limitation découle 

d'un conflit fondamental avec le principe du modèle, qui repose sur l'unicité des défauts. 

4.2.6. Approche multivariable 

En ce qui concerne l’intégration d’une entrée multivariable, l'utilisation d'une approche bivariée 

pour la détection des anomalies à partir des données brutes des deux turbidimètres donne un 

score F1 de 0,68. Ce score s'aligne sur les performances obtenues grâce à l'approche 

monovariable utilisant la turbidité reconstruite. Par conséquent, l'approche bivariée souligne 

l'importance de la redondance, permettant l'entrée directe des deux chroniques brutes dans le 

modèle sans avoir besoin de l'étape de filtrage pour la définition de la turbidité reconstruite, 

tout en maintenant des niveaux de performance cohérents.  
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L'intégration d'une approche multivariée par l'ajout de la conductivité entraîne toutefois une 

dégradation des résultats. Cela suggère que l'inclusion des données de conductivité perturbe 

le modèle et n'apporte pas de valeur ajoutée. 

Un dernier test consiste à explorer la combinaison de l'approche multivariée avec l'approche 

d'ensemble, dans l'intention de tirer parti de leurs avantages respectifs. Alors que l'approche 

multivariée améliore la détection des anomalies en atténuant les faux positifs, l'approche 

d'ensemble, qui utilise le vote minoritaire, minimise les faux négatifs, ce qui permet d'améliorer 

l'identification des anomalies. Trouver un compromis entre ces deux approches s'avère 

difficile, en particulier parce que le modèle d'ensemble repose sur un vote minoritaire appliqué 

au modèle multivariable, qui, à son tour, est basé sur un vote unanime. Cette nature 

compétitive rend difficile l'atteinte d'un optimum tout en conservant les avantages de chaque 

méthode. Par conséquent, cette approche combinée ne donne pas un résultat final amélioré 

par rapport à une approche monovariable utilisant la turbidité reconstruite ou une approche 

bivariée avec les deux turbidimètres. 

4.3. Évaluation du modèle ResNet 

Le modèle ResNet fait l'objet d'une évaluation de ses performances, en tenant compte de 

divers facteurs susceptibles d'influer sur son efficacité. L'architecture de ResNet demeure un 

point de référence constant tout au long de nos évaluations [133], en utilisant un ensemble de 

données dérivées des données de turbidité de Cottage couvrant la période de février 2021 à 

juillet 2022.  

Dans un premier temps, une analyse de sensibilité du modèle aux données d'entrée a été 

réalisée. Cette analyse porte sur différents aspects, notamment les techniques de 

prétraitement, les stratégies d'augmentation des données et les caractéristiques inhérentes 

aux données d'entrée. Ensuite, des tests de sensibilité pour évaluer l'impact des 

hyperparamètres sur les performances du ResNet ont eu lieu, en tenant compte de facteurs 

tels que la taille de la fenêtre d'entrée et la transformation des probabilités en étiquettes de 

séquence. Afin d'augmenter les capacités prédictives du modèle, diverses approches sont 

étudiées, y compris des stratégies de pré-validation et de classification multi-classes. En outre, 

les avantages potentiels de la prédiction des taux d'anomalie par séquence sont étudiés, ce 

qui contribue à une exploration approfondie des capacités de ResNet. 

En élargissant la portée de notre évaluation, les capacités de généralisation du modèle ResNet 

sont analysées via des évaluations directes, de l’apprentissage par transfert et/ou les calages 

spécifiques aux sites, fournissent des informations sur l'adaptabilité du modèle à divers 
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contextes. Enfin, la détection d'anomalies s’étend à l’échelle multivariable, en sondant la 

capacité de ResNet à identifier des anomalies à l'aide de variables multiples. 

4.3.1. Sensibilité aux données d’entrée 

En tant que modèle supervisé, le modèle ResNet prend en entrée les données de mesure 

séquentielles et la classification correspondante. Le prétraitement des données d'entrée 

respecte ainsi principalement les pratiques standards et s'inspire des tests effectués avec 

Matrix Profile. Pour garantir la mise à l'échelle des données, un processus de standardisation 

est appliqué aux données d'entrée. Le pas de glissement des séquences est fixé à la moitié 

de la taille de la fenêtre, ce qui permet de trouver un équilibre entre l'amélioration des données 

et l'évitement du surajustement. 

Étant donné le processus d'apprentissage, qui implique l'injection d'échantillons des deux 

classes, et l’objectif principal de détection des anomalies (en se concentrant sur les données 

invalides), le déséquilibre entre les classes peut poser des problèmes. Par conséquent, 

l'utilisation des approches d’augmentation des données pour équilibrer les deux classes 

devient pertinente. Les approches standards telles que le suréchantillonnage, la génération 

d'anomalies synthétiques et l'apprentissage sensible aux coûts présentent des avantages 

limités. Une autre approche consiste à exploiter les données disponibles sur d'autres sites, ce 

qui élimine la nécessité de créer des données artificielles. Les résultats indiquent que cette 

méthode n'améliore pas significativement les performances par rapport à l'utilisation exclusive 

des données du site-type, à l'exception de la stabilisation des performances. 

Finalement, des tests visant à évaluer la réactivité du modèle à diverses données d'entrée, en 

particulier les données brutes et la turbidité reconstruite, ont été menés. Peu de distinctions 

sont observées entre l'utilisation des différents entrants. L’utilisation des séquences dont la 

validité ou l'invalidité est de 100 %, est effectuée pour neutraliser les biais, montrant ainsi une 

meilleure performance. 

4.3.2. Sensibilité aux hyperparamètres 

Par défaut, il a été décidé de ne pas modifier l'architecture du modèle ResNet. Par conséquent, 

les ajustements des hyperparamètres se concentrent sur des éléments autres que 

l'architecture elle-même, influençant les résultats globaux. 

La première considération concerne l'utilisation d'une séquence de 24 heures, ce qui laisse 

sans réponse la question de savoir s'il s'agit de la taille de fenêtre optimale. L'analyse des 

résultats révèle que les performances maximales sont atteintes avec une fenêtre de 36 heures, 

ce qui donne un score F1 de 0,65. Toutefois, au-delà de ce seuil, l'écart-type des résultats 

devient remarquablement important, ce qui indique une instabilité significative. En l'absence 
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d'une tendance distincte ou d'une taille de fenêtre exceptionnelle, une taille de fenêtre de 24 

heures est considérée pour les tests ultérieurs. 

Le deuxième point d'intérêt concerne le seuil de classification. Bien que l'objectif de sortie soit 

une étiquette par séquence, le modèle génère, pour chaque séquence, une probabilité 

d'appartenance à chaque classe. La classe finale est déterminée par une probabilité 

supérieure à 0,5. La pertinence de ce seuil est examinée à l'aide de la courbe ROC et/ou de 

la courbe PR. Étant donné que l’objectif est de maximiser le score F1, l’analyse rétroactive de 

la courbe PR permet d’identifier le seuil qui maximise le score F1 sur l'ensemble de la base de 

données d'apprentissage. L'application d'un seuil de 0,43 à la sortie du modèle ResNet s'avère 

efficace pour améliorer les performances métriques. 

Ainsi, l'ajustement du seuil de classification permet une amélioration significative des résultats, 

notamment pour les séquences contenant exclusivement des données valides ou invalides, 

sans nécessiter une précision exagérée dans son établissement. Toutefois, cette approche 

implique un processus d'apprentissage en deux étapes : tout d'abord, l'apprentissage du 

modèle en utilisant le F1 score comme métrique sur l'ensemble de validation, puis l'évaluation 

du modèle sur l'ensemble de données complet. La courbe PR est analysée afin d'identifier le 

score qui maximise l'aire sous la courbe et, par la suite, ce seuil est imposé comme seuil de 

classification pour la sortie du modèle, représentant la probabilité d'appartenir à une classe 

spécifique. 

 

4.3.3. Analyse et diagnostic des résultats 

La précision la plus élevée, observée pour la turbidité reconstruite, implique que le modèle est 

plus susceptible de minimiser les prédictions faussement positives lorsqu'il est appliqué aux 

données reconstruites qu’aux données brutes. Cette tendance peut être attribuée à la 

définition du seuil de cohérence par redondance, qui invalide automatiquement la turbidité la 

plus élevée. Il convient de noter que la présence d'une turbidité élevée n'indique pas 

nécessairement des données aberrantes, car elle peut partager la même structure qu'une 

turbidité plus faible, un aspect qui serait évalué par un expert. Ce scénario introduit des erreurs 

dans la base de données de référence pour les données brutes, ce qui entraîne des faux 

négatifs. 

En plus, les erreurs faussement positives proviennent également du seuil déterminant si une 

séquence est considérée comme invalide. Ce problème peut concerner la référence : si 

l'expert n'a invalidé que 140 pas de temps (sur 288), on attribue une étiquette valide à la 

séquence alors qu'elle représente une anomalie importante. Le modèle invalidant cette 

séquence aboutirait à un faux positif. Ce problème peut également concerner le résultat de la 
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validation par le modèle ResNet. En effet, la sortie du réseau comprend des probabilités 

d'appartenance à chaque classe respective. La classe prédominante est celle dont la 

probabilité dépasse 0,5 et qui est attribuée à la séquence d'entrée. Cependant, dans certaines 

situations limites, des probabilités proches de 50-50 peuvent obliger le modèle à prendre une 

décision basée sur une légère différence en faveur d'une classe par rapport à l'autre. 

Par conséquent, l'analyse des résultats nécessite un examen attentif de la base de données 

de référence. La nature supervisée de l'apprentissage du modèle implique l'assimilation de 

certains biais présents dans la référence, reproduisant potentiellement ces biais dans les 

évaluations ultérieures. L'ensemble de ces résultats a favorisé l'utilisation exclusive de 

séquences 100% valides ou invalides et l'adaptation du seuil de classification. 

Par ailleurs, le rappel présente une valeur plus faible, ce qui constitue un problème pour 

l'identification des défauts, avec une proportion notable d'anomalies omises. Cela est dû en 

partie à la difficulté d'identifier des anomalies triviales associées à des séquences nulles. Si 

l'on est exposé à de telles séquences pendant l’apprentissage, la multiplication des valeurs 

nulles par les poids du réseau neuronal se traduit par une sortie nulle pour chaque neurone. 

Cela peut entraîner une perte importante d'informations, car les poids associés à ces 

séquences ne contribuent pas de manière significative à la mise à jour des paramètres du 

réseau au cours de l’apprentissage. D’où l’intérêt de mettre en œuvre une étape de pré-

validation pour les anomalies triviales. 

4.3.4. Pistes d’amélioration 

Tout d'abord, une phase de pré-validation du modèle est introduite, visant à aligner la base de 

données sur ce qui est présenté à l'expert. Cette étape invalide automatiquement les 

anomalies triviales telles que les données manquantes, les valeurs hors gamme, le blocage 

ou la saturation. Simultanément, elle valide automatiquement les séquences répondant au 

critère de redondance. La mise en œuvre de cette pré-validation a permis de réduire 

considérablement le nombre de faux positifs et d'améliorer les performances du modèle 

ResNet, qui a obtenu un score F1 de 64 % et un MCC de 56 %. 

Deuxièmement, la performance du modèle est évaluée dans le contexte de la classification 

multiclasse. Celle-ci comprend des séquences nettement classées comme valides ou 

invalides, ainsi que des séquences intermédiaires marquées par l'incertitude, qui peuvent 

nécessiter une expertise plus poussée. Au final, il apparaît que cette approche n'améliore pas 

les résultats, introduisant un biais lié à la définition de la classe intermédiaire. En outre, les 

résultats ne permettent pas de satisfaire notre intention initiale d'avoir deux classes distinctes 

certaines, c'est-à-dire valide et non valide. 
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Une troisième approche consiste à modifier le modèle ResNet pour prédire le taux d'anomalie 

de chaque séquence d'entrée plutôt que de fournir une probabilité d'anomalie. Cette approche 

vise, de prime abord, à éliminer la dépendance à l'égard des seuils de classification et des 

biais introduits par la définition des classes lors de l'apprentissage du modèle. On constate 

que le résultat dépasse le meilleur score obtenu avec une approche de classification binaire. 

Par ailleurs, l'utilisation du modèle de régression comme précurseur de la classification permet 

également d’améliorer significativement les performances. 

4.3.5. Généralisation du modèle 

L’évaluation du modèle ResNet pour la prédiction sur différents sites de Saint Malo 

Agglomération révèle des performance nuancées. Le réentraînement du modèle avec des 

données provenant de divers sites démontre une amélioration globale, bien qu’accompagnée 

de problèmes spécifiques à certains sites. En effet, il existe des variations de précision entre 

les sites, malgré une amélioration globale du rappel. Le transfert d’apprentissage par le biais 

d’un réapprentissage total est également prometteur. Par ailleurs, l’adaptation du modèle au 

site de Roosevelt, caractérisé par un comportement hydraulique distinct, suggère que la 

réinitialisation du processus d’apprentissage et le réglage partiel sont des stratégies efficaces 

pour capturer la structure de données spécifique au site. 

4.3.6. Approche multivariable 

L’objectif de ce test final est d’évaluer une approche multivariée, où le modèle est alimenté 

avec diverses mesures collectivement. Malgré une certaine variabilité entre les différents tests, 

une tendance constante se dégage, indiquant que la performance optimale est généralement 

atteinte avec un seuil de validation manuelle (cible) de 0,66 et un seuil de modèle de 0,42, en 

moyenne. Notamment, le seuil du modèle est inférieur au seuil cible, ce qui suggère une 

tolérance potentielle dans le jugement du modèle par rapport à l’expert. En comparant les 

scores F1 de différentes configurations, il est observé que l’inclusion de la conductivité a 

contribué à améliorer la détection des anomalies. 

4.4. Évaluation du modèle Autoencodeur 

Le fonctionnement de l'autoencodeur est basé sur l'entrée de séquences et la création du 

modèle qui reproduit la même séquence que la sortie. Les séquences utilisées pour 

l’apprentissage sont dérivées des données de turbidité de Cottage couvrant de février 2021 à 

août 2022. Des tests supplémentaires se concentrent sur les variations dans le traitement de 

ces séquences, y compris les modifications de taille et de sélection (en utilisant l’ensemble 

complet des séquences ou une présélection). Ensuite, la sortie du modèle est comparée à 

l’entrée par des calculs d’erreur quadratique moyenne (EQM) pour chaque séquence. Pour la 



Résumé étendu en français 

Page 349 of 356 

 

validation des séquences, un classificateur est appliqué pour établir un seuil, déterminant si 

une séquence est jugée valide ou non valide. 

L’architecture du modèle reste flexible à ce stade et fera l’objet de tests spécifiques pour 

assurer sa stabilité. Plusieurs exécutions ont lieu et les performances du modèle sont évaluées 

sur l’ensemble de données de Cottage. Les évaluations finales consistent à évaluer l’efficacité 

du modèle à l’aide de données provenant de différents sites et à explorer une approche 

multivariée. 

4.4.1. Sensibilité aux données d’entrée 

Ces premiers tests visent à effectuer des tests de sensibilité à l’entrée sur le modèle 

autoencodeur (AE). Les résultats de cette approche consistent à utiliser exclusivement des 

séquences 100% valides pendant la phase d’apprentissage (approche semi-supervisée) et à 

intégrer la mise à l’échelle par la standardisation. 

L’objectif du test suivant est d’évaluer comment le modèle répond aux différentes entrées, en 

particulier les données brutes et la turbidité reconstruite. On observe que les performances 

ont tendance à se dégrader lors de l’utilisation de données reconstruites. Cette dégradation 

peut être attribuée au nombre limité d’échantillons invalides, ainsi même de légères erreurs 

peuvent avoir un impact significatif sur les mesures de performance. Par conséquent, étant 

donné la taille restreinte de notre ensemble de données, toutes les séquences de T1 et T2 

seront utilisées comme entrée pour générer une base de données augmentée. 

4.4.2. Sensibilité aux hyperparamètres 

La sélection stratégique du nombre de neurones et de couches sert d’aspect fondamental 

dans la conception d’un réseau neuronal, représentant des hyperparamètres cruciaux qui 

définissent sa capacité et sa complexité. Par conséquent, le réglage de l’architecture du 

modèle d’autoencodeur profond (AE) devient l’hyperparamètre principal à optimiser. 

À la suite de divers tests comparatifs entre les modèles et d’une prise en compte des risques 

de surajustement associés, il s’avère inutile de dépasser trois couches cachées en raison du 

nombre limité d’exemples disponibles. Les modèles optimaux, à savoir les modèles 6, 10 et 

14 sont illustrés dans Figure 2. En effet, les modèles 10 et 14, tous deux présentent des 

performances équivalentes avec une structure à trois couches où les premières et troisièmes 

couches sont chacune composées de 192 neurones. Les deux tailles de code (64 et 128 

neurones) démontrent des performances comparables. Étant donné que le rendement d’un 

modèle est lié à sa complexité, ce qui a une incidence sur le temps d’entraînement, le modèle 

14 est considéré comme la deuxième meilleure architecture, après le modèle 6. 
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Figure 2: Résultat des meilleurs architectures d'autoencodeur pour la détection 

des anomalies 

En ce qui concerne la taille des fenêtres, les performances s’améliorent à mesure que la taille 

de la séquence d’entrée augmente. En effet, des séquences plus grandes sont essentielles 

pour que l’autoencodeur discerne des caractéristiques distinctives, facilitant ainsi une 

meilleure reconstruction de séquence. Les résultats deviennent particulièrement intéressants 

à partir d’une séquence de 6 heures, bien que légèrement inférieurs au maximum atteint avec 

des séquences de 24 heures. 

De plus, une évaluation de la sensibilité du modèle au pas de glissement des séquences 

appliqué aux données d’entrée révèle une dégradation des résultats avec un pas croissant, 

malgré l’augmentation efficace du volume de données d’entraînement. En effet, dans certaines 

situations, cette approche peut introduire une redondance, limitant la diversité des informations 

pertinentes pour l’apprentissage. Cette duplication compromet la capacité de l’autoencodeur 

à extraire des caractéristiques significatives, expliquant la dégradation progressive des 

performances observée. 

4.4.3. Analyse et diagnostic des résultats 

Compte tenu des performances notables, il est naturel de s’interroger sur l’occurrence 

potentielle du surajustement, une condition qui pourrait entraver la généralisation du modèle 

à de nouvelles données. Fait remarquable, au-delà de l’utilisation de trois couches, les 

performances du modèle présentent une dégradation et une instabilité, avec une 

augmentation significative de l’écart-type entre les analyses. Ce constat permet de conclure 

que ces architectures spécifiques ne sont pas bien adaptées à notre contexte applicatif. 

Plusieurs facteurs contribuent à ces résultats, y compris la complexité excessive du modèle 

par rapport aux données disponibles, ce qui peut mener à un ajustement excessif ou à une 

sensibilité accrue aux variations aléatoires des données d’entraînement. Ainsi, les tests de 
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surapprentissage sur les meilleurs modèles permettent de valider leur utilité et la fiabilité de 

leurs résultats. 

En comparant les modèles 6 et 10, qui partagent le même espace latent, les séquences 

reconstruites par ces modèles sont examinées. Aucun des deux modèles n’introduit 

systématiquement de bruit dans les reconstructions. De plus, certaines séquences présentent 

un accord complet de reconstruction entre les deux modèles. Une analyse des séquences 

invalides révèle que les deux modèles commettent des erreurs distinctes, chacune étant 

erronée de différentes manières. Cela souligne que les deux modèles produisent des sorties 

non identiques pour une séquence d’entrée donnée. Malgré leurs performances similaires, il 

est évident qu’ils mettent l’accent sur des caractéristiques différentes, traduisant la diversité 

dans leurs approches de la reconstruction de séquence. 

En comparant ensuite les deux meilleures architectures (modèles 6 et 10), en examinant les 

projections des codes générés par les deux autoencodeurs, des indications sur la similarité 

des représentations latentes (codes) produites par ces modèles peuvent être obtenues. Les 

observations des représentations graphiques révèlent des différences dans les visualisations 

t-SNE des deux codes, indiquant que les deux modèles capturent des structures distinctes au 

sein des données d'entrée. Par conséquent, il peut être intéressant de tirer parti des avantages 

des deux modèles via un modèle ensembliste. 

L’analyse des résultats montre quelques cas d’erreurs de validation, où le modèle valide des 

séquences que l’expert juge totalement invalides. Parmi ces cas figurent deux cas de données 

nulles, où les données étaient initialement manquantes et remplacées par des zéros. Malgré 

la simplicité de cette erreur, l’autoencodeur (AE), ainsi que d’autres modèles d’apprentissage 

automatique testés, ne parvient pas à détecter de telles anomalies. L’incorporation d’une étape 

de pré-validation pourrait efficacement isoler et traiter ces séquences. Un autre scénario 

implique une séquence avec une variabilité minimale, que le modèle reconstruit avec succès, 

conduisant à sa validation. Cependant, en analysant rétrospectivement cette séquence, il 

devient évident que l’expert aurait pu la valider. Plus précisément, il s’agit d’une séquence 

antérieure de deux jours de défauts que l’expert a invalidée pour assurer une délimitation large 

des défauts. 

 

 

4.4.4. Pistes d’amélioration 
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Après avoir établi les étapes de prétraitement et déterminer les architectures optimales avec 

une taille de fenêtre d’entrée de 24 heures sans chevauchement, Il est maintenant temps 

d’explorer les améliorations possibles des résultats par des ajustements aux règles de 

classification. De plus, il est possible d’étudier des stratégies d’amélioration en combinant les 

forces des meilleurs modèles et en intégrant des processus de pré-validation. 

Une fois que le modèle AE a subi un apprentissage sur des séquences jugées valides à 100% 

conformément à son principe d’apprentissage, la phase de classification des séquences 

repose sur l’établissement d’un seuil pour l’erreur carrée moyenne (EQM) de la reconstruction. 

Ce seuil détermine à quel niveau d’erreur une séquence est considérée comme invalide. Pour 

cela, deux approches ont été explorées : la règle des 3 sigma et l’approche basée sur la courbe 

PR. La règle des 3 sigma est traditionnellement utilisée dans les contextes statistiques 

classiques pour les données suivant une distribution normale connue. Cependant, dans notre 

contexte non supervisé, où les caractéristiques des données peuvent être plus complexes et 

moins bien définies, la mise en œuvre de la règle des 3 sigma peut donc poser des défis 

importants. Inversement, la construction de la courbe PR nécessite une référence, 

compromettant ainsi la nature non supervisée du modèle AE. Pour remédier à ce problème, 

un test de sensibilité du modèle au seuil de classification en post-traitement a été effectué. À 

mesure que le seuil d’invalidation d’une séquence augmente, les mesures de performance du 

modèle diminuent, ce qui indique une précision décroissante dans la classification des 

séquences comme non valides. La performance optimale du modèle est obtenue avec le seuil 

le plus bas, où chaque séquence est invalidée dès qu’un pas de temps est considéré comme 

anormal. 

Par ailleurs, la combinaison des résultats des deux meilleurs modèles, notamment grâce à un 

consensus basé sur la règle des 3 sigma, est prometteuse. Cette approche maintient une 

nature non supervisée, éliminant le besoin d’une référence de comparaison tout en atteignant 

une performance remarquable avec un nombre minimal de faux négatifs (empêchant 

l’omission de faute) et un taux de fausses alarmes de 6%. 

Enfin, la mise en œuvre d’une étape de pré-validation similaire à celle utilisée pour ResNet - 

invalidation des anomalies triviales et validation des séquences redondantes - entraîne une 

réduction significative du nombre de faux positifs. Ces derniers respectent le critère de 

redondance, permettant l’exploitation de la redondance matérielle qui reste transparente au 

modèle AE en considérant une approche monovariée. 

 

4.4.5. Généralisation du modèle 
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Dans une tentative d’élargir l’application de la détection d’anomalies à divers sites, l’évaluation 

des meilleurs modèles directement sur les données de turbidité de différents sites révèle des 

F1 scores élevés mais des résultats MCC relativement faibles. En effet, les modèles 

présentent de nombreuses erreurs sur des données valides, un phénomène attribué à la 

dynamique distincte d’autres sites. Le fonctionnement normal de ces sites diffère de celui de 

notre site de référence, "Cottage", ce qui rend difficile la capacité du modèle à reconnaître 

leurs modèles normaux uniques. Par conséquent, le modèle tend à invalider les séquences 

qui manquent de similitudes avec celles observées au "Cottage." 

Un réapprentissage du modèle à l’aide de séquences valides provenant de divers sites s’avère 

bénéfique, ce qui se traduit par une amélioration des résultats globaux avec un MCC supérieur 

à 0,65. Dans ce scénario, le modèle adopte une approche plus générique, mettant l’accent sur 

l’identification des caractéristiques des anomalies d’une manière globale et commune à travers 

divers sites plutôt que d’adapter spécifiquement son fonctionnement à un site particulier. 

En fin de compte, l’apprentissage de modèles spécifiques pour chaque site augmente encore 

les performances, donnant des scores F1 proches de 0,95 et un MCC dépassant 0,8. Cela 

suggère que l’architecture du modèle est généralisable; cependant, atteindre des scores 

comparables à ceux du "Cottage" nécessite un apprentissage spécifique au site. 

 

4.4.6. Approche multivariable 

L’objectif de cette dernière section est d’évaluer une approche multivariée en utilisant d’une 

part un modèle à couches denses et d’autre part, un modèle à couches convolutives de 

manière à garder le maximum de lien entre les différentes variables. L’analyse des résultats 

du premier modèle montre que ce dernier accorde une plus grande importance à l’une des 

turbidités brutes. La meilleure performance, bien que subtile, est observée en combinaison 

avec la turbidité reconstruite, tandis que l’ajout de conductivité ne donne pas d’améliorations 

significatives. 

En revanche, le modèle avec des couches convolutives attribue des poids relativement égaux 

aux deux variables. Les meilleurs résultats sont obtenus lorsque la conductivité est incluse, et 

l’ajout de turbidité reconstruite a plutôt tendance à perturber le modèle.  

En résumé, T1 et T2 apparaissent comme les deux principales variables porteuses du plus 

grand nombre d’informations, tandis que l’impact de la turbidité et de la conductivité 

reconstruites reste relativement limité. De plus, la comparaison de ces résultats avec 

l’approche monovariable révèle une détérioration des performances, conduisant à la 

conclusion que cette approche n’est pas très prometteuse dans notre cas. 
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4.5. Comparaison des différents modèles 

Au vu des résultats d'évaluation des différents modèles, il s’avère que les trois modèles ont 

bien performé dans des contextes spécifiques, mais leurs forces et faiblesses varient en 

fonction des caractéristiques des données et des conditions d'évaluation.  

En ce qui concerne l'autoencodeur (AE), il se distingue par ses performances supérieures, 

mais son utilisation requiert une approche semi-supervisée, impliquant uniquement des 

séquences valides. La complexité du modèle, notamment le nombre de couches cachées, 

nécessite de disposer d’un ensemble de données représentatif, tout en soulignant la limite au-

delà de laquelle le modèle risque de ne plus apprendre, voire de présenter un surajustement. 

D'autre part, l'utilisation du modèle ResNet repose sur une approche complètement 

supervisée, exigeant une validation métier rigoureuse et une base de données équilibrée. La 

sensibilité au déséquilibre entre les classes constitue un défi, mais une approche de régression 

peut offrir des résultats intéressants, malgré la nécessité de fixer un seuil de classification pour 

passer de la régression à la classification. 

Enfin, l'approche complètement non-supervisée de Matrix Profile présente l'avantage de se 

dispenser de la phase d'apprentissage, mais elle nécessite de balayer la chronique à chaque 

utilisation, ce qui peut entraîner une perte de précision en présence d'un taux élevé 

d'anomalies ou de défauts répétitifs. Néanmoins, cette méthode offre une alternative 

intéressante en termes de temps de calcul, particulièrement utile en l'absence de référence et 

a démontré son efficacité dans des contextes tels que la validation des données de 

conductivité et de hauteur d’eau en réseau d'assainissement. 

En conclusion, le choix du modèle dépendra du compromis entre les performances attendues, 

les contraintes opérationnelles et la disponibilité de données étiquetées, chacun des modèles 

offrant des avantages spécifiques adaptés à des contextes particuliers.  
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Table 56: Synthèse des modèles évalués 

 Matrix Profile ResNet Autoencodeur 

Approche Non-supervisée Supervisée Semi-supervisée 

Prérequis 

Diminution de la 

précision en présence 

d'un taux élevé 

d'anomalies ou de 

défauts répétitifs. 

Un apprentissage 

exigeant nécessitant 

une validation métier 

rigoureuse sur une 

période représentative. 

Une préanalyse métier 

des séquences est 

requise, mais 

l'exhaustivité n'est pas 

obligatoire. 

Limites 

Pas de modèle pré-

enregistré, nécessité 

de balayer la 

chronique à chaque 

utilisation. 

• Sensible au 

déséquilibre entre les 

classes, nécessitant 

une base de données 

équilibrée 

• Seuil de classification 

nécessaire pour 

passer de la 

régression à la 

classification. 

• Au-delà d'une 

certaine complexité 

et d'un certain 

nombre de 

séquences, risque de 

surapprentissage. 

• La définition d'un 

seuil de classification 

est nécessaire, et la 

performance dépend 

du seuil choisi. 

Performance 
F1 score = 0.759 

MCC = 0.715 

F1 score = 0.770 

MCC = 0.658 

F1 score = 0.960 

MCC = 0.908 

4.6. Généralisation et ouverture 

L'objectif final de ce travail de recherche est d'établir la robustesse du modèle dans des 

situations réelles, en prenant en compte la variabilité des données et en explorant sa capacité 

à généraliser à de nouveaux ensembles de données.  

D’une part, l’hypothèse de robustesse de la base de données utilisée pour l’évaluation des 

différents modèles est vérifiée en comparant les performances du modèle AE en utilisant 

différentes vérités de terrain fournies par les divers experts. Les résultats montrent que la 

performance du modèle est stable à travers différents accords d'annotateurs, avec une 

variabilité similaire à celle des experts humains. Cependant, lors de l'extrapolation du modèle 

à une nouvelle chronique, une détérioration des performances est observée, ce qui soulève 

des questions quant à la capacité du modèle à se généraliser à de nouveaux ensembles de 

données. 
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D’autre part, l'étude explore l'application des modèles MP pour la détection d'anomalies dans 

les données de conductivité et de niveau d'eau. Pour les données de conductivité, le modèle 

est prometteur dans la détection des anomalies, mais les fausses alarmes soulignent la 

nécessité d'une validation approfondie et d'une sensibilité aux paramètres du modèle. Dans le 

cas des données sur le niveau de l'eau, le modèle MP fait preuve de stabilité dans 

l'identification des anomalies, l'importance de l'expertise dans le domaine étant soulignée pour 

l'interprétation des résultats et le choix des paramètres. Le modèle est considéré comme un 

outil prometteur pour surveiller et détecter les anomalies dans les ensembles de données 

issues des réseaux d’assainissement. 

5. Conclusion 

Pour conclure, la validation des données joue un rôle essentiel dans la gestion des réseaux 

d'eaux usées, étant donné les implications de l'exploitation de ces données. Les approches 

actuelles, souvent dépourvues d'objectivité et coûteuses, suscitent des interrogations quant à 

leur efficacité. L'objectif de cette thèse était d'évaluer la capacité des progrès en intelligence 

artificielle à assurer une validation robuste des données.  

Différents modèles, à savoir Matrix Profile, ResNet et l'Auto-encodeur, ont été soumis à des 

tests approfondis pour répondre à cette question. Les résultats, particulièrement prometteurs 

pour ce dernier, ont démontré une capacité notable à détecter les séquences anormales dans 

les séries temporelles, avec un F1 score de 0.96. Les deux autres modèles peuvent être 

exploités dans des configurations spécifiques. En ce qui concerne Matrix Profile, les tests ont 

révélé que ce modèle excelle dans une approche totalement non supervisée. Cette 

caractéristique en fait un choix optimal pour des sites présentant des faibles taux de 

défaillances. Pour ResNet, les résultats suggèrent que ce modèle peut être utile dans des 

situations où le site d'étude présente des problèmes plus substantiels, avec un nombre 

significatif d'anomalies. Cependant, il est crucial de mettre en œuvre une phase de validation 

manuelle préalable, nécessaire pour l’entraînement du modèle.  

Il convient de noter que ces conclusions doivent être nuancées en raison des différences de 

taille des bases de données et des taux d'anomalies utilisés pour le test. Malgré cela, cette 

thèse représente une première dans l'évaluation d'outils d'IA à l'échelle des réseaux 

d'assainissement, fournissant des tendances prometteuses pour l'exploitation de ces 

techniques. Les perspectives incluent des tests plus approfondis sur des bases de données 

de validation pour consolider les résultats.  Un nouvel axe de développement peut concerner 

la reconstruction des séquences identifiées comme invalides par les modèles. 
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Appendix A. Activation functions 
The activation function plays an important role in the network's decision-making process. 

Essentially, it determines whether a neuron should be activated or not based on the inputs it 

receives and the respective weights associated with those inputs. The choice of activation 

determines the network's capability to capture intricate patterns in data and to make informed 

predictions. Below is a description of the main activation functions with their respective use 

cases. 

• Binary step function (Heaviside)  

The binary step function relies on a specific threshold value to determine whether or not a 

neuron should be activated. This activation function compares the input it receives to the 

established threshold. If the input exceeds this threshold, the neuron becomes active; 

otherwise, it remains inactive, effectively preventing its output from advancing to the 

subsequent hidden layer. The binary step function was initially employed in early versions of 

the perceptron but was swiftly abandoned due to its inherent limitations such as:  

- Lack of Multi-Valued Outputs: The binary step function is inherently limited in that it can 

only produce binary outputs, making it unsuitable for tasks requiring multi-class 

classification. It cannot distinguish between multiple output classes or provide a probability 

distribution over several possible outcomes. 

- Zero Gradient: Another significant drawback of the binary step function is that its gradient 

is constantly zero. This property presents a considerable challenge during the 

backpropagation process, as it hinders the efficient adjustment of connection weights 

through gradient-based optimization algorithms. Without gradient information, it becomes 

impossible to fine-tune the network's parameters effectively. 

 

 
Figure A-1: Binary step function 
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• Linear / Identity activation function 

The linear activation function, also referred to as the "no activation", maintains a direct 

proportionality between the activation and the input it receives. In essence, this function does 

not introduce any alterations to the weighted sum of the input; it merely outputs the same value 

it is provided with. Nevertheless, the linear activation function exhibits two significant 

limitations: Firstly, it renders the application of backpropagation unfeasible, as the derivative 

of the function remains constant and is entirely independent of the input variable, x. 

Secondly, the usage of a linear activation function leads to the collapse of all network layers 

into a singular entity. Regardless of the number of layers integrated into the neural network, 

the final layer effectively transforms into a linear function of the initial layer. Consequently, a 

neural network employing a linear activation function becomes, in essence, a single-layer 

network. 

 
Figure A-2: Identity activation function 

Non-linear activation functions address the shortcomings of linear activation functions in the 

following ways: 

1. They enable the utilization of backpropagation, as the derivative function now exhibits a 

dependence on the input. This enables the network to retroactively assess the contribution of 

individual input neuron weights towards improving predictions. 

2. They facilitate the incorporation of multiple layers of neurons, as the output now represents 

a non-linear composition of inputs processed across multiple layers. This means that any 

output can be expressed as a functional computation within the neural network. 

• Sigmoid function 

The sigmoid function accepts real values as input and produces output values within the range 

of 0 to 1. The larger the input, the closer the output approaches 1, while the smaller the input, 

the closer the output tends to 0, as illustrated below. It is commonly applied in models where 

the prediction of probabilities is essential, aligning with its output range. The function's 
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differentiability and smooth gradient prevent sudden jumps in output values, thanks to its 

characteristic S-shaped curve. However, the sigmoid function has its drawbacks. Notably, its 

gradient is most significant within the range of -3 to 3, with diminishing gradients beyond this 

interval, leading to the Vanishing Gradient Problem in deep networks when values are too high 

or too low. Additionally, the sigmoid function lacks a centered output, potentially impacting the 

efficiency of weight updates. Furthermore, its reliance on exponential operations can slow 

down computations. Despite these limitations, the sigmoid function remains a valuable tool in 

various neural network architectures. 

 
Figure A-3: Sigmoid function 

• Hyperbolic tangent (Tanh) activation function 

The hyperbolic tangent function (tanh) closely resembles the sigmoid activation function, 

characterized by its distinctive S-shaped curve, but with an output range spanning from -1 to 

1. In the tanh function, as the input becomes larger, the output tends toward 1, while smaller 

inputs result in an output closer to -1. This activation function offers several advantages, 

including zero-centered output values, allowing for clear distinctions between strongly 

negative, neutral, and strongly positive outputs. It is commonly employed in the hidden layers 

of neural networks since its output range from -1 to 1 ensures that the mean of the hidden layer 

approximates 0, simplifying data centering and facilitating learning in subsequent layers. 

However, like the sigmoid function, the tanh function faces the challenge of vanishing 

gradients, although its gradient is notably steeper than that of the sigmoid function. 



 

376 

 

 
Figure A-4: Tanh activation function 

• ReLU (Rectified Linear Unit) activation function 

The Rectified Linear Unit (ReLU) function has gained widespread popularity in deep learning, 

surpassing other activation functions. Although it gives an impression of a linear function, ReLU 

has a derivative function and allows for backpropagation while simultaneously making it 

computationally efficient.  In contrast to the sigmoid and tanh functions, ReLU boasts several 

advantages. Notably, when the input is positive, it avoids the gradient saturation problem. 

Furthermore, it excels in computational efficiency, as it maintains a linear relationship. This 

swift computation is attributed to the absence of exponent calculations required by sigmoid 

and tanh functions, which can slow down processing. Nevertheless, ReLU has its drawbacks, 

including the "Dead ReLU" problem, where it becomes entirely inactive for negative inputs, 

rendering gradients zero during backpropagation, akin to issues faced by sigmoid and tanh 

functions. Additionally, ReLU yields outputs of either 0 or positive values, signifying that it is 

not centered at zero, unlike zero-centric functions. 

 
Figure A-5: ReLU activation function 

• Leaky ReLU activation function 

Leaky ReLU represents an enhanced iteration of the ReLU function, primarily aimed at 

mitigating the "Dying ReLU" issue by introducing a slight positive slope in the negative input 

range. Leaky ReLU inherits the advantages of ReLU, such as computational efficiency and 

avoidance of gradient saturation, with the added benefit of supporting backpropagation for 

negative input values. This modification results in a non-zero gradient on the left side of the 
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function's graph, eliminating the problem of dormant neurons in that region. Nevertheless, 

Leaky ReLU is not without its limitations, notably that predictions for negative input values may 

lack consistency. Additionally, the small gradient associated with negative values can prolong 

the process of learning model parameters. 

 
Figure A-6: Leaky ReLU activation function 

• Other activation functions15 

 
  

 

15 This table is not exhaustive. 
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Appendix B. Neural Networks 
Architectures 

Deep Learning is a field of constant research. Every day, many new architectures of Neural 

Networks are proposed and updated. The Figure B-2 illustrates the scope of these potential 

architectures. For further exploration of these architectures, we invite interested readers to 

consult [242], which provides a detailed explanation of each model. However, in this study, we 

will limit ourselves to presenting the main classes of neural networks with brief descriptions 

[243]. 

• Feedforward Neural Network (FFNN) 

FFNNs follow a straightforward data flow, transmitting information from the input to the output 

layer. Neural networks are commonly structured with layers, which can be categorized as input, 

hidden, or output layers, working in parallel. A single layer does not contain internal 

connections, and typically, two consecutive layers are fully interconnected, with each neuron 

from one layer linked to every neuron in the adjacent layer. The training of FFNNs usually 

employs the back-propagation method, where the network is provided with paired datasets of 

"input" and "desired output.". The error being propagated backward is typically a measure of 

the discrepancy between the input and the output, such as Mean Squared Error (MSE) or the 

linear difference. Theoretically, with a sufficient number of hidden neurons, the network can 

model the relationship between input and output. 

• Recurrent Neural Network (RNN) 

RNNs introduce a temporal dimension to Feed Forward Neural Networks (FFNNs), endowing 

them with a sense of continuity. Unlike FFNNs, RNNs are not stateless; they establish 

connections across time, forming inter-pass connections. Neurons in RNNs receive input not 

only from the preceding layer but also from their own state during the previous time step. This 

characteristic emphasizes the significance of the input sequence order. RNNs face a 

substantial challenge known as the vanishing (or exploding) gradient problem, wherein the 

information rapidly diminishes over time, much like deep FFNNs losing information in their 

layers. Despite the intuition that this might not be a critical concern because it involves weights 

rather than neuron states, it's essential to realize that the weights across time serve as the 

storage for past information. If the weight values become too small or exceedingly large, the 

previous states become less informative. 
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• Convolutional Neural Network (CNN) 

CNNs represent a distinct category of neural networks with unique characteristics. They 

commonly accept input data in the form of a matrix or a three-dimensional tensor, preserving 

its spatial structure throughout the network's layers. CNNs operate by extracting information 

from small local regions, like squares or cubes (kernels), within the input images, and 

subsequently learn features from these patches. The input data is then passed through 

convolutional layers, which differ from conventional fully connected layers. In convolutional 

layers, not all nodes are connected to every other node. Each node primarily focuses on nearby 

cells, typically within a limited proximity. As CNNs progress in depth, the size of these 

convolutional layers tends to decrease, often by divisible factors of the input, such as going 

from 20 to 10 and then to 5. Additionally, CNNs frequently incorporate pooling layers, a 

technique for simplifying and abstracting details. One common pooling method is max pooling, 

which selects, for example, the pixel with the highest intensity in a 2 x 2-pixel region. 

• Generative Neural Network (GAN) 

GANs are used to generate data based on the patterns discovered from the input data. They 

consist of two neural networks, the generator and the discriminator, which compete. The 

generator creates synthetic data, while the discriminator tries to distinguish them from actual 

data. As the drive progresses, the generator improves to increasingly deceive the 

discriminator, while the latter refines its ability to discriminate between synthetic and real data. 

This creates a dynamic balance where the generator generates increasingly realistic data. 

GANs have many applications, including image generation, text to image translation, and data 

synthesis. They are widely used in the field of artificial intelligence to create artificial data useful 

for various tasks. 

 

 

Figure B-1: Simple architecture of GAN - © [244] 
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Figure B-2: Infographic with different neural networks architecture (2016) - © 

[242] 
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Appendix C. Stochastic Gradient 
Descent 

Gradient descent is a common optimization algorithm used in various ML algorithms as an 

iterative process that searches for an objective function’s optimum value [245].  

• Steps of the gradient descent algorithm 

 
1. Start with two random points (set of weights / bias) 

2. Find the slope / the gradient of the objective / cost function 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  
𝛿𝑙𝑜𝑠𝑠

𝛿𝜃
 

3.  Calculate the step size and update the 

parameters as 𝜃 ← 𝜃 − 𝜂. 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

4. Repeat 2 and 3 util the gradient is almost 0 

The 𝜂 parameter is the "learning rate," which is a 

versatile parameter that impacts the algorithm's 

convergence. Higher learning rates cause the 

algorithm to take significant strides along the 

slope, potentially overshooting the minimum point 

and failing to converge accurately. Therefore, it is 

generally advisable to opt for a lower learning rate. 

• The stochastic gradient descent 

Stochastic Gradient Descent (SGD) is a variant of the Gradient Descent algorithm that 

addresses the computational inefficiency of the latter when dealing with large datasets. In 

SGD, instead of using the entire dataset for each iteration, only a single random training 

example (or a small batch) is selected to calculate the gradient and update the model 

parameters. This random selection introduces randomness into the optimization process, 

hence the term “stochastic” in stochastic Gradient Descent.  

1.  Choose a batch size 1≤ n < number of the training data samples 

2. Select an initial vector of parameters and a learning rate 

3. Repeat until an approximate minimum is reached: 

a. Randomly shuffle samples in the training set 

b. Find the slope using n samples and update the parameters ɵ

Figure C-1: Gradient Descent 

Principle 

https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/
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Appendix D. Survey on anomaly detection using AI in the 
hydrological field. 

In green, traditional Machine Learning approaches / In bleu, Deep Learning approaches 

Date Article Objective Database Parameters Models 

2012 

[246] 
Anomaly detection for 

on-line monitoring 

Municipal wastewater 

treatment plant in Northwest 

China 

flow, effluent quality 

parameters (COD, NH3-N, pH), 

dissolved oxygen 

Support Vector Machine 

(SVM), Radial Basis 

Function (RBF) 

[247] 

Simulation of E.coli 

contamination in water 

distribution system 

Water Security Initiative pilot 

study in Cincinnati 
pH, conductivity, turbidity 

Bayesian Belief Network 

(BBN) 

[135] 
Anomaly detection in 

water distribution system 
CANARY database 

Chlorine, electrical 

conductivity, pH, temperature, 

total organic carbon, and 

turbidity 

ANN and Bayes rule for 

finding the probability of 

an anomalous event 

2014 [136] 

Detection of chlorine 

decay in drinking water 

systems 

Water supply data from 

distribution system in Czech 

Republic 

Chlorine, flow, pH, 

temperature, turbidity 

Artificial Neural Network 

(ANN) 

2015 [248] 
Water quality 

assessment 

Data acquired from 

DanJiangKou reservoir 

COD, DO, Pt, DBO5, Ph, 

turbidity, temperature, Ecoli, 

oil, chlorophyll, N-NH3, N-NO3 

Sparse autoencoder + 

SoftMax Classifier 
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Date Article Objective Database Parameters Models 

[249] 
Anomaly detection for 

smart water monitoring 

Water monitoring testbed 

dataset 

Tank level, pump status, flow, 

aggregate and differential 

demand 

Deep Belief Network 

(DBN) 

2017 

[21] 

Detection of cyber-

attacks on drinking water 

treatment systems 

Secure Water Treatment 

(SWaT) testbed at Singapore 

university 

network traffic, sensor data 

over 11 days of continuous 

operation 

LSTM-DNN and OCSVM 

[168] 
attack detection in water 

distribution systems 

BATtle of the Attack Detection 

ALgorithms (BATADAL) 

dataset 

tank water level, pump 

flowrate, and pumping station 

discharge pressure 

CNN-VAE 

2018 

[129] 
Anomaly detection in 

water consumption data 

Experience in collaboration 

with the Colruyt Group 
water consumption data 

kNN, LOF, CBLOF, 

OCSVM 

[119] 

Remote monitoring of 

water quality assessment 

via a mobile app 

A recording system of water 

quality 

10 parameters including ph, 

turbidity & temperature 

 SVM, kNN, single layer 

neural network and deep 

neural network 

[160] 

Anomaly detection 

approaches for drinking 

water quality 

Dataset of the GECCO 

Challenge 2018  

pH, Redox potential, 

conductivity, turbidity, chlorine 

dioxide 

Manual feature 

engineering Vs LSTM 

neural network 

[131] 

Anomaly detection 

approaches for drinking 

water quality 

Dataset of the GECCO 

Challenge 2018  

pH, Redox potential, 

conductivity, turbidity, chlorine 

dioxide 

LR, LDA, SVM, ANN 

[140] 
Anomaly detection for 

drinking water quality 
Not tested CNN + deep BiLSTM 
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Date Article Objective Database Parameters Models 

2019 

[145] 
Anomaly detection in 

water supply data 

Water supply data provided by 

the Ministry of Water 

Resources of China 

water quantity data of 738 

days in 204 different sources 
OC-SVM 

[116] 
In-situ wastewater 

systems monitoring data 

Wastewater data in the 

municipality of Fehraltorf 

(Urban Water Observatory) 

only dry weather data CNN- AE 

[155] 
Attack detection in water 

distribution systems 

BATtle of the Attack Detection 

ALgorithms (BATADAL) 

dataset 

tank water level, pump 

flowrate, and pumping station 

discharge pressure 

OCSVM, LOF, ensemble 

models 

[130] 

Hydrological time series 

anomaly pattern 

detection 

Measured data of the Chuhe 

River Basin 

water level of Jinniuhu 

Reservoir and Chuhe River 

K-Means, kNN, Isolation 

Forest 

[149] 
Anomaly detection in 

water quality monitoring 

Database from the Dundas 

wastewater treatment facility, 

Hamilton, Canada. 

Ammonia, potassium, chloride, 

temperature  

LOF, IForest + Statistical 

approaches 

2020 

[124] 

Intrusion and pollution 

detection into drinking 

water distribution 

systems  

Database from the water 

treatment station "Ghadir El 

Golla" of Tunis  

38 physicochemical and 

microbiological water quality 

parameters  

Decision Trees + SVM 

[164] 
Cyber security attacks on 

water treatment plans 

SWaT, an operational 

laboratory water treatment 

plant 

Multiple parameters Autoencoders 
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Date Article Objective Database Parameters Models 

[117] 
Leaks detection in water 

distribution networks 

Dataset from an experimental 

testbed at the University of 

Waterloo  

Hydrophone data CNN-VAE 

2021 

[250] Automatic fault detection 
Real WWTP data in South 

Korea 

COD, TP, TN, and SS, pH, 

Temperature, Turbidity 

stacked denoising 

autoencoder (SDAE) 

[165] 
Data validation and 

anomaly detection 

IT-based infrastructure 

company located in Seoul, 

South Korea 

Water level from 3 sensor sites Deep autoencoder 

[154] 
real-time water quality 

monitoring 

Raw water quality data from 

the NYEWASCO water 

treatment plant 

Ph, Turbidity  LOF, Random Forest 

2023 [118] 

Validation and 

reconciliation of sensor 

data 

Sensor data  from Amsterdam 

WWTP, issued from the 

aerobic tank 

Concentration of nitrate (NO3
-) 

and ammonium (NH4
+) 

LSTM-AE 
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Appendix E.  Commonly used 
loss functions 

The loss function serves as a method for assessing the performance of a machine learning 

algorithm in modeling a given dataset. Its role encompasses several key aspects: 

• Performance Evaluation: Loss functions provide a quantifiable metric for evaluating 

the model's performance by measuring the disparity between predicted outcomes and 

actual results. 

• Iterative Improvement Guidance: Loss functions direct model refinement by 

instructing the algorithm to iteratively adjust parameters (weights) to minimize loss and 

enhance predictive accuracy. 

• Bias-Variance Trade-off: Effective loss functions aid in striking a balance between 

model bias (oversimplification) and variance (overfitting), crucial for the model's ability 

to generalize to unseen data. 

Loss functions can be broadly categorized into two major groups based on the types of 

problems encountered in real-world scenarios: classification and regression. In 

classification problems, the objective is to predict the probabilities of each class involved in the 

problem. Conversely, in regression tasks, the goal is to predict continuous values based on a 

given set of independent features provided to the learning algorithm. 

Classification loss functions 

• Binary Cross-Entropy Loss / Log Loss 

This is the most common loss function used in classification problems. The cross-entropy loss 

decreases as the predicted probability converges to the actual label. It measures the 

performance of a classification model whose predicted output is a probability value 

between 0 and 1. 

Equation 19: Binary Cross Entropy Loss function 

 

• Categorical Cross Entropy Loss / SoftMax Loss 

Cross-Entropy Loss is an extension of log loss to multi-class classification problems. Here, the 

loss is computed over all classes, emphasizing the divergence of the predicted class 

probabilities from the true class distribution. The complexity of multi-class cross-entropy 
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escalates with an increase in the number of classes. A fundamental challenge is ensuring that 

the predicted probabilities across all classes aggregate to one. This normalization is typically 

achieved using the SoftMax function, which exponentiates each class score and then 

normalizes these values to yield a valid probability distribution. 

Equation 20: Categorical Cross Entropy Loss Function 

 

Loss functions for regression 

• Mean Square Error (MSE) / L2 Loss 

The Mean Square Error (MSE) quantifies the magnitude of the error between a prediction and 

an actual output by taking the average of the squared difference between the predictions and 

the target values. Squaring the difference between the predictions and actual target values 

results in a higher penalty assigned to more significant deviations from the target value. A 

mean of the errors normalizes the total errors against the number of samples in a dataset or 

observation. 

Equation 21: L2 Loss Function 

 

• Mean Absolute Error (MAE) / L1 Loss 

Mean Absolute Error (MAE) is a loss function used in regression tasks that calculates the 

average absolute differences between predicted values from a machine learning model and 

the actual target values. Unlike Mean Squared Error (MSE), MAE does not square the 

differences, treating all errors with equal weight regardless of their magnitude. 

Equation 22: L1 Loss Function 
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Appendix F. Time series 
decomposition 

 

Time series decomposition is a statistical process that breaks down a time series into various 

components, each representing distinct patterns [251]. A typical decomposition includes: 

• Trend Component (Tt): Reflects the long-term progression of the series, indicating a 

persistent increasing or decreasing direction. The trend can take non-linear forms. 

• Seasonal Component (St):Reflects seasonality, capturing patterns influenced by 

seasonal factors occurring over fixed and known periods (e.g., quarters, months, or days of 

the week). There might be multiple seasonal components in the same time series, 

corresponding to different seasonal periods 

• Irregular Component (Rt or "noise"):Describes random and irregular influences, 

representing the residuals or the remaining part of the time series after accounting for other 

components. 

Thus, a time series can be conceptualized as consisting of three main components: a trend-

cycle component, a seasonal component, and an irregular component (which encompasses 

any other elements in the time series). For an additive decomposition, the time series (yt) is 

expressed as the sum of its components:  

𝑦𝑡  =  𝑆𝑡  + 𝑇𝑡  +  𝑅𝑡 

Alternatively, a multiplicative decomposition is represented as: 

𝑦𝑡  =  𝑆𝑡  × 𝑇𝑡  ×  𝑅𝑡 

The choice between additive and multiplicative decomposition depends on the relationship 

between the magnitude of seasonal fluctuations or variation around the trend-cycle and the 

level of the time series. Additive decomposition is suitable when these variations do not vary 

with the level, while multiplicative decomposition is more appropriate when the variations are 

proportional to the level, a common scenario in economic time series. 

Automatic decomposition methods exist, and the statsmodels library offers an implementation 

of the classical decomposition method through the `seasonal_decompose()` function [252]. 

One needs to specify whether the model is additive or multiplicative when utilizing this function. 

Here, we will choose the additive model since multiplicative seasonality is not appropriate for 

zero and negative values. 
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Appendix G. Matrix Profile 
algorithms 

There are a handful of algorithms and different implementations to use the Matrix Profile model. 

Here, we introduce the matrix profile algorithms differentiating the univariate and multivariate 

time series. In fact, even if the principle is the same, the algorithms are different.  

The main time complexity of the matrix profile approach comes from the calculation of the 

distance profile. Hence, the challenge is to find an optimized algorithm that allows such 

computation efficiently. In the next section, we introduce an “ultra-fast” way to compute 

distance profiles.  

Mueen’s Algorithm for Similarity Search (MASS) 

Many algorithms in the literature have been developed to answer the question of similarity 

search in time series data. Because of the daunting nature of the input, optimization techniques 

have been adopted to make the calculation efficient and reduce the time complexity. These 

approaches include indexing structures [253] and early abandoning [254], [186]. However, in 

the case of complex time series with important levels of noise for example, these approaches 

degrade to brute force search.  

In 2011, [202] introduced “The Fastest Similarity Search Algorithm for Time Series 

Subsequences under Euclidean Distance”. The objective is to create the distance profile of a 

query to a long time series, exploiting the overlap between subsequences using the classic 

Fast Fourier Transform (FFT) algorithm. The formula to calculate the z-normalized Euclidean 

distance between two time series subsequences Q (query) and Ti,m a subsequence of T using 

their dot product QT[i] is (for demonstration, see [255]): 

Equation 23: Normalized Euclidean Distance 

𝐷[𝑖] =  √2𝑚 (1 −
𝑄𝑇[𝑖] − 𝑚𝜇𝑄𝜇𝑇[𝑖]

𝑚𝜎𝑄𝜎𝑇[𝑖]
) 

Where: 

- m is the subsequence length  

- µQ and µT the mean of Q and Ti,m respectively 

- 𝜎Q and 𝜎T the standard deviation of Q and Ti,m respectively 

- QT[i] the dot product of Q and Ti,m 

 



 

390 

 

The full algorithm is outlined in Table 57. 

Table 57: Mueen's Algorithm for similarity Search (MASS) -© [179] 

Procedure MASS(Q,T) 

Input: A query Q16 and a time series T 

Output: A distance profile D of the query Q 

1 n = length(T) , m = length(Q) 

2 Ta ← Append T with n zeros 

3 Qr ← Reverse(Q) 

4 Qra ← Append Qr with 2n-m zeros 

5 Qraf ← FFT(Qra), Taf ← FFT(Ta) 

6 QT ← inverseFFT(ElementwiseMultiplication(Qraf, Taf)) 

7 µQ , µT , 𝜎Q , 𝜎T ← ComputeMeanStd(Q,T) 

8 D ← CalculateDistanceProfile(Q,T,QT, µQ , µT , 𝜎Q , 𝜎T) 

9 return D 

 

In line 5, the algorithm calculates Fourier Fast Transform. The resulting Qraf and the Taf are 

vectors of complex numbers representing frequency components of the two-time series. In line 

6, the algorithm calculates their element-wise multiplication and performs inverse FFT on the 

product. In line 7, we calculate the mean and standard deviation of each subsequence. This 

algorithm represents the basis for the calculation of the matrix profile. 

STAMP Algorithm 

Once the distance profile is calculated for each subsequence of a time series T, the matrix 

profile becomes a simple loop that extracts the minimum of each row. The algorithm used for 

this is Scalable Time series Anytime Matrix Profile (STAMP) and its syntax is presented in 

Table 58. 

Table 58: The Stamp Algorithm - © [195] 

Procedure STAMP(T,m) 

Input: A time series T and interested subsequence length m 

Output: A matrix profile P and matrix index I 

1 n ← Length(T) 

2 P ← infs, I ← zeros, idxes ← 0 : n-m 

3 for each idx in idxes: 

 

16 In our case, the query is a fixed subsequence of T 
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4        D ← MASS(T[idx, idx+m], T]) 

5        P, I ← ElementWiseMin(P,I,D,idx) 

6 end for 

7 return P, I 

 

In line 5, we perform pairwise minimum for each element in D with the paired element in P (i.e., 

min(D[i], P [i]) for i = 0 to length(D) - 1.) We also update I [i] with idx when D[i] ≤ P [i] as we 

perform the pairwise minimum operation.  

The STAMP algorithm is characterized by its anytime nature. In fact, in line 3, the indexes are 

selected randomly, allowing an approximate solution (if needed). To illustrate the utility of this 

feature, let’s imagine that all anomalies are located in the last subsequences of a time series. 

Hence, we are obliged to wait for the end of the algorithm to have an appropriate solution. 

Thus, the anytime feature enables an early stop of the algorithm without compromising the 

representativeness of the results. 

The STAMP Algorithm can also be used in different fashions according to the problem’s 

requirement. Among these different scenarios, we mention [179]: 

- Parallelizable STAMP: it allows using multicore machines by distributing the indexes in 

line 3 on several cores. Once all the secondary cores are done, the main core merge 

the results using a similar function to ElementWiseMin 

- Incremental STAMP (ISTAMP): The aim of this approach is to use Matrix Profile 

incrementally: as long as new data arrives; it is embedded to the dataset and the matrix 

profile is adjusted accordingly.  

This algorithm is able to process up to a million data points in tenable time. However, for larger 

datasets, there is a need to upgrade this algorithm. That is the reason [200] developed 

STOMP. 

STOMP Algorithm 

By giving up the anytime feature of STAMP algorithm and performing an ordered evaluation of 

the distance profiles, the Scalable Time series Ordered-search Matrix Profile (STOMP) 

reduces the time complexity. This speedup factor becomes interesting for large datasets (with 

millions of datapoints) but makes minor difference for smaller ones. 

The main added value of this algorithm is to exploit the link between two consecutive dot 

products. 
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Table 59: The STOMP Algorithm - © [195] 

Procedure STOMP(T,m) 

Input: A time series T and interested subsequence length m 

Output: A matrix profile P and matrix index I 

1 n ← Length(T), l ← n-m + 1 

2 µ , 𝜎 ← ComputeMeanStd(T,m) 

3 D, QT ← MASS(T1,m , T) 

4 QT-first ← QT 

5 P ← D, I ← ones                          //initialization 

6 for i = 2 to l                                   //in-order evaluation 

7    for j = l downto 2                       //update dot product 

8         QT[j] ← QT[j-1] - T[j-1] x T[i-1] + T[j+m-1] x T[i+m-1] 

9    end for 

10    QT[1] ← QT_first[i] 

11    D ← CalculateDistanceProfile(QT, µ , 𝜎, i ) 

12    P, I ← ElementWiseMin(P, I, D, i) 

13 end for 

14 return P, I 

The loop in lines 6-13 calculates the distance profile of every subsequence of T in sequential 

order, with lines 7-9 updating QT. In line 10, we complete the QT with the precomputed QT_first 

in line 4. 

STOMP is also suitable for parallel computing on several processors. In addition, there is also 

a GPU-based version of this algorithm which offers a considerable speedup. Table 60 shows 

a performance comparison of the algorithms presented so far. Note that unlike STAMP where 

the exclusion zone is w/2, the default exclusion zone for STOMP is w/4. 

Table 60: Time required for motif discovery varying the dataset length n (𝑚 = 

256) – © [200] 

Value of n 217 218 219 220 221 

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours 4.2 days 

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours 0.87 days 

GPU-STOMP17 10 sec 18 sec 46 sec 2.5 min      9.25 min 

 

 

17 The GPU used here is an NVIDIA Tesla K80  



 

393 

 

mSTAMP Algorithm 

The multidimensional matrix profile algorithm is an adaptation of the algorithms presented 

above for univariate time series to include the different dimensions. Table 61 outlines the 

multivariable STAMP algorithm (mSTAMP). For this study, we used the accelerated version of 

it, i.e., mSTOMP.  

Table 61: The mSTAMP Algorithm - © [205] 

Procedure mSTAMP (T,m) 

Input: A time series T and interested subsequence length m 

Output: A set of k-dimensional marix profile P 

1 P ← inf matrix of shape (d x n-m+1) 

2 idxes integers from 1 to n-m+1  

3 for each idx in idxes: 

4     D ← zero matrix of shape (d x n-m+1) 

5     for i from 1 to d: 

6           Q ← T[i,idx:idx+m-1] 

7           D[i, :] ← distanceProfile(Q, T[i, :] 

8     end for 

9      

10     D ← columnWiseAscendingSort(D) 

11     D’ ← zero array of length n-m+1 

12     for I from 1 to d: 

13            D’ ← D’ + D[i, :] 

14            D’’ ← D’ / i 

15            P[i, :] ← elementWiseMin(P[i,:],D”) 

16     end for 

17 end for 

18 return P 

In mSTAMP, the query (line 3) is selected in a random order and the distance profile is 

calculated using MASS in order to have the anytime feature. In the mSTOMP version, the 

query is selected in order, and the profile distance is calculated using the method proposed by 

[200]. For the demonstration of the correctness of this approach, we refer the interested reader 

to [205].  
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Conclusion 

Table 62 provides a concise description of each of the algorithms presented above. 

Table 62: Concise description of the matrix profile algorithms used in this 

study.  

Algorithm Description 

Naïve Inefficient technique for Matrix Profile computation, characterized by a "brute 

force" approach 

STAMP Among the initial algorithms derived from Keogh's research group, STAMP is 

recognized as an anytime algorithm. 

STOMP An exact ordered algorithm, STOMP exhibits significantly enhanced speed 

compared to STAMP. 

SCRIMP++ This algorithm combines the anytime component of STAMP with the speed of 

STOMP 

 

The algorithm that we used in this research is PYSCAMP18, which is a python implementation 

of matrix profile based on SCRIMP++ [203] and with high computational optimizations that are 

beyond the scope of this work [204]. According to [256], “It is the fastest code in existence for 

computing the matrix profile”. For the multidimensional approach, we used the python 

implementation of mSTOMP, which is publicly available in [205]. 

 

 

 

 

18 Source code accessible online https://scamp-docs.readthedocs.io/en/latest/pyscamp/intro.html  

https://scamp-docs.readthedocs.io/en/latest/pyscamp/intro.html
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Appendix H. Class Activation Maps 
 
 

Class Activation Maps (CAMs) are a novel approach in computer vision, developed to 

improve the understanding of convolutional neural networks (CNNs) by identifying the regions 

of an image that contribute most to a particular prediction. This method was introduced by 

[257] in 2016. The main aim of using CAMs is to bring interpretability to neural network models, 

which are often regarded as black boxes, by providing visual tools for interpreting and 

validating the decisions made by convolutional networks.  

• Background  

During the training of CNN, filters are learned for convolution operations, generating feature 

maps at each layer. Typically, filters close to the input layer detect low-level features like edges 

or lines, while deeper layers combine these low-level features into higher-level concepts. [257] 

proposed to enhance the interpretability of feature maps by making the number of feature maps 

in the last convolutional layer equal to the number of classes. This enables each feature map 

to be interpreted as a confidence map for a specific class, with the strongest activation 

indicating the region in the original image where the corresponding object is present. 

 

Figure H-1: Standard approach, where the feature maps are flattened in order to 

fed them into a dense layer - © [258] 

However, the traditional approach of flattening feature maps for input into fully connected 

layers diminishes the direct correspondence between feature maps and the output (see Figure 

H-1). New CNN architectures aim to mitigate this issue by avoiding FC layers. Instead of 

flattening, they employ global average pooling, preserving the correspondence and localization 

ability of the network (see Figure H-2).  

Global average pooling involves taking the spatial average of each feature map, creating a 

vector with scalar values representing the mean activation of each feature map (see Figure 
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5-21). This resulting vector can then be input into a classification (SoftMax) layer, where the 

activation for a specific class output is a linear combination of average feature map activations 

multiplied by the corresponding class weights. These weights signify the importance of each 

feature map for the respective class. This approach maintains interpretability, enhances spatial 

awareness, and facilitates a clearer understanding of CNN’s decision-making process. 

 

Figure H-2: Global average pooling operation - © modified from [258] 

• Class activation mapping principle 

[257] leverage the concept of global average pooling in neural networks to discern the most 

discriminative regions within an image. Rather than computing the product of weights and 

global averages of feature maps, the authors suggest a direct multiplication of feature maps 

with class-specific weights. This operation results in the creation of a Class Activation Map 

(CAM), effectively highlighting the image regions crucial for discrimination. The CAM serves 

as an indicator of where the network focuses when predicting a particular class (see Figure 

H-3).  

 

Figure H-3: Linear combination of the weights and feature maps to obtain the 

class activation map - © [258] 
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• CAM for time series 

The adaptation of CAMs to time series represents an extension of this technique to the field of 

sequential data. Unlike the classical application of CAMs to images (2D or 3D input data), time 

series present a temporal dimension (1D) that requires a distinct approach. So, instead of 

working with spatial activation maps, adapting CAMs to time series involves generating 1D 

activation maps. The underlying logic is based on the idea that each point in time contributes 

in a different way to class prediction, and temporal CAMs make it possible to visualize the time 

periods crucial to model decision-making. By applying the same principle of linear weighting 

of temporal features, temporal CAMs thus offer a visual interpretation of key moments in a 

temporal sequence, improving the comprehensibility and explicability of deep learning models. 

Our implementation of CAMs in this study was mainly inspired by [134]. 
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Appendix I. Visualizing Data using t-
SNE  

 

t-distributed Stochastic Neighbor Embedding (t-SNE), developed in 2008 by [221], is a 

dimension reduction method widely used in high-dimensional data mining. This non-linear 

technique aims to represent a set of points in a two- or three-dimensional space, while 

simultaneously preserving the distances between them. 

• Dimension reduction principle 

The reduction of dimensionality is a studied process in mathematics and computer science, 

involving the transformation of data from a high-dimensional space to a lower-dimensional one 

while preserving most of the information from the original set. This is essentially an effort to 

construct fewer variables while retaining maximum information.  

There are two main approaches to achieve dimensionality reduction: removing variables and 

combining variables. Removing variables involves techniques like regularization in certain 

models, or variable selection based on their relationship with the output through statistical tests 

like correlation coefficients or mean absolute differences. On the other hand, combining 

variables is done using methods like Principal Component Analysis (PCA), which transforms 

correlated variables into new uncorrelated ones. 

• T-SNE principle 

The role of t-SNE is to nonlinearly reduce dimensionality, allowing the separation of data that 

cannot be linearly separated. This algorithm provides insight into how data is organized in a 

high-dimensional space, producing distinct and well-defined groups. Once the data structure 

is understood, t-SNE compresses it by projecting it into a lower-dimensional space (2D or 3D). 

The algorithm begins by constructing a probability distribution for pairs of points in the original 

space, based on their similarities. This distribution represents the relative probability of two 

points being neighbors of each other. A similar distribution is then created in low-dimensional 

space. The second step involves projecting the points into the low-dimensional space in such 

a way as to minimize the Kullback-Leibler divergence between the two probability distributions. 

Concretely, t-SNE seeks to ensure that pairs of points that are similar in the original space 

remain close in the reduced space, and that pairs of different points are far apart. The choice 

of t-distribution reduces sensitivity to outliers and avoids the problem of points being 

concentrated in certain areas of space. 
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• Comparison between t-SNE and PCA  

 

Table 63: Comparison between t-SNE and PCA for dimension reduction - © 

[259] 

 

 

 

 

 

 PCA t-SNE 

1. It is a linear Dimensionality reduction technique. It is a non-linear Dimensionality reduction technique. 

2. It tries to preserve the global structure of the data. It tries to preserve the local structure(cluster) of data. 

3. It does not work well as compared to t-SNE. It is one of the best dimensionality reduction techniques. 

4. It does not involve Hyperparameters. 
It involves Hyperparameters such as perplexity, learning 

rate and number of steps. 

5. It gets highly affected by outliers. It can handle outliers. 

6. PCA is a deterministic algorithm. It is a non-deterministic or randomized algorithm. 

7. 
It works by rotating the vectors for preserving 

variance. 
It works by minimizing the distance between the point in 

a gaussian. 

8. 
We can find decide on how much variance to 

preserve using eigen values. 
We cannot preserve variance instead we can preserve 

distance using hyperparameters. 

9. 
PCA is computationally less expensive than t-SNE, 

especially for large datasets.  

t-SNE can be computationally expensive, especially for 
high-dimensional datasets with a large number of data 

points. 

10. 
It can be used for visualization of high-dimensional 

data in a low-dimensional space. 
 It is specifically designed for visualization and is known 

to perform better in this regard. 

11. It is suitable for linearly separable datasets. It is more suitable for non-linearly separable datasets. 

12. It can be used for feature extraction 
It is mainly used for visualization and exploratory data 

analysis. 

13. 
PCA can be sensitive to the ordering of the data 

points 
t-SNE is less sensitive to the ordering of the data points. 
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Appendix J. Pairwise F1 score results between annotators 
 

 

Figure J-1: Pairwise confusion matrices issued from the validation pool per month 
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Figure J-2: Pairwise confusion matrices issued from the validation pool per site 
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Appendix K. ANOVA test 
 

Analysis of variance (ANOVA) is a statistical methodology for assessing significant 

differences between the means of three or more groups. Its aim is to discern whether the 

variability observed in the data can be attributed to real differences between the groups, rather 

than simple random fluctuation. ANOVA operates by comparing between-group variance with 

within-group variance. More precisely, it subdivides the total variance into two distinct 

components: the variance attributed to disparities between groups and the variance attributed 

to random fluctuations within groups. 

 

Figure K-1: Types of variation analyzed using the ANOVA test 

Calculating the ratio between these two components generates a test statistic. Statistical 

significance of the latter indicates the existence of significant differences between at least two 

groups. One-way ANOVA extends the independent t-test to more than two groups or samples. 

The null and alternative hypotheses arising from a one-way ANOVA are formulated as follows: 

- Null hypothesis H0: Mean values are uniform across all groups. 

- Alternative hypothesis H1: Differences remain between group means. 

The ANOVA results indicate whether or not there are differences between at least two groups. 

However, they do not specifically identify which groups have significant differences.  

A number of prerequisites must be met before unifactorial ANOVA can be applied, including: 

the level of metric scaling of the dependent variable in relation to the nominal scaling of the 

independent variable, the homogeneity of variances within each group, and the normal 

distribution of data within groups. 
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Appendix L. ResNet results using the multivariable 
approach 

 

 

 

Figure L-1: Heatmap using both raw turbidity data (2T) as input 
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Figure L-2: Heatmap using raw turbidity and reconstructed turbidity data (3T) as input 
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Figure L-3: Heatmap using raw turbidity and conductivity data (2TC) as input 
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Figure L-4: Heatmap using raw turbidity, reconstructed turbidity and conductivity data (3TC) as input
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Résumé  

La fiabilité des données dans la gestion des réseaux d'eaux usées est cruciale en raison des 

implications directes sur les opérations. Cependant, les approches actuelles de validation des 

données sont souvent coûteuses et manquent d'objectivité. Cette thèse explore les avancées en 

intelligence artificielle pour instaurer une validation robuste. La mise en place d'un pôle de validation 

humaine montre que le F1 score moyen entre experts reste à 0.81, soulignant l'inévitable biais 

humain. Les modèles testés, à savoir Matrix Profile, ResNet et l'autoencodeur, présentent des 

résultats prometteurs, avec un F1 score de 0.96 pour ce dernier, indiquant une capacité à détecter 

efficacement les séquences anormales dans les séries temporelles. Matrix Profile excelle en non-

supervisé, idéal pour des sites à faible défaillance, tandis que ResNet se montre utile dans des 

contextes plus problématiques, pouvant justifier une phase de validation manuelle à priori. Ces 

conclusions ouvrent des perspectives pour une gestion améliorée des réseaux d'eaux usées, basée 

sur des données fiabilisées grâce à l'IA.  

Mots-clés : Assainissement, Intelligence artificielle, Capteurs, Séries temporelles, Validation, 

Anomalies, Matrix Profile, ResNet, autoencodeur   

 

Résumé en anglais 

Data reliability in wastewater system management is crucial because of the direct implications on 

operations. However, current approaches to data validation are often costly and lack objectivity. This 

thesis explores advances in artificial intelligence to establish robust validation. The establishment of 

a human validation pool shows that the average F1 score between experts remains at 0.81, 

highlighting the inevitable human bias. The models tested, namely Matrix Profile, ResNet and the 

Auto-encoder, show promising results, with an F1 score of 0.96 for the latter, indicating an ability to 

effectively detect abnormal sequences in the time series. Matrix Profile excels in non-supervised, 

ideal for low failure sites, while ResNet is useful in more problematic contexts, which can justify a 

manual validation phase a priori. These findings open up prospects for improved management of 

wastewater networks, based on data made more reliable thanks to AI.  

Keywords: Wastewater networks, Artificial intelligence, Sensors, Time series, Validation, 

Anomalies, Matrix Profile, ResNet, Autoencoder  


