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Résumé de la thèse

Dans cette thèse, nous nous intéressons principalement à l’estimation des modèles de régression
non paramétrique. Plus précisément, nous nous intéressons à une classe d’estimateurs des U-
statistiques conditionnelles. Les U-statistiques conditionnelles peuvent être considérées comme
une généralisation de l’estimateur de Nadaray-Watson. Ce dernier utilise les méthodes à noyau
pour “moyenner” les valeurs des variables réponses. Stute généralise l’estimateur de Nadaraya-
Watson en remplaçant les moyennes pondérées simples au numérateur et au dénominateur par
des U-statistiques. Ensuite, en utilisant une collection de variables aléatoires prédictives, il
prédit l’espérance conditionnelle de la fonction noyau des U-statistiques. Cette généralisation
est prospère et influente dans la statistique mathématique en raison de son utilité scientifique
exceptionnelle et de sa fascinante complexité théorique. Cependant, comme toute autre tech-
nique d’estimation par noyau, la question du choix de la fenêtre de lissage appropriée pour
équilibrer le compromis variance-biais, est un sujet qui reste mal abordé dans la littérature sur
les U-statistiques conditionnelles lorsque les variables explicatives sont fonctionnelles. Dans
la première partie de la thèse, nous introduisons l’estimateur k des plus proches voisins des U-
statistiques conditionnelles dépendant d’une covariable de dimension infinie. La convergence
uniforme en termes de nombre de voisinages (UINN) pour l’estimateur proposé est présentée.
Un tel résultat permet de varier le nombre de voisinages dans une plage complète pour laquelle
l’estimateur reste consistant. Par conséquent, ce résultat représente une ligne directrice intéres-
sante dans la pratique pour sélectionner le nombre de voisinages optimal dans l’analyse des
données fonctionnelles non paramétriques. De plus, nos résultats sont uniformes sur une classe
de fonctions convenablement choisie F , dans les deux cas bornée et non bornée, satisfaisant des
conditions de moment et certaines conditions générales sur l’entropie. En tant que sous-produit
de nos preuves, nous énonçons des résultats de convergence pour le k-NN des U-statistiques
conditionnelles, dans le cadre de la censure aléatoire, uniformes en nombre de voisins. La
deuxième partie de la thèse traite un cadre général d’estimation non paramétrique incluant
l’estimateur de Stute comme cas particulier. La classe des « estimateurs de delta séquence » est
introduite et traitée dans ce travail. Cette classe comprend également les séries orthogonales et
les méthodes d’histogramme. Nous étendons partiellement ces résultats au cadre des données
fonctionnelles. La majeure partie de la thèse est motivée par les problèmes d’apprentissage, y
compris parmi beaucoup d’autres, les problèmes de discrimination, l’apprentissage métrique et
le "classement multipartite".

Mots-clés: Analyse des données fonctionnelles; Classe de fonctions de type VC; Consis-
tance uniforme; Convergence Uniforme presque complète; Données fonctionnelles; Entropie
métrique; Espace fonctionnel; Estimateurs à noyaux; Estimateurs des k plus proche voisins; Es-
timation par les séquences delta; Paramètre de lissage; Probabilité de petites boules, Processus
empiriques ; U-statistiques; U-statistiques conditionnelles; U-processus.
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Thesis abstract

In this dissertation, we are interested in nonparametric regression estimation models. More
precisely, we are concerned with a class of conditional U-statistics estimators. Conditional U-
statistics can be viewed as a generalization of the Nadaray-Watson estimator. The latter uses
a smoothing kernel function to “average” response variable values within a predictor range.
Stute generalizes the Nadaraya-Watson estimator first by replacing simple weighted averages
in the numerator and denominator with U-statistics. Then, using a collection of predictor ran-
dom variables, he predicts the conditional expectation of the U-statistic kernel function. This
generalization is prosperous and influential in mathematical statistics due to its outstanding sci-
entific utility and fascinating theoretical complexity. However, like any other kernel estimation
technique, the question of choosing a suitable bandwidth to balance the variance-bias trade-
off is a subject that remains insufficiently addressed in the literature on conditional U-statistics
when explanatory variables are functional. In the first part, we introduce the k nearest neighbor-
hoods estimator of the conditional U-statistics depending on an infinite-dimensional covariate.
A sharp uniform in the number of neighborhoods (UINN) limit law for the proposed estimator
is presented. Such a result allows the NN to vary within a complete range for which the esti-
mator is consistent. Consequently, it represents an interesting guideline in practice to select the
optimal NN in nonparametric functional data analysis. In addition, uniform consistency is also
established over ϕ ∈F for a suitably restricted class F , in both cases bounded and unbounded,
satisfying some moment conditions and some mild conditions on the model. As a by-product of
our proofs, we state consistency results for the k-NN conditional U-statistics, under the random
censoring, are uniform in the number of neighbors. The second part of the thesis deals with
a general nonparametric statistical curve estimation setting, including the Stute estimator as a
particular case. The class of “delta sequence estimators” is defined and treated here. This class
also includes the orthogonal series and histogram methods. We partially extend these results to
the setting of the functional data. The major part of the thesis is motivated by machine learning
problems, including, among many others, the discrimination problems, the metric learning, and
the multipartite ranking.

Key words Functional data analysis; VC-Class of functions; Uniform consistency; Almost
complete Uniform Convergence; Functional data; Metric entropy; Functional space; Kernel
estimators; k nearest neighbor estimators; Data-driven estimator; Delta sequences; Smoothing
parameter; Small-ball probability; Empirical processes; U-statistics; Conditional U-statistics;
U-processes.
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Chapter 1

Introduction

Statistics and data analysis are becoming increasingly relevant and essential in this era of big
data to evaluate and examine the vast amounts of information now available. Therefore, the
tasks of estimation and prediction are of the utmost significance. The estimation theory can
be considered one of the fundamental components of mathematical statistics, which can be di-
vided into parametric estimation and nonparametric estimation. A nonparametric procedure is
typically valid regardless of the distribution of the sampled observations. Instead, it estimates
some unknown function elements belonging to a certain class of functions from the observa-
tions. Therefore, estimating functional characteristics associated with the distribution of the
observations, such as the distribution function, density function, or regression function, consti-
tutes a significant part of the problems studied in the nonparametric estimation theory. Within
the scope of this thesis, our primary focus will be on the investigation of nonparametric regres-
sion estimators, more specifically, conditional U-statistics. Our study aims to generalize and
improve the performance of the conditional U-statistics(and/or processes) estimates.

Let Z1, . . . ,Zn be independent identically distributed random variables. Suppose we want to
estimate an unknown parameter θ from the observations, using a known function ϕ(·) depending
on m ≤ n variables. If one assumes that the function ϕ(·) is an unbiased estimator of the
parameter θ, then :

θ= E[
ϕ (Z1, . . . ,Zm)

]
.

Assume that ϕ(·) is a symmetric function, we define the U-statistic based on ϕ(·) by :

Definition 1.0.0.1 Let {Zn}n∈N∗ be a sequence of independent identically distributed random
variables, taking values in some measurable space (Z ,A (Z )). For m ≤ n, we define a U

statistic based on a symmetric kernel function ϕ : Z m →R, by :

u(m)
n (ϕ) := (n −m)!

n!

∑
Im
n

ϕ
(
Zi1 , . . . ,Zim

)
, (1.0.1)

where, In
m = {

(i1, . . . , im) : 1 ≤ i j ≤ n and i j ̸= ir if j ̸= r
}
, and the integer m is called the degree

or the rank of the U-statistic (or also the rank or the degree of the kernel ϕ(·) ).

3



CHAPTER 1. INTRODUCTION

These estimators were first considered in Halmos [1946] in connection with unbiased statis-
tics, from which comes the letter U (unbiased), and were formally introduced by Hoeffding
[1948]. From (1.0.1), we can observe that the U-statistic is an arithmetic average of unbiased
estimators for θ and because the observations are independent then u(m)

n (·) is an unbiased esti-
mator of θ too, and moreover it has a smaller variance then ϕ(·). They often have the smallest
variance among the class of unbiased estimators in θ. Generally, we use the notation UR-
statistic to design a U-statistic that the kernel takes values in the set of real numbers R,UH -
statistic to design a U-statistic that the kernel takes values in a Hilbert space. More broadly, if
the kernel ϕ belongs to some separable Banach space B, we note the U-statistic by UB-statistic.
This thesis uses the same notation U-statistic in all settings.

Since its introduction by Hoeffding [1948], the simple U-statistic has been an active research
field in statistics. Hoeffding [1961], established some fundamental properties of U-statistic.
Sen [1974] added some valuable contributions on this topic. Gregory [1977] got the asymptotic
distribution for degenerate U-statistics with rank two. The asymptotic distribution of the U-
statistic with an arbitrary rank was extended by Janson [1979] and Rubin and Vitale [1980].

Serfling [2009] has shown that
(
nu(m)

n

)
n∈N∗ converges in distribution to a random variable

which is written, in terms of the eigenvalues of an operator associated with the kernel ϕ(·), as
a weighted sum of Chi-squared independent variables. In turn, Borovskikh [1986] established
the asymptotic distribution of the U-statistic in a Hilbert space. de la Pena [1992] introduced a
general decoupling inequality for U-statistics. We refer to Serfling [2009], Lee [1990] and Ko-
rolyuk and Borovskich [2013] books for a detailed review and major historical developments
in this field. The asymptotic theory of a collection of U-statistics is also of considerable impor-
tance; that’s why Arcones and Giné [1993] studied the convergence of a family of U-statistics
built over a sequence of i.i.d r.v.’s. Arcones and Yu [1994] established the functional central
limit theorems under absolute regular observations for U-processes. In (1992), Giné and Zinn
[1992] obtained Hoffmann-Jorgensen type moment inequalities for completely degenerate U-
statistics of an arbitrary order m. Klass and Nowicki [1997] also gave moment inequalities for
non-negative generalized U-statistics, for order m = 2. In turn, Ibragimov and Sharakhmetov
[1999] established analogs of Rosenthal inequality for non-negative and canonical U-statistics.
On the other hand, exponential and obtained moment inequalities citeEvarist2000 specifically, a
Bernstein-type exponential inequality for (generalized) canonical U-statistics of order 2. Some-
where else, de la Peña and Giné [1999] presented, for U-statistics and U-processes, the decou-
pling theory and its application to limit theorems. More recent works on both U-statistics and
U-processes have also been established, such as Adamczak [2006], who generalized the results
of Giné et al. [2000] to canonical U-statistics of arbitrary order. Giné and Mason [2007b] who
introduced a local U-statistic process based on an estimator given by Frees [1994], and estab-
lished its central limit theorems for diverse norms, namely, the sup and the Lp-norms (for p ≥ 1

). In another work Giné and Mason [2007a], they established the laws of the iterated logarithm
for the same statistic (the local U-statistic process). Others investigated the fields of application
of U-statistics. For example, Clémençon et al. [2008] used the U-statistics in the ranking prob-
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CHAPTER 1. INTRODUCTION

lems and clustering Clémençon [2014]. A natural occurrence of U-statistics also took place
in learning on graphs Biau and Bleakley [2006] or in expansions of smooth statistics Robins
et al. [2009] as components of higher-order terms. In 2015, Joly and Gábor published an article
Joly and Lugosi [2016] named Robust estimation of U-statistics, in which they investigate the
estimation of the mean of multivariate functions in some specific cases.

Up to 1991, only the simple U-statistics (U-processes) were studied. The first paper devoted
to conditional U-statistic, in which it was introduced, belongs to Stute [1991]. From there,
several authors have been interested in studying asymptotic properties of the conditional U-
statistics. More details on the established works on conditional U-statistics are given in the next
chapter.

1.1 Motivation

1.1.1 Ranking problems

A considerable number of works concerning conditional U-statistics have emerged following
the two decades of their introduction, allowing many applications in diverse fields. For in-
stance, the ranking problem has received particular attention in machine learning. Comparing
two observations based on their characteristics is necessary for some specific ranking problems
and deciding which is better instead of simply classifying them. Furthermore, the ordering
problems have many applications in different areas of banking (Data mining process for di-
rect marketing data extraction), document type classification, and many more. U-statistics are
frequently used to solve ordering and ranking problems where the objective is to establish a
universal and consistent ordering method. Suppose that we want to establish an order between
the first components of the two pairs (X,Y),

(
X′,Y′) of independent and identically distributed

observations in X ×R. The variables Y and Y′ are respective labels of the variables X and X′

that we want to order by observing them (and not their labels). Usually, we decide that X is
better than X′ if Y > Y′. To see things more clearly, we introduce a new variable :

W = Y−Y′

2
,

then Y > Y′ is equivalent to W > 0. As mentioned, the goal is to establish a classification rule
between X and X′ with minimal risk, i.e., the probability that the label of the highest ranked
variable is the smallest is small. Mathematically speaking, the decision rule is given by the
function :

r
(
x, x ′)=

1 if x > x ′

−1 else.

The following ranking risk gives the performance measure of r :

L(r ) =P(
W · r

(
X,X′)< 0

)
.

5



CHAPTER 1. INTRODUCTION

A natural estimate for L according to Clémençon et al. [2008] is :

Ln(r ) := 1

n(n −1)

∑
i ̸= j

1{Wi , j ·r (Xi ,X j )<0
},

where (X1,Y1) , . . . , (Xn ,Yn) are n independent, identically distributed copies of (X,Y), and Wi , j =
Yi−Y j

2 . One can easily see that Ln is a U-statistic with m = 2. Clémençon et al. [2008], consid-
ered a minimizer over a class of ranking rules. So to learn a rigorous ranking rule, one should
minimize the ranking risk (empirically) over a class R of ranking rules, i.e.,

rn = argmin
r∈R

Ln(r ).

Then one needs to investigate the performance measure of rn given by :

L(rn) =P(
W · rn

(
X,X′) | (X1,Y1) . . . , (Xn ,Yn)

)
The initial step to studying the empirical risk minimizer performance is based on the inequality:

L(rn)− inf
r∈R

L(r ) ≤ 2sup
r∈Z

|Ln(r )−L(r )|.

The latter indicates that evaluating the performance of an empirical minimizer of the ranking
risk comes up for discussing the properties of conditional U-statistics, that is, the properties of a
collection of conditional U-statistics indexed by a class of ranking rules. The ordering problem
presented here is a simple ordering problem that is a problem of ranking just two observations X,

X′. More general ranking problems those of ordering m independent observations X(m)
1 , . . . ,X(m)

n ,
involve the conditional U-statistic and the conditional U-process with degree m.

1.1.2 Kendall rank correlation coefficient

To test the independence of one-dimensional random variables X and Y Kendall [1938] proposed
a method based on the U-statistic Kn with the kernel function :

ϕ ((s1, t1) , (s2, t2)) =1{(s2−s1)(t2−t1)>0} −1{(s2−s1)(t2−t1)⩽0}·

Its rejection on the region is of the form
{p

nKn > γ}
. In this example, we consider a multivariate

case. To test the conditional independence of ξ,η : Y = (ξ,η) given X, we propose a method
based upon the conditional U-statistic :

r̂ (2)
n (ϕ,t) =

∑n
i ̸= j ϕ

(
Yi ,Y j

)
K

(
t1−Xi

hn

)
K

(
t2−X j

hn

)
∑n

i ̸= j K
(

t1−Xi
hn

)
K

(
t2−X j

hn

) , (1.1.1)

where t = (t1, t2) ∈ I ⊂ R2 and ϕ(·) is Kendall’s kernel (1.1.1). Suppose that ξ and η are d1

and d2-dimensional random vectors respectively and d1 +d2 = d . Furthermore, suppose that
Y1, . . . ,Yn are observations of (ξ,η), we are interested in testing :

H0 : ξ and η are conditionally independent given X. vs Ha : H0 is not true. (1.1.2)

6



CHAPTER 1. INTRODUCTION

Let a = (a1,a2) ∈ Rd such as ∥a∥ = 1 and a1 ∈ Rd1 ,a2 ∈ Rd2 , and F(·), 0G(·) be the distribution
functions of ξ and η respectively. Suppose Fa1 (·) and Ga2 (·) to be continuous for any unit vector
a = (a1,a2) where Fa1 (t ) = P(

a⊤
1 ξ< t

)
and Ga2 (t ) = P(

a⊤
2 η< t

)
and a⊤

1 means the transpose of
the vector ai ,1 ⩽ i ⩽ 2. For n = 2, let Y(1) = (

ξ(1),η(1)
)

and Y(2) = (
ξ(2),η(2)

)
such as ξ(n) ∈ Rd1

and η(i ) ∈Rd2 for i = 1,2, and :

ϕa (
Y(1),Y(2))=ϕ((

aτ1ξ
(1),a⊤

2 η
(1)) ,

(
aτ1ξ

(2),aτ2η
(2)))

As in Zhang [2001], for m = 2 and the class of functions :

FaK
2 =

{
ϕa(·, ·)K

( ·− t1

h

)
K

( ·− t2

h

)
: a ∈Rd : ∥a∥ = 1

}
,

it is easy to see that sup∥a∥=1

p
nh2r̂ (2)

2 (ϕa,t) null hypothesis is true, then :

Dn = sup
∥a∥=1

√
nh2

∣∣∣r̂ (2)
2 (ϕa,t)

∣∣∣= sup
ϕa×K×K∈FaK

√
nh2

∣∣∣r̂ (2)
2 (ϕa,t)

∣∣∣ .

1.1.3 High-dimensional independence test ( Drton et al. [2020])

Let the random vector X := (
X1, . . . ,Xp

)⊤ taking values in Rp with existing continuous univari-
ate marginal distributions. Suppose we are interested in testing the dependence between the
elements of X, for any value of p (even for a large p ) :

H0 : The components X1, . . . ,Xp are mutually independent. (1.1.3)

This kind of test has always been of considerable regard; it has been the focus of several works,
e.g., the likelihood ratio test, Roy’s largest root test Roy [1957], and Nagao’s L2-type test Nagao
[1973]. However, these methods give inferior results when p is large enough, so to deal with this
challenge, more recent methods were investigated; for example, Jiang and Yang [2013] derived
corrected likelihood ratio tests for Gaussian data. Using covariance/correlation statistics such
as Pearson r , Spearman ρ, and Kendall τ, Bao et al. [2012], Gao et al. [2017], Han et al. [2018]
and Bao [2019] proposed revised versions of Roy largest root test. Schott [2005] and Leung
and Drton [2018] derived corrected Nagao L2-type tests. Finally, Jiang [2004], Zhou [2007],
and Han et al. [2017] proposed tests using the magnitude of the largest pairwise correlation
statistics. Nevertheless, most of the cited tests are largely based on linear and simple rank
correlations, which makes them unable to detect non-linear and non-monotone dependencies.
Let X1,X2 two variables with absolutely continuous joint distribution; most of the dependence
measures respect the following criterion:

1. I-consistency. If X1 and X2 are independent, their correlation equals zero.

2. D-consistency. If X1 and X2 are dependent, their correlation is nonzero.

3. Monotonic-invariance. The correlation measurement does not change by monotonic trans-
formations.

7
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Drton et al. [2020] used the U-statistic to introduce a pair-wise rank correlation that was in-
volved in a maximum-type test of the independence hypothesis (1.1.3). Assume that X1, . . . ,Xn

are independent copies of X and let the fixed function ϕ :R2m →R. The U-statistic based on the
kernel ϕ is :

û(m)
j ,k := (n −m)!

n!

∑
∈l (m,n)

ϕ

((
Xi1, j

Xi1,k

)
, . . . ,

(
Xim,

Xim ,k

))
,

for i ̸= j ∈ {1, . . . , p} and Xi =
(
Xi ,1, . . . ,Xi ,p

)
. One should note that if the kernel ϕ if rank based

then the correlation statistics û(m)
j ,k and the corresponding measures E

(
û(m)

j ,k

)
are also rank based.

They are both I-consistent and D-consistent. Some notions are required to understand how the
U-statistics are involved in the test. For m independent identically distributed random vectors
W1, . . . ,Wm with distribution PW, and k ∈ {1, . . . ,m} let :

E[ϕ] = E
[
ϕ (W1, . . . ,Wm)

]
,

ϕk (w1, . . . , wk ;PW) := E
[
ϕ (w1, . . . , wk , Wk+1, . . .Wm)

]
,

ϕ(k) (w1, . . . , wk ;PW) := ϕk (w1, . . . , wk ;PW)−E[ϕ]
k−1∑
j=1

∑
1≤i1≤···≤i j≤k

ϕ( j )
(
wi1 , . . . , wi j ;PW

)
.

We say that the kernel ϕ(·) and the U-statistic based on, are degenerate under PW if

Var
[
ϕ1

]= 0.

Let U0 be the uniform distribution on [0;1] and U0⊗U0 the uniform distribution on [0;1]2. The
kernel ϕ is supposed to satisfy :

– ϕ is symmetric, bounded, mean-zero and rank-based.

– ϕ satisfies, as W1U0 ⊗U0 :

E
[
ϕ1 ( W1;U0 ⊗U0)

]2 = 0.

– ϕ2 (w1, w2;U0 ⊗U0) satisfies :

ϕ2 (w1, w2;U0 ⊗U0) =
∞∑

n=1
λnhn (w1)hn (w2) ,

where {λn}n∈N∗ {hn(·)}n∈N∗ are the eigenvalues and the eigenfunctions respectively, that
satisfy for w1 ∈R2 :

E
[
ϕ2 (w1, W2)h2 (z2)

]= λ1h1 (z1)

and W2U0 ⊗U0, {λn}n∈N∗ is a decreasing sequence with
∞∑

n=1
λn ∈ (0;∞).

Finally, the eigen functions satisfy:

sup
n

∥hn∥∞ <∞.

8
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The proposed maximum-type test of the mutual independence hypothesis H0 is given by :

Mn := (n −1)max
j<k

û(m)
j ,k ,

then H0 is rejected if Mn is bigger than some lower limit.

1.1.4 U-statistics in clustering

The clustering method brings together a set of learning algorithms that aim to group unlabeled
data with similar properties. Isolating schemas or families in this way also prepares the ground
for the subsequent application of supervised learning algorithms (such as KNN). Clustering is
used in particular when it is expensive to label data. However, it is a mathematically ill-defined
problem: different metrics and/or different data representations will result in different clustering
without any of them necessarily being better than the other. Thus, the clustering method must be
carefully chosen according to the expected result and the intended use of the data. An approach
based on U-statistics was introduced to assure a statistically significant clustering. Indeed, let
X1, . . .Xn be a sample of n random vectors taking values in Rp forming two groups G1 and G2

of sizes n1,n2, respectively, with n1 +n2 = n. In the i -th group, observations X j 1, . . . ,X j n j are
assumed to be independent and identically distributed (i.i.d) with a p-variate distribution F j .
Assume that the distribution F j admits mean vector µ j and positive-definite dispersion matrix
Σ j . We want to test if the groups G1 and G2 really are separated groups or if they have the same
distribution, i.e.:

H0 : The distributions F1 and F2 are equal, H1 : The distributions F1 and F2 differ.

(1.1.4)
For a 2 order symmetric function ϕ(·, ·), the functional distance is defined according to Sen
[2006] and Pinheiro et al. [2009], by :

θ (F1, F2) =
Ï

ϕ (x1, x2)d F1 (x1)d F2 (x2) .

The latter can be used to define both distances within and between groups. It follows from U-
statistics theory that an unbiased estimator of this functional for within-group distance θ

(
F j , F j

)
is the generalized U-statistic based on the symmetric kernel ϕ, that is :

u( j )
n j

=
(

n j

2

)−1 ∑
1≤i<k≤n j

ϕ
(
X j i ,X j k

)
.

While the unbiased estimator to measure the distance between the groups :

u(1,2)
n1,n2

= 1

n1n2

n1∑
i=1

n2∑
j=k

ϕ (X1i ,X2k ) .

9
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One should note that the U-statistic based on the whole sample can be written as :

u(2)
n =

(
n

2

)−1 ∑
1≤i<k≤n

ϕ (Xi ,Xk )

=
2∑

j=1

n j

n
u( j )

n j
+ n1n2

n(n −1)

(
2u(1,2)

n1,n2
−u(1)

n1
−u(2)

n2

)
,

= In + IIn .

The second term IIn is centered under the null hypothesis, i.e., E (IIn) = 0. Alternatively, E (IIn)⩾

0 . When IIn takes large values H0 is then rejected.

1.1.5 Functional data

Statistical problems involving the analysis of infinite-dimensional variables, such as curves,
sets, and images, have garnered considerable attention in the literature for some years. The de-
velopment of this research theme is promoted by modern technological progress in measuring
devices and the abundance of data measured on increasingly fine grids: this is the case; take, for
example, in meteorology, medicine, satellite imagery, and many other areas of research. No-
tably, the statistical analysis of functional data can be traced back to Rao [1958] where a set of
growth curves was analyzed by functional principal component analysis in a rudimentary form
for the first time and subsequently rigorously investigated by Kleffe [1973] and Dauxois et al.
[1982]. Numerous recent works, from both a theoretical and a practical standpoint, confirm the
relevance of investigating this area, such as the monographs of Horváth and Kokoszka [2012],
Shi and Choi [2011], Bosq and Blanke [2007], Geenens [2011], Cuevas [2014], Shang [2014],
Horváth and Rice [2015], Müller [2016], Nagy [2017], Vieu [2018], Aneiros et al. [2019], and
Ling and Vieu [2018], where we have collect these references.

Functional variables can model many phenomena, such as forecasting problems, electricity
consumption, speech recognition, and spectrometric data (cf Ferraty and Vieu [2006]). The
following example concerns the analysis of chemical components in a food substance (meat)
by spectrometry, and as mentioned in Ferraty and Vieu [2006] the original data come from a
quality control problem in the food industry; they were recorded on a Tecator Infratec Food
and Feed Analyzer working in the wavelength range 850−1050 nm by the near-infrared (NIR)
transmission principle http://lib.stat.cmu.edu/datasets/tecator. We have a
sample of n = 15 pieces of meat. For each unit i , we observe one spectrometric discredited
curve corresponding to the absorbance measured at a grid of 100 wavelengths Figure 1.1. By
considering these data, many statistical questions arise, including the fact that the main objective
of the spectrometric analysis is to make it possible to discover the proportion of certain chemical
contents. In contrast, the treatment would take more time and be much more expensive. If we
suppose that Y is the proportion of some components, to predict Y, one would like to use the
spectrometric curves: This problem is a typical nonparametric functional regression problem.

10
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Figure 1.1: Some Units Among The Original Chemometric Data

1.2 Organization of the dissertation

Chapter 2. Mathematical background

This chapter is devoted to the preliminary results for a few specific topics, which we will need
to be self-contained and better understood in the forthcoming chapters. We also review some of
the standard facts concerning empirical processes and their convergence, with special attention
given to the conditional U-statistics (processes) estimation.

Chapter 3. Uniform consistency and uniform in the number of neighbors
consistency for functional conditional U-statistics

Let (X1,Y1), . . . , (Xn ,Yn) be i.i.d random copies of the random vector functions (X,Y) ∈ X ×
Y , where X and Y are some abstract spaces. In this chapter, we consider that (X ,dX ) is
a semi-metric space endowed with a semi-metric d(·, ·)1. Let ϕ : Y m = Y × . . . ×Y −→ R

be a measurable function belonging to some class of functions Fm , we are interested in the
estimation of the regression function

r (m)(ϕ,t) := E(
ϕ (Y1, . . . ,Ym) | X1, . . . ,Xm = t

)
, (1.2.1)

whenever it exists. One of the widely studied estimates of (1.2.1) are the conditional U-statistics
introduced by Stute [1991] and extended later by Fu [2012] to the functional setting. These esti-
mates and many other kernel-based estimators depend on a real-valued non-random bandwidth
sequence hn . However, the difficulty of these methods is the choice of a smoothing parameter

1A semi-metric (sometimes called pseudo-metric) d(·, ·). is a metric which allows d(x1, x2) = 0 for some x1 ̸=
x2.

11
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that does not lead to either over-smoothness or under-smoothness of the estimate, and also the
fact that the bandwidth hn often does not take into consideration the local features of the data.
Hence, we substitute the bandwidth hn with data-dependent bandwidths generated using the k

nearest neighbor (kNN) method. We define the following functional conditional U-statistic in
the kNN setting given for all t ∈X m by:

r̂ ∗(m)
n (ϕ,t,hn,k (t)) =

∑
(i1,...,im )∈I(m,n)

ϕ(Yi1 , . . . ,Yim )K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

) , (1.2.2)

where :

I(m,n) = Im
n := {

(i1, . . . , im) : i j ∈N∗andir ̸= i j if r ̸= j
}

,

K̃(t) =
m∏

i=1
K(ti ), t = (t1, . . . , tm) ∈X m =X × . . .×X ,

and ϕ : Y m = Y × . . .×Y −→ R is a measurable function belonging to some class of func-
tions Fm , with envelope function F, and hn,k (t) = (

Hn,k (t1), . . . ,Hn,k (tm)
)

is a vector of posi-
tive random variables that depend on (X1, . . . ,Xn) such that, for all x = (x1, . . . , xm) ∈ X m and
j = 1. . . ,m :

Hn,k (x j ) = min

{
h ∈R+ :

n∑
i=1
1B(x j ,h)(Xi ) = k

}
, (1.2.3)

where B(t ,r ) = {z ∈X : d(z, t )⩽ r } is a ball in X with the center t ∈X and radius r , and 1A is
the indicator function of the set A. For a kernel function K(·) and a subset SX ⊂ X , we define
the pointwise measurable class of functions, for 1 ≤ m ≤ n :

K m :=
{

(x1, . . . , xm) 7→
m∏

i=1
K

(
d(xi , ti )

hi

)
, (h1, . . . ,hm) ∈Rm

+ \{0} and (t1, . . . ,tm) ∈S m
X

}
.

In this chapter, we are interested in establishing the uniform consistency and the uniform in the
number of neighbors k and uniform consistency on a VC-type class of functions of the non-
parametric functional regression estimator and the functional conditional U-process (statistic)
by giving the consistency rates almost completely (a.co). The results of this chapter combine
three different aspects in a doubly infinite context, namely the functional framework and the
nonparametric framework. The investigated results in this chapter complement and extend the
previous results of Bouzebda and Nemouchi [2020]. However, it should be noted that applying
the kNN methods on conditional U-statistics has never been developed in the functional frame-
work. We are also based on the works of Burba et al. [2009] and Kara et al. [2017] to give
a good rate of consistency almost completely under very mild conditions. i.e., for the metric
entropy ψSX

of some subset SX ⊂X :√√√√ΨSx

(
logn

n

)
nφ (an)
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This chapter unifies the approaches in some other recent papers. As a by-product of our proofs,
we state consistency results for the k-NN conditional U-statistics, under the random censor-
ing, are uniform in the number of neighbors. We provide some applications, including the
set indexed conditional U-statistics, the multi-sample U processes, discrimination, and metric
learning. Finally, we briefly discuss the bandwidth selection criterion.

Chapter 4. Asymptotic properties of conditional U-statistics using delta
sequences

Let (X,Y), (X1,Y1), . . . , (Xn ,Yn) be independent and identically distributed random vectors with
common joint density function fX,Y :Rd ×Rd ′ → [0,∞[. Let ϕ :Rd ′k →R be a measurable func-
tion. We are interested in the estimation of the conditional expectation, or regression function

r (k)(ϕ, x̃) = E(
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x̃

)
, for x̃ ∈Rdk , (1.2.4)

whenever it exists, i.e, E
(∣∣ϕ(Y1, . . . ,Yk )

∣∣) <∞. To be more precise, we want to extend the re-
sults of conditional U-statistics presented in Stute [1991], using the delta sequences method.
The delta-sequence technique is a device to study the properties of estimates of several usual
methods in nonparametric function estimation simultaneously. Introduced by Watson and Lead-
better [1964], the delta-sequence method relative to the density estimation was studied among
others by Földes and Révész [1974] and Walter and Blum [1979] whereas it was extended to
the multivariate case by Susarla and Walter [1981]. To estimate the regression function r (k)(ϕ, ·)
given in (1.2.4), we propose a new general family of estimates, for each x̃ ∈Rdk , defined by

r̂ (k)
n (ϕ, x̃;mn) =



∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) ,

if
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) ̸= 0,

n!

(n −k)!k !

∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )

if
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)= 0,

(1.2.5)

where {δm} are positive delta-sequences which will be defined later in chapter 4. In this chap-
ter, we study the asymptotic properties of the new family of estimators defined in (1.2.5) and
establish the exponential inequalities and the limiting law. We provide an important application
for the censored data setting that is of its own interest. We give some applications, including
the discrimination, the metric learning, the multipartite ranking and the Ranking problems. A
short discussion of the bandwidth selection criterion is provided.
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Chapter 5. Uniform consistency for functional conditional U-statistics us-
ing delta-sequences

Let (Ω,F ,P) be a probability space, (X ,d(·, ·)) be an infinite-dimensional separable Banach
space equipped with a norm ∥·∥ with d(x, y) := ∥x−y∥ and B be the σ-algebra of Borel subsets
of X . We consider a sequence {Xi ,Yi : i ≥ 1} of independent identically distributed random
copies of the random vector (X,Y), where X is a random element defined on (Ω,F ,P) taking
values in (X ,B) and Y takes values in some abstract space Y . We are mainly interested in
studying the functional framework’s uniform consistency for the conditional U-statistic defined
by (1.2.5). This work includes, in particular cases, the works of Prakasa Rao [2010] and Ouas-
sou and Rachdi [2012]. This is a natural and nontrivial higher-order generalization that needs
more involved treatment. As an application, we consider the Kendall rank correlation coeffi-
cient’s uniform consistency, which is one of the main tools in testing conditional independence.

Chapter 6. Conclusions and perspectives

This chapter concludes this thesis by giving some remarks and future developments.
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Chapter 2

Mathematical background

2.1 Mathematical Background

In this chapter, we present some of the essential tools and concepts that will be used in the
remainder of this thesis. In particular, we make a presentation of essential notions and tools
concerning theory, this being with the most important bibliographical references; for more de-
tails, we refer to Kosorok [2008], van der Vaart and Wellner [1996] and Athreya and Lahiri
[2006].

2.1.1 Metric and Normed Spaces

We introduce some concepts and results for metric spaces. Before defining metric spaces, we
briefly review the σ-fields and the measure spaces.

Definition 2.1.1.1 Let Ω be a nonempty set, and P (Ω) ≡ {A : A ⊂Ω} be the power set of Ω, i.e.,
the class of all subsets of Ω.
A collection of sets A ⊂P (Ω) is called an algebra if

(a) Ω ∈A ;

(b) A ∈A implies Ac ∈A ;

(c) A,B ∈A implies A∪B ∈A (i.e., closure under pairwise unions).

In other words, an algebra is a class of sets containing Ω that is closed under complementation
and pairwise (and hence finite) unions. It is easy to see that one can equivalently define an
algebra by requiring that properties (a), (b) hold and that the property

(c’) A,B ∈A ⇒ A∩B ∈A

holds (i.e., closure under finite intersections).

Definition 2.1.1.2 A class A ⊂P (Ω) is called a σ-algebra if it is an algebra and if it satisfies
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(d) An ∈A for n ≥ 1 ⇒⋃
n≥1 An ∈A .

Thus, a σ-algebra class of subsets of Ω contains Ω and is closed under complementation and
countable unions. An instrumental class of σ-algebras is those generated by open sets of a
topological space. These are called Borel σ-algebras.

Definition 2.1.1.3 A topological space is a pair (S,T ) where S is a nonempty set and T is a
collection of subsets of S such that

(i) S ∈T ;

(ii) O1,O2 ∈T ⇒O1 ∩O2 ∈T ;

(iii) {Oα : α ∈ I} ⊂T ⇒⋃
α∈I Oα ∈T .

Elements of T are called open sets.

Definition 2.1.1.4 The Borel σ-algebra on a topological space S (in particular, on a metric
space or a Euclidean space) is defined as the σ-algebra generated by the collection of open sets
in S.

Definition 2.1.1.5 Let Ω be a nonempty set and A be an algebra on Ω. Then, a set function µ
on A is called a measure if

(a) µ(A) ∈ [0,∞] for all A ∈A ;

(b) µ(;) = 0;

(c) for any disjoint collection of sets A1, A2, . . . ,∈A with
⋃

n≥1 An ∈A ,

µ

( ⋃
n≥1

An

)
=

∞∑
n=1

µ (An) .

Definition 2.1.1.6 A measure µ is called finite or infinite according as µ(Ω) <∞ or µ(Ω) =∞.
A finite measure with µ(Ω) = 1 is called a probability measure. A measure µ on a σ-algebra
A is called σ-finite if there exist a countable collection of sets A1, A2, . . . ,∈ A , not necessarily
disjoint, such that

(a)
⋃

n≥1 An =Ω;

(b) µ (An) <∞ for all n ≥ 1.

The triple (Ω,A ,µ) is called a measure space. For a probability measure P on a set Ω with
σ-field A , the triple (Ω,A ,P) is called a probability space.

Definition 2.1.1.7 Let S be a nonempty set. Let d :S×S→R+ = [0,∞) be such that

(i) d(x, y) = d(y, x) for any x, y in S;
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(ii) d(x, z) ≤ d(x, y)+d(y, z) for any x, y, z in S (triangle inequality);

(iii) d(x, y) = 0 iff x = y .

Such a d is called a metric on S and the pair (S,d) a metric space. If the map d(·, ·) satisfies
only (i) and (ii) then it is called a semimetric or pseudometric.

Definition 2.1.1.8 A metric space (S,d) is separable if there exists a subset D ⊂S that is count-
able and dense in S, i.e., for each x in S and ε> 0, there is a y in D such that d(x, y) < ε.

A very important example of a metric space is a normed space, defined below.

Definition 2.1.1.9 1. A map ∥ · ∥ :V 7→ [0,∞) is a norm if the following axioms are satisfy;
for all x, y ∈V and α ∈R

(i) ∥x + y∥ ≤ ∥x∥+∥y∥ (triangle inequality);

(ii) ∥αx∥ = |α|×∥x∥ (scalar homogeneity);

(iii) ∥x∥ = 0 if and only if x = 0.

2. A normed space V is a vector space (also called a linear space) equipped with a norm.

The map ∥ · ∥ is a seminorm if it satisfies only (i ) and (i i ). Note that a normed (respectively
seminormed) space is a metric (respectively semimetric) space with d(x, y) = ∥x − y∥, for all
x, y ∈V.

Definition 2.1.1.10 A Banach space is a complete normed linear space (V,∥ · ∥) (completeness
being understood with respect to the metric induced by the norm).

Definition 2.1.1.11 Let (Ω,A ,µ) be a measure space. We define Lp (Ω,A ,µ),0 < p ≤∞, as the
set of all measurable functions f on (Ω,A ,µ) such that ∥ f ∥p <∞, where for 0 < p <∞,

∥ f ∥p =
(∫

| f |p dµ

)min
{

1
p ,1

}

and for p =∞,
∥ f ∥∞ ≡ sup{k :µ({| f | > k}) > 0}

(called the essential supremum of f ).

All Lp (Ω,A ,µ) spaces are Banach spaces, provided p ≥ 1 and in particular, all Euclidean spaces
are Banach spaces. An example is the set of bounded real functions f : S 7→ R, where S is an
arbitrary set, this space is denoted ℓ∞(S). Another example is the space C [0,1] of all real
valued continuous functions on [0,1] with the norm (called the supnorm) is defined by ∥ f ∥ =
sup{| f (x)| = 0 ≤ x ≤ 1}.
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2.1.2 Empirical processes and classes of functions

Let (Ω,A ,P) be a probability space on which we define the sequence X1, . . . ,Xn and a collection
of random variables X = {X(t ) = X(t ,ω),ω ∈Ω, t ∈ T}, T is an arbitrary index set.

Definition 2.1.2.1 The collection X = {X(t ) = X(t ,ω),ω ∈Ω, t ∈ T}, is a stochastic process. For
a fixed point ω ∈Ω, the map:

X(·,ω) : T 7→S,

is called the sample path of the stochastic process X.
An empirical process is a stochastic process based on random observations X1, . . . ,Xn .

Note that the space ℓ∞(T) is where most of the action occurs for statistical applications of em-
pirical processes, so in next we will consider S= ℓ∞(T), and for x, y ∈S : d = sup

t∈T

∣∣x(t )− y(t )
∣∣

is the uniform distance on S.
Generally, when dealing with empirical processes or U-processes, the index set T = F is a
class of measurable functions ϕ. In the first part of the thesis, we mainly deal with classes of
functions of VC-type subgraph classes.

Definition 2.1.2.2 A class of subsets C on a set C is called a VC-class if there exists a polyno-
mial P(·) such that, for every set of N points in C, the class C picks out at most P(N) distinct
subsets.

Definition 2.1.2.3 A class of functions F is called a VC sub-graph class if the graphs of the
functions in F form a VC class of sets, that is, if we define the sub-graph of a real-valued
function f on some space Z as the following subset Gϕ on Z ×R :

G f =
{
(x, t ) : 0 ≤ t ≤ϕ(x) or ϕ(x) ≤ t ≤ 0

}
,

the class C = {
Gϕ :ϕ ∈F

}
is a VC class of sets on Z ×R

Definition 2.1.2.4 The class F is pointwise measurable if there exists a countable subset G ⊂
F such that for every f ∈F there exists a sequence

{
gl

} ∈G with gl (x) → f (x) for every x.

Assume that for ϕ,ψ ∈F , we have a metric function d(ϕ,ψ).

Definition 2.1.2.5 Let ϵ > 0 be a positive real number and ϕ1, . . . ,ϕN ∈ F . The elements
ϕ1, . . . ,ϕN are said ϵ-separated if:

for any 1 ≤ i ̸= j ≤ N : d
(
ϕi ,ϕ j

)> ϵ.
We call the ϵ-packing number, N[](ϵ,F ,d) the maximal cardinality of an ϵ-separated set.

Definition 2.1.2.6 Let ϵ > 0 be a positive real number and ϕ1, . . . ,ϕN ∈ F . The elements
ϕ1, . . . ,ϕN are said ϵ-cover of F if for any ϕ ∈F :

∃≤ i ≤ N : d
(
ϕi ,ϕ

)≤ ϵ.

We call the ϵ-covering number, N(ϵ,F ,d) the minimal cardinality of an ϵ-cover of F .
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The metric entropy of the class F is log(N(ϵ,F ,d)). The next lemma presents a link between
the covering and the packing numbers of a function class F .

Lemma 2.1.2.7 For a class of functions F we have :

N[](2ϵ,F ,d) ≤ N(ϵ,F ,d) ≤ N[](ϵ,F ,d).

The following lemma concerns the covering numbers of a VC- type class of functions.

Lemma 2.1.2.8 (Arcones and Yu [1994]) If F is VC-class of functions with an envelope func-
tion F, then for any 1 ≤ p <∞, there exists a constants a and v such that :

N
(
ϵ,F ,∥ ·∥Q,r

)≤ a

((∫
Fr dQ

)r

ϵ

)v

for all ϵ> 0 and probability measure Q with

QFr =
∫

Fr dQ <∞.

Example 2.1.2.9 The set F of all indicator functions 1{(−∞,t ]} of cells in R satisfies :

N(ϵ,F ,L2(Q)) ≤ 2

ϵ2
,

for any probability measure Q and ϵ≤ 1. Notice that :

∫ 1

0

√
log

(
1

ϵ

)
dϵ≤

∫ ∞

0
u1/2 exp(−u)du ≤ 1.

For more details and discussion on this example refer to Example 2.5.4 of van der Vaart and
Wellner [1996] and [Kosorok, 2008, p. 157]. The covering numbers of the class of cells (−∞, t ]

in higher dimension satisfy a similar bound, but with higher power of (1/ϵ), see Theorem 9.19
of Kosorok [2008].

Example 2.1.2.10 (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in
van der Vaart and Wellner [1996]). Let F be the class of functions x 7→ϕ(t , x) that are Lipschitz
in the index parameter t ∈ T. Suppose that:

|ϕ(t1, x)−ϕ(t2, x)| ≤ d(t1, t2)κ(x)

for some metric d on the index set T, the function κ(·) defined on the sample space X , and all x.
According to Theorem 2.7.11 of van der Vaart and Wellner [1996] and Lemma 9.18 of Kosorok
[2008], it follows, for any norm ∥ ·∥F on F , that :

N(ϵ∥F∥F ,F ,∥ ·∥F ) ≤ N(ϵ/2,T,d).

Hence if (T,d) satisfy J(∞,T,d) = ∫ ∞
0

√
logN(ϵ,T,d)dϵ<∞, then the conclusions holds for F .
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Example 2.1.2.11 Let us consider, as an example, the classes of functions that are smooth up to
order α defined as follows, see Section 2 of van der Vaart and Wellner [1996]. For 0 < α<∞ let
⌊α⌋ be the greatest integer strictly smaller than α. For any vector k = (k1, . . . ,kd ) of d integers
define the differential operator :

Dk. := ∂k.

∂k1 · · ·∂kd
,

where :

k. :=
d∑

i=1
ki .

Then, for a function ϕ : X →R, let :

∥ϕ∥α := max
k.≤⌊α⌋

sup
x

|Dkϕ(x)|+ max
k.=⌊α⌋

sup
x,y

Dkϕ(x)−Dkϕ(y)

∥x − y∥α−⌊α⌋ ,

where the suprema are taken over all x, y in the interior of X with x ̸= y . Let Cα
M(X ) be the set

of all continuous functions ϕ : X →R with :

∥ϕ∥α ≤ M.

Note that for α ≤ 1 this class consists of bounded functions ϕ(·) that satisfy a Lipschitz con-
dition. Kolmogorov and Tihomirov [1961] computed the entropy of the classes of Cα

M(X ) for
the uniform norm. As a consequence of their results van der Vaart and Wellner [1996] shows
that there exists a constant K depending only on α,d and the diameter of X such that for every
measure γ and every ϵ> 0 :

logN[ ](ϵMγ(X ),Cα
M(X ),L2(γ)) ≤ K

(
1

ϵ

)d/α

,

N[ ] is the bracketing number; refer to Definition 2.1.6 of van der Vaart and Wellner [1996]
and we refer to Theorem 2.7.1 of van der Vaart and Wellner [1996] for a variant of the last
inequality. By Lemma 9.18 of Kosorok [2008], we have :

logN(ϵMγ(X ),Cα
M(X ),L2(γ)) ≤ K

(
1

2ϵ

)d/α

.

2.1.3 Conditional U-statistics

In this section, we present the historical background and the main results concerning the condi-
tional U-statistics.

Let (Xi ,Yi ), i ∈N∗ be a sequence of i.i.d random real vectors defined on the probability space
(Ω,A ,P), with Xi ∈Rd and Yi ∈Rd ′

, ϕ :Rd ′m →R a measurable symmetric function. In order to
estimate the regression function

r (m)(ϕ,t) := E[ϕ(Y1, . . . ,Ym)|(X1, . . . ,Xm) = t], for t ∈Rdm ,
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Stute [1991] introduced a class of estimators, called conditional U-statistics,which is defined
for every t = (t1, . . . , tm) ∈Rdm by:

r̂ (m)
n (ϕ,t;hn) =

∑
(i1,...,im )∈I(m,n)

ϕ(Yi1 , . . . ,Yim )K

(
t1 −Xi1

hn

)
· · ·K

(
tm −Xim

hn

)
∑

(i1,...,im )∈I(m,n)
K

(
t1 −Xi1

hn

)
· · ·K

(
tm −Xim

hn

) , (2.1.1)

K(·) is the so-called smoothing kernel satisfying
∫
Rd K(t )d t = 1,{hn}n≥1 is a sequence of band-

width tending to zero at appropriate rates. Here summation extends over all permutations of
length m, that is, over all pairwise distinct :

I(m,n) = {
i = (i1, . . . , im) : 1 ≤ i j ≤ n and i j ̸= ir if j ̸= r

}
.

Stute [1991] proved the asymptotic normality and weak and strong point-wise consistency of
r̂ (m)

n
(
ϕ,t;hn

)
when the observations are real (d = 1, p = 1) independent and identically dis-

tributed. He affirmed the possible extension of the results to the case when d ≥ 1 and p ≥ 1.

2.1.4 Historical background and main results for conditional U-statistics

Let’s assume that:

A.1 hn → 0,nhn →∞ as n →∞.

A.2 K(·) is bounded with compact support.

A.3 Let t = (t1, . . . , tm) be a point of continuity for each :

r j l (t) =
0 if t j ̸= tl

E j ,l (t) if t j = tl

where

E j ,l (t) = E{
ϕ

(
Y1, . . . ,Y j−1,Y,Y j+1, . . . ,Ym

)×ϕ(
Ym+1, . . . ,Ym+ j−1,Y,Ym+ j+1, . . . ,Y2m

)
| Xi = ti for i ̸= j ,Xm+k = tk for k ̸= l and X = t j = tl

} .

A.4 The density function of X1 is continuous at each t j ,1⩽ j ⩽m, with f
(
t j

)> 0.

A.5 r j lk (·, ·, ·) is bounded in a neighborhood of t, for all 1⩽ j , l ,k ⩽m, where :

r j lk (zm ,z2m ,z3m) = E{
(
Y1, . . . ,Y j−1,Y,Y j+1, . . . ,Ym

)
×ϕ(

Ym+1, . . . ,Ym+ j−1,Y,Ym+ j+1, . . . ,Y2m
)

×ϕ(
Y2m+1, . . . ,Y2m+ j−1,Y,Y2m+ j+1, . . . ,Y3m

)
| Xi = zi for 1⩽ i ⩽ 3m, i ̸= j ,m +1,2m +kX = z

}
and for 1⩽ k ⩽ 3,zkm = (

z(k−1)m+1, . . . , z j−1, z1, z j+1, . . . , zkm
)
.

27



CHAPTER 2. MATHEMATICAL BACKGROUND

A.6 r (m]
1,2 (·, ·) is bounded in a neighborhood of (t,t), where

r (m)
1,2 (t1,t2) = E{

ϕ
(
Yi1 , . . . ,Yim

)
ϕ

(
Y j1 , . . . ,Y jm

) | (Xi1 , . . . ,Xim

)= t1,
(
X j1 , . . . ,X jm

)= t2
}

.

A.1’ The sequence hn satisfies ∑
n

n−3/2h−2
n <∞.

A.2’ For some positive constants c,c1,c2,r > 0, and some decreasing function H(•) we have

K(t )⩾ c1{|x|⩽r },

and
c1H(|t |) ≤ K(t ) ≤ c2H(|t |).

A.3’ The 3rd moment satisfies : E
∣∣ϕ (Y1, . . . ,Ym)

∣∣3 <∞.

The main first results on conditional U-statistics are the following :

Theorem 2.1.4.1 Under assumptions (A.1−A.6) and if r (m)(·, ·) is continuous at t, then :

(nhn)1/2 (
r̂ (m)

n

(
ϕ,t;hn

)−E[
Gϕ,t (X1, . . . ,Xn ;Y1, . . . ,Yn)

]) w−→N
(
0,ρ2) ,

where

Gϕ,t (X1, . . . ,Xn ;Y1, . . . ,Yn) := (n −m)!

n!

∑
I(m,n)

ϕ (Y1, . . . ,Ym)
m∏

j=1
K

(Xi j − t j

hn

)
∑

I(m,n)

m∏
i=1

K

(
Xi − ti

hn

) ,

ρ2 :=
m∑

i=1

m∑
j=1
1{

ti=t j
} [

r j l (t)− (
r (m)(t)

)2
]∫

K2(u)du/ f (ti ) .

Theorem 2.1.4.2 If the assumptions (A.1), (A.1’) and (A.3’) are satisfied, then for all-most all
t

r̂ (m)
n

(
ϕ,t;hn

)→ r (m)(ϕ,t) with probability 1.

Much research has been dedicated to investigating the asymptotic properties of conditional U-
statistics. Sen [1994] established rates of uniform strong convergence of r̂ (m)

n ( ϕ, t;hn) to
r (m)(ϕ,t) under appropriate conditions while Stute [1994a] gave the almost sure convergence
of r̂ (m)

n
(
ϕ,t;hn

)
in p th -norm, p > 2 for i.i.d random variables. Stute [1994b] showed that

r̂ (m)
n

(
ϕ,t;hn

)
is universally consistent. He also proved universal consistencies of the kernel

and kn-nearest neighbor estimators as two special cases of the conditional U-statistics. Harel
and Puri [1996] extended the results of Stute [1991], under appropriate mixing conditions, to
weakly dependent data and have applied their findings to verify Bayes risk consistency of the
corresponding discrimination rules.
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The paper of Dony and Mason [2008] is another work investigating the consistency of
r̂ (m)

n
(
ϕ,t;hn

)
. More precisely, they established the uniform in bandwidth and the uniform in

t consistency r̂ (m)
n

(
ϕ,t;hn

)
. They suppose that ϕ and the kernel K(·) belong to some VC-type

classes of functions. It is worth mentioning that the consistency rates obtained by Dony and
Mason [2008] are better than those obtained by Sen [1994]. In turn, the study of functional con-
ditional U-statistics (when the explanatory variable takes its values in some functional space),
has had its share of attention; Fu [2012] adopted the conditional U-statistic based on functional
observations, i.e., He consider a sequence {(Xi ,Yi ) : i ≥ 1} of independent and identically dis-
tributed random variables, where Xi take their values in some abstract space X and Y in Rp .
Suppose that X is endowed with a semi-metric d(·, ·). The proposed estimator is :

r̂ (m)
n

(
ϕ,t;hK

)=
∑

(i1,...,im )∈I(m,n)
ϕ

(
Yi1 , . . . ,Yim

)
K

(
d

(
t1,Xi1

)
hK

)
· · ·K

(
d

(
tm ,Xim

)
hK

)
∑

(i1,...,im )∈I(m,n)
K

(
d

(
t1,Xi1

)
hK

)
· · ·K

(
d

(
tm ,Xim

)
hK

) . (2.1.2)

Under i.i.d Fu [2012] established the asymptotic finite-dimensional normality for (2.1.2).
Similar to the contribution of Dony and Mason [2008], Bouzebda and Nemouchi [2020] stud-
ied a strong form of consistency of (2.1.2), that is, uniform consistency and uniform in band-
width consistency, in addition to the consistency over some VC-type class of functions F .
Recently, Bouzebda and Nemouchi [2019] established central limit theorems for conditional U-
processes of stationary mixing conditions, and they also investigated the weak convergence of
the conditional U-processes with functional mixing data (cf. Bouzebda and Nemouchi [2022]).
Bouzebda et al. [2021] also studied the uniform in bandwidth consistency of the general condi-
tional U-statistics based on the copula representation.

Generally speaking, we may take for ϕ(·) any function found interesting in the unconditional
setup; cf. Serfling [2009]. As mentioned before, the case m = 1 leads to the Nadaraya-Watson
estimator if we set ϕ= Id , the identity function; ϕ= 1{.≤t } yields the conditional d.f. evaluated
at t , refer to Stute [1986]. We now present several examples for m = 2. We suppose that (X1,Y1)

and (X2,Y2) are independent.

Example 2.1.4.3 Let ϕ (Y1,Y2) = Y1Y2, then :

r (2) (ϕ, t1, t2
)= E (Y1Y2 | X1 = t1,X2 = t2)

= E (Y1 | X1 = t1)E (Y2 | X2 = t2)

= r̄ (2) (t1) r̄ (2) (t2)

where r̄ (2)(·) denotes the regression of Y on X = t. The above ϕ(·) is a simple example of kernel
for a conditional U-statistic where one is interested in functions of r̄ (2)(·).
Example 2.1.4.4 For :

ϕ (Y1,Y2) = 1

2
(Y1 −Y2)2 ,

we obtain:
r (2) (ϕ, t1, t2

)= Var(Y1 | X1 = t1)
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Example 2.1.4.5 For ϕ (Y1,Y2) =1 {Y1 +Y2 > 0} we obtain a conditional U-statistic which may
be viewed as a conditional version of the Wilcoxon one-sample statistic. It may be used for
testing the hypothesis that the conditional distribution at X1 is symmetric at zero. Obviously :

r (2) (ϕ, t1
)=P (Y1 +Y2 > 0 | X1 = t1 = X2)

Example 2.1.4.6 For ϕ (Y1,Y2) =1 {Y1 ≤ Y2} :

r (2) (ϕ, t1, t2
)=P (Y1 ≤ Y2 | X1 = t1,X2 = t2) , for t1 ̸= t2

equals the probability that the output pertaining to t1 is less than or equal to the one pertaining
to t2.

Example 2.1.4.7 Assume
{

Yi =
(
Yi ,1,Yi ,2

)⊤}
i=1,2

and define ϕ by :

ϕ
(
y1, y2

)
:= 1

2

(
y1,1 y1,2 + y2,1 y2,2 − y1,1 y2,2 − y1,2 y2,1

)
,

and
r (2) (ϕ, t1, t2

)=1

2

{
E
(
Y1,1Y1,2 | X1 = t1

)+E(
Y2,1Y2,2 | X2 = t2

)
−E(

Y1,1Y2,2 | X1 = t1,X2 = t2
)−E(

Y1,2Y2,1 | X1 = t1,X2 = t2
)}

In particular:

r (2) (ϕ, t1
)= E(

Y1,1Y1,2 | X1 = t1
)−E(

Y1,1 | X1 = t1
)
E
(
Y1,2 | X1 = t1

)
is the conditional covariance of Y1 given X1 = t1.

Example 2.1.4.8 For m = 3, let :

ϕ (Y1,Y2,Y3) =1 {Y1 −Y2 −Y3 > 0}

We have
r (3) (ϕ, t1 = t2 = t3 = t

)=P (Y1 > Y2 +Y3 | X1 = X2 = X3 = t ) .

Moreover, the corresponding CU−S can be considered a conditional analog of the Hollander-
Proschan test-statistic (Hollander and Proschan [1972]). It may be used to test the hypothesis
that the conditional distribution of Y1 given X1 = t , is exponential against the alternative that it
is of the New-Better than-Used-type.

Example 2.1.4.9 Let :
ψ (Y1,Y2,Y3) =1 {Y2 ≤ Y1}−1 {Y3 ≤ Y1}

and for m = 5 define :

ϕ (Y1, . . . ,Y5) =1

4
ψ (Y1,Y2,Y3)ψ (Y1,Y4,Y5)

×ψ (Y1,Y2,Y3)ψ (Y1,Y4,Y5)

We have :

r (5) (ϕ, t1 = t2 = t3 = t4 = t5 = t
)= E(

ϕ (Y1, . . . ,Y5) | X1 = X2 = X3 = X4 = X5 = t
)

The corresponding U-statistics may be used to test the conditional independence.
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Example 2.1.4.10 Let �Y1Y2 denote the oriented angle between Y1,Y2 ∈ T, T is the circle of
radius 1 and center 0 in R2. Let :

ϕt (Y1,Y2) =1{�Y1Y2 ≤ t
}− t/π, for t ∈ [0,π).

Silverman [1978] has used this kernel to propose a U-process to test uniformity on the circle.
Let

r (2) (ϕt , t1 = t2 = t
)= E(

ϕt (Y1,Y2) | X1 = X2 = t
)

.

In this setting, one can propose a conditional U-process to test conditional uniformity on the
circle.

Example 2.1.4.11 Let us suppose {Z1 = (X1,Y1) ,Z2 = (X2,Y2)} two random variables, if we want
to test the symmetrization about zero of the conditional distribution at X1 = X2 = t1, we often
use so-called Wilcoxon one sample statistic. In this case, the U-statistic :

r̂ (2)
2

(
ϕ, t1, t2

)= 1

2

1{Y1+Y2>0}K
(

X1−t1
h

)
K

(
X2−t1

h

)
K

(
X1−t1

h

)
K

(
X2−t1

h

) ,

can be viewed as a conditional version of the Wilcoxon one-sample statistic, with the kernel:

1{Y1+Y2>0}K

(
X1 − t1

h

)
K

(
X2 − t1

h

)
,

for
ϕ

(
y1, y2

)=1{y1+y2>0}.

2.1.5 Useful tools : Hoeffding’s decomposition

Hoeffding’s decomposition can be considered the primary tool for understanding the asymptotic
behavior of U-statistics. This section is based on Serfling’s book. Let’s suppose that the sym-
metric kernel function ϕ(·) satisfies E

(
ϕ (Z1, . . . ,Zm)

)< 0, and define some associated functions
:

ϕk (z1, . . . , zk ) = E(
ϕ (z1, . . . , zk ,Zk+1, . . . ,Zm) ,

for 1⩽ k ⩽m−1 withϕm =ϕ. It is clear thatϕk (·) is the conditional expectation ofϕ (Z1, . . . ,Zm)

given Z1, . . . ,Zk , i.e.,

ϕk (z1, . . . , zk ) = E(
ϕ (Z1, . . . ,Zm) | Z1 = z1, . . . ,Zk = zk

)
.

Moreover, for 1 ≤ c ≤ m −1 :

ϕk (z1, . . . , zk ) = E(
ϕk+1 (z1, . . . , zk ,Zk+1)

)
,

the functions ϕk (·) being introduced, we will need in the following to center them and define
new functions based on the centered ϕk (·). Recall that we have :

θ= E[
ϕ (Z1, . . . ,Zm)

]
,
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then, the centered ϕk (·) functions :{
ϕ(c) =ϕ−θ,

ϕ(c)
k =ϕk −θ for 1 ≤ k ≤ m.

Set now :

ϕ̃1 (z1) := ϕ(c)
1 (z1) ,

ϕ̃2 (z1, z2) := ϕ(c)
2 (z1, z2)− ϕ̃1 (z1)− ϕ̃1 (z2) ,

ϕ̃3 (z1, z2, z3) := ϕ(c)
3 (z1, z2, z3)−

3∑
i=1

ϕ̃1 (zi )−
∑

1⩽i1 ̸=i2⩽3
ϕ̃2

(
zi1 , zi2

)
,

...
...

ϕ̃m (z1, . . . , zm) := ϕ(c)
m (z1, . . . , zm)−

m∑
i=1

ϕ̃1 (zi )−
∑

1⩽i1 ̸=i2⩽m
ϕ̃2

(
zi1 , zi2

)−·· ·−

−·· ·− ∑
I(m,n)

ϕ̃m−1
(
zi1 , . . . , zim−1

)
.

The ϕ̃k ’s functions are symmetric in their arguments, and we can easily check that :

E
(
ϕ̃1 (z1)

)= 0,

E
(
ϕ̃2 (z1, z2)

)= 0,

E
(
ϕ̃3 (z1, z2, z3)

)= 0,

...

E
(
ϕ̃m (z1, . . . , zm)

)= 0.

Define the sums of centered ϕk ’s and ϕ̃k ’s by :

Sn(ϕ) := ∑
I(m,n)

ϕ(c) (Zi1 , . . . ,Zim

)
,

Snk (ϕ) := ∑
I(k,n)

ϕ̃k
(
Zi1 , . . . ,Zik

)
, for 1 ≤ k ≤ m.

Then we can write :
u(m)

n (ϕ)−θ= (n −m)!

n!
Sn(ϕ).

We are now equipped to state Hoeffding’s theorem.

Theorem 2.1.5.1 (Hoeffding [1948]) Let the symmetric kernel functionϕ(·) satisfies E
(
ϕ (Z1, . . . ,Zm)

)<
∞, then

u(m)
n (ϕ)−θ=

m∑
k=1

(
m

k

)(
n

k

)−1

Snk (ϕ).

Moreover, for 1⩽ k ⩽m :

E (Snk | Z1, . . . ,Zc ) = Skc k ≤ c ≤ n.

Thus, the sequence {Snk ,σ (Z1, . . . ,Zn)}n≥k is a forward martingale.
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Chapter 3

Uniform consistency and uniform in
number of neighbors consistency for
functional conditional U-statistics

Ce chapitre développe le contenu d’un article publié [Japanese Journal of Statistics and Data
Science (2022). https://doi.org/10.1007/s42081-022-00161-3], mis en forme pour être inséré
dans le présent manuscrit de thèse.
Title : Uniform consistency and uniform in number of neighbors consistency for nonparametric
regression estimates and conditional U-statistics involving functional data.

abstract

U-statistics represent a fundamental class of statistics arising from modeling quantities of inter-
est defined by multi-subject responses. U-statistics generalize the empirical mean of a random
variable X to sums over every m-tuple of distinct observations of X. W. Stute [Ann. Probab. 19
(1991) 812–825] introduced a class of so-called conditional U-statistics, which may be viewed
as a generalization of the Nadaraya-Watson estimates of a regression function. Stute proved
their strong pointwise consistency to:

r (m)(ϕ,t) := E[ϕ(Y1, . . . ,Ym)|(X1, . . . ,Xm) = t], for t ∈Rdm .

In the present paper, we introduce the k nearest neighborhoods estimator of the conditional
U-statistics depending on an infinite-dimensional covariate. A sharp uniform in the number of
neighborhoods (UINN) limit law for the proposed estimator is presented. Such results allow
the NN to vary within a complete range for which the estimator is consistent. Consequently,
it represents an interesting guideline in practice to select the optimal NN in nonparametric
functional data analysis. In addition, uniform consistency is also established over ϕ ∈ F for
a suitably restricted class F , in both cases bounded and unbounded, satisfying some moment
conditions and some mild conditions on the model. This paper unifies the approaches in some
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other recent papers. As a by-product of our proofs, we state consistency results for the k-
NN conditional U-statistics under the random censoring, which are uniform in the number of
neighbors. The theoretical uniform consistency results established in this paper are (or will be)
key tools for many further developments in functional data analysis.

Keywords : Uniform almost complete convergence ; Conditional U-statistics ; Functional data
analysis ; Functional regression; Kolmogorov’s entropy ; Small ball probability ; Uniform con-
sistency ; Uniform in number of neighbors consistency ; k-NN estimator ; Data-driven estima-
tor.
Mathematics Subject Classification: 62G05; 62G08; 62G20; 62G35; 62G07; 62G32; 62G30;
Secondary: 62E20.

3.1 Introduction

U-statistics, first considered by Halmos [1946] in connection with unbiased statistics and for-
mally introduced by Hoeffding [1948]. The theory of U-statistics and U-processes has received
considerable attention in the last decades due to its great number of applications and useful-
ness for solving complex statistical problems. Examples are density estimation, nonparametric
regression tests, and goodness-of-fit tests. More precisely, U-processes appear in statistics in
many instances, e.g., as the components of higher-order terms in von Mises expansions. In
particular, U-statistics play a role in the analysis of estimators (including function estimators)
with varying degrees of smoothness. For example, Stute [1993] applies the a.s. uniform bounds
for P-canonical U-processes to analyze the product limit estimator for truncated data. Arcones
and Wang [2006] present two new tests for normality based on U-processes. Making use of the
results of Giné and Mason [2007a,b], Schick et al. [2011] introduced new tests for normality
which are based on the weighted L1-distances between the standard normal density and local
U-statistics based on standardized observations. Joly and Lugosi [2016] discussed the estima-
tion of the mean of the multivariate functions in the case of possibly heavy-tailed distributions
and introduced the median-of-means, which is based on U-statistics. U-processes are impor-
tant tools for a broad range of statistical applications such as testing for qualitative features
of functions in nonparametric statistics [Lee et al. [2009], Ghosal et al. [2000], Abrevaya and
Jiang [2005]], cross-validation for density estimation Nolan and Pollard [1987], and establish-
ing limiting distributions of M-estimators [see, e.g., Arcones and Giné [1993], Sherman [1993],
Sherman [1994], de la Peña and Giné [1999]]. Infinite-order U-statistics are useful tools for
constructing simultaneous prediction intervals that quantify the uncertainty of ensemble meth-
ods such as sub-bagging and random forests. Peng et al. [2019] develop in great detail the notion
of generalized U-statistics random forest predictions. The Mean NN approach estimation for
differential entropy introduced by Faivishevsky and Goldberger [2008] is a particular of the U-
statistic. Using U-statistics, Liu et al. [2016] proposed a new test statistic for goodness-of-fit
tests. Clémençcon [2011] defined a measure by U-statistics to quantify the clustering quality of
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a partition. Halmos [1946], v. Mises [1947], and Hoeffding [1948] provided (amongst others)
the first asymptotic results for the case that the underlying random variables are independent
and identically distributed. In this paper, we consider the so-called conditional U-statistics in-
troduced by Stute [1991] when the covariates are functional. These statistics may be viewed
as generalizations of the Nadaraya-Watson (Nadaraja [1964], and Watson [1964]) estimates
of a regression function. To better understand the problem, we first introduce Stute’s estima-
tors. Let us consider independent and identically distributed sequence of random elements
{(Xi ,Yi ), i ∈N∗} with Xi ∈ Rd and Yi ∈ Y some polish space and N∗ =N\{0}. Let ϕ : Y m → R

be a measurable function. In this paper, we are primarily concerned with the estimation of the
conditional expectation or regression function :

r (m)(ϕ,t) = E
(
ϕ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = t

)
, for t ∈Rdm , (3.1.1)

whenever it exists, i.e.,
E
(∣∣ϕ(Y1, . . . ,Ym)

∣∣)<∞.

We now introduce a kernel function K : Rd → R with support contained in [−B,B]d , B > 0,

satisfying :

sup
x∈Rd

|K(x)| =: κ<∞ and
∫

K(x)dx = 1. (3.1.2)

Stute [1991] introduced a class of estimators for r (m)(ϕ,t), called conditional U-statistics, which
is defined for each t ∈Rdm to be :

r̂ (m)
n (ϕ,t;hn) =

∑
(i1,...,im )∈I(m,n)

ϕ(Yi1 , . . . ,Yim )K

(
t1 −Xi1

hn

)
· · ·K

(
tm −Xim

hn

)
∑

(i1,...,im )∈I(m,n)
K

(
t1 −Xi1

hn

)
· · ·K

(
tm −Xim

hn

) , (3.1.3)

where {hn}n≥1 is a sequence of positive constants converging to zero at the rate nhdm
n →∞. In

the particular case m = 1, the r (m)(ϕ,t) is reduced to

r (1)(ϕ,t) = E(ϕ(Y)|X = t)

and Stute’s estimator becomes the Nadaraya-Watson estimator of r (1)(ϕ,t) given by :

r̂ (1)
n (ϕ,t,hn) =

n∑
i=1

ϕ(Yi )K

(
Xi − t

hn

)/ n∑
i=1

K

(
Xi − t

hn

)
.

The work of Sen [1994] was devoted to estimate the rate of the uniform convergence in t of
r̂ (m)

n (ϕ,t;hn) to r (m)(ϕ,t). In the paper of Prakasa Rao and Sen [1995], the limit distributions of
r̂ (m)

n (ϕ,t;hn) are discussed and compared with those obtained by Stute. Harel and Puri [1996]
extend the results of Stute [1991], under appropriate mixing conditions, to weakly dependent
data and have applied their findings to verify the Bayes risk consistency of the correspond-
ing discrimination rules. Stute [1996] proposed symmetrized nearest neighbor conditional U-
statistics as alternatives to the usual kernel-type estimators. An important contribution is given
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in the paper Dony and Mason [2008] where a much stronger form of consistency holds, namely,
uniform in t and in bandwidth consistency (i.e., hn , hn ∈ [an ,bn] where 0 < an < bn → 0 at some
specific rate) of r̂ (m)

n (ϕ,t;hn). In addition, uniform consistency is also established over ϕ ∈F

for a suitably restricted class F , refer to Bouzebda et al. [2021]. The main tool in their result is
the use of the local conditional U-process investigated in Giné and Mason [2007a]. Our main
goal is to extend the work Dony and Mason [2008] to the functional setting; this generalization
is far from being trivial, in the same spirit of Bouzebda and Nemouchi [2020].
Statistical problems concerned with the analysis of infinite-dimensional variables, such as curves,
sets, and images, have known phenomenal growth and interest in literature for some years. The
development of this research theme is indeed motivated by modern technological progress in
measuring devices and the abundance of data measured on increasingly fine grids: this is the
case, for example, in meteorology, medicine, satellite imagery, and many other areas of re-
search. Thus, the statistical modeling of these data, comparable to random functions, has re-
cently undergone intense development from theoretical aspects (related to the study of random
variables with values in an infinite dimensional space) and applied point of view (implementa-
tion of estimators). Notice that the statistical analysis of functional data can date back to Rao
[1958] where a set of growth curves was analyzed by functional principal component analy-
sis in a rudimentary form for the first time, and subsequently rigorously investigated by Kleffe
[1973] and Dauxois et al. [1982]. Numerous recent work, from both theoretical and practi-
cal point of view, confirm the pertinence of investigating this area, for instance, refer to the
monographs of Bosq [2000], Ramsay and Silverman [2005], Ferraty and Vieu [2006]), Horváth
and Kokoszka [2012], Shi and Choi [2011], Bosq and Blanke [2007], Geenens [2011], Cuevas
[2014], Shang [2014], Horváth and Rice [2015], Müller [2016], Nagy [2017], Vieu [2018],
Aneiros et al. [2019], and Ling and Vieu [2018], where we have collect these references. A
recent review of functional data analysis is provided by Goia and Vieu [2016]. Survey on re-
cent advances in nonparametric FDA and also highlight the need for adaptative bandwidth in
FDA. The general mathematical background for analyzing functional variables is developed
in Hsing and Eubank [2015]. In this article we focus on the almost complete1 (a.co) uniform
rates of consistency of the nonparametric functional regression model and functional condi-
tional U-processes (statistics). More precisely, in this paper, we are interested in establishing
the a.co uniform consistency and the a.co uniform in the number of neighborhoods (UINN)
consistency of the nonparametric functional regression estimator and also the functional con-

1Let (zn)n∈N be a sequence of real random variables. We say that (zn) converges almost completely (a.co.)
towards zero if for all ϵ> 0,

∞∑
n=1

P (|zn | > ϵ) <∞.

The rate of convergence is of order un (with un → 0 ) and we write zn = Oa.co. (un) if there exists ϵ> 0 such that

∞∑
n=1

P (|zn | > ϵun) <∞.

This kind of convergence implies both almost-sure convergence and convergence in probability.
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ditional U-processes (statistic). This is motivated by a series of papers, among many others,
Einmahl and Mason [2000], Deheuvels and Mason [2004], Einmahl and Mason [2005], Dony
and Einmahl [2009], Bouzebda and Elhattab [2011], Bouzebda [2012], Bouzebda et al. [2018],
Bouzebda and El-hadjali [2020], Bouzebda and Nemouchi [2020], Bouzebda et al. [2021] the
authors established uniform in bandwidth (UIB) consistency results for such estimators in the
finite dimensional setting, where hn varies within suitably chosen intervals indexed by n. In
the FDA, several authors have been interested in studying nonparametric functional estima-
tors; for example, Ferraty et al. [2010a] provided the consistency rates of some functionals
of the conditional distribution, including the regression function, the conditional cumulative
distribution, the conditional density, and some other ones, uniformly over a certain subset of
the explicative variable. Kara-Zaitri et al. [2017] established the uniform consistency rate for
some conditional models, including the regression function, the conditional distribution, the
conditional density, and the conditional hazard function. The last mentioned paper is extended
by Bouzebda and Nemouchi [2020]. Kara et al. [2017] and Almanjahie et al. [2022] estab-
lished the almost complete convergence of the k-nearest neighbors (k-NN) estimators, which
are uniform in the number of neighbors, under some classical assumptions on the kernel and on
the small ball probabilities of the functional variable in connection with the entropy condition
controlling the space complexity. Attouch et al. [2019] considered the problem of local linear
estimation of the regression function when the covariate is functional and proved the strong
uniform-in-bandwidth (UIB) convergence. Ling et al. [2019] investigated the k-NN estima-
tion of the nonparametric regression model for strong mixing functional time series data and
established the uniform a.co convergence rate of the k-NN estimator under some mild condi-
tions. Novo et al. [2019] stated some new uniform asymptotic results for kernel estimates in the
functional single-index model. Fu [2012] investigated the functional conditional U-statistic and
established its finite-dimensional limiting law. Most of this literature focuses on UIB or UINN
consistency or uniform consistency on some functional subset but never the both together. We
aim to fill this gap in the literature by combining results from the FDA and the empirical pro-
cesses theory. However, as will be seen later, the problem requires much more than ‘simply’
combining ideas from these two domains. In fact, delicate manipulation of several topological
notions and establishing relations between them is needed. To our best knowledge, these prob-
lems form a basically unsolved open problem in the literature, giving the primary motivation
for our paper. The present paper extends and complements our previous paper Bouzebda and
Nemouchi [2020] in several, and the proofs for UINN are more involved; we will give more
details in the forthcoming sections. Moreover, we have established new results and tools in the
proof that are of independent interest.

The layout of present article is structured as follows. Section 3.2 is devoted to introducing
the functional framework and the definitions we need in our work; we give the assumptions used
in our asymptotic analysis with a short discussion. Section 3.3 provides the UINN consistency
in the functional regression framework. Section 3.4 gives the paper’s main results concerning
the UINN consistency with rates for the conditional U-statistics. In Section 3.5, we provide
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an important application for the censored data setting that is of its own interest. In Section
3.6, we provide some applications including, the set indexed conditional U-statistics in §3.6.1,
the multi-sample U processes in §3.6.2, the discrimination in §3.6.3, the metric learning in
§3.6.4. In Section 3.7, we collect some examples of classes of functions and examples of
conditional U-statistics. In Section 3.8, we briefly discussed the bandwidth selection criterion.
Some concluding remarks and possible future developments are relegated to 6.1. To prevent
interrupting the flow of the presentation, all proofs are gathered in Section 3.9. Finally, a few
relevant technical results are given in the Appendix.

3.2 The functional framework

3.2.1 Generality on the model

We consider a sequence {Xi ,Yi : i ≥ 1} of independent and identically distributed random copies
of the random vector functions (X,Y), where X takes its values in some abstract space X and
Y in the abstract space Y . Suppose that X is endowed with a semi-metric d(·, ·)2 defining
a topology to measure the proximity between two elements of X and which is disconnected
from the definition of X in order to avoid measurability problems. We are mainly interested
in studying the uniform in the number of neighbors consistency of the following functional
conditional U-statistic in the k-NN setting given for all t ∈X m by:

r̂ ∗(m)
n (ϕ,t,hn,k (t)) =

∑
(i1,...,im )∈I(m,n)

ϕ(Yi1 , . . . ,Yim )K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

) , (3.2.1)

to the regression function r (m)(ϕ,t) := E(
ϕ (Y1, . . . ,Ym) | X1, . . . ,Xm = t

)
, where :

K̃(t) =
m∏

i=1
K(ti ), t = (t1, . . . , tm) ∈X m =X × . . .×X ,

and ϕ : Y m = Y × . . .×Y −→ R is a measurable function belonging to some class of functions
Fm , and hn,k (t) = (

Hn,k (t1), . . . ,Hn,k (tm)
)

is a vector of positive random variables that depend
on (X1, . . . ,Xn) such that, for all x = (x1, . . . , xm) ∈X m and j = 1. . . ,m :

Hn,k (x j ) = min

{
h ∈R+ :

n∑
i=1
1B(x j ,h)(Xi ) = k

}
, (3.2.2)

where B(t ,r ) = {z ∈X : d(z, t )⩽ r } is a ball in X with the center t ∈X and radius r , and 1A is
the indicator function of the set A. Notice that the estimator (3.2.1) is the first time introduced
and investigated in the present paper. In fact this k-NN estimate can be considered as an ex-
tension to random and locally adaptive neighborhood of the functional conditional U-statistics

2A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some x1 ̸= x2.
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estimate of r (m)(ϕ,t) defined for all t ∈X m as :

r̂ (m)
n (ϕ,t,hK(t)) =

∑
(i1,...,im )∈I(m,n)

ϕ(Yi1 , . . . ,Yim )K

(
d(t1,Xi1 )

hK(t1)

)
· · ·K

(
d(tm ,Xim )

hK(tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

hK(t1)

)
· · ·K

(
d(tm ,Xim )

hK(tm)

) , (3.2.3)

where hK(t) = (hK,n(t1), . . . ,hK,n(tm)) =: (hK(t1), . . . ,hK(tm)) are positive real numbers decreas-
ing to zero as n goes to infinity. The k-NN method is a fundamental statistical method present-
ing several advantages. In general, the method is computationally fast without the requirement
of too much parameter tuning. One of the main features is that the k-NN methods are purely
nonparametric, meaning they can automatically adapt to any continuous underlying distribu-
tions without relying on specific models. Finally, for important statistical problems, including,
among many others, density estimation, classification, and regression, k-NN methods are all
proven to be consistent as long as a proper k is selected. Historically, the k-NN was first
introduced by Fix and Hodges [1951]–see also Fix and Hodges [1989]–in the context of non-
parametric discrimination, and further investigated by Loftsgaarden and Quesenberry [1965],
for more details, we refer to Biau and Devroye [2015]. Bouzebda and Nemouchi [2020] stud-
ied the uniform in t and the uniform in bandwidth consistency of the estimator (3.2.3) where
hK(t) ∈ [an ,bn] where an −→ 0 and bn −→ 0. Our main interest is to study the uniform con-
sistency when the bandwidth hK(t) is adaptive to the data X1, . . . ,Xn and thus depending on k

and t. The randomness of the bandwidths Hn,k (t ) is its major advantage and disadvantage since
it creates some technical difficulties in proofs, see Remark 3.4.2.7. To solve these difficulties,
we will generalize, in several directions, the lemma of Burba et al. [2009], which was studied
in many articles in the case of nonparametric functional regression. More precisely, we will
extend it in a non-trivial way to the functional conditional U-statistics setting by the uniformity
in ϕ, t, and k simultaneously. This situation is not investigated before.

The main purpose is to prove the uniform consistency, the uniform in number of neigh-
bors consistency and in the class of functions, for certain classes of functions of the estimator
r̂ ∗(m)

n (ϕ,t,hn,k (t)) to r (m)(ϕ,t). It should be noted that since our objective is to generalize the
results obtained for the estimator defined in (3.2.3), and given the fact that one of the main
differences is that the smoothing parameter, hn,k (t) is a vector of random variables instead of a
univariate parameter hK our first course of action would be to extend the results of Bouzebda
and Nemouchi [2020] the UIB results to the multivariate setting. First, we need to introduce
some notation. Let Fm = {ϕ : Y m −→ R} denote a pointwise measurable class of real valued
symmetric functions on Y m with a measurable envelope function :

F(y) ≥ sup
ϕ∈Fm

|ϕ(y)|, for y ∈Y m . (3.2.4)

For a kernel function K(·) and a subset SX ⊂ X , we define the pointwise measurable class of
functions, for 1 ≤ m ≤ n :

K m :=
{

(x1, . . . , xm) 7→
m∏

i=1
K

(
d(xi , ti )

hi

)
, (h1, . . . ,hm) ∈Rm

+ \{0} and (t1, . . . ,tm) ∈S m
X

}
.

41



CHAPTER 3. K-NN FUNCTIONAL CONDITIONAL U-STATISTICS

For a certain interval H (m)
n ⊂Rm+ \{0}, we denote

H (m)
n :=

m∏
j=1

(an, j ,bn, j ),

where
0 < an, j < bn, j and lim

n→∞an, j = lim
n→∞bn, j = 0 ,∀ j = 1, . . . ,m.

In the sequel, we denote (unless stated otherwise) :

ãn = min
1≤ j≤m

an, j and b̃n = max
1≤ j≤m

bn, j .

We also note for all b = (b1, . . . ,bm) ∈ (0,1)m :

H (m)
0 :=

m∏
j=1

(
an, j ,b j

)
,

and
b̃0 := max

1≤ j≤m
b j .

For notational convenience, in the case of m = 1, we will be noting H (1)
n and H (1)

0 simply
Hn and H0. The same goes for other similar notations unless stated otherwise. We need to
introduce some concepts that are related to the topological structure of functional spaces. First,
we define the small-ball probability for a fixed t ∈X and for all r > 0 by:

P(X ∈ B(t ,r )) =:φt (r ), (3.2.5)

this notion is widely used in nonparametric functional data analysis to avoid introducing density
assumptions on the functional variable X and address the issues associated with the infinite-
dimensional nature of the functional spaces. At this point, we can refer to Gasser et al. [1998],
Masry [2005] and Ferraty and Vieu [2006]. Furthermore, taking into account the uniformity
aspect of our study, we consider for a fixed subset SX of X the following assumptions.

(A.1) The small ball probability φt is such that

(A.1.a) There exist constants 0 < C1 ≤ C2 <∞, an invertible function φ : R+ −→ (0,∞)

such that, for all t = (t1, . . . , tm) ∈S m
X

and h(t) = (h1(t1), . . . ,hm(tm)), we have

0 < C1φ̃(h(t)) ≤φt(h(t)) =φt1 (h1(t1))× . . .×φtm (hm(tm)) ≤ C2φ̃(h(t)) <∞,

where φ̃(h(t)) :=
m∏

j=1
φ(h j (t j )), φ(0) = 0 and φ(u) is absolutely continuous in a

neighborhood of the origin. Moreover, the function φ(·) satisfies, for a sequence of
positive real numbers hK belonging to (ãn , b̃n), we have: nφ(hK) →∞ as n →∞
and

∃A > 0,∃r0 > 0 such that ∀r < r0 :φ′(r ) < A.
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(A.1.b) For hK ∈ (ãn , b̃n), there exist constants 0 < C3 ≤ C4 <∞ such that, with n large
enough,

C3 ≤ φ(hK/2)

φ(hK)
≤ C4.

Notice that the function φ̃(·) allows us to control the concentration of the probability mea-
sure of the functional variable X on small balls of different radius and different centers. This
allows us to get more information on the local structure of the data. Therefore, the study of
the uniform consistency is done using the function φ̃(·) (or simply φ(·), in the case of m = 1)
instead of the concentration function φt (·) that only controls the measure of probability on a
small ball.

We also need to deal with the VC-subgraph classes (“VC” for Vapnik and Červonenkis).

Definition 3.2.1.1 A class of subsets C on a set C is called a VC-class if there exists a polyno-
mial P(·) such that, for every set of N points in C, the class C picks out at most P(N) distinct
subsets.

Definition 3.2.1.2 A class of functions F is called a VC-subgraph class if the graphs of the
functions in F form a V-C class of sets, that is, if we define the subgraph of a real-valued
function f on S as the following subset G f on S ×R :

G f = {(s, t ) : 0 ≤ t ≤ f (s) or f (s) ≤ t ≤ 0}

the class {G f : f ∈ F } is a VC-class of sets on S ×R. Informally, a VC class of functions
is characterized by having a polynomial covering number (the minimal number of required
functions to make a covering on the entire class of functions).

3.2.2 Conditions and comments

To prove the uniform consistency and the UINN consistency of the functional regression and
conditional U-statistic in the k-NN setting, some conditions and results of the UIB ideas devel-
oped in Bouzebda and Nemouchi [2020] are needed. Therefore we will be stating them in the
following subsection, together with the additional conditions needed for UINN consistency.

(A.2.) For n large enough and for some β> 1, the Kolomogorov’s entropy satisfies :

(logn)2

nφ(hK)
≤ mψSX

(
logn

n

)
≤ n

logn
φ(hK), (3.2.6)

∞∑
n=1

exp

{
m(1−β)ψSX

(
logn

n

)}
<∞, (3.2.7)

where ψSX
(ε) := logNε(SX ), and Nε(SX ) is the minimal number of open balls of radius

ε in X , needed to cover SX .
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(A.3.) Suppose that the regression function satisfies for the elements ϕ(·) of the class F , and
for 1 ≤ m ≤ n :

∃γ> 0, ∀t1,t2 ∈ Vt :
∣∣r (m)(ϕ,t1)− r (m)(ϕ,t2)

∣∣≤ C5dγ

X m (t1,t2) ,

where for 1 ≤ i ≤ 2 : ti := (ti1 , . . . , tim ), Vt denotes a fixed neighborhood of t in S m
X

and for
x = (x1, . . . , xm),y = (y1, . . . , ym) ∈X m :

dX m
(
x,y

)
:= 1

m
d

(
x1, y1

)+·· ·+ 1

m
d

(
xm , ym

)
.

(A.4.) The classes of functions Fm and K m are such that :

(A.4.a) The class of functions Fm is bounded and its envelope function satisfy for some
0 < M <∞ :

F(y) ≤ M, y ∈Y m

(A.4.b) The kernel functions K(·) is Lipschitz, supported within (0,1/2) and there exists
some constants 0 < κ1 ≤ κ2 <∞, such that :∫

K(x)d x = 1,

and :
0 < κ11(0,1/2)(·) ≤ K(·) ≤ κ21(0,1/2)(·).

(A.5.) The classes of functions Fm and K m are such that :

sup
Q

∫ 1

0

√
1+ logN

(
ϵ,Fm ,∥ ·∥L2(Q)

)
dϵ<∞, (3.2.8)

sup
Q

∫ 1

0

√
1+ logN

(
ϵ,K m ,∥ ·∥L2(Q)

)
dϵ<∞, (3.2.9)

where the supremum is taken over all probability measures Q on the probability space
(Ω,A ) , with Q

(
F2

)<∞, and for each class N
(
ϵ, ·,∥ ·∥L2(Q)

)
is the covering number respect

to L2(Q)-norm.

(A.5’.) The class of functions FmK m is supposed to be of VC-type with envelope function
previously defined. Hence, there are two finite constants b and α such that :

N(ϵ,FmK m ,∥ ·∥L2(Q)) ≤
(

b∥Fκm∥L2(Q)

ϵ

)α
(3.2.10)

for any ϵ> 0 and each probability measure such that Q(F)2 <∞.

(A.6) The sequences {ãn} and {b̃n} (resp. {an} and {bn}) verify

b̃n −→ 0 and
(logn/n)

min{ã2
n ,φ2(ãn)}

−→ 0 as n −→∞. (3.2.11)
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(A.7.) There exist sequences
{
ρn,1, . . . ,ρn,m

}⊂ (0,1)m ,
{
k1,n

}⊂Z+ and
{
k2,n

}⊂Z+ (k1,n ≤ k ≤
k2,n) and constants µ= (µ1, . . . ,µm) and ν= (ν1, . . . ,νm), such that

0 <µ j ≤ ν j <∞, for all j = 1, . . . ,m (and we note µ≤ν),

and

µ jφ
−1

(
ρn, j k1,n

n

)
≤φ−1

t j

(
ρn, j k1,n

n

)
and φ−1

t j

(
k2,n

ρn, j n

)
≤ ν jφ

−1
(

k2,n

ρn, j n

)
, (3.2.12)

φ−1
(

k2,n

ρn, j n

)
−→ 0, (3.2.13)

min

{
1−ρn, j

4

k1,n

lnn
,

(1−ρn, j )2

4ρn, j

k1,n

lnn

}
> 2, (3.2.14)

(logn/n)

min

{
µ jφ

−1
(
ρn, j k1,n

n

)
,φ

(
µ jφ

−1
(
ρn, j k1,n

n

))} −→ 0. (3.2.15)

3.2.3 Comments on the conditions

Functional nonparametric models pose significant theoretical issues that can not be easily solved
using traditional statistical approaches, particularly in a double infinite-dimensional context. To
deal with this challenge, some conditions utilizing the different characteristics of the infinite-
dimensional space are imposed. The condition (A.1.a) on small-ball probabilities is standard; it
can be considered as an extension to the multivariate context, where we assume that the density
function of the variable X is strictly positive. However, a more general condition can be used:

(A.1’.a) For all t = (t1, . . . , tm) ∈S m
X

, and h = (h1, . . . ,hm) ∈Rm+ we have :

0 < C1

m∏
i=1

φ(hi )g (ti ) ≤φt(h(t)) =φt1 (h1(t1))×·· ·×φtm (hm(tm)) ≤ C2

m∏
i=1

φ(hi )g (ti ) <∞,

where g (·) is a non-negative function on S m
X

.

Nevertheless, using (A.1’.a) results in a complicated computation, which is why we retain the
condition (A.1.a) to get the required results. Also, it is worth mentioning that, if in particular,
we denote hK := (hK, . . . ,hK) ∈ (ãn , b̃n)m , we can find two positive constants C′

1,C′
2, such that

0 < C′
1φ(hK) ≤φt(hK) ≤ C′

2φ(hK) <∞, (3.2.16)

which is similar to condition (C.1) used in Bouzebda and Nemouchi [2020], so we will dealt
with φ(hK) instead of φm(hK), (whenever we encounter a similar situation in the proofs). This
approach is not only for notational purposes but also to make it easier to bridge the UIB and the
UINN results.
It is worth noting that, in general, when we deal with functional data, we need some infor-
mation about the variability of the small-ball probability to adapt to the bias of nonparametric
estimators; this information is usually obtained by supposing that:
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(A.1’.b)

∀u ∈ [0,1] : lim
r→∞

φt (ur )

φt (r )
= lim

r→∞P
(
d(X, t )⩽ ur

∣∣d(X, t )⩽ r
)=: τt (u) <∞,

assumption (A.1.b) is a weaker version of (A.1’.b) and will be mainly used in the proofs. On
the other hand, condition (A.2.) takes into account the topological considerations by control-
ling the Kolmogorov entropy3 of the set S m

X
, which is standard in nonparametric models when

we study the uniform consistency and the uniform in bandwidth consistency, we refer to Fer-
raty et al. [2010a] and Kudraszow and Vieu [2013] for discussions. As mentioned in Kudras-
zow and Vieu [2013], there are special cases of functional spaces X and subsets SX where
ψSX

(log(n)/n) ≫ log(n). Some examples are the closed ball in a Sobolev space, the unit ball
of the Cameron-Martin space, and a compact subset in a Hilbert space with a projection semi-
metric (see Kolmogorov and Tihomirov [1959], van der Vaart and van Zanten [2007] and Ferraty
et al. [2010b], respectively, for further details). In all these cases, it is easy to see that (A.2.) is
verified as soon as β> 2. (A.3.) is another classical condition that is imposed on the model and
that enables us to establish precise rates of consistency. The uniform integral entropy criteria
described in (A.5.) are less restrictive than the VC-type classes of functions requirement (see
Einmahl and Mason [2005]) and allow us to characterize the empirical process moments. Even
so, to investigate the uniform consistency, the uniform in bandwidth consistency, and later the
uniform in the number of neighbors consistency for the functional U-statistic/process, we have
to employ specific procedures and inequalities that need the class of functions to be of VC-
type, which is why we add the condition (A.5’.). However, we should keep in mind that every
VC-type class of functions satisfies the condition (A.5.), for instance, see [Nolan and Pollard,
1987, Lemma 22], [Dudley, 2014, §4.7.], [van der Vaart and Wellner, 1996, Theorem 2.6.7],
[Kosorok, 2008, §9.1] provide a number of sufficient conditions under which (A.5’.) holds, we
may refer also to Bouzebda [2012] and [Deheuvels, 2011, §3.2] for further discussions. The
condition (A.4.a) is used when dealing with bounded functions, which means that we will be
replacing it when dealing with an unbounded class of functions by:

(A.4.a’) The class of functions Fm is unbounded and its envelope function satisfy for some
p > 2 :

θp := sup
t∈S m

X

E
(
Fp (Y)|X = t

)<∞.

Assumption (A.6) is essential to establish the rates of convergence (consistency) of the esti-
mator defined in (3.2.3), while assumption (A.7) adapts condition (A.6) to the the case of the
functional conditional U-statistics in the k-NN setting.

3The concept of metric entropy was introduced by Kolmogorov (c f . Kolmogorov and Tihomirov [1959]) and
studied subsequently for numerous metric spaces. This concept was used by Dudley [1967] to give sufficient
conditions for the continuity of Gaussian processes and was the basis for striking generalizations of Donsker’s
theorem on the weak convergence of the empirical process, refer to van der Vaart [2002] for the connection of this
notion with Le Cam’s work.
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Remark 3.2.3.1 The condition (A.4.b) regarding the kernel function K(·) could be replaced by
the following one for treating the regression function estimator when m = 1 :

(A.4.b’) The kernel functions K(·) is Lipschitz supported within (0,1/2) with existing first deriva-
tive on (0,1/2) satisfying for two real constants −∞< κ′3 ≤ κ′4 < 0 :

−∞< κ′3 ≤ K′(·) ≤ κ′4 < 0.

But it should be noted that if we consider the previous assumptions instead of (A.4.b) in order
to bound the expectation of the kernel, we should suppose that the small ball probability φ(·)
satisfies

∃C > 0, ∃η0 > 0, ∀η< η0 :
∫ η

0
φ(u)du > Cηφ(η),

for instance, refer to Lemma 4.3 and Lemma 4.4 of Ferraty and Vieu [2006].

Remark 3.2.3.2 Note that the condition (A.4.a’) may be replaced by more general hypotheses
upon moments of Y as in Deheuvels [2011]. That is

(M.1)′′ We denote by {M (x) : x ≥ 0} a nonnegative continuous function, increasing on [0,∞), and
such that, for some s > 2, ultimately as x ↑∞,

(i ) x−sM (x) ↓; (i i ) x−1M (x) ↑ . (3.2.17)

For each t ≥M (0), we define M i nv (t ) ≥ 0 by M (M i nv (t )) = t . We assume further that:

E (M (|F(Y)|)) <∞.

The following choices of M (·) are of particular interest:

(i) M (x) = xp for some p > 2;

(ii) M (x) = exp(sx) for some s > 0.

3.3 UIB and UINN consistency for functional regression

In this section, we consider the uniform consistency and the uniform in number of neighbors
consistency of the functional regression operator in its general form which is given for all t ∈X ,
by:

r̂ ∗(1)
n (ϕ,t,Hn,k (t )) =

n∑
i=1

ϕ(Yi )K

(
d(t ,Xi )

Hn,k (t )

)
n∑

i=1
K

(
d(t ,Xi )

Hn,k (t )

) , (3.3.1)

where k1,n ≤ k ≤ k2,n , (k = kn depends on n) and

Hn,k (t ) = min

{
h ∈R+such that

n∑
i=1
1B(t ,h)(Xi ) = k

}
.
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In fact the k-NN operator presented in (3.3.1) can be considered as a generalization of the usual
kernel regression

r̂ (1)
n (ϕ,t,hK) =

n∑
i=1

ϕ(Yi )K

(
d(t ,Xi )

hK

)
n∑

i=1
K

(
d(t ,Xi )

hK

) , ∀t ∈X , (3.3.2)

where the bandwidth hK ∈ [an ,bn] ⊂ R∗+ depends on n (but does not depend on t). We start by
reminding the uniform asymptotic properties of r̂ (1)

n defined in (3.3.2).

3.3.1 UIB consistency for functional regression

We give in the following results the uniform convergence in the a. co sense.

Theorem 3.3.1.1 Under the assumptions (A.1.)-(A.6.), (for m = 1) we have,

sup
ϕK∈FK

sup
an≤hK≤bn

sup
t∈SX

∣∣r̂ (1)
n (ϕ, t ;hK)− r (1)(ϕ, t )

∣∣= O
(
bγn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.3.3)

The following result gives the uniform consistency when the class of functions is unbounded.

Corollary 3.3.1.2 Under the assumptions (A.1.)- (A.3.), and (A.4.a’), (A.4.b), (A.5.), (A.6.)
(for m = 1), we have

sup
ϕK∈FK

sup
an≤hK≤bn

sup
t∈SX

∣∣r̂ (1)
n (ϕ, t ;hK)− r (1)(ϕ, t )

∣∣= O
(
bγn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.3.4)

Now, we can state our results for the k-NN functional regression.

3.3.2 UINN consistency for functional regression

Theorem 3.3.2.1 Under the assumptions (A.2.)-(A.5.) and (A.7.), we have

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣r̂ ∗(1)
n (ϕ, t ;hn,k (t ))− r (1)(ϕ, t )

∣∣ = O

(
φ−1

(
k2,n

ρnn

)γ)

+Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 .

The following result gives the uniform consistency when the class of functions is unbounded.
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Corollary 3.3.2.2 Under the assumptions (A.1.)- (A.3.), (A.4.a’), (A.4.b), (A.5.), (A.6.) and
(A.7.) (for m = 1), we have

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣r̂ ∗(1)
n (ϕ, t ;hn,k (t ))− r (1)(ϕ, t )

∣∣ = O

(
φ−1

(
k2,n

ρnn

)γ)

+Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 .(3.3.5)

3.4 UIB and UINN consistency of functional conditional U-
statistics

In this section, we consider the uniform consistency, the UIB and the UINN consistency of the
functional conditional U-statistic given by (3.2.1). First, let’s introduce some notation :

X := (X1, . . . ,Xm) ∈X m , Y := (Y1, . . . ,Ym) ∈Y m ,

Xi := (Xi1 , . . . ,Xim ), Yi := (Yi1 , . . . ,Yim ),

hn,k (t) := (Hn,k (t1), . . . ,Hn,k (tm)) for t = (t1, . . . , tm) ∈S m
X ,

Gϕ,t,hn,k (X,Y) := 1

φt(hn,k (t))
ϕ(Y1, . . . ,Ym)

m∏
i=1

K

(
d(Xi , ti )

Hn,k (ti )

)
for t ∈S m

X ,

un(ϕ,t,hn,k (t)) = u(m)
n (Gϕ,t,hn,k ) := (n −m)!

n!

∑
i∈I(m,n)

Gϕ,t,hn,k (Xi ,Yi ),

and for some symmetric measurable function f (·) define the P-canonical function πp,m , p =
1, . . . ,m, see Arcones and Giné [1993] (we replace the index k with p to avoid confusing it with
the smoothing parameter k ), by :

πp,m f (t1, . . . , tp ) := (δt1 −P) · · · (δtp −P)Pm−p f .

where for measures Qi on S we let

Q1 · · ·Qmh =
∫

Sm
h(x1, . . . , xm)dQ1(x1) · · ·dQm(xm),

and δx denote Dirac measure at point x ∈X . For example,

π1,mh(x) = E(h(X1, . . . ,Xm) | X1 = x)−Eh(X1, . . . ,Xm).

It’s clear that, for all ϕ ∈Fm :

r̂ ∗(m)
n (ϕ,t;hn,k (t)) = un(ϕ,t,hn,k (t))

un(1,t,hn,k (t))
,

and un(ϕ,t,hn,k (t)) is a classical U-statistic with the U- kernel Gϕ,t,hn,k (x,y). However, the study
of the uniform consistency and the UIB consistency of r̂ ∗(m)

n (ϕ,t;hn,k (t)) to r (m)(ϕ,t) can not
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be done with a straightforward approach due to the randomness of the bandwidth vector hn,k (t)

which poses some technical problems. To circumvent this, our strategy is to first study the
uniform consistency and the UIB consistency of r̂ ∗(m)

n (ϕ,t;h), where h = (h1, . . . ,hm) ∈ H (m)
n

is a multivariate bandwidth that does not depend on t and k. Hence, we study the uniform
consistency and the UIB consistency of un(ϕ,t,h) to E(un(ϕ,t,h)) when ϕ ∈Fm and when ϕ≡
1, and we shall consider an appropriate centering factor than the expectation E

(
r̂ ∗(m)

n (ϕ,t;h)
)
,

hence we define :

Ê
(
r̂ ∗(m)

n (ϕ,t;h)
)= E

(
un(ϕ,t,h)

)
E (un(1,t,h))

. (3.4.1)

The second step will be the use a general lemma, adapted to our setting, similar to that of Burba
et al. [2009] and Kudraszow and Vieu [2013] (see Subsection 3.9.1 ) to derive the results for
the bandwidth hn,k (t).

3.4.1 Uniform consistency and UIB of functional conditional U-statistics

Before we start studying the uniform consistency and UIB of functional conditional U-statistics
in the multivariate setting, for reader convenience, let us recall the results of Bouzebda and
Nemouchi [2020] for a univariate bandwidth hK ∈ [an ,bn].

Uniform consistency and UIB consistency for a univariate bandwidth

The following result handles the uniform deviation of the estimate un(ϕ,t,hK) with respect to
E(un(ϕ,t,hK)) when the class of functions is bounded.

Theorem 3.4.1.1 Suppose that the conditions (A.1.), (A.2.), (A.4.), (A.6.) and (A.5’.) are
fulfilled, we infer that for

sup
ϕK̃∈FmK m

sup
an≤hK≤bn

sup
t∈S m

X

∣∣un(ϕ,t,hK)−E(
un(ϕ,t,hK)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 , (3.4.2)

where, for t = (t1, . . . , tm) ∈S m
X

,

K̃

(
d(·,t)

hK

)
:=

m∏
i=1

K

(
d(·, ti )

hK

)
.

The following result handles the uniform deviation of the estimate un(ϕ,t,hK) with respect to
E(un(ϕ,t,hK)) when the class of functions is unbounded satisfying general moment condition.

Theorem 3.4.1.2 Suppose that the conditions (A.1.), (A.2.), (A.4.a’), (A.4.b), (A.5’.) and (A.6.)
are fulfilled, we infer that for all 0 < b0 < 1 :

sup
ϕK̃∈FmK m

sup
an≤hK≤b0

sup
t∈S m

X

∣∣un(ϕ,t,hK)−E(
un(ϕ,t,hK)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.4.3)

50



CHAPTER 3. K-NN FUNCTIONAL CONDITIONAL U-STATISTICS

The following result handles the uniform deviation of the estimate r̂ (m)
n (ϕ,t;hK) with respect to

Ê
(
r̂ (m)

n (ϕ,t;hK)
)

in both cases, when the class of functions is bounded or unbounded satisfying
general moment condition.

Theorem 3.4.1.3 Suppose that the conditions (A.1.), (A.2.), (A.4.), (A.5’.) and (A.6.) (or
the following (A.1.)-(A.4.a’), (A.4.b), (A.5’.) and (A.6.)) are fulfilled, we infer that for all
0 < b0 < 1:

sup
ϕK̃∈FmK m

sup
an≤hK≤b0

sup
t∈S m

X

∣∣r̂ (m)
n (ϕ,t;hK)− Ê(

r̂ (m)
n (ϕ,t;hK)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.4.4)

Theorem 3.4.1.4 Suppose that the conditions (A.1.)-(A.3.) and (A.4.b) are fulfilled, we infer
that for all 0 < bn < 1,bn → 0:

sup
ϕK̃∈FmK m

sup
an≤hK≤bn

sup
t∈S m

X

∣∣Ê(
r̂ (m)

n (ϕ,t;hK)
)− r (m) (ϕ,t

)∣∣= O
(
bγn

)
. (3.4.5)

Corollary 3.4.1.5 Under the assumptions of Theorems 3.4.1.3 and 3.4.1.4 it follows that :

sup
ϕK̃∈FmK m

sup
an≤hK≤bn

sup
t∈S m

X

∣∣r̂ (m)
n (ϕ,t;hK)− r (m)(ϕ,t)

∣∣= O
(
bγn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.4.6)

Remark 3.4.1.6 If the elementsϕ of the class of functions Fm are not symmetric, which implies
that Gϕ,t,hK are not symmetric, we will need to symmetrize them. To do this, we have :

Gϕ,t,hK (x,y) := 1

m!

∑
σ∈Im

m

Gϕ,t,hK (xσ,yσ) = 1

m!

∑
σ∈Im

m

ϕ(yσ)K̃(xσ− t),

where xσ = (xσ1 , . . . , xσm ) and yσ = (yσ1 , . . . , yσm ). After symmetrization the expectation

E
(
Gϕ,t,hK (x,y)

)
= E(

Gϕ,t,hK (x,y)
)

,

and the U-statistic

u(m)
n (Gϕ,t,hK ) = u(m)

n (Gϕ,t,hK ) := un(ϕ,t,hK)

do not change. Note that if the class of functions FmK m satisfies the entropy condition, the
class FmK m of symmetrized functions, satisfies it too and its envelope function is :

F(y) ≡ F(x,y) = km
∑
σ∈Im

m

F(yσ).

This remark remains true also for the functions Gϕ,t,hn,k .
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Uniform consistency and UIB consistency for a multivariate bandwidth

Next, we will give the UIB results for all t ∈ S m
X

and h ∈ H (m)
n . We first start with announc-

ing the result concerning the uniform derivation of the estimate un(ϕ,t,h) with respect to
E
(
un(ϕ,t,h)

)
when the class of functions is bounded.

Theorem 3.4.1.7 Suppose that the conditions (A.1.), (A.2.), (A.4.), (A.5’.) and (A.6.) are
fulfilled, we infer that

sup
ϕK̃∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un(ϕ,t,h)−E(
un(ϕ,t,h)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.4.7)

The following result covers the uniform derivation of the estimate un(ϕ,t,h) with respect to
E
(
un(ϕ,t,h)

)
when the class of functions is unbounded satisfying general moments condition.

Theorem 3.4.1.8 Suppose that the conditions (A.1.), (A.2.), (A.4.a’), (A.4.b), (A.5’.) and (A.6.)
are fulfilled, we infer that for all 0 < b̃0 < 1 :

sup
ϕK̃∈FmK m

sup
h∈H (m)

0

sup
t∈S m

X

∣∣un(ϕ,t,h)−E(
un(ϕ,t,h)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.4.8)

The following result handles the uniform deviation of the estimate r̂ ∗(m)
n (ϕ,t;h) with respect

to Ê
(
r̂ ∗(m)

n (ϕ,t;h)
)

in both situations, where the class of functions is bounded or unbounded
satisfying a general moment condition.

Theorem 3.4.1.9 Suppose that the conditions (A.1.), (A.2.), (A.4.), (A.5’.) and (A.6.) (or
the following (A.1.)-(A.4.a’), (A.4.b), (A.6.) and (A.5’.)) are fulfilled, we infer that for all
0 < b̃0 < 1:

sup
ϕK̃∈FmK m

sup
h∈H (m)

0

sup
t∈S m

X

∣∣r̂ ∗(m)
n (ϕ,t;h)− Ê(

r̂ ∗(m)
n (ϕ,t;h)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.4.9)

Theorem 3.4.1.10 Suppose that the conditions (A.1.)-(A.3.) and (A.4.b) are fulfilled, we infer
that or all 0 < b̃n < 1, b̃n → 0 :

sup
ϕK̃∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣Ê(
r̂ ∗(m)

n (ϕ,t;h)
)− r (m) (ϕ,t

)∣∣= O
(
b̃γn

)
. (3.4.10)

Corollary 3.4.1.11 Under the assumptions of Theorems 3.4.1.9 and 3.4.1.10 it follows that :

sup
ϕK̃∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣r̂ ∗(m)
n (ϕ,t;h)− r (m)(ϕ,t)

∣∣= O
(
b̃γn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.4.11)
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3.4.2 Uniform consistency and UINN consistency of functional conditional
U-statistics

Let 0 <µ∗ ≤ ν∗ <∞ be some constants and ρ∗n ∈ (0,1) is a sequence chosen in such a way that

min
1≤ j≤m

µ jφ
−1

(
ρn, j k1,n

n

)
=µ∗φ−1

(
ρ∗nk1,n

n

)
and

max
1≤ j≤m

ν jφ
−1

(
k2,n

ρn, j n

)
= ν∗φ−1

(
k2,n

ρ∗nn

)
.

The following result deals with the uniform deviation of the estimate un(ϕ,t,hn,k (t)) with re-
spect to E

(
un(ϕ,t,hn,k (t))

)
, when the class of functions is bounded.

Theorem 3.4.2.1 Suppose that the conditions (A.1.), (A.2.), (A.4.), (A.5’.) and (A.6.) are
fulfilled, if in addition assumption (A.7.) holds, we infer that :

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣un(ϕ,t,hn,k (t))−E(
un(ϕ,t,hn,k (t))

)∣∣

= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

(
ρ∗nk1,n

n

))
 .(3.4.12)

The following result deals with the uniform deviation of the estimate un(ϕ,t,hn,k (t)) with re-
spect to E

(
un(ϕ,t,hn,k (t))

)
when the class of functions is unbounded satisfying general mo-

ments condition.

Theorem 3.4.2.2 Suppose that the conditions (A.1.), (A.2.), (A.4.a’), (A.4.b), (A.5’.) and (A.6.)
are fulfilled, if in addition assumption (A.7.) holds, we infer that :

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣un(ϕ,t,hn,k (t))−E(
un(ϕ,t,hn,k (t))

)∣∣

= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

(
ρ∗nk1,n

n

))
 .(3.4.13)

The next results give uniform consistency when the class of functions is bounded or unbounded.

Theorem 3.4.2.3 Suppose that the conditions (A.1.), (A.2.), (A.4.), (A.5’.) and (A.6.) (or the
following (A.1.)-(A.4.a’), (A.4.b), (A.5’.) and (A.6.)) are fulfilled, if in addition assumption
(A.7.) holds, we infer that :

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣r̂ ∗(m)
n (ϕ,t;hn,k (t))− Ê(

r̂ ∗(m)
n (ϕ,t;hn,k (t))

)∣∣

= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

(
ρ∗nk1,n

n

))
 .(3.4.14)
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Theorem 3.4.2.4 Suppose that the conditions (A.1.)-(A.3.) and (A.4.b) are fulfilled, if in addi-
tion assumption (A.7.) holds, we infer that :

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣Ê(
r̂ ∗(m)

n (ϕ,t;hn,k (t))
)− r (m) (ϕ,t

)∣∣= O

(
φ−1

(
k2,n

ρ∗nn

)γ)
. (3.4.15)

Corollary 3.4.2.5 Under the assumptions of Theorems 3.4.2.3 and 3.4.2.4 it follows that :

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣r̂ ∗(m)
n (ϕ,t;hn,k (t))− r (m)(ϕ,t)

∣∣

= O

(
φ−1

(
k2,n

ρ∗nn

)γ)
+Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

(
ρ∗nk1,n

n

))
 . (3.4.16)

Remark 3.4.2.6 The choice of the parameters µ∗ and ρ∗n defined in a similar way as in condi-
tion (A.7.) affects the rate of convergence of the k-NN estimator. We can choose these param-
eters depending on the small ball probability function φt (h); it is worth noticing that, in many
examples, the latter can be written approximately as a product of two independent functions of t

and another of h, (see, for instance, Mayer-Wolf and Zeitouni [1993] for the diffusion process,
Bogachev [1998] for a Gaussian measure, and Li and Shao [2001] for a general Gaussian
process). The most frequent result available in the literature is of the form ϕt (ε) ∼ g (t )φ(ε)

where φ(ε) = εγexp(−C/εp ) with γ ≥ 0 and p ≥ 0. It corresponds to the Ornstein-Uhlenbeck
and general diffusion processes (for such processes, p = 2 and γ= 0 ) and the fractal processes
(for such processes, γ> 0 and p = 0 ). For more examples Ferraty et al. [2007]:

1. φt (h) = ℓ(t )hυ, for some υ> 0 where τt (s) = sυ;

2. φt (h) = ℓ(t )hυexp(−Ch−p ), for some υ > 0 and p > 0 where τt (s) is the Dirac’s func-
tion;

3. φt (h) = ℓ(t ) |ln(h)|−1 , where τt (s) =1]0,1](s) the indicator function in ]0,1].

Remark 3.4.2.7 It is worth being noted what is the price to pay by the nice features of the
k-NN-based estimators: remembering that Hn,k (X) is a random variable (which depends on
(X1, . . . ,Xn), one should expect that additional technical difficulties will appear along the proofs
of asymptotic properties. To fix the idea on this point, note that the random elements involved
in (3.2.1), m = 1, can not be decomposed as sums of independent variables (as it is the case, for
instance, with kernel-based estimators), and hence its treatment will need more sophisticated
probabilistic developments than standard limit theorems for sums of iid variables. Also, the
Hoeffding decomposition can not be applied directly to (3.2.1), which is the main tool for the
study U-statistics.
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3.5 Extension to the censored case

Consider a triple (Y,C,X) of random variables defined in R×R×X . Here Y is the variable
of interest, C is a censoring variable, and X is a concomitant variable. Throughout, we will
use Maillot and Viallon [2009] and Bouzebda and Chaouch [2022] notation and we work with
a sample {(Yi ,Ci ,Xi )1≤i≤n} of independent and identically distributed replication of (Y,C,X),
n ≥ 1. Actually, in the right censorship model, the pairs (Yi ,Ci ), 1 ≤ i ≤ n, are not directly
observed and the corresponding information is given by Zi := min{Yi ,Ci } and ∆i := 1{Yi ≤ Ci },
1 ≤ i ≤ n. Accordingly, the observed sample is

Dn = {(Zi ,∆i ,Xi ), i = 1, . . . ,n}.

Survival data in clinical trials or failure time data in reliability studies, for example, are often
subject to such censoring. To be more specific, many statistical experiments result in incomplete
samples, even under well-controlled conditions. For example, clinical data for surviving most
types of disease are usually censored by other competing risks to life that result in death. For
−∞< t <∞, set

FY(t ) =P(Y ≤ t ), G(t ) =P(C ≤ t ), and H(t ) =P(Z ≤ t ),

the right-continuous distribution functions of Y, C and Z respectively. For any right-continuous
distribution function L defined on R, denote by

TL = sup{t ∈R : L(t ) < 1}

the upper point of the corresponding distribution. Now consider a pointwise measurable class
F of real, measurable functions defined on R, and assume that F is of VC-type. We recall the
regression function of ψ(Y) evaluated at X = x, for ψ ∈F and x ∈X , given by

r (1)(ψ, x) = E(ψ(Y) | X = x),

when Y is right-censored. To estimate r (1)(ψ, ·), we make use of the Inverse Probability of
Censoring Weighted (I.P.C.W.) estimators have recently gained popularity in the censored data
literature (see Kohler et al. [2002], Carbonez et al. [1995]). The key idea of I.P.C.W. estimators
is as follows. Introduce the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y,c) = 1{y ≤ c}ψ(y ∧ c)

1−G(y ∧ c)
. (3.5.1)

Assuming the function G(·) to be known, first note that Φψ(Yi ,Ci ) = ∆iψ(Zi )/(1−G(Zi )) is
observed for every 1 ≤ i ≤ n. Moreover, under the Assumption (I ) below,

(I ) C and (Y,X) are independent.
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We have

r (1)(Φψ,x) := E(Φψ(Y,C) | X = x)

= E

{
1{Y ≤ C}ψ(Z)

1−G(Z)
| X = x

}
= E

{
ψ(Y)

1−G(Y)
E(1{Y ≤ C} | X,Y) | X = x

}
= r (1)(ψ, x). (3.5.2)

Therefore, any estimate of r (1)(Φψ, ·), which can be built on fully observed data, turns out to
be an estimate for r (1)(ψ, ·) too. Thanks to this property, most statistical procedures known to
provide estimates of the regression function in the uncensored case can be naturally extended
to the censored case. For instance, kernel-type estimates are particularly easy to construct. Set,
for x ∈X , h ≥ 0, 1 ≤ i ≤ n,

ω(1)
n,K,h,i (x) := K

(
d(x,Xi )

Hn,k (x)

)/ n∑
j=1

K

(
d(x,Xi )

Hn,k (x)

)
. (3.5.3)

In view of (3.5.1), (3.5.2), and (3.5.3), whenever G(·) is known, a kernel estimator of r (1)(ψ, ·)
is given by

r̆ (1)
n (ψ, x;hn) =

n∑
i=1

ω(1)
n,K,h,i (x)

∆iψ(Zi )

1−G(Zi )
. (3.5.4)

The function G(·) is generally unknown and has to be estimated. We will denote by G∗
n(·) the

Kaplan-Meier estimator of the function G(·) Kaplan and Meier [1958]. Namely, adopting the
conventions ∏

;
= 1

and 00 = 1 and setting

Nn(u) =
n∑

i=1
1{Zi ≥ u},

we have

G∗
n(u) = 1− ∏

i :Zi≤u

{
Nn(Zi )−1

Nn(Zi )

}(1−∆i )

, for u ∈R.

Given these notations, we will investigate the following estimator of r (1)(ψ, ·)

r̆ (1)∗
n (ψ, x;hn) =

n∑
i=1

ω(1)
n,K,h,i (x)

∆iψ(Zi )

1−G∗
n(Zi )

, (3.5.5)

refer to Kohler et al. [2002] and Maillot and Viallon [2009]. Adopting the convention 0/0 = 0,
this quantity is well defined, since G∗

n(Zi ) = 1 if and only if Zi = Z(n) and ∆(n) = 0, where Z(k)

is the kth ordered statistic associated with the sample (Z1, . . . ,Zn) for k = 1, . . . ,n and ∆(k) is
the ∆ j corresponding to Zk = Z j . When the variable of interest is right-censored, functional
of the (conditional) law can generally not be estimated on the complete support (see Brunel
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and Comte [2006]). A right-censored version of an unconditional U-statistic with a kernel of
degree m ≥ 1 is introduced by the principle of a mean preserving reweighting scheme in Datta
et al. [2010]. Stute and Wang [1993] have proved almost sure convergence of multi-sample
U-statistics under random censorship and provided application by considering the consistency
of a new class of tests designed for testing equality in distribution. To overcome potential biases
arising from right-censoring of the outcomes and the presence of confounding covariates, Chen
and Datta [2019] proposed adjustments to the classical U-statistics. Yuan et al. [2017] proposed
a different way in the estimation procedure of the U-statistic by using a substitution estimator
of the conditional kernel given the observed data. We refer also to Bouzebda and El-hadjali
[2020]. To our best knowledge, the problem of the estimation of the conditional U-statistics
was open up to the present, and it gives the main motivation for the study of this section. A
natural extension of the function defined in (3.5.1) is given by

Φψ(y1, . . . , ym ,c1, . . . ,cm) =

m∏
i=1

{1{yi ≤ ci }ψ(y1 ∧ c1, . . . , ym ∧ cm)

m∏
i=1

{1−G(yi ∧ ci )}

.

From this, we have an analogous relation to (3.5.2) given by

E(Φψ(Y1, . . . ,Ym ,C1, . . . ,Cm) | (X1, . . . ,Xm) = t)

= E


m∏

i=1
{1{Yi ≤ Ci }ψ(Y1 ∧C1, . . . ,Ym ∧Cm)

m∏
i=1

{1−G(Yi ∧Ci )}

| (X1, . . . ,Xm) = t



= E

ψ(Y1, . . . ,Ym)
m∏

i=1
{1−G(Yi )}

E

(
m∏

i=1
{1{Yi ≤ Ci } | (Y1,X1), . . . (Ym ,Xm)

)
| (X1, . . . ,Xm) = t


= E

(
ψ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = t

)
.

An analogue estimator to (3.2.1) in the censored case is given by

r̆ ∗(m)
n (ϕ,t,hn,k (t)) = ∑

(i1,...,im )∈I(m,n)

δi1 · · ·δikψ(Zi1 , . . . ,Zik )

(1−G(Zi1 ) · · · (1−G(Zik ))
ω(m)

n,K,k,i(t), (3.5.6)

where, for i = (i1, . . . , im) ∈ I(m,n),

ω(m)
n,K,k,i(t) =

K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

) . (3.5.7)

The estimator that we will investigate is given by

˘̆r (k)∗
n (ψ,t;hn,k (t)) = ∑

(i1,...,ik )∈I(k,n)

δi1 · · ·δikψ(Zi1 , . . . ,Zik )

(1−G∗
n(Zi1 ) · · · (1−G∗

n(Zik ))
ω(k)

n,δ,mn ,i(t). (3.5.8)
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In order to obtain our results, we will work under the following assumptions.

(A.1) F ′ = {ψ := ψ11{(−∞,τ)m},ψ1 ∈ F }, where τ < TH and F is a pointwise measurable
class of real measurable functions defined on R and of type VC.

(A.2) The class of functions F ′ has a measurable and uniformly bounded envelope function Υ
with,

Υ(y1, . . . , ym) ≥ sup
ψ∈F

|ψ(y1, . . . , ym) |, yi ≤ TH.

(A.3) The class of functions M is relatively compact with respect to the sup-norm topology on
V m

x (compact set of X containing x), where

M = {
r (m)(ϕ, ·)K̃(·) :ϕ ∈Fq

}
.

Corollary 3.5.0.1 Under (A.1)-(A.3) and the assumptions of Theorems 3.4.2.3 and 3.4.2.4 it
follows that :

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈V m

x

∣∣∣ ˘̆r (k)∗
n (ψ,t;hn,k (t))− r (m)(ϕ,t)

∣∣∣

= O

(
φ−1

(
k2,n

ρ∗nn

)γ)
+Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

(
ρ∗nk1,n

n

))
 . (3.5.9)

This last result is a direct consequence of Corollary (3.4.2.5) and the law of iterated logarithm
for G∗

n(·) established in Földes and Rejtő [1981] ensures that

sup
t≤τ

|G∗
n −G(t )| = O

√
loglogn

n

 almost surely as n →∞.

3.6 Some potential applications

3.6.1 Set indexed conditional U-statistics

We aim to study the links between X and Y by estimating functional operators associated with
the conditional distribution of Y given X, such as the regression operator, for C1 ×·· ·×Cm := C̃
in a is a class of sets C m ,

G(m)(C1 ×·· ·×Cm | t) = E
(

m∏
i=1
1{Yi∈Ci } | (X1, . . . ,Xm) = t

)
for t ∈X m .

We define metric entropy with the inclusion of the class of sets C . For each ε> 0, the covering
number is defined as :

N (ε,C ,G(1)(· | x)) = inf{n ∈N : ∃C1, . . . ,Cn ∈C such that ∀C ∈C ∃ 1 ≤ i , j ≤ n

with Ci ⊂ C ⊂ C j and G(1)(C j \ Ci | x) < ε},
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the quantity log(N (ε,C ,G(1)(· | x))) is called metric entropy with inclusion of C with respect
to G(1)(· | x). The quantity logN (ε,C ,G(1)(· | x)) is called metric entropy with inclusion of
C with respect to G(· | x). Estimates for such covering numbers are known for many classes
(see, e.g., Dudley [1984]). We will often assume below that either logN (ε,C ,G(1)(· | x)) or
N (ε,C ,G(1)(· | x)) behave like powers of ε−1: we say that the condition (Rγ) holds if

logN (ε,C ,G(1)(· | x)) ≤ Hγ(ε), for all ε> 0, (3.6.1)

where

Hγ(ε) =
{

log(Aε) if γ= 0,

Aε−γ if γ> 0,

for some constants A,r > 0. As in Polonik and Yao [2002], it is worth noticing that the con-
dition (3.6.1), γ = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes which
are constructed from the above by performing set operations union, intersection and comple-
ment finitely many times. The classes of convex sets in Rd (d ≥ 2) fulfill the condition (3.6.1),
γ= (d −1)/2. This and other classes of sets satisfying (3.6.1) with γ> 0 can be found in Dudley
[1984]. As a particular case of (3.2.3), we estimate G(m)(C1 ×·· ·×Cm | t)

Ĝ(m)
n (C̃,t) =

∑
(i1,...,im )∈I(m,n)

m∏
j=1
1{Yi j ∈C j }K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
.

(3.6.2)

One can apply Corollary 3.4.1.5 to infer that

sup
C̃×K̃∈C mK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣Ĝ(m)
n (C̃,t)−G(m)(C̃ | t)

∣∣−→ 0 a.co. (3.6.3)

Remark 3.6.1.1 Another point of view is to consider the following situation, for a compact
J ⊂Rdm ,

G(m)(y1, . . . , ym | t) = E
(

m∏
i=1
1{Yi≤yi } | (X1, . . . ,Xm) = t

)
for t ∈X m , (y1, . . . , ym) ∈ J.

Let L(·) be a distribution in Rd and H̃n,k (ti ) is the number of neighborhoods associated with
Yi s. One can estimate G(m)(y1, . . . , ym | t) = G(m)(y | t) by

Ĝ(m)
n (y,t)

:=

∑
(i1,...,im )∈I(m,n)

L

(
t1 −Yi1

H̃n,k̃ (t1)

)
· · ·L

(
tm −Yim

H̃n,k̃ (tm)

)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

) .

One can use Corollary 3.4.1.5 to infer that

sup
K̃∈K m

sup
k1,n≤k,k̃≤k2,n

sup
t∈S m

X

sup
y∈J

∣∣Ĝ(m)
n (y,t)−G(m)(y | t)

∣∣−→ 0 a.co. (3.6.4)
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3.6.2 Generalized U-Statistics

The extension to the case of several samples is straightforward. Consider k independent collec-
tions, of independent observations{(

X(1)
1 ,Y(1)

1

)
,
(
X(1)

2 ,Y(1)
2

)
, . . .

}
, . . . ,

{(
X(k)

1 ,Y(k)
1

)
,
(
X(k)

2 ,Y(k)
1

)
, . . .

}
.

Let, for t ∈X (m1+···+mk ),

r (m,k)(ϕ,t) = r (m,k)(ϕ,t1, . . . ,tk )

= E
(
ϕ

(
Y(1)

1 , . . . ,Y(1)
m1; . . . ;Y(k)

1 , . . . ,Y(k)
mk

)
|
(
X( j )

1 , . . . ,X( j )
m j

)
= t j , j = 1, . . . ,k

)
,

where ϕ is assumed, without loss of generality, to be symmetric within each of its k blocks
of arguments. Corresponding to the "kernel" ϕ and assuming n1 ≥ m1, . . . ,nk ≥ mk , the the
conditional U -statistic for estimation of r (m,k)(ϕ,t) is defined as

r̂ (m,k)
n (ϕ,t, h̃n,k (t))

=

∑
c
ϕ

(
Y(1)

i11
. . . ,Y(1)

i1m1
; . . . ;Y(k)

ik1
, . . . ,Y(k)

ikmk

)
K

(
X(1)

i11
. . . ,X(1)

i1m1
; . . . ;X(k)

ik1
, . . . ,X(k)

ikmk

)
∑

c
K

(
X(1)

i11
. . . ,X(1)

i1m1
; . . . ;X(k)

ik1
, . . . ,X(k)

ikmk

) ,

where

K
(
X(1)

i11
. . . ,X(1)

i1m1
; . . . ;X(k)

ik1
, . . . ,X(k)

ikmk

)
=

k∏
j=1

K

d(t ( j )
1 ,X( j )

i j 1
)

Hn,k (t1)

 · · ·K
d(t ( j )

m j
,X( j )

i j m j
)

Hn,k (tm)

 ,

and h̃n,k (t) =
(
Hn,k (t (1)

1 ), . . . ,Hn,k (t (1)
m1

), . . . ,Hn,k (t (k)
1 ), . . . ,Hn,k (t (k)

mk
)
)
∈ H

m1+···+mk
n ⊂ Rm1+···+mk+

is a vector of positive random variables which depend on
{

X(1)
1 , . . . ,X(1)

n1

}
, . . .

{
X(k)

1 , . . . ,X(k)
nk

}
. Here{

i j 1, . . . , i j m j

}
denotes a set of m j distinct elements of the set {1,2, . . . ,n j

}
1 ≤ j ≤ k, and

∑
c

denotes summation over all such combinations. The extension of Hoeffding [1948] treatment
of one-sample U -statistics to the k sample case is due to Lehmann [1951] and Dwass [1956].
One can use Corollary 3.4.1.5 to infer that

sup
ϕK∈Fm1+···+mk

K m1+···+mk

max
1≤ j≤k

sup
k

j
1,n≤k j≤k

j
2,n

sup
t∈S

m1+···+mk
X

∣∣∣r̂ (m,k)
n (ϕ,t, h̃n,k (t))− r (m,k)(ϕ,t)

∣∣∣−→ 0 a.co.

(3.6.5)

3.6.3 Discrimination

Now, we apply the results on the problem of discrimination described in Section 3 of Stute
[1994b], refer to also to Stute [1994a]. We will use similar notations and settings. Let ϕ(·) be
any function taking at most finitely many values, say 1, . . . ,M. The sets

A j =
{
(y1, . . . , ym) :ϕ(y1, . . . , yk ) = j

}
, 1 ≤ j ≤ M
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then yield a partition of the feature space. Predicting the value of ϕ(Y1, . . . ,Ym) is tantamount
to predicting the set in the partition to which (Y1, . . . ,Ym) belongs. For any discrimination rule
g (·), we have

P(g (X) =ϕ(Y)) ≤
M∑

j=1

∫
{x:g (t)= j }

maxm j (t)dP(t),

where
m j (x) =P(ϕ(Y) = j | X = t), t ∈S m

X .

The above inequality becomes equality if

g0(x) = arg max
1≤ j≤M

m j (t).

The function g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1−P(g0(X) =ϕ(Y)) = 1−E
{

max
1≤ j≤M

m j (t)

}
is called the Bayes risk. Each of the above unknown functions m j (·)’s can be consistently
estimated by one of the methods discussed in the preceding sections. Let, for 1 ≤ j ≤ M,

m j
n(t) =

∑
(i1,...,im )∈I(m,n)

1{ϕ(Yi1 , . . . ,Yim ) = j }K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

) , (3.6.6)

Set
g0,n(x) = arg max

1≤ j≤M
m j

n(t).

Let us introduce
L∗

n =P(g0,n(X) ̸=ϕ(Y)).

Then, one can show that the discrimination rule g0,n(·) is asymptotically Bayes’ risk consistent

L∗
n → L∗.

3.6.4 Metric learning

Metric learning aims at adapting the metric to the data and has attracted a lot of interest in
recent years; for instance, see Bellet et al. [2013] and Clémençon et al. [2016] for an account
of metric learning and its applications. This is motivated by a variety of applications ranging
from computer vision to information retrieval through bioinformatics. To illustrate the useful-
ness of this concept, we present the metric learning problem for supervised classification as in
Clémençon et al. [2016]. Let us consider independent copies (X1,Y1) , . . . , (Xn ,Yn) of a X ×Y

valued random couple (X,Y), where X is some feature space and Y = {1, . . . ,C}, with C ≥ 2, say,
a finite set of labels. Let D be a set of distance measures D : X ×X →R+. Intuitively, the goal
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of metric learning in this setting is to find a metric under which pairs of points with the same
label are close to each other, and those with different labels are far away. The natural way to
define the risk of a metric D is

R(D) = E[
φ

((
1−D

(
X,X′) · (21

{
Y = Y′}−1

))]
, (3.6.7)

where φ(u) is a convex loss function upper bounding the indicator function I{u ≥ 0}, for in-
stance, the hinge loss φ(u) = max(0,1−u). To estimate R(D), we consider the natural empirical
estimator

Rn(D) = 2

n(n −1)

∑
1≤i< j≤n

φ
((

D
(
Xi ,X j

)−1
) · (2π

{
Yi = Y j

}−1
))

, (3.6.8)

which is a one-sample U-statistic of degree two with kernel given by:

HD
(
(x, y),

(
x ′, y

))=φ((
D

(
x, x ′)−1

) · (21
{

y = y ′}−1
))

.

The convergence to (3.6.7) of a minimizer of (3.6.8) has been studied in the frameworks of
algorithmic stability (Jin et al. [2009]), algorithmic robustness (Bellet and Habrard [2015]) and
based on the theory of U-processes under appropriate regularization (Cao et al. [2016]).

3.7 Examples of kernel for the U-statistics

Generally speaking, we may take for ϕ(·) any function which has been found interesting in
the unconditional setup; cf. Serfling [1980]. As mentioned before, the case m = 1 leads to
the Nadaraya-Watson estimator if we set ϕ = Id (the identity function); ϕ = 1{· ≤ t } yields the
conditional d.f. evaluated at t , for instance, see Stute [1986].

Example 3.7.0.1 For

ϕ(Y1,Y2) =1{Y1 +Y2 > 0},

we obtain a conditional U-statistic which may be viewed as a conditional version of the Wilcoxon
one-sample statistic. It may be used for testing the hypothesis that the conditional distribution
at X1 is symmetric at zero. Obviously :

r (2)(ϕ(Y1,Y2) | t1 = t2) =P(Y1 +Y2 > 0 | X1 = t1 = X2).

Example 3.7.0.2 For

ϕ(Y1,Y2) =1{Y1 ≤ Y2},

we have

r (2)(ϕ(Y1,Y2) | t1, t2) =P(Y1 ≤ Y2 | X1 = t1,X2 = t2), for t1 ̸= t2

equals the probability that the output pertaining to t1 is less than or equal to the one pertaining
to t2.
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Example 3.7.0.3 For m=3, let :

ϕ(Y1,Y2,Y3) =1{Y1 −Y2 −Y3 > 0},

we have
r (3)(ϕ(Y1,Y2,Y3) | t1 = t2 = t3 = t ) =P(Y1 > Y2 +Y3 | X1 = X2 = X3 = t )

and the corresponding CU-S can be looked upon as a conditional analogue of the Hollander-
Proschan test statistic (Hollander and Proschan [1972]). It may be used to test the hypothesis
that the conditional distribution of Y1 given X1 = t is exponential against the alternative that it
is of the New-Better than-Used-type.

Example 3.7.0.4 For :

ϕ(Y1,Y2) = 1

2
(Y1 −Y2)2,

we obtain :

r (2)(ϕ(Y1,Y2) | t1, t2) =Var(Y1 | X1 = t1).

Example 3.7.0.5 Let Y = (Y1,Y2) such that Y2 is a smooth curve, Y2 ∈ L2([0,1]) and Y1 ∈ R has
a continuous distribution. For

ϕ(Y1,Y2) =1{(Y1,1 −Y2,1)(Y1,2(t )−Y2,2(t )) > 0}−0.5,

which can be used to treat the problem of testing for conditional association between a func-
tional variable belonging to Hilbert space and a scalar variable. More precisely, this gives the
conditional Kendall’s Tau-type statistics; for more details, refer to Jadhav and Ma [2019] for
the unconditional setting.

Example 3.7.0.6 Hoeffding [1948] introduced the parameter

△=
∫ ∞

−∞

∫ ∞

−∞
D2(y1, y2)dF(y1, y2),

where D(y1, y2) = F(y1, y2)−F(y1,∞)F(∞, y2) and F(·, ·) is the distribution function of Y1 and
Y2. The parameter △ has the property that △= 0 if and only if Y1 and Y2 are independent. From
Lee [1990], an alternative expression for △ can be developed by introducing the functions

ψ
(
y1, y2, y3

)=


1 if y2 ≤ y1 < y3

0 if y1 < y2, y3 or y1 ≥ y2, y3

−1 if y3 ≤ y1 < y2

and

ϕ
(
y1,1, y1,2, . . . , y5,1, y5,2

)= 1

4
ψ

(
y1,1, y1,2, y1,3

)
ψ

(
y1,1, y1,4, y1,5

)
ψ

(
y1,2, y2,2, y3,2

)
ψ

(
y1,2, y4,2, y5,2

)
.

We have
△=

∫
. . .

∫
ϕ

(
y1,1, y1,2, . . . , y5,1, y5,2

)
dF

(
y1,1, y1,2

)
. . .dF

(
y1,5, y2,5

)
.
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We have

r (5) (ϕ, t1, t2, t3, t4, t5
)

= E
(
ϕ((Y1,1,Y1,2), . . . , (Y5,1,Y5,2)) | X1 = X2 = X3 = X4 = X5 = t

)
.

The corresponding U-statistics may be used to test the conditional independence.

Example 3.7.0.7 (Blum-Kiefer-Rosenblatt’s R ). Write Pk for the set of all k ! permutations
of {1, . . . ,k}. The symmetric kernel

hR (z1, . . . , z6)

:= 1

32

∑
(i1,...,i6)∈P6

[{
1

(
zi1,1 ≤ zi5,1

)−1(
zi2,1 ≤ zi5,1

)}{
1

(
zi3,1 ≤ zi5,1

)−1(
zi4,1 ≤ zi5,1

)}]
× [{

1
(
zi1,2 ≤ zi6,2

)−1(
zi2,2 ≤ zi6,2

)}{
1

(
zi3,2 ≤ zi6,2

)−1(
zi4,2 ≤ zi6,2

)}]
yields Blum-Kiefer-Rosenblatt’s R statistic (Blum et al. [1961]), which is a rank-based U-
statistic of order 6.

Remark 3.7.0.8 It is important to mention that the FDA is a very active field in the current
statistical community because of its wide range of applications. The literature on the subject
has been impressively large but mostly restricted to the standard multivariate situation where
both X and Y are real or multivariate. However, when the response is also of functional feature,
although functional linear models have been well developed, see, for instance, Ramsay and
Dalzell [1991], Müller and Yao [2008] and the references therein, the functional nonparametric
model when both X and Y are functional has not been well developed and we can cite only a
few reports in this direction, Ling et al. [2017, 2020] and the references therein.

3.8 The bandwidth selection criterion

Many methods have been established and developed to construct, in asymptotically optimal
ways, bandwidth selection rules for nonparametric kernel estimators, especially for Nadaraya-
Watson regression estimator we quote among them Hall [1984], Härdle and Marron [1985]
and Rachdi and Vieu [2007]. This parameter has to be selected suitably, either in the standard
finite-dimensional case or in the infinite-dimensional framework, to ensure good practical per-
formance. However, according to our knowledge, such studies do not presently exist for treating
such a general functional conditional U-statistic (unless the real case we could find in the paper
of Dony and Mason [2008] a paragraph devoted to the selection of the number k). Neverthe-
less an extension of the leave-one-out cross-validation procedure allows to define, for any fixed
i = (i1, . . . , im) ∈ I(m,n) :

r̂ ∗(m)
n,i (ϕ,t,hn,k (t)) =

∑
j∈Im

n (i)
ϕ(Y j1 , . . . ,Y jm )K

(
d(t1,X j1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,X jm )

Hn,k (tm)

)
∑

j∈Im
n (i)

K

(
d(t1,X j1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,X jm )

Hn,k ( jm)

) , (3.8.1)
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where
Im

n (i) := {
j ∈ I(m,n) and j ̸= i

}= I(m,n)\{i}.

The equation (3.8.1) represents the leave-out-(Xi,Yi) estimator of the functional regression and
also could be considered as a predictor of ϕ (Yi). In order to minimize the quadratic loss func-
tion, we introduce the following criterion; we have for some (known) non-negative weight
function W (·) :

CV
(
ϕ,k

)
:= ∑

i∈I(m,n)

(
ϕ (Yi)− r̂ ∗(m)

n,i (ϕ,Xi,hn,k (Xi))
)2

W̃ (Xi) , (3.8.2)

where

W̃ (t) :=
m∏

i=1
W (ti ).

Following the ideas developed by Rachdi and Vieu [2007], a natural way for choosing the
bandwidth is to minimize the precedent criterion, so let’s choose k̂ ∈ [k1,n ,k2,n] minimizing
among k ∈ [k1,n ,k2,n] :

sup
ϕK̃∈FmK m

CV
(
ϕ,k

)
,

we can conclude, by Corollary 3.4.1.5, that :

sup
ϕK̃∈FmK m

sup
t∈S m

X

∣∣∣r̂ ∗(m)
n,i (ϕ,t,hn,k̂ (t))− r (m)(ϕ,t)

∣∣∣−→ 0, a.co.

The main interest of our results is the possibility of deriving asymptotics for any automatic
data-driven parameters. Let K′(·) be a density function in Rd and H′

n,k ′(ti ) is the number of
neighborhoods associated with Yi s. One can estimate the conditional density f(m)(y1, . . . , ym |
t) = f(m)(y | t) by

f̂(m)
n (y,t)

:=

∑
(i1,...,im )∈I(m,n)

K′
(

t1 −Yi1

H′
n,k ′(t1)

)
· · ·K′

(
tm −Yim

Hn,k ′(tm)

)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,Xi1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,Xim )

Hn,k (tm)

) .

Hence the leave-one-out estimator is given by

f̂(m)
n,i (y,t)

:=

∑
( j1,..., jm )∈Im

n (i)
K′

(
t1 −Y j1

H′
n,k ′(t1)

)
· · ·K′

(
tm −Y jm

Hn,k ′(tm)

)
K

(
d(t1,X j1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,X jm )

Hn,k (tm)

)
∑

(i1,...,im )∈I(m,n)
K

(
d(t1,X j1 )

Hn,k (t1)

)
· · ·K

(
d(tm ,X jm )

Hn,k (tm)

) .

While the cross-validation procedures described above aim to approximate quadratic errors of
estimation, alternative ways for choosing smoothing parameters could be introduced, aiming
instead to optimize the predictive power of the method. The criterion is given by

(k̆, k̆ ′) = arg min
k1,n≤k≤k2,n , k ′

1,n≤k ′≤k ′
2,n

∑
i∈I(m,n)

(
ϕ (Yi)−argmax

y∈J
f̂(m)

n,i (y,t))

)2

,
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3.9 Mathematical developments

This section is devoted to the proofs of our results. The previously presented notation continues
to be used in the following.

3.9.1 General Lemma

This lemma presents an important tool that will allow us to derive asymptotic results for k-
NN estimators by using the results from functional conditional U-statistics of Bouzebda and
Nemouchi [2020]. We also present Lemma 3.9.1.1 in a general setting which could be useful
in many other situations than ours; this is a generalization of a result obtained in Burba et al.
[2009]. More generally, this technical tool could be useful as long as one has to deal with
random bandwidths.

Let (Ai ,Bi )n≥1 be n random vectors valued in
(
Ωm ×Ω′m ,A ×B

)
, a general space. Let SΩ

be a fixed subset of Ω and we note that G : R× (SΩ×Ω) → R+ a function such that, ∀t ∈ SΩ,
G(·, (t , ·)) is measurable and ∀x, x ′ ∈R :

(L0)

x ≤ x ′ ⇒ G(x,z) ≤ G
(
x ′,z

)
,∀z ∈ SΩ×Ω.

We define the pointwise measurable class of functions for 1 ≤ m ≤ n:

G m :=
{

(x1, . . . , xm) 7→
m∏

i=1
G(hi , (xi , ti )) , (h1, . . . ,hm) ∈Rm

+ \{0} and (t1, . . . , tm) ∈ Sm
Ω

}
.

Let
(
Dn,k (t)

)
n∈N be a sequence of random real vectors (r.r.v.) such that for all t = (t1, . . . , tm) ∈

Sm
Ω , Dn,k (t) = (

Dn,k (t1), . . . ,Dn,k (tm)
)
, and ϕ : Ω′m → R be a measurable function belonging to

some class of functions Fm and let M(m) : Fm ×Sm
Ω →R be a nonrandom function such that,

sup
ϕ∈Fm

sup
t∈Sm

Ω

∣∣M(m)(ϕ,t)
∣∣<∞.

Now, for all t ∈ Sm
Ω , ϕ ∈Fm and n ∈N\{0} we define

M(m)
n (ϕ,t;h) =

∑
i∈I(m,n)

ϕ(Bi1 , . . . ,Bim )
m∏

j=1
G

(
H j , (t j , Ai , j )

)
∑

i∈I(m,n)

m∏
j=1

G
(
H j , (t j , Ai , j )

) ,

where h = (H1, . . . ,Hm) ∈Rm+ , and G̃ =
m∏

i=1
G(hi , (xi , ti )),t = (t1, . . . , tm) ∈ Sm

Ω .

Lemma 3.9.1.1 Let (Un)n∈N be a decreasing positive sequence such that lim
n→∞Un = 0. If,

for all increasing sequence βn ∈ (0,1) with βn −1 = O(Un), there exist two sequences of r.r.v.(
D−

n,k (βn ,t)
)

n∈N and
(
D+

n,k (βn ,t)
)

n∈N such that
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(L1)
∀n ∈N and t ∈ Sm

Ω ,D−
n,k (βn , t j ) ≤ D+

n,k (βn , t j ) ,∀ j = 1, . . . ,m,

(L2)
m∏

j=1
1{

D−
n,k (βn ,t j )≤Dn,k (t j )≤D+

n,k (βn ,t j )
} → 1, a.co, ∀t ∈ Sm

Ω .

(L3)

sup
G̃∈G m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣∣∣∣∣∣∣∣

∑
i∈I(m,n)

m∏
j=1

G
(
D−

n,k (βn , t j ), (t j , Ai , j )
)

∑
i∈I(m,n)

m∏
j=1

G
(
D+

n,k (βn , t j ), (t j , Ai , j )
) −βn

∣∣∣∣∣∣∣∣∣∣
= Oa.co(Un),

(L4)
sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣M(m)
n

(
ϕ,t;D−

n,k (βn ,t)
)
−M(m)(ϕ,t)

∣∣∣= Oa.co(Un),

(L5)
sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣M(m)
n

(
ϕ,t;D+

n,k (βn ,t)
)
−M(m)(ϕ,t)

∣∣∣= Oa.co(Un).

Then

sup
ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n

(
ϕ,t;Dn,k (t)

)−M(m)(ϕ,t)
∣∣= Oa.co(Un). (3.9.1)

Proof of Lemma 3.9.1.1

The proof of this Lemma extends the scheme of Burba et al. [2009] and Kudraszow and Vieu
[2013]. For technical reasons, we assume that the function ϕ(·) is a non-negative function. To
obtain the results for any real valued function ϕ(·) we can write ϕ(·) = ϕ+(·)−ϕ−(·), thus, for
all y ∈Ω′m we have:

ϕ+(y) = max
(
ϕ(y),0

)
and ϕ+(y) =−min

(
ϕ(y),0

)
.

Let us denote

M(m)
n− (ϕ,t;βn) =

∑
i∈I(m,n)

ϕ(Bi ,1, . . . ,Bi ,m)
m∏

j=1
G

(
D−

n,k (βn , t j ), (t j , Ai , j )
)

∑
i∈I(m,n)

m∏
j=1

G
(
D+

n,k (βn , t j ), (t j , Ai , j )
) ,

M(m)
n+ (ϕ,t;βn) =

∑
i∈I(m,n)

ϕ(Bi ,1, . . . ,Bi ,m)
m∏

j=1
G

(
D+

n,k (βn , t j ), (t j , Ai , j )
)

∑
i∈I(m,n)

m∏
j=1

G
(
D−

n,k (βn , t j ), (t j , Ai , j )
) .
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For all sequence βn ∈ (0,1) with βn −1 = O(Un), we deduce from (L3) and (L4) that

sup
ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n− (ϕ,t;βn)−M(m)(ϕ,t)

∣∣
≤ sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n− (ϕ,t;βn)−βnM

(m)(ϕ,t)
∣∣

+ ∣∣M(m)(ϕ,t)
∣∣ ∣∣βn −1

∣∣ (3.9.2)

= Oa.co(Un). (3.9.3)

In the same way, (L3) and (L5) give us

sup
ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣M(m)
n+ (ϕ,t;βn)−M(m)(ϕ,t)

∣∣∣= Oa.co(Un). (3.9.4)

For all ε> 0, we note

Tn(εn) =
{

sup
ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n (ϕ,t;Dn,k (t))−M(m)(ϕ,t)

∣∣≤ εUn

}
,

and for all sequence βn ∈ (0,1) with βn −1 = O(Un)

S−
n (εn ,βn) =

{
sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n− (ϕ,t;βn)−M(m)(ϕ,t)

∣∣≤ εUn

}
,

S+
n (εn ,βn) =

{
sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣M(m)
n+ (ϕ,t;βn)−M(m)(ϕ,t)

∣∣∣≤ εUn

}
,

Sn(βn) =
{
M(m)

n− (ϕ,t;βn) ≤M(m)(ϕ,t) ≤M(m)
n+ (ϕ,t;βn),∀t ∈ Sm

Ω

}
.

Then for all βn ∈ (0,1) with βn −1 = O(Un) ,

∀εn > 0, S−
n (εn ,βn)

⋂
S+

n (εn ,βn)
⋂

Sn(βn) ⊂ Tn(εn). (3.9.5)

For all j = 1, . . . ,m, set

Gn, j (βn) =
{

D−
n,k

(
βn , t j

)≤ Dn,k (βn , t j ) ≤ D+
n,k

(
βn , t j

)
,∀t ∈ Sm

Ω

}
,

and

Gn(βn) =
m⋂

j=1
Gn, j (βn).

Then (L0) implies that Gn(βn) ⊂ Sn(βn) and, from (3.9.5), we have

∀εn > 0, Tn(εn)c ⊂ S−
n (εn ,βn)c

⋃
S+

n (εn ,βn)c
⋃

Gn(βn)c .

68



CHAPTER 3. K-NN FUNCTIONAL CONDITIONAL U-STATISTICS

Consequently,

P

{
sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n (ϕ,t;Dn,k (t))−M(m)(ϕ,t)

∣∣> εUn

}

≤ P

{
sup

ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣M(m)
n− (ϕ,t;βn,εn )−M(m)(ϕ,t)

∣∣∣> εUn

}

+P
{

sup
ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣∣M(m)
n+ (ϕ,t;βn,εn )−M(m)(ϕ,t)

∣∣∣> εUn

}

+
m∑

j=1
P

{
1{

D−
n,k (βn ,t j )≤Dn,k (βn ,t j )≤D+

n,k (βn ,t j )
} = 0

}
.

Taking into account (L2), (3.9.2) and (3.9.4), we get that, for ε0 > 0, we have
∞∑

n=1
P

{
sup
ϕG̃

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n (ϕ,t;Dn,k (t))−M(m)(ϕ,t)

∣∣> ε0Un

}
<∞. (3.9.6)

Hence the proof is complete. □

Proofs of the intermediate results

Using the fact that

r̂ (1)
n (ϕ, t ;hK) = Wn(ϕK, t ,hK)

Qn(K, t ,hK)
,

where

Wn(ϕK, t ;hK) := 1

nφt (hK)

n∑
i=1

ϕ(Yi )K

(
d(t ,Xi )

hK

)
,

and

Qn(,Kt ;hK) := 1

nφt (hK)

n∑
i=1

K

(
d(t ,Xi )

hK

)
,

we can proceed as follows:

r̂ (1)
n (ϕ, t ;hK)− r (1)(ϕ, t )

= 1

Qn(K, t ;hK)

(
Wn(ϕK, t ;hK)−E[Wn(ϕK, t ;hK)]

)
− E[Wn(ϕK, t ;hK)]

Qn(K, t ;hK)E[Qn(K, t ;hK)]
(Qn(K, t ;hK)−E[Qn(K, t ;hK)])

−
(
E(ϕ(Y)|X = t )− E[Wn(ϕK, t ;hK)]

E[Qn(K, t ;hK)]

)
.

The following lemmas are instrumental in the proof of Theorem 3.3.2.1.

Lemma 3.9.1.2 (a) Under the assumptions (A.1.)-(A.3), (A.4.b), (A.6) and if we suppose that
(3.2.9) holds, then we get:

sup
K∈K

sup
an≤hK≤bn

sup
t∈SX

|Qn(K, t ;hK)−E(Qn(K, t ;hK))| = Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.7)
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(b) If in addition assumption (A.7.) holds, then we have

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣Qn(K, t ;hn,k (t ))−E(Qn(K, t ;hn,k (t )))
∣∣= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 .

(3.9.8)
Moreover, there exists C > 0 such that

∞∑
n=1

P

(
inf

K∈K
inf

k1,n≤k≤k1,n

inf
t∈SX

Qn(K, t ,hn,k (t )) < C

)
<∞. (3.9.9)

Lemma 3.9.1.3 (a) If we suppose that the assumptions (A.1.)-(A.5.) and (A.6.) hold, then we
get

sup
ϕK∈FK

sup
an≤hK≤bn

sup
t∈SX

∣∣Wn(ϕK, t ;hK)−E(
Wn(ϕK, t ;hK)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.10)

(b) If in addition assumption (A.7.) holds, then we have

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣Wn(ϕK, t ;hn,k (t )))−E(
Wn(ϕK, t ;hn,k (t )))

)∣∣= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 .

(3.9.11)

In order to complete this proof, we need to restate Lemma 3.9.1.3 for the unbounded class of
functions:

Lemma 3.9.1.4 (a) If we suppose that the assumptions (A.1.)-(A.3.) and (A.4.a’), (A.4.b),
(A.5.),(A.6.) hold then we get :

sup
ϕK∈FK

sup
an≤hK≤bn

sup
t∈SX

∣∣Wn(ϕK, t ;hK)−E(
Wn(ϕK, t ;hK)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.12)

(b) If in addition assumption (A.7.) holds, then we have

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣Wn(ϕK, t ;hn,k (t )))−E(
Wn(ϕK, t ;hn,k (t )))

)∣∣= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 .

(3.9.13)

Remark 3.9.1.5 The statements (a) in each one of the above lemmas is already proved in
Bouzebda and Nemouchi [2020], but since some of the elements of these proofs are needed
in the following sections, we will present a brief version of those proofs and adapt them to our
case.
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Proof of Lemma 3.9.1.2

Proof of Lemma 3.9.1.2 (a)

Taking condition (A.1.a) in consideration, it suffices to prove that there exists ϵ0 > 0 and b0 > 0

such that

∑
n≥1

P

 sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

√√√√ nφ(an)

ψSX

(
logn

n

) |Qn(K, t ;hK)−E (Qn(K, t ;hK))| ≥ ϵ0

<∞.

Let {t1, . . . , tNε(SX )} be an ε-net for SX , we know that:

SX ⊆
Nε(SX )⋃
ℓ=1

B(tℓ,ε),

where Nε(SX ) is the minimal number of balls in X of radius ε(εn = (logn)/n) needed to cover
SX . Therefore, for all t ∈SX , there exists ℓ(t ), 1 ≤ ℓ(t ) ≤ Nε(SX ) such that

t ∈ B(tℓ,εn) and d(t , tℓ(t )) = argmin1≤ℓ≤Nεn (SX )d(t , tℓ).

Thus, the problem can be written as

|Qn(K, t ;hK)−E (Qn(K, t ;hK))|
≤ ∣∣Qn(K, t ;hK)−Qn(K, tℓ(t );hK)

∣∣+ ∣∣Qn(K, tℓ(t );hK)−E(
Qn(K, tℓ(t );hK)

)∣∣
+ ∣∣E(

Qn(K, tℓ(t );hK)
)−E (Qn(K, t ;hK))

∣∣ (3.9.14)

= ∣∣Qn,1(K, t ;hK)
∣∣+ ∣∣Qn,2(K, t ;hK)

∣∣+ ∣∣Qn,3(K, t ;hK)
∣∣ . (3.9.15)

By (3.9.15), we can see that , in order to prove (3.9.7), we need to study

sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

{∣∣Qn,1(K, t ;hK)
∣∣+ ∣∣Qn,2(K, t ;hK)

∣∣+ ∣∣Qn,3(K, t ;hK)
∣∣} .

Let us start with Qn,2(K, t ;hK). We define

hK, j = 2 j an , L(n) = max
{

j : hK, j ≤ 2b0
}

.

Notice that, if we denote HK, j := [hK, j−1,hK, j ], we can clearly see that [an ,b0] ⊆
L(n)⋃
j=1

HK, j ,

which means in order to study the uniformity of Qn,2(K, t ;hK), we need to study

max
1≤ j≤L(n)

sup
K∈K

sup
hK∈HK, j

sup
t∈SX

∣∣Qn,2(K, t ;hK)
∣∣ .

Now, for 1 ≤ j ≤ L(n) and 1 ≤ ℓ≤ Nεn (SX ), we consider the following class of functions

G (ℓ)
K, j =

{
x 7→ K

(
d(x, tℓ)

hK

)
where K ∈K and hK ∈HK, j

}
. (3.9.16)
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In addition, we denote

αn(g ) = 1p
n

n∑
i=1

(
g (Xi )−E(

g (Xi )
))

,

the empirical process based on the functional variables X1, . . . ,Xn . Hence, using the fact that,
for 1 ≤ ℓ(t ) ≤ Nε(SX )

Qn,2 = 1

φtℓ(hK)
p

n
αn(K),

and, by the condition (A.1.a), we have

φ(an)

φ2
tℓ

(hK)
≤ φ(an)

C2
1φ

2(hK)
,

and taking into account that hK, j = 2 j an , which means that hK, j /2 = 2 j−1an =: hK, j−1, we get

φ(an)

C2
1φ

2(hK)
≤ φ(an)

C2
1φ

2(hK, j−1)
= φ(an)

C2
1φ

2(hK, j /2)
.

In view of condition (A.1.b), we have

C3 ≤
φ(hK, j /2)

φ(hK, j )
≤ φ(hK, j /2)

φ(an)
,

this implies
φ(an)

φ(hK, j /2)
≤ 1

C3
.

Hence, we conclude that

φ(an)

C2
1φ

2(hK, j /2)
= 1

C2
1φ(hK, j /2)

(
φ(an)

φ(hK, j /2)

)
≤ 1

C2
1C3φ(hK, j /2)

.

For some ϱ> 0, we have
φ(an)

φ2
tℓ

(hK)
≤ ϱ2

φ(hK, j /2)
.

It follows that

P

{
sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

√
nφ(an)

ψSX
(εn)

∣∣Qn,2(K, tℓ(t );hK)
∣∣≥ ϵ0

}

≤
Nεn (SX )∑
ℓ=1

L(n)∑
j=1

P

 1√
nφ(hK, j /2)ψSX

(εn)
max

1≤ℓ≤Nεn (SX )
max

1≤ j≤L(n)

∥∥pnαn(K)
∥∥

G (ℓ)
K, j

≥ ϵ0/ϱ


≤ L(n)Nεn (SX ) max

1≤ j≤L(n)
max

1≤ℓ≤Nεn (SX )
P

{
max

1≤p≤n

∥∥ppαp (K)
∥∥

G (ℓ)
K, j

≥
√

nφ(hK, j /2)ψSX
(εn)ϵ0/ϱ

}
.(3.9.17)

We apply Bernstein’s inequality in order to bound the probability in (3.9.17). To do that, we
first study the asymptotic behavior of

µ′
n = E∥∥pnαn(K)

∥∥
G (ℓ)

K, j
,
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and
σ2 = E

(
G(ℓ)

K, j (X)
)2

,

where G(ℓ)
K, j , denotes the envelope function of the class G (ℓ)

K, j . Taking into consideration the con-
dition (A.4.b), it follows that

G(ℓ)
K, j (X) ≤ κ21B(tℓ,hK, j /2)(X),

and, from condition (A.1.), we get that, for all 2 ≤ q ≤ p,

E
(
G(ℓ)

K, j (X)
)q ≤ E

(
κ21B(tℓ,hK, j /2)(X)

)q

≤ κq
2P

(
X ∈ B(tℓ,hK, j /2)

)q

≤ κq
2φtℓ(hK, j /2)q ,

and since the probabilities 0 ≤ φtℓ(hK, j /2) ≤ 1, then it is clear that φtℓ(hK, j /2)q ≤ φtℓ(hK, j /2).
Now using condition (A.1.a), there exists a constant C2 > 0 such that φtℓ(hK, j /2) ≤ C2φ(hK, j /2).
we get that, for all 2 ≤ q ≤ p,

E
(
G(ℓ)

K, j (X)
)q ≤ C2κ

q
2φtℓ(hK, j /2),

which implies that
σ2 = C2κ

2
2φ(hK, j /2).

Moreover, combining Lemma 3.9.1.6 and 3.9.1.7 in appendix together with condition (A.5.),
we could observe that

µ′
n = E∥∥pnαn(K)

∥∥
G (ℓ)

K, j
≤ C

√
nφ(hK, j /2).

Hence we have

µ′
n = O

(√
nφ(hK, j /2)

)
.

Now, we can apply Bernstein’s inequality for the empirical processes, therefore for

z = (ϵ0/2)
√

nφ(hK, j /2)ψSX
(εn) and H = κ2

(
2

q !

)1/(q−2)

, or simply H = κ2 if q = 2.

Making use of Lemma 3.9.1.8, we get

P

{
max

1≤p≤n

∥∥ppαp (K)
∥∥

G (ℓ)
K, j

≥
√

nφ(hK, j /2)ψSX
(εn)ϵ0/ϱ

}
≤ P

{
max

1≤p≤n

∥∥ppαp (K)
∥∥

G (ℓ)
K, j

≥µ′
n + z

}
(3.9.18)

≤ exp

 −(ϵ0/ϱ)2pnψSX
(εn)

8κ2
2

p
n +4ϵ0κ2

√
ψSX

(εn )

φ(hK, j /2)


≤ n−Cϵ0 , (3.9.19)
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where C > 0. Moreover, from equations (3.2.7), and the fact that L(n) ∼ log(b0/an)

log(2)
and by

choosing
ϵ2

0C > 1,εn = logn/n,

we get from (3.9.19) and (3.9.17),

∑
n≥1

P

 sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

√√√√ nφ(an)

ψSX

(
logn

n

) ∣∣Qn,2(K, tℓ(t );hK)
∣∣≥ ϵ0


≤ ∑

n≥1
CL(n)Nεn (SX )n−Cϵ0 <∞. (3.9.20)

Let’s us now study the first term,
∣∣Qn,1(K, t ;hK)

∣∣ in (3.9.15). By condition (A.1.a), for C > 0,

we have

sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

∣∣Qn,1(K, t ;hK)
∣∣

≤ 1

n
sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

{
n∑

i=1

∣∣∣∣∣ 1

φt (hK)
K

(
d(Xi , t )

hK

)
− 1

φtℓ(t ) (hK)
K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣∣
}

(3.9.21)

≤ sup
K∈K

sup
an≤h≤b0

sup
t∈SX

C

nφ(hK)

n∑
i=1

∣∣∣∣K (
d(Xi , t )

hK

)
−K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣1B(t ,hK)∪B(tℓ(t ),hK)(Xi ).(3.9.22)

We denote:

sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

1

nφ(hK)

n∑
i=1

∣∣∣∣K (
d(Xi , t )

hK

)
−K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣1B(t ,hK)∪B(tℓ(t ),hK)(Xi ) =: Qn,11.

Since the kernel K(·) is supposed to be Lipschitz, we have

Qn,11 ≤ sup
an≤h≤b0

sup
t∈SX

1

n

n∑
i=1

1

hKφ(hK)
d(t , tℓ(t ))1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

≤ sup
an≤h≤b0

sup
t∈SX

1

n

n∑
i=1

εn

hKφ(hK)
1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

≤ sup
an≤h≤b0

sup
t∈SX

1

n

n∑
i=1

Z(11)
i ,

where, for 1 ≤ i ≤ n :

Z(11)
i = εn

hKφ(hK)
1B(t ,hK)∪B(tℓ(t ),hK)(Xi ).

Using condition (A.6.) with the fact that the bandwidths hK belongs to the interval [an ,bn], we
get for q ≥ 2 :

E
(
Z(11)

1

)q ≤ Cq
1

(
1√
φ(an)

)2(q−1)

,

where we assume that C1 is the bound of the sequence logn
/

nan which converges to 0. Hence,
by applying a standard inequality (see Corollary A.8 Ferraty and Vieu [2006]) that the condi-
tions are satisfied here, uniformly on t ∈SX and on hK, on :

1

n

n∑
i=1

Z(11)
i ,
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in combination with condition (A.2.) and (A.6.), we readily obtain

Qn,11 = Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 .

Therefore

sup
K∈K

sup
an≤h≤b0

sup
t∈SX

∣∣Qn,1(K, t ;hK)
∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.23)

Let’s consider now
∣∣Qn,3(K, t ;hK)

∣∣ in (3.9.15). It is clear that

∣∣Qn,3(K, t ;hK)
∣∣≤ E ∣∣Qn(K, tℓ(t );hK)−Qn(K, t ;hK)

∣∣ ,

hence, by the fact that the kernel K(·) is Lipschitz and for any constant a, E(a) = a, then we
deduce directly by proceeding in the same way as in treating

∣∣∣Q(1)
n (K, t ;hK)

∣∣∣ , that :

sup
K∈K

sup
an≤h≤b0

sup
t∈SX

∣∣Qn,3(K, t ;hK)
∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.24)

Consequently, from (3.9.20), (3.9.23) and (3.9.24), we get :

sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

|Qn(K, t ;hK)−E (Qn(K, t ;hK))| = Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 .

Proof of Lemma 3.9.1.2 (b)

The proof of Lemma 3.9.1.2 (b) is a direct consequence of Lemma 3.9.1.2 (a). Specifically,
taking assumptions (3.2.13), (3.2.14) and (3.2.15) into account, it suffices to consider

an =µφ−1
(
ρnk1,n

n

)
and bn = νφ−1

(
k2,n

ρnn

)
,

E(Qn(K, t ,hK)) ≥ κ1
φt (hK/2)

φt (hK)
≥ κ1C1

C2

φ(hK/2)

φ(hK)
≥ κ1C1C4

C2
= C′ > 0. (3.9.25)
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Thus, denoting C = C′/2 verifies that

P

(
inf

K∈K
inf

k1,n≤k≤k1,n

inf
t∈SX

Qn(K, t ,hK) < C

)
≤ P

(
sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn(K, t ,hK)−E(Qn(K, t ,hK))| ≥ C

)

≤ P

 sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn(K, t ,hK)−E(Qn(K, t ,hK))|1{
µφ−1

(
ρnk1,n

n

)
≤Hn,k (t )≤νφ−1

(
k2,n
ρn n

)} ≥ C/2


+P

(
Hn,k (t ) ∉

(
µφ−1

(
ρnk1,n

n

)
,νφ−1

(
k2,n

ρnn

)))
(3.9.26)

It is shown, in Kara et al. [2017], see (3.9.42) and (3.9.43), that

∑
n

k2,n∑
k=k1,n

P

(
Hn,k (t ) ≤µφ−1

(
ρnk1,n

n

))
<∞ and

∑
n

k2,n∑
k=k1,n

P

(
Hn,k (t ) ≥ νφ−1

(
k2,n

ρnn

))
<∞.

So, all that is left to be investigated is

sup
K∈K

sup
an≤hK≤b0

sup
t∈SX

|Qn(K, t ;hK)−E (Qn(K, t ;hK))| .

That is considered in the previous lemma. Hence the proof is complete. □

Proof of Lemma 3.9.1.3

Similar to the proof of Lemma 3.9.1.2, to prove (3.9.10), we can write∣∣Wn(ϕK, t ;hK)−E(
Wn(ϕK, t ;hK)

)∣∣
≤ ∣∣Wn(ϕK, t ;hK)−Wn(ϕK, tℓ(t );hK)

∣∣
+ ∣∣Wn(ϕK, tℓ(t );hK)−E(

Wn(ϕK, tℓ(t );hK)
)∣∣

+ ∣∣E(
Wn(ϕK, tℓ(t );hK)

)−E(
Wn(ϕK, t ;hK)

)∣∣ .

In the sequel, we use the following notation∣∣Wn,1(ϕK, t ;hK)
∣∣ := ∣∣Wn(ϕK, t ;hK)−Wn(ϕK, tℓ(t );hK)

∣∣ ,∣∣Wn,2(ϕK, tℓ(t );hK)
∣∣ := ∣∣Wn(ϕK, tℓ(t );hK)−E(

Wn(ϕK, tℓ(t );hK)
)∣∣ ,∣∣Wn,3(ϕK, t ;hK)

∣∣ := ∣∣E(
Wn(ϕK, tℓ(t );hK)

)−E(
Wn(ϕK, t ;hK)

)∣∣ .

Proceeding in the same way as in the proof of Lemma 3.9.1.2, we observe that for 1 ≤ ℓ ≤
Nεn (SX ) :

Wn,2(ϕK, tℓ;hK) = 1

nφtℓ(hK)

n∑
i=1

{
ϕ(Yi )K

(
d(Xi , tℓ)

hK

)
−E

(
ϕ(Yi )K

(
d(Xi , tℓ)

hK

))}
=:

1

φtℓ(hK)
p

n
α′n(ϕK),
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where α′n(ϕK) is an empirical process indexed by the class of functions FK . We consider also
the following class of functions for 1 ≤ j ≤ L(n) and 1 ≤ ℓ≤ Nεn (SX ) :

G (ℓ)
ϕK, j =

{
(x, y) 7→ϕ(y)K

(
d(x, tℓ)

hK

)
where K ∈K ,ϕ ∈F and hK ∈HK, j

}
,

with the envelope function G(ℓ)
ϕK, j , and proceed as follows :

P

{
max

1≤ j≤L(n)
sup

ϕK∈FK
sup

hK∈HK, j

sup
t∈SX

√
nφ(an)

ψSX
(εn)

∣∣Wn,2(ϕK, tℓ(t );hK)
∣∣≥ ϵ0

}

≤ L(n)Nεn (SX ) max
1≤ j≤L(n)

max
1≤ℓ≤Nεn (SX )

P

{
max

1≤p≤n

∥∥∥ppα′p (ϕK)
∥∥∥

G (ℓ)
ϕK, j

≥ ϵ0

√
nφ(hK, j )ψSX

(εn)

}
.

Since the envelope function G(ℓ)
ϕK, j (·, ·), satisfy

G(ℓ)
ϕK, j (X,Y) ≤ Mκ21B(tℓ,hK, j /2)(X),

and from (A.1.), (A.4.b) and (A.5.), with the use of the Lemma 3.9.1.6 in combination with
Lemma 3.9.1.7 in appendix, we observe that

µ′′
n := E∥∥pnα′n(ϕK)

∥∥
G (ℓ)
ϕK, j

= O
(√

nφ(hK, j /2)
)

,

and
σ2

1 := E
(
G(ℓ)
ϕK, j (X,Y)

)2 = O
(
φ(hK, j /2)

)
.

By applying Bernstein’s inequality for the empirical processes
{
α′n(ϕK)

}
FK with the same

choice of parameters as in the proof of Lemma 3.9.1.2, and from (3.2.6) we obtain :

P

{
max

1≤p≤n

∥∥∥ppα′p (ϕK)
∥∥∥

G (ℓ)
ϕK, j

≥ ϵ0

√
nφ(hK, j /2)ψSX

(εn)

}
≤ exp

(
−ϵ2

0ψSX
(εn)

16κ2
2

)
≤ n−ϵ2

0C′′
. (3.9.27)

Therefore, from condition (A.2.) and if we choose ϵ2
0C′′ > 1 and εn = logn

n , we get

∑
n≥1

P

 sup
ϕK∈FK

sup
an≤hK≤b0

sup
t∈SX

√√√√ nφ(an)

ψSX

(
logn

n

) ∣∣Wn,2(ϕK, tℓ(t );hK)
∣∣≥ ϵ0


≤ ∑

n≥1
CL(n)n−ϵ2

0C′′ <∞. (3.9.28)

Remark, from condition (A.4.a), that Wn,1(ϕK, t ;hK) satisfies :∣∣Wn,1(ϕK, t ;hK)
∣∣

=
∣∣∣∣∣ 1

nφt (hK)

n∑
i=1

ϕ(Yi )K

(
d(Xi , t )

hK

)
− 1

nφtℓ(t ) (hK)

n∑
i=1

ϕ(Yi )K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣∣
≤ M

∣∣∣∣∣ 1

nφt (hK)

n∑
i=1

K

(
d(Xi , t )

hK

)
− 1

nφtℓ(t ) (hK)

n∑
i=1

K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣∣
= M

∣∣Qn(K, t ;hK)−Qn(K, tℓ(t );hK)
∣∣

= MQn,1(K, t ;hK).
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Hence, the study of the term
∣∣Wn,1(ϕK, t ;hK)

∣∣ is similar to that of Qn,1(K, t ;hK). Therefore, we
obtain

sup
ϕK∈FK

sup
an≤hK≤b0

sup
t∈SX

∣∣Wn,1(ϕK, t ;hK)
∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.29)

Using similar arguments as those before, we remark that
∣∣Wn,3(ϕK, t ;hK)

∣∣ can be handled as
Qn,3(K, t ;hK). Hence

sup
ϕK∈FK

sup
an≤hK≤b0

sup
t∈SX

∣∣Wn,3(ϕK, t ;hK)
∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 . (3.9.30)

Then (3.9.28), (3.9.29) and (3.9.30) yield :

sup
ϕK∈FK

sup
an≤hK≤b0

sup
t∈SX

∣∣Wn(ϕK, t ;hK)−E(
Wn(ϕK, t ;hK)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 .

Therefore the proof is complete. □

Proof of Lemma 3.9.1.4

In this lemma, we suppose that the class of functions F is not necessarily bounded but satisfying
condition (A.4.a’). In order to prove Lemma 3.9.1.4, we proceed as follows, for an arbitrary
λ> 0 and each function ϕ ∈F :

ϕ(y) = ϕ(y)1{
F(y)≤λη1/p

n

}+ϕ(y)1{
F(y)>λη1/p

n

}
= ϕ(T)(y)+ϕ(R)(y),

where we take ηn = n/
(
logn

)2 . So we write

Wn(ϕK, t ;hK) := 1

nφt (hK)

n∑
i=1

ϕ(T)(Yi )K

(
d(Xi , t )

hK

)
+ 1

nφt (hK)

n∑
i=1

ϕ(R)(Yi )K

(
d(Xi , t )

hK

)
=Wn,(T)(ϕK, t ;hK)+Wn,(R)(ϕK, t ;hK).

To prove (3.9.12) we will first deal with the truncated part Wn,(T)(ϕK, t ;hK), and we have∣∣Wn,(T)(ϕK, t ;hK)−E(
Wn,(T)(ϕK, t ;hK)

)∣∣
≤ ∣∣Wn,(T)(ϕK, t ;hK)−Wn,(T)(ϕK, tℓ(t );hK)

∣∣
+ ∣∣Wn,(T)(ϕK, tℓ(t );hK)−E(

Wn,(T)(ϕK, tℓ(t );hK)
)∣∣

+ ∣∣E(
Wn,(T)(ϕK, tℓ(t );hK)

)−E(
Wn,(T)(ϕK, t ;hK)

)∣∣ .

78



CHAPTER 3. K-NN FUNCTIONAL CONDITIONAL U-STATISTICS

In the sequel, we will use the following notation∣∣∣W(1)
n,(T)(ϕK, t ;hK)

∣∣∣ := ∣∣Wn,(T)(ϕK, t ;hK)−Wn,(T)(ϕK, tℓ(t );hK)
∣∣ ,∣∣∣W(2)

n,(T)(ϕK, tℓ(t );hK)
∣∣∣ := ∣∣Wn,(T)(ϕK, tℓ(t );hK)−E(

Wn,(T)(ϕK, tℓ(t );hK)
)∣∣ ,∣∣∣W(3)

n,(T)(ϕK, t ;hK)
∣∣∣ := ∣∣E(

Wn,(T)(ϕK, tℓ(t );hK)
)−E(

Wn,(T)(ϕK, t ;hK)
)∣∣ .

In similar way of the proof of Lemma 3.9.1.3, we get that for 1 ≤ ℓ≤ Nεn (SX )

W(2)
n,(T)(ϕK, tℓ(t );hK)

= 1

nφtℓ(hK)

n∑
i=1

{
ϕ(T)(Yi )K

(
d(Xi , tℓ)

hK

)
−E

(
ϕ(T)(Yi )K

(
d(Xi , tℓ)

hK

))}
=:

1

φtℓ(hK)
p

n
αn(ϕ(T)K),

where αn(ϕ(T)K) is an empirical process indexed by the class of functions FK Iληn , where
we define the class of functions of y ∈Y , Iληn by

Iληn :=
{
1{

F(y)≤λη1/p
n

} : λ> 0

}
,

where p being the moment order given in (A.4.a’). We consider also the following class of
functions, for 1 ≤ j ≤ L(n) and 1 ≤ ℓ≤ Nεn (SX ),

G (ℓ,T)
ϕK, j =

{
(x, y) 7→ϕ(y)K

(
d(x, tℓ)

hK

)
1{

F(y)≤λη1/p
n

} : K ∈K ,ϕ ∈F and hK ∈HK, j ,λ> 0

}
,

that the envelope function is denoted G(ℓ,T)
ϕK, j , then :

P

{
max

1≤ j≤L(n)
sup

ϕK∈FK
sup

hK, j−1≤hK≤hK, j

sup
t∈SX

√
nφ(an)

ψSX
(εn)

∣∣∣W(2)
n,(T)(ϕK, tℓ(t );hK)

∣∣∣≥ ϵ0

}

≤ L(n)Nεn (SX ) max
1≤ j≤L(n)

max
1≤ℓ≤Nεn (SX )

P

{
max

1≤p≤n

∥∥ppαp (ϕ(T)K)
∥∥

G (ℓ,T)
ϕK, j

≥ ϵ0

√
nφ(hK, j )ψSX

(εn)

}
.

(3.9.31)

As it was done previously, we apply Bernstein’s inequality to investigate (3.9.31), so we have
to study the asymptotic behavior of the quantities

µ(3)
n,T = E∥∥pnαn(ϕ(T)K)

∥∥
G (ℓ,T)
ϕK, j

,

and
E
(
G(ℓ,T)
ϕK, j (X,Y)

)2
.

From condition (A.4.b), we see that

G(ℓ,T)
ϕK, j (X,Y) ≤ F(Y)κ21B(tℓ,hK, j /2)(X)1{

F(y)≤λη1/p
n

},
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so thanks to the condition (A.4.a’) we get

E
(
G(ℓ,T)
ϕK, j (X,Y)

)2 ≤ λ2κ2
2φ(hK, j /2)η2/p

n =σ2
(T),

indeed

E
(
G(ℓ,T)
ϕK, j (X,Y)

)2 ≤ E
(
F(Y)κ21B(tℓ,hK, j /2)(X)1{

F(y)≤λη1/p
n

})2

≤ κ2
2E

(
λη

1/p
n 1B(tℓ,hK, j /2)(X)

)2

≤ κ2
2λ

2η
2/p
n P

(
X ∈ B(tℓ,hK, j /2)

)2

≤ κ2
2λ

2η
2/p
n φtℓ

(
hK, j /2

)
≤ κ2

2λ
2η

2/p
n φ

(
hK, j /2

)
.

For all 2 ≤ q ≤ p, in a similar way, we have

E
(
G(ℓ,T)
ϕK, j (X,Y)

)q ≤ κq
2λ

qφ(hK, j /2)ηq/p
n = κq−2

2 λq−2σ2
(T),

which gives that
σ2

(T) = κ2
2λ

2η
2/p
n φ

(
hK, j /2

)
.

Further, according to Lemma 3.9.1.6 in combination with Lemma 3.9.1.7 in appendix, and since
condition (A.5.) is satisfied, we infer that

µ(3)
n,T = E∥∥pnαn(ϕ(T)K)

∥∥
G (ℓ,T)
ϕK, j

≤ C′κ2

√
nφ(hK, j /2)η2/p

n .

Implying that,

µ(3)
n,T = O

(√
nφ(hK, j /2)η2/p

n

)
.

Now, we can apply Bernstein’s inequality for empirical processes, therefore for:

z = ϵ0

√
nφ(hK, j /2)ψSX

(εn),

in Lemma 3.9.1.8, we get, for C′ > 0,

P

{
max

1≤k≤n

∥∥∥pkαk (ϕ(T)K)
∥∥∥

G (ℓ,T)
ϕK, j

≥ ϵ0

√
nφ(hK, j )ψSX

(εn)

}
≤ P

{
max

1≤k≤n

∥∥∥pkαk (ϕ(T)K)
∥∥∥

G (ℓ,T)
ϕK, j

≥µ(3)
n,T + z

}

≤ exp

−ϵ2
0

nφ(hK, j /2)ψSX
(εn)

2nφ(hK, j /2)η2/p
n +C′

√
nφ(hK, j /2)ψSX

(εn)


≤ n−ϵ2

0C′
, (3.9.32)

where C′ > 0. From equations (3.2.7), and fact that L(n) ∼ log(b0/an)

log(2)
and by choosing

εn = logn

n
,
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we get

∑
n≥1

P

{
max

1≤ j≤L(n)
sup

ϕK∈FK
sup

hK∈HK, j

sup
t∈SX

√
nφ(an)

ψSX
(εn)

∣∣∣W(2)
n,(T)(ϕK, tℓ(t );hK)

∣∣∣≥ ϵ0

}
≤ ∑

n≥1
L(n)nϵ2

0C′ <∞.(3.9.33)

We have now to prove that the desired result is also satisfied for∣∣∣W(1)
n,(T)(ϕK, t ;hK)

∣∣∣= ∣∣Wn,(T)(ϕK, t ;hK)−Wn,(T)(ϕK, tℓ(t );hK)
∣∣ .

We proceed as in the bounded case, for C′ > 0,∣∣∣W(1)
n,(T)(ϕK, t ;hK)

∣∣∣
=

∣∣∣∣∣ 1

nφt (hK)

n∑
i=1

ϕ(T)(Yi )K

(
d(Xi , t )

hK

)
− 1

nφtℓ(t ) (hK)

n∑
i=1

ϕ(T)(Yi )K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣∣
≤ C′

nφ(hK)

∣∣∣∣∣ n∑
i=1

F(T)(Yi )K

(
d(Xi , t )

hK

)
−

n∑
i=1

F(T)(Yi )K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣∣,
where

F(T)(y) := F(y)1{
F(y)≤λη1/p

n

}.

Continuing the proof and remark that

sup
ϕ(T)K∈FK Iληn

sup
t∈SX

sup
an≤hK≤b0

∣∣∣W(1)
n,(T)(ϕK, t ;hK)

∣∣∣
≤ sup

ϕ(T)K∈FK Iληn

sup
t∈SX

sup
an≤hK≤b0

1

nφ(hK)

n∑
i=1

∣∣F(T)(Yi )
∣∣ ∣∣∣∣K (

d(Xi , t )

hK

)
−K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣
1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

=:
∣∣∣W(11)

n,(T)(ϕK, t ;hK)
∣∣∣ .

Let’s go back to Q(1)
n (K, t ;hK) and following the same steps until we get∣∣∣W(11)

n,(T)(ϕK, t ;hK)
∣∣∣≤ sup

t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

1

hKφ(hK)

∣∣F(T)(Yi )
∣∣d(t , tℓ(t ))1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

≤ sup
t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

εn

hKφ(hK)

∣∣F(T)(Yi )
∣∣1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

= sup
t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

Z(11)
i ,T ,

where, for 1 ≤ i ≤ n,

Z(11)
i ,T = εn

hKφ(hK)

∣∣F(T)(Yi )
∣∣1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

We get uniformly on t ∈SX and on hK :

sup
t∈SX

sup
an≤hK≤b0

Z(11)
1,T ≤ sup

t∈SX

εn

anφ(an)

∣∣F(T)(Y1)
∣∣ .
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So, for 2 ≤ q ≤ p, we obtain

E
(
Z(11)

1,T

)q ≤
(

εn

anφ(an)

)q

E
(∣∣F(T)(Y1)

∣∣q
)

≤ sup
t∈SX

(
εn

anφ(an)

)q

E
(∣∣F(T)(Y1)

∣∣q ∣∣X = t
)

(3.9.34)

≤
(

εn

anφ(an)

)q

θ
q/p
p = θ

q/p
p ε

q
n

aq
nφ(an)

(
1

φ(an)

)q−1

. (3.9.35)

The transition from (3.9.34) to (3.9.35) is done by using Jensen’s inequality used for the con-
cave function za , for 0 < a ≤ 1. Moreover from condition (A.6.) we deduce that the quantity
εn

/
anφ(an) is bounded, then for q ≥ 2

sup
t∈SX

sup
an≤hK≤b0

E
(
Z(11)

1,T

)q ≤ Cθ
q/p
p

(
1√
φ(an)

)2(q−1)

,

where C > 0. Hence, by applying a standard inequality (see Corollary A.8 Ferraty and Vieu
[2006]) that the conditions are satisfied here, uniformly on t ∈SX , we get

∣∣∣W(11)
n,(T)(ϕK, t ;hK)

∣∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 .

Then we obtain

sup
ϕ(T)K∈FK Iληn

sup
t∈SX

sup
an≤hK≤b0

∣∣∣W(1)
n,(T)(ϕK, t ;hK)

∣∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 .

Since the first two terms have been treated, we now evaluate∣∣∣W(3)
n,(T)(ϕK, t ;hK)

∣∣∣= ∣∣E(
Wn,(T)(ϕK, tℓ(t );hK)

)−E(
Wn,(T)(ϕK, t ;hK)

)∣∣ .

We have ∣∣∣W(3)
n,(T)(ϕK, t ;hK)

∣∣∣ = ∣∣E(
Wn,(T)(ϕK, tℓ(t );hK)

)−E(
Wn,(T)(ϕK, t ;hK)

)∣∣ ,

= ∣∣E(
Wn,(T)(ϕK, t ;hK)−Wn,(T)(ϕK, tℓ(t );hK)

)∣∣ ,

=
∣∣∣E(

W(1)
n,(T)(ϕK, t ;hK)

)∣∣∣
≤ 1

nφ(hK)

∣∣∣∣∣ n∑
i=1
E

(
F(T)(Yi )K

(
d(Xi , t )

hK

)
− F(T)(Yi )K

(
d(Xi , tℓ(t ))

hK

))∣∣∣∣ ,
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which means that

sup
ϕ(T)K∈FK Iληn

sup
t∈SX

sup
an≤hK≤b0

∣∣∣W(3)
n,(T)(ϕK, t ;hK)

∣∣∣
≤ sup

ϕ(T)K∈FK Iληn

sup
t∈SX

sup
an≤hK≤b0

1

nφ(hK)

n∑
i=1
E

(∣∣F(T)(Yi )
∣∣

∣∣∣∣K (
d(Xi , t )

hK

)
−K

(
d(Xi , tℓ(t ))

hK

)∣∣∣∣1B(t ,hK)∪B(tℓ(t ),hK)(Xi )

)
=:

∣∣∣W(31)
n,(T)(ϕK, t ;hK)

∣∣∣ .

Let’s take a look at
∣∣∣W(11)

n,(T)(ϕK, t ;hK)
∣∣∣ and following the same steps, by the fact that K(·) is

Lipschitz, we get∣∣∣W(31)
n,(T)(ϕK, t ;hK)

∣∣∣≤ sup
t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

1

hKφ(hK)
E
(∣∣F(T)(Yi )

∣∣d(t , tℓ(t ))1B(t ,hK)∪B(tℓ(t ),hK)(Xi )
)

≤ sup
t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

εn

hKφ(hK)
E
(∣∣F(T)(Yi )

∣∣1B(t ,hK)∪B(tℓ(t ),hK)(Xi )
)

≤ sup
t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

εn

hKφ(hK)
E
(∣∣F(T)(Yi )

∣∣)
≤ sup

t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

εn

hKφ(hK)
E
(
E
(
F(T)(Yi )

∣∣X = t
))

= sup
t∈SX

sup
an≤hK≤b0

1

n

n∑
i=1

Z(31)
i ,T , (3.9.36)

where, for 1 ≤ i ≤ n,

Z(31)
i ,T = εn

hKφ(hK)
E
(∣∣F(T)(Yi )

∣∣) ,

we get for q ≥ 2 and uniformly on t ∈SX and on hK :

sup
t∈SX

sup
an≤hK≤b0

E
(
Z(31)

1,T

)q ≤ sup
t∈SX

(
εn

anφ(an)

)q

E
(
E
(∣∣F(T)(Y1)

∣∣q ∣∣X = t
))

(3.9.37)

≤
(

εn

anφ(an)

)q

θ
q/p
p = θ

q/p
p ε

q
n

aq
nφ(an)

(
1

φ(an)

)q−1

. (3.9.38)

The transition from (3.9.37) to (3.9.38) is done by using Minkowski’s and Jensen’s inequalities.
Then following the same way as in treating

∣∣∣W(11)
n,(T)(ϕK, t ;hK)

∣∣∣ we get

sup
ϕ(T)K∈FK Iληn

sup
t∈SX

sup
an≤hK≤b0

∣∣∣W(3)
n,(T)(ϕK, t ;hK)

∣∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)

 .

Therefore the proof is done for the truncated part. Regarding the remainder term, the idea
consists on proving its asymptotic negligibility, that is

sup
an≤hK≤bn

sup
t∈SX

sup
ϕK∈FK

∣∣Wn,(R)(ϕK, t ;hK)−E(
Wn,(R)(ϕK, t ;h(t ))

)∣∣= oa.co(1),
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which could be derived directly from the proof of the remainder part of the U-statistics devel-
oped in the sequel. □

Proof of Theorem 3.3.2.1

To prove Theorem 3.3.2.1 we need to check the conditions of Lemma 3.9.1.1 in the case of
m = 1. For that,we first identify the variables as follows: SΩ =SX , Ai = Xi , ϕ(Bi ) =ϕ(Yi ),

G(H,(t , Ai )) = K(H−1d(t ,Xi )),

Dn,k (t ) = Hn,k (t ),

M(1)
n (ϕ, t ;Hn,k (t )) = r̂ ∗(1)

n (ϕ, t ;Hn,k (t )),

M(ϕ, t ) = r (1)(ϕ, t ).

Choosing D−
n,k (βn , t ) and D+

n,k (βn , t ) such that

φt (D−
n,k (βn , t )) =

√
βnk

n
,

φt (D+
n,k (βn , t )) = k

n
√
βn

.

We denote h−(t ) = D−
n,k (βn , t ), h+(t ) = D+

n,k (βn , t ) and

Un =φ−1

(
k2,n√
βnn

)γ
+

√√√√√√√√
ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

)) ,

for all increasing sequence βn ∈ (0,1) such that βn − 1 = O(Un). Note that for all βn ∈ (0,1),
t ∈SX and k1,n ≤ k ≤ k2.n we have

φ−1
t

(√
βnk1,n

n

)
≤ h−(t ) ≤φ−1

t

(√
βnk2,n

n

)
,

φ−1
t

(
k1,n

n
√
βn

)
≤ h+(t ) ≤φ−1

t

(
k2,n

n
√
βn

)
,

using the condition (3.2.12) we can easily deduce that the bandwidths h−(t ) and h+(t ) both
belong to the interval

[an ,bn] =
[
µφ−1

(
ρnk1,n

n

)
,νφ−1

(
k2,n

ρnn

)]
.
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Checking the conditions (L4) and (L5)

Let us start with checking (L4). The fact that βn is bounded by 1, and the local bandwidth h−(t )

satisfies the conditions of Theorem 3.3.1.1 gives

sup
ϕK∈FK

sup
an≤h−(t )≤bn

sup
t∈SX

∣∣∣M(1)
n

(
ϕ, t ;D−

n,k (βn , t )
)
−M(1)(ϕ, t )

∣∣∣

= sup
ϕK∈FK

sup
an≤h−(t )≤bn

sup
t∈SX

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

ϕ(Yi )K

(
d(t ,Xi )

h−(t )

)
n∑

i=1
K

(
d(t ,Xi )

h−(t )

) − r (1)(ϕ, t )

∣∣∣∣∣∣∣∣∣∣
= sup

ϕK∈FK
sup

an≤h−(t )≤bn

sup
t∈SX

∣∣r̂ (1)
n (ϕ, t ;h−(t ))− r (1)(ϕ, t )

∣∣

= Oa.co

bγn +Oa.co


√√√√√ψSX

(
logn

n

)
nφ(an)


 ,

which is equivalent to

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣r̂ ∗(1)
n (ϕ, t ;h−(t ))− r (1)(ϕ, t )

∣∣

= Oa.co

φ−1

(
k2,n√
βnn

)γ
+

√√√√√√√√
ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))


= Oa.co(Un).

We use the same reasoning to check (L5) and we readily obtain

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣∣Mn(ϕ, t ;D+
n,k (βn , t ))−M(ϕ, t )

∣∣∣= Oa.co(Un).

Hence (L4) and (L5) are checked.

Checking the condition (L2)

To check (L2) we show that for all t ∈SX and ε0 > 0,

∑
n≥1

P

{∣∣∣∣∣1{
D−

n,k

(
βn , t

)≤ Hn,k (t ) ≤ D+
n,k

(
βn , t

)}−1

∣∣∣∣∣> ε0

}
<∞. (3.9.39)
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Let ε0 > 0 be fixed. Let {t1, . . . , tNε(SX )} be an ε-net for SX , for all t ∈SX , we have

P

{∣∣∣∣1{
D−

n,k (βn ,t)≤Hn,k (t )≤D+
n,k (βn ,t)

}−1

∣∣∣∣> ε0

}
≤ P

(
Hn,k (t ) ≤φ−1

t

(√
βnk1,n

n

))
+P

(
Hn,k (t ) ≥φ−1

t

(
k2,n√
βnn

))

≤
Nεn (SX )∑
ℓ=1

k=k2,n∑
k=k1,n

P

(
Hn,k (tℓ) ≤φ−1

t

(√
βnk1,n

n

))

+
Nεn (SX )∑
ℓ=1

k=k2,n∑
k=k1,n

P

(
Hn,k (tℓ) ≥φ−1

t

(
k2,n√
βnn

))

≤ Nεn (SX )
k=k2,n∑
k=k1,n

P

(
Hn,k (tℓ) ≤φ−1

t

(√
βnk1,n

n

))

+Nεn (SX )
k=k2,n∑
k=k1,n

P

(
Hn,k (tℓ) ≥φ−1

t

(
k2,n√
βnn

))
.

Now we use a lemma similar to Kara et al. [2017] (see Lemma 3.9.1.11). For completeness,
we give their proof. Making use of Lemma 3.9.1.11, we infer that

P

{
Hn,k (t ) ≤φ−1

t

(
αk1,n

n

)}
= P

{
n∑

i=1
1

B
(
t ,φ−1

t

(
α

k1,n
n

))(Xi ) > k

}

= P

{
n∑

i=1
1

B
(
t ,φ−1

t

(
α

k1,n
n

))(Xi ) > k

αk1,n
αk1,n

}
≤ exp

{−(
k −αk1,n

)
/4

}
. (3.9.40)

This implies that

Nεn (SX )
k2,n∑

k=k1,n

P

{
Hn,k (t ) ≤φ−1

t

(
αk1,n

n

)}
≤ Nεn (SX )k2,n exp

{−(1−α)k1,n/4
}

≤ Nεn (SX )n1−{(1−α)/4}
k1,n
lnn .

In a similar way, we obtain

P

{
Hn,k (t ) ≥φ−1

t

(
k2,n

αn

)}
≤ exp

{
−

(
k2,n −αk

)2

2αk2,n

}
. (3.9.41)

It follows that

Nεn (SX )
k2,n∑

k=k1,n

P

{
Hn,k (t ) ≥φ−1

t

(
k2,n

αn

)}
≤ Nεn (SX )k2,n exp

{−(1−α)k1,n/2α
}

≤ Nεn (SX )n1−{(1−α)/2α}
k2,n
lnn .
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Therefore, by that fact that ki ,n/lnn →∞, i = 1,2, we obtain

Nεn (SX )
k2,n∑

k=k1,n

P

{
Hn,k (t ) ≤φ−1

t

(
αk1,n

n

)}
≤ Nεn (SX )n1−{(1−α)/4}

k1,n
lnn <∞, (3.9.42)

Nεn (SX )
k2,n∑

k=k1,n

P

{
Hn,k (t ) ≥φ−1

t

(
k2,n

αn

)}
≤ Nεn (SX )n1−{(1−α)/2α}

k2,n
lnn <∞. (3.9.43)

Checking the condition (L3)

We consider the following quantities:

f (K, t ,h(t )) := E
(
K

(
d(X1, t )

h(t )

))
,

Qn1 := f (K, t ,h−(t ))

f (K, t ,h+(t ))
,

Qn2 := Qn(K, t ,h−(t ))

Qn(K, t ,h+(t ))
−1,

Qn3 := f (K, t ,h+(t ))

f (K, t ,h−(t ))
βn −1.

The condition (L3) can be written as∣∣∣∣∣∣∣∣∣∣

n∑
i=1

K

(
d(t ,Xi )

h−(t )

)
n∑

i=1
K

(
d(t ,Xi )

h+(t )

) −βn

∣∣∣∣∣∣∣∣∣∣
≤ |Qn1| |Qn2|+ |Qn1| |Qn3| .

Hence, by the fact that βn −→ 1, our claimed result is

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

K

(
d(t ,Xi )

h−(t )

)
n∑

i=1
K

(
d(t ,Xi )

h+(t )

) −βn

∣∣∣∣∣∣∣∣∣∣
= Oa.co(Un). (3.9.44)

The proof of (3.9.44) is based on the following results

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn1| ≤ C, (3.9.45)

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn2| = Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 , (3.9.46)

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn3| = O

(
φ−1

(
k2,n

ρnn

)γ)
. (3.9.47)
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Proof of (3.9.45)

Using the condition (A.4.b) one has

E

(
K

(
d(X1, t )

h(t )

))
≤ κ2φt (h(t )/2).

Now using the condition (A.1.a) we directly obtain

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn1| ≤ C. (3.9.48)

Proof of (3.9.17)

We have

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn2| = sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣∣∣Qn(K, t ,h−(t ))

Qn(K, t ,h+(t ))
−1

∣∣∣∣
≤ 1

inf
K∈K

inf
k1,n≤k≤k2,n

inf
t∈SX

∣∣Qn(K, t ,h+(t ))
∣∣
(

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn(K, t ,h−(t ))−1|

+ sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣Qn(K, t ,h+(t ))−1
∣∣) . (3.9.49)

To prove this, we use Lemma 3.9.1.2(b), which gives us

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn(K, t ,h−(t ))−1| = Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 , (3.9.50)

and

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣Qn(K, t ,h+(t ))−1
∣∣= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 . (3.9.51)

Moreover, combining (3.9.50), (3.9.51) with the fact that

P

(
inf

K∈K
inf

k1,n≤k≤k1,n

inf
t∈SX

Qn(K, t ,h+(t )) < C

)
<∞, (3.9.52)

it follows that

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn2| = Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 . (3.9.53)
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Proof of (3.9.47)

Kudraszow and Vieu [2013] use in their proof of part the proof of Lemma 1 in Ezzahrioui and
Ould-Saïd [2008]; on the other hand, we will use some computations similar to the steps of
the proof of Lemma 5.7.0.3 in Bouzebda and Nemouchi [2020]. Let us consider the following
quantity:

B̂(t ,ϕK) = E[Wn(ϕK, t ,h+(t ))]

E[Qn(K, t ,h−(t ))]
− r (1)(ϕ, t ),

∣∣B̂(t ,ϕK)
∣∣=

∣∣∣∣∣∣∣∣
φt (h−(t ))

φt (h+(t ))

E

[
K

(
d(t ,X1)

h+(t )

)
E[ϕ(Y1)|X1]

]
E

[
K

(
d(t ,X1)

h−(t )

)] − r (1)(ϕ, t )

∣∣∣∣∣∣∣∣
≤ 1

E

[
K

(
d(t ,X1)

h−(t )

)] ∣∣∣∣φt (h−(t ))

φt (h+(t ))
E

[
K

(
d(t ,X1)

h+(t )

)(
E[ϕ(Y)1|X1]− r (1)(ϕ, t )

)]∣∣∣∣ ,

using the fact that φt (h−(t ))
φt (h+(t ))

= βn and supposing that the condition (A.3.) holds which means

∣∣r (1)(X, t )− r (1)(ϕ, t )
∣∣≤ C5dγ(X, t ),

and assuming that the conditions (A.1.) and (A.4.b) to be satisfied, then for all t ∈ SX , and
h−(t ) and h+(t ) in [an ,bn], one gets∣∣∣∣E[Wn(ϕK, t ,h+(t ))]

E[Qn(K, t ,h−(t ))]
− r (1)(ϕ, t )

∣∣∣∣ ≤ C5κ2βn

κ1φt

(
h−(t )

2

) [
E1B(t ,h+(t )/2)(X)dγ(X, t )

]

≤ C5κ2βn

κ1

φt

(
h+(t )

2

)
φt

(
h−(t )

2

) (h+(t ))γ ≤ C2C5κ2βn

C1κ1
(h+(t ))γ

≤ C(h+(t ))γ.

Keeping in mind the condition (A.4.b), we obtain

sup
ϕK∈FK

sup
(h−(t ),h+(t ))∈[an ,bn ]2

sup
t∈SX

∣∣∣∣E[Wn(ϕK, t ,h+(t ))]

E[Qn(K, t ,h−(t ))]
− r (1)(ϕ, t )

∣∣∣∣≤ C′bγn . (3.9.54)

Finally, rewriting (3.9.54) with ϕ≡ 1 gives us

sup
K∈K

sup
(h−(t ),h+(t ))∈[an ,bn ]2

sup
t∈SX

∣∣∣∣∣∣∣∣
E

[
K

(
d(t ,X1)

h+(t )

)]
E

[
K

(
d(t ,X1)

h−(t )

)]βn −1

∣∣∣∣∣∣∣∣≤ C′bγn ,

which is equivalent to

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

|Qn3| = O

(
φ−1

(
k2,n

ρnn

)γ)
. (3.9.55)
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Combining the results of (3.9.48), (3.9.53) and (3.9.55) and the fact that βn −→ 1, implies that

sup
K∈K

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

K

(
d(t ,Xi )

h−(t )

)
n∑

i=1
K

(
d(t ,Xi )

h+(t )

) −βn

∣∣∣∣∣∣∣∣∣∣
= Oa.co(Un).

Hence (L3) is checked. Note that (L0) is obviously satisfied by (A.4.b), and that (L1) is also
trivially satisfied by construction of D−

n (βn , t ) and D+
n (βn , t ). So one can apply Lemma 3.9.1.1,

and (3.9.1) with m = 1 is exactly the result of Theorem 3.3.2.1. □

Proof of corollary 3.3.1.2

To prove corollary 3.3.1.2, we use the same reasoning as the proof of Theorem 3.3.2.1 but in-
stead of taking advantage of the results of Theorem 3.3.1.1 to check the conditions of Lemma
3.9.1.1, we use the results of Corollary 3.3.1.2 and than write the corresponding rates of con-
vergence to obtain

sup
ϕK∈FK

sup
k1,n≤k≤k2,n

sup
t∈SX

∣∣r̂ ∗(1)
n (ϕ, t ;hn,k (t ))− r (1)(ϕ, t )

∣∣= Oa.co(Un).

□

Preliminaries of the proofs

This part is mainly dedicated to the study of the functional conditional U-statistics. Just like in
the case of m = 1 where SX is covered by

Nε(SX )⋃
ℓ=1

B(tℓ,ε),

for some radius ε. Hence, for each t ∈ S m
X

, there exists ℓ(t ) = (ℓ(t1), . . . ,ℓ(tm)) where ∀1 ≤ i ≤
m,1 ≤ ℓ(ti ) ≤ Nε(SX ) such that

t ∈
m∏

i=1
B(tℓ(ti ),ε) and d(ti , tℓ(ti )) = argmin1≤1≤ℓ(ti )≤Nε(SX )d(ti , tℓ).

So for each t ∈S m
X

, the closest center is tℓ(t) and the ball with the closest center

m∏
i=1

B(tℓ(ti ),ε) := B(tℓ(t),ε).

The proofs of the UIB consistency for the multivariate bandwidth will follow the same lines
as the proofs of the UIB consistency for the univariate smoothing parameter in (Bouzebda and
Nemouchi [2020]) while making the necessary changes to adapt to the k-NN procedures.
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Proof of Theorem 3.4.1.7

In this section, we consider a bandwidths h = (h1, . . . ,hm) ∈ H (m)
n . In order to prove Theorem

3.4.1.7 we can write the U-statistic for each t ∈S m
X

as follows

∣∣un(ϕ,t;h)−E[un(ϕ,t;h)]
∣∣

≤ ∣∣un(ϕ,t;h)−un(ϕ,tℓ(t);h)
∣∣

+ ∣∣E[un(ϕ,tℓ(t);h)]−E[un(ϕ,t;h)]
∣∣

+ ∣∣un(ϕ,tℓ(t);h)−E[un(ϕ,tℓ(t);h)]
∣∣

≤ ∣∣un,11(ϕ,t;h)
∣∣+ ∣∣un,12(ϕ,t;h)

∣∣+ ∣∣un,13(ϕ,t;h)
∣∣ .

Note that

∣∣un,11(ϕ,t;h)
∣∣

= (n −m)!

n!

∣∣∣∣∣ ∑
i∈I(m,n)

ϕ(Yi1 , . . . ,Yim )

{
1

φt(h)

m∏
j=1

K

(
d(Xi j , t j )

h j

)
− 1

φtℓ(t) (h)

m∏
j=1

K

(d(Xi j , tℓ(t j ))

h j

)}∣∣∣∣∣
≤ C(n −m)!

n!φ̃(h)

∑
i∈I(m,n)

∣∣∣∣∣ϕ(Yi1 , . . . ,Yim )

{
m∏

j=1
K

(
d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ(t j ))

h j

)}∣∣∣∣∣ .

By applying the Telescoping binomial, we get

m∏
j=1

K

(
d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ(t j ))

h j

)
(3.9.56)

=
m∑

j=1

[{
K

(
d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ(t j ))

h j

)}]

×
j−1∏
q=1

K

(
d(Xi q , tq )

hq

) m∏
p= j+1

K

(d(Xi p , tℓ(tp ))

hp

)
. (3.9.57)

From condition (A.4.b) we could claim that

j−1∏
q=1

K

(
d(Xi q , tq )

hq

)
≤ κ j−1

2

j−1∏
q=1
1B(tq ,hq /2)(Xi q ),

similarly, we have

m∏
p= j+1

K

(d(Xi p , tℓ(tp ))

hp

)
≤ κm− j

2

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p ).
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So (3.9.56) satisfies :

m∏
j=1

K

(
d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ(t j ))

h j

)

≤ κm−1
2

m∑
j=1

[{
K

(
d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ(t j ))

h j

)}
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]

≤ κm−1
2

m∑
j=1

[{
K

(
d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ(t j ))

h j

)}
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]

=:
m∑

j=1
Ki j ,h j (t j , tℓ(t j )),

where

K(ℓ)
i j ,h j

(t j , tℓ(t j ))

= κm−1
2

{
K

(
d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ(t j ))

h j

)}
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p ).

Therefore

∣∣un,11(ϕ,t;h)
∣∣≤ C(n −m)!

n!φ̃(h)
κm−1

2

∑
i∈I(m,n)

∣∣∣∣∣ϕ(Yi1 , . . . ,Yim )
m∑

j=1
K(ℓ)

i j ,h j
(t j , tℓ(t j ))

∣∣∣∣∣
≤ C(n −m)!

n!φ̃(h)
Mκm−1

2

∑
i∈I(m,n)

m∑
j=1

∣∣∣∣{K

(
d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ(t j ))

h j

)}

×1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

∣∣∣∣∣ (3.9.58)

≤ (n −m)!

n!
CmMκm−1

2

∑
i∈I(m,n)

1

m

m∑
j=1

[
εn

φ̃(h)an, j
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]
. (3.9.59)
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The transition from equation (3.9.58) to (3.9.59) is done thanks to the fact that the kernel func-
tion K(·) is Lipschitz. Uniformly on t ∈S m

X
and h ∈H (m)

n , we get

sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un,11(ϕ,t;h)
∣∣

≤ sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

(n −m)!

n!

∑
i∈I(m,n)

1

m

m∑
j=1

[
CmMκm−1

2 εn

φ̃(An)an, j
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]

≤ sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

(n −m)!

n!

∑
i∈I(m,n)

1

m

m∑
j=1

[
CmMκm−1

2 εn

φ̃(Ãn)ãn
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]

≤ sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

(n −m)!

n!

∑
i∈I(m,n)

1

m

m∑
j=1

[
CmMκm−1

2 εn

C′
1φ(ãn)ãn

1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]
,

by (3.2.16), where An = (an,1, . . . , an,m) and Ãn = (ãn , . . . , ãn), with Ãn ≤ An component by com-
ponent. The idea is to apply a Bernstein’s inequality type to get the desired result by applying
Lemma 3.9.1.9 with

θ= O

(
εn

ãnφ(ãn)

)
,

σ2 = O

(
ε2

n

ã2
nφ(ãn)

)
,

s =
√
ψSX

(εn)

nφ(ãn)
− εn

ãnφ(ãn)
,

on the function

ft,h(Xi) = 1

m

m∑
j=1

[
CmMκm−1

2 εn

C′
1φ(ãn)an, j

1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

]
,

which satisfies for all t ∈S m
X

:

0 ≤ sup
t∈S m

X

sup
h∈H (m)

n

∣∣ ft,h(X)
∣∣≤ CmMκm−1

2 εn

C′
1φ(ãn)ãn

≤ Cte = C7.
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Notice that the existence of the constant C7 on the last right side of the preceding inequality is
deduced from the condition (3.2.11), which implies that :

P

 sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un,11(ϕ,t;h)
∣∣≥√

ψSX
(εn)

nφ(ãn)

 (3.9.60)

≤P
{∣∣u(m)

n ( f )−θ∣∣≥√
ψSX

(εn)

nφ(ãn)
− εn

ãn

}

≤ exp

{
− [n/m]s2

2σ2 − 2
3 C7s

}
. (3.9.61)

By developing the computation while respecting the imposed conditions, mainly (A.2.) and
(A.6.), we get

∑
n≥1

P

 sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un,11(ϕ,t;h)
∣∣≥√

ψSX
(εn)

nφ(ãn)

<∞. (3.9.62)

The study of the term un,12 is deduced from the previous one. In fact :

∣∣un,12(ϕ,t;h)
∣∣

= ∣∣E[
un(ϕ,t;h)−un(ϕ,t;h)

]∣∣
≤ C(n −m)!

n!φ̃(h)

∣∣∣∣∣ ∑
i∈I(m,n)

E

(
ϕ(Yi1 , . . . ,Yim )

{
m∏

j=1
K

(
d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ(t j ))

h j

)})∣∣∣∣∣ (3.9.63)

≤ C(n −m)!

n!φ̃(h)

∑
i∈I(m,n)

E

∣∣∣∣∣ϕ(Yi1 , . . . ,Yim )

{
m∏

j=1
K

(
d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ(t j ))

h j

)}∣∣∣∣∣ . (3.9.64)

To pass from (3.9.63) to (3.9.64) we apply Jensen’s inequality in connection with some proper-
ties of the absolute value function. Then following the same way already taken, we get

∣∣un,12(ϕ,t;h)
∣∣≤C ∣∣u′

n,12(ϕ,t;h)
∣∣ ,

where

∣∣u′
n,12(ϕ,t;h)

∣∣ := (n −m)!

n!φ̃(h)

∑
i∈I(m,n)

E

∣∣∣∣∣ϕ(Yi1 , . . . ,Yim )
m∑

j=1
K(ℓ)

i j ,h j
(t j , tℓ(t j ))

∣∣∣∣∣ .
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Notice that we have∣∣u′
n,12(ϕ,t;h)

∣∣
≤ (n −m)!

n!φ̃(h)
Mκm−1

2

∑
i∈I(m,n)

m∑
j=1
E

∣∣∣∣{K

(
d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ(t j ))

h j

)}

×1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

∣∣∣∣∣
≤ (n −m)!

n!
mMκm−1

2

∑
i∈I(m,n)

1

m

m∑
j=1

[
εn

φ̃(An)an, j
E
(
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

)]

≤ (n −m)!

n!
mMκm−1

2

∑
i∈I(m,n)

1

m

m∑
j=1

[
εn

C′
1φ̃(ãn)an, j

E
(
1B(t j ,h j )∪B(tℓ(t j ),h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xi q )

m∏
p= j+1

1
B
(
tℓ(tp ),hp /2

)(Xi p )

)]
.

That implies

sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un,12(ϕ,t;h)
∣∣≤ mMκm−1

2
log(n)

nãn
≤ C′

7
log(n)

nφ(ãn)

= O

(√
ψSX

(εn)

nφ(ãn)

)
.

This gives that

sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un,12(ϕ,t;h)
∣∣= O

(√
ψSX

(εn)

nφ(ãn)

)
. (3.9.65)

Continue, now with un,13,∣∣un,13(ϕ,t;h)
∣∣= ∣∣un(ϕ,tℓ;h)−E[un(ϕ,tℓ;h)]

∣∣ .

Supposing that the kernel function Gϕ,tℓ,h(·) is symmetric, we need to decompose our U-statistic
according to Hoeffding [1948] decomposition, we have

un,13(ϕ,t;h)

:= un(ϕ,tℓ;h)−E[un(ϕ,tℓ;h)]

=
m∑

p=1

m!

(m −p)!
u(p)

n
(
πp,m(Gϕ,tℓ,h)

)
= mu(1)

n

(
π1,m(Gϕ,tℓ,h)

)+ m∑
p=2

m!

(m −p)!
u(p)

n
(
πp,m(Gϕ,tℓ,h)

)
. (3.9.66)
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Define new classes of functions, for h = (h1, . . . ,hm) ∈ H (m)
n , ℓ ∈ {

1, . . . ,Nεn (SX )
}m , and 1 ≤

p ≤ m : (
FmK m)(p) :=

{
φtℓ(h)πp,m(Gϕ,tℓ,h)(·, ·) for h ∈H (m)

0 and ϕ ∈Fm

}
.

These classes are VC-type classes of functions with the same characteristics, and the envelope
function Fp satisfying

Fp ≤ 2pκm
2 ∥ F∥∞.

Let us start with the linear term of (3.9.66), which is

mu(1)
n

(
π1,m(Gϕ,tℓ,h)

)= m

n

m∑
j=1

π1,m(Gϕ,tℓ,h)(Xi ,Yi ).

From Hoeffding’s projection, we have

π1,m(Gϕ,tℓ,h)(x, y)

= {
E
[
Gϕ,tℓ,h

(
(x,X2, . . . ,Xm), (y,Y2, . . . ,Ym)

)]−E[Gϕ,tℓ,h (X,Y)]
}

= {
E[Gϕ,tℓ,h (X,Y) |(X1,Y1) = (x, y)]−E[Gϕ,tℓ,h (X,Y)]

}
.

One can see that
mu(1)

n

(
π1,m(Gϕ,tℓ,h)

)=:
1p
n
αn(S1,tℓ,h),

is an empirical process based on a VC-type class of functions contained in m (FmK m)(1) with
the same characteristics and the elements are defined by:

S1,tℓ,h(x, y) = mφtℓ(h)E[Gϕ,tℓ,h (X,Y) |(X1,Y1) = (x, y)].

Hence, the proof of this part is similar to that of the Lemma 3.9.1.4 and then :

sup
t∈S m

X

sup
ãn≤hℓ≤b0

sup
ϕ∈Fm

∣∣u(1)
n

(
π1,m(Gϕ,tℓ,h)

)∣∣= Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µφ−1

(
ρnk1,n

n

))
 .

Pass now to the nonlinear terms. The purpose is to prove that, for 2 ≤ p ≤ m :

sup
ϕK∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

(
m

p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,m(Gϕ,tℓ,h)

)∣∣∣√
ψSX

(
logn

n

) = Oa.co(1), (3.9.67)

to do that, we need to decompose the interval
m∏

j=1
(an, j ,bn, j ) into smaller intervals. First, let us

consider the intervals
(
an, j ,b j

)
for all j = 1, . . . ,m and b j ∈ (0,1) we note

H i j =
[

ai j ,bi j

]
,
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where ai j = 2i−1an, j and bi j = 2i an, j and we set L j (n) = max
{

i : bi j ≤ 2b j

}
, and Ij =

{
i j : 1 ≤ i j ≤ L j (n)

}
.

We can observe that
m∏

j=1

(
an, j ,b j

)⊆ ⋃
(i1,...,im )∈I1×...×Im

m∏
j=1

H i j ,

and

L j (n) ∼ log(b j /an, j )

log(2)
≤ L(n) =: maxL j (n) for 1 ≤ j ≤ m. (3.9.68)

Now, we set the following new classes, for h = (h1, . . . ,hm) ∈H (m)
n and ℓ ∈ {

1, . . . ,Nεn (SX )
}m ,

1 ≤ j ≤ m, 1 ≤ i ≤ L(n) and 2 ≤ p ≤ m :

(
FmK m)

i j ,ℓ :=
{
φtℓ(h)Gϕ,tℓ,h(·, ·) whereϕ ∈Fm and h ∈

m∏
j=1

H i j

}
,

(
FmK m)(p)

i j ,ℓ :=
{
φtℓ(h)πp,m(Gϕ,tℓ,h)(·, ·) whereϕ ∈Fm and h ∈

m∏
j=1

H i j

}
.

Thus, to prove (3.9.67), we need to prove that for 1 ≤ j ≤ m and ℓ= (ℓ1, . . . ,ℓm) :

max
1≤ℓ j≤Nεn (SX )

max
1≤i≤L(n)

sup
h∈∏m

j=1 H i j

sup
ϕK∈FmK m

sup
t∈S m

X

(
m

p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,m(Gϕ,tℓ,h

)∣∣∣√
ψSX

(
logn

n

) = Oa.co(1),

the key idea is to apply Lemma 3.9.1.10. We see clearly that the class of functions (FmK m)i j ,ℓ

is uniformly bounded, i.e.,
sup

ϕK̃∈(FmK m )i j ,ℓ

∣∣ϕ(·)K̃(·)∣∣≤ Mκm
2 .

Moreover, by applying Proposition 2.6 of Arcones and Giné [1993] we have for each (xi , yi ) ∈
SX ×Y and a Rademacher variables ζ1, . . . ,ζn :

E


∥∥∥∥∥n1−m

∑
Im
n

ζi1ζi2ϕ(yi1 , . . . , yim )
m∏

j=1
K

(d(xi j , t j )

h j

)∥∥∥∥∥
(FmK m )i j ,ℓ


≤ cmE

∫ D2,n

0

[
logN

(
ϵ,

(
FmK m)

i j ,ℓ ,d2,n

)]m/2
dϵ,

where

D2,n :=
∥∥∥∥∥E1/2

ζ

{
n2(1−m)

∑
Im
n

(
ζi1ζi2ϕ(Yi1 , . . . ,Yim )

m∏
j=1

K

(d(Xi j , t j )

h j

))2}∥∥∥∥∥
(FmK m )i j ,ℓ

and

d2,n := E1/2
ζ

{
n2(1−m)

∑
Im
n

(
ζi1ζi2ϕ(Yi1 , . . . ,Yim )

m∏
j=1

K

(d(Xi j , t j )

h j

))2}
.
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We see that
D2,n ≤ n1−m n!

(n −m)!
Mκm

2 ≤ nMκm
2 .

So using the fact that FmK m is a VC-type class of functions satisfying (A.5’.) which implies
that the class (FmK m)i j ,ℓ is also a VC-type class of functions with the same characteristics as
FmK m , then :

E


∥∥∥∥∥n1−m

∑
Im
n

ζi1ζi2ϕ(yi1 , . . . , yim )
m∏

j=1
K

(d(xi j , t j )

h j

)∥∥∥∥∥
(FmK m )i j ,ℓ


≤ cmE

∫ D2,n

0

[
logN

(
ϵ,

(
FmK m)

i j ,ℓ ,d2,n

)]m/2
dϵ

≤ cmnMCm . (3.9.69)

On the other hand, we have for each ϵ0, 1 ≤ j ≤ m and ℓ= (ℓ1, . . . ,ℓm) :

P


sup

h∈H (m)
0

sup
t∈S m

X

sup
ϕK̃∈FmK m

(m
p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mGϕ,tℓ(t),h

)∣∣∣√
ψSX

(
logn

n

) ≥ ϵ0



≤ ∑
1≤ℓ j≤Nεn (SX )

∑
1≤i≤L(n)

P


sup

h∈∏m
j=1 H i j

sup
ϕK̃∈FmK m

(m
p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mGϕ,tℓ,h

)∣∣∣√
ψSX

(
logn

n

) ≥ ϵ0


≤ L(n)Nm

εn
(SX ) max

1≤ℓ j≤Nεn (SX )
max

1≤i≤L(n)

×P


∥∥∥∥∥ m∑

p=2

(
m

p

)
u(p)

n
(
πp,mGϕ,tℓ(t),h

)∥∥∥∥∥
(FmK m )i j ,ℓ

≥ ϵ0

√√√√√ψSX

(
logn

n

)
nφ(ãn)

 .

All the conditions of Lemma 3.9.1.10 are fulfilled, so a direct application gives for each ϵ0,

1 ≤ j ≤ m and ℓ= (ℓ1, . . . ,ℓm) :

P


∥∥∥∥∥ m∑

p=2

(
m

p

)
u(p)

n
(
πp,mGϕ,tℓ(t),h

)∥∥∥∥∥
(FmK m )i j ,ℓ

≥ ϵ0

√√√√mψSX

(
logn

n

)
nφ(ãn)



≤ 2exp


−
ϵ0

√√√√√mψSX

(
logn

n

)
nφ(ãn)

2m+5mm+1cmM2κ2m
2


≤ n−ε0C′

m , (3.9.70)
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where

εn = logn

n
, C′

m > 0.

Furthermore, from equations (3.2.7), (3.9.68) and by choosing ϵ0 > 2Ctem we get :

∑
n≥1

P


sup

h∈H (m)
0

sup
t∈S m

X

sup
ϕK̃∈FmK m

(m
p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mGϕ,tℓ(t),h

)∣∣∣√
ψSX

(
logn

n

) ≥ ϵ0


≤ ∑

n≥1
L(n)n−ε0C′

m

≤ ∞. (3.9.71)

By combining (3.9.62), (3.9.65) and (3.9.71), we get

sup
ϕK̃∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un(ϕ,t,h)−E(
un(ϕ,t,h)

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.9.72)

□

Proof of Theorem 3.4.1.8

To prove this theorem, we will need to truncate the conditional U-statistic. Taking the condition
(A.4.a’) into account, we have, for each λ> 0, h = (h1, . . . ,hm) and for ηn = n/

(
logn

)2 :

Gϕ,t,h(x,y) = Gϕ,t,h(x,y)1
{F(y)≤λη1/p

n }
+Gϕ,t,h(x,y)1

{F(y)>λη1/p
n }

=: G(T)
ϕ,t,h(x,y)+G(R)

ϕ,t,h(x,y),

which means that we truncate each function ϕ ∈Fm , either the envelope function as follows :

ϕ(y) = ϕ(y)1{
F(y)≤λη1/p

n

}+ϕ(y)1{
F(y)>λη1/p

n

}
= ϕ(T)(y)+ϕ(R)(y).

We can write the U-statistic as follows

un(ϕ,t,h) = u(m)
n

(
G(T)
ϕ,t,h

)
+u(m)

n

(
G(R)
ϕ,t,h

)
=: u(T)

n (ϕ,t,h)+u(R)
n (ϕ,t,h).

The first term of the right side u(T)
n (ϕ,t,h) is called the truncated part and the second one

u(R)
n (ϕ,t,h) is the remainder part. Let’s begin with u(T)

n (ϕ,t,h).
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Truncated Part :

Similar to previous procedures, we write∣∣u(T)
n (ϕ,t,h)−E(

u(T)
n (ϕ,t,h)

)∣∣
≤ ∣∣u(T)

n (ϕ,t,h)−u(T)
n (ϕ,tℓ(t),h)

∣∣
+ ∣∣E(

u(T)
n (ϕ,tℓ(t),h)

)−E(
u(T)

n (ϕ,t,h)
)∣∣

+ ∣∣u(T)
n (ϕ,tℓ(t),h)−E(

u(T)
n (ϕ,tℓ(t),h)

)∣∣
=

∣∣∣u(T)
n,1(ϕ,t,h)

∣∣∣+ ∣∣∣u(T)
n,2(ϕ,t,h)

∣∣∣+ ∣∣∣u(T)
n,3(ϕ,tℓ(t),h)

∣∣∣ .

Clearly

u(T)
n,1(ϕ,t,h) := u(T)

n (ϕ,t,h)−u(T)
n (ϕ,tℓ(t),h),

u(T)
n,2(ϕ,t,h) := E

(
u(T)

n (ϕ,tℓ(t),h)
)−E(

u(T)
n (ϕ,t,h

)
,

u(T)
n,3(ϕ,tℓ(t),h)) := u(T)

n (ϕ,tℓ(t),h)−E(
u(T)

n (ϕ,tℓ(t),h)
)

.

Starting with the first term
∣∣∣u(T)

n,1(ϕ,t,h)
∣∣∣ , by following the same arguments as it was done to

treat
∣∣un,1(ϕ,t,h)

∣∣, we get :∣∣∣u(T)
n,11(ϕ,t,h)

∣∣∣ := (n −m)!

n!φt(h)

∑
i∈I(m,n)

∣∣∣∣∣ϕ(T)(Yi1 , . . . ,Yim )
m∑

j=1
K(ℓ)

i j ,h j
(t j , tℓ j )

∣∣∣∣∣ .

It follows that∣∣∣u(T)
n,11(ϕ,t,h)

∣∣∣
≤ C(n −m)!

n!φ̃(h)
κm−1

2

∑
i∈I(m,n)

∣∣F(T) (Yi1 , . . . ,Yim

)∣∣ m∑
j=1

[∣∣∣∣K (d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ j )

h j

)∣∣∣∣
1B(t j ,h j )∪B(tℓ j

,h j )(Xi j )
j−1∏
q=1
1B(tq ,hq /2)(Xiq )

m∏
p= j+1

1B(tℓ(tp ),hp /2)(Xip )

]
(3.9.73)

≤ (n −m)!

n!

∑
i∈I(m,n)

1

m

m∑
j=1

[
mκm−1

2 εn

φ(ãn)an, j

∣∣F(T) (Yi1 , . . . ,Yim

)∣∣1B(t j ,h j )∪B(tℓ j
,h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xiq )

m∏
p= j+1

1B(tℓ(tp ),hp /2)(Xip )

]
. (3.9.74)

Taking into account that

F(T) (Y1, . . . ,Ym) = F(Y1, . . . ,Ym)1{
F(Y1,...,Ym )≤λη1/p

n

}.

Then we apply Lemma 3.9.1.9 again on the function

f (T)
t,h (Xi ,Yi ) = 1

m

m∑
j=1

[
mκm−1

2 εn

φ(ãn)an, j

∣∣F(T) (Yi1 , . . . ,Yim

)∣∣1B(t j ,h j )∪B(tℓ j
,h j )(Xi j )

×
j−1∏
q=1
1B(tq ,hq /2)(Xiq )

m∏
p= j+1

1B(tℓ(tp ),hp /2)(Xip )

]
,
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with

θ = O
(
1/φ(ãn)

)
,

σ2 = O
(
1
/(
φ2(ãn)

))
,

t =
√
ψSX

(εn)

nφ(ãn)
− 1

φ(ãn)
,

the concerned function satisfies for all t ∈S m
X

0 ≤ sup
t∈S m

X

sup
h∈H (m)

0

∣∣∣ f (T)
t,h (X,Y)

∣∣∣≤ mλκm−1
2

φ(ãn)ãn log(n)
≤ Cte = C8.

Observe that the presence of the constant κ2 on the last right side of the precedent inequality is
derived from the condition (3.2.11), which indicates that

P

 sup
t∈S m

X

sup
h∈H (m)

n

sup
ϕK∈FmK m

∣∣∣u(T)
n,11(ϕ,t,h)

∣∣∣≥√
ψSX

(εn)

nφ(ãn)

 (3.9.75)

≤ P

{
|u(m)

n ( f )−θ| ≥
√
ψSX

(εn)

nφ(ãn)
− εn

ãn

}

≤ exp

{
− [n/m]t 2

2σ2 − 2
3 C8t

}
. (3.9.76)

After some algebra, while respecting the conditions (A.2.) and (A.6.), we obtain :

∑
n≥1

P

 sup
t∈S m

X

sup
h∈H (m)

n

sup
ϕK∈FmK m

∣∣∣u(T)
n,11(ϕ,t,h)

∣∣∣≥√
ψSX

(εn)

nφ(ãn)

<∞, (3.9.77)

which implies

sup
t∈S m

X

sup
h∈H (m)

n

sup
ϕK∈FmK m

∣∣un,1(ϕ,t,h)
∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.9.78)

The study of the term u(T)
n,2 is deduced from the previous one. In fact :∣∣∣u(T)

n,2(ϕ,t,h)
∣∣∣

= ∣∣E(
u(T)

n (ϕ,t,h)−u(T)
n (ϕ,tℓ(t),h)

)∣∣
≤ C(n −m)!

n!φ̃(h)

∣∣∣∣∣ ∑
i∈I(m,n)

E

(
ϕ(T)(Yi1 , . . . ,Yim )

{
m∏

j=1
K

(d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ j )

h j

)})∣∣∣∣∣(3.9.79)

≤ C(n −m)!

n!φ̃(h)

∑
i∈I(m,n)

E

∣∣∣∣∣ϕ(T)(Yi1 , . . . ,Yim )

{
m∏

j=1
K

(d(Xi j , t j )

h j

)
−

m∏
j=1

K

(d(Xi j , tℓ j )

h j

)}∣∣∣∣∣ . (3.9.80)
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Similar to the bounded case, we apply Jensen’s inequality and some properties of the absolute
value function to pass from (3.9.79) to (3.9.80), and by following the same way already taken,
we get ∣∣∣u(T)

n,2(ϕ,t,h)
∣∣∣≤C ∣∣∣u(T)

n,21(ϕ,t,h)
∣∣∣ ,

where ∣∣∣u(T)
n,21(ϕ,t,h)

∣∣∣ := (n −m)!

n!φ̃(h)

∑
i∈I(m,n)

E

∣∣∣∣∣ϕ(T)(Yi1 , . . . ,Yim )
m∑

j=1
K(ℓ)

i j ,h j
(t j , tℓ j )

∣∣∣∣∣ .

Note that

∣∣∣u(T)
n,21(ϕ,t,h)

∣∣∣
≤ (n −m)!

n!φ̃(h)
κm−1

2

∑
i∈I(m,n)

m∑
j=1
E

∣∣∣∣∣F(T) (Yi1 , . . . ,Yim

){
K

(d(Xi j , t j )

h j

)
−K

(d(Xi j , tℓ j )

h j

)}

×1B(t j ,h j )∪B(tℓ j
,h j )(Xi j )

j−1∏
q=1
1B(tq ,hq /2)(Xiq )

m∏
p= j+1

1B(tℓ(tp ),hp /2)(Xip )

∣∣∣∣∣
≤ (n −m)!

n!
mλκm−1

2

∑
i∈I(m,n)

εn

C′
1φ(ãn)an, j

E
(
F(T) (Yi1 , . . . ,Yim

))
,

≤ mλκm−1
2

εn

C′
1φ(ãn)ãn

E
(
F(T) (Y1, . . . ,Ym)

)
,

= mλκm−1
2

εn

C′
1φ(ãn)ãn

E
(
E
(
F(T) (Y1, . . . ,Ym)

∣∣X = t
))

(3.9.81)

≤ mλκm−1
2

εn

C′
1φ(ãn)ãn

θ
1/p
p (3.9.82)

= 1

n

n∑
i=1

mλκm−1
2

εn

C′
1φ(ãn)ãn

θ
1/p
p .

The passage from (3.9.81) to (3.9.82) is due to an application of Minkowski’s inequality. Con-
sequently, we get

sup
t∈S m

X

sup
h∈H (m)

n

sup
ϕK∈FmK m

∣∣∣u(T)
n,21(ϕ,t,h)

∣∣∣≤ 1

n

n∑
i=1

mλκm−1
2

εn

C′
1φ(ãn)ãn

θ
1/p
p .

To finish the proof, we return to (3.9.36) and, accordingly :

sup
t∈S m

X

sup
h∈H (m)

n

sup
ϕK∈FmK m

∣∣∣u(T)
n,2(ϕ,t,h)

∣∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.9.83)
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Now we pass to the study of u(T)
n,3. Using the fact that the functions ϕ(T)(·) are supposed to be

symmetric, Hoeffding’s decomposition of the considered U-statistic is possible, and get :

u(T)
n,3(ϕ,tℓ(t),h) = un(ϕ,tℓ;h)−E[un(ϕ,tℓ;h)] (3.9.84)

=
m∑

p=1

m!

(m −p)!
u(p)

n
(
πp,m(Gϕ,tℓ,h)

)
= mu(1)

n

(
πp,m(Gϕ,tℓ,h)

)+ m∑
p=2

m!

(m −p)!
u(p)

n
(
πp,m(Gϕ,tℓ,h)

)
, (3.9.85)

define new classes of functions, for h = (h1, . . . ,hm) ∈ H (m)
n , ℓ ∈ {1, . . . ,Nεn (SX )}m , 1 ≤ p ≤ m

and any y ∈Y m , Iλ:

Iλ :=
{
1{F(y)≤λ1/p } : λ> 0

}
.(

FmK mIληn

)(p) :=
{
φtℓ(h)πp,m(Gϕ,tℓ,h)(·, ·) for h ∈H (m)

0 and ϕ ∈FmIληn

}
.

These classes are a VC-type classes of functions (since the classes Fm ,K m and Iληn are too)
and the envelope function F(T)

k (·) satisfying :

F(T)
p ≤ 2pκm

2 ∥F(T)∥∞.

To prove (3.4.2), we begin by studying the linear term of (3.9.84), which means

mu(1)
n

(
π1,m(G(T)

ϕ,tℓ(t),h)
)
= m

n

n∑
i=1

π1,mG(T)
ϕ,tℓ(t),h(Xi ,Yi ),

then we have :

π1,mG(T)
ϕ,tℓ(t),h(x, y) = E

[
G(T)
ϕ,tℓ(t),h

(
(x,X2, . . . ,Xm), (y,Y2, . . . ,Ym)

)]−E[
G(T)
ϕ,tℓ(t),h (X,Y)

]
= E

[
G(T)
ϕ,tℓ(t),h (X,Y)

∣∣(X1,Y1) = (x, y)
]
−E

[
G(T)
ϕ,tℓ(t),h (X,Y)

]
.

It is easily seen that

mu(1)
n

(
π1,m(G(T)

ϕ,tℓ(t),h)
)
=:

1p
n
αn

(
S(T)
ϕ,tℓ(t),h

)
is an empirical process based on a VC-type class of functions contained in m

(
FmK mIληn

)(1)

with the same characteristics and that the elements are defined by :

S(T)
ϕ,tℓ(t),h(x, y) := mE

[
G(T)
ϕ,tℓ(t),h (X,Y)

∣∣(X1,Y1) = (x, y)
]

.

Thus, the proof of this part is similar to that of the Lemma 3.9.1.4 and then :

sup
h∈H (1)

0

sup
t∈S m

X

sup
ϕK̃∈FmK mIληn

∣∣∣u(1)
n

(
π1,mG(T)

ϕ,tℓ(t),h

)∣∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 .
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We continue, now, with the nonlinear terms; our aim is to prove that, for 2 ≤ p ≤ m :

sup
h∈H (m)

0

sup
t∈S m

X

sup
ϕK̃∈FmK mIληn

(
m

p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mG(T)

ϕ,tℓ(t),h

)∣∣∣√
ψSX

(
logn

n

) = Oa.co (1) ,

which, for ℓ= (ℓ1, . . . ,ℓm) and 1 ≤ j ≤ m, is equivalent to :

max
1≤ℓ j≤Nεn (SX )

max
1≤i≤L(n)

sup
h∈∏m

j=1 H i j

sup
t∈S m

X

sup
ϕK̃∈FmK mIληn

(
m

p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mG(T)

ϕ,tℓ,h

)∣∣∣√
ψSX

(
logn

n

) = Oa.co (1) ,

where H i j is defined in the same fashion as previously, and we consider new classes :

(
FmK mIληn

)
i j ,ℓ :=

{
φtℓ(h)G(T)

ϕ,tℓ,h(·, ·) whereϕ(T) ∈FmIληn and h ∈
m∏

j=1
H i j

}
,

(
Fm

mIληn

)(p)
i j ,ℓ :=

{
φtℓ(h)πp,m(G(T)

ϕ,tℓ,h)(·, ·) whereϕ(T) ∈FmIληn and h ∈
m∏

j=1
H i j

}
,

the key idea is to apply Lemma 3.9.1.10. We see clearly that the class of functions
(
FmK mIληn

)
i j ,ℓ

is uniformly bounded, i.e.,

sup
ϕ(T)K̃∈(

FmK mIληn

)
i j ,ℓ

∣∣ϕ(T)(·)K̃(·)∣∣≤ ληnκ
m
2 .

Furthermore, by applying Proposition 2.6 of Arcones and Giné [1993], we have for each (xi , yi ) ∈
SX ×Y and a Rademacher variables ζ1, . . . ,ζn :

E


∥∥∥∥∥n1−m

∑
Im
n

ζi1ζi2ϕ
(T)(yi1 , . . . , yim )

m∏
j=1

K

(d(xi j , t j

h j

)∥∥∥∥∥(
FmK mIληn

)
j ,ℓ


≤ cmE

∫ D2,n

0

[
logN(ϵ,

(
FmK mIληn

)
i j ,ℓ ,d2,n)

]m/2
dϵ,

where

D2,n :=
∥∥∥∥∥E1/2

ζ

{
n2(1−m)

∑
Im
n

(
ζi1ζi2ϕ

(T)(Yi1 , . . . ,Yim )
m∏

j=1
K

(d(Xi j , t j

h j

))2}∥∥∥∥∥(
FmK mIληn

)
i j ,ℓ

,

and

d2,n := E1/2
ζ

{
n2(1−m)

∑
Im
n

(
ζi1ζi2ϕ

(T)(Yi1 , . . . ,Yim )
m∏

j=1
K

(d(Xi j , t j

h j

))2}
.

Observe that :
D2,n ≤ n1−m n!

(n −m)!
λκm

2 ηn ≤ nηnκ
m
2 .
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Making use of the fact that FmK mIληn is a VC-type class of functions satisfying (A.5’.)
which implies that the class

(
FmK mIληn

)
i j ,ℓ is also a VC-type class of functions with the

same characteristics as FmK mIληn , it follows that :

E


∥∥∥∥∥n1−m

∑
Im
n

ζi1ζi2ϕ
(T)(yi1 , . . . , yim )

m∏
j=1

K

(d(xi j , t j

h j

)∥∥∥∥∥(
FmK mIληn

)
j ,ℓ


≤ cmE

∫ D2,n

0

[
logN(ϵ,

(
FmK mIληn

)
i j ,ℓ ,d2,n)

]m/2
dϵ

≤ cmnλCmηn . (3.9.86)

On the other hand, we have for each ϵ0, ℓ= (ℓ1, . . . ,ℓm) and 1 ≤ j ≤ m :

P


sup

h∈H (m)
0

sup
t∈S m

X

sup
ϕ(T)K̃∈FmK mIληn

(m
p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mG(T)

ϕ,tℓ(t),h

)∣∣∣√
ψSX

(
logn

n

) ≥ ϵ0



≤ ∑
1≤ℓ j≤Nεn (SX )

∑
1≤i≤L(n)

P


sup

h∈∏m
j=1 H i j

sup
ϕ(T)K̃∈FmK mIληn

(m
p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mG(T)

ϕ,tℓ,h

)∣∣∣√
ψSX

(
logn

n

) ≥ ϵ0


≤ L(n)Nm

εn
(SX ) max

1≤ℓi≤Nεn (SX )
max

1≤ j≤L(n)

×P


∥∥∥∥∥ m∑

p=2

(
m

p

)
u(p)

n

(
πp,mG(T)

ϕ,tℓ(t),h

)∥∥∥∥∥(
FmK mIληn

)
j ,ℓ

≥ ϵ0

√√√√√ψSX

(
logn

n

)
nφ(ãn)

 .

We are now in position to apply Lemma 3.9.1.10 , for each ϵ0, 1 ≤ j ≤ m and ℓ = (ℓ1, . . . ,ℓm),
one gets :

P


∥∥∥∥∥ m∑

p=2

(
m

p

)
u(p)

n

(
πp,mG(T)

ϕ,tℓ(t),h

)∥∥∥∥∥(
FmK mIληn

)
i j ,ℓ

≥ ϵ0

√√√√mψSX

(
logn

n

)
nφ(ãn)



≤ 2exp


−
ϵ2

0

√√√√√mψSX

(
logn

n

)
nφ(ãn)

2m+5mm+1cmM2κ2m
2


≤ n−ϵ2

0Cm (3.9.87)

where
εn = logn

n
, Cm > 0.
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Moreover, from equations (3.2.7), (3.9.68) and by choosing ϵ0 > 2Ctem we get :

∑
n≥1

P


sup

h∈H (m)
0

sup
t∈S m

X

sup
ϕ(T)K̃∈FmK mIληn

(m
p

)√
nφ(ãn)

∣∣∣u(p)
n

(
πp,mG(T)

ϕ,tℓ(t),h

)∣∣∣√
ψSX

(
logn

n

) ≥ ϵ0


≤ ∑

n≥1
L(n)n−ϵ2

0Cm

≤ ∞, (3.9.88)

for an appropriate chosen Cm .

Remainder Part

Consider now the remainder part, that is the U-process u(R)
n (ϕ,t,h) based on the unbounded

kernel given by :

G(R)
ϕ,t,h(x,y) = Gϕ,t,h(x,y)1

{F(y)>λη1/p
n }

.

We shall prove that the process is negligible, more precisely

sup
t∈S m

X

sup
h∈H (m)

0

sup
ϕK∈FmK m

√
nφ(ãn)

∣∣∣u(m)
n (G(R)

ϕ,t,h)−E
(
u(m)

n

(
G(R)
ϕ,t,h

))∣∣∣√
ψSX

(
logn

n

) = oa.co(1). (3.9.89)

Denote for each y,

F̃
(
y
)

:= κm
2 F

(
y
)

.

It is clearly seen that for all ϕ ∈Fm ,x,y ∈X m ,

F̃
(
y
)≥φ(ãn)

∣∣Gϕ,t,h(x,y)
∣∣ ,

since F̃ is symmetric it holds that :∣∣∣u(m)
n

(
G(R)
ϕ,t,h

)∣∣∣≤φ−1(ãn)u(m)
n

(
F̃1

{F(y)>λη1/p
n }

)
,

where u(m)
n

(
F̃1

{F(y)>λη1/p
n }

)
is a U-statistic based on the U- kernel F̃1

{F(y)>λη1/p
n }

:

sup
t∈S m

X

sup
h∈H (m)

0

sup
ϕK∈FmK m

√
nφ(ãn)

∣∣∣u(m)
n

(
G(R)
ϕ,t,h

)∣∣∣√
ψSX

(
logn

n

) ≤ (nηn)1/2u(m)
n

(
F̃1

{F(y)>λη1/p
n }

)
(3.9.90)

≤ C9ηnu(m)
n

(
F̃1

{F(y)>λη1/p
n }

)
,
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and

sup
t∈S m

X

sup
h∈H (m)

0

sup
ϕK∈FmK m

√
nφ(ãn)

∣∣∣E(
u(m)

n

(
G(R)
ϕ,t,h

))∣∣∣√
ψSX

(
logn

n

) ≤ C9ηnE
(
u(m)

n

(
F̃1

{F(Y)>λη1/p
n }

))

≤ C9E
(
F̃1+p1

{F(Y)>λη1/p
n }

)
.

Therefore, as n −→∞, we have

sup
t∈S m

X

sup
h∈H (m)

0

sup
ϕK∈FmK m

√
nφ(ãn)

∣∣∣E(
u(m)

n

(
G(R)
ϕ,t,h

))∣∣∣√
ψSX

(
logn

n

) = o(1). (3.9.91)

Thus to finish the proof, it suffices to show that :

u(m)
n

(
F̃1

{F(y)>λη1/p
n }

)
= oa.co

((
nηn

)−1/2
)

. (3.9.92)

By applying Chebyshev’s inequality, we get, for any δ> 0

P
{∣∣∣u(m)

n

(
F̃1

{F(Y)>λη1/p
n }

)
−E

(
u(m)

n

(
F̃1

{F(Y)>λη1/p
n }

))∣∣∣≥ δ(nηn)−1/2
}

≤ δ−2(nηn)Var
(
u(m)

n

(
F̃1

{F(Y)>λη1/p
n }

))
≤ mδ−2ηnE

(
F̃21

{F(Y)>λη1/p
n }

)
≤ m

n2
δ−2(ηn)pE

(
F̃21

{F(Y)>λη1/p
n }

)
≤ δ′E

(
F̃31

{F(Y)>λη1/p
n }

) 1

n2
,

so by using the fact that

δ′E
(
F̃31

{F(Y)>λη1/p
n }

) ∑
n≥1

1

n2
<∞,

we deduce that∑
n≥1

P
{∣∣∣u(m)

n

(
F̃1

{F(Y)>λη1/p
n }

)
−E

(
u(m)

n

(
F̃1

{F(Y)>λη1/p
n }

))∣∣∣≥ δ(nηn)−1/2
}
<∞.

Finally, note that (3.9.90) implies

E
(
u(m)

n

(
F̃1

{F(y)>λη1/p
n }

))
= o

((
nηn

)−1/2
)

.

The above results of the arbitrary choice of λ> 0 imply that (3.9.92) holds, which, when com-
bined with (3.9.91) and (3.9.90), achieves the proof of (3.9.89). Consequently, Lemma 3.4.1.8
is proved since the desired result for the truncated part was also established, hence

sup
ϕK̃∈FmK m

sup
h∈H (m)

n

sup
t∈S m

X

∣∣un(ϕ,t,h)−E(
un(ϕ,t,h

)∣∣= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 . (3.9.93)

Hence the proof is complete. □
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Proof of Theorem 3.4.1.9

Notice that

∣∣r̂ ∗(m)
n (ϕ,t;h)− Ê(

r̂ ∗(m)
n (ϕ,t;h)

)∣∣
=

∣∣∣∣un(ϕ,t,h)

un(1,t,h)
− E

(
un(ϕ,t,h)

)
E (un(1,t,h))

∣∣∣∣
≤

∣∣un(ϕ,t,h)−E(
un(ϕ,t,h)

)∣∣
|un(1,t,h)|

+
∣∣E(

un(ϕ,t,h)
)∣∣ · |un(1,t,h)−E (un(1,t,h))|

|un(1,t,h)| · |E (un(1,t,h))|
=: I+II.

Under the imposed hypothesis and the previously obtained results, and for some c ′1,c ′2 see that :

sup
h∈H (m)

0

sup
t∈S m

X

|un(1,t,h)| = c ′1 a.co

sup
h∈H (m)

0

sup
t∈S m

X

|E (un(1,t,h))| = c ′2

sup
ϕK̃∈FmK m

sup
h∈H (m)

0

sup
t∈S m

X

∣∣E(
un(ϕ,t,h)

)∣∣ = O(1).

Therefore, we can now apply Theorem 3.4.1.7 to handle II and Theorems 3.4.1.7 and 3.4.1.8
to handle I, depending on whether the class Fm satisfies (A.4.a’) or (A.4.a), and get for some
c ′′ > 0 with probability 1 :

sup
ϕK̃∈FmK m

sup
h∈H (m)

0

sup
t∈S m

X

√
nφ(ãn)

∣∣∣r̂ ∗(m)
n (ϕ,t;h)− Ê

(
r̂ ∗(m)

n (ϕ,t;h)
)∣∣∣√

ψSX
(εn)

≤ sup
ϕK̃∈FmK m

sup
h∈H (m)

0

sup
t∈S m

X

√
nφ(ãn) (I)√
ψSX

(εn)

+ sup
ϕK̃∈FmK m

sup
h(t)∈H (m)

0

sup
t∈S m

X

√
nφ(ãn) (II)√
ψSX

(εn)

≤ c ′′.

Hence the proof is complete. □

Proof of Theorem 3.4.1.10

Under (A.4.b) and (H.2.) one has

E[un(1,t;h)] ≥ κm
1
φt(h/2)

φt(h)
≥ κm

1 C3,
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which implies that∣∣∣∣E[un(ϕ,t;h)]

E[un(1,t;h)]
− r (m)(ϕ,t)

∣∣∣∣
≤ ∣∣κ−m

1 C−1
3 E[un(ϕ,t;h)]− r (m)(ϕ,t)

∣∣
≤

∣∣∣∣∣κ−m
1 C−1

3 E

(
(n −m)!

n!

∑
i∈I(m,n)

1

φt(h)
ϕ(Yi1 , . . . ,Yim )

m∏
j=1

K

(d(Xi j , t j )

h j

))

− r (m) (ϕ,t
)∣∣∣∣∣

≤
∣∣∣∣∣κ−m

1 C−1
3

1

φt(h)
E

(
ϕ(Y1, . . . ,Ym)

m∏
i=1

K

(
d(Xi , ti )

hi

))
− r (m) (ϕ,t

)∣∣∣∣∣
≤ 1

φt(h)κm
1 C3

E

(
m∏

i=1
K

(
d(Xi , ti )

hi

)∣∣r (m) (ϕ,X
)− r (m) (ϕ,t

)∣∣) .

Taking in consideration the hypotheses (A.1.)-(A.3.) and (A.4.b), we get ∀h ∈
m∏

j=1
(an, j ,b j ) and

∀t ∈S m
X

:

∣∣κ−m
1 C−1

3 E
(
un(ϕ,t,h)

)− r (m) (ϕ,t
)∣∣≤ C5

φt(h)κm
1 C3

E

(
m∏

i=1
K

(
d(Xi , ti )

hi

)
dγ

X m (X,t)

)
≤ C5

m
(d (X1, t1)+·· ·+d (Xm , tm))γ

≤ C5

m
(h1 +·· ·+hm)γ

= C5

m
(b1 + . . .+bm)γ ≤ C′

5b̃γ0 ,

where
b̃0 := max

1≤ j≤m
b j .

This completes the proof of the theorem. □

Proof of Corollary 3.4.2.5

In this section we will prove Corollary 3.4.2.5 using Lemma 3.9.1.1. Following the same
reasoning as the case of the functional regression, we use the notations: SΩ = SX , Ai = Xi ,
ϕ(Bi ) =ϕ(Yi ),

m∏
i=1

G(Hi , (t , Ai )) =
m∏

i=1
K(H−1

i d(t , Ai )),

Dn,k (t j ) = Hn,k (t j ), ∀t = (t1, . . . , tm) ∈S m
X , and j = 1, . . . ,m,

M(m)
n (ϕ, t ;hn,k (t)) = r̂ ∗(m)

n (ϕ, t ;hn,k (t)),

M(ϕ, t ) = r (m)(ϕ, t ).
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Choosing D−
n,k (βn , t ) and D+

n,k (βn , t ) such that for all j = 1, . . . ,m,

φt j (D−
n,k (βn , t j )) =

√
βn, j k

n
,

φt j (D+
n,k (βn , t j )) = k

n
√
βn, j

,

where βn, j are increasing sequences that belong to (0,1) and

βn =
m∏

j=1
βn, j .

We denote h−(t) = (
h−

1 (t1), . . . ,h−
m(tm)

)
and h+(t) = (

h+
1 (t1), . . . ,h+

m(tm)
)

, where

h−
j (t j ) = D−

n,k (βn , t j ) and h+(t j ) = D+
n,k (βn , t j ), for all j = 1, . . . ,m .

We can easily see that, for all j = 1, . . . ,m :

φ−1
t j


√
βn, j k1,n

n

≤ h−(t j ) ≤φ−1
t j


√
βn, j k2,n

n

 , (3.9.94)

φ−1
t j

 k1,n

n
√
βn, j

≤ h+(t j ) ≤φ−1
t j

 k2,n

n
√
βn, j

 . (3.9.95)

Using the condition (3.2.12) one gets, for all j = 1, . . . ,m, there exist constants 0 <µ j ≤ ν j <∞
such that

µ jφ
−1

(
ρn, j k1,n

n

)
≤φ−1

t j

(
ρn, j k1,n

n

)
and φ−1

t j

(
k2,n

ρn, j n

)
≤ ν jφ

−1
(

k2,n

ρn, j n

)
,

we put ρn, j =
√
βn, j , an, j = µ jφ

−1
(
ρn, j k1,n

n

)
and bn, j = ν jφ

−1
(

k2,n

ρn, j n

)
, thus h−(t) and h+(t)

belong to the interval

H (m)
n :=

m∏
j=1

(
an, j ,bn, j

)
.

We denote ãn = min
1≤ j≤m

an, j and b̃n = max
1≤ j≤m

bn, j , therefore

h j (t j ) ∈ (
ãn , b̃n

)
,∀ j = 1, . . . ,m.

We also note for all b = (b1, . . . ,bm) ∈ (0,1)m :

H (m)
0 :=

m∏
j=1

(
an, j ,b j

)
,

and
b̃0 := max

1≤ j≤m
b j .
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Finally, we can choose constants 0 <µ∗ < ν∗ <∞ and a sequence
{
ρ∗n

} ∈ (0,1), while respecting

the condition (A.7.), in a way that makes ãn =µ∗φ−1
(
ρ∗nk1,n

n

)
, b̃n = ν∗φ−1

(
k2,n

ρ∗nn

)
and

Un =φ−1
(

k2,n

ρ∗nn

)γ
+

√√√√√√√√
ψSX

(
logn

n

)
nφ

(
µ∗φ−1

(
ρ∗nk1,n

n

)) .

It is clear that (L0) is satisfied due to condition (A.4.b), and from (3.9.94) and (3.9.95), we can
easily verify that the construction of h−(t) and h+(t) satisfies the condition (L1).

Checking the conditions (L4) and (L5)

A direct application of Corollary 3.4.1.11 gives

sup
ϕK̃∈FmK m

sup
h−(t)∈H (m)

n

sup
t∈S m

X

∣∣∣Mn(ϕ,t;D−
n,k (βn ,t))−M(ϕ,t)

∣∣∣

= O
(
b̃γn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 ,

which is equivalent to

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣∣Mn(ϕ,t;D−
n,k (βn ,t))−M(ϕ,t)

∣∣∣

= Oa.co

φ
−1

(
k2,n

ρ∗nn

)γ
+

√√√√√√√√
ψSX

(
logn

n

)
nφ

(
µ∗φ−1

t

(
ρ∗nk1,n

n

))
 . (3.9.96)

Applying the same reasoning with h+(t) we obtain

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣∣Mn(ϕ,t;D+
n,k (βn ,t))−M(ϕ,t)

∣∣∣

= Oa.co

φ
−1

(
k2,n

ρ∗nn

)γ
+

√√√√√√√√
ψSX

(
logn

n

)
nφ

(
µ∗φ−1

t

(
ρ∗nk1,n

n

))
 . (3.9.97)

Thus the conditions (L4) and (L5) are checked.
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Checking the condition (L2)

To check (L2) we show that for all ε0 > 0 and t = (t1, . . . , tm) ∈S m
X

:

∑
n≥1

P

{∣∣∣∣∣ m∏
j=1
1{

D−
n,k

(
βn , t j

)≤ Hn,k (t j ) ≤ D+
n,k

(
βn , t j

)}−1

∣∣∣∣∣> ε0

}
<∞. (3.9.98)

We have

P

{∣∣∣∣∣ m∏
j=1
1{

D−
n,k

(
βn , t j

)≤ Hn,k (t j ) ≤ D+
n,k

(
βn , t j

)}−1

∣∣∣∣∣> ε0

}

=
m∑

j=1
P

{
Hn,k (t j ) ∉

(
D−

n,k

(
βn , t j

)
,D+

n,k

(
βn , t j

))}

≤
m∑

j=1
P

Hn,k (t j ) ≤φ−1
t j


√
βn, j k1,n

n


+

m∑
j=1
P

Hn,k (t j ) ≥φ−1
t j

 k2,n√
βn, j n




≤
Nε(SX )∑
ℓ=1

k2,n∑
k=k1,n

m∑
j=1
P

Hn,k (tℓ(t j )) ≤φ−1
tℓ(t j )


√
βn, j k1,n

n




+
Nε(SX )∑
ℓ=1

k2,n∑
k=k1,n

m∑
j=1
P

Hn,k (tℓ(t j )) ≥φ−1
tℓ(t j )

 k2,n√
βn, j n


 ,

now, using (3.9.40) and (3.9.41), we get

P

{
Hn,k (tℓ(t j )) ≤φ−1

tℓ(t j )

(
αk1,n

n

)}
≤ exp

{
−k −αk1,n

4

}
, (3.9.99)

and

P

{
Hn,k (tℓ(t j )) ≥φ−1

tℓ(t j )

(
k2,n

αn

)}
≤ exp

{
−

(
k2,n −αk

)2

2αk2,n

}
. (3.9.100)

Consequently, we obtain

Nε(SX )∑
ℓ=1

k2,n∑
k=k1,n

m∑
j=1
P

{
Hn,k (tℓ(t j )) ≤φ−1

tℓ(t j )

(
αk1,n

n

)}
≤ mNεn (SX )k2,n exp

{−(1−α)k1,n/4
}

≤ mNεn (SX )n1−{(1−α)/4}
k1,n
lnn <∞,(3.9.101)

and

Nε(SX )∑
ℓ=1

k2,n∑
k=k1,n

m∑
j=1
P

Hn,k (tℓ(t j )) ≥φ−1
tℓ(t j )

 k2,n√
βn, j n


 ≤ Nεn (SX )k2,n exp

{−(1−α)k1,n/2α
}

≤ Nεn (SX )n1−{(1−α)/2α}
k2,n
lnn <∞.(3.9.102)

Thus (L2) is checked.
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Checking the condition (L3)

Notice That∣∣M(m)
n− (ϕ,t;βn)−βnM

(m)(ϕ,t)
∣∣

=

∣∣∣∣∣∣∣∣∣∣
∑

i∈I(m,n)
ϕ(Yi1 , . . . ,Yim )

m∏
j=1

K

(
d(Xi j , t j )

h−
j (t j )

)
∑

i∈I(m,n)

m∏
j=1

K

(
d(Xi j , t j )

h+
j (t j )

) − φt(h−(t))
φt(h+(t))

r (m)(ϕ,t)

∣∣∣∣∣∣∣∣∣∣
= φt(h−(t))
φt(h+(t))

∣∣∣∣∣∣∣∣∣∣
φt(h+(t))
φt(h−(t))

∑
i∈I(m,n)

ϕ(Yi1 , . . . ,Yim )
m∏

j=1
K

(
d(Xi j , t j )

h−
j (t j )

)
∑

i∈I(m,n)

m∏
j=1

K

(
d(Xi j , t j )

h+
j (t j )

) − r (m)(ϕ,t)

∣∣∣∣∣∣∣∣∣∣
= βn

∣∣∣∣un(ϕ,t;h−(t))
un(1,t;h+(t))

− r (m)(ϕ,t)

∣∣∣∣ (3.9.103)

The study of (3.9.103) is similar to the proofs of Theorem 3.4.1.9 and Theorem 3.4.1.10, as we
can clearly see that∣∣∣∣un(ϕ,t;h−(t))

un(1,t;h+(t))
− r (m)(ϕ,t)

∣∣∣∣≤ ∣∣∣∣un(ϕ,t;h−(t))

un(1,t;h+(t))
− E[un(ϕ,t;h−(t))]

E[un(1,t;h+(t))]

∣∣∣∣ (3.9.104)

+
∣∣∣∣E[un(ϕ,t;h−(t))]

E[un(1,t;h+(t))]
− r (m)(ϕ,t)

∣∣∣∣ . (3.9.105)

Let us start with (3.9.104), we have∣∣∣∣un(ϕ,t;h−(t))

un(1,t;h+(t))
− E[un(ϕ,t;h−(t))]

E[un(1,t;h+(t))]

∣∣∣∣
≤

∣∣un(ϕ,t,h−(t))−E(
un(ϕ,t,h−(t))

)∣∣
|un(1,t,h+)|

+
∣∣E(

un(ϕ,t,h−(t))
)∣∣ · ∣∣un(1,t,h+)−E(

un(1,t,h+(t))
)∣∣

|un(1,t,h+(t))| · |E (un(1,t,h+(t)))|
=: I+II.

Applying the same calculation as in the proof of Theorem 3.4.1.9, it follows that:

sup
ϕK̃∈FmK m

sup
(h−(t),h+(t))∈H (m)

0 ×H (m)
0

sup
t∈S m

X

∣∣∣∣un(ϕ,t;h−(t))

un(1,t;h+(t))
− r (m)(ϕ,t)

∣∣∣∣

= Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 .

Now, for (3.9.105), using the fact that

E[un(1,t;h+(t))] ≥ κm
1
φt(h+(t)/2)

φt(h+(t ))
≥ κm

1 C3,
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therefore,

∣∣∣∣un(ϕ,t;h−(t))

un(1,t;h+(t))
− r (m)(ϕ,t)

∣∣∣∣≤ κ−m
1 C−1

3

∣∣un(ϕ,t;h−(t))− r (m)(ϕ,t)
∣∣ ,

following the same steps as in Theorem 3.4.1.10, we can easily conclude that

sup
ϕK̃∈FmK m

sup
(h−(t),h+(t))∈H (m)

n ×H (m)
n

sup
t∈S m

X

∣∣∣∣ E[un(ϕ,t;h−(t)]

E[un(1,t;h+(t))]
− r (m)(ϕ,t)

∣∣∣∣= O
(
b̃γn

)
.

Consequently,

sup
ϕK̃∈FmK m

sup
(h−(t),h+(t))∈H (m)

n ×H (m)
n

sup
t∈S m

X

∣∣∣∣un(ϕ,t;h−(t))

un(1,t;h+(t))
− r (m)(ϕ,t)

∣∣∣∣

= O
(
b̃γn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 .

Since βn → 1, we can also conclude that

sup
ϕK̃∈FmK m

sup
(h−(t),h+(t))∈H (m)

0 ×H (m)
0

sup
t∈S m

X

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈I(m,n)

ϕ(Yi1 , . . . ,Yim )
m∏

j=1
K

(
d(Xi j , t j )

h−
j (t j )

)
∑

i∈I(m,n)

m∏
j=1

K

(
d(Xi j , t j )

h+
j (t j )

) −βnr (m)(ϕ,t)

∣∣∣∣∣∣∣∣∣∣∣
= O

(
b̃γn

)+Oa.co


√√√√√ψSX

(
logn

n

)
nφ(ãn)

 ,

which implies that

sup
ϕK̃∈FmK m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈I(m,n)

ϕ(Yi1 , . . . ,Yim )
m∏

j=1
K

(
d(Xi j , t j )

h−
j (t j )

)
∑

i∈I(m,n)

m∏
j=1

K

(
d(Xi j , t j )

h+
j (t j )

) −βnr (m)(ϕ,t)

∣∣∣∣∣∣∣∣∣∣∣
= O

(
φ−1

(
k2,n

ρ∗nn

)γ)
+Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

t

(
ρ∗nk1,n

n

))
 . (3.9.106)
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Finally, by putting ϕ≡ 1 in (3.9.106), we get

sup
K̃∈K m

sup
k1,n≤k≤k2,n

sup
t∈S m

X

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈I(m,n)

m∏
j=1

K

(
d(Xi j , t j )

h−
j (t j )

)
∑

i∈I(m,n)

m∏
j=1

K

(
d(Xi j , t j )

h+
j (t j )

) −βn

∣∣∣∣∣∣∣∣∣∣∣
= O

(
φ−1

(
k2,n

ρ∗nn

)γ)
+Oa.co


√√√√√√√√

ψSX

(
logn

n

)
nφ

(
µ∗φ−1

t

(
ρ∗nk1,n

n

))
 . (3.9.107)

Hence, (L3) is checked. Now, with all the conditions of Lemma 3.9.1 satisfied, it follows that

sup
ϕG̃∈FmG m

sup
t∈Sm

Ω

sup
k1,n≤k≤k2,n

∣∣M(m)
n

(
ϕ,t;Dn,k (t)

)−M(m)(ϕ,t)
∣∣= Oa.co(Un),

which is exactly the desired result; hence, the proof is completed. □

Appendix

In the sequel, we define X,X1, . . . ,Xn to be i.i.d random variables defined on the probability space
(Ω,A ,P) and taking values in some measurable space (Ψ,B), and F to be a P-measurable class
of measurable functions with envelope function F, such that :

E(F2(X)) <∞.

We further assume that F has the following property:

• For any sequence of i.i.d. X -valued random variables Z1,Z2, . . . it holds that

E

∥∥∥∥∥ k∑
i=1

{
g (Zi )−Eg (Z1)

}∥∥∥∥∥
G

≤ C1

p
k ∥G(Z1)∥2 , 1 ≤ k ≤ n,

where C1 > 1 is a constant depending on G only.

Lemma 3.9.1.6 (Theorem 2.14.1 van der Vaart and Wellner [1996]) For an empirical pro-
cess αn( f ) indexed by the class of functions F with the notation :∥∥αn( f )

∥∥
F := sup

f ∈F

∣∣αn( f )
∣∣

and J(δ,F ) meaning supQ

∫ δ
0

√
1+ logN

(
ϵ,F ,∥ ·∥L2(Q)

)
dϵ, we have, for p > 1,∥∥∥∥αn( f )

∥∥
F

∥∥
p ≤ CJ(δ,F )∥F∥p∨2 .
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Lemma 3.9.1.7 (Theorem 3.1 Dony and Einmahl [2009]) Let F be a pointwise measurable
function class satisfying the above assumptions. If we suppose that the empirical process αn( f )

satisfies :
E
∥∥αn( f )

∥∥
F ≤ C∥F∥2, (3.9.108)

then for any measurable subset B ∈B:

E
∥∥αn( f 1B)

∥∥
F ≤ 2C∥F1B∥2.

From Theorem 3.2 of Dony and Einmahl [2009], it follows that a VC-type class of functions
satisfies, always, the condition (3.9.108).

Lemma 3.9.1.8 (Bernstein type inequality Fact 4.2 Dony and Einmahl [2009]) Assume that
for some H > 0 and p ≥ 2 the r.vs X,X1, . . . ,Xn satisfy :

E(Fp (X)) ≤ (p !/2)σ2Hp−2, where σ2 ≥ E(F2(X)),

then for µ′
n = E(∥∥pnαn( f )

∥∥
F

)
, we have for any z > 0 :

P

{
max

1≤k≤n

∥∥∥pkαk ( f )
∥∥∥

F
≥µ′

n + z

}
≤ exp

( −z2

2nσ2 +2zH

)
≤ exp

( −z2

4nσ2

)
∨exp

(−z

4H

)
.

Lemma 3.9.1.9 (Theorem A. page 201 Serfling [1980]) Let f be a symmetric function taking
its variables from X m satisfying

∥∥ f
∥∥∞ ≤ c,

E f (X1, . . . ,Xm) = θ,

and
σ2 = Var

(
f (X1, . . . ,Xm)

)
,

then for t > 0 and n ≥ m, we have :

P
{|u(m)

n ( f )−θ| ≥ t
}≤ exp

{
− [n/m]t 2

2σ2 − 2
3 ct

}
.

Lemma 3.9.1.10 (Proposition 4. Arcones [1995]) Let X1, . . . ,Xm be i.i.d. random variables
with values in some measurable space (S,S ). Let F be a class of symmetric functions f from
Sm satisfying some measurability conditions. Suppose that there exists a finite constant c0 such
that for each x j ∈ S we have :

E

{∥∥∥∥∥n1−m
∑
Im
n

ζi1ζi2 f (xi1 , . . . , xim )

∥∥∥∥∥
F

}
≤ c0,

and that there is a finite constant b such that sup f ∈F

∣∣ f (X)
∣∣≤ b, a.s. Then for each u > 0 :

P

{
n1/2

∥∥∥∥∥ m∑
j=2

(
m

j

)
un

(
π j ,m f

)∥∥∥∥∥
F

≥ u

}
≤ 2exp

(
− un1/2

2m+5mm+1bc0

)
,

where the variables ζi are Rademacher variables.
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Lemma 3.9.1.11 (Lemma 6.1 in Kara et al. [2017], p.186) Let X1, . . . ,Xm be independent Bernoulli
random variables with P(Xi= 1) = p, for all i = 1, . . . ,n. Set U = X1+ . . .+Xm and µ= pn. Then,
for any ω≥ 1, we have

P
(
U ≥ (1+ω)µ

)≤ exp

{−µmin(ω2,ω)

4

}
,

and if ω ∈ (0,1), we have

P{U ≤ (1−ω)µ} ≤ exp
{−µ(

ω2/2
)}

.
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Chapter 4

Asymptotic properties of conditional
U-statistics using delta sequences

Ce chapitre développe le contenu d’un article publié [Communications in Statistics-Theory and
Methods (2023). https://doi.org/10.1080/03610926.2023.2179887], mis en forme pour être in-
séré dans le présent manuscrit de thèse.

Title : Asymptotic properties of conditional U-statistics using delta sequences

Abstract

W. Stute [Ann. Probab. 19 (1991) 812–825] introduced a class of so-called conditional U-
statistics, which may be viewed as a generalization of the Nadaraya-Watson estimates of a
regression function. Stute proved their strong pointwise consistency to :

r (k)(ϕ,t) := E[ϕ(Y1, . . . ,Yk )|(X1, . . . ,Xk ) = t], for t ∈Rdk .

This paper deals with a quite general nonparametric statistical curve estimation setting, includ-
ing the Stute estimator as a particular case. The class of “delta sequence estimators” is defined
and treated here. This class also includes the orthogonal series and histogram methods. The
theoretical results concerning the exponential inequalities and the asymptotic normality estab-
lished in this paper are (or will be) key tools for further functional estimation developments. As
a by-product of our proofs, we state consistency results for the delta sequences conditional U-
statistics estimator under the random censoring. Potential applications include discrimination
problems, metric learning, multipartite ranking, Kendall rank correlation coefficient, general-
ized U-Statistics, and set indexed conditional U-statistics.

Keywords : Nonparametric estimation; U-statistics; conditional distribution; delta sequences;
kernel estimation; machine learning problems.
Mathematics Subject Classification : 60F05 ; 60G15 ; 60G10 ; 62G05 ; 62G07; 62H 12.
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4.1 Introduction

Motivated by numerous applications, the theory of U-statistics (introduced in the seminal work
by Hoeffding [1948]) and U-processes have received considerable attention in the past decades.
U-statistics are useful for solving complex statistical problems. Examples are density estima-
tion, non-parametric regression tests, and goodness-of-fit tests. In particular, U-statistics play a
role in analyzing estimators (including function estimators) with varying degrees of smoothness.
For example, Stute [1993] applies a.s. uniform bounds for P-canonical U-processes to analyze
the product limit estimator for truncated data. Arcones and Wang [2006] present two new tests
for normality based on U-processes. Making use of the results of Giné and Mason [2007a,b],
Schick et al. [2011] introduced new tests for normality which use as test statistics weighted
L1-distances between the standard normal density and local U-statistics based on standardized
observations. Joly and Lugosi [2016] discussed the estimation of the mean of multivariate func-
tions in case of possibly heavy-tailed distributions and introduced the median-of-means, which
is based on U-statistics. U-processes are important tools for a broad range of statistical ap-
plications such as testing for qualitative features of functions in nonparametric statistics [Lee
et al. [2009a], Ghosal et al. [2000a], Abrevaya and Jiang [2005a]], cross-validation for density
estimation [40], and establishing limiting distributions of M-estimators [see, e.g., Arcones and
Giné [1993], Sherman [1993], Sherman [1994], de la Peña and Giné [1999]]. Halmos [1946],
von Mises [1947] and Hoeffding [1948], who provided (amongst others) the first asymptotic
results for the case that the underlying random variables are independent and identically dis-
tributed. Under weak dependency assumptions, asymptotic results are, for instance, shown in
Borovkova et al. [2001], in Denker and Keller [1983] or more recently in Leucht [2012] and
in more general setting in Leucht and Neumann [2013]. For excellent resource of references
on the U-statistics and U-processes, the interested reader may refer to Borovskikh [1996], Ko-
roljuk and Borovskich [1994], Lee [1990], Arcones and Giné [1995], Arcones et al. [1994]
and Arcones and Giné [1993]. A profound insight into the theory of U-processes is given by
de la Peña and Giné [1999]. For more recent references, we refer to Bouzebda and Soukarieh
[2023b]; Soukarieh and Bouzebda [2022, 2023]. In this paper, we consider the so-called condi-
tional U-statistics introduced by Stute [1991]. These statistics may be viewed as generalizations
of the Nadaraya-Watson (Nadaraja [1964] and Watson [1964]) estimates of a regression func-
tion.

To be more precise, let us consider the sequence of independent and identically distributed
random elements {(Xi ,Yi ), i ∈ N∗} with Xi ∈ Rd and Yi ∈ Rd ′

, d ,d ′ ≥ 1. Let ϕ : Rd ′k → R be
a measurable function. In this paper, we are primarily concerned with the estimation of the
conditional expectation or regression function :

r (k)(ϕ,t) = E
(
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = t

)
, for t ∈Rdk ,

whenever it exists, i.e., E
(∣∣ϕ(Y1, . . . ,Yk )

∣∣)<∞. We now introduce a kernel function K : Rd → R
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with support contained in [−B,B]d , B > 0, satisfying :

sup
x∈Rd

|K(x)| =: κ<∞ and
∫

K(x)dx = 1. (4.1.1)

Stute [1991] introduced a class of estimators for r (k)(ϕ,t), called conditional U-statistics, which
is defined for each t ∈Rdk to be :

̂̂r (k)
n (ϕ,t;hn) =

∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )K

(
t1 −Xi1

hn

)
· · ·K

(
tk −Xik

hn

)
∑

(i1,...,ik )∈I(k,n)
K

(
x1 −Xi1

hn

)
· · ·K

(
xk −Xik

hn

) , (4.1.2)

where :
I(k,n) = {

i = (i1, . . . , ik ) : 0 ≤ i j ≤ n and i j ̸= ir if j ̸= r
}

,

is the set of all k-tuples of different integers between 1 and n and {hn}n≥1 is a sequence of
positive constants converging to zero at the rate nhdk

n → ∞. In the particular case k = 1,
the r (k)(ϕ,t) reduces to r (1)(ϕ,t) = E(ϕ(Y)|X = t) and Stute’s estimator becomes the Nadaraya-
Watson (Nadaraja [1965] and Watson [1964]) estimator of r (1)(ϕ,t) given by :

̂̂r (1)
n (ϕ,t,hn) =

n∑
i=1

ϕ(Yi )K

(
Xi − t

hn

)/ n∑
i=1

K

(
Xi − t

hn

)
.

The work of Sen [1994] was devoted to estimating the rate of the uniform convergence in t of̂̂r (k)
n (ϕ,t;hn) to r (k)(ϕ,t). In the paper of Prakasa Rao and Sen [1995], the limit distributions of̂̂r (k)
n (ϕ,t;hn) are discussed and compared with those obtained by Stute. Harel and Puri [1996]

extend the results of Stute [1991], under appropriate mixing conditions, to weakly dependent
data and have applied their findings to verify the Bayes risk consistency of the correspond-
ing discrimination rules. Stute [1996] proposed symmetrized nearest neighbor conditional U-
statistics as alternatives to the usual kernel-type estimators. An important contribution is given
in the paper Dony and Mason [2008] where a much stronger form of consistency holds, namely,
uniform in t and in bandwidth consistency (i.e., hn , hn ∈ [an ,bn] where an < bn → 0 at some
specific rate) of ̂̂r (k)

n (ϕ,t;hn). In addition, uniform consistency is also established over ϕ ∈ F

for a suitably restricted class of functions F , extended in Bouzebda and Nemouchi [2019],
Bouzebda and Nemouchi [2020], Bouzebda et al. [2021], Bouzebda and Nezzal [2022] and
Bouzebda et al. [2022]. The main tool in their result is the use of the local conditional U-
process investigated in Giné and Mason [2007a]. In the present paper, we will consider a gen-
eral method for functional estimation by using the delta sequences. Delta sequences (also called
“approximate identities” or “summability kernels”) appear in many branches of mathematics,
but probably the most important applications are those in the theory of generalized functions.
The basic use of delta sequences is the regularization of generalized functions. The proposed
methods generalize several non-parametric estimation methods, including the kernel estimators
given in (4.1.2) of Stute [1991]. To be more precise, the broad class of delta-sequence esti-
mators includes the histogram estimators, Chentsov’s projection estimators Chentsov [1962],
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and nearest-neighbor estimators, among others. Certain types of these sequences were already
studied by Watson and Leadbetter [1964], who called them “δ-function sequences”. They es-
tablished, among other things, the asymptotic unbiasedness and the asymptotic variance of
estimators based on them but did not consider convergence rates. Winter [1975] obtained the
rate of strong consistency as well as the rate of asymptotic bias for estimators associated with
delta sequences arising from the Fejér kernel of the Fourier series. The delta sequence method
of density estimation of Susarla and Walter [1981] is extended to certain non-i.i.d. cases in
Prakasa Rao [1978], where the observations are assumed to be sampled from a stationary
Markov process. Ahmad [1981] considered the delta-sequence estimator for the marginal dis-
tribution of a strictly stationary stochastic process satisfying some mixing conditions. Basu and
Sahoo [1985] studied the rate of local and global convergence rates of delta-sequence-type es-
timators of the density function, its derivative, and its mode. Nolan and Marron [1989] proved
the uniform strong consistency of delta-sequence estimators. Isogai [1990] partially general-
ized the usual non-parametric estimators of a regression function using an estimator based on
quasi-positive delta sequences. Marron and Härdle [1986] considered a general nonparamet-
ric statistical curve estimation setting called the class of “fractional delta sequence estimators”.
Cristóbal Cristóbal et al. [1987] used the delta method to investigate the correlation model.
Prakasa Rao [2010] considered the problem of estimation of density function by the method
of delta sequences for functional data with values in an infinite dimensional separable Banach
space; we may also refer to Ouassou and Rachdi [2012]. The copula estimation using the delta
sequences methods is considered in Bouzebda [2012]. The problem of the nonparametric mini-
max estimation of a multivariate density at a given point by the delta sequences was investigated
in Belitser [2000]. Walter [1983] used the delta sequence to propose an important application
to the classification problem of the value of the discrete random variable. In this functional
context, the "delta sequence estimators" class is defined and discussed. Bouzebda et al. [2023]
established the almost complete uniform convergence with the rates of these estimators under
certain broad conditions.

The present study aims to introduce and investigate the delta sequence estimators for the
conditional U-statistics. To our knowledge, this problem was open up to the present, and it
gives the primary motivation for our paper.

The layout of the present article is structured as follows. Section 4.2 is devoted to intro-
ducing the delta sequences and the definitions we need in our work, where we introduce the
new family of estimators. Section 4.3 gives the paper’s main results concerning the exponential
inequalities and the limiting law. In Section 4.4, we provide an important application for the
censored data setting that is of its own interest. In Section 4.5, we provide some applications
including the discrimination in §4.5.1, the metric learning in §4.5.2, the multipartite ranking in
§4.5.3, the Ranking problems in §4.5.4, Kendall rank correlation coefficient §4.5.5, generalized
U-Statistics §4.5.6, set indexed conditional U-statistics §4.5.7 and testing stochastic monotonic-
ity problems in §4.5.8. In Section 4.5.10, we collect some examples of classes of functions and
examples of conditional U-statistics. In Section 4.6, we briefly discussed the bandwidth se-
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lection criterion. Some concluding remarks and possible future developments are relegated to
6.2. To prevent interrupting the presentation flow, all proofs are gathered in Section 4.7. A few
relevant technical results are given in Appendix 4.8.

4.2 Preliminaries and estimation procedure

Let (X,Y), (X1,Y1), . . . , (Xn ,Yn) be independent and identically distributed random vectors with
common joint density function fX,Y : Rd ×Rd ′ → [0,∞[. Let ϕ : Rd ′k → R be a measurable
function. We are interested in the estimation of the conditional expectation or the regression
function

r (k)(ϕ, x̃) = E(
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x̃

)
, for x̃ ∈Rdk , (4.2.1)

whenever it exists, i.e, E
(∣∣ϕ(Y1, . . . ,Yk )

∣∣)<∞. To be more precise, we want to extend the results
of conditional U-statistics presented in Stute [1991] using the delta sequences method, known
to unify many estimation approaches. To make sense of the results and before we present a new
estimate of r (k)(ϕ, x̃), the following definitions and notation are needed. Throughout this paper,
any multivariate point will be written in bold. To avoid confusion, we note x= (x1, . . . , xd ) for a
generic point in the Euclidean space Rd and we denote x̃ := (x1, . . . ,xk ) a k-tuple of multivariate
points xi ∈Rd ,1 ≤ i ≤ k. We will also be considering X , a compact subset of Rd .

4.2.1 Delta-sequences

For an open set X⊂ Rd , let C∞
0 (X) denote the space of infinitely differentiable functions on X

having compact support.

Definition 4.2.1.1 A sequence of functions {δm}, in L∞(X×X), is said to be a delta-sequence
on X if for each φ ∈C∞

0 (X), and x ∈X, as m →∞, we have∫
X
δm(x,y)φ(y)dy →φ(x). (4.2.2)

Definition 4.2.1.2 A delta-sequence {δm} on Rd is said to be of positive type if δm ≥ 0 and for
any x ∈Rd , we have,

(i)
∫
Rd δm(x,y)dy = 1;

(ii) supr>0 r
{∫

|x−y|>r δm(x,y)dy
}
= O(m−1);

(iii) supx∈Rd |δm(x, ·)| = O(md );

and for each η> 0,

(iv) sup{δm(x,y) : |x−y| > η} → 0.
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Let δm, j (x j , y j ) be a delta-sequence of positive type, for j = 1, . . . ,d , then, from Proposition 2.2
Susarla and Walter [1981],

δm(x,y) =
d∏

j=1
δm, j (x j , y j )

is a delta-sequence of positive type. The delta-sequence technique is a device to simultaneously
study properties of estimates pertaining to several usual methods in nonparametric function
estimation. Introduced by Watson and Leadbetter [1964], the delta-sequence method relative to
the density estimation was studied among others by Földes and Révész [1974] and Walter and
Blum [1979] whereas it was extended to the multivariate case by Susarla and Walter [1981].

Remark 4.2.1.3 For (x, y) ∈R2, set

δm(x, y) = mK(m(x − y)),

where K(·) is a positive bounded function, such that,∫
R

K(x)d x = 1 and lim
x→∞ |x|K(x) = 0.

Parzen [1962] proved that δm(·, ·) constitutes a delta-sequence.

For convenience, we present two examples of positive delta sequences from Susarla and Walter
[1981].

Example 4.2.1.4 The multivariate Fejer kernel of Fourier series

δm(x,y) =
d∏

i=1
δm(xi , yi ),

where

δm(xi , yi ) = (sin{(m +1)(xi − yi )/2})2

2π(sin{(xi − yi )/2})2
1I{|yi −xi | ≤π},

defines a positive delta-sequence, refer to [Susarla and Walter, 1981, Example 2.2.].

Example 4.2.1.5 Let us denote by B a fixed compact subset of Rd . For each m, partition B

into Bm,1, . . . ,Bm,md disjoint sets each of which has diameter ≤ b/m, for some constant b

depending on B. Then

δm(x,y) =
md∑
j=1

1I{x ∈Bm, j }1I{y ∈Bm, j },

is a positive delta-sequence fulfilling Definition 4.2.1.2.

Here and elsewhere, mn →∞, mn/n → 0 as n →∞.
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4.2.2 The main estimate

To estimate the regression function r (k)(ϕ, ·) given in (4.2.1), we propose the following general
family of estimates for each x̃ ∈Rdk , defined by

r̂ (k)
n (ϕ, x̃;mn) =



∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) ,

if
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) ̸= 0,

n!

(n −k)!k !

∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )

if
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)= 0.

(4.2.3)

From now on, we shall use the following notation:

X(k) := (X1, . . . ,Xk ) ∈Rdk , and X(k)
i := (Xi1 , . . . ,Xik ) ∈Rdk , i ∈ I(k,n),

Y(k) := (Y1, . . . ,Yk ) ∈Rd ′k , and Y(k)
i := (Yi1 , . . . ,Yik ) ∈Rd ′k , i ∈ I(k,n),

we also define

Gϕ,x̃,mn (X(k),Y(k)) =ϕ(Y1, . . . ,Yk )
k∏

i=1
δmn (xi ,Xi ) ,

and
un(ϕ, x̃,mn) := u(k)

n (Gϕ,x̃,mn ) = (n −k)!

n!

∑
i ∈I(k,n)

Gϕ,x̃,mn (X(k)
i ,Y(k)

i ).

We can see that
r̂ (k)

n (ϕ, x̃,mn) = un(ϕ, x̃,mn)

un(1, x̃,mn)
, (4.2.4)

where un(1, x̃,mn) denotes the U-statistic with ϕ ≡ 1. Note that un(ϕ, x̃,mn) is a classical
U-statistic generated by the kernel Gϕ,x̃,mn .

Remark 4.2.2.1 Since the kernel Gϕ,x̃,mn (·, ·) is not a symmetric function, we construct its sym-
metrized version

Ḡϕ,x̃,mn (t,y) = 1

k !

∑
σ∈I(k,k)

Gϕ,x̃,mn (tσ,yσ) = 1

k !

∑
σ∈I(k,k)

ϕ(yσ)δ̃mn (x̃,tσ) , (4.2.5)

where tσ = (tσ1 , . . . ,tσk ), yσ = (yσ1 , . . . ,yσk ) and

δ̃mn (x̃,t) =
k∏

j=1
δmn

(
x j ,t j

)
.

Notice that, after the symmetrization, the expectation

E
[
Ḡϕ,x̃,mn (t,y)

]= E[
Gϕ,x,mn (t,y)

]
.

This remark will be useful when applying Lemma 4.8.0.2 later in the proofs.
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4.3 Main results

4.3.1 Conditions and comments

Our results are stated under some assumptions we gather hereafter for easy reference.

(C.1.) Let α = (α1, . . . ,αk ) be a multi-index of non-negative integers αi , such that |α| =
k∑

i=1
αi ,

we assume that the density function fX(·) is |α|-times continuously differentiable on X

and there exists a finite constant Cα such that, for all x1, . . .xk and j = 1, . . . ,k

sup
hx,u∈[0,1]

∣∣∣∣∣ ∂α j

∂xi1 · · ·∂xiα j

fX
(
x j +hx,uu j

)∣∣∣∣∣≤ Cα;

(C.2.) We also suppose that the density function fX(·) is such that, for all x ∈X ,

(C.2.a) For some finite constant fX,max, we have fX(x) ≤ fX,max,

(C.2.b) There exists a constant fX,min > 0 such that fX(x) > fX,min;

(C.3.) There exists a measure µ on (Rd ′
,A ) such that PX,Y is absolutely continuous with respect

to Lebd ⊗µ , where Lebd is the Lebesgue measure on Rd ;

(C.4.) For every y ∈ Rd ′
,x 7→ fX,Y(x,y) is differentiable almost everywhere up to the order α.

Moreover, there exists positive finite constants Cα,ψ and Cϕ, f ,α, such that, for every 0 ≤
i1, . . . , iα j ≤ d

sup
hx,u∈[0,1]

∣∣∣∣∣ ∂α j

∂xi1 · · ·∂xiα j

fX,Y
(
x j +hu j ,y j

)∣∣∣∣∣≤ Cα,ψ,

and
α−1∑
l=1

1

l !

∑
α1+···+αk=l

(
α

α1:k

)∫ ∣∣∣∣∣ k∏
j=1

(
ϕ

(
y1, . . . ,yk

)−E[
ϕ (Y1, . . . ,Yk ) | X j = x j ,∀ j = 1, . . . ,k

])
×

 d∑
i1,...,iα j =1

u j ,i1 · · ·u j ,iα j

 ∂α j

∂xi1 · · ·∂xiα j

fX,Y
(
x j +hu j ,y j

)∣∣∣∣∣∣dµ
(
y1

) · · ·dµ(
yk

)
(4.3.1)

≤ Cϕ, f ,α

k∏
j=1

∥u j∥d . (4.3.2)

For every choice of x1, . . . ,xk ∈ X and y1, . . . ,yk ∈ Rd ′
, u1, . . . ,uk ∈ Rd such that xi +ui ∈

X .

(C.5) The function ϕ(·) is bounded and there exists a constant Cϕ such that ∥ϕ(·)∥∞ := Cϕ <
+∞.

(C.5’) The function ϕ(·) is unbounded and the exists a positive function Bϕ such that for all
ℓ≥ 1 and x1, . . . ,xk ∈Rd ,

E
[∣∣ϕ(Y1, . . . ,Yk )

∣∣ℓ | X1 = x1, . . . ,Xk = xk

]
≤ Bϕ(x1, . . . ,xk )ℓℓ!,

such that Bϕ(X1, . . . ,Xk ) ≤ B̃ϕ almost surely, for some finite positive constant B̃ϕ.
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Comments

We impose the conditions (C.1)-(C-4) for technical reasons. The conditions (C.1) and (C.2)
on the marginal density fX(·) of X which means that fX(·) is bounded and has finite partial
derivatives is necessary to establish finite bounds. These conditions are standard in literature,
especially when some approximation theorems, such as the Taylor expansion formulas, are
used, which is the case in this paper. For the same reasons, we impose the conditions (C.4)
on the joint density function of the vector (X,Y). The conditions (C.5) deals with a bounded
function ϕ(·), while the conditional Bernstein assumption in (C.5’) helps to control the tail
behavior of ϕ(·) so that the exponential concentration bounds are available. Notice that (C.5’)
is important to the truncation method. Note that the condition (C.5’) may be replaced by more
general hypotheses upon moments of Y as in Deheuvels [2011] and Bouzebda [2023]. That is

(C.5)′′ We denote by {M (x) : x ≥ 0} a nonnegative continuous function, increasing on [0,∞), and
such that, for some s > 2, ultimately as x ↑∞,

(i ) x−sM (x) ↓; (i i ) x−1M (x) ↑ . (4.3.3)

For each t ≥M (0), we define M i nv (t ) ≥ 0 by M (M i nv (t )) = t . We assume further that:

E
(
M

(∣∣ϕ(Y)
∣∣))<∞.

The following choices of M (·) are of particular interest:

(i) M (x) = xp for some p > 2;

(ii) M (x) = exp(sx) for some s > 0.

4.3.2 Exponential bounds

The following result concerns the case when the function ϕ(·) is bounded in the sense of the
condition (C.5).

Theorem 4.3.2.1 (Exponential bound for the estimator r̂ (k)
n with fixed x1, . . . ,xk ∈X k) Let δmn (·, ·)

be a positive sequence belonging to L∞(Rd ×Rd ), if the conditions (C.1)-(C.5) are satisfied then
there exist positive constants C1,C2, and C3 such that

κ1 := C1m2dk and κ2 = C2mdk ,

and for every t , t ′ > 0 such that,

C3m−λ+ t <
f k

X,min

2
,

we have

P
(∣∣∣r̂ (k)

n (ϕ, x̃,mn)− r (k)(ϕ, x̃)
∣∣∣< (

1+C4m−λ+C5t
)
×

(
C6m−λ+ t ′

))
≥ 1−2exp

(
− [n/k]t 2

2κ1 + 2
3

{
Ck
δ
−κ2

}
t

)
−2exp

(
− [n/k]t 2

2C7 +C8t ′

)
, (4.3.4)
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where

Cδ := sup
(x,y)∈Rd×Rd

∣∣δmn (x,y)
∣∣ , C4 := 4C3 f k

X,max f −2k
X,min,

C5 := 4 f k
X,max f −2k

X,min, C6 := Cδ,α,ϕm−λ f −k
X,min,

C7 := C2
ϕ f −2k

X,minC2k
δ , C8 := 8

3
CϕCk

δ f −k
X,min.

The proof of Theorem 4.3.2.1 is postponed until Sect. 4.7.
Now, we present a more general result concerning the case when the function ϕ is unbounded
in the sense of the condition (C.5’). That being said, the preceding theorem constitutes an
important step in the truncation method used in the proof of the following one.

Theorem 4.3.2.2 Assume that the conditions (C.1)-(C.4) and (C.5’) are satisfied, for every
t , t ′ > 0 such that

C3m−λ+ t <
f k

X,min

2
,

we have

P
(∣∣∣r̂ (k)

n (ϕ, x̃,mn)− r (k)(ϕ, x̃)
∣∣∣< (

1+C4m−λ+C5t
)
×

(
C6m−λ+ t ′

))
≥ 1−2exp

(
− [n/k]t 2

2κ1 + 2
3

{
Ck
δ
−κ2

}
t

)
−2exp

(
− [n/k]t 2

2C̃7 + C̃8t ′

)
, (4.3.5)

where

C̃7 = 128
(
Bϕ,x + B̃ϕ

)2
f −k

X,minκ
′
2,

C̃8 = 2
(
Bϕ,x + B̃ϕ

)
f −k

X,minκ
′
1,

and for some positive constants C′
1 and C′

2

Bϕ,x := Bϕ(x1, . . . ,xk ), κ′1 := C′
1mdk , and κ′2 := C′

2md(2k−1).

The proof of Theorem 4.3.2.2 is postponed until Sect. 4.7.
We have the following immediate result by combining the last theorem and the Borel-

Cantelli lemma.

Corollary 4.3.2.3 Assume that the conditions (C.1)-(C.4) and (C.5’) are satisfied. We have, as
n →∞, ∣∣∣r̂ (k)

n (ϕ, x̃,mn)− r (k)(ϕ, x̃)
∣∣∣= O

√
mdk

n logmn

n

 , a.s.

The proof of the preceding theorems will be based on the following technical lemmas.

Lemma 4.3.2.4 Let δmn (·, ·) be a positive sequence, and fX ∈ Lp (Rd ), with 1 ≤ p ≤ ∞, the
density function of the random vector X satisfying condition (C.1), then we have∣∣∣∣∣E[un(1, x̃;mn)]−

k∏
j=1

fX(x j )

∣∣∣∣∣= O(m−λ), (4.3.6)

where λ := min
{
k,kq−1

}
, with q−1 = 1−p−1.

136



CHAPTER 4. CONDITIONAL U-STATISTICS USING DELTA SEQUENCES

The proof of Lemma 4.3.2.4 is postponed until Sect. 4.7.

Lemma 4.3.2.5 Let δmn (·, ·) be a positive sequence belonging to L∞(Rd ×Rd ), if the conditions
of Lemma 4.3.2.4 are satisfied then, for some t > 0, we have

P

(∣∣∣∣∣un(1, x̃;mn)−
k∏

j=1
fX(x j )

∣∣∣∣∣≤ C3m−λ+ t

)
≥ 1−exp

(
− [n/k]t 2

2κ1 + 2
3

{
Ck
δ
−κ2

}
t

)
. (4.3.7)

The proof of Lemma 4.3.2.5 is postponed until Sect. 4.7.

Lemma 4.3.2.6 If the conditions of Lemma 4.3.2.5 are satisfied, and if for some t > 0,

C3m−λ+ t <
f k

X,min

2
,

we have

P



∣∣∣∣∣∣∣∣∣∣∣
1

Un(1, x̃,mn)
− 1

k∏
j=1

fX(x j )

∣∣∣∣∣∣∣∣∣∣∣
≤ 4

f 2k
X,min

(
C3m−λ+ t

)
≥ 1−exp

(
− [n/k]t 2

2κ1 + 2
3

{
Ck
δ
−κ2

}
t

)
, (4.3.8)

and
k∏

j=1
fX(x j )

∑
i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

) ≤ 1+
4 f k

X,max

f 2k
X,min

(
C3m−λ+ t

)
. (4.3.9)

The proof of Lemma 4.3.2.6 is postponed until Sect. 4.7.

Lemma 4.3.2.7 Under Assumptions (C.1)-(C.4), there exists a constant Cδ,α,ϕ > 0 such that We
have for all i ∈ I(k,n),

|E [Si]| ≤
Cδ,α,ϕm−λ

f k
X,min

,

where

E [Si] =
k∏

j=1

δmn

(
x j ,Xi j

)
fX(x j )

{
ϕ(Yi1 , . . . ,Yik )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

.

The proof of Lemma 4.3.2.7 is postponed until Sect. 4.7.

Lemma 4.3.2.8 Under Assumptions (C.2.b) and (C.5’.) for every t > 0, we have

P

( ∑
i∈I(k,n)

(Si −E[Si]) > t

)
≤ exp

− t 2 f 2k
Z,min[n/k]

128
(
Bg ,z + B̃g

)2
C2k−1

K +2t
(
Bg ,z + B̃g

)
Ck
δ

f k
Z,min

 .

The proof of Lemma 4.3.2.8 is postponed until Sect. 4.7.
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4.3.3 Limiting distribution

In this section, we establish the central limit theorem for the estimate defined in (4.2.3). In order
to do that, we will need the following assumptions:

4.3.4 Conditions

(A.1) Let m = O
(
n( 1

d )−ϵ
)

for some 0 < dϵ< 1;

(A.2) The delta sequence δm has a compact support;

(A.3) Let x̃= (x1, . . . ,xk ) be a point of continuity for each

r j l (x̃) =
{

0 if x j ̸= xl ,

E j ,l (x̃) if x j = xl ,

where

E j ,l (x̃) = E[
ϕ

(
Y1, . . . ,Y j−1,Y,Y j+1, . . . ,Yk

)
ϕ

(
Yk+1, . . . ,Yk+ j−1,Y,Yk+ j+1, . . . ,Y2k

)
| Xi = xi for i ̸= j ,Xk+r = xr for r ̸= l and X = x j = xl

]
;

(A.4) The density function fX is continuous at each x j , 1 ≤ j ≤ k, with fX(x j ) > 0;

(A.5) r j ,l ,s(·, ·, ·) is bounded in a neighborhood of (x̃, x̃, x̃) ∈X 3k , for all 1 ≤ j , l , s ≤ k, where :

r j ,l ,s (z̃k , z̃2k , z̃3k ) = E[
ϕ

(
Y1, . . . ,Y j−1,Y,Y j+1 . . . ,Yk

)
×ϕ(

Yk+1, . . . ,Yk+ j−1,Y,Yk+ j+1 . . . ,Y2k ,
)

×ϕ(
Y2k+1, . . . ,Y2k+ j−1,Y,Y2k+ j+1 . . . ,Y3k

)
| Xi = zi ;1 ≤ i ≤ 3k, i ̸= j ,k +1,2k + s,X = z

]
,

and for 1 ≤ s ≤ 3, z̃sk = (z(s−1)k+1, . . . ,z(s−1)k+ j−1,z,z(s−1)k+ j+1, . . . ,zsk );

(A.6) r (k)
1,2 (·, ·) is bounded in a neighborhood of (x̃, x̃), where

r (k)
1,2 (x̃1, x̃2) = E[

ϕ(Yi1 , . . . ,Yik )ϕ(Y j1 , . . . ,Y jk ) | (Xi1 , . . . ,Xik ) = x̃1, (X j1 , . . . ,X jk ) = x̃2
]

.

(A.7) Let r (k)(ϕ, ·) admit an expansion

r (k)(ϕ,t+∆) = r (k)(ϕ,t)+
{
∂

∂t
r (k)(ϕ,t)

}t

∆+ 1

2
∆t

{
∂2

∂t2
r (k)(ϕ,t)

}
∆+o

(
∆t∆

)
,

as ∆→ 0, for all t in a neighborhood of x̃.

(A.8) fX(·) is twice differentiable in neighborhoods of x j ,1 ≤ j ≤ k,

(A.9)
{
δmn

}
is symmetric at zero.
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Below, we write Z
D= N (µ,σ2) whenever the random variable Z follows a normal law with

expectation µ and variance σ2, D→ denotes convergence in distribution. We also denote

Un(ϕ, x̃,mn) = un(ϕ, x̃,mn)

N
,

where

N =
k∏

j=1
E
[
δmn

(
x j ,X1

)]
.

Our main result in this section is summarized as follows.

Theorem 4.3.4.1 Under assumptions (A.1)-(A.6) and if r (k)(·, ·) is continuous at x̃, then :√
nm−d

n

(
r̂ (k)(ϕ,x,mn)−E[Un(ϕ, x̃,mn)]

)
D−→N

(
0,ρ2) ,

where

ρ2 :=
k∑

i=1

k∑
j=1
1{

xi=x j
} [

r j l (x̃)− (r (k)(x̃))2
]∫

δ2(x,t)dt/ fX(ti ). (4.3.10)

The proof of Theorem 4.3.4.1 is postponed until Sect. 4.7.
The following corollary is more or less straightforward, given Theorem 4.3.4.1.

Corollary 4.3.4.2 If in addition to Theorem 4.3.4.1, (A.7)-(A.9) hold, then

m2d
n

[
EUn(ϕ, x̃,mn)− r (k)(ϕ, x̃)

]
= 1

2

[
k∏

j=1
δmn

(
x j ,t j

)
tt {

r ′′(x̃)
}

t ·dt/ f̃ (x̃)

−
∫ k∏

i=1
δmn

(
x j ,t j

)
tt {

f̃ ′′(x̃)
}

t ·dt
r (k)(ϕ, x̃)

f̃ (x̃)

]
+o(1),

where

r (x̃) = r (k)(ϕ, x̃) f̃ (x̃), f̃ (x̃) =
k∏

i= j
fX

(
x j

)
and we have (

nm−d
n

)1/2 [
r̂ (k)

n (ϕ, x̃,mn)− r (k)(ϕ, x̃)
]
→N

(
0,ρ2) ,

provided that nm−5d
n → 0.

Remark 4.3.4.3 Under squared loss the optimal m−d
n satisfies nm−5d

n → c, some finite c de-
pending on r (k)(ϕ, ·) and fX(·). In this case the conclusion of Corollary 4.3.4.2 also holds, but
with N

(
0,ρ2

)
replaced by N

(
a,ρ2

)
for some a ̸= 0.

Remark 4.3.4.4 When X is independent of Y, E
(
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x̃

)= E(
ϕ(Y1, . . . ,Yk )

)
.

Hence, up to a scaling factor, the limiting distribution is equal to the limit of the unconditional
U-statistic pertaining to the Y sequence, as should be expected. Observe, however, that the
standardizing factor is

(
nm−d

n

)1/2 with mn →∞, indicating a lower rate of convergence. This
is the cost incurred when drawing conclusions regarding conditional (local) quantities.
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Remark 4.3.4.5 It is well known that the estimation problems of a regression function (con-
ditional model) are especially hard when the dimension of the explanatory X is large. It is
worth noticing that one consequence of this is that the optimal minimax rate of convergence
n−2k/(2k+d) for the estimation of a k times differentiable regression function converges to zero
rather slowly if the dimension d of X is large compared to k. To circumvent the so-called curse
of dimensionality, the only way is to impose additional assumptions on the regression functions.
The simplest way is to consider the linear models, but this rather restrictive parametric assump-
tion can be extended in several ways. The idea is to consider the additive models to simplify the
problem of regression estimation by fitting only functions to the data that have the same addi-
tive structure. In projection pursuit, one generalizes this further by assuming that the regression
function is a sum of univariate functions applied to projections of x onto various directions; we
note that this includes the single index models as particular cases, the interested reader may
refer to [Györfi et al., 2002, Chapter 22] for more rigorous developments of such techniques.
Other ways to be investigated are the semi-parametric models, considered intermediary models
between linear and nonparametric ones, aiming to combine the flexibility of nonparametric ap-
proaches together with the interpretability of the parametric ones, for details on these methods
for functional data.

Remark 4.3.4.6 Let us recall the general kernel-type estimator of the regression function de-
fined, for x ∈Rd , by

m̂ϕ,n(x,hn) :=

n∑
i=1

ϕ(Yi )K((x−Xi )/hn)

n∑
i=1

K((x−Xi )/hn)

. (4.3.11)

By setting ϕ(y) = y into (4.3.11) we get the classical Nadaraya-Watson kernel regression func-
tion estimator of m(x) := E(Y | X = x) given by

m̂n;hn (x) :=

n∑
i=1

Yi K((x−Xi )/hn)

n∑
i=1

K((x−Xi )/hn)

. (4.3.12)

We define the internal estimator at some predefined point x by

m̂Int
n;hn

(x) := 1

nhd
n

n∑
i=1

K

(
x−Xi

h

)
Yi

q̂n(Xi )
. (4.3.13)

For more details on the estimators (4.3.12) and (4.3.13), the interested reader may refer, e.g.,
to Wand and Jones [1995]. Linton and Jacho-Chávez [2010] pointed out that Mack and Müller
[1989] were the first to propose m̂Int

n;hn
(x), for d = 1, with a view to the estimation of derivatives

by computing the derivative of the regression, which has a simpler form than the derivative of
the Nadaraya-Watson smoother. The term “internal” stands for the fact that the factor f −1

n (Xi )

is internal to the summation, while the estimator m̂n;hn (x) has the factor

q̂−1
n (x) =

(
1

nad
n

n∑
i=1

K

(
x−Xi

an

))−1
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externally to the summation. Jones et al. [1994] considered various versions of kernel-type re-
gression estimators, especially the Nadaraya-Watson estimator and the local linear estimator.
They established the equivalence between the local linear estimator and the internal estimator.
Linton and Jacho-Chávez [2010] and Shen and Xie [2013] indicated that the internal estima-
tors are particularly adequate for the additive nonparametric regression model. Notice that
the estimator in (4.3.13) has also been used by Hengartner and Sperlich [2005] in the con-
text of estimating additive models. The authors showed that it has some additional theoretical
advantages over using the Nadaraya-Watson estimator. They also mention the computational
attractiveness and better performance of the internal estimator (compared to its classical coun-
terpart), particularly when the covariates are correlated and nonuniformly distributed. It would
be of interest to consider our estimator by using the internal estimator idea.

4.4 Conditional U-statistics for censored data

Consider a triple (Y,C,X) of random variables defined in R×R×Rd . Here Y is the variable of
interest, C is a censoring variable, and X is a concomitant variable. Throughout, we will use
Maillot and Viallon [2009] notation and we work with a sample {(Yi ,Ci ,Xi )1≤i≤n} of indepen-
dent and identically distributed replication of (Y,C,X), n ≥ 1. Actually, in the right censorship
model, the pairs (Yi ,Ci ), 1 ≤ i ≤ n, are not directly observed and the corresponding information
is given by Zi := min{Yi ,Ci } and ∆i :=1{Yi ≤ Ci }, 1 ≤ i ≤ n. Accordingly, the observed sample
is

Dn = {(Zi ,∆i ,Xi ), i = 1, . . . ,n}.

Survival data in clinical trials or failure time data in reliability studies, for example, are often
subject to such censoring. To be more specific, many statistical experiments result in incomplete
samples, even under well-controlled conditions. For example, clinical data for surviving most
types of disease are usually censored by other competing risks to life, which result in death. In
the sequel, we impose the following assumptions upon the distribution of (X,Y). Denote by I

a given compact set in Rd with nonempty interior and set, for any α> 0,

Iα = {x : inf
u∈I

∥x−u∥ ≤ α}.

We will assume that, for a given α > 0, (X,Y) [resp. X] has a density function fX,Y [resp. fX]
with respect to the Lebesgue measure on Iα×R [resp. Iα]. For −∞< t <∞, set

FY(t ) =P(Y ≤ t ), G(t ) =P(C ≤ t ), and H(t ) =P(Z ≤ t ),

the right-continuous distribution functions of Y, C and Z respectively. For any right-continuous
distribution function L defined on R, denote by

TL = sup{t ∈R : L(t ) < 1}
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the upper point of the corresponding distribution. Now consider a pointwise measurable class
F of real measurable functions defined on R, and assume that F is of VC-type. We recall the
regression function of ψ(Y) evaluated at X = x, for ψ ∈F and x ∈Iα, given by

r (1)(ψ,x) = E(ψ(Y) | X = x),

when Y is right-censored. To estimate r (1)(ψ, ·), we make use of the Inverse Probability of
Censoring Weighted (I.P.C.W.) estimators that have recently gained popularity in the censored
data literature (see Kohler et al. [2002], Carbonez et al. [1995]). The key ideas of I.P.C.W.
estimators are as follows. Introduce the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y,c) = 1{y ≤ c}ψ(y ∧ c)

1−G(y ∧ c)
. (4.4.1)

Assuming the function G(·) to be known, first note that Φψ(Yi ,Ci ) = ∆iψ(Zi )/(1−G(Zi )) is
observed for every 1 ≤ i ≤ n. Moreover, under the Assumption (I ) below,

(I ) C and (Y,X) are independent.

We have

r (1)(Φψ,x) := E(Φψ(Y,C) | X = x)

= E

{
1{Y ≤ C}ψ(Z)

1−G(Z)
| X = x

}
= E

{
ψ(Y)

1−G(Y)
E(1{Y ≤ C} | X,Y) | X = x

}
= r (1)(ψ,x). (4.4.2)

Therefore, any estimate of r (1)(Φψ, ·), which can be built on fully observed data, turns out to
be an estimate for r (1)(ψ, ·) too. Thanks to this property, most statistical procedures known to
provide estimates of the regression function in the uncensored case can be naturally extended
to the censored case. For instance, kernel-type estimates are particularly easy to construct. Set,
for x ∈I , h ≥ 0, 1 ≤ i ≤ n,

ω(1)
n,K,h,i (x) := K

(
x−Xi

h

)/ n∑
j=1

K

(
x−X j

h

)
. (4.4.3)

In view of (4.4.1), (4.4.2), and (4.4.3), whenever G(·) is known, a kernel estimator of r (1)(ψ, ·)
is given by

r̆ (1)
n (ψ,x;hn) =

n∑
i=1

ω(1)
n,K,h,i (x)

∆iψ(Zi )

1−G(Zi )
. (4.4.4)

The function G(·) is generally unknown and has to be estimated. We will denote by G∗
n(·) the

Kaplan-Meier estimator of the function G(·) Kaplan and Meier [1958]. Namely, adopting the
conventions ∏

;
= 1
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and 00 = 1 and setting

Nn(u) =
n∑

i=1
1{Zi ≥ u},

we have

G∗
n(u) = 1− ∏

i :Zi≤u

{
Nn(Zi )−1

Nn(Zi )

}(1−∆i )

, for u ∈R.

Given this notation, we will investigate the following estimator of r (1)(ψ, ·)

r̆ (1)∗
n (ψ,x;hn) =

n∑
i=1

ω(1)
n,K,h,i (x)

∆iψ(Zi )

1−G∗
n(Zi )

, (4.4.5)

refer to Kohler et al. [2002] and Maillot and Viallon [2009]. Adopting the convention 0/0 = 0,
this quantity is well defined, since G∗

n(Zi ) = 1 if and only if Zi = Z(n) and ∆(n) = 0, where Z(k)

is the kth ordered statistic associated with the sample (Z1, . . . ,Zn) for k = 1, . . . ,n and ∆(k) is
the ∆ j corresponding to Zk = Z j . When the variable of interest is a right-censored function
of the (conditional) law, it can generally not be estimated on the complete support (see Brunel
and Comte [2006]). A right-censored version of an unconditional U-statistic with a kernel of
degree m ≥ 1 is introduced by the principle of a mean preserving reweighting scheme in Datta
et al. [2010]. Stute and Wang [1993] have proved almost sure convergence of multi-sample
U-statistics under random censorship and provided application by considering the consistency
of a new class of tests designed for testing equality in distribution. To overcome potential biases
arising from right-censoring of the outcomes and the presence of confounding covariates, Chen
and Datta [2019] proposed adjustments to the classical U-statistics. Yuan et al. [2017] proposed
a different way in the estimation procedure of the U-statistic by using a substitution estimator of
the conditional kernel given the observed data. We refer also to Bouzebda and El-hadjali [2020]
and Bouzebda and Taachouche [2022]. To our best knowledge, the problem of the estimation of
the conditional U-statistics in the censored setting was open up to present, and it gives the main
motivation to the study of this section. A natural extension of the function defined in (4.4.1) is
given by

Φψ(y1, . . . , yk ,c1, . . . ,ck ) =
∏k

i=1{1{yi ≤ ci }ψ(y1 ∧ c1, . . . , yk ∧ cm)∏k
i=1{1−G(yi ∧ ci )}

.

From this, we have an analogous relation to (4.4.2) given by

E(Φψ(Y1, . . . ,Yk ,C1, . . . ,Ck ) | (X1, . . . ,Xk ) = x)

= E

(∏k
i=1{1{Yi ≤ Ci }ψ(Y1 ∧C1, . . . ,Yk ∧Ck )∏k

i=1{1−G(Yi ∧Ci )}
| (X1, . . . ,Xk ) = x

)

= E

(
ψ(Y1, . . . ,Yk )∏k
i=1{1−G(Yi )}

E

(
k∏

i=1
{1{Yi ≤ Ci } | (Y1,X1), . . . (Yk ,Xk )

)
| (X1, . . . ,Xk ) = x

)
= E

(
ψ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

)
.

An analog estimator to (4.1.2) in the censored case is given by

r̆ (k)
n (ψ,x;mn) = ∑

(i1,...,ik )∈I(k,n)

∆i1 · · ·∆ikψ(Zi1 , . . . ,Zik )

(1−G(Zi1 ) · · · (1−G(Zik ))
ω(k)

n,δ,mn ,i(x), (4.4.6)
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where, for i = (i1, . . . , ik ) ∈ I(k,n),

ω(k)
n,δ,mn ,i(x) = δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)∑
(i1,...,ik )∈I(k,n)

δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) . (4.4.7)

The estimator that we will investigate is given by

r̆ (k)∗
n (ψ,x;mn) = ∑

(i1,...,ik )∈I(k,n)

∆i1 · · ·∆ikψ(Zi1 , . . . ,Zik )

(1−G∗
n(Zi1 ) · · · (1−G∗

n(Zik ))
ω(k)

n,δ,mn ,i(x). (4.4.8)

Corollary 4.4.0.1 Assume that the conditions (C.1)-(C.4) and (C.5’) are satisfied. We have, as
n →∞, ∣∣∣r̆ (k)∗

n (ψ,x;mn)− r (k)(ϕ, x̃)
∣∣∣= O

√
mdk

n logmn

n

 , a.s.

This last result is a direct consequence of Corollary (4.3.2.3) and the law of iterated logarithm
for G∗

n(·) established in Földes and Rejtő [1981] ensures that

sup
t≤τ

|G∗
n −G(t )| = O

√
loglogn

n

 almost surely as n →∞.

For more details refer to Bouzebda et al. [2022, 2023] and Bouzebda and Soukarieh [2023a].

4.5 Applications

4.5.1 Discrimination problems

Now, we apply the results of the problem of discrimination described in Section 3 of Stute
[1994b], refer to also to Stute [1994a]. We will use a similar notation and setting. Let ϕ(·) be
any function taking at most finitely many values, say 1, . . . ,M. The sets

A j =
{
(y1, . . . ,yk ) :ϕ(y1, . . . ,yk ) = j

}
, 1 ≤ j ≤ M

then yield a partition of the feature space. Predicting the value of ϕ(Y1, . . . ,Yk ) is tantamount to
predicting the set in the partition to which (Y1, . . . ,Yk ) belongs. For any discrimination rule g ,
we have

P(g (X) =ϕ(Y)) ≤
M∑

j=1

∫
x̃:g (x̃)= j }

maxM j (x̃)dP(x̃),

where
M j (x̃) =P(ϕ(Y) = j | X = x̃), x̃ ∈Rd .

The above inequality becomes equality if

g0(x̃) = arg max
1≤ j≤M

M j (x̃).
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g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1−P(g0(X) =ϕ(Y)) = 1−E
{

max
1≤ j≤M

M j (x̃)

}
is called the Bayes risk. Each of the above unknown function M j ’s can be consistently esti-
mated by one of the methods discussed in the preceding sections. Let, for 1 ≤ j ≤ M,

M
j
n(x̃) =

∑
(i1,...,ik )∈I(k,n)

1{ϕ(Yi1 , . . . ,Yik ) = j }δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) , (4.5.1)

Set
g0,n(x̃) = arg max

1≤ j≤M
M

j
n(x̃).

Let us introduce
L∗

n =P(g0,n(X) ̸=ϕ(Y)).

The discrimination rule g0,n(·) is asymptotically Bayes’ risk consistent

L∗
n → L∗.

This follows from the apparent relation∣∣L∗−L∗
n

∣∣≤ 2E

[
max

1≤ j≤M

∣∣∣M j
n(X)−M j (X)

∣∣∣] .

4.5.2 Metric learning

Metric learning aims at adapting the metric to the data and has attracted much interest in recent
years; for instance, see Bellet et al. [2013] and Clémençon et al. [2016] for an account of metric
learning and its applications. This is motivated by a variety of applications ranging from com-
puter vision to information retrieval through bioinformatics. To illustrate the usefulness of this
concept, we present the metric learning problem for supervised classification as in Clémençon
et al. [2016]. Let us consider independent copies (X1,Y1) , . . . , (Xn ,Yn) of a X ×Y valued ran-
dom couple (X,Y), where X is some feature space and Y = {1, . . . ,C}, with C ≥ 2 say, a finite
set of labels. Let D be a set distance measures D : X ×X → R+. Intuitively, the goal of metric
learning in this setting is to find a metric under which pairs of points with the same label are
close to each other, and those with different labels are far away. The natural way to define the
risk of a metric D is

R(D) = E[
φ

((
1−D

(
X,X′) · (21

{
Y = Y′}−1

))]
, (4.5.2)

where φ(u) is a convex loss function upper bounding the indicator function 1{u ≥ 0}, for in-
stance, the hinge loss φ(u) = max(0,1−u). To estimate R(D), we consider the natural empirical
estimator

Rn(D) = 2

n(n −1)

∑
1≤i< j≤n

φ
((

D
(
Xi ,X j

)−1
) · (2π

{
Yi = Y j

}−1
))

, (4.5.3)
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which is a one sample U-statistic of degree two with kernel given by:

ϕD
(
(x, y),

(
x ′, y ′))=φ((

D
(
x, x ′)−1

) · (21
{

y = y ′}−1
))

.

The convergence to (4.5.2) of a minimizer of (4.5.3) has been studied in the frameworks of
algorithmic stability (Jin et al. [2009]), algorithmic robustness (Bellet and Habrard [2015]) and
based on the theory of U-processes under appropriate regularization (Cao et al. [2016]).

4.5.3 Multipartite ranking

Let us recall the problem from Clémençon et al. [2016]. Let X ∈ X be a random vector
of attributes/features and the (temporarily hidden) ordinal labels Y ∈ {1, . . . ,K} assigned to it.
Based on a training set of labeled examples, the goal of multipartite ranking is to rank the
attributes/features in the same order as that induced by the labels. This statistical learning prob-
lem is applied in a wide range of fields (e.g., medicine, finance, search engines, e-commerce).
Rankings are generally defined utilizing a scoring function s : X → R, transporting the natural
order on the real line onto the feature space and the gold standard for evaluating the ranking per-
formance of s(x) is the ROC manifold or its usual summary the VUS criterion (VUS standing
for Volume Under the ROC Surface), see Clémençon and Robbiano [2015] and the references
therein. Clémençon et al. [2013] characterized the optimal scoring functions as those that are
optimal for all bipartite subproblems. More precisely, they are increasing transforms of the like-
lihood ratio dFk+1/dFk , where Fk denotes the class-conditional distribution for the k-th class.
The authors proved when the set of optimal scoring functions is non-empty, it corresponds to
the functions that maximize the volume under the ROC surface

VUS(s) =P {s (X1) < . . . < s (XK) | Y1 = 1, . . . ,YK = K}

Given K independent samples
(
X(k)

1 , . . . ,X(k)
nk

)
i.i.d.∼ Fk (d x) for k = 1, . . . ,K, the empirical counter-

part of the VUS can be written in the following way:

�VUS(s) = 1∏K
k=1 nk

n1∑
i1=1

· · ·
nK∑

ik=1
1

{
s
(
X(1)

i1

)
< . . . < s

(
X(K)

iK

)}
(4.5.4)

The empirical VUS (4.5.4) is a K-sample U-statistic of degree (1, . . . ,K) with kernel given by:

ϕs (x1, . . . , xK) =1 {s (x1) < . . . < s (xK)} .

4.5.4 Ranking problems

For its great importance, the problem of ranking instances has received particular attention in
machine learning. In some specific ranking problems, it is necessary to compare two different
observations based on their observed characteristics and decide which one is better instead of
simply classifying them. The ordering problems have many applications in other areas of bank-
ing (Data mining process for direct marketing data extraction), document type classification,
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and so on. The problems of ordering/ranking are frequent problems in which U-statistics come
into play. In this kind of challenge, the aim is to establish a universal and consistent ordering
method. Suppose that we want to establish an order between the first components of the two
pairs (X,Y) ,

(
X′,Y′) of independent and identically distributed observations in X ×R. The vari-

ables Y and Y′ are respective labels of the variables X and X’ that we want to order by observing
them (and not their labels). Usually, we decide that X is better than X′ if Y > Y′. To see things
more clearly, we introduce the new variable:

Z = Y−Y′

2
,

then Y > Y′ is equivalent to Z > 0. As mentioned, the goal is to establish a classification rule
between X and X′ with minimal risk, i.e., the probability that the label of the highest ranked
variable is the smallest is small. Mathematically speaking, the decision rule is given by the
function:

r (x, x ′) =
{

1 if x > x ′,
−1 else.

The performance measure of r is given by the following ranking risk:

L(r ) =P(
Z.r

(
X,X′)) .

A natural estimate for L(·) according to Clémençon et al. [2008] is:

Ln(r ) := 1

n(n −1)

∑
i ̸= j
1{

Zi , j .r (Xi ,X j )<0
},

where (X1,Y1) , . . . , (Xn ,Yn) are n independent, identically distributed copies of (X,Y), and Zi , j =
Yi−Y j

2 . One can easily see that Ln is a U-statistic with m = 2. For more details the reader is
invited to consult Clémençon et al. [2008] and Rejchel [2012].

4.5.5 Kendall rank correlation coefficient

To test the independence of one-dimensional random variables Y1 and Y2 Kendall [1938] pro-
posed a method based on the U-statistic Kn with the kernel function :

ϕ ((s1, t1) , (s2, t2)) =1{(s2−s1)(t2−t1)>0} −1{(s2−s1)(t2−t1)⩽0}· (4.5.5)

Its rejection on the region is of the form
{p

nKn > γ}
. In this example, we consider a multivariate

case. To test the conditional independence of ξ,η : Y = (ξ,η) given X, we propose a method
based on the conditional U-statistic :

r̂ (2)
n (ϕ,t) =

n∑
i ̸= j

ϕ
(
Yi ,Y j

)
δm(t1,Xi )δm(t2,X j )

n∑
i ̸= j

δm(t1,Xi )δm(t2,X j )

,
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where t = (t1, t2) ∈ I ⊂ R2 and ϕ(·) is Kendall’s kernel (4.5.5). Suppose that ξ and η are d1

and d2-dimensional random vectors respectively and d1 +d2 = d . Furthermore, suppose that
Y1, . . . ,Yn are observations of (ξ,η), we are interested in testing :

H0 : ξ and η are conditionally independent given X. vs Ha : H0 is not true. (4.5.6)

Let a = (a1,a2) ∈ Rd such as ∥a∥ = 1 and a1 ∈ Rd1 ,a2 ∈ Rd2 , and F(·),G(·) be the distribution
functions of ξ and η respectively. Suppose Fa1 (·) and Ga2 (·) to be continuous for any unit vector
a = (a1,a2) where Fa1 (t ) = P(

a⊤
1 ξ< t

)
and Ga2 (t ) = P(

a⊤
2 η< t

)
and aT

1 means the transpose of
the vector ai ,1 ⩽ i ⩽ 2. For n = 2, let Y(1) = (

ξ(1),η(1)
)

and Y(2) = (
ξ(2),η(2)

)
such as ξ(i ) ∈ Rd1

and η(i ) ∈Rd2 for i = 1,2, and :

ϕa (
Y(1),Y(2))=ϕ((

a⊤
1 ξ

(1),a⊤
2 η

(1)) ,
(
a⊤

1 ξ
(2),a⊤

2 η
(2))) .

An application of Corollary 4.3.2.3 gives

∣∣r̂ (2)
n (ϕa ,x;mn)− r (2)(ϕa ,x)

∣∣=
√

m2d
n logmn

n

 . (4.5.7)

4.5.6 Generalized U-Statistics

The extension to the case of several samples is straightforward. Consider ℓ independent collec-
tions, of independent observations{(

X(1)
1 ,Y(1)

1

)
,
(
X(1)

2 ,Y(1)
2

)
, . . .

}
, . . . ,

{(
X(ℓ)

1 ,Y(ℓ)
1

)
,
(
X(ℓ)

2 ,Y(ℓ)
1

)
, . . .

}
.

Let, for t ∈Rd(k1+···+kℓ),

r (k,ℓ)(ϕ,t) = r (k,ℓ)(ϕ,t1, . . . ,tℓ)

= E
(
ϕ

(
Y(1)

1 , . . . ,Y(1)
k1

; . . . ;Y(ℓ)
1 , . . . ,Y(ℓ)

kℓ

)
|
(
X( j )

1 , . . . ,X( j )
m j

)
= t j , j = 1, . . . ,ℓ

)
,

where ϕ is assumed, without loss of generality, to be symmetric within each of its ℓ blocks
of arguments. Corresponding to the "kernel" ϕ and assuming n1 ≥ k1, . . . ,nk ≥ kℓ, the the
conditional U-statistic for estimation of r (k,ℓ)(ϕ,t) is defined as

r̂ (k,ℓ)
n (ϕ,t)

=

∑
c
ϕ

(
Y(1)

i11
. . . ,Y(1)

i1k1
; . . . ;Y(ℓ)

ik1
, . . . ,Y(ℓ)

ikkℓ

)
K

(
X(1)

i11
. . . ,X(1)

i1k1
; . . . ;X(ℓ)

ik1
, . . . ,X(ℓ)

iℓkℓ

)
∑

c
K

(
X(1)

i11
. . . ,X(1)

i1k1
; . . . ;X(ℓ)

ik1
, . . . ,X(ℓ)

iℓkℓ

) ,

where

K
(
X(1)

i11
. . . ,X(1)

i1k1
; . . . ;X(ℓ)

ik1
, . . . ,X(ℓ)

iℓkℓ

)
=

ℓ∏
j=1

δmn

(
x( j )

1 ,X( j )
i1

)
· · ·δmn

(
x( j )

k j
,X( j )

ik j

)
.

Here
{

i j 1, . . . , i j m j

}
denotes a set of k j distinct elements of the set {1,2, . . . ,n j

}
1 ≤ j ≤ ℓ, and

∑
c

denotes summation over all such combinations. The extension of Hoeffding [1948] treatment
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of one-sample U -statistics to the ℓ sample case is due to Lehmann [1951] and Dwass [1956].
One can use Corollary 4.3.2.3 to infer that∣∣∣r̂ (k,ℓ)

n (ϕ,t)− r (k,ℓ)(ϕ,t)
∣∣∣−→ 0. (4.5.8)

4.5.7 Set indexed conditional U-statistics

We aim to study the links between X and Y, by estimating functional operators associated to the
conditional distribution of Y given X such as the regression operator, for C1×·· ·×Cm := C̃ ∈Rd ′k

G(m)(C1 ×·· ·×Cm | t) = E
(

m∏
i=1
1{Yi∈Ci } | (X1, . . . ,Xm) = t

)
for t ∈Rdm .

As a particular case of (4.2.3), we estimate G(m)(C1 ×·· ·×Cm | t)

Ĝ(m)
n (C̃,t) =

∑
(i1,...,ik )∈I(k,n)

1{Yi j ∈C j }δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) (4.5.9)

One can apply Corollary 4.3.2.3 to infer that∣∣Ĝ(m)
n (C̃,t)−G(m)(C̃ | t)

∣∣−→ 0. (4.5.10)

4.5.8 Testing stochastic monotonicity

This application is given in Chen and Kato [2020]. Let us recall their setting. Let X,Y be real-
valued random variables and denote by FY|X(y | x) the conditional distribution function of Y

given X. Consider the problem of testing the stochastic monotonicity

H0 : FY|X(y | x) ≤ FY|X(y | x ′) ∀y ∈R whenever x ≥ x ′.

Testing for stochastic monotonicity is an important topic in a variety of applied fields such as
economics Blundell et al. [2007]; Ellison and Ellison [2011]; Solon [1992]. For this problem,
Lee et al. [2009b] consider a test for H0 based on a local Kendall’s tau statistic, inspired by
Ghosal et al. [2000b]. Let (Xi ,Yi ), i = 1, . . . ,n be i.i.d. copies of (X,Y). Lee et al. [2009b]
consider the U-process

Un(x, y) = 1

n(n −1)

∑
1≤i ̸= j≤n

{1(Yi ≤ y)−1(Y j ≤ y)}sign(Xi −X j )K

(
x −Xi

hn

)
K

(
x −X j

hn

)
,

where sign(x) = 1(x > 0)−1(x < 0) is the sign function. They propose to reject the null hy-
pothesis if Sn = sup(x,y)∈X×Y Un(x, y)/cn(x) is large, where X ,Y are subsets of the supports
of X,Y, respectively and cn(x) > 0 is a suitable normalizing constant. Under independence be-
tween X and Y, and under regularity conditions, they derive a Gumbel limiting distribution for a
properly scaled version of Sn using techniques from [Piterbarg, 1996]. Using the procedure of
the present paper, we can give the following generalization

Un(x, y) = 1

n(n −1)

∑
1≤i ̸= j≤n

{1(Yi ≤ y)−1(Y j ≤ y)}sign(Xi −X j )δmn (x,Xi )δmn

(
x,X j

)
.
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4.5.9 Testing curvature and monotonicity of nonparametric regression

This application is given in Chen and Kato [2020]. Let us recall their setting. Consider the
nonparametric regression model

Y = f(X)+ε with E[ε | X] = 0,

where Y is a scalar outcome variable, X is an m-dimensional vector of regressors, ε is an er-
ror term, and f is the conditional mean function f(x) = E[Y | X = x]. We observe i.i.d. copies
Vi = (Xi ,Yi ), i = 1, . . . ,n of V = (X,Y). We are interested in testing for qualitative features (e.g.,
curvature, monotonicity) of the regression function f.

Abrevaya and Jiang [2005b] consider a simplex statistic to test linearity, concavity, and
convexity of f under the assumption that the conditional distribution of ε given X is symmetric.
To define their test statistics, for x1, . . . ,xm+1 ∈Rm , let

∆◦(x1, . . . ,xm+1) =
{

m+1∑
i=1

ai xi : 0 < a j < 1, j = 1, . . . ,m +1,
m+1∑
i=1

ai = 1

}

denote the interior of the simplex spanned by x1, . . . ,xm+1, and define

D =
m+2⋃
j=1

D j ,

where

D j =
{

(x1, . . . ,xm+2) ∈Rm×(m+2) :
x1, . . . ,x j−1,x j+1, . . . ,xm+2 are affinely independent

and x j ∈∆◦(x1, . . . ,x j−1,x j+1, . . . , xm+2)

}
.

The sets D1, . . . ,Dm+2 are disjoint. For given vi = (xi ,yi ) ∈Rm×R, i = 1, . . . ,m+2, if (x1, . . . ,xm+2) ∈
D then there exist a unique index j = 1, . . . ,m +2 and a unique vector (ai )1≤i≤m+2,i ̸= j such that
0 < ai < 1 for all i ̸= j ,

∑
i ̸= j ai = 1, and x j =∑

i ̸= j ai xi ; then, define

w(v1, . . . , vm+2) = ∑
i ̸= j

ai yi − y j .

The index j and vector (ai )1≤i≤m+2,i ̸= j are functions of xi ’s. The set D is symmetric (i.e., its
indicator function is symmetric), and w(v1, . . . , vm+2) is symmetric in its arguments. Under this
notation, Abrevaya and Jiang [2005b] consider the following localized simplex statistic

Un(x) = (n −m −2)!

n!

∑
(i1,...,im+2)∈In,m+2

ϕ(Vi1 , . . . ,Vim+2 )
m+2∏
k=1

K

(
x−Xi k

hn

)
, (4.5.11)

where ϕ(v1, . . . ,vm+2) = 1{(x1, . . . ,xm+2) ∈ D}sign(w(v1, . . . ,vm+2)), which is a U-statistic of or-
der (m+2). To test concavity and convexity of f, Abrevaya and Jiang [2005b] propose to reject
the hypotheses if Sn = supx∈X Un(x)/cn(x) and Sn = infx∈X Un(x)/cn(x) are large and small,
respectively, where X is a subset of the support of X and cn(x) > 0 is a suitable normalizing
constant.
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On the other hand, Ghosal et al. [2000b] study testing monotonicity of f when m = 1 and ε
is independent of X. To be specific, they test whether f is increasing, and propose to reject the
hypothesis if Sn = supx∈X Ŭn(x)/cn(x) is large, where X is a subset of the support of X,

Ŭn(x) = 1

n(n −1)

∑
1≤i ̸= j≤n

sign(Y j −Yi )sign(Xi −X j )K

(
x −Xi

hn

)
K

(
x −X j

hn

)
, (4.5.12)

and cn(x) > 0 is a suitable normalizing constant. Ghosal et al. [2000b] argue that as far as the
size control is concerned, it is enough to choose, as a critical value, the (1−α)-quantile of Sn

when f≡ 0, under which Un(x) is centered. Under f≡ 0 and under regularity conditions, Ghosal
et al. [2000b] derive a Gumbel limiting distribution for a properly scaled version of Sn . Using
the methods proposed in the present paper, alternative procedures to (4.5.11) and (4.5.12) are
given by

Un(x) = (n −m −2)!

n!

∑
(i1,...,im+2)∈In,m+2

ϕ(Vi1 , . . . ,Vim+2 )
m+2∏
k=1

δmn

(
x,Xik

)
, (4.5.13)

and

Ŭn(x) = 1

n(n −1)

∑
1≤i ̸= j≤n

sign(Y j −Yi )sign(Xi −X j )δmn (x,Xi )δmn

(
x,X j

)
. (4.5.14)

4.5.10 Examples of U-statistics

Example 4.5.10.1 Let �Y1Y2 denote the oriented angle between Y1,Y2 ∈ T, T is the circle of
radius 1 and center 0 in R2. Let :

ϕt (Y1,Y2) =1{�Y1Y2 ≤ t }− t/π, for t ∈ [0,π).

Silverman [1978] has used this kernel in order to propose a U-process to test uniformity on the
circle.

Example 4.5.10.2 Hoeffding [1948] introduced the parameter

△=
∫ ∞

−∞

∫ ∞

−∞
D2(y1, y2)dF(y1, y2),

where D(y1, y2) = F(y1, y2)−F(y1,∞)F(∞, y2) and F(·, ·) is the distribution function of Y1 and
Y2. The parameter △ has the property that △= 0 if and only if Y1 and Y2 are independent. From
Lee [1990], an alternative expression for △ can be developed by introducing the functions

ψ
(
y1, y2, y3

)=


1 if y2 ≤ y1 < y3

0 if y1 < y2, y3 or y1 ≥ y2, y3

−1 if y3 ≤ y1 < y2

and

ϕ
(
y1,1, y1,2, . . . , y5,1, y5,2

)= 1

4
ψ

(
y1,1, y1,2, y1,3

)
ψ

(
y1,1, y1,4, y1,5

)
ψ

(
y1,2, y2,2, y3,2

)
ψ

(
y1,2, y4,2, y5,2

)
.
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We have
△=

∫
. . .

∫
ϕ

(
y1,1, y1,2, . . . , y5,1, y5,2

)
dF

(
y1,1, y1,2

)
. . .dF

(
y1,5, y2,5

)
.

We have

r (5) (ϕ, t1, t2, t3, t4, t5
)

= E
(
ϕ((Y1,1,Y1,2), . . . , (Y5,1,Y5,2)) | X1 = X2 = X3 = X4 = X5 = t

)
.

The corresponding U-statistics may be used to test the conditional independence.

Example 4.5.10.3 For m = 3, let ϕ(Y1,Y2,Y3) = 1{Y1 − Y2 − Y3 > 0}, the corresponding U-
Statistic corresponds to the Hollander-Proschan test-statistic (Hollander and Proschan [1972]).

Example 4.5.10.4 (Hoeffding’s D ). From the symmetric kernel,

hD (z1, . . . , z5)

:= 1

16

∑
(i1,...,i5)∈P5

[{
1

(
zi1,1 ≤ zi5,1

)−1(
zi2,1 ≤ zi5,1

)}{
1

(
zi3,1 ≤ zi5,1

)−1(
zi4,1 ≤ zi5,1

)}]
× [{

1
(
zi1,2 ≤ zi5,2

)−1(
zi2,2 ≤ zi5,2

)}{
1

(
zi3,2 ≤ zi5,2

)−1(
zi4,2 ≤ zi5,2

)}]
,

we recover Hoeffding’s D statistic, which is a rank-based U-statistic of order five and gives rise
to Hoeffding’s D correlation measure EhD.

Example 4.5.10.5 (Blum-Kiefer-Rosenblatt’s R ). The symmetric kernel

hR (z1, . . . , z6)

:= 1

32

∑
(i1,...,i6)∈P6

[{
1

(
zi1,1 ≤ zi5,1

)−1(
zi2,1 ≤ zi5,1

)}{
1

(
zi3,1 ≤ zi5,1

)−1(
zi4,1 ≤ zi5,1

)}]
× [{

1
(
zi1,2 ≤ zi6,2

)−1(
zi2,2 ≤ zi6,2

)}{
1

(
zi3,2 ≤ zi6,2

)−1(
zi4,2 ≤ zi6,2

)}]
yields Blum-Kiefer-Rosenblatt’s R statistic (Blum et al. [1961]), which is a rank-based U-
statistic of order 6. At this point, we refer to Bouzebda and Zari [2013], Bouzebda [2011,
2014], Bouzebda and Keziou [2010a,b].

Example 4.5.10.6 (Bergsma-Dassios-Yanagimoto’s τ∗ ). Bergsma and Dassios [2014] intro-
duced a rank correlation statistic as a U-statistic of order 4 with the symmetric kernel

hτ∗ (z1 , . . . , z4)

:= 1

16

∑
(i1,...,i4)∈P4

{
1

(
zi1,1, zi3,1 < zi2,1, zi4,1

)+1(
zi2,1, zi4,1 < zi1,1, zi3,1

)
−1(

zi1,1, zi4,1 < zi2,1, zi3,1
)−1(

zi2,1, zi3,1 < zi1,1, zi4,1
)}

×{
1

(
zi1,2, zi3,2 < zi2,2, zi4,2

)+1(
zi2,2, zi4,2 < zi1,2, zi3,2

)
−1(

zi1,2, zi4,2 < zi2,2, zi3,2
)−1(

zi2,2, zi3,2 < zi1,2, zi4,2
)}

Here, 1
(
y1, y2 < y3, y4

)
:=1(

y1 < y3
)
1

(
y1 < y4

)
1

(
y2 < y3

)
1

(
y2 < y4

)
.
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Example 4.5.10.7 The sample covariance matrix Ŝn = (n− 1) −1 ∑n
i=1

(
Xi − X̄n

)(
Xi − X̄n

)⊤ is
an unbiased estimator of the covariance matrix Σ = Cov(X1). Here, Ŝn is a matrix-valued U-
statistic with the quadratic kernel h (x1, x2) = (x1 −x2) (x1 −x2)⊤ /2 for x1, x2 ∈Rp .

Example 4.5.10.8 Two generic vectors y = (
y1, y2

)
and z = (z1, z2) in R2 are said to be concor-

dant if
(
y1 − z1

)(
y2 − z2

)> 0. For m,k = 1, . . . , p, define

τℓk = 1

n(n −1)

∑
1≤i ̸= j≤n

1
{(

Xiℓ−X jℓ
)(

Xi k −X j k
)> 0

}
.

Then Kendall’s tau rank correlation coefficient matrix T = {τℓk }
p
ℓ,k=1 is a matrix-valued U-

statistic with a bounded kernel. It is clear that τℓk quantifies the monotonic dependency between
(X1ℓ,X1k ) and (X2ℓ,X2k ) and it is an unbiased estimator of P((X1ℓ−X2ℓ)(X1k −X2k ) > 0), that is,
the probability that (X1ℓ,X1k ) and (X2ℓ,X2k ) are concordant.

Example 4.5.10.9 The Gini mean difference. The Gini index provides another popular measure
of dispersion. It corresponds to the case where E ⊂R and h(x, y) = |x − y | :

Gn = 2

n(n −1)

∑
1≤i< j≤n

∣∣Xi −X j
∣∣

Example 4.5.10.10 The Wilcoxon Statistic. Suppose that E ⊂ R is symmetric around zero. As
an estimate of the quantity

∫
(x,y)∈E2

{
2I{x+y>0} −1

}
dF(x)dF(y), it is pertinent to consider the

statistic

Wn = 2

n(n −1)

∑
1≤i< j≤n

{
2 ·1{

Xi+X j>0
}−1

}
,

which is relevant for testing whether or not µ is located at zero.

Example 4.5.10.11 The Takens estimator. Suppose that E ⊂Rd ,d ≥ 1. Denote by ∥ ·∥ the usual
Euclidean norm on Rd . In Borovkova et al. [1999], the following estimate of the correlation
integral,

CF(r ) =
∫
I{∥x−x ′∥≤r }dF(x)dF

(
x ′) , r > 0,

is considered:

Cn(r ) = 1

n(n −1)

∑
1≤i ̸= j≤n

I{∥Xi−X j∥≤r
}

In the case where a scaling law holds for the correlation integral, i.e., when there exists (α,r0,c) ∈
R∗3+ such that CF(r ) = c · r−α for 0 < r ≤ r0, the U-statistic

Tn = 1

n(n −1)

∑
1≤i ̸= j≤n

log

(∥∥Xi −X j
∥∥

r0

)
,

is used in order to build the Takens estimator α̂n =−T−1
n of the correlation dimension α.
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4.6 The bandwidth selection criterion

Following Dony and Mason [2008] and Bouzebda and Nemouchi [2022], the leave-one-out
cross validation procedure allows to define, for any fixed i = (i1, . . . , ik ) ∈ I(k,n) :

r̂ (k)
n,i (ϕ,x;mn) =

∑
( j1,..., jk )∈I(k,n)(i)

ϕ(Y j1 , . . . ,Y jk )δmn

(
x1,X j1

) · · ·δmn

(
xk ,X jk

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) , (4.6.1)

where
I(k,n)(i) := {

j ∈ I(k,n) and j ̸= i
}= I(k,n)\{i}.

In order to minimize the quadratic loss function, we introduce the following criterion: we have
for some (known) non-negative weight function W (·) :

CV
(
ϕ,h

)
:= (n −k)!

n!

∑
i∈I(k,n)

(
ϕ (Yi)− r̂ (k)

n,i (ϕ,Xi;mn)
)2

W̃ (Xi) , (4.6.2)

where

W̃ (t) :=
k∏

i=1
W (ti ).

A natural way for choosing the bandwidth is to minimize the precedent criterion, so let’s choose
m̂n minimizing

sup
ϕ∈F

CV
(
ϕ,h

)
.

One can replace (4.6.2) by

CV
(
ϕ,h

)
:= (n −k)!

n!

∑
i∈I(k,n)

(
ϕ (Yi)− r̂ (k)

n,i (ϕ,Xi;mn)
)2

Ŵ (Xi,t) , (4.6.3)

where

Ŵ (s,x) :=
k∏

i=1
Ŵ(si ,ti ).

In practice, one takes for i ∈ I(k,n), the uniform global weights W̃ (Xi) = 1, and the local weights

Ŵ(Xi,t) =
{

1 if ∥Xi − t∥ ≤ h,

0 otherwise.

For the sake of brevity, we have just considered the most popular method, that is, the cross-
validated selected bandwidth. This may be extended to any other bandwidth selector, such as
the bandwidth based on Bayesian ideas Shang [2014].

Remark 4.6.0.1 We can use a different bandwidth criterion suggested by Silverman [1986],
the rule of thumb. Strictly speaking, since the cross-validated bandwidth mn is random, the
asymptotic theory can only be justified with this random bandwidth via a specific stochastic
equicontinuity argument. For testing a parametric model for conditional mean function against
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a nonparametric alternative, Horowitz and Spokoiny [2001] proposed an adaptive-rate-optimal
rule. Gao and Gijbels [2008] presents the other method for selecting a proper bandwidth. Gao
and Gijbels [2008] propose, utilizing the Edgeworth expansion of the asymptotic distribution of
the test, to select the bandwidth such that the power function of the test problem is maximized
while the size function is controlled. Although any choice of bandwidth mn that satisfies the
assumption will produce the asymptotic distribution in Theorem 4.3.4.1, we need guidance on
choosing mn in practice. Idealistically, we should choose a mn that provides the greatest
power (e.g., test based on the Kendall tau) or small MSE for a given sample size, but deriving
this procedure is complicated enough to warrant a separate study. Future investigation will
focus on the three approaches mentioned above.

4.7 Mathematical development

This section is devoted to the proof of our results. The aforementioned notation is also used in
what follows.

4.7.1 Proofs of the results of Section 4.3.2

In this section, we follow the steps of Derumigny [2019] while making the necessary changes
to fit our extended framework. Let us start with the proof of Lemma 4.3.2.4.

Proof of Lemma 4.3.2.4

We first remark that

∣∣∣∣∣E[un(1, x̃;mn)]−
k∏

j=1
fX(x j )

∣∣∣∣∣
=

∣∣∣∣∣ (n −k)!

n!
E

[ ∑
i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

)]
−

k∏
j=1

fX(x j )

∣∣∣∣∣
=

∣∣∣∣∣E
[

k∏
j=1

δmn

(
x j ,X j

)]−
k∏

j=1
fX(x j )

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rdk

k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

fX(t j )
k∏

j=1
dt j −

k∏
j=1

fX(x j )

∣∣∣∣∣ (4.7.1)

=
∣∣∣∣∣
∫
Rdk

k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

fX(t j )
k∏

j=1
dt j −

∫
Rdk

k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

fX(x j )
k∏

j=1
dt j

∣∣∣∣∣ .(4.7.2)
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From (4.7.1) to (4.7.2), we have used the condition (i ) of Definition 4.2.1.2. Consequently, we
infer that∣∣∣∣∣E[un(1, x̃;mn)]−

k∏
j=1

fX(x j )

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rdk

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

∣∣∣∣∣
=

∣∣∣∣∣
∫
∥t1−x1∥<η

. . .
∫
∥tk−xk∥<η

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

+
∫
∥t1−x1∥≥η

. . .
∫
∥tk−xk∥≥η

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

∣∣∣∣∣
≤

∣∣∣∣∣
∫
∥t1−x1∥<η

. . .
∫
∥tk−xk∥<η

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

∣∣∣∣∣
+

∣∣∣∣∣
∫
∥t1−x1∥≥η

. . .
∫
∥tk−xk∥≥η

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

∣∣∣∣∣
= B1 +B2.

By the change of variables, we readily obtain for u j = t j −x j , j = 1, . . . ,k :

B1 =
∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

∣∣∣∣∣
=

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

{
k∏

j=1
fX(x j +u j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣
=

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

{
φx,u(1)−φx,u(0)

} k∏
j=1

δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣ ,

where, for h ∈ [−1,1],

φx,u(h) :=
k∏

i=1
fX(xi +hui ).

Observe that the function φx,u(·) has at least the same regularity as fX(·), which means that it is
α-differentiable. By a Taylor-Lagrange expansion, we obtain

B1 =
∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

(
α−1∑
l=1

1

l !
φ(l )

x,u(0)+ 1

α!
φ(α)

x,u

(
hx,u

)) k∏
j=1

δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣≤B′
1 +B′′

1 ,

where

B′
1 =

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

(
α−1∑
l=1

1

l !
φ(l )

x,u(0)

)
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣ ,

and

B′′
1 =

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

(
1

α!
φ(α)

x,u

(
hx,u

)) k∏
j=1

δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣ .
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Let us start by studying the term B′
1. For l > 0, we observe that

φ(l )
x,u(0) = ∑

α1+···+αk=l

(
α

α1:k

)
k∏

j=1

∂α j
(

fX
(
x j +hu j

))
∂hα j

(0)

= ∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

u j ,i1 . . .u j ,iα j

∂α j fX

∂xi1 · · ·∂xiα j

(
x j +hx,uu j

)
,

where (
α

α1:k

)
:= α!/

(
k∏

j=1

(
α j !

))
,

is the multinomial coefficient. Thus, we readily infer

B′
1 =

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

(
α−1∑
l=1

1

l !
φ(l )

x,u(0)

)
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣
=

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

α−1∑
l=1

1

l !

{ ∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

×
d∑

i1,...,iα j =1
u j ,i1 . . .u j ,iα j

∂α j fX

∂xi1 · · ·∂xiα j

(
x j +hx,uu j

) k∏
j=1

δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣∣
≤

∫
∥u1∥<η

. . .
∫
∥uk∥<η

α−1∑
l=1

1

l !

{ ∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

×
d∑

i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣ ∣∣∣∣∣ ∂α j fX

∂xi1 · · ·∂xiα j

(
x j +hx,uu j

)∣∣∣∣∣
 k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

≤
∫
∥u1∥<η

. . .
∫
∥uk∥<η

α−1∑
l=1

1

l !

{ ∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣ sup
h∈[0,1]

∣∣∣∣∣ ∂α j fX

∂xi1 · · ·∂xiα j

(
x j +hx,uu j

)∣∣∣∣∣
 k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j(4.7.3)

≤ Cα

∫
∥u1∥<η

. . .
∫
∥uk∥<η

α−1∑
l=1

1

l !

 ∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣


×
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j , (4.7.4)

where for the passage from (4.7.3) to (4.7.4) we have used the condition (C.1). In addition, we
can find a positive constant Cd ,α such that

α−1∑
l=1

1

l !

∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣≤ Cd ,α

k∏
j=1

∥u j∥d ,
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implying that

B′
1 ≤ CαCd ,α

∫
∥u1∥<η

. . .
∫
∥uk∥<η

k∏
j=1

∥u j∥d
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

≤ CαCd ,α

∫
∥u2∥<η

. . .
∫
∥uk∥<η

k∏
j=2

∥u j∥d
k∏

j=2
δmn

(
x j ,x j +u j

)
×

{∫
∥u1∥<η

∥u1∥dδmn (x1,x1 +u1)du1

}
du2 · · ·duk .

Let us denote
J1 :=

∫
∥u1∥<η

∥u1∥dδmn (x1,x1 +u1)du1.

Now, following the same method of Susarla and Walter [1981] in our extended setting, by a
change of variables to the polar coordinates, we obtain

J1 ≤
∫ η

0
ϵm(x1,r )r d r d−1dr =

{∫ 1/m

0
+

∫ η

1/m

}
=J ′

1 +J ′′
1 ,

for sufficiently small η and 1 ≤ mη and

ϵm(x1,r ) =
∫
S d−1

x1

δmn

(
x1,x1 + r t′1

)
dδ(t1

′). (4.7.5)

Here S d−1
x1

denotes the surface of the unit sphere with center at x1 and dδ(t′1) represents the
elements of the surface area on S d−1

x1
. Using the condition (i i ) of Definition 4.2.1.2 yields to∫ ∞

r
ϵm(x1, s)sd−1d s = O(m−1r−1) uniformly in r > 0. (4.7.6)

By condition (i i i ) of Definition 4.2.1.2, we have

J ′
1 = O(m−d

n ).

By (4.7.5), an integration by parts gives

J ′′
1 =

{
r d

∫ ∞

r
ϵm(x1, s)sd−1d s

}η
1/m

+d
∫ η

1/m
r d−1

(∫ ∞

r
ϵm(x1, s)sd−1d s

)
dr

≤ O(m−1)+O(m−d
n )+C1m−1

∫ η

1/m
r d−2dr

= O(m−1)+O(m−d
n ).

Consequently we have
J1 = O(m−1).

In the same way, we will calculate

J2 :=
∫
∥u2∥<η

J1∥u2∥dδmn (x2,x2 +u2)du2.
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By the fact that the term J1 does not depend on u2, then J2 becomes

J2 = J1

∫
∥u2∥<η

∥u2∥dδmn (x2,x2 +u2)du2,

implying that

J2 = O(m−2).

By repeating the same reasoning for the remaining integrals, we readily obtain

B′
1 = CαCd ,α

k∏
j=1

O(m−1) = O(m−k ).

We now consider the term B′′
1 . We have

B′′
1 =

∣∣∣∣∣
∫
∥u1∥<η

. . .
∫
∥uk∥<η

1

α!
φ(α)

x,u

(
hx,u

) k∏
j=1

δmn

(
x j ,x j +u j

) k∏
j=1

du j

∣∣∣∣∣
≤ 1

α!

∫
∥u1∥<η

. . .
∫
∥uk∥<η

 ∑
α1+···+αk=α

(
n

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣
× sup

h∈[0,1]

∣∣∣∣∣ ∂α j fX

∂xi1 · · ·∂xiα j

(
x j +hx,uu j

)∣∣∣∣∣
}

k∏
j=1

δmn

(
x j ,x j +u j

) k∏
j=1

du j

≤ Cα

α!

∫
∥u1∥<η

. . .
∫
∥uk∥<η

 ∑
α1+···+αk=α

(
n

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣


×
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j .

Similarly, we can find a positive constant C′
d ,α in such a way that

∑
α1+···+αk=α

(
n

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

∣∣∣u j ,i1 . . .u j ,iα j

∣∣∣≤ C′
d ,α

k∏
j=1

∥u j∥d ,

which, by following the same steps to investigate the term B′
1, readily implies that

B′′
1 ≤

CαC′
d ,α

α!

∫
∥u1∥<η

. . .
∫
∥uk∥<η

k∏
j=1

∥u j∥d
k∏

j=1
δmn

(
x j ,x j +u j

)
duk = O(m−k ).

Consequently, we get

B1 = O(m−k ).
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Now, let us study B2. We have

B2 =
∣∣∣∣∣
∫
∥t1−x1∥≥η

· · ·
∫
∥tk−xk∥≥η

{
k∏

j=1
fX(t j )−

k∏
j=1

fX(x j )

}
k∏

j=1
δmn

(
x j ,t j

) k∏
j=1

dt j

∣∣∣∣∣
≤

∫
∥t1−x1∥≥η

· · ·
∫
∥tk−xk∥≥η

∣∣∣∣∣ k∏
j=1

fX(t j )

∣∣∣∣∣ k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

dt j

+
∫
∥t1−x1∥≥η

· · ·
∫
∥tk−xk∥≥η

∣∣∣∣∣ k∏
j=1

fX(x j )

∣∣∣∣∣ k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

dt j

≤
∫
∥t1∥≥η

· · ·
∫
∥tk∥≥η

∣∣∣∣∣ k∏
j=1

fX(x j + t j )

∣∣∣∣∣ k∏
j=1

δmn

(
x j ,t j +x j

) k∏
j=1

dt j

+
∫
∥t1∥≥η

· · ·
∫
∥tk∥≥η

∣∣∣∣∣ k∏
j=1

fX(x j )

∣∣∣∣∣ k∏
j=1

δmn

(
x j ,x j + t j

) k∏
j=1

dt j .

By applying Hölder’s inequality, we readily get∫
∥t1∥≥η

· · ·
∫
∥tk∥≥η

∣∣∣∣∣ k∏
j=1

fX(x j + t j )

∣∣∣∣∣ k∏
j=1

δmn

(
x j ,x j + t j

) k∏
j=1

dt j

+
∫
∥t1∥≥η

· · ·
∫
∥tk∥≥η

∣∣∣∣∣ k∏
j=1

fX(x j )

∣∣∣∣∣ k∏
j=1

δmn

(
x j ,x j + t j

) k∏
j=1

dt j

≤
∫
Rd

· · ·
∫
Rd

∣∣∣∣∣ k∏
j=1

fX(x j + t j )

∣∣∣∣∣ k∏
j=1
1{

t j∈Rd ;∥t j ∥>η
} k∏

j=1
δmn

(
x j ,x j + t j

) k∏
j=1

dt j

+
∣∣∣∣∣ k∏

j=1
fX(x j )

∣∣∣∣∣
∫
Rd

· · ·
∫
Rd

k∏
j=1
1{

t j∈Rd ;∥t j ∥>η
} k∏

j=1
δmn

(
x j ,x j + t j

) k∏
j=1

dt j

≤ ∥
k∏

j=1
fX∥p∥

k∏
j=1

ψη, jδmn∥q +
∣∣∣∣∣ k∏

j=1
fX(x j )

∣∣∣∣∣
∥∥∥∥∥ k∏

j=1
ψη, jδmn

∥∥∥∥∥
1

≤
k∏

j=1

∥∥ fX
∥∥

p

∥∥ψη, jδmn

∥∥
q +

∣∣∣∣∣ k∏
j=1

fX(x j )

∣∣∣∣∣
∥∥∥∥∥ k∏

j=1
ψη, jδmn

∥∥∥∥∥
1

≤
k∏

j=1
∥ fX

∥∥
p∥ψη, jδmn

∥∥ 1
p
∞

∥∥ψη, jδmn

∥∥ 1
q

1 +
∣∣∣∣∣ k∏

j=1
fX(x j )

∣∣∣∣∣ k∏
j=1

∥∥ψη, jδmn

∥∥
1 ,

where
ψη, j :=1{

t j∈Rd ;∥t j ∥>η
}.

Making use of the fact that fX ∈ Lp (Rd ) and by the condition (i v) Definition 4.2.1.2, for j =
1, . . . ,k, we have

∥ψη, jδmn∥∞ = O(1),

and

∥ψη, jδmn∥1 =
∫
∥t j ∥>η

δmn

(
x j ,x j + t j

)
dt j = O

(
m−1η−1) .
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Hence we conclude that

B2 = O(m−k/q ).

Finally, we have proved that∣∣∣∣∣E[un(1, x̃;mn)]−
k∏

j=1
fX(x j )

∣∣∣∣∣=B1 +B2 = O(m−k )+O(m−k/q ).

By denoting λ := min
{
k,kq−1

}
, the last equation is rewritten as∣∣∣∣∣E[un(1, x̃;mn)]−

k∏
j=1

fX(x j )

∣∣∣∣∣= O
(
m−λ

)
. (4.7.7)

Hence, the proof of the lemma is complete. □

Proof of Lemma 4.3.2.5

To obtain our result, one usually writes the difference between the estimator un(1, x̃;mn) and
k∏

j=1
fX(x j ), as the sum of a stochastic term and the so-called bias. We have

un(1, x̃;mn)−
k∏

j=1
fX(x j ) = (un(1, x̃;mn)−E[un(1, x̃;mn)])+

(
E[un(1, x̃;mn)]−

k∏
j=1

fX(x j )

)
.

In order to prove Lemma 4.3.2.5, we have to study the two quantities in the last equation. Since
the bias part is given in Lemma 4.3.2.4, we only need to bound the stochastic part. We have

|un(1, x̃;mn)−E[un(1, x̃;mn)]| = (n −k)!

n!

∑
i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

)
−E

[
k∏

j=1
δmn

(
x j ,X j

)]
.

Then, we can apply Lemma 4.8.0.2 to the function Ḡ1,x̃,mn (X(k),Y(k)) defined in (4.2.5).
We have

E
[

Ḡ1,x̃,mn (X(k),Y(k))
]

=
k∏

j=1
E
[
δmn

(
x j ,X j

)]
=

k∏
j=1

∫
Rd
δmn

(
x j ,t j

)
fX(t j )dt j

≤
k∏

j=1

∫
Rd

(
sup

t j∈Rd
δmn (x j ,t j )

)
fX(t j )dt j (4.7.8)

≤
k∏

j=1
O(md )

∫
Rd

fX(t j )dt j (4.7.9)

≤ O(mdk ). (4.7.10)

161



CHAPTER 4. CONDITIONAL U-STATISTICS USING DELTA SEQUENCES

The passage from (4.7.8) to (4.7.9) is by the condition (i i i ) of the Definition 4.2.1.2 and we
easily obtain (4.7.10) by taking into account that that fX(·) is a density function. For the variance,
we have

Var
[

Ḡ1,x̃,mn (X(k),Y(k))
]

≤ E
[

Ḡ1,x̃,mn (X(k),Y(k))2
]
=

k∏
j=1
E
[
δmn

(
x j ,X j

)2
]

=
k∏

j=1

∫
Rd
δmn

(
x j ,t j

)2 fX(t j )dt j

≤
k∏

j=1

∫
Rd

(
sup

t j∈Rd
δmn (x j ,t j )

)2

fX(t j )dt j

=
k∏

j=1

(
O(md )

)2
∫
Rd

fX(t j )dt j

≤
k∏

j=1
O(m2d ) = O(m2dk ). (4.7.11)

Using the fact that δm ∈ L∞(Rd ×Rd ), then there exists a constant Cδ > 0 in such a way that

0 ≤
k∏

j=1
sup

x j∈Rd

y j∈Rd

δmn (x j ,y j ) ≤ Ck
δ <∞.

This when combined with (4.7.10) and (4.7.11) respectively, implies that there exist constants
C1, C2 > 0 in such a way that

E
[

Ḡ1,x̃,mn (X(k),Y(k))
]
≤ C1mdk =: κ1,

and

Var
[

Ḡ1,x̃,mn (X(k),Y(k))2
]
≤ C2m2dk =: κ2.

An application of Lemma 4.8.0.2 gives

P {un(1, x̃;mn)−E[un(1, x̃;mn)] ≥ t } ≤ exp

− [n/k]t 2

2κ2 + 2

3

{
Ck
δ −κ1

}
t

. (4.7.12)

Finally, the proof is complete by combining the Lemma 4.3.2.4 with (4.7.12). □
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Proof of Theorem 4.3.2.1

Notice that∣∣∣r̂ (k)
n (ϕ, x̃,mn)− r (k)(ϕ, x̃)

∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈I(k,n)

ϕ(Yi1 , . . . ,Yik )
k∏

j=1
δmn

(
x j ,Xi j

)
∑

i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

) −E[
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

]
∣∣∣∣∣∣∣∣∣∣∣

= 1∑
i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

)
∣∣∣∣∣ ∑

i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

){
ϕ(Yi1 , . . . ,Yik )

− E
[
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

]}∣∣
=

k∏
j=1

fX(x j )

∑
i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

)
∣∣∣∣∣∣ ∑

i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

)
fX(x j )

{
ϕ(Yi1 , . . . ,Yik )

− E
[
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

]}∣∣
=

∏k
j=1 fX(x j )∑

i∈I(k,n)

k∏
j=1

δmn

(
x j ,Xi j

)
∣∣∣∣∣ ∑

i∈I(k,n)
Si

∣∣∣∣∣

=
∏k

j=1 fX(x j )

un(1, x̃;mn)

∣∣∣∣∣ ∑
i∈I(k,n)

Si

∣∣∣∣∣ .

In order to obtain the desired result, we need to bound separately
k∏

j=1
fX/un(1, x̃,mn), the bias

term

∣∣∣∣∣ ∑
i∈I(k,n)

E[Si]

∣∣∣∣∣ and the stochastic part

∣∣∣∣∣ ∑
i∈I(k,n)

(Si −E[Si])

∣∣∣∣∣ .

Proof of Lemma 4.3.2.6

Making of the condition (C.2.b), we have

∣∣∣∣∣ k∏
j=1

fX(x j )

∣∣∣∣∣≥ |un(1, x̃,mn)|−
∣∣∣∣∣un(1, x̃,mn)−

k∏
j=1

fX(x j )

∣∣∣∣∣> f k
X,min.

By applying Lemma 4.3.2.5, it follows that, there exists a constant Cδ,min > 0 such that

|un(1, x̃,mn)| > Cδ,min,
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We now apply the mean value inequality for the function x 7→ 1/x, we get∣∣∣∣∣∣∣∣∣∣∣
1

un(1, x̃,mn)
− 1

k∏
j=1

fX(x j )

∣∣∣∣∣∣∣∣∣∣∣
≤ 1

N2∗

∣∣∣∣∣un(1, x̃,mn)−
k∏

j=1
fX(x j )

∣∣∣∣∣ ,

where N∗ lies between un(1, x̃,mn) and
k∏

j=1
fX(x j ). By applying Lemma 4.3.2.5, for some t > 0,

we have

P

(∣∣∣∣∣un(1, x̃;mn)−
k∏

j=1
fX(x j )

∣∣∣∣∣≤ t +C3m−λ
)
≥ 1−exp

(
− [n/k]t 2

2κ1 + 2
3

{
Ck
δ
−κ2

}
t

)
.

By choosing

t +C3m−λ <
f k

X,min

2
,

it follows that ∣∣∣∣∣un(1, x̃,mn)−
k∏

j=1
fX(x j )

∣∣∣∣∣≤ 1

2

k∏
j=1

fX(x j ).

We have
f k

X,min

2
≤ un(1, x̃,mn).

Notice that
f k

X,min

2
≤

k∏
j=1

fX(x j ).

Thus, we have
f k

X,min

2
≤ N∗.

Combining the previous inequalities, we finally get∣∣∣∣∣∣ 1

un(1, x̃,mn)
− 1∏k

j=1 fX(x j )

∣∣∣∣∣∣≤ 1

N2∗

∣∣∣∣∣un(1, x̃,mn)−
k∏

j=1
fX(x j )

∣∣∣∣∣≤ 4

f 2k
X,min

(
C3m−λ+ t

)
.

Hence, the proof is complete. □

Proof of Lemma 4.3.2.7

Let us first remark that

0 =
∫ {

ϕ(y1, . . . ,yk )−E[
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

]} k∏
j=1

fY|X j=x j

(
y j

) k∏
j=1

dµ
(
y j

)
=

∫ {
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]} k∏

j=1

fX,Y
(
x j ,y j

)
fX

(
x j

) k∏
j=1

dµ
(
y j

)
.(4.7.13)
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For all i ∈ I(k,n), we have

|E [Si]| =
∣∣∣∣∣∣E

 k∏
j=1

δmn

(
x j ,Xi j

)
fX(x j )

{
ϕ(Yi1 , . . . ,Yik )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}∣∣∣∣∣∣

=
∣∣∣∣∫
Rdk×Rd ′k

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
k∏

j=1

δmn

(
x j ,t j

)
fX(x j )

fX,Y
(
t j ,yi

) k∏
j=1

dµ
(
y j

) k∏
j=1

dt j

∣∣∣∣∣
=

∣∣∣∣∫
Rdk×Rd ′k

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
(

k∏
j=1

fX,Y
(
t j ,y j

)− k∏
j=1

fX,Y
(
x j ,y j

)) k∏
j=1

δmn

(
x j ,t j

)
fX(x j )

k∏
j=1

dµ(y j )
k∏

j=1
dt j

∣∣∣∣∣ .(4.7.14)

Notice that (4.7.14) is concluded from (4.7.13) and the condition (i ) of Definition 4.2.1.2. We
have

|E [Si]| ≤
∣∣∣∣∫
Rd ′k

∫
∥u1∥<η

. . .
∫
∥uk∥<η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
(

k∏
j=1

fX,Y
(
t j ,y j

)− k∏
j=1

fX,Y
(
x j ,y j

)) k∏
j=1

δmn

(
x j ,t j

)
fX(x j )

k∏
j=1

dµ(y j )
k∏

j=1
dt j

∣∣∣∣∣
+

∣∣∣∣∫
Rd ′k

∫
∥u1∥≥η

. . .
∫
∥uk∥≥η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
(

k∏
j=1

fX,Y
(
t j ,y j

)− k∏
j=1

fX,Y
(
x j ,y j

)) k∏
j=1

δmn

(
x j ,t j

)
fX(x j )

k∏
j=1

dµ(y j )
k∏

j=1
dt j

∣∣∣∣∣
= Sϕ,1 +Sϕ,2.

Let us start with Sϕ,1. We now apply the Taylor-Lagrange formula to the function

ψx,u(h) :=
k∏

i=1
fX,Y

(
xi +hui ,yi

)
165



CHAPTER 4. CONDITIONAL U-STATISTICS USING DELTA SEQUENCES

to infer that

Sϕ,1

=
∣∣∣∣∫
Rd ′k

∫
∥u1∥<η

. . .
∫
∥uk∥<η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×(
ψx,u(1)−ψx,u(0)

) k∏
j=1

δmn

(
x j ,x j +u j

)
fX(x j )

dµ
(
y j

) k∏
j=1

du j

∣∣∣∣∣
=

∣∣∣∣∫
Rd ′k

∫
∥u1∥<η

. . .
∫
∥uk∥<η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
(
α−1∑
i=1

1

i !
ψ(i )

x,u(0)+ 1

α!
ψ(α)

x,u

(
hx,u

)) k∏
j=1

δmn

(
x j ,x j +u j

)
fX(x j )

k∏
j=1

dµ
(
y j

) k∏
j=1

du j

∣∣∣∣∣
=

∣∣∣∣∫
Rd ′k

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
{∫

∥u1∥<η
. . .

∫
∥uk∥<η

(
α−1∑
i=1

1

i !
ψ(i )

x,u(0)+ 1

α!
ψ(α)

x,u

(
hx,u

)) k∏
j=1

δmn

(
x j ,x j +u j

)
fX(x j )

k∏
j=1

du j

}

×
k∏

j=1
dµ

(
y j

)∣∣∣∣∣
≤

∣∣∣∣∫
Rd ′k

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
{∫

∥u1∥<η
. . .

∫
∥uk∥<η

α−1∑
i=1

1

i !
ψ(i )

x,u(0)
k∏

j=1

δmn

(
x j ,x j +u j

)
fX(x j )

k∏
j=1

du j

}
k∏

j=1
dµ

(
y j

)∣∣∣∣∣
+

∣∣∣∣∫
Rd ′k

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
{∫

∥u1∥<η
. . .

∫
∥uk∥<η

1

α!
ψ(α)

x,u

(
hx,u

) k∏
j=1

δmn

(
x j ,x j +u j

)
fX(x j )

k∏
j=1

du j

}
k∏

j=1
dµ

(
y j

)∣∣∣∣∣
= S ′

ϕ,1 +S ′′
ϕ,1.

Making use of the condition (C.2.b), we have

S ′
ϕ,1 ≤ 1

f k
X,min

∫
Rd ′k

∣∣∣∣∫∥u1∥<η
. . .

∫
∥uk∥<η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]

×
α−1∑
i=1

1

i !
ψ(i )

x,u(0)

}
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

k∏
j=1

dµ
(
y j

)∣∣∣∣∣ .

Similar to the proof of Lemma 4.3.2.4, we have that for l > 0

ψ(l )(h) = ∑
α1+...+αk=l

(
n

α1:k

)
k∏

j=1

∂α j
(

fX,Y
(
x j +hu j ,y j

))
∂hα j

= ∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

u j ,i1 · · ·u j ,iα j

∂α j fX,Y

∂xi1 · · ·∂xiα j

(
x j +hu j ,y j

)
,
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provided that, for all j = 1, . . . ,k,

sup
h∈[0,1]

∣∣∣∣∣ ∂α j fX,Y

∂xi1 · · ·∂xiα j

(
x j +hu j ,y j

)∣∣∣∣∣≤ Cα,ψ.

It is possible to find a constant Cd ,ψ in such a way that

α−1∑
l=1

1

l !

∑
α1+···+αk=l

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

u j ,i1 · · ·u j ,iα j
≤ Cd ,ψ

k∏
j=1

∥u j∥d .

Then we have

S ′
ϕ,1 ≤ 1

f k
X,min

∫
Rd ′k

∫
∥u1∥<η

. . .
∫
∥uk∥<η

∣∣{ϕ(y1, . . . ,yk )−E[
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

]
×
α−1∑
i=1

 ∑
α1+···+αk=l

1

l !

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

u j ,i1 · · ·u j ,iα j

∂α j fX,Y

∂xi1 · · ·∂xiα j

(
x j +hu j ,y j

)
∣∣∣∣∣∣

×
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

k∏
j=1

dµ
(
y j

)
≤ 1

f k
X,min

∫
∥u1∥<η

. . .
∫
∥uk∥<η

k∏
j=1

δmn

(
x j ,x j +u j

)∣∣∣∣∫
Rd ′k

ϕ(y1, . . . ,yk )

−E[
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

]
×
α−1∑
i=1

 ∑
α1+···+αk=l

1

l !

(
α

α1:k

)
k∏

j=1

d∑
i1,...,iα j =1

u j ,i1 · · ·u j ,iα j

∂α j fX,Y

∂xi1 · · ·∂xiα j

(
x j +hu j ,y j

)
k∏

j=1
dµ

(
y j

)∣∣∣∣∣ k∏
j=1

du j

≤ Cα,ψCd ,ψCϕ,α

f k
X,min

{∫
∥u1∥<η

. . .
∫
∥uk∥<η

k∏
j=1

∥u j∥d
k∏

j=1
δmn

(
x j ,x j +u j

) k∏
j=1

du j

}

≤ Cα,ψCd ,ψCϕ,α

f k
X,min

O(m−k ).

Now, using the same reasoning to calculate S ′′
ϕ,1, we readily obtain that

∫
Rd ′k

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
{∫

∥u1∥<η
. . .

∫
∥uk∥<η

1

α!
ψ(α)

x,u

(
hx,u

) k∏
j=1

δmn

(
x j ,x j +u j

)
fX(x j )

k∏
j=1

du j

}
k∏

j=1
dµ

(
y j

)
≤ Cα,ψCd ,ψCϕ,α

α! f k
X,min

O(m−k ).
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Finally, we need to study Sϕ,2 to conclude this proof. We have

Sϕ,2

=
∣∣∣∣∫
Rd ′k

∫
∥u1∥≥η

. . .
∫
∥uk∥≥η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
(

k∏
j=1

fX,Y
(
t j ,y j

)− k∏
j=1

fX,Y
(
x j ,y j

)) k∏
j=1

δmn

(
x j ,t j

)
fX(x j )

k∏
j=1

dµ(y j )
k∏

j=1
dt j

∣∣∣∣∣
≤ 1

f k
X,min

∣∣∣∣∫
Rd ′k

∫
∥u1∥≥η

. . .
∫
∥uk∥≥η

{
ϕ(y1, . . . ,yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

×
(

k∏
j=1

fX,Y
(
t j ,y j

)− k∏
j=1

fX,Y
(
x j ,y j

)) k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

dµ(y j )
k∏

j=1
dt j

∣∣∣∣∣
≤ Cϕ

f k
X,min

∣∣∣∣∣
∫
∥u1∥≥η

. . .
∫
∥uk∥≥η

(
k∏

j=1
fX,Y

(
t j ,y j

)− k∏
j=1

fX,Y
(
x j ,y j

)) k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

dµ(y j )
k∏

j=1
dt j

∣∣∣∣∣
≤ Cϕ

f k
X,min

O(m−k/q ).

Consequently, we can find a constant Cδ,α,ϕ > 0 in such a way that we have for all i ∈ I(k,n),

|E [Si]| ≤
Cδ,α,ϕm−λ

f k
X,min

.

Now, we bound the stochastic part. We have the following equality:

∣∣∣∣∣ ∑
i∈I(k,n)

(Si −E[Si])

∣∣∣∣∣=
∣∣∣∣∣ ∑

i∈I(k,n)
ϕ̃

(
(Xi1 ,Yi1 ), . . . , (Xik ,Yik )

)∣∣∣∣∣ ,

with ϕ̃ defined by

ϕ̃ ((X1,Y1), . . . , (Xk ,Yk ))

=
k∏

j=1

δmn

(
x j ,X j

)
fX(x j )

{
ϕ(Y1, . . . ,Yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}

−E
[

k∏
j=1

δmn

(
x j ,X j

)
fX(x j )

{
ϕ(Y1, . . . ,Yk )−E[

ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x
]}]

.

Notice that E
[
ϕ̃ ((X1,Y1), . . . , (Xk ,Yk ))

]= 0 by construction. Considering condition (C.5), if ϕ is
bounded, we can immediately derive the bound for this stochastic component. Indeed, we can
easily conclude that

∥ϕ̃∥∞ ≤ 4Cϕ f −k
X,minκ1.
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Moreover, we have

Var
[
ϕ̃ ((X1,Y1), . . . , (Xk ,Yk ))

]
≤ E

[
k∏

j=1

δ2
mn

(
x j ,X j

)
f 2

X (x j )
ϕ2(Y1, . . . ,Yk )

]

≤
∫
Rdk

∫
Rd ′k

k∏
j=1

δ2
mn

(
x j ,t j

)
f 2

X (x j )
ϕ2(y1, . . . ,yk )

k∏
j=1

fX,Y(t j ,y j )
k∏

j=1
dt j

k∏
j=1

dµ(y j )

≤ C2
ϕ f −2k

X,min

∫
Rdk

k∏
j=1

δ2
mn

(
x j ,t j

){∫
Rd ′k

k∏
j=1

fX,Y(t j ,y j )
k∏

j=1
dµ(y j )

}
k∏

j=1
dt j

≤ C2
ϕ f −2k

X,min

∫
Rdk

k∏
j=1

δ2
mn

(
x j ,t j

) k∏
j=1

fX(t j )
k∏

j=1
dt j

≤ C2
ϕ f −2k

X,min∥δmn

(
x j , ·)∥2k

∞
≤ C2

ϕ f −2k
X,minκ2.

Now, by applying Lemma 4.8.0.2, we readily get

P

(∣∣∣∣∣ ∑
i∈I(k,n)

(Si −E[Si])

∣∣∣∣∣> t

)
≤ 2exp

(
− [n/k]t 2

2C2
ϕ f −2k

X,minκ2 + 8
3 Cϕκ1 f −k

X,mint

)
.

Hence, the proof is complete. □

The following proof gives the result in the case of unbounded function ϕ(·).

Proof of lemma 4.3.2.8

The same decomposition for U-statistics as in Hoeffding [1963] gives us∑
i∈I(k,n)

Si −E [Si] = 1

n!

∑
i∈I(n,n)

1

[n/k]

[n/k]∑
j=1

Vn, j ,i ,

where
Vn, j ,i := ϕ̃

((
Xi(1+( j−1)k) ,Yi(2+( j−1)k)

)
, . . . ,

(
Xi( j k) ,Yi( j k+1)

))
.

For any λ> 0, we have

P

( ∑
i∈I(k,n)

Si −E [Si] > t

)
≤ e−λeE

[
exp

(
λ

∑
i∈I(k,n)

Si −E [Si]

)]

≤ e−λeR

[
exp

(
λ

1

n!

∑
i∈I(n,n)

1

[n/k]

|n/k|∑
j=1

Vn, j ,i

)]

≤ e−λe 1

n!

∑
i∈I(n,n)

E

[
exp

(
λ

1

[n/k]

|n/k|∑
j=1

Vn, j ,i

)]

≤ e−λe 1

n!

∑
i∈I(n,n)

|n/k|∏
j=1

E

[
exp

(
λ

1

[n/k]
Vn, j ,i

)]

≤ e−λ
(

sup
i∈I(n,n), j=1,··· ,|n/[k]

E
[
exp

(
λ [n/k|−1 Vn, j ,i

)])|n/k]

. (4.7.15)
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For ℓ≥ 2, using the inequality

(a +b + c +d)ℓ ≤ 4ℓ
(
aℓ+bℓ+ cℓ+dℓ

)
,

we obtain

E
[∣∣Vn, j ,i

∣∣ℓ]= E[∣∣Vn,1,i
∣∣ℓ]

≤ 4ℓE

∣∣ϕ(
Yi1 , . . . ,Yik

)∣∣ℓ k∏
j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )


+4ℓE

∣∣E[
ϕ

(
Yi1 , . . . ,Yik

) | (X1, . . . ,Xk ) = x
]∣∣ℓ k∏

j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )


+4ℓ

∣∣∣∣∣∣E
ϕ(

Yi1 , . . . ,Yik

) k∏
j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )

∣∣∣∣∣∣
ℓ

+44

∣∣∣∣∣∣E
∣∣E[

ϕ
(
Yi1 , . . . ,Yik

) | (X1, . . . ,Xk ) = x
]∣∣ k∏

j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )

∣∣∣∣∣∣
ℓ

.

Using Jensen’s inequality for the function x 7→ |x|p with the second, third, and fourth terms and
the law of iterated expectations for the first and the third terms, we get

E
[∣∣Vn, j ,i

∣∣ℓ]≤ 4ℓ ·2E

E[∣∣ϕ(
Yi1 , . . . ,Yik

)∣∣ℓ | Xi1 , . . . ,Xik

] k∏
j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )


+4ℓ ·2E

E[∣∣ϕ(
Yi1 , . . . ,Yik

)∣∣ℓ | (X1, . . . ,Xk ) = x
] k∏

j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )


≤ 4ℓ ·2E

(
Bℓϕ (X1, . . . ,Xk )+Bℓϕ (x1, . . . ,xk )

)ℓ
ℓ!

k∏
j=1

δℓmn

(
x j ,Xi j

)
f ℓX (x j )


≤ 4l ·2

(
B̃ℓϕ+Bℓϕ (x1, . . . ,xk )

)
ℓ!

(
∥δmn (x, ·)∥k

∞ f −k
X,min

)ℓ−1
f −k

X,min

≤ 2
(
4
(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k
∞ f −k

X,min

)ℓ
ℓ!∥δmn (x, ·)∥−1

∞ ,
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where Bϕ,x := Bϕ (x1, . . . ,xk ). Observe that E
[
Vn, j ,i

] = 0 by construction of ϕ̃(·), which means
that

E
[
exp

(
λ[n/k]−1Vn, j ,i

)]
= 1+

∞∑
ℓ=2

E
[(
λ[n/k]−1Vn, j ,i

)ℓ]
ℓ!

(4.7.16)

≤ 1+2∥δmn (x, ·)∥−1
∞

∞∑
ℓ=2

(
4λ[n/k]−1 (

B̃ϕ+Bϕ,x
)∥δmn (x, ·)∥k

∞ f −k
X,min

)ℓ

≤ 1+2∥δmn (x, ·)∥−1
∞ ·

(
4λ[n/k]−1

(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k∞ f −k
X,min

)2

1−4λ[n/k]−1
(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k∞ f −k
X,min

≤ exp

(
32λ2

(
B̃ϕ+Bϕ,x

)2 ∥δmn (x, ·)∥2k−1∞
1−4λ[n/k]

(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k∞ f −k
X,min

)
, (4.7.17)

where (4.7.17) follows from the inequality

1+x ≤ exp(x).

Combining the latter bound with (4.7.15), we get

P

( ∑
i∈Jk,a

Si −E[Si] |> t

)

≤ exp

−λt +
32λ2[n/k]−2

(
B̃ϕ+Bϕ,x

)2 ∥δmn (x, ·)∥2k−1∞ f −2k
X,min

f 2k
X,min[n/k]−4λ

(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k∞ f k
X,min

 . (4.7.18)

Noting that the right-hand side term within the exponential has the form −λt + aλ2

b−cλ , We select
the value

λ∗ = tb

2a + tc
=

t f 2k
X,min[n/k]

64
(
B̃ϕ+Bϕ,x

)2 ∥δmn (x, ·)∥2k−1∞ + t
(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k∞ f k
X,min

(4.7.19)

such that

−λ∗t + aλ2∗
b − cλ∗

=− t 2b

4a +2ct
=− t

2
λ∗.

As a result, the right-hand side term of (4.7.18) may be simplified, and when combined with
(4.7.19), we get

P

( ∑
i∈I(k,n)

Si −E [Si] > t

)

≤ exp

− t 2 f 2k
X,min[n/k]

128
(
B̃ϕ+Bϕ,x

)2 ∥δmn (x, ·)∥2k−1∞ + t
(
B̃ϕ+Bϕ,x

)∥δmn (x, ·)∥k∞ f k
X,min

 .

Now, using the condition (i i i ) of Definition 4.2.1.2, there exist positive constants C′
1,C′

2 such
that

κ′1 =: C′
1mdk and κ′2 =: C2md(2k−1),
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that implies that

P

( ∑
i∈I(k,n)

Si −E [Si] > t

)
≤ exp

− t 2 f 2k
X,min[n/k]

128
(
B̃ϕ+Bϕ,x

)2
κ′2 + t

(
B̃ϕ+Bϕ,x

)
κ′1 f k

X,min

 .

Hence, we obtain the desired result. □

4.7.2 Proofs of the results of Section 4.3.3

Before we start the proofs of this section, we will state some lemmas that are necessary to obtain
the desired results. It is worth mentioning that we will follow the steps of Stute [1991] while
making the appropriate changes to fit our general setting.

Lemma 4.7.2.1 Under assumptions (A.1)-(A.4), and if Eϕ2 < ∞, the Hájek projection Ûn of
Un satisfies :

(i)
lim

n→∞E
[

(nm−d
n )1/2 (

Ûn −θn
)]2 =σ2(ϕ),

where

σ2(ϕ) :=
k∑

i=1

k∑
j=1
1{

xi=x j
}ri j (x̃ )

∫
Rd
δ2(xi ,t)dt/ fX(xi ). (4.7.20)

(ii) and if, in addition, assumption (A.5) is verified, we have

(nm−d
n )1/2 (

Ûn −θn
) D−→N

(
0,σ2(ϕ)

)
. (4.7.21)

In the following lemma, we show that Un has the same asymptotic distribution as Ûn .

Lemma 4.7.2.2 Under assumption (A.1)-(A.6), we have

(nm−d
n )1/2 (Un −θn)

D−→N
(
0,σ2(ϕ)

)
. (4.7.22)

Proof of Lemma 4.7.2.1

Let us start with (i), we write

θn = E[Un(ϕ, x̃,mn)]

= N−1
∫
Rdk

r̂ (k)
n (ϕ,t;mn)

k∏
j=1

δmn

(
x j ,t j

) k∏
j=1

fX(t j )
k∏

j=1
dt j ,

The Hájek projection Ûn(ϕ,x,mn) of Un(ϕ, x̃,mn) satisfies

Ûn −θn = n−1
n∑

i=1
ϕ̄n(Xi ,Yi ),

172



CHAPTER 4. CONDITIONAL U-STATISTICS USING DELTA SEQUENCES

with

ϕ̄n(x,y) =
k∑

j=1

[
ϕn, j (x,y)−θn

]
,

and ϕn, j (x,y) is defined by

ϕn, j (x,y) = N−1
∫
Rdk×Rd ′k

ϕ(Y1, . . . ,Y j−1,y,Y j+1, . . . ,Yk )
k∏

r=1
r ̸= j

δmn,r (xr ,Xr )δmn

(
x j ,x

)
dP,

where P represents the underlying probability measure. By independence, we get

nE
(
Ûn −θn

)2 = E[
ϕ̄n

2(X,Y)
]

=
k∑

j=1

k∑
l=1
E
[
ϕn, j (X,Y)−θn

][
ϕn,l (X,Y)−θn

]
.

Using the fact that (X,Y), (Xi ,Yi )1≤i≤2k are i.i.d, We get

E
[
ϕn, j (X,Y)ϕn,l (X,Y)

]
= N−2

∫
R2dk×R2d ′k

ϕ(Y1, . . . ,Y j−1,Y,Y j+1, . . . ,Yk )ϕ(Yk+1, . . . ,Yk+l−1,Y,Yk+l+1, . . . ,Y2k )

×
k∏

r=1
r ̸= j

δmn,r (xr ,Xr )
k∏

s=1
s ̸=l

δmn,s (xs ,Xk+s)δmn

(
x j ,X

)
δmn,l (xℓ,X)dP.

By condition (A.2), we have, for x j ̸= xl

δmn (x j ,X)δmn (xl ,X) → 0,

Consequently,
E
[
ϕn, j (X,Y)ϕn,l (X,Y)

]= 0 for all x j ̸= xl .

In the case of x j = xl and x̃= (x1, . . . ,xk ) is a point of continuity for r (k)
j ,l we have

E2
[

1
md

n
δmn (x j ,X1)

]
E
[

1
md

n
δ2

mn
(x j ,X1)

] E[
ϕn, j (X,Y)ϕn,l (X,Y)

]−→ r j ,l (x̃), (4.7.23)

by a differentiation argument. Now, provided that the density function fX(·) is continuous and
fX(x j ) = fX(xl ) > 0, by the fact that

E

[
1

md
n

δmn (x j ,X1)

]
∼ 1

md
n

fX(x j ),

and
E

[
1

md
n

δ2
mn

(x j ,X1)

]
∼ 1

md
n

fX(x j )
∫
δ2

mn
(x j ,t)dt,

we readily infer that
E2

[
1

md
n
δmn (x j ,X1)

]
E
[

1
md

n
δ2

mn
(x j ,X1)

] ∼ 1

md
n

fX(x j )∫
δ2

mn
(x j ,t)dt

.
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Hence,

1

md
n

E
[
ϕn, j (X,Y)ϕn,l (X,Y)

]→ r j ,l (x̃)

∫
δ2

mn
(x j ,t)dt

fX(x j )
.

Using the fact that r (k)(ϕ, x̃) is bounded in the neighborhood of x̃, then θn ,n ≥ 1, is bounded,
therefore we have m−d

n θ2
n → 0, from which we have

lim
n→∞E

[
(nm−d

n )1/2 (
Ûn −θn

)]2 =σ2(ϕ), (4.7.24)

where σ2(ϕ) is defined in (4.7.20).
Now, in order to prove (4.7.21), we only need to verify Lyapunov’s condition for third moments.
This implies showing that

n−1/2(m−d
n )3/2E

∣∣ϕ̄n(X,Y)
∣∣3 → 0. (4.7.25)

Using the fact that
|a −b|3 ≤ 3(|a|3 +|a|2 |b|+ |a| |b|2 +|b|3),

we conclude that an upper bound for the absolute third moment of ϕ̄n(X,Y) is dominated by
sums of the form

E
∣∣ϕn,i (X,Y)ϕn, j (X,Y)ϕn,l (X,Y)

∣∣ .

Following the same steps as before, we may restrict ourselves to triples (i , j , l ) such that xi =
x j = xl . Under assumption (A.5), we have

E
∣∣ϕn,i (X,Y)ϕn, j (X,Y)ϕn,l (X,Y)

∣∣= O(nm−2d ),

taking into account condition (A.1), gives us the desired result .This concludes the proof of the
lemma. □

Proof of Lemma 4.7.2.2

In order to study the asymptotic distribution of Un , we need to bound the variance of Un − Ûn .
To do that, it is sufficient to show that

(nm−d
n )1/2 [

Un − Ûn
]→ 0 in L2.

Using the centered variance formula for a centered, or zero mean U-statistic of degree k, for
Zi , i ≥ 1 i.i.d., we have

Vn = (n −k)!

n!

∑
i∈I(k,n)

G̃(Zi1 , . . . ,Zik )

N
,

with a not necessary symmetric U Kernel G̃, that is square-integrable, which gives us

Var(Vn)

[
(n −k)!

n!

]2 k∑
r=1

(n − r )!

(n −2k + r )!

(r )∑ I (∆1,∆2)

N2
,
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where ∆1 and ∆2 represents positions of some length 1 ≤ r ≤ k, and

I
(
∆̃1,∆̃2

)= ∫
G̃(z1, . . . , zk )G̃

(
y1, . . . , yk

)
F(d z1) · · ·F(d z2k−r ) ,

with the y ’s in position ∆̃2 coincide with the z ’s in position ∆̃1 and are taken from zk+1, . . . , z2k−r

otherwise. Furthermore, Σ(r ) denotes summation over all positions ∆̃1,∆̃2 with cardinality r and
F is the common d.f. of the Z ’s. When applied to Vn = Un −Ûn , upon recalling G̃ from Serfling
[1980] (in the symmetric case), we get

Σ(1)I
(
∆̃1,∆̃2

)= 0.

Furthermore, by (A.6),

N−2I
(
∆̃1,∆̃2

)= O
(
mdr

n

)
for each 2 ≤ r ≤ k.

In conclusion, we have

nm−d
n Var

(
Un − Ûn

)= O

[
nm−d

n

k∑
r=2

[
n

k

]−1 [
k

r

][
n −k

k − r

]
(m−d

n )−r

]

= O

[
k∑

r=2

(
nm−d

n

)1−r
]
= O

[(
nm−d

n

)−1
]
= o(1)

Hence, the proof is complete. □

Proof of Theorem 4.3.4.1

In order to obtain the desired result, we shall first apply the Cramér-Wold device to investigate
the asymptotic behavior of the two-dimensional vector(

Un
(
ϕ1, x̃,mn

)−θn
(
ϕ1

)
,Un

(
ϕ2, x̃,mn

)−θn
(
ϕ2

))
,

where Un
(
ϕ1, x̃,mn

)
and Un

(
ϕ2, x̃,mn

)
are U-statistics with U kernels Gϕ1,x̃,mn and Gϕ2,x̃,mn

respectively, satisfying the smoothness assumptions of Lemma 4.7.2.2.
Let c1 and c2 be any two real numbers. We can clearly see that

c1Un
(
ϕ1, x̃,mn

)+ c2Un
(
ϕ2, x̃,mn

)= Un
(
c1ϕ1 + c2ϕ2, x̃,mn

)≡ Un
(
ϕ, x̃,mn

)
,

which means we can apply Lemma 4.7.2.2. Specification of σ2(ϕ) leads to the following lemma.

Lemma 4.7.2.3 Under assumptions of Lemma 4.7.2.2, we have(
nm−d

n

)1/2 [
Un

(
ϕ1, x̃,mn

)−θn
(
ϕ1

)
,Un

(
ϕ2, x̃,mn

)−θn
(
ϕ2

)]→N (0,Σ)

in distribution, with

Σ=
[
σ2

(
ϕ1,ϕ1

)
σ2

(
ϕ1,ϕ2

)
σ2

(
ϕ1,ϕ2

)
σ2

(
ϕ2,ϕ2

) ]
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and where for two functions g and h,

σ2(g ,h) =
k∑

j=1

k∑
l=1
1{

x j−xl
}r g h

j l (x̃)
∫
δ2

mn
(x j ,t)dt/ fX

(
x j

)
,

and
r g h

j l (x̃) = E[
g (Y1, . . . ,Y, . . . ,Yk )h (Yk+1, . . . ,Y, . . . ,Y2k ) | · · ·] ,

with Y entering in the jth and lth positions.

The limit distribution of r̂ (k)
n (ϕ, x̃,mn) may now be easily deduced from the prior lemma.

We have
r̂ (k)

n (ϕ, x̃,mn) = Un(ϕ, x̃,mn)

Un(1, x̃,mn)
,

Define
g (x1, x2) = x1/x2 for x2 ̸= 0

which means
D =

[
∂g

∂x1
,
∂g

∂x2

]
= [

x−1
2 ,−x1x−2

2

]
Since, by continuity of r (k)(ϕ, x̃), we have

EUn(ϕ, x̃,mn) → r (k)(ϕ, x̃),

and
EUn(1, x̃,mn) = 1

we may deduce from Lemma (4.7.2.3)(
nm−d

n

)1/2 [
r̂ (k)

n (ϕ, x̃,mn)−EUn(ϕ, x̃,mn)
]
→N

(
0,ρ2) ,

where

ρ2 = (1,−r (k)(ϕ, x̃))Σ

[
1

−r (k)(ϕ, x̃)

]
,

where ρ2 is defined in (4.3.10). This concludes the proof of Theorem 4.3.4.1. □

4.8 Appendix

Lemma 4.8.0.1 (Lemma 2.1 Susarla and Walter [1981]) Let f ∈ Lp
(
Rd

)
,1 ≤ p ≤∞1 and let

{δm} be a delta sequence of positive type.

1The vector space Lp (Rd ),1 ≤ p <∞ is the set of all measurable functions such that
∫
Rd | f (x)|p d x <∞. The

norm is defined by

∥ f ∥Lp =
(∫
Rd

| f (x)|p dx
)1/p

.
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(i) Then ∫
δm(x,t) f (t)d t → f (x) a.e. Lebesgue(x).

(ii) If p > 1, and | f (x+ t)− f (x)| ≤ c|t|γ, for a < γ< 1, a > 0, then∣∣∣∣∫ δm(x,t) f (t)dt− f (x)

∣∣∣∣= O
(
m−δ

)
,

where δ= min
{

q−1,γ
}
, with q−1 = 1−p−1.

Lemma 4.8.0.2 (Theorem A, Serfling [1980] (10, p.201)) Let k > 0,n ≥ k,X1, . . . ,Xn i.i.d. ran-
dom vectors with values in a measurable space X and g : X k → [a,b] be a real bounded
function. Set

θ := E[
g (X1:k )

]
and σ2 := Var

[
g (X1:k )

]
.

Then, for any t > 0

P

(
n

k

)−1 ∑
i∈ℑI↑k,n

g
(
Xi (1:k)

)−θ≥ t

≤ exp

(
− [n/k]t 2

2σ2 + (2/3)(b −θ)t

)
,

where Ik,n is the set of bijective functions from {1, . . . ,k} to {1, . . . ,n} and ℑI↑k,n is the subset of
Ik,n made of increasing functions.

Remark 4.8.0.3 Note that g (·) does not need to be symmetric for this bound to hold. Indeed, if
g (·) is not symmetric, we can nonetheless apply this lemma to the symmetrized version g̃ defined
as

g̃ (x1:k ) := (k !)−1
∑

i∈Ik,k

g
(
xi (1:k)

)
,

and we get the result.
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Chapter 5

Uniform consistency for functional
conditional U-statistics using
delta-sequences

Ce chapitre développe le contenu d’un article publié [Mathematics (2023), 11(1), 161.
https://doi.org/10.3390/math11010161], mis en forme pour être inséré dans le présent manuscrit
de thèse.
Title : Uniform consistency for functional conditional U-statistics using delta-sequences.

abstract

U-statistics are a fundamental class of statistics derived from modeling quantities of interest
characterized by responses from multiple subjects. U-statistics make generalizations the empir-
ical mean of a random variable X to the sum of all k-tuples of X observations. This paper ex-
amines a setting for nonparametric statistical curve estimation based on an infinite-dimensional
covariate, including Stute’s estimator as a special case. In this functional context, the class
of "delta sequence estimators" is defined and discussed. The orthogonal series method and
the histogram method are both included in this class. We achieve almost complete uniform
convergence with the rates of these estimators under certain broad conditions. Moreover, in the
same context, we show the uniform almost-complete convergence for the nonparametric inverse
probability of censoring weighted (I.P.C.W.) estimators of the regression function under random
censorship, which is of its own interest. Among the potential applications are discrimination
problems, metric learning and the time series prediction from continuous set of past values.

Keywords : Nonparametric estimation; regression-type models; U-statistics; conditional dis-
tribution; delta sequences; kernel estimation; machine learning problems.
Mathematics Subject Classification : 60F05 ; 60G15 ; 60G10 ; 62G05 ; 62G07; 62H 12.
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5.1 Introduction

The regression problem has been studied by statisticians and probability theorists for many years
to keep up with the various problems and topics brought up by technological and computational
advances, resulting in the creation of many advanced and complex techniques. Among the prob-
lems addressed are modeling, estimation method applications, and tests. In this paper, we are
interested in nonparametric regression estimation. Unlike the parametric framework, where one
must estimate a finite number of parameters based on a specified structural model a priori, non-
parametric estimation does not require any specific structure; instead, it allows the data to speak
for themselves. However, as natural drawbacks, nonparametric procedures are more suscepti-
ble to estimation biases and losses in convergence rates than parametric methods. Since their
introduction, kernel nonparametric function estimation approaches have garnered a significant
amount of attention; for references to research literature and statistical applications in this area,
consult Silverman [1986], Nadaraya [1989], Härdle [1990], Wand and Jones [1995], Eggermont
and LaRiccia [2001], Devroye and Lugosi [2001], Jiang [2022] and the references therein. Pop-
ular as they may be, they represent only one of the numerous methods for developing accurate
function estimators. These include nearest-neighbor, spline, neural network, and wavelet ap-
proaches. In addition, these techniques have been applied to a vast array of data types. This
article will focus on constructing consistent estimators for the conditional U-statistics for func-
tional data based on the delta sequence. The theory of U-statistics and U-processes, which was
initially introduced in the seminal work of Hoeffding [1948], has garnered a significant amount
of interest over the course of the last few decades as a result of the diverse applications to which
it has been applied. U-statistics can be utilized to solve complex statistical problems. Among
the examples are nonparametric regression, density estimation, and goodness-of-fit tests. Fur-
thermore, U-statistics contribute to the study of estimators with various degrees of smoothness
(including function estimators). Stute [1993], for instance, analyzes the product limit estimator
for truncated data applying a.s. uniform bounds for P-canonical U-processes. Arcones and
Wang [2006] introduces two new normality tests based on U-processes. Using the findings of
Giné and Mason [2007a,b], Schick et al. [2011] provided new normality tests that used as test
statistics weighted L1-distances between the standard normal density and local U-statistics that
were based on standardized observations. These tests were used to determine whether or not
the data was normally distributed. Joly and Lugosi [2016] worked on the estimate of the mean
of multivariate functions under the premise of possibly heavy-tailed distributions and presented
the U-based median-of-means. U-processes are also necessary for a wide variety of statisti-
cal applications, such as the examination of qualitative aspects of functions in nonparametric
statistics [Lee et al. [2009], Ghosal et al. [2000]]as well as establishing limiting distributions
of M-estimators [see, for example, Arcones and Giné [1993], Sherman [1994], de la Peña and
Giné [1999]]. In Boniece et al. [2022] the authors consider the problem of detecting distribu-
tional changes in a sequence of high dimensional data by using the weighted cumulative sums
of U-statistics stemming from Lp norms. In Kulathinal and Dewan [2022], the authors proposed
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tests based on U-statistics for testing the equality of marginal density functions. In the paper
Minsker [2022], the following problem is considered : Is it possible, given a sample of ran-
dom variables that are independent, identically distributed, and have a finite variance, to build
an estimator of the unknown mean that performs almost as well as if the data were normally
distributed? The argument that was presented in the previous work is based on a new deviation
inequality for the U-statistics of order that is permitted to rise with sample size. This inequality
is the most important part of the argument. The first asymptotic results for the scenario in which
the underlying random variables are assumed to be independent and distributed in an identical
fashion were presented by Halmos [1946], von Mises [1947] and Hoeffding [1948] (amongst
others). In contrast, the asymptotic results under weak dependency assumption were demon-
strated in Borovkova et al. [2001], in Denker and Keller [1983] or more recently in Leucht
[2012] and in more general setting in Bouzebda and Soukarieh [2023]; Leucht and Neumann
[2013]; Soukarieh and Bouzebda [2022, 2023]. The interested reader may refer to Lee [1990]
and Arcones and Giné [1993] for an excellent collection of references on U-statistics and U-
processes. We also refer to de la Peña and Giné [1999] for a profound understanding of the
theory of U-processes.

In the present work, we consider the conditional U-statistics introduced by Stute [1991], that
can be seen as generalizations of the Nadaraya-Watson (Nadaraja [1964], and Watson [1964])
regression function estimates. To be more precise, let us consider the sequence of independent
and identically distributed random vectors {(Xi ,Yi ), i ∈N∗} with Xi ∈Rd and Yi ∈Rd ′

, d ,d ′ ≥ 1.
Let ϕ : Rd ′k → R denote a measurable function. Within the scope of this work, our primary
focus is on the estimation of the conditional expectation or regression function, as follows:

r (k)(ϕ,t) = E
(
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = t

)
, for t ∈Rdk ,

whenever it exists, i.e., E
(∣∣ϕ(Y1, . . . ,Yk )

∣∣)<∞. Now, we are going to present a kernel function
K :Rd →R with support contained in [−B,B]d , B > 0, fulfilling :

sup
x∈Rd

|K(x)| =: κ<∞ and
∫

K(x)dx = 1. (5.1.1)

Stute [1991] established a new category of estimators for r (k)(ϕ,t), called conditional U-statistics,
that is defined for each t ∈Rdk to be :

̂̂r (k)
n (ϕ,t;hn) =

∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )K

(
t1 −Xi1

hn

)
· · ·K

(
tk −Xik

hn

)
∑

(i1,...,ik )∈I(k,n)
K

(
x1 −Xi1

hn

)
· · ·K

(
xk −Xik

hn

) , (5.1.2)

where :
I(k,n) = {

i = (i1, . . . , ik ) : 0 ≤ i j ≤ n and i j ̸= ir if j ̸= r
}

,

is the set of all k-tuples of different integers between 1 and n and {hn}n≥1 is a sequence of
positive constants that, at a certain rate, converge to the value zero, nhdk

n →∞. In the particular
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case k = 1, the r (k)(ϕ,t) reduces to r (1)(ϕ,t) = E(ϕ(Y)|X = t) and the estimator developed by
Stute is now known as the Nadaraya-Watson estimator r (1)(ϕ,t) given by :

̂̂r (1)
n (ϕ,t,hn) =

n∑
i=1

ϕ(Yi )K

(
Xi − t

hn

)/ n∑
i=1

K

(
Xi − t

hn

)
.

The work of Sen [1994] focused on the estimation of the rate of the uniform convergence in t of̂̂r (k)
n (ϕ,t;hn) to r (k)(ϕ,t). In Prakasa Rao and Sen [1995], the limit distributions of ̂̂r (k)

n (ϕ,t;hn)

are analyzed and compared to those produced by Stute. Under suitable mixing conditions,
Harel and Puri [1996] extend the results of Stute [1991] to weakly dependent data and uses
their findings to evaluate the Bayes risk consistency of the corresponding discriminating rules.

As alternatives to the standard kernel-type estimators, Stute [1996] presented symmetrized
nearest neighbor conditional U-statistics. The work of has seen a major advancement because
to the contributions of Dony and Mason [2008] where a far more strong version of consistency
can be found, to be specific, uniform in t and in bandwidth consistency (i.e., hn , hn ∈ [an ,bn]

where an < bn → 0 at some specific rate) of ̂̂r (k)
n (ϕ,t;hn). Additionally, uniform consistency is

achieved across ϕ ∈F for a suitably restricted class of functions F , extended in Bouzebda and
Nemouchi [2019], Bouzebda and Nemouchi [2020], Bouzebda et al. [2021], Bouzebda et al.
[2022b] and Bouzebda and Nezzal [2022]. The key component of their findings is the local
conditional U-process studied in Giné and Mason [2007a].

The case of functional data is the primary focus of this research. We present an excerpt
from Aneiros et al. [2019]: "Functional data analysis (FDA) is a branch of statistics concerned
with analyzing infinite-dimensional variables such as curves, sets, and images. It has under-
gone phenomenal growth over the past 20 years, stimulated partly by significant data collection
technology advances that have brought about the “Big Data” revolution. Often perceived as a
somewhat arcane area of research at the turn of the century, FDA is now one of the most active
and relevant fields of investigation in data science.” For an introduction to the subject of FDA,
we refer to the books of Ramsay and Silverman [2002a,b], Ferraty and Vieu [2006a], which
contain different case studies in economics, archaeology, criminology, and neurophysiology, as
well as fundamental analysis techniques. It is important to note that the extension of probability
theory to random variables with values in normed vector spaces (such as Banach and Hilbert
spaces), in conjunction with extensions of certain classical asymptotic limit theorems, predates
the recent literature on functional data. This fact can be demonstrated by tracing back the his-
tory of the subject (see for instance, Araujo and Giné [1980]). Gasser et al. [1998] investigated
density and mode estimation for data with values in a normed vector space. At the same time,
he brought attention to the issue of the curse of dimensionality, which affects functional data,
and he suggested potential remedies to the problem. In the context of regression estimation,
Ferraty and Vieu [2006a] considered the nonparametric models. We may refer also to Bosq
[2000], Horváth and Kokoszka [2012] and Ling and Vieu [2018]. Recently, Modern theory has
been applied to the treatment of functional data. For instance, Ferraty et al. [2010] provided the
consistency rates of several functionals of the conditional distribution, such as the regression
function, the conditional cumulative distribution, and the conditional density, amongst others,
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uniformly over a subset of the explanatory variable. Other examples include conditional density,
which is a measure of the density of the conditional distribution, and conditional cumulative dis-
tribution, which is a measure of the conditional cumulative distribution. Kara-Zaitri et al. [2017]
also investigated the consistency rates for some functionals nonparametric models, such as the
regression function, the conditional distribution, the conditional density, and the conditional
hazard function, uniformly in bandwidth (UIB consistency) extended to the ergodic setting by
Bouzebda and Chaouch [2022]. In the paper Attouch et al. [2019], the topic of local linear
estimation of the regression function in the case when the regressor is functional was investi-
gated, and the results indicated robust convergence (with rates) consistently across bandwidth
parameters. In the work of Ling et al. [2019], the k-nearest neighbors (kNN) estimate of the
nonparametric regression model for heavy mixing of functional time series data was explored.
Under some mild conditions, a uniform and practically perfect convergence rate of the k-nearest
neighbors estimator was established. In the work Bouzebda et al. [2016], the authors offer a
variety of solutions for limiting laws for the conditional mode in the functional setting for er-
godic data; for some current references, see the following: Mohammedi et al. [2021], Bouzebda
et al. [2022a], Bouzebda and Nezzal [2022], Bouzebda and Nemouchi [2022], Almanjahie et al.
[2022a,b]; Litimein et al. [2023].

We will consider a general method for functional estimation by using the delta sequences.
Delta sequences (also called “approximate identities” or “summability kernels”) arise in a wide
variety of subfields within mathematics. Still, the applications that pertain to the theory of
generalized functions are likely the most significant ones. The regularization of generalized
functions is the major application for delta sequences. The proposed methods generalize sev-
eral nonparametric estimation methods, including the kernel estimators given in (5.1.2) of Stute
[1991]. To be more precise, the broad class of delta-sequence estimators includes the histogram
estimators, Chentsov’s projection estimators Chentsov [1962], and nearest-neighbor estimators,
among others. Certain types of these sequences were already studied by Watson and Leadbetter
[1964], who called them “δ-function sequences”. They established, among other things, the
asymptotic unbiasedness and the asymptotic variance of estimators based on them but did not
consider convergence rates. Winter [1975] obtained the rate of strong consistency and the rate
of asymptotic bias for estimators associated with delta sequences arising from the Fejér kernel
of the Fourier series. The delta sequence method of density estimation of Susarla and Walter
[1981] is extended to certain non-i.i.d. cases in Prakasa Rao [1978], where it is assumed that
the observations are taken from a stationary Markov process. Ahmad [1981] considered the
delta-sequence estimator for the marginal distribution of a strictly stationary stochastic process
satisfying some mixing conditions. In Basu and Sahoo [1985], the author investigated the lo-
cal and global convergence rates of delta-sequence type estimators of the density function, its
derivative, and its mode. Nolan and Marron [1989] proved the uniform strong consistency of
delta-sequence estimators. Isogai [1990] partially generalized the usual nonparametric estima-
tors of a regression function by using an estimator based on quasi-positive delta sequences. Mar-
ron and Härdle [1986] considered a general nonparametric statistical curve estimation setting
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called the class of “fractional delta sequence estimators”. Cristóbal Cristóbal et al. [1987] used
the delta method to investigate the correlation model. Prakasa Rao [2010a] looked at the prob-
lem of estimating the density function of functional data with values in an infinite-dimensional
separable Banach space using the method of delta sequences; for further information, we can
also look into Ouassou and Rachdi [2012]. The copula estimation using the delta sequences
methods is considered in Bouzebda [2012]. The problem of the nonparametric minimax es-
timation of a multivariate density at a given point by the delta sequences was investigated in
Belitser [2000]. Walter [1983] used the delta sequence to propose an essential application to
the classification problem of the value of the discrete random variable.

The goal of the current study is to present and investigate the delta sequences estimators
for the conditional U-statistics for functional data, more specifically for random elements tak-
ing values in an infinite-dimensional separable Banach space, such as the space of continu-
ous functions on the interval [0, 1] endowed with the supremum norm. This will allow the
delta sequences estimators for the conditional U-statistics for functional data to be utilized for
functional data analysis. Examples of functional data that can appear in these spaces include
stochastic processes with continuous sample paths on a finite interval associated with the supre-
mum norm and stochastic processes whose sample paths are square-integrable on the real line.
Both of these types of stochastic processes can occur on the real line. The dimensionality prob-
lem must be addressed in nonparametric functional data analysis in two ways: first, by working
with data that have an infinite number of dimensions, and second, by making universal assump-
tions about the infinite number of dimensions for the probability distribution of variables in
nonparametric modeling. This structure’s twofold infinity of dimensions is the basis for all sub-
sequent developments in the discipline. Our previous work, delivered in the multivariate setting
and cited as Bouzebda and Nezzal [2023], is extended here in the present study. Although the
concept behind our estimation approach is similar to that presented in Bouzebda and Nezzal
[2023] (containing the Stute estimator), we make allowances for the infinite dimensionality of
the covariate. have determined the asymptotic characteristics of the multivariate delta sequence
estimators, Bouzebda and Nezzal [2023]. Their findings do not directly apply to the current
situation since we are working with a covariate with an unlimited number of dimensions. As
a result, we must utilize other reasoning in our proofs to deal with the broader framework.
These findings are beneficial in their own right, but they are also necessary for the inquiry be-
ing conducted in this work. To "simply" combine ideas from other publications would not be
sufficient to solve the issue, as will be demonstrated in the following paragraphs. To be able
to deal with delta sequence U-statistic estimators for functional data, you will need to resort to
intricate mathematical derivations. Compared to the previous studies written on delta sequence
estimators, the current paper considers the setting of an unbounded function ϕ, which adds a
significant amount of complexity to the proof. The general assumptions that are required for the
derivations of the asymptotic results for the conditional U-statistics delta sequence estimators
are presented in this study.

The format of this article is structured as follows. Section 4.2 is devoted to introducing the
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delta sequences and the definitions we need in our work, where we introduce the new family
of estimators. Section 5.3 gives the paper’s main results concerning the uniform convergences.
In Section 5.4, we present a significant application for the censored data context of its interest.
In Section 5.5, we provide some applications, including the Kendall rank correlation coefficient
in §5.5.1, the discrimination in §5.5.2, the the metric learning in §5.5.3 and the time series
prediction from a continuous set of past values in §5.5.4. Some final observations and possible
developments in the future are moved to Section 6.3. To maintain a smooth flow throughout the
presentation, all proofs have been compiled in Section 5.6. A selection of significant technical
findings is presented in Appendix 5.6.

5.2 Preliminaries and estimation procedure

Let (Ω,F ,P) denotes a probability space, (X ,d(·, ·)) denotes an infinite-dimensional separable
Banach space equipped with a norm ∥.∥ such that d(u, v) = ∥u − v∥ and B be the σ-algebra
of Borel subsets of X . Let us consider a sequence {Xi ,Yi : i ≥ 1} of independent identically
distributed random copies of the random element (X,Y), where X is a random element defined
on (Ω,F ,P) taking values in (X ,B) and Y takes values in some abstract space (Y ,B′). Fu
[2012] introduced the functional conditional U-statistics when x ∈X m some semi-metric space
as a generalization of Stute’s estimator by :

r̂ (m)
n (ϕ,x;hK) =

∑
(i1,...,im )∈I(m,n)

ϕ(Yi1 , . . . ,Yim )K

(
d(x1,Xi1 )

hK

)
· · ·K

(
d(xm ,Xim )

hK

)
∑

(i1,...,im )∈I(m,n)
K

(
d(x1,Xi1 )

hK

)
· · ·K

(
d(xm ,Xim )

hK

) . (5.2.1)

As we mentioned, the delta-sequences procedures can be considered a more general class, in-
cluding kernel estimation techniques. Therefore we can naturally obtain a more general class
of functional conditional U-statistics by replacing the kernel K(·) in equation (5.2.1) with posi-
tive delta sequences δm(·, ·) (see Definition 5.2.0.2), which allows us to introduce the following
conditional U-statistic for each x = (x1, . . . , xk ) ∈X k and ϕ : Y k →R a measurable function, by

r̂ (k)
n (ϕ,x;mn) =



∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) ,

if
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) ̸= 0,

n!

(n −k)!k !

∑
(i1,...,ik )∈I(k,n)

ϕ(Yi1 , . . . ,Yik )

if
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)= 0,

(5.2.2)
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which we consider estimating the regression function

r (k)(ϕ,x) = E(
ϕ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

)
, for x ∈X k , (5.2.3)

whenever it exists, i.e, E
(∣∣ϕ(Y1, . . . ,Yk )

∣∣)<∞.

Remark 5.2.0.1 It is worth noting that X may admit a probability density function f (·) in re-
lation to a σ-finite measure µ on (X ,B) in such a way that (for instance, refer Dabo-Niang
[2004], Prakasa Rao [2010a] and Ouassou and Rachdi [2012]):

P(X ∈ A) =
∫

A
f (x)µ(d x), for every A ∈B such that 0 <µ(A) <∞. (5.2.4)

The concept of this remark is elaborated upon in Prakasa Rao [2010b] and its references. We
denote by (Ω,F ,P) a probability space and a nondecreasing family of sub- σ-algebras of F is
denoted by {Ft }t≥0. Let {W(t )}t≥0 denote a standard Wiener process defined on (Ω,F ,P) in
such a way that Wt is Ft -measurable. We highlight that the probability measure µW on the
space C 0(0,T) is connected with a Borel σ-algebra generated by the supremum norm topology
is induced by the standard Wiener process. Let {X(t )}0≤t≤T be a diffusion process defined the
stochastic differential equation:

dX(t ) = a(t ,X(t ))d t +b(t ,X(t ))dW(t ),

where X(0) = x0 for 0 ≤ t ≤ T. By imposing some assumptions on the functions a(·, ·) and
b(·, ·), we can establish that the probability measure µX on the space C 0(0,T) induced by the
process X is absolutely continuous with respect to the probability measure µW . In addition,
applying Girsanov’s Theorem permits the computation of the Radon-Nikodym derivative of µX

with respect to µW . The probability density of X on the space C 0(0,T) is the µW derivative,
for instance, see Prakasa Rao [1999b]. From this point of view, the main motivation leading
to the analysis of functional data is the inference of stochastic processes; the reader is referred
to Prakasa Rao [1999a,b]. For the purposes of drawing conclusions, we make the assumption
that the entirety of the process can be observed. However, if the process can only be seen at
discrete times, either on a tiny grid or when the data are sparse, then other approaches, such
as parametric inference for discrete data, need to be devised. For instance, for the diffusion
processes, these new methods are necessary (cf. Rachdi and Monsan [1999], Prakasa Rao
[1983, 1999b]). Observe that if A = B(x,κ) for (x,κ) ∈X ×R∗+, then (5.2.4) allows for the small
ball probability to be considered.
Assume also that SX is a pseudo-compact subset of X satisfying the following property:
for any ϵ> 0, there exists tℓ ∈X ,1 ≤ ℓ≤ dn such that

SX ⊂Sn :=
dn⋃
ℓ=1

B(tℓ,ϵ), (5.2.5)

and there exists κ> 0 such that dnϵ
κ is a constant C > 0. Here, the open ball with center tℓ and

radius ϵ is denoted by B(tℓ,ϵ).
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It is worth mentioning that the hypothesis (5.2.5) is essential for assuming a geometrical link
between the number dn of balls and their radius ϵ. In addition, this condition is fulfilled in usual
nonparametric problems when X = Rp is endowed with the Euclidean metric on Rp (because
κ = p suffices). However, this topological characteristic does not hold for any abstract semi-
metric space, as Ferraty and Vieu [2008] explains. Before we can use the delta-sequences
approach to estimate the value of the regression operator r (k)(·) in the model (5.2.3), we must
first have the following definition.

Definition 5.2.0.2 A sequence of non-negative functions
{
δmn (x, y) : mn ≥ 1

}= {
δm(x, y),m ≥ 1

}
defined on X k ×X k is called a delta-sequence with respect to the measure µ if the following
properties are satisfied:

(C.1) For each γ in such a way that 0 < γ≤∞ :

lim
m→+∞ sup

x∈Sk
X

∣∣∣∣∫
B(x,γ)

δm(x,y)µ(dy)−1

∣∣∣∣= 0, (5.2.6)

where B(x,γ) :=
k∏

j=1
B(x j ,γ), for all x = (x1, . . . , xk ).

(C.2) There exists a positive constant C1, in such a way that

sup
(x,y)∈Sk

X
×X k

δm(x,y) ≤ C1sm <∞, (5.2.7)

where 0 < sm →∞ as m →∞ and lim
m→∞

m

sm log(m)
=∞.

(C.3) There exist C2 > 0,β1 > 0 and β2 > 0, in such a way that∣∣δm(x1,y)−δm(x2,y)
∣∣≤ Csβ2

m d(x1,x2)β1 for all x1,x2,y ∈X k , (5.2.8)

where
d(x,y) := 1

k
d

(
x1, y1

)+·· ·+ 1

k
d

(
xk , yk

)
,

for all x = (x1, . . . , xk ) and y = (y1, . . . , yk ) ∈X k .

(C.4) For any γ> 0 :
lim

m→∞ sup
x∈Sk

X

y∈B̄(x,γ)

δm(x,y)d(x,y) = 0, (5.2.9)

where the complement set of the open ball B(x,γ) is denoted by B̄(x,γ).

Notice that the conditions (C.1)-(C.4) of Definition 5.2.0.2 are modelled after a similar set of
conditions for kernel-type estimators. The condition (C.2) corresponds to the bound of δm

over Sk
X

×X k whereas the condition (C.3) is pertains to the uniform Lipschitz property of
δm(x,y). Contrarily, the condition (C.4) is and it is not an assumption on the bound of d(x,y)

over Sk
X

×Sk
X

but an assumption on the limiting behaviour of δm(x,y)d(x,y) as m →+∞.
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Proposition 5.2.0.3 Let
{
δm,1(x1, y1)

}
, . . . ,

{
δm,k (xk , yk )

}
each be non-negative delta-sequence

with respect to the measure µ, then

δm(x,y) :=
k∏

j=1
δm, j (x j , y j ), (5.2.10)

is also a non-negative delta sequence.

This proposition is similar to Proposition 2.2 Susarla and Walter [1981] when X = Rd , which
means that the product of non-negative delta-sequences is also a positive delta sequence. The
proposition provides a flexible way to construct delta sequences in high dimensions in a similar
way to kernel type estimation. Unless otherwise specified we will set

δm(x,y) :=
k∏

j=1
δmn (x j , y j )

for all x and y ∈X k . This notation will unburden our results in the forthcoming theorems.

5.2.1 Examples of delta sequence

In this section, following the notation of Ouassou and Rachdi [2012], we provide guidelines for
constructing and recovering some well-known estimators in literature.

Example 5.2.1.1 Kernel estimator
Let X = C 0(0,1) denote the space of the real-valued continuous functions that vanishes at 0.
Suppose that X is equipped with the uniform topology that is induced by the supremum norm,
i.e., if x ∈C 0(0,1) then x is continuous on (0,1) with x(0) = 0 and that

∥x∥ = sup
t∈(0,1)

|x(t )|.

The Wiener measure on the space X induced by the standard Wiener process is denoted by µ.
Let us define

δm(x, y) = 1

µ(B(x,1/m))
1B(x,1/m)(y),

where as usual 1A denotes the indicator function of the set A. Set for all x = (x1, . . . , xk ) and
y = x = (y1, . . . , yk ) ∈X k

δm(x,y) =
k∏

j=1
δm(x j , y j ),

then, by Proposition 5.2.0.3, δm(x,y) is a non-negative delta sequence, and the conditional
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U-statistic is defined in this case by

r̂ (k)
n (ϕ,x;mn) =

∑
i∈I(k,n)

ϕ(Yi1 , . . . ,Yik )
k∏

j=1
1B(x j ,1/m)(Xi j )

∑
i∈I(k,n)

k∏
j=1
1B(x j ,1/m)(Xi j )

=

∑
i∈I(k,n)

ϕ(Yi1 , . . . ,Yik )
k∏

j=1
1B(x j ,1)

(d(x j ,Xi j )

1/m

)
∑

i∈I(k,n)

k∏
j=1
1B(x j ,1)

(d(x j ,Xi j )

1/m

) ,

which can be considered as the naive kernel estimator of r (k)(·). We can see clearly that δm(·, ·)
in this example satisfies the condition (C.1). In fact

lim
m→+∞ sup

x∈Sk
X

∣∣∣∣∣
∫
B(x,γ)

k∏
j=1

1

µ(B(x j ,1/m))
1B(x j ,1)

(
d(x j , y j )

1/m

)
µ(d y1) · · ·µ(d yk )−1

∣∣∣∣∣
= lim

m→+∞ sup
x∈Sk

X

∣∣∣∣∣ k∏
j=1

1

µ(B(x j ,1/m))
µ

(
B(x j ,γ)∩B(x j ,1/m)

)−1

∣∣∣∣∣
= lim

m→+∞ sup
x∈Sk

X

∣∣∣∣∣ k∏
j=1

1

µ(B(x j ,1/m))
µ

(
B

(
x j ,min(γ,1/m)

))−1

∣∣∣∣∣ ,

this quantity tends to zero when m is sufficiently large.

For a bandwidth hx
n , that is a sequence of positive numbers, define

δm(x, y) = 1

hx
n

Kn(d(x, y)),

where Kn(·) is a sequence of functions fullfilling (C.1)-(C.4).

Example 5.2.1.2 Histogram estimator
Let Pn = {

An, j , j ∈ Jn
}

be a partition of the set F (cf. Maouloud [2007]), such that

|Jn | = mn , max
j∈Jn

µ
(
An, j

)→ 0 and n min
j∈Jn

µ
(
An, j

)→∞ as n →∞.

Denote

δm(x, y) = ∑
j∈Jn

1

µ
(
An, j

)1An, j (x)1An, j (y).

We can now construct the histogram and regressogram estimators in the conditional U-statistics

framework by taking δm(x,y) =
k∏

i=1
δm(xi , yi ).
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Example 5.2.1.3 Orthogonal series estimator
Let

{
ep

}
p≥1 be a complete orthonormal system of the space X , comprising eigenfunctions of a

compact operator in the square integral functions space (L2(X ) , say). Define

δm(x, y) =
m∑

p=1
ep (x)ep (y) for x, y ∈ F.

As stated in Walter [1965], δm(·, ·) in this case are delta sequences. Now using Proposition
5.2.0.3, we can see that

δm(x,y) =
k∏

i=1
δm(xi , yi )

are also a positive delta sequences.

For more examples of delta sequences we refer to Walter and Blum [1979] and Susarla and
Walter [1981].

5.2.2 Conditions and comments

In order to study the consistency of the proposed estimator, let us first state the following con-
ditions:

(C.5) We assume that dn = nζ for ζ> 0 and

ϵβ1 sβ2
m <

√
sm log(m)

m
.

(C.6) Suppose that m →∞ and that

∃0 < τ< 1 in such a way that nτ ≤ m ≤ n, for large n.

(C.7) We assume the following usual boundedness condition:

sup
y∈Y k

∣∣ϕ(y)
∣∣= M <∞.

(C.7’) The function ϕ is unbounded and fullfils for some q > 2 :

µq := sup
t∈Sk

X

E
(
ϕq (Y)|X = t

)<∞.

(C.8) For every γ≥ 0 :

sup
x∈Sk

X

∣∣∣∣∫
B̄(x,γ)

δm(x,y)µ(dy)−1

∣∣∣∣= O(Dm) ,

where Dm = {
d(x,y),x ∈ Sk

X
and y ∈X k , such that δm(x,y) > 0

}= o(1) as m → +∞.

(C.9) The regression operator r (k)(ϕ, ·) is Lipschitzian in the following sense: ∃C3 > 0 in such
a way that, for any x1 ∈ Sk

X
and x2 ∈X k , we have

|r (k)(ϕ,x1)− r (k)(ϕ,x2)| ≤ C3d(x1,x2).
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5.2.3 Comments on the assumptions

Similar to conditions (C.1)-(C.4), assumption (C.5) is also modelled after some kernel-type
conditions, and it allows us to select β1 and β2 in condition (C.3). Due to the infinite nature
of the problem, additional constraints are required to achieve uniform consistency across the
pseudo-compact set. Ferraty and Vieu [2008], discussed the assumption (5.2.5). This condition
holds trivially for any finite-dimensional Euclidean space and remains valid for projection-
based metric spaces with infinite dimensions. Condition (C.7) concerning the boundedness of
the function ϕ(·) is essential to establish exponential bounds, this, coupled with the technical
condition (C.6), allows us to obtain the almost complete convergence later in the proofs. Note
that we can replace condition (C.7) with a more general one, that is, condition (C.7’), to obtain
the results when the function ϕ(·) is unbounded. Finally, to establish precise rates of almost
complete convergence in the functional context, additional conditions related to the topological
nature of the problem are required. Mainly the assumption (C.8) and (C.9), where the latter
condition concerning the Lipschitz property of the operator r (k)(·) is standard when studying
with uniform consistency.

Remark 5.2.3.1 Note that the condition (C.7) can be replaced by more broad hypotheses at
specific times of Y, as shown in Deheuvels [2011]. That is

(C.7)′ We denote by {M (x) : x ≥ 0} a nonnegative continuous function, increasing on [0,∞), and
such that, for some s > 2, ultimately as x ↑∞,

(i ) x−sM (x) ↓; (i i ) x−1M (x) ↑ . (5.2.11)

For each t ≥M (0), we define M i nv (t ) ≥ 0 by M (M i nv (t )) = t . We assume further that:

E
(
M

(∣∣ϕ(Y)
∣∣))<∞.

The following choices of M (·) are of particular interest:

(i) M (x) = xp for some p > 2;

(ii) M (x) = exp(sx) for some s > 0.

The boundedness assumption on ϕ(·) can be substituted by a finite moment assumption (C.7)′,
but doing so will add a significant amount of additional complexity to the proofs; for further
information, check the most recent reference Bouzebda and Taachouche [2022], Chokri and
Bouzebda [2022], Bouzebda and Nezzal [2022], Bouzebda and Nemouchi [2020, 2022] for
more details.

5.3 Some asymptotic results

In this subsection, we will discuss the uniform consistency of the functional conditional U-
statistic, which is defined by (5.2.2). First, let us provide basic notation
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X := (X1, . . . ,Xk ) ∈X k , Y := (Y1, . . . ,Yk ) ∈Y k ,

Xi := (Xi1 , . . . ,Xik ), Yi := (Yi1 , . . . ,Yik ),

Gϕ,x(X,Y) := ϕ(Y)δm(x,X) for x ∈ Sk
X ,

un(ϕ,x,mn) = u(k)
n (Gϕ,x) := (n −k)!

n!

∑
i∈I(k,n)

Gϕ,x(Xi ,Yi ).

It’s clear that, for all x ∈X k :

r̂ (k)
n (ϕ,x;mn) = un(ϕ,x,mn)

un(1,x,mn)
,

and un(ϕ,x,mn) is a classical U-statistic with the U- kernel Gϕ,x,mn (x,y). Therefore, to establish
the uniform consistency of r̂ (k)

n (ϕ,x;mn) to r (k)(ϕ,x) we need to study the uniform consistency
of un(ϕ,x,mn) to E

(
un(ϕ,x,mn)

)
. In this case, we will be considering a suitable centering

parameter different from the expectation E
(
r̂ (k)

n (ϕ,x;mn)
)
, hence we define :

Ê
(
r̂ (k)

n (ϕ,x;mn)
)
= E

(
un(ϕ,x,mn)

)
E (un(1,x,mn))

. (5.3.1)

The notation and facts that are presented below should be included in the continuation of this
discussion. For a kernel L of k ≥ 1 variables we define

U(k)
n (L) = (n −k)!

n!

∑
i∈I(k,n)

L
(
Xi1 , . . . ,Xik

)
Suppose that L is a function of ℓ ≥ 1 variables, symmetric in its entries. Then, the Hoeffding
projections (see Hoeffding [1948] and de la Peña and Giné [1999]) with respect to P, for 1 ≤
k ≤ ℓ, are defined as

πk,ℓL(x1, . . . , xk ) = (
∆x1 −P

)×·· ·× (
∆xk −P

)×Pℓ−k (L),

and

π0,ℓL = EL(X1, . . . ,Xℓ) ,

for some measures Qi on S we denote

Q1 · · ·Qk L =
∫

Sk
L(x1, . . . , xk )dQ1(x1) · · ·dQk (xk ),

and ∆x denote Dirac measure at point x ∈ X . Then, the Hoeffding decomposition give the
following

U(ℓ)
n (L)−EL =

ℓ∑
k=1

(
ℓ

k

)
U(k)

n

(
πk,ℓL

)
,
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which is easy to check. For L ∈ L2
(
Pℓ

)
this denotes an orthogonal decomposition and E(πk L |

X2, . . . ,Xk ) = 0 for k ≥ 1; which is, the kernels πk,ℓL are canonical for P. Also, πk,ℓ,k ≥ 1, are
nested projections, that is, πk,ℓ ◦πk ′,ℓ =πk,ℓ if k ≤ k ′, and

E
(
πk,ℓL

)2 ≤ E(L−EL)2 ≤ EL2.

For example,
π1,ℓh(x) = E(h(X1, . . . ,Xℓ) | X1 = x)−Eh(X1, . . . ,Xℓ).

Remark 5.3.0.1 The function Gϕ,x,mn is not necessarily symmetric; when we need to sym-
metrize them, we have :

Gϕ,x(x,y) := 1

k !

∑
σ∈Ik

k

Gϕ,x,mn (xσ,yσ) = 1

k !

∑
σ∈Ik

k

ϕ(yσ)δmn (xσ,yσ),

where xσ = (xσ1 , . . . , xσk ) and yσ = (yσ1 , . . . , yσk ). After symmetrization the expectation

E
(
Gϕ,x,mn (x,y)

)
= E(

Gϕ,x,mn (x,y)
)

,

and the U-statistic
u(k)

n (Gϕ,x,mn ) = u(k)
n (Gϕ,x,mn ) := un(ϕ,x,mn)

do not change.

5.3.1 Uniform consistency of functional conditional U-statistics

Let (zn) for n ∈ N, be a sequence of real r.v.’s. We say that (zn) converges almost-completely
(a.co.) toward zero if, and only if, for all

ϵ> 0,
∞∑

n=1
P (|zn | > ϵ) <∞.

Moreover, we say that the rate of the almost-complete convergence of (zn) toward zero is of
order un (with un → 0 ) and we write zn = Oa.co. (un) if, and only if, there exists ϵ> 0 such that

∞∑
n=1
P (|zn | > ϵun) <∞.

This kind of convergence implies both the almost-sure convergence and the convergence in
probability. The following result concerns the uniform deviation of the estimate un(ϕ,x,mn)

with respect to E(un(ϕ,x,mn)) when the function ϕ is bounded.

Theorem 5.3.1.1 Under the conditions (C.1)-(C.4), and if conditions (C.5), (C.7) are satisfied,
then we have:

sup
x∈Sk

X

∣∣un(ϕ,x,mn)−E(
un(ϕ,x,mn)

)∣∣= Oa.co

√
sm log(m)

m

 .
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We present a more general result concerning the case when the function ϕ is unbounded in the
sense of the condition (C.7’). That being said, the preceding theorem constitutes an important
step in the truncation method used in the proof of the following theorem.

Theorem 5.3.1.2 Under the conditions (C.1)-(C.4), and if conditions (C.5), (C.6) and (C.7’)
are satisfied, then we have:

sup
x∈Sk

X

∣∣un(ϕ,x,mn)−E(
un(ϕ,x,mn)

)∣∣= Oa.co

√
sm log(m)

m

 .

The following result handles the uniform deviation of the estimator r̂ (k)
n (ϕ,x;mn) with re-

spect to Ê
[

r̂ (k)
n (ϕ,x;mn)

]
in the case of the function ϕ is bounded or unbounded.

Theorem 5.3.1.3 Under the conditions (C.1)-(C.4), and if conditions (C.5), (C.6) and condition
(C.7) (or (C.7’)) are satisfied, then we have:

sup
x∈Sk

X

∣∣∣r̂ (k)
n (ϕ,x;mn)− Ê

[
r̂ (k)

n (ϕ,x;mn)
]∣∣∣= Oa.co

√
sm log(m)

m

 ,

where (sm)m∈N∗ is a sequence of positive real numbers, in such a way that m
(
sm log(m)

)−1

→∞ as n →∞.

Theorem 5.3.1.4 Under the conditions (C.1)-(C.4) and (C.9) , we have:

sup
x∈Sk

X

∣∣∣Ê[
r̂ (k)

n (ϕ,x;mn)
]
− r (k)(ϕ,x)

∣∣∣→ 0.

The following corollary is more or less straightforward, given Theorem 5.3.1.3 and Theorem
5.3.1.4.

Corollary 5.3.1.5 Under the conditions of Theorem 5.3.1.3 and Theorem 5.3.1.4 it follows that,
as m tends to infinity:

sup
x∈Sk

X

∣∣∣r̂ (k)
n (ϕ,x;mn)− r (k)(ϕ,x)

∣∣∣→ 0, a.co.,

where (sm)m∈N∗ is a sequence of positive real numbers, in such a way that m
(
sm log(m)

)−1

→∞ as n →∞.

5.3.2 Uniform strong consistency with rates

This section is devoted to the uniform version with the rate of Theorem 5.3.1.5’s result. More
specifically, our objective is to obtain the uniform almost-complete convergence of r̂ (k)

n (·) on
some subset Sk

X
of X k satisfying condition (5.2.5). In the following theorem, we establish the

bias order.
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Theorem 5.3.2.1 Under the conditions (C.1)-(C.4), and if conditions (C.8) and (C.9) are sat-
isfied, then we have:

sup
x∈Sk

X

∣∣∣Ê(
r̂ (k)

n (ϕ,x;mn)
)
− r (k) (ϕ,x

)∣∣∣= O(Dm) . (5.3.2)

The almost-complete convergence is then given by the corollary that follows, which uses a rate
of r̂ (k)

n (·).

Corollary 5.3.2.2 Under the conditions of Theorems 5.3.1.3 and 5.3.2.1 it follows that :

sup
x∈Sk

X

∣∣∣r̂ (k)
n (ϕ,x;mn)− r (k)(ϕ,x)

∣∣∣= O(Dm)+Oa.co

√
sm log(m)

m

 . (5.3.3)

5.4 Conditional U-statistics for censored data

Consider a triple (Y,C,X) of random variables defined in R×R×X . Here Y is the variable of
interest, C is a censoring variable, and X is a concomitant variable. Throughout, we will use
Maillot and Viallon [2009] notation and we work with a sample {(Yi ,Ci ,Xi )1≤i≤n} of indepen-
dent and identically distributed replication of (Y,C,X), n ≥ 1. Actually, in the right censorship
model, the pairs (Yi ,Ci ), 1 ≤ i ≤ n, are not directly observed, and the corresponding information
is given by Zi := min{Yi ,Ci } and ∆i :=1{Yi ≤ Ci }, 1 ≤ i ≤ n. Accordingly, the observed sample
is

Dn = {(Zi ,∆i ,Xi ), i = 1, . . . ,n}.

This type of censoring is commonly applied to the survival data collected during clinical trials
as well as the failure time data collected during reliability studies, for example. To be more spe-
cific, the majority of statistical experiments end up producing incomplete samples, even when
the conditions are carefully monitored. For instance, clinical data for surviving the majority
of diseases are typically censored due to the presence of other competing risks to life that ulti-
mately result in death. In the sequel, we impose the following assumptions upon the distribution
of (X,Y). Denote by I a given compact set in X with nonempty interior and set, for any α> 0,

Iα = {x : inf
u∈I

∥x−u∥ ≤ α}.

For −∞< t <∞, set

FY(t ) =P(Y ≤ t ), G(t ) =P(C ≤ t ), and H(t ) =P(Z ≤ t ),

the right-continuous distribution functions of Y, C and Z respectively. For any right-continuous
distribution function L defined on R, denote by

TL = sup{t ∈R : L(t ) < 1}
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the upper point of the corresponding distribution. Now consider a pointwise measurable class
F of real measurable functions defined on R, and assume that F is of VC-type. We recall the
regression function of ψ(Y) evaluated at X = x, for ψ ∈F and x ∈Iα, given by

r (1)(ψ,x) = E(ψ(Y) | X = x),

when Y is right-censored. To estimate r (1)(ψ, ·), we make use of the Inverse Probability of
Censoring Weighted (I.P.C.W.) estimators that have recently gained popularity in the censored
data literature (see Kohler et al. [2002], Carbonez et al. [1995]). The key idea of I.P.C.W.
estimators is as follows. Introduce the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y,c) = 1{y ≤ c}ψ(y ∧ c)

1−G(y ∧ c)
. (5.4.1)

Assuming the function G(·) to be known, first note that

Φψ(Yi ,Ci ) =∆iψ(Zi )/(1−G(Zi ))

is observed for every 1 ≤ i ≤ n. In addition, under Assumption (I) below

(I) C and (Y,X) are independent.

We have

r (1)(Φψ,x) := E(Φψ(Y,C) | X = x)

= E

{
1{Y ≤ C}ψ(Z)

1−G(Z)
| X = x

}
= E

{
ψ(Y)

1−G(Y)
E(1{Y ≤ C} | X,Y) | X = x

}
= r (1)(ψ,x). (5.4.2)

Therefore, every estimate of r (1)(Φψ, ·) that can be constructed using completely observed data
is also an estimate of r (1)(ψ, ·). This characteristic permits the natural application of the ma-
jority of statistical procedures known to produce estimates of the regression function in the
uncensored case to the censored case. Estimates of the kernel type, for instance, are exception-
ally straightforward to build. Set, for x ∈I , h ≥ 0, 1 ≤ i ≤ n,

ω(1)
n,K,h,i (x) := δmn (x,Xi )

/ n∑
j=1

δmn

(
x,X j

)
. (5.4.3)

Making use of the equations (5.4.1), (5.4.2), and (5.4.3), whenever G(·) is known, we define the
kernel estimator of r (1)(ψ, ·) by

r̆ (1)
n (ψ,x;hn) =

n∑
i=1

ω(1)
n,K,h,i (x)

∆iψ(Zi )

1−G(Zi )
. (5.4.4)
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Since the function G(·) is unknown, it is to be estimated. Let G∗
n(·) denote the Kaplan-Meier

estimator of the function G(·) Kaplan and Meier [1958]. To be precise, adopting the conventions

∏
;

= 1

and 00 = 1 and setting

Nn(u) =
n∑

i=1
1{Zi ≥ u},

we have

G∗
n(u) = 1− ∏

i :Zi≤u

{
Nn(Zi )−1

Nn(Zi )

}(1−∆i )

, for u ∈R.

Given this notation, we will examine the next estimate of r (1)(ψ, ·)

r̆ (1)∗
n (ψ,x;hn) =

n∑
i=1

ω(1)
n,K,h,i (x)

∆iψ(Zi )

1−G∗
n(Zi )

, (5.4.5)

the reader is invited to see the papers of Kohler et al. [2002] and Maillot and Viallon [2009].
The convention 0/0 = 0 is used, this quantity is well defined, since G∗

n(Zi ) = 1 if and only if
Zi = Z(n) and ∆(n) = 0, where Z(k) is the kth ordered statistic related with the sample (Z1, . . . ,Zn)

for k = 1, . . . ,n and ∆(k) is the ∆ j corresponding to Zk = Z j . When the variable of interest is
right-censored, it is often impossible to estimate the function of the (conditional) law on the
whole support (see Brunel and Comte [2006]). Datta et al. [2010] introduces a right-censored
version of an unconditional U-statistic with a kernel of degree m ≥ 1 based on the notion of
a mean-preserving reweighting technique. Stute and Wang [1993] have demonstrated the al-
most sure convergence of multi-sample U-statistics under random censorship and presented an
application by analyzing the consistency of a novel class of tests meant to evaluate distribu-
tion equality. Chen and Datta [2019] presented improvements to the traditional U-statistics
to counteract potential biases caused by right-censoring of the outcomes and the existence of
confounding factors. Yuan et al. [2017] suggested an alternative method for estimating the U-
statistic by employing a substitution estimator of the conditional kernel given observed data.
We also refer to Bouzebda and El-hadjali [2020], Bouzebda et al. [2022b] and Bouzebda and
Nezzal [2022]. To our best knowledge, estimating the conditional U-statistics in the censored
data setting is a current open problem, and it gives the main motivation for the study of this
section.

The function described by (5.4.1) has a natural expansion given by

Φψ(y1, . . . , yk ,c1, . . . ,ck ) =
∏k

i=1{1{yi ≤ ci }ψ(y1 ∧ c1, . . . , yk ∧ cm)∏k
i=1{1−G(yi ∧ ci )}

.
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We have an analogous relationship to (5.4.2) based on the formula:

E(Φψ(Y1, . . . ,Yk ,C1, . . . ,Ck ) | (X1, . . . ,Xk ) = x)

= E

(∏k
i=1{1{Yi ≤ Ci }ψ(Y1 ∧C1, . . . ,Yk ∧Ck )∏k

i=1{1−G(Yi ∧Ci )}
| (X1, . . . ,Xk ) = x

)

= E

(
ψ(Y1, . . . ,Yk )∏k
i=1{1−G(Yi )}

E

(
k∏

i=1
{1{Yi ≤ Ci } | (Y1,X1), . . . (Yk ,Xk )

)
| (X1, . . . ,Xk ) = x

)
= E

(
ψ(Y1, . . . ,Yk ) | (X1, . . . ,Xk ) = x

)
.

An analogue estimator to (5.2.2) in the censored situation is given by

r̆ (k)
n (ψ,x;mn) = ∑

(i1,...,ik )∈I(k,n)

∆i1 · · ·∆ikψ(Zi1 , . . . ,Zik )

(1−G(Zi1 ) · · · (1−G(Zik ))
ω(k)

n,δ,mn ,i(x), (5.4.6)

where, for i = (i1, . . . , ik ) ∈ I(k,n),

ω(k)
n,δ,mn ,i(x) = δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)∑
(i1,...,ik )∈I(k,n)

δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) . (5.4.7)

The estimator we shall examine is provided by

r̆ (k)∗
n (ψ,x;mn) = ∑

(i1,...,ik )∈I(k,n)

∆i1 · · ·∆ikψ(Zi1 , . . . ,Zik )

(1−G∗
n(Zi1 ) · · · (1−G∗

n(Zik ))
ω(k)

n,δ,mn ,i(x). (5.4.8)

In a similar way as in Bouzebda et al. [2022b], we arrive to the following conclusion.

Corollary 5.4.0.1 Assume that the condition (I) and the assumptions of Theorems 5.3.1.3 and
5.3.2.1 are satisfied. Then, we have∣∣∣r̆ (k)∗

n (ψ,x;mn)− r (k)(ϕ, x̃)
∣∣∣= O(Dm)+Oa.co

√
sm log(m)

m

 , a.s.

This last result is a direct consequence of Corollary (5.3.2.2) and the law of iterated logarithm
for G∗

n(·) obtained in Földes and Rejtő [1981] gives

sup
t≤τ

|G∗
n −G(t )| = O

√
loglogn

n

 almost surely as n →∞.

At this point, we may refer to Bouzebda and El-hadjali [2020], Bouzebda et al. [2022b] and
Bouzebda and Nezzal [2022].

5.5 Applications

5.5.1 Kendall rank correlation coefficient

To test the independence of one-dimensional random variables Y1 and Y2 Kendall [1938] pro-
posed a method based on the U-statistic Kn with the kernel function :

ϕ ((s1, t1) , (s2, t2)) =1{(s2−s1)(t2−t1)>0} −1{(s2−s1)(t2−t1)⩽0}· (5.5.1)
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Its rejection on the region is of the form
{p

nKn > γ}
. In this example, we consider a multivariate

case. To test the conditional independence of ξ,η : Y = (ξ,η) given X, we propose a method
based on the conditional U-statistic :

r̂ (2)
n (ϕ,t) =

∑n
i ̸= j ϕ

(
Yi ,Y j

)
δm(t1,Xi )δm(t2,X j )∑n

i ̸= j δm(t1,Xi )δm(t2,X j )
,

where t = (t1, t2) ∈ I ⊂ R2 and ϕ(·) is Kendall’s kernel (5.5.1). Suppose that ξ and η are d1

and d2-dimensional random vectors respectively and d1 +d2 = d . Furthermore, suppose that
Y1, . . . ,Yn are observations of (ξ,η), we are interested in testing :

H0 : ξ and η are conditionally independent given X. vs Ha : H0 is not true. (5.5.2)

Let a = (a1,a2) ∈ Rd such as ∥a∥ = 1 and a1 ∈ Rd1 ,a2 ∈ Rd2 , and F(·),G(·) be the distribution
functions of ξ and η respectively. Suppose Fa1 (·) and Ga2 (·) to be continuous for any unit vector
a = (a1,a2) where Fa1 (t ) = P(

a⊤
1 ξ< t

)
and Ga2 (t ) = P(

a⊤
2 η< t

)
and aT

1 means the transpose of
the vector ai ,1 ⩽ i ⩽ 2. For n = 2, let Y(1) = (

ξ(1),η(1)
)

and Y(2) = (
ξ(2),η(2)

)
such as ξ(i ) ∈ Rd1

and η(i ) ∈Rd2 for i = 1,2, and :

ϕa (
Y(1),Y(2))=ϕ((

a⊤
1 ξ

(1),a⊤
2 η

(1)) ,
(
a⊤

1 ξ
(2),a⊤

2 η
(2))) .

An application of Corollary 5.3.2.2 gives

sup
x∈S2

X

∣∣r̂ (2)
n (ϕa ,x;mn)− r (2)(ϕa ,x)

∣∣= O(Dm)+Oa.co

√
sm log(m)

m

 . (5.5.3)

5.5.2 Discrimination problems

Now, we apply these findings to the discrimination problem outlined in Section 3 of Stute
[1994b], refer to also to Stute [1994a]. We will employ a similar setup and notation. Let ϕ(·)
be any function taking at most finitely many values, say 1, . . . ,M. The sets

A j =
{
(y1, . . . ,yk ) :ϕ(y1, . . . ,yk ) = j

}
, 1 ≤ j ≤ M

subsequently, produce a partition of the feature space. Predicting the value of ϕ(Y1, . . . ,Yk )

is equivalent to making a guess about which set will be in the partition to which (Y1, . . . ,Yk )

belongs. For any discrimination rule g , we have

P(g (X) =ϕ(Y)) ≤
M∑

j=1

∫
x̃:g (x̃)= j }

maxM j (x̃)dP(x̃),

where
M j (x̃) =P(ϕ(Y) = j | X = x̃), x̃ ∈Rd .

The inequality described above becomes equality if

g0(x̃) = arg max
1≤ j≤M

M j (x̃).
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g0(·) is known as the Bayes rule, and the associated error probability

L∗ = 1−P(g0(X) =ϕ(Y)) = 1−E
{

max
1≤ j≤M

M j (x̃)

}
is called the Bayes risk. Each of the unknown M j functions can be reliably estimated using one
of the techniques described in the prior sections. Let, for 1 ≤ j ≤ M,

M
j
n(x̃) =

∑
(i1,...,ik )∈I(k,n)

1{ϕ(Yi1 , . . . ,Yik ) = j }δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
x1,Xi1

) · · ·δmn

(
xk ,Xik

) , (5.5.4)

Set
g0,n(x̃) = arg max

1≤ j≤M
M

j
n(x̃).

Let us define
L∗

n =P(g0,n(X) ̸=ϕ(Y)).

The discrimination rule g0,n(·) is asymptotically Bayes’ risk consistent

L∗
n → L∗.

This is a consequence of the relation∣∣L∗−L∗
n

∣∣≤ 2E

[
max

1≤ j≤M

∣∣∣M j
n(X)−M j (X)

∣∣∣] .

5.5.3 Metric learning

Metric learning seeks to adapt the metric to the data and has garnered a great deal of attention in
recent years; for instance, see Bellet et al. [2013] and Clémençon et al. [2016] for an account of
metric learning and its applications. This is driven by a wide variety of applications, spanning
from information retrieval via bioinformatics to computer vision as the primary source of inspi-
ration. For the purpose of demonstrating the applicability of this idea, we will now discuss the
metric learning problem for supervised classification as shown in Clémençon et al. [2016]. Let
us consider independent copies (X1,Y1) , . . . , (Xn ,Yn) of a X ×Y valued random couple (X,Y),
where X is some feature space and Y = {1, . . . ,C}, with C ≥ 2 say, a finite set of labels. Let
D be a set distance measures D : X ×X → R+. The purpose of metric learning in this context
is, intuitively speaking, to identify a metric under which pairs of points with the same label are
close to each other, while those with different labels are far away from each other. A natural
way to characterize the risk associated with a metric D is as follows

R(D) = E[
φ

((
1−D

(
X,X′) · (21

{
Y = Y′}−1

))]
, (5.5.5)

where φ(u) is a convex loss function upper bounding the indicator function 1{u ≥ 0}, for in-
stance, the hinge loss φ(u) = max(0,1−u). To estimate R(D), we consider the usual empirical
estimator

Rn(D) = 2

n(n −1)

∑
1≤i< j≤n

φ
((

D
(
Xi ,X j

)−1
) · (21

{
Yi = Y j

}−1
))

, (5.5.6)
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which is one sample U-statistic of degree two with kernel given by:

ϕD
(
(x, y),

(
x ′, y ′))=φ((

D
(
x, x ′)−1

) · (21
{

y = y ′}−1
))

.

The convergence to (5.5.5) of a minimizer of (5.5.6) has been studied in the frameworks of
algorithmic stability (Jin et al. [2009]), algorithmic robustness (Bellet and Habrard [2015]) and
based on the theory of U-processes under appropriate regularization (Cao et al. [2016]).

5.5.4 Time series prediction from continuous set of past values

Let {Zn(t ), t ∈ R}n≥1 denote a sequence of processes with value in R. Let s denote a fixed
positive real number. In this model, we suppose that the process is observed from t = 0 until
t = tmax, and assume without loss of generality that tmax = nT + s < τ. The method ensures
splitting the observed process into n fixed-length segments. Let us denote each piece of the
process by

Xi = {Z(t ), (i −1)T ≤ t < i T}.

The response value is therefore Yi = Z(i T+ s), and this can be formulated as a regression prob-
lem:

ϕ(Z1(τ+ s), . . . ,Zk (τ+ s)) = r (k)(Z1(t ), . . . ,Zk (t )), for τ−T ≤ t < τ. (5.5.7)

provided that we make the assumption that a function of this kind, r , does not depend on i

(which is satisfied if the process is stationary, for example). Because of this, when we get to
time τ, we can use the following predictor, which is directly derived from our estimator, to
make a prediction about the value that will be at time τ+ s

r̂ (k)
n (ϕ,z;mn) =

∑
(i1,...,ik )∈I(k,n)

ϕ(Zi1 (τ+ s), . . . ,Zik (τ+ s))δmn

(
z1,Xi1

) · · ·δmn

(
zk ,Xik

)
∑

(i1,...,ik )∈I(k,n)
δmn

(
z1,Xi1

) · · ·δmn

(
zk ,Xik

)
where z = (z1, . . . , zk ) = {(Z1(t ), . . . ,Zk (t )), for τ−T ≤ t < τ}. Corollary 5.3.2.2 provides math-
ematical support for this nonparametric functional predictor and extends previous results in
numerous ways in Ferraty and Vieu [2006a] and Ouassou and Rachdi [2012]. Notice that this
modelization encompasses a wide variety of practical applications, as this procedure allows for
the consideration of a large number of past process values without being affected by the curse
of dimensionality.

5.5.5 Example of U-kernels

Example 5.5.5.1 Hoeffding’s D From the symmetric kernel,

hD (z1, . . . , z5)

:= 1

16

∑
(i1,...,i5)∈P5

[{
1

(
zi1,1 ≤ zi5,1

)−1
(
zi2,1 ≤ zi5,1

)}{
1

(
zi3,1 ≤ zi5,1

)−1
(
zi4,1 ≤ zi5,1

)}]
×[{

1
(
zi1,2 ≤ zi5,2

)−1
(
zi2,2 ≤ zi5,2

)}{
1

(
zi3,2 ≤ zi5,2

)−1
(
zi4,2 ≤ zi5,2

)}]
.
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We obtain Hoeffding’s D statistic, which is a rank-based U-statistic of order 5.

Example 5.5.5.2 (Blum-Kiefer-Rosenblatt’s R) The symmetric kernel

hR (z1, . . . , z6)

:= 1

32

∑
(i1,...,i6)∈P6

[{
1

(
zi1,1 ≤ zi5,1

)−1
(
zi2,1 ≤ zi5,1

)}{
1

(
zi3,1 ≤ zi5,1

)−1
(
zi4,1 ≤ zi5,1

)}]
×[{

1
(
zi1,2 ≤ zi6,2

)−1
(
zi2,2 ≤ zi6,2

)}{
1

(
zi3,2 ≤ zi6,2

)−1
(
zi4,2 ≤ zi6,2

)}]
,

gives Blum-Kiefer-Rosenblatt’s R statistic (see Blum et al. [1961]), which is a rank-based U-
statistic of order 6, refer also to Bouzebda [2011, 2014, 2023]; Bouzebda and Zari [2013];
Bouzebda et al. [2011].

Example 5.5.5.3 Bergsma-Dassios-Yanagimoto’s τ∗ Bergsma and Dassios [2014] introduced
a rank correlation statistic as a U-statistic of order 4 with the symmetric kernel

hτ∗ (z1 , . . . , z4)

:= 1

16

∑
(i1,...,i4)∈P4

{
1

(
zi1,1, zi3,1 < zi2,1, zi4,1

)+1
(
zi2,1, zi4,1 < zi1,1, zi3,1

)
−1

(
zi1,1, zi4,1 < zi2,1, zi3,1

)−1
(
zi2,1, zi3,1 < zi1,1, zi4,1

)}
×{

1
(
zi1,2, zi3,2 < zi2,2, zi4,2

)+1
(
zi2,2, zi4,2 < zi1,2, zi3,2

)
−1

(
zi1,2, zi4,2 < zi2,2, zi3,2

)−1
(
zi2,2, zi3,2 < zi1,2, zi4,2

)}
.

Here
1

(
y1, y2 < y3, y4

)
:= 1

(
y1 < y3

)
1

(
y1 < y4

)
1

(
y2 < y3

)
1

(
y2 < y4

)
.

Example 5.5.5.4 Two generic vectors y = (
y1, y2

)
and z = (z1, z2) in R2 are said to be concor-

dant if
(
y1 − z1

)(
y2 − z2

)> 0. For m,k = 1, . . . , p, define

τmk = 1

n(n −1)

∑
1≤i ̸= j≤n

1
{(

Xi m −X j m
)(

Xi k −X j k
)> 0

}
.

Then Kendall’s tau rank correlation coefficient matrix T = {τmk }
p
m,k=1 denotes a matrix-valued

U-statistic, for wich the kernel is bounded. It is obvious that τmk quantifies the monotonic
dependency between (X1m ,X1k ) and (X2m ,X2k ) and it is an unbiased estimator of

P ((X1m −X2m) (X1k −X2k ) > 0) ,

that is, the probability that (X1m ,X1k ) and (X2m ,X2k ) are concordant.

Example 5.5.5.5 The Gini mean difference. The Gini index provides another usual measure of
dispersion. It corresponds to the case where E ⊂R and h(x, y) = |x − y | :

Gn = 2

n(n −1)

∑
1≤i< j≤n

∣∣Xi −X j
∣∣
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5.6 Mathematical development

This section contains the proof of our results. The preceding notation is also used in the subse-
quent text. Keeping in mind the relation (5.2.5), we can conclude that, for each x = (x1, . . . , xk ) ∈
Sk

X
, there exists ℓ(x) = (ℓ(x1), . . . ,ℓ(xk )) where ∀1 ≤ i ≤ k, 1 ≤ ℓ(xi ) ≤ dn and such that

x ∈
k∏

i=1
B(xℓ(xi ),εn) and d(xi , xℓ(xi )) = argmin

1≤ℓ≤dn

d(xi , xℓ).

We denote for each x = (x1, . . . , xk ) ∈ Sk
X

and xℓ(x) = (xℓ(x1), . . . , xℓ(xk )) :

k∏
i=1

B(xℓ(xi ),εn) =: B(xℓ(x),εn).

Hence, for each x ∈ Sk
X

, we can reformulated the U-statistic as∣∣un(ϕ,x;mn)−E[un(ϕ,x;mn)]
∣∣

≤ ∣∣un(ϕ,x;mn)−un(ϕ,xℓ(x);mn)
∣∣

+ ∣∣E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣

+ ∣∣un(ϕ,xℓ(x);mn)−E[un(ϕ,xℓ(x);mn)]
∣∣ .

Proof of Theorem 5.3.1.1

We need to establish that there exists some η> 0, in such a way that

∑
n≥1

P

 sup
x∈Sk

X

√
m

sm log(m)

∣∣un(ϕ,x,mn)−E(
un(ϕ,x,mn)

)∣∣≥ η
<∞. (5.6.1)

To do that, we need to obtain an exponential bound for

P

 sup
x∈Sk

X

∣∣un(ϕ,x,mn)−E[
un(ϕ,x,mn)

]∣∣> η
√

sm log(m)

m

 .

We first remark that we have∣∣un(ϕ,x,mn)−E[
un(ϕ,x,mn)

]∣∣
= (n −k)!

n!

∣∣∣∣∣ ∑
i∈I(k,n)

{
ϕ(Yi1 , . . . ,Yik )

k∏
j=1

δmn (x j ,Xi j )−E
[
ϕ(Yi1 , . . . ,Yik )

k∏
j=1

δmn (x j ,Xi j )

]}∣∣∣∣∣
= (n −k)!

n!

∣∣∣∣∣ ∑
i∈I(k,n)

{
Gϕ,x(Xi ,Yi )−E[

Gϕ,x(Xi ,Yi )
]}∣∣∣∣∣

= (n −k)!

n!

∣∣∣∣∣ ∑
i∈I(k,n)

H(Xi ,Yi )

∣∣∣∣∣ ,
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where
H(X,Y) = Gϕ,x(X,Y)−E[

Gϕ,x(X,Y)
]

.

In order to get the desired result, we apply Lemma 5.6.0.1 on the function H(·, ·). Throughout
the rest of the proof, we suppose the function Gϕ,x is symmetric. Moreover, it is clear that the
function H(·, ·) is bounded by 2MC1sm by condition (C.2) and the fact that the function ϕ(·) is
bounded by the condition (C.7). We obviously remark that,

θ= E[H(X,Y)] = 0

by design, and

σ2 = Var(H(X,Y)) ≤ 2(MC1sm)2.

For any η> 0 and m large enough, we get that

P

∣∣un(ϕ,x,mn)−E[
un(ϕ,x,mn)

]∣∣> η
√

sm log(m)

m


≤ 2exp

[
− n((sm log(m))/m)η2

4(MC1sm)2 + 4
3 MC1smη

√
(sm log(m))/m

]
. (5.6.2)

We can write

P

 sup
x∈Sk

X

∣∣un(ϕ,x;mn)−E[un(ϕ,x;mn)]
∣∣> 2η

√
sm log(m)

m


≤ P

 sup
x∈Sk

X

∣∣un(ϕ,x;mn)−un(ϕ,xℓ(x);mn)

+E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣> η

√
sm log(m)

m

 (5.6.3)

+P
 sup

x∈Sk
X

∣∣un(ϕ,xℓ(x);mn)−E[un(ϕ,xℓ(x);mn)]
∣∣> η

√
sm log(m)

m

 . (5.6.4)

Taking into account the condition (C.3), we have∣∣un(ϕ,x;mn)−un(ϕ,xℓ(x);mn)
∣∣

≤ (n −k)!

n!

∑
i∈I(k,n)

∣∣∣∣∣ϕ(Yi1 , . . . ,Yik )

{
k∏

j=1
δmn (x j ,Xi j )−

k∏
j=1

δmn (xℓ(x j ),Xi j )

}∣∣∣∣∣
≤ M

(n −k)!

n!

∑
i∈I(k,n)

∣∣δmn (x,Xi )−δmn (xℓ(x),Xi )
∣∣

≤ M
(n −k)!

n!

∑
i∈I(k,n)

C2sβ2
m d(x,xℓ(x))

β1

≤ MC2sβ2
m d(x,xℓ(x))

β1

≤ MC2sβ2
m ϵ

β1
n .
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Consequently, we obtain uniformly on x ∈ Sk
X

:

sup
x∈Sk

X

∣∣un(ϕ,x;mn)−un(ϕ,xℓ(x);mn)
∣∣≤ O(sβ2

m ϵ
β1
n ) = O

√
sm log(m)

m

 , (5.6.5)

by condition (C.5). We deduce from (5.6.5) that:∣∣E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣

= ∣∣E[
un(ϕ,xℓ(x);mn)−un(ϕ,x;mn)

]∣∣
≤ E

∣∣[un(ϕ,xℓ(x);mn)−un(ϕ,x;mn)
]∣∣ . (5.6.6)

The passage from (5.6.6) to (5.6.6) follows by applying Jensen’s inequality further to some
properties of the absolute value function. Now using the fact that the function ϕ(·) is bounded
and that the function δm is Lipschitz in addition for any constant a, E[a] = a, we can directly
conclude that

sup
x∈Sk

X

∣∣E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣≤ O

(
sβ2

m ϵ
β1
n

)
= O

√
sm log(m)

m

 .

For some η> 0 and for sufficiently large n and large m, we have

P

 sup
x∈Sk

X

∣∣un(ϕ,x;mn)−un(ϕ,xℓ(x);mn)

+E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣> η

√
sm log(m)

m

= 0.

Continue, now, with (5.6.4), supposing that the kernel function Gϕ,xℓ(·) is symmetric, we have
to decompose the U-statistic by making use of the Hoeffding [1948] decomposition, we infer
that

un(ϕ,xℓ;mn)−E[un(ϕ,xℓ;mn)]

=
k∑

p=1

k !

(k −p)!
u(p)

n
(
πp,k (Gϕ,xℓ,mn )

)
= ku(1)

n

(
π1,k (Gϕ,xℓ)

)+ k∑
p=2

k !

(k −p)!
u(p)

n
(
πp,k (Gϕ,xℓ)

)
. (5.6.7)

Let us first start with the linear term. We have

ku(1)
n

(
π1,k (Gϕ,xℓ)

)= k

n

n∑
j=1

π1,k (Gϕ,xℓ)(Xi ,Yi ).

From Hoeffding’s projection, we have

π1,k (Gϕ,xℓ)(x, y)

= {
E
[
Gϕ,xℓ

(
(x,X2, . . . ,Xk ), (y,Y2, . . . ,Yk )

)]−E[Gϕ,xℓ (X,Y)]
}

= {
E[Gϕ,xℓ (X,Y) |(X1,Y1) = (x, y)]−E[Gϕ,xℓ (X,Y)]

}
.
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Set

Zi =π1,k (Gϕ,xℓ)(Xi ,Yi ).

We can see that Zi are independent and identically distributed random variables bounded by
2kMC1sm with zero mean and

σ2 ≤ (MC1sm)2.

An application of Bernstein’s inequality yields

P

 sup
x∈Sk

X

∣∣u(1)
n

(
π1,k (Gϕ,xℓ)

)∣∣> η
√

sm log(m)

m


≤

dn∑
i=1
P

 max
1≤ℓi≤dn

∣∣u(1)
n

(
π1,k (Gϕ,xℓ)

)∣∣> η
√

sm log(m)

m


≤ 2dn exp

[
− n((sm log(m))/m)η2

4(MC1sm)2 + 4
3 MC1smη

√
(sm log(m))/m

]
≤ nα−τη2/C4 ,

resulting from the fact m ≤ n and log(m) ≥ τ log(n). This implies that

∑
n≥1

P

 sup
x∈Sk

X

∣∣u(1)
n

(
π1,k (Gϕ,xℓ)

)∣∣> η
√

sm log(m)

m


≤ ∑

n≥1
nα−τη2/C4 <∞.

Consequently, we get the following:

sup
x∈Sk

X

∣∣u(1)
n

(
π1,k (Gϕ,xℓ)

)∣∣= Oa.co

√
sm log(m)

m

 .

Moving to the nonlinear term, we want to prove that for 2 ≤ p ≤ k:

sup
x∈Sk

X

(
k

p

)
p

m
∣∣∣u(p)

n
(
πp,k Gϕ,xℓ(x)

)∣∣∣√
sm log(m)

= Oa.co(1),

which implies that, for 1 ≤ i ≤ k and ℓ= (ℓ1, . . . ,ℓk ):

max
1≤ℓi≤dn

(
k

p

)
p

m
∣∣∣u(p)

n
(
πp,k Gϕ,xℓ(x)

)∣∣∣√
sm log(m)

= Oa.co(1).
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To prove the above-mentioned equation, we need to apply Proposition 1 of Arcones [1995] (see
Lemma 5.6.0.2). We can see that Gϕ,xℓ is bounded by MC1sm , hence for η> 0 we have

P

n1/2

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> η
√

sm log(m)

m


= P

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> n−1/2η

√
sm log(m)

m


= P

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> ε0

√
sm log(m)

m

 ,

where ε0 = ηp
n

. Now for t = η
√

sm log(m)

m
, Lemma 5.6.0.2 gives us :

P

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ 2exp

(
− t (n −1)1/2

2k+2kk+1MC1sm

)
≤ 2exp

(
−η

√
sm log(m)/m(n −1)1/2

2k+2kk+1MC1sm

)

≤ 2exp

(
−η

√
log(m)/m(n −1)1/2

2k+2kk+1MC1
p

sm

)
.

By the fact that m ≤ n and log(m) ≥ τ log(n), it follows that there exists η> 0 in such a way that

P

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> ε0

√
sm log(m)

m

≤ n−τ/2C5 ,

where C5 = C′′2k+2kk+1MC1
p

sm with C′′ > 0. Therefore, for each ε0 > 0, 1 ≤ i ≤ k and ℓ =
(ℓ1, . . . ,ℓk ) :

P

 sup
x∈Sk

X

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ dn max

1≤ℓi≤dn

P

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ n−k(τ/2C5).

Consequently, we have

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n
(
πp,k (Gϕ,xℓ)

)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ ∑

n≥1
nα−τ/2C5 → 0 as n → 0.
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Hence the proof is achieved.
□

Proof of Theorem 5.3.1.2

We will need to truncate the conditional U-statistic to prove this theorem. Taking the condition
(C.7’) into account, for each λ> 0 and

ξn := ξmn = mn

logmn
=:

m

logm
,

we have

Gϕ,x(x,y) = Gϕ,x(x,y)1
{ϕ(y)≤λξ1/q

n }
+Gϕ,x(x,y)1

{ϕ(y)>λξ1/q
n }

=: G(T)
ϕ,x(x,y)+G(R)

ϕ,x(x,y),

which means that each function ϕ(·) is truncated as follows :

ϕ(y) = ϕ(y)1{
ϕ(y)≤λξ1/q

n

}+ϕ(y)1{
ϕ(y)>λξ1/q

n

}
= ϕ(T)(y)+ϕ(R)(y).

Notice that the G(T)
ϕ,x(x,y) denotes the truncated part and G(R)

ϕ,x(x,y) refers to the reminder part. It
is possible to write the U-statistic in the following way

un(ϕ,x,mn) = u(k)
n

(
G(T)
ϕ,x

)
+u(k)

n

(
G(R)
ϕ,x

)
=: u(T)

n (ϕ,x,mn)+u(R)
n (ϕ,x,mn).

The first term of the right side u(T)
n (ϕ,x,mn), as usual, is called the truncated part and the second

one u(R)
n (ϕ,x,mn) is the remainder part. Let’s investigate the term u(T)

n (ϕ,x,mn).

Truncated Part :

In a similar way as in the preceding proof, we infer∣∣u(T)
n (ϕ,x,mn)−E(

u(T)
n (ϕ,x,mn)

)∣∣
= (n −k)!

n!

∣∣∣∣∣ ∑
i∈I(k,n)

{
ϕ(T)(Yi1 , . . . ,Yik )

k∏
j=1

δmn (x j ,Xi j )

−E
[
ϕ(T)(Yi1 , . . . ,Yik )

k∏
j=1

δmn (x j ,Xi j )

]}∣∣∣∣∣
= (n −k)!

n!

∣∣∣∣∣ ∑
i∈I(k,n)

{
G(T)
ϕ,x(Xi ,Yi )−E

[
G(T)
ϕ,x(Xi ,Yi )

]}∣∣∣∣∣
= (n −k)!

n!

∣∣∣∣∣ ∑
i∈I(k,n)

H(T)(Xi ,Yi )

∣∣∣∣∣ ,
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where

H(T)(X,Y) = G(T)
ϕ,x(X,Y)−E

[
G(T)
ϕ,x(X,Y)

]
.

Similar to the proof of Theorem 5.3.1.1, we apply Lemma 5.6.0.1 on the function H(T)(·, ·).
Throughout the rest of the proof, we suppose that the function G(T)

ϕ,x is symmetric. Moreover, it
is clear that the function H(T)(·, ·) is bounded by 2λξ1/q

n C1sm by condition (C.2). We obviously
remark that,

θ= E[H(T)(X,Y)] = 0

by design, and

σ2 = Var(H(T)(X,Y)) ≤ 2(λξ1/q
n C1sm)2.

For any η> 0 and m large enough, we get that

P

∣∣u(T)
n (ϕ,x,mn)−E(

u(T)
n (ϕ,x,mn)

)∣∣> η
√

sm log(m)

m


≤ 2exp

[
− n((sm log(m))/m)η2

4(λξ1/q
n C1sm)2 + 4

3λξ
1/q
n C1smη

√
(sm log(m))/m

]
.

We can write

P

 sup
x∈Sk

X

∣∣u(T)
n (ϕ,x,mn)−E(

u(T)
n (ϕ,x,mn)

)∣∣> 2η

√
sm log(m)

m


≤ P

 sup
x∈Sk

X

∣∣u(T)
n (ϕ,x;mn)−u(T)

n (ϕ,xℓ(x);mn)

+E[u(T)
n (ϕ,xℓ(x);mn)]−E[u(T)

n (ϕ,x;mn)]
∣∣> η

√
sm log(m)

m


+P

 sup
x∈Sk

X

∣∣u(T)
n (ϕ,xℓ(x);mn)−E[u(T)

n (ϕ,xℓ(x);mn)]
∣∣> η

√
sm log(m)

m

 . (5.6.8)
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Notice that∣∣u(T)
n (ϕ,x;mn)−u(T)

n (ϕ,xℓ(x);mn)
∣∣

≤ (n −k)!

n!

∑
i∈I(k,n)

∣∣∣∣∣ϕ(T)(Yi1 , . . . ,Yik )

{
k∏

j=1
δmn (x j ,Xi j )−

k∏
j=1

δmn (xℓ(x j ),Xi j )

}∣∣∣∣∣
≤ (n −k)!

n!

∑
i∈I(k,n)

∣∣ϕ(T)(Yi1 , . . . ,Yik )
∣∣ ∣∣δmn (x,Xi )−δmn (xℓ(x),Xi )

∣∣
≤ (n −k)!

n!

∑
i∈I(k,n)

C2sβ2
m d(x,xℓ(x))

β1
∣∣ϕ(T)(Yi1 , . . . ,Yik )

∣∣
≤ (n −k)!

n!

∑
i∈I(k,n)

C2sβ2
m ϵ

β1
n

∣∣ϕ(T)(Yi1 , . . . ,Yik )
∣∣

≤ (n −k)!

n!

∑
i∈I(k,n)

1

n

n∑
j=1

C2sβ2
m ϵ

β1
n

∣∣ϕ(T)(Yi1 , . . . ,Yik )
∣∣

≤ (n −k)!

n!

∑
i∈I(k,n)

1

n

n∑
j=1

W j ,T,

where for 1 ≤ j ≤ n,
W j ,T := C2sβ2

m ϵ
β1
n

∣∣ϕ(T)(Y1, . . . ,Yk )
∣∣ ,

and we can write

E
[
W j ,T

]= C2sβ2
m ϵ

β1
n E

[∣∣ϕ(T)(Y1, . . . ,Yk )
∣∣]

= C2sβ2
m ϵ

β1
n E

[
E
[
ϕ(T)(Y1, . . . ,Yk ) | X = x

]]
,

which means that for 2 ≤ ν≤ q :

sup
x∈Sk

X

E
[
W j ,T

]ν = sup
x∈Sk

X

(
C2sβ2

m ϵ
β1
n

)ν
E
[
E
[
ϕ(T)(Yi1 , . . . ,Yik ) | X = x

]]ν
(5.6.9)

≤
(
C2sβ2

m ϵ
β1
n

)ν
(λξn)ν/qµ

ν/q
q (5.6.10)

≤ Cν
2

(
sm logm

m

)ν/2

(λξn)ν/qµ
ν/q
q (5.6.11)

≤ Cν
2λ

ν/q (ξn)ν/q−ν/2(sm)1−ν/2µ
ν/q
q (sm)ν−1

≤Cs(ν−1)
m .

The passage from (5.6.9) to (5.6.10) is possible by the use of the Jensen’s inequality for the
concave function za , for 0 < a ≤ 1, while (5.6.11) is by condition (C.5). Then for ν≥ 2

sup
x∈Sk

X

E
[
W j ,T

]ν ≤ Cs(ν−1)
m ,

where C > 0. Then, an application of classical inequality (see Corollary A.8-(ii) Ferraty and
Vieu [2006b]) with Zi := W j ,T and a2

n = sm , which gives us

um = a2
n ln(m)m−1 = sm ln(m)m−1,
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and it is clear that um → 0 with m by condition (C.2). Consequently, we obtain uniformly on
x ∈ Sk

X
:

sup
x∈Sk

X

∣∣u(T)
n (ϕ,x;mn)−u(T)

n (ϕ,xℓ(x);mn)
∣∣= Oa.co

√
sm log(m)

m

 . (5.6.12)

Now, we get from (5.6.12) that:∣∣E[u(T)
n (ϕ,xℓ(x);mn)]−E[u(T)

n (ϕ,x;mn)]
∣∣

= ∣∣E[
u(T)

n (ϕ,xℓ(x);mn)−u(T)
n (ϕ,x;mn)

]∣∣ (5.6.13)

≤ E
∣∣[u(T)

n (ϕ,xℓ(x);mn)−u(T)
n (ϕ,x;mn)

]∣∣ . (5.6.14)

Similar to the bounded case, the transition from (5.6.13) to (5.6.14) is due to Jensen’s inequality
and some properties of the absolute value function. Furthermore, using the fact that for any
constant a, E[a] = a, we can directly conclude that

sup
x∈Sk

X

∣∣E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣= Oa.co

√
sm log(m)

m

 .

For sufficiently large n and large m, we infer that, for some η> 0,

P

 sup
x∈Sk

X

∣∣un(ϕ,x;mn)−un(ϕ,xℓ(x);mn)

+E[un(ϕ,xℓ(x);mn)]−E[un(ϕ,x;mn)]
∣∣> η

√
sm log(m)

m

= 0.

Continue, now, with (5.6.8), by imposing that the kernel function G(T)
ϕ,xℓ(·) is symmetric, the

U-statistic is decomposed according to Hoeffding [1948] decomposition, that is

u(T)
n (ϕ,xℓ;mn)−E[u(T)

n (ϕ,xℓ;mn)]

=
k∑

p=1

k !

(k −p)!
u(p)

n

(
πp,k (G(T)

ϕ,xℓ,mn
)
)

= ku(1)
n

(
π1,k (G(T)

ϕ,xℓ)
)
+

k∑
p=2

k !

(k −p)!
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)

. (5.6.15)

Let us first start with the linear term. We have

ku(1)
n

(
π1,k (G(T)

ϕ,xℓ)
)
= k

n

n∑
j=1

π1,k (G(T)
ϕ,xℓ)(Xi ,Yi ).

From Hoeffding’s projection, we have

π1,k (G(T)
ϕ,xℓ)(x, y) =

{
E
[

G(T)
ϕ,xℓ

(
(x,X2, . . . ,Xk ), (y,Y2, . . . ,Yk )

)]−E[G(T)
ϕ,xℓ (X,Y)]

}
=

{
E[G(T)

ϕ,xℓ (X,Y) |(X1,Y1) = (x, y)]−E[G(T)
ϕ,xℓ (X,Y)]

}
.
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Set

Z(T)
i =π1,k (G(T)

ϕ,xℓ)(Xi ,Yi ).

We can clearly see that Z(T)
i are independent and identically distributed random variables bounded

by 2kλξ1/q
n C1sm with zero mean and

σ2 ≤ (λξ1/q
n C1sm)2.

An application of Bernstein’s inequality yields

P

 sup
x∈Sk

X

∣∣∣u(1)
n

(
π1,k (G(T)

ϕ,xℓ)
)∣∣∣> η

√
sm log(m)

m


≤

dn∑
i=1
P

 max
1≤ℓi≤dn

∣∣∣u(1)
n

(
π1,k (G(T)

ϕ,xℓ)
)∣∣∣> η

√
sm log(m)

m


≤ 2dn exp

[
− n((sm log(m))/m)η2

4(λξ1/q
n C1sm)2 + 4

3λξ
1/q
n C1smη

√
(sm log(m))/m

]
≤ nα−τη2/C′

4 ,

for some positive constant C′
4, resulting from the fact m ≤ n and log(m) ≥ τ log(n). This implies

that

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣u(1)
n

(
π1,k (G(T)

ϕ,xℓ)
)∣∣∣> η

√
sm log(m)

m


≤ ∑

n≥1
nα−τη2/C′

4 <∞.

Consequently, we get :

sup
x∈Sk

X

∣∣∣u(1)
n

(
π1,k (G(T)

ϕ,xℓ)
)∣∣∣= Oa.co

√
sm log(m)

m

 .

Moving to the nonlinear term, we want to prove that for 2 ≤ p ≤ k:

sup
x∈Sk

X

(
k

p

)
p

m
∣∣∣u(p)

n

(
πp,k G(T)

ϕ,xℓ(x)

)∣∣∣√
sm log(m)

= Oa.co(1),

which implies that, for 1 ≤ i ≤ k and ℓ= (ℓ1, . . . ,ℓk ):

max
1≤ℓi≤dn

(
k

p

)
p

m
∣∣∣u(p)

n

(
πp,k G(T)

ϕ,xℓ(x)

)∣∣∣√
sm log(m)

= Oa.co(1).
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To prove the above-mentioned equation, we need to apply Proposition 1 of Arcones [1995] (see
Lemma 5.6.0.2). We can see that G(T)

ϕ,xℓ is bounded by C1smλξ
1/q
n , hence for η> 0 we have

P

n1/2

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> η

√
sm log(m)

m


= P

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> n−1/2η

√
sm log(m)

m


= P

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> ε0

√
sm log(m)

m

 ,

where ε0 = ηp
n

. Now for t = η
√

sm log(m)

m
, Lemma 5.6.0.2 gives us :

P

∣∣∣∣∣ k∑
p=2

k !

(k −p)!
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ 2exp

(
− t (n −1)1/2

2k+2kk+1λξ
1/q
n C1sm

)

≤ 2exp

(
−η

√
sm log(m)/m(n −1)1/2

2k+2kk+1λξ
1/q
n C1sm

)

≤ 2exp

(
−η

√
log(m)/m(n −1)1/2

2k+2kk+1λξ
1/q
n C1

p
sm

)
.

By the fact that m ≤ n and log(m) ≥ τ log(n), it follows that there exists η> 0 in such a way that

P

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> ε0

√
sm log(m)

m

≤ n−τ/2C6 ,

where
C6 = C′′2k+2kk+1λξ

1/q
n C1

p
sm ,

with C′′ > 0. Therefore, for each ε0 > 0, 1 ≤ i ≤ k and ℓ= (ℓ1, . . . ,ℓk ) :

P

 sup
x∈Sk

X

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ dn max

1≤ℓi≤dn

P

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ n−k(τ/2C6).

Consequently, we have

∑
n≥1

P

 sup
x∈Sk

X

∣∣∣∣∣ k∑
p=2

(
k

p

)
u(p)

n

(
πp,k (G(T)

ϕ,xℓ)
)∣∣∣∣∣> ε0

√
sm log(m)

m


≤ ∑

n≥1
nα−τ/2C6 → 0 as n → 0.
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Remainder Part

We now consider the remainder part, which is the U-process u(R)
n (ϕ,x,mn) related on the un-

bounded kernel given by :
G(R)
ϕ,x(x,y) = Gϕ,x(x,y)1

{ϕ(y)>λξ1/q
n }

We have establish that the process is negligible, meaning that

sup
x∈Sk

X

p
m

∣∣∣u(k)
n (G(R)

ϕ,x)−E
(
u(k)

n

(
G(R)
ϕ,x

))∣∣∣√
sm log(m)

= oa.co(1). (5.6.16)

Observe that for x,y ∈X k , ∣∣Gϕ,x
∣∣= ∣∣ϕ(y)δm(x,y)

∣∣
≤ C1sm

∣∣ϕ(y)
∣∣=: F̃(y).

Taking into account that F̃ is symmetric, we have:∣∣∣u(k)
n

(
G(R)
ϕ,x

)∣∣∣≤ u(k)
n

(
F̃1

{F̃>λξ1/q
n }

)
,

where u(k)
n

(
F̃(y)1

{ϕ(y)>λξ1/q
n }

)
is a U-statistic based on the U- kernel F̃1

{ϕ>λξ1/q
n }

:

sup
x∈Sk

X

p
m

∣∣∣u(k)
n (G(R)

ϕ,x)
∣∣∣√

sm log(m)
≤ (s−1

m ξn)1/2u(k)
n

(
F̃1

{F̃>λξ1/q
n }

)
(5.6.17)

≤ C7ξnu(k)
n

(
F̃1

{F̃>λξ1/q
n }

)
, (5.6.18)

and

sup
x∈Sk

X

p
m

∣∣∣E(
u(k)

n

(
G(R)
ϕ,x

))∣∣∣√
sm log(m)

≤ C7ξnE
(
u(k)

n

(
F̃1

{ϕ(Y)>λξ1/q
n }

))
≤ C7E

(
F̃1+q1

{ϕ(Y)>λξ1/q
n }

)
.

Therefore, as m −→∞ when n −→∞, we have

sup
x∈Sk

X

p
m

∣∣∣E(
u(k)

n

(
G(R)
ϕ,x

))∣∣∣√
sm log(m)

= o(1). (5.6.19)

Hence to achieve the proof, it remains to establish that :

u(k)
n

(
F̃1

{ϕ(y)>λξ1/q
n }

)
= oa.co

((
s−1

m ξn
)−1/2

)
. (5.6.20)
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An application of the Chebyshev’s inequality, for any η> 0, gives

P
{∣∣∣u(k)

n

(
F̃1

{ϕ(Y)>λξ1/q
n }

)
−E

(
u(k)

n

(
F̃1

{ϕ(Y)>λξ1/q
n }

))∣∣∣≥ η(s−1
m ξn)−1/2

}
≤ η−2(s−1

m ξn)Var
(
u(k)

n

(
F̃1

{ϕ(Y)>λξ1/q
n }

))
≤ kη−2ξnE

(
F̃21

{ϕ(Y)>λξ1/q
n }

)
≤ k

n2
η−2(ξn)qE

(
F̃21

{ϕ(Y)>λξ1/q
n }

)
≤ η′E

(
F̃31

{ϕ(Y)>λξ1/q
n }

) 1

n2
,

so by using the fact that

η′E
(
F̃31

{ϕ(y)>λξ1/q
n }

) ∑
n≥1

1

n2
<∞,

we deduce that

∑
n≥1

P
{∣∣∣u(k)

n

(
F̃1

{ϕ(y)>λξ1/q
n }

)
−E

(
u(k)

n

(
F̃1

{ϕ(y)>λξ1/q
n }

))∣∣∣≥ η(mξn)−1/2
}
<∞.

Finally, note that (5.6.17) implies

E
(
u(k)

n

(
F̃1

{ϕ(y)>λξ1/q
n }

))
= o

((
s−1

m ξn
)−1/2

)
.

The preceding results of the arbitrary choice of λ> 0 gives that (5.6.20) holds, which, by com-
bining with (5.6.19) and (5.6.17), completes the proof of (5.6.16). We finally obtain

sup
x∈Sk

X

∣∣un(ϕ,x,mn)−E(
un(ϕ,x,mn)

)∣∣= Oa.co

√
sm log(m)

m

 .

Hence the proof is complete.

□

Proof of Theorem 5.3.1.3

The conclusion of Theorem 5.3.1.3 can be obtained from the results of Theorem 5.3.1.1 and
Theorem 5.3.1.2. We have∣∣∣r̂ (k)

n (ϕ,x;mn)− Ê
(
r̂ (k)

n (ϕ,x;mn)
)∣∣∣

=
∣∣∣∣un(ϕ,x;mn)

un(1,x;mn)
− E

(
un(ϕ,x;mn)

)
E (un(1,x;mn))

∣∣∣∣
≤

∣∣un(ϕ,x;mn)−E(
un(ϕ,x;mn)

)∣∣
|un(1,x;mn)|

+
∣∣E(

un(ϕ,x;mn)
)∣∣ · |un(1,x;mn)−E (un(1,x;mn))|

|un(1,x;mn)| · |E (un(1,x;mn))|
=: I1 +I2.
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Notice that, given the imposed hypothesis and previously obtained results, and for some c1,c2,
we obtain:

sup
x∈Sk

X

|un(1,x,mn)| = c1 a.co,

sup
x∈Sk

X

|E (un(1,x,mn))| = c2,

sup
x∈Sm

X

∣∣E(
un(ϕ,x,mn)

)∣∣ = O(1).

Hence now, depending on whether the function ϕ(·) is bounded or unbounded, we can apply
Theorem 5.3.1.1 or Theorem 5.3.1.2 (respectively) to handle both I1 and I2, and get for some
c ′′ > 0 with probability 1 :

sup
x∈Sk

X

p
m

∣∣∣(r̂ (k)
n (ϕ,x;mn)

)
− Ê

(
r̂ (k)

n (ϕ,x;mn)
)∣∣∣√

sm log(m)

≤ sup
x∈Sk

X

p
m (I1)√

sm log(m)
+ sup

x∈Sk
X

p
m (I2)√

sm log(m)

≤ c ′′.

Hence the proof is complete. □

Proof of Theorem 5.3.1.4

Let γ> 0 and x ∈ Sk
X

. We have

Ê
(
r̂ (k)

n (ϕ,x;mn)
)
− r (k) (ϕ,x

)= E
[
un(ϕ,x,mn)

]
E [un(1,x,mn)]

− r (k) (ϕ,x
)

.

Notice that

Ê
(
r̂ (k)

n (ϕ,x;mn)
)

= 1

E [δm(x,X)]
E

[
ϕ(Y1, . . . ,Yk )

k∏
j=1

δmn (x j ,X j )

]

= 1

E [δm(x,X)]

∫
X k

r (k)(ϕ,t)δm(x,t) f̃ (t)µ(dt),

where for t = (t1, . . . , tk ) we denote µ(dt) :=µ(d t1) · · ·µ(d tk ), and

f̃ (t) :=
k∏

j=1
f (t j ).

Which means that

Ê
(
r̂ (k)

n (ϕ,x;mn)
)
− r (k) (ϕ,x

)
= 1

E [δm(x,X)]

(∫
X k

r (k)(ϕ,t)δm(x,t) f̃ (t)µ(dt)− r (k)(ϕ,x)
∫
X k

δm(x,t) f̃ (t)µ(dt)

)
= 1

E [δm(x,X)]

(∫
X k

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt)

)
:= I1(x)+ I2(x),
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where

I1(x) := 1

E [δm(x,X)]

∫
B(x,γ)

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt), (5.6.21)

and
I2(x) := 1

E [δm(x,X)]

∫
B̄(x,γ)

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt). (5.6.22)

Therefore, we need to study the asymptotic behavior of both sup
x∈Sk

X

(I1(x)) and sup
x∈Sk

X

(I2(x)) to get

the desired result.
Let us start with the term sup

x∈Sk
X

(I1(x)), we have

sup
x∈Sk

X

|I1(x)|

= sup
x∈Sk

X

∣∣∣∣ 1

E [δm(x,X)]

∫
B(x,γ)

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt)

∣∣∣∣
≤ 1

E [δm(x,X)]
sup

x∈Sk
X

∫
B(x,γ)

∣∣∣(r (k)(ϕ,t)− r (k)(ϕ,x)
)
δm(x,t) f̃ (t)

∣∣∣µ(dt),

taking into account the fact that the density function f (·) is bounded, and by condition (C.9),
we get:

sup
x∈Sk

X

|I1(x)|

≤ C f

E [δm(x,X)]
sup

x∈Sk
X

∫
B(x,γ)

C3d(x,t)δm(x,t)µ(dt)

≤ C f C3γ

E [δm(x,X)]
sup

x∈Sk
X

∫
B(x,γ)

δm(x,t)µ(dt), (5.6.23)

hence the term in (5.6.23) can be chosen smaller than 2ε as m → ∞ by using the condition
(5.2.6) .
To investigate the term sup

x∈Sk
X

(I2(x)), notice that

sup
x∈Sk

X

|I2(x)|

= sup
x∈Sk

X

∣∣∣∣ 1

E [δm(x,X)]

∫
B̄(x,γ)

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt)

∣∣∣∣
≤ C f C3

E [δm(x,X)]
sup

x∈Sk
X

∫
B̄(x,γ)

d(x,t)δm(x,t)µ(dt). (5.6.24)

By condition (5.2.9), we conclude that

sup
x∈Sk

X

|I2(x)|→ 0 as m →∞.

This concludes the proof of the Theorem. □
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Proof of Theorem 5.3.2.1

Following the same steps as the proof of Theorem 5.3.1.4, we can write directly :

Ê
(
r̂ (k)

n (ϕ,x;mn)
)
− r (k) (ϕ,x

)
= 1

E [δm(x,X)]

(∫
X k

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt)

)
.

Taking into account conditions (C.8), we can easily deduce that

sup
x∈Sk

X

∣∣∣∣ 1

E [δm(x,X)]

(∫
X k

(
r (k)(ϕ,t)− r (k)(ϕ,x)

)
δm(x,t) f̃ (t)µ(dt)

)∣∣∣∣
≤ sup

x∈Sk
X

|I1(x)|+ |I2(x)| ,

where I1(x) and I2(x) are defined in (5.6.21) and (5.6.22) respectively. Now equation (5.6.23)
gives us

sup
x∈Sk

X

|I1(x)|

≤ C f

E [δm(x,X)]
sup

x∈Sk
X

∫
B(x,γ)

C3d(x,t)δm(x,t)µ(dt)

≤ C f C3Dm

E [δm(x,X)]
sup

x∈Sk
X

∫
B(x,γ)

δm(x,t)µ(dt)

≤ O(Dm),

by conditions (C.8) and (C.1). On the other hand, equation (5.6.24) gives us :

sup
x∈Sk

X

|I2(x)|

≤ C f C3

E [δm(x,X)]
sup

x∈Sk
X

∫
B̄(x,γ)

d(x,t)δm(x,t)µ(dt)

≤ C f C3Dm

E [δm(x,X)]
sup

x∈Sk
X

∫
B̄(x,γ)

δm(x,t)µ(dt)

≤ O(Dm),

by condition (C.8). This completes the proof of the theorem. □

Appendix

Lemma 5.6.0.1 (Theorem A. page 201 Serfling [1980]) Let f denote a symmetric X k-valued
function fullfilling

∥∥ f
∥∥∞ ≤ c,

E f (X1, . . . ,Xk ) = θ,
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and
σ2 = Var

(
f (X1, . . . ,Xk )

)
,

then for t > 0 and n ≥ k, we infer :

P
{
|u(k)

n ( f )−θ| ≥ t
}
≤ exp

{
− [n/k]t 2

2σ2 − 2
3 ct

}
.

Lemma 5.6.0.2 (Proposition.1Arcones [1995]) If G : Sk →R is a measurable symmetric func-
tion with ∥G∥∞ = b then

P

{
n1/2

∣∣∣∣∣ k∑
j=2

(
k

j

)
u( j )

n
(
π j ,k G

)∣∣∣∣∣⩾ t

}
⩽ 2exp

(
− t (n −1)1/2

2k+2kk+1b

)
.

Definition 5.6.0.3 A symmetric and Pm-integrable kernel f : X k →R is P-degenerate of order
r −1, notationally f ∈ Lr

2

(
Pk

)
, if and only if∫

f (x1, . . . , xk )dPk−r+1 (xr , . . . , xm) =
∫

f dPk

holds for any x1, . . . , xr−1 ∈X , and

(x1, . . . , xr ) 7→
∫

f (x1, . . . , xk )dPk−r (xr+1, . . . , xm)

is not a constant function.
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Watson, G. S. and Leadbetter, M. R. (1964). Hazard analysis. II. Sankhyā Ser. A, 26, 101–116.
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Chapter 6

Conclusions and perspectives

6.1 Concluding remarks : Chapter 3

In Chapter 3, we have considered the problem of the nonparametric estimation of the condi-
tional U-statistics when the covariates take values in some abstract space. We have introduced
the k-NN estimator of the conditional U-statistics. More precisely, we have considered a sta-
tistical procedure combining the local adaptivity and the easiness of implementation of k-NN
estimates together with the conditional U-statistics flexibility in the regression problems involv-
ing the functional data. There are basically no restrictions on the choice of the kernel function
in our setup, apart from satisfying some mild conditions. The selection of the NN, however, is
more problematic. It is worth noticing that the choice of the NN is crucial to obtain a good rate
of consistency; for example, it has a big influence on the size of the estimate’s bias. In general,
we are interested in the selection of NN that produces an estimator which has a good balance
between the bias and the variance of the considered estimators. It is then more appropriate to
consider the NN varying according to the criteria applied and to the available data and loca-
tion, which cannot be achieved by using the classical methods. The interested reader may refer
to Mason [2012] for more details and discussion on a similar subject for the selection of the
bandwidth parameter in the finite-dimensional kernel estimation. The UINN consistency result
given in Corollary 3.4.2.5 shows that any choice of k between k1,n and k2,n ensures the con-
sistency of r̂ ∗(m)

n (ϕ,t;hn,k (t)). Namely, the fluctuation of k in some chosen set does not affect
the consistency of the nonparametric estimator r̂ ∗(m)

n (ϕ,t;hn,k (t)). In our future study, we will
investigate the weak convergence of r̂ ∗(m)

n (ϕ,t;hn,k (t)). A future research direction would be
to establish some asymptotic properties of r̂ ∗(m)

n (ϕ,t;hn,k (t)) as such investigated in this work
in the setting of serially dependent observations, which requires nontrivial mathematics, this
would go well beyond the scope of the present chapter, one can refer to Arcones and Yu [1994]
and Bouzebda and Nemouchi [2019].
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6.2 Concluding remarks : Chapter 4

In Chapter 4, we deal with a quite general nonparametric statistical curve estimation setting,
including the Stute estimator as a particular case. The class of “delta sequence estimators” is
defined and treated here. This class also includes the orthogonal series and histogram methods.
To obtain our results, we need assumptions requiring some regularity on the conditional U-
statistics and conditional moments. In particular, the conditional moment assumption permits
to consider the unbounded setting. To stress the importance of this study, we have presented
some potential applications, including discrimination problems, metric learning, and multipar-
tite ranking. Extending non-parametric functional ideas to general dependence structure is a
rather underdeveloped field. Note that the ergodic framework avoids the widely used strong
mixing condition and its variants to measure the dependency and the very involved probabilis-
tic calculations that it implies. It would be interesting to extend our work to the case of the
functional ergodic data Bouzebda et al. [2015, 2022a], Bouzebda and Didi [2017a,b, 2021,
2022] and Bouzebda and Chaouch [2022a] which requires non-trivial mathematics, this would
go well beyond the scope of the present work. Another research direction is to consider the
projection pursuit regression and projection pursuit conditional distribution, which need an ex-
tension and generalization of the methods used in the present work. If we assume that the
regression function r (k)(ϕ, ·) is smooth enough that is differentiable at a fixed t0, it will be better
to use the local polynomial regression techniques, refer to Fan and Gijbels [1996], to obtain a
more appropriate estimate at t0 than that given by the Nadaraya-Watson type estimator. We will
not treat the uniform consistency of such estimators in the present paper and leave it for future
investigation.

6.3 Concluding remarks : Chapter 5

In Chapter 5, the conditional U-statistics regression operator estimation methods for random
elements taking values in an infinite-dimensional separable Banach space are generalized to the
delta-sequences techniques. The space of continuous functions on the interval (0,1) with the
supremum norm illustrates a separable Banach space. Notably, the method of delta-sequences
unifies the kernel method of the probability density function estimation, the histogram method,
and a few other methods, including the method of orthogonal series for appropriate choices
of orthonormal bases in the one-dimensional and finite-dimensional cases. We have obtained
strong uniform consistency results in abstract settings under some conditions on the model.
The general framework that we consider extends the existing methods to higher-order statistics;
this has a significant impact both from a theoretical and practical point of view. In a future
investigation, considering the limiting law of the conditional U-statistics regression estimators
based on the delta sequence will be of interest. A natural extension of the present investiga-
tion is to consider the serial-dependent setting such as the mixing (see Bouzebda and Soukarieh
[2022a,b], Bouzebda and Nemouchi [2022], Bouzebda et al. [2022b]) or the ergodic processes
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(see Bouzebda and Chaouch [2022b], Didi and Bouzebda [2022]. In a future investigation of the
functional delta sequence local linear approach estimators, it will be natural to think about the
possibility of obtaining an alternative estimator that benefits from the advantages of both meth-
ods, the local linear method and the delta sequence approach. This is because both methods have
their own distinct advantages. Many methods have been developed and established to construct,
in asymptotically optimal ways, bandwidth selection rules for nonparametric kernel estimators,
particularly for the Nadaraya-Watson regression estimator. We quote several of these methods,
including Rachdi and Vieu [2007], Bouzebda et al. [2022c], Bouzebda and Nezzal [2022]. This
parameter needs to have an appropriate value chosen for it to ensure that satisfactory practical
performances are achieved, either in the typical situation of finite dimensions or in the frame-
work of infinite dimensions. On the other hand, to the best of our knowledge, no such studies
are currently conducted to treat generic functional conditional U-statistics. This exemplifies a
potential new avenue for research in the future.

6.4 References

Arcones, M. A. and Yu, B. (1994). Central limit theorems for empirical and U-processes of
stationary mixing sequences. J. Theoret. Probab., 7(1), 47–71. 237

Bouzebda, S. and Chaouch, M. (2022a). Uniform limit theorems for a class of conditional Z-
estimators when covariates are functions. J. Multivariate Anal., 189, Paper No. 104872, 21.
238

Bouzebda, S. and Chaouch, M. (2022b). Uniform limit theorems for a class of conditional
z-estimators when covariates are functions. Journal of Multivariate Analysis, 189, 104872.
239

Bouzebda, S. and Didi, S. (2017a). Additive regression model for stationary and ergodic con-
tinuous time processes. Comm. Statist. Theory Methods, 46(5), 2454–2493. 238

Bouzebda, S. and Didi, S. (2017b). Multivariate wavelet density and regression estimators for
stationary and ergodic discrete time processes: asymptotic results. Comm. Statist. Theory
Methods, 46(3), 1367–1406. 238

Bouzebda, S. and Didi, S. (2021). Some asymptotic properties of kernel regression estimators
of the mode for stationary and ergodic continuous time processes. Rev. Mat. Complut., 34(3),
811–852. 238

Bouzebda, S. and Didi, S. (2022). Some results about kernel estimators for function derivatives
based on stationary and ergodic continuous time processes with applications. Comm. Statist.
Theory Methods, 51(12), 3886–3933. 238

239



CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Bouzebda, S. and Nemouchi, B. (2019). Central limit theorems for conditional empirical and
conditional U-processes of stationary mixing sequences. Math. Methods Statist., 28(3), 169–
207. 237

Bouzebda, S. and Nemouchi, B. (2022). Weak-convergence of empirical conditional processes
and conditional U-processes involving functional mixing data. Stat. Inference Stoch. Process.
To appear, pages 1–56. 238

Bouzebda, S. and Nezzal, A. (2022). Uniform consistency and uniform in number of neigh-
bors consistency for nonparametric regression estimates and conditional U-statistics involv-
ing functional data. Jpn. J. Stat. Data Sci., 5(2), 431–533. 239

Bouzebda, S. and Soukarieh, I. (2022a). Non-parametric conditional u-processes for locally
stationary functional random fields under stochastic sampling design. Mathematics, 11(1),
16. 238

Bouzebda, S. and Soukarieh, I. (2022b). Nonparametric conditional u-processes for locally
stationary functional random fields under stochastic sampling design. Mathematics, 10(24),
1–70. 238

Bouzebda, S., Didi, S., and El Hajj, L. (2015). Multivariate wavelet density and regression
estimators for stationary and ergodic continuous time processes: asymptotic results. Math.
Methods Statist., 24(3), 163–199. 238

Bouzebda, S., Chaouch, M., and Didi Biha, S. (2022a). Asymptotics for function derivatives
estimators based on stationary and ergodic discrete time processes. Ann. Inst. Statist. Math.,
74(4), 737–771. 238

Bouzebda, S., Mohammedi, M., and Laksaci, A. (2022b). The k-nearest neighbors method
in single index regression model for functional quasi-associated time series data. Rev. Mat.
Complut., pages 1–30. 238

Bouzebda, S., El-hadjali, T., and Ferfache, A. A. (2022c). Uniform in bandwidth consistency of
conditional U-statistics adaptive to intrinsic dimension in presence of censored data. Sankhya
A, pages 1–59. 239

Didi, S. and Bouzebda, S. (2022). Wavelet density and regression estimators for continuous
time functional stationary and ergodic processes. Mathematics, 10(22), 4356. 239

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications, volume 66 of
Monographs on Statistics and Applied Probability. Chapman & Hall, London. 238

Mason, D. M. (2012). Proving consistency of non-standard kernel estimators. Stat. Inference
Stoch. Process., 15(2), 151–176. 237

Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic
smoothing parameter selection. J. Statist. Plann. Inference, 137(9), 2784–2801. 239

240


	PDT NEZZA AmelL 
	Soutenue le 28 octobre 2022
	Spécialité : Mathématiques Appliquées : Laboratoire de Mathématiques Appliquées de Compiègne (Unité de recherche EA-2222)

	these_STAR_Amel NEZZAL_VD
	Contents
	List of Figures
	Introduction
	Motivation
	Organization of the dissertation
	References

	Mathematical background
	Mathematical Background
	References

	k-NN functional conditional U-statistics
	Introduction
	The functional framework
	UIB and UINN consistency for functional regression
	UIB and UINN consistency of functional conditional U-statistics
	Extension to the censored case
	Some potential applications
	Examples of kernel for the U-statistics
	The bandwidth selection criterion 
	Mathematical developments
	References

	Conditional U-statistics using delta sequences 
	Introduction
	Preliminaries and estimation procedure 
	Main results
	Conditional U-statistics for censored data
	Applications
	The bandwidth selection criterion 
	Mathematical development
	Appendix
	References

	Functional conditional U-statistics by delta-sequences
	Introduction
	Preliminaries and estimation procedure 
	Some asymptotic results
	Conditional U-statistics for censored data
	Applications
	Mathematical development
	References

	Conclusions and perspectives
	Concluding remarks : Chapter 3
	Concluding remarks : Chapter 4
	Concluding remarks : Chapter 5
	References





