
HAL Id: tel-04640064
https://theses.hal.science/tel-04640064v1

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models and algorithms for the Hydro Unit Commitment
problem

Alexandre Heintzmann

To cite this version:
Alexandre Heintzmann. Models and algorithms for the Hydro Unit Commitment problem. Computer
Science [cs]. Université de Toulouse, 2024. English. �NNT : 2024TLSEP022�. �tel-04640064�

https://theses.hal.science/tel-04640064v1
https://hal.archives-ouvertes.fr


Doctorat de
l’Université de Toulouse

préparé à Toulouse INP

Modèles et algorithmes pour l'optimisation de la production
hydro-électrique

Thèse présentée et soutenue, le 5 avril 2024 par

Alexandre HEINTZMANN
École doctorale
SYSTEMES

Spécialité
Informatique

Unité de recherche
LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes

Thèse dirigée par
Christian ARTIGUES, Sandra Ulrich NGUEVEU et Cécile ROTTNER

Composition du jury
Mme Claudia D'AMBROSIO, Présidente, CNRS Ile-de-Franece Gif-sur-Yvette
M. Eduardo MORENO, Rapporteur, Universidad Adolfo Ibañez
M. François CLAUTIAUX, Rapporteur, Université de Bordeaux
Mme Sophie DEMASSEY, Examinatrice, Mines ParisTech
M. Christian ARTIGUES, Directeur de thèse, CNRS Occitanie Ouest
Mme Sandra Ulrich NGUEVEU, Co-directrice de thèse, Toulouse INP
Mme Cécile ROTTNER, Co-directrice de thèse du monde socio-économique, EDF Labs

Membres invités
Mme Pascale BENDOTTI, EDF Labs



Abstract in English

The Hydro Unit Commitment problem (HUC) is a difficult problem playing a major role in the schedul-

ing of daily electricity production at EDF. In this thesis, we study different models and algorithms to

solve the special case of the single-plant HUC problem (1-HUC). Studying this case is relevant for the

following reasons. On the one hand, there are real world instances of the 1-HUC problem which cannot

be solved efficiently by current approaches. On the other hand, it makes it possible to study individu-

ally two particular sources of difficulty. One stems from the presence of non-linearities, in particular the

power which is a non-convex non-concave function of the flow and the reservoirs’ volume. The other is

due to the set of hydraulic constraints, specifically the volume minimum and maximum bounds, as well

as target volumes for the reservoirs.

In a first part, modeling alternatives for the non-linear 1-HUC, focusing on the power function, are

proposed. The aim is to identify a model which can be solved efficiently, with a good trade-off between

computational time and precision. The seven proposed modeling alternatives cover a large panel of

modeling families. These models are compared on a set of instances with variations on five features that

impact the solution. This comparative study enables us to identify three efficient types of models: a

model with second order polynomial functions, a model with a piecewise linear function, and a model

using a finite set of flows. As the latter model is similar to the current model at EDF, in the following we

present algorithms dedicated to it.

In the second part, a polyhedral study is proposed to improve the solving approach of the 1-HUC

problem. The idea is to focus on the combinatorial aspects, which means considering the relationship

between the bounds on volumes and the discrete set of flows. For this purpose, we introduce a variant

of the knapsack problem, with Symmetric weight and Chain Precedences (SCPKP). For the SCPKP, we

characterize necessary facet-defining conditions, which are also proven to be sufficient in some cases.

A two-phase branch-and-cut algorithm based on these conditions and on the symmetric aspect of the

SCPKP is devised. The efficiency of this algorithm is then shown experimentally against state-of-the-art

algorithms. The results of this polyhedral study of the SCPKP, as well as the proposed algorithms, are

then extended to the 1-HUC problem.

In the third part, an efficient solving technique based on a graph representation of the 1-HUC prob-

lem is proposed, in particular to account for the hydraulic constraints. It appears that the 1-HUC prob-

lem is a special case of the Shortest Path Problem with Resource Windows (RWSPP). We propose two

graph algorithms. The first one is an exact variant of the A* algorithm, using a dual bound dedicated to

the 1-HUC problem. In comparison with two state-of-the-art approaches, we show numerically that this

algorithm is more efficient for handling a specific case of 1-HUC. The aim of the second algorithm is to

take into account a wider set of hydraulic constraints. The idea is based on the concept of bi-objective

optimization, for which the second objective corresponds to a relaxation of the volume. The advantage

compared to a classical bi-objective optimization is that it is possible to use the minimum and maximum

bounds on the volume to reduce the search space and to guide the enumeration of solutions. We show

numerically, on a large set of real instances, that this algorithm outperforms three state-of-the-art ap-
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proaches. Although this algorithm was designed to solve the 1-HUC problem, it is defined in a generic

way for any RWSPP with a single resource.

3/243



Résumé en français

Le problème de gestion de production hydro-électrique (HUC) est un problème difficile, qui joue un rôle

important dans la gestion de production électrique journalière à EDF. Dans cette thèse, nous étudions

différents modèles et algorithmes pour résoudre un cas particulier du problème HUC à une usine (1-

HUC). Etudier ce cas particulier présente plusieurs intérêts. D’une part, il existe des instances réelles à

une usine mal résolues par les approches actuelles. D’autre part, cela nous permet d’étudier plus spé-

cifiquement deux sources de difficultés séparément. L’une provient de la présence de non-linéarités,

notamment la puissance qui est une fonction non-convexe et non-concave du débit d’eau et du volume

des réservoirs. L’autre est due à l’ensemble des contraintes hydrauliques, notamment des volumes min-

imaux et maximaux ainsi que des volumes cibles des réservoirs.

Dans une première partie, différentes alternatives de modélisation des non-linéarités du 1-HUC,

plus particulièrement sur la puissance, sont proposées. L’objectif est d’identifier un modèle pouvant

être résolu efficacement avec un bon compromis entre temps de calcul et précision. Les sept alterna-

tives proposées couvrent un large spectre de familles de modélisation. Elles sont comparées sur un jeu

d’instances présentant des variations sur cinq caractéristiques qui impactent la résolution. Cette étude

comparative permet d’identifier trois types de modèles pertinents: un modèle avec des fonctions poly-

nomiales de second ordre, un modèle avec une fonction linéaire par morceaux, et un modèle utilisant

un ensemble fini de débits. Ce dernier modèle étant similaire à la modélisation actuelle à EDF, nous

proposons dans la suite des algorithmes dédiés à celui-ci.

Dans une deuxième partie, une étude polyédrale est proposée pour améliorer la résolution du prob-

lème 1-HUC. L’idée est de focaliser sur le coeur combinatoire, ce qui revient à considérer le lien entre

les contraintes sur les volumes et l’ensemble discret des débits. Pour celà, nous définissons une variante

du problème du sac-à-dos avec chaines de précédence et poids symétriques (SCPKP). Pour le SCPKP,

nous définissons des conditions nécessaires de facettes, qui sont aussi prouvées suffisantes dans cer-

tains cas. Un algorithme de branch-and-cut en deux phases s’appuyant sur ces conditions et sur l’aspect

symétrique du SCPKP est mis au point. L’efficacité de cet algorithme est ensuite montrée numérique-

ment face à des algorithmes de l’état de l’art. Les résultats de cette analyse polyédrale du SCPKP, ainsi

que l’algorithme de résolution proposé sont ensuite étendus au problème 1-HUC.

Dans une troisième partie, une technique de résolution efficace est proposée pour prendre en compte

les contraintes hydrauliques en s’appuyant sur la représentation du problème 1-HUC par un graphe.

Cela permet de se ramener à un cas particulier du problème de plus court chemin avec fenêtres de

ressource (RWSPP). Nous proposons deux algorithmes de graphes. Le premier algorithme est une vari-

ante exacte de l’algorithme A*, utilisant une borne duale dédiée au problème 1-HUC. En comparaison

avec deux approches de l’état de l’art, nous montrons numériquement que cet algorithme est plus efficace

pour traîter un cas spécifique du 1-HUC. L’objectif du second algorithme est de prendre en compte da-

vantage de contraintes hydrauliques. Le principe s’appuie sur le concept d’optimisation bi-objectif pour

lequel le second objectif correspond à une relaxation du volume d’eau. L’avantage par rapport à une op-

timisation bi-objectif classique est qu’il est possible d’utiliser les volumes minimaux et maximaux pour
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réduire l’espace de recherche et diriger l’énumération de solutions. Nous montrons numériquement, sur

un grand jeu d’instances réelles, que cet algorithme est plus performant que trois approches de l’état

de l’art. Même si cet algorithme a été conçu pour résoudre le 1-HUC, nous le définissons de manière

générique pour tout RWSPP avec une ressource.
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1Introduction

1.1 Context

Electricity is a commodity for which the world-wide demand grows regularly. Data show that the

yearly electricity consumption has increased by a magnitude of four between 1981 and 2019 [1,55]. In

[55] this growth in demand appears in many sectors. Large electricity providers hence face the challenge

of generating enough electricity to cover this growing demand. Besides, electricity can hardly be stored

at large-scale, meaning that most excess of production is lost. Consequently, the aim is to meet exactly

the demand. Electricité de France (EDF) is one of these large electricity providers, mainly producing

and managing electricity in France. In France, the yearly electricity demand has been stable for the

last decade. Nevertheless, meeting the demand remains a challenge as there is no such stability when

looking at smaller time scales. Figure 1.1 shows the monthly electricity demand and production in

France between January 2007 and November 2023, with data from [90]. In this figure, it clearly appears

that the demand highly varies from a month to another. Similarly, the demand can greatly vary within

a day [22], as there can be a factor two between the lowest and the highest demand during the same

day. These large variations at different time scales make it difficult for electricity providers to meet the

demand. This is particularly true as there is a growing use of renewable energy, some of which can

hardly be controlled. For instance solar and wind energy highly depend on the weather. In France, there

is twice as much use of renewable energy in 2020 than in 2000 [100]. The use of solar and wind energy

has exponentially increased during this twenty-year period. Moreover, for plants using other sources

of energy, there are constraints which may not allow the production to follow the demand, especially

when the latter increases or decreases quickly. Besides, managing the electricity production at large-

scale means managing a large number of plants. For example, at EDF there are more than 600 hydro

plants and 56 nuclear reactors. Moreover, there are multiple sources of energy (nuclear, gas, hydraulic,

solar, . . . ) most of them are processed with units, each being a combination of a turbine and a generator.

Naturally, each type of unit brings its own set of constraints, which must be taken into account. All of

these difficulties lead to an overall excess of production compared to the demand as shown in Figure

1.1.

Planning the electricity production in order to meet a forecast demand is commonly known as the

Unit Commitment Problem (UCP). This problem is solved over a long-term, a mid-term and a short-term
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Figure 1.1: Electricity production and demand in France.

horizon. The long-term UCP considers multiple decades, and is related to investments and construction

of new plants. The focus is to make strategic decisions in order to anticipate future needs and long-term

plans. Such a plan can be for instance to reduce CO2 emissions or to reduce the energy or resource

dependency from other companies or countries. The mid-term UCP provides a general estimation of the

production and a cost-effective use of limited resources (fuel, water, . . . ) over few years. This is done

by solving a rough model, where many constraints are omitted and units of a plant are aggregated. The

point is to study the big picture, rather than detailing each unit. The mid-term UCP can also be used

to schedule operations such as plant maintenance. For the short-term UCP, the aim is to schedule the

production of a plant with precise models. Solving efficiently the short-term UCP is mandatory, as it is

solved on a daily basis. Due to the number of plants and their variety, the short-term UCP is solved at

EDF with a Lagrangian decomposition [87], which creates a sub-problem for each type of production

plant. In such decomposition, the demand is satisfied by the master problem. For the sub-problem, the

production if guided by prices provided by the master problem.

The Hydro Unit Commitment (HUC) problem is the sub-problem dedicated to hydro valleys and is

particularly difficult to solve. One reason is that a valley can be made of multiple cascaded plants, which

form a chain of plants linked by reservoirs. This yields coupling constraints between plants, meaning

that they cannot be considered independently. A second reason is the intrinsic difficulty of the problem:

as presented later, even with a single plant some real-life instances encountered at EDF cannot be solved
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to optimality in reasonable times with current methods. Another reason is linked to the numerical

errors that can appear when solving real world instances of the HUC problem [91]. This makes the HUC

problem harder to solve, but can also lead to suboptimal or infeasible solutions. In particular, infeasible

solutions raise severe issues, as they need to be corrected, in order to be used in practice.

At EDF, various ways of solving the HUC problem have been implemented, in order to overcome

these difficulties. In [87] a two-phase approach that was used few decades ago at EDF is described. The

first phase aims to solve a simpler version of the HUC problem modeled as a Linear Problem, omitting

many constraints. The second phase schedules the plants as closely as possible to the solution of the

first phase while taking into account the omitted constraints. This second phase sequentially schedules

the plants one by one via dynamic programming. The issue of this approach is that optimality is not

guaranteed, and scheduling the plants one by one can lead to infeasibility. The current approach at EDF

consists in solving a Mixed Integer Linear Program (MILP) modeling a whole valley of the HUC prob-

lem [51]. This approach suffers particularly from numerical errors, and can lead to large computational

times in some cases. Hence, it may happen that the MILP solving must be stopped before proving opti-

mality or sometimes before finding a feasible solution. Recent work has shown that it is possible to use

a Lagrangian decomposition to break down the HUC problem into multiple single plant HUC problems

[3] that will be denoted as 1-HUC problems throughout the thesis. In such decomposition, each 1-HUC

problem is solved independently by a dynamic programming algorithm [2]. The master problem of the

Lagrangian decomposition manages the coupling constraints, i.e., the reservoir constraints located be-

tween two plants. This new approach shows promising results. However, the dynamic programming

algorithm does not take into account all of the 1-HUC problem’s constraints. Hence, the solution pro-

vided by this approach may not be feasible in practice.

In this thesis, we propose models and solution approaches for the 1-HUC problem. This problem

is relevant since, besides the fact that, as aforementioned, it is possible to decompose a valley with

cascaded plants into 1-HUC problems, there also exist real-world valleys restricted to a single plant.

1.2 Definition of the 1-Hydro Unit Commitment problem

The main characteristics of the 1-HUC problem considered in this thesis are as follows. Consider

a valley with a single plant, located between an upstream and a downstream reservoir. The plant is

composed of K units with a pre-defined start-up order, each unit being the combination of a turbine and

a generator. In this thesis, we do not consider the units to be identical. From the hydroelectric production

principle, the water from the upstream reservoir flows through the plant to the downstream reservoir.

This operates the units of the plant, generating electricity. Some plants can have units operating in

reverse, in order to pump the water from the downstream reservoir to the upstream reservoir, consuming

electricity. The units can have different characteristics, such as the efficiency with respect to the flow,

and have a prescribed start-up order. Figure 1.2 shows a diagram of a hydroelectric plant.

The time horizon, being 48 hours at EDF, is discretized in T = 96 time periods, each of duration
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Upstream reservoir

Downstream reservoir

Unit of the plant

Figure 1.2: Diagram of the 1-HUC problem

∆ equal to 30 minutes. The water flow through the plant at each time period t is the main decision

variable of the problem. The constraints of the 1-HUC problem considered in the thesis are as follows.

The flow lies in interval [D;D]. We consider the general case where a plant cannot turbine and pump

simultaneously. The ramping constraints limits the water flow variation from time period t to t + 1. The

min-up constraints indicate that if the water flow increases, it cannot decrease during a fixed number

of time periods. Similarly, the min-down constraints indicate that if the water flow decreases, it cannot

increase during a fixed number of time periods. Each reservoir n ∈ {1,2} has an initial volume V n
0 as well

as a time-dependent maximum capacity V
n
t and time-dependent minimum capacity V n

t . These bounds

form resource windows, the water in the reservoirs being the resource. Note that resource windows differ

from time windows [56]. Indeed, in the case of time windows, waiting time is allowed. Hence, time

windows are less restrictive than resource windows. These time-dependent maximum and minimum

capacities make it possible to set target volumes for specific time periods, when V
n
t = V n

t . Introducing

target volumes accounts for water management policies. At EDF, these target volumes are defined on a

year ahead basis, resulting from cost-efficient use of the resources obtained with the mid-term UCP. In

such a case, target volumes may be present only for the last time period of each day, meaning that there

can be up to two target volumes for instances covering 48 hours.

At each time period, the reservoir n has an additional intake of water Ant , which can be positive (rain,

melting snow) or negative (use of water for surrounding agriculture). We consider the energy to have a

time-dependent unitary value Λt . At the end of time period T , the water in reservoir n has an expected

unitary value Φn. High Φn values will lead to preserve more water and produce less energy, and the other

way around for low Φn. At EDF, the HUC problem is considered as a revenue-maximizing price-taker

scheduler problem. In this case, many characteristics of the instance are fixed data. the power prices,

the water expected value and the reservoir external inflows and reservoirs capacities are considered as

fixed data. Naturally, the number of units, the rate of the ramping constraints and the duration of the

min-up/down constraints depend on the plant. Similarly, the maximal and minimal volumes (without
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target volumes) and the initial volume depend on the reservoir. The target volumes, water expected

value and external inflows are provided by the mid-term UCP. The power prices come from the master

problem of the Lagrangian decomposition.

In the following example, we show a valid solution for a simplified instance of the 1-HUC problem.

Example 1 (Simplified instance of the 1-HUC problem)

Consider a simplified instance of the 1-HUC, with T = 10. The initial volumes are V 1
0 =, V 2

0 = 18.

For the upstream reservoir, the maximum and minimum capacities are V
1
t = 46 and V 1

t = 15 for

all time periods t besides 5 and 10 where targets volumes are V
1
5 = V 1

5 = 22 and V
1
10 = V 1

10 = 30.

For the downstream reservoir, the maximum and minimum capacities are V
2
t = 36 and V 2

t = 15

for all time periods. The flow lies in interval [D = −4;D = 6]. Ramping constraints are such that

the flow can increase or decrease by at most 4 per time period. Min-up/down constraints are

such that if the flow increases (resp. decrease), it cannot decrease (resp. increase) during a to-

tal 2 time periods. For this example, there are no external intakes. The power unitary values

are [10.5,11.8,13.2,10.2,8.6,9.4,9.5,7.4,8.9,9.7]. The unitary value of the reservoirs are Φ1 = 11.3,

Φ2 = 5.6.

Figure 1.3 shows an example of a solution. The bargraph in Figure 1.3a shows the power in dark

grey and the flow in light grey at each time period. Moreover, for each time period, the crosshatched

cones represent the ramping constraints and the arrows point up (resp.down) if the min-up (resp.

min-down) constraints is satisfied. Figure 1.3b shows the evolution of the volume as well as the

upper and lower bounds at each time period relative to the upstream and downstream reservoirs.

The value of the power produced by this solution is 96.8. The value of the volume in the upstream

reservoir is 339 and in the downstream reservoir is 156.8. The total value of this solution is 592.6.
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at each time period

Figure 1.3: Power, flow and volumes at each time period

Some characteristics of the 1-HUC problem have not been presented yet: the ones that prescribe how
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the water flow is transformed into power. As shown in Figure 1.3a, the power is not linear with respect

to the flow, meaning that the 1-HUC problem is a non-linear problem. Indeed, the power production is

in fact a non-linear non-convex non-concave function of the water flow and the water head. The water

head is the vertical distance between the water level of the upstream reservoir and the downstream

reservoir. This is because the turbine efficiency of each unit is concave, as presented in [5]. This means

that for a given unit, the higher the flow, the lower is the efficiency with respect to the flow. Besides,

the plant has K units which start-up in a prescribed order. If we wanted to represent the power with a

single function of the water flow, it results in a non-convex non-concave function. Modeling choices will

be discussed in Chapter 2. Figure 1.4a gives the shape of the power function in the case of two units,

for the maximum and the minimum head. As the reservoirs are larger at the top, and tighter at the

bottom, the head is a non-linear function of the volumes. Figure 1.4b gives an example of the head with

respect to the upstream reservoir. A similar curve exists for the downstream reservoir, but for which the

head is higher when the volume in the downstream reservoir is low. A modeling challenge is to define a

mathematical function giving the produced power depending on the water flow that provides a trade-off
between precision and computational tractability in solution approaches.
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(a) Shape of the power function with respect to the flow with
K = 2 for the minimum and maximum head
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Figure 1.4: Shape of the power function and the head function

Solving the 1-HUC problem consists in scheduling the power production of the plant, such that

the value of the valley is maximized while satisfying the capacities at each time period, the ramping

constraints and the min-up/down constraints.

In the following, we present the three main parts of this thesis, corresponding to three different

modeling and solution approaches for the 1-HUC problem: non-linear modelings, polyhedral studies

and graph algorithms. As these approaches involve quite different research areas, we chose to present

a literature review in each chapter rather than a unique review for the whole thesis. Besides, different

variants of the 1-HUC are studied, as well as different models for each of them. Figure 1.5 depicts each

1-HUC variant introduced, and the models considered for each of them in the thesis.
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1-HUC

1-HUCNL

(Chapter 2)
1-HUCD

(Chapter 3, 5 and 6)
1-HUCDRM

(Chapter 3 and 6)

Mgen Mref M2D-poly M5PL-bin M5PL-max MHD-poly Mbilin Mpwl Mop Mop-D Mop-DRM

No ramping
No min-up/down

General power function

Fixed head
Power function based on operating points

Ramping
Min-up/down

No ramping
No min-up/down

Figure 1.5: Variants of the 1-HUC problem and models considered in the thesis

1.3 Part I: Modeling choice

In Chapter 2, we compare various modeling alternatives for the 1-HUC problem, focusing mainly on

the power function, which is non-convex non-concave, and can be difficult to handle efficiently. Besides,

there are many cases without an analytical representation of the power function [34]. Hence, providing

and studying tractable power functions could lead to a quicker solution process, but also improve the

quality of the solutions obtained. This is why studying modeling alternatives for the power function

of the HUC problem has raised interest in the recent literature [96,34]. For the purpose of this study,

we consider a simplified version of the 1-HUC problem, namely the 1-HUCNL problem. This choice

has been made to study specifically the power function, even though adding additional contraints could

help MINLP solvers. Indeed, the 1-HUCNL problem does not take into account ramping constraints,

min-up/down constraints and pumps. Moreover, the head for this simplified problem is the height

difference between the surface of the water in the upstream reservoir and the plant, rather than between

the surface of the upstream and the downstream reservoir. Since the 1-HUCNL problem features a single

plant, there is no downstream plant to turbine the incoming water in the downstream reservoir, which

could amplify the head effect. For a more comprehensive study, considering a downstream plant would

be needed, which is beyond the scope of this comparison.

This simplified problem is represented by model Mgen defined in Section 2.1. Considering such a

simplification makes it possible to clearly see the efficiency of the modeling alternatives when studying

the power function. The aim is to detect the best modeling alternatives, in terms of computational time,

feasibility and approximation.

In a systematic study that goes beyond the comparisons already made in the literature, we compare

seven alternatives. This includes common models from the literature as well as new models that did not
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exist in the literature of the HUC problem. As we compare a larger set of models, we also cover a wider

family of models: with or without linear functions, with a unique or multiple functions, with or without

binary variables. We also study the impact of five characteristics of the 1-HUCNL problem instances on

the performance of the compared models. Comparisons of this study are also carried out for the special

case of the non-linear 1-HUC problem where the head is fixed. This is a common simplification, as there

are cases where the reservoirs are very large, and the volume variation through a day is negligible. In

this case, the head is a constant and the power becomes a non-linear function of the water flow only.

The comparisons are focused on modeling alternatives, not on solution approaches. All the proposed

models are solved by off-the-shelf solvers. For each modeling alternative, only a baseline model is con-

sidered, and we do not include state-of-the-art methods that could improve these baseline models. Due

to the large variety of non-linear functions, a large number of tools exist to manage non-linear functions.

Each solver implements its own set of tools, meaning that a non-linear function featured in a model can

be more efficiently taken into account by one solver than another. Hence, we consider five different

non-linear solvers, and we identify for each model the most adequate one.

Based on this comparison, we identify four models that stand-out in the general case, and three

models in the fixed-head case. Indeed, these models give the best trade-offs between metrics such as

the computational time, the precision and feasibility, making them reliable without too large compu-

tational times. These results are consistent with the literature of the HUC problem, as these modeling

alternatives that stand out frequently encountered in the literature.

In Chapter 3, we select one of the modeling alternatives for the remainder of the thesis, where we

focus on studying hydraulic constraints, such as the volume bounds, the ramping and the min-up/down

constraints. Such constraints are not impacted by the head, hence we chose one of the efficient model in

the fixed-head case. More precisely, the three models that stand out are the following: M2D-poly involv-

ing polynomial functions of degree two, model MPWL using a piecewise linear function, and model Mop

based on a finite set of flows. ModelM2D-poly provides low approximation error, with reasonable compu-

tational times as polynomial functions are common non-linear functions. ModelMPWL is linear, making

it possible to use efficient MILP approaches. Model Mop can reach very low approximation error, and is

linear in the fixed-head case. As Mop yields the lowest approximation error out of the three, reducing

the time required to solve it would produce an effective approach. This motivates us for generalizing

this model and focusing on it in the remainder of the thesis.

When the head is fixed, each flow is associated with a specific power produced. These pairs flow/power

are commonly defined as operating points and are defined in a cumulative manner at EDF. We introduce

the 1-HUCDRM problem, being a discretized variant of the fixed-head 1-HUC through operating points,

with ramping and min-up/down constraints. We present a model for the 1-HUCDRM problem, denoted

Mop-DRM . We then reformulate the maximum and minimum bounds on the volumes for Mop-DRM . Do-

ing so makes it possible to identify that the bounds on the volumes can be represented in two fashions.

The first one is as a resource window on the cumulated flow, i.e., the sum of the flow since time period

1. The second one is as nested knapsack inequalities and covering inequalities, the former providing

an upper bound and the latter providing a lower bound on the cumulated flow. Finally, we present a

18/243



Chapter 1. Introduction 1.4. POLYHEDRAL STUDIES

bound-tightening procedure for these constraints. This procedure is particularly interesting as it can

be done in polynomial time and can improve the efficiency of many approaches. For the remainder of

the thesis, we also introduce the 1-HUCD problem, which is the special case of the 1-HUCDRM problem

without ramping nor min-up/down constraints. The corresponding model Mop-D can also be enhanced

in the same way as model Mop-DRM .

Note that nested knapsack constraints is different from the nested knapsack problems [57]. In our

case, the constraints are nested as they apply on different set of variables, which are all subset of each

other. In the case of the nested knapsack problems, and one must take into account the capacity and the

value of multiple subsets. Besides, in the latter case, the subsets are disjoint.

1.4 Part II: Polyhedral studies

Conducting a polyhedral study of the 1-HUCDRM problem is motivated by the fact that the current

approach at EDF to solve the HUC problem is based on a MILP model such as Mop-DRM . The objective is

then to use the results of this polyhedral study to improve the current solution approach. The idea is to

focus on the combinatorial aspects, which means considering the relationship between the upperbound

on cumulated flow and the operating points. For this purpose, we define a variant of the knapsack

problem, with Symmetric weight and Chain Precedences (SCPKP).

In Chapter 4, we conduct a polyhedral study regarding the SCPKP. The SCPKP is a variant of the

Knapsack Problem (KP) [7] that has not been studied yet in the literature. In order to define the SCPKP,

we define the Chain Precedence Knapsack problem (CPKP) as follows. Consider I groups of J elements,

where I and J are positive integers. Let item (i, j) denote element j of group i. Item (i, j) has a weight

W ij ∈ R≥0 and a value V ij ∈ R. Within each group, order constraints are such that any item (i, j) can

be selected only if item (i, j − 1) is selected, thus inducing chain precedence constraints. Let C be the

maximum knapsack capacity. Solving the CPKP consists in maximizing the total value of the selected

items, while the chain precedence constraints are satisfied, and the total weight of the selected items is

less than or equal to capacity C. The SCPKP is a CPKP where item (i, j) has a weight W ij = W j , i.e., the

weight of item (i, j) does not depend on the group index i. It means that items (i, j) and (i′ , j) have the

same weight, thus the knapsack is symmetrically weighted with respect to the groups. Clearly, as the

chain precedence constraints are a special case of precedence constraints, the SCPKP is a special case

of the Precedence Knapsack Problem (PKP) [17]. Figure 1.6 depicts a graphical representation of the

SCPKP, where a square represents an item, and arrows stand for the chain precedence constraints.

The interest of studying the SCPKP is that it is the combinatorial core of the 1-HUCDRM problem.

Indeed, the capacity constraint of the SCPKP acts like one of the nested knapsack constraint or resource

constraint of the 1-HUCDRM problem. Besides, each group of items of the SCPKP reflect the behaviour of

the operating points for a time period of the 1-HUCDRM problem. Moreover, one particular aspect of the

1-HUCDRM problem that is captured by the SCPKP is the symmetry of feasibility for the solutions. In the

case of the SCPKP, symmetry appear due to symmetric weights. Similarly, in the case of the 1-HUCDRM
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Figure 1.6: Graphical representation of the SCPKP

problem, symmetry appear as the operating points are the same for each time period. Hence, the amount

of flow used for an operating point is identical for all time periods. It is important to take this symmetry

into account as it appears in the facet-defining inequalities for both the 1-HUCDRM problem and the

SCPKP.

In order to handle inequalities without considering all the symmetries explicitly, we introduce pat-

terns representing all symmetries of an inequality. During the polyhedral study of the SCPKP, we define

three necessary facet-defining conditions for patterns. We also identify a family of patterns for which

these conditions are sufficient, hence ensuring that all associated inequalities are facet-defining. In

order to exploit these patterns, we present a two-phase Branch & Cut (B&C) algorithm. The first (pre-

processing) phase aims to generate patterns satisfying the three necessary facet-defining conditions. A

second phase consists of solving the SCPKP with a B&C algorithm, using pre-computed patterns to

generate cuts. This two-phase approach, using pre-calculated patterns in the B&C, is motivated by the

following reasons. Patterns satisfying the three facet-defining conditions can be generated indepen-

dently of the B&C algorithm. Then, we conjectured that the separation problem is NP-hard, but can be

solved in polynomial time for a given pattern. Finally, we can manage the set of pre-calculated patterns

efficiently by identifying during the B&C the ones providing the best cuts for the current instance.

The proposed two-phase B&C is compared experimentally against two other B&C variants, namely

default CPLEX and a classical B&C scheme featuring state-of-the-art separation of PKP cover inequali-

ties, adapted to the SCPKP. The latter is relevant as the SCPKP is a special case of the PKP. Hence, valid

inequalities for the PKP are also valid for the SCPKP. Results show that the two-phase B&C algorithm is

the most efficient out of the three B&C variants. Besides, we also compare various combinations of these

variants. The results show that the most efficient variants always feature our two-phase B&C algorithm.

In Chapter 5 we extend the results of the SCPKP to the 1-HUCD problem modeled with Mop-D . The

reason why we consider the 1-HUCD problem rather than the 1-HUCDRM is because the SCPKP does
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not include ramping and min-up/down constraints. As such, the relationship between the SCPKP and

the 1-HUCD problem appears more clearly.

In order to extend the polyhedral study of the SCPKP, we first define the Inverted SCPKP (ISCPKP),

which is an SCPKP but with a covering inequality instead of a knapsack inequality. We demonstrate

that the ISCPKP can be modeled as an SCPKP, hence the polyhedral study of the latter can be translated

to the former. We also show that the reservoir constraints of the 1-HUCD problem correspond exactly to

T SCPKPs and ISCPKPs. However, experimental results show that the facet-defining inequalities of the

1-HUCD problem are not necessarily linked to these T (I)SCPKPs. On one hand, there are (I)SCPKPs for

which facet-defining inequalities are not facet-defining for the 1-HUCD problem. On the other hand,

there are other (I)SCPKPs that share facet-defining inequalities with the 1-HUCD problem.

Based on these observations, we propose two pre-processing procedures. The first one identifies the

relevant (I)SCPKPs among the ones defining the 1-HUCD problem, i.e., the ones sharing facet-defining

inequalities with the 1-HUCD problem. We prove that this procedure runs in polynomial time. The

second one infers new (I)SCPKPs that share facet-defining inequalities with the 1-HUCD problem. We

demonstrate that there are at most a polynomial number of such (I)SCPKP, and they can all be inferred

from the (I)SCPKP retained in the first procedure. Once all these (I)SCPKPs are identified, one can adapt

the two-phase B&C scheme, initially designed for the SCPKP, to the 1-HUCD problem.

1.5 Part III: Graph algorithms

In Chapter 6 we describe graph algorithms to solve the 1-HUCDRM problem modeled withMop-DRM .

Indeed, the 1-HUCDRM problem has a specific structure, allowing for representing it with graphs.

As stated in Section 3.2, the volume upper and lower bounds form resource windows. Hence, the

1-HUCDRM problem can be considered as a Shortest Path Problem with Resource Windows (RWSPP),

defined as follows. Let G = (V ,A) be a graph, with V the set of vertices and A the set of arcs. We denote

s and t respectively the source vertex and the target vertex. Each arc a ∈ A has a value V (a) ∈ R and a

resource amount R(a) ∈ R≥0. Each vertex v ∈ V has a resource window [R(v);R(v)]. For a path C, we

denote V (C) =
∑
a∈C V (a) the value of the path, and R(C) =

∑
a∈C R(C) the amount of resource used. A

path C from s to v is locally feasible if R(C) ∈ [R(v);R(v)]. A path C is feasible if all sub-paths C′ of C

starting from s are locally feasible. The aim is to find a feasible path C from s to p minimizing V (C). The

RWSPP is a generalization of the Resource Constrained Shortest Path Problem (RCSPP), for which only

upper bound R(v) exists for a vertex v ∈ V . Problems modeled as RWSPP can be challenging, as classical

dominance rules of the RCSPP do not apply [2], and there are only a few algorithms dedicated to solve

the RWSPP [102].

Note that the RWSPP is different from the shortest path with time windows [56]. In the case of time

windows, waiting time is allowed, meaning that the time windows only apply when exiting a state.

Hence, time windows are less restrictive than resource windows.

We propose two different graph representations of the 1-HUCDRM problem an an RWSPP. The first
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one is a cumulated flow-expanded graph with vertices representing the time period, the operating point

and the volume of water used. The second one is a compact graph which considers vertices represent-

ing the time period and the operating point. The former makes it possible to take into account the

resource windows directly by discarding vertices, but yields a pseudo-polynomial number of vertices,

as it depends on the bounds on volumes. The latter cannot represent the resource windows, but has a

polynomial number of vertices.

Note that the 1-HUCDRM problem aims at maximizing the value, hence it can be defined as a Longest

Path Problem with Resource Windows (RWLPP). However, the graph representations of the 1-HUCDRM

problem proposed in this section are acyclic, in which case shortest and longest path problems are

equivalent.

Then, we present the Hydro A* (HA*) algorithm on the cumulated flow-expanded graph. This al-

gorithm is an exact variant of the A* algorithm [50], initially designed to accelerate the shortest path

algorithms. In order for A* to be exact, it is mandatory to define a dual bound. This is because any feasi-

ble solution provides a lower bound (for a maximization problem) on the value of the optimal solution

that can be used to discard all partial paths for which the dual bound does not exceed the lower bound.

In the case where the bound is not a dual bound, then one needs to enumerate all solutions to guarantee

optimality. As it is impractical to enumerate all solutions for most problems, when no dual bound ex-

ists, A* algorithm cannot guarantee optimality. For algorithm HA*, we introduce a dual bound specific

to the 1-HUCD problem, as it does not take into account the ramping and min-up/down constraints.

As the 1-HUCD is less constrained than the 1-HUCDRM problem, a dual bound for the former is also a

dual bound for the latter. More precisely, this dual bound computes an improved linear relaxation of

model Mop-D corresponding to the 1-HUCD problem. We compare HA* to a classical RCSPP algorithm

extended to the RWSPP, as well as to the current approach at EDF, consisting in solving model Mop-DRM

with CPLEX, on real size instances. The results show that the proposed algorithm is on average the

most efficient for instances of the 1-HUCD problem. However, in general cases of the 1-HUCDRM , the

performances of HA* decrease. This is mainly due to the dual bound which omits the ramping and

min-up/down constraints.

We then propose a second algorithm, the Bi-Objective relaxation of the Resource Windows (BOR-

Win) algorithm. This algorithm is designed for the compact graph. Unlike HA*, no feature of BORWin

is specific to the 1-HUCDRM problem, hence it can be used to solve any RWSPP with a single resource.

The main idea of BORWin is to relax the resource windows and to consider the resource as a second

objective. We then use similar principles as in the two-phase algorithm for bi-objective problems [103],

namely finding restricted search spaces and enumerate solutions in these search spaces. In the case of

the RWSPP, there is only a single optimal solution. Hence, during the first phase of BORWin, we do

not need to define multiple search spaces, but only the one containing an optimal solution. Moreover,

we can also use the resource windows to tighten this search space. The second phase of BORWin enu-

merates solutions of the relaxed problem inside the obtained restricted search space. To do so, we use a

labeling algorithm inspired by an approach to find the K best solutions [62]. The main idea is to gener-

ate solutions of the relaxed problem, which are progressively corrected into feasible solutions. For this
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second phase, we also generalize the classical labeling extension in order to generate more solutions at

once. This generalization helps to build feasible solutions quicker.

Algorithm BORWin is compared experimentally to three alternatives, namely HA*, a classical RCSPP

algorithm, and solving model Mop-DRM with a MILP solver, which corresponds to the current practice at

EDF. This comparison is made on a wide range of EDF instances for the 1-HUCDRM problem. Numerical

results show that the two-phase algorithm largely outperforms HA* and the RCSPP algorithm. Besides,

we also note that BORWin is more effective than solving Mop-DRM . This is specially true as solving the

MILP model introduces numerical errors, which yields infeasible solutions or suboptimal solutions.

In Chapter 7, we draw concluding remarks and perspectives to improve and extend the work carried

out in this thesis.

1.6 Reading guide for this thesis

The reader interested in the modeling comparison simply needs to read Chapter 2. The reader

interested in the discretized model selected and its enhancements can jump to Chapter 3. The reader

interested in the polyhedral study of the Symmetric-weight Chain Precedence Problem can jump to

Chapter 4. For the reader interested in the polyhedral study of the 1-HUCDRM problem in Chapter 5,

we recommend reading Section 3.3 and 4 beforehand. In the former is defined the problem considered

and the associated model Mop-D which are used in Chapter 5. In the latter are defined the patterns

and various concepts related to them as well as the two-phase B&C algorithm, which are extended in

Chapter 5. For the reader interested in the graph algorithms, in Chapter 6, we recommend reading

Section 3.3, where the problem and the associated model Mop-DRM is defined.
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Real-world problems often involve non-linearities. These non-linearities are not always analytically

defined, or can be too complicated to be efficiently handled by a solver. In such a case, one must define

a tractable function, amongst multiple modeling alternatives. As mentioned in the previous chapter,

the 1-HUC problem falls into such case, where non-linear functions do not always have an analytic

representation.

In this chapter, we study modeling alternatives for a simplified version of the non-linear 1-HUC

problem, focusing on the non-linear power function. In Section 2.1 we define the problem considered.

In Section 2.2 we review the power functions defined in the literature of the 1-HUC. In Section 2.3

we present different modeling alternatives for the 1-HUC problem considered. In Section 2.4 presents

an extensive computational evaluation of the modeling alternatives proposed. In Section 2.5 we draw

concluding remarks.
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2.1 The simplified non-linear 1-Hydro Unit Commitment problem and its

characteristics

We consider a simplified non-linear 1-HUC problem, namely the 1-HUCNL problem, defined as

follows. Consider a valley with a single plant, located between an upstream and a downstream reservoir.

The plant is composed of K units. The time is discretized into T time periods, each of duration ∆. At

each time period t an amount dt flows from the upstream to the downstream reservoir, operating the

units of the plant. This generates a power pt , which is non-linear with respect to the water flow dt and

the head ht . The head is the height difference between the surface of the water in the upstream reservoir

and the plant, and is non-linear with respect to the volume of the upstream reservoir v1
t . At each time

period t, the volume of the upstream reservoir v1
t (resp. downstream reservoir v2

t ) must lie within the

volume bounds [V 1
t ;V

1
t ] (resp. [V 2

t ;V
2
t ]). Moreover, at each time period t and for each reservoir n, there

is an external intake of water in the reservoirs, Ant ∈ R. We consider the case without pumps, meaning

that dt ∈ [D,D] with D ≥ 0. The power produced at time period t has unitary value Λt and the water of

reservoir n ∈ {1,2} has unitary value Φ t at time period T . Solving the 1-HUCNL problem is to schedule

the flow usage of the plant such that the value of the valley is maximized.

A generic model Mgen is given as follows:

max
T∑
t=1

∆ ·Λt · pt +
2∑
n=1

Φn · vnT (2.1.1)

s.t.v1
t = V 1

0 +
t∑

t′=1

(
A1
t′ − dt′∆

)
∀t ≤ T (2.1.2)

v2
t = V 2

0 +
t∑

t′=1

(
A2
t′ + dt′∆

)
∀t ≤ T (2.1.3)

ht = f (v1
t ) ∀t ≤ T (2.1.4)

pt = F (dt ,ht) ∀t ≤ T (2.1.5)

V n
t ≤ v

n
t ≤ V

n
t ∀t ≤ T ,∀n ∈ {1,2} (2.1.6)

D ≤ dt ≤D ∀t ≤ T (2.1.7)

Constraints (2.1.2) and (2.1.3) are volume conservation constraints. Note that it is also possible to

define these constraints with consecutive time periods, which yields the same relaxation and similar

computational times. Constraints (2.1.4) express the water head ht , using the concave function f of

the volume v1
t . Constraints (2.1.5) define the power pt , using the non-convex non-concave non-linear

function F of the water flow dt and the head ht . Constraints (2.1.6) and (2.1.7) set upper and lower

bounds for variables. The criterion to maximize is the profit, which is a linear expression described by

(2.1.1). Note that model Mgen features equations that could be replaced by inequalities, which makes

it possible to use a broader set of resolution tools. However, preliminary results have not shown any

improvement, in terms of computational times, approximation error or feasiblity for any of the proposed
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models with inequalities rather than equations. Hence, in the following, we define the models with

equations.

Model Mgen acts as a framework for the different models proposed in this chapter, hence Mgen is as

generic as possible, functions f and F being not specified. However, we can still specify some character-

istics of Mgen. The water flow dt is non-negative because we consider the plant to feature turbines only.

Clearly, the volume vnt is also non-negative. By definition of the head and the power, both functions f

and F are non-decreasing and non-negative. This means that variables ht and pt are both non-negative.

Based on data at our disposal, we describe function f and F as follows. The function f is a concave

function, as the top of a reservoir is wider than the bottom. The function F is neither concave nor

convex. This is because it accounts for the turbines efficiencies, for which we consider a standard non-

linearity, that is concave for each unit [5]. Moreover, recall that the units have a prescribed start-up order.

Considering multiple units adds non-concavity to the resulting function. More precisely, for each unit

the power function is almost linear with respect to the flow when the unit starts, then it incurves more

and more until the next unit starts. When another unit starts, we notice a break in the function shape,

i.e., a non-differentiable point. An example of the power function and the head function is depicted in

Figure 1.4. We identify four main characteristics of F , described in Table 2.1.

Table 2.1: Characteristics of the power function

C1 non-convex and non-concave
C2 locally linear when a unit starts
C3 concave for each unit with respect to the water flow
C4 non-differentiable points when starting up a new unit

A standard simplification of the 1-HUCNL problem is to assume a fixed-head ht = H where H is a

parameter. In the following, we denote such case the fixed-head 1-HUCNL problem. This simplification is

practically relevant for some instances of the 1-HUCNL problem where head variations are small enough

for the impact on the turbines efficiency to be insignificant. For the fixed-head 1-HUCNL problem vari-

ant also considered in this chapter, equality (2.1.4) and (2.1.5) from Mgen are replaced by:

pt = F (dt ,H) ∀t ≤ T (2.1.8)

In such a case, function F becomes a one-dimensional function, but remains non-convex non-concave

and all the characteristics of Table 2.1 hold. Note that even if the head is constant, we still consider

variables v1
t and v2

t in the model, to ensure that reservoir capacities are respected.

2.2 Literature review of the Hydro Unit Commitment power function

When a non-linear function is not analytically defined or tractable, there are multiple possible mod-

eling choices for its approximation. Figure 2.1a shows an example of a non-linear function and Figures
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2.1b to 2.1e depict four classical approximations. Each of them has benefits and drawbacks which im-

pact its results, both in terms of computational time and quality. In this literature review, we aim at

identifying the various modeling alternatives for the non-linear functions considered in the 1-HUC as

illustrated in Figure 2.1. We focus on the power function as a non-linear function of the water head

ht and the water flow dt at each time period t: pt = F (dt ,ht). The head is a non-linear function of the

volume at each time period: ht = f (vt). We also review some modeling comparisons proposed in the

literature. However, the solutions approaches are not the focus of this review, as in this chapter we

consider off-the-shelf solvers to solve the modeling alternatives.

As mentioned in [34], there are cases of the HUC where no perfect analytic representation of the hy-

droelectric power function is known. Nevertheless, some functions have been described in the literature

as a baseline to measure the approximation error of the various models proposed in the literature. A

generic simplified hydroelectric power function [46] is:

F (dt ,ht) = ρ ·G · ht · dt (2.2.1)

which defines the power function as a product of ρ the density of water, G the gravitational constant, dt
the water flow and ht the head. Note that this generic bilinear function is non-convex and non-concave

[84].

In terms of modeling, some (MI)NLP featuring (2.2.1) or a similar equation are described in the

literature. Indeed, a bilinear function is a common non-linear function, well handled by non-linear

solvers even for large-scale instances. In [70] the HUC considered has multiple cascaded plants, and

is modeled as an NLP, with the power defined as a bilinear function depending on the water flow and

the head. In [67], an algorithm called spatial Hydro Branch and Bound (sHBB) has been developed to

solve to optimality the HUC with cascading plants. This algorithm is used to solve an MINLP, where the

power is a bilinear function of both water head and water flow.

However, in various papers of the literature [16,34,66,70,77,79], the shape of the power function

does not correspond to (2.2.1). Indeed, the power function is described as non-convex and non-concave

mainly due to turbines efficiency. Turbines efficiency is non-linear with respect to the water flow dt even

with fixed-head ht = H and this is not captured by equation (2.2.1). Instead of (2.2.1), we consider the

following power function, with g being the turbines efficiency.

F (dt ,ht) = ρ ·G · ht · g(dt ,ht) (2.2.2)

In the following, we review multiple ways to take into account the turbines efficiency.

One approach is to rely on polynomial functions, which are well known in the literature of MINLP.

In [77] a more sophisticated function than (2.2.1) is provided, where the power is represented by:

F (dt ,ht) = C1 · (v1
t )2 +C2 · (dt)2 +C3 · v1

t · dt +C4 · v1
t +C5 · dt +C6

with C1 to C6 being constants. This function is a quadratic function composed of a bilinear term and

two monomials, depending on the volume and the water flow respectively. The formulation is further
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(e) Approximation with a discrete set of decisions

Figure 2.1: Four different approximations of a real-world non-linear function

enhanced in [96], [40], [42] and [41] where the power function F (dt ,ht) from [77] depicts the turbine

efficiency, rather than the whole power function. In these papers, the whole power function is more

complex, and also takes into account other non-linear terms, which we describe later in this review. In

particular, the power function in these formulations is represented by polynomials with degrees higher
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than 2. Using similar ideas, in [79] an NLP is presented, where the power function is approximated by

a family of quadratic functions. More recently, a data-driven study of the non-linearities of the HUC

has been conducted [18]. The efficiency function considered is a piecewise polynomial function, where

polynomial functions are not necessarily of degree two. In the same category of function, in [4] the

power function of a unit features a fraction between a quadratic and a linear function:

F (dt ,ht) =
dt +C1 · (v1

t )2 +C2 · v1
t +C3

C4 · v1
t +C5

with C1 to C5 being constants.

Another approach uses a grid to have a reference for the hydroelectric power function obtained

by discretizing the water flow and the head [34]. An algorithm is described in [93] to obtain a set

of such grids, each of them representing the power function for a given number of active units. For

each point on one of these grids, the value of the hydroelectric power function is computed with a

dynamic programming algorithm based on a bilinear function similar to (2.2.1). The resulting grids are

overestimation of the power function, meaning that they do not necessarily reflect its actual shape.

Another common modeling alternative from the literature is to approximate the power function with

a piecewise linear function (PWL). In [25] and [81], authors introduce a family of univariate PWL func-

tions to model the power depending on the water flow. Each PWL function of this family represents the

power with respect to the water flow for a specific volume. The model proposed in [16] for the 1-HUC

also expresses the power with a family of univariate PWL functions of the water flow, for specific vol-

umes. Besides, it takes into account the maximum variation of the water flow between two consecutive

time periods. An improvement of this model features the rectangle method [32]. The aim is to compute a

better approximation when v1
t is between two of the specific volumes selected to compute the PWL func-

tions. To do so, the method computes a projection of the power between the two surrounding specific

volumes in order to rectify the approximation. There are also iterative methods using PWL functions. In

[43] the HUC with cascading plants is considered. It is pointed out that in the fixed-head case, the power

depends only on the water flow. Using a PWL function with two pieces, the procedure is to solve a HUC

problem with fixed-head iteratively, while updating the head between each iteration until convergence.

A variant of the standard PWL models is to consider a PWL function approximating the convex hull of

the power function [94]. In such a case, there is a loss of precision in concave parts, but the benefit is that

there is no need for any binary variables. Indeed, for any water flow, the corresponding piece of the PWL

function is always the one leading to the best value for the objective function. Besides PWL formula-

tions, hyperplanes formulations have also been developed [89]. The aim is to create a set of hyperplanes

for each number of active units, in order to linearize the non-linear power function. More precisely, the

hyperplanes are deduced from the most efficient point, and each set forms a concave over-estimator of

the power function for a given number of active units. As a maximization problem is considered, these

hyperplanes yield a convex optimization region. Defining multiple sets aims to produce a more precise

approximation, based on the aforementioned grid approximation of the power function for each number

of active units [93]. For a given number of active units, the linearization does not require any additional
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binary variable. However, binary variables are required to indicate the number of active units at each

time period, thus resulting in a MILP. Using the hyperplanes is in practice quite similar to using a PWL

function approximating the convex hull of the non-linear function, presented previously for [94].

Comparing modeling alternatives raised interest in recent literature. In [34] three models for the hy-

dro power maintenance scheduling are compared. The three models involve respectively a formulation

with hyperplanes [89], a PWL formulation from [32], and a five degree polynomial function. The grid

approach [93] is considered as a baseline to compare the economic value of the solutions. The result

of this comparison is that the hyperplanes formulation is overall the best compromise between the size

and complexity of the optimization problem and the deviation from the reference data. In [96] another

comparison of models is provided. The three models considered are a model with high degree polyno-

mials, a standard piecewise linear model, and a piecewise linear model of the convex hull of the power

function. The results show that considering the non-linear model yields the best trade-off, as it requires

a lower computational time than the standard PWL model, but provides a higher objective value than

the convex hull PWL model. Another comparison has been carried out in [40], but instead of compar-

ing modeling alternatives, the following three solution approaches are compared: solving a non-linear

HUC with a Lagrangian relaxation, solving a non-linear HUC with the AIMMS outer approximation

algorithm, and solving a linearized HUC with a MILP solver. The results show that the first two options

yield the best results in terms of objective functions, while solving the MILP model introduces deteri-

orations of the objective function that vary between 1% and 2 %. However, the computational times of

solving the MINLP model are much higher than the other options.

As the focus is to represent the power function, the 1-HUC considered in this chapter is simplified

with respect to other components. Thus, many constraints from the literature, listed hereafter, will

be ignored. The penstock loss [18] is the power loss due to the friction between the water and the

penstock. The spillage [19,70,81] is the process of discharging water from the upstream reservoir to the

downstream reservoir without going through the plant. The spilled water does not play a major role in

the economic value of the valley. Indeed, it goes directly to the downstream reservoir, without activating

any turbine, hence no energy is produced by the spilled water. The main purpose of spilling water is to

avoid overfloods. Ramping constraints [32] limit the variation of the water flow between two consecutive

time periods. These constraints are used in practice in order to take into account several other uses of

water in the valley. In some models, there are start-up and shut-down costs [43,67], making the start-up

and shut down of a unit impact the profit. Finally, we consider a predefined unit start-up sequence

[34]. This makes it possible to compare models aggregating all units, but also models where each unit

is represented individually. Moreover, without such a fixed sequence comparing models would become

more difficult, because the efficiency of a turbine can be impacted by their start-up sequence.

When it comes to the head effect, few alternatives are considered in the models of the literature,

involving either linear or polynomial functions as described for instance in [4,96,40,42,66,70]. No other

modeling alternative is proposed for the head effect.

In this chapter, we compare modeling alternatives, such as in [96] and [34], but not solution tech-

niques as it is done in [40]. To do so, we consider generic models corresponding to the three common
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alternatives to represent the power function in the literature, namely a PWL function, a bilinear func-

tion or polynomial functions. We also consider in this chapter generic models with non-linear functions

that have not yet been studied in the literature of the HUC. As such, we push further the comparison

done in [96] and [34], as a larger variety of models is considered. Indeed, LP, MILP, NLP and MINLP

models are considered, where some represent the power function of the whole plant, while others rep-

resent the power function of each unit explicitly. Besides, all models considered will also be compared

for the fixed-head case, a standard 1-HUC simplification.

2.3 Modeling alternatives for the simplified non-linear 1-Hydro Unit

Commitment problem

In this section, we first propose a non-linear model capturing all the non-linear characteristics of

the 1-HUCNL problem arising from the power generation function. As this first model cannot be solved

efficiently, we then present seven modeling alternatives.

2.3.1 The non-linear reference model for the simplified non-linear 1-Hydro Unit

Commitment problem

We describe a reference model Mref for the 1-HUCNL problem, specifically designed to encompass all

the non-linear characteristics identified in Table 2.1. To define Mref , we consider the generic model

Mgen defined at page 28, from which we specify functions f and F .

First, let us focus on function f to define the head. Figure 2.2a shows the evolution of the head de-

pending on the volume for a realistic instance named B-T-1, described in Appendix A.3. More generally,

function f has the following form:

ht = f (v1
t ) = γ1 +γ2 · v1

t +γ3 · (v1
t )γ4 ∀t ≤ T (2.3.1)

where γi are parameters depending on the instance, and γ4 ∈ [0.5,1], which means that this function is

necessarily concave. Depending on the shape of the reservoir, the function can be quasi linear or have a

very noticeable non-linearity, but always stays concave.

Second, let us focus on the power function F , featuring the turbine efficiency g as in equation (2.2.2).

The only two non-linear terms in the power function are the head ht and the turbine efficiency g. Recall

that all non-linear characteristics in Table 2.1 hold for the fixed-head case. Therefore, these character-

istics come from the turbine efficiencies. Hence, we define function g in order for it to correspond to

these characteristics. In order to be as close to the physics as possible, we define g as a piecewise non-

linear function with K different five parameter logistic functions (5P L) [48]. 5P L functions are described

in Appendix A.2. With K the number of units, the 5P L i ≤ K represents the efficiency of the first i

units combined with respect to the flow dt . In the general case, function g also depends on the head. In

particular, function g for the maximum head is not a linear transformation of function g for the mini-

mum head. First, the turbine efficiency increases non-linearly with respect to the head. Second, with a
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larger head, the apex of the efficiency curve is obtained with a higher water flow. Consequently, with a

larger head one can use a turbine on a wider range of water flows, meaning that even the water flow dt
to start up the units is larger. To take these effects into account, the parameters of the 5P L functions are

dependent on the head ht .

We define g as a piecewise non-linear function. To do so, we define the following notations:

• ait : the binary variables such that ait = 1 if we use the 5P L function associated with the first i units

at time period t;

• xjit : the continuous variables being the jth parameter of the 5P L function for the first i units at

time period t;

• αji and βji : the constants such that xjit linearly depends on ht with these parameters.

With these notations, we introduce the following constraints:

xjit = αji + βji · ht ∀j ≤ 5,∀i ≤ K,∀t ≤ T (2.3.2)

K∑
i=1

ait ≤ 1 ∀t ≤ T (2.3.3)

ait ∈ {0,1} ∀i ≤ K,∀t ≤ T (2.3.4)

pt = F (dt ,ht) = ρ ·G · ht ·
K∑
i=1

ait · 5P L(dt ,x1it , . . . ,x5it) ∀t ≤ T (2.3.5)

Equalities (2.3.2) define parameters xjit to be linearly dependent on ht . Constraints (2.3.3) and (2.3.4)

ensure that only one 5P L function is considered at each time period. Equalities (2.3.5) is the power with

g as a piecewise non-linear function.

The complete MINLP model Mref features objective function (2.1.1) and constraints (2.1.2)-(2.1.3),

(2.1.6)-(2.1.7), (2.3.1)-(2.3.5). The 5P L functions are parameterized such that only the concave part of

the 5P L is considered when i units are active, as well as locally linear when a unit starts. Besides, there

is a non-differentiable point when starting up a new unit. As the power is clearly non-convex and non-

concave, the non-linear power function inMref features the four main characteristics described in Table

2.1.

When considering a piecewise (non-)linear model, one usually requires additional constraints to

match the value of the binary variables corresponding to the pieces with the value of the decision vari-

ables. For modelMref , this means adding constraints to indicate, for a given time period t, which binary

variable ait is equal to 1, depending on dt . However, in some cases, there is no need to describe which

binary variable must be equal to 1, and sometimes binary variables are not required such as for convex

PWL functions [94]. For model Mref , the 5P L functions are such that, for a given water flow dt the 5P L

function with the highest value represents the power of the units. Because we maximize the profit it

turns out that, for a given water flow and if energy prices Λt are positive, the 5P L with the highest value
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given dt , will be the one considered for the optimal solution. In this case, the model does not require

additional constraints to indicate, for a given t, which one of the variables ait is equal to 1. All of the

instances considered in this study satisfy Λt ≥ 0, thus there is no need to add constraints specifying

which variable ait is equal to 1 for a time period. Conversely, the additional constraints are required for

the PWL model shown in Section 2.3.4. Note that equation (2.3.3) is still required, otherwise the model

could consider multiple active 5P L functions at a given time period, which would induce an incorrect

value of the power pt .

Figure 2.2b shows the evolution of function g with respect to dt for instance B-T-1 (described in

Table 9 in Appendix A.3). The functions in black are for the minimum and the maximum head, and the

grey region represents the power function for the possible values of ht .
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(a) Example of function f (constraint
(2.3.1))
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(b) Example of function g for two units for the minimum and
maximum head (constraint (2.3.5))

Figure 2.2: Examples of function f and g

Preliminary computations show thatMref involves higher computational times than any other model

presented, and is not practical for most of the instances considered, even for the smallest ones. This is

often the case in real world applications where the functions modeling a physical system are either

too complex to be implemented or not supported by any solver. Instead of using this model in the

comparison, it will be considered as the reference model to benchmark the quality of the modeling

alternatives in the experimental results in Section 2.4.

Our goal is to derive more tractable models than Mref to capture the non-linearity in the power

function. Hence, in the following, we propose modeling alternatives, which do not feature all the char-

acteristics from Table 2.1, but can be supported by solvers. The models are described for the 1-HUCNL

problem and the fixed-head case.
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2.3.2 (Mixed Integer)Non-Linear Program modeling elementary non-linear functions

The models in this section represent the power function of each unit explicitly, in order to have a repre-

sentation close to the physics. The downside is that for each unit, auxiliary variables are required. Three

models are presented. The first one features a family of polynomial functions, the second one a family

of 5P L functions with the max function, and the last one a family of 5P L functions without the max

function.

MINLP with a family of polynomial functions: modelM2D-poly . The power function of one unit for a

given head has a parabolic shape. A parabolic shape can be represented with a quadratic function. Each

polynomial function represents the power generated by a unit, plus the contribution of the previous

ones, following their startup order. Figure 2.3 shows an example with two units. We define the following

notations:

• bit : the binary variables such that bit = 1 if we use the polynomial function of unit i at the time

period t;

• yqit : the continuous variables that are the coefficients of monomial dqt in the polynomial of unit i

at time period t;

• γqi and δqi : the constants such that yqit linearly depends on ht with these parameters.

We introduce the following constraints:

yqit = γqi + δqi · ht ∀q ≤ 2,∀i ≤ K,∀t ≤ T (2.3.6)

K∑
i=1

bit = 1 ∀t ≤ T (2.3.7)

bit ∈ {0,1} ∀i ≤ K,∀t ≤ T (2.3.8)

pt = ρ ·G · ht ·
K∑
i=1

bit ·
2∑
q=0

yqit · (dt)q ∀t ≤ T (2.3.9)

Equalities (2.3.6) define parameters yqit as linearly dependent on ht . Constraints (2.3.7) and (2.3.8)

ensure that only one of the polynomials is active for each time period. Equalities (2.3.9) express the

power with function g represented by a family of polynomial functions.

The complete model, called M2D-poly is defined by objective function (2.1.1) and constraints (2.1.2)-

(2.1.3), (2.1.6)-(2.1.7), (2.3.1), (2.3.6)-(2.3.9). It appears that M2D-poly is a non-convex MINLP as (2.3.1)

and (2.3.9) are non-linear. Indeed, function f computing ht in (2.3.1) is concave, and the polynomial

functions in (2.3.9) are concave. But yqit is linear with respect to ht (2.3.6), and in (2.3.9) variable yqit
is multiplied by ht . So the power function is convex with respect to ht , as it is an increasing quadratic

function. This model represents well the power function, as it takes into account characteristics C1, C3

and C4. However, this model still has downsides, mainly the addition of auxiliary binary variables.
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In a similar fashion as for model Mref , model M2D-poly does not require additional constraints to

match the values of bit with the values of dt . Indeed, for any given water flow dt , the polynomial with

the highest value represents the power of the units. In opposition, one can identify these additional

constraints for the PWL model in Section 2.3.4. Note that equation (2.3.7) is still required.
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dt

g(dt, ht)

Figure 2.3: Function g with polynomial functions

Model M2D-poly for the fixed-head 1-HUCNL problem. To adapt the model M2D-poly to the fixed-head

1-HUCNL problem, with head H , we introduce the following notations:

• Yqi : the constant coefficient of (dt)q for unit i.

The power function becomes (2.3.10)

pt = ρ ·G ·H ·
( K∑
i=1

bit · (
2∑
q=0

Yqi · (dt)q)
)

∀t ≤ T (2.3.10)

Model M2D-poly for the fixed-head 1-HUCNL problem contains objective function (2.1.1) and constraints

(2.1.2)-(2.1.3), (2.1.6)-(2.1.7), (2.3.7)-(2.3.8), (2.3.10) and is an MINLP. Note that this model becomes a

convex MINLP for the fixed-head 1-HUCNL problem, as all constraints feature concave functions.

NLP with 5P L functions using function max: model M5P L-max. Function g can be represented as a

sum of 5P L functions [48], where each 5P L represents the power of one unit. By summing properly

parameterized 5P L functions, the sum can be a precise approximation of the physical data. Figure 2.4

shows an example of the sum of 5P L functions as a solid line, and the two separated 5P L as dashed

lines.

To represent g with such a sum of 5P L functions, the 5P L functions need to depend on the water

flow and the head. As such, these parameters are variables and depend on the unit i and time step t. To

use 5P L functions, we introduce the following notations:

• zjit : the continuous variables that are the jth parameter of the 5P L function for the unit i at the

time period t;
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Figure 2.4: Function g with a sum of 5P L functions

• ηji and θji : the constants such that zjit linearly depends on ht with these parameters.

For this model we need the following equalities:

zjit = ηji +θji · ht ∀j ≤ 5,∀i ≤ K,∀t ≤ T (2.3.11)

pt = ρ ·G · ht ·
( K∑
i=1

z4it +
−z4it(

1 +
(

max(0,dt−z1it)
z3it

)z2it
)z5it

)
∀t ≤ T (2.3.12)

Equalities (2.3.11) set the parameters of the 5P L functions used in function g. Equalities (2.3.12) express

the power with g as a sum of non-linear functions. These functions are a slight variant of the 5P L

functions detailed in Appendix A.2. This is because such 5P L functions are not defined when dt < z1it .

Consequently, it is necessary to introduce a max function in equalities (2.3.12) in order for the 5P L

functions to always be defined. Also, we consider parameters η3i and θ3i to be such that z3it > 0.

The model M5P L-max includes objective function (2.1.1) and constraints (2.1.2)-(2.1.3), (2.1.6)-(2.1.7),

(2.3.1), (2.3.11)-(2.3.12). It is a non-convex non-concave NLP, and the non-linearity takes into account

characteristics C1 and C2. As this model contains a max function, it is not supported by some global

optimization solvers.

ModelM5P L-max for the fixed-head 1-HUCNL problem. To adapt the modelM5P L-max to the fixed-head

1-HUCNL problem, with head H , we introduce the following notations:

• Zji : the jth parameters for the 5P L function of the unit i.

The power is defined by equalities (2.3.13) with Z3i > 0.

pt = ρ ·G ·H ·
( K∑
i=1

Z4i +
−Z4i(

1 +
(

max(0,dt−Z1i )
Z3i

)Z2i
)Z5i

)
∀t ≤ T (2.3.13)

ModelM5P L-max for the fixed-head 1-HUCNL problem contains objective function (2.1.1) and constraints

(2.1.2)-(2.1.3), (2.1.6)-(2.1.7), (2.3.13).
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MINLP with 5P L functions using auxiliary variables: model M5P L-bin. This model is a variation of

M5P L-max, where the max is linearized by adding linear constraints and auxiliary variables. We introduce

the following notations:

• cit : the binary variables equal to 1 if dt ≥ z1it ;

• mit : the continuous variables equal to max(0,dt − z1it).

We introduce the following set of constraints:

dt − z1it ≤mit ≤ dt − z1it + (1− cit) · (D −Z1it) ∀i ≤ K,∀t ≤ T (2.3.14)

0 ≤mit ≤ cit · (D −Z1it) ∀i ≤ K,∀t ≤ T (2.3.15)

cit ∈ {0,1} ∀i ≤ K,∀t ≤ T (2.3.16)

pt = ρ ·G · ht ·
( K∑
i=1

z4it +
−z4it(

1 +
(
mit
z3it

)z2it
)z5it

)
∀t ≤ T (2.3.17)

Set of constraints (2.3.14)-(2.3.16) ensures mit = max(0,dt − z1it). Equalities (2.3.17) express the power

in the same manner as equalities (2.3.12), but using mit . In a similar manner as for model M5P L-max, we

consider parameters η3i and θ3i to be such that z3it > 0.

The model M5P L-bin contains objective function (2.1.1) and constraints (2.1.2)-(2.1.3), (2.1.6)-(2.1.7),

(2.3.1), (2.3.11), (2.3.14)-(2.3.17). Unlike the NLP model M5P L-max, model M5P L-bin is an MINLP, as it

requires auxiliary binary variable cit . Model M5P L-bin can be solved by many more MINLP solvers than

model M5P L-max, as function max has been linearized. The representation of the power function is the

same for M5P L-max and M5P L-bin, and both models take into account characteristics C1 and C2. Note

that the model Mgen, with the piecewise non-linear function with 5P L, is also an MINLP. The difference

is that the binary variables are not the same as the ones in M5P L-bin. Indeed, the binary variables of

M5P L-bin only acts in order to linearize the function max, while in Mgen they are decision variables.

Model M5P L-bin for the fixed-head 1-HUCNL problem. To adapt the model M5P L-bin to the fixed-head

1-HUCNL problem, with head H , we introduce the following notations:

• Zji : the constants for the parameter j for the 5P L function of the unit i;

• mit : the variables such that mit = max(0,dt −Z1i).

To ensure the behaviour of variable mit , we add the set of constraints (2.3.18)-(2.3.21), defined as

(2.3.14)-(2.3.17), where variables zjit are replaced by constants Zji for all t ≤ T , with Z3i > 0. Model

M5P L-bin for the fixed-head 1-HUCNL problem contains objective function (2.1.1) and constraints (2.1.2)-

(2.1.3), (2.1.6)-(2.1.7), (2.28)-(2.31).
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2.3.3 (Mixed Integer)Non-Linear Program modeling an aggregated non-linear function

The models introduced in this section represent all units as an aggregated function. The principle is

to consider a single function to represent the whole power function, instead of a family or a sum of

elementary functions. A single function being less precise, the expected benefit is a quick solution by

MINLP tools, as few additional variables and constraints are required. The functions we propose are the

following: a polynomial function, a bilinear function, and a finite set of operating flows.

NLP with a high degree polynomial function: model MHD-poly . A model using an aggregated func-

tion that represents well the physics is obtained by using a single polynomial function as function g.

Figure 2.5 shows an example of an 8th degree polynomial function for an instance with two units. As g

depends on the head ht , the coefficients of the polynomial are linearly dependent on ht . We introduce

the following notation

• Q : the degree of the polynomial, with Q = 4 ·K , where K denotes the number of units;

• uqt : the continuous variable that are the coefficient of monomial dqt in the polynomial function at

time period t;

• µq and νq : the constants such that uqt linearly depends on ht with these parameters.

For this model, we need the following equalities:

uqt = µq + νq · ht ∀q ≤Q,∀t ≤ T (2.3.22)

pt = ρ ·G · ht ·
( Q∑
q=0

uqt · (dt)q
)

∀t ≤ T (2.3.23)

Equalities (2.3.22) set the parameters of the polynomial function. Equalities (2.3.23) define the power

with g as a polynomial function.

The model, calledMHD-poly includes objective function (2.1.1) and constraints (2.1.2)-(2.1.3), (2.1.6)-

(2.1.7), (2.3.1), (2.3.22)-(2.3.23). It is an NLP featuring characteristic C1 as it is non-convex and non-

concave. The benefits compared toM2D-poly is thatMHD-poly considers only a single polynomial function.

This means that no auxiliary binary variables are required. The downside ofMHD-poly is that high degree

polynomials (8 for two units, 20 for five units) can induce large approximation errors. If the water

flow can fluctuate between 0 and 100, then it means that the solver might need to compute numbers

such as 0.18 or 1008, which are either too small or too large numbers for solvers’ precision. Moreover,

computational errors can have a dramatic impact for the HUC, as an error for a time period will cumulate

and carry over all future time periods [91].

ModelMHD-poly for the fixed-head 1-HUCNL problem. To adapt the modelMHD-poly to the fixed-head

1-HUCNL problem, with head H , we introduce the following notations:

• Uq : the coefficients for the degree q of the polynomial function.
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Figure 2.5: Function g with a single polynomial function

The power function becomes:

pt = ρ ·G ·H ·
( Q∑
q=0

Uq · (dt)q
)

∀t ≤ T (2.3.24)

The modelMHD-poly for these special instances contains objective function (2.1.1) and constraints (2.1.2)-

(2.1.3), (2.1.6)-(2.1.7), (2.3.24).

NLP with a bilinear function: modelMbilin. A type of model often described in the literature to solve

the HUC as an MINLP is a bilinear model [70], [19]. Figure 2.6 shows an example of a two-dimensional

projection of a bilinear function. The power is linear with respect to the water flow, and to the head. In

the modelMgen, the power is already linear with respect to the head. We need to make it also linear with

respect to the water flow. To do so, we introduce the following notations:

• φ and ψ: the constants such that the power is linearly dependent on the water flow.

We adapt the power function as follows:

pt = ρ ·G · ht · (φ+ψ · dt) ∀t ≤ T (2.3.25)

Equalities (2.3.25) express the power as a bilinear function of the head ht and the water flow dt .

The model Mbilin contains objective function (2.1.1) and constraints (2.1.2)-(2.1.3), (2.1.6)-(2.1.7),

(2.3.1), (2.3.25). Equalities (2.3.25) feature a bilinear function of ht and dt . A bilinear function is non-

convex non-concave even if both variables are positive [84]. However, this function remains simpler

than the ones featured in previously described models, such as polynomial or 5P L functions. Besides,

unlike M2D-poly , MHD-poly , M5P L-max or M5P L-bin, model Mbilin does not require any additional binary

variables. This makes this model a potential candidate to solve quickly the problem. The downside is

that this model has the roughest approximation of all models. Indeed, the bilinear function features

none of the non-linear characteristics C1, C2, C3 or C4.
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Figure 2.6: Function g with a bilinear function

Model Mbilin for the fixed-head 1-HUCNL problem. When we adapt the model Mbilin to the fixed-

head 1-HUCNL problem, with head H , the model becomes a linear model, where the power is a linear

function of the water flow. To do so, we simply adapt the power function as follows:

pt = ρ ·G ·H · (φ+ψ · dt) ∀t ≤ T (2.3.26)

The model Mbilin for the fixed-head 1-HUCNL problem contains objective function (2.1.1) and con-

straints (2.1.2)-(2.1.3), (2.1.6)-(2.1.7), (2.3.26), which yields an LP.

MINLP with a discrete set of decisions: modelMop. Having a discrete set of decisions for the 1-HUCNL

problem means that only a given number of operating flows, say N , are authorized. Figure 2.7 shows an

example of a discrete set of decisions, with N = 9. These operating flows are specifically chosen where

the power production is the most profitable, and usually are in the concave parts of the original power

function in Mref . We introduce the following notations:

• Di : the constant being the ith operating flow;

• oit : the binary variable such that oit = 1 if we use the ith operating flow at time period t.

We consider a model with disjunctive constraints between the operating flows. As such, we need the

following constraints:

N∑
i=1

oit ≤ 1 ∀t ≤ T (2.3.27)

v1
t′ = V 1

0 +
t′∑
t=1

(
A1
t − (

N∑
i=1

oit ·Di) ·∆
)

∀t′ ≤ T (2.3.28)

v2
t′ = V 2

0 +
t′∑
t=1

(
A2
t + (

N∑
i=1

oit ·Di) ·∆
)

∀t′ ≤ T (2.3.29)

pt = ρ ·G · ht · g(
N∑
i=1

oit ·Di ,ht) ∀t ≤ T (2.3.30)
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Inequalities (2.3.27) ensure that only one operating flow can be active at each time period. The set of

equalities (2.3.28)-(2.3.30) corresponds to equalities (2.1.2), (2.1.3) and (2.1.5) fromMgen, with operating

flows instead of the water flow dt .

This leads to a new generic model Mop containing objective function (2.1.1) and constraints (2.1.6),

(2.3.1), (2.3.27)-(2.3.30). Function g in (2.3.30) can be any of the previously described function for mod-

els MHD-poly , M2D-poly , M5P L-max, M5P L-bin or Mbilin. Because we have a finite set of operating flows,

function g for Mop will feature none of the characteristics C1 to C4, regardless of the function consid-

ered. Model Mop can be beneficial because its solution space is drastically smaller than the others but

does not offer as much freedom, in particular when target volumes occur. As the operating flows are

amongst the most profitable ones, the solution might still be close to the optimal solution. The down-

side of this model is that target volumes can be unreachable with the chosen set of operating flows, thus

leading to infeasibility.

2 4 6 8

10

20

30

40

dt

g(dt, ht)

Figure 2.7: Function g with a discrete set of decisions

Model Mop for the fixed-head 1-HUCNL problem. When we adapt the model Mop for the fixed-head

1-HUCNL problem, with headH , the model becomes a MILP model. In this case the power only depends

on the water flow, thus there is a finite set of possible powers. As such, the model becomes a MILP as we

have to choose a pair (operating flow, power produced) amongst a list of pairs at each time period. We

introduce the following notations:

• Pi : the constant being the power generated for the ith operating flow.

The model is very similar to Mop for the general 1-HUCNL problem, but we define the power differently

as we use constants Pi :

pt =
N∑
i=1

oit · Pi ∀t ≤ T (2.3.31)
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The model Mop adapted for the fixed-head 1-HUCNL problem contains objective function (2.1.1) and

constraints (2.1.6), (2.3.27)-(2.3.29), (2.3.31). We can notice that this model contains very few variables,

as only the decision variables oit are required.

2.3.4 Mixed Integer Linear Program modeling piecewise linear functions

MILP model with a piecewise linear function: model MPWL. The model of this section follows the

common practice of using a PWL approximation when modeling a non-linear expression. Figure 2.8

shows an example of a piecewise linear function. Our comparisons of a PWL model with the previ-

ously described non-linear models are mostly focused on the precision, i.e., the quality of the solutions

obtained. As such, we will consider a standard PWL formulation [27] [45], more precisely the convex

combination formulation. There exist much more efficient formulations, e.g. the logarithmic formula-

tion in [104], but they will not be considered as it will not impact the value of the solution, but only the

computational time.

A generic way to obtain a two-dimensional PWL function is to use the one-dimensional method de-

scribed in [32]. It is a generalization of the convex combination formulation [45]. The method described

to approximate a non-linear function f (x,y) is as follows. We fix Bx variables on the x axis, (x̃1, .., x̃Bx ),

and By variables on the y axis (ỹ1, .., ỹBy ). For each ỹj , we approximate f (x, ỹj ) with a PWL function

l(x, ỹj ), where each x̃i , i ≤ Bx acts like a break point. It means that piece i of l(x,yj ) is a linear func-

tion between x̃i and x̃i+1. We obtain then By PWL functions with Bx − 1 pieces. The value for l(x,y),

y ∈ [ỹj , ỹj+1], is approximated by l(x, ỹj ). For the 1-HUCNL problem, we will approximate the power

function with respect to the water flow dt for a set of fixed volumes ỹj , j ∈ 1, ...,By .

In this model, we aggregate both non-linear functions f and g as a unique function to represent the

power. To do so, it is possible to replace ht by f (v1
t ) in equalities (2.1.5) from Mgen. Thus, the power is

defined as follows, and we only need to approximate one two-dimensional non-linear function for the

whole model:

pt = F (dt ,v
1
t ) = ρ ·G · f (v1

t ) · g(dt ,f (v1
t ))

To use the PWL approximation, we introduce the following notations:

• l(v1
t ,dt) : the two dimensional PWL approximation of F (v1

t ,dt);

• By : the number of one dimensional PWL functions allocated on the volume axis;

• Bx : the number of breakpoints on the water flow axis;

• Ṽ 1
j : the volume corresponding to the jth one dimensional PWL function;

• D̃i : the water flow at breakpoint i for any one dimensional PWL functions.

And we include the following variables:
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• ljt : the value l(Ṽ 1
j ,dt) of the one dimensional PWL function j at time period t;

• rit : the binary variables such that rit = 1 if dt is located on the interval [D̃i , D̃i+1];

• wit : the continuous variables such that dt is the convex combination witD̃i +wi+1tD̃i+1;

• sjt : the binary variables such that sjt = 1 if v1
t is located in the interval [Ṽ 1

j , Ṽ
1
j+1].

The PWL formulation requires the following constraints:

Bx∑
i=1

rit = 1 ∀t ≤ T (2.3.32)

wit ≤ ri−1t + rit ∀i ≤ Bx,∀t ≤ T (2.3.33)

Bx∑
i=1

wit = 1 ∀t ≤ T (2.3.34)

dt =
Bx∑
i=1

wit · D̃i ∀t ≤ T (2.3.35)

ljt =
Bx∑
i=1

wit · F (Ṽ 1
j , D̃i) ∀j ≤ By ,∀t ≤ T (2.3.36)

rit ∈ {0,1} ∀i ≤ Bx,∀t ≤ T (2.3.37)

0 ≤ wit ≤ 1 ∀i ≤ Bx,∀t ≤ T (2.3.38)

By∑
j=1

sjt · Ṽ 1
j ≤ v

1
t ≤

By∑
j=1

sjt · Ṽ 1
j+1 ∀t ≤ T (2.3.39)

By∑
j=1

sjt = 1 ∀t ≤ T (2.3.40)

ljt − P t · (1− sjt) ≤ pt ≤ ljt + P t · (1− sjt) ∀j ≤ By ,∀t ≤ T (2.3.41)

sjt ∈ {0,1} ∀j ≤ By ,∀t ≤ T (2.3.42)

Constraints (2.3.32)-(2.3.38) are the standard convex combination formulation for a one-dimensional

PWL function, applied to approximate function F for each given volume. These constraints ensure that

ljt is the value, at time period t of the PWL function approximating F for volume Ṽ 1
j . Equalities (2.3.32)

express that exactly one variable rit is equal to one at time period t, meaning that we consider one piece

of the PWL function at time period t. Inequalities (2.3.33) allow the weight rit of a breakpoint to be

greater than zero only if one for the two surrounding pieces is considered at time period t. Equalities

(2.3.34)-(2.3.35) ensure that dt is the convex combination of the D̃i with the weights rit at time period t.

Equalities (2.3.36) define the PWL approximation of the power function. Constraints (2.3.37)-(2.3.38)

give the domain of variables rit and wit .
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We have described the constraints to obtain lt,j the approximated value of F at time period t using

univariate PWL functions. Now we need constraints (2.3.39)-(2.3.42) in order to obtain the power from

the value lt,j for the fixed volume Ṽ 1
j , with Ṽ 1

j ≤ v
1
t ≤ Ṽ 1

j+1. Constraints (2.3.39)-(2.3.40) ensure sjt = 1 if

v1
t ∈ [Ṽ 1

j ; Ṽ 1
j+1], and exactly one variable sjt is equal to 1. Variable sjt then indicates which PWL function

should be considered depending on the volume. Inequalities (2.3.41) ensure pt = ljt if sjt = 1, or give

trivial bounds if sjt = 0. Constraints (2.3.42) provide the domain of sjt .

The MILP model MPWL contains objective function (2.1.1) and constraints (2.1.2)-(2.1.3), (2.1.6)-

(2.1.7), (2.3.32)-(2.3.42). The consequences of this model being a MILP are twofold. On the one hand, it

can be solved with powerful MILP tools. On the other hand it includes a lot of auxiliary variables and

constraints, and it does not include any of the non-linear characteristics of the power function.

2 4 6 8

10

20

30

40

dt

g(dt, ht)

Figure 2.8: Function g with a piecewise-linear function

Model MPWL for the fixed-head 1-HUCNL problem. When we adapt the model MPWL to the fixed-

head 1-HUCNL problem, with head H , we approximate a one-dimensional power function. To do so, we

use the convex combination formulation [45], which is the formulation generalized for model MPWL in

the general case. The convex combination formulation adapted for the fixed-head 1-HUCNL problem

requires constraints (2.3.32)-(2.3.35) and (2.3.37)-(2.3.38). We express the power as follows:

pt =
Bx∑
i=1

wit · ρ ·G ·H · g(D̃i ,H) ∀t ≤ T (2.3.43)

Thus the model MPWL for these special instances contains objective function (2.1.1) and constraints

(2.1.2)-(2.1.3), (2.1.6)-(2.1.7), (2.3.32)-(2.3.35),(2.3.37)-(2.3.38), (2.3.43).

2.3.5 Summary of models and non-linear functions

We have described a total of fourteen different models. All models have the same objective function

(2.1.1). Also, most of the models share the same set of constraints. We define constraint sets S1=(2.1.2)-
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(2.1.3),(2.1.6)-(2.1.7),(2.3.1) and S2=(2.1.2)-(2.1.3),(2.1.6)-(2.1.7). Table 2.2 summarizes all models with

their constraints. The difference between these models is the representation of the power function.

Table 2.2: Summary of the proposed models

Model Section General cases Fixed-head cases
M2D-poly 2.3.2 S1,(2.3.6)-(2.3.9) S2,(2.3.7)-(2.3.8),(2.3.10)
M5P L-max 2.3.2 S1,(2.3.11)-(2.3.12) S2,(2.3.13)
M5P L-bin 2.3.2 S1,(2.3.11),(2.3.14)-(2.3.17) S2,2.28-2.31
MHD-poly 2.3.3 S1,(2.3.22)-(2.3.23) S2,(2.3.24)
Mbilin 2.3.3 S1,(2.3.25) S2,(2.3.26)
Mop 2.3.3 (2.1.1),(2.1.6),(2.3.1),(2.3.27)-(2.3.30) (2.1.1),(2.1.6), (2.3.27)-(2.3.29),(2.3.31)
MPWL 2.3.4 S2,(2.3.32)-(2.3.42) S2,(2.3.32)-(2.3.35),(2.3.37)-2.3.38,2.3.43

Table 2.3 shows the type of program for each model. Also, in the column approx. char., a check (resp.

cross) indicates that the model properly does (resp. not) approximate the characteristic of the original

power function. From a theoretical point of view, none of the presented models perfectly fits the power

function of Mref . Indeed, none of the models features all four non-linear characteristics of the power

functions. However, it will be shown in the numerical experiments that some models allow for very

small approximation errors, while other models, with simpler linear or non-linear expressions, lead to

shorter computational times. Table 2.4 shows the size of each model, namely the number of constraints

(#cst), the number of binary and continuous variables (respectively #b-var and #c-bar). We recall that K

is the number of units, T the number of time periods, Q the degree of the polynomial function (model

MHD-poly), Bx the number of breakpoints of the PWL functions and By the number of PWL functions

(model MPWL).

Table 2.3: Comparison of the models non-linear characteristics

1-HUCNL problem Fixed-head 1-HUCNL problem Approx. Char.
Model C1 C2 C3 C4
M2D-poly non-convex MINLP convex MINLP ✓ ✗ ✓ ✓

M5P L-max non-convex NLP non-convex NLP ✓ ✓ ✗ ✗

M5P L-bin non-convex MINLP non-convex MINLP ✓ ✓ ✗ ✗

MHD-poly non-convex NLP non-convex NLP ✓ ✗ ✓ ✗

Mbilin non-convex NLP LP ✗ ✗ ✗ ✗

Mop non-convex MINLP MILP ✗ ✗ ✗ ✗

MPWL MILP MILP ✗ ✗ ✗ ✗

It is also possible to compare the models, on the basis of the difficulty for the solvers to manage their

non-linear expression. A way to measure this is to compare the size of the reformulation binary tree

for the non-linear expressions as in [95]. The reformulation binary tree is a tree where each node is an

operation and each leaf is a variable. As such, a larger reformulation binary tree often means a harder

to manage non-linear function by non-linear solvers. Following this metric, 5P L functions are by far
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Table 2.4: Number of constraints, binary variables and continuous variables for each model

1-HUCNL problem Fixed-head 1-HUCNL problem
Model #cst #b-var #c-var #cst #b-var #c-var
M2D-poly (11 + 3 ·K) · T K · T (5 + 3 ·K) · T 10 · T K · T 4 · T
M5P L-max (10 + 5 ·K) · T 0 (5 + 5 ·K) · T 9 · T 0 4 · T
M5P L-bin (10 + 15 ·K) · T K · T (5 + 10 ·K) · T (9 + 10 ·K) · T K · T (4 + 5 ·K) · T
MHD-poly (10 +Q) · T 0 (5 +Q) · T 9 · T 0 4 · T
Mbilin 10 · T 0 5 · T 9 · T 0 4 · T
Mop 9 · T L · T 5 · T 8 · T L · T 4 · T
MPWL (14 + 4 ·Bx + 4 ·By) · T (Bx +By) · T (4 +Bx +By) · T (12 + 4 ·Bx) · T Bx · T (4 +Bx) · T

the most difficult functions, followed by high degree polynomials, two degree polynomials, bilinear

functions and linear functions.

Recall that the power function of model M5P L-max features a max function. Consequently, the power

function for M5P L-max is nonsmooth and with discontinuous derivatives. This means that this model is

not supported by all non-linear solvers.

2.4 Numerical experiments

The computational evaluation is performed via Neos Server [28] on machine prod-exec-7 in October

and November 2021 using the following five MINLP solvers: ANTIGONE, BARON, COUENNE, LIN-

DOGlobal, SCIP, along with the MILP solver CPLEX. For MINLP solvers, the GAMS format is used for

input files, while for the MILP solver, the LP format is used. All experiments are performed on a sin-

gle machine, with a 2x Intel Xeon Gold 5218 @ 2.3GHz processor with 384 GB of RAM, using a single

thread. The computational time limit is set to 10800 seconds.

2.4.1 Instances, parameters, terminology and metrics

Parameters of the original power function The numerical values for the parameters of the power

functions featured in the different models are obtained by fitting their power functions to the one of

Mref . The fitting is done via Scipy’s curve_fit function1, using non-linear least squares. This approach

does not provide an a priori precision for the resulting function with respect to the data. Recall that the

purpose of this work is to study and analyse various approximations of the power function. Thus the

parameters of the head functions of all proposed models are the ones of Mref .

Parameters of model MPWL For model MPWL we also want to take into account the impact of the

number of linear pieces, therefore we will define three variants of MPWL: MPWL-1, MPWL-2 and MPWL-3,

respectively with Bx and By equal to 5, 20 and 100. For every variant, the breakpoints are defined as

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html, accessed: 2023-01-09
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equidistant instead of being tailored to each instance. Preliminary results show that model MPWL is not

significantly penalized in terms of approximation error compared to the other models, with equidistant

breakpoints. Hence, we will not investigate the best distribution of the breakpoints, in order to keep a

simple model for each modeling alternative.

Parameters of model Mop For model Mop, a discrete set of decision variables is to be chosen. For

the considered instances, we define g as the non-linear function of model M5P L-bin, and we consider

5 operating flows per unit, i.e., N = 5 ·K . We will not consider models with more operating flows, as

the model contains 5P L functions that are already difficult to handle. Additional operating flows would

make the model irrelevant as it would become too hard to solve.

Variable bounds All models contain variables that are subject to an equality constraint such as the

head ht or power pt . These variables have physical bounds, but these are not expressed explicitly in the

models, as they are set through the equality constraints. However, when using global solvers, it is a good

practice to bound every variable. Hence, for the experiments, every variable has an upper and lower

bound, even if these bounds are trivially satisfied through the equality constraints. Note also that these

bounds could be improved, but this requires a complete work which is out of the scope of this study.

Moreover, solvers usually implement bound tightening techniques. As we also compare the solvers for

the proposed model, we do not implement extra features (reformulation, bound tightening etc...). As

such the solvers are compared taking into account their complete sets of tools.

Instances All instances considered are derived from parameter sets A and B, detailed in Appendix

A.3. These parameter sets are inspired from real instances from EDF. Different variants of these sets

are created to form a larger set of instances. The varying non-linear features and the corresponding

parameters of the 1-HUCNL problem are as follows. The size of the instance varies with the number of

time periods. Equality constraints appear as soon as target volumes are accounted for in the instance. Two

features of the non-linear function can be changed: the number of inflection points and the degree of non-

linearity. These features are respectively linked to the number of units, and to when the transition from

a unit to another occurs when increasing or decreasing the water flow. The last feature is the sensitivity

of the decision variables, which measures how much the decision can affect the dynamical behavior of

the physical system. For the 1-HUCNL problem, the smaller the water flows are relative to the absolute

volume, the less the volumes change over the time periods. In Appendix A.3, the features are further

described, and an equation for the sensitivity of the decision variables is provided. Also, Table A.2

summarizes the instances and their features.

Terminology, notations and metrics We introduce additional terminology to compare the different

models on the considered instances. For the comparisons, we also define the metrics used and their

notation.
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A configuration is defined as a pair (instance, model). For all models, a configuration is solved to

optimality when the optimality gap between the primal and dual values is below 0.1%. Note that the

optimality gap is not computed in the exact same manner for every solver, but remains very similar. The

optimal solution of a configuration is the solution when the configuration is solved to optimality. The value

of a configuration is the value of its optimal solution. The recalculated value of a solution is the value of the

solution, evaluated with the non-linear functions of Mref . Such value is obtained as follows. Consider

the water flows of a solution. The recalculated value of this solution is the value of the objective function

of Mref with the same water flows. The recalculated value of a configuration is the recalculated value of

the optimal solution of the configuration. A configuration is solvable by a solver if the solver supports

the model. A configuration is solved if it is solved to optimality with at least one solver within the time

limit. A configuration is feasible with a solver when it is not solved to optimality, but a solution is found

within the time limit. A configuration is infeasible with a solver if the solver proves the configuration to

have no feasible solution within the time limit.

The metrics used to compare the models and the solvers are as follows. The computational time (CT)

of a configuration is the time required to return the optimal solution. The approximation error (AE) of

a configuration is the relative difference between the value of the optimal solution of the configuration,

and the recalculated value of the configuration. The distance to the best recalculated value (DB) of a con-

figuration is the relative difference between the recalculated value of the configuration, and the highest

recalculated value of all configurations with the same instance.

As specified, configurations are solved with several solvers. We define the virtual best solver (VBS)

[59] of a given configuration as the solver that requires minimal CT to solve the configuration. Results

show that the AE (resp. the DB) of a configuration is the same for every solver. Thus, for our results, the

VBS is the solver that has the configuration solved to optimality in minimal CT. For our analysis we use

the metrics of the configurations with their VBS. All figures and tables for the results are with the VBS,

except for Tables 2.8 and 2.9 that display the results for each solver. Note that some configurations are

not solvable with every solver. Indeed, model M5P L-max is only supported by LINDOGlobal and SCIP.

2.4.2 Model comparison

In this section, we present the results of the model comparison.

Results summary To summarize the results, Figure 2.9 shows a bargraph which represents two cate-

gories of results. First, the height of the bar for a model corresponds to the proportion of configurations

solved with their VBS. Second, the lightest color shows for a model the proportion of configurations

for which the model has the lowest DB compared to the other models. Similarly, the second and third

lightest color for a model correspond to the proportion of configurations for which the model has the

second and third lowest DB. The darkest color for a model corresponds to the proportion of configura-
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Figure 2.9: Proportion of configurations for each model solved by their VBS

tions for which the model does not yield a DB which is amongst the three lowest DB. These results are

distinguished for both the 1-HUCNL problem and the fixed-head 1-HUCNL problem.

In the remainder of this section, we highlight key observations of the model comparison for both

1-HUCNL problems, with and without a fixed-head.

Finding 1: Infeasibility of modelMHD-poly . None of the configurations with MHD-poly returns a feasi-

ble solution.

Model MHD-poly contains high degree polynomials which can yield very large and small numbers.

This produces floating point errors for the solvers, which makes this model impractical without a dedi-

cated data pre-processing.

It follows that results related to model MHD-poly are not enclosed.

Finding 2: Models Mop, M2D-poly can yield infeasibilities. Table 2.5 shows, for each model, the pro-

portion of solved (%solved), feasible (%feasible), and infeasible (%infeasible) configurations with their

VBS. Note that there is no case where the status is undefined: for every configuration, either a feasible

solution is found, or the infeasibility is proven within three hours.

In the case of Mop infeasibilities can happen because there are instances with target volumes that

cannot be reached with the finite set of operating flows. In the case of M2D-poly , infeasibilities occurs for

instances of the 1-HUCNL problem with high degree of non-linearity. However, it is not clear why such

configurations are deemed infeasible by the solvers.

Finding 3: Considering a fixed-head leads to reduced CT. Figure 2.10 shows on the y-axis the pro-

portion of configurations solved with their VBS, under a CT threshold given on the x-axis. The configu-
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Table 2.5: Proportion of solution status returned for the configurations for each model by their VBS

1-HUCNL Fixed-head 1-HUCNL

Model %solved %feasible %infeasible %solved %feasible %infeasible
M5P L-max 86.1 13.9 0.0 100.0 0.0 0.0
M5P L-bin 91.7 8.3 0.0 100.0 0.0 0.0
M2D-poly 88.9 0.0 11.1 100.0 0.0 0.0
Mop 88.9 2.8 8.3 91.7 0.0 8.3
Mbilin 100.0 0.0 0.0 100.0 0.0 0.0
MPWL-3 94.4 5.6 0.0 100.0 0.0 0.0
MPWL-2 100.0 0.0 0.0 100.0 0.0 0.0
MPWL-1 100.0 0.0 0.0 100.0 0.0 0.0

rations are color-coded depending on the model of the configuration.

Clearly, for every model, the CT is reduced when solving the fixed-head 1-HUCNL problem.

There are multiple reasons why the CT is lower for the fixed-head case. First, only a one dimensional

non-linearity is considered, in opposition to a two-dimensional one and a single-dimensional one in

the general case. Also, for all models by Mbilin, fewer variables are required when the head is fixed.

Then, models Mop, Mbilin have a linear relaxation in the fixed-head case, whereas these model have a

non-linear relaxation in the general case.

Finding 4: Considering a fixed-head leads to increased AE, yielding similar AE for all models. Fig-

ure 2.11 shows on the y-axis the proportion of configurations solved with their VBS, under an AE thresh-

old given on the x-axis. The configurations are color-coded depending on the model of the configuration.

It appears that the AE increases for each model in the fixed-head case. In addition, all models then

yield a very similar AE.

We can explain the increased AE for the fixed-head case as follows. In practice, when the volume

changes, then the head also changes. However this is not captured when the fixed-head is considered.

As such, a fixed-head model will induce higher AE independently of the model selected. This is why all

models yield high and similar AE.

Finding 5: Models Mbilin, MPWL-2, M2D-poly and M5P L-bin are the most efficient ones for the 1-HUCNL

problem. Table 2.6 shows for each model, the average CT and AE for both the 1-HUCNL problem and

the fixed-head 1-HUCNL problem. When calculating the average CT, a CT of 10800 seconds (the time

limit) is considered for configurations that are not solved to optimality. Infeasible configurations are not

taken into account for this average. Figure 2.12 depicts the average CT and AE for each model, for the

1-HUCNL problem with and without fixed-head.

When considering the CT and the AE metrics as two criterias, models Mbilin, MPWL-2, M2D-poly and

M5P L-bin are the most efficient ones. Indeed, for any other model, one of the four cited models has a

lower CT and a lower AE. We cannot deduce the best overall model, as it depends on the user needs.
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Finding 6: Models MPWL-2, M2D-poly , Mop and M5P L-max are the most efficient ones for the fixed–

head 1-HUCNL problem. In a similar fashion as for the previous finding, we detect models MPWL-2,

M2D-poly , Mop and M5P L-max to be the most efficient ones. Note that models MPWL-2, M2D-poly are

amongst the most efficient for the 1-HUCNL problem with and without a fixed-head.
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Figure 2.10: Proportion of configurations solved with their VBS where the CT is under a CT threshold
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Figure 2.11: Proportion of configurations solved with their VBS where the AE is under an AE threshold

Table 2.6: average CT and AE for each model with its VBS, and CT and AE trade-off for each pair of
models for the 1-HUCNL problem

model M5P L-max M5P L-bin M2D-poly Mop Mbilin MPWL-3 MPWL-2 MPWL-1

1-HUCNL average CT 1832.1 1200.6 12.6 520.1 0.1 618.4 0.7 0.1
average AE 1.16 0.96 2.88 4.16 19.14 3.43 7.33 40.26

fixed-head 1-HUCNL average CT 600.6 13.1 0.5 3.3 0.1 0.1 0.1 0.1
average AE 12.90 13.85 14.11 13.43 37.92 18.34 18.14 18.93
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Figure 2.12: Average CT and AE trade-off for each model

Finding 7: Metrics DB and AE are correlated. Figure 2.13 shows on the y-axis the proportion of

configurations solved with their VBS, under a DB threshold given on the x-axis.

Results show that M5P L-bin and M5P L-max solve more than 60% of the 1-HUCNL problem instances

with a DB below 0.01%. In opposition, models MPWL-1 and Mbilin yield a DB above 1% for nearly all

instances. Besides, models with the smallest DB tend to be the ones with smaller AE. The only exception

is model Mop with high DB despite a low AE.

The reason why the DB is correlated to the AE is because models with lower AE correspond more

precisely to the physics. Hence, the solutions obtained with these models are closer to the real optimal

solution of Mref than the solutions obtained with models with a higher AE. Model Mop is an exception.

Indeed, model Mop has a similar AE as M5P L-max and M5P L-bin as shown in Figure 2.11. However the

DB for Mop is much higher than for M5P L-max and M5P L-bin (Figure 2.13), which means that its solutions

are of lesser economic quality. This is because for Mop, there is a finite set of operating flows, and every

solution must have water flows within this set. It is possible that the optimal solutions obtained with

Mop are far from the optimal solutions of Mref for which the water flows are not restricted to a finite set.

Impact of each characteristics We now summarize the impact of modifying the characteristics of the

1-HUCNL problem. In Table 2.7, we present the general impact for the 1-HUCNL problem when mod-

ifying one characteristic. One arrow up (resp. down) means a moderate increase (resp. decrease), and

two arrows up (resp. down) means a large increase (resp. decrease). We also added remarks for some

models. The results presented here are further described in Appendix A.4, and the corresponding tables

are shown in Appendix A.5.
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Figure 2.13: Proportion of configurations solved with their VBS where the DB is under a DB threshold

Table 2.7: Summary of the impact of each characteristic

modified characteristics 1-HUCNL fixed-head 1-HUCNL remarks
increased size CT↑↑ AE↑↑ CT increases much more for slower models

added equality constraints CT↓, AE↓↓ AE↓↓ Mop can yield infeasibilities
increased degree of non-linearity AE↑↑ AE↑↑ M2D-poly can yield infeasibilities

increased number of inflection points CT↑ CT↑ CT increases only for M2D-poly , M5P L-bin and M5P L-max

decreased sensitivity to decision variables CT↓ AE↓↓ all variants of MPWL can yield high AE

2.4.3 Solver comparison

Previous results are presented with respect to the virtual best solver (VBS). However, in a practical case

it may not be convenient to use the VBS, as it could be difficult to have access to as many solvers. In

this section we will analyze the behaviour of each solver independently. As aforementioned, a solved

configuration has, for every solver, the same AE. Only the proportion of configurations solved and the

CT can change from a solver to another. Hence, we do not consider metric AE when comparing the

solvers. In the tables presented in this section, the following notations are used:

• %S: proportion of configurations solved;

• avg-CT: average CT in seconds, for solved configurations;

• NS: model not supported by the solver;

• NR: model supported by the solver, but experiments are not reported.

For a model, a solver dominates another solver if it has a higher %S, and a smaller avg-CT.

Finding 1: The performance of a solver highly depends on the model. Table 2.8 and Table 2.9 show

for each model the proportion of configurations solved with each solver, and the average CT, respectively
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for the 1-HUCNL problem and for the fixed-head 1-HUCNL problem. For each model, the smallest avg-

CT and the highest %S are emphasized in bold. If for a model, the two metrics are in bold for a solver,

then it dominates every other solver for the model.

The results confirm that the performance of a solver highly depends on the model. For instance,

when the 1-HUCNL problem is considered (Table 2.8), solver SCIP dominates solver ANTIGONE for

model M5P L-bin, but ANTIGONE dominates SCIP for model M2D-poly .

Table 2.8: Proportion of configurations for each model solved by each solver and related average CT for
the 1-HUCNL problem

ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
Model %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT
M5P L-max NS NS NS 38.9 616.36 86.1 606.87 NS
M5P L-bin 19.4 824.84 88.9 25.63 69.4 163.23 86.1 446.92 88.9 218.00 NS
M2D-poly 44.4 2.51 88.9 31.32 63.9 91.27 80.6 30.36 19.4 828.72 NS
Mop 50.0 235.24 83.3 258.94 52.8 439.83 75.0 375.10 69.4 44.23 NS
Mbilin 75.0 0.10 100.0 0.08 97.2 0.25 75.0 4.72 100.0 0.17 NS
MPWL-3 NR NR NR NR NR 94.4 19.07
MPWL-2 NR NR NR NR NR 100.0 0.71
MPWL-1 NR NR NR NR NR 100.0 0.02

Table 2.9: Proportion of configurations for each model solved by each solver and related average CT for
the fixed-head 1-HUCNL problem

ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
Model %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT
M5P L-max NS NS NS 97.2 159.96 94.4 0.13 NS
M5P L-bin 30.6 856.07 100.0 13.13 100.0 109.84 61.1 58.80 100.0 2.95 NS
M2D-poly 72.2 0.15 100.0 0.51 100.0 0.87 100.0 1.36 100.0 100.31 NS
Mop NR NR NR NR NR 91.7 0.01
Mbilin NR NR NR NR NR 100.0 0.00
MPWL-3 NR NR NR NR NR 100.0 0.05
MPWL-2 NR NR NR NR NR 100.0 0.02
MPWL-1 NR NR NR NR NR 100.0 0.01

Finding 2: Solvers SCIP and BARON are the most efficient ones for (MI)NLP models. Tables 2.10

and 2.11 show the proportion of instances where a solver is the VBS, for each model.

Solver SCIP is the most efficient for model M5P L-max. Solver BARON is the most efficient for any

other non-linear model, namely models M5P L-bin, M2D-poly , Mbilin and Mop for the 1-HUCNL problem

and models M5P L-bin and M2D-poly for the fixed-head 1-HUCNL problem.

We distinguish two exceptions where solver ANTIGONE is the most efficient for modelMbilin for the

1-HUCNL problem and model M2D-poly for the fixed-head 1-HUCNL problem. However, Tables 2.8 and
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2.9 show that in these cases, the problem is solved very quickly. Thus it is possible that ANTIGONE is

quicker than BARON only on easy configurations, and may only be quicker to startup.

Finding 3: (MI)LP models are efficiently solved by CPLEX. All linear models, namely modelsMPWL-1,

MPWL-2 and MPWL-3 for the 1-HUCNL problem and models Mbilin, Mop for the fixed-head 1-HUCNL

problem are efficiently solved by CPLEX.

Tables 2.8 and 2.9 show that most linear models are solved on average in less than 1 second. Besides,

when Mop is infeasible, it is also proven infeasible by CPLEX within one second.

Table 2.10: Proportion of configurations for each model where a solver is the VBS for the 1-HUCNL

problem

Model ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
M5P L-max NS NS NS 16.1 83.9 NS
M5P L-bin 0.0 54.6 30.3 15.2 0.0 NS
M2D-poly 12.5 84.4 3.1 0.0 0.0 NS
Mop 0.0 90.6 0.0 6.3 3.1 NS
Mbilin 63.9 33.3 0.0 0.0 2.8 NS
MPWL-3 NR NR NR NR NR 100.0
MPWL-2 NR NR NR NR NR 100.0
MPWL-1 NR NR NR NR NR 100.0

Table 2.11: Proportion of configurations for each model where a solver is the VBS for the fixed-head
1-HUCNL problem

Model ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
M5P L-max NS NS NS 5.6 94.4 NS
M5P L-bin 2.8 72.2 0.0 13.9 11.1 NS
M2D-poly 52.8 33.3 0.0 13.9 0.0 NS
Mop NR NR NR NR NR 100.0
Mbilin NR NR NR NR NR 100.0
MPWL-3 NR NR NR NR NR 100.0
MPWL-2 NR NR NR NR NR 100.0
MPWL-1 NR NR NR NR NR 100.0

In Appendix A.4 an analysis of the impact of each feature of a 1-HUCNL problem instance is de-

scribed.

2.4.4 General modeling recommendations derived from the numerical experiments

The results show that the choice of the model highly depends on the needs of a user. Indeed, if a low

AE is required, models M5P L-bin, and M5P L-max are the most efficient. However, not all solvers sup-

port M5P L-max, and larger CT can be induced, meaning that M5P L-bin is overall a better alternative than
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M5P L-max. For the fixed-head 1-HUCNL problem, models Mop and M2D-poly can also be considered, as

they yield nearly the same AE as M5P L-bin, and M5P L-max. In opposition, if one requires low computa-

tional times, models Mbilin, and MPWL-1 are the most suitable. However, the AE can be very high with

such models. For a more balanced option, three types of models stand out: MPWL and M2D-poly for the

1-HUCNL problem and MPWL, Mop and M2D-poly for the fixed-head 1-HUCNL problem. We list them

hereafter giving for each of them their main strengths and weaknesses. Firstly, MPWL usually provides

a good trade-off between CT and AE. However the proper number of pieces cannot always be deduced

in advance. Consequently, a trial and error procedure may be necessary to determine a piecewise linear

function with a good trade-off. Secondly, model Mop can lead to the smallest AE, and it can be solved

faster than the sophisticated models M5P L-bin and M5P L-max. The drawback is that in the case of an in-

stance with equality constraints on the water resource, there may not be a feasible solution for model

Mop. Thirdly, model M2D-poly also yields a very good trade-off between AE and CT. However, for some

configurations featuring model M2D-poly , all solvers fail to find a solution, even if there is a feasible so-

lution with the model. This illustrates the intrinsic difficulties of the current solvers for some non-linear

models (see also the case of MHD-poly described in Section 2.4.2).

The choice of the solver impacts the CT and the proportion of instances solved. The results indicate

that BARON is the most efficient non-linear solver when the model is supported, otherwise SCIP is the

most efficient one. For the three balanced models highlighted, solver BARON is the most efficient for

the non-linear ones (model Mop for the 1-HUCNL problem and M2D-poly in any case), and a specialized

MILP solver should be considered for the linear ones (model Mop for the fixed-head 1-HUCNL problem

and MPWL in any case).

2.5 Conclusion

In this chapter, we compared modeling alternatives to solve the non-linear 1-HUC problem. The fo-

cus of this study is the power function, that is a two-dimensional non-convex and non-concave function

of the water flow and the reservoir volume. Seven alternatives are considered, covering a wide variety of

family of models, including models from the literature and also new models. The comparison of these

alternatives is conducted on several sets of instances, each of them focusing on a particular characteristic

of the 1-HUCNL problem. Non-linear modeling alternatives are solved using five different non-linear

solvers, in order to identify pairs of model/solver yielding the best results.

From this study, four out of the seven models stand-out: Mbilin, MPWL, M2D-poly and M5P L-max. Simi-

larly, three models stand out in the fixed-head case: MPWL,Mop andM2D-poly . Indeed, these models give

the best trade-offs between metrics such as the computational time, the precision and the feasibility. For

each of these models, we also recommend one solver which yields the smallest computational times.

In the next chapter, we will select one of the highlighted models and extend it to integrate hydraulic

constraints. The selected model will be enhanced, through a reformulation and a bound-tightening
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procedure. Finally, we will define the resulting variants of the 1-Hydro Unit Commitment problem that

will be considered for the remainder of the thesis, as well as their mathematical models.
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In the previous chapter, we compared seven modeling alternatives to represent a simplified non-

linear 1-Hydro Unit Commitment problem. From this comparison, we highlighted the most efficient

alternatives in the general and the fixed-head case. For the remainder of the thesis, we plan to develop

solution approaches for the 1-Hydro Unit Commitment problem, focusing on hydraulic constraints. For

this purpose, we start from one of the previously highlighted models, and define generalized versions of

it that includes these hydraulic constraints.

This chapter comprises three sections. In Section 3.1 we present the modeling alternative selected

and the integration of hydraulic constraints. In Section 3.2 we propose reformulations and bound-

tightening techniques to improve the model. In Section 3.3 we specify the resulting mathematical mod-

els that will be studied in the subsequent chapters of this thesis, before the conclusion.

3.1 Selected power function modeling and integration of hydraulic constraints

The remainder of the thesis will focus on hydraulic constraints. These constraints include the min-

imum and maximum bounds on the volumes, featured in some instances of the previous chapter, but
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also ramping and min-up/down constraints which where not included previously. As the head effect is

not related to these constraints, we will consider the fixed-head 1-HUC problem. The previous study

has shown that MPWL, M2D-poly and Mop are the best models for the fixed-head 1-HUC with regards to

the non-linear power function. Among these models, the one yielding the smallest approximation er-

rors is Mop. Therefore our goal for the remainder of thesis will be to focus on models resulting from the

integration of hydraulic constraints into model Mop, with the ambition of obtaining high-performance

algorithms. In addition, for the previous study we limited the number of operating flows to 5 for model

Mop. This is because model Mop is non-linear for the general case, and more operating flows lead to

very high computational times. However, for the fixed-head case, model Mop becomes linear, and one

can consider more than 5 operating points without inducing excessive computational times. Defining a

larger set of operating flows also increases the quality of the solutions obtained, and reduces the chances

of Mop to yield infeasibilities. Finally, the current approach at EDF is to solve a model similar to Mop

with a fixed-head, which is another reason to study further this modeling alternative in the thesis.

The straightforward integration of pumps as well as ramping and min-up/down constraints intoMop

leads to model (3.1.1)-(3.1.15). To that end we define an operating point as a pair (Di , Pi), withDi a water

flow, and Pi the associated power considering a fixed head. The plant operates on N turbining points

(indexed {1, . . . ,N }), M pumping points (indexed {−1, . . . ,−M}) and an idle operating point (indexed 0).

WithN = {−M,. . . ,0, . . . ,N }, we introduce xt,i the binary variable indicating whether the plant is at least

at operating point i ∈ N at time period t ≤ T and binary variable vt,i indicating the start-up of an oper-

ating point i at time period t. We also recall that Ru (resp. Rd) is the maximum increase (resp. decrease)

of the ramping constraints, and L is the duration of the min-up/down constraints. The resulting model

is as follows:

max
T∑
t=1

∑
i∈N

ΛtPixt,i +Φ1
( T∑
t=1

(A1
t −

∑
i∈N

Dixt,i)
)

+Φ2
( T∑
t=1

(A2
t +

∑
i∈N

Dixt,i)
)

(3.1.1)

s.c. V 1
0 +

t′∑
t=1

(A1
t −

∑
i∈N

Dixt,i) ≤ V
1
t′ , ∀t′ ≤ T (3.1.2)

V 1
0 +

t′∑
t=1

(A1
t −

∑
i∈N

Dixt,i) ≥ V 1
t′ , ∀t′ ≤ T (3.1.3)

V 2
0 +

t′∑
t=1

(A2
t +

∑
i∈N

Dixt,i) ≤ V
2
t′ , ∀t′ ≤ T (3.1.4)

V 2
0 +

t′∑
t=1

(A2
t +

∑
i∈N

Dixt,i) ≥ V 2
t′ , ∀t′ ≤ T (3.1.5)

xt,i ≥ xt,i+1, ∀t ≤ T ,∀i ∈ {0, . . . ,N − 1} (3.1.6)

xt,i ≥ xt,i−1, ∀t ≤ T ,∀i ∈ {−M + 1, . . . ,0} (3.1.7)
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xt,1 + xt,−1 ≤ 1, ∀t ≤ T (3.1.8)∑
i∈N

Dixt,i −
∑
i∈N

Dixt−1,i ≤ Ru , ∀t ∈ {2, . . . ,T } (3.1.9)∑
i∈N

Dixt−1,i −
∑
i∈N

Dixt,i ≤ Rd , ∀t ∈ {2, . . . ,T } (3.1.10)

t∑
t′=t−L+1

vt′ ,i ≤ xt,i ∀t ∈ {L, . . . ,T },∀i ∈ N (3.1.11)

t∑
t′=t−L+1

vt′ ,i ≤ 1− xt−L,i ∀t ∈ {L, . . . ,T },∀i ∈ N (3.1.12)

vt,i ≥ xt,i − xt−1,i ∀t ∈ {2, . . . ,T },∀i ∈ N (3.1.13)

xt,i ∈ {0,1}, ∀t ≤ T ,∀i ∈ N (3.1.14)

vt,i ∈ {0,1}, ∀2 ≤ t ≤ T ,∀i ∈ N (3.1.15)

The objective function (3.1.1) maximizes the value of the valley, taking into account the value of the

remaining water at time period T , and the value of the power produced. Inequalities (3.1.2) to (3.1.5)

are the upper and lower bounds of the upstream and downstream reservoirs. Inequalities (3.1.6) and

(3.1.7) express the cumulative nature of the operating points. Inequalities (3.1.8) forbid the units to

pump and turbine simultaneously. Inequalities (3.1.9) and (3.1.10) are the ramping constraints. In-

equalities (3.1.11) to (3.1.13) are the min-up/down constraints as formulated in [85] with additional

binary variables vt,i . Inequalities (3.1.14) and (3.1.15) express the binary nature of variables xt,i and

variables vt,i .

Operating points are modeled in a cumulative fashion by inequalities (3.1.6) and (3.1.7). It is also

possible to model operating points with disjunctive constraints. Even if these two alternatives do not

yield the same relaxation [101] in general, for linear models such as the one presented in this section,

they are equivalent [27]. Hence, we consider in the cumulative operating points, in order to remain

closer to the current model at EDF.

3.2 Reformulation and improvements

In this section, we reformulate the previously defined models in order for them to be easier to exploit.

Then, we present an improvement of the model based on bound tightenings.

3.2.1 Shifting all operating points

It is convenient to only have operating points with non-negative power and flow. In [3] a modification

on the flows and the volume bounds is defined in order to only have such operating points. First, each

turbining operating point i, for i ∈ {1, ..,N } is renumbered i +M, yielding operating point (D ′i+M , P ′i+M )

with D ′i+M = Di and P ′i+M = Pi . For each pumping operating point i ∈ {−M,. . . ,−1}, a turbining operating
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point numbered i +M + 1 is created, yielding operating point (D ′i+M+1, P ′i+M+1) with D ′i+M+1 = |Di | and

P ′i+M+1 = |Pi |. Operating point 0 remains unchanged. As such, all the operating points have non-negative

cumulated flows. For a given t ≤ T , the bounds on the volume V
1
t and V 1

t (resp. V
2
t and V 2

t ) are shifted

in order to keep the same feasible solutions: V ′
1
t = V

1
t − t

∑−M
i=−1 |Di | and V ′1t = V 1

t − t
∑−M
i=−1 |Di | (resp.

V ′
2
t = V

2
t + t

∑−M
i=−1 |Di | and V ′2t = V 2

t + t
∑−M
i=−1 |Di |).

Example 2

Consider the following instance of the fixed-head 1-HUC problem. The initial volumes are V 1
0 = 50,

V 2
0 = 30. With T = 3, upstream reservoir bounds are V

1
= [100,100,20] and V 1 = [0,0,20], and

downstream reservoir bounds are V
2

= [60,60,60] and V 2 = [0,0,0]. Consider the associated model

(3.1.1)-(3.1.15) with N = 3 turbining operating points (D1 = 3, P1 = 3), (D2 = 4, P2 = 3), (D3 = 2, P3 = 2)

and M = 2 pumping operating points (D−1 = −3, P−1 = −5), (D−2 = −2, P−2 = −4)

The renumbering is such that the 3 turbining operating points, of index 1 to 3 are now of index

1+M to 3+M, i.e., (D ′3 = 3, P ′3 = 3), (D ′4 = 4, P ′4 = 3) and (D ′5 = 2, P ′5 = 2) From pumping operating point

−1 a turbining operating point M − 1 + 1 = 2 is created, and similarly from the pumping operating

point −2 operating point M − 2 + 1 = 1 is created, i.e., (D ′1 = 2, P ′1 = 4) and (D ′2 = 3, P ′2 = 5).

The upstream reservoir upper bounds are modified as follows V ′
1
1 = V

1
1 − 1 · (2 + 3) = 95, V ′

1
2 =

V
1
2 − 2 · (2 + 3) = 90, V ′

1
3 = V

1
3 − 3 · (2 + 3) = 5. Similarly, we obtain the following upstream reservoir

lower bounds V ′1 = [−5,−10,5]. The shift is done in the opposite way for the downstream reservoir,

V ′
2

= [65,70,75] and V ′2 = [5,10,15].

As a consequence, in the remainder of the thesis, we consider without loss of generality a plant

featuring only turbines, meaning that N = {0, . . . ,N }. In this case, constraints (3.1.7) and (3.1.8) are not

necessary as there are no pumps, and no renumbering is required.

3.2.2 Rewriting the resource windows and the objective function

Rewriting the resource windows. We focus on the resource windows on the volume, represented with

(3.1.2), (3.1.3), (3.1.4) and (3.1.5). These constraints can be rewritten as follows:

t′∑
t=1

N∑
i=1

Dixt,i ≥ V 1
0 +

t′∑
t=1

A1
t −V ′

1
t′ , ∀t′ ≤ T (3.2.1)

t′∑
t=1

N∑
i=1

Dixt,i ≤ V 1
0 +

t′∑
t=1

A1
t −V ′

1
t′ , ∀t

′ ≤ T (3.2.2)

t′∑
t=1

N∑
i=1

Dixt,i ≤ V ′
2
t′ −V 2

0 −
t′∑
t=1

A2
t , ∀t′ ≤ T (3.2.3)

t′∑
t=1

N∑
i=1

Dixt,i ≥ V ′
2
t′ −V

2
0 −

t′∑
t=1

A2
t , ∀t′ ≤ T (3.2.4)
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There are redundancies between (3.2.1) and (3.2.4), and between (3.2.2) and (3.2.3). Let us introduce

bounds βt′ and αt′ in the following way with t′ ≤ T :

βt′ = max(V 1
0 +

t′∑
t=1

A1
t −V ′

1
t′ , V

′2
t′ −V

2
0 −

t′∑
t=1

A2
t )

αt′ = min(V 1
0 +

t′∑
t=1

A1
t −V ′

1
t′ , V

′2
t′ −V 2

0 −
t′∑
t=1

A2
t )

As such, only two constraints will be needed per time period, rather than four.

Rewriting the objective function. It is possible to reformulate the objective function as follows:

max
T∑
t=1

N∑
i=1

(ΛtPi −Φ1Di +Φ2Di) · xt,i +Φ1
T∑
t=1

A1
t +Φ2

T∑
t=1

A2
t

Clearly, the external intakes being constants, their value do not change the optimal solution and we can

discard them. Besides, we introduce Ψt,i = ΛtPi −Φ1Di + Φ2Di , being the value of operating point i at

time period t. Note that the value of an operating point can be negative when Φ1 is large and both Λt

and Φ2 are small. In the following we will drop the constant term from the objective function without

loss of generality.

Rewriting the model. By using bounds βt′ and αt′ , and values Ψt,i , we obtain model defined as follows:

max
T∑
t=1

N∑
i=1

Ψt,i · xt,i (3.2.5)

s.t.
t′∑
t=1

N∑
i=1

Dixt,i ≥ βt′ ∀t′ ≤ T (3.2.6)

t′∑
t=1

N∑
i=1

Dixt,i ≤ αt′ ∀t′ ≤ T (3.2.7)

(3.1.6) (3.2.8)

(3.1.9)− (3.1.15) (3.2.9)

With this model, the objective function (3.2.5) is to maximize the value of each active operating

point. Also, one can see (3.2.6) and (3.2.7) as resource windows, or (3.2.6) as nested covering constraints

and (3.2.7) as nested knapsack constraints. However, instead of being resource windows on the volume,

these constraints apply on the sum of the flows since time period 1. We denote such sum as the cumulated

flow. For generality purposes, we define the cumulated flow between two time periods, rather than from

the first time period.

Definition 1 (Cumulated flow Dt′ ,t)

The cumulated flow Dt′ ,t is the sum of the flows from time periods t′ to t:

Dt′ ,t =
t∑

t′′=t′

M∑
i=1

Dixt′′ ,i
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3.2.3 Bound tightening

The bounds βt and αt in (3.2.6) and (3.2.7) are obtained from the reservoir volumes, which can be very

large compared to the water flow. Hence, an improvement of the model is to tighten these bounds.

At each time period, the flow is between 0 and
∑M
i=1Di . For any pair of time periods (t′ , t), with t′ < t,

the lower bound Dt′ ,t = 0 and the upper bound Dt′ ,t = (t− t′ + 1)
∑M
i=1Di are valid for the cumulated flow

Dt′ ,t . We can therefore introduce bounds α̂t and β̂t in the following way:

α̂t = min(αt ,D1,t)

β̂t = max(βt ,D1,t)

Bounds β̂t and α̂t may be drastically tightened compared to βt and αt , especially for the first time

periods. However, there is still room for tighter bounds. Suppose that at time period t the bounds are

such that β̂t > β̂t+1. As the water flows are all non-negative, a solution verifying β̂t at time period t

cannot violate bound β̂t+1 at time period t + 1. Hence, the latter can be tightened. Similarly, if α̂t +

Dt+1,t+1 < α̂t+1, a solution verifying α̂t at time period t cannot violate bound α̂t+1 at time period t + 1.

This logic can be extended in order to tighten the bounds of any time period from the bounds of any

other time period, following the rules below. Let a pair of time periods (t′ , t) with t′ < t. Then, D1,t lies

in [β̂t′ +Dt′+1,t ; α̂t′ +Dt′+1,t] and D1,t′ lies in [β̂t −Dt′+1,t ; α̂t −Dt′+1,t].

Let us define α̃t and β̃t as follows:

α̃t = min(min
t′<t

(α̂t′ +Dt′+1,t),min
t′>t

(α̂t′ −Dt+1,t′ ))

β̃t = max(max
t′<t

(β̂t′ +Dt′+1,t),max
t′>t

(β̂t′ −Dt+1,t′ )

Tighter bounds α∗t and β∗t are calculated as follows:

α∗t = min(α̂t , α̃t)

β∗t = max(β̂t , β̃t)

Note that computing all bounds β∗t is of complexity T 2. Indeed, for a given t, computing βt as well

as β̃t both require one comparison, computing β̃t needs T comparisons and computing β∗t requires one

comparison. We obtain a similar complexity for computing upper bounds α∗t .

Example 3

Let us define an instance of the 1-HUC problem with T = 6. Bounds are β3 = 2, β6 = 5, α3 = 2, α6 = 5,

and βt = −2, αt = 10 for t in {1,2,4,5}. The maximum flow is 2, and as we consider the 1-HUC without

pump, the minimum flow is 0. By applying tighter bounds we can see that we drastically reduce the

possibilities. In Table 3.1a the invalid values for the total flow at each time period, with respect to

bounds βt , are marked with a cross. Table 3.1b is similar to Table 3.1a with tighter bounds α̂t and

β̂t , the crosses being in bold to emphasize the tightening of the bounds. Table 3.1c follows the same

representation with the tightest bounds β∗t and α∗t .
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Table 3.1: Reducing the search space using bounds on the flows

(a) Table with bounds αt and βt

t -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
0
1 X X
2 X X
3 X X X X X X X X X X X X X X
4 X X
5 X X
6 X X X X X X X X X X X X X X

(b) Table with bounds α̂t and β̂t

t -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
0
1 X XX XX XX XX XX XX XX XX XX XX X
2 X XX XX XX XX XX XX XX XX X
3 X X X X X X X X X X X X X X
4 X XX XX XX XX X
5 X XX XX X
6 X X X X X X X X X X X X X X

(c) Table with bounds α∗t and β∗t

t -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
0
1 X X X X X X X X X X X X
2 X X X XX XX X X X X X X X
3 X X X X X X X X X X X X X X
4 X X X XX XX XX XX XX XX X X X
5 X X X XX XX XX XX XX XX XX XX X
6 X X X X X X X X X X X X X X

3.3 Resulting discretized 1-Hydro Unit Commitment problems and models for

the remainder of the thesis

In this section, we define the discretized 1-Hydro Unit Commitment problem denoted by 1-HUCDRM ,

that will be considered in the following chapters of this thesis. We define the corresponding model, re-

sulting from the introduction of hydraulic constraints into Mop as presented in Section 3.1 and the

improvements proposed in Section 3.2. We also define a special case of the discretized 1-Hydro Unit

Commitment problem without ramping nor min-up/down constraint, denoted by 1-HUCD , and the

associated model.
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3.3.1 The discretized 1-Hydro Unit Commitment problems

The discretized 1-Hydro Unit Commitment problem (1-HUCDRM problem). Consider a valley, with

a plant between an upstream and a downstream reservoir, for which the fixed-head case is considered.

The plant featuresN operating points, operating point i being a pair between a flowDi and an associated

power Pi . The time is discretized into T time periods. The ramping constraints limits the water flow

increase from time period t to t + 1 by an amount Ru (resp. Rd). The min-up constraints indicate that

if operating point i is reached, it must remain active during L time periods. Similarly, the min-down

constraints indicate that if operating point i is shut down, it cannot be reached during L time periods.

For each time period t ≤ T , there is an upper bound α∗t and a lower bound β∗t of the cumulated flow D1,t .

For each time period t ≤ T , each operating point i ≤N has a value Ψt,i . Solving the 1-HUCDRM problem

is to schedule the operating points such that all constraints are satisfied, and the value is maximized.

The 1-HUCD problem. We define the 1-HUCD problem as the simplified case without ramping con-

straints and min-up/down constraints.

3.3.2 Mathematical models

ModelMop-DRM . Let xt,i be the binary variable indicating that operating point i is active at time period

t. The model Mop-DRM is as follows.

max
T∑
t=1

N∑
i=1

Ψt,i · xt,i (3.2.5)

s.t.
t′∑
t=1

N∑
i=1

Dixt,i ≥ β∗t′ , ∀t′ ≤ T (3.2.6)

t′∑
t=1

N∑
i=1

Dixt,i ≤ α∗t′ , ∀t′ ≤ T (3.2.7)

xt,i ≥ xt,i+1, ∀t ≤ T ,∀i ≤N − 1 (3.1.6)∑
i∈N

Dixt,i −
∑
i∈N

Dixt−1,i ≤ Ru , ∀t ∈ {2, . . . ,T } (3.1.9)∑
i∈N

Dixt−1,i −
∑
i∈N

Dixt,i ≤ Rd , ∀t ∈ {2, . . . ,T } (3.1.10)

t∑
t′=t−L+1

vt′ ,i ≤ xt,i ∀t ∈ {L, . . . ,T },∀i ∈ N (3.1.11)

t∑
t′=t−L+1

vt′ ,i ≤ 1− xt−L,i ∀t ∈ {L, . . . ,T },∀i ∈ N (3.1.12)

vt,i ≥ xt,i − xt−1,i ∀t ∈ {2, . . . ,T },∀i ∈ N (3.1.13)
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xt,i ∈ {0,1}, ∀t ≤ T ,∀i ∈ N (3.1.14)

vt,i ∈ {0,1}, ∀2 ≤ t ≤ T ,∀i ∈ N (3.1.15)

Model Mop-D . We define model Mop-D similar to Mop-DRM , without ramping nor min-up/down con-

straints. The resulting model is (3.2.5)-(3.2.7), (3.1.6) and (3.1.14).

3.4 Conclusion

In this chapter we define the model retained for the study of hydraulic constraints in the remainder

of the thesis. These constraints are mainly resource windows, min-up/down and ramping constraints.

As the head does not play a major role for these particular constraints, we focus on the fixed-head 1-

HUC problem. Between the three most efficient models highlighted for the fixed-head case in Chapter

2, model Mop provides the best precision. Besides, Mop is linear in the fixed-head case, and in this

case it is possible to consider many more operating points than in the comparison. These additional

operating points can reduce some of the drawbacks observed in the modeling comparison. Hence, we

introduced a generalization of Mop, taking into account pumps as well as ramping and min-up/down

constraints. We reformulated the model so that bounds on the volume become nested knapsack and

covering inequalities, which can also be defined as resource windows for the cumulated flow. Moreover,

we improved this model using a bound-tightening technique, which can be done in polynomial time.

Finally, we defined the resulting specific 1-Hydro Unit Commitment problem variants considered for

the remainder of the thesis, denoted 1-HUCDRM and 1-HUCD , as well as the corresponding models

denoted Mop-DRM and Mop-D .

In the next chapter, we will conduct a polyhedral study on a variant of the Knapsack Problem, de-

signed to be the combinatorial core of the 1-HUCD problem. From that study, we will also propose a

dedicated two-phase Branch& Cut algorithm to solve the knapsack problem variant.
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In the previous chapter, we presented a comparison of modeling alternatives, from which we selected

a linear model. Such a model is similar to the one considered at EDF to provide solutions to the 1-Hydro

Unit Commitment problem. As such, conducting a polyhedral study on this linear model could improve

the current approach at EDF. The idea is to focus on the combinatorial aspects, which means considering

the relationship between the upperbound on cumulated flow and the discrete set of flows. For this

purpose, we define a variant of the knapsack problem, with Symmetric weight and Chain Precedences

(SCPKP).

In this chapter, we carry out a polyhedral study of the Symmetric-weight Chain Precedence Knap-

sack Problem. Then, we present a two-phase Branch & Cut algorithm, exploiting the symmetric aspect of

the problem through a structure called pattern. In Section 4.1 we define the SCPKP and its relationship

to the 1-HUC problem. In Section 4.2 we review polyhedral results on related knapsack variants. In

Section 4.3 we present the complexity of the considered problem and first polyhedral results. In Section

4.4 we define the patterns and their corresponding set of valid inequalities, which are also facet-defining

in some cases. In Section 4.5 we present the separation problem for this new set of valid inequalities.

In Section 4.6 we detail the algorithms featured in our Branch & Cut scheme. In Section 4.7 we com-

pare our Branch & Cut scheme to two state-of-the-art Branch & Cut variants. In Section 4.8, we draw

concluding remarks.

4.1 Definition of the Symmetric-weight Chain Precedence Knapsack Problem

The Symmetric-weight Chain Precedence Knapsack Problem (SCPKP) is defined as follows. Consider

I groups of J elements, where I and J are positive integers. Let item (i, j) be element j of group i. Item

(i, j) has weight W j ∈ R≥0 and value V ij ∈ R. This means that the weight of item (i, j) does not depend

on the group index i. Within each group, order constraints are such that any item (i, j) can be selected

only if item (i, j − 1) is selected, thus inducing chain precedence constraints. Let C be the maximum

knapsack capacity. Solving the SCPKP is to maximize the total value of the selected items, while the

chain precedence constraints are satisfied, and the total weight of the selected items is less than or equal

to capacityC. Figure 4.1 depicts the SCPKP, where a square represents an item, and the arrows represent

the chain precedence constraints.

We define an instance of the SCPKP as follows.

Definition 2 (Instance of the SCPKP)

We denote (I , J , W , V C) an instance of the SCPKP, with I the number of groups, J the number of
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J

I

W1, V1,1

W2, V1,2

WJ , V1,J

W1, V2,1

W2, V2,2

WJ , V2,J

W1, VI,1

W2, VI,2

WJ , VI,J

..
.

..
.

..
.

. . .

. . .

. . .

Figure 4.1: Graphical representation of the SCPKP

elements, W the weight vector, V the value matrix and C the knapsack capacity.

Studying the SCPKP is motivated by the fact that its constraints are a subset of the ones for the

1-HUCD problem. More precisely, the constraints of the SCPKP are similar to the ones of the 1-HUCD

problem considering only one of the knapsack inequalities (3.2.7). This is beneficial as the polyhedron

of the SCPKP is easier to study and results are extendable to the 1-HUCD problem.

4.2 Related knapsack polytopes

The Knapsack Problem (KP) and its variants have been widely studied in the literature [53]. The

SCPKP is a knapsack variant which has not been studied yet. Nevertheless, it can be related to some

variants of the knapsack problem in the literature. As the chain precedence constraints are a special case

of precedence constraints, the CPKP and SCPKP are special cases of the Precedence Knapsack Problem

(PKP) [17]. An alternative model for the CPKP and SCPKP is to consider disjunctive constraints rather

than chain precedence constraints. Hence, the CPKP and SCPKP are special cases of the Multiple-choice

Knapsack Problem (MCKP) [58] where groups are not restricted to have the same number of items. The

latter is also a special case of the Disjunctive Knapsack Problem (DKP) [92]. Both the PKP and the

DKP are generalizations of the classical Binary Knapsack Problem (BKP) [7]. Indeed, the BKP is a PKP

without any precedence, as well as a DKP without any disjunctive constraints. Interestingly, the CPKP

is also a generalization of the BKP, whereas the SCPKP is not. Indeed, an CPKP with exactly one item for

each group does not have any chain precedence constraints, which is exactly a BKP. However, because of

the symmetric weight, an SCPKP with one item per group would be a trivial BKP, where each item has

the exact same weight. Furthermore, the SCPKP is not a Multiple Knapsack Problem (MKP) [39] despite

the presence of multiple groups. Indeed, a capacity constraint is applied on all groups simultaneously
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in the SCPKP, whereas it is applied for each group individually in the MKP. As the chain precedence

are a special case of the precedence constraints, it is worth mentioning the Multi-Period PKP (MPPKP)

[75]. This is a generalization of the PKP, where items can be selected at different time periods. This

adds another set of precedence constraints, as if an item is selected at a given time period, then it is also

selected for the following time periods. In the case of an MPPKP with chain precedence constraints, its

representation is identical to the SCPKP in Figure 4.1 but with additional arcs going from left to right.

Note that in such a case, the MPPKP is an SCPKP where all the symmetries with respect to the groups

are broken. However, to the best of our knowledge, there is no study for such special case of the MPPKP.

In this section, we present ILP formulations and valid inequalities of related knapsack problems. We

focus on generalizations of the SCPKP, namely the PKP and the DKP. As facet-defining inequalities for

the BKP have been extended to variants related to the SCPKP, the BKP is also considered in this short

state-of-the-art review of polyhedral results of interest for the SCPKP.

4.2.1 Binary knapsack polytope

The SCPKP is neither a generalization, nor a special case of both the BIKP [20] and the BKP [7]. Hence,

the facet-defining inequalities of these problems may not be related to those of the SCPKP. However, we

introduce inequalities of the BKP as they have been extended to variants that are related to the SCPKP.

Let V be a set of items, the BKP can be formulated as follows:

max
∑
j∈V

vjxj

s.t.
∑
j∈V

wjxj ≤ C,

xj ∈ {0,1} ∀j ∈ V .

In [7] are defined covers, minimal covers and minimal cover inequalities as follows. A cover U ⊆ V is a

set of items such that
∑
j∈U wj > C. A minimal cover U ⊆ V is a cover such that no proper subset of U is

also a cover, i.e.,
∑
j∈U\{i}wj ≤ C, for each i ∈U . Let U be a minimal cover. The minimal cover inequality

associated with U is: ∑
j∈U

xj ≤ |U | − 1.

The family of minimal cover inequalities contains facet-defining inequalities of the BKP.

Other inequalities for the BKP have been defined, namely the extended cover inequalities, the (1, k)-

configurations inequalities and the weight inequalities [30]. Moreover, the authors prove that for each

of these three families of inequalities, the separation problem is NP-hard. More recently, a new lifting

for minimal cover inequalities is introduced in [65]. As the aforementioned inequalities have not been

extended to the PKP, and therefore may not extend to the SCPKP, we do not detail them further.
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4.2.2 Disjunctive constrained Knapsack Problem

As previously mentioned, the SCPKP is a special case of the MCKP. However, to the best of our knowl-

edge, there are no polyhedral results related to the MCKP. As such, we review a more generic problem,

the DKP formulated as follows. Consider a disjunctive graph defined by vertex set V corresponding to

items and by edge set E corresponding to conflicts between items. A compact multiple choice formula-

tion of the DKP is:

max
∑
j∈V

vjxj

s.t.
∑
j∈V

wjxj ≤ C,

xj + xi ≤ 1 if (j, i) ∈ E,

xj ∈ {0,1} ∀j ∈ V .

Five families of inequalities containing facet-defining inequalities have been reported for the DKP [92]:

the clique inequalities, the cover inequalities, odd-cycle and hypergraph inequalities, the clique-cover

inequalities, the clique-cover-partition inequalities. The cover inequality for a set U ⊆ V is close to the

one of the BKP where U is such that there is no edge between two items of U in the disjunctive graph.

Extensions of cover inequalities such as clique-cover inequalities and clique-cover-partition inequalities

also rely on cliques in the disjunctive graph. The odd-cycle inequalities and their extension, the hyper-

graph inequalities, apply to cycles in the disjunctive graph. As for the precedence graph of the SCPKP,

the corresponding disjunctive graph is very special. Indeed, in the precedence graph of the SCPKP as

depicted in Figure 1.6, arcs representing chain precedence constraints are exclusively between elements

in the same group. The SCPKP can be translated into a disjunctive form: where a single element can be

selected in each group. The associated disjunctive graph is such that the vertices representing disjunc-

tive constraints are also exclusively between elements in the same group. Consequently, every group

is a clique, and no item is adjacent to an item in another group. Because of this specific disjunctive

graph, the clique inequalities cannot be adapted to the SCPKP, and similarly for the odd-cycle and hy-

pergraph inequalities. As the clique-cover and clique-cover-partition inequalities rely on cliques, these

inequalities cannot be adapted to the SCPKP either.

4.2.3 Precedence constrained knapsack polytope

As stated previously, the SCPKP is a special case of the PKP [17], defined as follows. Let (V ,⪯) be a

partially ordered set of items. Item j covers item i if there is no k such that j ≺ k ≺ i. A formulation of

the PKP is:

max
∑
j∈V

vjxj
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s.t.
∑
j∈V

wjxj ≤ C,

xj ≤ xi if j covers i,

xj ∈ {0,1} ∀j ∈ V .

The minimal cover and related inequalities have been extended to the PKP [17]. To do so, lower-ideals

are defined as sets U ⊂ V such that if i ∈ U and j ≺ i, then j ∈ U . The minimal cover inequalities have

been extended to the case of the PKP with U a minimal cover as well as a lower-ideal:∑
j∈U

xj ≤ |U | − 1.

The minimal cover inequalities have been enhanced in the literature with various liftings. In [17] a

lifting procedure is described, starting from a facet of a lower-dimensional polyhedron. The lifting

procedure provides valid inequalities that are not necessarily facet-defining for the PKP.

The minimal cover can also be adapted to the PKP [80] [64] without the use of lower-ideals. Let A

be the arcs of the precedence graph. The arc set A is modified such that if (i, j) ∈ A and (j,k) ∈ A then

(i,k) ∈ A. Let U be a variable set. We define Up the set of predecessors of U . More precisely, Up contains

all i < U such that (i, j) ∈ A and j ∈ U . An induced cover is a set U ⊆ V , such that there is no arc between

a pair of items in U and
∑
j∈U wj +

∑
k∈Up wk ≥ C. A Minimal Induced Cover (MIC) is an induced cover U

such that
∑
j∈U\{i}wj +

∑
k∈Up wk ≥ C, for each i ∈U . The MIC inequalities are as follows, with U a MIC:∑

j∈U
xj ≤ |U | − 1.

These MIC inequalities have been enhanced with a lifting procedure [80]. From a MIC U , the proce-

dure described uses items that have at least two successors of the precedence graph in U . A sequential

lifting procedure has also been developed [64]. Consider U a MIC and Up the predecessors of U , we

define Ur = V \ (U ∪Up). The sequential lifting procedure computes the coefficients αj (resp. βj ), for

each j ∈Up (resp. j ∈Ur ), leading to a lifted inequality:∑
j∈U

xj +
∑
j∈Up

αj (1− xj ) +
∑
j∈Ur

βjxj ≤ |U | − 1.

Computing the optimal values of coefficients αj , defined as downlifting, can be done in polynomial time.

However computing the optimal values of coefficients βj , defined as uplifting, is proven to be NP-hard.

In [37] is defined a separation procedure, which computes bounds αj and βj in a reduced precedence

graph. The results show that computing bounds βj takes large computational times, even if the problem

is relaxed. This procedure is further detailed in the following Section 4.2.4.

In [15] is defined the clique-based inequalities for the PKP. For this purpose, a disjunctive graph is

introduced, where a vertex corresponds to an item. The edges are between each pair of vertices corre-

sponding to a pair of items that cannot be into a feasible solution simultaneously without violating the

capacity constraint. Such a type of inequality does not seem to adapt efficiently to the case of the SCPKP.
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Indeed, the disjunctive graph described does not have any edge if C ≥ 2
∑J
j=1wj , which is the case of the

majority of large size instances of the SCPKP.

4.2.4 Specialization of the Minimal Induced Cover inequalities to the chain precedence

constraints of the Symmetric-weight Chain Precedence Knapsack Problem.

As seen previously, only the minimal cover inequalities [17] and (lifted) MIC inequalities [80][64] de-

fined for the PKP are likely to be facet-defining for the SCPKP. From the inequalities of the PKP previ-

ously described, clique-based inequalities [15] do not apply to the SCPKP, and downlifted and uplifted

MIC inequalities [64] dominate minimal cover inequalities [17] and MIC inequalities [80].

Downlifted and uplifted MIC inequalities can be adapted to the SCPKP, by introducing αij and βij .

In this case, they have the following form:

∑
(i,j)∈U

xij +
∑

(i,j)∈Up

αij (1− xij ) +
∑

(i,j)∈Ur

βijxij ≤ |U | − 1;

where U is a MIC, Up the set of predecessors of U and Ur the set of all items that are not in U∪Up. First,

we have the following property.

Property 1

Let U be a MIC for the SCPKP, for all (i, j) ∈Up, the downlifting procedure yields αij = 0.

The proof and an illustration are given in B.1.1. This property means that there is no need to downlift

an inequality for the SCPKP, as it can only yield coefficient 0. However, there is no similar proof for

coefficients βij , i.e., for the uplifting. Hence, we introduce the Uplifted MIC (UMIC) inequalities for the

SCPKP, with the following form.

Definition 3 (UMIC inequalities for the SCPKP)

Let U be a MIC, Up be the set of predecessors of U and Ur be the set of all items that are not in

U ∪Up. The UMIC inequalities applied for the SCPKP have the following form:∑
(i,j)∈U

xij +
∑

(i,j)∈Ur

βijxij ≤ |U | − 1.

Valid UMIC inequalities can be obtained using the procedure of [37], and are experimentally compared

to the inequalities introduced in this chapter in Section 4.7.
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4.3 Complexity and polytope

In this section, we present preparatory results for the SCPKP. We first show that the problem is

NP-hard. Then, we define a formulation for which we present preliminary polyhedral properties.

4.3.1 Complexity

Before stating the complexity of the SCPKP, we identify two special cases where the SCPKP is easy to

solve.

Property 2

Let (I , J , W , V , C) be an instance of the SCPKP. If I = 1 or J = 1, the SCPKP can be solved in

polynomial time.

Proof : When J = 1, there is a single group. Due to chain precedence constraints, there are only I feasible

solutions. One can enumerate all solutions in polynomial time.

When I = 1, then there is a single item per group. As the weight W j is similar for all group, one can add

items by decreasing value V i1 until the capacity C is reached, or until there is no group with V i1 > 0.

In the following, we then only consider instances of the SCPKP with I ≥ 2 and J ≥ 2.

To state the complexity of the SCPKP, we recall the following two problems of the literature. The

first problem is the Unbounded Integer Knapsack Problem (UIKP), which is a knapsack problem where

items can be selected an unlimited number of times. The second problem is the Subset Sum Problem

(SSP), where considering a set of positive integers S, and a target integer C′ , the aim is to find S ′ ⊆ S
such that the sum of all elements of S ′ equals C′ . First a reduction from the UIKP allows us to prove

the NP-hardness of the SCPKP when I ≥ C
W 1

. Then a reduction from the (SSP) enables us to prove the

NP-hardness of the SCPKP when I ≥ J .

Theorem 1

The SCPKP is NP-hard when I ≥ C
W 1

Proof : Let (J ′ , W ′ , V ′ , C′) be an instance of the UIKP with J ′ items, item j ≤ J ′ has weight W ′j and value V ′j .

We assume without loss of generality that W ′j > W
′
j−1. The aim is to maximize the value of the selected

items, each can be selected multiple times, without any limitation, while satisfying the maximum knapsack

capacity C′ .

From (J ′ , W ′ , V ′ , C′), one can construct instance (I , J , W , V , C) of the SCPKP with same value. The

number of elements is J = J ′ , the number of groups is I = ⌈ C′

min(W ′j )
⌉. The weights are W 1 = W ′1 and W j =

W ′j −W
′
j−1 for each j > 1. The values are V i,1 = V ′1 with i ∈ {1, . . . , I} and V i,j = V ′j −V

′
j−1 for each j ∈ {2, . . . , J}

and i ∈ {1, . . . , I}. Finally, the capacity is C = C′ . The aim is to maximize the value of the selected items,

verifying the chain precedence constraints, and satisfying the maximum knapsack capacity C.
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For a solution of (J ′ , W ′ , V ′ , C) there is a corresponding solution of (I , J , W , V , C) with same value.

Let pj be the number of times item j is selected in a solution of (J ′ , W ′ , V ′ , C). There is a solution of (I , J ,

W , V , C) that is equivalent: for each element j, there are pj unique groups of (J ′ , W ′ , V ′ , C) where exactly

elements 1 to j are selected. Such a solution of (I , J , W , V , C) exists as I = ⌈ C
min(W ′j )

⌉, then
∑n
j=1 pj ≤ I .

Similarly, for a solution of (I , J , W , V , C) there is a solution of (J ′ , W ′ , V ′ , C) with same value. Let pj be

the number of groups where exactly elements 1 to j are selected in a solution of (I , J , W , V , C). There is a

solution of (J ′ , W ′ , V ′ , C) that is equivalent: each item j is selected exactly pj times.

Thus, the UIKP is a special case of the SCPKP, and because the UIKP is NP-hard [111], the SCPKP is

NP-hard when I ≥ C
W 1

.

Theorem 2

The SCPKP is NP-hard when I ≥ J

Proof : Let (S,C′) be an instance of the (SSP), with S = {W ′1, . . . ,W
′
J ′ }, aj > 0 for all j ≤ J ′ , and C′ > 0. Without

loss of generality, we suppose W ′j ≤W
′
j+1 for all j < J ′ . The aim is to find S ′ ⊆ S such that

∑
i∈S ′W

′
i = C′ .

From (S,C′), one can construct instance (I, J,W ,V ,C) of the SCPKP as follows. The number of element

J = |S |, the number of groups I can have any value greater than or equal to J . For the purpose of this proof,

we consider I = J . Weights are W 1 = W ′1, W j = W ′j −W
′
j−1 for all j > 1. Values are V ij = 0 if j , i and

V ij = W ′j if i = j. Finally, capacity is C = C′ . We consider here the decision problem associated with the

SCPKP, where the aim is to find a solution of value greater or equals to C.

By construction of the weights and values, for a given group i ≤ I ,
∑i
j=1W j =

∑i
j=1V ij = W ′j , and for

any j′ > 0, j′ , i,
∑j ′

j=1W j >
∑j ′

j=1V ij . The decision problem of the SCPKP indicates that the solution must

have value above or equal to C, and weight below or equal to C. Consequently, a feasible solution can only

include, for a group i, exactly the i first elements, or no element.

For a solution of (I, J,W ,V ,C), there is a corresponding solution of (S,C′). One can consider S ′ with all

values W ′i if elements are selected in group i. Besides, solution of (I, J,W ,V ,C) has its weight equal to its

value, hence they must both be equal to C = C′ . Consequently,
∑
i∈S ′W

′
i = C′ .

For a solution of (S,C′), there is a corresponding solution of (I, J,W ,V ,C). Let S ′ be the solution of the

(SSP). For each i ∈ S ′ , select exactly the first i elements of group i in the SCPKP. By construction, this solution

of the SCPKP is valid, as it has both weight and value equal to
∑
i∈S ′W

′
i = C′ = C.

As the (SSP) is NP-hard [44], then the SCPKP is NP-hard when I ≥ J .

Note that the case of the SCPKP where I <min( C
W 1
, J) remains an open question.

The SCPKP, and the CPKP, are generalizations of the Unbounded Integer Knapsack problem UIKP.

Consequently, the CPKP is a generalization of both the BKP and the UIKP. The Bounded Integer Knap-

sack problem (BIKP) [20] is also a generalization of the BKP and the UIKP. Indeed, the BKP is a special

case with upper bounds 1 on the number of repetition for each item, and the UIKP is a special case with

finite upper bound sufficiently large to not be restrictive. However, the BIKP and the SCPKP are not

related. In fact, the BIKP considers a maximum number of repetitions for each item, while the SCPKP
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would be closer to an Integer Knapsack problem with a shared upper bound on the total number of

items, repetition included. This shared upper bound is the number of groups I . As the chain precedence

constraints are specific precedence constraints, the CPKP is also a special case of the Precedence Knap-

sack problem PKP. The chain precedence constraints can also be modeled as disjunctive constraints,

hence the CPKP is also a special case of the Disjunctive Knapsack Problem DKP.

All connections between the knapsack problem variants are depicted in Figure 4.2 with a graph in

which each vertex represents a variant and each arc indicates that the variant at the tail is a generaliza-

tion of the variant at the head.

PKP

DKP CPKP

BIKP

SCPKP

BKP

UIKP

Figure 4.2: Generalization orders of some variants of the knapsack problem

4.3.2 Formulation

Let xij be a binary variable such that xij = 1 if item (i, j) is selected in the solution. We denote V the set

of variables xij for the SCPKP. The total number of variables is n = I × J . The SCPKP can be formulated

with the Integer Linear Program (ILP) MSCPK as follows.

max
xij∈{0,1}

I∑
i=1

J∑
j=1

V ijxij

s.t.
I∑
i=1

J∑
j=1

W jxij ≤ C, (4.3.1)

xij ≤ xij−1 ∀xij ∈ V , j ≥ 2, (4.3.2)

xij ≥ 0 ∀xij ∈ V ,

xij ≤ 1 ∀xij ∈ V .

In this formulation, the objective function is to maximize the total value of the selected items. In-

equality (4.3.1) is the capacity constraint, inequalities (4.3.2) correspond to the chain precedence con-

straints. We define the polytope PSCPKP as the convex hull of the feasible solutions of the SCPKP:

PSCPKP = conv
{
x ∈ {0,1}n : x satisfies (4.3.1)− (4.3.2)

}
.

The proposed formulation is the so-called incremental formulation [71]. It is also possible to define

a multiple choice formulation, featuring disjunctive constraints instead of chain precedence constraints
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(4.3.2). Both formulations yield the same LP relaxation [27], but we do not further detail the multiple

choice formulation, as it is not necessary for the purpose of this chapter.

We can remark that the SCPKP features symmetries. Indeed, items have symmetric weights, the

chain precedence constraints (4.3.2) are the same for each group, and the capacity constraint (4.3.1)

applies to all groups. Hence, from a feasible solution, one can obtain another feasible solution by a per-

mutation of the groups. However, the values of such solutions are not necessarily the same, as there are

no symmetries in the values. We define polyhedral symmetry as a symmetry restricted to the constraints

set.

Definition 4

A polyhedral symmetry is a permutation π of the variables such that for any feasible solution x, π(x)

is also a feasible solution.

In other words, a polyhedral symmetry only concerns the constraints. This is a generalization of the

classical symmetry which also restricts the objective values of two symmetric solutions to be equal.

In the case of the SCPKP, for any feasible solution, any permutation of groups yields another feasible

solution, but their respective values are not necessarily equal. Classical methods to handle symmetries

[69] may not apply to polyhedral symmetries. In particular, the idea is not to find a representative

solution and discard the symmetric solutions, but rather to capture all polyhedral symmetric solutions

in a special structure providing an efficient way to find an optimal solution.

4.3.3 First polyhedral properties

Definition 5 (Full-dimensional condition (fd) )

An SCPKP verifies (fd) if any item (i, j), can be selected in at least one feasible solution.

Property 3

Any instance of the SCPKP that does not verify (fd) can be transformed into an instance of the

SCPKP that verifies (fd) , with the exact same solutions.

Proof : Let (I , J , W , V , C) be an instance of the SCPKP where an item (i, j) cannot be selected in any feasible

solution, and (i, j − 1) can be selected in a feasible solution. Clearly, (I , J , W , V , C) does not verify (fd) .

Because of the symmetric weights, item j cannot be selected in any group, therefore, for any i ≤ I and j′ ≥ j,
xij ′ = 0 in any integer solution. It is possible to create another instance of the SCPKP (I, j − 1,W ,V ,C) with

the exact same integer solutions. Because (i, j − 1) can be selected in a feasible solution, and because of the

symmetric weight, any item of (I, j − 1,W ,V ,C) can be selected. Hence, (I, j − 1,W ,V ,C) verifies (fd) .

Without loss of generality, in the following we will only consider SCPKP instances verifying (fd) .
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Definition 6 (Solution XX )

For a variable set X , solution XX is the solution with xij = 1 for each (i, j) ∈ N ×M such that ∃j ′ ≥ j
and xij ′ ∈ X , and xij = 0 otherwise.

We define the special case Xij if X = {xij }, and X∅ if X = ∅.

Example 4

Let (3,3,W ,V ,C) be an instance of the SCPKP. Let X = {x12,x21,x31,x33} be a set of variables. The

solution XX is with x11 = x12 = x21 = x31 = x32 = x33 = 1 and x13 = x22 = x23 = 0.

Note that the solution XX ′ associated to the set X ′ = {x12,x21,x33} is the same as the solution XX .

To ensure that the chain precedence constraints are taken into account while considering a solution

XX , we introduce the set weights associated with a set of variables X .

Definition 7 (Set weights)

For a given set of variables X , and for all i ≤ I , j ≤ J , the set weights are

sij (X ) =


0 if xij < X ,∑j
k=j ′+1W k if xij ∈ X with j ′ = max{j ′ |xij ′ ∈ X , j ′ < j},∑j
k=1W k if xij ∈ X and xij ′ < X ,∀j ′ < j.

Example 5

Let (3,3, [1,3,2],V ,C) be an instance of the SCPKP. Let X = {x12,x21,x31,x33} be a set of variables. The

coefficients are s12(X ) = W 1 +W2 = 4, s21(X ) = W1 = 1, s31(X ) = W1 = 1, s33(X ) = W2 +W3 = 5 and 0

otherwise.

The coefficient sij (X ) embeds the chain precedence constraints. Indeed, if xij = 1, xij ∈ X , then all

xij ′ = 1, j ′ ≤ j, even for xij ′ < X . Thus, if xij = 1 then the weights of all variables xij ′ < X should be

accounted for, which is the purpose of coefficients sij (X ).

For the sake of simplicity, we define Y as a k-intersection of X if Y contains k elements of X .

Definition 8 (k-intersection)

Let X , Y be sets of variables. Variable set Y is a k-intersection of X if |Y ∩ X | = k, for each variable

xij ∈ Y if xij ′ ∈ X with j ′ ≤ j, then xij ′ ∈ Y and
∑
xij∈Y sij (Y ) ≤ C.

If Y is a k-intersection of X , the reverse can also be true. Consequently, a k-intersection of X is not

necessarily a subset of X .

Property 4

Let X be a set of variables. Let Y be a k-intersection of X . There exists a set Y ′ ⊆ Y , a k-intersection

of X with |Y ′ | = k.

84/243



Chapter 4. Polyhedral study: SCPKP 4.3. COMPLEXITY AND POLYTOPE

Proof : Consider Y ′ = Y ∩X . Clearly, |Y ′ | = k and Y ′ ∩X = k. Besides, Y ′ ⊆ Y , all weights are positive, and there

are chain precedence constraints, hence if XY is valid, so is XY ′ . Consequently, Y ′ is also a k-intersection of

X .

Example 6

Let (3,3, [1,3,2],V ,12) be an instance of the SCPKP. LetX = {x11,x13,x22,x31} andY = {x11,x13,x21,x22}
be two variable sets. In this case, Y is a 3-intersection of X . Indeed, |X ∩ Y| = 3, s11(Y ) + s13(Y ) +

s21(Y ) + s22(Y ) = 1+5+1+3 = 10 ≤ C = 12. However, X is not a 3-intersection of Y . Indeed, |X ∩Y| = 3

and s11(X ) + s13(X ) + s22(X ) + s31(X ) = 1 + 5 + 4 + 1 = 11 ≤ C = 12, but there is x21 ∈ Y and x21 < X
even if x22 ∈ X .

Theorem 3

PSCPKP is full dimensional.

Proof : As there are I groups and J elements, solutions Xij and X∅ yield a total of I × J + 1 = n + 1 different

solutions, which are feasible, otherwise (fd) is not verified. For any i, solution XiJ is the only solution

with xiJ = 1, thus being affinely independent to other solutions. For any i, solution Xij , j < J is the only

solution with xij = 1 and xij+1 = 0, this being affinely independent to other solutions. Clearly, X∅ is affinely

independent to other solutions, which means that there are n+ 1 affinely independent solutions.

With the dimension of PSCPKP it becomes possible to characterize when chain precedence inequalities

and trivial inequalities with bounds at 0 are facet-defining.

Theorem 4

Inequalities xij ≥ 0 are facet-defining for PSCPKP if and only if j = J .

Proof : As there are I groups and J elements, solutions Xij and X∅ yield a total of I × J + 1 = n + 1 different

solutions, which are feasible otherwise (fd) is not verified.

For a given i, besides solution XiJ , every of the other n solutions verify xiJ ≥ 0 to equality, and are proven

to be affinely independent. Inequalities xiJ ≥ 0 are then facet-defining for PSCPKP .

Any other inequality xij ≥ 0, j , J cannot be facet-defining. Indeed, xij ≥ 0 can be obtained by summing

xij ′ ≤ xij ′−1 for all j′ ∈ {j + 1, . . . , J} and 0 ≤ xiJ .

Theorem 5

Inequalities xij ≤ xij−1 are facet-defining for PSCPKP .

Proof : As there are I groups and J elements, solutions Xij and X∅ yield a total of I × J + 1 = n + 1 different

solutions, which are feasible otherwise (fd) is not verified.

Besides Xij−1, each of the n solutions verifies xij ≤ xij−1 to equality, and is proven to be affinely inde-

pendent. Inequalities xij ≤ xij−1 are then facet-defining for PSCPKP .
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Contrary to trivial inequalities with bound at 0 and the chain precedence constraints which always

contain facet-defining inequalities, the bounds at 1 require a minimum capacity C to contain facet-

defining inequalities.

Theorem 6

Inequalities xij ≤ 1 are facet-defining for PSCPKP if and only if j = 1 and C ≥
∑J
j=1W j +W 1.

Proof : Consider a group i′ . For each item (i, j), consider a solution X′ij , similar to Xij , with xi′1 = 1 if i′ , i.

As there are I groups and J elements, solutions X′ij yields a total of I × J = n different solutions, which are

feasible if C ≥
∑J
j=1W j +W 1 and (fd) are verified. Each of the n solutions verifies xi′1 ≤ 1 to equality,

and is proven to be affinely independent in the same manner as solutions Xij . Inequalities xi′1 ≤ 1 are then

facet-defining for PSCPKP if C ≥
∑J
j=1W j +W 1.

In the case where C <
∑J
j=1W j +W 1, clearly xiJ + xi′1 ≤ 1 is valid, for any i ≤ I , i′ ≤ I and i , i′ because

of the symmetric weights. In which case inequality xiJ ≤ 1 is dominated and cannot be facet-defining in this

case.

Hence, inequalities xi1 ≤ 1 are facet-defining if and only if C ≥
∑J
j=1W j +W 1.

Any other inequality xij ≤ 1, j , 1 cannot be facet-defining. Indeed, xij ≤ 1 can be obtained by summing

xij ′ ≤ xij ′−1 for all j′ ∈ {2, . . . , j} and xi1 ≤ 1.

Because of the symmetric weights, if a solution is feasible, then any symmetric solution with re-

spect to the group indices is also feasible. Moreover, the symmetries also appear in the facet-defining

inequalities of the SCPKP.

Property 5

If an inequality is facet-defining for the SCPKP, any of its symmetries is also facet-defining for the

SCPKP.

Proof : If an inequality is facet-defining for the SCPKP, there are n affinely independent valid solutions verifying

the inequality to equality. As the weights are symmetric with respect to the groups, if a solution is valid,

then any permutation of groups yields another valid solution. Hence, one can prove any symmetry of a

facet-defining inequality to also be facet-defining, as it suffices to deduce the n valid solutions following the

same permutation of groups. These new n points are necessarily affinely independent as they all undergo

the exact same permutation of groups.

Clearly, the result of this property is directly due to the polyhedral symmetry, defined in Definition 4.

Like the BKP, the SCPKP features three types of facet-defining inequalities: the ones from the initial

formulation, binary inequalities with 0-1 coefficients, and integer inequalities, with non-negative integer

coefficients. In the following Example 7 shows the convex hull of an instance of the SCPKP.
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Example 7

Let (4, 3, [3, 4, 2], V , 9) be an instance of the SCPKP. The convex hull obtained with PORTA [24]

contains the following inequalities of the formulation, proven to be facet-defining in Theorem 4 and

Theorem 5.

x13 ≥ 0, x23 ≥ 0, x33 ≥ 0, x43 ≥ 0,

x11 ≥ x12, x12 ≥ x13,

x21 ≥ x22, x22 ≥ x23,

x31 ≥ x32, x32 ≥ x33,

x41 ≥ x42, x42 ≥ x43.

As well as the following inequalities:

x12 + x22 + x32 + x41 ≤ 1,

x12 + x22 + x31 + x42 ≤ 1,

x12 + x21 + x32 + x42 ≤ 1,

x11 + x22 + x32 + x42 ≤ 1,

x11 + 2x12 + x21 + 2x22 + x31 + 2x32 + x41 + 2x42 ≤ 3.

This instance does not verify the condition described in Theorem 6, as 9 < 3 + 4 + 2 + 3 = 12. Hence,

none of the inequalities xi1 ≤ 1 are facet-defining in this example.

Note that for each facet-defining inequality, all its symmetries with respect to the group indices

are also facet-defining.

In the article, the polyhedral study focuses on the binary inequalities through a structure to handle

their symmetries.

4.4 Pattern inequalities

In this section we introduce new inequalities. We are interested in the faces defined by these inequal-

ities, i.e., the set of points of the polytope PSCPKP verifying these inequalities to equality. To handle the

symmetries of the inequalities efficiently, we introduce a structure called pattern.

4.4.1 Definitions
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Definition 9 (Pattern)

A pattern P is a collection of I sets Si(P ) ⊆ {1, . . . , J}, i ≤ I .

A set Si(P ) contains the indices j of the items in a same group. The sets of a pattern are not ordered,

meaning that a pattern represents any permutation of an item set of the SCPKP.

As the aim is to produce inequalities from the patterns, we define the variable sets associated with a

pattern.

Definition 10 (Variable set X associated with P )

A variable set X ⊆ V is associated with pattern P and a permutation π of {1, . . . , I} if:

xij ∈ X ⇔ j ∈ Sπ(i)(P ).

We denote χ(P ) the set of all variable sets associated with P . Note that |χ(P )| is in general exponential.

For the remainder of Section 4.4, when referring to X ∈ χ(P ), we consider without loss of generality that

π is the identity permutation πid if not mentioned otherwise.

The cardinality of a pattern P is the cardinality of any variable set associated with P .

Definition 11 (card(P ))

The cardinality of a pattern P is card(P ) =
∑
i≤I |Si(P )|.

The rank of a pattern P is the valid upper bound for the sum of variables in any variable set associated

with P .

Definition 12 (rank(P ))

The rank of a pattern P is

rank(P ) = max
X∈χ(P )

{
max

∑
xij∈X

xij : satisfying (4.3.1)− (4.3.2)
}
.

The rank of a pattern can be computed with a shortest path algorithm [11] as described is Section 4.6.

With rank(P ) and χ(P ), we can define the inequalities of a pattern P as follows.

Definition 13 (Pattern inequalities)

The pattern inequalities associated with a pattern P are the following, for any X ∈ χ(P ):∑
xij∈X

xij ≤ rank(P ). (pi(X ))

Property 6

Pattern inequalities are valid for PSCPKP .

Proof : By definition of the rank, and because the weights are symmetric, all pattern inequalities are valid.
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We show in the following property that pattern inequalities can capture binary inequalities that are

captured neither by minimal cover inequalities nor by (lifted) MIC inequalities.

Property 7

Pattern inequalities dominate minimal cover inequalities as well as MIC inequalities and binary

lifted MIC inequalities.

Proof : Clearly, any binary inequality with the tightest right hand side can be represented by a pattern in-

equality. Hence, any binary inequality is either captured by pattern inequalities, or dominated by a pattern

inequality. Besides, the following counter-example (Example 8) exhibits a facet-defining inequality of the

SCPKP which can be obtained neither by minimal cover inequalities nor by (lifted) MIC inequalities.

Example 8

Let (4, 4, [5, 4, 2, 2], V , 20) be an instance of the SCPKP. The following inequality is part of the convex hull

obtained with PORTA [24]:

x11 + x12 + x21 + x24 + x32 + x33 + x42 + x44 ≤ 3. (i1)

We show that inequality (i1) does not correspond to any of the inequalities introduced in Section 4.2 for the

PKP.

Inequality (i1) is not a minimal cover inequality [17]. The set of variables associated with (i1) is X =

{x11,x12,x21,x24,x32x34,x42,x44}. Clearly, this set of variables is not a minimal cover, as both x21 and x24

are in this set, but x22 and x23 are not despite chain precedence constraints x22 ≤ x21, x23 ≤ x22 and x24 ≤ x23.

Inequality (i1) is not a MIC inequality [80]. Indeed, X is not a MIC, as its subsets are MIC. For example,

U1 = {x11,x21,x32} is subset of X , and is a MIC.

Inequality (i1) cannot be obtained with the lifting procedure of [80]. In this lifting procedure the MIC

inequality is lifted with variables having two successors in the MIC. However, by definition of a MIC, there

cannot be two items in a MIC if there is a precedence constraint between them. In the case of the SCPKP, it

means a MIC can only have 1 item per group. As precedence constraints are only between items in a same

group, there cannot be an item with two successors in the MIC. Hence, this lifting does not apply, and cannot

yield (i1).

Inequality (i1) cannot be obtained with the sequential lifting procedure of [64]. Any minimal cover U ⊆ X
has cardinality 3, meaning |U | − 1 ≤ 2. Indeed, the induced cover with minimum weight of cardinality 4 is

U2 = {x11,x21,x32,x42}, but is not minimal as U1 ⊂ U2 is also an induced cover. As coefficients αij are zero

from Property 1, the right hand-side of a MIC inequality cannot change with this lifting. Hence, inequality (i1)

cannot be obtained with this sequential lifting procedure.

One can define pattern P = {{1,2}, {1,4}, {2,3}, {2,4}}. This pattern is of rank 3. With X = {x11, x12, x21,

x24, x32, x33, x42, x44} ∈ χ(P ), one can obtain inequality (i1). Such a result is due to pattern inequalities being

a very large family of inequalities. In Section 3.2, we define necessary facet-defining conditions for pattern

inequalities.

As for any set of variables there is a pattern, and vice-versa, these pattern inequalities cover all the

binary inequalities of the SCPKP. Also, because |χ(P )| can be exponential, each pattern is associated with
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a number of pattern inequalities that can be exponential. As the number of patterns of an SCPKP is also

exponential, we need to define the conditions for a pattern to lead to tight pattern inequalities.

Definition 14 (Pattern-facet)

A pattern P is a pattern-facet if for every X ∈ χ(P ), (pi(X )) is facet-defining.

4.4.2 Necessary facet-defining conditions

In this section we define three necessary conditions for a pattern to be a pattern-facet. The first one is

for a pattern to have at least one item in each of its sets.

Property 8 (Condition (i): no empty group)

Let P be a pattern. If P is a pattern-facet, then it verifies condition (i):

(i) For every set Si(P ) ∈ P : |Si(P )| ≥ 1

Proof : Let P be a pattern-facet of rank k and X ∈ χ(P ) be a variable set. Clearly, if |X | = k, then the pattern

inequality is dominated by the sum of the bound xij ≤ 1 for all xij ∈ X . Hence, in the following, we suppose

card(P ) = |X | > k.

Suppose Si (P ) does not verify (i) for a given i, i.e., Si (P ) = ∅. Let X ′ = X ∪{xiJ } be a variable set. Because

xiJ is the only variable of X ′ for group i, siJ (X ′) ≥ si′j ′ (X ′) for any xi′j ′ ∈ X ′ . Then, the following inequality

is valid: ∑
xi′ j′∈X

xi′j ′ + xiJ ≤ k.

Indeed, when xiJ = 0, this inequality is valid by the rank of P . When xiJ = 1, there cannot be k variables

of X to 1 simultaneously. Otherwise, as siJ (X ′) ≥ si′j ′ (X ′) for any xi′j ′ ∈ X ′ , one could set xiJ to 0, and any

other variable of X ′ to 1. This might reduce the total weight. In the case it does, this would lead to another

solution. Such a solution would have k + 1 variables of X to 1, which contradicts the rank of P . Therefore,

this inequality is valid.

This inequality dominates (pi(X )). Indeed, one could sum it with −xiJ ≤ 0 to obtain (pi(X )).

Thus, a pattern P is a pattern-facet only if P verifies condition (i).

The idea of the following condition is that, for any X ∈ χ(P ), there is a feasible solution with (pi(X ))

to equality, and xiJ = 1 for any group i.

Property 9 (Condition (ii): selection of item J)

Let P be a pattern of rank k, and X ∈ χ(P ) be a variable set. If P is a pattern-facet, then P verifies

condition (ii) :

(ii) For each i ≤ I , there is Y ⊆ V a k-intersection of X with xiJ ∈ Y
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Proof : Let P be a pattern of rank k, and X ∈ χ(P ) be a variable set. Suppose there is an i ≤ I such that (ii) is not

verified for i. This means that there is no feasible solution with k variables of X to 1, with xiJ = 1. Therefore,

the following inequality is valid: ∑
xi′ j′∈X

xi′j ′ + xiJ ≤ k.

Indeed, when xiJ = 0, the inequality is valid by the rank of P . When xiJ = 1, the inequality is valid as there

cannot be more than k − 1 variables of X to 1, which sums to a total of at most k.

This inequality dominates the inequality (pi(X )). Indeed, one could sum it with −xiJ ≤ 0 to obtain

(pi(X )).

Thus, a pattern P is a pattern-facet only if P verifies condition (ii).

The following condition is quite similar to condition (ii), but for any variable xij−1 with xij ∈ X ,

instead of any variable xiJ .

Property 10 (Condition (iii): independence of an item from its predecessor)

Let P be a pattern of rank k, and X ∈ χ(P ) be a variable set. If P is a pattern-facet, then P verifies

condition (iii) :

(iii) For each variable xij ∈ X , there is Y ⊆ V a k-intersection of X with xij−1 ∈ Y and xij ′ < Y for

every j ′ ≥ j.

Proof : Let P be a pattern of rank k. Let X ∈ χ(P ) be a variable set. Suppose for some (i, j), xij ∈ X does not

verify condition (iii). This means that there is no feasible solutions with a total of k variables of X to 1, with

xij−1 = 1 and xij = 0. Therefore, the following inequality is valid:∑
xi′ j′∈X

xi′j ′ + xij−1 − xij ≤ k.

Indeed, when xij = xij−1 = 1 or xij = xij−1 = 0, this inequality is valid by the rank of P . When xij−1 = 1 and

xij = 0, the inequality is valid as there cannot be more than k − 1 variables of X to 1, which sums to at most

k.

This inequality dominates the inequality (pi(X )). Indeed, one could sum it with −xij−1 + xij ≤ 0 (equiv-

alent to xij ≤ xij−1) to obtain (pi(X )).

Thus, a pattern P is a pattern-facet only if P verifies condition (iii).

For a given pattern P , conditions (i) can clearly be verified in linear time. Also, conditions (ii) and

(iii) can be verified in polynomial time. More precisely, it requires to solve the shortest path algorithm

described in Section 4.6 at most once for each variable. As these conditions are necessary, we define a

flexible pattern, which verifies all of these three conditions.

Definition 15 (Flexible pattern)

A pattern P is a flexible pattern if it verifies conditions (i), (ii) and (iii).
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The patterns are said to be flexible, as for X ∈ χ(P ), any variable of X can be set to 1 when (pi(X )) is

to equality. Hence, there is no restriction on which variable can be set to 1 when (pi(X )) is to equality.

Clearly, all binary facet-defining inequalities must be flexible pattern inequalities, as conditions (i), (ii)

and (iii) are necessary. In particular, pattern inequalities dominate UMIC inequalities as proven in

Property 7.

The following example illustrates conditions (i), (ii) and (iii) on inequality (i1) from Example 8.

Example 9

Let (4, 4, [5, 4, 2, 2], V , 20) be an instance of the SCPKP. The following inequality is part of the

convex hull description obtained with PORTA [24]:

x11 + x12 + x21 + x24 + x32 + x34 + x42 + x44 ≤ 3. (i1)

We show that inequality (i1) is a flexible pattern inequality.

Let X = {x11,x12,x21,x24,x32,x34,x42,x44} be a variable set. Clearly, X verifies condition (i).

We now verify if condition (ii) holds. For i = 1, variable set {x11, x12, x14, x21} is a 3-intersection

of X . For i = 2, variable set {x11, x21, x24} is a 3-intersection of X . For i = 3, variable set {x11, x32, x34}
is a 3-intersection of X . For i = 4, variable set {x11, x42, x44} is a 3-intersection of X . Hence, condition

(ii) holds.

We now verify if condition (iii) holds. For x11, variable set {x21,x32,x42} is a 3-intersection of

X . For x12, variable set {x11,x21,x24} is a 3-intersection of X . For x21, variable set {x11,x32,x34} is a

3-intersection of X . For x24, variable set {x11,x12,x21,x23} is a 3-intersection of X . For x32, variable

set {x11,x12,x21,x31} is a 3-intersection of X . For x34, variable set {x11,x12,x32,x33} is a 3-intersection

of X . For x42 (resp. x44) one can reuse the 3-intersection for x32 (resp. x34) by inverting groups 3 and

4. Hence, condition (iii) holds.

Consequently, inequality (i1) is a pattern inequality associated with a flexible pattern.

The conditions on a flexible pattern P are not sufficient for P to be a pattern-facet. However, a

minimum dimension can be guaranteed for the faces defined by flexible pattern inequalities.

4.4.3 Lower bound on the dimension of the faces defined by flexible pattern inequalities

In this section, we consider a flexible pattern P and a variable set X ∈ χ(P ). The idea of the following

property is that for any xij j < J (resp. xiJ ) there is a valid solution with xij = 1, xij+1 = 0 (resp. xiJ = 1)

and (pi(X )) to equality. In a sense it is a generalization of condition (ii) defined only for variables xiJ ,

and condition (iii) defined only for variables xij such that xij+1 ∈ X .

Property 11 (Generalization of (ii) and (iii) for any item of the SCPKP)

Let P be a flexible pattern and X ∈ χ(P ) be a variable set. For any item (i, j), there is Y ⊆ V a

k-intersection of X with xij ∈ Y and xij ′ < Y for every j ′ > j.
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The complete proof is in B.1.2, as it merely extends the proofs for conditions (ii) and (iii).

Conditions (i), (ii) and (iii) are necessary for a pattern P to be a pattern-facet. Moreover, with

X ∈ χ(P ), the following theorem provides a lower bound on the number of linearly independent points

verifying inequalities (pi(X )) to equality when these three conditions are verified.

Theorem 7 (n − card(P ) linearly independent points)

Let P be a flexible pattern. Let X ∈ χ(P ) be a variable set. Let n be the number of variables of the

SCPKP. There are at least n − card(P ) linearly independent points that verify inequality (pi(X )) to

equality.

Proof : Let P be a pattern of rank k, and X ∈ χ(P ) be a variable set. Property 11 stipulates that if P is a flexible

pattern, then for any item (i, j) there is a k-intersection Yij ⊆ V of X ; xij ∈ Yij ; xij ′ < Yij for each j′ > j

and XYij is feasible. Consider XYij for each variable xij < X . Because card(P ) = |X |, there are n − card(P )

solutions. We can prove that XYij is the only solution with xij = 1 and xij+1 = 0. Let xij < X and xi′j ′ < X
be two distinct variables. We assumed without loss of generality in Property 11 that Yi′j ′ \ {xi′j ′ } ⊆ X . As

xij < X , there would be a contradiction if XYi′ j′ had xij = 1 and xij+1 = 0.

Solutions XYij for variables xij < X are linearly independent, and proven to be valid in Property 11. As

Yij is a k-intersection of X , all these solutions also verify (pi(X )) to equality. Hence, for a flexible pattern P ,

there are n− card(P ) linearly independent points verifying (pi(X )) to equality with X ∈ P .

Theorem 7 provides a lower bound on the dimensions of the faces defined by flexible pattern in-

equalities. Recall that for a pattern to be a flexible pattern it solely requires to verify conditions (i), (ii)

and (iii). It is shown in Section 4.6 that verifying if these three conditions hold for a given pattern can

be done in polynomial time, and Theorem 7 is used in the experimental results in Section 4.7.

The following section provides properties complementary to Theorem 7.

4.4.4 Properties of the lower sub-patterns

In this section, we first introduce new families of patterns, namely the sub-patterns and the lower sub-

patterns. We then derive multiple properties for the lower sub-patterns associated with a flexible pat-

tern. These properties are used in Section 4.4.5, to prove that necessary conditions (i) (ii) and (iii) are

also sufficient for a family of flexible patterns to be a pattern-facet.

Definition 16 (Sub-pattern)

A pattern P ′ is sub-pattern of pattern P if there is a permutation π such that Sπ(i)(P ′) ⊆ Si(P ) for all

i ≤ I .

If P is sub-pattern of P ′ , then P ′ is super-pattern of P . For the remainder of Section 4.4, we consider

without loss of generality that the required permutation π is the identity permutation πid .
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We present a new set of sub-patterns for P . In the following, properties are presented to show that

these new patterns have large sub-patterns in common, thus inducing similarities. These similarities

will be convenient to provide linearly independent points in the polytope PSCPKP .

Definition 17 (Lower sub-patternsQi)

Let P be a pattern of rank k. For a given i ≤ I , a lower sub-pattern Qi of P is such that Si(Qi) = Si(P ),

card(Qi) = k, minimizing the sum of the set weights s(Y ) with Y ∈ χ(Qi).

Example 10

Let (4, 3, [3,4,2], V , 9) be an instance of the SCPKP. Let P = {{1,3}, {2}, {2}, {2}} be a pattern of rank 2.

Lower sub-pattern Q1 is {{1,3},∅,∅,∅}, as S1(P ) = 2 = rank(P ). As W 1 < W 1 +W 2, lower sub-pattern

Q2 is {{1}, {2},∅,∅}, and cannot be {∅, {2}, {2},∅} by definition. Similarly, lower sub-pattern Q3 (resp.

Q4} is {{1},∅, {2},∅} (resp. {{1},∅,∅, {2}}).

Let P be a pattern and X ∈ χ(P ) be a variable set. Let Qi be a lower sub-pattern of P and Y ∈ χ(Qi)
be a variable set. By construction, if xij ∈ Y , then for each variable xij ′ ∈ X with j ′ ≤ j, xij ′ ∈ Y , justifying

hence the name lower sub-patterns. Also, patterns Qi can be obtained via a shortest path algorithm

defined in Section 4.6.

The idea now is to define minimum size of the sets of all lower sub-patterns. This is used in Section

4.4.5 to prove that they have a common sub-pattern of cardinality k − 1. This in turn is convenient to

provide affinely independent points. For the remainder of Section 4.4.4, we consider a flexible pattern

P .

Lemma 1

Let P be a flexible pattern of rank k, and X ∈ χ(P ) be a variable set. Let Qi be a lower sub-pattern of

P , and Y ∈ χ(Qi) be a variable set. Variable set Y ∪ {xiJ } is a k-intersection of X .

Proof : As P verifies condition (ii), there is a variable set that is a k-intersection of X containing xiJ . By defini-

tion Qi minimizes the sum of its set weights and all variables of group i in X are in Y . Hence, if condition

(ii) for variable xiJ cannot be verified with Y , there is a contradiction as Qi cannot be minimizing the sum

of its set weights.

Remark 1

Let Y ∈ χ(Qi) be a variable set. As Y ∪ {xiJ } is a k-intersection of X , then Y is also a k-intersection of

X . Indeed, if xiJ ∈ X then xiJ ∈ Y by definition of Qi .

For the next properties in Section 4.4.4 and 4.4.5, we consider for the sake of simplicity that the sets

of P are ordered such that |Si(P )| ≤ |Si+1(P )|. Therefore, S1(P ) is a smallest set of P , and Q1 is the lower

sub-pattern of P associated with S1(P ). We define U = |SI (P )| and U = |S1(P )|. Also, we define Si(P )(u)

the uth lowest index of Si(P ) and Si(P )[u] the uth highest index of Si(P ).
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Example 11

Let P = {S1(P ) = {4},S2(P ) = {2,5},S3(P ) = {1,2},S4(P ) = {1,3,4}} be a pattern. In this case, U = 3 and

U = 1. Also, S4(P )(1) = 1, S4(P )(2) = 3 S4(P )(3) = 4, S4(P )[1] = 4, S4(P )[2] = 3 and S4(P )[3] = 1.

Recall that the aim is to provide a lower bound on the size of each set of the lower sub-patterns. We

first start by providing a lower bound on the size of each set of sub-pattern Q1 of P .

Property 12 (Minimum size on the sets ofQ1)

Let P be a flexible pattern of rank k. Lower sub-pattern Q1 of P is such that for every i ≤ I , Si(Q1)

contains the |Si(P )| −U smallest indices of Si(P ).

Remark 2

For any i ≤ I with |Si(P )| > U , it is equivalent to say that Si(Q1) contains the |Si(P )| − U smallest

indices of Si(P ) and Si(P )[U + 1] ∈ Si(Q1). In the following, the latter notation will be used.

The idea of the proof is illustrated by Example 12 and Figure 4.3. In Figure 4.3, column i starting from

the left, and row j, starting from the bottom represent variable xij , in the same manner as in Figure

1.6. When cell (i, j) is highlighted in (dark) gray, it means variable xij is contained in the corresponding

variable set. The proof is in B.1.3

Example 12

Let (4,5,w,V ,C) be an instance of the SCPKP. Let P = {S1(P ) = {3}, S2(P ) = {2,4}, S3(P ) = {1,2},
S4(P ) = {1,2,3}} be a flexible pattern of rank 5. Let Q1 = {S1(Q1) = {3}, S2(Q1) = {2}, S3(Q1) = {1,2},
S4(Q1) = {1}} be a lower sub-pattern of P . In this case, S4(P )[U + 1] = 2 < S4(Q1), hence Q1 does not

verify Property 12. We show in the following that it leads to a contradiction with the rank of P .

Let X = {x13, x22, x24, x31, x32, x41, x42, x43} ∈ χ(P ) and Y = {x13, x22, x31, x32, x41} ∈ χ(Q1) be

variable sets as illustrated respectively in Figure 4.3a and 4.3b. Let Y ′ = Y ∪ {x14} be a variable set

as illustrated in Figure 4.3c. From Lemma 1 solution XY ′ is feasible. One can create a set Y ′′ =

Y ′ \ {x13,x14} ∪ {x42,x43} as illustrated in Figure 4.3d. By removing {x13,x14}, there are no remaining

variables in group 1, thus reducing the weight by W 1 +W 2 +W 3 +W 4. And as x41 ∈ Y ′ , adding

{x42,x43} only increases the weight by W 2 +W 3. As the weights are non-negative, clearly W 2 +W 3 ≤
W 1 +W 2 +W 3 +W 4, hence XY ′′ is feasible. However, Y ′′ is a k+1-intersection of X . Indeed, since Q1

does not verify Property 12, only U = 1 variable of Y ′ \Y ′′ is in X , namely x13 and U +1 = 2 variables

of Y ′′ \Y ′ are in X , namely x42 and x43. As XY ′′ is valid, there is a contradiction with the rank of P .

Property 13 provides dependencies between the indices of S1(P ) and any set Si(P ), based on Property

12.

Property 13 (Minimum indices for the smallest set)

Let P be a flexible pattern and i ∈ {2, . . . , I} be an index. For any u ∈ {1, . . . ,U }, if |Si(P )| ≥ u +U then

S1(P )[u] ≥ Si(P )[u +U ].
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(a) Set X (b) Set Y (c) Set Y ′ (d) Set Y ′′

Figure 4.3: Illustration of Example 12

Proof : The proof is divided in two possibles cases, each being supported by a lemma. In the case Si (Q1) ⊆ Si (P )

with Si (P )[u] ∈ Si (Q1), the proof is provided by Lemma 5. In the case Si (Q1) ⊂ Si (P ) with Si (P )[u] < Si (Q1),

the proof is provided by Lemma 6. Hence, the property is always verified. The two lemmas are in B.1.4.

For now, we provided a lower bound on the size of the sets of Q1. We also need similar bounds for

the sets of any Qi , i ≤ I , in order to characterize pattern facets. This result is given in Property 14, based

on Property 13. Note that, it is not a generalization of Property 12. Indeed, Property 12 addresses only

Q1 and not any Qi , but with a larger minimal bound than the one in Property 14.

Property 14 (Minimum size of the sets of anyQi)

Let P be a flexible pattern. For every i ≤ I , the lower sub-pattern Qi of P is such that for a given

i′ ≤ I if |Si′ (P )| ≥ 2U then Si′ (P )[2U ] ∈ Si′ (Qi).

Proof : The proof is divided in three possible cases, each being supported by a lemma. In the case |S1(Q1)| +
|Si (Q1)| = |S1(Qi )|+ |Si (Qi )|, the proof is provided by Lemma 7. In the case |S1(Qi )| = 0, the proof is provided

by Lemma 8. In the case |S1(Qi )| > 0, the proof is provided by Lemma 9. Hence, the property is always

verified. The three lemmas are in B.1.5

The previous conditions are valid for any pattern. However, in the special case where pattern P is

with |S1(P )| = 1, Property 14 indicates that Si′ (P )[2] ∈ Si′ (Qi) for any i′ ≤ I and i ≤ I . Thus, the shape of

all patterns Qi is very restricted, as each set Si′ (Qi) has at most one missing index set in comparison to

Si′ (P ).

Example 13

Let P = {S1(P ) = {3}, S2(P ) = {1,3,4}, S3(P ) = {1,2,4}, S4(P ) = {1,2,3,4}} be a flexible pattern. Pattern

P verifies Property 13, as S1(P )[1] = 3 is greater or equal to S2(P )[2] = 3, S3(P )[2] = 2 and S4(P )[2] =

3. Consider rank(P ) = 9.

Consider the lower sub-pattern Q1 = {S1(Q1) = {3}, S2(Q1) = {1,3,4}, S3(Q1) = {1,2}, S4(Q1) =

{1,2,3}}. Pattern Q1 verifies Property 12, as U = 1 and there is at most U = 1 missing index per set

compared to P .

Consider the lower sub-pattern Q2 = {S1(Q2) = ∅, S2(Q2) = {1,3,4}, S3(Q2) = {1,2,3}, S4(Q2) =

{1,2,3}}. Pattern Q2 verifies Property 14, as U = 1 and there is at most 2U − 1 = 1 missing index per

96/243



Chapter 4. Polyhedral study: SCPKP 4.4. PATTERN INEQUALITIES

set compared to P .

This restricted shape on the lower sub-pattern is used in the following section to prove necessary and

sufficient conditions for patterns containing a set of cardinality 1.

4.4.5 Necessary and sufficient conditions for patterns with a set of cardinality 1

In this section, we focus on patterns with at least one set of cardinality 1, hence we define for this section

P a flexible pattern of rank k and with U = 1. It is proven with Property 14 that for such a pattern P , its

lower sub-patternsQi have a restricted shape. Using this result, we will show that the lower sub-patterns

share many elements in common.

As mentioned in Lemma 7, for a given i, multiple lower sub-patterns Qi with the exact same set of

weights can exist. From now on we only consider for each i ≤ I the unique Qi verifying the following

tie-break rule.

Definition 18 (Tie-break rule)

Consider a flexible pattern P and a lower sub-patternQi of P . For any two indices i′ < i′′ ≤ I different

from i, if

Si′ (P )[1]∑
j=Si′ (P )[2]+1

W j =
Si′′ (P )[1]∑

j=Si′′ (P )[2]+1

W j ;

then Si′′ (P )[1] ∈ Si′′ (Qi) only if Si′ (P )[1] ∈ Si′ (Qi).

From Property 14, at most one index is missing in a set of Qi compared to P . Hence, with such a rule

there can only be one Qi for a given i.

Example 14

Let (4,4, [2,1,1,1],V ,C) be an instance of the SCPKP. Let P = {S1(P ) = {3}, S2(P ) = {1,3}, S3(P ) = {2,4},
S4(P ) = {2,4}} be a flexible pattern of rank 5. In this case, W 2 +W 3=W 3 +W 4 = 2, meaning that there

are 3 possible lower sub-pattern Q1 with the exact same weight: {{3}, {1,3}, {2}, {2}}; {{3}, {1}, {2,4}, {2}};
{{3}, {1}, {2}, {2,4}}. The rule stipulates that 4 ∈ S4(Q1) only if 4 ∈ S3(Q1) and 3 ∈ S2(Q1). Also, the

rule stipulates that 4 ∈ S3(Q1) only if 3 ∈ S2(Q1). Only the first option for Q1 verifies the rule, and

consequently is the only one considered.

To prove that the lower sub-patterns Qi share many elements, we provide a pattern C, sub-pattern to

all Qi . We then prove that C is of cardinality k − 1.

Definition 19 (Common sub-pattern C of allQi)

Let P be a flexible pattern, and for any i ≤ I , let Qi be the unique lower sub-pattern for i considering

the tie-break rule. The pattern C is the largest cardinality pattern such that C is sub-pattern to all Qi
with i ≤ I .
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Property 15 (Cardinality of C)

Let P be a flexible pattern, andQi be the unique lower sub-pattern considering the tie-breaking rule,

for all i ≤ I . The cardinality of C is card(C) = k − 1.

An example of Property 15 is provided in Example 15.

Proof : As P is a flexible pattern, Property 14 holds, hence for any i and i′ in {1, . . . , I} such that |Si′ (P ))| ≥ 2,

Si′ (P )[2] ∈ Si′ (Qi ). In other words, there is at most one element of Si′ (P ) not in Si′ (Qi ). Let k′ be an integer

equal to k − (card(P )− I). Let L be the set of the k′ indices i′ such that Si′ (Qi ) = Si′ (P ). By definition of Qi ,
i ∈ L. Because Si′ (P )[2] ∈ Si′ (Qi ) for any i′ ∈ {1, . . . , I}, the k′ − 1 sets i′ , i such that Si′ (Qi ) = Si′ (P ) are the

ones minimizing:

Si′ (P )[1]∑
j=Si′ (P )[2]+1

W j .

Consequently, L contains the k′ − 1 indices minimizing this sum. Indeed, either i is in these k′ − 1 indices,

hence L contains the k′ indices minimizing this sum, or i is not in these k′ −1 indices, but by construction L
contains these k′ − 1 indices.

As such, all patterns Qi are all super-pattern of common pattern C, with card(C) = (card(P )− I) + k′ −1 =

k − 1 .

Example 15

Let (3,4, [2,1,3,2],V ,C) be an instance of the SCPKP. Let P = {S1(P ) = {3}, S2(P ) = {1,2}, S3(P ) = {1,3},
S4(P ) = {1,3,4}} be a flexible pattern of rank 6. First we identify the lower sub-pattern Q1. By

definition, S1(Q1) = S1(P ) = {3}. From Property 14, as U = 1, for any i ≤ 4, Si(P )[2] ∈ Si(Q1) . In this

case, 1 ∈ S2(Q1), 1 ∈ S3(Q1) and 1,3 ∈ S4(Q1). By definition, card(Q1) = 6, but only five elements have

been identified yet. As W 2 = 1 < W 4 = 2 < W 2 +W 3 = 4 and Q1 minimize the sum of the set weights

of Y ∈ χ(Q1), then clearly 2 ∈ S2(Q1). In this case:

Q1 = {S1(Q1) = {3}, S2(Q1) = {1,2}, S3(Q1) = {1}, S4(Q1) = {1,3}}
With a similar process, we also deduce:

Q2 = {S1(Q2) = ∅, S2(Q2) = {1,2}, S3(Q2) = {1}, S4(Q2) = {1,3,4}}
Q3 = {S1(Q3) = ∅, S2(Q3) = {1,2}, S3(Q3) = {1,3}, S4(Q3) = {1,3}}
Q4 = {S1(Q4) = ∅, S2(Q4) = {1,2}, S3(Q4) = {1}, S4(Q4) = {1,3,4}}
There is C = {{S1(C) = ∅, S2(C) = {1,2}, S3(C) = {1}, S4(C) = {1,3}} of cardinality 5 that is sub-

pattern to all the aforementioned lower sub-patterns Qi . Note that only S2(C) = S2(P ), which is

because s22(X ) < s44(X ) < s33(X ) < s13(X ) and by definition the lower sub-patterns Qi minimize the

set weights of Y ∈ χ(Qi).

For the following results, we need to generalize the definition of lower sub-pattern.

Definition 20 (Generalized lower sub-patternsQi(u))

Let P be a pattern of rank k. For a given i ≤ I and u ∈ {0, . . . , |Si(P )|}, the generalized lower sub-pattern
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Qi(u) of P is such that card(Qi(u)) = k and Si(Qi(u)) contains exactly the u smallest indices of Si(P ),

minimizing the sum of set weights s(Y ) with Y ∈ χ(Qi(u)).

As for lower sub-patterns Qi , we can also find similarities between lower sub-patterns Qi(u).

Property 16 (Common elements between C andQi(u))

Let P be a flexible pattern of rank k. For each i ≤ I and u ∈ {0, . . . , |Si(P )| −1}, lower sub-pattern Qi(u)

of P is such that for any i′ , i, Si′ (C) ⊆ Si′ (Qi(u)).

Proof : By definition card(Qi (u)) = k and |Si (Qi (u))| = u. From Property 15 card(C) = k − 1, and from Property

14 for any i′ ≤ I with |Si′ (P )| ≥ 2, Si′ (P )[2] ∈ Si′ (C). Let K be the difference between card(Qi (u) \ Si (Qi )(u))

and card(C \ Si (C)), i.e.,

K = card(Qi (u) \ Si (Qi )(u))− card(C \ Si (C)),

= (k −u)− (k − 1− |Si (C)|) = 1 + |Si (C)| −u.

Note that u ≤ |Si (C)|, meaning that K ≥ 1. Because for each i′ ≤ I , Si′ (P )[2] ∈ Si′ (C), and both C and Qi (u) are

sub-patterns of P , then there are K sets such that |Si′ (Qi (u))| = |Si′ (C)|+ 1 = |Si′ (P )|.

Let i′ be the index of one of these K sets. By definition, card(Qi′ ) = k and card(C) = k − 1, meaning that

card(Qi′ \ Si′ (Qi′ )) = card(C \ Si′ (C)). By definition C is sub-pattern of Qi′ , hence Qi′ \ Si′ (Qi′ ) = C \ Si′ (C).

Consequently, Si (Qi′ ) = Si (C) and we deduce:

card(Qi (u) \ Si (Qi )(u))− card(Qi′ \ Si (Qi′ )),

=(k −u)−
(
card(Qi′ )− |Si (Qi′ )|

)
,

=(k −u)−
(
k − |Si (C)|

)
= K − 1.

From Property 14 and because U = 1, there are K − 1 sets of Qi (u) with one more element than the

respective set of Qi′ . However:

K − 1 = 1 + |Si (C)| −u − 1,

= |Si (C)| −u,

= |Si (Qi′ )| − |Si (Qi (u))|.

The difference between |Si (Qi′ )| and |Si (Qi (u))| is exactly K − 1. From Property 14 if i′ ≤ I is such that

|Si′ (P )| ≥ 2, Si′ (P )[2] ∈ Si′ (C) and C is a sub-pattern of Qi′ . Hence, there are K − 1 indices i′′ such that

|Si′′ (Qi (u))| = |Si′′ (Qi′ )|+ 1.

Let L be a set of indices, containing i and the K − 1 aforementioned indices i′′ . Patterns Qi (u) and Qi′
are such that ∑

i′′∈L
|Si′′ (Qi (u))| =

∑
i′′∈L
|Si′′ (Qi′ )|.

By definition, both patterns Qi (u) and Qi′ are of cardinality k, hence∑
i′′<L
|Si′′ (Qi (u))| =

∑
i′′<L
|Si′′ (Qi′ )|.
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As both lower sub-patterns minimize their set weights we deduce that for any i′′ < L, Si′′ (Qi (u)) = Si′′ (Qi′ ).

Hence, for all i′′ , i, Si′′ (Qi′ ) ⊆ Si′′ (Qi (u)). As C is a sub-pattern of Qi , then for each i′′ , i, Si′′ (C) ⊆
Si′′ (Qi (u)).

With all lower sub-patterns Qi(u) defined, the following theorem shows that a flexible pattern with

a set of cardinality 1 is a pattern-facet.

Theorem 8

Let P be a pattern with U = 1. P is a pattern-facet if and only if P is a flexible pattern.

Proof : Recall that without loss of generality, pattern sets can be ordered such that |Si (P )| ≤ |Si+1(P )|, meaning

|S1(P )| = 1. Let X ∈ χ(P ) be a variable set. Consider the following lower sub-patterns: Q1, Qi for every i ≤ I
such that Si (P )[1] < Si (Q1); Qi′ (u) for every i′ ≤ I and u ∈ {0, .., |Si′ (C)|−1}. For all mentioned sub-patterns, we

consider their respective variable set denoted X1; Xi ; Xi′ (u) and their respective solution XX1 ; XXi ; XXi′ (u).

This results in a total of card(P ) solutions. There is one solution XX1 . As P is of rank k, there are card(P )− k
solutions XXi . As card(C) = k − 1, there are k − 1 solutions XXi′ (u).

By definition of lower sub-patterns Qi and Qi (u) and from Property 11, all mentioned variable sets are

k-intersections of X . Hence, all mentioned solutions are feasible and verify (pi(X )) to equality.

Consider now the points associated with the afore-enumerated solutions. We can prove these points to

be linearly independent. Start by considering first the point associated with XX1 . As it is the only point

considered, it is necessarily linearly independent. From Property 15, C is sub-pattern to all Qi and of

cardinality k − 1. Consequently, Qi with Si (P )[1] < Si (Q1) is the only lower sub-pattern, excluding the

generalized lower sub-patterns, with Si (P )[1] ∈ Si (Qi ). It results that for each solution XXi , the associated

point is the only one with xiSi (P )[1] = 1, thus they are linearly independent. For each solutionXXi′ (u), starting

with large u, the associated point is the first one with xi′Si′ (P )[u] = 0, thus being linearly independent.

The enumerated solutions yield card(P ) linearly independent points. Moreover, from Theorem 7, for

each variable xij < X there is a feasible solution with xij = 1 and xij+1 = 0 that verifies (pi(X )) to equality.

Sequentially adding these points associated with their corresponding solutions to our pool of card(P ) points

still keeps them linearly independent, as there are the only ones with xij = 1 and xij+1 = 0 with xij < X . As

there are n− card(P ) of these new points, there is a total of n linearly independent points.

Thus, a pattern P with a set of cardinality 1 is a pattern-facet if and only if it is a flexible pattern.

Recall that for a pattern to be a flexible pattern it solely requires to verify conditions (i), (ii) and

(iii). Hence, a pattern with a set of cardinality 1 is a pattern-facet if conditions (i), (ii) and (iii) hold.

It is shown in Section 4.6 that verifying if these three conditions hold for a given pattern can be done

in polynomial time. As for Theorem 7, the result of Theorem 8 is used for the experimental results in

Section 4.7. Indeed, this theorem guarantees a flexible pattern P to be a pattern-facet if mini≤I |Si(P )| =
1, or provides a lower bound on the dimensions of the faces defined by the pattern inequalities of P
otherwise.
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4.4.6 Conditions for any pattern

For a pattern P such that mini≤I |Si(P )| ≥ 2, the conditions (i), (ii) and (iii) are necessary but not sufficient

for P to be a pattern-facet. This is because the lower sub-patterns Qi of P lose many of their structural

properties in the general case. In the following, we present three new conditions, that will complement

the aforementioned conditions. For this purpose, we present new patterns Ru that will take the role of

the lower sub-patterns Qi . The idea is to help constructing points with a common coefficient, which is

convenient to provide independent points.

In the following, we consider P a flexible pattern of rank k.

Definition 21 (Nested sub-patternsRu)

Consider a flexible pattern P of rank k. Patterns {Ru ,1 ≤ u ≤ U ′} are nested sub-patterns of P if for

each u, card(Ru) = k −u, Ru is a lower sub-pattern of P and Ru sub-pattern of Ru−1.

For the following, we define U ′ = minu≤k{maxi≤I {Si(P ) − Si(Ru)} ≥ u}. U’ is illustrated in Example

16. We consider the following subset of nested sub-patterns {Ru ,1 ≤ u ≤U ′}. We also consider X ∈ χ(P )

and Yu ∈ χ(Ru), for each u ≤U ′ .
In the following we define three new conditions. Condition (iv) indicates that there are k-intersections

of X with Yu and u variables in a same group. Condition (v) is similar, but with u variables in at least two

different groups. Condition (vi) is a more constrained version of condition (iii), but only for variables

in YU ′ .

Definition 22 (Condition (iv): selection of items in the same group)

Consider a flexible pattern P of rank k, with X ∈ χ(P ). For any u ≤ U ′ and i ≤ I such that |Si(P )| −
|Si(Ru)| ≥ u, there is a variable set Z containing the u variables with the smallest indices of group i

in X \Yu . The variable set Z ∪Yu is a k-intersection of X .

Definition 23 (Condition (v): selection of items in different groups)

Consider a flexible pattern P of rank k, with X ∈ χ(P ). For any u ∈ {2, . . . ,U ′}, there is Zu ⊂ X of

cardinality u such that Zu ∩ Y1 = ∅, Zu contains variables in at least two different groups and the

variable set Yu ∪Zu is a k-intersection of X .

Definition 24 (Condition (vi): constrained independence of an item from its predecessor)

For any xij ∈ YU ′ , there is Z ⊆ V a k-intersection of X such that for every variable xi′j ′ ∈ YU ′ , if i′ = i

and j ′ ≥ j, then xi′j ′ < Z, otherwise xi′j ′ ∈ Z.

Note that contrary to conditions (i), (ii) and (iii), conditions (iv), (v) and (vi) do not apply on P but,

instead, on the nested sub-patterns. In the following example, we illustrate conditions (iv), (v) and (vi),

and show that the nested sub-patterns used for these conditions are not necessarily the sub-patterns

with the smallest weight.

101/243



4.4. PATTERN INEQUALITIES Chapter 4. Polyhedral study: SCPKP

Example 16

Let (4,4, [8,4,2,3],V ,37) be an instance of the SCPKP. Let P = {S1(P ) = {1,2}, S2(P ) = {2,3}, S3(P ) =

{2,4}, S4(P ) = {2,4}} be a flexible pattern of rank 4. Consider the sub-pattern R1 = {S1(R1) = {1},
S2(R1) = {2,3}, S3(R1) = ∅, S3(R1) = ∅}. In this case, |S3(P )| − |S3(R1)| = 2 > 1. Consequently, U ′ is

greater than 1. Consider the sub-pattern R2 = {S1(R2) = {1}, S2(R2) = {2}, S3(R2) = ∅, S3(R2) = ∅}. In

this case, |Si(P )| − |Si(R2)| is at most 2 for each i ≤ 4, hence U ′ = 2. Note that R2 is sub-pattern of R1,

meaning that they are nested sub-patterns of P .

Let X = {x11,x12,x22,x23,x32,x34,x42,x44} , Y1 = {x11,x22,x23} and Y2 = {x11,x22} be variable sets.

Condition (iv) is verified. For Y1 the following variable sets are 4-intersections of X : {x11, x12,

x22, x23}, {x11, x22, x23, x32}, {x11, x22, x23, x42}. For Y2 the following variable sets are 4-intersections

of X : {x11, x22, x32, x34}, {x11, x22, x42, x44}.
Condition (v) is verified. For Y2 the following variable set is a 4-intersection of X : {x11, x12, x22,

x32}, with x12 and x32 being in different groups, while not being in Y1.

Condition (vi) is verified. For Y2, the following variable sets are 4-intersections of X : {x11, x12,

x32, x34} and {x22, x23, x32, x34}. The first one contains all variables of Y2 but x22, and the second one

contains all variables of Y2 but x11.

In this example, the lower sub-pattern R1 is the unique one of cardinality 3 minimizing the set

weights of Y1. However, R2 is not the one of cardinality 2 minimizing the set weights of Y2. In fact,

R′2 = {S1(R′2) = {1,2}, S2(R′2) = ∅, S3(R′2) = ∅, S3(R′2) = ∅} is of cardinality 2 and minimizes the set

weights of Y ′2 ∈ χ(R′2). Because R′2 is not sub-pattern to R1, they cannot be nested sub-patterns.

For a set of nested sub-patternsRu , conditions (iv) can be verified in polynomial time. Indeed, the k-

intersection are explicitly defined, it only requires to compute the sum of its set weights. Also, verifying

conditions (v) and (vi) requires to find a k-intersection, as for conditions (ii) and (iii). Hence, it can be

verified in polynomial time, in a similar fashion as for conditions (ii) and (iii), using a variant of the

shortest path algorithm. However, conditions (iv), (v) and (vi) apply on a set of nested sub-patterns,

instead of on a single pattern P . As shown in Example 16, the lower sub-patterns of P minimizing the

sum of the set weights of their respective variable sets may not be nested. This makes conditions (iv),

(v) and (vi) hard to verify simultaneously.

Remark 3

The complexity of finding nested sub-patterns Ru , u ∈ {1, . . . ,U ′} of P , verifying (iv), (v) and (vi)

remains an open question.

To the best of our knowledge, it seems to require an exponential enumeration. Indeed, there is no a

priori information on which set of sub-patterns Ru of P will verify conditions (iv), (v) and (vi) and be

nested simultaneously. Consequently, the best algorithm we found so far would be to enumerate all

sub-patterns Ru , u ∈ {1, . . . ,U ′}. This means enumerating all u-intersections, u ∈ {1, . . . ,U ′} of X ∈ χ(P ).

In Section 4.6, we show that finding for any k, a k-intersection is equivalent to finding the shortest path

of length k in a Directed Acyclic Graph (DAG). Hence, such algorithm would enumerate all shortest
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paths of length at most U ′ in a DAG, which is exponential. For each u ∈ {1, . . . ,U ′}, there is generally an

exponential number of sub-patterns Ru . In order to verify (iv), (v), and (vi), one needs to find patterns

Ru , u ∈ {1, . . . ,U ′}, such that the sub-patterns Ru are nested. This requires to compare each sub-pattern

Ru with all sub-patterns R′u , u′ , u, hence, comparing exponential number of sub-patterns.

The following theorem shows that conditions (i) to (vi) are sufficient pattern-facet conditions.

Theorem 9 (Sufficient pattern-facet conditions)

Let P be a flexible pattern. If nested sub-patterns {Ru ,1 ≤ u ≤U ′} of P verify conditions (iv), (v) and

(vi), then P is a pattern-facet.

The complete proof is in B.1.6, relying on Lemma 10 defined in the same appendix.

Even though conditions (iv), (v) and (vi) can provide pattern-facets, we will only be using flexible

patterns for the experimental results. The rationale behind is that as stated after Remark 3, one may

need to enumerate for an exponential computational time to verify (iv), (v) and (iv). Another reason

is that from Theorems 7 and 8, a flexible pattern P is a pattern-facet if it has a set of cardinality one.

Otherwise, it has a lower bound on the dimensions of the faces defined by the pattern inequalities of P .

As shown in Section 4.7, using flexible pattern, with or without the cuts of CPLEX, within a Branch and

Cut (B&C) framework can drastically reduce the number of nodes explored and the computational time

required to solve instances of the SCPKP. Furthermore, experimental results in Section 4.7 show that

for some instances, a few flexible patterns are generated. Consequently, adding conditions (iv), (v) and

(vi) would further reduce the number of patterns generated, making it more difficult to measure their

impact.

4.5 Separation of pattern inequalities

In order to use pattern inequalities in a B&C framework, we must define the separation problem.

Definition 25 (Separation problem for pattern inequalities)

Let (I , J , W , V , C) be an instance of the SCPKP. Consider x̃ a fractional solution for this instance. The

separation problem for pattern inequalities is to find the pattern P and the permutation π maximiz-

ing
∑I
i=1

∑
j∈Sπ(i)(P ) x̃ij − rank(P )

We can prove that the separation problem for pattern inequalities is NP-hard for a family of patterns.

Definition 26 (Diagonal pattern)

A pattern P is diagonal if |Si(P )| ≤ 1 for every i ≤ I and if j ∈ Si(P ) then j < Si′ (P ) for every i ≤ I and

i′ ≤ I such that i , i′ .

Theorem 10

Separation problem for diagonal pattern inequalities is NP-hard.
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Proof : We perform a reduction from the separation problem of extended cover inequalities [7] for the knapsack

polytope, shown NP-hard in 13.

Consider a knapsack instance with capacity C′ , J ′ items with weights W ′i , i ∈ {1, . . . , J ′}, and an associ-

ated fractional point x̃KP ∈ [0,1]J
′
. The problem considered is to separate, with respect to point x̃KP , the

extended-cover inequalities, which have the following form : for a given subset K ⊆ {1, ..., J ′},∑
j∈K

xi ≤ ρ(K)

where ρ(K) is the knapsack rank of K , defined as the maximum number of items of K that can be packed

into the knapsack without violating capacity C′ .

Now consider the following instance of the separation problem for pattern inequalities of the SCPKP .

Consider SCPKP instance (I , J , W , V , C). We consider Wi =W ′i −W
′
i−1, C = C′ , I = J = J ′ , and values V can

be arbitrarily defined. Note that any diagonal pattern P of this SCPKP corresponds to a subset of knapsack

items K ⊆ {1, ..., J ′}. By definition, the rank of this pattern is equal to ρ(K), the knapsack rank of K . Now

consider the following fractional point:

x̃ij =

 x̃KPi if j ≤ i
0 otherwise

Finding the most violated diagonal pattern inequality corresponds to finding a diagonal pattern P maximiz-

ing
∑I
i=1

∑
j∈Si (P ) x̃ij − rank(P ). Let P be such a pattern. The associated set K of knapsack items is a solution

to the extended-cover inequalities separation. Conversely, any solution K to the latter problem corresponds

to a solution to this pattern inequalities separation problem.

This result gives the intuition that the separation problem for pattern inequalities is also NP-hard. We

propose a conjecture on how this result could be proven.

Conjecture 1

Consider the knapsack problem instance and the SCPKP instance described in the proof of Theorem

10. Consider the following fractional point: x̃ij = x̃KPi for any j ≤ J . Finding the most violated pattern

inequality corresponds to finding the most violated cover inequalities, with integer coefficients below

or equal to J .

We can however consider a special case of the separation problem for a fixed pattern. We then prove

that this special case can be solved in polynomial time.

Definition 27 (Fixed-pattern separation problem for pattern inequalities)

Let (I , J , W , V , C) be an instance of the SCPKP. Consider x̃ a fractional solution for this instance.

Let P be a pattern of rank k. The fixed-pattern separation problem is to find the permutation π

maximizing
∑I
i=1

∑
j∈Si (P ) x̃π(i)j − k

As the pattern P is fixed for this special case, k is a constant and can be ignored. Hence, the aim

of the fixed-pattern separation problem is to find, for a given pattern, the permutation π maximizing
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∑I
i=1

∑
j∈Si (P ) x̃π(i)j . Even if the number of permutations π for a pattern is exponential (see Section 3),

solving the fixed-pattern separation problem for a pattern P can be done by solving a Maximum Match-

ing Problem (MMP).

Definition 28 (Maximum Matching Problem)

Let H be a weighted bipartite graph. The MMP is to find the set of edges E, such that at most one

edge of E is incident to each vertex of H, while maximizing the sum of the weight of E.

Property 17

Finding a permutation π maximizing the
∑I
i=1

∑
j∈Si (P ) x̃π(i)j can be obtained by solving an instance

of the MMP.

Proof : The aim is to find the permutation π of the sets of P , maximizing
∑I
i=1

∑
j∈Si (P ) x̃π(i)j . To do so, we can

build a bipartite graph H = (H1,H2,E). Each vertex in H1 corresponds to a set Si′ (P ) i ∈ {1, . . . , I} and each

vertex inH2 corresponds to a group, i′ ∈ {1, . . . , I}. In the set of edges E there is an edge (i, i′) for each i ∈ H1,

i′ ∈ H2. The edge (i, i′) has a weight equal to
∑
j∈Si (P ) x̃

′
i′j

Solving this MMP to optimality yields a matching maximizing the weight of the considered edges. One

can deduce a permutation from this matching: π(i) = i′ if edge (i, i′) is in the matching. As the MMP is

solved to optimality, permutation π is such that
∑I
i=1

∑
j∈Si (P ) x̃π(i)j is maximized.

The following example illustrates how solving an MMP provides the permutation maximizing the

left-hand side of a pattern inequality.

Example 17

Let (4,4,W ,V ,C) be an instance of the SCPKP. Let x̃ = [[1,1,0,0], [1,0.7,0.7,0], [0.6,0,0,0], [1,0,0,0]]

be a fractional solution. Let P = {S1(P ) = {1,3}, S2(P ) = {1,2}, S3(P ) = {1}, S4(P ) = {1}} be a pattern

with rank(P ) = 5. Table 4.1 represents the weight matrix ofH, with X̃[i] ∈ H1 the vertex correspond-

ing to the group i of X̃.

In this example, the optimal solution to the MMP is: (S1(P ),2), (S2(P ),1), (S3(P ),3), (S4(P ),4).

This solution has a value 2 + 1.7 + 0.6 + 1 = 5.3. The inequality with X ∈ χ(P ), ordered with respect to

the permutation corresponding to the solution of the MMP is:

x11 + x12 + x21 + x23 + x31 + x41 ≤ 5.

This inequality cuts the fractional point as the left-hand side of the inequality equals 5.3.

As the MMP is a problem that can be solved in polynomial time [61], so is the fixed-pattern separation

problem.
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1 2 3 4
S1(P ) 1 1.7 0.6 1
S2(P ) 2 1.7 0.6 1
S3(P ) 1 1 0.6 1
S4(P ) 1 1 0.6 1

Table 4.1: Weight matrix

4.6 Two-phase Branch & Cut

In this section, we present algorithms in order to use the pattern inequalities within a B&C frame-

work. The separation problem for pattern inequalities is proven to be NP-hard for a family of pattern in

Theorem 10. Based on this theorem, we proposed Conjecture 1 indicating that our intuition is that the

separation problem is also NP-hard in general. and conditions (i) (ii) and (iii) can be verified indepen-

dently from the B&C, we devise a two-phase B&C scheme. The first phase generates flexible patterns as

a pre-processing. The second phase separates the associated pattern inequalities within a B&C frame-

work.

The algorithm to generate flexible-patterns, described in Section 4.6.2, is based on two algorithms

defined in Section 4.6.1. The separation algorithm, described in Section 4.6.3, is to produce the most

violated inequality for a given pattern in polynomial time. The two-phase B&C scheme is described in

Section 4.6.4

4.6.1 Graph model associated with variable sets

The shortest path problem and many of its variants are known to be easy to solve [11] [31] when there

are no negative cost cycles. In the case of the SCPKP, for a given pattern P , it is possible to define a graph

associated with X ∈ χ(P ), for which solving a variant of the shortest path problem gives the rank of P .

This graph will be used to compute the rank of a pattern and to verify conditions (ii) and (iii). Such a

graph could also be used to compute the sub-patterns Qi or to verify conditions (v) and (vi).

Consider a pattern P and a variable set X ∈ χ(P ). Let GSCPKP = (VSCPKP ,ASCPKP ) be the graph

defined as follows. The variable set X is associated with the vertex set VSCPKP , a source vertex p and

a sink vertex q are added to VSCPKP . For convenience purposes, each vertex in VSCPKP is denoted by

the corresponding variable in X and the vertices associated with xij ∈ X are renumbered with the same

order in a compact sequence in X . More precisely consider the following renumbering, denoted by

parentheses on the indices: For any xij ∈ X , we consider x(i)(j) = xij with (i) = i and (j) the number of

variables xij ′ ∈ X with j ′ ≤ j. To each couple (x(i)(j),x(i)(j+1)) ∈ X 2 corresponds an arc in ASCPKP . To each

x(i)(j) ∈ X corresponds an arc in ASCPKP from x(i)(j) to x(i′)(1), i
′ > i. To each x(i)(1) ∈ X corresponds an arc

from source vertex p to x(i)(1) in ASCPKP . Similarly, for each vertex x(i)(j), it corresponds an arc from x(i)(j)

to sink vertex q. Finally the weight of any arc heading to x(i)(j) is sij (X ) as defined in Section 4.3.3 and to

sink vertex q is 0. Note that graph GSCPKP is a DAG with non-negative weights, meaning that shortest
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path problems on GSCPKP are easy to solve.

Example 18

Let (3,3, [3,2,2],V ,C) be an instance of the SCPKP. For the variable set X = {x11, x12, x21, x22, x23,

x31, x33}, the vertex set is VSCPKP = {p,q,x(1)(1), x(1)(2), x(2)(1), x(2)(2), x(2)(3), x(3)(1), x(3)(2)}. Figure 4.4

illustrates graph GSCPKP associated with X .
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Figure 4.4: Graph GSCPKP for Example 18

With graph GSCPKP defined with respect to X , the following property makes the link between a path

in GSCPKP and a variable set Y ⊆ X .

Property 18

Finding a shortest path in graph GSCPKP featuring exactly k + 1 arcs is equivalent to finding Y ⊂ X ,

with Y featuring the following properties: 1) |Y | = k, 2) for every xij ∈ Y for each xij ′ ∈ X with j ′ < j,

xij ′ ∈ Y , 3) Y minimizes its set weights sij (Y ).

Proof : First, suppose that we found the shortest path in GSCPKP with exactly k + 1 arcs. 1) The path between

p and q with exactly k + 1 arcs is a path with k + 2 vertices. Note that such a path necessarily exists with

k ∈ {1, . . . , card(P )}. Indeed, by construction of GSCPKP , there is a path going through all nodes x(i)(j) and

there is an arc from any x(i)(j) to q. Also any arc (x(i)(j), x(i′)(j ′)) is with (i′) ≥ i or (j′) > (j), thus there are no

cycles in GSCPKP . Hence, the k + 2 vertices are necessarily different. As p and q do not correspond to any

variables of X , a path with exactly k + 1 arcs represents a set Y with exactly k variables of X

2) By construction of GSCPKP , the only arc towards x(i)(j) is from x(i)(j−1) with (j) > 1. Consequently, for

each xij ∈ Y such that xij ′ ∈ X and j′ < j, then xij ′ ∈ Y .
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3) By construction of GSCPKP , for each xij ∈ X , every arc towards xij has a weight sij (X ). As such, a path

with a set Y ⊆ X of variables has a weight equal to
∑
xij∈Y sij (X ). Hence, set Y corresponds to a shortest path

minimizing the sum of its set weights.

Now, suppose that we have Y ⊆ X satisfying 1), 2) and 3).

By construction of GSCPKP , for each variable in Y there is a corresponding vertex in GSCPKP . Besides,

as Y satisfies 2), then there exists a path from p to q by sorting the variables xij ∈ Y by decreasing i and j.

As |Y | = k, the associated path has k+1 arcs. Finally, as Y verifies 3), then there are no other path in GSCPKP
with with exactly k + 1 arcs with a lower value.

Computing the rank Clearly, if the sum of the set weights of Y is smaller than or equal to C, then Y is

a k-intersection of X . By definition, if a k-intersection of X exists, then there is a feasible solution with k

variables of X to 1. Hence, the idea to compute the rank of a pattern P is to find a maximum cardinality

path in GSCPKP associated with X ∈ χ(P ), with its total weight being smaller than or equal to C. From

Property 18, if the maximum cardinality path found is with k + 1 arcs, then the rank of P is k. Such a

rank computing algorithm is described in Algorithm 1.

The Algorithm 1 returns the rank of a pattern P . In the following we detail Algorithm 1, which is

illustrated in Example 19. In order to compute the rank, we use a variant of the Bellman-Ford algorithm

[11] to compute the maximum cardinality path with a total weight less or equal C. The cardinality of

such a path is then translated into the rank of P . The first difference with the Bellman-Ford algorithm

is that the vector dist contains, at the end of the nth iteration of the while loop, the distance between

source p and any other node v ∈ VSCPKP in exactly n arcs. Hence, at each iteration of the while loop,

nDist is initialized with value∞, and for all v ∈ VSCPKP , nDist[v] is replaced only if there is a path from

p to v in n arcs. More precisely, the value nDist[v] is replaced only if during the nth iteration of the

while loop there is a path from p to v′ ∈ VSCPKP in n − 1 arcs, i.e., dist[n] < ∞ and an arc from v′ to v.

The second difference is the stopping condition, which is when all paths have a distance greater than C.

As all weights are positive, as soon as all paths have weight greater than C, there cannot be a path with

even more arcs of total weight less or equal C. When the algorithm stops, there is no path with nbArcs

with total weight less or equal C. Hence, the maximum cardinality path found is with nbArcs − 1 arcs,

containing nbArcs − 2 vertices different than p and q. Consequently, the rank of P is k = nbArcs − 2 as p

and q do not represent any variable.

Example 19

Let (3,3, [3,2,2],V ,6) be an instance of the SCPKP. Let X = {x11, x12, x21, x22, x23, x31, x33} be the

variable set as in Example 18, with its graph depicted in Figure 4.4. The table of values computed

with Algorithm 1 for this instance is depicted in Table 4.2, where the value of nbArcs and dist[v]

for each v ∈ VSCPKP is shown for the initialization (first row), and at the end of each iteration of the

while loop (second to fifth row). The algorithm stops when nbArcs = 4 as all values are greater than

C = 6. Hence the maximum cardinality path is with nbArcs − 1 = 3 arcs, going through nbArcs − 2

vertices besides p and q. Consequently, the rank obtained in this example is 2.
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nbArcs p x(1)(1) x(1)(2) x(2)(1) x(2)(2) x(2)(3) x(3)(1) x(3)(3) q
0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 ∞ 3 ∞ 3 ∞ ∞ 3 ∞ ∞
2 ∞ ∞ 5 6 5 ∞ 6 7 3
3 ∞ ∞ ∞ 8 8 7 8 10 5
4 ∞ ∞ ∞ ∞ 10 10 10 12 7

Table 4.2: Values of Algorithm 1 relative to Example 19.

Algorithm 1 Computing the rank of a pattern

procedure computeRank(pattern P ):
build GSCPKP = (VSCPKP ,ASCPKP ) associated with X ∈ χ(P ) for permutation πid
dist[p]← 0
dist[v]← +∞, ∀v ∈ VSCPKP \ {p}
nbArcs← 0
while min(dist) ≤ C do

nDist[v]←∞, ∀v ∈ VSCPKP
for a ∈ ASCPKP do

nDist[a.head]←min(nDist[a.head],dist[a.tail] + a.weight)
end for
dist← nDist
nbArcs← nbArcs+ 1

end while
k← nbArcs − 2
return k

end procedure

Verifying conditions (ii) and (iii) Let P be a pattern of rank k and X ∈ χ(P ) be a variable set with

permutation πid . To verify if condition (ii) holds for a group i, one needs to find a set Y being a k-

intersection of X with xiJ ∈ Y . To verify if condition (iii) holds for xij , one needs to find a set Y being

a k-intersection of X with xij−1 ∈ Y and xij < Y . Let u be the number of variables xij ′ ∈ X , with j ′ ≤ J
for condition (ii), and with j ′ < j for condition (iii). Finding such k-intersection is to find a shortest

path of length k −u + 1 in GSCPKP , without any variable of group i. The Algorithm 2 returns a boolean,

equals to True if (ii) is verified for xij , j < J , or (iii) is verified for xiJ . To do so, we use another variant

of the Bellman-Ford algorithm, to compute the path with minimal weight and cardinality k −u + 1. The

proposed algorithm shares various similarities with Algorithm 1 for managing vector dist and nDist in

order to only keep, at the nth iteration of the while loop, the shortest path between p and v ∈ VSCPKP with

cardinality exactly n. The first difference with Algorithm 1 lies in the initialization phase of Algorithm

2, where a second set X ′ = X \ xij ′ for each j ′ ∈ Si(P ). The second difference is the stopping condition.

In Algorithm 1, we looked for the path with the largest cardinality, hence we stop when no path has

a total weight less then or equal to C. In the case of Algorithm 2 we do the opposite; we look for the

path with minimum weight, for a given cardinality. Hence, we iterate until dist contains the distances
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of the minimum weight paths between p and all v ∈ VSCPKP with cardinality k−u+1, meaning with k−u
vertices different from p and q.

The Algorithm 2, for given integers j, i and a pattern P returns a boolean. In the case j = J + 1, the

algorithm returns true only if (ii) is verified for i, and in the case j ∈ Si(P ), returns true only if (iii)

is verified for i and j. Indeed, this algorithm searches for the path with minimum weight, and exactly

k − u + 1 arcs, between p and q. By construction of X ′ , this path is without any variables of group i.

Consequently if the total weight of the generated shortest path plus
∑j−1
j ′=1W j ′ is smaller than or equal

to C, then there is a k-intersection of X as follows. The k-intersection contains all k − u variables in the

generated shortest path besides p and q and the variables xij ′ ∈ V , j ′ < j. In the case j ≤ J , the resulting

k-intersection contains the variable xij−1 but not xij , which corresponds to condition (iii). In the case

j = J + 1, the resulting k-intersection contains xiJ , which corresponds to the condition (ii).

Remark 4

Both algorithms described run in polynomial time with respect to |VSCPKP |, with |VSCPKP | = card(P )+

2 in Algorithm 1, and |VSCPKP | = card(P ) + 2 − |Si(P )| in Algorithm 2. In the case of Algorithm

1, the while loop can occur |VSCPKP | times, and in the case of Algorithm 2, the while loop can

occur rank(P ) ≤ |VSCPKP | times. In both cases, in the while loop we iterate over the arcs of ASCPKP ,

meaning |ASCPKP | ≤ |VSCPKP |2 operations. Hence, both algorithms have a worst case time complexity

of O(|VSCPKP |3). It is worth mentioning that because of the structure of GSCPKP , |ASCPKP | is usually

much smaller than |VSCPKP |2 as proven in Property 19. Hence, these algorithms usually require

much less than |VSCPKP |3 operations.

Property 19

Let P be a pattern and U be the cardinality of the smallest set Si(P ). Let X ∈ χ(P ) be a variable set

and GSCPKP = (VSCPKP ,ASCPKP ) be the graph associated with X , then |VSCPKP |
2

|ASCPKP |
≈U .

The proof is given in B.1.7.

Example 20

Consider a pattern P = {{1,2}, {1,2,3}, {1,3}} with U = 2. The following variable set is associated with

P , X = {x11, x12, x21, x22, x23, x31, x33}, as in Example 18. The vertex set is VSCPKP = {p,q,x(1)(1),

x(1)(2), x(2)(1), x(2)(2), x(2)(3), x(3)(1), x(3)(2)}. Figure 4.4 illustrates graph GSCPKP associated with X . One

can compute that there are 7 arcs towards q, 3 arcs from p and 4 arcs (x(i)(j),x(i)(j+1)). There are also

2 arcs (x(1)(j),x(2)(1)) and (x(1)(j),x(3)(1)) as well as 3 arcs (x(2)(j),x(3)(1)). In total, |ASCPKP | = 21, while

|VSCPKP | = 9. Clearly, |ASCPKP | <
|VSCPKP |2

U = 81
2 = 40.5.

Theorem 11

Verifying condition (i), (ii) and (iii) can be done in polynomial time.
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Algorithm 2 Verifying conditions (ii) and (iii)

procedure verifyCondition(pattern P , i ∈ {1, . . . , I}, j ∈ {1, . . . , J + 1}):
▷ j ≤ J for condition (ii), j = J + 1 for condition (iii)

u← |{j ′ ∈ Si(P ) : j ′ < j}|
X ← set in χ(P ) for permutation πid
X ′←X \ {xij ′ : j ′ ∈ Si(P )}
build GSCPKP = (VSCPKP ,ASCPKP ) associated with X ′
dist[p]← 0
dist[v]← +∞, ∀v ∈ VSCPKP \ {p}
nbArcs← 0
while nbArcs ≤ rank(P )−u do

nDist[v]←∞, ∀v ∈ VSCPKP
for a ∈ ASCPKP do

nDist[a.head]←min(nDist[a.head],dist[a.tail] + a.weight)
end for
dist← nDist
nbArcs← nbArcs+ 1

end while
return dist[q] +

∑j−1
j ′=1W j ′ ≤ C

end procedure

Proof : Condition (i) requires to verify if each set is non-empty, which is linear with respect to the number of

sets I .

Condition (ii) requires to run Algorithm 2 for each xiJ , i ≤ I , which is an algorithm of complexity

O(|VSCPKP |3), |VSCPKP | ≤ n a total of I ≤ n times. Condition (ii) can be verified in O(n4) time.

Condition (iii) requires to run Algorithm 2 for each xij ∈ X , which is an algorithm of complexity

O(|VSCPKP |3), |VSCPKP | ≤ n a total of |X | ≤ n times. Condition (iii) can be verified in O(n4) time.

Remark 5

It is worth mentioning that the time complexity O(n4) is rarely reached. Indeed, only one pattern has

a cardinality equal to n: the one containing I times the set {1, . . . , J}. All other patterns have a smaller

cardinality, which reduces the required time to verify (ii) and (iii) in two ways. The first one is that

Algorithm 2 is needed card(P ) times for (iii), and I ≤ card(P ) times for (ii). The second one is that

the complexity of Algorithm 2 depends on |VSCPKP |, which is card(P ) + 2 − |Si(P )| as mentioned in

Remark 4. Then likewise Algorithm 2 usually requires much less than |VSCPKP |3 operations.

Algorithm 2 can also be extended to gather further information on a pattern as described in the

following. These extensions are not used for the experimental results in Section 4.7. Only Algorithm 1

and Algorithm 2 are required to apply Theorem 7 and Theorem 8.
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Computing generalized lower sub-patterns Qi(u) To find a flexible pattern, there is no need to com-

pute the lower sub-patterns Qi(u). However, it is worth mentioning that finding Qi(u) can also be done

with a variant of the shortest path algorithm. More precisely, finding Qi(u) can be obtained via Algo-

rithm 2, for xij+1 with j = Si(Qi(u))(u). The only modification is to add an extra step to memorize the

paths, and to return the path to node q.

Verifying conditions (v) and (vi) Let P be a pattern and {Ru ,1 ≤ u ≤U ′} be the nested sub-patterns of

P . To verify if conditions (v) or (vi) hold for its nested sub-patternsRu , one needs to find k-intersections.

Finding a k-intersection is also what is required to verify conditions (ii) and (iii). Hence, a similar

algorithm as Algorithm 2 can be used to verify (v) and (vi) for a given sub-pattern Ru . However, as

mentioned after Remark 3, finding a set of nested sub-patterns verifying (v) and (vi) may require to

enumerate an exponential number of sub-patterns.

4.6.2 Pattern generation

The pattern generation procedure heavily relies on conditions (ii) and (iii) and also on the rank. The

complete procedure is described in Algorithm 3, using Algorithm 1 and Algorithm 2.

The aim of Algorithm 3 is to generate a pattern verifying conditions (i) (ii) and (iii). To do so, we first

generate a random integer k as a target rank for the pattern P to be constructed. Pattern P is initialized

with I sets {J}. Then the goal is to iteratively modify pattern P until we obtain a flexible-pattern with

rank k. To do so, we first aim to increase the cardinality of P until card(P ) > k. While the cardinality of

P is less than k, a random group i such that j > 1 with j the smallest index in Si(P ) is selected and we

add j − 1 to Si(P ). Then, once card(P ) ≥ k, we update P in order to satisfy flexible-pattern conditions,

in particular (ii) and (iii). To do so, while conditions (ii) and (iii) are not satisfied, we randomly select

i and j such that j < Si(P ) and j + 1 ∈ Si(P ) or j = J (if such indices exist, otherwise the current iteration

stops). Then we check conditions (ii) or (iii) for group i and index j with Algorithm 2. If it returns false,

then in the case j < J we replace j + 1 by j in Si(P ), and in the case j = J we add J to Si(P ).

In Algorithm 3 the lower bound on k ensures that the rank is high enough to create a flexible pattern.

Indeed, because of condition (i), too small of a rank will lead to patterns that cannot be flexible patterns.

The reason why we initialize P with I groups of sets {J} is for P to satisfy condition (i). Indeed, when

modifying P , either an element is added to a set, or an element is replaced. Hence the size of the sets

never decreases, and there is at least 1 element in each group. In order for the pattern inequalities of P
not to be trivial, it requires card(P ) > rank(P ). As pattern P is initialized with cardinality I , in the case

rank(P ) ≥ I one needs to add elements to P . For the purpose of this algorithm, we start with elements

of higher indices. Note that Algorithm 3 always ends. In the case where conditions (ii) and (iii) are

satisfied by P , then we exit loop at line 10. Otherwise, if none of the elements in P can be considered to

verify if condition (ii) or (iii) holds, then we exit the loop at line 14.
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Algorithm 3 Generating a flexible pattern

1: procedure generatePattern( instance (I, J,W ,V ,C) of the SCPKP)
2: lowerBound ← ⌈C/

∑J
j=1W j⌉

3: k← random integer in [lowerBound;n]
4: P ← I sets {J}
5: while card(P ) ≤ k do
6: i← random integer in [1; I] such that |Si(P )| < J
7: j← Si(P )(1)
8: Si(P )← Si(P )∪ {j − 1}
9: end while

10: while (ii) and (iii) not verified for P do
11: X ← set in χ(P ) for permutation πid
12: xij < X ← variable chosen randomly such that xij+1 ∈ X or j = J
13: if no such xij remains then
14: go to line 26
15: end if
16: if j = J and !verifyCondition(P , i, j) then ▷ (see Algorithm 2)
17: Si(P ) = Si(P )∪ {J}
18: end if
19: if j < J and !verifyCondition(P , i, j) then ▷ (see Algorithm 2)
20: Si(P ) = Si(P )∪ {j} \ {j + 1}
21: end if
22: end while
23: if computeRank(P )=k then ▷ (see Algorithm 1)
24: return P
25: else
26: pattern discarded
27: end if
28: end procedure

Property 20

Algorithm 3 only returns a pattern if it is a flexible pattern.

Proof : As P is discarded if rank(P ) , k, it ensures the rank of P to be exactly k. Similarly, pattern P verifies

conditions (ii) and (iii). Indeed, condition (ii) is verified for every i ∈ {1, . . . , I} and (iii) is verified for every

i ∈ {1, . . . , I} and j ∈ Si (P ). Also, if a condition (ii) is verified for a given i, it is still verified if P is modified

during the core of Algorithm 3. Similarly, if condition (iii) is verified for a given i and j ∈ Si (P ), it is still

verified if P is modified during the core of Algorithm 3. Indeed, as either one element is added, or an index

j′ is replaced by j′ − 1 in a set Si′ (P ), then the same k-intersection satisfying (ii) or (iii) can be found, or a

k-intersection with lighter total set weights. As P is initialized with one element per set, and the size of a set

cannot decrease (when an index i is removed, it is replaced by i − 1), condition (i) is verified. Therefore, the

Algorithm 3 returns the pattern only if it verifies (i), (ii) and (iii)
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Note however that pattern P obtained with Algorithm 3 does not necessarily satisfy the condition of

Theorem 8. Indeed, the algorithm does not restrict the generated pattern to have a set of cardinality 1.

This means that the returned pattern is not necessarily a pattern-facet. However, the pattern being a

flexible pattern ensures the associated inequality to have a known lower bound on the dimension of the

associated face as proven in Theorem 7, thus leading to relatively strong inequalities.

Note that generatePattern((I, J,W ,V ,C)) only needs the instance, more precisely the knapsack

bound and the item weight from the instance, hence it can be only used in pre-processing. Indeed,

only the constraints are needed to compute a pattern verifying (i), (ii) and (iii). Also, Algorithm 3 re-

turns at most a single pattern, which may not be enough to make a large difference in a B&C framework.

Consequently, we call this algorithm multiple times as the pre-processing step of the two-phase scheme,

in order to generate various patterns. Each call is independent from the previous ones, meaning that

multiple calls can be done in parallel on different threads. The set of patterns obtained with this algo-

rithm is then used within a B&C framework, with the separation algorithm described in the following

section.

4.6.3 Separation algorithm for the Symmetric-weight Chain Precedence Knapsack

Problem

For the separation algorithm, we have two pieces of information: the fractional point X̃ and the set of

generated patterns. Also, recall that, for a given pattern, one can obtain the permutation maximizing

the violation of the pattern inequality in polynomial time. This can be done by solving an MMP with the

Hungarian algorithm [61], of complexity O((|H1| + |H2|)4). A more recent version [33] is of complexity

O((|H1|+ |H2|)3). In the scope of the separation algorithm, |H1| = |H2| = I . Thus, the separation algorithm

is polynomial for a pattern, as it is of complexity O((I)3).

In order to obtain the most violated pattern inequality for a set of patterns, the MMP is solved for

each pattern. As the number of patterns is not bounded, obtaining the most violated pattern inequality

out of a set of patterns is in pseudo-polynomial time. Note also that there is no guarantee that all

pattern-facets have been generated. In such a case, this separation algorithm is a heuristic.

4.6.4 Two-phase Branch & Cut scheme

The first phase is to use Algorithm 3 multiple times to generate as many flexible patterns as possible.

As it requires the capacity C, the number of groups I , the number of items per group J and weights W j ,

it can be done as a pre-processing. Because of the polyhedral symmetries of the SCPKP, each flexible

pattern encodes an exponential number of pattern inequalities. From Theorem 7, there is a lower bound

on the dimensions of the faces defined by these inequalities, and they are facet-defining in the case of a

flexible pattern with a set of cardinality 1.
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The second phase is to use inequalities associated with generated patterns within a B&C framework.

As the patterns have already been generated, the separation algorithm only requires to find the permu-

tation π leading to the most violated inequality for each pattern. Such a permutation can be found for a

given pattern by solving the MMP, with a polynomial time algorithm.

The interest of such an approach is that a same flexible pattern can yield multiple cuts in the second

phase. The following example shows how a single pattern can be used to separate multiple cuts.

Example 21

Let (3, 3, [3, 4, 2], [[14, 2, 10],[15, 2, 3],[14, 2, 9]], 10) be an instance of the SCPKP. For this in-

stance, pattern P = {{1}, {3}, {3}} is a flexible-pattern of rank 1. When solving the LP relaxation, we

obtain the following solution, X̃1 = [[1,0.166,0.166], [1,0,0], [1,0,0]]. By finding permutation of P
maximizing the violation, we obtain X1 = {x13,x23,x31}, and (pi(X1)) is x13 + x23 + x31 ≤ 1. Clearly,

fractional solution X̃1 violates (pi(X1)). With this new cut we obtain a second fractional solution,

X̃2 = [[1,0,0], [1,0,0], [1,0,166,0,166]]. By finding the permutation of P maximizing the violation,

we obtain X2 = {x13,x21,x33}, and (pi(X2)) is x13 +x21 +x33 ≤ 1. Clearly, fractional solution X̃2 violates

(pi(X2)).

4.7 Experimental results

Results are computed on a single thread of an Intel Core i7-9850H CPU @ 2.60GHz processor, with

12 CPUs of 12 cores, with Linux as operating system. All algorithms are developed with C++. Version

12.8 of CPLEX is used to solve model MSCPK . Recall that UMIC inequalities, introduced in Section

4.2, have been adapted to the SCPKP. Hence, we compare in this section seven variants of the B&C algo-

rithms featuring the pattern inequalities, the inequalities featured in CPLEX and the UMIC inequalities.

Besides, we also compare all combinations of these sets of inequalities.

4.7.1 Instance description

One of the main result when comparing the solving time of various knapsack problem instances [83]

is that a stronger correlation between weight and value tends to induce a large increase of the compu-

tational times. Instance generators for variants of the knapsack problem are at disposal 1 with various

characteristics. However, none of them produce instances for the particular case of the SCPKP, i.e., with

I groups of J elements, chain precedence constraints and symmetric weights W j , j ≤ J . Recall that we

study the SCPKP due to its structure being the core of the 1-HUCD problem. However, we do not

include instances for the 1-HUCD problem with the Hydro unit commitment Instance Generator 2 for

two reasons. First, the prices value in an instance of the 1-HUCD problem is very structured, which

1http://hjemmesider.diku.dk/~pisinger/codes.html, accessed 2023-06-20
2http://www.lix.polytechnique.fr/Labo/Dimitri.Thomopulos/libraries/HIG.html
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is not the case of the SCPKP . Second, many constraints of the 1-HUCD problem are not taken into

account in the study of the SCPKP , hence it would be difficult to identify the impact of the presented

inequalities and algorithms. Consequently, we generate our own random instances by keeping a strong

enough correlation between weights and values. From a pool of hundred generated instances, sixty are

retained. The selection criteria is for these instances to take at least 60 seconds to be solved by CPLEX,

with all the default options of CPLEX enabled but the cuts. As such, there is enough room in terms

of computational time and number of explored B&C nodes to see the impact of each of the family of

inequalities considered. The sixteen retained instances are as follows, instances 1 to 20 with I = 20 J = 5;

instances 21 to 40 with I = 30 J = 5; instances 41 to 60 with I = 20 J = 10. Note that these instances are

in the case I ≥ J , for which the SCPKP is proven to be NP-hard. The generation of instances is further

detailed in B.2 and the resulting instance set is available online 3.

It would be interesting to see how a correlation similar to that proposed in [83] can extend to the

generated SCPKP instances. When considering instances from the difficult classes in [83] the correla-

tion coefficient is above 0.98. In the case of the SCPKP, item (i, j) can only be selected if (i, j − 1) has

been selected, due to chain precedence constraints. Hence, one can compute the correlation coefficients

between the weights and values, but also the correlation coefficient between the cumulated weights and

cumulated value, i.e.,
∑J
j=1W j and

∑J
j=1V ij instead of W j and V ij .

Table 4.3 gives the correlation between the weights and values (cor), as well as the correlation be-

tween the cumulated weights and cumulated values (corC). The considered linear Bravais-Pearson cor-

relation formula is as follows:

cor =
cov(W,V )
σW · σV

;

with cov(W,V ) the covariance, and σW (resp. σV ) the standard deviation of the weights (resp. values).

Interestingly, for the SCPKP instances, metric cor often takes a low or even negative value, whereas

metric corC is always over 0.70. This indicates that corC is a better metric to evaluate the hardness of

SCPKP instances. It also appears that metric cor tends to have a higher value for instances 41 to 60

than for the other instances. As these instances are with J = 10 items per group, it could mean that for

instances with high J , the value of cor and corC become correlated. Note that this remark does not apply

for the number of groups I , as there is no noticeable difference between instances 1 to 20 and 21 to 40.

Note that values in Table 4.3 are rounded to the nearest hundredth and value 1.00 does not necessarily

mean a perfect correlation.

4.7.2 Pattern generation

To generate a set of patterns, we repeatedly generate patterns one by one via the pattern generation

process depicted in Algorithm 3. This process is random-based, hence it can produce multiple times

the same pattern. In this case, we only consider one copy of each pattern. Although the process is

3https://github.com/Eegann/SCPKinstances, accessed 2023-07-21
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inst cor corC inst cor corC inst cor corC
1 0.82 0.85 21 −0.3 0.97 41 0.57 1.00
2 −0.67 0.94 22 0.29 0.98 42 0.56 0.98
3 0.36 0.98 23 0.18 0.99 43 0.68 0.99
4 0.51 0.99 24 0.69 0.99 44 0.59 0.99
5 0.7 1.00 25 0.42 0.99 45 0.67 0.98
6 0.03 0.96 26 0.65 0.99 46 0.37 0.99
7 0.72 0.99 27 0.73 0.98 47 0.35 0.99
8 0.81 0.97 28 0.87 1.00 48 0.36 0.99
9 0.33 0.99 29 0.32 1.00 49 0.52 0.99

10 0.65 1.00 30 −0.26 0.99 50 0.14 0.99
11 0.59 0.99 31 −0.8 0.99 51 0.61 0.99
12 0.97 0.99 32 0.69 0.99 52 0.48 0.99
13 0.0 0.99 33 0.44 0.98 53 0.2 0.99
14 0.49 0.97 34 0.48 0.92 54 0.44 1.00
15 0.61 0.97 35 −0.06 0.94 55 0.2 0.99
16 0.89 1.00 36 0.45 0.85 56 0.2 0.98
17 0.74 0.99 37 0.54 0.71 57 0.87 0.98
18 −0.03 0.99 38 0.03 0.98 58 0.54 1.00
19 0.82 0.99 39 0.58 0.98 59 0.9 0.98
20 −0.44 0.99 40 0.23 0.98 60 0.51 0.77

Table 4.3: Correlation coefficients between the value and weight for all instances

random-based, we only generate a single set of patterns for each instance. Indeed, preliminary results

have shown that, for a given instance, generating multiple sets of patterns yields very similar results,

both in terms of generated patterns, and B&C results to solve the SCPKP. Even if the pattern generation

procedure could be parallelized, we use a single thread.

The following metrics are used in Table 4.4 to compare the pattern generations for each instance:

• #iter: number of iterations of the generation process

• #find: number of iterations where a flexible pattern is found

• #patt: number of different flexible patterns found

• %facet: proportion of patterns guaranteed to be pattern-facet, i.e., with a set of cardinality 1

Firstly, one can see that the generation becomes slower on larger instances, thus with the same time

limit, fewer iterations can be performed. More precisely, there are thousands of iterations for instances

1 to 20, around a thousand for instances 21 to 40, and hundreds for instances 41 to 60. Consequently,

fewer patterns are found for larger instances. Note that there are many instances for which most itera-

tions of the pattern generation procedure fail to produce a flexible pattern in a majority of cases. Indeed,

for some instances, the procedure produces a flexible pattern during less than 10% of the iterations, see

for example instances 4, 15, 22, 36, 44, 50. Generally speaking, the larger the instances, the higher the

proportion of failed iterations.
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Moreover, when #find is large, most of the flexible patterns are generated multiple times. Indeed,

roughly speaking, the ratio between #patt and #find is smaller when #find is large. This is due to

the procedure being random-based, hence when #find is large, there is a higher chance to generate

duplicates.

inst #iter #find #patt %facet inst #iter #find #patt %facet inst #iter #find #patt %facet
1 5011 3245 244 4.9 21 1123 517 106 3.8 41 371 31 18 16.7
2 7428 3870 45 15.6 22 977 21 9 88.9 42 346 17 11 36.4
3 7432 6594 53 9.4 23 1290 947 186 2.7 43 338 31 18 16.7
4 4070 385 78 19.2 24 851 69 34 14.7 44 339 10 9 44.4
5 4112 1125 207 3.9 25 815 93 50 20.0 45 299 12 8 37.5
6 3935 274 61 29.5 26 1001 332 140 9.3 46 484 97 53 7.5
7 4421 1428 199 5.5 27 990 200 43 11.6 47 470 126 82 4.9
8 3414 210 26 23.1 28 773 68 32 12.5 48 650 326 205 1.5
9 3603 281 50 26.0 29 859 305 144 5.6 49 864 616 182 1.1

10 3935 395 74 17.6 30 870 38 20 40.0 50 375 5 2 100.0
11 4059 1078 195 7.2 31 859 172 72 12.5 51 354 50 40 7.5
12 4649 2008 296 3.4 32 855 34 11 72.7 52 336 38 22 18.2
13 4444 644 125 14.4 33 1208 36 8 100.0 53 374 6 4 50.0
14 5937 2484 96 4.2 34 795 98 44 22.7 54 727 344 200 1.0
15 3501 250 40 20.0 35 790 82 38 23.7 55 385 80 55 5.5
16 9023 308 11 100.0 36 880 25 8 62.5 56 863 587 187 1.1
17 4112 1393 166 4.2 37 960 169 52 11.5 57 297 2 2 0.0
18 4294 192 33 45.5 38 1027 22 7 57.1 58 363 6 6 50.0
19 5125 1787 152 7.9 39 812 177 94 4.3 59 366 43 34 5.9
20 3869 287 57 28.1 40 804 29 20 50.0 60 517 102 46 4.3

Table 4.4: Experimental results relative to pattern generation (first phase)

4.7.3 Separation of inequalities

Separation of the UMIC inequalities For UMIC inequalities, we use the uplifting algorithm and im-

plemented the separation process as described in [37]. This algorithm first generates a smaller instance,

with a contracted graph, based on the fractional solution. On the smaller instance, a MIC is found for

each variable. For each MIC, computing coefficients βij for a given (i, j) ∈ Ur to optimality is NP-hard.

Hence, the linear relaxation is considered instead. For a given (i, j) ∈ Ur , if βij is fractional, then it is

rounded up to enforce the inequality. This process yields UMIC inequalities for the instance relative to

the contracted graph, which is then translated back to the original instance. The algorithm returns only

the three most violated UMIC inequalities.

We implemented the separation with the following features as described in [37]. In particular, the

separation is only enabled at the root node. As long as a violated inequality is found, the LP relaxation

is recomputed and the separation process is repeated. The separation procedure is disabled once the

number of UMIC inequalities added reaches ten times the number of inequalities of the model.
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Separation of the pattern inequalities The separation of the pattern inequalities is done within a user

cut callback from CPLEX. For a given pattern set, it reduces to solve an MMP for each of its patterns

(see Section 4.5), hence creating one inequality per pattern, and retains the most violated inequality.

Preliminary results show that this strategy is, on average, more efficient than retaining the first violated

inequality, or all the violated inequalities.

This process is repeated at each node, as long as a violated inequality is found. This means that

the separation of the pattern inequalities is made at least once per node. Recall that an MMP is solved

for each pattern, and from Table 4.4 the number of patterns can reach hundreds. Preliminary results

show that using the separation of the pattern inequalities at each node takes up to 90% of the total

computational time, and the larger the tree, the fewer the cuts. Besides, preliminary results also show

that few patterns yield the majority of the added cuts. Hence, we propose the following scheme, which

takes advantage of the fact that we have a set of patterns. For each pattern, we compute the average

violation of the added cuts, which is 0.0 when no cut has been added. The set of patterns is kept sorted

by decreasing value of this average violation. The idea is to divide the size of the set by two, keeping

only the first half of the set, such that the set is empty at 10,000 nodes. More precisely, the number of

times the set must be divided is log2 of the number of patterns. Hence, one can divide 10,000 by this

number to know at which number of nodes of the B&C the set is divided. Besides, we also limit the

number of added cuts to 100. The separation of the patterns is disabled once either the set of patterns is

empty, or the number of added cuts has reached 100.

Note that the violation of a cut does not have an upper bound of 1 despite variables being binary, as

illustrated by Example 22.

Example 22

Let (2, 2, [10, 5], V , 25) be an instance of the SCPKP. One can obtain the fractional solution x̃11 = 1,

x̃12 = 1, x̃21 = 0.66, x̃22 = 0.66. For this instance, inequality x̃12 + x̃21 + x̃22 ≤ 1 is valid and has a

violation value of 1.32 when cutting the fractional solution.

Separation of UMIC and pattern inequalities. When both UMIC and pattern inequalities are con-

sidered, we first generate pattern inequalities at the root node. Once no more pattern inequalities are

violated at the root node, we then generate UMIC inequalities as previously defined. When no more

UMIC inequalities are violated, we resume the B&C algorithm and separate the pattern inequalities as

described previously.

4.7.4 Solving the Symmetric-weight Chain Precedence Knapsack Problem

The B&C framework is limited to a single thread, and a maximum of 3600 seconds of computational

time. For the following, we define default CPLEX, CPLEX with all default options enabled, and no-cut
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CPLEX, which is default CPLEX with cuts disabled. Seven experimental variants of CPLEX’s B&C are

considered in order to evaluate the pattern inequalities:

• Cplx: default CPLEX.

• Umic: no-cut CPLEX with UMIC inequalities separation.

• Psep: no-cut CPLEX with pattern inequalities separation.

• Cplx+Umic: default Cplex with UMIC inequalities separation.

• Cplx+Psep: default CPLEX with pattern inequalities separation.

• Psep+Umic: no-cut CPLEX with pattern inequalities separation and UMIC inequalities separation.

• All: default CPLEX with pattern inequalities separation and UMIC inequalities separation.

In order to compare these variants, we first introduce Figure 4.5, representing the number of in-

stances solved for each variant with respect to the computational time. Note that, for readability pur-

poses, the scale is linear between 0 and 500 seconds, and becomes logarithmic between 500 and 3600.

Figure 4.6 is similar but with respect to the number of nodes. For this figure, the scale is linear between

0 and 2 million nodes, and then becomes linear between 2 million and 60 million nodes.

For more detailed results, we also introduce Table 4.5, which contains the numerical results for a

representative subset of the instances. The complete tables are in Appendix B.3. In these tables, we use

the following metrics :

• inst: the instance number.

• variant: experimental variant of CPLEX’s B&C considered.

• C cuts: number of added CPLEX cuts.

• U cuts: number of added UMIC cuts.

• P cuts: number of added pattern cuts.

• P cuts vio: average violation value of the added pattern cuts.

• r-value: linear relaxation value at the root node.

• r-gap: gap between the linear relaxation value at the root node and the optimal solution, if opti-

mality is proven by at least one variant.

• user-time: proportion of the computational time dedicated to the separation of pattern and UMIC

inequalities.

• #nodes: number of nodes explored.

• time/gap: total computational time in seconds when the instance is solved; gap between the upper

and lower bound provided by CPLEX at the time limit when the instance is not solved.

For further details, the types of cuts added by CPLEX are in Appendix B.4.

General results In Figure 4.5, we first notice that, variant Psep outperforms Umic and Cplx. Besides,

variants Cplx+Psep and All are the most efficient for instances solved within 100 seconds. For harder to

solve instances, variant Psep+Umic is the most effective, closely followed by variant Psep. These results
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Figure 4.5: Number of instances solved with respect to the computational time

show that not only Psep is an interesting variant on its own, but also is featured in all most efficient

combinations.

When it comes to Figure 4.6, similar conclusions can be drawn for the most efficient variants. Indeed,

variants Cplex+Psep and All are the most efficient variants for instances solved with less then 10 million

nodes, and then Psep+Umic becomes the most efficient. Hence, using Psep reduces the number of nodes

explored.

The efficiency of using Psep is shown in the results as there are many instances where Psep clearly

reduces the computational time. Moreover, there are many cases where variants featuring Psep solve

the instance at the root node. We enumerate these instances, and emphasize in bold when only a variant

with Psep can solve the SCPKP at the root node: 1, 2, 3, 8, 21, 27, 29, 32, 33, 34, 46, 49, 59. There are

more than 10% of the instances that are solved at the root node only by a variant featuring Psep. Note

also that these improvements are sometimes due to very few inequalities. Less than 7 inequalities are

added for instance 3, less than 14 for instance 27, and only 1 for instance 32.

Note however that there are instances where Psep is outperformed by Cplex or Umic. For example,

Umic outperforms Psep for instance 5 and Cplex outperforms Psep for instance 14. This suggests that
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Figure 4.6: Number of instances solved with respect to the number of nodes

even if binary cuts are added by variants Psep and Umic, they do not add the exact same ones. For

instance, recall that we showed in Counter-example 8 that there are binary inequalities of the SCPKP

captured by pattern inequalities, but not by the inequalities of the literature. As it is not known if Cplx

adds only binary inequalities, it is not possible to deduce that binary inequalities from Cplx are different

than the ones of Umic and Psep. However we can still suppose that all variants produce different in-

equalities, as in Figure 4.6 and Figure 4.5, variants combining Psep and either Umic or Cplx outperform

the other variants.

We also note two interesting results when it comes to the quality of the dual bound at the root node.

First, the r-value and r-gap are usually the highest for variant Psep. This suggests that, for such cases,

very few to no cuts are added at the root node by Psep, and this variant requires some branching in order

to produce efficient cuts. Second, the metric %facet from Table 4.4 seems to be related to neither the

computational time nor the number of pattern cuts added. Indeed, on the one hand, metric %facet is

below 10% for instance 3, yet it is solved at the root node by Psep. On the other hand, metric %facet is

20% for instance 25, yet none of the pattern inequalities has been added by Psep, and the computational
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inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

3

Cplx 405 - - - 5234.55 9.41% - 1849854 173.0
Umic - 426 - - 5214.77 8.99% 8.3% 2095765 160.9
Psep - - 7 0.9 4829.68 0.95% 35.5% 0 0.0

Cplx+Umic 58 315 - - 5200.3 8.69% 6.7% 2088692 164.9
Cplx+Psep 5 - 3 0.76 4795.72 0.24% 17.9% 0 0.0
Psep+Umic - 0 7 0.9 4829.68 0.95% 33.1% 0 0.0

All 5 0 3 0.76 4795.72 0.24% 15.9% 0 0.0

5

Cplx 405 - - - 14288.9 1.10% - 1816805 280.6
Umic - 27 - - 14302.5 1.20% 1.1% 1180341 56.5
Psep - - 100 0.11 14291.1 1.12% 2.7% 1226118 93.2

Cplx+Umic 231 33 - - 14283.4 1.06% 0.7% 1066178 142.9
Cplx+Psep 143 - 100 0.11 14291.0 1.12% 1.4% 988415 146.4
Psep+Umic - 7 100 0.11 14290.5 1.12% 3.5% 1144164 79.9

All 139 6 100 0.12 14290.5 1.12% 1.6% 1062315 139.9

8

Cplx 305 - - - 19621.1 2.02% - 22632994 0.45%
Umic - 438 - - 19674.1 2.29% 0.9% 19907454 1697.2
Psep - - 100 0.29 19544.5 1.62% 0.5% 1638025 136.2

Cplx+Umic 178 15 - - 19618.0 2.00% 0.6% 31306241 2831.5
Cplx+Psep 3 - 2 0.74 19232.8 0.00% 17.8% 0 0.0
Psep+Umic - 0 100 0.29 19544.5 1.62% 0.7% 1638025 121.4

All 3 0 2 0.74 19232.8 0.00% 15.4% 0 0.0

14

Cplx 210 - - - 2164.88 1.14% - 127247 8.3
Umic - 188 - - 2181.78 1.93% 2.3% 2131653 79.3
Psep - - 100 0.25 2185.22 2.09% 1.5% 2209549 86.5

Cplx+Umic 156 45 - - 2164.22 1.11% 6.6% 202893 17.1
Cplx+Psep 83 - 100 0.46 2166.64 1.23% 3.2% 224382 17.2
Psep+Umic - 188 100 0.24 2181.78 1.93% 2.8% 1807699 79.2

All 57 42 100 0.55 2164.22 1.11% 9.1% 247563 17.4

21

Cplx 605 - - - 6672.83 1.14% - 10830484 0.08%
Umic - 482 - - 6675.75 1.18% 1.2% 18347628 1387.1
Psep - - 100 0.21 6643.91 0.70% 57.6% 1381 1.0

Cplx+Umic 354 25 - - 6672.14 1.13% 0.4% 17067043 2390.8
Cplx+Psep 4 - 2 0.48 6597.65 0.00% 43.2% 0 0.0
Psep+Umic - 0 100 0.21 6643.91 0.70% 71.2% 1381 1.2

All 4 0 2 0.48 6597.65 0.00% 41.9% 0 0.0

25

Cplx 605 - - - 28438.1 0.66% - 12354812 0.16%
Umic - 6 - - 28455.7 0.72% 0.9% 28764074 1537.8
Psep - - 0 nan 28456.6 0.73% 1.8% 28518001 1509.9

Cplx+Umic 360 9 - - 28438.1 0.66% 0.2% 14436657 0.2 %
Cplx+Psep 363 - 0 nan 28438.1 0.66% 0.6% 14007958 0.2 %
Psep+Umic - 6 0 nan 28455.7 0.72% 2.1% 28764074 1412.8

All 361 6 0 nan 28438.1 0.66% 0.7% 14962100 0.19%

27

Cplx 605 - - - 8548.64 1.17% - 2834093 778.5
Umic - 390 - - 8544.39 1.12% 2.0% 6337030 618.0
Psep - - 14 0.43 8453.1 0.04% 59.8% 3 0.1

Cplx+Umic 228 218 - - 8544.35 1.12% 0.8% 4590923 820.1
Cplx+Psep 2 - 5 0.41 8454.58 0.06% 34.3% 0 0.0
Psep+Umic - 0 14 0.43 8453.1 0.04% 89.6% 3 0.2

All 2 0 5 0.41 8454.58 0.06% 34.6% 0 0.0

32

Cplx 415 - - - 39078.4 0.27% - 7410282 1375.8
Umic - 6 - - 39171.6 0.51% 1.1% 17142128 685.9
Psep - - 1 0.85 39079.8 0.28% 4.9% 4162387 120.4

Cplx+Umic 359 12 - - 39077.1 0.27% 0.3% 6547609 1054.3
Cplx+Psep 6 - 1 0.85 38998.1 0.07% 16.5% 0 0.0
Psep+Umic - 12 1 0.85 39077.3 0.27% 5.6% 4455866 114.0

All 8 8 1 0.85 38998.1 0.07% 82.5% 0 0.1

53

Cplx 820 - - - 29884.3 0.45% - 903545 559.2
Umic - 9 - - 29902.1 0.51% 0.6% 739761 57.3
Psep - - 0 nan 29911.9 0.55% 6.0% 706313 60.5

Cplx+Umic 540 9 - - 29886.0 0.46% 0.1% 774691 401.6
Cplx+Psep 543 - 0 nan 29884.3 0.45% 1.0% 697532 390.6
Psep+Umic - 9 0 nan 29902.1 0.51% 6.9% 719822 53.4

All 540 9 0 nan 29878.2 0.43% 1.4% 570611 310.4

Table 4.5: Experimental results relative to a subset of SCPCK instances (second phase)
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time for Psep is above 1500 seconds. For instances where the pattern cuts lead to a short computational

time, it could mean that many of the flexible patterns without a set of cardinality 1 are also pattern-facet.

Results per type of instances. One limitation of Psep that stands out is that sometimes, no pattern

inequality is violated. This is due to the limited set of patterns. Besides, when no pattern inequality

is found, there are also very few UMIC inequalities. See for example instances 15, 24, 25 of 43, 50,

51, 53, 58, where about ten UMIC inequalities where added, even if the maximal number of UMIC

inequalities is much larger. This suggests that, for these instances, another set of inequalities, such as

integer inequalities, may be more relevant. Note also that the instances where no pattern inequalities

where found tend to be large instances. Indeed, one instance with I = 20 and J = 5, two with I = 30 and

J = 5 and five with I = 20 and J = 10. This can be due to the pre-processing time limit being the exact

same, independently of the size of the instance.

In order to further compare the variants, we define the three following metrics:

• #best: the number of instances where a variant features the smallest computational time, or the

smallest gap if no variant solves the instance to optimality.

• #solved: the number of instances solved by a variant

• avg-time: the average time for instances solved by a variant

Note that sometimes, the computational time of two variants are very similar for a given instance. In

such a case, distinguishing a single best variant may be unfair, hence we will consider multiple best

variants when their computational times are close. For a given instance, let time∗ be the computational

time of the quickest variant. Any variant is considered to be the best if their computational time is below

1.1 · time∗ or time∗ + 1. Let gap∗ be the smallest gap for instances that are solved by none of the variants.

As for the computational time, any variant is the best variant if its gap is below 1.1 · gap∗ or gap∗ + 0.1.

Based on these metrics, we define two rankings. Ranking R1 is solely based on metric #best. Note

that two variants can have the same ranking for R1. Ranking R2 is based on #solved, and on avg-time to

break a tie. Table 4.6 to 4.8 show respectively for each set of instance, the value of each metric and the

ranking for R1 and R2 of each variant.

variant #best #solved avg-time-solved R1 R2
Cplx 2 18 499.10 6 7
Umic 5 19 426.63 5 5
Psep 6 19 185.23 2 2

Cplx+Umic 1 19 578.63 7 6
Cplx+Psep 6 19 322.06 2 4
Psep+Umic 9 19 170.03 1 1

All 6 19 295.96 2 3

Table 4.6: Metrics for each variant on the set of instances with I = 20 and J = 5
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variant #best #solved avg-time-solved R1 R2
Cplx 6 14 446.34 3 7
Umic 5 19 725.79 5 1
Psep 3 18 513.20 6 3

Cplx+Umic 3 15 571.03 6 6
Cplx+Psep 7 16 310.85 2 5
Psep+Umic 5 18 374.13 4 2

All 8 17 460.43 1 4

Table 4.7: Metrics for each variant on the set of instances with I = 30 and J = 5

variant #best #solved avg-time-solved R1 R2
Cplx 1 18 630.96 6 7
Umic 8 20 361.62 2 3
Psep 7 20 348.45 3 2

Cplx+Umic 1 18 628.51 6 6
Cplx+Psep 4 18 505.75 4 5
Psep+Umic 11 20 328.75 1 1

All 4 19 631.17 4 4

Table 4.8: Metrics for each variant on the set of instances with I = 20 and J = 10

These tables emphasize the improvement of the resolution of the SCPKP when using pattern inequal-

ities. Indeed, all four variants featuring pattern inequalities (Psep, Cplex+Psep, Psep+Umic, All) always

contain the best variant for both rankings, the only exception is Umic being the best variant with respect

to R2 in Table 4.7. Besides, variant Cplx always occupy a worse position than Cplx+Psep with respect

to both R1 and R2, and Umic always occupy a worse position than Psep+Umic for R1, and for two out of

the three tables for R2.

Tables 4.6 to 4.8 also show that increasing the number of groups I makes the instances drastically

harder, while increasing the number of items J makes the instances slightly harder. Indeed, the number

of instances solved #solved is significantly smaller in Table 4.7 than in the two other tables. Despite

#solved being similar in Table 4.6 and 4.8, the average computational time avg-time-solved is clearly

larger in Table 4.8. Hence, even if instances with I = 30 and J = 5 have fewer variables than instances

with I = 20 and J = 10, the former are more difficult than the latter. This could be explained by the fact

that with more groups I , the polyhedral symmetries as defined in Definition 4 are further increased,

which is not necessarily the case when increasing the number of items J .

4.8 Conclusion

In this chapter, the Symmetric-weight Chain Precedence Knapsack Problem (SCPKP) is considered

as a new variant of the Knapsack Problem, and as a special case of the Precedence Knapsack Problem
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(PKP). As such, we adapt uplifted minimal induced cover inequalities defined for the PKP to the case of

the SCPKP. The SCPKP features polyhedral symmetries, which generalize the classical symmetries. Two

main contributions are proposed, namely the polyhedral study and the two-phase Branch & Cut scheme,

revolving around the patterns introduced to handle polyhedral symmetries. We derived pattern inequal-

ities as a new class of valid inequalities embedding symmetries with respect to the groups. Necessary

facet-defining conditions are defined for these inequalities. These conditions are also sufficient in the

case of a pattern with a set of cardinality 1. The separation problem for pattern inequalities is defined as

well as proven NP-hard for a family of patterns. An algorithm is presented to generate a set of patterns

verifying such conditions as pre-processing and first phase of the scheme. A separation algorithm based

on the generated patterns is presented and reduces to match the patterns with the fractional point in

order to produce a violated inequality. This algorithm is used within a Branch & Cut framework in the

second phase of the scheme. Experimental results demonstrate the efficiency of the pattern inequalities

and separation algorithms against CPLEX’s inequalities and uplifted minimal induced cover inequali-

ties. Results show that our two-phase Branch & Cut algorithm outperform a Branch & Cut algorithm

featuring any of these two sets of inequalities. Besides, when combining multiple sets of inequalities,

combinations featuring pattern inequalities yield the best results.

In the next chapter, we extend the results and algorithms designed for the SCPKP to the discretized

1-Hydro Unit Commitment problem. For such an extension, we also translate the results to the Inverted

SCPKP, with a covering inequality rather than a knapsack inequality. As such, the resource windows of

the 1-Hydro Unit Commitment problem can be taken into account when combining multiple SCPKPs

and Inverted SCPKPs.
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In the previous chapter, we defined the Symmetric-weight Chain Precedence Knapsack Problem

(SCPKP), for which we conducted a polyhedral study, and defined a specific two-phase Branch & Cut

algorithm. The reason for studying this problem is that it features a subset of inequalities of the dis-

cretized 1-Hydro Unit Commitment problem without ramping nor min-up/down constraints (1-HUCD

problem). However, this subset does not capture the resource windows of the 1-HUCD problem. As

such, we aim at extending the results of the SCPKP to the 1-HUCD problem, particularly to take into

account these resource windows. For this purpose, we introduce the Inverted SCPKP (ISCPKP), so that

each resource window of the 1-HUCD problem corresponds to a pair of an SCPKP and an ISCPKP.

127/243



5.1. PROBLEMS DEFINITION Chapter 5. Polyhedral study: 1-HUCD problem

In this chapter, we present a polyhedral study of the 1-HUCD problem, based on the polyhedral

study of the SCPKP. In Section 5.1, we define the problems featured in this polyhedral study. In Section

5.2, we review polyhedral studies for problems related to the considered variant of the 1-HUC problem.

In Section 5.3, we translate the results of the SCPKP to the ISCPKP. In Section 5.4, we show that one can

represent the constraints of the 1-HUCD problem with multiple (I)SCPKPs. In Section 5.5, we extend

the polyhedral study to the considered 1-HUCD problem. In Section 5.6, we generalize the two-phase

Branch & Cut algorithm to the 1-HUCD problem before concluding.

5.1 Problems definition

The 1-HUC problem variant considered in this section is the 1-HUCD problem defined in Section

3.3. We define an instance for the 1-HUCD problem as follows. For the purpose of the polyhedral

study, we only need the constraints, hence we define an instance without specifying the value Ψt,i of the

operating points.

Definition 29 (Instance of the 1-HUCD problem)

We denote (N , T , D, β∗, α∗) an instance of the 1-HUCD problem, with N operating points, T time

periods, D the water flow vector and β∗ (resp. α∗) the lower bound (resp. upper bound) vector.

We also consider in this section the SCPKP, defined in Section 4.1.

In order to extend the polyhedral study of the SCPKP to the 1-HUCD problem, we introduce the

Inverted SCPKP (ISCPKP). The ISCPKP is an SCPKP with a covering inequality rather than a knapsack

inequality. Hence, in the case of the ISCPKP capacity C is a minimal bound on the weight of the se-

lected items. Solving the ISCPKP is to maximize the total value of the selected items, while the chain

precedence constraints are satisfied, and the total weight of the selected items is greater than or equal

to capacity C. Note that the ISCPKP is not trivial, as values V ij ∈R, there can be items with V ij < 0. We

also introduce ISCPKP instances as follows

Definition 30 (Instance of the ISCPKP)

We denote (I , J , W , V , C) an instance of the ISCPKP, with I the number of groups, J the number of

elements, W the weight vector, V the value matrix and C the covering capacity.

5.2 Related problems polytopes

As the aim of this chapter is to extend a polyhedral study of the SCPKP to the 1-HUCD problem

we review polyhedral studies related to the latter. More specifically, this extension concerns mainly the

minimal and maximal bound of the cumulated flow (3.2.6) and (3.2.7) ofMop-D . We precised in Chapter
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3 that constraints (3.2.6) and (3.2.7) of model Mop-D can be seen as resource windows. As such, we also

review polyhedral results for these types of constraints.

5.2.1 (Hydro) Unit Commitment polytopes

As stated previously, the 1-HUC is a non-linear problem from the power function arising in the objective

function. In the survey [97], most of the reported work dedicated to the 1-HUC problem aims at propos-

ing MILP models of high precision. These works usually involve a piecewise linear function which is out

of the scope of this polyhedral study, but is one of the highlighted models in Chapter 2. More generally,

very few works reported concern a (H)UC problem with operating points.

When it comes to polyhedral studies, most of them are for ramping constraints (3.1.9) to (3.1.10) or

min-up/down constraints (3.1.11) to (3.1.13). This is because these constraints also appear in other pro-

duction problems such as the UCP. In [63], the min-up/down polytope is studied, and a family of valid

inequalities is introduced, namely the alternative up/down inequalities, which completely describe the

convex hull of the min-up/down polytope. A branch & cut algorithm is described in order to imple-

ment this new set of inequalities. In [85] turn-on/off inequalities are introduced. These inequalities are

shown to dominate the alternative up/down inequalities. Indeed, turn-on/off inequalities also provide a

complete description of the min-up/down polyhedron, and there are fewer turn on/off inequalities than

alternative on/off inequalities. This is why turn-on/off inequalities are the ones featured in Mop-DRM ,

being constraints (3.1.11)-(3.1.13). In [29] valid inequalities for the ramping polytope are defined along

with conditions under which these inequalities are facet-defining. Besides, the special case of the ramp-

ing polytope with two time periods is considered, as the number of facet-defining inequalities is linear

and does not need a separation algorithm. In [78] the min-up/down and ramping polytope is studied.

Valid inequalities are defined, as well as necessary facet-defining conditions. For some special cases with

three time periods or less, the inequalities introduced define the convex hull of the polytope. In [74] the

authors describe a tight formulation of the UC taking into account the min-up/down constraints and

generation limits. We do not consider generation limits in our model, as they can be expressed through

min-up/down constraints when considering operating points.

In our study, we study the 1-HUCD problem, focusing on the resource windows (3.2.6) and (3.2.7).

The aforementioned polyhedral studies focus on ramping and min-up/down constraints. As the 1-HUCD

problem does not feature ramping nor min-up/down constraints, the reviewed polyhedral studies for

the UCP do not apply to our work. Note however that our polyhedral study complements the literature,

as the 1-HUCDRM problem features both the ramping and min-up/down constraints, as well as resource

windows.
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5.2.2 Resource windows

Resource windows are a generalization of resource constraints, when the resource has both a lower and

upper bound.

The survey [56] depictes various solution techniques to solve variants of the Resource Constrained

Shortest Path Problem (RCSPP), including variants with window constraints. Recall that the RCSPP is a

special case of the Shortest Path Problem with Resource Windows (RWSPP), where only an upper bound

on the resource exists. The techniques described in this survey are dynamic programming, Lagrangian

decomposition, constraint programming and heuristics. No polyhedral results are presented.

In the survey [102], a state-of-the-art review of different shortest path variants is described. One of

the variants presented is the RWSPP, for which it is indicated that there are few studies. Different works

have been cited for the RWSPP, but none of them is a polyhedral study.

In [6], the polytope of the Asymmetric Traveling Salesman problem with Time Windows is studied.

Three families of inequalities are presented. The first two families contain enhanced tournament con-

straints and lifted tournament constraints. The third family contains enhanced predecessor-successor

inequalities [8]. The way these inequalities have been enhanced is by considering non-feasible paths due

to the time window constraints. However, as stated in Section 1.5, time windows are less restrictive than

resource windows due to the allowed waiting time. Hence these works do not extend to the 1-HUCD

problem.

5.3 The Inverted Symmetric-weight Chain Precedence Knapsack Problem

In this section, we aim to translate results of the SCPKP to the ISCPKP by reformulating the latter.

5.3.1 The Inverted Symmetric-weight Chain Precedence Knapsack Problem as a

Symmetric-weight Chain Precedence Knapsack Problem

First, we define MISCPK a model for the ISCPKP:

max
I∑
i=1

J∑
j=1

V ij · yij

s.c.
I∑
i=1

J∑
j=1

W j · yij ≥ C (5.3.1)

yij ≥ yij+1 ∀yij ∈ V , j < J (5.3.2)

yij ∈ {0,1} yij ∈ V

The idea of the following is to reformulate the ISCPKP so that it has the same constraints as the

SCPKP. For this purpose, we perform a variable substitution, in order to reformulate the ISCPKP as an
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SCPKP. Let xij ∈ V be the binary variable such that xij = 1 if item (i, j) is not selected in the solution.

Clearly, xij = 1− xij and xij = 1− xij due to their binary nature. The model of the ISCPKP with xij is the

following.

max
I∑
i=1

J∑
j=1

V ij · (1− xij )

s.c.
I∑
i=1

J∑
j=1

W j · (1− xij ) ≥ C

1− xij ≥ 1− xij+1 ∀xij ∈ V , j < J

1− xij ∈ {0,1} xij ∈ V

which can be written as

max
I∑
i=1

J∑
j=1

V ij −
I∑
i=1

J∑
j=1

V ij · xij

s.c.
I∑
i=1

J∑
j=1

W j · xij ≤ I ·
J∑
j=1

W j −C

xij ≤ xij+1 ∀xij ∈ V , j < J

xij ∈ {0,1} xij ∈ V

The difference between this model and MSCPK is the order constraints which are reversed. However,

as the order constraints are the only ones depending on the index j, one can consider the renumbering

(j) = J − j to obtain a new model MR-ISCPK with the exact same constraints as MSCPK :

max
I∑
i=1

J∑
(j)=1

V i(j) −
I∑
i=1

J∑
(j)=1

V i(j) · xi(j)

s.c.
I∑
i=1

J∑
(j)=1

W (j) · xi(j) ≤ I ·
J∑

(j)=1

W (j) −C

xi(j) ≥ xi(j+1) ∀xi(j) ∈ V , (j) < J

xi(j) ∈ {0,1} xi(j) ∈ V

As only the objective function differs between this model MR-ISCPK and MSCPK the same polyhedral

results apply for both.
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5.3.2 Translating polyhedral results to the Inverted Symmetric-weight Chain Precedence

Knapsack Problem

As the constraints of the ISCPKP can be reformulated as constraints of the SCPKP, we can extend

all polyhedral results. This means that the full dimensional condition (fd) applies directly to model

MR-ISCPK . Condition (fd) can then be translated for model MISCPK as follows:

Definition 31 (ISCPKP full dimensional condition (ifd))

An ISCPKP verifies (ifd) if for any item (i,j) there is at least one feasible solution where (i,j) is not

selected.

Property 21

Any instance of the ISCPKP that does not verify (ifd) can be transformed into an instance of the

ISCPKP that verifies (ifd), with the exact same solutions.

The proof for Property 21 is similar to the one of condition (fd) in Property 3.

Necessary facet-defining conditions (i) , (ii) and (iii) also apply for model MR-ISCPK . We show that

one can transform a pattern for the ISCPKP modeled with MR-ISCPK into a pattern for MISCPK . Let P be

a pattern for the ISCPKP modeled with MR-ISCPK . For a given X ∈ χ(P ), the inequality associated to P
is: ∑

xi(j)∈X

xi(j) ≤ rank(P )

If we reverse the variable change xij = 1− xij , we obtain the inverted pattern inequalities for the ISCPKP:

Definition 32 (Inverted pattern inequalities)

The inverted pattern inequalities associated to a pattern P are the following, for any X ∈ χ(P ):∑
xij∈X

xij ≥ card(P )− rank(P ) (ipi(X ))

Consider a pattern P , and a variable set X ∈ χ(P ). We show that (pi(X )) for the ISCPKP modeled

with MR-ISCPK and (ipi(X )) for the ISCPKP modeled with MISCPK have the exact same dimension.

Property 22

Let P be a pattern of the ISCPKP modeled with MR-ISCPK . Let X ∈ χ(P ) and X be associated with

X . For any solution of the ISCPKP modeled with MR-ISCPK verifying (pi(X )) to equality, there is a

solution of the ISCPKP verifying (ipi(X )) to equality.

Proof : Clearly, models MR-ISCPK and MISCPK are the same, as one can be obtained from the other through a

variable substitution. Hence, for each feasible solution for one of these models, there is a feasible solution

for the other one, by complementing and renumbering all variables.
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As model MR-ISCPK has the same constraints as model MSCPK , then the polyhedral results extend.

In particular, one can transform any inequality defined for MR-ISCPK into an inequality for the MISCPK

and guarantee the same dimension for the associated faces. Following these two steps, one can extend

all results and algorithms designed for the SCPKP to the ISCPKP.

5.4 The discretized 1-HUC problem with resource windows as knapsack and

covering inequalities

In this section, we aim to find a set of (I)SCPKPs that could share facet-defining inequalities with

the 1-HUCD problem. The idea is then to obtain facet-defining or strong inequalities for the 1-HUCD

problem from such (I)SCPKPs. For this purpose, we first define (I)SCPKP sub-problems of the 1-HUCD

problem, defined on a time set T ⊆ {1, . . . ,T }. In such a case, an instance of the (I)SCPKP (T , J , W , V ,

C) can be defined with a number of groups I = |T |. The idea is to formulate the (I)SCPKP sub-problems

on the set of variables of the 1-HUCD problem, and the knapsack or covering constraints apply only on

variables for the groups corresponding to the time set T .

Definition 33 (SCPKP and ISCPKP as 1-HUCD sub-problems)

Consider a 1-HUCD problem, and an (I)SCPKP. The (I)SCPKP is a 1-HUCD sub-problem if its groups

correspond to a time set T . The items of the (I)SCPKP correspond to the operating points. The

knapsack bound C corresponds to a knapsack (or covering) bound for the sum
∑
t∈T xti valid for the

1-HUCD problem.

We show in the following how one can obtain the relevant values of C.

By definition, any (I)SCPKP is an 1-HUCD sub-problem if all feasible solutions of the 1-HUCD prob-

lem are also feasible for the (I)SCPKP. Hence, there is an exponential number of (I)SCPKPs that can be

defined as 1-HUCD sub-problems. Indeed, if an (I)SCPKP is an 1-HUCD sub-problem, so is any similar

(I)SCPKP with a higher knapsack constraint bound or a lower covering constraint bound. Hence, we

define a dominance rule between (I)SCPKPs.

Definition 34 (Dominance between SCPKPs and ISCPKPs)

Consider two SCPKPs. One is dominated if its knapsack inequality is dominated by the knapsack

inequality of the other SCPKP. Similarly, consider two ISCPKPs, one is dominated if its covering

inequality is dominated by the covering inequality of the other ISCPKP.

We also define the characterizing (I)SCPKPs among a set of (I)SCPKPs, which are the not dominated

and for which the knapsack/covering inequality is not trivially satisfied.

Definition 35 (Characterizing SCPKPs and ISCPKPs)

Let K be a set of (I)SCPKPs. Let (T , C) be an SCPKP. This SCPKP is said to be characterizing among
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K if it is not dominated by another SCPKP in K and if C < |T | ·
∑J
i=1W i .

Let (T , C) be an ISCPKP. This ISCPKP is said to be characterizing among K if it is not dominated

by another ISCPKP in K and if C > 0.

In the remainder of this chapter, we only consider (I)SCPKPs that are 1-HUCD sub-problems. Hence,

instances of the (I)SCPKPs are associated with the same 1-HUCD , meaning that the only relevant dif-

ference between them lies in T and C. From now on, we denote an instance of the (I)SCPKP by (T ,

C).

5.4.1 Defining-(Inverted) Symmetric-weight Chain Precedence Knapsack Problem

Consider a time period t of the 1-HUCD problem. It appears that the upper bound on the cumulated

flow (3.2.7) for time period t, precedence constraints for time period t′ ∈ {1, . . . , t} (3.1.6) and the binary

variables for time periods t′ ∈ {1, . . . , t} (3.1.14) correspond exactly to the constraints of an SCPKP. Sim-

ilarly, the same set of constraints, with the lower bound on the cumulated flow (3.2.6) rather than the

upper bound, corresponds exactly to the set on constraints of an ISCPKP. Such (I)SCPKPs are said to be

the defining-(I)SCPKPs of the 1-HUCD problem.

Definition 36 (Defining-(I)SCPKPs of the 1-HUCD problem)

Let (T , N , D, β∗, α∗) be an instance of the 1-HUCD problem. For each 1 ≤ t ≤ T , SCPKP (T =

{1,2, . . . , t − 1, t}, C = α∗t ) is said to be defining for the 1-HUCD problem. Similarly, for each 1 ≤ t ≤ T ,

ISCPKP (T = {1,2, . . . , t − 1, t}, C = β∗t ) is said to be defining for the 1-HUCD problem.

We define Kdef the set of defining-(I)SCPKPs. Clearly, Kdef contains exactly T defining-SCPKPs and T

defining-ISCPKPs. Besides, one can represent all constraints of the 1-HUCD problem with the (I)SCPKPs

in Kdef . However, not all of them are relevant for the polyhedral study, meaning that some of them do

not share facet-defining inequalities with the 1-HUCD problem. We can identify the ones that are not

relevant by establishing a dominance rule between two defining-(I)SCPKPs.

Property 23

Let (T , C) and (T ′ , C′) be two defining-SCPKPs. The former dominates the latter if T ⊇ T ′ and

C ≤ C′ .
Let (T , C) and (T ′ , C′) be two defining-ISCPKPs. The former dominates the latter if T ⊆ T ′ and

C ≥ C′ .

Proof : Let (T , C) and (T ′ , C′) be two defining-SCPKPs. Suppose T ⊇ T ′ and C ≤ C′ . In such a case the former

dominates the latter as it has a smaller upper bound for a larger set of variables.

Let (T , C) and (T ′ , C′) be two defining-ISCPKPs. Suppose T ⊆ T ′ and C ≥ C′ . In such a case, the former

dominates the latter as it has a larger lower bound for a smaller set of variables.
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Example 23

Let an instance of the 1-HUCD problem (3,3, [6, 5, 4], [0, 10, 10], [18, 20, 20]). Figure 5.1 represents

the constraints of the 1-HUCD problem. A square denoted by (t, i) corresponds to the operating point

i at time period t. The order constraints are bottom up in this representation.

As T = 3, there are 3 defining-SCPKPs, namely ({1}, 18), ({1, 2}, 20) and ({1, 2, 3}, 20). Similarly,

there are 3 defining-ISCPKPs, namely ({1}, 0), ({1, 2}, 10) and ({1, 2, 3}, 10). Among them, we identify

the ones that are also characterizing.

Defining-SCPKP ({1}, 18) cannot be characterizing, as 18 ≥ (6 + 5 + 4) · 1 = 15.

Defining-SCPKP ({1, 2}, 20) cannot be characterizing, as defining-SCPKP ({1, 2, 3}, 20) satisfies

20 ≥ 20 and {1,2} ⊆ {1,2,3}. Hence, any solution of the 1-HUCD satisfying the constraints of the latter

also satisfies the constraints of the former.

Defining-ISCPKP ({1}, 0) cannot be characterizing, as 0 ≤ 0.

Defining-ISCPKP ({1, 2, 3}, 10) cannot be characterizing, as defining-ISCPKP ({1, 2}, 10) satisfies

10 ≤ 10 and {1,2,3} ⊇ {1,2}. Hence, any solution of the 1-HUCD satisfying the constraints of the latter

also satisfies the constraints of the former.

For this instance of the 1-HUCD , among the defining-(I)SCPKPs only one defining-SCPKP and

one defining-ISCPKP are characterizing. Figure 5.2 represents these characterizing defining-SCPKP

and ISCPKP with similar representation as for Figure 5.1

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

≤ 18

≤ 20

≤ 20

≥ 0

≥ 10

≥ 10

Figure 5.1: Representation of the 1-HUCD problem as a collection of defining-SCPKPs and defining-
ISCPKPs

Note that identifying the defining-SCPKPs and ISCPKPs that are characterizing among Kdef can

be achieved in a pre-processing phase. Indeed, only the bounds β∗ and α∗ of the 1-HUCD problem
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1, 1

1, 2

1, 3

1, 1

1, 2

1, 3

≥ 10

SCPKP ({1, 2, 3}, 20) ISCPKP ({1, 2}, 10)

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

≤ 20

Figure 5.2: Representation of the characterizing defining-SCPKP and defining-ISCPKP

are required to compute them. Also, there are exactly T defining-SCPKPs and T defining-ISCPKPs,

and obtaining the characterizing ones among Kdef only requires to compare them pairwise, i.e., O(T 2)

comparisons.

5.4.2 Induced (Inverted) Symmetric-weight Chain Precedence Knapsack Problem

As mentioned previously, from the defining-SCPKPs and ISCPKPs, it is possible to identify character-

izing ones among Kdef . However, there are other (I)SCPKPs which can be relevant for the polyhedral

study of the 1-HUCD problem. In order to identify them, we define an Induced (I)SCPKP.

Definition 37 (Induced SCPKP and ISCPKP)

Consider an SCPKP (T , C) and an ISCPKP (T ′ , C′). The induced SCPKP is (T \T ′ , C − (C′ − |T ′ \T | ·∑N
i=1Di)), and the induced ISCPKP is (T ′ \ T , C′ −C).

Note that, if T ⊆ T ′ (resp. T ′ ⊆ T ), then the induced SCPKP (resp. ISCPKP) is defined on an empty

time set and can be ignored. We define Kind the set of all induced (I)SCPKPs, obtained from defining-

(I)SCPKPs or induced (I)SCPKPs.

Property 24

Consider an SCPKP and an ISCPKP, both sub-problems of the 1-HUCD problem. An induced (I)SCPKP

obtained from these two sub-problems is also a sub-problem of the 1-HUCD problem.

Proof : Suppose the induced (I)SCPKP is not sub-problem of the 1-HUCD problem. Then it means that there

is a feasible solution of the 1-HUCD problem which is infeasible for the (I)SCPKP. By construction of the

induced (I)SCPKP, then the initial (I)SCPKP cannot be sub-problems of the 1-HUCD problem.
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For the following, if not specified otherwise, the characterizing (I)SCPKP are among Kind ∪Kdef .

The rationale behind the difference between the bound of the induced SCPKP and the one of the

induced ISCPKP is that an upper-bound for a set of variables is valid for its subsets, whereas a lower

bound for a set of variables is not. This phenomenon is illustrated in the following example.

Example 24

Consider an instance of the 1-HUCD problem (3, 4, [2,1,3], β∗, α∗).

First, consider the defining-SCPKP ({1,2,3}, 15) and the ISCPKP ({1,2,4}, 20). In this case only

the subset of time periods {1,2} is in common. As 15 is an upper bound for the cumulative flow for

the set of time periods {1,2,3}, it is also a valid upper bound for the cumulative flow for the set {1,2}.
Hence, the cumulative flow cannot be larger than 15 for time periods {1,2}, but must be above 20

for time periods {1,2,4}. Consequently, the cumulative flow during time periods {4} must be at least

20-15=5. We can derive the induced ISCPKP ({1,2,4} \ {1,2,3}, 20− 15)=({4}, 5).

Now consider the defining-SCPKP ({1,2,3}, 15) and ISCPKP ({1,2,4}, 10). Similarly, the subset

{1,2} is in common. In this case, 10 is a lower-bound for the cumulative flow for time periods {1,2,4},
but it is not a lower-bound for the cumulative flow for time periods {1,2}. Indeed, one can deliver

2 + 1 + 3 at time period 4. This means that during time periods {1,2}, the cumulative flow is not

necessarily above 10, but rather above 10 − 6 = 4. Hence, the cumulative flow must be at least 4

during time periods {1,2}, and at most 15 during time periods {1,2,3} Consequently, the cumulative

flow cannot be larger than 15 − 4 = 11 during time periods {3}. We can derive the induced SCPKP

({1,2,3} \ {1,2,4}, 15− (10− 6))= ({3}, 11).

Before further studying the induced (I)SCPKPs, we first describe how the bounds of any 1-HUCD

sub-problem SCPKP and ISCPKP can be tightened. Tightening the bounds is necessary because if the

bounds of an SCPKP and ISCPKP are not tight, the induced (I)SCPKP will cumulate the slack, which can

make the induced (I)SCPKP irrelevant from a polyhedral study point of view. We define more clearly

what we consider to be an under-constrained (I)SCPKP.

Definition 38 (Under-constrained SCPKP and ISCPKP)

Consider two SCPKPs sub-problems, (T , C) and (T ′ , C′) respectively. The SCPKP (T , C) is under-

constrained if its set of feasible solution is a super set of the one of SCPKP (T , C′). The definition is

similar for an ISCPKP.

In the case of an under-constrained (I)SCPKP, the polyhedral results may become irrelevant for the

1-HUCD problem. The following example illustrates such a case.

Example 25

Consider an instance of the 1-HUCD problem (4, 3, [6, 3, 2], [18, 18, 18, 18], [0, 1, 1, 1]. The

only characterizing defining-SCPKP is ({1, 2, 3, 4}, 18) and the only characterizing defining-ISCPKP

is ({1, 2}, 1). An induced SCPKP would be ({3, 4}, 17), which we show in the following to be under-

constrained. Due to the flows D = [6,3,2], in order to verify the bound β∗2 = 1, it is necessary to
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deliver at least 6 units. As such it is valid to consider the ISCPKP ({1, 2}, 6). As it has the same

feasible solution as the ISCPKP ({1, 2}, 1), the facet-defining inequalities are the same. However, the

induced SCPKP would be ({3, 4}, 12) instead of ({3, 4}, 17), and they do not allow the same set of

feasible solutions. Delivering 6 at time period 3, then 11 at time period 4 is valid for the latter but

not for the former. Hence, the polyhedral results of SCPKP ({3, 4}, 17) yield valid inequalities, but

they are clearly dominated by the ones from SCPKP ({3, 4}, 12).

Providing the tightest bound of a defining-SCPKP for time set T can be done by finding the solution

of the 1-HUCD problem, maximizing the sum of the flows for all time period t ∈ T . In such a case, the

value of every operating points i ≤ N are Ψt,i = Dt for time periods t ∈ T and Ψt,i = 0 otherwise. Hence,

one needs to solve the 1-HUCD problem as follows:

max
∑
t∈T

N∑
j=1

Di · xij

t′∑
t=1

N∑
i=1

Dixt,i ≥ βt′ ∀t′ ≤ T (3.2.6)

t′∑
t=1

N∑
i=1

Dixt,i ≤ αt′ ∀t′ ≤ T (3.2.7)

xt,i ≥ xt,i+1, ∀t ≤ T ,∀i ∈ {0, . . . ,N − 1} (3.1.6)

xt,i ∈ {0,1}, ∀t ≤ T ,∀i ∈ N (3.1.14)

Tightening the bound of an ISCPKP would be similar, but minimizing the objective function.

Note that this problem is a 1-HUCD problem, but for which the values are identical to the flows. As

the flows are symmetric, so are the values. However, we remain in a case where the feasible solutions are

not symmetric due to bounds β∗ and α∗ which are non-constant in general. Preliminary results show that

this particular case of the 1-HUCD problem are solved more quickly than the generic 1-HUCD problem

by MILP solvers. Moreover, we show later in this section that tightening the bounds is not required on

all (I)SCPKP, but only on the defining ones.

Once the bounds of the SCPKP and ISCPKP are tightened, one can derive the polyhedral results to

help solving the 1-HUCD problem. Clearly, the dominance property defined in Property 23 directly

extends to any (I)SCPKP. Due to the existence of an induced (I)SCPKP for any time set T , it is also

possible for an SCPKP (resp. ISCPKP) to be dominated by a sum of several SCPKP (resp. ISCPKP).

Property 25

Consider K different SCPKPs (Tk , Ck) for each k ≤ K , such that Tk ∩ Tk′ = ∅ for any k , k′ . Consider

the SCPKP (T , C) with T =
⋃K
k=1 Tk and C =

∑K
k=1Ck . Then SCPKP (T ′ , C′) is dominated by SCPKP

(T , C) if T ⊇ T ′ and C ≤ C′ .
Consider K different ISCPKPs (Tk , Ck) for each k ≤ K , such that Tk∩Tk′ = ∅ for any k , k′ . Consider

the ISCPKP (T , C) with T =
⋃K
k=1 Tk and C =

∑K
k=1Ck . Then ISCPKP (T ′ , C′) is dominated by ISCPKP
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(T , C) if T ⊆ T ′ and C ≥ C′ .

Proof : Consider K different SCPKPs: (Tk , Ck) for each k ≤ K . Suppose that Tk ∩Tk′ = ∅ for any k , k′ . Consider

the SCPKP (T , C) with T =
⋃K
k=1 Tk and C =

∑K
k=1Ck . As Tk ∩Tk′ = ∅ for any k , k′ , then this new SCPKP is

valid. Using Property 23 SCPKP (T , C) dominates any SCPKP (T ′ , C′) with T ⊇ T ′ and C ≤ C′ .

A similar proof can be done for the dominance of the ISCPKP.

We show in the following example the dominance between one (I)SCPKP and multiple (I)SCPKPs.

Example 26

Let an instance of the 1-HUCD problem be (3, 3, [2, 2, 3], [5, 5, 14], [11, 11, 15]).

From defining-SCPKP ({1, 2}, 11) and defining-ISCPKP ({1}, 5) the induced SCPKP ({2}, 6) is

characterizing.

From defining-SCPKP ({1, 2}, 11) and defining-ISCPKP ({1, 2, 3}, 14) the induced ISCPKP ({3}, 3)

is characterizing.

From induced SCPKP ({2}, 6) and the defining-ISCPKP ({1, 2, 3}, 14) the induced ISCPKP ({1,3}, 8)

is not characterizing. Indeed, there are already the defining-ISCPKP ({1}, 5) and the induced ISCPKP

({3}, 3). Hence, as {1,3} ⊇ {1} ∪ {3} and 8 ≥ 5 + 3, then ISCPKP ({1,3}, 8) is not characterizing.

As SCPKP and ISCPKP are defined for a time set T , there can be an exponential number of char-

acterizing induced SCPKP and ISCPKP for a 1-HUCD problem. In such a case, it would mean to take

into account the inequalities of an exponential number of SCPKP and ISCPKP, which is unrealistic.

Fortunately, we can prove that only SCPKP and ISCPKP defined on a continuous time set can be charac-

terizing.

Property 26 (Characterizing SCPKP and ISCPKP have continuous time sets)

An (I)SCPKP (T , C) is characterizing among Kind ∪Kdef only if T is continuous, i.e., there exists t1
and t2 such that T = {t1, t1 + 1, . . . , t2 − 1, t2}.

Proof : Consider an instance of the 1-HUCD problem. Consider an induced SCPKP (T , C) and suppose it to be

characterizing. Suppose that time set T = {t1 + 1, . . . , t2} ∪ {t3 + 1, . . . , t4} with 1 ≤ t1 < t2 < t3 < t4 ≤ T .

By definition, there are two defining-SCPKPs ({1, . . . , t2}, α∗t2 ) and ({1, . . . , t4}, α∗t4 ) as well as two defining-

ISCPKPs ({1, . . . , t1}, β∗t1 ) and ({1, . . . , t3}, β∗t3 ). From defining-SCPKP ({1, . . . , t4}, α∗t4 ) and defining-ISCPKP

({1, . . . , t1}, β∗t1 ), one can induce the SCPKP ({t1 + 1, . . . , t4}, α∗t4 − β
∗
t1

). Similarly, from defining-ISCPKP

({1, . . . , t3}, β∗t3 ) and defining-SCPKP ({1, . . . , t2}, α∗t2 ), one can induce the ISCPKP ({t2 + 1, . . . , t3}, β∗t3 −α
∗
t2

).

From induced SCPKP (t1 +1, . . . , t4, α∗t4 −β
∗
t1

) and ISCPKP ({t2 +1, . . . , t3}, β∗t3 −α
∗
t2

), one can induce SCPKP

(T , C). Hence, we deduce C = α∗t4 − β
∗
t3

+α∗t2 − β
∗
t1

Besides, with the defining-SCPKP ({1, . . . , t4}, α∗t4 ) and defining-ISCPKP ({1, . . . , t3}, β∗t3 ) one can induce

SCPKP ({t3 + 1, . . . , t4}, α∗t4 − β
∗
t3

). Similarly, with the defining-SCPKP ({1, . . . , t2}, α∗t2 ) and defining-ISCPKP

({1, . . . , t1, α∗t1 ) one can induce SCPKP ({t1 + 1, . . . , t2}, α∗t2 − β
∗
t1

).

These two induced SCPKP dominate the SCPKP (T , C) where C = α∗t4 − β
∗
t3

+ α∗t2 − β
∗
t1

and T = {t1 +

1, . . . , t2} ∪ {t3 + 1, . . . , t4}. Hence, SCPKP (T , C) cannot be characterizing.
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A similar proof can be done for an induced ISCPKP.

With the characterizing SCPKP and ISCPKP restricted to a continuous time set, we can provide a

polynomial upper bound on their number.

Property 27 (Polynomial number of characterizing SCPKPs and ISCPKPs)

There are at most O(T 2) characterizing SCPKPs (resp. ISCPKPs) among Kind ∪Kdef .

Proof : An SCPKP (resp. ISCPKP) is characterizing only for a continuous time set. Hence, for any pair of time

periods (t1, t2) with t1 ≤ t2 there is exactly one SCPKP (resp. ISCPKP) being ({t1, . . . , t2},C). The number of

such pairs being T 2, there are at most T 2 characterizing SCPKPs (resp. ISCPKPs).

As there can be up to T 2 characterizing SCPKPs and T 2 characterizing ISCPKPs, one can obtain all of

them by naively comparing each characterizing SCPKP and ISCPKP. This leads to a total of T 2 ·T 2 = T 4

comparisons, which could become difficult to compute for large instances. In the following, we prove

that any characterizing ISCPKP and SCPKP can be induced from the defining-ISCPKPs and defining-

SCPKPs. As there are exactly T such SCPKPs and ISCPKPs, only T · T = T 2 comparisons are necessary.

To do such a proof, we first introduce conditions to induce a characterizing (I)SCPKP.

Lemma 2 (SCPKP inducing conditions)

Consider an SCPKP (T , C) with T = {t1, . . . , t2} and an ISCPKP (T ′ , C′) with T ′ = {t′1, . . . , t
′
2}. The

induced SCPKP is characterizing among Kind ∪Kdef only if either t′1 ≤ t1 ≤ t
′
2 < t2 or t1 < t′1 ≤ t2 ≤ t

′
2.

Proof : In order to obtain an induced SCPKP from SCPKP (T , C) and ISCPKP (T ′ , C′), some conditions on their

time sets must be verified.

First, T ∩ T ′ , ∅ otherwise the induced SCPKP would be (T ,C − (C′ − (|T ′ | ·
∑J
i=1Di ). Clearly, C′ ≤ |T ′ | ·∑J

i=1Di , otherwise ISCPKP (T ′ , C′) would not have any feasible solution. Hence C − (C′ − (|T ′)
∑J
i=1Di ≥ C,

and the induced SCPKP would be dominated by SCPKP (T , C). This means that t1 ≤ t′2 and t′1 ≤ t2.

Second, recall that an induced SCPKP is defined for time set T \ T ′ . This means that if T ⊆ T ′ the

induced SCPKP is defined on an empty time set. Thus, either t1 < t′1 or t′2 < t2.

Third, if t1 < t′1 and t′2 < t2, the induced SCPKP is defined on the time set {t1, . . . , t′1−1}∪{t′2 +1, . . . , t2}. In

such a case, the induced SCPKP cannot be characterizing as proven in Property 26. Consequently, if t1 < t′1,

then t2 ≤ t′2, and if t′2 < t2, then t′1 ≤ t1.

The two possibilities satisfying these three conditions are t′1 ≤ t1 ≤ t
′
2 < t2 and t1 < t′1 ≤ t2 ≤ t

′
2.

Lemma 3 (ISCPKP inducing conditions)

Consider an SCPKP (T , C) with T = {t1, . . . , t2} and an ISCPKP (T ′ , C′) with T ′ = {t′1, . . . , t
′
2}. The

induced ISCPKP is characterizing among Kind ∪Kdef only if either t′1 < t1 ≤ t
′
2 ≤ t2 or t1 ≤ t′1 ≤ t2 < t

′
2.

We do not detail the proof as it is similar as the one for Lemma 2.
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Property 28

An induced ISCPKP is characterizing amongKind∪Kdef only if it is induced from a defining-SCPKP

and a defining-ISCPKP.

Proof : This proof is illustrated by Figure 5.3. In this figure, a square denoted by t represents time period

t. Curly brackets above the squares represent the time sets of an SCPKP as well as its knapsack bound.

Similarly, curly brackets below the squares represent the time sets of an ISCPKP as well as its covering

bound.

Consider an instance of the 1-HUCD problem. Consider an induced ISCPKP (T , C), induced from a

defining-SCPKP ({1, . . . , t2}, α∗t2 ) and an induced ISCPKP (T ′ , C′) with T ′ = {t′1, . . . , t
′
2}. Suppose that ISCPKP

(T , C) is characterizing. As proven in Lemma 3 in order for ISCPKP (T , C) to be characterizing, then

1 ≤ t′1 ≤ t2 < t
′
2 or t′1 < 1 ≤ t′2 ≤ t2. Clearly, it is impossible to have t′1 < 1, hence we consider the former case.

Besides, as ISCPKP (T ′ , C′) is induced, hence t′1 > 1, otherwise it would be a defining-ISCPKP. We deduce

T = {t2 + 1, . . . , t′2} and C = C′ −α∗t2 as illustrated in Figure 5.3a.

By construction, there is a defining-SCPKP ({1, . . . , t′1 − 1}, α∗
t′1−1) and a defining-ISCPKP ({1, . . . , t′2}, β

∗
t′2

).

Consequently, we deduce C′ = β∗
t′2
−α∗

t′1−1 as depicted in Figure 5.3b.

By construction, there is a defining-SCPKP ({1, . . . , t2}, α∗t2 ) and a defining-ISCPKP ({1, . . . , t′2}, β
∗
t′2

). From

them, we can induce ISCPKP (T , β∗
t′2
−α∗t2 ) as shown in Figure 5.3c.

As we suppose ISCPKP (T , C) to be characterizing, then C > β∗
t′2
−α∗t2 :

C > β∗t′2
−α∗t2

β∗t′2
−α∗t′1−1 −α

∗
t2 > β

∗
t′2
−α∗t2

α∗t′1−1 < 0

As such, the instance of the 1-HUCD is infeasible as there is a negative upper bound. Hence, ISCPKP (T , C)

cannot be characterizing.

A similar proof can be made for an ISCPKP induced from a defining-ISCPKP and an induced SCPKP, or

from and induced SCPKP and ISCPKP.

Property 29

An induced SCPKP is characterizing among Kind ∪Kdef only if it is induced from a defining-SCPKP

and a defining-ISCPKP.

We do not detail the proof as it is very similar to the one for Property 28.

Now that we proved that all characterizing (I)SCPKP are either defining, or induced from the defin-

ing ones, we show that bound tightening is needed only on defining-(I)SCPKP.

Property 30

Consider a defining-SCPKP and a defining-ISCPKP. The induced (I)SCPKP from these defining-

(I)SCPKP cannot be under-constrained if the bounds of the defining-(I)SCPKP are tight.
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1 t′1 t2 t′2

≤ α∗
t2

≥ C ′

≥ C = C ′ − α∗
t2

. . . . . . . . .

(a) Deducing C with respect to α∗t2 and C′

1 t′1 t2 t′2

≥ C = β∗
t′2
− α∗

t′1−1

≥ β∗
t′2

≤ α∗
t′1−1

. . . . . . . . .

(b) Deducing C′ with respect to β∗
t′2

and α∗
t′1−1

1 t′1 t2 t′2

≤ α∗
t2

≥ β∗
t′2

≥ β∗
t′2
− α∗

t2

. . . . . . . . .

(c) Inducing another SCPKP for time set T

Figure 5.3: Illustrations for Property 28

Proof : Clearly, tightening the bound of a defining-SCPKP or a defining-ISCPKP does not change its feasible so-

lutions, hence facet-defining inequalities are the same with and without a tight bound. However, as shown in

Example 25, tightening the bound of defining-SCPKPs and defining-ISCPKPs can change the feasible solu-

tions of the induced ones. Also, as proven it Property 28 and 29, characterizing SCPKP and ISCPKP can only

be induced from defining ones. Hence, if the bounds of the defining-SCPKP and ISCPKP are tightened, then

none of the characterizing (I)SCPKP is under-constrained. If there is an under-constrained characterizing

(I)SCPKP, then it leads to a contradiction, as one of the defining-(I)SCPKP cannot be tightened.

Finally, we can also show that all characterizing defining-(I)SCPKP among Kdef are also characteriz-

ing among Kdef ∪Kind .

Property 31

Consider a defining-SCPKP. If it is characterizing among Kdef , it is also characterizing among Kdef ∪
Kind .

Proof : Consider a defining-SCPKP (T , C), characterizing among Kdef . Suppose there is an induced SCPKP

(T ′ , C′) which dominates defining-SCPKP (T , C). This means that T ′ ⊇ T and C′ ≤ C. The induced SCPKP

is from a defining-SCPKP and a defining-ISCPKP, respectively on continuous time sets T1 = {1, . . . , t1} and

T2 = {1, . . . , t2}. Hence, 1 < T ′ otherwise there is a contradiction. Also, 1 ∈ T as SCPKP (T , C) is defining,

meaning that T ′ ⊇ T yields a contradiction. Hence, an induced SCPKP cannot dominate a defining-SCPKP.

Consider a defining-ISCPKP (T , C), characterizing among Kdef . Suppose there is an induced ISCPKP

(T ′ , C′) which dominates defining-ISCPKP (T , C). This means that T ′ ⊆ T and C′ ≥ C. In order for T ′ ⊆ T ,

there must be a defining-ISCPKP (T ′′ , C′′) with T ′′ ⊆ T . By definition of an induced ISCPKP, C′ ≤ C′′ .
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Consequently, there is a contradiction as defining-ISCPKP (T , C) cannot be characterizing among Kdef , as

it is dominated by defining-ISCPKP (T ′′ , C′′).

As all induced SCPKP are from defining ones, a combination of defining-SCPKP and induced SCPKP

cannot dominate the defining-SCPKP, and similarly for the ISCPKP. Consequently, the defining-SCPKP that

are characterizing for Kdef are also characterizing for Kdef ∪Kind .

In this section, we defined sets of (I)SCPKPs which are sub-problems of the 1-HUCD problem :

defining-(I)SCPKPs and induced (I)SCPKPs. From these sets, we can easily find the ones which are char-

acterizing, as it only requires to compare the ones on a continuous time set as proven in Property 26.

As such, obtaining the characterizing (I)SCPKPs only necessitates a quadratic number of comparisons.

Based on the set of characterizing (I)SCPKPs, we can generate valid inequalities for each of these sub-

problems using the study presented in Chapter 4, which gives also strong inequalities for the 1-HUCD

problem.

In the next section, we generalize polyhedral symmetries to the 1-HUCD problem in order to identify

which permutations of these inequalities are relevant. On this basis, we also generalize the concept of

patterns to the 1-HUCD problem.

5.5 Polyhedral results for the discretized 1-Hydro Unit Commitment problem

In this section, we address the polyhedral study of the 1-HUCD problem. Recall that the constraints

of the 1-HUCD problem can be defined as an intersection of several (I)SCPKPs. Hence, we aim to extend

the polyhedral results of the SCPKP and the ISCPKP to the 1-HUCD problem. As polyhedral results of

the (I)SCPKP involve patterns defined to handle polyhedral symmetries, we first study the symmetries

of the 1-HUCD problem.

5.5.1 Polyhedral symmetries for the discretized 1-Hydro Unit Commitment problem

Due to the presence of several upper and lower bounds, the polyhedral symmetries of the SCPKP do not

entirely hold for the 1-HUCD problem. However, we can identify several sets of permutations for which

the polyhedral symmetries extend to the 1-HUCD problem.

Definition 39 (Symmetric time set for the 1-HUCD problem)

A time set T is symmetric for the 1-HUCD problem if polyhedral symmetry holds for any permuta-

tion of time periods in T .

We show that polyhedral symmetries hold for sets of time periods where bounds β∗t and α∗t are con-

stants.

Theorem 12 (Polyhedral symmetries of the 1-HUCD problem)

Let T be a time set. If for all characterizing defining-(I)SCPKPs on a time set T ′ , time set T is such
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that T ⊆ T ′ or T ∩T ′ = ∅, then T is a symmetric time set for the 1-HUCD problem.

Proof : Let T be a time set. Suppose that for each characterizing defining-(I)SCPKP on a time set T ′ , then

T ⊆ T ′ or T ∩ T ′ = ∅. Hence, bounds β∗t and α∗t are constants for time periods t ∈ T . Consequently, for any

feasible solution of the 1-HUCD problem, a permutation of the time periods in T yield to another feasible

solution of the 1-HUCD problem.

Theorem 12 is particularly important, as for any facet-defining inequality, we can permute the time

indices of a symmetric time set and obtain another facet-defining inequality.

Corollary 1 (Symmetry of facet-defining inequalities for the 1-HUCD problem)

Let T be a symmetric time set. Then, for any facet-defining inequality, any permutation of T yield

another facet-defining inequality.

Proof : The proof is similar to the one in Property 5. Let T be a time set for which polyhedral symmetries hold

for the 1-HUCD problem. Consider a facet-defining inequality for the 1-HUCD problem. Then, there are

n affinely dependent points, for which the solutions satisfy such an inequality to equality. Hence, one can

prove any symmetry of a facet-defining inequality to also be facet-defining, as it suffices to deduce the n valid

solutions following the same permutation of T . These new n points are necessarily affinely independent as

they all undergo the exact same permutation of the time periods.

Note that there are some special cases of the 1-HUCD problem for which there are no polyhedral sym-

metries. This is when, for every t ≤ T , either β∗t < β
∗
t+1 or α∗t < α

∗
t+1. In such a case, if an inequality is

facet-defining, it is possible that none of its symmetry is also facet-defining.

For any other case, there are symmetric time sets, meaning that the polyhedral symmetries extend

to the 1-HUCD problem. Using similar structures to the patterns defined in Section 4.4 is then relevant

to handle the polyhedral symmetries. Moreover, we show in the following that there are large sets of

inequalities, that are valid for any permutation. Such patterns can also be used to handle these sets of

valid inequalities, as they can still be used to cut fractional points in a Branch & Cut scheme.

Theorem 12 provides valid sets of time periods for which polyhedral symmetries occur. In practice

however, these sets defined in Theorem 12 do not capture all polyhedral symmetries, as shown in the

following Example 27.

Example 27

Let (4, 3, [6,3,2], β∗, α∗) be an instance of the 1-HUCD problem, with characterizing defining-SCPKP

({1, 2, 3, 4}, 18) and defining-ISCPKP ({1, 2}, 1), which respectively become ({1, 2, 3, 4}, 18) and ({1, 2},

6) once their bounds are tightened. The only induced characterizing SCPKP is ({3, 4}, 12), which has

the same bound once tightened. In this case, polyhedral symmetries as defined in Theorem 12 exist

for the sets of time periods {1,2} and {3,4}. In the following, we exhibit facet-defining inequalities

for which the polyhedral symmetry apply.
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For the set of time periods {1,2}, polyhedral symmetries appear for inequalities:

x1,2 + x2,3 + x3,3 + x4,3 ≤ 1

x1,3 + x2,2 + x3,3 + x4,3 ≤ 1

x1,1 + x1,3 + x2,2 + x3,2 + x4,2 ≤ 2

x1,2 + x2,1 + x2,3 + x3,2 + x4,2 ≤ 2

x1,1 + x1,2 + x2,1 + x2,3 + x3,1 + x3,3 + x4,1 + x4,3 ≤ 3

x1,1 + x1,3 + x2,1 + x2,2 + x3,1 + x3,3 + x4,1 + x4,3 ≤ 3

For the set of time periods {3,4}, polyhedral symmetries appear for inequalities:

x3,1 + x4,2 ≤ 1

x3,2 + x4,1 ≤ 1

However, there are inequalities for which permutations go beyond the time sets defined in Theo-

rem 12, which are {1,2} and {3,4} in this example:

x1,1 + x2,1 + x3,2 + x4,2 ≤ 2

x1,1 + x2,2 + x3,1 + x4,2 ≤ 2

x1,1 + x2,2 + x3,2 + x4,1 ≤ 2

x1,2 + x2,1 + x3,1 + x4,2 ≤ 2

x1,2 + x2,1 + x3,2 + x4,1 ≤ 2

In this case, all permutations are allowed but x1,1 + x2,1 + x3,2 + x4,2 ≤ 2.

The sets identified in Theorem 12 remain sufficient to motivate generalizing the patterns to the

1-HUCD problem. In this thesis, we did not generalize the polyhedral symmetries in Theorem 12 to

capture all permutations, such as the last case shown in Example 27.

5.5.2 Generalized patterns

Given that polyhedral symmetries hold also to some extent in the 1-HUCD problem, the patterns can

be generalized quite directly to this problem. The only difference is that the patterns do not consider

all time periods, but are defined for a subset of time periods, whereas for the (I)SCPKP, patterns where

defined for all groups.
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Definition 40 (Generalized pattern)

Let T be a time set. A generalized pattern P is a collection of |T | sets St(P ) ⊆ {1, . . . ,N }, t ∈ T , defined

for the time set T .

As a generalized pattern is defined on a time set T , we must also generalize the variable set of a pattern

as well as the rank.

Definition 41 (Variable set X associated with P )

A variable set X is associated with generalized pattern P and a permutation π of T if:

xij ∈ X ⇔ j ∈ Sπ(i)(P ).

Definition 42 (rank(P ))

The rank of a generalized pattern P is

rank(P ) = max
X∈χ(P )

{
max

∑
xij∈X

xij : satisfying (3.2.6), (3.2.7), (3.1.6), (3.1.14)
}
.

Two concepts can be extended directly to the generalized patterns, namely the cardinality and the

(inverted) pattern inequalities.

Remark 6

For the (I)SCPKP there was no ambiguity as all patterns were either only associated with pattern

inequalities for the SCPKP, or only associated with inverted pattern inequalities for the ISCPKP.

However, for the 1-HUCD problem, there can be patterns associated with both. To avoid confusion,

we also introduce Generalized Inverted Patterns. As such, we can make the distinction between a

Generalized Pattern (GP) and a Generalized Inverted Patterns (GIP), respectively with pattern in-

equalities and inverted pattern inequalities.

The aim is now to study the relationship between pattern inequalities for the (I)SCPKP and GP

inequalities for the 1-HUCD problem. For this purpose, we look at the following example, providing

inequalities from the convex hull of a small instance of the 1-HUCD problem.

Example 28

Consider the same instance as in the previous Example 27. From the convex hull of this instance,

we observe three sets of 0-1 facet-defining inequalities.

The first set of inequalities contains (inverted) pattern inequalities associated with patterns-facets

coming from characterizing (I)SCPKP for which all permutations yield another facet-defining in-

equality of the 1-HUCD problem. In this example we obtain the following inequalities:

• Pattern {{1}, {1}} for ISCPKP ({1, 2}, 6)

x1,1 + x2,1 ≥ 1
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• Pattern {{1}, {2}} for SCPKP ({3, 4}, 12)

x3,1 + x4,2 ≤ 1

x3,2 + x4,1 ≤ 1

• Pattern {{2, 3}, {2, 3}, {2, 3}, {2, 3}} for SCPKP ({1, 2, 3, 4}, 18)

x1,2 + x1,3 + x2,2 + x2,3 + x3,2 + x3,3 + x4,2 + x4,3 ≤ 2

The second set of inequalities contains (inverted) pattern inequalities associated with patterns-

facet coming from characterizing (I)SCPKP, for which only some permutations yield another facet-

defining inequality of the 1-HUCD problem. In this case, we obtain the following:

• Pattern {{2}, {3}, {3}, {3}} for ISCPKP ({1, 2, 3, 4}, 18)

x1,2 + x2,3 + x3,3 + x4,3 ≤ 1

x1,3 + x2,2 + x3,3 + x4,3 ≤ 1

• Pattern {{1}, {1}, {2}, {2}} related to SCPKP ({1, 2, 3, 4}, 18)

x1,1 + x2,1 + x3,2 + x4,2 ≤ 2

x1,1 + x2,2 + x3,1 + x4,2 ≤ 2

x1,1 + x2,2 + x3,2 + x4,1 ≤ 2

x1,2 + x2,1 + x3,1 + x4,2 ≤ 2

x1,2 + x2,1 + x3,2 + x4,1 ≤ 2

• Pattern {{1, 3}, {2}, {2}, {2}} related to SCPKP ({1, 2, 3, 4}, 18)

x1,1 + x1,3 + x2,2 + x3,2 + x4,2 ≤ 2

x1,2 + x2,1 + x2,3 + x3,2 + x4,2 ≤ 2

• Pattern {{1, 2}, {1, 3}, {1, 3}, {1, 3}} related to SCPKP ({1, 2, 3, 4}, 18)

x1,1 + x1,2 + x2,1 + x2,3 + x3,1 + x3,3 + x4,1 + x1,3 ≤ 3

x1,1 + x1,3 + x2,1 + x2,2 + x3,1 + x3,3 + x4,1 + x1,3 ≤ 3

The third set of inequalities does not contain any pattern inequalities of a characterizing SCPKP or

ISCPKP.

x1,3 + x2,3 + x3,2 + x4,2 ≤ 1
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x1,2 + x2,2 + x3,1 + x3,3 + x4,1 + x4,3 ≤ 2

x1,1 + x1,3 + x2,1 + x2,3 + x3,1 + x3,2 + x4,1 + x1,2 ≤ 3

Note that for each inequality of the second set, permutations that are not facet-defining are domi-

nated by an inequality of the third set. For instance, inequality x1,3 +x2,3 +x3,2 +x4,3 ≤ 1 is not present

in the second set. This is because it is dominated by x1,3 +x2,3 +x3,2 +x4,2 ≤ 1 present in the third set.

In Example 28, three sets of binary inequalities are identified for the 1-HUCD problem. The first

two sets indicate that for a pattern-facet of a characterizing (I)SCPKP, there can be an associated GP

yielding facet-defining inequalities of the 1-HUCD problem. As the polyhedral symmetries only par-

tially extend, and as shown in the second set, there are cases where not all inequalities associated with

a GP are facet-defining. However, as the 1-HUCD problem is more constrained than the (I)SCPKP, all

permutations of the GP inequality yield valid inequalities of the 1-HUCD problem. We also identified

a third set of inequalities, which can be interpreted as reinforced GP inequalities. For this third set,

permutations in the polyhedral symmetries of the 1-HUCD problem yield facet-defining inequalities.

However, any other permutation yields an invalid inequality. As such, we must distinguish two types

of generalized patterns: GP and Reinforced GP (RGP). A GP is associated with a pattern of a charac-

terizing (I)SCPKP, and a reinforced generalized pattern (RGP) is not associated with any pattern of a

characterizing (I)SCPKP. For the GP, any permutation of the time periods yield valid inequalities. For

the RGP, only permutations of time periods in a symmetric time set yield valid inequalities. Note that

GP and RGP are complementary, as the former provides facet-defining inequalities that come directly

from characterizing (I)SCPKP, whereas the latter provides facet-defining inequalities that do not come

from characterizing (I)SCPKP. The aim is now to find how one can generate RGPs. For this purpose, we

present Example 29 illustrating how one can obtain an RGP from a GP. For the following example, we

recall that conditions (i), (ii) and (iii) are defined in Properties 8, 9 and 10.

Example 29

Consider the same instance as in the previous Example 27. The polyhedral symmetries of this

instance accept permutations of time periods {1,2} or {3,4}.
Recall that P = {{2}, {3}, {3}, {3}} is a pattern of rank 1 from SCPKP ({1, 2, 3, 4}, 18). The associated

GP is P = {{2}, {3}, {3}, {3}} of rank 1, for time periods {1,2,3,4}. All pattern inequalities associated

with GP P are valid for the 1-HUCD problem. However, only the two following inequalities are

facet-defining for the 1-HUCD problem:

x1,2 + x2,3 + x3,3 + x4,3 ≤ 1

x1,3 + x2,2 + x3,3 + x4,3 ≤ 1

We study one of the other permutations. Consider X = {x1,3,x2,3,x3,3,x4,2} ∈ χ(P ). The associated GP

inequality is:

x1,3 + x2,3 + x3,3 + x4,2 ≤ 1.
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As P is pattern-facet for the SCPKP, then it is flexible pattern. As such, condition (iii) holds, meaning

that there should be a solution with x3,2 = 1, x3,3 = 0 and (pi(X )) to equality. Indeed, for the SCPKP,

there is one such feasible solution, with x3,1 = x3,2 = x4,1 = x4,2 = 1 and all other variables to 0.

However, such solution is infeasible for the 1-HUCD problem, due to SCPKP ({3, 4}, 12). Therefore,

condition (iii) does not hold for this particular permutation of GP P . Hence, one can replace x3,3

by x3,2 for this GP inequality, keeping it valid and making it stronger. We obtain the following

inequality:

x1,3 + x2,3 + x3,2 + x4,2 ≤ 1

which is facet-defining for the 1-HUCD . One can deduce the associated RGP P ′ = {{3}, {3}, {2}, {2}}.
Besides, this RGP verifies conditions (i) (ii) and (iii) for this particular permutation.

In a same manner, one can obtain inequality x1,2 + x2,2 + x3,1 + x3,3 + x4,1 + x4,3 ≤ 2 and its as-

sociated RGP from either pattern {{1}, {1}, {2}, {2}} or {{1,3}, {2}, {2}, {2}}. Similarly, one can obtain

inequality x1,1 + x1,3 + x2,1 + x2,3 + x3,1 + x3,2 + x4,1 + x1,2 ≤ 3 and its associated RGP from pattern

{{1,2}, {1,3}, {1,3}, {1,3}}
Note however that a permutation of time periods for one of these RGP inequality yield an invalid

inequality whenever this permutation is not supported by the polyhedral symmetry of this 1-HUCD

instance, i.e., permutations of time periods {1,2} or {3,4}.

We can also generalize the definition of an (inverted) pattern-facet to (R)G(I)P. This definition differs

from the one of a pattern-facet, as for an (R)G(I)P it is possible that only a fraction of the associated

inequalities are facet-defining.

Definition 43 ((Reinforced) generalized (inverted) pattern-facet)

A (R)GP (resp. (R)GIP) P is facet-defining if there exists X ∈ χ(P ) such that (pi(X )) (resp. (ipi(X ))) is

facet-defining.

We can also generalize conditions (i) (ii) and (iii), defined in Properties 8, 9 and 10, to obtain nec-

essary conditions for an (R)GP to provide a facet-defining inequality. In the following, we detail three

necessary facet-defining conditions (I), (II) and (III) for (R)GP. We do not detail how these conditions

can be extended to the GIP and RGIP. This is because results for the (R)GP can directly apply to a (R)GIP.

In the following we only detail results for the GP.

Condition (i), defined in Property 8, adapted to the (R)GP is exactly the same as for a pattern.

Property 32 (Generalized condition (I))

Let P be a GP defined for the time set T . If P is a GP-facet, then it verifies conditions (I):

(I) For every set Si(P ) ∈ P : |Si(P )| ≥ 1

The proof is the same as the one for the condition (i) for the SCPKP in Property 8. We now generalize

condition (ii), defined in Property 9, to a (R)GP defined on time set T . In this case, the generalization
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requires two modifications, in order to take the partial symmetry into account as well as all time periods

in {1, . . .T } \ T .

Property 33 (Generalized condition (II))

Let P be a (R)GP of rank k defined on a time set T . If P is (R)GP-facet, then P verifies condition (II)

for at least one variable set X ∈ χ(P ) :

(II) For each t ≤ T there is Y ⊆ V a k-intersection of X with xtN ∈ Y

The following proof reuses the same ideas as to prove condition (ii) to be necessary in Property 9.

Proof : Let P be a (R)GP of rank k, and X ∈ χ(P ). Suppose there is a t ≤ T such that (II) is not satisfied for t.

This means that there is no feasible solution with k variables of X set to 1 and in which xtN = 1. Therefore,

the following inequality is valid: ∑
xt′ i′∈X

xt′ i′ + xtN ≤ k

Indeed, when xtN = 0, the inequality is valid by definition of the rank of P . When xtN = 1, the inequality is

valid as there cannot be more than k − 1 variables of X set to 1.

This inequality dominates the inequality (pi(X )). Indeed, one could sum it with −xtN ≤ 0 to obtain

(pi(X )).

Thus, (pi(X )) is facet-defining for the 1-HUCD problem only if condition (II) is verified. Hence, P is

(R)GP-facet only if there is X ∈ χ(P ) satisfying condition (II).

We now generalize condition (iii), defined in Property 10, to a (R)GP defined on a time set T . In this

case, the generalization requires one modification, in order to take into account the asymmetry of the

bounds. But in opposition to (II), the following condition (III) does not require to take into account all

time periods in {1, . . . ,T } \ T .

Property 34 (Generalized condition (III))

Let P be a (R)GP of rank k defined on a time set T . If P is (R)GP-facet for the 1-HUCD problem, then

∃X ∈ χ(P ) that verifies condition (III):

(III) For each variable xij ∈ X , there is Y ⊆ V a k-intersection of X with xti−1 ∈ Y and xti′ < Y
∀i′ ≥ i.

The following proof reuses the same ideas as to prove condition (iii) to be necessary in Property 10.

Proof : Let P be a (R)GP of rank k. Let X ∈ χ(P ). Suppose for some xti ∈ X does not verify condition (iii). This

means that there is no feasible solutions with a total of k variables of X set to 1, with xti−1 = 1 and xti = 0.

Therefore, the following inequality is valid:∑
xt′ i′∈X

xt′ i′ + xti−1 − xti ≤ k

Indeed, when xti = xti−1 = 1 or xti = xti−1 = 0, this inequality is valid by the rank of P . When xti−1 = 1 and

xti = 0, the inequality is valid as there cannot be more than k − 1 variables of X equal to 1, which sums to at

most k. Case xti−1 = 0 and xti = 1 does not exist due to the order constraints
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This inequality dominates the inequality (pi(X )). Indeed, one could sum it with −xti−1 +xti ≤ 0 (equiva-

lent to xti ≤ xti−1) to obtain (pi(X )).

Thus, (pi(X )) is facet-defining for the 1-HUCD problem only if condition (iii) is verified. Hence, P is

(R)GP-facet only if ∃X ∈ χ(P ), which verifies condition (iii).

As the polyhedral symmetries do not hold completly for the 1-HUCD problem, if a pattern satisfies

(ii) and (iii) for an SCPKP, the associated GP does not necessarily satisfy (II) and (III). Note however

that if a pattern satisfies (i) for an SCPKP, the associated GP automatically satisfies (I) for the 1-HUCD

problem, as conditions (i) and (I) are similar. In the following, we detail the idea of an extention of the

two-phase Branch & Cut algorithm defined in Chapter 4 to the 1-HUCD problem.

5.6 Generalization of the two-phase Branch & Cut algorithm

In this section, we extend the two-phase B&C algorithm defined for the SCPKP in Chapter 4 to the

1-HUCD problem. The main idea is to add pre-processing steps, in order to first identify the character-

izing defining-(I)SCPKPs, and then the characterizing induced-(I)SCPKPs. Once they are identified, one

can reuse the two-phase algorithm, with patterns from each of these characterizing (I)SCPKPs.

Identifying the characterizing defining-(I)SCPKPs The defining-(I)SCPKPs can be directly obtained

with constraints β∗t and α∗t . In order to have the characterizing defining-(I)SCPKPs, we compare the

defining-(I)SCPKPs pairwise. Indeed, consider two defining-SCPKPs, respectively (T , C) and (T ′ , C′). If

T ⊂ T ′ and C ≤ C′−|T ′\T |
∑N
i=1Di , then SCPKP (T ′ , C′) is not characterizing. This is because any SCPKP

(T ′′ , C′′) on time set T ′′ with C′′ = |T ′′ |
∑N
i=1Di is a sub-problem of 1-HUCD . Hence, with T ′′ = T ′ \ T ,

the SCPKPs (T , C) and (T ′′ , C′′) dominate SCPKP (T ′ , C′) as shown in Property 25. In a similar fashion,

consider two defining-ISCPKPs, respectively (T , C) and (T ′ , C′). If T ⊃ T ′ and C ≥ C′ + |T \ T ′ |
∑N
i=1Di ,

then ISCPKP (T ′ , C′) is dominated.

Obtaining characterizing induced-(I)SCPKPs As shown in Property 30, the bounds of the charac-

terizing defining-(I)SCPKPs must be tightened in order for the induced (I)SCPKP not to be under-

constrained. Hence, we first tighten the bounds of the characterizing defining-(I)SCPKPs by solving

the MILP model defined in Section 5.4. Then, characterizing induced (I)SCPKPs can be obtained from

each pair of one defining-SCPKP and one defining-ISCPKP. Recall that there are exactly T defining-

SCPKPs and defining-ISCPKPs, meaning that it requires at most T 2 comparisons. From Properties 28

and 29, there cannot be any other characterizing (I)SCPKP than the ones obtained.

Extending the two-phase B&C Once the characterizing (I)SCPKPs have been obtained, the first phase

of the two-phase B&C would be to generate patterns for all of these (I)SCPKPs. In this case, one needs

to verify condition (I), (II) and (III), but in practice it is very similar to verifying (i), (ii) and (iii). This
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can be done in parallel for different (I)SCPKPs, as the pattern generation procedure for an (I)SCPKP is

independent of the procedure for another (I)SCPKP. Finally, for the 1-HUCD problem, the second phase

would be also very similar to that for an SCPKP.

Within the alloted time for this thesis, we could not make an extensive numerical comparisons of

the generalized version of the two-phase B&C algorithm with state-of-the-art algorithms. However, very

preliminary results have shown that such an algorithm could be more efficient than default CPLEX.

5.7 Conclusion

In this chapter, we extended the polyhedral study of Chapter 4, dedicated to the Symmetric-weight

Chain Precedence Knapsack Problem (SCPKP), to the discretized 1-Hydro Unit Commitment problem

without ramping nor min-up/down constraints (1-HUCD ). For this purpose, we first defined the In-

verted SCPKP (ISCPKP), similar to the SCPKP but for which the knapsack inequality that sets an upper

bound on the weight of the selected items is replaced by a covering inequality, defining a lower bound

on the weight of the selected items. We indicated that an ISCPKP can cast in an SCPKP, meaning that

polyhedral results of the latter translate to the former. Then, we showed that the constraints of the

1-HUCD problem is the union of the constraints of multiple (I)SCPKPs. In addition, we proved that

only a polynomial number of (I)SCPKPs are relevant to study the polyhedron associated to the 1-HUCD .

As such, it makes it suitable to use polyhedral results of the (I)SCPKP to obtain strong inequalities for

the 1-HUCD problem. Even if the polyhedral symmetries do not appear systematically for the 1-HUCD

problem, we did characterize sets of time periods for which polyhedral symmetries arise. Thus, we gen-

eralized the patterns to handle these cases, as well as three necessary facet-defining conditions. Then,

we adapted the two-phase Branch & Cut algorithm defined in Chapter 4. For this purpose, we presented

a few complementary pre-processing steps in order to obtain the characterizing (I)SCPKP, from which

the two-phase B&C algorithm can be used.

In the following chapter, we propose graph algorithms to solve the generalization of the 1-HUCD

problem, namely the 1-HUCDRM problem, as an alternative approach to solving a MILP model.
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In the previous chapter, we presented a polyhedral study for a linear model of the 1-Hydro Unit

Commitment (1-HUC) problem, to enhance the current approach at EDF. However, this study does not

account for some constraints of the 1-HUC problem, namely ramping and min-up/down constraints.

Besides, the discretized 1-HUC problem has a very specific structure, which makes it possible to repre-

sent it with graphs. Hence, graph algorithms can yield competitive approaches to solving a MILP model

of the 1-HUC problem.
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In this chapter, we propose two graph algorithms and their corresponding graph representation to

solve a discretized 1-HUC problem taking ramping and min-up/down constraints into account. In Sec-

tion 6.1 we define the considered problem, as well as a bi-objective problem used in one of the algorithms

proposed. In Section 6.2 we introduce two graph representations of the considered 1-HUC problem. In

Section 6.3 we review graph algorithms for related problems. In Section 6.4 we present a first graph

algorithm. In Section 6.5 we detail a second graph algorithm. The numerical results for each algo-

rithm are in their corresponding section. In Section 6.6, we draw concluding remarks. The first graph

algorithm has been published in [52].

6.1 Problems definition

The 1-HUC problem considered in this chapter is the 1-HUCDRM problem, defined in Section 3.3.

We also give the definition of the Shortest Path Problem with Resource Windows (RWSPP) since we

will show in Section 6.2 how the 1-HUCDRM problem can be defined as a special case of the RWSPP.

Let G = (V ,A) be a graph, with V the set of vertices and A the set of arcs. We denote s and p the

source vertex and the target vertex, respectively. Each arc a ∈ A has a value V (a) ∈ R and a resource

amount R(a) ∈ R≥0. Each vertex v ∈ V has a resource window [R(v);R(v)]. For a path C, we denote

V (C) =
∑
a∈C V (a) the value of the path, and R(C) =

∑
a∈C R(a) the amount of resource used. A path C

from s to v is locally feasible if R(C) ∈ [R(v);R(v)]. A path C is feasible if all sub-paths C′ of C starting

from s are locally feasible. The RWSPP consists in finding feasible path C from s to p minimizing V (C).

Clearly, the RWSPP is a generalization of the Shortest Path Problem with Resource Constraints (RCSPP),

as the latter only considers an upper bound on the resource.

For the purpose of one of the algorithms proposed, we also defined the Bi-Objective Shortest Path

Problem (BOSPP), as follows. Let G = (V ,A) be a graph, with V the set of vertices and A the set of arcs.

We denote s and p the source vertex and the target vertex, respectively. Each arc a ∈ A has two values

V1(a) ∈ R and V2(a) ∈ R. For a path C, we denote Vi(C) =
∑
a∈C Vi(a) the value for objective i ∈ {1,2}.

The BOSPP consists in finding a set of Pareto-optimal paths C from s to p minimizing V1(C) and V2(C).

In the case of bi-objective optimization, two solutions can be incomparable, meaning that the standard

definition of optimal solution does not hold. As such, we recall the definition of a Pareto-optimal path.

Definition 44 (Pareto-optimal paths)

A path C is Pareto-optimal if there is no other path C′ such that for each i ∈ {1,2}, Vi(C′) ≥ Vi(C) and

there is i ∈ {1,2} for which Vi(C′) > Vi(C).

We also recall the definition of Pareto-supported paths for the purpose of one of the algorithms pro-

posed.

Definition 45 (Pareto-supported paths)

A pathC is Pareto-supported if it is Pareto-optimal and is in the solutions’ convex hull in the objective
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space.

For readability purposes, we also introduce an operator indicating that two paths have the same value

for both objectives and its opposite operator.

Definition 46 (Pareto-equality)

We define the Pareto-equality =p such that for two paths C1 and C2, C1 =p C2 if and only if V1(C1) =

V1(C2) and V2(C1) = V2(C2).

Definition 47 (Pareto-inequality)

We define the Pareto-inequality ,p such that for two paths C1 and C2, C1 ,p C2 if and only if

V1(C1) , V1(C2) or V2(C1) , V2(C2)

6.2 Graph representations of the 1-Hydro Unit Commitment problem

In this section, we show two graph representations of the 1-HUCDRM problem. The first one is a

cumulated flow-expanded (D1,t-expanded) graph, where the cumulated flow D1,t , defined in Section

3.2 is represented in each vertex. The second one is a compact graph, where D1,t is a resource. The D1,t-

expanded one makes it possible to account for the resource windows by discarding vertices whenever

the resource does not comply with the window. In the following we describe both representations and

their associated dominance rules.

6.2.1 The cumulated flow-expanded graph

Let GE = (VE ,AE) denote the graph defined as follows. Each vertex u ∈ VE is defined as a quadruplet

u = (t, i,d, l). For this definition, t is the time period, i is the operating point, d is the cumulated flow

D1,t associated with a path that reaches u, l ∈ {−L+ 1, . . . ,L − 1} is the remaining time for min-up/down

constraints to be satisfied. In the case l > 0 (resp. l < 0), then l indicates the number of time periods

starting from t during which the flow cannot decrease (resp. increase) in order to satisfy min-up (resp.

min-down) constraints. The vertices will be illustrated in Example 30. Without loss of generality, u =

(t, i,d, l) is considered only if d ∈ [β∗t ;α
∗
t ]. The source vertex s is defined as s = (0,0,0,0) and the target

vertex p as p = (T + 1,0,0,0).

There is an arc a ∈ AE from each vertex (T , i, d, l) towards p of value 0. For the following description

of the arcs, consider a vertex u = (t, i,d, l) ∈ VE with t ∈ {0, . . . ,T − 1}.
If l ≥ 1, there is an arc a ∈ AE from u to (t + 1, i,d +

∑i
j=0Dj , l − 1). Similarly, if l ≤ −1, there is an arc

a ∈ AE from u to (t + 1, i,d +
∑i
j=0Dj , l + 1). If l ≥ 0, for any i′ > i such that

∑i′
j=i+1Dj ≤ Ru there is an arc

a ∈ AE from u to (t + 1,d +
∑i′
j=0Dj ,L− 1). Similarly, if l ≤ 0, for any i′ < i such that

∑i
j=i′+1Dj ≤ Rd there

is an arc a ∈ AE from u to (t + 1,d +
∑i′
j=0Dj ,−L+ 1).

The value of any arc towards a vertex (t, i, d, l), with t ≤ T , is
∑i
j=0Ψt,j .
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Solving a Longest Path Problem (LPP) on GE provides an optimal solution of the 1-HUCDRM prob-

lem. Indeed, by construction, any path in GE satisfies min-up/down, ramping and resource windows.

Besides, the value of any path in GE is exactly the value of the corresponding 1-HUCDRM problem’s

solution.

The downside of such a graph is its pseudo-polynomial number of vertices, as proven in the following

property.

Property 35 (Pseudo-polynomial number of vertices of GE)

The number of vertices in GE is pseudo-polynomial with respect to the size of the instance.

Proof : As we consider that there are no pump, then for any t < T , β∗t ≤ β
∗
t+1 and 0 ≤ α∗t ≤ α

∗
t+1. Hence, at each

time period, the cumulated flow D1,t lies in [0;α∗T ]. As l ∈ {−L+ 1, . . . ,L− 1} and i ∈ {0,N }, there are at most

(α∗T +1) · (N +1) · (2L−1) vertices per time period. This yield a total of (α∗T +1) ·T · (N +1) · (2L−1)+2 vertices,

taking into account the source and target vertex. As L ≤ T , we deduce that the number of vertices is at most

(α∗T + 1) · T · (N + 1) · (2T − 1) + 2.

From the definition of the 1-HUCDRM problem in Section 3.3, there are data for each operating point

as well as for each time period. Hence the size of the instance is of O(T ·N ). The number of vertices is

pseudo-polynomial as α∗T is not polynomially bounded with respect to the size of the instance.

However, we can use classical dominance rules for the longest path:

Definition 48 (Dominance rule 1)

Let p and q be two paths from s to a vertex u. By induction the path with the lowest value is domi-

nated, as it cannot lead to an optimal solution.

Definition 49 (Dominance rule 2)

Let p be a path from s to u going through a vertex v, and q be a path from s to v. Let ps,v be the

subpath of p from s to v and pv,u the subpath of p from v to u. If the value of ps,v is larger than that

of q, then q is dominated. If the value of q is larger than that of ps,v , then p is dominated by the path

concatenating q and pv,u .

By construction of GE , any vertex (t, 0, d, l) with l ≥ 1 cannot be reached. This is because by con-

struction, an arc heading to (t, 0, d, l) with l ≥ 1 can only exist from a vertex (t − 1, i, d′ , l′) with i < 0,

which does not exist. We can explain in the same manner that vertices (t, N , d l) with l ≤ −1 cannot be

reached either. Hence, it is not necessary to consider these vertices in GC .

Example 30

Consider an instance of the 1-HUCDRM problem for T = 5 time periods. Accounting for the idle

operating point, the unit operates on 3 operating points: (D0 = 0, P0 = 0), (D1 = 6, P1 = 8), (D2 = 5,

P2 = 6). The ramps rates are Ru = Rd = 6 and the duration of the min-up/down constraints is L = 3.

The bounds are β∗ =[0, 0, 7, 18] and α∗ =[11, 18, 18, 18].
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The value of operating points are: Ψi,1 = [0,2.8,1], Ψi,2 = [0,−6.8,−6.2], Ψi,3 = [0,0.4,−0.8], Ψi,4 =

[0,−11.6,−9.8] and Ψi,5 = [0,2.0,0.4].

Figure 6.1 depicts the graph GE associated with this instance of the 1-HUCDRM problem. For

readability purposes, only vertices that can be reached from s are represented. Dotted lines separate

the vertices with respect to the cumulated flow. The values of the arcs are not represented in this

graph. As the value and the resource only depend on the time period t and the operating point i they

are the same for any arc heading to any vertex (t, i,d, l) for a given t and i. In Table 6.1, we give the

value for each combination of t ∈ {1, . . . ,T } and i ∈ {0, . . . ,N }.

(0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0)

(1,1,6,2) (2,1,6,2) (3,1,6,2)

(2,1,12,1) (3,1,12,1) (4,1,12,1)

(2,2,17,2) (3,2,17,2) (4,2,17,2)

(3,1,18,0) (4,1,18,0) (5,1,18,0)

(4,0,18,-2) (5,0,18,-2)

(5,0,18,-1)

(6,0,0,0)

α∗
t

β∗
t

Figure 6.1: Graph GE of Example 30
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i = 0 i = 1 i = 2
t = 1 0 2.8 3.8
t = 2 0 -6.8 -13.0
t = 3 0 0.4 -0.4
t = 4 0 -11.6 -21.4
t = 5 0 2.0 2.4

Table 6.1: Values of the arcs of graph GE depicted in Figure 6.1

Remark 7

The 1-HUCDRM problem is solved in practice on a daily basis, and the plant is not stopped between

two consecutive days. This means that one needs to consider the last decision of the previous day

when solving the 1-HUCDRM problem. This can be taken into account by modifying source vertex s

as follows. Consider the path for the previous day going through vertex (T , i,d, l). One can initialize

s = (0, i,0, l). As such, the plant can be operating continuously from one day to another, without

violating any constraint. Note however that modifying vertex s in such a manner does not modify

the structure of the graph. Hence, in the following we consider s=(0,0,0,0) without loss of generality.

6.2.2 The compact graph

The graph representation proposed in this section is an extension of the RCSPP representation of [3], as

we take into account min-up/down constraints. The resource considered is the cumulated flow D1,t .

Let GC = (VC ,AC) be the graph defined as follows. Each vertex u ∈ VC is defined as a triplet (t, i,

l). For this definition, t, i and l have the exact same definition as for D1,t-expanded graph GE . Also,

a source vertex and target vertex, respectively s=(0,0,0) and p=(T + 1,0,0) are defined. For any vertex

u = (t, i, l) ∈ VC \ {s,p} we define the resource window [R(u) = β∗t ;R(u) = α∗t ]. For vertex s, the resource

window is [R(s) = 0;R(s) =∞] and for p it is [R(p) = β∗T ;R(p) = α∗T ].

There is an arc in AC from each vertex (T , i, l) towards p of value 0 and which uses 0 resource. For

the following description of the arcs, consider a vertex u=(t, i, l) with t ∈ {0, . . . ,T − 1}.
If l ≥ 1 there is an arc a ∈ AC towards (t + 1, i, l −1). Similarly, if l ≤ −1 there is an arc a ∈ AC towards

(t + 1, i, l + 1). If l = 0, there is an arc towards a ∈ AC (t + 1, i, 0)

If l ≥ 0, for any i′ > i such that
∑i′
j=i+1Di ≤ Ru there is an arc a ∈ AC from u to (t + 1, i′ , L − 1), or

(t + 1, i′ ,0). Similarly, if l ≤ 0, for any i′ < i such that
∑i′
j=i+1Di ≤ Rd there is an arc a ∈ AC from u to

(t + 1,i′ ,−L+ 1).

The value of any arc towards a vertex (t, i, l), with t ≤ T is
∑i
j=0Ψt,j , and the resource used is

∑i
j=1Dj .

The downside ofGC , is that there are paths in this graph which do not satisfy the resource constraints.

Hence, we need to verify for each path considered if the resource windows are satisfied. As such, solving

the RWLPP on GC provides an optimal solution of the 1-HUCDRM problem. The idea is similar to the

one used to show that solving the LPP on GE provides an optimal solution of the 1-HUCDRM problem.
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The only difference is that the resource windows are not explicitly addressed by the graph, hence we

aim to solve an RWLPP on GC .

On the positive side, the number of vertices is polynomial.

Property 36 (Polynomial number of vertices of GC)

The number of vertices of GC is polynomial with respect to the size of the instance.

Proof : Indeed, there are (N +1) ·(2L−1) vertices per time period. Hence, there are T ·(N +1) ·(2L−1)+2 vertices

in GC in total.

Similarly to the proof of Property 35, the size of the instance is of O(T ·N ). As such, the number of

vertices of GC is polynomial with respect to the size of the instance.

Also, it is possible to use a classical dominance rule for the RCSPP under certain conditions, as defined

in [3]:

Definition 50 (Dominance rule 3)

Consider two partial paths C1 and C2, both from the source vertex s to a vertex u. Consider the case

where R(u) ≤ R(C2) for all u ∈ VC and R(C1) ≤ R(C2). For any path completion C3 from u to the target

vertex p such that (C2,C3) form a feasible path, then (C1,C3) also form a feasible path. Consequently,

if V (C1) ≥ V (C2) then C2 is dominated.

Note that the condition on the resource usage to ensure that the lower bounding constraints (3.2.6) are

satisfied seriously weakens the dominance rules when these constraints are active.

By construction of GC , any vertex (t, 0, l) with l ≥ 1 or (t, N , l) with l ≤ −1 cannot be reached. The

reason is the same as for why there is no arc towards (t, 0, d, l) with l ≥ 1 or (t, N , d, l) with l ≤ −1 in GE .

Example 31

Consider the instance of Example 30. Figure 6.2 represents the graph GC associated to this instance.

The vertices appear in black if they can be reached from s, and in gray otherwise. Dotted lines

separate the vertices with respect to each operating point. For readability purposes, the values and

the resource of the arcs are not represented in this graph. As the value only depends on the time

period t and the operating point i they are the same for any arc heading to any vertex (t, i, l) no

matter the value of l. Table 6.1 gives the value of each combination of t and i. Similarly, the resource

only depends on the operating point i they are the same for any arc heading to any vertex (t, i, l) no

matter the value of t or l. For operating point 0, the resource is 0; for operating point 1, the resource

is 6 and for operating points 2, the resource is 11.

A similar remark as Remark 7 can be made for GC Indeed, one can take into account the decision at

time period T of the previous day by modifying source vertex s. This does not change the structure of

the graph, hence we consider in the following s = (0,0,0) without loss of generality.
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(0,0,0) (1,0,0)

(1,1,2)

(2,0,0)

(2,1,2)

(3,0,0)

(3,1,2)

(4,0,0)

(4,1,2)

(5,0,0)

(5,1,2)

(2,1,1)

(2,2,2)

(3,1,1)

(3,2,2)

(4,1,1)

(4,2,2)

(5,1,1)

(5,2,2)

(1,1,1)

(1,2,2)

(3,2,1)

(3,1,0)

(4,2,1)

(4,1,0)

(5,2,1)

(5,1,0)

(1,2,1)

(1,1,0)

(2,2,1)

(2,1,0)

(4,2,0)

(4,0,-2)

(5,2,0)

(5,0,-2)

(1,2,0)

(1,0,-2)

(2,2,0)

(2,0,-2)

(3,2,0)

(3,0,-2)

(5,1,-2)

(5,0,-1)

(1,1,-2)

(1,0,-1)

(2,1,-2)

(2,0,-1)

(3,1,-2)

(3,0,-1)

(4,1,-2)

(4,0,-1)

(1,1,-1) (2,1,-1) (3,1,-1) (4,1,-1) (5,1,-1)

(6,0,0)

Figure 6.2: Graph GC of Example 31

Property 37

Any path in graph GC satisfies ramping constraints and min-up/down constraints.

Proof : Consider an arc between (t, i, l) and (t + 1, i′ , l′). Clearly, in the case i = i′ , the ramping constraints

are satisfied if such an arc exists in GC . In the case i < i′ , such an arc only exists if
∑i
j=i+1Dj ≤ Rd by

construction of GC . In the case i > i′ , such an arc only exists if
∑i−1
j=i′ Dj ≤ Ru by construction of GC .

Consequently, ramping constraints are always satisfied.

By construction of GC , from a vertex (t, i, l), the only way to reach operating point i′ > i is through the

arc towards (t + 1, i′ , L− 1). Also by construction of GC , from (t + 1, i′ , L− 1,u), one needs to go through all

vertices (t + 1 + τ , i′ , L−1− τ), with τ ∈ {1, . . . ,L−2}, and (t +L, i′ , 0) in order to reach operating point i′′ < i′ .

In total, a path must go through at least 1 + L− 2 + 1 = L vertices with operating point i′ before heading to a

vertex with operating point i′′ < i′ . Hence, the min-up constraint is satisfied. We can prove in a similar way

that the min-down constraints are satisfied.

The proof of Property 37 is illustrated by Figure 6.2 from Example 31.
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Remark 8

Note that for both representations, the associated graph is acyclic. For acyclic graphs, the SPP and

the LPP and their variants are equivalent. Hence, despite the fact that the 1-HUCDRM problem is

a maximization problem, algorithms for the SPP and its variant still can be used. As the use case

1-HUCDRM problem is a maximization problem, our algorithms will be described for variants of the

LPP.

6.3 Literature review

In this section, we first present a literature review of graph algorithms developed for the UCP and

for the HUC. As we consider the HUC an an RWSPP, we also include in this review graph algorithms for

the RWSPP. As graph algorithms are essentially dynamic programming algorithms, we focus on such a

type of algorithms.

6.3.1 Dynamic programming for the Unit Commitment Problem

A dynamic programming algorithm for a single plant Unit Commitment (1-UC) problem with ramping

and min up/down constraints is presented in [38]. The algorithm is based on a graph with a source

vertex and several groups of T vertices. For each even (resp. odd) group, vertex t indicates that the unit

is turned off (resp. on) at time period t. The arcs connect the vertices of a group to the next groups, from

a time period t to a time period t′ > t. Finding a path in this graph allows one to find an on-off schedule

for the units of the plant. The difference between the 1-UC and the 1-HUCDRM problem is that when

the 1-UC problem features a resource, it has an upper bound [60], while in the 1-HUCDRM problem, the

presence of reservoirs with minimum and maximum volumes requires to account for resource windows.

6.3.2 Dynamic programming for the Hydro Unit Commitment problem

In this part we focus on dynamic programming algorithms for the HUC problem, most of them being

cited in the survey [97].

In [87] the author presents a two-phase approach to solve the HUC problem, as an LP for the first

phase and using a dynamic programming algorithm for the second phase. More precisely, the second

phase consists in solving a 1-HUC problem for each plant of the valley with dynamic programming,

aiming to get the closest solution to the LP solution while taking into account constraints omitted in

the LP. For this phase, the considered underlying graph is similar to GE , but the reservoir volume is

discretized into hundreds of possible volume values for a reservoir. Consequently, there are hundreds

of vertices per time period. A Bellman-Ford algorithm [11] is used to find a path in this graph. Such a

discretization discards a lot of realistic states from GE . In our study, we consider all possible states in
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GE , which is pseudo-polynomial. This can yield a very large number of states, specially for instances

with a large number of time periods. With such a large number of states, the Bellman-Ford algorithm

becomes far less efficient.

In [82] a method for solving a non-linear 1-HUC problem with a target volume is described. To solve

this problem with dynamic programming, a state diagram is constructed. In a similar fashion to [87],

evenly discretized volumes are considered, yielding a limited number of states per time periods. More

precisely, it is stated in the experimental results of [82] that the discretization is ranging from 0.3% to

0.5% of the difference between the minimum and maximum volume of the reservoir. This represents

about 300 vertices at each time period, which discards the majority of the states of GE when taking into

account all possible states. In order to have feasible solutions, the target volume is relaxed to match

this discretization. The state diagram is constructed by generating the possibilities to reach the target

volume from the initial volume, satisfying the upper and lower bounds on the volume at each time

period. Starting from the state at the end of the time horizon, the dynamic programming algorithm

maximizes the value of the generated power. As we consider instances of the 1-HUCDRM problem with

and without target volumes, a backward algorithm may not be practical with large volumes and no

target volume.

In [3], a decomposition method for solving the HUC problem with shortest paths is described. The

considered HUC problem is relative to a valley where each plant has a finite number of operating points.

The topology of the valley is not restricted to a chain, as each plant (resp. reservoir) can have a set of

upstream and downstream reservoirs (resp. plants). This HUC problem also takes into account ramping

constraints as well as a target volume for each reservoir at the last time period. Note that the latter

target volume is a minimal bound, meaning there is no equality constraint. The solution approach

decomposes this HUC problem into multiple 1-HUC problems. Each 1-HUC problem is represented by

a graph similar to GC . The 1-HUC subproblems without resource constraints are solved by a shortest

path algorithm, while the ones with resource constraints are solved by a labeling algorithm defined in

[2]. The latter algorithm is adapted from a classical RCSPP algorithm [9] to take into account a minimum

bound for the resource. It is mentioned that this labeling algorithm loses its dominance properties

between two labels if one of them does not verify the minimum bound on the resource. Such a case is

more frequent when the target volume is considered with equality constraints, making this algorithm

much less efficient.

There are also other problems solved by dynamic programming related to the 1-HUC problem. In

[5] a dynamic programming approach is described to solve an HUC problem on instances of the Itaipù

plant (Brazil, Paraguay). This problem differs from ours as the only constraint is to satisfy the minimum

and maximum number of turbines running at each time period. No volume is considered, therefore

there are neither bounds on the volume, nor a target volume. In [23] the Hydro Unit Load Dispatch

problem (HULD) is presented. This problem differs from the HUC problem, as the water flow is known,

and solving the HULD problem is to provide the most economic distribution of the water through the

different turbines, while verifying the flow capacity of the turbines at each time period.
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6.3.3 Shortest path with resource constraints

As the HUC can be modeled an an RWSPP we are interested in the solution methods for the RCSPP and

the RWSPP.

There are works on the RCSPP to solve the thermal problem on EDF instances [60]. In that paper it

is indicated that the resource has an upper bound but no lower bound. However, as specified in [3], the

difficulty of the HUC comes from the lower bound on the volume, which weakens the dominance rules.

In [102], a state-of-the-art review of different shortest path variants is described. More specifically,

it is indicated that there is little work on the RWSPP. Three papers are cited, namely [88] describing

a heuristic, [10] presenting an integer formulation and [109] proposing a dynamic programming algo-

rithm. As we look for an exact algorithm and an alternative to integer programming, we will focus on

the three-phase algorithm described in [109]. The presented algorithm solves the RWSPP on acyclic

graphs. The main idea, further detailed in [110], is to extend the graph, such that if multiple paths lead

to the same vertex from the source, a new vertex is created for each of these paths. The problem is then

solved on the expanded graph. However, the expanded graph is of exponential size, making it difficult

to use in practice. In the case of the 1-HUCDRM problem, such an extension can lead up to NT vertices

at time period T .

In [56], efficient dominance rules for the Shortest Path Problem with Time Windows and Time Cost

(SPPTWTC) exist when there is also a time-cost, meaning more generally when the objective function is

directly linked to the resource. Recall that as explained in Section 3.2, time windows are less restrictive

than resource windows due to the possibility of waiting at a vertex for the window opening. Hence,

these dominance rules do not exist as such for the RWSPP. Nevertheless, one can try to extend these

dominance rules to the RWSPP in the case where there is a resource-cost. However, the 1-HUCDRM

problem does not fall into this family of RWSPP. Indeed, the objective function depends on both the

flow Dt and the power Pt , the latter not being linked to the resource, namely the cumulated flow D1,t .

6.3.4 Bi-objective approaches

The two-phase method was first introduced to solve the bi-objective knapsack problem [106]. This

classical method is particularly efficient to deal with two or even three objectives when the correspond-

ing problem with a single objective is easy to solve. In the bi-objective case, the two-phase method

can be defined as follows. The first phase consists in obtaining one Pareto-supported solution for

each Pareto-supported point that form the convex envelope of the objectives’ space. This is because

if Pareto-supported solutions are known, then one can drastically reduce the search space to obtain

Pareto-optimal solutions, i.e., solutions that are never dominated on all objectives by another solution

(see Section 6.1 for definitions). The main idea to obtain Pareto-supported solutions is to solve the

problem with the two objectives aggregated into a single one by convex combination. The set of Pareto-

supported solutions is generated by varying the combination parameters. The second phase is to use

an enumeration algorithm, to obtain the remaining Pareto-optimal solutions within the reduced search

165/243



6.3. LITERATURE REVIEW Chapter 6. Graph algorithms: 1-HUCDRM problem

space defined by the Pareto-supported solutions. The most straightforward approach is the enumeration

of one Pareto-optimal solution for each Pareto-optimal point in the objectives’ space, which can be done

with a Branch & Bound variant [106] or dedicated algorithms [35]. As the number of Pareto-optimal

solutions can be exponential, such algorithms can become very time-consuming, and many other ap-

proaches have been developed.

Whenever it is possible to interact with the decision maker, one can consider an interactive algorithm

[72]. The main principle is to iteratively suggest solutions to the decision maker, who progressively

provides preference information. Such an approach can drastically reduce the search space at each

iteration. The main downside is that the decision maker must be available during the execution of the

algorithm, which is not the case for the 1-HUCDRM problem.

When no interaction with the decision maker is possible, the computational time is linked to the

number of Pareto-optimal solutions, which is often exponential. One way to reduce the computational

time is to generate only a subset of the Pareto-optimal solutions, for instance with a K-best solutions al-

gorithm [36]. The downside is that the set of solutions may not contain the most adequate Pareto-optimal

solution with respect to the decision maker’s preferences. In the case of the 1-HUCDRM problem, the

set of Pareto-optimal solutions for the BOSPP may not contain any solution of the 1-HUCDRM problem.

Hence, this algorithm can not be considered as such to provide the optimal solution, but we show in the

following sections how we adapt the enumeration to our purpose.

Another way to generate fewer Pareto-optimal solutions is to consider a non-linear combination of

the objectives, such as the Chebychev norm [86], a Choquet or Sugeno integrals [49], or Lorenz domi-

nances [21]. The interest of considering such non-linear metrics is that they can lead to Pareto-optimal

solutions without being limited to the Pareto-supported ones, in opposition to a linear metric. The

downside is that one may need some decision maker’s preferences to efficiently set up these metrics

Also, introducing a non-linear function often induces large computational times. For our purpose, this

type of algorithm seems to be impractical. Indeed, the optimal solution of the 1-HUCDRM problem may

not be a Pareto-optimal solution of the BOSPP, especially with tight resource window constraints defined

by (3.2.6) and (3.2.7). Hence, even with a non-linear metric, one requires to enumerate the solutions,

which means solving multiple times a non-linear problem with large computational times. Besides, in-

stances of the 1-HUCDRM problem can greatly vary from one to another, making it more difficult to set

up the non-linear metrics for any instance.

Note however that for some nonlinear metrics, some efficient algorithms exist. This is the case when

considering the most robust solution, i.e., optimizing the worst case scenario (or worst objective in the

case of multi-objective optimization). Indeed, a pseudo-polynomial algorithm exists for the shortest

path problems with two scenarios [108]. This algorithm is pseudo-polynomial as it is linear with respect

to the value of the objective function. For the 1-HUCDRM problem, the values can be very large, therefore

this type of algorithm may be ineffective.
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6.4 An exact A* variant for the discretized 1-Hydro Unit Commitment problem

In this section, we describe the new algorithm proposed to solve the 1-HUCDRM problem. The aim

of this algorithm is to find the longest path in graph G∗E as described in Section 6.2.1. A difficulty of

this graph is the pseudo-polynomial number of vertices, which is why we resort to a variant of the A*

algorithm [50] to dynamically build GE . The A* algorithm is particularly efficient when the number

of vertices is large as it involves a dual bound to guide the search, and to discard suboptimal partial

solutions. We denote the proposed exact variant of the A* algorithm for the 1-HUCDRM problem by

HA*. This algorithm involves a dedicated dual bound for the 1-HUCDRM problem.

6.4.1 Dual bound

In the case of the 1-HUCDRM problem, a dual bound overestimates the value of the objective function

because we are solving a maximization problem. Let p be a path from time period 1 to t representing

already taken decisions. The aim is to compute a dual bound from time period t+1 to T . The idea of the

proposed dual bound is to compute an improved linear relaxation of model Mop-DRM defined in Section

3.3 on time periods t + 1 to T . To do so, we define quadruplets (t, i,val, f low), with t a time period, i an

operating point, val the value
∑i
j=0Ψt,j , and f low the value

∑i
j=0Dj . The aim is to progressively increase

the values of variables xt,i depending on their profitability, being val/f low.

Algorithm 4 describes how to compute a linear relaxation on time periods t + 1 to T from a partial

path in graph G∗E , as detailed in the following four steps.

Step 1: Initialize a fractional solution with xt′ ,i = 1 if the partial solution represented by path p

requires operating point i ≤ N at time period t′ ≤ t, xt′ ,i = 0 otherwise. This step is represented by lines

1 to 8 of Algorithm 4.

Step 2: Initialize a list with all the quadruplets at time period t′ ∈ [t+1;T ] by decreasing profitability

val/f low. This step is represented by lines 9 to 14 of Algorithm 4.

Feasibility step 3: This step is repeated as long as lower bounding constraints (3.2.6) are not verified

(the while loop at line 15 of Algorithm 4). The algorithm looks for the smallest time period t′ such

that (3.2.6) is not satisfied, and for xt′′ ,i with t′′ ∈ [t + 1; t′] associated to (t′′ , i, val, f low) maximizing

profitability val/f low. The variable xt′′ ,i is increased depending on its profitability:

• If the profitability is positive, fractionally increase xt′′ ,i as much as possible provided all upper

bounds α∗ are satisfied.

• Otherwise, fractionally increase xt′′ ,i as little as possible provided all upper bounds and the lower

bounds β∗t′ are satisfied.

All variables xt′′ ,i′ < xt′′ ,i with i′ < i must be set to the same value as xt′′ ,i in order to satisfy the order

constraints. Also, for any i′ > i, quadruplets (t′′ , i′ , val′ , f low′) are updated as (t′′ , i′ , val′ − val, f low′ −
f low). This is because as xt′′ ,i > xt′′ ,i′ , one can increase xt′′ ,i′ without increasing xt′′ ,i while still verifying
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order constraints. For all variables that cannot be further increased due to the upper bounds (3.2.7), the

associated quadruplets are removed from the list.

Optimality step 4: This step is repeated as long as there is a variable of positive profitability associ-

ated to a quadruplet in the list of quadruplets (again the while loop at line 15 of Algorithm 4). Select

the variable associated to the first quadruplet of the list, and fractionally increase its value as much as

possible provided all upper bounds are satisfied. Remove from the list all quadruplets associated to a

variable that cannot be further increased due to the upper bound (3.2.7).

Property 38

The fractional solution returned by Algorithm 4 verifies order constraints.

Proof : Consider two quadruplets (t, i, val, f low) and (t, i′ , val′ , f low′), with t a time period considered by

Algorithm 4 and i′ > i. At the start of the algorithm, xt,i = xt,i′ = 0. If xt,i′ is increased, then xt,i is increased

by the same amount (see line 22 of Algorithm 4), hence order constraints are satisfied. If xt,i is increased, it

means that val/f low > val′/f low′ . Hence, val/f low > (val′−val)/(f low′−f low). Consequently, the algorithm

will increase xt,i′ only if xt,i = 1, hence order constraints are satisfied.

Theorem 13

Algorithm 4 defines a dual bound for the 1-HUCDRM problem.

Proof : Let s be an integer solution for the 1-HUCDRM problem, for which variables xt,i satisfy all constraints of

Mop-DRM . Let ŝ be a fractional solution for the 1-HUCDRM problem obtained with Algorithm 4, for which

x̂t,i verify all constraints of Mop-DRM for time periods 1 to t ≤ T . Consider ŝ and s to be identical for time

periods 1 to t.

Let X (resp. Y ) be the variables such that xt′ ,i < x̂t′ ,i ∀xt′ ,i ∈ X (resp. xt′ ,i > x̂t′ ,i ∀xt′ ,i ∈ Y ) with t < t′ ≤ T .

Clearly, for each variable xt′ ,i ∈ X of positive profitability, a fractional value for xt′ ,i increases the value

of the objective function compared to xt′ ,i = 0. Similarly, for each variable in Y of negative profitability, a

fractional value for xt′ ,i increases the value of the objective function compared to xt′ ,i = 1.

Let X− ⊆ X and Y− ⊆ Y be the variables with negative profitability. Suppose |X−| > 0. By construction

of ŝ, the variables of X− have value greater than 0 only in order to yield a feasible solution, with respect to

a lower bound β∗t′ . In such a case the total flow of ŝ from time period 1 to t′ is exactly β∗t′ by construction of

ŝ. As solution s also verifies all lower bounds, we deduce |Y−| > 0. Otherwise, there is either a contradiction

with the construction of ŝ, or s does not verify all lower bounds. Hence, the total flow of s from time period

1 to t′ is at least β∗t′ . By definition, s and ŝ are identical from time period 1 to t, consequently the only

difference is on time periods t + 1 to t′ . By construction of ŝ the variables of X− are the most profitable and

have fractional value in ŝ. Consequently, their weighted value in the objective function must be higher than

those of Y− in the integer solution s.

A similar proof can be made for variables in Y+ ⊆ Y and X+ ⊆ X the variables with positive profitability.

The value of ŝ is then greater or equal to the value of s.
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It is possible to tighten the fractional solution returned by Algorithm 4 while keeping its value as

a dual bound. Clearly, an integer solution is necessarily of a total flow which is a combination of the

flows from the operating points. Therefore, the flow of an integer solution is necessarily a multiple of

the Greatest Common Divisor (GCD) of the operating points’ flows. When the algorithm increases the

value of a variable, we can increase or reduce this value so that the total flow of the returned solution

remains a multiple of the GCD relative to the operating points’ flows. This is achieved at steps 18 and 20

of Algorithm 4. Note that since the flows are identical from one time period to another, we can quickly

compute the GCD by considering only the flows of a single time period.

Algorithm 4 DualBound Algorithm

Require: A path p from time period 1 to t, a graph G∗E , GCD the GCD of the flow
1: Initialize solution x̂ with all variables to 0
2: for t′ ∈ [1;T ] and i ∈ [1;N ] do
3: if t′ ≤ t AND p requires operating point i at time period t′ then
4: x̂t′ ,i = 1
5: else
6: x̂t′ ,i = 0
7: end if
8: end for
9: Initialize a list L = []

10: for t′ ∈ [t + 1;T ] and i ∈ [1;N ] do
11: f low←

∑i
j=1Dj

12: val←
∑i
j=1Ψt′ ,j

13: add (t′ , i,val, f low) in L, sorted by decreasing val/f low
14: end for
15: while ∃t′ ∈ [t + 1,T ] such that x̂ does not verify β∗t′ OR exists quadruplet in L with val > 0 do
16: (t′′ , i,val, f low)← first in L with t′′ ≤ t′
17: if val ≤ 0 then
18: set x̂t′′ ,i to minimum such that β∗t′ verified and xt′′ ,i · f low mod GCD = 0; if β∗t′ cannot be

verified x̂t′′ ,i ← 1
19: else
20: set x̂t′′ ,i to maximum such that all upper bounds are verified and xt′′ ,i · f low mod GCD = 0
21: end if
22: for i′ ∈ [1; i] do
23: x̂t′′ ,i′ = max(x̂t′′ ,i′ , x̂t′′ ,i)
24: end for
25: for (t′′ , i′ ,val′ , f low′) ∈ L with i′ ∈]i;N ] do
26: val′← val′ − val
27: f low′← f low′ − f low
28: end for
29: for (t′′ , i,val, f low) ∈ L such that x̂t′′ ,i cannot be increased do
30: remove (t′′ , i,val, f low) from L
31: end for
32: end whilereturn the value of x̂
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6.4.2 Hydro A* algorithm

For a 1-HUCDRM problem with an objective function to maximize, the principle of HA* is the following.

Consider a pool of partial solutions evaluated with the dual bound. At each iteration, the partial solution

with the highest dual bound value is considered and removed from the pool. From the partial solution

considered, we complement it by adding neighbors relative to its last vertex. Once a solution is found, its

value is used as a bound to remove some more partial solutions from the pool. Indeed, if the solution’s

value is higher than a partial solution’s dual bound, then the partial solution can be removed from the

pool. Once the pool of partial solutions is empty, the algorithm stops and the best solution found is the

optimal solution.

We underline the need of a tight dual bound. If the bound used is not a dual bound, then one might

discard feasible solutions, including the optimal one. If the dual bound is too loose, there are fewer

cases where one can prune partial solutions while guaranteeing optimality. Hence, more vertices are

developed which can exponentially increase the computational time.

For readability purposes, we introduce three structures:

Definition 51 (Path structure)

The path structure has three attributes: vertices the list of vertices of the path; val the value of the

path with respect to the objective function; dual the dual bound value.

Definition 52 (Vertex structure)

A vertex structure has two attributes: t the time period and d the cumulated flow D1,t , as defined for

the vertices of G∗E in Section 6.2.1.

Definition 53 (Arc structure)

The arc structure has one attribute: val the value as defined for the arcs of G∗E in Section 6.2.1.

Algorithm 5 presents the pseudocode of HA*, using the three previously described structures as well

as DualBound. The dominance rules used in Algorithm 5 are the dominance rules 1 and 2 defined in

Section 6.2.1.

In the following, we present experimental results to demonstrate the efficiency of the HA* algorithm

against two state-of-the-art approaches.

6.4.3 Numerical results for the discretized 1-Hydro Unit Commitment without ramping

nor min-up/down constraints

Results presented in Section 6.5.3 show that HA* is not particularly efficient on generic instances of the

1-HUCDRM problem. This is due to the algorithm computing the dual bound, which does not take into

account ramping and min-up/down constraints (3.1.9)-(3.1.12). However, we identify that HA* becomes
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Algorithm 5 Algorithm HA*

Require: A graph G∗E
Initialize a path p as follows: p.vertices = {(0,0)}, p.val = 0.0, p.dual =DualBound(p)
Initialize a list of paths Lp = [p]
Initialize the best solution bestSol = ∅
Initialize the value of the best solution bestV al = −∞
while Lp not empty do

p← first path in Lp
remove p from Lp
v← last vertex of p.vertices
for arc a from v to u do

q.vertices = p.vertices∪u, q.val = p.val + a.val, q.dual =DualBound(q)
if |q.vertices| = T + 1 then

if bestV al < q.val then
bestV al← q.val
bestSol← q.vertices
remove q′ ∈ Lp with q′ .val + q′ .dual ≤ bestV al

end if
else

dom← FALSE
for q′ ∈ Lp do

if q′ dominates q then
dom← TRUE

end if
if q dominates q′ then

remove q′ from Lp
end if

end for
if dom = FALSE and q.val + q.dual > bestV al then

add q in Lp by keeping Lp sorted by decreasing q.val + q.dual
end if

end if
end for

end while
return bestSol
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efficient for the special case of the 1-HUCD problem. In the following, we show results for instances of

the 1-HUCD problem.

Following results are computed on a single thread of an Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz

processor, with 2 CPUs of 8 cores, with Linux as operating system. All algorithms are developed with

C++. Version 12.8 of CPLEX with default setting is used to solve the MILP formulation.

From a large set of realistic instances derived from a real EDF plant, a first set A of 13 instances is

obtained. These 13 instances are retained as preliminary results have shown that formulation Mop-D is

not trivially solved. This emphasizes the need of an efficient alternative in these cases. For each of these

instances, T = 96, L = 1 and the ramping Ru , Rd are not restrictive. Table 6.2 depicts for each instance

the main characteristics, the number of operating points, the presence of a constraining minimum (resp.

maximum) bound on the volume at the last time period and the presence of a tight resource window at

the last time period. The instances cover three cases, namely when there is only an upper bound, only a

lower bound, or a target volume with a constraining upper and lower bound. In the case of an equality

constraint, the instance becomes infeasible, which is out of the scope of the instances considered in this

chapter. Hence, the target volumes are not equality constraints, but rather tight window constraint. For

instances with a target volume, more resource windows are obtained by propagating the bounds β∗ and

α∗ from the bounds at the last time period to the previous ones.

The water flow D and power P are in the order of 103 to 104, with volumes in the order of 107. For

target volumes, the difference between the upper and lower bound is in the order of 103, which is small

enough with respect to the flows to yield very few vertices at time period T in G∗E .

Table 6.2: Main characteristics of instances set A with T = 96 time periods

instance N minimum volume maximum volume tight window resources
1 4 ✗ ✓ ✗

2 4 ✓ ✗ ✗

3 4 ✓ ✓ ✓

4 7 ✗ ✓ ✗

5 7 ✓ ✗ ✗

6 7 ✓ ✓ ✓

7 8 ✗ ✓ ✗

8 8 ✓ ✓ ✓

9 15 ✗ ✓ ✗

10 17 ✗ ✓ ✗

11 18 ✓ ✗ ✗

12 21 ✗ ✓ ✗

13 18 ✗ ✓ ✗

A second set B of 13 instances, similar to the first set, is also constructed. The only differences are

bounds β∗T and α∗T that are shifted as follows. Let an instance with bounds β∗T [A] and α∗T [A] be in set

A. A random value k ∈ [−9999;−1000] ∪ [1000;9999] is chosen. Bounds of an instance for set B are

β∗T [B] = β∗T [A] + k and α∗T [B] = α∗T [A] + k. Note that this shift is very small for these instances. Indeed,

the water flows can be in the order of 104, there are nearly 100 time periods and the cumulated flow

D1,T is in the order of 106. The shift k is at most 1% of D1,T . As shown in the following results, slightly

172/243



Chapter 6. Graph algorithms: 1-HUCDRM problem 6.4. HA* ALGORITHM

modifying an instance can drastically impact the computational time.

In order to benchmark HA*, all instances are solved with HA* as well as with two alternative meth-

ods. The first alternative is a classical RCSPP algorithm [9] adapted to the 1-HUCD problem [2]. The

second alternative is to use CPLEX to solve Mop-D described in Section 3.3. All algorithms use a single

thread, with a time limit of one hour.
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Figure 6.3: Total number of instances A and B solved per computational time

Figure 6.3a and 6.3b represent the number of instances solved by each algorithm with respect to the

computational time. Clearly, for instance set A, HA* is the most efficient alternative. Indeed, it solves

every instance and requires less time than the other alternatives. For instance set B, solving Mop-D is the

most efficient alternative. Note that the difference between the solving times ofMop-D and HA* is only of

a few seconds for instance set B, as most instances are solved in less than 10 seconds with HA*. Solving

Mop-D is the least robust alternative when it comes to computational times. Indeed, when comparing

the results between instance sets A and B, the computational times are drastically different for Mop-D ,

whereas for HA* there is a smaller difference, and for the RCSPP algorithm the results are the same. The

RCSPP algorithm fails to solve 10 out of 13 instances, for both instance sets A and B. This shows that

the RCSPP algorithm is inefficient at solving the 1-HUCD problem. We further explain the results in the

following, by introducing Table 6.3 and 6.4 with detailed results.

Table 6.3 and 6.4 give, for each instance, the value of the objective function and the computational

times obtained for all algorithms, as well as the optimality gap and the number of Branch & Bound nodes

returned by the MILP solver. If the MILP solver proves optimality, the gap is noted "opt". When the time

limit is reached, the time is noted "-". Results are presented for each instance individually, as well as the

average (avg) and the standard deviation (sd) for the solved instances. When the time limit is reached,

a computational time of 3600 seconds is accounted for in the average and the standard deviation. The

computational time of the most efficient algorithm is emphasized in bold for each instance, as well as
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the average and the standard deviation for each set of instances.

Table 6.3: Performance of solving Mop-D , the RCSPP algorithm and HA* on instance set A

Mop-D RCSPP HA*
instance value #nodes gap time value time value time

1 −25428.80 10232857 opt 2713.4 - - −25428.80 2.5
2 43010.90 2591995 opt 437.0 43010.9 0.9 43010.90 2.3
3 3556.54 5034351 opt 1384.8 - - 3556.54 12.0
4 2462.90 167490 opt 44.1 - - 2462.90 11.1
5 111115.00 101570 opt 17.8 111115.0 525.2 111115.00 18.8
6 −1706.62 888735 opt 331.4 - - −1706.62 14.9
7 5692.65 115626 opt 6.2 - - 5692.65 120.6
8 16581.10 487218 opt 30.9 - - 16581.10 126.0
9 −71645.90 176123 opt 21.4 - - −71645.90 133.0

10 −525446.00 901533 opt 732.1 - - −525446.00 168.4
11 44421.20 1535139 opt 982.0 44421.2 114.1 44421.20 213.9
12 −20329.90 1624614 0.58 - - - −20324.00 748.8
13 −103435.00 365253 opt 80.7 - - −103435.00 122.8
avg - 1865577 0.58 798.6 - 1431.0 - 130.4
sd - 2755062 0.0 1101.1 - 2818.4 - 191.7

Table 6.4: Performance of solving Mop-D , the RCSPP algorithm and HA* on instance set B

Mop-D RCSPP HA*
instance value #nodes gap time value time value time

1 −25430.30 873 opt 0.2 - - −25430.30 0.4
2 42993.00 0 opt 0.0 42993.00 1.0 42993.00 0.0
3 3700.23 11 opt 0.0 - - 3700.23 0.2
4 2462.90 16330 opt 2.1 - - 2462.90 3.7
5 111143.00 34982 opt 3.8 111143.00 481.5 111143.00 8.4
6 −1460.33 2519 opt 0.4 - - −1460.33 2.1
7 5936.31 522284 opt 39.2 - - 5936.31 155.7
8 16730.40 6403 opt 0.5 - - 16730.40 8.6
9 −132290.00 0 opt 0.0 - - −132290.00 9.2

10 −525246.00 46425 opt 27.1 - - −525246.00 37.2
11 44646.80 0 opt 0.0 44646.80 109.1 44646.80 6.2
12 −20153.10 1586 opt 0.1 - - −20153.10 146.3
13 −103339.00 2314 opt 0.2 - - −103339.00 27.7
avg - 48748 - 5.7 - 1437.1 - 31.2
sd - 137446 - 12.0 - 2814.7 - 52.2

There is a clear difference in computational time between set A and B. Indeed, Mop-D is solved for

12 out of the 13 instances of set A, and needs between 6 and 2713 seconds, while it is solved for all

instances of set B, most of them instantaneously. Similarly, HA* solves all instances of set A and needs

between 2 and 748 seconds, while it solves all instances of set B in less than 156 seconds. Note however
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that there is no noticeable computational time difference between solving instance set A and B with the

RCSPP algorithm.

The RCSPP algorithm is only able to solve instances 2, 5 and 11, for both sets. This is because for any

other instance, the maximum volume of the upstream reservoir is constrained at the last time period.

In this case, the value β∗T becomes positive, meaning that there is a minimum bound on the resource.

As mentioned in [3], when there is a minimum bound on the resource, the dominance properties of the

RCSPP algorithm cannot always be applied, thus leading to large computational times. Clearly, HA*

outperforms the RCSPP algorithm. Even when there is no minimum bound on the resource, the RCSPP

algorithm yields larger computational times for all instances of set B and instance 5 of set A.

When comparing HA* algorithm to solving Mop-D on the most difficult instances, the former out-

performs the latter in terms of computational time and number of instances solved. On the one hand,

HA* is more stable with respect to the computational times. Indeed, HA* only requires more than 10

minutes once (instance 12 of set A), while solving Mop-D requires more than 10 minutes for 5 of the 26

instances (instances 1, 3, 10, 11 and 12 of set A). Moreover,Mop-D is not solved to optimality for instance

12 of set A, and the best value found is not the optimal value obtained with HA*. On the other hand,

solvingMop-D appears to be more efficient on easier instances than HA*. In this case, there are numerous

instances where the difference between the two approaches is within a few seconds (instances 1, 2, 3, 4

and 6 of set B).

The stability with respect to the computational time is noticeable on the average and standard de-

viation. Indeed, the average time difference between set A and B is much smaller for HA* than for the

MILP solver. The standard deviation for HA* is much smaller on set A, and slightly larger for set B

when compared to solving Mop-D . Besides, one can compute the total average and total deviation of the

solution time for all 26 instances. The total average time and standard deviation are 402.1 seconds and

873.7 seconds for the MILP solver, and 80.3 seconds and 149.0 seconds for HA*.

6.5 A two-phase method for the discretized 1-Hydro Unit Commitment problem

Even though algorithm HA* is efficient for the 1-HUCD problem, it is not the case for the 1-HUCDRM

problem. First, the graph is larger with more vertices to represent these constraints. Second, ramping

and min-up/down constraints make the operating points, that can be reached at a time period t, depend

on the partial path from time period 1 to t − 1, meaning that the dominance rules apply in fewer cases.

Third, the dual bound does not take into account min-up/down and ramping constraints. Hence, its

value becomes too loose which negatively impacts the performances of HA*.

In this section, we present a new graph algorithm that can handle the 1-HUCDRM problem, and more

generally can solve an RWSPP with a single resource. To do so, we first define the bi-objective relaxation

of the RWSPP. Then, we describe the core ideas, inspired by the two-phase algorithm for bi-objective

problems [103] to solve the RWSPP. The idea is to enumerate solutions of the bi-objective relaxation
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of the RWSPP in a reduced search space. Finally, this algorithm is benchmarked on real 1-HUCDRM

problem instances, against three state-of-the-art approaches.

6.5.1 Bi-objective relaxation of the Longest Path Problem with Resource Windows

In this section, we first define some properties for the solutions of a Bi-Objective Longest Path Problem

(BOLPP), which is similar to the BOSPP defined in Section 6.1 but where the aim is to maximize the two

objectives. Then, we define a bi-objective relaxation of the RWLPP as a BOLPP. Clearly each solution of

the RWLPP is also a solution of the BOLPP as there is no resource constraints in the latter. Besides, we

show in the following that one can obtain an upper bound for a solution of the RWLPP by a combination

of the objectives of the BOLPP.

Definition 54 (Aggregated value)

We define µδ(C) = δ1 ·V1(C) + δ2 ·V2(C) as the aggregated value of a path C considering vector δ.

Note that for any Pareto-supported path C, there exists a vector δ such that µδ(C) ≥ µδ(C′) for any other

path C′ .

Remark 9

Without loss of generality, we consider δ1 > 0 and δ2 > 0. Indeed, consider two paths C and C′ such

that V1(C) > V1(C′) and V2(C) = V2(C′). In the case δ1 ≤ 0, then µδ(C) ≤ µδ(C′), meaning that C′ could

be Pareto-supported, while solution C dominates C′ as the BOLPP aims to maximize both objectives.

A similar observation can be done for δ2. Also, note that the sum δ1 + δ2 does not necessarily equals

1, meaning that the aggregated value is not necessarily a convex combination of the two objectives.

Remark 10

The objective functions are not normalized before the aggregation. This is because when instances

of some problems, such as those relative to the 1-HUCDRM problem, are subject to numerical issues,

they are sensitive to data scaling.

In the following, we denote P the ordered set of Pareto-supported paths, ordered by increasing value of

the first objective. We do not consider in P two solutions with the exact same values, meaning that for

two paths C and C′ in P , C ,p C′ .

We define the bi-objective relaxation of the RWLPP as the BOLPP with V1(C) = V (C) and V2(C) =

R(C). The idea is to define a restricted search space to enumerate the feasible paths of the BOLPP,

until the optimal path of the RWLPP is obtained. In the original two-phase algorithm for bi-objective

problems, the search spaces are defined as triangle between consecutive Pareto-supported paths in P . We

show later in this section an example where no optimal solution of the RWLPP is present in any of these

triangles. However, we still can use Pareto-supported solutions and the resource window [R(p);R(p)] to

define a region.

First, we can introduce an upper bound for V1(C∗) with C∗ the optimal path of the RWLPP.
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Property 39

Let C be the Pareto-supported solution maximizing V1(C) and C∗ the optimal path of the RWLPP.

Then, V1(C) is a valid upper bound for V1(C∗)

Proof : As C∗ is a valid solution for the RWLPP, it is also a valid solution for the BOLPP. Consequently, if

V1(C∗) > V1(C), then C cannot be the Pareto-supported solution maximizing V1(C).

However, it can be possible to provide a tighter upper bound. We first introduce the following lemma.

Lemma 4

Let C1, C2 and C3 be three solutions of the BOLPP with V1(C1) ≤ V1(C2) ≤ V1(C3). Consider that

these solutions do not dominate each other. Let δ be such that µδ(C1) = µδ(C3). If µδ(C2) < µδ(C1)

then C2 cannot be Pareto-supported.

Proof : Consider a vector δ′ such that δ′1 > δ1 and δ′2 = δ2. Then, as µδ(C2) < µδ(C3) and V1(C2) ≤ V1(C3),

hence µδ′ (C2) ≤ µδ′ (C3). Consider a vector δ′ such that δ′1 < δ1 and δ′2 = δ2. Then, as µδ(C2) < µδ(C1) and

V1(C1) ≤ V1(C2), hence µδ′ (C2) ≤ µδ′ (C1).

From a vector δ′ , one can obtain any other vector δ′′ by multiplying δ′1 and δ′2 by the same non-negative

real number. Hence, there is no vector δ′′ for which C2 maximizes µδ′′ (C2), hence C2 is not Pareto-supported

by definition.

We introduce Properties 40 to 42 and Theorem 14 to provide a tighter upper bound for V1(C∗).

Property 40

Let (C1,C2) be a pair of consecutive paths in P . Let δ be such that µδ(C1) = µδ(C2). For each feasible

path C3 of the BOLPP, V1(C3) ≤ µδ(C1)−δ2·V2(C3)
δ1

Proof : Suppose that V1(C3) > µδ(C1)−δ2·V2(C3)
δ1

. Note that in such a case, µδ(C3) > µδ(C1).

Consider the case V1(C1) < V1(C3) < V1(C2) illustrated by Figure 6.4a. In such a case, C1 and C2 cannot

be two consecutive paths in P by definition. Indeed, either C3, or a Pareto-supported solution dominating

C3 is between C1 and C2 in P .

Consider the case V1(C1) < V1(C2) < V1(C3) illustrated by Figure 6.4b. Let δ′ be such that µδ′ (C1) =

µδ′ (C3). We suppose that µδ′ (C2) ≥ µδ′ (C3) to show a contradiction. We then know the following:

δ1 ·V1(C1) + δ2 ·V2(C1) = δ1 ·V1(C2) + δ2 ·V2(C2)

δ1 ·V1(C1) + δ2 ·V2(C1) < δ1 ·V1(C3) + δ2 ·V2(C3)

δ′1 ·V1(C1) + δ′2 ·V2(C1) = δ′1 ·V1(C3) + δ′2 ·V2(C3)

δ′1 ·V1(C1) + δ′2 ·V2(C1) ≤ δ′1 ·V1(C2) + δ′2 ·V2(C2)

From the equations, we can deduce δ1 = δ2 ·
V2(C1)−V2(C2)
V1(C2)−V1(C1) and δ′1 = δ′2 ·

V2(C1)−V2(C3)
V1(C3)−V1(C1) . From the inequalities,

we can deduce δ2 · (V2(C1)−V2(C3)) < δ1 · (V1(C3)−V1(C1)) and δ′2 · (V2(C1)−V2(C2)) ≤ δ′1 · (V1(C2)−V1(C1))
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Combining these results, we obtain on one hand:

δ2 · (V2(C1)−V2(C3)) < δ2 ·
V2(C1)−V2(C2)
V1(C2)−V1(C1)

· (V1(C3)−V1(C1))

V2(C1)−V2(C3)
V2(C1)−V2(C2)

<
V1(C3)−V1(C1)
V1(C2)−V1(C1)

and on the other hand:

δ′2 · (V2(C1)−V2(C2)) ≤ δ′2 ·
V2(C1)−V2(C3)
V1(C3)−V1(C1)

· (V1(C2)−V1(C1))

V2(C1)−V2(C2)
V2(C1)−V2(C3)

≤ V1(C2)−V1(C1)
V1(C3)−V1(C1)

V2(C1)−V2(C3)
V2(C1)−V2(C2)

≥ V1(C3)−V1(C1)
V1(C2)−V1(C1)

which contradict each-other. Hence V1(C1) < V1(C2) < V1(C3) and implies that µδ′ (C2) < µδ′ (C3). Lemma 4

shows that in such a case C2 cannot be Pareto-supported.

A similar proof can be done in the case V1(C3) < V1(C1) < V1(C2), where C1 cannot be Pareto-supported.
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Figure 6.4: Illustrations for Property 40

Corollary 2

Let (C1,C2) be a pair of paths in P . Let δ be a vector such that µδ(C1) = µδ(C2). Let C3 be the

solution maximizing µδ(C3). If path C3 ,p C1 and C3 ,p C2, then V1(C3) ∈]V1(C1);V1(C2)[ and

V2(C3) ∈]V2(C2);V2(C1)[. If path C3 =p C1 or C3 =p C2, then C1 and C2 are consecutive paths in

P.
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Proof : The proof of Property 40 indicates that if C3 ,p C1 and C3 ,p C2, then V1(C3) ∈]V1(C1);V1(C2)[ and

V2(C3) ∈]V2(C2);V2(C1)[. Otherwise, either C1 or C2 cannot be Pareto-supported, which yields a contradic-

tion.

In the case C3 =p C1 or C3 =p C2, then clearly there cannot be any Pareto-supported path C4 with

V1(C4) ∈]V1(C1);V1(C2)[ as it cannot be part of the solutions’ convex hull in the objective space.

For a solution C of the BOLPP, provided we know the value V2(C), this property gives an upper bound

for V1(C) for each pair of consecutive paths in P . As the optimal path C∗ of the RWLPP is also a feasible

solution of the BOLPP, it also applies to C∗. As we do not know the value V2(C∗), we cannot use this

property directly. However, we know that V2(C∗) ∈ [R(p);R(p)].

Property 41

Let (C1,C2) be a pair of consecutive paths in P . Let δ be such that µδ(C1) = µδ(C2). Let V 1(C1,δ) =
µδ(C1)−δ2·R(p)

δ1
be the value on the first objective of the point intersecting the line going through C1

with coefficient δ and the bound R(p). Then V 1(C1,δ) is an upper bound for the value of the optimal

path V1(C∗) of the RWLPP.

Proof : As C∗ is a feasible solution of the RWLPP, it is also a feasible solution of the BOLPP. From Property 40,

we know that V1(C∗) ≤ µδ(C1)−δ2·V2(C∗)
δ1

. As C∗ is a feasible solution of the RWLPP, then V2(C∗) ∈ [R(p);R(p)],

meaning that V2(C∗) ≥ R(p). Hence, we can deduce V1(C∗) ≤ µδ(C1)−δ2·V2(C∗)
δ1

≤ µδ(C1)−δ2·R(p)
δ1

, i.e., V1(C∗) ≤
V 1(C1,δ).

Property 41 provides an upper bound that can be computed independently from the values V1(C∗)

and V2(C∗). Besides, we can also prove that for any R , R(p), the bound would be either looser or invalid.

Property 42

Let (C1,C2) be a pair of consecutive paths in P . Let δ be such that µδ(C1) = µδ(C2). For any R ≤ R(p),

V 1(C1,δ) ≤ µδ(C1)−δ2·R
δ1

. For any R > R(p), µδ(C1)−δ2·R
δ1

is not a valid upper bound for the value of the

optimal solution V1(C∗) of the RWLPP

Proof : Clearly, for any R ≤ R(p), µδ(C1)−δ2·R(p)
δ1

≤ µδ(C1)−δ2·R
δ1

. Consider the case R > R(p). As V2(C∗) ≥ R(p),

there is no guarantee that R ≤ V2(C∗). Hence, it is not possible to deduce V1(C∗) ≤ µδ(C1)−δ2·R
δ1

as done in

Property 41. The following Example 32 gives a counter-example to complete this proof in the case R > R(p).

Example 32

Consider an instance of the 1-HUC problem with N = 2 operating points, T = 1 time period, Ru =

Rd = +∞. The bounds on the cumulated flow are β∗1 = 1, α∗1 = 2. The flow and power of each operating

point are as follows: (D0 = 0, P0 = 0), (D1 = 1, P1 = 1− ϵ) with ϵ a small positive number and (D2 = 3,

P2 = 3). Power and water values are Λ1 = 1, Φ1 = 2 and Φ2 = 0, meaning that the value of the

179/243



6.5. TWO-PHASE METHOD Chapter 6. Graph algorithms: 1-HUCDRM problem

operating points are Ψ1,0 = 0, Ψ1,1 = −1− ϵ and Ψ1,2 = −3.

In graphGC there are three distinct paths corresponding to the three operating points since T = 1.

We denote C0 (resp. C1, C2) the path going through a vertex associated to operating point 0 (resp. 1,

2). The values of these solutions are V1(C0) = V2(C0) = 0, V1(C1) = −1−ϵ, V2(C1) = 1 and V1(C2) = −3,

V2(C2) = 3. Clearly, solutions C0 and C2 are Pareto-supported, but not C1. Hence, the list of Pareto-

supported paths P is [C2,C0]. We select vector δ = [1,1] such that µδ(C0) = µδ(C2). Also, due to the

bounds β∗1 = 1, α∗1 = 2, only C1 is a feasible solution of the RWLPP, hence is the optimal solution.

By construction, R(p) = β∗1 = 1 and R(p) = α∗1 = 2. Let R be any number such that R > R(p). For any

value R, µδ(C0)−δ2·R
δ1

= −R. For this instance, one can always select ϵ small enough such that −1−ϵ > −R.

Consequently, if R > R(p), one cannot deduce a valid upper bound for the value V1(C∗) of the optimal

path of the RWLPP.

From the previous Properties 41 and 42, we know that for a given pair (C1,C2) of consecutive paths in

P , there is no R , R(p) providing a tighter upper bound computed as V 1(C1,δ). Recall that the number

of Pareto-supported solutions can be exponential, hence one needs to compute an exponential number

of bounds. We prove in the following that it is also possible to identify the pair (C1,C2) of consecutive

paths in P that provides the tightest bound V 1(C1,δ).

Theorem 14

Let (C1,C2) be a pair of consecutive paths in P such that V2(C1) ≥ R(p) > V2(C2). Let δ be such that

µδ(C1) = µδ(C2). Path C1 and vector δ minimize the value V 1(C1,δ).

Proof : Consider another pair (C′1,C
′
2) of consecutive paths in P , and δ′ such that µδ′ (C′1) = µδ′ (C′2). As (C1,C2)

and (C′1,C
′
2) are pairs of consecutive paths in P , then either V1(C1) < V1(C2) ≤ V1(C′1) < V1(C′2) or V1(C′1) <

V1(C′2) ≤ V1(C1) < V1(C2).

Consider the case V1(C1) < V1(C2) ≤ V1(C′1) < V1(C′2) illustrated by Figure 6.5a. Suppose V 1(C′1,δ
′) <

V 1(C1,δ), meaning that
µδ′ (C

′
1)−δ′2·R(p)
δ′1

<
µδ(C1)−δ2·R(p)

δ1
. We can obtain the following result:

µδ′ (C′1)− δ′2 ·R(p)

δ′1
<
µδ(C1)− δ2 ·R(p)

δ1

µδ′ (C′1)

δ′1
−
δ′2
δ′1
·R(p) <

µδ(C1)
δ1

− δ2
δ1
·R(p)

µδ′ (C′1)

δ′1
−
µδ(C1)
δ1

< (
δ′2
δ′1
− δ2
δ1

) ·R(p)

Also, using Property 40, we know that V1(C1) ≤ µδ′ (C
′
1)−δ′2·V2(C1)
δ′1

, otherwise C′1 or C′2 are not Pareto-

supported. Recall that µδ(C1) = δ1 ·V1(C1) + δ2 ·V2(C1), meaning that V1(C1) = µδ(C1)−δ2·V2(C1)
δ1

and:

µδ(C1)− δ2 ·V2(C1)
δ1

≤
µδ′ (C′1)− δ′2 ·V2(C1)

δ′1
µδ(C1)
δ1

− δ2
δ1
·V2(C1) ≤

µδ′ (C′1)

δ′1
−
δ′2
δ′1
·V2(C1)
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(
δ′2
δ′1
− δ2
δ1

)
·V2(C1) ≤

µδ′ (C′1)

δ′1
−
µδ(C1)
δ1

Using Property 40, we know that V1(C2) ≤ µδ′ (C
′
1)−δ′2·V2(C2)
δ′1

. Recall that µδ(C2) = µδ(C1) = δ1 ·V1(C2) + δ2 ·

V2(C2), meaning that V1(C2) = µδ(C1)−δ2·V2(C2)
δ1

. We deduce in the similar fashion the following inequality:(
δ′2
δ′1
− δ2
δ1

)
·V2(C2) ≤

µδ′ (C′1)

δ′1
−
µδ(C1)
δ1

To summarize, we obtained the following inequalities:(
δ′2
δ′1
− δ2
δ1

)
·V2(C1) ≤

µδ′ (C′1)

δ′1
−
µδ(C1)
δ1

< (
δ′2
δ′1
− δ2
δ1

) ·R(p)(
δ′2
δ′1
− δ2
δ1

)
·V2(C2) ≤

µδ′ (C′1)

δ′1
−
µδ(C1)
δ1

< (
δ′2
δ′1
− δ2
δ1

) ·R(p)

As V2(C2) < R(p) ≤ V2(C1), then there must be a contradiction. Consequently, V 1(C′1,δ
′) ≥ V 1(C1,δ).

In a similar way, we can prove that V 1(C′1,δ
′) ≥ V 1(C1,δ) in the case V1(C′1) < V1(C′2) ≤ V1(C1) < V1(C2)

as shown in Figure 6.5b.
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Figure 6.5: Illustrations for Theorem 14

Let (C1,C2) be a pair of consecutive paths in P such that V2(C1) ≥ R(p) > V2(C2). Let C be the

path maximizing V1(C). Then V 1(C1,δ) < V1(C). Indeed, as R(p) > V2(C2), then V 1(C1,δ) < V1(C2) and

V1(C2) ≤ V1(C).

Note that Theorem 14 may not apply to all instances. Indeed, if the instance has a feasible solution,

then there is necessarily a Pareto-supported path C with V2(C) > R(p). However, there is not necessarily

a Pareto-supported path C with V2(C) ≤ R(p). We can distinguish three cases of the RWLPP: Locally

Infeasible by Excess (LIE), Locally Infeasible by Deficiency (LID) and Locally Feasible (LF).
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Definition 55 (LIE, LID and LF)

Let C be the path maximizing V (C) without taking into account the resource windows. Case LID is

when R(C) < R(p), case LIE is when R(C) > R(p) and case LF is with R(C) ∈ [R(p);R(p)].

Property 43

Consider an instance of the RWLPP in case LIE or LF. Consider its associated bi-objective relaxation,

being a BOLPP with V1(C) = V (C) and V2(C) = R(C) for any path C. Let C be the path maximizing

V1(C). Consider a pair of consecutive paths (C1,C2) of P , and δ such that µδ(C1) = µδ(C2). The bound

V 1(C1,δ) ≥ V1(C).

Proof : Suppose there is a pair (C1,C2) of consecutive paths of P such that V 1(C1,δ) < V1(C). As we consider

case LIE or LF, then V2(C) > R(p). We deduce µδ(C1−δ2·V2(C1))
δ1

<
µδ(C1−δ2·R(p))

δ1
< V1(C), which contradicts

Property 40. Hence, V 1(C1,δ) ≥ V1(C).

Let (C1,C2) be a pair of consecutive paths in P such that V2(C1) ≥ R(p) > V2(C2). Let C be the path

maximizing V1(C). In case LID, bound V 1(C1,δ) is the best bound, whereas in case LIE and LF, bound

V1(C) is the best bound.

Note that all Properties 39 to 43 also hold when the values are negative. This means that one

can build an inverted bi-objective relaxation of the RWLPP, being the BOLPP with V1(C) = V (C) and

V2(C) = −R(C). Results from Properties 39 and 40 as well as Corollary 2 hold for the inverted bi-

objective relaxation. Results from Property 41 can be adapted by considering −R(p) instead of R(p) in

the definition of V 1(C1,δ). For the following, the upper bound in the inverted case is denoted V
I
1(C1,δ).

Similarly, Property 42 and Theorem 14 can both be adapted by considering −R(p) instead of R(p). For

the inverted bi-objective relaxation, the result of Property 43 changes, as V
I
1(C1,δ) ≥ V1(C) is true in

case LID or LF, rather than LIE or LF.

Hence, in case LID, the best upper bound is V 1(C1,δ) obtained from the bi-objective relaxation; in

case LIE the best bound is V
I
1(C1,δ) obtained from the inverted bi-objective relaxation; and in case LF, it

is V1(C) with C the Pareto-supported solution maximizing V1(C). One can induce a search space using

these bounds and the fact that the optimal solution of the RWLPP is with V2(C∗) ∈ [R(p);R(p)].

Figure 6.6 shows three instances of the RWLPP on a same graph. An arc a is annotated by a single

pair (V (a),R(a)) if the values are the same for the three instances, or by three pairs (V (a),R(a)) if the

values change between the instances. Each vertex v is annotated by the resource window [R(v);R(v)].

Table 6.5 enumerates each path and its value and resource for each of the three instances. Note that

for each of these instances, the path maximizing the value is CC . For all three instances, R(p) = 29

and R(p) = 34. Hence the first instance is in case LID as R(CC) = 22, the second instance in case LF

as R(CC) = 31 and the third instance in case LIE as R(CC) = 35. Figures 6.7a to Figures 6.7c show the

solutions’ space of the bi-objective relaxation, the triangles from the classical bi-objective two-phase

algorithm, the bound V 1(C1,δ) as well as our search space in gray. Figure 6.7d is similar but for the

inverted bi-objective relaxation in case LIE, and shows a reduced search space compared to Figure 6.7c.
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Figure 6.6: Three instances of the RWLPP

First instance second instance third instance
Path V(.) R(.) V(.) R(.) V(.) R(.)
CA = (1,2) 29 25 29 25 29 25
CB = (1,3,2) 32 35 32 35 32 39
CC = (1,3,6) 39 22 39 31 39 35
CD = (1,3,5,6) 37 27 37 27 37 31
CE = (3,2) 26 40 26 40 26 40
CF = (3,6) 33 27 33 36 33 36
CG = (3,5,6) 31 32 31 32 31 32
CH = (4,3,2) 31 36 31 36 31 38
CI = (4,3,6) 38 23 38 32 38 34
CJ = (4,3,5,6) 36 28 36 28 36 30
CK = (4,5,6) 38 24 38 24 38 26

Table 6.5: Value and resource of each path for each instance of the RWLPP

6.5.2 Bi-Objective relaxation of the Resource Windows algorithm

In this section, we present the Bi-Objective relaxation of Resource Windows (BORWin) algorithm, which

aims to solve the RWLPP. To do so, a first phase consists in defining the region of the corresponding

BOLPP, containing the optimal solution of the RWLPP. Then, a second phase aims to enumerate the

solutions of this region, until the optimal solution of the RWLPP is found and proven optimal.

First phase. In the following, we explain Algorithm 6 for the first phase. First we determine if the

RWLPP instance is in case LF, LID or LIE, and the related search space. To do so, we compute a path

C1 maximizing V1(C1) without taking into account the resource windows, which then means solving

an LPP in polynomial time in graph GC (line 1). In LF case, the first phase stops, path C1 and vector

δ = [1,0] are considered in the second phase. In LIE and LID cases, we consider the corresponding
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(d) Third instance, case LIE, with negative resource

Figure 6.7: Representation of each path of the BOLPP in the objective space

BOLPP. As both cases are symmetric, in the following we only detail LID case. Now the aim is to find a

pair of consecutive paths in P with their V2() values respectively above and below R(p). We know that

C1 maximizes V1(C1), hence if we also consider C2 maximizing V2(C2) (line 14 and 15), then we have

two Pareto-supported paths, with R(p) ∈ [V2(C1),V2(C2)]. Consider vector δ = [1, V1(C1)−V1(C2)
V2(C2)−V2(C1) ] (line 25),

then µδ(C1) = µδ(C2). Let C3 be the path maximizing µδ(C3) (line 26). If C3 =p C1 or C3 =p C2, then path

C1 and vector δ = [1, V1(C1)−V1(C2)
V2(C2)−V2(C1) ] are considered in the second phase. Otherwise, if C3 > R(p), then one

can consider pair (C1,C3), and if C3 ≤ R(p), one can consider pair (C3,C2) (lines 19 to 23). Vector δ is

then recomputed, and a path maximizing the aggregated value until convergence is reached, i.e., no new

path is obtained when maximizing the aggregated value. From Corollary 2, Algorithm 6 ends. Also, it

returns path C and vector δ minimizing V 1(C,δ), as it relies on Theorem 14 and Property 43.
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Algorithm 6 BORWmin: first phase

Require: An RWLPP graph GC = (AC ,VC)
1: Compute C1 maximizing V (C1)
2: caseLIE← False, caseLID← False
3: if V2(C1) ∈ [R(p);R(p)] then
4: return C1, δ = [1,0]
5: end if
6: if V2(C1) < R(p) then
7: Consider the BOLPP with V1(C) = V (C) and V2(C) = R(C)
8: caseLID← T rue
9: end if

10: if V2(C1) > R(p) then
11: Consider the BOLPP with V1(C) = V (C) and V2(C) = −R(C)
12: caseLIE← T rue
13: end if
14: δ← [0,1]
15: Compute C2 maximizing µδ(C2)
16: C3←∅
17: while C3 ,p C1 and C3 ,p C2 do
18: if C3 , ∅ then
19: if (caseLIE and V2(C3) > −R(p)) or (caseLID and V2(C3) > R(p)) then
20: C2← C3
21: else
22: C1← C3
23: end if
24: end if
25: δ← [1, V1(C1)−V1(C2)

V2(C2)−V2(C1) ]
26: Compute C3 maximizing µδ(C3)
27: end while
28: return C1, δ

Second phase. In the following, let δ be the vector obtained from the first phase. The aim of the

second phase is to enumerate the solutions of the search space defined from the first phase. To do so, we

implicitly enumerate paths of the BOLPP with a variant of the K-best paths algorithm [62] for the LPP

problem with objective µδ(.). These paths are progressively modified in order to build feasible paths of

the RWLPP that lie in the search space. In order to make such progressive modification, we introduce

the concept of hybrid paths.

Definition 56 (Hybrid path H)

A hybrid path H is composed of two sub-paths: HRW from s to a vertex v, and HBO from v to p.

Sub-path HRW satisfies the resource windows of the RWLPP, while HBO relaxes them.

From such hybrid paths, it is possible to define upper bounds of value µδ(C) for any path C feasible

for the RWLPP.
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Theorem 15

Let H = (HRW ,HBO) be a hybrid path from s to p, with HBO maximizing µδ(HBO). For any path C

from s to p feasible for the RWLPP, starting with HRW , then µδ(H) ≥ µδ(C).

Proof : By definition, HRW is a path from s to a vertex v, and HBO is from v to p. As C starts with HRW , then it

can be decomposed as follows: C = (HRW ,C′), with C′ from v to p.

Suppose µδ(H) < µδ(C), then as H = (HRW ,HBO) and C = (HRW ,C′), we deduce µδ(HBO) < µδ(C′).

Recall that sub-path HBO relaxes the resource windows, and C′ takes them into account as C is feasible for

the RWLPP. Hence, there is a contradiction, HBO cannot maximize µδ(HBO).

It is also possible to define a lower bound on the value µδ(C∗), with C∗ the optimal path of the RWLPP.

Theorem 16

Let C and C∗ be respectively a feasible and the optimal path for the RWLPP. Let µδ(C) = δ1 ·V1(C) +

δ2 ·R(p) in LID and LF cases and µδ(C∗) = δ1 ·V1(C) +δ2 · −R(p) in LIE case. Then the optimal path C∗

of the RWLPP is such that µδ(C∗) ≥ µδ(C).

Proof : First consider cases LID and LF, i.e., V2(C∗) = R(C∗). Clearly, V1(C∗) ≥ V1(C), V2(C∗) ≥ R(p). Hence

µδ(C∗) ≥ µδ(C) = δ1 ·V1(C) + δ2 ·R(p).

Consider now case LIE, i.e., V2(C∗) = −R(C∗). Clearly, V1(C∗) ≥ V1(C) and V2(C∗) ≥ −R(p). Hence

µδ(C∗) ≥ µδ(C) = δ1 ·V1(C) + δ2 · −R(p).

Algorithm 7 describes the enumeration of the second phase, which is as follows. We first compute

a hybrid path H = (HRW ,HBO) with HRW = ∅ and HBO the optimal path for the LPP from s to p with

objective µδ(.). Then, we consider a list of hybrid paths, initialized as L = [H]. List L will be kept sorted

by decreasing value µδ(.) during the whole algorithm. As long as L is not empty, we proceed with the

following steps. We select H , the first hybrid path in L at line 5. If H is feasible, we obtain a lower

bound µδ(H) on µδ(C∗) as proven in Theorem 16. Hence, we remove from L all partial paths H ′ such

that µδ(H ′) < µδ(H) at line 8. If H is not feasible, it is not feasible due to HBO and we extend HRW .

Let a = (u,v) be the first arc of HBO from u to v. A classical labeling extension consists of building

hybrid paths H ′ = (H ′RW ,H
′
BO) with H ′RW = HRW ∪ {(u,v′)}, v′ , v and H ′LW the optimal path for the LPP

from v′ to p considering objective function µδ(.). In this case, we generalize this extension in order to

generate more new hybrid paths and obtain feasible paths quicker. This generalized extension described

in the following corresponds to lines 10 to 20. Let a = (u,v) be any arc of HBO. Let SH be the subset

of HBO, containing all arcs before a. The extension consists of building H ′ = (H ′RW ,H
′
BO) with H ′RW =

HRW ∪ SH ∪ {u,v′} and H ′BO the longest path for the LPP from v′ to p with objective function µδ(.). For

each H ′ generated in this way, if H ′RW satisfies the resource windows, then H ′ is added to L. Otherwise,

H ′ is discarded.
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Algorithm 7 Second phase

Require: An RWLPP graph GC = (AC ,VC) and a vector δ
1: Compute HBO the shortest path from s to p maximizing µδ(HBO)
2: H ← (∅,HBO)
3: L← [H]
4: while L , ∅ do
5: Select H the first element of L
6: if H feasible for the RWLPP then
7: compute the value µδ(H)
8: remove H ′ from L such that µδ(H ′) < µδ(H)
9: else

10: for k in [0; |HBO | − 1] do
11: get SH the k first arcs of HBO
12: get a = (u,v) the k + 1th arc of HBO
13: for arc a′ = (u,v′) ∈ AC , v′ , v do
14: H ′RW =HRW ∪ SH ∪ a′
15: compute H ′BO the path from v′ to p maximizing µδ(H ′BO)
16: if µδ(H) ≥ µδ(C) for any C feasible for the RWLPP then
17: add H to L while keeping L sorted by decreasing µδ(.)
18: end if
19: end for
20: end for
21: end if
22: end while

Further improvements. Note that this second phase can be further improved. In the following, we

present three improvements that speed-up the algorithm for the 1-HUCDRM problem.

A first improvement is in the case there exists an upper bound h1(C) for the value V1(C) of a feasible

path. As soon as a feasible path C for the RWLPP is found, we can remove from L all hybrid path H for

which h1(H) < V1(C). In the case of the 1-HUCDRM problem, such upper bound can be obtained with

Algorithm 4, defined in Section 6.4.1, featured in the HA* algorithm.

The second improvement is to use a classical dominance rule for the RCSPP at each vertex. Let

HRW be a partial path from s to v. Any partial path H ′RW from s to v such that V2(H ′RW ) = V2(HRW )

and V1(H ′RW ) ≥ V1(HRW ) cannot yield the optimal solution of the RWLPP. Indeed, both partial path

use the exact same resource, while HRW has a higher value. Hence, HRW dominates H ′RW . The proposed

implementation is to store for each node v a list containing the pairs of values (V1(C),V2(C)) of all partial

path enumerated from s to v. This implementation is particularly effective if there are many paths using

the exact same amount of resource between node s and a node v, as the lists at each vertex will remain

small. This is the case for the 1-HUCDRM problem, as the operating points are the same, the exact same

set of water flows is used at each time period. Note however that this implementation can produce very

large lists at each node, which can slow down BORWin algorithm for RWLPP instances for which there

is no such structure for the use of the resource.
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The third improvement consists in storing the optimal solution of the LPP from any vertex v to the

target vertex p. Indeed, for two partial paths HRW and H ′RW from s to v, the corresponding HBO is the

same for both. As such, it is possible to only compute HBO between v to p once.

6.5.3 Experimental results

All presented results are computed on a single thread of an Intel Core i7-9850H CPU @ 2.60GHz pro-

cessor of 12 cores, with Linux as operating system. All algorithms are developed with C++ and version

12.8 of CPLEX is used.

For this study, we compare four approaches: model Mop-DRM solved by CPLEX, RCSPP algorithm as

described in [2], HA* (see Section 6.4) and BORWin with the improvements dedicated to the 1-HUCDRM

problem. For this comparison, we consider a first set of 83 EDF instances. These instances have been

slightly modified, in order for at least either the upper bound or the lower bound on the resource to

be active for at least one time period. To do so, we applied a few modifications if necessary on the

parameters of the upstream reservoir: the initial volume V 1
0 , bounds at the last time period V 1

T , V
1
T

or the additional intake of water in the reservoirs A1
t . Note that these instances remain realistic as no

modification have been made on the data describing actual plant or the reservoirs. In particular, the

modified parameters are part of the parameters that change from one instance to another for a given

plant.

Preliminary results have shown that when the price of the energy Λt is very similar from one time

period to another, instances of the 1-HUCDRM are harder to solve. As mentioned in Section 3.2, the

resource windows can be interpreted as nested knaspack and covering inequalities. These preliminary

results are consistent with the observations in Section 4.7, where instances of the Knapsack Problem are

harder when their values are highly correlated to their weight [83]. As such, we also consider a second

set of 83 instances, built as follows. For each instance of the first set, an instance of the second set is

created with Λt being a random value in [0.95 ·Λ1;1.05 ·Λ1]. For the following, the first set is denoted

as the set C, and the second set as the set D.

Figure 6.8a and 6.8b show, for each approach, the number of instances solved with respect to the

time for instance set C. Figure 6.8b is similar to Figure 6.8a but for instance set D. Table 6.6 shows the

value of the solutions and the time required for each approach for a short list of instances, where each

selected instance is labeled from its number and set. For CPLEX, we also provide #node the number

of nodes developed as well as the optimality gap, being opt (resp inf, sub) if the solution returned is

optimal (resp. infeasible, suboptimal). We also added #iter the number of iterations of the second phase

for BORWin. The complete tables are provided in Appendix C.1.

Clearly, these figures show that HA* and the RCSPP algorithms are not suitable to solve the 1-HUCDRM

problem. On the contrary, BORWin appears to be very well suited as it is the most efficient approach

as soon as the computational times exceed 3 seconds. Moreover, BORWin solved 15 more instances in
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each set than the MILP which is the current approach at EDF. These results also confirm the preliminary

results, as it appears that instances of set D are harder to solve than the ones of set C.

As stated in Section 6.4.3, HA* algorithm is not suitable due to its bound, which does not take into

account ramping or min-up/down constraints. The RCSPP algorithm is inefficient as the dominance

rule is seriously weakened due to the lower bound, as stated in Section 6.2.2. When it comes to solving

the MILP, there are 12 instances of the first set, and 5 of the second set, where the solution returned

is infeasible due to numerical errors, as it violates one of the resource window. This violation is in

most cases below 0.1%, but can reach up to 10%. For instance 64-C in Table 6.6, the volume of the

upstream reservoir violates all upper bound from time period 29 to 96. At time period T , the volume

reaches 29175.04 whereas the upper bound V
1
T is 26380. Such numerical errors have been observed,

and a study has shown that these errors are due to floatting-point precision of the solver [14,91]. In

addition to the infeasible solutions, there are 2 instances of the first set, and 6 of the second set where

the instances are suboptimal. Instance 48-D shows a case where the value of solution obtained when

solving the MILP model is 0.009% below the value of the optimal solution obtained with BORWin. The

gap between the value of these solutions and the optimal value of the optimal solution obtained with

BORWin is at most 0.01%. This gap is consistent with the optimality gap of CPLEX, which is 10−4 by

default. Note that it is also possible that solving the MILP model yields a solution that is suboptimal

and also infeasible. This is the case for instance 57-C.
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Figure 6.8: Number of instances solved by each approach with respect to the time for each instance set

6.6 Conclusion

In this section, two graph representations are presented for the discretized 1-HUC problem as a

special case of the RWSPP. We distinguish the benefits and the drawback of each of these graphs: one
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CPLEX RCSPP HA* BORWin
instance value gap time #nodes value time value time value #iter time

57-C 3931900.0 inf 0.0 1177 - 3716.47 - 3600.29 3931920.0 287191 2468.04
64-C 95093.1 inf 0.0 0 - 3632.43 - 3600.61 95093.1 286 0.53
48-D 452277.0 0.04 3599.0 5319419 - 3625.98 - 3600.47 452318.0 123282 2254.47

Table 6.6: Performance of model Mop-DRM solved with CPLEX, the RCSPP algorithm, HA* and BORWin
on EDF inspired instances 1 to 42

can easily take into account resource windows, but requires an exponential number of vertices; the other

does not take into account resource windows but features a polynomial number of vertices. For each of

these graph representations, an algorithm is proposed.

First, the HA* algorithm has been proposed. This algorithm is an exact variant of the A* algorithm,

with a dual bound specific to the discretized 1-HUC problem without ramping nor min-up/down con-

straints. Experimental results showed that HA* is more stable with respect to the computational time

against the current approach at EDF and an RCSPP algorithm for instances without ramping nor min-

up/down constraints. However, the current state of HA* does not handle efficiently additional con-

straints of the discretized 1-HUC problem.

Then, we introduced algorithm BORWin, which computes the optimal solution of an RWSPP through

a bi-objective relaxation of the resource windows. Inspired by a standard two-phase algorithm for bi-

objective problems, combined with resource windows, a reduced search space has been exhibited in

which BORWin implicitly enumerates solutions. As BORWin can be used to solve any RWSPP, it can

take into account the additional constraints of the discretized 1-HUC problem. The ramping, min-up

and min-down constraints are directly tackled by construction of the compact graph. On a large set of

EDF instances, BORWin outperforms HA*, the RCSPP algorithm as well as the MILP approach currently

exploited at EDF. Besides, these experimental results also confirm that solving a MILP model, in partic-

ular for the HUC problem, can produce significant numerical errors, yielding infeasible or suboptimal

solutions.

These good results allow to consider the use of BORWin at EDF. First it could be used to solve the

1-HUCDRM problem, but could also be integrated in a decomposition method, such as the one defined

in [3] to solve the HUC problem. This could yield an appealing alternative to the MILP approach.

Interestingly, the upper bound obtained through the first phase of BORWin could be equivalent to the

optimal value of the Dantzig Wolfe relaxation. One interesting perspective would be to study the link

between these two bounds.

In the following chapter, we draw concluding remarks on the work detailed in this thesis. Moreover,

we describe various interesting perspectives to extend our studies.
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In this thesis, we studied modeling alternatives and algorithms to solve the single plant Hydro Unit

Commitment (1-HUC) problem. The aim was to propose a performant solution approach for this prob-

lem.

7.1 Summary of contributions

In the general introduction (Chapter 1), we presented the context revolving around the 1-HUC problem

and the importance of solving it efficiently when scheduling the short-term production at EDF. Then, we

defined a generic 1-HUC problem, with its hydraulic constraints and its main non-linearities. The hy-

draulic constraints include the bound on the reservoirs volume forming resource windows, the ramping

constraints and the min-up/down constraints. The considered non-linearities are the power function, as

a non-convex non-concave function of the water flow and the water head, the latter being a non-linear

function of the reservoir volumes.

In Chapter 2, we compared modeling alternatives for the 1-HUC problem, focusing on the power

function. For this purpose, we considered a simplified non-linear model, leaving aside ramping and

min-up/down constraints. This non-linear model is defined for the general case, but also for the fixed-

head case, which makes sense is some situations encountered in practice. We provided seven different

modeling alternatives, covering a wide set of non-linear model families. In addition, we considered five

different non-linear off-the-shelf solvers, as each solver implements its own non-linear tools. From this

comparison of modeling alternatives, we highlighted the most efficient models, in terms of computa-

tional time, precision and feasibility, for both the general case and the fixed-head case. For each of them,

we also indicated which solver is the most suitable, leading to overall best performances.

In Chapter 3, we selected one of the highlighted model from the previous comparison, to be the one

studied in the remainder of the thesis in order to study the hydraulic constraints. More precisely, the

model selected is based on a discrete set of flows for the fixed-head 1-HUC. In such a case, the model

features operating points, an operating point being a pair of a flow and the associated produced power.

This model has been rewritten so that the resource windows on the volume become resource windows

on the cumulated flow, i.e., the sum of the flow since the first time period. For this model, we defined

a polynomial time bound-tightening technique. Finally, we specified the resulting discretized 1-HUC

problems and their formulations studied in the remainder of the thesis.

In Chapter 4, we conducted a polyhedral study of the Symmetric-weight Chain Precedence Knap-
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sack Problem (SCPKP) and proposed a two-phase Branch & Cut algorithm to solve it. The rationale

behind studying the SCPKP is that this problem can be specifically defined as the combinatorial core

of the discretized 1-HUC problem. For this problem, we defined a pattern structure able to handle

polyhedral symmetries, i.e., when the symmetries of a solution yield feasible solutions, but with dif-

ferent values. Moreover, we exhibited the pattern inequalities associated to the patterns. Necessary

facet-defining conditions have been introduced and were proven to be sufficient for a family of patterns.

We then presented a two-phase Branch & Cut algorithm, relying on these patterns. The first phase aims

at generating patterns verifying necessary facet-defining conditions, the second phase consists in using

these patterns in a Branch & Cut scheme. This algorithm has been compared to state-of-the-art Branch

& Cut algorithms, to show its better performances.

In Chapter 5, we extended the polyhedral results of the SCPKP to the discretized 1-HUC problem

without ramping nor min-up/down constraints. For this purpose, we introduced the Inverted SCPKP

(ISCPKP), so that each window resource of the discretized 1-HUC problem is captured by a pair (SCPKP,

ISCPKP). We first show that the ISCPKP can be rewritten as an SCPKP. Consequently, all results for the

SCPKP translate to the ISCPKP. Moreover, we demonstrated that only a polynomial number of (I)SCPKP

are necessary to study the polyhedron of the discretized 1-HUC problem. As the polyhedral symmetries

of the SCPKP do not hold completely for the discretized 1-HUC problem, we extended the definition of

the patterns and the necessary facet-defining conditions. Finally, we sketched the extension of the two-

phase Branch & Cut algorithm to this discretized 1-HUC problem, by introducing few pre-processing

steps.

In Chapter 6, we revisited the discretized 1-HUC problem as a Longest Path Problem with Resource

Windows (RWLPP) in a graph. More precisely, two different graphs are presented, a cumulated-flow-

expanded one and a compact one. For the first one, we presented HA*, an exact variant of the A*

algorithm, featuring a dedicated dual bound. For the second one, we presented BORWin, a two-phase

algorithm based on the bi-objective relaxation of the window constraints. The algorithm is inspired by

the standard two-phase algorithm for bi-objective optimization, but it takes advantage of the resource

windows to further restrict the search space. We compare the performances of our algorithms against

two state-of-the-art approaches. For instances without ramping nor min-up/down constraints, these

results show that HA* is particularly efficient against two state-of-the-art approaches. The BORWin

algorithm outperforms all other approaches for the general case. These good results allow to consider a

future deployment of BORWin in production at EDF to replace the MILP-based approaches used so far.

7.2 Software and publications

The successful completion of this thesis was dependent on a substantial amount of computer de-

velopments. For each chapter, a functional corresponding code has been developed. Besides, we also

redeveloped all state-of-the-art algorithms used in our experimental results except, of course, the tools
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already present in the solvers, such as the Branch & Cut framework of CPLEX. Most of the codes have

been written in C++. The exception being the instance generators developed in python, which write

instances files either in text or GAMS format, as well as calls to non-linear solvers available on NEOS

Server, which were also written in python. All codes developed during this thesis will be delivered to

EDF for future research, or in the case of the BORWin algorithm to be tested in their industrial environ-

ment. The instances of the 1-Hydro Unit Commitment problems have not been made publicly available

due to their strong resemblance to real EDF instances. In contrast, the Symmetric-weight Chain Prece-

dence Knapsack Problem instances have been made publicly available online.

The research work developed in this thesis has already led to a paper currently under review (third

round) for the international journal Computers & Operations Research and a paper published in the

proceedings of an international conference (FedCIS 2023). One submission is currently under review

for a conference with published proceedings (IOS 2024). Another paper is currently at its final writing

state, and will be submitted to an international journal. The work has also been presented during an

international conference without proceedings (ISCO 2022) and four national conferences (JPOC 2023

and ROADEF 2021-2022-2023). Finally, the algorithm based on a bi-objective relaxation of the window

constraints from Chapter 6 has been selected by the jury of the best student paper award for ROADEF

2024, as one of the finalists. All finalists will present their work in a dedicated session of the conference,

after which the jury will announce the final results of the competition.

7.3 Perspectives

In the following, we present the perspectives corresponding to individual contributions presented in

each chapter of this thesis. Then, we present two more general perspectives.

One could extend the model comparison from Chapter 2, by comparing refined versions of the high-

lighted models. As such, one could reveal the most relevant one for solving larger instances or instances

taking into account a larger set of constraints. For instance, models MPWL, M2D-poly and Mop can be

enhanced with logarithmic disjunctive constraints [104]. The solvers used in our study feature bound-

tightening techniques, but one could also consider a dedicated bound-tightening technique for each

model. Furthermore, model MPWL could be improved by optimizing the number of breakpoints with

a guaranteed precision [76] and using PWL models from the literature. In particular, the formula-

tion used is the so-called non-ideal formulation defined in [54]. A logarithmic formulation, proven to

be ideal, could be used instead. Finally, models Mbilin and M2D-poly feature respectively bilinear and

quadratic constraints. These are common non-linear functions for which there are dedicated program-

ming techniques that could be applied.

In Chapter 3 we defined a polynomial-time bound-tightening procedure for the 1-HUCDRM prob-

lem, whereas in Chapter 5 the bound-tightening technique for the 1-HUCD problem requires to solve a

MILP which does not take into account ramping nor min-up/down constraints. Both procedures do not

yield optimal bounds for the 1-HUCDRM problem, and the complexity of the MILP-based approach is
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unknown. Therefore, one perspective would be to study the complexity of the MILP-based approach, or

to provide new procedures able to yield tighter bounds than the ones proposed.

In Chapter 4, we made a conjecture concerning the NP-hardness of the separation of pattern inequal-

ities. A perspective would be to verify if this conjecture is valid. One could also study facet-defining

inequalities of the Symmetric-weight Chain Precedence Knapsack Problem (SCPKP) with integer coef-

ficients. This would complement the binary facet-defining inequalities identified in this thesis.

The results of the study of the SCPKP in Chapter 4 have been extended to the 1-HUCD problem in

Chapter 5. However, the polyhedral symmetry aspect of the SCPKP partially extends to the 1-HUCD

problem. As such, future work should examine asymmetric aspects of the 1-HUCD problem in order

to enhance the pattern inequalities. Even if we did extend the two-phase Branch & Cut algorithm to

the 1-HUCD problem, the time constraints of the thesis did not allow for computational experiments.

One could compare this algorithm numerically to state-of-the-art algorithms to show its performances.

More generally, one could extend the two-phase Branch & Cut algorithm to other problems featuring

polyhedral symmetries.

In Chapter 6, we detailed two graph-based algorithms, the HA* algorithm and the BORWin algo-

rithm, respectively. One perspective would be to extend the HA* algorithm in order to take into account

the additional constraints when computing the dual bound. As such, both HA* and BORWin would be

efficient to solve the 1-HUCDRM problem. This perspective is particularly relevant if one identifies cases

where one of these algorithm outperforms the other. The good results for BORWin algorithm bode well

for a broader use of BORWin at EDF in the very near future. First, it could readily be used in place of the

MILP solving for valleys with a single plant. Second, beyond the 1-Hydro Unit Commitment use case,

BORWin appears to be well suited for other use cases where window constraints on one resource arise.

For instance, with the emergence of fluctuating renewable electricity sources such as wind and solar, the

need for flexibilities both on the generation side and on the demand side opens up new perspectives for

BORWin, in particular for controlling demand response of thermostatic loads [99], e.g., water-heaters,

fridges, heating, cooling, or even electric vehicle charging.

Regarding more general perspectives, one of them would be to combine the work presented in differ-

ent chapters. More precisely, one could create a hybrid method, featuring the results of the polyhedral

study and the graph algorithms. The idea would be either to use graph algorithms to provide bounds

for the two-phase Branch & Cut, or to use patterns to enhance the graph algorithms.

As results showed that BORWin algorithm is effective to solve the 1-Hydro Unit Commitment prob-

lem, one could use it in a decomposition framework, such as the one described in [3]. Doing so could

lead to an approach able to solve the Hydro Unit Commitment problem defined on valleys with multiple

plants more efficiently than current approaches.
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A.1 Solver description

ANTIGONE [73] is based on an sBB algorithms. The problem is reformulated in order to find special

structures. Once the structures are found, the relaxation of the problem is solved. The search space is
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split and the process repeated until convergence of the upper and the lower bounds. Upper bounds are

computed with local optimization algorithms. Only twice differentiable functions, that are not trigono-

metrical functions, are supported by ANTIGONE.

BARON [98] implements a deterministic Branch and Reduce algorithm. This algorithm contains con-

straint programming, interval analysis and duality techniques for tightening variables bounds. Heuris-

tics, cutting planes and parallelism are combined with the Branch and Reduce algorithm. Trigonomet-

rical functions and max functions are not supported.

COUENNE [12] implements an sBB with linearization, bound reductions and branching method.

The main four components are: reformulation, separation of linearization cuts, branching rules and

bound tightening methods. COUENNE only supports functions that can be reformulated into univariate

functions and does not support function max.

LINDOGlobal [68] is the only solver that does not directly implements an sBB algorithm. Instead,

it implements a branch and cut algorithm that breaks the model into sub-problems. The sub-problems

are further split until each sub-problem is convex. The sub-problems are then solved with a BB or sBB

algorithm. LINDOGlobal supports most non-linearities, and binary operators such as AND, OR and

NOT.

SCIP [105] implements an sBB, where the non-linearities are represented within graphs. These

graphs help finding convex non-linearities, and reformulating the non-linear functions. During the

solving process, SCIP also adds various cuts, depending on the non-linearities. Bound tightening meth-

ods are also applied. Trigonometrical functions are not supported by SCIP and it is the only solver which

requires a linear objective function.

CPLEX [26] implements a quite effective multipurpose Branch and Cut algorithm, which generates

automatically various cuts [26]. Furthermore it is paired with pre-processing and heuristics.

A.2 Five parameters logistic function

A 5P L is the following function, where x is a variable and y1 to y5 the parameters:

5P L(x,y1, y2, y3, y4, y5) = y4 +
−y4

(1 + ( x−y1
y3

)y2 )y5

In the context of the 1-HUCNL problem, variable x is the water-flow dt . The 5P L has a shape similar to

a more common function, the sigmoid:

sig(x,y′1, y
′
2, y
′
3) =

y′3
1 + e−y

′
2(x−y′1)

The advantages of the 5P L is that it is more flexible than a sigmoid. The sigmoid is necessarily symmetric

with respect to its inflection point, whereas 5P L is not. However, a 5P L function is not defined if x < y1,

which can occur when representing a unit by a 5P L function. To adapt the 5P L function to the use case
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of the 1-HUCNL problem, it is possible to insert a max function inside the 5P L function as follows:

5P L(x,y1, y2, y3, y4, y5) = y4 +
−y4(

1 +
(

max(0,x−y1)
y3

)y2
)y5

With this modification, if x < y1 then the 5P L function is equal to y4 + (−y4/1) = 0, if x ≥ y1, the 5P L has

the same behaviour as previously defined.

A.3 Instance description

The instances are derived from the following parameter sets A and B, by changing the value of only

one parameter at a time. The idea is to evaluate the impact of the parameters on the resolution and the

solution with multiple metrics. Table A.1 shows the parameters of each parameter set.

Table A.1: Parameter sets

Parameter set A Parameter set B

V 1
0 = 500, V 2

0 = 200 V 1
0 = 90, V 2

0 = 10

T = 4 T = 4

V
1
t = 1000, V 1

t = 0 ∀t ≤ T V
1
t = 100, V 1

t = 0 ∀t ≤ T
V

2
t = 500, V 2

t = 0 ∀t ≤ T V
2
t = 90, V 2

t = 0 ∀t ≤ T
D = 0, D = 25 D = 0, D = 8

P t = 0, P t = 15 ∀t ≤ T P t = 0, P t = 32 ∀t ≤ T
Φ1 = 230, Φ2 = 0 Φ1 = 850, Φ2 = 0

Λ = [0.2, 0.15, 0.1, 0.2] Λ = [0.1, 0.2, 0.5, 0.4]

A1
t = A2

t = 0 ∀t ≤ T A1
t = A2

t = 0 ∀t ≤ T
γ = [0,0.1,5,0.7] γ = [100,0.2,2,0.6]

The modified features are the following:

• Size of the instance;

• Equality constraints;

• Number of inflection points of the non-linear function;

• Degree of non-linearity of the function;

• Sensitivity of the decision variables to the non-linear effect.

In these parameter sets, the maximum and minimum volumes are artificially large, to see the impact of

each feature. Below, we justify the choice for each feature and explain how the changes are instantiated

on the 1-HUCNL problem. Note that every instance is built such that there is at least one feasible solution

with continuous water flows dt .
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A.3.1 Size of the instance

Larger instances are in general harder to solve as they contain more variables and constraints. In the

case of the 1-HUCNL problem, larger instances considered will have a larger number of time periods T .

Increasing T exponentially increases the number of feasible solutions. Three instances are considered,

A-T-1 to A-T-3 (resp. B-T-1 to B-T-3) corresponding to the variations of the parameter set A (resp. B)

with 4, 7 and 10 time periods T . To take into account more time periods, prices are supplemented as

follows: Λ = [0.2, 0.15, 0.1, 0.2, 0.1, 0.05, 0.1, 0.2, 0.15, 0.05] (resp. Λ = [0.1, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3,

0.5, 0.4, 0.2]). These instances are such that the volume of each reservoir can not reach the maximum or

minimum volume. The water flow will not be affected by the bounds on the volume, in contrary to some

other sets of instances.

A.3.2 Equality constraints

Equality constraints can highly affect the resolution. Indeed, equality constraints drastically reduce the

number of feasible solutions and can also be hard to satisfy. Moreover, depending on the approximation

used in the model, equality constraints may lead to non efficient solutions. In the case of the 1-HUCNL

problem, target volumes are equality constraints, when V 1
t = V

1
t for a time period t. Six instances are

considered, A-E-1 to A-E-6 (resp. B-E-1 to B-E-6) which are variations of parameter set A (resp. B),

where target volumes are only for the last time period T . For A-E-1 to A-E-3 (resp. B-E-1 to B-E-3) the

target volumes are 480, 450 and 420 (resp. 80, 70 and 60). For A-E-4 to A-E-6 (resp B-E-4 to B-E-6), the

target volumes are 500 (resp. 90), but the additional intake of water at the last time period are 20, 50

and 80 (resp. 10, 20, 30). One can notice that for instance A-E-1, the difference between the initial and

the target volume is 20, while for instance A-E-4 it is 0, but the additional intake of water is 20. Thus,

feasible solutions for A-E-1 are feasible solutions for A-E-4 and vice-versa. Instances A-E-2 and A-E-5,

B-E-1 and B-E-4 and so on are built similarly.

A.3.3 Number of inflection points of the non-linear function

With a different number of inflection points, the shape of a non-linear function is changed, which can

lead to more local optimal solutions, or less efficient under-estimators. The functions used to under-

estimate and approximate the functions are also changed. Thus, the resolution and approximation error

could be impacted by the number of inflection points of the non-linear function. In the case of the

1-HUCNL problem, the number of inflection points of the power function can be changed by defining

a larger number of smaller units. We still have the same maximum power and maximum water flow,

only the shape of the power function is different. Three instances are considered, A-N-1 to A-N-3 (resp.

B-N-1 to B-N-3) which are variations of the parameter set A (resp. B) with 2, 4 and 6 units.
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A.3.4 Degree of non-linearity of the non-linear function

As for the number of inflection points, changing the degree of non-linearity is another way to change

the shape of a function. Thus, the resolution and approximation error could be affected by the degree

of non-linearity of the functions. In the case of the 1-HUCNL problem, one way to increase the non-

linearity of the power function is to change the water flow when each unit starts and stops, increasing or

reducing the degree of curvature for each concave part of the function, as represented by. The resulting

power function for the plant can be quasi-linear or have a high degree of non-linearity. In addition, it

also changes the domain of some variables. Six instances are considered, A-D-1 to A-D-6 (resp. B-D-1 to

B-D-6) being variations of parameter set A (resp. B). Instances A-D-1 and A-D-4 feature a quasi linear

function, with D = 22 and P t = 14.5, ∀t ≤ T , instances A-D-2 and A-D-5 correspond to a non-linear

function, with D = 25 and P t = 15, and instances A-D-3 and A-D-6 use a very non-linear function, with

D = 28 and P t = 16. The target volume for instances A-D-4 to A-D-6 is 460. Similarly, instances B-D-1

and B-D-4 feature a quasi linear function, with D = 6 and P t = 28, instances B-D-2 and B-D-5 feature a

non-linear function, with D = 8 and P t = 32, and instances B-D-3 and B-D-6 feature a very non-linear

function, with D = 10 and P t = 34. The target volume for instances B-D-4 to B-D-6 is 75.

A.3.5 Sensitivity of the decision variables to the non-linear effect

Depending on the problem, decision variables can have a very large, or very small impact on the non-

linearities. When the impact is small, it is possible that some simplifications of the problem would

not induce large approximation errors. In the case of the 1-HUCNL problem, the sensitivity of the de-

cision variables to the non-linear effect can change by considering larger or smaller reservoirs. Two

instances are considered, A-S-1 and A-S-2 (resp. B-S-1 and B-S-2) are variations of parameter set A

(resp. B). Instance A-S-2 is similar to A-S-1, but has all initial, maximal and minimal volumes multi-

plied by 100, and supplemented prices Λ = [0.005,0.00375,0.0025,0.005]. Analogously, B-S-2 is sim-

ilar to B-S-1 with initial, maximal and minimal volumes all multiplied by 100, and adapted prices

Λ = [0.005,0.01,0.025,0.02]. The unitary prices Λ are reduced in order to obtain similar solutions for

instances A-S-1 and A-S-2 (resp. B-S-1 and B-S-2).

One can compute bounds on the variation of the volume, by calculating the maximum and minimum

water processed while respecting the capacities. These bounds give an interval for the final volume in

the reservoirs. It is then possible to compute the maximum difference in terms of volume between two

feasible solutions, and compare it to the capacity of the reservoirs in order to predict if the instance

might induce high volume variations or not. The sensitivity S can be computed as follows:

S =
D · T −D · T

min(V
1
T −V 1

T ,V
2
T −V 2

T )

For instance A-S-1, the sensitivity is 100/500 = 0.2, for instance A-S-2: 0.002, for instance B-S-1: 0.36

and for instance B-S-2: 0.0036. Note that the parameter set A (resp. B) has the same sensitivity as
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instance A-S-1 (resp. B-S-1).

Table 9 summarizes these instances and their features.

Table A.2: Instance features

Instances features Modified parameter
A-T-1 to A-T-3

Size of the instance Number of time periods
B-T-1 to B-T-3
A-E-1 to A-E-6

Equality constraints
Different target volumes, with and

B-E-1 to B-E-6 without additional intakes of water
A-N-1 to A-N-3

Number of inflection points Number of units
B-N-1 to B-N-3
A-D-1 to A-D-6

Degree of non-linearity
Quasi-linear, non-linear or very linear

B-D-1 to B-D-6 function, with and without target volumes
A-S-1, A-S-2,

Sensitivity of the decision variables Size of the reservoirs
B-S-1, B-S-2

A.4 Analysis of the impact of the instance features

Let us analyse the impact of each feature of a 1-HUCNL problem instance on the resolution. The

tables related to the results described in the following section are in Appendix A.5.

A.4.1 Size of the instance

Changing the number of time periods (instances A-T-1 to A-T-3 and B-T-1 to B-T-3) has a big effect on

the resolution. Indeed, we see from Table A.3 and Table A.4 that configurations with more time periods

require a drastically increased CT compared to configurations with fewer time periods. The most salient

case is for the 1-HUCNL problem where with T = 10 the only configurations solved under three hours by

their VBS are with one of the following four models: M2D-poly , Mbilin, MPWL-1 and MPWL-2. Moreover,

with T = 7 configurations with model M5P L-max are never solved by their VBS within three hours. The

AE also increases for configurations with instances with more time periods. It is especially visible for

the fixed-head 1-HUCNL problem, with T = 10 the minimal AE is around 20% using models M5P L-max,

and the average AE are around 40% at least.

As there are more time periods, more variables and constraints are introduced, exponentially in-

creasing the number of feasible solutions. The reason why the AE increases is due to the fact that errors

are propagated through the time periods. Also, for the fixed-head 1-HUCNL problem, more time periods

mean, in general, more water processed. The volume varies with a higher magnitude from the initial

volume when there are more time periods, leading to larger AE when considering a fixed head.
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A.4.2 Equality constraints

Taking fixed target volumes (instances A-E-1 to A-E-6 , B-E-1 to B-E-6, A-D-1 to A-D-6 and B-D-1 to

B-D-6) has a non-homogeneous impact on the resolution. From Table A.5 and Table A.6 we notice

that configurations with target volumes reduce the CT required for the 1-HUCNL problem, compared

to configurations without target volumes. For the AE, we notice multiple behaviours. For most models,

configurations with target volumes yields to smaller average AE, but higher maximal AE, compared to

configurations without target volumes. Non-represented results also showed that ANTIGONE solves

less than 25% of configurations with target volumes whereas it solves more than 60% of configurations

without target volumes. A similar but less marked behaviour is noticed for COUENNE.

The decreased CT is probably due to the fact that fewer solutions are feasible. The reduced AE

are due to the target volume being very close to the initial volume for some instances. Less volume is

processed, meaning a smaller power, and smaller AE. Besides, for the fixed-head 1-HUCNL problem, it

also means less errors due to the fixed head, as the volume may not vary to much from the initial volume.

We notice that some configurations with model Mop are not solved, for both the 1-HUCNL problem and

the fixed-head 1-HUCNL problem. This is because the target volume may not be reachable with the

finite set of water flows.

A.4.3 Degree of non-linearity

Changing the non-linearity of the power function (instances A-D-1 to A-D-6 and B-D-1 to B-D-6) can

have an impact on the CT and the AE in the case of the 1-HUCNL problem, but only on the AE for

the fixed-head 1-HUCNL problem. From Table A.7 and Table A.8, we notice that configurations with

pronounced non-linearities have larger CT for the 1-HUCNL problem than configurations with quasi-

linear functions. The configurations with non-linear models also have larger AE with pronounced non-

linear functions, for both the 1-HUCNL problem and the fixed-head 1-HUCNL problem. The AE for

configurations with linear model is not affected. We also see that all the configurations with model

M2D-poly are infeasible with every solver when the instance has a pronounced non-linear function, even

if there exist feasible solutions for the instance.

The general increase of the AE for non-linear models can be explained by two reasons. Firstly, by

instance construction, the units are the same for every instances, and the water-flow interval for each

unit is changed in order to have a different degree of non-linearity. As such, it is possible that fewer non-

linear functions can closely approximate the function of Mref on a larger interval. Secondly, a highly

non-linear function can be harder to approximate by simpler functions, leading to larger AE for every

model.
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A.4.4 Number of inflection points

Changing the number of units (instances A-N-1 to A-N-3 and B-N-1 to B-N-3) has only a noticeable

impact on models representing each unit explicitly, namely M5P L-max, M5P L-bin and M2D-poly . Indeed,

Table A.9 and Table A.10 show the increased CT required for configurations with these models and

with instances with more units. Also, increased number of units reduces the degree of non-linearity.

Thus it is possible to see similar behaviours as when changing the degree of non-linearity.

The reason why the CT increases for configurations with one of the four mentioned models and an

instance with many units is because as they represent each unit explicitly, more variables and constraints

are required.

A.4.5 Sensitivity of the decision variables to the non-linear effect

In order to have negligible variation of the volume, the volumes can be set to larger values than the

water flows. Table A.11 and Table A.12 show that the CT tends to be smaller for configurations with

large volumes compared to configurations with smaller volumes. Larger volumes usually lead to an

improvement of the AE for the fixed-head 1-HUCNL problem. However, the maximal AE of PWL models

can be very large with large volumes. More precisely, with a PWL models, half the configurations has a

large AE, and the other half has a smaller AE, compared to configurations with small volumes

The improvement of AE for the fixed-head 1-HUCNL problem is because with small variations, the

volume is very similar to the initial volume at any time period. The AE from the fixed-head becomes

very small. The high AE of the PWL models can be explained as follows. These models only consider a

family of univariate PWL function for a finite set of possible volumes. It is then possible that the volume

is never similar to the volumes used by this family of functions.

A.5 Numerical experiments when partitioning instances

• %S: proportion of configuration solved;

• min-CT, max-CT, avg-CT: minimum, maximum, and average CT for every solved configurations;

• min-AE, max-AE, avg-AE: minimum, maximum and average AE for every solved configurations.

A.5.1 Size of the instance

Table A.3 and Table A.4 represents the proportion of configurations with instances with 4, 7 and 10

time periods and each model solved by their VBS, and related minimum, maximum and average CT and

AE.
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Table A.3: Proportion of configurations solved with their VBS, CT and AE statistics for the 1-HUCNL

problem for different number of time periods (instances A-T-1 to A-T-3 and B-T-1 to B-T-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

T =4

M5P L-max 100.0 103.34 186.38 144.86 0.2 0.4 0.3
M5P L-bin 100.0 15.28 28.47 21.88 0.2 0.4 0.3
M2D-poly 100.0 0.43 0.69 0.56 0.8 3.9 2.4
Mop 100.0 1.47 2.25 1.86 0.3 0.4 0.3
Mbilin 100.0 0.03 0.05 0.04 24.3 26.1 25.2
MPWL-3 100.0 0.4 7.06 3.73 1.3 3.5 2.4
MPWL-2 100.0 0.09 0.18 0.14 5.8 6.5 6.2
MPWL-1 100.0 0.01 0.02 0.01 11.8 67.9 39.9

T =7

M5P L-max 0 - - - - - -
M5P L-bin 100.0 10367.97 10367.97 10367.97 0.4 0.4 0.4
M2D-poly 100.0 8.31 36.18 22.25 0.8 3.3 2.0
Mop 100.0 78.69 574.13 326.41 4.0 14.3 9.2
Mbilin 100.0 0.06 0.26 0.16 24.1 31.3 27.7
MPWL-3 100.0 39.12 39.12 39.12 1.3 1.3 1.3
MPWL-2 100.0 0.15 2.88 1.51 5.7 8.7 7.2
MPWL-1 100.0 0.03 0.06 0.04 27.9 67.9 47.9

T =10

M5P L-max 0 - - - - - -
M5P L-bin 0 - - - - - -
M2D-poly 100.0 44.71 344.08 194.39 0.8 14.1 7.5
Mop 100.0 7062.75 7062.75 7062.75 78.6 78.6 78.6
Mbilin 100.0 0.07 0.09 0.08 40.4 46.3 43.3
MPWL-3 50.0 558.73 558.73 558.73 1.1 1.1 1.1
MPWL-2 100.0 0.46 19.05 9.76 7.4 14.0 10.7
MPWL-1 100.0 0.05 0.16 0.11 32.4 66.8 49.6

A.5.2 Equality constraints

Table A.5 and Table A.6 represents the proportion of configurations with instances with and without

target volumes and each model solved by their VBS, and related minimum, maximum and average CT

and AE.

A.5.3 Degree of non-linearity

Table A.7 and Table A.8 represents the proportion of configurations with instances with a quasi linear,

a non-linear and a very non-linear function and each model solved by their VBS, and related minimum,

maximum and average CT and AE.
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Table A.4: Proportion of configurations solved with their VBS, CT and AE statistics for the fixed-head
1-HUCNL problem for different number of time periods (instances A-T-1 to A-T-3 and B-T-1 to B-T-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

T =4

M5P L-max 100.0 0.11 0.12 0.11 10.7 20.6 15.7
M5P L-bin 100.0 0.25 0.4 0.33 10.7 20.6 15.7
M2D-poly 100.0 0.06 0.08 0.07 14.6 27.3 20.9
Mop 100.0 0.0 0.01 0.01 10.3 21.0 15.7
Mbilin 100.0 0.0 0 0.0 41.0 66.6 53.8
MPWL-3 100.0 0.02 0.02 0.02 20.2 21.9 21.0
MPWL-2 100.0 0.01 0.01 0.01 19.9 21.8 20.9
MPWL-1 100.0 0.01 0.01 0.01 21.9 22.2 22.0

T =7

M5P L-max 100.0 0.11 0.14 0.12 12.4 32.1 22.2
M5P L-bin 100.0 2.77 10.14 6.46 18.6 32.1 25.4
M2D-poly 100.0 0.06 0.1 0.08 23.6 43.4 33.5
Mop 100.0 0.01 0.01 0.01 17.8 33.1 25.5
Mbilin 100.0 0.0 0 0.0 60.2 115.6 87.9
MPWL-3 100.0 0.03 0.03 0.03 31.5 32.1 31.8
MPWL-2 100.0 0.01 0.01 0.01 30.8 31.6 31.2
MPWL-1 100.0 0.01 0.01 0.01 30.2 35.7 33.0

T =10

M5P L-max 100.0 0.11 0.15 0.13 19.6 59.2 39.4
M5P L-bin 100.0 6.25 50.0 28.12 29.7 59.2 44.5
M2D-poly 100.0 0.08 0.08 0.08 34.7 67.3 51.0
Mop 100.0 0.01 0.01 0.01 28.4 49.0 38.7
Mbilin 100.0 0.0 0 0.0 78.7 149.9 114.3
MPWL-3 100.0 0.04 0.04 0.04 44.7 47.0 45.9
MPWL-2 100.0 0.01 0.02 0.01 44.2 46.1 45.2
MPWL-1 100.0 0.01 0.01 0.01 42.9 52.8 47.8

A.5.4 Number of inflection points

Table A.9 and Table A.10 represents the proportion of configurations with instances with 2, 6 and 6

units and each model solved by their VBS, and related minimum, maximum and average CT and AE.

A.5.5 Sensitivity of the decision variables to the non-linear effect

Table A.11 and Table A.12 represents the proportion of configurations with instances with small and

large volumes and each model solved by their VBS, and related minimum, maximum and average CT

and AE.
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Table A.5: Proportion of configurations solved with their VBS, CT and AE statistics for the 1-HUCNL

problem with and without target volumes (instances A-T-1, B-T-1, A-E-1 to A-E-6, B-E-1 to B-E-6, A-D-1
to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

No target volume

M5P L-max 100.0 51.99 212.62 148.12 0.0 12.3 1.9
M5P L-bin 100.0 4.08 31.84 21.97 0.0 12.3 1.9
M2D-poly 100.0 0.4 0.81 0.53 0.0 7.2 2.8
Mop 100.0 1.47 2.95 1.94 0.1 12.7 1.9
Mbilin 100.0 0.03 0.06 0.04 19.4 32.3 26.2
MPWL-3 100.0 0.4 8.98 3.6 0.9 4.2 2.5
MPWL-2 100.0 0.09 0.18 0.13 4.4 6.5 5.8
MPWL-1 100.0 0.01 0.03 0.02 10.0 70.6 39.8

target volume

M5P L-max 100.0 0.66 399.96 94.73 0.0 9.3 1.1
M5P L-bin 100.0 0.1 18.31 7.66 0.0 9.3 0.8
M2D-poly 100.0 0.09 0.48 0.29 0.2 4.2 1.4
Mop 100.0 0.56 23.96 3.81 0.0 10.5 1.2
Mbilin 100.0 0.03 0.13 0.07 0.5 27.4 12.4
MPWL-3 100.0 0.14 1.0 0.44 0.8 22.9 3.4
MPWL-2 100.0 0.01 0.17 0.07 1.3 30.8 6.6
MPWL-1 100.0 0.01 0.02 0.01 4.9 69.4 33.0

Table A.6: Proportion of configurations solved with their VBS, CT and AE statistics for the fixed-head
1-HUCNL problem with and without target volumes (instances A-T-1, B-T-1, A-E-1 to A-E-6, B-E-1 to
B-E-6, A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

No target volume

M5P L-max 100.0 0.1 0.12 0.11 7.3 24.1 15.9
M5P L-bin 100.0 0.2 0.48 0.35 8.8 28.7 17.8
M2D-poly 100.0 0.06 0.14 0.08 9.6 28.4 20.8
Mop 100.0 0.0 0.01 0.01 8.0 27.8 17.4
Mbilin 100.0 0.0 0 0.0 29.0 87.5 56.5
MPWL-3 100.0 0.02 0.03 0.03 17.7 27.5 21.4
MPWL-2 100.0 0.01 0.02 0.01 17.2 27.4 21.1
MPWL-1 100.0 0.01 0.01 0.01 18.4 29.2 22.2

target volume

M5P L-max 100.0 0.1 0.93 0.2 2.0 19.5 7.6
M5P L-bin 100.0 0.03 1.06 0.52 1.0 80.0 14.0
M2D-poly 100.0 0.06 0.23 0.13 0.6 28.8 10.4
Mop 100.0 0.0 0.02 0.01 1.0 19.9 7.1
Mbilin 100.0 0.0 0 0.0 2.7 49.8 21.2
MPWL-3 100.0 0.02 0.17 0.07 0.8 33.5 10.6
MPWL-2 100.0 0.01 0.04 0.02 0.8 33.5 10.6
MPWL-1 100.0 0.0 0.01 0.01 0.9 33.6 10.8
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Table A.7: Proportion of configurations solved with their VBS, CT and AE statistics for the 1-HUCNL

problem for different degree of non-linearity (instances A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

Quasi linear

M5P L-max 100.0 2.41 399.96 162.15 0.0 0.5 0.3
M5P L-bin 100.0 3.18 31.84 13.63 0.0 0.5 0.3
M2D-poly 100.0 0.23 0.4 0.35 0.0 7.2 2.9
Mop 100.0 1.43 1.68 1.54 0.1 0.5 0.2
Mbilin 100.0 0.03 0.08 0.05 10.2 27.7 18.1
MPWL-3 100.0 0.2 3.39 1.15 1.0 3.6 2.2
MPWL-2 100.0 0.1 0.14 0.12 4.4 6.2 5.4
MPWL-1 100.0 0.01 0.02 0.02 10.0 68.7 38.8

Non-linear

M5P L-max 100.0 43.21 239.32 148.84 0.2 0.4 0.3
M5P L-bin 100.0 8.83 29.02 17.6 0.2 0.4 0.3
M2D-poly 100.0 0.21 0.81 0.46 0.8 3.9 1.9
Mop 100.0 1.08 2.93 1.98 0.3 0.4 0.3
Mbilin 100.0 0.04 0.08 0.05 0.9 26.1 16.7
MPWL-3 100.0 0.15 6.73 2.01 1.3 3.6 2.6
MPWL-2 100.0 0.03 0.16 0.1 5.8 7.1 6.4
MPWL-1 100.0 0.01 0.02 0.02 11.8 68.4 40.0

Very non-linear

M5P L-max 100.0 62.31 208.98 151.88 1.0 12.3 6.2
M5P L-bin 100.0 0.56 27.81 15.87 0.0 12.3 5.7
M2D-poly 0 - - - - - -
Mop 100.0 0.83 3.58 2.29 0.9 12.7 6.3
Mbilin 100.0 0.03 0.1 0.06 7.8 32.3 21.7
MPWL-3 100.0 0.37 8.98 2.87 0.9 4.2 2.6
MPWL-2 100.0 0.09 0.17 0.14 5.2 7.2 6.3
MPWL-1 100.0 0.02 0.03 0.02 10.0 70.6 40.0
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Table A.8: Proportion of configurations solved with their VBS, CT and AE statistics for the fixed-head
1-HUCNL problem for different degree of non-linearity (instances A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

Quasi linear

M5P L-max 100.0 0.1 0.13 0.11 7.1 18.4 10.2
M5P L-bin 100.0 0.2 0.82 0.46 7.1 18.4 10.5
M2D-poly 100.0 0.06 0.14 0.1 6.8 28.4 14.3
Mop 100.0 0.01 0.01 0.01 7.9 16.8 10.9
Mbilin 100.0 0.0 0 0.0 21.1 53.2 31.4
MPWL-3 100.0 0.02 0.03 0.03 7.5 18.5 14.8
MPWL-2 100.0 0.01 0.02 0.01 7.4 18.4 14.7
MPWL-1 100.0 0.01 0.01 0.01 6.8 19.8 15.2

Non-linear

M5P L-max 100.0 0.11 0.17 0.12 6.2 20.6 11.7
M5P L-bin 100.0 0.32 1.03 0.56 6.2 20.6 11.5
M2D-poly 100.0 0.06 0.23 0.15 7.5 27.3 14.1
Mop 100.0 0.0 0.01 0.01 6.1 21.0 11.5
Mbilin 100.0 0.0 0 0.0 18.7 66.6 37.3
MPWL-3 100.0 0.02 0.03 0.03 7.8 21.9 16.1
MPWL-2 100.0 0.01 0.01 0.01 7.6 21.8 16.0
MPWL-1 100.0 0.01 0.01 0.01 6.1 22.2 15.9

Very non-linear

M5P L-max 100.0 0.1 0.12 0.11 10.1 24.1 15.9
M5P L-bin 100.0 0.35 1.01 0.56 10.3 28.7 19.9
M2D-poly 100.0 0.06 0.19 0.11 6.8 26.8 15.7
Mop 100.0 0.01 0.02 0.01 5.0 27.8 18.7
Mbilin 100.0 0.0 0 0.0 26.1 87.5 52.6
MPWL-3 100.0 0.03 0.12 0.05 8.1 27.5 18.8
MPWL-2 100.0 0.01 0.03 0.02 8.0 27.4 18.5
MPWL-1 100.0 0.01 0.01 0.01 12.2 29.2 20.2
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Table A.9: Proportion of configurations solved with their VBS, CT and AE statistics for the 1-HUCNL

problem for different number of units (instances A-N-1 to A-N-3 and B-N-1 to B-N-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

K =2

M5P L-max 100.0 103.34 186.38 144.86 0.2 0.4 0.3
M5P L-bin 100.0 15.28 28.47 21.88 0.2 0.4 0.3
M2D-poly 100.0 0.43 0.69 0.56 0.8 3.9 2.4
Mop 100.0 1.47 2.25 1.86 0.3 0.4 0.3
Mbilin 100.0 0.03 0.05 0.04 24.3 26.1 25.2
MPWL-3 100.0 0.4 7.06 3.73 1.3 3.5 2.4
MPWL-2 100.0 0.09 0.18 0.14 5.8 6.5 6.2
MPWL-1 100.0 0.01 0.02 0.01 11.8 67.9 39.9

K =4

M5P L-max 100.0 1764.35 5988.44 3876.39 0.1 0.4 0.2
M5P L-bin 100.0 13.75 63.73 38.74 0.1 0.4 0.2
M2D-poly 100.0 2.76 3.47 3.12 0.4 3.1 1.8
Mop 100.0 0.49 1.57 1.03 0.0 0.3 0.1
Mbilin 100.0 0.04 0.05 0.04 19.6 22.1 20.9
MPWL-3 100.0 0.75 5.73 3.24 0.3 3.3 1.8
MPWL-2 100.0 0.11 0.15 0.13 4.0 6.4 5.2
MPWL-1 100.0 0.02 0.02 0.02 12.0 70.9 41.5

K =6

M5P L-max 100.0 1055.49 1055.49 1055.49 0.0 0 0.0
M5P L-bin 100.0 7.63 36.01 21.82 0.0 0.3 0.1
M2D-poly 100.0 1.11 3.81 2.46 0.7 8.7 4.7
Mop 100.0 0.38 1.3 0.84 0.0 0.9 0.5
Mbilin 100.0 0.04 0.04 0.04 13.6 20.4 17.0
MPWL-3 100.0 0.5 6.63 3.56 0.4 4.2 2.3
MPWL-2 100.0 0.14 0.22 0.18 3.7 6.4 5.1
MPWL-1 100.0 0.02 0.02 0.02 10.6 75.8 43.2
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Table A.10: Proportion of configurations solved with their VBS, CT and AE statistics for the fixed-head
1-HUCNL problem for different number of units (instances A-N-1 to A-N-3 and B-N-1 to B-N-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

K =2

M5P L-max 100.0 0.11 0.12 0.11 10.7 20.6 15.7
M5P L-bin 100.0 0.25 0.4 0.33 10.7 20.6 15.7
M2D-poly 100.0 0.06 0.08 0.07 14.6 27.3 20.9
Mop 100.0 0.0 0.01 0.01 10.3 21.0 15.7
Mbilin 100.0 0.0 0 0.0 41.0 66.6 53.8
MPWL-3 100.0 0.02 0.02 0.02 20.2 21.9 21.0
MPWL-2 100.0 0.01 0.01 0.01 19.9 21.8 20.9
MPWL-1 100.0 0.01 0.01 0.01 21.9 22.2 22.0

K =4

M5P L-max 100.0 0.11 0.33 0.22 12.2 24.9 18.5
M5P L-bin 100.0 0.14 0.76 0.45 14.4 22.4 18.4
M2D-poly 100.0 0.06 0.09 0.07 10.3 11.2 10.8
Mop 100.0 0.01 0.01 0.01 11.6 22.0 16.8
Mbilin 100.0 0.0 0 0.0 36.7 56.7 46.7
MPWL-3 100.0 0.02 0.03 0.03 22.7 23.4 23.0
MPWL-2 100.0 0.01 0.01 0.01 22.8 23.0 22.9
MPWL-1 100.0 0.01 0.01 0.01 21.7 26.5 24.1

K =6

M5P L-max 100.0 0.1 0.33 0.22 13.0 25.4 19.2
M5P L-bin 100.0 0.03 0.82 0.42 24.7 90.2 57.5
M2D-poly 100.0 0.06 0.07 0.07 13.9 15.6 14.8
Mop 100.0 0.0 0 0.0 10.3 24.0 17.1
Mbilin 100.0 0.0 0 0.0 35.0 48.4 41.7
MPWL-3 100.0 0.02 0.03 0.03 23.1 25.1 24.1
MPWL-2 100.0 0.01 0.01 0.01 23.5 24.9 24.2
MPWL-1 100.0 0.01 0.01 0.01 22.2 23.6 22.9
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Table A.11: Proportion of configurations solved with their VBS, CT and AE statistics for the 1-HUCNL

problem for small and large volumes (instances A-S-1, A-S-2, B-S-1 and B-S-2)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

S ∈ {0.2,0.36}

M5P L-max 100.0 103.34 186.38 144.86 0.2 0.4 0.3
M5P L-bin 100.0 15.28 28.47 21.88 0.2 0.4 0.3
M2D-poly 100.0 0.43 0.69 0.56 0.8 3.9 2.4
Mop 100.0 1.47 2.25 1.86 0.3 0.4 0.3
Mbilin 100.0 0.03 0.05 0.04 24.3 26.1 25.2
MPWL-3 100.0 0.4 7.06 3.73 1.3 3.5 2.4
MPWL-2 100.0 0.09 0.18 0.14 5.8 6.5 6.2
MPWL-1 100.0 0.01 0.02 0.01 11.8 67.9 39.9

S ∈ {0.002,0.0036}

M5P L-max 100.0 123.58 131.2 127.39 0.5 0.8 0.7
M5P L-bin 100.0 7.2 16.72 11.96 0.5 0.8 0.7
M2D-poly 100.0 0.26 0.36 0.31 3.7 17.5 10.6
Mop 100.0 0.18 0.43 0.3 0.5 1.0 0.8
Mbilin 100.0 0.05 0.06 0.06 9.6 29.8 19.7
MPWL-3 100.0 0.05 0.11 0.08 2.7 171.9 87.3
MPWL-2 100.0 0.01 0.01 0.01 10.8 173.6 92.2
MPWL-1 100.0 0.01 0.02 0.01 86.3 100.9 93.6

Table A.12: Proportion of configurations solved with their VBS, CT and AE statistics for the fixed-head
1-HUCNL problem for small and large volumes (instances A-S-1, A-S-2, B-S-1 and B-S-2)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

S ∈ {0.2,0.36}

M5P L-max 100.0 0.11 0.12 0.11 10.7 20.6 15.7
M5P L-bin 100.0 0.25 0.4 0.33 10.7 20.6 15.7
M2D-poly 100.0 0.06 0.08 0.07 14.6 27.3 20.9
Mop 100.0 0.0 0.01 0.01 10.3 21.0 15.7
Mbilin 100.0 0.0 0 0.0 41.0 66.6 53.8
MPWL-3 100.0 0.02 0.02 0.02 20.2 21.9 21.0
MPWL-2 100.0 0.01 0.01 0.01 19.9 21.8 20.9
MPWL-1 100.0 0.01 0.01 0.01 21.9 22.2 22.0

S ∈ {0.002,0.0036}

M5P L-max 100.0 0.14 0.18 0.16 0.1 1.2 0.7
M5P L-bin 100.0 0.72 0.84 0.78 0.2 1.0 0.6
M2D-poly 100.0 0.09 0.09 0.09 4.2 16.7 10.4
Mop 100.0 0.0 0 0.0 0.2 1.1 0.7
Mbilin 100.0 0.0 0 0.0 9.8 30.3 20.1
MPWL-3 100.0 0.03 0.03 0.03 0.8 176.3 88.6
MPWL-2 100.0 0.01 0.01 0.01 0.8 175.8 88.3
MPWL-1 100.0 0.01 0.01 0.01 0.7 177.8 89.2
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B.1 Proofs and lemmas

B.1.1 Proof of Property 1

We first recall the downlifting described in [64], before showing that for the SCPKP, it can only yield

coefficients αij = 0. To do so, we introduce further definitions. Let U be a MIC. We define π a pf rs-order

(precedence first, remaining second), an order for items (i, j) ∈ Up ∪Ur , such that πij < πi′j ′ if one of the

following stands:

• (i, j) ∈Up and (i′ , j ′) ∈Ur

• (i, j) ∈Up, (i′ , j ′) ∈Up, i = i′ and j > j ′ (reversed topological order)
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• (i, j) ∈Ur , (i′ , j ′) ∈Ur , i = i′ and j < j ′ (topological order)

We denote sπ(ij) (resp. pπ(ij)) the set of all items (i′ , j ′) such that πij < πi′j ′ (resp. πij > πi′j ′ ).

For a given (i, j) ∈U , coefficient αij is computed as follows:

αij = |U | − 1−max
∑

(i′ ,j ′)∈U
xi′j ′ +

∑
(i′ ,j ′)∈Up∩pπ(ij)

αi′j ′ (1− xi′j ′ )

s.t.
I∑

i′=1

J∑
j ′=1

W j ′xi′j ′ ≤ C

xi′j ′ ≤ xi′j ′−1 ∀xi′j ′ ∈ V , j ′ ≥ 2

xi′j ′ = 0 ∀(i′ , j ′) ∈Ur ,

xi′j ′ = 1 ∀(i′ , j ′) ∈Up ∩ sπ(ij),

xij = 0

xi′j ′ ∈ {0,1} ∀xi′j ′ ∈ V .

Proof : Consider xij such that πij = 1. Clearly, pπ(ij) = ∅, hence one maximizes∑
(i′ ,j ′)∈U

xi′j ′ .

By definition of a MIC, for each pair of items in U , they must be incomparable, i.e., there cannot be two

items of a same group. Also, by definition of the pf rs-order, (i, j + 1) ∈ U . Hence, as xij = 0, then xij+1 = 0,

but for all items (i′ , j′) ∈Up, then xi′j ′ = 1.

By definition of a MIC, there is a feasible solution with all variables ofU∪Up\{xij+1} to 1. Consequently,

the optimal solution of the problem to compute value αij has value |U | − 1, and coefficient αij = 0.

One can repeat the same reasoning for all variables in Up.

Example 33

Let (4, 4, [5, 4, 2, 2], V , 20) be an instance of the SCPKP. Set U = {(1,3), (2,3)} is a MIC, with Up =

{(1,1), (1,2), (2,1), (2,2)} and Ur contains all other items. Consider the following pf rs-order: π =

{(1,2), (1,1), (2,2), (2,1), . . .}. We do not describe the complete pf rs-order, as only the order of items in

Ur is relevant for the purpose of this example. We now proceed to downlift inequality x13 + x23 ≤ 1.

In order to compute α12, we solve the following problem:

α12 = |U | − 1−max x23

s.t.
I∑

i′=1

5xi′1 + 4xi′2 + 2xi′3 + 2x1′4 ≤ 20

xi′j ′ ≤ xi′j ′−1 ∀xi′j ′ ∈ V , j ′ ≥ 2

xi′j ′ = 0 ∀(i′ , j ′) ∈Ur ,
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x11 = x21 = x22 = 1,

x12 = 0,

xi′j ′ ∈ {0,1} ∀xi′j ′ ∈ V .

As x12 = 0, then x13 = 0 due to chain precedence constraints. The only variable that is not fixed is

x23. It is possible to have x23 = 1, as the total weight is W 1 +W 1 +W 2 +W 3 = 16 ≤ 20. Consequently

α12 = 2− 1− 1 = 0. Same result is obtain for any item is Up.

B.1.2 Proof of Property 11

Proof : Let (i, j) be an item such that there is xij ′ ∈ X with j′ > j. Assume without loss of generality that j′ is

such that there are no xij ′′ ∈ X , j < j′′ < j′ . As P is a flexible pattern, condition (iii) holds and the property

is verified for item (i, j′) as xij ′ ∈ X . Let Y ′ be the set of variables verifying condition (iii) for item (i, j′). Let

Z be the subset of Y ′ with all variables xij ′′ ∈ Y ′ , j′′ ≥ j. One can build Y = Y ′ \ Z ∪ {xij }. We can prove

that the set of variables Y verifies the property for item (i, j). By construction, xij ∈ Y and xij ′′ < Y for every

j′′ > j. As there are no xij ′′ ∈ X , j < j′′ < j′ and Y ′ is a k-intersection of X by condition (iii), then |Y ∩X | = k.

Also, as the weights are non-negative, and solution XY ′ is valid by condition (iii), then XY is also valid.

Consequently, Y is a k-intersection of X and the property is verified for xij .

Let (i, j) be an item such that for all j′ > j, xij ′ < X . As P is a flexible pattern, condition (ii) hold and

the property is verified for item (i, J). The proof is the same as in the first case, with Y ′ the set of variables

verifying condition (ii) for item (i, J).

Thus, for any (i, j), there exist a feasible solution with xij = 1, xij+1 = 0 and a total of k variables of X to

1.

B.1.3 Proof of Property 12

Proof Proof of Property 12 : Let P be a flexible pattern. Suppose that there is i ≤ I such that Si (Q1) does not

contain the |Si (P )| −U smallest indices of Si (P ). By definition of Q1, S1(Q1) = S1(P ), meaning the property

is trivially verified for i = 1. In the following we consider i > 1. Let X ∈ χ(P ) be a variable set. Let Y ∈ χ(Q1)

be a variable set, to which we add x1J if x1J < X . The solution XY is feasible as proven in Lemma 1. Let Y ′

be the variables set Y from which we remove all variables of group 1, and to which we add all variables of

group i in X \ Y . Because of the symmetric weights, selecting every item (1, j), j ≤ J is at least as heavy as

selecting items (i, j), j ≤max(Si (P )). Consequently:∑
xi′ j′∈Y ′

si′j ′ (Y ′) ≤
∑

xi′ j′∈Y
si′j ′ (Y ).

As solution XY is valid, solution XY ′ must also be valid. By construction, there are U variables of group 1

in Y \Y ′ . Also, as |Si (Q1)| < |Si (P )| −U by hypothesis, there are at least U + 1 variables of group i in Y ′ \ Y .
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Besides groups 1 and i, sets Y and Y ′ are identical, hence |Y ′ | > |Y |. As Y is a k-intersection of X , then Y ′ is

at least a k + 1-intersection of X , which contradicts the rank k of P .

Thus, Q1 must contain the |Si (P )| −U smallest indices of Si (P ) for every i ≤ I .

B.1.4 Lemmas for Property 13

Lemma 5

Let P be a flexible pattern. Let i be an integer belonging to {2, . . . , I}. For any u ∈ {1, . . . ,U }, if

Si(P )[u] ∈ Si(Q1) and |Si(P )| ≥ u +U then S1(P )[u] ≥ Si(P )[u +U ].

The idea of the following proof is illustrated by Example 34 and Figure B.1.

Example 34

Let (4,5,W ,V ,C) be an instance of the SCPKP. Let P = {S1(P ) = {1,2},S2(P ) = {1,3},S3(P ) = {1,2,3},S4(P ) =

{2,3,4,5}} be a flexible pattern of rank 7 and with U = 2. Suppose Q1 = {{1,2}, {1},∅, {2,3,4,5}}. In this

case P does not follow Lemma 5. Indeed, with u = 2, there is S1(P )[2] = 1 < S4(P )[2 + 2] = 2.

Let X = {x11, x12, x21, x23, x31, x32, x33, x42, x43, x44, x45} ∈ χ(P ) be a variable set as represented

in Figure B.1a. Let Y = {x11, x12, x31, x42, x43, x44, x45} ∈ χ(Q1) be a variable set. As P is a flexible

pattern, Lemma 1 proves that solution XY∪{x15}, as represented in Figure B.1b, is feasible. Let Z =

{x21, x32} be a variable set. By construction |Z| = u = 2. Clearly, solution XY\{x12}∪Z , as represented in

Figure B.1c, is unfeasible by the rank of P . Hence, W 2 +W 1 > W 2 +W 3 +W 4 +W 5.

As P is a flexible pattern, P verifies Property 11. Hence there is a set Y ′ such that x41 ∈ Y ′ ,
x4j < Y ′ for every j ∈ {2, . . . ,5} and |Y ′ ∩X | = 7 and XY ′ is a valid solution. Suppose in this example

Y ′ = {x11, x12, x21, x23, x31, x32, x33, x41} represented in Figure B.1d.

Note that S4(P )[u +U ]− 1 = S4(P )[4]− 1 = 1, and by construction, x4j < Y ′ for every j ∈ {1, . . . ,5}.
Hence, there are u +U = 4 variables, namely x21, x23, x32, x33, in Y ′ \ Y . Property 12 indicates that

for every i ≤ I , Si(P )[U + 1] ∈ Si(Q1). Thus, these 4 variables in Y ′ \ Y are split into a set O2 ⊂ X
of 1 to U = 2 variables in a group, and a set O1 ⊂ X of u = 2 to u +U − 1 = 3 variables in the other

groups. In this case, we arbitrarily chose O2 = {x32, x33} and O1 = {x21, x23}. Because both Z and O1

are subsets of X \Y and |Z| ≤ |O1|, then W 1 +W 2 +W 3 ≥W 1 +W 2 >W 2 +W 3 +W 4 +W 5. Hence, with

Y ′′ = Y ′ \O1 ∪ {x42,x43,x44,x45} represented in Figure B.1e, as solution XX ′ is feasible, then solution

XY ′′ is also feasible. However Y ′′ is an 8-intersection of X , which contradicts the rank of P .

Proof : Let P be a flexible pattern of rank k and Q1 a lower sub-pattern of P . Suppose that there is u ≤ U and

i > 1 such that S1(P )[u] ∈ Si (Q1) and |Si (P )| ≥ u +U but S1(P )[u] < Si (P )[u +U ].

Let X ∈ χ(P ) and Y ∈ χ(Q1) be variable sets. By Lemma 1, solution XY∪{x1J } is feasible. However, for a

variable set Z, Z ⊆ X \Y , it is not possible to create a feasible solution from XY by setting every variable of

Z to 1, and |Z| − 1 variables of Y to 0. Otherwise there would be k + 1 variables of X to 1, which contradicts
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(a) Set X (b) Set Y ∪ x45 (c) Non feasible set (d) Set Y ′ (e) Set Y ′′

Figure B.1: Illustration of Example 34

the rank of P . With |Z| = u, as XY∪{x1J } is a feasible solution, we deduce the following:

∑
xi′ j′∈Z

si′j ′ (X ) >
J∑

j=S1(P )[u]+1

W j .

Because P is flexible, Property 11 implies that for j = Si (P )[u + U ] there exists a set Y ′ ∈ V being a k-

intersection of X with xij−1 ∈ Y ′ and xij ′ < Y ′ , j′ ≥ j, such that XY ′ is valid. From Property 4 as Y is a

k-intersection of X , there is Y ′ ⊆ Y a k-intersection of X . Hence we suppose without loss of generality that

|Y | = k.

In the case Si (Q1) = Si (P ), clearly there are u+U more variables of group i in Y \Y ′ . As card(Q1) = k and

Y ∈ χ(Q1), then |Y | = |Y ′ | = k. Hence, there are u +U variables of groups different than i in Y ′ \Y . Property

12 indicates that for each i′ ≤ I , |Si′ (Q1)| ≥ |Si′ (P )| −U . Thus, these u +U variables in Y ′ \ Y are split into a

set O2 ⊂ X of 1 to U variables in a group, and a set O1 ⊂ X of u to u +U − 1 variables in the other groups.

In the case Si (Q1) ⊂ Si (P ) with Si (P )[u] ∈ Si (Q1) there are between U +1 and u+U −1 variables of group

i in Y \Y ′ and reciprocally between U + 1 and u +U −1 variables of groups different than i in Y ′ \Y . In this

case we consider O1 ⊂ X to be the set of U + 1 to u +U − 1 variables if Y ′ \Y , and O2 = ∅.

We know thatZ ∈ X andZ∩Y = ∅ and similarly,O1 ⊂ X andO1∪Y = ∅. Also, we know that |O1| ≥ u = |Z|.
We deduce that:

∑
xi′ j′∈O1

si′j ′ (X ) ≥
∑

xi′ j′∈Z
si′j ′ (X ) >

J∑
j=S1(P )[u]+1

W j .

By construction, Si (P )[1] ≤ J and by hypothesis, Si (P )[u +U ] > S1(P )[u], which means that:

∑
j∈Si (P ):j≥Si (P )[u+U ]

sij (X ) =
Si (P )[1]∑

j=Sj (P )[u+U ]

W j ≤
J∑

j=S1(P )[u]+1

W j .

The u +U variables of group i that are in Y but not in Y ′ are lighter than the ones in Z, thus lighter than

variables of O1. Hence we build Y ′′ = Y ′ \ O1 to which we add all the u +U variables of group i in X \ Y ′ .
As XY ′ is valid, then XY ′′ is also valid. However |O1| ≤ u +U − 1, meaning that the new solution has at least

k + 1 variables of X to 1, which contradicts the rank of P .

Lemma 6

Let P be a flexible pattern and Q1 a lower sub-pattern of P . Let i be an integer belonging to {2, . . . , I}.

223/243



B.1. PROOFS AND LEMMAS Appendix B. Appendix: polyhedral study

For any u ∈ {1, . . . ,U }, if Si(P )[u] < Si(Q1) and |Si(P )| ≥ u +U then S1(P )[u] ≥ Si(P )[u +U ].

Proof : Suppose that there is u ≤ U and i > 1 such that Si (P )[u] < Si (Q1) and |Si (P )| ≥ u +U but S1(P )[u] <

Si (P )[u +U ].

Let X ∈ χ(P ) and Y ∈ χ(Q1) be variable sets. Because P is flexible, Lemma 1 proves that solutionXY∪{x1J }
is valid. By definition, Si (P )[1] ≤ J and Si (P )[U +1] ≥ Si (P )[u+U ] and by hypothesis Si (P )[u+U ] > S1(P )[u],

which means that:

Si (P )[1]∑
j=Si (P )[U+1]+1

W j ≤
J∑

j=S1(P )[u]+1

W j .

Hence, one can build Y ′ = Y ∪ {x1J } from which we remove all variables x1j ∈ X , j > S1(P )[u] and to which

we add all variables for group i: xij ∈ X \Y , with solution XY ′ being valid. However, there are u−1 variables

x1j ∈ X such that j > S1(P )[u], and at least u variables xij ∈ X \Y as Si (P )[u] < Si (Q1). As Y is a k-intersection

of X , then Y ′ is at least a k + 1-intersection of X which contradicts the rank of P .

B.1.5 Lemmas for Property 14

Lemma 7

Let P be a flexible pattern of rank k and Q1 a lower sub-pattern of P . Let Qi be a lower sub-pattern

of P with i > 1. If |S1(Q1)|+ |Si(Q1)| = |S1(Qi)|+ |Si(Qi)| and |Si(P )| ≥ 2U , then for each i ≤ I , there is

Qi such that for every i′ ≤ I with |Si′ (P )| ≥ 2U , Si′ (P )[2U ] ∈ Si′ (Qi).

Proof : We are in the case |S1(Q1)| + |Si (Q1)| = |S1(Qi )| + |Si (Qi )|. Let L = {1, .., I} \ {1, i} be a set of indices. By

definition, card(Q1) = card(Qi ) = k hence we deduce the following equation:∑
i′∈L
|Si′ (Q1)| =

∑
i′∈L
|Si′ (Qi )|.

We suppose without loss of generality that Si′ (Q1) = Si′ (Qi ) for each i′ ∈ L. Indeed, by definition Q1 and Qi
minimize the weight of their respective variable sets. Hence they have both the exact same weight for their

variables sets restricted to indices in L, otherwise it is clear that one of them do not minimize the weight

of its variable sets. Consequently, one can modify Qi such that Si′ (Q1) = Si′ (Qi ) for each i′ ∈ L without

increasing the weight of the variable sets of Qi .

Property 12 indicates that Si′ (P )[U + 1] ∈ Si′ (Q1). As P is flexible pattern, U ≥ 1 by condition (i), and

U + 1 ≥ 2U . Clearly the Lemma is verified for Q1.

As Si′ (Q1) = Si′ (Qi ) for any i′ ∈ L, the Lemma is also verified for any Si′ (Qi ) with i′ ∈ L. By definition of

Qi , Si (Qi ) = Si (P ), trivially verifying the Lemma. As |S1(P )| = U < 2U , the Lemma does not concern S1(Qi ).
Thus, the Lemma is verified for any set Si′ (Qi ) for which |Si′ (Qi )| ≥ 2U .
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Lemma 8

Let P be a flexible pattern of rank k. Let Qi be a lower sub-pattern of P with i > 1. If |S1(Qi)| = 0,

then for each i′ ≤ I with |Si′ (P )| ≥ 2U , Si′ (P )[2U ] ∈ Si′ (Qi).

The idea of the following proof is illustrated by Example 35 and Figure B.2.

Example 35

Let (5,3,W ,V ,C) be an instance of the SCPKP. Let P = {S1 = {3}, S2 = {1,2,3}, S3 = {1,2,3}, S4 =

{1,2,3}, S5 = {1,2,3}} be a flexible pattern of rank 10. The smallest set of P is S1(P ) hence U = 1.

Suppose Q1 = {S1 = {3}, S2 = {1,2,3}, S3 = {1,2}, S4 = {1,2}, S5 = {1,2}} and Q2 = {S1 = ∅, S2 = {1,2,3},
S3 = {1}, S4 = {1,2,3}, S5 = {1,2,3}}. We are in the case of Lemma 8 as |S1(Q2)| = 0, but not in the case

of Lemma 7, as |S1(Q1)|+ |S2(Q1)| = 4 , |S1(Q2)|+ |S2(Q2)| = 3. However, Lemma 8 is not verified, as

S3(P )[2U ] = S3(P )[2] = 2 < S3(Q2).

Let Y = {x13, x21, x22, x23, x31, x32, x41, x42, x51, x52} ∈ χ(Q1) and Y ′ = {x21, x22, x23, x31, x41, x42,

x43, x51, x52, x53} ∈ χ(Q2) be variable sets. As P is flexible-pattern, Lemma 1 proves that solution

XY∪{x14}} is valid. Also, Q2 minimizes the sum of the weights, {x43, x53} ∈ Y ′ and {x32, x33} < Y ′ hence

W 3 +W 3 ≤W 2 +W 3. Clearly, W 3 +W 3 ≤W 2 +W 3 ≤W 1 +W 2 +W 3 +W 4. With O = Y ′ \Y = {x43,x53},
the set Y ′′ = Y ∪{x14} \ {x13,x14}∪O yields a feasible solution XY ′′ . However, Y ′′ is a 9-intersection of

X , which contradicts the rank of P .

(a) Set Y (b) Set Y ′ (c) Set Y ∪ {x14} (d) Set Y ′′

Figure B.2: Illustration of Example 35

Proof : Because of the shape of Q1 (see Property 12), |S1(Q1)| = U meaning that |Si (Q1)| ≥ |Si (P )| − U . We

first consider the case |Si (Q1)| = |Si (P )| −U . In such case, |Si (Q1)| + |S1(Q1)| = |Si (P )|. By definition of Qi ,
|Si (Qi )| = Si (P ). As we are in the case |S1(Qi )| = 0, then |Si (Qi )|+ |S1(Qi )| = |Si (Q1)|+ |S1(Q1)|which is covered

in Lemma 7.

Hence, we consider |Si (Q1)| ≥ |Si (P )| −U + 1. Consequently, |Si (Q1)| + |S1(Q1)| ≥ |Si (Qi )| + |S1(Qi )| + 1.

Suppose there is i′ , 1, i′ , i such that Si′ (P )[2U ] < Si′ (Qi ). With v ∈ [0, |Si′ (P )| − 2U ], we have |Si′ (Qi )| =
|Si′ (P )| − 2U − v, i.e., Si′ (P )[2U + v] < Si′ (Qi ). We know by the shape of Q1 that |Si′ (Q1)| ≥ |Si′ (P )| −U and

thus |Si′ (Q1)| ≥ |Si′ (Qi )|+U + v. This leads to the following result:

|S1(Q1)|+ |Si (Q1)|+ |Si′ (Q1)| − |S1(Qi )| − |Si (Qi )| − |Si′ (Qi )| ≥U + v + 1.

There must be a set of indices L, 1 < L, i < L, i′ < L such that:

U + v + 1 ≤
∑
l∈L
|Sl (Qi )| − |Sl (Q1)| ≤ 2U + v.
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If not, then there is a set l such that |Sl (Qi )|−|Sl (Q1)| > U+1, which contradicts the shape ofQ1 (see Property

12) which is that |Sl (Q1)| ≥ |Sl (P )| −U .

Let X ∈ χ(P ), Y ∈ χ(Q1) and Y ′ ∈ χ(Qi ) be variable sets. Let O be the set of variables xlj ∈ Y ′ \ Y with

l ∈ L. Note thatU+v+1 ≤ |O| ≤ 2U+v. Also, Si′ (P )[2U+v] < Si′ (Qi ), O is sub-pattern ofQi and by definition

Qi minimizes the sum of the weights and O is a sub-pattern of Qi , hence we deduce:

∑
xlj∈O

slj ≤
Si′ (P )[1]∑

j=Si′ (P )[2U+v+1]+1

W j ≤
J∑

j=Si′ (P )[2U+v+1]+1

W j ≤
J∑
j=1

W j .

As P is flexible pattern, Lemma 1 provides a feasible solution XY∪{x1J }. One could create a new feasible

solution from XY∪{x1J } by setting all variables of group 1 to 0, and all variables of O to one, creating a lighter

solution, thus valid. However, |O| ≥ U + v + 1 ≥ U + 1 > |S1(Q1)| = U . The new solution has at least k + 1

variables of X to 1, which contradicts the rank of P .

Lemma 9

Let P be a flexible pattern of rank k. Let Qi be a lower sub-pattern of P with i > 1. If |S1(Qi)| > 0,

then for each i′ ≤ I with |Si′ (P )| ≥ 2U , Si′ (P )[2U ] ∈ Si′ (Qi).

Proof : We consider the case where |S1(Q1)|+ |Si (Q1)| , |S1(Qi )|+ |Si (Qi )|, as otherwise it is the case of Lemma 7.

Suppose there is i′ , 1, i′ , i such that Si′ (P )[2U ] < Si′ (Qi ). Let v ∈ [0, |Si′ (P )| − 2U ] be such that |Si′ (Qi )| =
|Si′ (P )|−2U −v. Let u be the smallest value such that S1(P )[u] ∈ S1(Qi ), i.e., u =U −|S1(Qi )|+1. Let X ∈ χ(P )

and Y ∈ χ(Qi ) be variable sets. We know that XY is a feasible solution. We also know by Property 13 that a

flexible pattern P is such that S1(P )[u] ≥ Si′ (P )[u +U ], which means that:

∑
j ′≤Si′ (P )[u+U ]

si′j ′ (X ) ≤
∑

j≤S1(P )[u]

s1j (X ).

Hence, one can build Y ′ = Y from which we remove all variables x1j ∈ Y and to which we add all xi′j ′ ∈
X , j′ ≤ Si′ (P )[u + U ]. Clearly, as XY is a valid solution, so is XY ′ . In group i′ , by hypothesis there are

|Si′ (P )| − 2U − v variables in Y , and by construction |Si′ (P )| − (U + u) + 1 in Y ′ Hence in group i′ , there are

U+v−u+1 variables in Y ′\Y . In group 1, by hypothesis there areU−u+1 variables in Y , and by construction

0 variables in Y ′ . For groups different than i′ and 1 variable sets Y and Y ′ are identical by construction. We

deduce |Y ′ | − |Y | =U + v −u + 1− (U −u + 1) = v ≥ 0.

In the case v ≥ 1, as Y is a k-intersection of X , then Y ′ is at least a k + 1-intersection of X , which

contradicts the rank of P .

In the case v = 0, by construction Y and Y ′ contain the same variables for group i. Also by construction,

the weight of Y ′ is lighter than or equals to the weight of Y . Clearly, there is a Q′i such that Y ′ ∈ χ(Q′i ).
However, by construction S1(Qi′ ) is empty, which cannot be possible as proven by Lemma 8.
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B.1.6 Proof of Theorem 9

The following Lemma aims to use condition (iv) to provide feasible solutions for any variable in X ∈
χ(P ). The idea is for these solutions to have at least all variables of YU ′ to 1, with YU ′ ∈ χ(RU ′ ). As

these solutions have many variables to 1 in common, this will be convenient to prove them to be linearly

independent in Theorem 9.

Lemma 10

If the nested sub-patterns {Ru ,1 ≤ u ≤U ′} verify (iv), then for any xij ∈ X \Y1, there is a u ≤U ′ such

that there is a set Z containing u variables xij ′ ∈ X \Yu , j ′ ≤ j and Z ∪Yu is a k-intersection of X .

Proof : Let P be a pattern verifying (iv). Let X ∈ χ(P ) and Yu ∈ χ(Ru) for each u ≤U ′ be variable sets.

Firstly, by definition of R1, there is a feasible solution with all variables of Y1 to 1, and xij = 1, with

xij ∈ X \ Yu , xij ′ < X \Yu , j′ < j. Hence the Lemma is verified for every xij ∈ X \ Y1 such that xij ′ < X \Y1,

j′ < j.

Secondly, we can define a recursive rule. Let xij be a variable such that xij ∈ X \Y1. Suppose for xij ′ the

Lemma is verified for Ru , with j′ such that xij ′′ < X , j′ < j′′ < j. In other word, there is a feasible solution

with xij ′ to 1 and all variables of Yu to 1. Note that xij = 0 in this solution. By definition of the nested

sub-pattern Ru+1, there is a feasible solution with all variables of Yu+1 and the u + 1 variables xij ′ ∈ X \Yu ,

j′ ≤ j. We distinguish two cases:

The first case is |Si (Ru+1)| = |Si (Ru)|. By hypothesis, there is a Z containing u variables of group i from

X \Yu , with xij ′ ∈ Z, xij < Z such that Z ∪Yu is a k-intersection of X . As (iv) holds, then clearly there is Z′

containing u+ 1 variables of group i from X \Yu+1, such that Z′ ∪Yu+1 is a k-intersection of X . As xij ′′ < X ,

j′ < j′′ < j, then xij ∈ Z′ and xij ′′ < Z with j′′ ≥ j. Hence the Lemma is verified for xij .

The second case is |Si (Ru+1)| = |Si (Ru)| − 1. In which case, with Z′ containing u + 1 variables of group i

from X \Yu+1, Z ∪Yu = Z′ ∪Yu+1. Consequently xij < Z.

From these two cases, we deduce that if the Lemma is verified for xij , it is verified for any xij ′ ∈ X \Y1,

with j′ ≤ j.

Finally, by definition of RU ′ , there is at most U ′ variables in Si (P ) \ Si (RU ′ ). Hence this Lemma is

necessarily verified for every xij ∈ X such that xij ′ < X , j′ > j.

Because of the initialization with Y1, the recursive rule between Yu and Yu+1, and because for every

xij ∈ X such that xij ′ < X , j′ > j the Lemma is verified, then the Lemma is verified for all xij ∈ X \R1.

Proof : Proof of Theorem 9 Let X ∈ χ(P ) and Yu ∈ χ(Ru) be variable sets.

The points will be enumerated iteratively.

First, from Lemma 10, we know that for every xij ∈ X \ Y1 such that xij ′ < X \ Y1, j′ < j, there is a

feasible solution with xij = 1 and with xij+1 = 0, with all variables of Y1 to 1. These solutions are all linearly

independent, as for each xij considered, it is the only solution with xij = 1.

As condition (v) holds, there is a feasible solution with all variables ofY2 to 1, and two variables xij ,xi′j ′ <

Y1, i , i′ to 1. This solution is linearly independent to the previously mentioned, as it is the only one with a

variable of Y1 to 0.
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From Lemma 10, we know that there is a feasible solution with Y2 and two variables xij ,xij ′ ∈ X \ Y2,

j′ , j. For each solution where both xij and xij ′ are not in Y1 is linearly independent to the others, as it is

the only one with xij ′ = 1.

One can keep enumerating points with the same process. With Lemma 10, |X |−|Y1| linearly independent

points are generated. With condition (v), one linearly independent point is generated for every u ∈ {2, . . . ,U ′},
which is a total of U ′ − 1 linearly independent points.

With condition (vi), for each xij ∈ YU ′ , there is a set Z containing all variables xij ′ ∈ YU ′ , j′ < j and all

variables xi′j ′ ∈ YU ′ , i′ , i, without xij and with Z being a k-intersection of X . Hence, starting with greater

j, each new solution is the first one with xij = 0, being linearly independent to the others. With condition

(vi), one new feasible solution is created for every xij ∈ YU ′ , meaning |YU ′ | new linearly independent points.

A total of |X | − |Y1|+U ′ − 1 + |YU ′ | = card(P ) − (k − 1) +U ′ − 1 + (k −U ′) linearly independent points are

generated, i.e., card(P ) linearly independent points. Moreover, from Theorem 7 for each xij < X , there is

a feasible solution with xij = 1 and xij+1 = 0 that verifies (pi(X )) to equality. Sequentially adding these

points associated with their corresponding solutions to our pool of card(P ) points still keeps them linearly

independent, as there are the only ones with xij = 1 and xij+1 = 0 with xij < X . As there are n − card(P ) of

these new points, there is a total of n linearly independent points.

B.1.7 Proof of Property 19

Proof : First, we consider P with all sets Si (P ) of cardinality U . We recall that |VSCPKP | = |X |+ 2 by construc-

tion of G. For each vertex x(i)(1), there is an arc (p,x(i)(1)). For each vertex x(i)(j) with j > 1, there is an

arc (x(i)(j−1),x(i)(j)). This sums up to a total of |X | arcs. For each vertex x(i)(j), there is an arc (x(i)(j),q).

Accounting for the previously enumerated arcs, there are 2|X | arcs.

For each x(i)(j), there is an arc (x(i)(j),x(i′)(1)), for every i′ > 1. Consequently, for every i ≤ I , there are

|Si (P )| · (I − i) =U · (I − i) arcs. This yields a total of
∑I
i=1U · (I − i) =

∑I−1
i=0U · i which is equal to U · (I−1)·I

2 .

In total, the number of arcs |A| is equal to 2 ·U · I + 1
2 ·U · (I

2 − I) which can be approximated by U · I2

when U and I are large. Also, we can compute |VSCPKP |2 = (I ·U + 2)2 = I2 ·U2 + 4 ·U · I + 4 > I2 · J2 + 4 ·U · I ,
which can be approximated by U2 · I2 when U and I are large, meaning that |VSCPKP |

2

|A| ≈U .

Consider now that we add one vertex x(i)(j) to G. This adds arc (x(i)(j−1), x(i)(j)), (x(i)(j),q) and at most

I −1 arcs (x(i)(j),x(i′),(1)), with i′ > i. This results to a total of I +1 arcs, which is smaller than |VSCPKP |, hence

by adding one vertex, the factor U between |VSCPKP |2 and |A| holds. The same result applies by adding

more than one vertex. Consequently, for any pattern P , approximation |VSCPKP |
2

|A| ≈U still holds.

B.2 Generation of instances

A set of hundred instances of the SCPKP are generated, with weights and values constructed as

follows: For all j ≤ J , we generate a random value Rj ∈ [0,1]. The value of item (i, j) is Rj · 350 plus
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a random value in [−35;35]. The weight of items (i, j) for every i ≤ I is Rj · 3 plus a random value in

[−1.5;1.5]. The capacity C is selected randomly between 0 and the sum of the weights of all items. The

idea is to use Rj to create some correlation between the weight, but adding a random value in order to

allow for a large enough set of instances. From this set of hundred instances 60 are retained:

B.3 Complete result tables

In Tables B.1 to B.6, we use the following metrics :

• inst: the instance number.

• variant: experimental variant of CPLEX’s B&C considered.

• C cuts: number of added CPLEX cuts.

• U cuts: number of added UMIC cuts.

• P cuts: number of added pattern cuts.

• P cuts vio: average violation value of the added pattern cuts.

• r-value: linear relaxation value at the root node.

• r-gap: gap between the linear relaxation value at the root node and the optimal solution, if opti-

mality is proven by at least one variant.

• user-time: proportion of the computational time dedicated to the separation of pattern and UMIC

inequalities.

• #nodes: number of nodes explored.

• time/gap: total computational time in seconds when the instance is solved; gap between the upper

and lower bound provided by CPLEX at the time limit when the instance is not solved.

B.4 Types of cuts added by CPLEX

From the sixteen types of cuts available, seven appear in the case of the SCPKP:

1. Cover cuts

2. Generalized Upper Bound Cover cuts (GCover) [107]

3. Flow Cover cuts (FCover)

4. Gomory fractional cuts (Frac) [47]

5. Mixed integer rounding cuts (MIR)

6. Zero-half cuts (ZeroHalf)

7. Lift and project cuts (LiftProj)
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Tables B.7 to B.12 depict for each variant the number of each cuts. The results are averaged for the 10

sets of patterns for variants Cplx+Psep and Cplx+preP. Clearly the majority of the cuts are Cover and

MIR ones. For some instances, the number of ZeroHalf cuts can also be significant. For any other cut

types, only few cuts are added.

For instances where Cplx is the most efficient variant, we cannot find any difference in the types of

cut added compared to other instances.
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inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

1

Cplx 345 - - - 8125.38 2.66% - 3625008 353.2
Umic - 94 - - 8205.39 3.67% 1.0% 80545158 2874.6
Psep - - 100 0.48 8087.65 2.18% 38.4% 21483 1.9

Cplx+Umic 238 15 - - 8125.38 2.66% 0.6% 13783767 1144.2
Cplx+Psep 74 - 100 0.6 8067.12 1.92% 72.6% 3672 1.2
Psep+Umic - 18 100 0.44 8087.65 2.18% 63.3% 29865 3.9

All 74 0 100 0.6 8067.12 1.92% 75.4% 3672 1.2

2

Cplx 305 - - - 8498.94 3.34% - 1048228 135.3
Umic - 312 - - 8501.42 3.37% 6.5% 1056401 67.6
Psep - - 100 0.34 8427.76 2.47% 1.2% 270933 19.1

Cplx+Umic 235 24 - - 8496.87 3.31% 0.6% 1027977 102.7
Cplx+Psep 143 - 100 0.32 8426.69 2.46% 1.1% 208598 19.9
Psep+Umic - 0 100 0.34 8427.76 2.47% 1.4% 270933 18.5

All 143 0 100 0.32 8426.69 2.46% 1.3% 208598 18.4

3

Cplx 405 - - - 5234.55 9.41% - 1849854 173.0
Umic - 426 - - 5214.77 8.99% 8.3% 2095765 160.9
Psep - - 7 0.9 4829.68 0.95% 35.5% 0 0.0

Cplx+Umic 58 315 - - 5200.3 8.69% 6.7% 2088692 164.9
Cplx+Psep 5 - 3 0.76 4795.72 0.24% 17.9% 0 0.0
Psep+Umic - 0 7 0.9 4829.68 0.95% 33.1% 0 0.0

All 5 0 3 0.76 4795.72 0.24% 15.9% 0 0.0

4

Cplx 405 - - - 6575.88 0.90% - 5442220 1351.5
Umic - 39 - - 6575.69 0.90% 0.8% 5885435 318.2
Psep - - 100 0.26 6575.87 0.90% 0.7% 4735131 377.6

Cplx+Umic 227 40 - - 6575.2 0.89% 0.4% 5738509 882.8
Cplx+Psep 143 - 100 0.43 6569.79 0.81% 0.4% 3649391 542.1
Psep+Umic - 6 100 0.36 6575.62 0.90% 0.8% 4970221 357.5

All 142 2 100 0.38 6569.75 0.81% 0.4% 3571861 492.4

5

Cplx 405 - - - 14288.9 1.10% - 1816805 280.6
Umic - 27 - - 14302.5 1.20% 1.1% 1180341 56.5
Psep - - 100 0.11 14291.1 1.12% 2.7% 1226118 93.2

Cplx+Umic 231 33 - - 14283.4 1.06% 0.7% 1066178 142.9
Cplx+Psep 143 - 100 0.11 14291.0 1.12% 1.4% 988415 146.4
Psep+Umic - 7 100 0.11 14290.5 1.12% 3.5% 1144164 79.9

All 139 6 100 0.12 14290.5 1.12% 1.6% 1062315 139.9

6

Cplx 400 - - - 19711.6 0.95% - 242702 53.4
Umic - 38 - - 19896.3 1.89% 2.1% 1355505 65.8
Psep - - 59 0.19 19921.7 2.02% 7.1% 1334199 82.7

Cplx+Umic 237 18 - - 19706.9 0.92% 1.0% 250298 42.0
Cplx+Psep 143 - 100 0.08 19711.6 0.95% 9.0% 213517 36.7
Psep+Umic - 38 75 0.19 19896.3 1.89% 7.6% 1308569 84.4

All 144 15 100 0.12 19706.9 0.92% 11.6% 248436 39.2

7

Cplx 405 - - - 13801.3 1.78% - 8463734 1690.0
Umic - 345 - - 13874.4 2.32% 2.2% 6975709 473.7
Psep - - 100 0.39 13821.2 1.92% 0.6% 6770252 541.6

Cplx+Umic 206 81 - - 13794.3 1.73% 0.4% 8454711 1067.6
Cplx+Psep 143 - 100 0.5 13783.6 1.65% 0.4% 7102323 921.0
Psep+Umic - 0 100 0.39 13821.2 1.92% 0.7% 6770252 487.4

All 143 0 100 0.5 13783.6 1.65% 0.4% 7102323 858.4

8

Cplx 305 - - - 19621.1 2.02% - 22632994 0.45%
Umic - 438 - - 19674.1 2.29% 0.9% 19907454 1697.2
Psep - - 100 0.29 19544.5 1.62% 0.5% 1638025 136.2

Cplx+Umic 178 15 - - 19618.0 2.00% 0.6% 31306241 2831.5
Cplx+Psep 3 - 2 0.74 19232.8 0.00% 17.8% 0 0.0
Psep+Umic - 0 100 0.29 19544.5 1.62% 0.7% 1638025 121.4

All 3 0 2 0.74 19232.8 0.00% 15.4% 0 0.0

9

Cplx 305 - - - 21935.5 0.54% - 1759737 248.0
Umic - 26 - - 21940.7 0.57% 1.3% 2189901 100.9
Psep - - 100 0.08 21946.3 0.59% 3.0% 2115733 185.2

Cplx+Umic 239 12 - - 21931.8 0.53% 0.4% 1844651 241.3
Cplx+Psep 164 - 100 0.03 21935.5 0.54% 2.0% 1879557 274.9
Psep+Umic - 26 100 0.06 21940.7 0.57% 3.7% 2175143 175.8

All 143 9 100 0.06 21931.8 0.53% 2.2% 1876011 246.9

10

Cplx 405 - - - 22807.8 0.73% - 1415897 299.3
Umic - 243 - - 22806.8 0.73% 2.3% 1531487 119.2
Psep - - 100 0.24 22796.6 0.68% 0.6% 1108389 111.4

Cplx+Umic 228 30 - - 22803.6 0.71% 0.3% 1294867 204.4
Cplx+Psep 143 - 100 0.35 22796.5 0.68% 0.4% 1190879 185.3
Psep+Umic - 0 100 0.24 22796.6 0.68% 0.7% 1108389 102.1

All 143 0 100 0.35 22796.5 0.68% 0.5% 1190879 169.0

Table B.1: Resolution of the instances of set 1 of the SCPKP (second phase)
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inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

11

Cplx 405 - - - 11963.9 1.35% - 6059004 1393.1
Umic - 249 - - 11947.3 1.21% 1.1% 8346938 618.9
Psep - - 100 0.19 11943.0 1.18% 0.6% 6394528 548.9

Cplx+Umic 87 263 - - 11947.3 1.21% 1.1% 8085378 880.2
Cplx+Psep 143 - 100 0.17 11938.3 1.14% 0.4% 6552805 854.1
Psep+Umic - 0 100 0.19 11943.0 1.18% 0.6% 6394528 499.3

All 143 0 100 0.17 11938.3 1.14% 0.4% 6552805 789.6

12

Cplx 350 - - - 9456.27 0.83% - 529784 93.9
Umic - 330 - - 9494.86 1.24% 5.2% 1163916 78.1
Psep - - 4 0.39 9513.88 1.44% 19.8% 1683434 85.9

Cplx+Umic 222 54 - - 9449.21 0.75% 1.2% 551129 61.8
Cplx+Psep 143 - 100 0.2 9456.27 0.83% 16.6% 626175 87.1
Psep+Umic - 330 0 nan 9494.86 1.24% 24.7% 1163916 87.9

All 126 51 100 0.23 9449.21 0.75% 22.3% 545385 72.1

13

Cplx 405 - - - 13686.0 1.09% - 933876 164.0
Umic - 352 - - 13693.3 1.15% 10.7% 1009570 100.7
Psep - - 100 0.2 13683.6 1.08% 1.0% 755541 68.2

Cplx+Umic 75 285 - - 13679.2 1.04% 10.8% 650342 76.9
Cplx+Psep 143 - 100 0.19 13682.3 1.07% 0.7% 739312 101.7
Psep+Umic - 59 100 0.17 13680.7 1.06% 6.5% 676213 65.2

All 67 129 100 0.15 13679.1 1.04% 5.7% 671996 79.3

14

Cplx 210 - - - 2164.88 1.14% - 127247 8.3
Umic - 188 - - 2181.78 1.93% 2.3% 2131653 79.3
Psep - - 100 0.25 2185.22 2.09% 1.5% 2209549 86.5

Cplx+Umic 156 45 - - 2164.22 1.11% 6.6% 202893 17.1
Cplx+Psep 83 - 100 0.46 2166.64 1.23% 3.2% 224382 17.2
Psep+Umic - 188 100 0.24 2181.78 1.93% 2.8% 1807699 79.2

All 57 42 100 0.55 2164.22 1.11% 9.1% 247563 17.4

15

Cplx 305 - - - 16614.7 1.56% - 18942824 2156.6
Umic - 14 - - 16674.8 1.93% 1.5% 26634131 817.4
Psep - - 0 nan 16677.4 1.94% 2.2% 27328495 809.0

Cplx+Umic 179 15 - - 16613.6 1.55% 0.5% 29751941 2579.6
Cplx+Psep 179 - 4 0.13 16614.7 1.56% 0.7% 30431217 2662.4
Psep+Umic - 14 0 nan 16674.8 1.93% 2.4% 26634131 734.8

All 180 12 0 nan 16613.6 1.55% 0.8% 30693136 2440.7

16

Cplx 118 - - - 10145.9 0.47% - 10439 1.1
Umic - 20 - - 10168.0 0.69% 1.0% 4304481 154.9
Psep - - 100 0.36 10168.0 0.69% 0.9% 4005799 156.5

Cplx+Umic 234 27 - - 10144.3 0.46% 1.1% 360889 36.4
Cplx+Psep 143 - 100 0.29 10145.3 0.47% 0.6% 472577 39.0
Psep+Umic - 0 100 0.36 10168.0 0.69% 1.0% 4005799 142.6

All 143 0 100 0.29 10145.3 0.47% 0.8% 472577 36.6

17

Cplx 320 - - - 7739.68 1.55% - 2277828 236.3
Umic - 30 - - 7794.65 2.27% 1.9% 2053024 106.4
Psep - - 100 0.28 7796.51 2.29% 1.4% 1975443 131.8

Cplx+Umic 238 15 - - 7739.39 1.54% 0.7% 2440104 222.1
Cplx+Psep 143 - 100 0.34 7738.64 1.53% 1.5% 1547491 135.6
Psep+Umic - 3 100 0.36 7794.69 2.27% 2.6% 1793807 116.0

All 143 0 100 0.34 7738.64 1.53% 1.7% 1547491 124.6

18

Cplx 405 - - - 14608.2 - - 19599594 0.42%
Umic - 18 - - 14611.6 - 0.8% 58876400 0.36%
Psep - - 100 0.33 14610.7 - 0.7% 48938164 0.38%

Cplx+Umic 238 15 - - 14608.1 - 0.4% 28426400 0.41%
Cplx+Psep 143 - 100 0.38 14608.1 - 0.5% 35613800 0.4 %
Psep+Umic - 0 100 0.33 14610.7 - 0.8% 53262133 0.37%

All 143 0 100 0.38 14608.1 - 0.5% 34065400 0.4 %

19

Cplx 400 - - - 1486.25 1.71% - 103512 21.0
Umic - 288 - - 1490.72 2.01% 4.3% 1565566 108.6
Psep - - 100 0.23 1479.22 1.23% 3.2% 131487 14.3

Cplx+Umic 221 45 - - 1485.78 1.68% 2.2% 250723 38.0
Cplx+Psep 143 - 100 0.22 1473.75 0.85% 5.7% 53333 8.4
Psep+Umic - 0 100 0.23 1479.22 1.23% 3.5% 131487 12.6

All 143 0 100 0.22 1473.75 0.85% 6.5% 53333 8.6

20

Cplx 405 - - - 27827.6 0.87% - 1453934 325.0
Umic - 149 - - 27845.0 0.93% 1.8% 1784950 107.0
Psep - - 100 0.26 27819.0 0.83% 0.7% 702933 69.5

Cplx+Umic 238 12 - - 27838.6 0.91% 0.3% 1562808 257.6
Cplx+Psep 143 - 100 0.36 27819.0 0.83% 0.5% 567484 86.2
Psep+Umic - 0 100 0.26 27819.0 0.83% 0.8% 702933 62.0

All 143 0 100 0.36 27819.0 0.83% 0.5% 567484 89.2

Table B.2: Resolution of the instances of set 1 of the SCPKP (second phase)

232/243



Appendix B. Appendix: polyhedral study B.4. TYPES OF CUTS ADDED BY CPLEX

inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

21

Cplx 605 - - - 6672.83 1.14% - 10830484 0.08%
Umic - 482 - - 6675.75 1.18% 1.2% 18347628 1387.1
Psep - - 100 0.21 6643.91 0.70% 57.6% 1381 1.0

Cplx+Umic 354 25 - - 6672.14 1.13% 0.4% 17067043 2390.8
Cplx+Psep 4 - 2 0.48 6597.65 0.00% 43.2% 0 0.0
Psep+Umic - 0 100 0.21 6643.91 0.70% 71.2% 1381 1.2

All 4 0 2 0.48 6597.65 0.00% 41.9% 0 0.0

22

Cplx 605 - - - 42275.2 0.35% - 1791840 871.6
Umic - 306 - - 42290.1 0.39% 2.5% 1722333 172.2
Psep - - 100 0.33 42301.2 0.41% 0.6% 1133096 116.0

Cplx+Umic 342 61 - - 42271.1 0.34% 0.2% 1974608 678.0
Cplx+Psep 263 - 100 0.06 42273.2 0.35% 0.2% 1052428 339.6
Psep+Umic - 0 100 0.33 42301.2 0.41% 0.7% 1133096 104.2

All 262 3 100 0.07 42271.0 0.34% 0.3% 1097905 331.4

23

Cplx 227 - - - 7961.65 1.33% - 31200 4.4
Umic - 291 - - 7962.61 1.35% 1.8% 6100604 479.0
Psep - - 100 0.21 8051.68 2.48% 0.5% 25484185 2344.5

Cplx+Umic 360 9 - - 7961.65 1.33% 0.2% 3351591 652.8
Cplx+Psep 263 - 100 0.26 7957.28 1.28% 0.4% 3523210 665.0
Psep+Umic - 291 100 0.21 7962.61 1.35% 1.5% 5231512 571.1

All 261 6 100 0.24 7961.65 1.33% 0.5% 3531747 596.7

24

Cplx 218 - - - 28987.0 0.25% - 67547 9.8
Umic - 9 - - 29027.2 0.39% 0.9% 4945832 235.2
Psep - - 0 nan 29030.7 0.40% 4.9% 4911185 245.0

Cplx+Umic 358 12 - - 28987.0 0.25% 0.3% 1960764 408.0
Cplx+Psep 363 - 0 nan 28987.0 0.25% 2.5% 2256372 463.9
Psep+Umic - 9 0 nan 29027.2 0.39% 5.6% 4945832 220.2

All 360 9 0 nan 28987.4 0.25% 2.7% 2494889 465.7

25

Cplx 605 - - - 28438.1 0.66% - 12354812 0.16%
Umic - 6 - - 28455.7 0.72% 0.9% 28764074 1537.8
Psep - - 0 nan 28456.6 0.73% 1.8% 28518001 1509.9

Cplx+Umic 360 9 - - 28438.1 0.66% 0.2% 14436657 0.2 %
Cplx+Psep 363 - 0 nan 28438.1 0.66% 0.6% 14007958 0.2 %
Psep+Umic - 6 0 nan 28455.7 0.72% 2.1% 28764074 1412.8

All 361 6 0 nan 28438.1 0.66% 0.7% 14962100 0.19%

26

Cplx 5 - - - 13369.2 0.29% - 1507 0.2
Umic - 368 - - 13377.6 0.35% 75.8% 24847 11.6
Psep - - 1 0.98 13385.3 0.41% 92.3% 23136 18.7

Cplx+Umic 194 102 - - 13363.2 0.24% 59.7% 4324 1.7
Cplx+Psep 237 - 10 0.1 13369.2 0.29% 94.0% 5115 16.4
Psep+Umic - 66 1 0.98 13377.4 0.35% 92.6% 23300 20.6

All 176 123 10 0.12 13363.2 0.24% 96.1% 4771 18.7

27

Cplx 605 - - - 8548.64 1.17% - 2834093 778.5
Umic - 390 - - 8544.39 1.12% 2.0% 6337030 618.0
Psep - - 14 0.43 8453.1 0.04% 59.8% 3 0.1

Cplx+Umic 228 218 - - 8544.35 1.12% 0.8% 4590923 820.1
Cplx+Psep 2 - 5 0.41 8454.58 0.06% 34.3% 0 0.0
Psep+Umic - 0 14 0.43 8453.1 0.04% 89.6% 3 0.2

All 2 0 5 0.41 8454.58 0.06% 34.6% 0 0.0

28

Cplx 605 - - - 9552.2 0.38% - 5278948 2040.7
Umic - 9 - - 9577.34 0.65% 1.0% 4911215 260.5
Psep - - 30 0.91 9562.54 0.49% 2.7% 5299676 450.9

Cplx+Umic 356 18 - - 9551.93 0.38% 0.2% 4876800 1175.8
Cplx+Psep 268 - 95 0.18 9549.92 0.36% 2.5% 1573932 430.4
Psep+Umic - 3 37 0.63 9562.5 0.49% 3.3% 4748985 377.5

All 259 12 100 0.27 9549.69 0.36% 2.0% 2078450 507.8

29

Cplx 605 - - - 12865.2 1.07% - 9946516 0.28%
Umic - 696 - - 12914.1 1.46% 1.1% 26036123 0.47%
Psep - - 100 0.37 12870.7 1.11% 0.4% 14287036 1691.6

Cplx+Umic 335 72 - - 12860.9 1.04% 0.3% 18331800 0.41%
Cplx+Psep 263 - 100 0.29 12825.7 0.76% 0.2% 8591393 1876.6
Psep+Umic - 0 100 0.37 12870.7 1.11% 0.4% 14287036 1542.3

All 259 12 100 0.29 12825.2 0.76% 0.3% 7896841 1656.6

30

Cplx 5 - - - 36394.2 0.25% - 6657 0.6
Umic - 462 - - 36424.9 0.33% 13.0% 507285 61.2
Psep - - 1 0.3 36444.2 0.39% 16.2% 626080 36.9

Cplx+Umic 350 39 - - 36392.1 0.24% 0.8% 121340 38.1
Cplx+Psep 362 - 1 0.3 36394.2 0.25% 14.2% 117803 42.4
Psep+Umic - 231 1 0.3 36426.7 0.34% 28.5% 435076 44.4

All 346 48 1 0.3 36392.1 0.24% 15.5% 123822 42.0

Table B.3: Resolution of the instances of set 2 of the SCPKP (second phase)
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inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

31

Cplx 605 - - - 8611.38 1.00% - 7909784 0.31%
Umic - 333 - - 8610.7 0.99% 1.4% 24628963 1655.1
Psep - - 100 0.15 8610.37 0.99% 0.8% 18721035 1415.6

Cplx+Umic 322 84 - - 8609.17 0.98% 0.3% 17050294 0.18%
Cplx+Psep 263 - 100 0.11 8608.34 0.97% 0.2% 16262900 0.01%
Psep+Umic - 0 100 0.15 8610.37 0.99% 0.8% 18721035 1268.0

All 263 0 100 0.11 8608.34 0.97% 0.3% 16364640 3118.8

32

Cplx 415 - - - 39078.4 0.27% - 7410282 1375.8
Umic - 6 - - 39171.6 0.51% 1.1% 17142128 685.9
Psep - - 1 0.85 39079.8 0.28% 4.9% 4162387 120.4

Cplx+Umic 359 12 - - 39077.1 0.27% 0.3% 6547609 1054.3
Cplx+Psep 6 - 1 0.85 38998.1 0.07% 16.5% 0 0.0
Psep+Umic - 12 1 0.85 39077.3 0.27% 5.6% 4455866 114.0

All 8 8 1 0.85 38998.1 0.07% 82.5% 0 0.1

33

Cplx 27 - - - 52298.5 0.35% - 944 0.1
Umic - 27 - - 52298.8 0.35% 1.4% 4690029 166.3
Psep - - 100 0.19 52299.2 0.35% 1.9% 5198175 254.3

Cplx+Umic 32 24 - - 52288.2 0.33% 82.7% 491 0.3
Cplx+Psep 37 - 6 0.19 52298.5 0.35% 72.1% 639 0.2
Psep+Umic - 27 100 0.19 52298.8 0.35% 2.4% 4359231 181.6

All 36 18 17 0.05 52288.2 0.33% 90.1% 491 0.6

34

Cplx 210 - - - 30600.1 0.48% - 607637 52.9
Umic - 9 - - 30604.9 0.49% 1.6% 1813800 60.3
Psep - - 2 0.72 30590.9 0.45% 27.5% 643757 35.9

Cplx+Umic 360 9 - - 30600.1 0.48% 0.3% 1306558 213.1
Cplx+Psep 2 - 1 0.76 30454.9 0.00% 31.0% 0 0.0
Psep+Umic - 9 1 0.76 30589.6 0.44% 31.3% 624509 33.4

All 2 0 1 0.76 30454.9 0.00% 31.1% 0 0.0

35

Cplx 7 - - - 21810.5 0.00% - 0 0.0
Umic - 201 - - 21828.4 0.08% 97.3% 0 1.5
Psep - - 10 0.02 22046.9 1.08% 7.7% 1591246 111.4

Cplx+Umic 7 6 - - 21810.5 0.00% 46.9% 0 0.0
Cplx+Psep 7 - 0 nan 21810.5 0.00% 22.8% 0 0.0
Psep+Umic - 201 0 nan 21828.4 0.08% 97.0% 0 1.3

All 7 3 0 nan 21810.5 0.00% 48.1% 0 0.0

36

Cplx 137 - - - 43499.4 0.35% - 111433 8.3
Umic - 22 - - 43500.2 0.35% 1.1% 11442996 405.4
Psep - - 100 0.35 43496.7 0.34% 0.6% 2813931 195.8

Cplx+Umic 354 18 - - 43499.2 0.35% 0.4% 435114 86.1
Cplx+Psep 62 - 100 0.57 43426.3 0.18% 11.8% 4997 0.4
Psep+Umic - 6 100 0.36 43496.7 0.34% 1.1% 3251727 207.9

All 62 0 100 0.57 43426.3 0.18% 23.5% 4997 0.5

37

Cplx 235 - - - 19087.5 0.83% - 2542818 273.4
Umic - 12 - - 19087.5 0.83% 1.3% 5910018 191.9
Psep - - 100 0.37 19090.1 0.85% 1.1% 6229189 308.8

Cplx+Umic 135 18 - - 19087.5 0.83% 0.6% 1881443 149.8
Cplx+Psep 41 - 100 0.35 19087.5 0.83% 0.8% 5585807 329.7
Psep+Umic - 12 100 0.44 19088.8 0.84% 1.2% 6672052 297.9

All 29 28 100 0.25 19087.5 0.83% 1.1% 3979765 233.2

38

Cplx 455 - - - 19670.9 0.36% - 3138775 832.5
Umic - 12 - - 19674.7 0.38% 0.8% 3101363 170.6
Psep - - 100 0.17 19675.3 0.39% 0.5% 3238464 380.9

Cplx+Umic 358 12 - - 19670.4 0.36% 0.2% 3201752 896.5
Cplx+Psep 263 - 100 0.24 19670.7 0.36% 0.2% 3293933 809.0
Psep+Umic - 9 100 0.18 19674.7 0.38% 0.5% 3201700 335.7

All 263 0 100 0.24 19670.7 0.36% 0.2% 3293933 855.2

39

Cplx 605 - - - 19774.0 0.74% - 12104994 0.19%
Umic - 30 - - 19774.4 0.75% 0.8% 45650680 2538.8
Psep - - 100 0.51 19772.5 0.74% 0.5% 35536030 0.07%

Cplx+Umic 351 30 - - 19773.3 0.74% 0.2% 18092893 0.14%
Cplx+Psep 263 - 100 0.48 19772.5 0.74% 0.2% 19016360 0.17%
Psep+Umic - 0 100 0.51 19772.5 0.74% 0.5% 39402500 0.06%

All 263 0 100 0.48 19772.5 0.74% 0.3% 18567926 0.17%

40

Cplx 605 - - - 38485.6 0.36% - 10125494 0.11%
Umic - 21 - - 38496.8 0.39% 0.9% 70754543 3151.5
Psep - - 100 0.34 38496.8 0.39% 0.8% 51413500 0.04%

Cplx+Umic 352 18 - - 38484.5 0.36% 0.2% 15052400 0.11%
Cplx+Psep 263 - 100 0.29 38484.1 0.35% 0.3% 19122358 0.09%
Psep+Umic - 0 100 0.34 38496.8 0.39% 0.8% 56723700 0.03%

All 263 0 100 0.29 38484.1 0.35% 0.3% 18554100 0.1 %

Table B.4: Resolution of the instances of set 2 of the SCPKP (second phase)
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Appendix B. Appendix: polyhedral study B.4. TYPES OF CUTS ADDED BY CPLEX

inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

41

Cplx 905 - - - 39387.8 0.56% - 1147464 805.1
Umic - 108 - - 39392.1 0.57% 1.2% 988599 92.3
Psep - - 100 0.18 39395.3 0.58% 0.5% 1073907 138.9

Cplx+Umic 536 21 - - 39376.9 0.53% 0.1% 1007053 619.0
Cplx+Psep 443 - 100 0.17 39268.5 0.25% 1.3% 31038 16.6
Psep+Umic - 18 100 0.29 39381.2 0.54% 0.9% 1006298 118.7

All 432 24 100 0.19 39267.1 0.25% 2.6% 30758 15.2

42

Cplx 770 - - - 43984.0 0.61% - 3693204 2452.6
Umic - 101 - - 43984.2 0.61% 1.2% 3358215 250.5
Psep - - 15 0.08 44062.4 0.79% 2.0% 4544901 292.8

Cplx+Umic 534 18 - - 43973.6 0.58% 0.1% 3203088 1441.7
Cplx+Psep 443 - 100 0.07 43984.0 0.61% 0.3% 3185171 1208.5
Psep+Umic - 101 7 0.08 43984.2 0.61% 2.7% 3833602 263.0

All 437 15 100 0.07 43973.6 0.58% 0.3% 3001514 1101.1

43

Cplx 605 - - - 35842.2 0.30% - 2358605 725.3
Umic - 9 - - 35855.1 0.34% 0.6% 2289708 164.6
Psep - - 0 nan 35856.8 0.34% 3.8% 2173793 152.1

Cplx+Umic 360 9 - - 35841.5 0.30% 0.2% 2062250 613.7
Cplx+Psep 363 - 0 nan 35842.2 0.30% 1.0% 2086498 606.1
Psep+Umic - 9 0 nan 35856.1 0.34% 4.0% 2287786 143.7

All 361 6 0 nan 35841.5 0.30% 1.2% 1983926 547.7

44

Cplx 560 - - - 27403.7 0.49% - 11954214 0.09%
Umic - 12 - - 27409.7 0.51% 0.8% 15852557 935.6
Psep - - 100 0.19 27411.0 0.51% 0.7% 15539237 1120.6

Cplx+Umic 362 21 - - 27403.7 0.49% 0.2% 15865687 0.07%
Cplx+Psep 263 - 100 0.14 27403.7 0.49% 0.2% 17989260 0.05%
Psep+Umic - 12 100 0.17 27409.8 0.51% 0.8% 16270349 1049.5

All 259 12 100 0.11 27403.7 0.49% 0.3% 19431792 3546.4

45

Cplx 519 - - - 41001.8 0.56% - 760888 279.2
Umic - 26 - - 41001.5 0.56% 0.8% 877880 59.3
Psep - - 100 0.11 41002.8 0.56% 0.6% 973276 83.9

Cplx+Umic 538 12 - - 41001.1 0.56% 0.1% 855127 497.3
Cplx+Psep 443 - 100 0.13 41001.8 0.56% 0.1% 914876 452.1
Psep+Umic - 21 100 0.08 41001.5 0.56% 0.7% 939816 75.3

All 442 3 100 0.06 41001.1 0.56% 0.1% 902994 404.4

46

Cplx 705 - - - 19874.4 0.82% - 1633243 528.2
Umic - 335 - - 19837.3 0.63% 19.4% 1395433 171.9
Psep - - 14 0.22 19841.7 0.65% 8.5% 917318 74.2

Cplx+Umic 320 267 - - 19840.8 0.65% 6.1% 1650862 425.1
Cplx+Psep 7 - 2 1.29 19730.3 0.09% 14.4% 0 0.0
Psep+Umic - 6 9 0.3 19840.8 0.65% 9.4% 934128 70.0

All 7 3 1 1.57 19730.3 0.09% 88.3% 0 0.1

47

Cplx 745 - - - 19858.7 0.76% - 1042047 299.5
Umic - 36 - - 19867.0 0.80% 1.6% 1686472 102.6
Psep - - 0 nan 19870.6 0.82% 9.5% 1690735 105.8

Cplx+Umic 535 21 - - 19853.2 0.73% 0.4% 1609470 383.8
Cplx+Psep 543 - 0 nan 19858.7 0.76% 2.6% 1651034 412.1
Psep+Umic - 36 0 nan 19867.0 0.80% 10.9% 1689543 101.2

All 535 18 1 0.38 19853.2 0.73% 3.3% 1693933 371.2

48

Cplx 475 - - - 2311.63 2.08% - 13556897 2597.2
Umic - 183 - - 2322.33 2.55% 0.9% 13346766 867.4
Psep - - 39 0.23 2323.39 2.60% 3.0% 12000229 738.3

Cplx+Umic 293 16 - - 2311.63 2.08% 0.3% 12412538 2026.0
Cplx+Psep 200 - 100 0.16 2311.63 2.08% 0.9% 12719732 1789.5
Psep+Umic - 183 100 0.22 2322.68 2.57% 2.2% 12753438 1004.9

All 194 13 100 0.17 2311.63 2.08% 0.7% 12334318 1638.7

49

Cplx 905 - - - 2274.55 3.33% - 840705 359.1
Umic - 1044 - - 2272.52 3.23% 31.6% 828917 201.3
Psep - - 100 0.47 2220.74 0.88% 79.8% 45 0.6

Cplx+Umic 140 633 - - 2270.72 3.15% 16.1% 882489 217.6
Cplx+Psep 1 - 100 0.36 2220.28 0.86% 76.8% 125 0.8
Psep+Umic - 0 100 0.47 2220.74 0.88% 83.9% 45 0.6

All 1 0 100 0.36 2220.28 0.86% 81.0% 125 0.8

50

Cplx 630 - - - 34994.5 0.54% - 10303438 0.23%
Umic - 12 - - 35039.6 0.67% 0.8% 41293662 2296.7
Psep - - 0 nan 35041.0 0.67% 0.9% 42987493 2514.4

Cplx+Umic 374 12 - - 34993.7 0.54% 0.2% 14044700 0.21%
Cplx+Psep 378 - 0 nan 34994.5 0.54% 0.3% 13951413 0.2 %
Psep+Umic - 12 0 nan 35039.6 0.67% 1.1% 35768862 1778.2

All 375 9 0 nan 34993.7 0.54% 0.3% 14563900 0.2 %

Table B.5: Resolution of the instances of set 3 of the SCPKP (second phase)
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B.4. TYPES OF CUTS ADDED BY CPLEX Appendix B. Appendix: polyhedral study

inst variant C cuts U cuts P cuts P cuts vio r value r-gap user time #nodes time/gap

51

Cplx 615 - - - 31853.1 0.58% - 188336 65.6
Umic - 9 - - 31902.5 0.74% 1.1% 493406 40.9
Psep - - 0 nan 31905.2 0.75% 14.1% 574701 49.4

Cplx+Umic 375 18 - - 31852.4 0.58% 1.6% 84143 24.8
Cplx+Psep 381 - 0 nan 31853.1 0.58% 19.2% 98648 37.0
Psep+Umic - 9 0 nan 31902.5 0.74% 17.1% 492657 42.2

All 377 12 0 nan 31852.4 0.58% 21.5% 98288 34.6

52

Cplx 905 - - - 23664.4 0.49% - 1730646 930.5
Umic - 192 - - 23716.9 0.72% 3.8% 1499676 128.6
Psep - - 0 nan 23763.8 0.92% 6.4% 1450565 89.2

Cplx+Umic 453 207 - - 23658.6 0.47% 1.2% 1283791 470.7
Cplx+Psep 543 - 0 nan 23664.4 0.49% 0.8% 1712424 771.4
Psep+Umic - 192 0 nan 23716.9 0.72% 8.2% 1499676 120.8

All 522 63 0 nan 23660.6 0.48% 1.4% 1234787 487.1

53

Cplx 820 - - - 29884.3 0.45% - 903545 559.2
Umic - 9 - - 29902.1 0.51% 0.6% 739761 57.3
Psep - - 0 nan 29911.9 0.55% 6.0% 706313 60.5

Cplx+Umic 540 9 - - 29886.0 0.46% 0.1% 774691 401.6
Cplx+Psep 543 - 0 nan 29884.3 0.45% 1.0% 697532 390.6
Psep+Umic - 9 0 nan 29902.1 0.51% 6.9% 719822 53.4

All 540 9 0 nan 29878.2 0.43% 1.4% 570611 310.4

54

Cplx 305 - - - 5794.38 1.80% - 2129326 294.3
Umic - 225 - - 5808.69 2.05% 3.0% 1720151 93.7
Psep - - 100 0.24 5808.71 2.05% 1.3% 1680084 102.4

Cplx+Umic 190 69 - - 5803.29 1.95% 0.6% 1619294 181.4
Cplx+Psep 116 - 100 0.49 5798.79 1.87% 0.9% 1495314 154.7
Psep+Umic - 180 100 0.29 5808.71 2.05% 3.2% 1465986 98.9

All 112 6 100 0.43 5798.79 1.87% 1.1% 1374869 128.7

55

Cplx 905 - - - 12667.1 0.95% - 746964 483.2
Umic - 941 - - 12630.8 0.66% 99.2% 0 108.2
Psep - - 0 nan 12726.9 1.43% 4.2% 3570429 236.4

Cplx+Umic 540 9 - - 12666.9 0.95% 0.1% 1036185 444.5
Cplx+Psep 543 - 0 nan 12667.1 0.95% 3.0% 667293 306.0
Psep+Umic - 941 0 nan 12630.8 0.66% 99.2% 0 94.2

All 541 6 0 nan 12666.9 0.95% 2.3% 1007083 411.0

56

Cplx 631 - - - 3789.71 3.51% - 54765 16.8
Umic - 471 - - 3762.51 2.77% 10.2% 1272533 178.7
Psep - - 100 0.47 3757.03 2.62% 0.4% 990985 215.8

Cplx+Umic 1 758 - - 3761.98 2.75% 13.5% 1101652 210.5
Cplx+Psep 64 - 100 0.42 3711.58 1.38% 50.0% 1283 0.8
Psep+Umic - 0 100 0.47 3757.03 2.62% 0.5% 990985 191.4

All 64 0 100 0.42 3711.58 1.38% 55.5% 1283 1.0

57

Cplx 23 - - - 54958.6 0.51% - 281286 27.6
Umic - 549 - - 54958.7 0.51% 2.7% 5592133 1026.0
Psep - - 100 0.38 55197.4 0.95% 0.4% 5387363 569.4

Cplx+Umic 451 72 - - 54950.9 0.49% 0.1% 5515744 2474.1
Cplx+Psep 481 - 2 0.56 54958.6 0.51% 0.2% 5314998 2293.3
Psep+Umic - 226 100 0.22 54955.9 0.50% 1.6% 6658806 993.1

All 461 51 2 0.56 54953.3 0.50% 0.3% 5223371 2306.2

58

Cplx 855 - - - 33248.3 0.31% - 1079727 525.5
Umic - 9 - - 33284.3 0.42% 0.6% 4258811 267.7
Psep - - 0 nan 33289.9 0.43% 1.6% 4622787 324.3

Cplx+Umic 513 49 - - 33247.0 0.30% 0.3% 988586 532.9
Cplx+Psep 543 - 0 nan 33248.3 0.31% 0.8% 994129 499.6
Psep+Umic - 9 0 nan 33284.3 0.42% 1.9% 4309053 278.8

All 514 49 0 nan 33247.0 0.30% 1.2% 977746 504.5

59

Cplx 463 - - - 14145.4 0.97% - 204678 47.1
Umic - 471 - - 14149.3 1.00% 31.9% 538179 101.4
Psep - - 100 0.21 14121.8 0.80% 0.9% 64250 14.7

Cplx+Umic 474 25 - - 14144.8 0.97% 0.2% 250562 103.2
Cplx+Psep 383 - 100 0.22 14119.5 0.79% 0.5% 55189 26.1
Psep+Umic - 0 100 0.21 14121.8 0.80% 2.5% 64250 13.1

All 383 0 100 0.22 14119.5 0.79% 1.1% 55189 27.6

60

Cplx 565 - - - 17107.7 2.05% - 1365449 361.2
Umic - 282 - - 17105.0 2.03% 3.0% 1119149 87.5
Psep - - 100 0.24 17096.8 1.98% 0.5% 724865 85.5

Cplx+Umic 374 123 - - 17097.5 1.99% 0.5% 1149104 245.2
Cplx+Psep 323 - 100 0.3 17076.3 1.86% 0.3% 642746 138.2
Psep+Umic - 49 100 0.15 17080.3 1.89% 1.2% 777701 84.0

All 320 6 100 0.29 17071.7 1.83% 0.3% 668944 155.5

Table B.6: Resolution of the instances of set 3 of the SCPKP (second phase)
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Appendix B. Appendix: polyhedral study B.4. TYPES OF CUTS ADDED BY CPLEX

inst variant Cover GCover FCover Frac Mir ZeroHalf LiftProj

1

Cplx 212 0 0 3 127 3 0
Cplx+Umic 235 1 0 1 127 1 0
Cplx+Psep 72 1 0 1 127 1 0

All 72 1 0 1 127 1 0

2

Cplx 239 3 0 6 56 1 0
Cplx+Umic 229 3 0 2 4 1 0
Cplx+Psep 139 3 0 1 1 2 0

All 139 3 0 1 1 2 0

3

Cplx 340 1 0 5 50 9 0
Cplx+Umic 55 1 0 1 1 1 0
Cplx+Psep 55 1 1 2 1 2 0

All 55 1 1 2 1 2 0

4

Cplx 159 0 0 3 239 4 0
Cplx+Umic 225 0 0 2 239 4 0
Cplx+Psep 141 0 0 1 1 4 0

All 141 0 0 1 1 4 0

5

Cplx 178 0 0 4 223 0 0
Cplx+Umic 227 0 0 2 1 1 0
Cplx+Psep 141 0 0 1 1 1 1

All 137 0 0 2 1 1 1

6

Cplx 2 0 0 5 595 3 0
Cplx+Umic 349 0 0 1 595 4 0
Cplx+Psep 349 1 1 2 595 4 0

All 349 1 1 2 595 4 0

7

Cplx 567 0 0 5 26 7 0
Cplx+Umic 338 0 3 1 26 7 0
Cplx+Psep 259 0 2 1 1 7 0

All 260 0 1 1 1 7 0

8

Cplx 219 0 0 4 3 1 0
Cplx+Umic 355 0 1 2 1 1 0
Cplx+Psep 257 0 1 2 2 1 1

All 256 0 1 2 2 1 1

9

Cplx 176 0 0 3 39 0 0
Cplx+Umic 352 0 0 2 3 1 0
Cplx+Psep 357 0 0 2 2 2 0

All 355 0 0 2 3 2 0

10

Cplx 307 0 0 4 218 76 0
Cplx+Umic 359 0 0 1 218 76 0
Cplx+Psep 361 0 0 1 1 76 0

All 360 0 0 1 1 76 0

Table B.7: Number of each type of cuts added by CPLEX for each variant for instances 1 to 10
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B.4. TYPES OF CUTS ADDED BY CPLEX Appendix B. Appendix: polyhedral study

inst variant Cover GCover FCover Frac Mir ZeroHalf LiftProj

11

Cplx 886 0 0 4 11 4 0
Cplx+Umic 534 0 0 2 11 4 0
Cplx+Psep 437 0 0 2 1 3 0

All 429 0 0 2 1 1 0

12

Cplx 92 0 0 4 642 32 0
Cplx+Umic 533 0 0 1 642 32 0
Cplx+Psep 440 1 0 1 642 1 0

All 436 1 0 1 642 1 0

13

Cplx 577 0 0 3 25 0 0
Cplx+Umic 357 0 0 1 2 0 0
Cplx+Psep 359 0 0 1 2 0 1

All 358 0 0 1 2 0 1

14

Cplx 479 0 0 3 76 2 0
Cplx+Umic 359 0 0 3 76 2 0
Cplx+Psep 259 0 0 3 1 2 0

All 256 0 0 3 1 2 0

15

Cplx 430 0 0 2 86 1 0
Cplx+Umic 537 0 0 1 86 1 0
Cplx+Psep 441 0 0 1 86 1 1

All 441 0 0 1 86 1 1

16

Cplx 385 0 0 6 8 1 0
Cplx+Umic 228 0 0 2 5 2 0
Cplx+Psep 135 0 0 3 4 1 0

All 137 0 0 1 4 2 0

17

Cplx 221 0 0 5 179 0 0
Cplx+Umic 204 0 0 1 1 0 0
Cplx+Psep 142 0 0 1 1 0 0

All 142 0 0 1 1 0 0

18

Cplx 219 0 0 4 80 2 0
Cplx+Umic 177 0 0 1 80 2 0
Cplx+Psep 177 0 0 2 80 2 1

All 177 0 0 2 80 2 1

19

Cplx 290 3 0 5 6 1 0
Cplx+Umic 238 3 0 1 6 1 0
Cplx+Psep 159 1 1 1 1 1 0

All 142 1 1 1 1 1 0

20

Cplx 362 0 0 4 38 1 0
Cplx+Umic 225 0 0 2 1 1 0
Cplx+Psep 140 0 0 2 1 1 0

All 140 0 0 2 1 1 0

Table B.8: Number of each type of cuts added by CPLEX for each variant for instances 11 to 20
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Appendix B. Appendix: polyhedral study B.4. TYPES OF CUTS ADDED BY CPLEX

inst variant Cover GCover FCover Frac Mir ZeroHalf LiftProj

21

Cplx 1 0 0 4 0 0 0
Cplx+Umic 191 0 0 1 2 0 0
Cplx+Psep 233 2 0 1 1 0 0

All 171 2 0 1 3 1 0

22

Cplx 586 0 0 5 13 1 0
Cplx+Umic 225 0 1 2 13 1 0
Cplx+Psep 225 0 1 1 1 1 0

All 225 0 1 1 1 1 0

23

Cplx 138 0 0 6 439 22 0
Cplx+Umic 352 0 0 2 2 22 0
Cplx+Psep 265 0 0 2 1 22 0

All 256 0 0 2 1 22 0

24

Cplx 46 0 0 4 550 5 0
Cplx+Umic 333 0 0 2 550 5 0
Cplx+Psep 258 0 0 1 550 4 0

All 257 0 0 1 550 1 0

25

Cplx 1 0 0 3 1 0 0
Cplx+Umic 348 0 0 2 1 0 0
Cplx+Psep 360 0 0 2 1 0 0

All 344 0 0 2 1 0 0

26

Cplx 690 0 0 4 8 3 0
Cplx+Umic 319 0 0 1 8 3 0
Cplx+Psep 319 0 1 3 8 1 2

All 319 0 1 3 8 1 2

27

Cplx 719 0 0 2 23 1 0
Cplx+Umic 530 0 0 2 1 2 0
Cplx+Psep 539 0 0 2 1 2 1

All 530 0 0 2 1 2 1

28

Cplx 349 1 0 2 115 8 0
Cplx+Umic 286 1 0 3 3 8 0
Cplx+Psep 195 1 0 2 2 1 0

All 188 1 0 3 3 1 0

29

Cplx 827 1 0 6 69 2 0
Cplx+Umic 137 1 0 2 69 1 0
Cplx+Psep 137 1 0 1 69 1 0

All 137 1 0 1 69 1 0

30

Cplx 262 0 0 2 344 22 0
Cplx+Umic 372 0 0 2 344 22 0
Cplx+Psep 375 0 0 2 344 1 0

All 373 0 0 2 344 1 0

Table B.9: Number of each type of cuts added by CPLEX for each variant for instances 21 to 30
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B.4. TYPES OF CUTS ADDED BY CPLEX Appendix B. Appendix: polyhedral study

inst variant Cover GCover FCover Frac Mir ZeroHalf LiftProj

31

Cplx 182 0 0 4 216 3 0
Cplx+Umic 86 0 0 1 216 3 0
Cplx+Psep 141 0 0 1 216 1 0

All 141 0 0 1 216 1 0

32

Cplx 140 0 0 3 205 2 0
Cplx+Umic 217 0 0 2 1 2 0
Cplx+Psep 139 0 0 2 2 2 0

All 121 0 0 2 1 2 0

33

Cplx 386 0 0 5 13 1 0
Cplx+Umic 73 0 0 1 1 1 0
Cplx+Psep 139 0 0 1 1 3 0

All 66 0 0 1 1 3 0

34

Cplx 153 3 0 2 48 4 0
Cplx+Umic 148 2 0 1 4 1 0
Cplx+Psep 72 3 0 1 5 2 0

All 49 1 0 1 5 1 0

35

Cplx 272 0 0 4 27 2 0
Cplx+Umic 175 0 0 2 2 2 0
Cplx+Psep 177 0 0 2 2 2 0

All 176 0 0 2 2 2 0

36

Cplx 159 0 0 4 438 4 0
Cplx+Umic 320 0 0 2 438 4 0
Cplx+Psep 260 0 0 2 438 1 0

All 260 0 0 2 438 1 0

37

Cplx 248 0 0 5 154 8 0
Cplx+Umic 357 0 0 2 154 8 0
Cplx+Psep 1 0 0 2 1 2 0

All 1 1 2 1 2 2 0

38

Cplx 27 0 0 0 0 0 0
Cplx+Umic 31 0 0 0 0 1 0
Cplx+Psep 37 0 0 0 0 1 0

All 31 0 0 0 3 2 0

39

Cplx 190 2 0 3 14 1 0
Cplx+Umic 355 3 0 1 14 1 1
Cplx+Psep 1 3 0 1 14 1 1

All 1 3 0 1 14 1 1

40

Cplx 2 1 0 3 0 0 1
Cplx+Umic 2 1 0 3 0 0 1
Cplx+Psep 2 1 0 3 0 0 1

All 2 1 0 3 0 0 1

Table B.10: Number of each type of cuts added by CPLEX for each variant for instances 31 to 40

240/243



Appendix B. Appendix: polyhedral study B.4. TYPES OF CUTS ADDED BY CPLEX

inst variant Cover GCover FCover Frac Mir ZeroHalf LiftProj

41

Cplx 565 0 0 5 45 0 0
Cplx+Umic 371 0 0 2 45 2 0
Cplx+Psep 378 0 0 2 45 1 0

All 373 0 0 2 45 2 0

42

Cplx 867 0 0 3 27 8 0
Cplx+Umic 450 0 0 3 27 8 0
Cplx+Psep 537 0 1 3 1 8 1

All 520 0 1 2 1 8 1

43

Cplx 566 0 0 3 250 0 1
Cplx+Umic 538 0 0 1 1 0 1
Cplx+Psep 540 0 0 1 1 0 1

All 538 0 0 1 1 0 1

44

Cplx 289 0 0 6 9 0 1
Cplx+Umic 188 0 0 2 9 0 1
Cplx+Psep 113 0 0 3 9 0 1

All 109 0 0 3 9 0 1

45

Cplx 900 0 0 3 1 1 0
Cplx+Umic 539 0 0 1 1 1 0
Cplx+Psep 541 1 0 1 1 1 0

All 540 1 0 1 1 1 0

46

Cplx 76 0 0 1 39 2 0
Cplx+Umic 231 0 0 1 2 2 0
Cplx+Psep 140 0 0 1 1 1 0

All 140 0 0 1 1 1 0

47

Cplx 108 0 0 5 206 1 0
Cplx+Umic 236 0 0 2 206 1 0
Cplx+Psep 141 0 0 2 206 1 0

All 141 0 0 2 206 1 0

48

Cplx 12 0 0 4 388 1 0
Cplx+Umic 234 0 0 2 1 1 0
Cplx+Psep 139 0 0 2 1 1 0

All 139 0 0 2 1 1 0

49

Cplx 351 0 0 7 33 9 0
Cplx+Umic 216 2 0 1 1 1 0
Cplx+Psep 134 2 0 3 3 3 0

All 134 2 0 3 3 3 0

50

Cplx 360 0 0 4 39 2 0
Cplx+Umic 236 0 0 2 39 2 0
Cplx+Psep 142 0 0 1 39 2 0

All 142 0 0 1 39 2 0

Table B.11: Number of each type of cuts added by CPLEX for each variant for instances 41 to 50
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B.4. TYPES OF CUTS ADDED BY CPLEX Appendix B. Appendix: polyhedral study

inst variant Cover GCover FCover Frac Mir ZeroHalf LiftProj

51

Cplx 104 0 0 2 30 1 0
Cplx+Umic 352 0 0 2 30 1 0
Cplx+Psep 61 0 0 1 30 1 0

All 61 0 0 1 30 1 0

52

Cplx 73 0 0 5 147 10 0
Cplx+Umic 130 0 0 2 2 1 0
Cplx+Psep 38 0 0 1 1 1 0

All 27 0 0 1 1 1 0

53

Cplx 203 0 1 3 220 27 1
Cplx+Umic 354 0 1 2 220 2 1
Cplx+Psep 258 2 1 2 220 1 1

All 258 2 1 2 220 1 1

54

Cplx 313 0 0 2 288 1 1
Cplx+Umic 350 0 0 1 288 1 1
Cplx+Psep 262 0 0 1 288 1 1

All 262 0 0 1 288 1 1

55

Cplx 117 0 0 4 430 54 0
Cplx+Umic 351 0 0 1 430 54 0
Cplx+Psep 262 0 0 1 430 54 0

All 262 0 0 1 430 54 0

56

Cplx 587 0 0 3 40 1 0
Cplx+Umic 587 0 0 1 40 1 0
Cplx+Psep 63 0 0 1 40 1 0

All 63 0 0 1 40 1 0

57

Cplx 20 0 0 3 0 0 0
Cplx+Umic 449 0 0 2 0 0 0
Cplx+Psep 476 1 0 2 2 0 0

All 459 1 0 2 2 0 0

58

Cplx 805 0 0 4 46 0 0
Cplx+Umic 512 0 0 1 46 0 0
Cplx+Psep 541 0 0 1 46 0 1

All 513 0 0 1 46 0 1

59

Cplx 417 0 0 5 41 0 0
Cplx+Umic 471 0 0 3 41 0 0
Cplx+Psep 381 0 0 2 41 0 0

All 381 0 0 2 41 0 0

60

Cplx 326 0 0 3 235 1 0
Cplx+Umic 371 0 0 1 1 1 1
Cplx+Psep 321 0 0 1 1 1 1

All 318 0 0 1 1 1 1

Table B.12: Number of each type of cuts added by CPLEX for each variant for instances 51 to 60
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C.1. RESULT TABLES Appendix C. Appendix: two-phase algorithm

CPLEX RCSPP HA* BORWin
instance value gap time #nodes value time value time value #iter time

1 −27092.4 opt 14.0 24213 - 3969.29 - 3600.33 −27092.4 2950 1.43
2 42334.7 opt 1.0 9653 42334.7 3.77 - 3600.41 42334.7 2482 1.4
3 2480.68 opt 104.0 97567 - 3842.11 - 3600.36 2480.68 5475 3.49
4 1556.68 opt 0.0 531 - 3806.62 - 3600.48 1556.68 316 0.51
5 108120.0 opt 0.0 863 - 3620.11 - 3600.34 108120.0 860 1.64
6 −2550.61 opt 0.0 630 - 3963.0 - 3600.44 −2550.61 310 0.87
7 3031.07 inf 0.0 77 - 3857.97 - 3600.3 3031.07 2753 2.64
8 13903.4 inf 0.0 2487 - 3654.9 - 3600.28 13903.4 9644 12.12
9 −81458.9 inf 22.0 9845 - 3791.48 - 3600.2 −81458.9 4507 5.87

10 −622046.0 0.17 3599.0 164270 - 3618.49 - 3600.2 −622046.0 784 3.22
11 41736.5 opt 0.0 0 41736.5 112.82 - 3600.52 41736.5 17 1.56
12 −32130.1 opt 87.0 10279 - 3798.79 - 3600.14 −32130.1 582 3.86
13 −185784.0 1.58 3599.0 184953 - 3699.51 - 3600.19 −185784.0 264 2.43
14 19048.7 opt 3.0 2537 19048.7 29.5 - 3600.39 19048.7 2421 0.77
15 4876.22 opt 0.0 0 4876.22 0.01 4876.22 0.07 4876.22 7 0.08
16 12856.2 opt 0.0 1155 12856.2 0.06 12856.2 1738.4 12856.2 1832 1.17
17 14970.0 opt 0.0 435 14970.0 0.34 14970.0 606.87 14970.0 1143 0.37
18 12647.3 opt 0.0 1801 12647.3 0.07 - 3600.33 12647.3 1845 0.66
19 9276.1 opt 0.0 159 9276.1 0.04 9276.1 157.2 9276.1 815 0.31
20 12600.0 opt 0.0 45 12600.0 0.31 12600.0 69.8 12600.0 601 0.34
21 0.0 opt 0.0 0 0.0 0.0 0.0 0.01 0.0 1 0.01
22 21996.5 opt 0.0 0 21996.5 0.04 21996.5 0.01 21996.5 0 0.0
23 96870.5 opt 14.0 32704 96870.5 9.82 96870.5 3167.85 96870.5 2897 3.02
24 18974.6 opt 0.0 0 18974.6 0.02 18974.6 0.01 18974.6 0 0.0
25 197441.0 opt 0.0 0 197441.0 2.0 197441.0 477.82 197441.0 2058 2.12
26 21588.0 opt 0.0 0 21588.0 0.04 21588.0 0.01 21588.0 5 0.36
27 95900.6 opt 0.0 0 95900.6 0.02 95900.6 0.01 95900.6 0 0.01
28 102450.0 opt 0.0 0 102450.0 0.02 102450.0 0.01 102450.0 0 0.01
29 72778.7 inf 4.0 11675 - 3690.14 - 3600.52 72778.7 31422 28.62
30 −5397.97 opt 0.0 0 −5397.97 0.01 −5397.97 0.01 −5397.97 0 0.0
31 705.98 opt 0.0 0 705.98 0.01 705.98 0.01 705.98 6 0.06
32 24792.1 opt 0.0 0 24792.1 0.01 24792.1 0.01 24792.1 0 0.0
33 3079.3 opt 0.0 0 3079.3 0.05 3079.3 0.01 3079.3 0 0.0
34 62604.5 opt 0.0 0 62604.5 355.76 62604.5 1147.09 62604.5 344 0.64
35 100832.0 opt 0.0 0 100832.0 0.02 100832.0 0.01 100832.0 0 0.01
36 28104.4 opt 0.0 0 28104.4 0.49 28104.4 0.21 28104.4 17 0.21
37 421369.0 opt 0.0 177 - 3723.65 - 3600.41 421369.0 95 0.46
38 −4281.16 opt 0.0 0 −4281.16 95.53 - 3600.49 −4281.16 1776 1.47
39 −31910.4 opt 0.0 4955 - 3658.38 - 3600.35 −31910.4 3130 3.14
40 18323.5 opt 0.0 71 18323.5 42.47 - 3600.58 18323.5 594 0.84
41 −2480.26 opt 0.0 0 −2480.26 0.0 −2480.26 0.01 −2480.26 26 0.11
42 4529.62 opt 0.0 0 4529.62 0.03 4529.62 0.01 4529.62 0 0.0

Table C.1: Performance of modelMop-DRM solved with CPLEX, the RCSPP algorithm, HA* and BORWin
on EDF inspired instances 1 to 42
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Appendix C. Appendix: two-phase algorithm C.1. RESULT TABLES

CPLEX RCSPP HA* BORWin
instance value gap time #nodes value time value time value #iter time

43 269050.0 opt 0.0 0 269050.0 0.03 269050.0 0.01 269050.0 0 0.0
44 919601.0 sub 5.0 23903 - 4535.04 - 3600.5 919605.0 2198 1.19
45 287722.0 inf 0.0 26 - 3689.87 - 3600.36 287722.0 72 0.68
46 52834.5 opt 0.0 0 52834.5 0.07 52834.5 0.04 52834.5 0 0.01
47 459095.0 opt 0.0 0 459095.0 0.04 459095.0 0.01 459095.0 0 0.0
48 462869.0 inf 1.0 1571 - 3780.74 - 3600.45 462869.0 693 0.82
49 42341.8 opt 0.0 0 42341.8 0.06 42341.8 0.03 42341.8 0 0.0
50 4905.83 opt 1.0 8813 - 3608.06 - 3600.43 4905.83 2614 2.18
51 40192.6 opt 0.0 0 40192.6 0.01 40192.6 0.02 40192.6 0 0.0
52 48378.6 opt 0.0 280 - 3678.46 - 3600.39 48378.6 784 0.55
53 28142.9 opt 0.0 0 28142.9 1.75 28142.9 0.19 28142.9 9 0.03
54 3838650.0 sub 0.0 0 3838990.0 75.46 - 3600.46 3838990.0 1687 0.78
55 9577.87 opt 0.0 425 - 3606.21 - 3600.73 9577.87 900 0.8
56 28471.9 opt 0.0 0 28471.9 0.01 28471.9 0.03 28471.9 0 0.01
57 3931900.0 inf 0.0 1177 - 3716.47 - 3600.29 3931920.0 287191 2468.04
58 750878.0 opt 0.0 544 - 3637.65 - 3600.58 750878.0 15667 24.59
59 19159.0 opt 0.0 7 19159.0 51.78 19159.0 20.16 19159.0 31 0.26
60 25720.8 opt 0.0 0 25720.8 0.05 25720.8 0.01 25720.8 0 0.0
61 −19718.7 opt 0.0 713 - 3686.43 - 3600.6 −19718.7 1555 0.88
62 12003.3 opt 0.0 30 12003.3 438.36 12003.3 21.86 12003.3 109 0.49
63 935608.0 opt 0.0 0 935608.0 0.06 935608.0 0.02 935608.0 0 0.0
64 124600.0 opt 2.0 8219 - 3624.53 - 3600.48 124600.0 15577 45.85
65 379220.0 opt 0.0 0 379220.0 0.01 379220.0 0.01 379220.0 0 0.0
66 164134.0 opt 2.0 10774 164134.0 2586.77 - 3600.61 164134.0 5171 4.63
67 703224.0 opt 0.0 0 703224.0 0.02 703224.0 0.02 703224.0 0 0.0
68 94517.5 opt 0.0 51 94517.5 0.02 94517.5 0.03 94517.5 52 0.42
69 65259.0 inf 3.0 3410 - 3672.31 - 3600.29 65259.0 5138 4.73
70 −2612.74 opt 0.0 0 −2612.74 0.0 −2612.74 0.01 −2612.74 0 0.0
71 667875.0 inf 1.0 1478 - 3750.4 - 3600.43 667875.0 1458 2.83
72 −627719.0 opt 0.0 0 - 3719.42 - 3600.33 −627719.0 84 0.8
73 48011.4 inf 0.0 24 - 3603.42 - 3600.45 48011.4 352 0.97
74 71518.2 opt 0.0 371 - 3610.12 - 3600.52 71518.2 678 1.24
75 16119.0 opt 0.0 0 16119.0 4.08 16119.0 1.42 16119.0 239 0.17
76 4976.64 opt 0.0 0 4976.64 0.07 4976.64 0.02 4976.64 0 0.01
77 −3343.57 opt 0.0 186 −3343.57 779.71 −3343.57 1525.54 −3343.57 222 0.17
78 −3209.93 opt 0.0 0 −3209.93 0.0 −3209.93 0.01 −3209.93 0 0.0
79 64146.1 opt 0.0 0 - 3742.06 - 3600.29 64146.1 3982 2.82
80 15155.4 inf 0.0 0 15155.4 147.59 15155.4 58.44 15155.4 287 0.26
81 84971.2 opt 0.0 1000 - 3711.35 - 3600.43 84971.2 252119 3148.39
82 33343.4 opt 0.0 0 - 3661.97 - 3600.54 33343.4 227 0.31
83 775.58 opt 0.0 25 775.58 0.01 775.58 0.18 775.58 142 0.18

Table C.2: Performance of modelMop-DRM solved with CPLEX, the RCSPP algorithm, HA* and BORWin
on EDF inspired instances 43 to 83
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C.1. RESULT TABLES Appendix C. Appendix: two-phase algorithm

CPLEX RCSPP HA* BORWin
instance value gap time #nodes value time value time value #iter time

1 −45097.8 0.24 3599.0 5159794 - 3728.16 - 3600.2 −45097.8 230460 2318.99
2 30816.8 opt 462.0 535149 30816.8 2.66 - 3600.33 30816.8 4385 2.73
3 −12364.3 0.87 3599.0 6511928 - 3657.08 - 3600.29 −12364.3 185759 1325.15
4 −4771.67 opt 88.0 51047 - 3635.03 - 3600.44 −4771.67 13212 73.31
5 100037.0 opt 0.0 23 - 3627.04 - 3600.55 100037.0 6 0.79
6 −8330.37 opt 182.0 95280 - 3625.38 - 3600.56 −8330.37 21368 58.23
7 −25268.1 opt 0.0 494 - 3641.08 - 3600.57 −25268.1 12275 25.31
8 −15274.7 inf 0.0 105 - 3786.47 −15274.7 198.96 −15274.7 1943 3.93
9 −134802.0 0.01 3599.0 797938 - 3676.52 - 3600.33 −134885.0 5155 3601.74

10 −495393.0 opt 907.0 119597 - 3628.56 - 3600.21 −495393.0 3428 7.31
11 22498.4 opt 1.0 1079 22498.4 50.23 - 3600.42 22498.4 185 2.41
12 −15704.4 opt 91.0 19017 - 3744.61 - 3600.31 −15704.4 26 5.27
13 −362953.0 0.01 3599.0 749964 - 4030.62 - 3600.26 −362953.0 106576 3601.59
14 20036.7 opt 812.0 680819 20036.7 28.34 - 3600.42 20036.7 4734 1.65
15 3060.83 opt 0.0 38 3060.83 0.02 3060.83 1648.99 3060.83 1214 0.47
16 9849.72 opt 12.0 34012 9849.72 0.07 - 3600.39 9849.72 2722 1.3
17 8633.68 opt 2.0 9440 8633.68 0.17 - 3600.51 8633.68 10660 6.11
18 10167.2 0.4 3599.0 1124478 10167.2 0.07 - 3600.51 10167.2 7908 3.63
19 8617.41 opt 1.0 5022 8617.41 0.04 8617.41 3360.88 8617.41 1965 0.91
20 8781.47 opt 13.0 34045 8781.47 0.64 - 3600.52 8781.47 4018 1.74
21 0.0 opt 0.0 0 0.0 0.0 0.0 0.01 0.0 1 0.01
22 21996.5 opt 0.0 0 21996.5 0.05 21996.5 0.01 21996.5 0 0.0
23 95051.4 0.63 3599.0 833133 95051.4 30.72 - 3600.4 95051.4 10440 31.82
24 18974.6 opt 0.0 0 18974.6 0.02 18974.6 0.01 18974.6 0 0.0
25 196839.0 opt 0.0 0 196839.0 1.83 196839.0 758.65 196839.0 1879 1.94
26 21459.5 opt 0.0 0 21459.5 0.04 21459.5 0.01 21459.5 2 0.19
27 95900.6 opt 0.0 0 95900.6 0.03 95900.6 0.01 95900.6 0 0.0
28 102450.0 opt 0.0 0 102450.0 0.03 102450.0 0.01 102450.0 0 0.0
29 62292.3 inf 2.0 6388 - 3626.06 - 3600.41 62292.3 55078 93.38
30 −5397.97 opt 0.0 0 −5397.97 0.01 −5397.97 0.01 −5397.97 0 0.0
31 99.34 opt 0.0 0 99.34 0.01 99.34 0.02 99.34 97 0.3
32 24792.1 opt 0.0 0 24792.1 0.01 24792.1 0.01 24792.1 0 0.0
33 3079.3 opt 0.0 0 3079.3 0.06 3079.3 0.01 3079.3 0 0.0
34 59431.0 opt 0.0 0 59431.0 153.67 - 3600.5 59431.0 3689 2.18
35 100832.0 opt 0.0 0 100832.0 0.03 100832.0 0.01 100832.0 0 0.0
36 27052.8 opt 0.0 0 27052.8 0.44 - 3600.66 27052.8 427 0.48
37 406009.0 sub 1.0 670 - 3662.9 - 3600.22 406023.0 134167 3601.37
38 −4316.46 opt 0.0 0 −4316.46 85.35 - 3600.57 −4316.46 5271 3.26
39 −42097.1 opt 4.0 17021 - 3695.39 - 3600.55 −42097.1 3445 2.55
40 15916.1 opt 0.0 124 15916.1 79.01 - 3600.5 15916.1 2444 2.87
41 −3187.16 opt 0.0 0 −3187.16 0.0 −3187.16 0.01 −3187.16 97 0.15
42 4529.62 opt 0.0 0 4529.62 0.04 4529.62 0.01 4529.62 0 0.0

Table C.3: Performance of modelMop-DRM solved with CPLEX, the RCSPP algorithm, HA* and BORWin
on EDF inspired instances 1 to 42 with low price variation
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Appendix C. Appendix: two-phase algorithm C.1. RESULT TABLES

CPLEX RCSPP HA* BORWin
instance value gap time #nodes value time value time value #iter time

43 269050.0 opt 0.0 0 269050.0 0.04 269050.0 0.01 269050.0 0 0.0
44 917201.0 0.06 3599.0 8558238 - 3866.17 - 3600.4 917035.0 190950 3601.38
45 282424.0 sub 3.0 5610 - 3627.51 - 3600.49 282425.0 3858 2.95
46 52834.5 opt 0.0 0 52834.5 0.06 52834.5 0.03 52834.5 0 0.01
47 459095.0 opt 0.0 0 459095.0 0.05 459095.0 0.01 459095.0 0 0.0
48 452277.0 0.04 3599.0 5319419 - 3625.98 - 3600.47 452318.0 123282 2254.47
49 42341.8 opt 0.0 0 42341.8 0.06 42341.8 0.02 42341.8 0 0.0
50 −5494.62 4.65 3599.0 1298359 - 3671.95 - 3600.47 −5494.62 91615 527.29
51 40192.6 opt 0.0 0 40192.6 0.01 40192.6 0.02 40192.6 0 0.0
52 42283.9 opt 10.0 34235 - 3641.65 - 3600.54 42283.9 6194 4.61
53 27442.4 opt 0.0 0 27442.4 0.66 27442.4 0.1 27442.4 31 0.04
54 3798460.0 sub 0.0 0 3798740.0 20.38 - 3600.47 3798740.0 31065 22.19
55 −1957.72 opt 2322.0 898717 - 3626.03 - 3600.54 −1957.72 7688 19.39
56 28471.9 opt 0.0 0 28471.9 0.01 28471.9 0.02 28471.9 0 0.01
57 3922410.0 sub 0.0 352 - 3831.41 - 3600.29 3922560.0 76710 395.57
58 716594.0 opt 2930.0 844090 - 3692.37 - 3600.62 714666.0 193649 3601.47
59 17577.3 opt 2.0 1768 17577.3 5.06 17577.3 52.03 17577.3 514 1.34
60 25720.8 opt 0.0 0 25720.8 0.04 25720.8 0.01 25720.8 0 0.0
61 −34801.1 inf 9.0 40790 - 3680.74 - 3600.56 −34801.1 14291 23.78
62 10607.8 opt 16.0 13431 10607.8 290.81 10607.8 2028.97 10607.8 3113 8.36
63 935608.0 opt 0.0 0 935608.0 0.05 935608.0 0.02 935608.0 0 0.0
64 95093.1 inf 0.0 0 - 3632.43 - 3600.61 95093.1 286 0.53
65 379220.0 opt 0.0 0 379220.0 0.01 379220.0 0.01 379220.0 0 0.0
66 138473.0 0.37 3599.0 651399 138473.0 325.18 - 3600.7 138473.0 48951 381.27
67 703224.0 opt 0.0 0 703224.0 0.02 703224.0 0.02 703224.0 0 0.0
68 94516.4 opt 0.0 57 94516.4 0.02 94516.4 0.02 94516.4 32 0.62
69 66301.3 inf 7.0 4272 - 3659.77 - 3600.33 66301.3 2960 3.43
70 −2612.74 opt 0.0 0 −2612.74 0.0 −2612.74 0.01 −2612.74 0 0.0
71 618927.0 opt 16.0 16554 - 3665.96 - 3600.52 618927.0 24436 111.57
72 −842932.0 sub 2.0 588 - 3608.11 - 3600.32 −842891.0 2503 4.41
73 30603.6 opt 27.0 39539 - 3652.74 - 3600.37 30603.6 23572 48.14
74 68651.0 0.1 3599.0 5690332 - 3663.35 - 3600.73 68651.0 8209 15.63
75 15102.9 opt 0.0 0 15102.9 4.68 - 3600.54 15102.9 4086 3.91
76 4976.64 opt 0.0 0 4976.64 0.06 4976.64 0.02 4976.64 0 0.0
77 −6975.34 opt 1.0 1676 −6975.34 57.44 - 3600.63 −6975.34 1202 1.35
78 −3209.93 opt 0.0 0 −3209.93 0.0 −3209.93 0.01 −3209.93 0 0.0
79 57148.6 opt 524.0 446548 - 3671.69 - 3600.48 57148.6 176537 1347.51
80 14650.7 opt 0.0 0 14650.7 31.81 - 3600.64 14650.7 6600 5.74
81 69986.4 opt 32.0 73328 - 3705.61 - 3600.38 69986.4 147543 1148.09
82 31375.2 sub 0.0 0 - 3609.26 - 3600.6 31375.9 95735 476.4
83 164.95 opt 0.0 600 164.95 0.01 164.95 1.59 164.95 492 0.47

Table C.4: Performance of modelMop-DRM solved with CPLEX, the RCSPP algorithm, HA* and BORWin
on EDF inspired instances 43 to 83 with low price variation
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Titre : Modèles et algorithmes pour l'op�misa�on de la produc�on hydro-électrique
Mots clés : Op�misa�on de la produc�on hydro-électrique, Programma�on linéaire en nombres en�ers, Algorithmes de graphes, Etude polyédrale,
Programma�on non-linéaire
Résumé : Le problème de ges�on de produc�on hydro-électrique (HUC) est un problème difficile, qui joue un rôle important dans la ges�on de
produc�on électrique journalière à EDF. Dans ce�e thèse, nous étudions différents modèles et algorithmes pour résoudre un cas par�culier du
problème HUC à une usine (1-HUC). Etudier ce cas par�culier présente plusieurs intérêts. D'une part, il existe des instances réelles à une usine mal
résolues par les approches actuelles. D'autre part, cela nous permet d'étudier plus spécifiquement deux sources de difficultés séparément. L'une
provient de la présence de non-linéarités, notamment la puissance qui est une fonc�on non-convexe et non-concave du débit d'eau et du volume
des réservoirs. L'autre est due à l'ensemble des contraintes hydrauliques, notamment des volumes minimaux et maximaux ainsi que des volumes
cibles des réservoirs. 

 Dans une première par�e, différentes alterna�ves de modélisa�on des non-linéarités du 1-HUC, plus par�culièrement sur la puissance, sont
proposées. L'objec�f est d'iden�fier un modèle pouvant être résolu efficacement avec un bon compromis entre temps de calcul et précision. Les sept
alterna�ves proposées couvrent un large spectre de familles de modélisa�on. Elles sont comparées sur un jeu d'instances présentant des varia�ons
sur cinq caractéris�ques qui impactent la résolu�on. Ce�e étude compara�ve permet d'iden�fier trois types de modèles per�nents: un modèle avec
des fonc�ons polynomiales de degré 2, un modèle avec une fonc�on linéaire par morceaux, et un modèle u�lisant un ensemble fini de débits. Ce
dernier modèle étant similaire à la modélisa�on actuelle à EDF, nous proposons dans la suite des algorithmes dédiés à celui-ci. 

 Dans une deuxième par�e, une étude polyédrale est proposée pour améliorer la résolu�on du problème 1-HUC. L'idée est de focaliser sur le coeur
combinatoire, ce qui revient à considérer le lien entre les contraintes sur les volumes et l'ensemble discret des débits. Pour celà, nous définissons une
variante du problème du sac-à-dos avec chaines de précédence et poids symétriques (SCPKP). Pour le SCPKP, nous définissons des condi�ons
nécessaires de face�es, qui sont aussi prouvées suffisantes dans certains cas. Un algorithme de branch-and-cut en deux phases s'appuyant sur ces
condi�ons et sur l'aspect symétrique du SCPKP est mis au point. L'efficacité de cet algorithme est ensuite montrée numériquement face à des
algorithmes de l'état de l'art. Les résultats de ce�e analyse polyédrale du SCPKP, ainsi que l'algorithme de résolu�on proposé sont ensuite étendus au
problème 1-HUC. 

 Dans une troisième par�e, une technique de résolu�on efficace est proposée pour prendre en compte les contraintes hydrauliques en s'appuyant sur
la représenta�on du problème 1-HUC par un graphe. Cela permet de se ramener à un cas par�culier du problème de plus court chemin avec fenêtres
de ressource (RWSPP). Nous proposons deux algorithmes de graphes. Le premier algorithme est une variante exacte de l'algorithme A*, u�lisant une
borne duale dédiée au problème 1-HUC. En comparaison avec deux approches de l'état de l'art, nous montrons numériquement que cet algorithme
est plus efficace pour traîter un cas spécifique du 1-HUC. L'objec�f du second algorithme est de prendre en compte davantage de contraintes
hydrauliques. Le principe s'appuie sur le concept d'op�misa�on bi-objec�f pour lequel le second objec�f correspond à une relaxa�on du volume
d'eau. L'avantage par rapport à une op�misa�on bi-objec�f classique est qu'il est possible d'u�liser les volumes minimaux et maximaux pour réduire
l'espace de recherche et diriger l'énuméra�on de solu�ons. Nous montrons numériquement, sur un grand jeu d'instances réelles, que cet algorithme
est plus performant que trois approches de l'état de l'art. Même si cet algorithme a été conçu pour résoudre le 1-HUC, nous le définissons de
manière générique pour tout RWSPP avec une resource.

Title: Models and algorithms for the Hydro Unit Commitment problem
Key words: Hydro Unit Commitment, Mixed-integer linear programming, Graph algorithms, Polyhedral analysis, Non-linear programming
Abstract: The Hydro Unit Commitment problem (HUC) is a difficult problem playing a major role in the scheduling of daily electricity produc�on at
EDF. In this thesis, we study different models and algorithms to solve the special case of the single-unit HUC problem (1-HUC). Studying this case is
relevant for the following reasons. On the one hand, there are real world instances of the 1-HUC problem which cannot be solved efficiently by
current approaches. On the other hand, it makes it possible to study individually two par�cular sources of difficulty. One stems from the presence of
non-lineari�es, in par�cular the power which is a non-convex non-concave func�on of the flow and the reservoirs' volume. The other is due to the
set of hydraulic constraints, specifically the volume minimum and maximum bounds, as well as target volumes for the reservoirs. 

 In a first part, modeling alterna�ves for the non-linear 1-HUC, focusing on the power func�on, are proposed. The aim is to iden�fy a model which
can be solved efficiently, with a good trade-off between computa�onal �me and precision. The seven proposed modeling alterna�ves cover a large
panel of modeling families. These models are compared on a set of instances with varia�ons on five features that impact the solu�on. This
compara�ve study enables us to iden�fy three efficient types of model: a model with polynomial func�ons of degree 2, a model with a piecewise
linear func�on, and a model using a finite set of flows. As the la�er model is similar to the current model at EDF, in the following we present
algorithms dedicated to it. 

 In the second part, a polyhedral study is proposed to improve the solving approach of the 1-HUC problem. The idea is to focus on the combinatorial
aspects, which means considering the rela�onship between the bounds on volumes and the discrete set of flows. For this purpose, we introduce a
variant of the knapsack problem, with Symmetric weight and Chain Precedences (SCPKP). For the SCPKP, we characterize necessary facet-defining
condi�ons, which are also proven to be sufficient in some cases. A two-phase branch-and-cut algorithm based on these condi�ons and on the
symmetric aspect of the SCPKP is devised. The efficiency of this algorithm is then shown experimentally against state-of-the-art algorithms. The
results of this polyhedral study of the SCPKP, as well as the proposed algorithms, are then extended to the 1-HUC problem. 

 In the third part, an efficient solving technique based on a graph representa�on of the 1-HUC problem is proposed, taking into account of the
hydraulic constraints. It appears that the 1-HUC problem is a special case of the Shortest Path Problem with Resource Windows (RWSPP). We
propose two graph algorithms. The first one is an exact variant of the A* algorithm, using a dual bound dedicated to the 1-HUC problem. In
comparison with two state-of-the-art approaches, we show numerically that this algorithm is more efficient for handling a specific case of 1-HUC.
The aim of the second algorithm is to take into account a wider set of hydraulic constraints. The idea is based on the concept of bi-objec�ve
op�miza�on, for which the second objec�ve corresponds to a relaxa�on of the volume. The advantage compared to a classical bi-objec�ve
op�miza�on is that it is possible to use the minimum and maximum bounds on the volume to reduce the search space and to guide the enumera�on
of solu�ons. We show numerically, on a large set of real instances, that this algorithm outperforms three state-of-the-art approaches. Although this
algorithm was designed to solve the 1-HUC problem, it is defined in a generic way for any RWSPP with a single resource.
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