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Titre: Intermittence, singularité et réversibilité sur grilles logarithmique.
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Résumé: En 2019, Campolina & Mai-lybaev ont développé un nouveaucadre, les grilles logarithmiques per-mettant de réaliser des simulations àhaute résolution grâce à l’utilisationde modes exponentiellement es-pacés dans l’espace de Fourier.Une telle construction rappelle les
shellmodels bien connus. En util-isant ce nouveau cadre, cette thèseaborde le sujet de l’intermittence,des singularités et de la réversibil-ité dans les écoulements turbulents.Nous nous intéressons tout d’abordà la capacité du système à repro-duire des caractéristiques intermit-tentes, telles que des bursts de dis-sipation d’énergie, observées dansdes écoulements réels. Une expli-cation possible de ce phénomèneest l’existence de singularités com-plexes des champs de vitesses dontles parties imaginaires pilotent ladissipation. En atteignant l’axe réel(i.e une partie imaginaire nulle),elles génèrent un burst de dissi-

pation et peuvent conduire à desscénarios de blowup. A traversl’étude de l’existence de blowupsdans différents scénarios (écoule-ments hyper, hypovisqueux et clas-sique), nous étudions l’existence desingularités complexes dans notremodèle. En introduisant la notiond’efficacité, nous montrons qu’il estpossible d’observer des blowupsvisqueux dans le contexte des équa-
tions de Navier-Stokes réversibles, in-troduites pour la première fois parGallavotti en 1996. En utilisant ceséquations modifiées, nous étudionsl’existence d’une solution faible dissi-pative. Enfin, nous étudions les pro-priétés statistiques des équations deNavier-Stokes réversibles mettant enévidence l’existence d’une transitionde phase du second ordre et exam-inons la conjecture de Gallavotti con-cernant l’équivalence d’ensemble en-tre les équations de Navier-Stokes etleur homologue réversible.



Title: Intermittency, Singularity & Reversibility on Log-lattices.
Keywords: Turbulence, reversibility, singularities, intermittency, logarithmicgrids, numerical simulations.
Abstract: In 2019, Campolina & Mai-lybaev developed a new framework,the Log-lattices allowing for simula-tions at high resolution through theuse of exponentially spaced modesin the Fourier space. Such construc-tion recalls the well known shellmod-
els. Using this new framework, thisthesis tackles the subject of intermit-tency, singularities and reversibilityin turbulent flows. We first focuson the ability of the system to re-produce intermittent features, suchas bursts of energy dissipation, ob-served in real flows. A possible ex-planation to this phenomenon is theexistence of complex singularities ofthe velocity fields which imaginaryparts pilot the dissipation. By reach-ing the real axis (i.e a null imaginarypart), they generate a burst of dissi-pation and can lead to blowup sce-

narios. Through the study of the ex-istence of blowup in various scenar-ios (hyper, hypoviscous and classicalflows) we investigate the existence ofcomplex singularities in our model.Introducing the notion of efficiency,we then show that it is possible to ob-serve viscous blowups in the contextof the Reversible Navier-Stokes equa-
tions, first introduced by Gallavotti in1996. Using these modified equa-tions, we study the existence of weakdissipative solutions. Finally, westudy the statistical properties of theReversible Navier-Stokes equationshighlighting the existence of a sec-ond order phase transition and in-vestigate the Gallavotti’s conjecturestating the equivalence of ensem-bles between Navier-Stokes equa-tions and its reversible counterpart.
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0 - Introduction

0.1 . Glossary

As every field if not every individual has his own symbols, this section sets notations
and definitions of all the notions and quantities contained in this thesis.
ρ Density of the fluid.
ν Viscosity of the fluid.
u Velocity field.
∇ Differential operator nabla.
i Notation for complex numbers such that i2 = −1.
ℜ Real part of a complex number.
ℑ Imaginary part of a complex number.
E Kinetic energy.
Ω Enstrophy.
Π Energy transfers between scales.
ϵ Energy dissipation.
W Work of a force.
Re Reynolds number of a flow.
Rr "Reversible" Reynolds number defined for the Reversible Navier-Stokes equations.
E Efficiency, definied in the context of Reversible Navier-Stokes.
Nu Nusselts number.
Pr Prandlt number.
Ra Rayleigh number.
λ Spacing parameter of the grid in the Fourier space.
k Wavenumber associated to the Fourier transform.
∥.∥2 Euclidean norm.
∗ Convolution product.
Sp Structure functions of order p.
ξp Exponent of the structure functions of order p.
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⟨.⟩ Time average of a given quantity.
V ar Variance of a given distribution.
σ Standard deviation of a given distribution.
PDF Probability Density Function.
DNS Direct Numerical Simulation.

0.2 . Context

Thedynamics of simple fluids are describedby the incompressibleNavier-Stokes equa-
tions (1).

∂tu+ (u ·∇)u = −∇p+ ν∆u, (1)
∇ · u = 0. (2)

In the absence of viscosity, referred as ν, the system is time-reversible as it is invariant
under the transformation T : t → −t;u → −u. The addition of viscosity leads to energy
dissipation through the term ν∆u. It follows that the equation is no longer invariant under
the transformation T . The dynamics of viscous fluids are then intrinsically irreversible,
due to the presence of a constant viscosity ν that breaks the time reversal symmetry.
Turbulent flows are then inherently out of equilibrium systems a rather new field of study.
Therefore, they can not be accurately studied using most of the well known physics as it
only applies to equilibrium systems.

To make up for that, Gallavotti (1) introduced a reversible version of the Navier-Stokes
equations, called RNSE, that restores the time reversal symmetry T : t → −t;u → −u,
by conserving the total enstrophy through a time dependent viscosity νr(t). Thanks tothe regained time-reversibility, one can then study this new equation using the tools of
statistical mechanics. A point of great interest lies in the Gallavotti conjecture (1) stating
that RNSE and NSE are statistically equivalent under specific conditions. Such conjecture
holds a lot of importance as statistical properties of RNSE, found using our usual tools,
could be transposed to NSE where these exact same tools can no longer be used. More
specifically, this conjecture and the use of the RNSE could shed some light on a puzzling
phenomenon known as anomalous dissipation. This phenomenon refers to the behav-
ior of the energy dissipation ϵ of fluids in the limit of large Reynolds number. A simple
glance at Eq. 1 points towards an energy dissipation ϵ proportional to the viscosity ν. Yet,
such property only holds in the laminar regime (i.e moderate Reynolds number), while
achieving the turbulent limit (i.e high Reynolds number) the dissipation reaches a plateau
becoming independent of the viscosity. This scenario suggests a spontaneous breaking
of the time-reversal symmetry that could be studied through the RNSE.

The existence of a dissipation in the turbulent limit is referred to as the Onsager’s
conjecture, stating that solutions of the inviscid Navier-Stokes equation that are irregu-
lar enough can dissipate energy even in the absence of viscosity (2). Unlike its viscous
counterpart, the dissipative effect of singularities is thought to occur through bursts of
dissipation, a phenomenon referred to as intermittency. Possible empirical characteriza-
tion of this dissipative solution may be obtained through the multi-fractal theory (3). This
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theory allows to measure the probability of apparition of a singularity with a given ex-
ponent, characterizing how the velocity gradients diverge in the inviscid limit. Results of
experimental or numerical data (4; 5; 6; 7; 8) reveal a wide interval of possible exponents
(Fig. 1, C(h) = 3−D(h), whereD(h) is the dimension of the fractal set in the multifractal
theory), with highest probability near the Kolmogorov value 1/3, and with values corre-
sponding to dissipative (h < 1/3) or non-dissipative (h > 1/3) weak solutions of Euler
equations.

(a) (b)
Figure 1: Deviation from KG41 and multifractal theory, results extracted from the
PhD of Hugues Faller (9). (1a) Exponents of the structures functions blue circles corre-spond to numerical simulations while red squares are associated to experimental data.Results are obtained on wavelet transforms for which ζ(3) ̸= 1. Hence black squarescorrespond to the rescaling ζ(p)/ζ(3) of red squares. Black stars are rescaling of exper-imental results from (10). (1b) Multifractal spectrum of experimental data of Fig. 1a. C(h)is obtained through an inverse Legendre transform of ζ(p) and corresponds to 3−D(h),whereD(h) is the fractal dimension of the fractal set associated to h.

In 1981, Frisch and Morf (11) proposed a tracking method for complex singularities
based on the fitting of the exponential decay of the energy spectrum. Through the study
of a 1Dnon-linear Langevin system, they shed light on possible connections between inter-
mittency and the collapse of complex singularities onto the real axis that generates bursts
of dissipation. Despite their variousmanifestations, observing singularities remains a real
challenge in both experiments and numerical simulations due to the necessity of reaching
extremely high Reynolds number. Indeed, the complexity of DNS being roughly O(Re3),
approaching the turbulent limit withDNS remains, for now, an impossible feat asRe → ∞.
Onemust then discard the smaller scales by introducing a cut-off that impacts the dynam-
ics of singularities (11). Hence, this tracking method was abandonned.

Nonetheless, anomalous dissipation and singularities are still subjects of active re-
search as Onsager’s conjecture was recently proved by Buckmeister (12), who constructed
weak solutions of inviscid NSE that were able to dissipate a finite amount of energy. The
exact link between real solutions of the NSE and this construction remains unclear.
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In this thesis, we propose to perform simulations using Log-lattices, a new framework
developped by Campolina & Mailybaev (13). Its exponential spacing of modes, in the
Fourier space, allows for high resolution simulations at the cost of reducing the num-
ber of interactions between modes. Such construction recalls the shellmodels (GOY (14),
SABRA (15), Desnyansky-Novikov (16)), a class of 1D models that also use an exponential
spacing of modes in the Fourier space. Shellmodels were extensively studied (15; 17; 18;
19) 1 as theymake up for the lack of resolution of DNS. Yet, due to the absence of some fun-
damental symmetries and their inherent 1D nature, they fail at reproducing some features
of the NSE (such as intermittency in the dyadic model). This is where Log-lattices come
into play as it allows for n-D simulations, with formal equivalence to the usual shellmodels
for n = 1, while conserving most of the symmetries of the NSE. These features allow us to
study properties yet out of reach of current DNS, such as the development of complex sin-
gularities through the previously mentioned Frisch and Morf method but also to extend
various studies about the RNS e.g the existence of a phase transition in the conserved
energy case (20) or the Gallavotti conjecture (1).

0.3 . Brief overview of the chapters

The first chapter introduces the logarithmic lattices (LL) and their constructions along
with several important quantities. In addition, it briefly presents the algorithm used to
solve the Navier-Stokes equation and its reversible counterpart.

The second chapter focuses on the tracking of complex singularities on LL through a
numerical method called "Singularity strip", introduced by Frisch and Morf (11). The first
part of the chapter tackles the form of the dissipation domain as shellmodels usually ex-
hibit a stretched exponential decay. We show that LL exhibits no stretching making pos-
sible the tracking of complex singularities. More specifically, it develops the link between
singularities and blowup in different scenarios (1D Burgers, Euler, 3D NSE...).

Frisch and Morf established connection between the presence of complex singulari-
ties and the development of intermittent features. Building on the results of Chapter 2,
we investigate in this third chapter for hints of intermittency, an essential component of
turbulence, on LL as it had not been clarified by C.Campolina & A.Mailybaev.

As previously highlighted in previous chapters, the presence of complex singularities
affects the dissipation of energy in the system and could explain the anomalous dissi-
pation. In this fourth chapter, we investigate the conjecture stated by Onsager in 1949.
Using a modified version of the NSE called "Reversible Navier-Stokes equations" (RNSE)
that restores the time-reversibility of the NSE through a time dependent viscosity. In par-
ticular, we emphasize the existence of two phases in RNSE: an unstable one where we
build blowup solutions, at constant energy, for forced systems leading to possible weak-
solutions upon regularization and a stable NS-like phase.

The fifth chapter connects the notion of singularity to the existence of the two phase
found in Chapter 4, highlighting the presence of twoattractorswith behaviors that ressem-
ble those of phase transitions.

The sixth chapter investigates the properties of RNSE, confirming the presence of a
phase transition expected from the results of Chapter 5 but also previously observed in

1To only name a few.
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small DNS. In particular, we study the effects of resolution on the transition highlight-
ing a convergence to a mean field Landau second order phase transition in the infinite
resolution limit.

In 1996, G.Gallavotti introduced the RNSE, albeit with conserved enstrophy. He conjec-
tured a statistical equivalence, under some hypothesis, between the irreversible system
and its reversible counterpart. This equivalence is particularly interesting as the reversible
system allows for the use of the tools of statistical mechanics. Chapter 7 focuses on the
validity of the conjectures for different conserved quantities, using LL to build on previ-
ously obtained DNS results.

Finally, the last chapter contains all my - submitted or published - contributions that
are unrelated to the topic of this PhD, albeit for them being numerical simulations on LL.
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1 - Numerical details

1.1 . Log-lattices

1.1.1 . Introduction
With the rapid development of computers, performing simulations has become a fun-

damental tools for physicists in order to tackle subjects yet beyond reach of experiments.
Still, the most traditionnal and straight forward way of performing simulations is rather
costly. Indeed, Direct Numerical Simulations (DNS) of a simple flow has a complexity of
the order O(Re3)making tedious the task of simulating small scales.

To overcome the resolution limitations of DNS, Campolina & Mailybaev (13) proposed
a new framework in which the Fourier space is discretized following a geometric progres-
sion kn = k0λ

n. Such construction is reminiscent of the discretization of shell-models (16;
14; 15) allowing for high resolution simulations using a limited number ofmodes. Note that
in 1D, Log-lattices are formally equivalent to well known shell models, depending on the
considered value of λ. Their main improvement lies in the extension of such shellmodels
to higher dimensions. Therefore, it allows for high resolutions simulations of 3D flows
while conserving almost all of the system’s symmetries.

1.1.2 . Definitions
Log-lattices (LL) are discretized logarithmic grids, composed of exponentially spaced

modes:
k = k0λ

n,

where λ is the log-lattice spacing parameter. This construction is detailed in Campolina &
Mailybaev (21; 22). We start by taking the Fourier transformof Eq. 1, to get theNS equations
in spectral space:

∂tûi + ikj ûj ∗ ûi = −ikip̂− νkjkj ûi + f̂i, (1.1)
where Einstein summation over repeated indices is used, i is the square root of −1, kiis the ith component of the wavenumber k = (m,n, q)k0 , ĝ is the Fourier transform of
g, and ∗ is the convolution product which couples modes in triadic interactions such that
k = p+ q.

We then project this equation onto the log-lattice. For this, we consider from now
on that the velocity modes ûi only depend on the wavevectors on the log-lattice. This
projection is then valid provided that the convolution operator is “well-defined”, i.e. that
it respects the symmetries of a convolution operator and has a nonempty set of triadic
interactions. We thus require that

λm = λn + λq , (m,n,q) ∈ Z3 (1.2)
admits solutions, which restricts the values of λ to three families of solutions, each having
z interactions inD dimensions:

• λ = 2 (z = 3D).
• λ = σ ≈ 1.325, the plastic number (z = 12D).
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Figure 1.1: Example of 2D log-lattice with spacing parameter λ.
• λ such that 1 = λb − λa for some integers 0 < a < b. (a, b) ̸= (1, 3), (4, 5) with
gcd(a, b) = 1 (z = 6D).

Note that for the lowest possible values of a and b, which is (1, 2), λ is the golden number
(ϕ ≈ 1.618). The 2D geometry of such a lattice is shown in Fig. 1.1.

Besides the convolution product, log-lattices are also endowed with a scalar product
given by:

(f, g) = ℜ
(∑

k

f(k)g(k)

)
. (1.3)

1.1.3 . Quantities of interest
Throughout our study, we can compute two large scale quantities of interest:

• The energy spectrum E(k, t) =
1

(λ− 1)kNk

∑

k≤|k′|<λk

∥∥û(k′, t)
∥∥2
2
, where Nk is the

number of points in the shell of radius k (proportional to logD−1(k)).
• The total enstrophy Ω(t) =∑

k

k2E(k, t).

We also compute the mean energy transfer at scale k through:
Π(k) = ⟨−2ℑ(u,k · u ∗ u)⟩ , (1.4)

where ∥k∥2 = k and ⟨·⟩ refers to temporal averages over shells of radius k.
To study intermittency we propose to use an ansatz of the structure functions, using the
following convention:

Sp(k) = ⟨∥û(k, t)∥p2⟩ . (1.5)
Note that the structure functions are also commonly defined, in shell models, as

Sp(kn) =

〈
|Πn

kn
|p/3
〉
. (1.6)
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1.2 . Numerical implementation: viscous splitting

In our study, we propose to first solve the inviscid Navier-Stokes equation (1.7). Using
an implicit 4th order Runge-Kutta solver with adaptative time-steps we obtain the inviscid
velocity field u0(k, t+ dt).

∂tûi = Pij

(
−ikqûq ∗ ûj + f̂j

)
, (1.7)

where Pij = δij − kikj
k2

accounts for the pressure term under zero divergence hypothesis.
The viscosity ν is then taken into account using a method similar to viscous splitting,

where the velocity field is divided by a viscous contribution such that:
u(kn, t+ dt) = u(kn, t+ dt)ν=0e

−νdt∥kn∥22 . (1.8)
This method allows for bigger time steps as it frees the solver from too small values of the
velocity fields. Note that, in the context of the Reversible Navier-Stokes equation (RNS),
the viscosity depends on time and therefore is no longer a constant. In such case, one
could wonder if this method gives proper results in the case of time dependent viscosity
νr(t).
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(t
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Figure 1.2: Evolution of the reversible viscosity νr at each step. Both simulations areperformed for λ = ϕ ≈ 1.618, N = 123, f0 = 0.27. The green curve is obtained usingthe viscous splitting method while the blue curve is obtained by directly solving the RNSequation, where the reversible viscosity is computed in order to conserve the total kineticenergy.
Both methods lead to similar behavior of the viscosity (Fig. 1.2), with mean values

νr,Splitting ≈ 4.9 · 10−7 and νr,Direct ≈ 6.4 · 10−7. It is expected to find a slight difference
as the number of time step is still relatively small. Moreover, the direct computation is
performed using the analytical expression of the reversible viscosity and therefore leads
to deviation from E0.Still, bothmethods give similar results (Fig. 1.2). However, the "viscous splitting"method
allows us to “perfectly” (with floating-point accuracy) conserve a chosen quantity (here the
total kinetic energy) without deviation. In the sequel, we thus adopt this method in all our
simulations.
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We are now equipped with a new framework, allowing for precise, high resolutions
simulations that conserves all the flavors of the Navier-Stokes equations allowing us to
investigate properties yet out of reach of DNS such as the development of blowups and
their link to complex singularities.

1.3 . Initial conditions and forcing

In all our simulations the following initial conditions, adapted from (20) to LL, are used:
ûx(k) = U(k),

ûy(k) = −ûx(k)
kx
ky
,

ûz(k) = 0,

(1.9)

where U is an initial field, with initial energy centered on the large scales.
When necessary, a forcing term is added such that f is a constant field of norm f0,symmetric by time-reversal, with non-zero contributions for k such that 15 < ∥k∥2 < 16:

f̂x(k) = f0 if 15 < ∥k∥2 < 16 else 0,

f̂y(k) = f0 if 15 < ∥k∥2 < 16 else 0,

f̂z(k) = 0.

(1.10)

Unless written otherwise, simulations are performed using λ = ϕ.
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2 - Singularity and blowups

2.1 . Motivations

In 1981, Frisch and Morf (11) postulated the existence of complex singularities in so-
lutions of Navier-Stokes equations. Using a simple one-dimensional non-linear Langevin
system, they demonstrated that the dynamics of such complex singularities could be di-
rectly connected to intermittency as dissipation bursts (such as in Fig. 3.10b) occur when-
ever a complex singularity approaches the real axis.

Following this, the scenariowas further explored in the one-dimensional Burgers equa-
tion – a 1D surrogate of the Navier-Stokes equation. Where it was discovered that real
singularities can be observed in the inviscid limit and manifest as shocks, i.e. finite jumps
in the velocity which dissipates energy in agreement with the dissipation anomaly (23).

Extending these results to 3D represents a real challenge. In 3D Euler singularities
emerge as blow-ups, believed to occur in finite time, of vorticity. Adding a viscosity ν
acts as a repellent, prohibiting the collapse of singularities onto the real axis and prevent-
ing the infinite growth of vorticity. Consequently, observing singularities requires high
Reynolds numbers (i.e low viscosities) implying simulations at high numerical resolutions
as truncation could affect the dynamics of singularities (11). Yet, the computational power
needed for such DNS is currently beyond reach, hindering further progress on the mat-
ter. This is where Log-lattices come into play. Their moderate numerical cost, allowing
for simulations which resolutions far exceed those of the current DNS, coupled with the
singularity strip method opens new perspectives on these issues.

This chapter consists of two parts. First, we show that the dissipation in Log-lattices is
well described by an exponential and unlike shellmodels, presents no stretching. We then
moveon to an article, currently in review inNon-linearity (24) dealingwith the development
of complex singularities in various scenarios.
This article is a collaborative work with other fellow PhD students of the group and the
founders of log-lattices, namely C.Campolina & A.Mailybaev.
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2.2 . Energy dissipation on Log-lattices

The tracking of the position of a complex singularity, through the analiticity stripmethod
is based on the fitting of the exponential decay e−δk of the turbulent energy spectrum.
Where δ is the singularity’s y-coordinate, in the complex plane. The physical meaning of δ
and therefore the success of the extraction is bound to an exact exponential dissipation.
Yet, it has been shown that shellmodels actually exhibit a stretched exponential dissipa-
tion e(δk)x , where x is the stretching exponent. More specifically, L’vov et.al (15) found that
x ≈ 0.69 in the SABRA shellmodel (i.e the formal 1D equivalent of LL with λ = ϕ). We
then propose to address the form of the dissipative range in the context of Log-lattices,
focusing on the case λ = ϕ

Formore informations about Log-lattices and numerical details, please refer to Chapter. 1.
2.2.1 . Dissipative range on Log-lattices

As previously mentioned, it has been shown (15) that the SABRA shell model behaves
as a stretched exponential in the dissipative range such that

un ∝ e−(kn/kη)x ,where x = logλ ϕ ≈ 0.69. (2.1)
This exponent was extracted by fitting log (− logEk) in the dissipative range.
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Figure 2.1: Fitting of the stretching exponent x for a 1D Log-lattice with λ = ϕ. Sim-ulations are performed using ν = 1e − 05, 1e − 06, 1e − 07. The colored dashed linescorrespond to the fitting over the last few populated modes of each simulation. The insetshows the value of the local stretching exponent χn as a function of the shell number nhighlighting a convergence towards x = 1.

According to this formula, one should then recover for λ = ϕ (i.e LL parameters) an ex-
ponential dissipation without stretching as x = logϕ ϕ = 1. This property is extremely
interesting as it allows for the use of the analyticity strip (25), a method of Frisch & Morf,
that relies on the fitting of the energy spectrum in the dissipative range to extract the
position of a singularity in the complex plane.
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Similarly to (15), we perform 1D simulations, on LL, for various viscosities. The stretch-
ing exponent x is then extracted by fitting over the last few - populated - modes obtaining
x ≈ 1. Following (26), we introduce a local stretching exponent χn such that:

χn = logϕ | ln
〈
|un+1|2

〉
| − logϕ | ln

〈
|un|2

〉
|. (2.2)

Assuming that un ∼ e−(kn/kη)x in the dissipative range, one obtains χn −−−→
n→∞

x.
Figure 2.1 gathers the results for three different viscosities, highlighting slopes, in the

dissipative range, close to 1 for − log10 (Ek). In addition, the local stretching exponent
converges to x ≈ 1 in all simulations confirming the prediction of Eq. 2.1 albeit for λ = ϕ.
The smaller value of χn observed for ν = 5e − 07 (blue circles) is associated to statistical
errors due to an unsufficient time resolution.

The absence of exponential stretching allows for proper fitting of the dissipative range.
Still, the numerical accuracy in such domain has to be taken into account as LL exhibits
energy spectra with energy of the order of 10−256 in the last shell.

2.2.2 . Effect of the tolerance on the dissipative range
While performing numerical simulations, one must be careful to fulfill the Courant

Friedrichs Lewy (CFL) conditions (27) as to ensure the correctness of the computation.
However, due to the large achievable resolutions on Log-lattices, CFL conditions become
almost impossible to fulfill after a certain threshold kCFL.
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Figure 2.2: Effect of the tolerance on the dissipative range for 3D simulations. (2.2a)Time average of the energy in each shell, the black dashed line corresponds to a2tol = 1e−
20. (2.2b) Local stretching exponents. Simulations are performed using various viscosities
ν = 1e − 05, 5e − 06, 1e − 06, 5e − 07. Empty symbols are associated to under-resolvedmodes.

One can then wonder what are the effects of the tolerance on the results ? Well, fortu-
nately enough, the inertial range always lies in the well-resolved region provided that the
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tolerance is set to usual values of the order atol = 1e − 06. Still, modes in the dissipative
range can exhibit energy of the order of 1e−256. Therefore, it is unclear if whether or not
the smallest scales are well-resolved.
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Figure 2.3: Fitting procedure for the energy spectrumapplied to a 3D simulation. Thesimulation is performed using λ = ϕ,N = 223 and ν = 1e− 07. (2.3a) Time average of theenergy in each shell, the black dashed line corresponds to a2tol = 1e− 24. The red crossescorrespond to highly under resolved shells while the purple squares correspond to shellsin which the energy of individual modes is close to a2tol. (2.3b) Fitting of the compensatedenergy spectrum. The fitting is only performed on the blue circles. The inset presents theratio of the energy spectrum over the fitted spectrum, highlighting a good matching forthe blue circles.

To illustrate this point, we perform 3D simulations on LLwith λ = ϕ for ν = 1e−05, 5e−06,
1e − 06, 5e − 07. The number of mode is set to N = 303 1, reaching a resolution kmax ≈
7 × 106. The solver tolerance is set to atol = 1e − 10. Figure 2.2a shows the total energy
of each shell 2 highlighting that the last five shells of every simulations are under-resolved
according to CFL conditions. The local stretching exponents χn first increase up to χn ≈ 1

before observing a change of slope for the five last extracted values. This change of slope
appears more clearly for the high viscosity cases as the steady state is well established. It
is striking to notice that the change of slope, associated to an hyper-dissipative scheme
(χn > 1) appears for under-resolved shells (i.e empty symbols). This results suggest that,
upon setting a low enough value for the tolerance, one can accurately fit, up to roughly〈
∥u(k)∥22

〉
≈ a2tol, the dissipative range with exponent χn = 1 corresponding to the usual,

physical, dissipation. Figure 2.3 presents the fitting procedure of an energy spectrum, the
expected shape is the following E(k) = Ck−αe−k/kη . The exponent α is first extracted in

1We denote ND the number of modes, meaning that each direction has N modes.2Note that the energy in a n-D shell is a sumof the contribution of every k such that k′ ≤ ∥k∥2 <
λk′. Therefore, the actual contribution of a single model is way below the total shell energy.
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the inertial range such that α ≈ 1.7, close to the usually observed αDNS = 1.72. We then
fit the dissipative range of the compensated energy spectraCkαE(k) to extract kη ≈ 1750.
Note that, according to our previous explanation, the fitting procedure is only performed
over well-resolved modes. Therefore, red crosses, lying way below a2tol and purple squareare not taken into account. The reason for discarding the purple square is that, for n-D
simulations (with n > 1) each point of the energy spectra is a sum of many contributions,
whose individual values are close to a2tol. Yet, we show that for all other points the fitting
procedure gives acceptable results.

2.2.3 . Hyperviscous and hypoviscous cases
In previous sections, we performed simulations of the usual Navier-Stokes equations 1

characterized by a dissipative term ν∆u. In such case, energy spectra are accurately
described - for well-resolved modes - by E(k) = Ck−αe−k/kη .
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Figure 2.4: Fitting procedure for the energy spectrum applied to a 3D hypoviscous
simulation. The simulation is performed using λ = ϕ, N = 303, ν = 1e − 05 and γ =
0.7. (2.4a) Time average of the energy in each shell, the black dashed line correspond to
a2tol = 1e− 20. The red crosses correspond to highly under resolved modes. (2.4b) Fittingof the compensated energy spectrum. The fitting is only performed on the blue circles.The inset presents the ratio of the energy spectrum over the fitted spectrum, highlightinga good matching for the blue circles.

Yet, it is possible to slightly change the dissipative mechanism by introducing an ex-
ponent γ such that the equation now reads:

∂tu+ (u ·∇)u = −∇p+ ν∆γu, (2.3)
∇ · u = 0, (2.4)

Simulations at γ > 1 (resp. γ < 1) are called hyperviscous (resp. hypoviscous). By varying
γ one can explore properties associated to the dissipative process such as the develop-
ment of singularites (24). In addition, hyperviscosity is often used to increase the size of
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the inertial range at fixed resolution as it allows for lower values of viscosity. It is therefore
interesting to see if the energy spectrum conserves the same shape and how our fitting
algorithm performs. Figure 2.4 presents the results of the fitting procedure applied to an
hypoviscous case with γ = 0.7. The energy spectrum is accuretaly described by the usual
Kolmogorov spectrum albeit for a steeper slope αγ=0.7 = 1.77 in the inertial range.
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Figure 2.5: Fitting procedure for the energy spectrum applied to a 3D hyperviscous
simulation. The simulation is performed using λ = ϕ, N = 303, ν = 1e − 14 and γ =
1.5. (2.5a) Time average of the energy in each shell, the black dashed line corresponds to
a2tol = 1e− 20. The red crosses correspond to highly under resolved modes. (2.5b) Fittingof the compensated energy spectrum. The fitting is only performed on the blue circles.The inset presents the ratio of the energy spectrum over the fitted spectrum, highlightingbottleneck effects.

By performing hyperviscous simulations, one achieves at fixed ν a greater inertial
range that can then be used for various purposes. Yet, the question remains: does hyper-
viscosity impact the form of the dissipation ? Figure. 2.5 shows a fitting less accurate than
the other cases. The recovered slope α = 1.64 is close to the usual Kolmogorov slope
−5/3. Yet, it appears in the inset that the energy spectrum becomes less steep around
the Kolmogorov scale kη. This small effect is associated to a small bottleneck, known to
be aggravated by hyperviscosity (28). In order to overcome this problem one must then
be careful as to properly set the fitting range for the dissipative part.

Although the fitting procedure gives acceptable results in both hypoviscous and hy-
perviscous simulations, the latter exhibit small bottleneck effects. Such bottleneck, if ag-
gravated by the hyperviscous factor γ could already be present in traditional simulations
(i.e γ = 1).

2.2.4 . Bottleneck effect in Log-lattices

24



The previous section highlighted the existence of small bottleneck effects on Log-
lattices, aggravated by hyperviscosity. Still, these effects can also be seen in traditionnal
simulations with γ = 1. Indeed, in the transition range between the inertial and dissipa-
tive domains, one observes an excess of energy slightly above the fitted spectrum. Yet,
this fitted spectrum exhibits good behavior outside of this transition range.
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Figure 2.6: Fitting procedure for the energy spectrum applied to a 3D simulation.The simulation is performed using N = 223, ν = 1e − 07 and atol = 1e − 12. The fittingprotocol is applied using a fixed exponent α in the inertial domain. (2.6a) α = 1.52. (2.6b)
α = 1.56. (2.6c) α = 5/3. A lower value of α makes up for the excess of energy in thetransition range with a small impact on kη , varying between 1600 and 1650.

This is especially true for simulations presenting short inertial domains, of length of
the order of a decade. In such cases, energy spectra seem to exhibit an excess of energy
in the transition range that impedes a complete fitting of the energy spectrum. Fig. 2.6
presents the results of the fitting protocol with fixed exponent α in the inertial range high-
lighting that smaller α leads to a better fitting of the transition area with little impact on
the value of kη. Setting a lower value ofα accounts formore energy in the transition range,
hence highlighting the bottleneck. Nonetheless, the bottleneck effect being associated to
a too small inertial domain and kη being only slightly impacted, the usual fitting protocol
should be applied as to ensure a correct physical interpretation of the results.

It is to be noted that, for simulations with small inertial domain, extracting the α ex-
ponent using a purely linear fitting is imprecise as the exponential dissipation can not
be overlooked. Indeed, for the simulations of Fig. 2.6, a direct linear fitting of the inertial
range of the fitted spectrum, with imposed slope α, gives a slope β = α−0.1. This steeper
slopes takes into account the effect of the viscosity in the inertial range that should van-
ish as ν decreases. In such context, setting a smaller value for α could improve the fitting
quality.

2.2.5 . Energy dissipation in the λ = 2 case
In the previous sections, we focused on the λ = ϕ case which 1D equivalent is a SABRA

shell model. Yet, unlike classical shell models, the statistical model in LL changes upon
the choice of the grid parameter λ. Upon choosing λ = 2, one can perform even quicker
simulations, due to fewer interactions. Indeed, the 1D equivalent of this system is the

25



��� ��� ���

k

���

���

���

���

−l
og

10
(E

k
)

� �� ��
n

���

���

χ
n

(a)
��� ��� ���

k

�����

�����

�����

�����

�����

�����

����

���

k
α
E
(k

)

���

k

����

����

���

E
k
/
E

k
,f
it

(b)
Figure 2.7: Dissipative range in 1D & 3D for Log-lattices with λ = 2. (2.7a) 1D simulationsperformed using ν = 1e − 05, 1e − 06, 1e − 07. The colored dashed lines correspond tothe fitting over the last few populated modes of each simulation. The inset shows thevalue of the local stretching exponent χn as a function of the shell number n higlightinga convergence towards x = 1. (2.7b) Fitting procedure applied to a 3D energy spectrum.The black dashed line correspond to the fitted spectrum. The inset presents the ratioof the energy spectrum over the proposed fitting highlighting a ratio of 1 for all the well-
resolved shells. The under-resolved shells are represented with a red cross.

Desnyansky-Novikov model (16), considering only nearest neighbour interactions. As for
the Log-lattices with λ = ϕ, the dissipative range is well described by a pure exponential
decay un ∝ ekn/kη forwell-resolved shells for both 1D (Fig. 2.7a) and 3D (Fig. 2.7b). Note that
the tolerance has the same effects on the simulations as red crosses (Fig. 2.7b) lie below
the exponential fitting implying an excessive dissipation.
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2.2.6 . Conclusion
In this section, we have performed 1D and 3D simulations of the Navier-Stokes equa-

tions on Log-lattices, mainly using a spacing parameter λ = ϕ. For such parameter, the 1D
Log-lattice is equivalent to the SABRA shellmodel and exhibits an exponential dissipation
with no stretching as x = logϕ ϕ = 1 regardless of the γ factor in the dissipative term.
This result is interesting as it allows for the use of the analyticity strip method on Log-
lattices. Such method, previously performed on DNS was quickly abandonned due to the
lack of resolution in the dissipative range. Yet, onemust be careful as to set a proper value
for the solver tolerance and refrain himself from fitting the exponential dissipation below
this threshold as such scales might not be well resolved. Furthermore, this fitting proce-
dure appears also as a great tool for the extraction of structure function’s exponents, as
it permits a complete fitting of energy spectra and thus an increase in precision. These
results also stand for LL with λ = 2.
In addition, we showed the existence of slight bottleneck effects in Log-lattices with λ = ϕ,
aggravated by hyperviscosity. In such case, special care has to be taken while performing
the fitting in the dissipative range.

As it had been shown LL exhibit no stretching in the dissipation range. Therefore,
we propose to apply the Frisch & Morf method coupled to our fitting procedure to track
complex singularities of fluids, on LL, in various scenarios.

2.3 . Tracking complex singularities of fluids on log-lattices

We showed in previous section that the dissipative range is accurately described, for
well-resolved shell, by a non-stretched exponential decay. This property allows for the
tracking of complex singularities through the use of the analiticity strip method.

This section is an article, submitted toNon-linearity and currently under review.
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Abstract. In 1981, Frisch and Morf [1] postulated the existence of complex

singularities in solutions of Navier-Stokes equations. Present progress on this

conjecture is hindered by the computational burden involved in simulations of the Euler

equations or the Navier-Stokes equations at high Reynolds numbers. We investigate

this conjecture in the case of fluid dynamics on log-lattices, where the computational

burden is logarithmic concerning ordinary fluid simulations. We analyze properties of

potential complex singularities in both 1D and 3D models for lattices of different

spacings. Dominant complex singularities are tracked using the singularity strip

method to obtain new scalings regarding the approach to the real axis and the influence

of normal, hypo and hyper dissipation.
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1. Introduction

Viscous fluids dissipate mechanical energy into heat due to the first law of

thermodynamics. Observations and numerical simulations reveal that this dissipation

is not homogeneous within the flow but occurs via spatially or temporally intermittent

bursts, a phenomenon classically referred to as intermittency. Moreover, after spatial

and temporal averaging, the mean energy dissipation becomes independent of the

viscosity in the inviscid limit, according to the empirical “zeroth law of turbulence”.

Onsager explained these observations in 1949 [2], conjecturing that strong enough

singularities in the inviscid flow could provide an anomalous dissipation. While

this conjecture has been proven mathematically [3], its application to fluids is still

debated. In fact, the developement of finite-time singularities in Euler flows is until now

an unsolved problem [4], while the same question formulated for the Navier-Stokes

equations is among the open Millennium Prize Problems of the Clay Mathematics

Institute [5]. This debate concerns the existence of singularities in real space. In 1981,

Frisch and Morf [1] paved the way to another possibility based on the existence of

complex singularities. They proved on a simple one-dimensional non-linear Langevin

system that the dynamics of such complex singularities could be directly connected to

intermittency, as dissipation bursts occur whenever a complex singularity approaches

the real axis.

Since then, this scenario was also confirmed in the one-dimensional Burgers equation

– a 1D surrogate of the Navier-Stokes equation. In this system, real singularities can be

observed in the inviscid limit and manifest as shocks, i.e. finite jumps in the velocity.

Shocks dissipate energy in agreement with the dissipation anomaly [6]. They correspond

to the collapse of two complex conjugate singularities onto the real axis [7, 8]. When a

viscosity ν is added, the singularities are repelled from the real axis, the closest one being

constantly at a distance greater than O(ν3/4) to the real axis. The complex singularities

follow Calogero-Moser (CM) dynamics [9], with long-range interactions (decaying in

1/r). There is an exact mapping between such CM dynamics and the solution of the

PDE, which can be described exactly via pole decomposition coupled to the integration

of the CM equations [8].

The generalization of these findings to 3D is challenging [10]. The computational

burden to resolve the Navier-Stokes equation for a fluid with typical velocity U and

length L scales like Re3, where Re ∼ UL/ν is the Reynolds number. Most of the earlier

attempts to track complex singularities in the inviscid limit were performed using the

“singularity strip” method [11], which is based on the observation that the behaviour

of the energy spectrum at large wavenumber k is dominated by the position of the

singularity closest to the real axis, and decays like exp(−2δk), where δ is the imaginary

part of corresponding singularity. Fitting the large wavenumber tail of the energy

spectrum as a function of time, one then gets an estimate of δ(t), and a real singularity

occurs when δ(t) = 0. So far, studies have only identified exponentially decaying regimes

for δ(t) [12] which suggests the absence of finite time blow-up. However, we cannot

29



Tracking complex singularities of fluids on log-lattices 3

guarantee that this extrapolation is correct due to numerical limitations.

New perspectives on these issues were opened recently by Campolina and

Mailybaev [13], exploring fluid dynamics on log-lattices. This technique may be viewed

as a generalization of the so-called “shell models” [14, 15] and solves the equations

of motion in Fourier space using a sparse set of Fourier modes. The modes are evenly

spaced points in log space (“logarithmic lattices”). They interact via nonlinear equations

derived from the fluid equations by substituting for the convolution product a new

operator, which can be seen as a convolution on the log-lattice, while preserving most

symmetries of the original equation. The model is valid for all dimensions. In 1D, it was

shown to encompass [13] the dyaic and Sabra shell models of turbulence [14, 15]. In 3D,

its solutions have the same behaviour as the Navier-Stokes equation in Fourier space

(energy spectrum, energy transfers), over an unprecedented wide range of scales [13]. In

the inviscid equations, a finite-time blow-up is observed [16] in connection with a chaotic

attractor that propagates at a constant average speed in a renormalized Fourier space,

like a wave. However, Campolina and Mailybaev did not attempt to track possible

complex singularities in connection with such a blow-up.

This is the purpose of the present paper. In the first part, we validate the close

connection between fluid dynamics on log-lattice and real fluid dynamics by focusing on

the 1D Burgers equation, where dominant complex singularities are tracked using the

singularity strip method. In the second part, we extend this technique to 3D to obtain

new scalings regarding the approach to the real axis and the influence of normal, hypo

and hyper dissipation.

2. Log-lattice framework

2.1. Definitions and notations

We consider a d-dimensional complex vector field u(t, k) = (u1, . . . , ud) depending on

time t ∈ R and on the wave vector k = (k1, . . . , kd). We shall interpret u as the

Fourier components of the velocity field. For this reason, we require them to satisfy

the Hermitian symmetry u(t,−k) = u(t, k) with respect to k, which is the Fourier

property of a real-valued function in physical space. The wave vector k is embedded

on a logarithmic lattice (in short, log-lattice), which means that its components follow

geometric progressions k = k0(±λm1 , . . . ,±λmd) for integers m1, . . . ,md, where k0 = 2π

is a fixed positive reference scale, and λ > 1 is the spacing factor of the lattice. The

dependence of u on t and k is henceforth implicit and specified only when ambiguity

prevails.

Fluid dynamics on log-lattice [13] is the set of vector fields u which are solutions of
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the equations

kβuβ = 0, (1a)

∂tuα + ikβ(uα ∗ uβ) = −ikαp− νk2γuα + fα, (1b)

(uα ∗ uβ)(k) =
∑

q+r=k

uα(q)uβ(r), (1c)

where p is the complex pressure field that enforces incompressibility (1a), f is a vectorial

forcing, and ν is a non-negative viscosity parameter. When ν > 0, the exponent γ

measures the dissipation degree: we say the flow has viscous (or usual) dissipation if

γ = 1, it has hypo-dissipation if γ < 1, and it has hyper-dissipation if γ > 1. Similarly

to the dynamics of continuous media, system (1) is the incompressible Navier-Stokes

equations on the log-lattice. When ν = 0, the flow is inviscid, and the system reduces

to the incompressible Euler equations on the log-lattice.

The convolution in eq. (1c) defines triadic interactions on the logarithmic lattice,

which are nontrivial only if the equation λm = ±λq ± λr has integer solutions m, q, r.

As shown in [13], this is possible only for particular values of λ, which determine the

number of possible interactions on the grid. In this paper, we consider the following

three values: λ = 2, with 3 interactions per direction; λ = ϕ ≈ 1.618 (the golden

number), with 6 interactions per direction; and λ = σ ≈ 1.325 (the plastic number),

with 12 interactions per direction. As λ decreases from 2 to σ, the density of nodes and

the number of interactions on the grid increase. We recall, however, that the interactions

for these log-lattices are all local.

2.2. Global quantities

By analogy with the Fourier representation of classical fluid flows, we define the global

quantities representing the total energy E and the helicity H as

E =
∑

k

|u|2, (2)

H =
∑

k

uαωα, (3)

where ωα = ϵαβγikβuγ is the vorticity field; here, ϵαβγ is the Levi-Civita symbol. Regular

solutions of the unforced three-dimensional inviscid system (1) conserve these quantities

in time [13].

Moreover, we define the energy spectrum E(k) as

E(k) = ⟨|u|2⟩Sk
, (4)

where the average ⟨ · ⟩Sk
is taken over the wave vectors in the shell Sk delimited by

spheres of radii k and λk. More explicitly,

⟨|u|2⟩Sk
=

1

Nk(λk − k)

∑

k≤|q|<λk

|u(q)|2, (5)

where Nk ∼ (log k)d−1 is the number of wave vectors in the shell Sk.31
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2.3. Regularity

The solutions of fluid dynamics equations on log-lattices (1) share some regularity

properties with the original models. The main mathematical results are for the inviscid

Euler equations [13]. For this system, the local-in-time existence of strong solutions

and a Beale-Kato-Majda blow-up criterion were proved. Exploiting the conservation

of enstrophy, one proves the global regularity of two-dimensional flows. In the three-

dimensional case, high-resolution numerical log-lattice simulations disclosed a finite-time

blow-up, characterized by a chaotic wave travelling with constant average speed along

a renormalized set of variables [16]. Such blow-up scenario was confirmed for λ = ϕ

and λ = σ, presenting the same asymptotic blow-up scalings [13]. In the viscous case,

numerical simulations suggest the expected global regularity of solutions.

2.4. Singularity strip method for log-lattices

If a potential singularity is due to an imaginary pole crossing the real axis, one can track

its distance to the real axis via the singularity strip method [11]. This method considers

the analytic continuation u(z) of the physical-space velocity field and is based on the

following property: if

u(z) ∼ 1/(z − z∗)
ξ, for z → z∗ (6)

in a neighborhood of the complex singularity z∗ = a+ iδ, then its Fourier transform ûk

satisfies

ûk ∼ k−d−ξeikae−δk, as k → ∞. (7)

Asymptotics of (7) provide the corresponding exponential decay E(k) ∼ e−2δk for the

energy spectrum over a typical length 2δ. Therefore, one can measure the distance of

the dominant pole to the real axis by monitoring the decay of the energy spectrum in

Fourier space. A finite-time singularity at instant tb would occur if δ → 0 as t → tb.

Extension of this notion to the log-lattice framework is natural. It relies on the

observation that if a flow (1) on log-lattice satisfies u(k) ∼ k−d−ξe−δk, then its inverse

Fourier transform obeys a relation similar to (6). Therefore, we can generalize the

singularity strip method to log-lattices, where 2δ is estimated from the slope of logE(k)

as a function of k.

2.5. Numerical methods

Equations (1) are numerically integrated using a technique analogous to viscous

splitting. Considering a time step dt, we obtain u(t + dt) from u(t) employing the

following strategy. Using u(t) as initial condition, we first solve the inviscid equation

∂tuα = Pαβ [−ikσ(uβ ∗ uσ) + fβ] , (8)

where Pαβ = δαβ − kαkβ
k2

accounts for the pressure term under the incompressibility

hypothesis (1a). For that, we use an explicit 4th order Runge-Kutta method. This
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yields u(t + dt)ν=0. Then, the viscosity is taken into account through u(t + dt) =

u(t+ dt)ν=0e
−νk2γdt. In this whole process, we adapt dynamically the time step dt.

3. 1D Burgers equation

Before going to the full three-dimensional Navier-Stokes system on log-lattices, we take

an intermediate step by studying the simpler one-dimensional Burgers equation. For

this system, several exact mathematical results are available. This allows us to probe

the singularity strip method on log-lattices, by comparing our numerical computations

with the exact expected results.

The one-dimensional Burgers equation on log-lattices is obtained from system (1)

as follows. We consider a compressible pressureless flow on a one-dimensional log-lattice.

Mathematically, this translates into setting p = 0 and dropping eq. (1a) from the system,

which reduces to

∂tu+ u ∗ ∂xu = −νk2γu+ f, (9a)

(u ∗ ∂xu)(k) =
∑

q+r=k

ir u(q)u(r). (9b)

It was shown [17] that, up to a prefactor in the convolution (9b), the Burgers

equation on log-lattices is equivalent to well-known shell models of turbulence for specific

choices of parameters. Particularly, when λ = 2, system (9) (but with a factor 2 added

in the convolution and restricting to imaginary solutions) is the dyadic model [18], while

for λ = ϕ (but with a factor −ϕ2 added in the convolution) it is the Sabra model [19] in

a three-dimensional parameter regime (second invariant is not sign defined). Because

of this relation with shell models of turbulence, the Burgers equation on the one-

dimensional log-lattice inherits several results concerning the regularity of its solutions,

which we briefly review now.

For the dyadic model (λ = 2) with ν > 0, there are theorems [20] for global

existence of weak solutions (satisfying the energy inequality at almost all time), local

regularity when γ > 1/3, global regularity when γ ≥ 1/2, and finite-time blow-up

when γ < 1/3 for sufficiently large initial conditions. Note that for the continuous

version of the 1D Burgers equations, global existence and analycity holds whenever

γ ≥ 1/2, while finite-time blow-ups are present whenever γ < 1/2 [21]. In contrast,

we have presently no rigorous statements about the dyadic model for the parameter

range 1/3 ≤ γ < 1/2. This means that the mathematical techniques used in the

currently available theorems are not sharp enough to separate the finite-time blow-up

and the global regularity regimes. The finite-time singularity in the inviscid case was

also rigorously established [22].

For the viscous Sabra model (λ = ϕ) with usual dissipation γ = 1, there are

proofs [23] of global regularity of strong solutions. Like the Navier-Stokes equations,

the dynamics of the Sabra model develops within finite degrees of freedom. Indeed, the

finite dimensionality of the global attractor and the existence of a finite-dimensional33
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Table 1: Exponents of the inviscid scalings of various quantities measured for the 1D Burgers and

the 3D Euler equations within different values of the grid spacing λ. The scalings are with respect to

τ = 1−t/tb, where tb is the blow-up time. By definition, the energy spectrum scales like E(k) ∼ k−1−2α,

the maximum value of the vorticity scales like ωmax ∼ τ−β , and the width of the singularity strip scales

like δ ∼ τµ. The (0) superscript indicates a simulation performed with no forcing. The ∗ superscript

indicates a simulation made with a different initial condition.

λ tb α β µ

1D Burgers

2 0.3898 0.37 1 1.55

ϕ 0.5193 0.37 1 1.55

σ 0.4300 0.37 1 1.55

2(0) 0.2687 0.37 1 1.55

ϕ(0) 0.1460 0.37 1 1.55

3D Euler

2 0.8481 0.67 1 2.81

ϕ 5.8005 0.67 1 2.83

ϕ∗ 0.1542 0.67 1 2.82

σ∗ 0.8430 0.67 1 2.67

inertial manifold were proved [23]. On the other hand, the inviscid model has [24]

global-in-time existence of weak solutions with finite energy, local-in-time regularity,

and a Beale-Kato-Majda blow-up criterion. Despite the absence of rigorous proofs, it is

well-known [25] that Sabra (in the three-dimensional parameter regime) develops a self-

similar finite-time blow-up, characterized as a travelling wave in a renormalized system

of variables (cf. [26]). Following the dynamical systems approach, such blow-up can be

seen as a fixed-point attractor of the associated Poincaré map [27].

To our knowledge, there are no systematic results about the development of

singularities in Sabra with general dissipation exponents γ, nor in the case of our third

lattice parameter λ = σ.

3.1. Inviscid flow

We start with the inviscid (ν = 0) Burgers equation with and without forcing. When

forcing, initial conditions are equal to zero, and the forcing is equal to the imaginary

unit i on the first mode (k0) for λ = 2, the first two modes when λ = ϕ, and the first

three modes when λ = σ. Without forcing, initial conditions are taken such that total

energy E = 1, and first mode, two first modes or three first modes have positive uniform

real value, depending on λ = 2, ϕ or σ, while initial smaller scales are zero. We observe

finite-time blow-up for all three values of λ in the two cases. Numerical results are

plotted in fig. 1, and scaling exponents are summarized in table 1.

The maximum of the gradient ωmax(t) = maxk |ku(k)| blows up in finite time,
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Figure 1: Inviscid blow-up for the 1D Burgers equation for λ = 2 (yellow), λ = ϕ (red) and λ = σ

(blue). Continuous lines and filled symbols indicate simulations with constant forcing, while dotted

lines and open symbols indicate simulations without forcing. (1a) Spectra at different renormalized

relative time τ = 1 − t/tb. The black dotted line has a slope of −1.733. (1b) Maximum value of the

derivative 1/tbωmax as a function of τ ; The black dotted line is the theoretical value from eq. (10).

(1c) Width of the analyticity strip 2δ as a function of τ . The black dotted line has a slope given in

table 1. (1d) Renormalized width kmaxδ as a function of τ . The black dotted line has a slope of 0.

following the self-similar law

tbωmax ∼ 1

τ
, τ = 1− t

tb
, (10)

displayed in fig. 1b. While the blow-up time depends on the forcing and the value of

λ, the self-similar law (10) is independent of these variables. This law also holds for

the original continuous model. Indeed, differentiating the classical Burgers equation

∂tu + u∂xu = 0 with respect to x, we get that the space derivative ω = −∂xu obeys35
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dω/dt = ∂tω + u∂xω = ω2, whose solution is exactly eq. (10) with tb = 1/ω(t = 0).

We also check that the energy spectrum evolution is universal, in the sense that it

only depends on τ . This is illustrated in fig. 1a, where spectra for different λ but similar

τ are shown to overlap. As τ approaches zero, the energy spectrum gradually widens

towards larger values of k, developing a power-law E(k) ∼ k−2α−1 with 1 + 2α = 1.733,

which corresponds to the scaling law u(k) ∼ k−α with α = 0.367. Such asymptotics

agrees with exact results from the renormalization group formalism applied to the Sabra

shell model [28].

Finally, we compute the analyticity strip width δ as the solutions approach the

blow-up. This is done using the formula (7) with ξ + 1 = α. The result is shown in

fig. 1c. We verify that δ decays to zero in finite time, following a power law δ ∼ τµ,

with µ = 1.546. This decay is also universal and does not depend on the value of λ or

the forcing. The width of the analyticity strip is closely associated with kmax, defined

as the wavenumber at which ω attains its maximum value. Indeed, we see in fig. 1d

that kmaxδ is approximately constant in time. This is in agreement with the asymptotic

eq. (7), which implies that ωmax is achieved at kmax ∼ 1/δ.

The self-similar law (10) is valid for all λ in average only. The figures show that the

blow-up looks truly self-similar only for the values λ = 2 and λ = ϕ. The oscillations in

the case λ = σ suggest a different blow-up scenario (e.g. quasi-periodic or chaotic). A

detailed analysis of this is left for future work.

3.2. Viscous dissipation

We now introduce viscous dissipation (γ = 1) and study how the dynamical behaviour

depends upon the viscosity parameter ν. This section restricts the analysis to the value

λ = 2. We introduce a force at the large scale, whose amplitude is adapted dynamically

so that the total power input is constant in time (fk=k0 = Puk=k0/|u|2k=k0
, where P = 1).

In this setup, the dissipative term is strong enough to prevent the blow-up, and

the solution reaches stationarity. The energy spectrum develops a power law in the

intermediate scales (called the inertial range) followed by an exponential decay at larger

k – see fig. 2a. In the inertial range, E(k) ∝ k−5/3, corresponding to u(k) ∝ k−1/3.

The maximum value of the derivative ωmax is inversely proportional to the viscosity,

following the power law ωmax ∼ ν−β with β = 0.5, as shown in fig. 2b. This scaling law

can be derived when assuming a viscosity-independent anomalous dissipation ϵ > 0 in

the inviscid limit ν → 0. Under this assumption, we have the balance νω2 ∼ ϵ, which

provides ω ∼ (ϵ/ν)1/2.

Accordingly, the width of the analyticity strip does not decline to zero. However,

it stabilizes at a finite value that depends on the viscosity – see fig. 2c – and follows the

power-law scaling δ ∼ νµ, with exponent µ = 0.7067. This is smaller than expected from

a dimensional argument “a la Kolmogorov”, in which ϵ = νu2/δ2, with u ∼ δ1/3, would

instead predict δ ∼ ν3/4. The strip width follows approximately the scaling δ ∼ 1/kmax,

as shown in fig. 2d.
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Figure 2: Influence of the type of viscosity on the stationary dynamics of the viscous 1D Burgers

equation for λ = 2 and γ = 0.5 (hypo-viscous case, blue circle), γ = 1 (viscous case, red squares)

and γ = 2 (hyperviscous case, yellow diamond). (2a) Energy spectrum. The black dotted line has a

slope −5/3; (2b) Maximum value of the derivative 1/ωmax as a function of viscosity. The black dotted

line has a slope given in table 2 for each case. (2c) Width of the analyticity strip 2δ as a function of

viscosity. The black dotted line has a slope given in table 2 for each case. (2d) Renormalized width

kmaxδ as a function of viscosity.

3.3. Hyper- and hypo-dissipation

We have also studied the influence of the dissipation degree γ on the various scaling

laws. This is summarized in fig. 2 and table 2. The slope of the spectrum is insensitive

to γ and displays a E(k) ∼ k−5/3 law with no intermittency correction. On the other

hand, the slopes of both the inverse of the maximum gradient and the singularity width

increase in absolute value as γ is decreased towards 1/3. We defer the discussion about

those results to section 5.1.

37



Tracking complex singularities of fluids on log-lattices 11

Table 2: Scaling exponents of various quantities as a function of γ measured for the 1D Burgers and

the 3D Navier-Stokes equations with grid spacing λ = 2. The scalings are with respect to the viscosity

ν. By definition, the energy spectrum scales like E(k) ∼−1−2α, the maximum value of the vorticity

scales like ωmax ∼ ν−β and the width of the analyticity strip scales like δ ∼ νµ.

1D Burgers 3D Navier-Stokes

γ α β µ α β µ

1/3 − − − 2/3 1 2.81

1/2 1/3 1.80 2.78 0.5 0.78 1.53

1 1/3 0.50 0.71 0.40 0.39 0.65

2 1/3 0.20 0.28 0.37 0.19 0.27

8 1/3 0.045 0.06 1/3 0.05 0.06

Table 3: Exponents in the critical case γ = 1/3 of various quantities measured for the 1D Burgers

and the 3D Navier-Stokes equations with different values of the grid spacing λ. The scalings are with

respect to τ = 1 − t/tb, where tb is the blow-up time. By definition, the energy spectrum scales like

E(k) ∼ k−1−2α, the maximum value of the vorticity scales like ωmax ∼ τ−β and the width of the

analyticity strip scales like δ ∼ τµ.

1D Burgers 3D Navier-Stokes

λ tb α β µ tb α β µ

2 0.8497 0.37 1 1.55 7.8194 2/3 1 2.81

ϕ 0.5193 0.37 1 1.55 6.51 2/3 1 2.83

σ 0.4546 0.37 1 1.84 − − − −

3.4. Critical dissipation degree γ = 1/3

According to [20], there are finite time blow-up solutions for the Burgers equation (9)

with λ = 2 whenever γ < 1/3. However, the theorems say nothing about the limit case

γ = 1/3. For this reason, we call this value as being the critical dissipation degree. It is

natural to ask whether the blow-up might or might not occur in this specific situation.

Here we consider not only λ = 2, but also extend this question to the other two lattice

parameters.

We initialized the flow with the same data as in the inviscid case and set the small

viscosity ν = 10−7. We observed a finite time blow-up for all three λ, illustrated in

fig. 3. The blow-up time is larger than in the inviscid case, but the scaling laws are

the same – both the prefactor and the scaling exponents – as in the inviscid case. The

exponents are summarized in table 3. The only exception is for the scaling law of δ in

the case λ = σ. This might be due to the oscillations in the energy spectrum, making

it harder to fit the exponential decreasing, see fig. 3a.
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Figure 3: Blow-up for the critical (γ = 1/3) 1D Burgers equation, with ν = 10−7 and for λ = 2

(yellow), λ = ϕ (red) and λ = σ (blue). (3a) Spectra at different renormalized relative time τ = 1−t/tb;
(3b) Maximum value of the derivative 1/tbωmax as a function of τ (3c) Width of the analyticity strip

2δ as a function of τ . The insert shows the behaviour of the width of the analyticity strip at t = ∞
when the viscosity is increased, for γ = 1/3 (blue data points) (resp. γ = 1/4 (red data points)). The

dotted lines are fits of the type
√
ν − νc, with νc = 0.4 (resp. ν = 0.9). (3d) Renormalized width kmaxδ

as a function of τ . The dotted line has the same scaling and prefactor as in the inviscid blow-up case,

see fig. 1
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In this small-viscosity run, viscosity only delays the blow-up but does not influence

the development of the singularity. However, we observed a surprising behaviour change

when increasing the viscosity to larger values. There is a transition between a small-

viscosity regime, where finite time blow-up occurs, and a large-viscosity regime, where

the blow-up disappears, and the width of the analyticity strip saturates to a finite value

– see insert of fig. 3c. The amplitude of δ seems to follow a critical mean-field behaviour,

as it varies like δ ∼ √
ν − νc, with νc ∼ 0.4. A similar transition is observed at a lower

value of γ, with νc increasing as γ decreases.

This transition is in fact not contradicting the mathematical results by [20], since

they prove existence of blow-up only for initial conditions larger than a threshold that

depends linearly in the viscosity. In all our calculations, we start with the same initial

conditions. This means that for large enough values of viscosity, the initial condition

becomes smaller than the threshold, therefore invalidating the hypothesis of the theorem.

More than that, our numerical results suggest that this hypothesis is actually essential

for the result of the theorem and might not be dropped in general.

4. 3D Euler and Navier-Stokes equations

4.1. Inviscid flow – Euler equations

We now turn to the full three-dimensional incompressible fluid dynamics on log-lattices,

starting with the inviscid Euler equations. We consider here the three lattice spacings

λ. In order to test universality, we ran the case λ = ϕ with two different incompressible

random initial conditions, differing by their range of scales. Default initial conditions

are defined at large scale |k| < 3k0, while the other (denoted by a star ∗) are defined

at scales |k| < k0λ
3. We observed a finite-time blow-up in all setups, in agreement

with previous results documented in [16, 13]. Here, we observe that while the blow-up

time depends on the initial conditions, the dynamics become universal when plotted in

non-dimensional variables, as illustrated in fig. 4. The spectra for distinct values of λ

overlap when plotted at the same non-dimensional times τ = 1 − t/tb, as evidenced in

fig. 4a. The slope of the power law in the inertial range is steeper than in 1D Burgers,

with a value very close to −7/3. This is the slope expected for a helicity cascade. Our

exponent is slightly smaller than those found in some direct numerical simulations of

the Euler equations, where a E(k) ∼ k−3 spectrum is observed [29, 30], but comparable

to the value 2.33 obtained in more recent simulations [31].

The maximum value of the vorticity ωmax diverges during the blow-up, as shown

in fig. 4b. Its asymptotic scaling is the same as for the maximum gradient in the 1D

Burgers equation, given by eq. (10). However, contrarily to the 1D case, the constant in

front of the power law varies as a function of λ and is not simply given by 1/tb. This is

not too surprising given the 3D nature of the flow, which prevents the application of the

simple blow-up argument used for 1D Burgers. However, as λ is decreased towards 1,

the non-dimensional curve becomes closer to the exact asymptotic law.
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Figure 4: Inviscid blow-up for the 3D Euler equations for λ = 2 (yellow), λ = ϕ (red) and λ = σ

(blue). (4a) Spectra at different renormalized relative time τ = 1 − t/tb, from 0.2542 to 0.00001 from

left to right. Spectra with continuous lines and dotted lines correspond to different initial conditions.

The black dotted line has a slope of −7/3; (4b) Maximum value of derivative 1/tbωmax as a function

of τ . The black dotted line has a slope of 1; (4c) Width of analyticity strip 2δ as a function of τ ; The

black dotted line has a slope 2.805. (4d) Renormalized width kmaxδ as a function of τ . In panels 4b,

4c and 4d, we used different symbols for different initial conditions: circles, and squares.

Approaching the blow-up, the width of the analyticity strip decays to zero with

a power law δ ∼ τµ with exponent µ ≈ 2.81 – see fig. 4c. This is larger than in 1D

Burgers. This decay is also universal, as it does not depend on λ. However, it does not

show a simple dependence with kmax as seen in fig. 4d. This might be related to the

chaotic nature of the blow-up attractor [13].
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4.2. Viscous dissipation – Navier-Stokes equations

We now add the viscous term with γ = 1 and a constant-power forcing. The solutions

achieve a statistically stationary state in this framework, whose average scalings are

depicted in fig. 5. Like in 1D Burgers, the energy spectra display a power law until

the solution reaches the viscous scale, with an inertial range widening as ν decreases.

The slope of the energy spectrum is slightly steeper than Kolmogorov’s −5/3, with

an intermittency correction of around 0.13. Accordingly, the scaling exponent α for

u(k) ∼ k−α is α = 0.40, slightly larger than 1/3. The maximum vorticity ωmax increases

with decreasing viscosity, following the power law ωmax ∼ ν−β with an exponent β = 0.39

lower than Kolmogorov’s 1/2.

The width of the analyticity strip decays with viscosity as δ ∼ νµ with an exponent

µ = 0.65 – see fig. 5c. Such decay is less intense than in the 1D Burgers equation.

Nevertheless, the dependence of δ on 1/kmax in the Navier-Stokes case is sharper, as one

verifies by comparing fig. 5d with fig. 2d.

4.3. Hyperviscous dissipation

We now consider what happens in the hyperviscous case γ > 1. We keep the constant-

power forcing to reach stationary states.

For γ = 2, we still observe a power-law energy spectrum followed by an exponential

cut-off at the viscous scales – see fig. 5a. The inertial range keeps widening as ν is

decreased. The slope of the energy spectrum is very close, but slightly steeper than−5/3.

The exact fitting provides us an intermittency correction around 0.07, corresponding to

α = 0.37, see table 2. The maximum vorticity ωmax increases with decreasing viscosity

like a power law, with an exponent β = 0.19 lower than usual (γ = 1) viscous case. The

width of the analyticity strip decays with viscosity with an exponent µ = 0.26. Like in

the viscous case, δ appears to scale simply like 1/kmax, as seen on fig. 5d.

The above results suggest that the intermittency corrections in the energy spectra

are smaller for hyperdissipation. Indeed, as the dissipation degree γ increases, the

exponent α converges towards Kolmogorov’s 1/3, see table 2. We checked that for

the stronger degree γ = 8, they vanish completely, and the dependence of ωmax and

δ on ν become very weak. This is explained by the very sharp viscous cut-off due to

the hyperviscous dissipation. Indeed, the equivalent of the Kolmogorov scale kd in the

hyperviscous case relates to ν as kd ∼ ν1/(1−1/3−2γ), becoming independent of viscosity

in the limit γ → ∞. For γ = 2 the dependence is δ ∼ k−1
d ∼ ν0.3, close to what is

observed for the scaling of the singularity strip width.

4.4. Hypoviscous dissipation

The case with hypoviscous dissipation 1/3 < γ < 1 is qualitatively similar to the viscous

and hypervisous cases – see fig. 5. Exponents, however, are steeper. The corresponding

values are reported in table 2. The energy spectrum develops a slope corresponding to

42



Tracking complex singularities of fluids on log-lattices 16

10
0

10
5

10
-30

10
-20

10
-10

10
0

(a)

10
-30

10
-20

10
-10

10
0

10
-5

10
0

(b)

10
-30

10
-20

10
-10

10
0

10
-6

10
-4

10
-2

10
0

(c)

10
-30

10
-20

10
-10

10
0

10
0

10
1

(d)

Figure 5: Stationary dynamics for the 3D Navier-Stokes equations for λ = 2 and γ = 0.5 (hypo-viscous

case, blue circle), γ = 1 (viscous case, red squares) and γ = 2 (hyperviscous case, yellow diamond).

(5a) Energy spectrum. The black dotted line has a slope −5/3; (5b) Maximum value of the derivative

1/ωmax as a function of viscosity. The black dotted line has a slope given in table 2 for each case.

(5c) Width of the analyticity strip 2δ as a function of viscosity. The black dotted line has a slope given

in table 2 for each case. (5d) Renormalized width kmaxδ as a function of viscosity.

the exponent α = 0.5, which is steeper than Kolmogorov’s 1/3 but milder than Euler’s

2/3 on log-lattices. The singularity width appears again to be controlled by the wave

number corresponding to the maximum vorticity – see fig. 5d. On the other hand, the

maximum vorticity grows much more rapidly than in the viscous case, with an exponent

twice as big, as shown in fig. 5b. This may indicate that we are approaching a critical

dissipation degree, below which finite-time blow-up will occur.
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4.5. Critical dissipation degree γ = 1/3

The asymptotics of Kolmogorov’s length scale for a flow with a general dissipation degree

predicts the breakdown of the viscous cut-off when γ approaches the critical value 1/3.

Indeed, the dissipation scale kd is obtained from the dimensional balance between the

convective and the dissipative terms kdu
2
d ∼ νk2γ

d ud. On the other hand, Kolmogorov’s

theory states that ud ∼ ϵ1/3k
−1/3
d for the energy dissipation rate ϵ, which has a finite

positive value in the inviscid limit. Together, these expressions yield

kd ∼ ϵ
1

6(γ−1/3)ν
1

2(1/3−γ) , (11)

which, for sufficiently small ν, provides kd → +∞ when γ ↘ 1/3. For this reason,

we call γ = 1/3 the critical dissipation exponent, the value at which we expect that

the dissipative term is no longer strong enough to prevent a finite-time singularity. We

recall this was the case for the 1D Burgers equation on log-lattices.

Motivated by the above arguments, we investigate the critical hypo-diffusive degree

in the full 3D system on log-lattices. The following analysis considers the spacings λ = 2

and λ = ϕ. The initial data is the same as we used in the inviscid simulations, and

viscosity is the same ν = 10−7.

In this regime, we observed a finite time blow-up for the two values of λ, illustrated

in fig. 6. Like in 1D Burgers, the blow-up time is larger than in the inviscid case, but

the scaling laws are the same. This is summarized in table 3. The slope of the energy

spectrum remains −7/3. For λ = 2 and ν = 10−3, the dynamics becomes stationary,

meaning there is as in 1D a phase transition, but between ν = 10−3 and 10−7, smaller

than νc ∼ 0.4 in 1D.

5. Discussion

5.1. Scaling laws

The variations of the scaling exponents with respect to the diffusion exponent γ are

shown in fig. 7.

Predictions for the scaling laws are possible using simple dimensional arguments if

we impose δ ∼ 1/kmax, as empirically observed. Indeed, from u ∼ k−α and ω ∼ ku, we

get ωmax ∼ k1−α
max ∼ δα−1 so that we get:

β = µ(1− α). (12)

This fixes a link between the 3 exponents that is well satisfied – see fig. 7b. On the other

hand, one can connect µ and α by extending the argument fixing the Kolmogorov scale

to hypo and hyper-viscous cases: we impose that kmax is fixed by the condition that the

viscous term balances the non-linear term νk2γ
maxumax ∼ kmaxu

2
max. Using umax ∼ k−α

max

and δ ∼ 1/kmax we then get:

µ = − 1

1− α− 2γ
, (13)
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Figure 6: Blow-up for the critical (γ = 1/3) 3D Navier-Stokes equations, for λ = 2 (yellow) and

λ = ϕ (red). (6a) Spectra at different renormalized relative time τ = 1 − t/tb; (6b) Maximum value

of the derivative 1/tbωmax as a function of τ (6c) Width of the analyticity strip 2δ as a function of τ

(6d) Renormalized width kmaxδ as a function of τ . The dotted line has the same scaling and prefactor

as in the inviscid blow-up case, see fig. 4

This prediction is tested in fig. 7c and is well satisfied. Without loss of generality,

the only free parameter can be taken as α(γ). In the limit γ → 1/3, we can fix it by

imposing that β = 1, which is the scaling corresponding to conservation of the circulation

of u [32]. From eqs. (12) and (13), we then get α = 1 − γ = 2/3, corresponding to a

helicity cascade. In all other cases, we have no clear theories to predict the variations

of α with γ. Notably, when γ → ∞, we recover α = 1/3 corresponding to an energy

cascade.
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Figure 7: Variation of the scaling exponents as a function of the dissipation degree γ for the 1D

Burgers (blue circle) and the 3D Navier-Stokes (red square) equations with λ = 2. (7a) For the scaling

of the velocity u ∼ k−α. (7b) For the scaling of the maximum vorticity ωmax ∼ ν−β . The data points

are reported from tables 2 and 3, while the dotted lines correspond to eq. (12); (7c) For the scaling of

the singularity strip δ ∼ νµ. The data points are reported from tables 2 and 3. while the dotted lines

correspond to eq. (13).

5.2. Interest of the critical case

The critical case γ = 1/3 is more than purely academic: renormalization group (RNG)

analysis of NSE in Fourier space [33] indeed shows that the fixed point of the equations

corresponds to a Navier-Stokes equation with turbulent viscosity scaling like Aϵ1/3k−4/3,

where A is a constant with value A = 0.1447 in 1D and A = 0.4926 in 3D. This

corresponds exactly to eq. (1), with γ = 1/3 and ν = Aϵ1/3. This model is sometimes

used as a subgrid model of turbulence [34]. In that respect, it is interesting that the

transition viscosity found in sections 3.4 and 4.5 (at constant injected power, i.e. ϵ = 1)

is very close to the RNG value in 1D. On the one hand, this guarantees that the size

of the inertial range is very wide, in agreement with the RNG picture of scale invariant

solutions. On the other hand, this means that the solution is very close to a blow-up,

which could have implications regarding the stability of this subgrid scheme.

5.3. Implications for real Euler or Navier-Stokes?

The log-lattices simulations we performed cannot be seen as an exact model of the

Euler or Navier-Stokes equations because they remove by construction many non-linear

interactions of the original equations, especially the non-local one. Nevertheless, because

they obey the same conservation laws and symmetries, they may capture some scaling

laws of the original equation more accurately. Comparing our findings with the few

results on the topic is engaging.

Regarding the Euler equation, recent high-resolution numerical simulation in the

axisymmetric case by [35] explored the scaling of the singularity strip in the blowing

situation proposed by [36]. They found an exponent µ = 2.6± 0.5, which is compatible

with the value 2.8±0.1 that we get from table 2. Unfortunately, they do not provide an
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estimate of the slope of the energy spectrum. Previous older results in the Taylor-Green

vortex [37, 30] found a steeper spectrum corresponding α ∼ 1. However, spectra with

exponent matching our −7/3 value were observed in the early stage of recent simulations

at larger resolution [31]. Therefore, the main characteristics of blow-up in log-lattices

simulations agree with the most recent results observed in the traditional DNS of the

Euler equation.

Regarding the Navier-Stokes equations, we can look at two recent results. The

first one by [38] finds a value of µ = 0.89 using recent DNS of NSE. This value

is larger than the value we found in the present paper, corresponding to µ = 0.65.

Another recent result [39] estimates β in 3D NSE. They indeed found that the tail of

the PDF of enstrophy scales like ν0.77τ−2
K , where τK ∼ ν1/2 is the Kolmogorov time.

Identifying such extreme events of enstrophy with ω2
max, we thus get βDNS ∼ 0.88,

which is also much larger than the value we observe in log-lattices βLL ∼ 0.39. Note,

however, that both DNS values are compatible with eqs. (12) and (13), provided we

choose α ∼ 0, hinting at the presence of multifractality. Log-lattices simulations

are generally much less intermittent than DNS [13], with one dominating exponent

(monofractal behaviour). Some time ago, [34] linked the intermittency properties of

NSE with non-local interactions, which is coherent with this observation. Therefore, the

difference between log-lattices simulations and DNS could be explained by differences

in the amount of non-local interactions.
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3 - Intermittency on Log-lattices

3.1 . Introduction

In the previous chapters, we investigated the existence of complex singularities in
Log-lattices, highlighting the existence of blowup solutions associated to the collapse of
a complex singularity onto the real axis. This collapse of a singularity also implies a burst
of dissipation, a characteristic feature of intermittency, a key component of turbulence.

The founder of Log-lattices, namely Campolina &Mailybaev, first tackled the question
of intermittency on LL (21) through the study of the statistics of Fourier modes in both
the inertial and viscous range. Statistics in the inertial range were found to be gaussian
indicating the absence of intermittency. Yet, such features were also observed in the
statistics of the Fourier transform of intermittent DNS and experimental results meaning
that Gaussian statistics do not indicate the absence of intermittency. Therefore to better
probe the problem, they defined structure functions through powers of the energy flux.
By extracting the exponents of the structure functions in the inertial range, they obtained
the Kolmogorov scaling ξp = p/3 characteristic of non intermittent flow. This first study
led to the absence of intermittency, a rather puzzling result. Indeed, 1-D LL with λ = ϕ

corresponds to the well known SABRA shellmodel that exhibits intermittency 1. Therefore,
it is legitimate to wonder if LL really fails at capturing intermittency.

In this chapter, we propose to investigate what hints of intermittency are present in
Log-lattices. We first briefly recall the Kolmogorov theory and the multifractal approach.
We then study intermittency in the SABRA and dyadic shellmodels to extract, through
comparison, the ingredients leading to intermittency. We then move on to 1D LL, ap-
plying the same methodology before giving perspectives about generalization to higher
dimensions.

3.2 . The Kolmogorov 41 theory

Intermittency is often referred as deviation from KG41, a theory derived by A.N Kol-
mogrov in 1941 based on three hypothesis extracted from (29):

H1: In the infinite Reynolds numbers, all the possible symmetries of the Navier-Stokes equa-
tion, usually broken by the mechanisms producing the turbulent flow, are restored in a statis-
tical sense at small scales and away from boundaries.

H2: Under the same assumption as in H1, the turbulent flow is self-similar at small scales,
i.e it possesses a unique scaling exponent h.

H3: Under the same assumption as in H1, the turbulent flow has a finite non-vanishing
mean rate of dissipation ϵ per unit mass.

We define the velocity increments at scale ℓ as δu(r, ℓ) = u(r + ℓ)− u(r) . From this
definition, one can define the structure function of order p as

Sp(ℓ) = ⟨(δu(r, ℓ))p⟩ . (3.1)
1For the usual values (a, b, c) = (1,−0.5,−0.5).
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Using these quantities, several results can be derived, under hypothesis H1 to H3. A
straightforward dimensional analysis leads to the well known Kolmogorov energy spec-
trum S2(ℓ) = Cϵ2/3ℓ2/3 2.

In addition, Kolmogorov (30) derived an exact relation for the longitudinal third order
structure function, called the four-fifths law:

S∥,3(ℓ) = −4

5
ϵℓ. (3.2)

By combining Eq. 3.2 and H2, one can then obtain the scaling property of the structure
functions, under Kolmogorov assumptions

Sp(ℓ) ∝ ℓp/3. (3.3)
This scaling, and more generally the KG41 theory rely on the global homogeneity of the
velocity field. Such homogeneity could be locally broken, by a singularity for example,
leading to deviation from the so-called Kolmogorov scaling (Eq. 3.3) i.e deviation from KG41.
Several measurements, in both experiments (31; 32) and numerical simulations (DNS (9),
shellmodels (15; 33)) highlight strong deviations from the KG p/3 scaling.

Different models were proposed in order to account for the so-called intermittent cor-
rections such as the β−model, the lognormal model andmany others. Still, the most con-
sistent remains, as of today, themultifractal model (MF) introduced by Parisi & Frisch (34;
3). KG41 relies on a global scale invariance implying a unique value h = 1/3 3. Yet, in the in-
viscid limit, the Navier-Stokes equations admit an infinite number of values for hwhich led
Parisi & Frisch to instead consider local scale invariance implying new scaling exponents:

Sp(ℓ) ∝ ℓξp , (3.4)
ξp = infh[ph+ 3−D(h)], (3.5)

where D(h), is the h-dependent dimension of the fractal set associated to h. This model
succesfully reproduced the intermittent corrections in several studies (4; 5; 6; 7; 8) 4.

Note that in the context of KG41, the flatness of distribution is considered constant, a
feature associated to gaussian statistics. Hence, deviation from KG41 can also be under-
stood as deviation from gaussianity.

3.3 . A side note about gaussianity of statistics

In the context of turbulence, intermittency refers to the existence of burst of enstro-
phy. Although being rare, such extreme events are believed to cause deviation from the
Kolmogorov theory 3.3. There are many manisfestation of intermittency in flows, from
bursts of dissipation to deviation from the expected KG scaling of the so called structure
functions. From a statistical point of view, the rareness of an event depends on the tails

2The second order structure function corresponds to the energy spectrum. Note that by takingthe Fourier transform of this expression, we obtain the previously mentioned k−5/3 spectrum.3The scaling invariance refers to the change (t, r,u) → (λ1−ht, λr, λhu).4For a more comprehensive derivation of the MF, please refer to (29; 32; 35).
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of the probability distribution functions (PDF). By studying the statistics of the velocity in-
crements, one observes, in presence of an intermittent flow, deviation from Gaussianity
for PDF tails.

Therefore, a key ingredient to observe intermittency in a model is the existence of a
"fat tail" distribution for the velocity increments since purely gaussian statistics limit the
existence of extreme events in both amplitude and occurrence.

In this section, we study the existence of non gaussian statistics in Log-lattices through
the existence of non-trivial fourth order correlators.

3.3.1 . Moments of a Gaussian distribution
LetX ∼ N (µ, σ), then the moments of X are given by:

mn = E[Xn] =
1

σ
√
2π

∫

D
xne

−1
2
(x−µ

σ
)2 . (3.6)

The value of the first four moments of a Gaussian distribution are given in Table. 3.1.
In order to find deviations from Gaussianity in the tails of PDFs, one must look at the
moment of order 4, namely the kurtosis that, for a "fatter tail" should be greater than for
the usual normal distribution.

Note that, for a central distribution, we have E[X2n
µ=0] = (2n − 1)!!σ2n for even order

moments andE[X2n+1
µ=0 ] = 0 for odd ordermoments. The first equality can be understood

in the following way: the statistics of an n-th order moments are associated to correla-
tors δ(∑n

i=0 ki). In the case of Gaussianity, the Isserlis’ theorem asserts that even order
correlator can be decomposed into a product of the correlator of the second order.

As an example, the fourth ordermoments are associated to the correlators δ(k1+k2+
k3 + k4) as moments can be formally computed through the computation of cumulants.
Yet, high order cumulants are non-zero only for∑i ki = 0.

Through Iserliss’ theorem, we obtain for Gaussian statistics that δ(k1+k2+k3+k4) =∑
θ∈S4

δ(kθ(1) + kθ(2))δ(kθ(3) + kθ(4)) where θ is a cyclic permutation of S4, the ensemble
of 4 elements cyclic permutations.

Deviation from gaussianity can then be seen as the existence of fourth order correla-
tors that can not be decomposed as a product of second order correlators.

Order Non-central distribution central distribution
1 µ 0
2 µ2 + σ2 σ2

3 µ3 + 3µσ2 0
4 µ4 + 6µ2σ2 + 3σ4 3σ4

Table 3.1: First four moments of a Gaussian distribution. A central distribution is charac-terized by a zero mean i.e µ = 0.

3.3.2 . Gaussianity in Desnyansky-Novikov - Dyadic model
The simplest LLmodel is a n-D generalization of the Dyadic model, obtained for λ = 2.

Modes, in the Fourier space, are then spaced according to a powerlaw of λ:
kn = k02

n, (3.7)
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where we set k0 = 1.
Let (k,m, n, p) be four wavenumbers such that 0 = k + m + n + p. Without loss of

generality, we set p = 1 as it only rescales all other wavenumbers. We must then solve
k + m + n = −1. In order for the sum to be odd, it is necessary for atleast one of the
remaining wave number to be odd. This leaves us with two possibilites:

Case 1: n = −1 then k +m = 0.
Case 2: n = 1 then k+m = −2, dividing by 2, we obtain k′+m′ = −1, where (k′,m′) =

(k,m)/2. Keeping in mind that k′ and m′ are powers of 2, the only possibility to fulfill
k′ +m′ = −1 is (k′,m′) = (−2, 1) leading to (−4n, 2n, n, n).
Therefore, the only non-trivial fourth order correlators are permutations of (−4n, 2n, n, n).
Still, it might be hard to actually observe deviations from Gaussianity due to the small
number of non-trivial correlators.
Note that this result extends, by induction, to higher order correlators.

3.3.3 . Gaussianity in SABRA Shell model

�� �� �� � � �
I�[u(k)]/< I�[u(k)]2 > 1/2

����

����

����

����

P
D
F

(a)
���� ���� ��� ��� ���

I�[u(k)]/< I�[u(k)]2 > 1/2

����

���	

����

����

P
D
F

(b)
Figure 3.1: PDF of the velocity fields in the inertial range for different k. (3.1a) Resultsfor Log-lattices with λ = ϕ (3.1b) Results for Log-lattices with λ = ϕ adding a large scalefriction. The black dashed lines correspond to a normal distribution. The PDFs highlightdeviation fromgaussianity in the tails, suggesting intermittent behavior further confirmedthrough the analysis of structure functions.

We now consider Log-lattices with golden ratio as a spacing parameter (i.e λ = ϕ).
This choice of lattice spacing leads to a model equivalent, in 1D, to a SABRA shell model.
The golden ratio being defined as ϕ2 − ϕ = 1, we directly obtain:

kn+2 − kn+1 = kn. (3.8)
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From this equation, it is possible to derive 2 other expressions of kn for a given n (by
shifting indices). Then, kn+2 = kn+1 + kn can be expressed in 4 different ways, using thevarious possible expression of kn+1 and kn. One of the possibility being:

kn+2 = kn+1 + kn−1 + kn−2. (3.9)
From the definition of the lattice, we obtain the existence of several 5 non-trivial fourth

order correlators, indicating possible deviations from gaussianity.
Fig. 3.1 presents the PDF of the velocity field u(k) in the inertial range highlighting

distribution with tails fatter than the Gaussian (black dashed line). Deviation from the
Gaussian distribution is a first hint towards the presence of intermittency on Log-lattices
with λ = ϕ.

Following (17), we analyze intermittency through the existence of charge-discharge
scenario, associated to a competition between backward and forward energy cascade.
The analysis is first performedon two classical shellmodels, the SABRAanddyadic shellmod-
els. This analysis is then used to study the intermittency in the 1D-LL.

3.4 . Intermittency in Desnyansky-Novikov - Dyadic model

3.4.1 . Definitions
Asmentioned before, by settingλ = 2, one obtains equations on log-lattices described

by the dyadic model (16), reading in its inviscid and unforced form:
∂tun = knu

2
n−1 − kn+1un+1un. (3.10)

The forcing term fn is once again located on the 5th and 6th shells. In all dyadic simula-
tions, we set N = 35modes and ν = 1e− 10 allowing us to observe an extended inertial
domain to extract more accurately the exponents of the structure functions.

3.4.2 . Fixed points and energy transfers
Consider once again a solution un = ikαn of Eq. 3.13. Such solution is a fixed point of

the system if the following condition is fulfilled:
λ−2α − λα+1 = 0, (3.11)

leading to a unique fixed point αKG = −1/3. By deriving a kinetic energy budget and
summing up to the n-th shell, one obtains:

Πn = kn−1unu
2
n−1 − C, (3.12)

where C is a constant. The system is therefore only driven by a direct cascade. This is
indeed what we observe in Fig. 3.2a, where no energy is stored in shells k ≤ kf where kfis the forcing scale.

Figure 3.2b reports the exponents of the structure functions defined in Eq. 1.6, high-
lighting no intermittency and a perfect Kolmogorov scaling.

The dyadic model λ = 2 does not exhibit any intermittent features. Yet, using LL
one can set λ = ϕ, formally equivalent in 1D to a SABRA shell model (15) known for its
intermittent features. In the following section, we propose to study intermittency in the
classical SABRA shellmodel before switching to the SABRA Log-lattices.

5Note that one has to add every permutations of the previously proposed correlators.
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Figure 3.2: Time series of the kinetic energy by shell and exponents of the structure
functions. (3.2a) Kinetic energy for shells located around the forcing scale kf . Due tothe absence of backward cascade (Eq. 3.12) we observe no energy in the shells located atscales k < kf . (3.2b) Exponents of the structure functions for the dyadic model Eq. 3.10.The black dashed line corresponds to the KG prediction with slope 1/3.

3.5 . Intermittency in SABRA shell model

3.5.1 . Definitions
Let us first recall that the SABRA shell model is defined, in the inviscid and unforced

case, as follows:
∂tun = i(akn+1un+2un+1 + bknun+1un−1 − ckn−1un−2un−1), (3.13)

where (a, b, c) ∈ R3 such that a + b + c = 0 to ensure the kinetic energy conservation in
the inviscid and unforced limit. For simplicity, we assume that a = 1. Note that the bar is
associated to the complex conjugate.

In our simulations, we use a forcing term fn located on the 5th and 6th shells and a
number N = 35 of shells. The viscosity is set to ν = 1e − 10 in order to obtain a wide
inertial range. The location of the forcing term has been chosen in order to be able to
properly quantify the existence of an inverse cascade in the system, starting from zero
initial conditions.

3.5.2 . Fixed points and energy transfers
Consider a solution un = ikαn of Eq. 3.13. Such solution is a fixed point of the system if

the following condition is fulfilled:
λ6α +

b

λ
λ3α +

c

λ2
= 0. (3.14)

Then, the system exhibits up to two fixed points for the energy, the first one being the
usual Kolmogorov fixed point αKG = −1/3. The second fixed point only exists for c > 0

and is defined as β = 1
3(−1+ ln c

lnλ). Note that the vast majority of the studies on the SABRA
are performed using c < 0, getting rid of the possible effects of that second fixed point.
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Figure 3.3: Time series of the kinetic energy in the first four shells for different valuesof b. (3.3a) b = −0.3 (c = −0.7) (3.3b) b = −0.5 (c = −0.5) (3.3c) b = −0.7 (c = −0.3).All simulations are performed using a standard SABRA shell model with λ = 2. As b → 0,we observe an increased backward cascade leading to energy accumulation in the firstmodes, located before the forcing term.

By deriving a kinetic energy budget and summing it over the shells, one can show that
the energy transfer at shell n is given by:

Πn = 2kn+1(Dn+1 −
c

λ
Dn), (3.15)

where Dn = ℑ(un−1unun+1). The model features both a backward and forward energy
cascade, which intensities are directly linked to the chosen value of c. A study (36) on a
similar model, the GOY model, underlines that by taking c −−→

c<0
0 the system is more and

more chaotic. With such values for c, the inverse cascade Dn+1 is no longer negligible
and leads to energy accumulation at big scales that can suddenly cascade to small scales
(Fig. 3.3b & 3.3c). Taking a too big value of |c| would lead to a system only governed by
the forward cascade (Fig. 3.3a).

An additionnal fixed point can be defined as "fluxless" consisting of a zero flux fixed
point in which the simulations can get trapped. Using this definition, the only solution is
once again β = 1

3(−1 + ln |c|
lnλ ) regardless of the sign of c.

The competition between forward and backward cascade could lead to intermittency
as it was shown in the GOY model (17) that charge-discharge scenario leads to intermit-
tent features. In the following, we investigate the presence of intermittent features for
different parameters c, tuning the balance between the forward and backward cascades.

3.5.3 . Phase space intermittency
This model has been extensively studied (15; 17; 18; 19) but mostly in the domain−1 <

c
a < 0 in which it exhibits intermittency. In this chapter, we define the structure functions
as in Eq. 1.66:

Sp(kn) =

〈
|Πn

kn
|p/3
〉
.

6The results are independent of the choice of the structure functions’ definition.
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Figure 3.4: Energy spectra at different time for different values of b. (3.4a) b = −0.3
(c = −0.7), little to no fluctuation in the inertial range. (3.4b) b = −0.5 (c = −0.5), strongfluctuations of the exponent in the inertial range. All simulations are performed using astandard SABRA shell model with λ = 2. The vertical dashed line represent the forcingterm.

In the absence of intermittent features coming from the cascade term (i.e a flat en-
ergy transfer), one then expects (1.6) the structure functions to scale as Sp(kn) ∝ k

−ξp
nwith ξp = p/3. Any deviation from that prediction is interpreted as a sign of intermit-

tency in the Fourier space. As previously mentioned, the choice of the free parameter c
is crucial to observe intermittent features in the model. As developped in (36), the exis-
tence of a strong enough backward cascade is a necessity as it allows the existence of
bursts of energy rapidly cascading from big to small scales, changing the local exponent
of the spectrum (Fig. 3.4). Those rapid changes can then lead to deviations from the KG
prediction ξp ∝ p/3.

Figure 3.5a shows the extracted exponents for various values of (b, c) highlighting the
absence of intermittence in the forward cascade driven case (Fig. 3.3a). However, by tak-
ing the classical (b, c) = (−0.5,−0.5) one obtains intermittent exponents that can be as-
sociated to the frequent and strong charge-discharge events occuring in the system at
big scales (Fig. 3.3b). Still, taking a too low value of b (i.e b close to 0) implies a strong
depreciation of the forward cascade meaning that most of the modes at small scales are
almost never populated. One then obtains exponents much smaller that KG predictions
(Fig. 3.5a orange triangles). Our simulations confirms the finding of previous studies on
the GOY model, that shares many features with the SABRA model (15).

Let us define the 1D - instantaneous - energy dissipation ϵ = ν
∑

n k
2
n ∥un∥22. In pres-

ence of intermittency, one expects to find intermittent behaviour in the time series of ϵ.
Figure 3.5 indeed confirms, through the time series of ϵ for different values of (b, c), the
depreciation of intermittency for systems driven by a forward cascade (Fig. 3.5b).
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Figure 3.5: Exponents of the structure functions and time series of the instanta-
neous energy dissipation ϵ for different values of b. (3.5a) Exponents of the structurefunctions (Eq. 1.6). The black dashed line corresponds to the KG prediction with slope 1/3while the orange dashed line has a slope of 0.12. Note that the blue dots have a slopeslighty steeper that KG with a value of 0.36. (3.5b) b = −0.3 (c = −0.7) (3.5c) b = −0.5
(c = −0.5) (3.5d) b = −0.7 (c = −0.3). All simulations are performed using a standardSABRA shell model with λ = 2. As b → 0, we observe a depreciation of the intermittentbehavior in the time series in agreement with previous findings.

The choice of the parameter c has a great influence over the system. Indeed, its value
sets the balance between the forward and backward cascade, allowing or not the charge-
discharge scenario piloting intermittency. In the following, we apply the same methodol-
ogy to study the case of LL as a peculiar case of the SABRA shellmodel.
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3.6 . Log-lattices as a SABRA shellmodel

We will now interests ourselves to the log-lattices case. The dyadic model presenting
no intermittency, we will limit our study to the λ = ϕ case.

3.6.1 . Definitions
As mentioned before, in the peculiar case of a 1D log-lattice, with λ = ϕ, one gets

a SABRA shellmodel with (a, b, c) = (−1/λ,−1, λ). One can recover the usual signs by
considering the grid’s symmetry. Still, such values lie outside of the interval of the usually
used parameters (b, c).

Following Section 3.5, one expects the system to be mostly driven by the forward cas-
cade, atleast for modes at scales k > kf

7. Therefore, the system should exhibit little to
no intermittency.

3.6.2 . 1D case with large scale forcing
Before tackling the question of intermittency in 3D log-lattices, it is important to start

by a 1D investigation. All simulations presented in this section will be performed in 1D
using a forcing term located on the shells (2, 3).
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Figure 3.6: Time series of the total kinetic energy for a forcing term located near thegrid boundary. The system exhibits two behaviors, first reaching a steady state until t ≃
80s to then switch to an exponential growth at t > 115s. The transition area is representedin between black dashed lines.

In this section, we set kf = (k2, k3) such that the forcing acts close to the grid bound-aries. As previously underlined in Section 3.5, the system presents both a foward and
backward cascade. Such statement still holds true in the log-lattice case and can lead to
different scenarios. The peculiar values of the (b, c) parameters should lead to a system
mostly driven by a forward cascade. Still, due to the existence of other fixed-point (flux-

7kf being the forcing scale.
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less fixed point for example) one can not completely discard the possibility of observing
a system driven by a backward cascade.

Figure 3.6 shows the evolution of the system total kinetic energy. Until t = 80s, the sys-
tem ismainly driven by the forward cascade (Fig. 3.7a & 3.7b), reaching a steady state. We
then observe a transition area for t ∈ [80, 115]s after which the system becomes mainly
driven by the backward cascade. Hence, we observe an accumulation of energy in the
first modes (Fig 3.7d) and a depletion at smaller scales (Fig. 3.7d), leading to the rise of
the total kinetic energy (Fig. 3.6 after the dashed lines).
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Figure 3.7: Time series of the energy by shell and intermittency for a "SABRA" log-
lattice. for the two regimes highlighted in Fig. 3.6. (3.7a) & (3.7b) Shell energy at small andbig scales in the forward cascade case. (3.7c) & (3.7d) Shell energy at small and big scaleshighlighting the transition to a backward cascade with energy leaving the small scales toaccumulate at larger scales.

Note that in both scenarios, we still observe energy discharges that led to intermit-
tency in Section 3.5. More specifically, Fig. 3.7 highlights (atleast for n > 2) a greater

61



amount of discharge than the (b, c) = (−0.3,−0.7) case (Fig. 3.3a) and less than the
(b, c) = (−0.5,−0.5) case. It can then be expected to observe small deviations from KG
predictions.

Figure 3.8a shows that indeed, one observes small deviations in both zones from KG
prediction. Note that unlike the SABRA (b, c) = (−0.5,−0.5) (Fig. 3.5a green squares) the
intermittency is here closer to a bifractal with a second slope of roughly 0.26. In addition,
we once again find that the backward cascade case has exponents lower than the forward
case as previously highlighted in Section 3.5. The time series of the energy dissipation
confirms the presence of intermittent behavior in the forward cascade case (Fig. 3.8b
before dashed lines and on the inset). Also note that the energy dissipation in the second
zone (after the dashed lines) starts to rise again indicating that the system is starting to
switch back to a forward cascade.
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Figure 3.8: Intermittency on LL SABRA (3.8a) The blue dots (resp. green squares) repre-sent the structure functions exponents in the first (resp. second) zone of Fig. 3.6 t < 80s(resp. t > 115s). The black dashed line corresponds to the KG prediction ξq ∝ q/3. (3.8b)Time series of the instantaneous energy dissipation ϵ. The black dashed lines representthe transition zone between forward (t < 80s) and backward (t > 115s) cascade case ofFig. 3.6. Both cases present intermittent features with bursts of dissipation.

The existence of the backward cascade allows for slightly intermittent exponents but
also leads to strong energy accumulation in the first shells that does not cascade for a very
long time. Figure 3.8b emphasizes the slow return of the energy in the last shell as the
dissipation slightly increases over time. To avoid an excessive stagnation of the energy at
large scales, we propose to add a small friction, dissipating a part of this energy.

3.6.3 . Friction at large scale
As previously highlighted, the system can oscillate between two regimes dictated ei-

ther by a forward or a backward cascade. While both cases contribute to the intermittent
behavior of the model, it is important to emphasize the forward cascade case while not
completely prevent the existence of the inverse cascade. In fact, a too strong inverse
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cascade leads to energy accumulation in the first shells (Fig. 3.6, after dashed lines) and
energy depreciation in the last ones.
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Figure 3.9: Time series of the total and shell energy. (3.9a) Time series of the totalkinetic energy (blue, green, orange, red) corresponding to (αn = 0, αn = 0.2, αn ∼
U(0.1, 0.3), logαn ∼ N (0.2, 0.2)). Figures (b) to (d) correspond to energy in the first shells.(3.9b) Determinist damping at small scales αn = 0.2 ∀n < 2. (3.9c) Stochastic damping
αn ∼ U(0.1, 0.3). (3.9d) Stochastic damping logαn ∼ N (0.2, 0.2). All the proposed fric-tions lead to energy oscillations without accumulation.

In order to avoid the excessive accumulation of energy at large scale one can add a
small friction on the modes located at k < kf . The equation then reads:
∂tun = i(akn+1un+2un+1 + bknun+1un−1 − ckn−1un−2un−1)− αnun + fn − νk2nun (3.16)
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where fn is the forcing term and αn = 0 ∀n > nf
8. In our case, we once again set kf =

(k2, k3).By adding a friction term, we keep the energy in the first shell under control (Fig. 3.9),
reinforcing the charge-discharge scenario that previously led to intermittency. It is then
expected to recover intermittent exponents with stronger deviation from KG prediction.
Figure 3.10a presents the extracted exponents, highlighting the presence of intermittent
features for various damping form (deterministic and stochastic). Such features are also
found in the time series of the dissipation ϵ(t) (Fig. 3.10b). It is also interesting to underline
that ϵ ressemblesmuchmore (with respect to the case (b, c) = (−0.5,−0.5) of Section 3.5)
the traditional intermittency that can be found in DNS and experiments.
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Figure 3.10: Intermittency for a "SABRA" log-lattice with large scale friction. Blueplots corresponds to LL SABRA without damping (data of Fig. 3.8a) other colors (green,orange, red) are associated with (αn = 0.2, αn ∼ U(0.1, 0.3), logαn ∼ N (0.2, 0.2)).(3.10a)Exponents of the structure functions highlighting departure from KG prediction ξq ∝ q/3(black dashed line). (3.10b) Time series of the energy dissipation presenting intermittentfeatures.

Note that the extracted exponents of Fig. 3.10a in the damped case present stronger
deviation from KG prediction. A possible explanation being that the damping partially
mimics non local interaction that are usually absent in LL.

Throughout this studywe foundfingerprints of intermittency in 1D "SABRA" Log-lattices
through charge-discharge scenario. This charge-discharge leads to deviation, of the ex-
ponents of structure functions, from Kolmogorov’s prediction. Yet, this study was only
performed on 1D systems and must be generalized to n-D systems, n > 1. Unfortunately,
due to time constraint this extension has been initiated but will be left for the future. In
the next section, some perpectives are presented raising hope for intermittency in n-D
LL.

8nf is the minimum index of forced shells.
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3.7 . Perspectives

This chapter is the subject of on-going work and will be left for future work, either by
myself or a colleague. Still here are some perspectives for intermittency in 3D LL.

3.7.1 . 3D case
We now investigate the case of intermittency in 3D LL simulations with spacing pa-

rameter λ = ϕ. A first and most naive approach is to compute, just as in the 1D case, the
structure functions (Eq. 1.5). By doing so, we observe no deviation from the Kolmogorov
exponents (Fig. 3.12, blue circles).
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Figure 3.11: Time series of the "wavenumber like" energy in a 3D NSE simulationwith
ν = 1e − 09, N = 303. (3.11a) Modes located in the first shell. (3.11b) Modes located inthe second shell. The black dashed lines correspond to the total contribution of all mode,i.e the sum of all the energy inside the considered shell. One observes, while consideringevery mode in a shell, an averaging effect killing the charge-discharge scenario due tosummation over uncorrelated modes.

An explanation to this phenomenon is that the n-D extension of LL can be understood
as a collection of weakly coupled shell models. Therefore, performing a summation over
all modes of wavenumber belonging to a shell ki ≤ ∥k′∥2 < λki leads to the summation of
non-correlated wavenumbers (i.e belonging to different shellmodels that are not coupled
together). As a result, the summed energy presents no charge-discharge scenario and
appears smoother (Fig.3.11) while the "wavenumber-like" energy varies similarly to the 1D
case (Fig. 3.3a).

These wavenumber-like variations raise hope for intermittency in n-D LL. Everything
comes down towisely choosing the definition of the structure functions. A naive approach
is to fix, in 3D, (ky, kz) and only navigate the grid in the x direction. By doing so, we extractintermittent exponents, with ξ2 slightly lower from the usual ξKG

2 = 2/3 andξint2 = 0.72.
Still, we observe deviations fromKG41 (Fig. 3.12, green squares) likely due to less averaging
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Figure 3.12: Exponents of structure functions in a 3D NSE simulation with ν = 1e− 09,
N = 303. Blue circles correspond to exponents extracted from the structure functionsof Eq. 1.5 (i.e averaging over every modes). Green squares correspond to the exponentextracted from structure functions along the x-direction i.e fixed (ky, kz) = (k0, k0) varying
kx.

effect. Nevertheless, only navigating the x-direction is not equivalent to a 1D shellmodel
as modes are not fully correlated. In addition, the effects of varying the frozen directions
(ky, kz) is unclear and therefore must be studied.

3.7.2 . Backward adaptative grid
As previously seen in the 1D case, LL with λ = ϕ exhibits both a forward and backward

cascade, leading to the accumulation of energy in the first shells (Fig.3.6).
The current framework allows us to adapt the grid size to reach smaller and smaller

scales during a simulation. Applying that samemethodology backward (i.e building bigger
and bigger scales) could reduce the energy stacking and therefore substitute the large
scale friction previously added.
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4 - Onsager’s conjecture and the existence of weak
solutions

4.1 . Introduction

In previous chapters, we investigated the presence of potential singularities through
the development of blowup solutions in 1D and 3D Log-lattices simulations. We showed
that the development of the blowup is associated to a collapse of a complex singularity
onto the real axis, leading to a strong increase of enstrophy. This increase takes form of
enstrophy bursts that manisfest in dissipation usually leading to intermittency. Intermit-
tency or deviation from KG41 can be explained using multi-fractal theory (3). This theory
allows to measure the probability of apparition of a singularity with a given exponent,
characterizing how the velocity gradients diverge in the inviscid limit, possibly under the
shape of a dissipative singular solution.

Dissipative weak solutions are special in the sense that they support a new types of
conversion of mechanical energy into heat, piloted by their singular behavior. In the pres-
ence of a force, such solution may be able to absorb completely the energy input by the
work of the force, allowing establishment of a stationary inviscid forced state. We can then
reach a situation where it is possible to sustain an arbitrarily large amount of mechani-
cal energy in the fluids, for any given force, without any viscosity. The non-dimensional
parameter characterizing such process is the efficiency E = E/Ei, where E is the stored
kinetic energy per unit mass and Ei = f0ℓf is a measure of the mechanical injected en-
ergy input per unitmass due to an applied force of amplitude f0 over a characteristic scale
ℓf . The existence of weak dissipative solutions is of great interest as it connects poten-tial singularities of the underlying equations of fluid motions to the observed anomalous
dissipation 1 through the Onsager conjecture (2).

In this chapter, we show that that the efficiency can be used to explore and unfold the
phase space of possible inviscid singular solutions. This idea is difficult to implement using
direct numerical simulations because the development of irregular solutions generates
finer and finer structures, that can only be resolved by mesh refinement procedures, at
an increasing numerical cost. We thus explore this idea on a simple but tractable system,
madeof fluids projectedon Fourier log-lattices (LL)with effective resolutions up to 4026203
Fourier modes.

4.2 . Definitions

We consider the forced incompressible Navier-Stokes equations given by:
∂tu+ (u ·∇)u = −∇p+ ν∆u+ f , (4.1)

∇ · u = 0, (4.2)
where u is the velocity, p is the pressure, f is a force and ν is the viscosity. We have set
the constant density equal to 1.

1Please, refer to the general introduction for a reminder on anomalous dissipation.
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We define the spatial average of any function ψ(x, t) as ⟨ψ⟩ = (
∫
dx)−1

∫
dxψ and define

the efficiency E by:
ϵI = ⟨|f · u|⟩, (4.3)
E =

⟨u · u⟩
Lf ⟨f · f⟩1/2 , (4.4)

whereLf is a characteristic scale of forcing, defined e.g. as (2π/Lf )
2 = (1/3)⟨∇f ·∇f⟩/⟨f ·

f⟩.
In the sequel, we denote: E = ⟨u ·u⟩ and f0 = ⟨f · f⟩1/2. Based on Isett theorem, we call
non dissipative a solution of Eq. 4.1 such that E(k) ∝ k−1−2h with h > 1/3. Considering
that the solutionsmay extend from a cut-off 1/Lf to infinity in case of blow-up, we furtherrestrict the physically admissible solutions to h > 0, so that the total energy stored in the
fluids 2 ∫∞

2π/Lf
EK(k)dk remains finite.

It follows, using an energy spectrum E(k) = CKϵ
2/3
I k−1−2h, that the total kinetic en-

ergy stored is given by:
E(h, ϵI) = 2

∫ ∞

2π/Lf

EK(k)dk = Ckϵ
2/3
I h−1(

Lf

2π
)2h, (4.5)

where CK is the Kolmogorov constant.
By Cauchy-Schwartz inequality, we obtain an exact bound linking ϵI and E :

ϵILf

E3/2
≤ 1

E , (4.6)
the equality being achieved when f is parallel to u.

Finally, we can derive another bound involving ϵI for a solution of INSE which energyis bounded by the ideal Kolmogorov case E(1/3, ϵI) (Eq.4.5). Injecting this energy in 4.6,we obtain:
ϵILf

E3/2
≥ 2π

(3CK)3/2
=

1

E∗ , (4.7)
where E∗ is a critical efficiency below which one necessarily has h > 1/3.

4.3 . Reversible Navier-Stokes

4.3.1 . Motivations
To reach solutions at finite efficiency, onemust add a non-zero forcing. If the viscosity

is further held constant, interplay between forcing and viscous dissipation in the presence
of non-linearities results in fluctuations of the total energy. To remain in a framework
of solutions at constant energy E, like in the inviscid case, we allow a time-dependent
viscosity νr(t), and monitor it at each time-step so as to keep energy constant in time (20;
37). We call this viscosity the reversible viscosity νr(t) as it is the viscosity that is necessaryto ensure the time reversibility.
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4.3.2 . Time reversibility and reversible viscosity
We recall that the Navier-Stokes equations describing a fluid of viscosity ν, subject to

a force f , are given by:
∂tu+ (u ·∇)u = −∇p+ ν∆u+ f , (4.8)

where u is the velocity, p is the pressure, and we have set the constant density equal
to 1. Due to the presence of the dissipative term ν∆u, the dynamics induced are clearly
irreversible as (4.8) is not left-invariant under the time-reversal symmetry:

T : t→ −t;u → −u; p→ p. (4.9)
This is true even in the presence of a force that is symmetric by time-reversal (which will
be the case of every forcing used in this thesis).

Following the work of Shukla et al. (20), we introduce a reversible version of the NSE
by defining a (time dependent) reversible viscosity νr, which conserves the total kinetic
energy E = 1

2

∫
D ∥u∥22 dx over our domain D. The expression of νr can be derived from

an energy budget under the constraint ∂tE = 0:
νr[u] =

∫
D f · u dx∫

D ∥∇× u∥22 dx
. (4.10)

It is also possible to define another framework, where the viscosity is still time-dependent,
but adjusted to conserve the total enstrophy ∂tΩ = 0, where Ω =

∫
D ∥∇ × u∥22 dx (1).

The corresponding expression of the viscosity is obtained by taking the Fourier transform
of (4.8), multiplying by k2 ¯̂ui and summing over k, leading to :

νr[u] =

∑
k ∥k∥22 f̂k · û−k + Λ(û)∑

k ∥k∥42 ∥ûk∥22
, (4.11)

where Λ(û) comes from the non-linear term of the Navier-Stokes equations. While it is
yet unclear whether viscid or inviscid Navier-Stokes equations with regular initial condi-
tions and finite energy are subject to a finite-time blow-up, it is known that controlling the
enstrophy is sufficient to prevent a blow-up (38). Therefore, the enstrophy conserving
scheme is associated with more regular solutions than the energy conserving scheme.
In particular, it rules out a spontaneous breaking of the time-reversal symmetry medi-
ated by dissipating singularities as conjectured by Onsager (2). In the chapter, we focus
on the energy conserved scheme. Still, it is interesting to explore the properties of both
conservation schemes and such study will be performed in the following chapters.

Replacing the usual viscosity ν with its “reversible” counterpart νr in (4.8), we obtain
the reversible Navier-Stokes (RNS) equations:

∂tu+ (u ·∇)u = −∇p+ νr∆u+ f . (4.12)
Taking into account that f is invariant by the time-reversal symmetry, it is then easy to
check that the whole equation is also invariant by the symmetry (4.9), hence its name.

Since the viscosity is no longer a constant, the Reynolds numberRe = LU
ν is no longer

a valid control parameter. Therefore, in the fixed energy case we introduce the dimen-
sionless control parameterRr

2 (20) given by:
Rr =

f0
E0kf

, (4.13)
2This definition of the control parameter is equivalent to 1/E .
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where f0 is the forcing amplitude, kf = 2π
Lf

the wavenumber at which the forcing occurs
and E0 the constant, total kinetic energy.

4.4 . 1D Burger’s equation and stochastic regularization

Disclaimer: In this chapter, the definiton of Rr = 1/E differs from the rest of thethesis by a multiplicative factor due to a new computation method.
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Figure 4.1: (4.1a) Time series of the slopes in presence of regularization. (4.1b) Energyspectra for the inviscid 1D Burgers equation. (4.1c) Time series of the total kinetic energyhighlighting the presence of dissipation. N is the number of modes, all figures shares thesame legend as Fig. 4.1a).

Before tackling the 3D case, we start by investigating the 1D inviscid Burgers equa-
tion. It is known that solutions of the inviscid Burgers equation blows-up in finite time tbwith pre-blowup exponent, on LL, αt<tb = −5/3 (22; 24). In order to pass the blowup tb,one usually adds a small viscous regularization, reaching a post blowup state with same
exponent αt>tb = −5/3.

Here, we propose to use a stochastic regularization to overcome the blowup state. To
do so, we first perform a blowup simulation using an adaptative grid, with the desired pa-
rameters. Time steps at various resolutions are saved and stored. They are then used as
an initial conditions to launch regularized simulations at fixed resolutionN corresponding
to the instantaneous resolution of the blowup simulation at time t.

In addition, we add a multiplicative noise, in the last shell, to pass the blowup time tbwithout thermalizing.
Following (39), we define the last shell such that it reads, in the regularized framework:

ui,N−1(t+ dt) = ui,N−1(t)η(t),

∀t η(t) ∼ U [−1, 1],

where i accounts for the direction (x, y or z in 3D) andN −1 is the last shell. Meaning that
before computing the new time-step, the last shell is first modified by the noise.
The regularization vanishes by takingN → ∞ as the energy in the last mode reaches 0 in
the infinite grid limit.
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Figure 4.1b presents the averaged energy spectra for different resolutions N , high-
lighting departure from the pre-blowup state (black line). The slopes of the regularized
spectra slowly converge (Fig. 4.1a) to α > −5/3 (i.e h < 1/3) being dissipative solutions.
We recall that the viscosity is still set to ν = 0 yet the regularized solutions all present
dissipation as highlighted in Figure 4.1c being the sign of irregular solutions.

By applying a stochastic regularization in the last shell of a 1D inviscid Burgers system,
we are able to pass the blowup time tb while converging to dissipative solutions as the
number of modes N increases. These preliminary results encourage us to extend the
study to the 3D Log-lattices Navier-Stokes equations.

4.5 . Weak solutions on 3D Log-lattices

4.5.1 . Background
Taking advantage of the huge available resolutions, Campolina &Mailybaev were able

to show that inviscid unforced fluids on LL are characterized by a chaotic blow-up in finite
time (13). The blow-up proceeds in a self-similar manner, with a power law energy spec-
trumE(k, t) ∼ k−1−2h widening towards smaller and smaller scale as time proceeds, and
reaching k = ∞ in a finite time. During the blow-up, the energy is conserved at all time,
so that the corresponding singular solution at t = tb is non-dissipative. This observationis in agreement with the observed value of h, which is very close to h = 2/3 (13; 24). This
value is larger than the minimal value h∗ = 1/3 excluding any dissipative weak solutions
by Isett theorem (40). On the other hand, it guarantees that the solution remains on finite
energy at the blow-up time, providing the spectrum does not propagate to k = 0. Given
that it is obtained at zero-forcing, it corresponds to a non-dissipative solution that has
an infinite efficiency. Let us now show that there exists other blowing-up solutions, with
finite efficiency.

4.5.2 . Pre-blowup
We have performed numerical simulations of Eq. 4.1 on LL with given forcing (f0, Lf )inside a triply-periodic cubic domainD of side 2π using adaptative grid, for different values

of the efficiency and starting with energy spanning the first fewmodes in order to ensure
the convolutions. For RNS simulations, a forcing term is added (with respect to Euler),
details are given in Section 1.3. Depending on the value of E , we obtain typically two types
of solutions: finite time blow-up solutions for E > E∗, and stationary viscous solution for
E ≤ E∗, with E∗ ≈ 0.14. Exemple of spectra of the two type of solution is provided in the
small left panel of Fig. 4.2a, black triangles corresponds to a developping blowup while
brown triangle (inset) is a stable viscous solution. Blow-up solutions are characterized by
a power-law spectrum E(k, t) ∼ k−1−2h, that gradually widens towards k = ∞ as ν(t)
gradually decreases towards 0. The asymptotic solution at the finite blow-up time tb thencorresponds to a singular solution to Euler equation. The spectral index of the blow-up
depends on the efficiency, as shown in Figure 4.2b. It varies from 2/3 to 1/3 as E goes
from ∞ to E∗, so that all the solutions are non-dissipative. Stationary viscous solutions
are characterized by an energy spectrum that is a power-law with index h ∼ 1/3 at small
k, with exponential cut-off at large wavenumber. During the simulation, the viscosity first
decreases steadily, like in the blow-up stage, making the spectrum extends towards large
wavenumber. After a certain time, the viscosity suddenly stops decreasing, and goes up
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Figure 4.2: Phase space of the reversible fluids on log-lattices. In each figures colors andmarkers are associated to different grid size N . blue dots, green squares, red crosses,purple pentagons, orange stars, brown triangles, grey diamonds and pink are respec-tively associated to N = 83, 123, 143, 163, 183, 203, 223 and 243 while black symbols cor-respond to blowup solutions with adaptative N . (4.2a) The central panel shows the adi-mensionnalized reversible viscosity as a function of the inverse of the efficiency 1/E . Theside panels and insert show the spectra of the corresponding solutions. The verticaldashed lines located at 1/E∗ separates the warm and hydrodynamic phase. Solutionsin the hydrodynamic phase (full symbols, and inset) collapse on a mastercurve of equa-tion ν∗ ∼ (1/E − 1/E∗)3 (black dashed lines) regardless of the resolution. Solution in thewarm phase (open symbol) depend on the resolution: at finite resolution, they stabilizeto a thermalized state, characterized by a finite viscosity and a spectrum with two slopes(left panel empty brown triangles). The slope at large scale is reported on Fig. 4.2b withfilled symbol. At infinite resolution, the solutions first blow-up in a self-similar manner(left panel, empty black downward triangle), with exponent reported on Fig. 4.2b (emptyblack circles). After blow-up and stochastic regularization, the solution converges towardsa power-law spectrum (left panel, empty grey diamonds), with another exponent. (4.2b)Blowup exponents as a function of 1/E . The infinite efficiency case corresponds to Euler.Empty black circles corresponds to exponents during blowup while empty black diamondare the exponents obtained through stochastic regularization.
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Figure 4.3: Colors and symbols: same as Figure 4.2. (4.3a) Adimensionnalized energydissipation. The horizontal dashed lines represent the energy dissipation in regularizedEuler for various N . (4.3b) Post-blow up decay of the energy at different resolution. Therate of the exponential decay computed fro this figure is reported by dashed line on Fig.4.3a. (4.3c) Probability distribution of the viscosity for E ≈ 0.12, at different resolution.

until it reaches a finite value ν∗, where the solution becomes statistically stationary. The fi-
nite value depends on E , and follows a curve of equation ν∗ ∼ (1/E−1−1/E∗)3. This curve
therefore corresponds to an attractor of the dynamics for E ≤ E∗. We checked that the
corresponding solutions corresponds to stationary solution of the Navier-Stokes equa-
tions at fixed viscosity, that are attractive in the following sense: if at some time during
a blow-up development for E > E∗ we freeze the viscosity, then the solution converges
towards the stationary viscous solution corresponding to this viscosity by gradually de-
creasing its efficiency (see Fig. 4.4b in Supplementary). The stationary viscous solutions
are not irregular enough to produce anomalous dissipation in the limit ν → 0 as their
exponent h is slightly larger than 1/3. Indeed, when we plot the energy dissipation rate
ϵ as a function of viscosity (Fig. 4.3a), we observe a steady decrease as ν∗ → 0, meaning
no anomalous dissipation. The data can be fitted with a power law. with a very small
exponent ϵ ∼ ν0.05∗ , meaning that the dissipation eventually vanishes as ν∗ → 0.

The adaptative resolution allows for the development of blowups solutions until a
blowup time tb. To pass this blowup time and access a post blowup state, it is necessary
to regularize the solution. As mentioned before, the blowup state is associated to the
increasing grid size. Therefore, we propose to study the post blowup state by freezing
the gridsize N .

4.5.3 . Post-blowup via thermalization
We now concentrate on the solutions for E ≥ E∗, that converge to a non-dissipative

inviscid solution as t→ t−b . We now show that the corresponding solutions are unstable,
and transform into other solutions as we go past the blow-up. There are a number of
ways to extend the solution past the blow-up time. A first method is to freeze the resolu-
tion at a fixed number N (or equivalently freezing the maximum wavenumber kmax) justbefore blow-up, and let the solution evolves. What we observe is that the viscosity starts
evolving, and saturates at a given value depending on both the resolution and efficiency
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νth(N, E (see Figure 4.2a). The energy coming from the small wavenumbers then accumu-
lates at the largest wavenumbers kmax, producing a reflected wave of thermalization that
is halted at a finite wavenumber kth, depending on νth. Below kth, the spectrum becomes
more shallow, reaching a new exponent hpp (Fig. 4.2a, brown curve in the left panel). Thisbehavior is the counterpart on LL of what has been observed on direct numerical simu-
lations of Navier-Stokes equations (41) at much smaller resolutions. This dynamic is also
observed for Leith model of turbulence (42), where it corresponds to a switch between
an unstable fixed point to a stable one. In our case, the post-blow up exponent hpp issmaller than the pre-blow up exponent (Fig. 4.2b), and actually becomes less than 1/3,
corresponding to a dissipative solution. For N = 123 it goes down from 1/3 at E = E∗ to
0 at E → ∞. For a larger value of the resolution, the curve hpp(E shifts upwards and gets
closer to hpp = 1/3, the Kolmogorov dissipative solution. Due to computational burden,
the infinite resolution limit of hpp is however difficult to reach using this type of regular-
ization. So we decided to switch towards a stochastic regularization.

4.5.4 . Post-blowup via stochastic regularization

The stochastic regularization has already been used in shell models of turbulence (39).
The protocol consists in freezing the resolution at a givenN , and add amultiplicative noise
at the largest wavenumber. Details are provided in Section 4.4.

The system then undergoes a transient dynamic, after which a new statistically sta-
tionary state is obtained, with a new value of the mean viscosity < νpp > and local slope.
hpp. The value of N is then progressively increased, until reaching convergency of the
results. For the range of efficiency we considered, this was achieved for N = 223. In
the Euler case, ν is fixed to zero. The converged spectrum is shown in Fig. 4.2a (grey dia-
monds, left panel). It corresponds to a spectrum with hpp ∼ 0.25, lower than the pre-blow
up exponent. Another striking feature of the dynamics is that the energy is not conserved
anymore, as illustrated in Fig 4.3b: it decays linearly after regularization, corresponding to
a constant energy dissipation rate that increases with resolution. The corresponding val-
ues are added on Fig. 4.3a. As resolution increases, it tends towards the value observed
for viscous solutions, showing that the dynamics have become dissipative. This feature
is also observed for other values of efficiency, when using the RNS equations. Due to the
constraint of energy conservation, viscosity has to take negative values to compensate
for the existence of a dissipative mechanism. This can be seen on Fig. 4.3a, showing the
probability distribution for the viscosity in the case E ≈ 0.12, for various resolutions. As
the latter increases from N = 83 to N = 243 3, the proportion of negative values shifts
from 40% to 80% (see inset of Fig. 4.3c), making the average value of the positive viscosi-
ties two orders of magnitudes less than the average value of negative ones. This property
holds true whenever E > E∗, as shown in Figure 4.2a. Implying that the mean value of
the viscosity after the blow-up always stays negative. The dissipative nature of the solu-
tion can also be investigated by computing the post blow-up spectral exponent, shown
in Fig. 4.2b. It indeed satisfies hpp ≤ 1/3. For large efficiency, the value of hpp saturatesaround hpp ∼ 0.25, and converges towards hpp = 1/3 as E → E∗. This reinforce the
interpretation of Kolmogorov solution as being the attracting fixed point at E = E∗.

3We recall that the power exponent is associated to the dimension D used in the consideredsimulation.
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4.5.5 . Discussion
We have used fluids on log-lattice and a reversible framework to investigate the in-

fluence of the efficiency on the behaviors of solutions. We observe a phase transition
at a given efficiency, separating regular, viscous solution, from singular inviscid solutions.
The singular solutions experienced self-similar blow-upwith exponent characterizing non-
dissipative solutions. We use stochastic regularization to go pass the blow-up, and show
that the resulting solutions converge to power-law solutions, with exponents character-
izing dissipative solutions. Globally, the range of different exponents we find are compa-
rable to exponents found in ordinary fluids, thereby providing a dynamical scenario for
their construction. The occurence of possible dissipative singular solutions is intimately
linked to the breaking of the symmetries of the equations of motions. In general, Eu-
ler equations are invariant both by time translation and by time-reversal. By Noether
theorem, the first symmetry leads to energy conservation. Moreover, time homogeneity
means that no special time can be singled out by the dynamics, so that time-reversal can
be performed around any time without adding any new information. In the presence of
a finite-time blow-up, the time translation is broken, offering the possibility for energy
to vary. Moreover, the time-reversal applied at the blow-up time allows us to connect
physical solutions before and after blow-up. This explains the success of our procedure,
based on reversible Navier-Stokes equation, to unfold the parameter space of singular Eu-
ler equations. By construction, the reversible viscosity we introduced changes sign under
time-reversal. Therefore, to each non-dissipative singular solution of RNS with positive
viscosity corresponds a dissipative singular solution of RNS, with negative viscosity. We
have shown how to capture these solutions using a stochastic regularization, that allows
to go pass the blow-up. We conjecture that these solutions converge to dissipative sin-
gular solutions of Euler equation. All of results have been obtained for fluids projected
on log-lattices. It would be very interesting to test whether they still hold on fluids on
regular Fourier lattices. Indeed, current construction of dissipative singular solutions is
usually done via convex integration methods (43), which are delicate to implement. If the
conjecture holds true also for regular lattices, it means that the reversible protocol could
provide a new way of constructing those solutions through a controlled limit procedure.
As such, it would probably pave the way to new exact results regarding the existence and
properties of dissipative singular solutions of Euler.
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4.6 . Supplementary: stability of solutions
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Figure 4.4: (4.4a) Time series of the reversible viscosities νr(t) for different efficiency high-lighting two scenarios, blowup at high effiency and regular solutions for lower values.(4.4b)Stability of solutions in the two phases. Two trajectories of solutions as a functionof time (colorcoded) are presented highligthing the instability (resp. stability) of the warm(resp. hydrodynamic) phase.

Both Euler and RNS equations present blowup solutions in the range E > E∗. In order
to go beyond the blowup time tb, one might be tempted to simply fix the resolution N .
It has already been shown that, under resolved solutions exhibit thermalization at small
scales (44). By thermalizing, the solutions reach a stable "thermalized" branch that corre-
sponds to truncation effects and hence strongly depends on N (Fig. 4.2a empty symbols
in the warm phase).

Note that when reached, this thermalized branch is stable by switching between NSE
and RNSE as a consequence of the Gallavotti conjecture (37) that will be studied later in
this thesis. However, the instanteneous RNS solutions (i.e non thermalized) are unstable
under such switch, see Fig. 4.4b. The solution then converges to the stable branch (1/E −
1/E∗)3.

In addition, performing RNS simulations with adaptative resolution in the hydrody-
namic phase leads to the same solutions as the one obtained with fixed N . Fig. 4.4a
presents the time series of the reversible viscosities highlitighting blowups in the unsta-
ble phase (blue and green lines) as νr ∝ Ω−1. The orange curve shows that there are
no blowups in the hydrodynamic phase as νr achieves a steady state. Note that the am-
plitude of the oscillations are correlated to the position in the phase transition that the
system exhibits (20; 37). Such transition will be studied later in this thesis.
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5 - Singularity induced instability

As highlighted in previous chapters, the existence of complex singularities have many
impacts on the behavior of the flow (blowups, intermittency).

In this chapter, we study the existence and properties of a singularity driven instability.
We show that the LLRNS system exhibits two stable attractors, located at Rr ≫ Rr

∗ and
Rr → 0. The first one is the standard "Navier-Stokes" spectrum, exhibiting both an inertial
domain k−5/3 and a dissipative region. The second one is associated to the singularity
getting closer to the real axis in the complex plane. In this range (Rr < Rr

∗) as shown in
the previous chapter, the system converges for fixed grids, to fully thermalized spectrum
" asRr → 0 associated to the collapse of a complex singularity on the real axis.

Systems, at fixed grid size, are free to oscillate between the two attractors, with exit
times ta→b depending onRr. Figure 5.1 presents the KDEplots of the enstrophy for variousvalues ofRr highlighting stronger oscillations pointing towards variation of the exit times
as one gets further away from the attractors. Note that the enstrophy is a good indicator
as the development of a singularity is associated to an enstrophy blow-up.
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Figure 5.1: Attracting sets. (5.1a) KDE plot at low Rr, Rr ≈ 1.11, 1.45. (5.1b) KDE plot inbetween the two attractors, Rr ≈ 2.34, 2.45, showing a much wider range of values forthe enstrophy. Simulations are performed using N = 203.

As in Chapter 2, the position in the complex plane, of the complex singularity is ex-
tracted using the analiticity strip method. The blowup state δ = 0 is referred to as state 1,
while δ > 0 is referred as state 2.

Fig. 5.2 shows the time series of δ for simulations at variousRr. As highlighted in theprevious chapter, there exists a threshold Rr
∗ below which the system, with adaptative

grid, blows-up. Due to the fixed size of the grid, the proper blowup is prevented and leads
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Figure 5.2: Time series of δ. Simulations are performed for λ = ϕ, N = 203.(5.2a) δoscillates between state 1 (δ = 0) and 2 (δ > 0). (5.2b) For biggerRr (see Eq. 4.13) the systemremains permanently in state 2 as it is repelled by a strong enough viscosity, preventingthe collapse on the real axis.

to thermalization (26), considered as state 1. By increasing Rr, one reaches the stable
phase of Fig. 4.2a, where δ still oscillates but never reaches 0. Note also that the singularity
is more strongly repelled as Rr increases. Indeed Fig. 5.2 shows increasing values for δ
with a difference of several order of magnitude betweenRr = 2.34 andRr = 3.9.
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Figure 5.3: PDF of characteristic times of the transition between state 1 (warm) andstate 2 (hydrodynamical). (5.3a) N = 163 (5.3b) N = 203. The extracted PDFs are accu-rately described by a powerlaw of exponents α = −1.3 represented by the black dashedlines. The empty (resp. full) symbols are associated to the transition from hydrodynami-cal (resp. warm) to warm (resp. hydrodynamical).
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It is then possible to define transition times ta→b as a kind of exit time from state a.
Fig. 5.3 shows the PDFs of t1→2 (full symbols) and t2→1 (empty symbols). PDFs are quite
well 1 described by a powerlaw of exponentα ∼ −1.3. The PDFs also highlight a previously
mentioned behavior. Indeed, at Rr < Rr

∗, the system leaves the warm state for short
periods of time implying a PDF located at low values of τ . The inverse observation is also
made forRr > Rr

∗. Note that in those case the low values of τ can be over-represented
as the system struggles to take distance from the attractor.
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Figure 5.4: Statistics for N = 203. (5.4a) Ratio of the transition times between state1 (warm) and state 2 (hydrodynamical) as a function of Rr. (5.4b) Mean value of δ as afunction ofRr.

Such effect can also be seen in Fig. 5.4a that shows the evolution of the ratio τ2→1/τ1→2as a function ofRr. Note that forRr < 2 the system never departs (atleast in our simula-
tions) from the warm state. Fig. 5.4b presents the value of δ as a function ofRr confirming
the presence of the two phases introduced in the previous chapter.

The existence of two attractors and the possibility to oscillate back and forth between
them points toward a possible phase transition in the RNS system. This intuition is fur-
ther supported by the shape of log ⟨δ(Rr)⟩ that recalls those of phase transitions. It is
therefore interesting to analyze the behavior of the RNS equations in the framework of
phase transition as its reversible nature allows for the use of the traditional statistical
mechanics.

1Obtaining extremely accurate PDFs is complicated due to the bursty behavior of δ (see Fig. 5.2).
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6 - Phase transition inReversibleNavier-Stokes equa-
tions

We have seen that there exists a critical efficiency E∗ beyond which the unregularized
system blows up. Below this threshold the system reaches a steady state of finite enstro-
phy. We confirm the intuition of the previous chapter showing that this results can be
understood within the framework of phase transitions upon defining the efficiency E as
a control parameter or equivalently the "Reversible Reynolds number"Rr.All the results presented in this chapter are obtained in the conserved energy case, i.e.
for G = E.

We recall that RNSE stands for the Reversible Navier-Stokes Equations, defined in Sec-
tion 4.3.

6.1 . Numerical details to study the RNS transition

Initial conditions and form of the forcing term have already been presented in Chap-
ter 1. This sections presents the supplementary details of the simulations used to perform
the analysis of chapter 6 & 7.

The minimum wavenumber of the grid is set to kmin = 2π. The maximum grid size
N = 203 is chosen such the hydrodynamic branch, introduced later on, is well-enough
resolved. We set a maximum time-step dt = 0.005, in order to avoid under-resolving
some very stiff moments when the viscositiy tends to zero. As a result, whenever the
viscosity is not very small, the time-step is a constant equal to dt. The reversible viscosity
νr is obtained by solving the equation G(νr, t + dt) = G0 such that G is conserved with
floating-point accuracy: | G(t+dt)−G0 | < 10−14 G0. It is then taken into account followingthe procedure of Section 1.2.

The range of parameters studied is chosen such that it is possible to observe the two
regimes previously observed in DNS by Shukla et al.
All the simulations ran on one core of a consumer-grade computer, for a few (< 4) CPU
days at most.

6.2 . Dynamics

Fig. 6.1a illustrates the time-evolution of the normalized enstrophy ∼
Ω (properly defined

in Appendix. 6.8) for many modes N = 203. As in (20), different regimes are observed.
At low values of the control parameter Rr, the solutions converges to a constant mean
value of ∼

Ω with little to no fluctuations. This regime is associated with a lower branch
of mean viscosity ⟨νr⟩ (Fig. 6.1b) that develops a power-law ⟨νr⟩ ∝ Rr

α, where α ≈ 2.
This result was already obtained in DNS (20), and can be justified using a Kubo fluctuation
dissipation theorem, that also applies on log-lattices. As the size of the grid increases, it
becomes harder to reach the limit Rr → 0 as the low values of viscosity require smaller
time-steps. This limit is associated to a thermalized steady state, as it is characterized by a
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Figure 6.1: Behaviors of order parameters using λ = ϕ. (6.1a) Time series of the nor-
malized enstrophy ∼

Ω for different values of the control parameterRr, withN = 83. (6.1b)Time averaged reversible viscosity as a function of the control parameterRr. The dashedline represents a linear fitting in the warm regime, exhibiting a power-law behavior. Thedimensionless time is τ = ℓf/
√
E0, where ℓf is the scale at which the forcing occurs.

vanishing energy injection and therefore, in order to conserve the energy, to a vanishing
viscosity.

As Rr increases, the system fluctuations continually increase up to a certain value of
Rr

∗ at which fluctuations reach their maximum. Beyond this critical value, fluctuations
slowly decrease to zero, towards a lower branch of enstrophy (Fig. 6.1a). This branch
corresponds to a branch of large viscosity (Fig. 6.1b). Before vanishing completely, the
enstrophy fluctuations appear as “bursts” of enstrophy.

Note that defined in such a way, Rr
∗ depends on the resolution N. Indeed, both the

value ofRr at which the system leaves the collapsed branch (Fig. 6.1b) and the location of
maximum fluctuations (Fig. 6.2d) clearly depends on the resolution. Also note that both
definition of Rr

∗ (from fluctuations and the asymptote in Fig. 6.1b) and are equivalent in
the limit N → ∞ as the thermalized branch can never be reached.

6.3 . Phase transitions

In Shukla et al. (20), the various regimes of the enstrophy dynamics are associated
with the existence of a second order phase transition, described by a Landau mean field
theory. Specifically, the time-averaged normalized enstrophy

〈∼
Ω

〉
exhibits a power-law

〈∼
Ω

〉
=

(
1− Rr

Rr
∗

)β , with β ≃ 0.5, while the normalized standard deviation of the
renormalized enstrophy σ∼

Ω
presents a divergence around Rr

∗, following a power-law
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σ∼
Ω

=

(
1− Rr

Rr
∗

)−γ with γ ≃ 1. As it is possible to observe different values of γ on
each side of the transition, we define γl and γr where l and r stand for left and right, re-spectively. In our case, we also observe at N = 203 behaviors for the enstrophy that are
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Figure 6.2: Second order transition for λ = ϕ. Evolution of (6.2a) the renormalizedmeanenstrophy and (6.2b) ∼µ as a function ofRr. Variance of (6.2c) the renormalized enstrophyand of (6.2d) ∼µ as a function ofRr. The dashed lines associated with the equations corre-sponds to a Landau mean field formulation of the phase transition.
reminiscent of a second-order phase transition, albeit with exponents that do not corre-
spond to the mean field description (Fig. 6.2a & 6.2c and Tab. 6.1). Indeed, we observe a
power-law with exponent β ≃ 1, which is larger than its mean-field version (Fig. 6.2a). In
the case of the variance, we observe a divergence at Rr

∗ with a critical exponent corre-
sponding to the mean field value γl = 1, like in (20).
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Table 6.1: Critical exponents as a function of h. For λ = 2, values of γr were not ex-tracted as the variance does not vanish, but converges to a constant on a domain extend-ing quite far away fromRr
∗.

λ N h βΩ γr,Ω γl,Ω βµ γr,µ γl,µ

83 7 · 10−3 - - - - - -
2 123 4 · 10−4 ≃ 0.8 - 1.6 ≃ 0.4 - 1.6

163 3 · 10−5 ≃ 1 - 1.0 ≃ 0.5 - 1.0
83 3 · 10−2 - 1.0 2.2 - 1.0 1.6

ϕ 123 5 · 10−3 ≃ 0.5 1.0 1.8 ≃ 0.27 1.0 1.4
203 1 · 10−4 ≃ 1 1.0 1.0 ≃ 0.5 1.0 1.0

Shukla DNS (20) 1283 2.4 · 10−2 ≃ 0.5 ≃ 1 ≃ 1 - - -

Landau Mean field - - 0.5 1 1 - - -

Our results show that, while the nature of the transition is unaffected by the details
of the interactions between modes, the value of the critical exponents depends on those
details. One should see Tab. 6.1 for different values of λ, and recall that on log-lattices,
different values of λ correspond to different numbers of local interactions.

In that respect, it is interesting to see whether our result fits in the cruder description
of the interactions provided by the Leith model. In this model, the mean-field description
is found by taking the square root of the enstrophy as an order parameter. In our case,
upon defining ∼

µ =
∼
Ω
1/2, we indeed observe a mean field behavior for 〈∼µ〉 in the limit of

large grids kmax → ∞ (e.g. Fig. 6.2b & 6.2d). Its critical order parameters depend on the
lattice spacing λ as Rr

∗ ≈ 3.75 for λ = 2 and Rr
∗ ≈ 2.75 for λ = ϕ. The computed expo-

nents associated with this model are presented in Tab. 6.1 (left columns). Note however
that the mean field description is not entirely valid in our model, as we do not observe
the peculiar link between pre- and post-transitions prefactors: A+ = 2A−. Still, it seems
that as the number of interactions grows (i.e. as λ decreases), we are getting closer and
closer to this description.

Finally, we stress that as soon asRr > Rr
∗, both the variance and the mean viscosity

(Fig. 6.1b) become independent of the grid size. Therefore, only β and γl depend on kmax.

6.4 . Characterizing the various phases with spectra

As shown in (20), the nature of the different phases before and after the transition
can be elucidated by looking at energy spectra. Examples are provided in Fig. 6.3. Be-
fore the transition, we observe a spectrum that is characterized by two slopes: one at low
wavenumbers, with an exponent close to −5/3 and one at large wavenumbers, with an
exponent closer to−1. As already discussed in (21; 26), the−1 slope corresponds to ther-
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Figure 6.3: Time averaged energy spectra vs Rr, λ = ϕ, N = 203 Modes. (6.3a) Warmregime, with coexistence of two phases. The dotted line represents the slope of the twocoexisting regime, a pseudo Kolmogorov regime at large scales and a thermalized regimeat small scales exhibiting a -1 slope. The inset shows a zoom in the crossover area, high-lighting the difference in slopes with respect toRr associated to the contamination of thebigger scales by the thermalization. (6.3b) Laminar state, with dominant dissipative range,and no thermalization. The inset shows the energy transfer Πk.

malization on log-lattices, characterized by equipartition of energy among themodes. The
−5/3 regime corresponds to a classical spectrum due to a positive flux of energy, as evi-
denced by the insert of Fig. 6.3b. We call this phase with a coexistence of two cascades the
“warm cascade” regime. AsRr decreases, the thermalized phase extends further towards
lower k, and the pseudo-Kolmogorov phase disappears. Conversely, asRr increases, thethermalized phase progressively disappears, to leave room for an increasingly laminar
state as the reversible viscosity increases. Such state is shown in Fig. 6.3b.

6.5 . Structure functions

The nature of the various phases can be further characterized using higher orders
of the velocity field, via the structure functions (Eq. 1.5). In classical shell models, such
structure functions are subject to intermittency, as they exhibit scaling laws Fq(k) ∼ k−ξq

that deviate from the monofractal behavior ξq = qξ1 (17; 45; 33; 5).
In our case, it is difficult to measure the exponents of the structure functions for all

phases: at large values of Rr the viscosity rises quickly, and the inertial range becomes
very small. At small values of Rr, the scaling laws are polluted by the coexistence of the
pseudo-Kolmogorov regime and the thermalized state, as illustrated in Fig. 6.3a. This in-
validates the classical method of computing exponents via extended self similarity (46) as
the structure functions can present multiple slopes at different scales. We extracted ex-
ponents via the following method: we first determine the inertial range by computing the
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time-averaged energy transferΠk through Eq. 1.4. Then, wedefine the inertial range as therange of wavenumberwhere it is flat. If this range is large enough (at least a decade), we fit
the scaling exponents of the structure functions on this range only. This provides us with
an unambiguous determination of ξq. The extracted exponents are shown in Fig. 6.4a, forvalue ofRr in various regimes, as illustrated in Fig. 6.4b.
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Figure 6.4: Extracted exponents of the structure functions and localization in the
transition for λ = ϕ, N = 203 Modes. Both figures share the same legend. (6.4a) Expo-nents of the structure function of order q for various RNS simulations and comparison toa NS simulation. The inset presents the exponents, extracted at small scales, in the caseof a quasi-thermalized state. (6.4b) Color coded version of the νr vsRr diagram, showingwhere the various results are located with respect to the transition. The color of the datapoints are the same as those from panel (a).

In the limit of lowRr, the ξq exponents appear to be significantly lower than the usualexponents (Fig. 6.4, blue, green and orange curves). This phenomenon can be explained
by the fact that, in such a limit, the system tends to follow equipartition, associated with
an energy spectrum of E(k) ∼ k−1 (Fig. 6.3). This is indeed what we observe: as Rrgets closer to 0 a quasi-thermalized spectra appears, first at low scales, and then pro-
gresses towards the larger scales, impacting the slope even at larger scales (as illustrated
in Fig. 6.3a and the inset of Fig. 6.4a). There is no intermittency in this regime, with all
exponents aligning onto a perfect line. In the other limit, as Rr rises, the RNS exponentsincrease (Fig. 6.4). However, there is still no intermittency in this regime. To checkwhether
it was a feature of the RNS system, we computed the same exponents from a simulation
of NSE with fixed viscosity. The result is also shown in Fig. 6.4a (brown curve). We see
that the resulting exponents are very close to the exponents we observe in RNS, reaching
a quasi perfect agreement for both exponents and slope (Tab. 6.2) located around the
middle of the transition area.

This absence of intermittency is not surprising, as the used definition of the structure
function is very crude. Indeed, due to the 3 dimensionnality of the simulations, the shell
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Table 6.2: Slopes of the exponents of the structure functions for both RNS and NSequations. Values were extracted by fitting the structure functions in the inertial range,determined by the domain of constant energy transfer.

Equation RNS NS
Rr 1.11 1.78 2.23 2.78 2.9 -Slopes 0.36 0.38 0.4 0.4 0.42 0.42

averaging process implies summing non correlated quantities. By doing so, the strong
variations that usually give birth to intermittency in the SABRA (15) and GOY (36) vanish
along with the fingerprints of intermittency. Further investigations are on going to better
define the structure functions for more information refer to Chapter 3.

Note finally that in the log-lattices simulations, the usual Kolmogorov prediction ξq ∝
q/3 does not hold. Indeed, even for NS equation, the slope is roughly equal to 0.42
(Tab. 6.2).

6.6 . Universal and non universal laws

In previous sections, we described the dependence of ⟨ν⟩ τ/ℓ2f (or
〈∼
Ω

〉
) on Rr for

LLRNS models with constant energy. Surprisingly, such behavior extends to both LLRNS
models with conserved enstrophy and to irreversible LL-Navier-Stokes models (Fig. 6.5)
upon defining Rr =

f0
⟨E⟩kf . This property is interesting as it provides information on the

steady state of the system, and on whether the system is well resolved. Indeed, if the
system is under-resolved (i.e kmax ≪ kη , kη being the Kolmogorov scale), it is characterized
by a thermalization of the small scales, and corresponds to a state located before the
transition atRr < Rr

∗, on the linear part of Fig. 6.5a.
However, neither the LLRNSwith conserved enstrophy, nor the LL-Navier-Stokesmodel

display the divergence of fluctuations observed in the LLRNSwith fixed energy (see Fig. 6.2d).
Indeed, the LL-Navier-Stokes model exhibits bounded values of energy and enstrophy
fluctuations, as shown in Fig. 6.5c & 6.5d. The LLRNS model with constant enstrophy
cannot, by construction, display any enstrophy fluctuations. However, it does not present
diverging fluctuations for the energy either (see Fig. 6.5d). This shows that the phase
transition feature observed in the LLRNS model with constant energy is non-trivial. We
conjecture that these events are linked with the existence of events of quasi-blow-up in
the vorticity, that are naturally present in the inviscid blow-up (13; 24). These quasi-blow-
ups can propagate from low wavenumbers to large wavenumbers when the viscosity is
low, provoking events of large vorticity. In the case where the enstrophy is fixed, such
quasi blow-ups cannot exist anymore. In addition, these events are blocked by normal
constant viscosity, but not by hypoviscosity (24). A time-dependent viscosity like in the
RNS case could be viewed as a hypo-viscosity, leaving room for these events to develop, in
contrast with LL-Navier-Stokes. This therefore explains why we only observe these events
in the LLRNS with constant energy.
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6.7 . Comparison with a 1D diffusive model

6.7.1 . The Leith model
The Leith model is a toy model based on a non-linear diffusive equation, which in its

inviscid description (42), approximates the dynamics of the energy spectrum of a Euler
flow. it exhibits both an inertial domain with scaling k−5/3 and a quasi-thermalization at
small scales characterized by a Gibbsian equipartition with scaling E(k, t) ∝ k2. Such
model is described by a well-chosen second order diffusive operator:

∂tE(k, t) =− ∂kΠ(k, t)− νk2E(k, t)

Π(k, t) =− Ck11/2
√
E(k, t)∂k

(
E(k, t)

k2

)
.

Note that C is a dimensional constant that we set to 1 in this article.
This model has been adapted by (20) to accommodate reversible viscosities by chang-

ing ν into νr, given by Eq. 4.10. Its solutions confirm the existence of a mean field second
order phase transition, albeit for an order parameter equal to √

Ω. Moreover, it showed
that the resolution of the simulation could have a large impact on the nature of the tran-
sition, the latter becoming imperfect as the resolution is decreased. In this article, we
adopt the same convention for the dimensionless number representing the influence of
resolution, namely h = k0/kmax, where k0 and kmax are respectively the minimum and
maximum wave number in our simulation.

In our system, the thermalization is no longer associated with an energy spectrum
following E(k, t) ∝ k2 but instead to a k−1 behavior. It is then necessary to adapt the
previous definition of the energy transfer to our system:

Π(k, t) =− Ck5/2
√
E(k, t)∂k (kE(k, t)).

Solving ∂kΠ(k, t) = 0, we obtain an energy spectrum of the form E(k, t) ∝ (Ak−5/2 +

Bk−3/2)2/3, where (A,B) are two constants taking into account boundary conditions and
governing the scale at which the thermalization occurs.

6.7.2 . Influence of the resolution
While performing simulations on log-lattices, it is possible to reach high resolutions

(k > 1020) at a moderate numerical cost, making it possible to analyze the effect of the
resolution on the transition. Such a study could not be done using DNS.

A first influence of resolution can be obtained on the value of the mean reversible
viscosity, illustrated in Fig. 6.1b: as kmax (or equivalently the number of modes, N ) is in-
creased, the viscosity decreases for a same value of Rr, as there is more room for the
cascade to operate. Therefore, the time-averaged viscosity gives us some insights on the
dependence of the system on the resolution. Indeed, before the transition, forRr < R∗

r,−(being the lower-bound of the transition) the viscosity exhibits a very large dependence
on the size of the grid. As we reach the transition area, that we locate at the beginning
of the quick rise of viscosity, all the data then collapses on the same universal curve, in-
dependent of kmax. Note thatR∗

r,− shifts to lower values as the size of the grid increases
(Tab. 6.3).

Another influence of the resolution is given by the nature of the transition, that shifts
from a second-order transition to an imperfect transition as the number of modes is de-
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Table 6.3: Values of various quantities around the transition area. R∗
r− defines thevalue at which the transition area starts, defined by the quick rise in viscosity. ∆ν rep-resents the difference in viscosity between the two asymptotic regimes separated by thetransition area. h = k0

kmax
is a parameter used to quantify the influence of the resolutionand N is the number of spectral modes.

λ N h ∆νr R∗
r− R∗

r

83 7 · 10−3 104 ≈ 4.3 ≈ 7
2 123 4 · 10−4 106 ≈ 3.6 ≈ 5

163 3 · 10−5 108 ≈ 3.1 ≈ 3.75
83 3 · 10−2 102 ≈ 4.4 ≈ 5

ϕ 123 5 · 10−3 104 ≈ 2.8 ≈ 4
203 10−4 108 ≈ 1.8 ≈ 2.75

Shukla DNS (20) 1283 2.4 · 10−2 - ≃ 2.0 2.75

creased (see Fig. 6.2c & 6.2d). This effect was a prediction of the Leith model introduced
in (20), and we observe the same typical features found in this model.

Indeed, for N < 203, neither the mean enstrophy nor its square root follow a power-
law. Such description is only accurate upon reachingN = 203. In the case of the variance,
we observe in Fig. 6.2d a scenario that resembles the one predicted by the Leith model:
at low resolution, the standard deviation exhibits a “bump” (Fig. 6.2d, circle and triangle
markers). In this case, extracting a γ exponent is questionable. Nevertheless, Tab. 6.1
gathers all the extracted critical exponents. At larger resolution, the divergence of the
variance becomesmore visible, with a critical exponent converging to themean field value
γl = 1. Note that even while using log-lattices, there are still finite size effects, as the limit
Rr → 0 exhibits truncated Euler dynamics, characterized by equipartition E(k) ∝ k−1

(Fig. 6.3).
6.7.3 . Further comparison with the Leith model

It appears that, so far, our results and observations are in general agreement with the
Reversible Leith model proposed in (20). It is then interesting to compare more quantita-
tively those two systems. The only quantity from the RNS runs that can be compared to
the Leith model is the energy transfer. Therefore, our comparison will rely on computing
the Leith-like energy transfers ΠLeith (see section 6.7.1) from the RNS energy spectra and
comparing it to the RNS transfers ΠRNS.The comparison between the two quantities is presented in Fig. 6.6. We see that the
Leith-like transfer is able tomimic the RNS transfer in the inertial domain, but dropsmore
quickly in the dissipative domain. This effect is probably caused by the Leith-like compu-
tation not taking into account the strong oscillations of the viscosity (and therefore of
the Kolmogorov length) naturally present in RNS. Such oscillations tend to straighten the
transfer a bit further outside the inertial range. Overall, it seems that the Leith models
shares features with the RNS equations without completely reproducing its dynamics.
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6.8 . Appendix A - Enstrophy renormalization

The case of Rr → 0, is associated to a vanishing energy injection and therefore, in
order to keep the total energy constant, to a vanishing viscosity. The system thus behaves
as a truncated Euler equation and should exhibit an equipartition of energy. In ourmodel,
this equipartition is characterized by an energy spectrumdeveloping a power law k−1 that
we will be using in order to compute the total enstrophy Ωmax.We start by assuming that the kinetic energy in a shell can bewritten asEk = A

k , whereA is a constant obtained through the total kinetic energy E0:
E0 =

∑

k

E(k)∆µk = A
∑

k

1

k
(λk − k) = AN(λ− 1),

where∆µk is the measure of the space, which is (λk−k) for the 1D shells here. This leads
to A = E0

N(λ−1) , where N is the number of modes used on the grid.
We then compute the total enstrophy Ωmax.

Ωmax =
∑

k

k2E(k)(λk − k) =
E0

N

∑

k

k2,

=
E0k

2
0

N

N−1∑

p=0

λ2p ≃ E0λ
2k2max

N(λ2 − 1)
.

We can now define the renormalized enstrophy:
∼
Ω =

Ω

Ωmax
. (6.1)
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Figure 6.5: Existence of a phase transition in the different systems for different or-
der parameter.(6.5a) Renormalized viscosity function of the previously introduced con-trol parameter Rr. (6.5b) Renormalized enstrophy as a function of the control parame-ter Rr. (6.5c) Rescaled variance of the normalized enstrophy as a function of Rr. (6.5d)Rescaled variance of the energy, as a function of Rr, for the LLRNS conserved enstrophycase and LLNS. In all four figures, the empty gray symbols are the data of Fig. 6.1b & 6.2a.Circles, squares and triangles are associated toN = 83, 123, 163, respectively. The conser-vation schemes are coded by color, with light green to dark green being the irreversibleLL-Navier-Stokes model, purple to dark blue LLRNS model with conserved enstrophy, or-ange to brown LLRNS model with conserved energy. Note that in the non-conserved en-ergy case, we define Rr using the averaged kinetic energy. Also note that the differencebetween the grey and blue symbols lies in the numerical details, both are associated toconserved energy case. But, grey symbols are obtained varying the forcing amplitude f0while blue symbols are associated to a fixed f0 and varying initial condition i.e varyingE0.Fig. 6.5a & 6.5b show that all mean viscosities and enstrophy collapse on an universallaw. While Fig. 6.5c & 6.5d highlight the absence of transition for LL-Navier-Stokes andLL-RNS with conserved enstrophy. 91
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Figure 6.6: Quantitative comparison of the energy transfers between RNS (dashedlines) and Leith-like transfers (full lines). The main figures present the two energy trans-fers, while the insets show the fitted energy spectra. The two figures are obtained fordifferent values ofRr (6.6a)Rr ≈ 2.34 (6.6b)Rr ≈ 3.34.
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7 - Equivalence of ensembles and statistics

In this section, we study the equivalence conjectures postulated by Gallavotti (1). This
equivalence was studied using 2D (47) and 3D (48) DNS in the context of the Reversible
Navier-Stokes at constant enstrophy (RNSW). However, due to unsufficient resolution, ex-
ploring high Reynolds regime remains a challenge. We propose to use LL to investigate
the Gallavotti conjectures for both conserved quantities (i.e for RNSE and RNSW). We then
make use of the time reversibility to apply the Gallavotti-Cohen theorem.

7.1 . Definitions and conjectures

Following (48), we introduce the collection EI,N of the stationary distributions µI,Nν ,
where I characterizes the irreversible equation (with time-independent viscosity i.e. LL-
Navier-Stokes), with N modes. Similarly, we define the collection ER,N of the stationary
distributions µR,N

G , associated with the LLRNS model of N modes, where G is the con-
served quantity (total enstrophy, total kinetic energy. . . ). For any observable O, ⟨O⟩I,Nνand ⟨O⟩R,N

G denote the averages over the distributions µI,Nν and µR,N
G , respectively.

As in (47; 48), a set of parameters ν, G andN will be said to be “in correspondence” if
⟨G(u)⟩I,Nν = G (7.1)

G is associated to a conserved, and therefore constant, quantity in the RNS model
while G is its irreversible counterpart in regular NS.
The adaptation of the two Gallavotti conjectures to our models can then be formulated
as:

Conjecture 1: If ν, G and N are in correspondence, then for any local observable (i.e.
depending on a limited number of modes) O(u) one has

∀N, lim
ν→0

⟨O⟩R,N
G = lim

ν→0
⟨O⟩I,Nν (7.2)

Conjecture 2: Let O(u) be a local observable depending on u(k) for k < K , then if ν, G
and N are in correspondence one has

lim
N→∞

⟨O⟩R,N
G = lim

N→∞
⟨O⟩I,Nν (7.3)

∀ν andK < cνkη , cν −−−→
ν→0

c0 <∞, where kη is the Kolmogorov scale.
Those two conjectures are associated to different regimes. Indeed, by fixing the res-

olution N and sending the viscosity to 0, one reaches the warm regime, characterized by
thermalization (Conjecture 1). In contrast, by sending first the resolutionN to infinity, then
viscosity to 0, one prevents the thermalization from occurring (as it is associated to under-
resolved simulations). Therefore, Conjecture 2 is associated to hydrodynamical regimes,
and better describes turbulence in the limit of low viscosities.

7.2 . Numerical procedure
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In order to investigate the equivalence of ensemble, we start by running a LL-Navier-
Stokes simulation, with time independent viscosity of ν = 10−4, 10−5, 5 · 10−6, 10−6, 10−7

for different values of N . After reaching a steady state for a sufficient number of time-
steps (to ensure the possibility of doing statistics), we use the LL-Navier-Stokes field as
an initial condition for the LLRNS equation, in both conservation case. We then let both
reversible and irreversible simulations run for 4.105 time-steps.

This procedure enables us to highlight any divergence of the reversible solution from
the irreversible solution, while allowing us to characterize the simulations by viscosity ν
or equivalently by their Reynolds number (Re).

7.2.1 . Using scores to compare PDFs

In the next sections, we need to compare PDFs. To quantify their similarity, we intro-
duce a scalar parameter – a score –, defined as:

S(O) = 1−
p∑

i=1

|O(i)
R −O(i)

I |
O(i)

I
B−i+1 (7.4)

where O(i) stands for the i-th moment of the local observable O, p for the number of
moments we take into account and B for a decomposition basis (B = 10, being a decimal
basis in our case).

A score of one implies little errors between irreversible and reversible moments and
leads to matching PDFs. We will restrict the computation of the score to the first three
moments because of large statistical errors in our kurtosis. Therefore, the score should
be roughly 1 whenever the 3 first moments coincide, i.e. whenever the distributions are
identical around the mean value. Thus, S appears as a good indicator to qualify to what
extent the conjecture holds.

7.3 . Analysis of the conjectures

7.3.1 . Statistics of the reversible viscosity

Because of its presence in the limits, the viscosity plays a special role in the conjec-
tures. However it is a non-local observable. There is therefore no reason that mean re-
versible viscosities should be equivalent to irreversible viscosities, even when only small
values are considered. However, there are several differences between the conservation
schemes that may temper this observation. First, the total kinetic energy is concentrated
at the large scales whereas enstrophy is a small scale quantity, resulting in completely dif-
ferent statistics of the viscosity. In fact, amajor difference between the two cases arises in
the possible occurrence of negative viscosities. At low viscosities, there is almost no occur-
rence of negative viscosities in the conserved energy case, even in systems presenting a
quasi-thermalized spectrum (Fig. 7.1a). This is no longer true for the conserved enstrophy
case as we observe many occurrences of negative viscosities in well thermalized regimes
(Fig. 7.1b).
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Figure 7.1: PDF of the ratio νr / ν − 1 where νr stands for the reversible viscosity, for
N = 83 (blue dots), 123 (green squares), 163 (orange diamonds), ν = 10−7. Fig. 7.1a showsthe results associated to G = E, while Fig. 7.1b is associated to G = Ω. Colored dashedlines represents the mean values of the PDF while the black dashed line is associated to
⟨νr⟩ = ν.

In addition, conserving the enstrophy is a strong constraint, that implies additional
equivalence for the viscosity. Indeed, if the first conjecture holds, we should observe
conservation of the mean work of the forcing termW = ⟨f .u⟩, because it is local at large
scales (more details in section 7.4.1 and Tab. 7.1. Using the energy budget, this yields
⟨νr⟩ = ν in the constant enstrophy case (48), even though νr is not a local observable.The property is not true for the conserved energy case, so that the Conjecture 1 should not
hold a priori for the viscosity.
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Figure 7.2: Equivalence between the viscosities. (7.2a) Ratio of the mean reversibleviscosity over the standard NS viscosity. (7.2b) Ratio of the mean dissipation νΩ. Bothfigures are obtained for N = 83, blue dots correspond to conserved energy while greensquares are associated with conserved enstrophy.
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Our measurements are generally in agreement with these theoretical predictions,
with some exceptions (Fig. 7.2a). In the conserved enstrophy LLRNS model, we observe
that the condition ⟨νr⟩ = ν holds for most values of ν, except for very low viscosity. In
the conserved energy case, the situation is opposite: the property does not hold a priori
for large enough values of viscosity. However, for small enough values of ν, we recover
⟨νr⟩ ≈ ν.

Note that since injection is a local observable, and since we are in a stationary state,
where on average injection equals dissipation, we expect that νrΩ obeys Conjecture 1 &
2. In the case of constant enstrophy, this condition is equivalent to ⟨νr⟩ ≈ ν, as we just
saw. However, in the conserved energy case, this is not true anymore. Indeed, as we
see in Fig. 7.2b, we have ⟨νrΩ⟩ ≈ ν ⟨Ω⟩ for the conserved energy case, even though the
equivalence is not fulfilled for the viscosity alone.

7.3.2 . Energy and enstrophy
The first obvious quantities to investigate are energy E and enstrophy Ω. Results are

reported in Tab. 7.1, where we give the mean ratios between reversible and irreversible
values at various ν for the two conservation schemes.
Table 7.1: Ratio of various quantities for both conservation scheme. W stands for thework of the forcing term.

N ν ⟨ER⟩E / ⟨EI⟩ν ⟨ΩR⟩E / ⟨ΩI⟩ν ⟨WR⟩E / ⟨WI⟩ν ⟨ER⟩Ω / ⟨EI⟩ν ⟨ΩR⟩Ω / ⟨ΩI⟩ν ⟨WR⟩Ω / ⟨WI⟩ν

10−4 100.0% 125.6% 99.9% 98.2% 100.0% 98.5%
10−5 100.0% 102.1% 99.7% 99.8% 100.0% 99.9%

83 5.10−6 100.0% 98.2% 98.6% 98.9% 100.0% 98.3%
10−6 100.0% 100.0% 99.9% 99.8% 100.0% 99.4%
10−7 100.0% 100.0% 97.3% 100.0% 100.0% 96.3%
10−4 100.0% 135.4% 99.6% 98.5% 100.0% 98.1%
10−5 100.0% 160.0% 99.3% 99.0% 100.0% 98.9%

123 5.10−6 100.0% 164.6% 99.1% 98.8% 100.0% 98.6%
10−6 100.0% 132.3% 99.7% 98.6% 100.0% 98.9%
10−7 100.0% 100.4% 99.8% 100.0% 100.0% 99.7%
10−4 100.0% 142.9% 97.5% 98.8% 100.0% 98.0%
10−5 100.0% 156.1% 98.4% 99.6% 100.0% 99.3%

163 5.10−6 100.0% 145.1% 98.9% 99.7% 100.0% 99.8%
10−6 100.0% 315.2% 98.8% 99.5% 100.0% 99.8%
10−7 100.0% 313.4% 97.9% 98.7% 100.0% 98.5%

In all cases, the ratio of ⟨G⟩ /G is very close to 1, showing the validity of Eq. 7.1 for both
conservation schemes. It is interesting to note that themean energy iswell described even
in the conserved enstrophy case. On the other hand, in the conserved energy case the
enstrophy is correctly reproduced only in the quasi-thermalized state (Tab. 7.1 & Fig. 6.5a).
In particular, at high resolution (N = 163), we observe enstrophy ratio above 100%.

7.4 . Analysis of Conjecture 1 - Warm regime

In this subsection, we focus on the Conjecture 1. We consider various local quantities,
and analyze results at fixed number of modes N = 83 and decreasing viscosity of ν =

96



10−4, 10−5, 5 · 10−6, 10−6 and 10−7.
7.4.1 . Work of the forcing term

We now consider the work W = ⟨f .u⟩. This quantity appears as a good candidate
for Conjecture 1, as the forcing term is localized around kf = 15 (see Eq. 1.10). Tab. 7.1
summarize the ratio ofmean values between reversible and irreversible values, and show
that almost all simulations fulfill correspondence conditions Eq. 7.1, with either conserved
energy or conserved enstrophy. A finer understanding of this correspondence can be
obtained by exploring the properties of its PDF in both the hydrodynamical case (ν =

10−4) and quasi-thermalized (ν = 1 · 10−6). This is shown in Fig. 7.3. In both case and with
both schemes, the PDF shows good agreement between the reversible and irreversible
case, except for the high viscosity case, where tails are different. This difference is due
to the difference in standard deviations. Nevertheless, in the quasi-thermalised regime
(Fig. 7.3b), the PDF presents quasi perfect agreement between irreversible and reversible
cases, which is a signature that Conjecture 1 holds for the local observableW .
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Figure 7.3: PDF of the work of the forcing term W . Simulations are performed with
N = 83. (7.3a) ν = 10−4 (7.3b) ν = 10−6. Dashed lines represent the mean values of thePDF. Both conservation schemes show good agreement for the mean values. At higherviscosities, tails differ.

To further support this claim, we analyze the ratio of the two first order moments
⟨WR⟩
⟨WI⟩ and σW

R
σW
I
. Fig. 7.4 gathers those results, obtained for N = 83. One observes that

for any value of ν, the mean value ofW corresponds to the mean value of the reversible
equations, within a 5% error margin (Fig. 7.4a). This property does not hold however for
the standard deviation, where the ratios lie outside the confidence interval in the hydro-
dynamical case (Fig. 7.4b). As the viscosity decreases, both ratios enter the confidence
interval, and thus both PDFs match in the inviscid limit.

7.4.2 . Energy spectra
We now consider the equivalence for the distribution of energy in the wavenumber

space, through the instantaneous energy spectraE(k). As time varies, and for each given
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Figure 7.4: Ratios of the two first moments ofW as a function of the viscosity ν. Sim-ulations are performedwithN = 83. (7.4a) Ratio ⟨WR⟩ / ⟨WI⟩, (7.4b) Ratio σWR /σWI , where
σ stands for the standard deviation. The gray shaded area represents the 5% confidenceinterval.

k, E(k) fluctuates in time, and we can study its statistics through our score function.
Fig. 7.5 gathers the different scores S(E), obtained for different ν at various ks. In the
conserved energy case (Fig. 7.5a), Conjecture 1 holds quite well. Indeed, as ν → 0, the
score is almost equal to one (purple pentagons) over the whole space, highlighting good
moments matching. For higher viscosities (blue dots, green squares. . . ) the score starts
to drop at smaller k, indicating that only the first shells display equivalence. Note that the
statistics around the first and last data points might be biased by side effect associated
to the sampling process. The conserved enstrophy case (Fig. 7.5b) shares some similar
features, as the score indeed appears to grow as ν decreases, progressively spanning the
whole grid.

According to the score, one should observe PDF matching (outside the tails) for ν =

10−4 at big scales (ks ≈ 16.5) and PDF differences at small scales (ks ≈ 182.6). This is
indeed what we observe in Fig. 7.6a & Fig. 7.6b. In addition, one expects near identical
PDF in both conservation schemes, at all scales for ν = 10−7. This statement is confirmed
in Fig. 7.6c& Fig. 7.6d, where the PDFs are almost indistinguishable.
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Figure 7.5: Score S(E) of the energy in each shell Figures (7.5a) corresponds to theconserved energy case while (7.5b) is associated to the conserved enstrophy case. Thegray shaded areas show where the forcing term is localized. Figures are obtained for
N = 83. Blue dots, green squares, orange triangles, red diamonds and purple pentagonsare respectively associated to ν = 10−4, 10−5, 5 · 10−6, 10−6 and 10−7.
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Figure 7.6: Energy PDF Results are obtained for different values of ks and ν, withN = 83.(7.6a & 7.6b) ν = 10−4, ks ≈ 16.5, ks ≈ 182.6 ; (7.6c & 7.6d) ν = 10−7, ks ≈ 16.5, ks ≈ 182.6.Dashed lines represent the mean values of the PDF.99



7.5 . Analysis of Conjecture 2 - Hydrodynamical regime

In this section, we analyze the Conjecture 2, i.e. equivalence at fixed ν and varyingN in
the case of the hydrodynamical regime, in the thermodynamic limit h→ 0 (kmax → ∞).

In the analysis of this conjecture, there appears a strong difference between the con-
served energy case, and the conserved enstrophy case. Indeed, the former presents a
phase transition whose characteristics depend on N (Fig. 6.5). This dependence compli-
cates the analysis on the impact of kmax → ∞ (N → ∞) in Conjecture 2. In fact, for a
given Rr, increasing N implies switching phase (Fig. 6.5a), going from quasi-thermalized
regimes (Rr < R∗

r , in which Conjecture 1 holds) to hydrodynamical ones (Rr ≥ R∗
r). There-fore, one must be careful while comparing similar Re for different resolutions as the va-

lidity of the conjecture is related to the position in the transition, as will be highlighted
later.

7.5.1 . Energy spectra
We now focus on the statistics of the energy spectrum, at given values of ks. In the

hydrodynamical regime, Conjecture 2 implies that the score of E(k) should be equal to 1
in the thermodynamic limit h → 0 (kmax → ∞). In practice, we shall see that this will be
true only for a given range of wavenumber k < Kν (49; 48).In the conserved enstrophy case the analysis is straightforward. We show in Fig. 7.7
the evolution of the score SΩ(E) at various resolutions. At lower resolution, SΩ(E) drops
quickly (Fig. 7.7, blue dots) highlighting the absence of equivalence between the reversible
and irreversible ensemble. By increasing N, we obtain scores closer to 1 on intervals up to
Kν , defined as the value of k such that ∀k > Kν ,SG(O) < 0.9. We also observe that for low
values of viscosity, the scores are similar forN = 123 andN = 163, supporting the second
conjecture, in the conserved enstrophy case. For k > Kν , scores start to “oscillate”, this isassociated to the fact that the reversible moments fluctuate around the irreversible ones
and sometimes lies in confidence interval, leading to artificially higher scores.
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Figure 7.7: Score S(E) of the energy in each shell for G = Ω. (7.7a) ν = 5 · 10−6; (7.7b)
ν = 10−5. Blue dots, green squares and orange triangles correspond to N = 83, 123, 163,respectively. Black dashed lines correspond to a score of 0.9.
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Figure 7.8: Score S(E) of the energy in each shell for G = E. (7.8a)N = 123; (7.8b)N =
163. Blue dots, green squares, orange triangles, red diamonds, and purple pentagonscorrespond to ν = 10−4, ν = 10−5, 5 · 10−6, 10−6, 10−7, respectively. Note that in (7.8a),the purple pentagons are associated with a quasi-thermalized state, being a crossoverregion between the two conjectures. Black dashed lines correspond to a score of 0.9.

In the conserved energy case, the analysis is complicated by the phase transition, as
detailed below. According to the Conjecture 2, one expects to observe scores SG(E) > 0.9

on bigger and bigger domains as ν → 0. Fig. 7.8 shows the scores, in the case of conserved
energyE, for various viscosities andN = 123 (Fig. 7.8a) orN = 163 (Fig. 7.8b). Our results
indeed highlight a dependency of Kν on ν (Fig. 7.7 & 7.8). Note that the red diamonds
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Figure 7.9: Ratio K/kν in the context of Conjecture 2 (7.9a) corresponds to conservedtotal kinetic energy while (7.9b) corresponds to conserved enstrophy. The thresholds Kwere extracted directly from the score at the considered k. The thresholds were not ex-tracted for N = 83 since the resolution is insufficient as most simulations lie on the ther-malized branch (Fig. 6.5a, colored circles).
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in Fig. 7.8a are associated with a crossover regime where thermalization at small scales
starts to occur, leading to results similar to Conjecture 1 (Fig. 7.5a) but with a slight drop.

Fig. 7.9 shows the extracted thresholds divided by the Kolmogorov scale for both con-
servation schemes, at different resolutions and different viscosities. Unlike in (48), cν isno longer a constant but depends on the value of ν and does not grow as fast as the
Kolmogorov scale kη (Fig. 7.9).Note that for ν = 10−7, the N = 123 are under-resolved, leading to an upper-bound
K = kmax for the threshold, that can not grow anymore as ν decreases. Such phe-
nomenon explains the difference between the two first points of Fig. 7.9b.

In the thermodynamic limit of the conserved energy case, the equivalence is best
achieved forRr → Rr

∗(N). As mentioned before, such properties make the comparison
between resolutions difficult, as the value ofRr at which the transition betweenwarmand
hydrodynamical regimes occurs also depends on N . Nevertheless, Fig. 7.9a gathers the
results for the conserved energy case, confirming the validity of Conjecture 2, on smaller
domains with respect to those observed in the conserved enstrophy case.

7.6 . Irreversibility and Gallavotti-Cohen’s fluctuation theorem

Disclaimer: This section presents the current results of an on-going work, new re-sults are to be expected in the future.
One of the assets of studying the RNS equations lies in the time reversibility. For time

reversible systems, one can apply the Gallavotti-Cohen theorem obtaining various infor-
mations on the system, such as phase space contraction rate... Coupling this result to the
equivalence conjecture, one can study some non trivial underlying properties of the NSE.

7.6.1 . Anosov systems and fluctuation theorem
A differential dynamical system is defined by the existence of a bijection St : C → C,

C being the phase space, such that for any initial condition x0, there exists a unique futurat time t:
x(t) = St(x0). (7.5)

Varying t, one obtains a flow in the phase space C such that 1:
S0 = Id, (7.6)

∀(t, s) ∈ R2, St ◦ Ss = St+s. (7.7)
An Anosov system, is a smooth dynamical system (C, S) such that the phase space C can

be decomposed in C = E0
⊕
ES
⊕
EI , where E0 is a 1D manifold in the flow direction

while ES (resp. EI ) is a stable (resp. unstable) manifold that exponentially constracts
(resp. expands) corresponding to negative (resp. positive) Lyapunov exponents.
In addition, an Anosov system is said transitive if the stable and unstable manifolds are
dense in C (50).
For such systems, the following theorem holds:

1A simple example is the Hamiltonian flow of classical mechanic.
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Theorem (51): if a system is a transitive Anosov system then it admits a Sinai-Ruelle-Bowen
(SRB) distribution.

We recall that a SRB distribution µ is defined such that (52):
lim
T→∞

1

T

T−1∑

i=0

f(Si(x)) =

∫

C
µ(dy)f(y), (7.8)

for all smooth function f and all x ∈ C. In particular, Eq. 7.8 assesses the existence of the
time-average of any macroscopic observable, defined at a point x of the phase space C.

For a time reversible, dissipative (i.e ⟨σ⟩ > 0, σ being the phase space contraction
rate), transitive Anosov system, the probability distribution Pτ (p) of the variable

p =
1

τ

∫ τ

0

σ(Stx)

⟨σ⟩ dt, (7.9)
verifies the large deviation relation Pτ (p) = eζ(p)τ+O(1) (51), with the symmetry property
ζ(p)− ζ(−p) = p ⟨σ⟩ for all p within the definition domain of ζ.

This fluctuation theorem although interesting has only been rigorously proven for ide-
alized systems such as Anosov systems. The extension to real systems,made ofmany par-
ticles is therefore non trivial. In the following, we tackle the subject of the Gallavotti-Cohen
Fluctuation Theorem, obtained through less restrictive hypothesis.

7.6.2 . The Gallavotti-Cohen Fluctuation Theorem
In order to extend the Fluctuation theorem of the previous section to more realistic

systems, Gallavotti (50) introduced the chaotic hypothesis defined as follows:
Chaotic hypothesis (CH): a reversible many-particle system in a stationary state can be

regarded as a transitive Anosov system for the purpose of computing the macroscopic proper-
ties of the system.

Through the use of (CH), it is then possible to apply the results of the previous section and
derive the Gallavotti-Cohen Fluctuation Theorem (GCFT).
Upon satisfying the following properties (A)-(C):

(A) Dissipation: The phase space volume undergoes a contraction at a rate, on the
average, equal toD ⟨σ(x)⟩+, where 2D is the phase space C dimension and σ(x) is amodel
dependent “rate” per degree of freedom.

(B) Reversibility: There is an isometry, i.e., a metric preserving map i in phase space,
which is a map i : x→ ix such that if t→ x(t) is a solution, then i(x(−t)) is also a solution
and furthermore i2 is the identity.

(C) Chaoticity: The chaotic hypothesis holds and we can treat the system (C, S) as a
transitive Anosov system.
One can then apply the GCFT, stating that the probability Pτ (p) that the total entropy
production over a time interval τt0 (t0 being the average time between timing events) has
a valueDt ⟨σ(x)⟩+ p satisfies the large-deviation

ln
Pτ (p)

Pτ (−p)
= Dt ⟨σ(x)⟩+ p+O(1), (7.10)

103



where we recall that 2D is the dimension of the phase space C.
If the GCFT holds true then one should observe a linear dependance for ln Pτ (p)

Pτ (−p)(τ).This theorem was succesfully applied in wind tunnel experiments (53) with p being the
pressure force over an objet of area S but also in granular media (54). In (53), PDFs were
also successfully rescaled, applying Sinai’s theory (51), into τ independent distributions.
This result holds great importance as the probability of observing negative fluctuations
decreases as τ increases.

7.6.3 . Application of the GCFT

By construction, the Reversible Navier-Stokes equations satisfy properties (A)-(C). It is
therefore possible to apply the GCFT to a variable related to the phase space contraction.
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Figure 7.10: An application of the GCFT the considered simulation is performed using
N = 123 andRr = 1.89. (7.10a) PDF ofΠτ/ ⟨Π⟩. Blue dots, green squares, orange crosses,red pentagons, purple stars, brown triangles and grey diamonds correspond to τ/τ0 rang-ing from 1 to 7. (7.10b) presents the extracted slopes α confirming the linearity predictedby Eq. 7.12.

We apply the GCFT to the energy transfer at scale k, Πk (see Eq. 1.4), more specifically
in the last shell. The following procedure is used, first we compute the energy transfer
according to Eq. 1.4. The considered variable is obtained by averaging over a time interval
τ such that:

Πτ (t) =
1

τ

∫ t+τ

t
Π(t′)dt′. (7.11)

Then, we extract the PDF from the data to perform a best fitting of the PDF. The GCFT is
104



then performed over the extrapolated data 2 for the variable Y = Πτ/ ⟨Π⟩:
ln

Pτ (Y = y)

Pτ (Y = −y) = α(τ)y. (7.12)
Note that we also define τ0 as the sampling time of the simulation (i.e the average time
between two consecutive save).

Fig. 7.10a presents a set of PDF of Y obtained for various values of τ . It is to be noted
that the PDFs are non necessarily gaussian. If the GCFT (Eq. 7.10) holds, then α(τ) (see
Eq. 7.12) should be linear in τ . This property is indeed observed (Fig 7.10b) allowing for the
extraction of σ such that α(τ) = στ . 3

This same protocol can be applied varyingRr
4 to obtain the evolution of σ = f(Rr).
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Figure 7.11: Ratio of the phase rate contraction over the average reversible viscosity.Green squares correspond to N = 123 and orange stars to N = 183. f(N) is a rescalingfunction, ensuring the collapse of ⟨νr⟩ in the limitRr → 0, such that f(N) ∝
√
Nkmax.

At the current time, we did not manage to link σ to another physical quantity, Fig. 7.11
seems to highlight a connection to the averaged reversible viscosity ⟨νr⟩ with a collapse,for the two considered resolutions (N = 123, 183), for the highest presented values of
Rr. This is quite puzzling as the proposed rescaling function f(N) assures the collapse of
viscosities in the limit Rr → 0. The analysis of this phenomenon and more generally the
analysis of σ is left for future work.

As previously mentioned, the proof of the fluctuation theorem relies on the time re-
versibility of the system. Yet, such restrictive hypothesis is hardly met in experimental
setups. It is therefore interesting to check if the symmetry of Eq. 7.12 also holds for irre-
versible dynamics.

2The theorem is only applied on a small interval around 0 where the best fitting is perfectlyaccurate.3We actually perform a fitting of the form α(τ) = στ +B, where B is found to be close to zero.4We recall thatRr = 1/E corresponds to the ratio of the energy injection over the total kineticenergy, see Eq. 4.13.
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Figure 7.12: Applying the GCFT to NSE. The considered simulation is performed using
N = 83, corresponding to the second orange circle of Fig. 6.5a. (7.12a) PDF of Πτ/ ⟨Π⟩.(7.12b) presents the extracted slopes α(τ) confirming the linearity predicted by Eq. 7.12.

Once again, we apply the GCFT to the energy transfer, averaged over interval of length
τ : Y = Πτ/ ⟨Π⟩, for simulations of the NSE. Figure 7.12 presents the results of the appli-
cation of the GCFT to one simulation, highlighting the acceptable linear behavior for α(τ),
therefore confirming the symmetry of Eq. 7.12. This result is surprising as the NSE sys-
tems is inherently irreversible. Although being an interesting result, it is still unclear if
the validity of the GCFT in this particular case is not due to the truncature effects as the
considered simulations lie in the unstable phase defined in Chapter 4.

7.6.4 . Rescaling PDF according to large deviation
The difficulty in using the GCFT lies in the observation of negative fluctuations that are

quite rare. Indeed, due to the the rareness or even absence of negative fluctuations asRrincreases, it becomes impossible to apply the GCFT. This statement is confirmed by the
results of Fig 7.10a, where the number of negative fluctuations decreases as τ increases.
Sinai (51) (see Section 7.6.1) proposed a rescaling of Pτ (Y ) that no longer depends on τ ,
through a large deviation rate ζ(p).
The rescaling is based on the previously extracted α(τ) such that:

Pτ (Y ) = Aτe
−ζ(Y )α(τ), (7.13)

where Aτ is a constant depending on τ .Fig. 7.13 (RNSE) and 7.14 (NSE) present rescaled PDFs ζ(Y ) constructed using Eq. 7.13
highlighting a collapse of PDFs in the small interval around 0 but also for the rest of the
PDFs. Note that for two small values of τ , α(τ) can be non linear, such values of τ should
therefore be discarded (53). The existence of a rate function 5 ζ(Y ) further supports the

5In the context of the large deviation principle.
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Figure 7.13: Large deviation rate ζ(Y ), Y = Πτ/ ⟨Π⟩ the considered simulations areperformed using N = 123. Blue dots, green squares, orange crosses, red pentagons,purple stars, brown triangles and grey diamonds correspond to increasing values of τ/τ0.(7.13a) Rescaling of the PDF of Fig. 7.10a, Rr = 1.89. (7.13b) Rr = 2.56. Both figureshighlight a collapse of the PDFs onto a τ -independent PDF.
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Figure 7.14: Large deviation rate ζ(Y ), Y = Πτ/ ⟨Π⟩ for NSE dynamics. Rescaling thePDF of Fig. 7.12a obtaining ζ(Y ), Y = Πτ/ ⟨Π⟩. Once again, ζ(Y ) is independent of τ andallows for the extract of the probability of negative events in the limit τ → ∞.

validity of the GCFT that technically holds for τ → ∞ and allows for the estimation of the
probability of negative fluctuations in the limit of τ → ∞.
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8 - Unrelated contributions

This chapter is a collection of articles whose subjects are unrelated to the main sci-
entific subject of this PhD (Reversible Navier-Stokes and weak solutions). Still, there is a
plethora of topics that are yet to be tackled. As we believe that science is a team effort,
the following articles have been written in collaboration with other PhD students and re-
searchers of the group. While not being the primary author of the papers, I contributed
during the scientific discussions and reviews.

8.1 . Log-lattices for atmospheric flows

This section is made of a self-sufficient article, published in Atmosphere 2023, 14(11),
1690; https://doi.org/10.3390/atmos14111690.

In this article, Log-lattices are applied to geophysics through the equation describing
the heat transport in a dry atmosphere making full use of the achievable parameters
(Reynolds, Rayleigh...) to confirm a theoretical scaling of the critical Rayleigh number. In
addition, we highlight the existence of two regimeof convection andderive general scaling
laws in both of them.
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Article

Log-lattices for atmospheric flows
Quentin Pikeroen 1, Amaury Barral 1, Guillaume Costa 1 and Bérengère Dubrulle1*

1 University Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, France
* Correspondence: berengere.dubrulle@cea.fr

Abstract: We discuss how projection of geophysical equations of motion onto an exponential grid 1

allows to achieve realistic values of parameters, at a moderate cost. This allows to perform many 2

simulations over a wide range of parameters, thereby leading to general scaling laws of transport 3

efficiency that can then be used to parametrize the turbulent transport in general climate models for 4

Earth or other planets. We illustrate this process using the equation describing the heat transport in a 5

dry atmosphere, to obtain the scaling laws for onset of convection as a function of rotation. We confirm 6

the theoretical scaling of the critical Rayleigh number Rac ∼ E−4/3 over a wide range of parameter. 7

We have also demonstrate the existence of two regimes of convection, one laminar extending near 8

the convection onset, and one turbulent, occurring as soon as the vertical Reynolds number reaches 9

a value of 104. We derive general scaling laws for these two regimes, both for transport of heat, 10

dissipation of kinetic energy, and value of the anisotropy and temperature fluctuations. 11

Keywords: convection; rotation; turbulence 12

1. Forewords by B. Dubrulle 13

I met Jack in 1999, when I came to the MMM division of NCAR for a one-year 14

sabbatical. I had been attracted there by Jack’s reputation, from conversation with Annick 15

Pouquet, Uriel Frisch and Maurice Meneguzzi. Being a theoretician of turbulence, interested 16

in geophysical application, I then knew that I would find in Jack a very good interlocutor, 17

and benefit greatly of his physical insight, his broad knowledge about turbulence and 18

geophysical flows, and his open mind. I met Jack regularly during my stay, and we spoke 19

of all sorts of topics. It was after a discussion with him that I started to investigate Rayleigh 20

Bénard flows and heat transfer properties-I published two papers on that topic that year. 21

About Jack, I keep the memory of a true "gentleman of science", very kind to junior scientist 22

(as I still was at that time), with a great sense of humor and an immense knowledge that 23

he was keen to share. It is certainly thanks to Jack that I jumped into the modeling of 24

geophysical flows, and I will always be grateful to him for this. 25

2. Introduction 26

Ultra-high Reynolds number flows are ubiquitous in geosciences, due to small vis- 27

cosity, large dimensions or velocity. They are described by the Navier-Stokes Equations 28

(NSE). A natural control parameter of NSE is the Reynolds number Re = LU/ν built using 29

the viscosity ν and characteristic length L and velocity U. Classical turbulent flows are 30

thought to be described by NSE, with Re ≫ 1. In 1941, Kolmogorov [K41] used such 31

equations to predict the shape of the energy spectrum E(k) derived from the Fourier trans- 32

form of the velocity correlation function for isotropic and homogeneous turbulence stirred 33

at a constant rate ϵ. He found that it should scale like E(k) ∼ ϵ2/3k−5/3 in the range 34

1/L ≪ k ≪ ν−3/4ϵ1/4 where k is the wave-number. This prediction was verified in 1962 35

on data from a turbulent flow in Seymour Narrows [1] and appears to be one of the most 36

robust laws of turbulence [2,3] being independent of the boundaries or on the stirring 37

process. At large wave-numbers, viscous processes take over, and the spectrum decays 38

very fast, so that the energy contained in wave-numbers greater than kd = ν−3/4ϵ1/4 is 39
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negligible. The overall behavior of E(k) can be used to infer the typical number of dynami- 40

cally active modes as N = (kdL)3. In geophysical flows such number can be quite large: 41

for example, the atmosphere has L = 103km (the size of the large typhoons or cyclones), 42

while k−1
d is smaller than 10 mm, resulting in kdL > 108. Direct numerical simulations of 43

the Navier-Stokes equations for such flows are thus impossible, as the total computational 44

cost of reading-in/writing-out and coupling all these modes exceeds by many orders of 45

magnitude the capability of the present most powerful computers. 46

If one wishes to simulate ultra-large Reynolds numbers like the atmosphere, one 47

has no other way out than to empirically decimate modes via a clever selection of grid 48

points or modes. Simulating viscous flows with just as many scales as needed to “get the 49

physics right” has been and still is the holy grail of all researchers in the computational 50

fluid community. If a well-established theory of turbulence were available, including a 51

deep understanding of all interactions between scales, the quest would probably be over 52

by now. In the absence of such complete theory, we need empirical yet clever strategies 53

for mode number reduction. Jack Herring worked many years on such issue, using e.g. 54

two-point closure (see e.g. [4]). 55

Nowadays, the most popular approach is to use a Large Eddy simulation strategy, 56

in which only the large scales are simulated: present climate models have a grid size of 57

10 km, allowing to handle the data volume in 2 CPU seconds per time step. However, 58

there is no free lunch: the price to pay for such a mode reduction is the addition of a 59

(sometime very large) damping, to avoid accumulation of energy at the smallest simulated 60

scale. In LES type climate simulations, the damping is the same as if the atmosphere were 61

made of peanut butter and the ocean of honey, so that no fluctuations can develop. This 62

is problematic to capture possible bifurcations, such as those observed in von Karman 63

flows [5]. 64

In this paper, we consider another class of model in which the modes reduction is 65

achieved by keeping modes following a geometric progression. Such approximation leaves 66

out a lot of possible interactions, as we shall see. However, it allows reaching very small 67

scales with a very small number of modes. In the atmosphere, for example, only 27 modes 68

are necessary to go from k0 = 1/L to 108/L by a geometrical progression of step 2 (38 69

with a step being the golden number). This means, that we can perform a “resolved” 3D 70

simulation of an atmospheric flow with less than 2 × 104 modes (respectively less than 71

6× 104), corresponding to the number of modes involved in a LES simulation at a resolution 72

of 37km. The corresponding models correspond to Fluid dynamics on Log-Lattices, the 73

properties of which were detailed in [6]. For example, they respect classical and basic 74

properties of Navier-Stokes equation, such as constancy of energy flux in the inertial range. 75

Given the potential of such models to describe ultra-high Reynolds number flow at a cheap 76

prize, we investigate here further properties of such models with respect to one important 77

open problems of atmospheric flows, which was dear to Jack, namely the influence of 78

rotation on convection. 79

3. Log-Lattices framework 80

Consider a velocity field that obeys Navier-Stokes equation (NSE), with viscosity ν 81

and forcing. Its Fourier transform, noted u(t, k) is a complex field that obeys the equation: 82

ik juj = 0,

∂tui + ik jui ∗ uj = −iki p − νk2ui + fi,

u(k, t) = u∗(−k, t).

(1)

where ∗ denotes the traditional convolution product, that involves for each k, coupling 83

of modes u(t, p) and u(t, q), such that ki = pi + qi for any ith component. The (constant) 84

density has been set to 1 for convenience, and thus disappears in front of the pressure term 85

in Eq. (1). The convolution sum is computed directly, but is less costly than a Fast Fourier 86

Transform because only a limited amount of local interaction are kept [6]. 87
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In traditional spectral simulation of NSE, the wave-numbers are discretized on a linear 88

grid, and can be written as k = (m1, . . . m3) with mi ∈ Z3. The convolution being ensured 89

by the condition m = n + q for any (m, n, q) ∈ Z3, it allows a lot of interactions between 90

Fourier modes. 91

In the log-lattice framework, we now impose that the wave-numbers follow a geomet- 92

ric progression as 93

k = (λm1 , . . . , λm3), (2)

with mi ∈ Z3, where λ is a parameter yet to be defined. It is imposed by the condition that 94

the convolution product appearing in Eq. (1) has some non-zero solution, which is only 95

possible if the equation: 96

λm = λp + λq, (3)

has some solutions for any m, p, q ∈ Z3. As discussed by [6], Eq. (3) can only be achieved 97

provided λ takes some specific values, among which λ = 2, λ ≡ ϕ = (1 +
√

5)/2 ≈ 1.618, 98

the golden mean and λ ≡ σ =≈ 1.325 , the plastic number1. Different values of λ cor- 99

respond to different number of coupling between modes: they become more and more 100

numerous and less and less local as λ → 1 [6]. In this sense, log-lattices can be seen as a 101

special case of the sparse Fourier model [7], the REWA model [8] or fractal decimated mod- 102

els [9,10], in which the non-linear interactions of NSE is projectively decreased randomly 103

or in a scale invariant manner. 104

The choice of λ is fixed by several considerations: larger values of λ are cheaper, 105

both in computation time and in memory. However, lower values of λ give rise to more 106

interactions, thus more fluctuations, which is more realistic for simulating a turbulent flow. 107

As discussed by [11], the case λ = 2 should be avoided when simulating incompressible 108

dynamics because it lacks backs scatter. On the other hand, [12] checked that scaling law 109

properties, such as spectral slope, or blow-up exponent, do not depend on the value of 110

λ. Therefore, we work below with λ = ϕ, which is the best compromise between all 111

constraints. 112

3.1. Energy spectra 113

It is possible to write the mean energy, that measures the scaling properties of the 114

mode at kn = λn as: 115

Em(n) =< ||u(k)||2 >Sn , (4)

where the average is taken over wave numbers in the shell delimited by spheres with radii 116

λn−1 and λn. Specifically: 117

< ||u(k)||2 >Sn ,=
1

Nk
∑

λn−1≤||k||<λn

d

∑
α=1

|uα(k)|2, (5)

where d is the space dimension and Nk ∼ (log(k))d−1 is the number of wave-numbers in 118

the shell Sn. 119

1 σ is defined as the common real root to σ3 − σ − 1 = 0 and σ5 − σ4 − 1 = 0
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Figure 1. Renormalized energy spectrum E(k)/ϵ2/3η5/3 as a function of renormalized wavenumber
kη for a simulation of Navier-Stokes on a 203 log-lattice (black dotted line) and for a turbulent flow in
Seymour Narrows (Ocean) (blue squares). The black dashed line corresponds to E(k) ∼ k−5/3. This
figure has been drawn by the authors using data extracted from the published graph shown in [1].

From this quantity, one can define a pseudo-energy spectrum as: 120

E(k) =
λ−n

λ − 1
< ||u(k)||2 >Sn , (6)

Examples of such spectrum in d = 3 are shown in fig. 1 for λ = 2. One sees that it is self- 121

similar and display a very clear k−5/3 law. This spectrum has been obtained by simulating 122

eq. (1) with 203 modes, which can easily be done on a PC. Due to the exponential spacing, 123

it enables to reach resolutions and inertial range even larger than what is achieved by 124

oceanic measurements, a performance which is out-of-reach of DNS simulations of NSE. 125

This shows the interest of FDLL in geophysics. 126

3.2. Generalizations 127

The equations (1), (2) and (3) define Navier-Stokes equation on log-lattice. By exten- 128

sion, any equation of fluid dynamics on log-lattice can be defined by performing the two 129

steps [6]: (i) write the equation in the Fourier-space. (ii) replace any convolution product 130

by the convolution on log-lattice. This construction guarantees that the resulting equation 131

obeys all the conservation laws and symmetries of the original equations [6]. 132

3.3. Limitations of log-lattices 133

Computations on log-lattices involve a number of limitations. First, due to the local 134

nature of the convolution in Fourier space, log-lattice are unable to describe the so-called 135

"non-local" interactions that are involved for example in the shearing of small eddies by 136

large eddies [13]. This may explain why lo-lattices simulation do not display intermittency 137

for the structure functions [14]. Due to their sparsity, log-lattices cannot describe dispersive 138

wave resonances, like inertial or gravity waves. This mans that they cannot capture 139

dissipative phenomena induces by those waves, and that it can only capture the dissipation 140

due to small scale turbulent eddies. Finally, due to the spectral nature of the construction, it 141113
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may appear that the log-lattice framework is only appropriate for homogeneous flows, i.e. 142

far from boundaries. In a recent work, [15] have however shown that the extension to flow 143

with boundaries is possible, via lattice symmetrization around the boundary and careful 144

treatment of the resulting discontinuity. Despite the high relevance of this situation for 145

geophysical flow, we here concentrate on the simpler case of homogenous flow, and show 146

how log-lattice simulation enable to recover some well known features of homogeneous 147

rotating convection. 148

4. Homogeneous rotating convection on log-lattices 149

4.1. Definitions 150

We now consider a rotating homogeneous fluid, with coefficient of thermal dilation 151

α, viscosity ν and diffusivity κ, subject to a temperature gradient ∆T over a length H and 152

vertical gravity g. Its dynamic is given by the HRB set of equations [11,16–18], 153

∂tu + u · ∇u +
1
ρ0

∇p + 2Ω × u =ν∇2u + αgθ⃗z − f u, (7)

∂tθ + u ·∇θ =κ∇2θ + uz
∆T
H

− f θ, (8)

∇ · u =0, (9)

where u is the velocity, θ the temperature deviation from the equilibrium profile (where 154

θ = 0), which means by definition T = −∆Tz/H + θ, Ω the rotation vector, ρ0 is the 155

(constant) reference density, p is the pressure and f is a (Rayleigh) friction term, accounting 156

for the friction at the boundary layer that cannot be resolved by the present framework. 157

We will assume below that this friction is concentrated only on large scale. As proved 158

in [11], this friction is mandatory to allow the system to reach well-defined stationary states. 159

Indeed, for periodic boundary conditions, exponential instabilities can grow because there 160

is no wall to stop them. They are characterized by the accumulation of energy at large scale. 161

Introducing a large scale friction allows damping of the inverse cascade and avoids the 162

concentration of energy at the large scale. This set of equation has to be completed with 163

boundary conditions. In this paper, we consider periodic boundary conditions and focus 164

on the case when rotation is aligned with the z-axis, Ω = Ωez. 165

4.2. Non-dimensional numbers 166

We can build 5 independent non-dimensional numbers to characterize the system: 167

the Rayleigh number Ra = αgH3∆T/(νκ), that characterizes the forcing by the tem- 168

perature gradient. 169

the Prandtl number Pr = ν/κ, which is the ratio of the fluid viscosity to its thermal 170

diffusivity. 171

the Nusselt number Nu = JH/κ∆T. that characterizes the mean total heat flux is the 172

z direction is J = ∂z < uzθ > −κ∆T. 173

the Ekman number E = ν/(2ΩH2), measuring the importance of the rotation with 174

respect to diffusive process. 175

the Rossby number Ro =
√

αg∆T/(2Ω
√

H), measuring the importance of the rotation 176

with respect to buoyancy. In terms of other variables, we have Ro = E
√

Ra/(
√

Pr). 177

the friction coefficient F = f
√

H/
√

αg∆T, that provides the intensity of the Rayleigh 178

damping. 179

4.3. Equations on log-lattice 180

The regimes we want to explore are very turbulent regimes where the viscosity and 181

diffusivity do not play any role anymore. Therefore, it is natural to adimensionalize the 182

equation in terms of “inertial quantities”, i.e. using the vertical width H as a unit of length, 183

the free fall velocity U =
√

αg∆TH as a unit of velocity, and ∆T as a unit of temperature. 184
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Then, to define the Rotating Homogeneous Rayleigh-Benard (RHRB) equations on 185

log-lattice, we take the Fourier transform of Eq. (7) that can be written in non-dimensional 186

form as (with the Einstein convention on summed repeated indices): 187

ik juj = 0, (10)

∂tui + ik jui ∗ uj = − iki p + θδi3 − Fuiδk≈kmin

−
√

Pr
Ra

k2ui −
1

Ro
ϵi3kuk

(11)

∂tθ + ik jθ ∗ uj = uz −
k2θ√
Ra Pr

− Fθδk≈kmin , (12)

u(k, t) = u∗(−k, t), (13)

θ(k, t) = θ∗(−k, t). (14)

where the Dirac δk≈kmin filters out the small scales. 188

In these equations, the convolution product is taken over the log-lattice, see Eq. 3. 189

4.4. Convection onset 190

Convection is an instability, so it sets-up at a certain critical value of the parameter 191

Rac. Detailed computation of this parameter is performed in [19] for the case F = 0. In 192

a nutshell, we assume that we are very near the threshold, so that deviations from the 193

“equilibrium state” u = θ = 0 are small. This will allow us to neglect all non-linear terms in 194

the equations 14. Then, we look for solutions behaving like: 195

u(k, t) = (u(k), v(k), w(k))eσt,

p(k, t) = p(k)eσt,

θ(k, t) = θ(k)eσt,

(15)

where σ is the growth rate of the instability: if σ has a negative real part, then all pertur- 196

bation decay, while the instability develop when the real part of σ > 0. Plugging this 197

decomposition into eq. (14) and neglecting non-linear terms, we get: 198

ikxu + ikyv + ikzw = 0,

σu − v
Ro

= −ikx p −
√

Pr
Ra

k2u,

σv +
u

Ro
= −iky p −

√
Pr
Ra

k2v,

σw = −ikz p −
√

Pr
Ra

k2w + θ,

σθ = w − 1√
Ra Pr

k2θ.

(16)

This represents a linear, homogeneous system of equations in the variable (u, v, w, p, θ). 199

If we want this system to have other solutions than (0, 0, 0, 0, 0), we must impose the 200

determinant of the system to be zero, which provides us with an expression linking σ, k 201

and the parameters of the system. Taking Pr = 1 for simplicity 2, we get: 202

σ2 + 2k2 Ra−1/2 σ +
k4

Ra
+ (1 + µ2)−1(

µ2

Ro2 − 1) = 0, (17)

2 The general case leads to the same conclusions with different prefactors.
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where µ2 = k2
z/(k2

x + k2
y). This is a second order equation for σ, there are therefore two 203

solutions. Since the prefactor of σ is positive, it means that the sum of the two solution is 204

negative. To ensure that there exists at least one solution with a positive real part, we must 205

then ensure that the product of the solution, given by term independent of σ is negative. To 206

study the consequences of this condition, we consider two limiting cases. 207

4.4.1. Onset at zero rotation 208

We first consider the case with no rotation, Ro → ∞. Then, the condition for instability 209

is: (1+µ2)k4

Ra − 1 < 0. Since (1 + µ2)k4 is minimum when kmin = (2π, 2π, 2π), where kmin 210

is the minimal wavenumber, this is achieved whenever Ra > 3
2 k4

min. In our simulations, 211

kmin ∼ 2π
√

3, this gives Rac ∼ 2.1 104. 212

4.5. Onset at large rotation 213

In the limit of large rotation, Ro → 0 and the condition for instability now reads: 214

k4

Ra + (1 + µ2)−1( µ2

Ro2 − 1) < 0. Introducing α = k4/Ra, we may further simplify the 215

condition by noting that at the instability threshold µ is close to 1, and k2
z ≪ k2

x + k2
y ∼ 216

Ra. The condition for instability then becomes Ra3/2 > 4π2 E−2 1
(1−α)

√
α

. The instability 217

criterion is given by the condition that there exists at least α such that the equality is satisfied 218

i.e. when the minimum of the r.h.s. of the condition of instability is achieved. This is true 219

for α = 1/3, resulting in Ra3/2 > 4π2 E−2 3
√

3
2 , giving a critical Rayleigh number 220

Rac = (6π2
√

3)2/3 E−4/3 ≈ 22 E−4/3 . (18)

We note that this eq. is similar to eq. 184 p.106 of [19]. This means that the larger the 221

rotation (the smaller E), the more difficult it is to get convection: rotation stabilizes the flow. 222

4.6. Phenomenology when F = 0 223

In the case F = 0, there are a number of simple physical argument that provide scaling 224

laws relation between the non-dimensional numbers. 225

4.6.1. Non-rotating case 226

We first consider the non-rotating case, E = ∞. In this case, the phenomenology of 227

homogeneous convection distinguishes 3 regimes for the behavior of the heat flux, as a 228

function of the forcing [11,16]: 229

(I): when Ra ≤ Rac, we are in the laminar case. The fluid is at rest, < uzθ >= 0 and 230

the heat flux is only piloted by the Fourier law, so that J = κ∆T/H and Nu = 1. 231

(II) : above the critical threshold for instability, when Ra >∼ Rac, convection sets in, 232

< uzθ > starts becoming positive, and we have Nu ∼ (Ra−Rac)χ, where χ is an exponent 233

characterizing the (super)-critical transition to convection. 234

(III) : when Ra ≫ Rac, the turbulence become fully developed, and we are entering 235

an “ultimate” regime (also called Spiegel regime), in which the heat flux does not depend 236

anymore on the viscosity or the diffusivity. In that case, we have Nu ∼ (Ra Pr)1/2 [20–22] 237

and Re ∼ (Ra / Pr)1/2[23]. This regime is very difficult to observe in DNS, because of 238

the need for high resolutions, to be able to cope with Ra ≫ Rac. In the atmosphere Ra is 239

typically of the order of Ra ∼ 1018−22 so we expect the atmosphere to be in this ultimate 240

regime. 241

Note that in the case where boundaries are present, there is the possibility of an inter- 242

mediate regime (the Malkus regime), where the heat flux is piloted by the boundary layers 243

and Nu ∼ Raγ, γ ∼ 1/3. This regime is frequently observed in laboratory experiments, but 244

it does not apply to homogeneous turbulence, because of the absence of boundaries. 245
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4.6.2. Rotating case 246

Let us consider the case with rotation. As shown by many studies, the rotation has a 247

stabilizing influence on the flow, so that the threshold for instability now increases with 248

increasing rotation. Detailed studies show that Rac ∼ E−4/3 [24]. In addition, the rotation 249

modifies the structure of the convective cells, that become aligned with the vertical axis in 250

the case of strong rotation. This changes profoundly the heat transfer. To account for this 251

effect, [25] suggest performing the same phenomenology as in the non-rotating case, using 252

Ra E4/3 instead of Ra. The two turbulent regimes in the presence of rotation are now: 253

(R1) in the presence of boundaries, a rotating Malkus regime, where the heat flux is 254

independent of the height of the cell, and in which Nu ∼ Ra3 E4. This regime cannot be 255

present in HRB. 256

(R2) at Reynolds number larger than the threshold for onset of turbulence in the 257

boundary layers, or when boundaries do not limit the heat flux, like in HRB, a rotating 258

ultimate regime, also called Geostrophic Turbulent (GT) regime. This regime is then found 259

by stating that the relation between Nu and Ra E4/3 and Pr should be such that the energy 260

flux J is independent of κ and ν, resulting in [25]. 261

Nu ∼ Ra3/2 E2 Pr−1/2 . (19)

An interesting property of the geostrophic turbulent regime is that it can be expressed as a 262

universal law, independent of the rotation and the Prandtl number, using the “turbulent” 263

coordinates [25]: 264

Nu∗ =
Nu E

Pr
,

Ra∗ =
Ra E2

Pr
.

(20)

In that case, the relation (19) becomes: 265

Nu∗ ∼ Ra3/2
∗ . (21)

In this regime, we further have Re ∼ Ra E2 / Pr[23]. 266

4.6.3. Log-lattice simulation details 267

To simulate these equations, we can perform log-lattice simulations. The minimum 268

wave vector of the grid is set to k1D
min = 2π to match a simulation on a box of size L̃ = 1. 269

Note that the absence of wavenumbers k = 0 in our simulation means that we will 270

not be able to capture large-scale vertical structures that are often observed in rotating 271

turbulence. However, as shown below, this does not seem to affect the scaling laws of 272

the transport of heat and momentum that we observe. The grid size N (such that the 273

maximum wavenumber in the x, y or z direction is proportional to λN) is then set to reach 274

the dissipative scale for both velocity and temperature. We have verified that the size of 275

the grid for 3D simulations (N ≥ 13) does not affect the mean value of the observables 276

Nu, Re, . . . , which are already converged for grids of size N ≥ 6. However, the tail of the 277

pdfs does depend on N. Another 3D simulation set at N = 20 (not shown here, both vs Ra 278

and Pr) displays the same scaling laws as the N = 13 case, confirming this analysis. 279

5. Results 280

5.1. Non-rotating case 281

As reference, we have performed simulations without rotation, for various Ra up to 282

1025 at Pr = 1 and Pr = 0.7 and for F = 1. Note that present direct numerical simulation 283

for these Prandtl number are limited to Ra ≈ 1015 [26]. The resulting heat transfer Nu 284

as a function of Rayleigh-number Ra is shown in fig. 2. In that case, we observe that the 285

convection starts as Rac = 6 × 105, which is larger than the value predicted by the linear 286
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theory at F = 0, and observed in previous log-lattice simulations [11]. This means that 287

friction stabilizes the convection in the non-rotating regime. In addition, we observe a near 288

onset regime Nu ∼ (Ra−Rac)3/2, then turning into an asymptotic regime where Nu ∼ 289√
Ra. This regime itself splits in two distinct regimes, characterized by the same scaling 290

law Nu ∼ Ra1/2, but with very different amplitude: (i) a laminar regime, characterized by 291

low fluctuations of the heat transfer. This laminar regime is well-fitted by an empirical law 292

Nu = A(Ra−Rac)
3/2/(Ra / Rat +1), (22)

where A = 7, Rac = 5 × 105 is the critical number for convection onset and Rat = 5 × 106
293

is the transition number from near-onset to asymptotic regime. This laminar regime is 294

followed by (ii) a turbulent regime, with much larger fluctuations. Typical time behavior of 295

the heat transfer in the two regimes is displayed in fig. 3 which showcases both regimes. 296

The laminar regime is stable up to Ra ≈ 1012, and unstable above: if we wait long enough, 297

the solution jumps from the laminar regime to the turbulent regime, as illustrated in fig. 3. 298

Looking at Nu as a function of time in this regime in fig. 3, we observe that the simulation 299

first follows a rather long evolution along the laminar regime, before suddenly transitioning 300

towards the turbulent regime as an instability develops, increasing its energy by several 301

orders of magnitude in the process. 302

5 10 15 20 25

0

5

10

15

Figure 2. Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 0.7
(circle) and Pr = 1 (squares). The dotted line corresponds to the empirical law: Nu =

7(Ra−Rac)3/2/(Ra / Rat +1), with Rac = 6 × 105 and Rat = 5 × 106 that connects the near-
convection onset regime to the asymptotic law Nu ∼ 20

√
Ra for large Ra, corresponding to asymptotic

non-rotating ultimate regime scaling. This regime is itself split into a laminar regime (open symbols)
and a turbulent regime (filled symbols).
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Figure 3. Non-dimensional heat transfer Nu versus time t for Ra = 3.46 · 1011. The flow starts in a
laminar regime, then abruptly transitions to a turbulent regime.

5.2. Rotating case 303

5.2.1. Parameter space and critical Rayleigh number 304

We turn now to the case with rotation. Figure 4 shows the parameter space we have 305

explored, with E ranging from 10−9 to 10−1 and Ra up to 1014. In this range of parameters, 306

we observe typically three types of behaviors: (i) conductive behaviors, where both velocity 307

and temperature fluctuations are zero, and Nu = 1. These cases are reported as white 308

symbols on fig. 4; (ii) transitional regimes, where velocity and temperature fluctuations 309

are decaying very slowly but steadily, along with Nu over the time of simulation, so that 310

asymptotically, they are likely to converge to the conductive limit. The typical timescale to 311

reach this limit increases as E decays, and Ra increases. To save computational time, we 312

have stopped the simulation before reaching the limit for E ≥ 10−6, but have reported this 313

points as yellow points on fig. 4; (iii) convective regimes, where both velocity and RMS 314

velocities reach a stationary state; these points are reported as black points in fig. 4. This 315

representation allows seeing clearly the stabilizing influence of rotation on the convection 316

threshold. In the asymptotic regime of large rotation, E ≪ 1, such influence is very-well 317

described by the prediction of the linear theory at F = 0, Eq. 18, which is reported as a 318

red line on the diagram. This means that, as rotation increases, the friction becomes less 319

important in the dynamics. 320
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Figure 4. Parameter space covered by our log-lattices simulations at Pr = 0.7. The color of the
symbols codes the 3 possible regimes: conductive (white), transitional (yellow) and convective
(black). The red line is the theoretical asymptotic prediction given by Eq. (18). The magenta line
is the theoretical convection threshold in the absence of rotation Ra = 6 × 105. The green line has
equationRa = 0.06E−2 and delineates regions of the parameter space where turbulent is influenced by
rotation (below the line) or not influenced by rotation (above the line), as diagnosed by the behavior
of the kinetic energy dissipation, see fig. 8. The geostrophic turbulent regime is observed in between
the red and the green-line.

5.3. Influence of friction 321

To elucidate this observation, we computed the ratio of the kinetic energy dissipated 322

by friction FU2 to the kinetic energy dissipated by in the flow by viscous processes ϵu. It 323

is reported in fig. 5. We see indeed observe two regimes: one at low value of Ra < 1011, 324

where the friction dominated the dissipation and one at larger Ra > 1011 where the friction 325

is negligible. We will see below that this induce two different regimes termed "laminar" 326

and "turbulent". In addition, we observe that as the rotation becomes larger, the influence 327

of friction decreases. 328
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Figure 5. Ratio of the kinetic energy dissipated by friction FU2 to the kinetic energy dissipated by
viscous processes ϵu, as a function of the Rayleigh number Ra, and the Ekman number E. The points
are color-coded by log 10(E). The friction dominates for low-rotation and for Ra < 1011.

5.3.1. Laminar vs turbulent regime 329

Figure 6 reports the heat transport Nu as a function of Rayleigh Ra and Ekman number 330

E. One sees that larger Ekman numbers correspond to smaller heat transport, at a given Ra. 331

However, the rotation does not suppress the existence of the laminar to turbulent transition, 332

already present in the non-rotating case. Like in the non-rotating case, it is happening when 333

the vertical Reynolds number exceeds urms
z L/ν = Rec = 104, corresponding to Ra ∼ 1012, 334

with a bi-stability occurring around Ra = 1011, see fig. 7. This critical value separates two 335

different scaling regime: one such that Re ∼ Ra1/2, and one such that Re ∼ Ra. 336
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Figure 6. Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 0.7 for simulations
of rotating HRB simulations on log-lattice. The symbols are colored according to their Ekman number
E. The stars traces the conductive regime. The open symbols trace the laminar regime, while the filled
symbol trace the turbulent regime. The rotation dominated regimes are tagged by a black (respectively
white) square for the laminar (respectively turbulent) regime. The black dashed line is Nu = 20

√
Ra,

corresponding to asymptotic non-rotating ultimate regime scaling. The red dotted line is Nu ∼ Ra3/2

corresponding to the geostrophic turbulent regime, see fig. 13 for an exact representation of the
corresponding scaling law.
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Figure 7. Vertical Reynolds number Re =
√
< u2

z >H/ν as a function of Rayleigh number Ra in
3D for Pr = 0.7 for simulations of rotating HRB simulations on log-lattice. The symbols are colored
according to their Ekman number E. The open symbols trace the laminar regime, while the filled
symbol trace the turbulent regime. The rotation dominated regimes are tagged by a black (respectively
white) square for the laminar (respectively turbulent) regime. The black (respectively red) dashed
line follows the equation y ∼ x1/2 (respectively y ∼ x1).

5.3.2. Influence of rotation and onset of rotation dominated regimes 337

The influence of rotation onto the turbulence is well documented (see e.g. [27,28]), and 338

is characterized by a decrease of the efficiency of the transport properties with respect to 339

the non-rotating case. For the case of the heat transport, this is already clear from fig. 6, as 340

already discussed. In the case of the turbulent kinetic energy dissipation ν < (∇u)2 >, it 341

is known that the decrease is proportional to the vertical Rossby number, Roz = uz/2HΩ 342

when Roz goes to zero [28]. We indeed observe this effect in our simulations, as illustrated in 343

fig. 8, where the non-dimensional turbulent kinetic energy dissipation ϵu = ν < (∇u)2 > 344

H/U3 is shown, as a function of the vertical Rossby number. We see that in both the 345

laminar and turbulent regime, the energy dissipation indeed decreases for sufficiently 346

low-vertical Rossby number. In the turbulent regime, the decrease is indeed proportional 347

to Roz, indicated by the black dotted line. In the laminar regime, however, the decrease is 348

milder, going like Ro1/2
z . In the turbulent case, the rotation dominated regime starts below 349

Roz ∼ 0.1, while in the laminar case, it starts at Roz ∼ 0.03. We can use this change of 350

regime to tag the simulations that are or are not influenced by the rotation. We denote them 351

below by a white dot inside the filled symbol, for the turbulent regime, and a black dot 352

inside an open symbol, for the laminar regime. Reporting this on figs. 6 and 7, we see that 353

this regime corresponds to lower heat transport, and smaller vertical Reynolds number, 354

in agreement with the general findings that rotation impedes heat transport and vertical 355

velocities. Note that the vertical Rossby number scales like the global Rossby number, 356

following Roz ∼ Ra1/2 E in both the laminar and the turbulent regime, see fig. 9. 357
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Figure 8. Non-dimensional energy dissipation ϵu = ν < (∇u)2 > H/U3 = Ra Nu Pr−2 /(Ra Pr)3/2

vs vertical Rossby number Roz in 3D for Pr = 0.7 for simulations of rotating HRB simulations on
log-lattice. The symbols are colored according to their Ekman number E. The open symbols trace the
laminar regime, while the filled symbol trace the turbulent regime. The rotation dominated regimes
are tagged by a black (respectively white) square for the laminar (respectively turbulent) regime. .
The black (respectively red) dotted line corresponds to ϵu ∼ Roz (respectively ϵu ∼ Ro1/2

z ), while the
black (respectively red) dashed line correspond to ϵu = 3.7 (respectively ϵu = 1).
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Figure 9. Vertical Rossby number Roz vs "turbulent" Rayleigh number Ra E2 in 3D for Pr = 0.7 for
simulations of rotating HRB simulations on log-lattice. The symbols are colored according to their
Ekman number E. The open symbols trace the laminar regime, while the filled symbol trace the
turbulent regime. The rotation dominated regimes are tagged by a black (respectively white) square
for the laminar (respectively turbulent) regime. The black (respectively red) dashed line follows
0.4 Ra1/2 E (respectively 0.04 Ra1/2 E).

5.3.3. Temperature fluctuation and anisotropy 358

Another interesting indicator of the influence of rotation on convection is given by the 359

behavior of the temperature fluctuations, displayed in fig. 10. In the laminar case, they are 360

plateauing at a low value (less than 0.01) as Ra increases, showing that the dynamic is indeed 361

laminar. The rotation tends to even decrease the size of the fluctuations. In the laminar 362

case, the temperature fluctuations are increasing with Ra, showing that convection is more 363

and more vigorous, even so large rotation tends to somehow impede the development of 364

too large fluctuations. The rotation also influences the anisotropy of the turbulence, as seen 365

in fig. 11. Both in the laminar and turbulent case, the anisotropy is well above the value 366

1/2, that would correspond to a situation where kinetic energy is split evenly between 367

motions along and perpendicular to the rotation axis. Due to the special nature of our 368

projection, we cannot get a meaningful representation of what this result means in the 369

physical space. It might however be interpreted as the influence of strong up (respectively 370

down)-drafts that are observed in direct numerical simulations to carry the heat from 371

bottom to top (respectively the cold fluid from top to bottom). The values we obtain here 372

for the anisotropy are much larger to what is usually observed in simulation or experiment 373

of RB convection with boundaries, but they are compatible with observation of radiative 374

convection [29] or convection with no-slip boundary conditions [25], that observe the 375

formation of very extended plumes extending towards the whole bulk of the flow. The 376

decrease of anisotropy observed at decreasing E can be connected with the stabilizing 377

influence of rotation, that impedes vertical fluctuations [27]. 378
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Figure 10. Temperature fluctuations θrms =
√
< θ2 > vs Rayleigh number Ra in 3D for Pr = 0.7 for

simulations of rotating HRB simulations on log-lattice. The symbols are colored according to their
Ekman number E. The open symbols trace the laminar regime, while the filled symbol trace the
turbulent regime. The rotation dominated regimes are tagged by a black (respectively white) square
for the laminar (respectively turbulent) regime.
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Figure 11. Velocity anisotropy
√
< u2

z >/
√
< u2 > vs Rayleigh number Ra in 3D for Pr = 0.7 for

simulations of rotating HRB simulations on log-lattice. The symbols are colored according to their
Ekman number E. The open symbols trace the laminar regime, while the filled symbol trace the
turbulent regime. The rotation dominated regimes are tagged by a black (respectively white) square
for the laminar (respectively turbulent) regime.

5.3.4. Laminar and turbulent scaling laws and GT regimes 379

The laminar regime starts from the convection onset. It is therefore likely that it 380

is influenced by near onset dynamics. A natural idea is then to try to see whether it 381

also follows the near-onset scaling law of the non-rotating case, Eq. (22), albeit with Rac 382

being replaced by its rotating value 22 E−4/3 and Rat being replaced by B E−4/3, where the 383

constant B needs to be determined. With this hypothesis, we then find that in the laminar 384

regime, Nu E2/3 should be a function of Ra E4/3, where the function satisfies Eq. (22), with 385

A = 7, Rac = 22 and Rat = 5 × 102, see fig. 12. The turbulent regime corresponds to large 386

Reynolds number, in which viscosity and diffusivity should not play a role anymore. It is 387

then natural to represent it in the turbulent variable Nu E and Ra E2 (where we have omitted 388

the Pr dependence, since it a constant in all our data set), which is done in fig. 13. This 389

representation indeed collapses the data on two different scaling laws: one with exponent 390

3/2 for regimes influenced by rotation -this is the GT regime- and one with exponent 1/2 391

corresponding to the turbulent regime not influenced by rotation. The precise location in 392

parameter space where the GT regime occurs can be computed using the fit of the vertical 393

Rossby number as a function of Ra E2, see fig. 9. The condition Roz < 0.1 then translates 394

into the condition Ra ≤ 0.06E−2, which is the green line reported on fig. 4. The GT regime 395

is then to be found in-between the blue and the green line, which is the region where we 396

concentrate additional numerical simulations. 397
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Figure 12. Universal law governing the heat transfer in the laminar regime Nu E2/3 as a function of
Ra E4/3 in 3D for Pr = 0.7 for simulations of rotating HRB simulations on log-lattice. The symbols
are colored according to their Ekman number E. The open symbols tagged by a black square trace the
rotation dominated regime, while the open symbols trace the rotation independent regime. The red
dotted line follows Eq. 22, whith A = 7, Rac = 22 and Rat = 5 × 102.
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Figure 13. Universal law governing the heat transfer in the turbulent regime Nu E as a function of
Ra E2 in 3D for Pr = 0.7 for simulations of rotating HRB simulations on log-lattice. The symbols are
colored according to their Ekman number E. The symbols tagged by a white square trace the rotation
dominated regime, while the filled symbols trace the rotation independent regime. The black dotted
(respectively dashed) line follows the equation y ∼ x3/2 (respectively y ∼ x1/2).

6. Discussion 398

We have shown that projection of geophysical equations of motion allow achieving 399

realistic values of parameters, at a moderate cost. This allows to perform many simulations 400

over a wide range of parameters, thereby leading to general scaling laws of transport 401

efficiency that can then be used to parametrize the turbulent transport in general climate 402

models for Earth or other planets. We have illustrated this process using the equation 403

describing the heat transport in a dry atmosphere, to obtain the scaling laws for onset of 404

convection as a function of rotation, and confirmed the theoretical results Rac ∼ E−4/3 over 405

a wide range of parameters. We have also demonstrated the existence of two regimes of 406

convection, one laminar extending near the convection onset, and one turbulent, occurring 407

as soon as the vertical Reynolds number reaches a value of 104. We have derived general 408

scaling laws for these two regimes, both for transport of heat, dissipation of kinetic energy, 409

and value of the anisotropy and temperature fluctuations. The set-up we have used here 410

is far from reproducing the full complexity of the atmosphere, as it models the friction at 411

the bottom with a simple law, and ignores the moist dynamics. We plan to include these 412

features in a future work. Finally, it is not clear how the projection of the dynamics on 413

log-lattice influences the results we are deriving. It is quite remarkable that the procedure 414

is able to capture the scaling laws, since we recover here some results already obtained 415

in experiments [29] numerical simulations [25] of convection without boundary layers, 416

albeit with different prefactors. This of course has some important implications when 417

translating these scaling laws as parametrization in models. However, if we believe that the 418

scaling laws themselves are robust, it only takes comparison with a few direct numerical 419

simulation to recalibrate the constants and turn our laws into useful parametrization. 420
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9 - Conclusions and perspectives

In this PhD, through the use of Log-lattices, a new framework developped by Cam-
polina & Mailybaev, we studied various properties of turbulence.

9.1 . Technical aspects of Log-lattices

Due to the recent nature of LL, some properties fall in the category of technical aspects.
This has to be understood as "Can LL reproduces this feature of real flows?".
Throughout our journey, we investigated the presence of intermittent features in Log-
lattices. Through a 1D comparison with the SABRA shell model, we showed that n-D LL,
with λ = ϕ, share the same characteristics that lead to intermittency in both the SABRA
and GOY model. In addition, we extracted 1D structure functions exponents highlighting
deviation from the Kolmogorov scaling and therefore, intermittency on LL. The real chal-
lenge lies in the extension of those results in upper dimensions as n-D LL (n > 1) can be
understood as a collection of weakly coupled shellmodels. Therefore, the naive approach
of summing the contribution of every mode lying in a shell leads to an averaging effect
that effectively kills the strong fluctuations. It is then necessary to wisely choose the defi-
nition of the structure functions in order to avoid excessive averaging. Unfortunately, due
to time constraint, this part of the work is left for the hopefully near future as it is still an
on-going piece of work.
To make full use of the available resolution that offers LL, we used the analiticity-strip
method to track the position of singularities, in the complex plane, of the flow. This
method relies on the fitting of the exponential dissipation of the energy spectrum. Yet,
it is known that shellmodels exhibit exponential stretching in the dissipative range, im-
peding the proper fitting of the dissipation. Through a numerical analysis, we showed
that unlike shellmodels, LL presents an exponential dissipation without stretching. How-
ever, due to the high available resolutions, one has to be careful as to only fit well-resolved
modes (according to CFL conditions) in order to obtain meaningful results. We success-
fully derived a fitting procedure, able to fit the whole spectrum including both the inertial
and dissipative domains. By doing so, we highlighted the presence of small bottleneck
effects, aggravated by the use of hyperviscosity that slightly change the shape of the en-
ergy spectrum in the transition range between the two previously mentioned domains.
This result is interesting as it allows for a better extraction of exponents in the context
of intermittency. Indeed, a complete fitting of the structure functions leads to a more ac-
curate value of the slopes, getting rid of the possible yet small effects of the exponential
dissipation.

9.2 . Log-lattices as a tool for mathematicians

The development of this fitting procedure and the huge available resolutions that LL
offers allows for the study of singularities through the fitting of the dissipative range. This
method, developed by Frisch&Morf, was first performed onDNSbut quickly abandonned

133



due to the lack of resolution, impeding the good estimation of the δ prefactor in the ex-
ponential decay. Resolution no-longer being a problem on LL, we extracted the values
of δ in various scenarios, highlighting the development of blowup solutions as δ → 0 in
both inviscid 1D Burgers equation and inviscid 3D Navier-Stokes. The addition of a vis-
cous dissipation repels the singularity, preventing the collapse of the singularity onto the
real axis therefore preventing the formation of blowup solutions. Yet, we showed that
for hypodissipative processes with exponent γ < 1/3, the dissipation is no longer strong
enough to repel the singularity and viscous blowups start to develop. This study high-
lights the possibilities that offers LL for the study of singularities and more generally of
phenomena requiring higher resolutions than the current DNS.

9.3 . Log-lattices as a tool for physicists

The other part of this PhD focuses on applying LL to the study of various phenomena.
Asmentionedbefore, we investigated the link between the development of singularities in
the flow and blowup scenarios in 1D Burgers equation and 3D Navier-Stokes. We showed
that the addition of viscosity prevents the development of blowups by repelling the sin-
gularity. However, in the case of hypoviscous dissipation, for γ < 1/3, the dissipative
process is no longer able to repel the singularity and blowups can be observed.

This work led us to wonder if singularities and blowups could be observed in presence
of a forcing term. To answer this question, we built, following the work of Gallavotti, a Re-
versible Navier-Stokes equation, that conserves the total kinetic energy through a time
dependent viscosity. By doing so, we obtain a time reversible system that conserves en-
ergy even in presence of a forcing term. We showed that this system exhibits two phases,
as previously highlighted in small DNS, one unstable and one stable. In the former, per-
forming RNSE simulations with adaptative grid size leads to the formation of blowups
in finite time with exponents that differ from the usual Euler blowup. We showed that
these new exponents actually depend on the efficiency E , ratio of the stored kinetic en-
ergy over themechanical injected energy. Such construction allows for the observation of
energy spectra with exponents h ranging from 0 to 1/3, 1/3 being the usual NSE exponent,
predicted by KG41. The use of LL allowed to make some preliminary assumptions about
the link between NSE and Euler through a whole range of unstable solutions, stabilized
through a stochastic procedure. We expect to observe the same trend using the same
procedure in DNS, at smaller resolutions.

The existence of unstable solutions leads to an instability associated to two attractors
between which the system can oscillate. Upon defining the two attractors using the pre-
viously mentioned δ, we showed that there seems to exist a critical efficiency E∗ above
which the system never departs from the warm state (introduced by Shukla et.al), char-
acterized by a null value of δ. The existence of this critical efficiency and the shape of ⟨δ⟩
led us to investigate this transition using the framework of phase transitions, highlighting
the existence, in the limit of infinite grid size, of a Landau mean field second order phase
transition.

Finally, we investigated the conjecture of Gallavotti, stating an equivalence of ensem-
ble betweenNavier-Stokes equations and its reversible counterpart. The conjecture holds
true in the both phases, up to a certain threshold depending on Rr. Therefore, one can
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obtain interesting informations about NS using its time reversible counterpart, on which
usual statistical mechanics can be applied. To illustrate this property, we succesfully ap-
plied the Gallavotti-Cohen fluctuation dissipation theorem to RNS simulations extracting
values of σ. Although σ usually (in the GCFT) refers to the phase contraction rate, it is still
interesting to try to link it to other physical quantities of interest such as energy dissipa-
tion, temperature... Yet, further study is needed to better establish and understand this
link. In addition, the GCFT was also successfully applied to NSE simulations, in presence
of truncature effects, it is still unclear if these results extend to fully resolved NSE.

The last part of this thesis concerns the application of LL to atmospheric flows, high-
lighting the possibilities that Log-lattices offer in the context of geophysics, where resolu-
tion is extremely important.

9.4 . Perspectives

Due to time constraint, some of my work is left unfinished. The investigation of in-
termittency on n-D (n > 1) LL is still on-going as one must properly define the structure
functions in order to avoid averaging effects over non-correlated modes. In addition, I
will pursue my work on the GCFT theorem, more specifically on the link between σ and
other quantities. As only a small part of my work is currently published, I will also focus
on writting several articles on the topics presented in this PhD.

The framework being still new, the investigation of its limitations and of the fields
to which it could be applied is still on going. During this¨PhD, Log-lattices prooved to
be a powerful tool to study the Reversible Navier-Stokes equation but also atmospheric
flows. In addition, in his PhD, Amaury Barral showed that thanks to their huge resolu-
tions, Log-lattices also allow for the study of the ultimate regime in homogenous Reyleigh-
Bénard (55; 56). Furthermore, some other properties and flaws of themodel were studied
highlighting the absence of Rossby wave resonance.

It is important to note that Log-lattices are a class of statistical models that shares
similaritieswith 1D shellmodelsmeaning that theremight not be an exact correspondance
between the observations made in LL and in DNS. Still, it appears as a remarkable tool
to study properties, yet out of reach of current DNS, that might motivate further studies
using other modeling methods.
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10 - Synthèse en français

Introduction

La dynamique des fluides simples est décrite par l’équation de Navier-Stokes:
∂tu+ (u ·∇)u = −∇p+ ν∆u,

∇ · u = 0.

En l’absence de viscosité, appelée ν, le système est réversible dans le temps car il est
laissé invariant par la transformation T : t→ −t;u → −u. L’ajout de la viscosité entraîne
une dissipation d’énergie au travers du terme ν∆u. Il s’ensuit que l’équation n’est plus
laissée invariante par la transformation T . La dynamique des fluides visqueux est alors
intrinsèquement irréversible, en raison de la présence d’une viscosité constante ν qui
brise la symétrie temporelle. Les écoulements turbulents sont donc intrinsèquement des
systèmes hors équilibres, un domaine d’étude plutôt nouveau. De ce fait, ils ne peuvent
donc pas être étudiés avec précision en utilisant la plupart des principes physiques bien
connus, ceux-ci ne s’appliquant qu’aux systèmes à l’équilibres.

Afin de remédier à ce problème, Gallavotti (1) a introduit une version réversible des
équations de Navier-Stokes, appelée RNSE, rétablissant la symétrie temporelle T : t →
−t;u → −u, au travers de la conservation de l’enstrophie totale obtenue par le biais
d’une viscosité dépendante du temps νr(t). Du fait de la restauration de la réversibilité
temporelle, il est alors possible d’étudier cette nouvelle équation avec les outils usuels de
la mécanique statistique. Un point fondamental de cette équation réside dans la conjec-
ture de Gallavotti (1). Cette dernière affirme que les équations RNS et NS seraient, sous
certaines conditions, statistiquement équivalentes. Cette conjecture est très importante
car les propriétés statistiques de l’équation RNS, trouvées à l’aide de nos outils habituels,
pourraient être transposées à l’équation deNavier-Stokes, là où cesmêmes outils ne fonc-
tionnent plus. Plus précisément, cette conjecture et l’utilisation de l’équation réversible
pourraient éclairer un phénomène déroutant connu sous le nom de dissipation anormale.
Ce phénomène fait référence au comportement de la dissipation d’énergie ϵ des fluides
dans la limite des grands nombres de Reynolds. Un simple coup d’œil à l’Eq. 1 indique une
dissipation d’énergie ϵ proportionnelle à la viscosité ν. Cependant, cette propriété n’est
valable que dans le régime laminaire (c’est-à-dire aux nombres de Reynolds modérés),
alors qu’en atteignant la limite turbulente (c’est-à-dire les nombres de Reynolds élevés),
la dissipation atteint un plateau et devient indépendante de la viscosité. Ce scénario sug-
gère une rupture spontanée de la symétrie par renversement du temps qui pourrait être
étudiée par le biais de l’équation réversible.

L’existence d’une dissipation dans la limite turbulente fait référence à la conjecture
d’Onsager, selon laquelle les solutions de l’équation de Navier-Stokes, non visqueuses,
suffisamment irrégulières pourraient dissiper de l’énergiemêmeen l’absencede viscosité (2).
Contrairement à son équivalent visqueux, l’effet dissipatif des singularités est supposé
se produire au travers de "bursts" de dissipation, un phénomène appelé intermittence.
Une caractérisation empirique de ces solutions dissipatives peut être obtenue grâce à
la théorie multifractale (3). Cette théorie permet de mesurer la probabilité d’apparition
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d’une singularité avec un exposant donné, caractérisant la façon dont les gradients de
vitesse divergent dans la limite inviscide. Les résultats des données expérimentales et
numériques (4; 5; 6; 7; 8) révèlent un large intervalle d’exposants possibles (Fig. 10.1C(h) =
3 − D(h), où D(h) est la dimension de l’ensemble fractal dans la théorie multifractale),
avec une probabilité maximale pour la valeur de Kolmogorov 1/3, et avec des valeurs cor-
respondant à des solutions faibles dissipatives (h < 1/3) ou non-dissipatives (h > 1/3)
des équations d’Euler.

(a) (b)
Figure 10.1: Déviations de KG41 et théoriemultifractale, résultats extraits de la thèse
de Hugues Faller (9). (1a) Exposants des fonctions de structure. Les cercles bleus cor-respondent à des simulations numériques tandis que les carrés rouges sont associés àdes données expérimentales. Les résultats sont obtenus sur des transformées en on-delettes pour lesquelles ζ(3) ̸= 1. Les carrés noirs correspondent donc à lamise à l’échelle
ζ(p)/ζ(3) des carrés rouges. Les étoiles noires correspondent à la mise à l’échelle des ré-sultats expérimentaux de (10). (1b) Spectre multifractale des données expérimentales dela Fig. 1a. C(h) est obtenu par une transformée de Legendre inverse de ζ(p) et correspondà 3−D(h), oùD(h) est la dimension fractale de l’ensemble fractal associé à h.

En 1981, Frisch et Morf (11) ont proposé une méthode de suivi des singularités com-
plexes basée sur l’ajustement de la décroissance exponentielle du spectre d’énergie. Grâce
à l’étude d’un système de Langevin non linéaire à 1D, ils ont mis en lumière le lien possible
entre l’intermittence et l’effondrement des singularités complexes sur l’axe réel générant
des "bursts" de dissipation. Malgré leurs diversesmanifestations, l’observation des singu-
larités reste un véritable défi, tant dans les expériences quedans les simulations numériques,
en raison de la nécessité d’atteindre des nombres de Reynolds extrêmement élevés. En
effet, la complexité des DNS étant d’environ O(Re3), approcher la limite turbulente avec
les DNS reste, pour l’instant, un exploit impossible car Re → ∞. Il est alors nécessaire
d’écarter les plus petites échelles en introduisant une "coupure" (i.e une résolution max-
imale) ayant un impact sur la dynamique des singularités (11). Du fait de ces limitations,
cette méthode a été abandonnée.

Néanmoins, ladissipation anormale et les singularités font toujours l’objet de recherches
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actives. En effet, la conjecture d’Onsager a été récemment prouvée par Buckmeister (12),
qui a construit des solutions faibles de l’équation d’Euler capables de dissiper une quan-
tité finie d’énergie. Le lien exact entre les solutions réelles de l’équation de Navier-Stokes
et cette construction reste cependant à éclaircir.

Dans cette thèse, nous proposons de réaliser des simulations en utilisant les grilles
logarithmiques, un nouveau modèle développé par Campolina & Mailybaev (13). Son es-
pacement exponentiel des modes, dans l’espace de Fourier, permet la réalisation de sim-
ulations à haute résolutions au prix d’une réduction du nombre d’interactions entre les
modes. Cette construction rappelle les shellmodels (GOY (14), SABRA (15), Desnyansky-
Novikov (16)), une classe de modèles 1D utilisant également un espacement exponen-
tiel des modes dans l’espace de Fourier. Ces derniers ont notamment été largement
étudiés (15; 17; 18; 19) 1 car, bien qu’à une dimension, ils compensent le manque de ré-
solution des DNS. Cependant, en raison de l’absence de certaines symétries fondamen-
tales (du fait de leur nature 1D inhérente), ils ne parviennent pas à reproduire certaines
caractéristiques de l’équation de Navier-Stokes (telle que l’intermittence dans le modèle
dyadique). C’est ici que les grilles logarithmiques entrent en jeu, car elles permettent la
réalisation de simulations à n-dimensions, avec une équivalence formelle aux shellmod-
els habituels pour n = 1, tout en conservant la plupart des symétries de l’équation de
Navier-Stokes. Ces caractéristiques nous permettent d’étudier des propriétés encore hors
de portée des DNS actuelles, comme le développement de singularités complexes par la
méthode de Frisch & Morf mentionnée précédemment, mais aussi d’étendre diverses
études sur l’équation de Navier-Stokes réversible, comme par exemple l’existence d’une
transition de phase dans le cas de l’énergie conservée (20) ou la conjecture deGallavotti (1).

Grilles logarithmiques et détails numériques

Avec le développement rapide des ordinateurs, les simulations sont devenues un outil
primordial pour les physiciens afin d’aborder des sujets encore hors de portée des expéri-
ences.

Cependant, la manière la plus traditionnelle et la plus directe d’effectuer des sim-
ulations est plutôt coûteuse. En effet, les simulations numériques directes (DNS) d’un
écoulement simple ont une complexité de l’ordre deO(Re3), rendant fastidieuse la tâche
de simuler les plus petites échelles de ce dernier. Afin surmonter les limitations de réso-
lution des DNS, Campolina & Mailybaev (13) ont proposé un nouveau modèle dans lequel
l’espace de Fourier est discrétisé selon une progression géométrique kn = k0λ

n. Une telle
construction rappelle immédiatement la discrétisation des shellmodels (14; 15; 16) perme-
ttant des simulations à haute résolution en utilisant un nombre limité de modes. La prin-
cipale amélioration des grilles logarithmiques réside dans l’extension de ces shellmodels
à des dimensions plus élevées. Elles permettent donc des simulations d’écoulements 3D
à haute résolutions tout en conservant intégralement les symétries du système.

Dans ce chapitre, nous définirons brièvement les grilles logarithmiques et leurs pro-
priétés. De plus, nous introduirons les différentes grandeurs que nous servirons au cours
de cette thèse, à savoir le spectre d’énergieE(k), l’enstrophie totaleΩ, le transfert d’énergie

1Pour n’en citer que quelques-uns
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inter-échellesΠ(k) et biend’autres... Entre autre, nous introduirons brièvement le schéma
numérique utilisé dans nos simulations.

Singularités et blowup

En 1981, Frisch&Morf (11) ont postulé l’existence de singularités complexes dans les so-
lutions des équations deNavier-Stokes. A l’aide d’un systèmede Langevin non linéaire uni-
dimensionnel simple, ils ont démontré que la dynamique de ces singularités complexes
pouvait être directement liée à l’intermittence, car des bursts de dissipation se produisent
chaque fois qu’une singularité complexe s’approche, dans le plan complexe, de l’axe réel.
Le scénario a ensuite été exploré dans l’équation de Burgers unidimensionnelle - un sub-
stitut 1D de l’équation de Navier-Stokes. Il a été découvert que des singularités réelles
peuvent être observées dans la limite inviscide et se manifester sous forme de chocs,
c’est-à-dire de sauts finis dans la vitesse dissipant de l’énergie en accord avec l’anomalie
de dissipation (23). L’extension de ces résultats à la 3D représente un véritable défi. En
3D, les singularités d’Euler émergent comme des blowups, dont la réalisation pourrait se
produire en temps fini, de la vorticité. L’ajout d’une viscosité ν agit comme un répulsif,
empêchant les singularités d’atteindre l’axe réel en bloquant la croissance infinie de la
vorticité.

Par conséquent, l’observation des singularités nécessite des nombres de Reynolds
élevés (c’est-à-dire de faibles viscosités), impliquant des simulations à haute résolutions
numériques, car la troncature pourrait affecter la dynamique des singularités (11). Cepen-
dant, la puissance de calcul nécessaire à la réalisation de telles DNS est hors de portée des
ordinateurs actuels, entravant les progrès dans ce domaine. C’est là que les grilles log-
arithmiques entrent en jeu. Leur coût numérique modéré, permettant des simulations
dont les résolutions dépassent de loin celles des DNS actuelles, couplé à la méthode de
l’analiticity strip, ouvrent de nouvelles perspectives sur ces questions.

Ce chapitre est décomposé en deux parties, tout d’abord un préambule, illustrant la
pertinence de la méthode de l’analiticity strip dans le cadre des grilles logarithmiques. En
effet, dans certains shellmodels (dont les grilles logarithmiques s’inspirent) la dissipation
d’énergie n’est pas exactement une exponentielle. Cette caractéristique empêchent ainsi
l’application de la méthode de Frisch et Morf. Nous illustrons dans cette sous-partie que
les grilles logarithmiques ne sont pas sujettes à ce phénomène et présentent bien une
décroissance purement exponentielle de l’énergie, pour les modes bien résolus du point
de vue numérique (conditions CFL).

La deuxièmepartie de ce chapitre consiste en un article, actuellement en révision dans
Non-linearity (24). Il s’agit d’un travail collaboratif avec d’autres doctorants du groupe et
les fondateurs des grilles logarithmiques, à savoir C.Campolina et A.Mailybaev.

Dans cet article nous proposons d’étudier le lien entre blowups et singularités en util-
isant la méthode de l’analiticity strip. Nous traiterons tout d’abord le cas 1D de l’équation
de Burgers dans divers scénarios (inviscide, visqueux, hypervisqueux, hypovisqueux)met-
tant en lumière, l’existence de blowups et le développement de singularités dans les cas
inviscide et hypovisqueux (pour un facteur d’hypoviscosité γ < 1/3). Cette même étude
sera ensuite étendue en 3 dimensions à l’équation de Navier-Stokes sur grilles logarith-
miques, confirmant les observations obtenues à une dimension.
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Intermittence sur les grilles logarithmiques

Suite aux résultats du chapitre précédent, indiquant l’existence de blowup dans divers
scénarios, et donc le développement de singularités complexes se rapprochant de l’axe
des réels, nous nous intéressons à l’intermittence, phénomène pouvant naître de la dy-
namique de ces singularités complexes. Nous discuterons donc de l’intermittence sur les
grilles logarithmiques, dans un premier temps d’un point de vue purement statistique
puis au travers de l’étude des fonctions de structure.

L’intermittence, dans le contexte de la turbulence, se réfère à l’existence de "burst"
(i.e augmentation soudaine) de la vorticité. De tels événements extrêmes, bien que rares,
sont considérés comme des causes d’écarts à la théorie de Kolmogorov. Il existe de
nombreuses manifestations de l’intermittence dans les écoulements, des "burst" de dis-
sipation à l’existence d’exposants anormaux pour les fonctions structures. D’un point de
vue statistique, la rareté d’un événement dépend des queues des densités de probabilité
(PDF). En étudiant les statistiques des incréments de vitesse, on observe, en présence d’un
écoulement intermittent, des PDFs dont les queues sont plus larges que celle d’une distri-
bution gaussienne. Par conséquent, un ingrédient clé dans l’observationde l’intermittence
réside dans l’existence de distributions "fat tail" pour les incréments de vitesse. En effet,
les statistiques purement gaussiennes limitent l’existence d’événements extrêmes en ter-
mes d’amplitude et d’occurrence et sont donc, à priori, incompatibles avec l’intermittence.
Dans cette section, nous étudions l’existence de statistiques non gaussiennes dans les
grilles logarithmiques à travers l’existence de corrélateurs non triviaux du quatrième or-
dre.

Les grilles logarithmiques étant formellement équivalente, en 1D, à certains shellmod-
els, nous analysons le caractère intermittent de ces shellmodels avant de traiter le cas
de l’intermittence sur des grilles logarithmique à 1D. Fort des résultats obtenus dans les
cadres des grilles logarithmiques à une dimension pour λ = ϕ, nous proposons d’étendre
l’étude à 3 dimensions et donnons des premières pistes à explorer afin d’approfondir nos
connaissances de ce phénomène sur nos grilles.

Conjecture d’Onsager et existence de solutions faibles

Le chapitre deux a révélé l’existence, ou non, de blowup dans divers scénarios de
l’équation de Navier-Stokes. En cas d’existence, ces derniers se sont tous révélés non
dissipatifs, signifiant une conservation de l’énergie totale et donc la présence de singu-
larités non-dissipatives. Cependant, il est bien connus que dans la limite inviscide, la dis-
sipation moyenne d’énergie devient indépendante du Reynolds. Ce phénomène connu
sous le nom d’anomalie de dissipation suggère une brisure spontanée de la symétrie
par renversement du temps. L’existence d’une telle dissipation, en l’absence de viscosité,
fait l’objet d’une conjecture de Onsager (2), suggérant que des solutions irrégulières de
l’équationdeNavier-Stokes inviscides seraient capables dedissiper de l’énergie en l’absence
de viscosité au travers du développement de singularités.

Cette conjecture a récemment été prouvée par Buckmeister (12), qui a construit à l’aide
de l’intégration convexe, des solutions faibles de l’équation d’Euler. Ces dernières étant
notamment capable de dissiper une faible quantité d’énergie et ce en l’absence de vis-
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cosité. Une caractéristique notable étant un spectre d’énergie évoluant selon E(k) ∝
k−1−2h avec une infinité de valeur possible pour h dans l’intervalle ]0, 1/3[. La construc-
tion de ces solutions reste toutefois ardue et leurs lien avec la véritable équation d’Euler
n’est pas encore parfaitement établi. C’est pourquoi, dans ce chapitre, nous essaierons
de construire des solutions faibles à l’aide de simulations plus traditionnelles.

Les blowups trouvés lors du chapitre précèdent étant tous non-dissipatifs, nous pro-
posons d’utiliser l’équation de Navier-Stokes Réversible, introduite par Gallavotti (1) en
1996, afin de construire des solutions à énergie constante, et ce même en présence de
forçage. Pour se faire, nous rendons la viscosité ν dépendante du temps, de telle façon
qu’à chaque instant l’énergie soit conservée. Une viscosité négative impliquera donc une
création d’énergie, dans le but de compenser la dissipation associée à une autre mécan-
isme. Nous mettrons ainsi en lumière l’existence de blowup en temps fini pour l’équation
d’Euler mais aussi de Navier-Stokes Réversible, et proposons une régularisation stochas-
tique permettant de dépasser le temps de blowup tb.

Instabilité associé à la présence de singularités

Dans ce court chapitre, nous effectuons un bilan des effets des singularités com-
plexes, précédemment étudiés, sur l’équationNavier-Stokes réversible etmontrons l’existence
d’une potentielle transition de phase dans ce nouveau système en introduisant un nou-
veau paramètre de contrôleRr.

Transition de phase dans l’équation de Navier-Stokes Réversible

Suite aux résultats préliminaires obtenus au chapitre précédent, nous proposons d’étudier
la potentielle transition de phase du système. Cette étude vise à compléter des premiers
résultats obtenus sur des petites DNS (20) à l’aide des grilles logarithmiques. Nous mon-
trerons notamment que le système est sujet à une transition de phase du second ordre
dont les exposants dépendent de la résolution. A faible résolution cette dernière est im-
parfaite et les exposants sont, dans la limite de grande résolution, bien décris par une
théorie de champs moyens de Landau. Nos résultats seront confrontés à des résultats
obtenus sur desmodèles plus simples, notamment lemodèle de Leith, unmodèle diffusif
à une dimension.

En outre, nous mettrons en lumière l’existence de lois universelles, en fonction du
paramètre de contrôleRr, pour les simulations de l’équation de Navier-Stokes et de son
équivalent réversible.

Equivalence d’ensemble et statistiques

L’existence de lois universelles, valable pour les deux équations pointe dans le sens
de la validité de la conjecture de Gallavotti (1), statuant une équivalence d’ensemble (i.e
équivalence statistique) entre les deux modèles. A l’aide des grilles logarithmiques, nous
étudions l’équivalence d’ensemble dans les différentes phases précédemment trouvées
et confirmons son existence, pour différentsmodèles de conservation (énergie ou enstro-
phie conservée). Au cours de cette étude, nous étendons notamment des résultats (48),
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obtenus pour l’équation réversible, à enstrophie conservée, dans de petites DNS.
Ayant numériquement démontré la conjecture de Gallavotti (pour nos grilles logarith-

miques), nous proposons d’appliquer le théorème de fluctuation dissipation (Gallavotti-
Cohen) à notre équation réversible. En appliquant ce théorème aux transferts d’énergie,
nous montrons que les statistiques de ces derniers obéissent à la théorie des grandes
déviations et qu’il est alors possible d’extraire une densité de probabilité maîtresse, in-
dépendante de l’intervalle de temps. Une première tentative d’application du théorème
au cadre irréversible (i.e Navier-Stokes) est présentée.

Autres contributions

Ce chapitre comporte les contributions auxquelles j’ai pu participer avec mes collab-
orateurs. N’ayant uniquement les grilles logarithmiques comme lien avec mon sujet de
thèse, elles consisteront en un chapitre à part.

L’article Log-lattices for atmospheric flows montre comment les grilles logarithmiques
peuvent être utilisées pour modéliser des fluides dans le contexte de la géophysique no-
tamment dans le cadre d’écoulement atmosphériques nécessitant de très grandes réso-
lutions. Dans le but de démontrer les capacités de ce nouvel outil, l’article se concentre
sur l’étude de la convection en rotation, retrouvant des résultats déjà obtenus sur des
résolutions plus faibles et apportant, grâce aux grandes résolutions accessibles, de nou-
veaux résultats.

Conclusion et perspectives

Dans cette thèse, nous avons étudié diverses propriétés de la turbulence à l’aide de
grilles logarithmiques, un nouveau modèle de simulations numériques développé par
Campolina & Mailybaev.

Point de vue technique
En raison de la nature récente de ces grilles, certaines propriétés relèvent des aspects

techniques, à comprendre "Les grilles logarithmiques peuvent-elles reproduire cette car-
actéristique d’un écoulement réel?".
Au cours de cette thèse, nous avons notamment étudié la présence de caractéristiques
intermittentes sur les grilles logarithmiques. Grâce à une comparaison 1D avec le modèle
SABRA (shellmodel), nous avons montré que les grilles logarithmiques à n-D, avec λ = ϕ,
partagent les mêmes caractéristiques conduisant à l’intermittence à la fois dans le mod-
èle SABRA et GOY. En outre, nous avons extrait les exposants des fonctions de structure
à 1Dmettant en évidence la déviation de la prédiction de Kolmogorov et, par conséquent,
l’intermittence sur nos grilles. Le véritable défi réside dans l’extension de ces résultats aux
dimensions supérieures, car une grille logarithmique à n-D (n > 1) peut être considérée
comme une collection de shellmodels faiblement couplés. Par conséquent, l’approche
naïve consistant à sommer la contribution de chaque mode se trouvant dans une shell
conduit à un effet de moyennage effaçant les fluctuations fortes. Il est donc nécessaire
de choisir judicieusement la définition des fonctions de structure afin d’éviter un moyen-
nage excessif. Malheureusement, en raison des contraintes de temps, cette partie du
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travail est laissée pour le futur.
Afin d’utiliser pleinement la résolution disponible qu’offre ces grilles, nous avons utilisé
la méthode de l’analiticity strip pour suivre, dans le temps, la position des singularités,
dans le plan complexe, de l’écoulement. Cette méthode repose sur l’ajustement de la dis-
sipation exponentielle du spectre d’énergie. Or, il est connu que les shellmodels présen-
tent une dissipation stretched, ce qui empêche l’ajustement correct du spectre d’énergie
dans la zone dissipative. Grâce à une analyse numérique, nous avons montré que, con-
trairement aux shellmodels, nos grilles présentent une dissipation purement exponen-
tielle. Cependant, en raison de la haute résolution disponible, il faut veiller à n’ajuster
que les modes bien résolus (selon les conditions CFL) afin d’obtenir des résultats signi-
ficatifs. Nous avons dérivé avec succès une procédure d’ajustement, capable d’ajuster
l’ensemble du spectre, y compris les domaines inertiels et dissipatifs. Ce faisant, nous
avons mis en évidence la présence de petits effets de bottleneck, aggravés par l’utilisation
de l’hyperviscosité, qui modifient légèrement la forme du spectre d’énergie dans la plage
de transition entre les deux domaines précédemment mentionnés. Ce résultat est in-
téressant car il permet unemeilleure extractiondes exposants dans le contexte de l’intermittence.
En effet, un ajustement complet de la fonction de structure conduit à une valeur plus pré-
cise de la pente, en se débarrassant des effets possibles de la dissipation exponentielle.

Les grilles logarithmiques pour les mathématiciens
Le développement de cette procédure d’ajustement et les énormes résolutions at-

teignables permettent l’étude des singularités par l’ajustement de la zone dissipative.
Cette méthode, développée par Frisch & Morf, a d’abord été réalisée sur DNS mais a été
rapidement abandonnée en raison du manque de résolution, empêchant une bonne es-
timation du préfacteur δ dans la décroissance exponentielle. La résolution n’étant plus un
problème sur les grilles logarithmiques, nous avons extrait les valeurs de δ dans différents
scénarios, mettant en évidence le développement de solutions blowup lorsque δ → 0dans
l’équation de Burgers 1D inviscide et dans l’équation d’Euler 3D. L’ajout d’une dissipation
visqueuse repousse la singularité, empêchant cette dernière de rejoindre l’axe réel et em-
pêche donc la formation de blowup. Cependant, nous avons montré que pour les proces-
sus hypodissipatifs avec un exposant γ < 1/3, la dissipation n’est plus assez forte pour
repousser la singularité et des blowups visqueux commencent à se développer. Cette
étude met en évidence les possibilités qu’offrent les grilles logarithmiques pour l’étude
des singularités et plus généralement des phénomènes nécessitant des résolutions plus
élevées que les DNS actuelles.

Les grilles logarithmiques pour les physiciens
L’autre partie de ce doctorat se concentre sur l’utilisation des grilles logarithmiques

dans le but d’étudier divers phénomènes. Commementionnéprécédemment, nous avons
étudié le lien entre le développement de singularités dans les écoulements et les scénar-
ios de blowup dans l’équation de Burgers 1D et de Navier-Stokes 3D. Nous avons montré
que l’ajout de viscosité empêche le développement du blowup en repoussant la singular-
ité. Cependant, dans le cas d’une dissipation hypovisqueuse, pour γ < 1/3, le processus
dissipatif n’est plus capable de repousser la singularité et des blowups peuvent être ob-
servés.

Ce travail nous a amené à nous demander si les singularités et les blowups pouvaient
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être observées en présence d’un terme de forçage. Pour répondre à cette question,
nous avons construit, en suivant les travaux de Gallavotti, une équation de Navier-Stokes
réversible (RNS), conservant l’énergie cinétique totale par le biais d’une viscosité dépen-
dante du temps. Ce faisant, nous obtenons un système réversible, conservant l’énergie
en présence d’un terme de forçage. Nous avons montré que ce système présente deux
phases, comme précédemment mis en évidence dans de petites DNS, l’une instable et
l’autre stable. Dans la première, l’exécution de simulations RNS avec une taille de grille
adaptative conduit au développement de blowups en temps finis avec des exposants qui
diffèrent de ceux observés habituellement pour l’équation d’Euler. Ces exposants dépen-
dent de l’efficacité E , rapport de l’énergie cinétique stockée sur l’énergie mécanique in-
jectée. De telles constructions permettent d’observer des spectres d’énergie avec des ex-
posants h allant de 0 à 1/3, 1/3 étant l’exposant usuellement observé pour l’équation de
Navier-Stokes, prédit par KG41. L’utilisation de ces grilles a permis d’émettre quelques hy-
pothèses préliminaires sur le lien entre Navier-Stokes et Euler à travers toute une gamme
de solutions instables, stabilisées par une procédure stochastique. Nous nous attendons
à observer les mêmes tendances en utilisant la même procédure dans les DNS, à des
résolutions plus faibles.

L’existence de solutions instables conduit à une instabilité associée à deux attracteurs
entre lesquels le système peut osciller. En définissant les deux attracteurs à l’aide des δ
mentionnés précédemment, nous avons montré qu’il semble exister une efficacité cri-
tique E∗ au-dessus de laquelle le système ne s’éloigne jamais de l’état dit warm (Shukla
et.al), caractérisé par une valeur nulle de δ. L’existence de cette efficacité critique et la
forme de ⟨δ⟩ nous ont conduit à étudier cette transition dans le cadre des transitions de
phases, mettant en évidence l’existence d’une transition de phase du second ordre, dont
les exposants, dans la limite d’une taille de grille infinie, correspondent à une théorie de
champ moyen de Landau.

Enfin, nous avons étudié la conjecture deGallavotti, énonçant une équivalence d’ensemble
entre les équations de Navier-Stokes et les versions réversibles. La conjecture se véri-
fie dans les différentes phases. Par conséquent, il est possible d’obtenir des informa-
tions intéressantes sur l’équation de Navier-Stokes en utilisant la version réversible, sur
laquelle les outils de la mécanique statistique peuvent être appliqués. Pour illustrer cette
propriété, nous avons appliqué avec succès le théorème de fluctuations-dissipations de
Gallavotti-Cohen aux simulations RNS en extrayant les valeurs de σ. Bien que σ se réfère
habituellement (dans la GCFT) au taux de contraction de phase, il est toujours intéres-
sant d’essayer de le relier à d’autres quantités physiques d’intérêt telles que la dissipation
d’énergie, la température... D’autres études sont encore nécessaires afin d’établir pro-
prement, et mieux comprendre ce lien. En outre, la GCFT a également été appliquée avec
succès à des simulations de Navier-Stokes, en présence d’effets de troncature, il n’est
cependant pas encore clair si ces résultats s’étendent aux simulations de Navier-Stokes
entièrement résolues.

La dernière partie de cette thèse concerne l’application des grilles logarithmiques aux
écoulements atmosphériques, mettant en évidence les possibilités qu’offre ce modèle
dans le contexte de la géophysique, où la résolution est extrêmement importante.

149



Perspectives
En raison de contraintes de temps, certains de mes travaux sont restés inachevés.

L’étude de l’intermittence à n-D (n > 1) sur les grilles logarithmiques est toujours en cours.
En effet, il reste encore à définir correctement les fonctions de structure afin d’éviter l’effet
de moyennage sur les modes non corrélés. En outre, je poursuivrai mon travail sur le
théorème GCFT, plus particulièrement sur le lien entre σ et d’autres quantités. Comme
seule une petite partie de mon travail est actuellement publiée, je me concentrerai égale-
ment sur la rédaction de plusieurs articles sur les sujets présentés dans ce doctorat.

Ce modèle numérique étant encore nouveau, la recherche de ses limites et des do-
maines auxquels il pourrait être appliqué est encore en cours. Au cours de cette thèse,
les grilles logarithmiques se sont révélés être un outil puissant pour étudier l’équation
de Navier-Stokes réversible mais aussi les écoulements atmosphériques. De plus, dans
sa thèse, Amaury Barral a montré que grâce à leurs énormes résolutions, les Log-lattices
permettent également l’étude du régime ultime dans l’équation de Rayleigh-Bénard ho-
mogène (55; 56). En outre, d’autres propriétés et défauts ont été étudiés, mettant notam-
ment en évidence l’absence de résonance des ondes de Rossby.

Il est important de noter que les grilles logarithmiques constituent une classe demod-
èles statistiques qui leur est propre et qui présente des similitudes avec les shellmodels 1D.
Ce qui signifie qu’il pourrait ne pas y avoir de correspondance exacte entre les observa-
tions faites sur les Log-lattices et dans les DNS. Néanmoins, elles apparaissent comme un
outil remarquable pour étudier des propriétés encore hors de portée des DNS actuelles
et pourraient motiver des études plus approfondies de certains phénomènes, en utilisant
d’autres méthodes de modélisation.
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